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STELIJNGEN 

1. De zon is de meest onderbenutte natuurlijke hulpbron. 

2. Bij onderzoek naar de effecten van temperatuur en fotoperiode op de 

reproductieve ontwikkeling van peulvruchten moet zowel naar de bloei als naar 

de vruchtzetting worden gekeken. 

Dit proefschrift. 

3. De effecten van temperatuur en fotoperiode op de vruchtzetting van bambara 

aardnoot kunnen op dezelfde wijze worden gekwantificeerd als hun effecten op 

de bloei. 

Dit proefschrift. 

4. Een geleidelijke toename of afname van de fotoperiode heeft in bambara 

aardnoot geen invloed op de ontwikkelingssnelheid van bloei tot peulvorming, 

hetgeen betekent dat de ontwikkelingssnelheid per dag berekend kan worden 

op basis van de fotoperiode en temperatuur van die dag en dat deze dagelijkse 

ontwikkelingssnelheden kunnen worden geaccumuleerd. 

Dit proefschrift. 

5. Wil de Landbouwuniversiteit een 'Werelduniversiteit' blijven, dan dient zij er 

zorg voor te dragen dat haar kennis en ervaring op het gebied van de landbouw 

in de tropen op peil worden gehouden. 

6. In tegenstelling tot wat termen als 'natuurbescherming' en 'natuurbehoud' doen 

vermoeden, kan 'de natuur' niet worden vernietigd. 

7. Het is een misverstand te menen dat natuurlijke geneesmiddelen per definitie 

minder schadelijk zijn dan synthetische medicijnen. 



8. De mens is ook maar een dier. 

Frans de Waal, 1996. Good nattered: the origins of right and wrong in 

humans and other animals. Harvard University Press, Cambridge, 

U.S.A. 296 pp. 

9. Pas als de politieke kleur van kandidaten en niet hun nationaliteit 

doorslaggevend is bij benoemingen voor Europese topfuncties, is er werkelijk 

sprake van Europese éénwording. 

10. Het woord 'kinderachtig' heeft geheel ten onrechte een negatieve betekenis. 

11. "Al ligt een boomstam nog zo lang in het water, hij wordt nooit een krokodil." 

Mandinka spreekwoord. 

Martin Brink 

Matching crops and environments: quantifying photothermal influences on 

reproductive development in bambara groundnut (Vigna subterranea (L.) Verde) 

Wageningen, 5 juni 1998 



ABSTRACT 

The extent to which crops are adapted to specific environments greatly depends 

on how their development is affected by climatic factors. Development in bambara 

groundnut (Vigna subterranea (L.) Verde.) is known to be influenced by temperature 

and photoperiod. The objective of this study was to quantify the influence of these 

factors on reproductive development in selections from different origins. Models 

relating development rates to photoperiod and temperature with linear equations were 

made for different bambara groundnut selections on the basis of research in semi-

controlled environments. The photoperiod and temperature responses could be 

explained very well by the photothermal conditions in the regions where the selections 

were obtained. Validation of the models with the results of glasshouse and field 

experiments showed good to reasonable agreement between observed and predicted 

times to flowering and podding. It is shown that the average photoperiod between 

flowering and podding determines the rate from flowering to podding, and that a 

gradual increase or decrease in photoperiod does not affect that rate. This means that 

photothermal models intended to predict bambara groundnut development in field 

situations with fluctuating photoperiods can be based on studies with constant 

photoperiods. It is also shown that growth and development in bambara groundnut are 

largely independent and that there are no strong direct photoperiod effects on dry 

matter partitioning. The usefulness of photothermal development models for 

identifying suitable selections for different locations and sowing dates is demonstrated 

in a simulation study for Botswana. It is concluded that the influence of photoperiod 

and temperature on bambara groundnut development can be quantified through 

descriptive linear models, using data from semi-controlled environment experiments 

with constant temperatures and photoperiods. These quantitative models, either on their 

own or incorporated into a crop growth model, can be useful instruments for matching 

bambara groundnut genotypes and specific environments. 

Keywords: bambara groundnut {Vigna subterranea), photoperiod, temperature, 

development, phenology, flowering, podding, modelling. 
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PREFACE 

This thesis is the tangible result of five years of work on the relatively 

unknown African food crop bambara groundnut. The study was carried out in the 

framework of the international research programme Evaluating the potential for 

bambara groundnut as a food crop in semi-arid Africa, supported by the Life Sciences 

and Technologies for Developing Countries Programme of the European Union. I 

sincerely hope that this thesis will not only help to evaluate, but also help to fulfil the 

potential of this crop, and that it will make a contribution, however small, to increased 

food security in Africa. 

Many people have been involved in the work that led to this thesis. First of all, 

I want to express my gratitude to my co-promotor Egbert Westphal for his day-to-day 

guidance from the earliest beginnings to the conclusion of this project. Egbert, I 

greatly appreciate that your door was always open for me to discuss what I had on my 

mind. Your continuous support, enthusiasm and optimism were very encouraging. I 

also want to thank my promotors Marius Wessel and Rudy Rabbinge for their patient 

and positive supervision. Both of you were always ready to discuss plans and papers. 

My predecessor, bambara groundnut pioneer Anita Linnemann, is gratefully 

acknowledged for sharing her extensive knowledge of the crop. Her help enabled me 

to make a flying start. My colleagues at the Department of Agronomy, TUPEA and 

PROSEA are thanked for their help and for the interest they showed. 

Within the EU-programme, Wageningen Agricultural University co-operated 

with Botswana College of Agriculture (Botswana), Njala University College (Sierra 

Leone), Sokoine University of Agriculture (Tanzania) and the University of 

Nottingham (U.K.). I want to thank Dr Azam-Ali, Dr Collinson, Prof. Karikari, Mrs 

Kwerepe, Dr Munthali, Mr Ramolemana, Dr Sesay, Dr Sibuga, Dr Tarimo, Dr 

Wigglesworth and all others involved in the EU-programme for the pleasant 

cooperation and the hospitality during my visits to the partner institutions. 

The heart of this thesis is a series of experiments carried out in Wageningen 

from 1993 to 1996. Several students participated in the experimental work: Sait 

Drammeh, Ana Cristina Garcez, Alwin Kamstra, Ralf Köhne and Sergio Mateus are 

thanked for their commitment and enthusiasm, which persisted through many hours 



of tedious work. Joke Belde, Ildiko van de Linde and Sandra Bot were very helpful 

and patient in the execution of the experiments, observational work and harvesting. 

Anton Houwers, Tek-An Lie and Martin Muilenburg are acknowledged for supplying 

Rhizobium for the experiments. I am grateful to Willem Keltjens and Jeanne Dijkstra 

for their advice on matters regarding nutrient supply and plant diseases respectively. 

Many people of UNIFARM have been involved in the organization and execution of 

the experiments. I especially want to thank Ton Blokzijl, Theo Damen, Wim den 

Dunnen, Gerrit van Geerenstein, Jan van der Pal, Casper Pillen, Harry Scholten, Taede 

Stoker, Gerrit Timmer, Evert Verschuur and Rinus van de Waart. Jack van Zee 

provided technical assistance and made the cover photograph of the flower and the 

pods. 

The information collected in the experiments had to be analysed and written 

up. I thank Gerrit Gort and Martin van Montfort for their assistance with the statistical 

analysis. Dr Craufurd (the University of Reading) is acknowledged for providing the 

RoDMoD computer programme and Dr Collinson (the University of Nottingham) for 

providing a programme to analyse reciprocal transfer experiments. Drafts of most 

chapters of this thesis were discussed in group 1 of the CT. de Wit Graduate School 

for Production Ecology. The participants in this discussion group are sincerely thanked 

for their very useful contributions. The comments of Conny Almekinders, Joost 

Brouwer, Jan Goudriaan, Herman van Keulen, Anita Linnemann, Tjeerd Jan Stomph, 

Paul Struik, Jan Vos and Jan Wienk on parts of this thesis are also very much 

appreciated. Joy Burrough-Boenisch corrected most parts of this thesis, and Helen 

West and Joost Brouwer smaller sections. Any remaining language errors present in 

this thesis are certainly due to my incorrigible habit of making last-minute changes to 

'final' versions. 

Finally, I want to thank my family. My parents always encouraged me in my 

studies and helped me to arrive at where I am at the moment. Corry is thanked for her 

understanding and support during the past years, in which this thesis took up a large 

part of my time, thoughts and energy. My son Lukas has enriched and livened up my 

life in the past two years. 
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General introduction 

1 GENERAL INTRODUCTION 

1.1 Matching crops and environments 

A substantial increase in food production has been achieved in the more humid 

parts of the tropics in the last 50 years, particularly in Asia, where crop yields have 

increased through the use of high-yielding cultivars, fertilizers, irrigation and improved 

cropping practices. In semi-arid Africa, on the other hand, food production has hardly 

increased. Here, the techniques that could overcome existing production constraints are 

not available or affordable for the large majority of farmers. Under these conditions, 

an alternative, more realistic approach to increase food production may be to grow 

crops and crop genotypes that are adapted to existing production constraints like low 

rainfall and poor soils, instead of trying to overcome these constraints by applying 

irrigation and fertilizers. In other words, a strategy of matching crops and 

environments instead of trying to control and change environments. 

One crop considered to be adapted to semi-arid Africa, is the grain legume 

bambara groundnut (Vigna subterranea (L.) Verde). Bambara groundnut has the 

advantages of legumes in general (Smil, 1997): it is able to fix atmospheric nitrogen 

through symbiosis with Rhizobium bacteria, it has a high protein content, and it can 

be consumed in many ways. Additionally, it is reported to give reasonable yields in 

regions where soils are too poor and rainfall is too low for other legumes like 

groundnut (Arachis hypogaea L.), cowpea {Vigna unguiculata (L.) Walp.) and 

common bean (Phaseolus vulgaris L.) (Linnemann and Azam-Ali, 1993). 

In 1992, the international research programme Evaluating the potential for 

bambara groundnut as a food crop in semi-arid Africa was started with funding from 

the European Union and involving institutions from Botswana, Tanzania, Sierra Leone, 

the United Kingdom and The Netherlands. The objectives of this programme were: (1) 

to identify suitable agro-ecological regions and seasons for the cultivation of bambara 
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groundnut in Tanzania, Botswana and Sierra Leone; (2) to produce a validated model 

of bambara groundnut for predicting biomass and pod yields of different genotypes 

in contrasting environments; (3) to identify the physiological attributes associated with 

the ability of bambara groundnut to produce yields under semi-arid conditions; (4) to 

recommend suitable management practices to stabilise the yields of bambara groundnut 

under rainfed conditions; and (5) to outline a methodology for applying a similar 

approach to rapidly assess the potential of other underutilised species in tropical 

environments (Azam-Ali, 1997). 

The present study, undertaken within the framework of this programme and 

carried out in The Netherlands, investigates environmental effects on development in 

bambara groundnut. Development is an important aspect of plant adaptation to 

environments, because a successful match of crops and environments requires that 

crops complete their reproductive development within the available growing season 

and have an optimal balance between vegetative and reproductive phases. Furthermore, 

critical stages of their development should not coincide with unfavourable conditions 

(Loomis and Connor, 1992). Quantification of the influence of environmental factors 

on development in different bambara groundnut genotypes is a step in the process of 

matching crops and crop genotypes to specific environments. 

1.2 Bambara groundnut 

Bambara groundnut is an indeterminate annual herb, with creeping stems 

carrying trifoliolate leaves with erect petioles. Flowers form at the base of the petioles, 

usually in pairs. Self-pollination is the rule. After pollination and fertilization, the 

peduncle grows and pods form on or under the ground. The pods usually contain one 

seed, which may be cream, white, red, black, purple or brown. Some genotypes have 

an eye around the hilum; the eye varies in colour and shape (IBPGR/IITA/GTZ, 

1987). 
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The area of origin of bambara groundnut extends from northern Nigeria to 

Cameroon (Hepper, 1970). At present, the major producers are Nigeria, Niger, Ghana, 

Burkina Faso and Ivory Coast, but the crop is also widely grown in eastern and 

southern Africa and in Madagascar (Appa Rao et al., 1986; Linnemann and Azam-Ali, 

1993). It is not important outside Africa. Reliable production figures are difficult to 

obtain, because the crop is mainly grown for home consumption and sale at local 

markets (Hepper, 1970; Goli et al., 1991). The annual world production is estimated 

to be around 330,000 MT, with 45-50% produced in West Africa (Coudert, 1982). 

Bambara groundnut is primarily grown for the seeds, which are used as food, 

but the vegetative parts may be used as fodder (Hepper, 1970). An important 

advantage of bambara groundnut is that not only mature, but also immature seeds can 

be consumed by humans. These immature seeds can be used to fill the 'hungry gap' 

during the growing season, when stores are empty and the main crops are not yet 

harvestable. The time from sowing to maturity in the field is reported to range from 

90 to 170 days (Doku and Karikari, 1971; Linnemann and Azam-Ali, 1993). 

Farmers value bambara groundnut because it has multiple uses, tastes good, 

tolerates poor soils, is relatively free of diseases and pests, and tolerates drought 

(Linnemann and Azam-Ali, 1993). The drought tolerance of bambara groundnut has 

been confirmed in glasshouse experiments, where bambara groundnut gave seed yields 

equivalent to 300 kg ha"1 under levels of drought where groundnut failed to even 

produce pods (Linnemann and Azam-Ali, 1993). 

1.3 Environmental influences on development in grain legumes 

Photoperiod and temperature play an important role in the regulation of 

development in grain legumes (Summerfield and Wien, 1980). The most obvious 

example is soya bean (Glycine max (L.) Merrill), which has been a pioneer crop in 

photoperiod research. Early this century, it was found that flowering in soya bean may 
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be delayed by long photoperiods and that genotypes differ in their response to 

photoperiod (Garner and Allard, 1920, 1923, 1930). It is now known that soya bean 

is sensitive to photoperiod and temperature in all phases from flowering to maturity 

(Johnson et al., 1960; Morandi et al., 1988; Grimm et al., 1993, 1994). 

Groundnut, on the other hand, has long been considered a day-neutral plant 

(Fortanier, 1957). More recent research has shown that the appearance of the first 

flower may be unaffected by photoperiod, but that photoperiod does influence 

development after the onset of flowering: flower, peg and pod numbers are higher 

under short days than under long days (Wynne at al., 1973; Emery et al., 1981; Flohr 

et al., 1990; Bagnall and King, 1991a, 1991b; Bell et al., 1991). 

With respect to cowpea, it has long been known that the appearance of flower 

buds and open flowers may be retarded under long photoperiods (Njoku, 1958; Wienk, 

1963). Photoperiod effects on the appearance of flower buds, flowers and mature pods 

are modified by temperature (Hadley et al. 1983a). 

In common bean, all stages of the life cycle may be sensitive to photoperiod 

(Evans, 1993). The onset of flowering has been found to be unaffected by photoperiod 

in some genotypes and retarded by long photoperiods in others (White and Laing, 

1989). In mungbean (Vigna radiata (L.) Wilczek), lentil {Lens culinaris Medic), 

chickpea (Cicer arietinum L.) and faba bean {Vicia faba L.), the time to flowering is 

reported to be sensitive to photoperiod and temperature (Roberts et al., 1985; 

Summerfield, et al., 1985; Ellis et al., 1990; Imrie and Lawn, 1990). 

Development in bambara groundnut is known to be influenced by temperature 

and photoperiod, and there are large differences between genotypes in their response 

to these factors. Glasshouse experiments at Wageningen Agricultural University have 

shown that the onset of flowering in most genotypes is photoperiod-insensitive, but 

that long photoperiods retard the onset of pod growth ('podding'). Of the 13 genotypes 

studied by Linnemann (1994a), only 'Ankpa4' from Nigeria appeared to be 

photoperiod-sensitive with regard to flowering, while all were photoperiod-sensitive 

with regard to podding. The finding that the onset of flowering in bambara groundnut 
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may be photoperiod-insensitive but the onset of podding photoperiod-sensitive has 

been confirmed in a field experiment in Botswana (Harris and Azam-Ali, 1993). 

1.4 Quantifying the influence of environmental factors on development 

Quantifying the influence of environmental factors on crop development can 

be very useful for the design of genotype-management combinations (Loomis and 

Connor, 1992) and is an important aspect of the development of crop growth 

simulation models (Jones et al., 1991). Multi-locational field trials or controlled 

environment experiments may be used to identify the influencing factors and to 

quantify their effects. One advantage of controlled-environment experiments is that 

they make it easier to separate the effects of photoperiod, temperature and other 

factors. Another advantage is that constant temperature and photoperiod conditions can 

be imposed. Whether multi-locational field trials or controlled-environment 

experiments are used, the range of photoperiod and temperature conditions included 

must be carefully chosen and sufficiently wide. Given that photoperiod response is 

genotype-specific, this response has to be quantified for each genotype. 

Much work has been done to characterize the effects of photoperiod and 

temperature effects on development in soya bean. Different types of models have been 

developed, including linear models (Hadley et al., 1984; Mayers et al., 1991; 

Summerfield et al., 1993), linear-plateau models (Grimm et al., 1993) and logistic 

models (Sinclair et al., 1991). These models have been based on controlled-

environment experiments (e.g. Hadley et al., 1984) or field experiments (Mayers et al., 

1991; Sinclair et al., 1991; Grimm et al., 1993). Although much of the research on 

photoperiod effects in soya bean has focused on flowering, there have been some 

attempts to quantify the effects of environmental factors on development stages 

beyond flowering (Major et al., 1975; Hodges and French, 1985; Mayers et al., 1991; 

Grimm et al., 1994). The phenology part of the SOYGRO crop growth model includes 
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all phases from flower initiation to maturity (Jones et al., 1991). 

For groundnut, temperature effects on the onset of flowering have been 

quantified for several genotypes in glasshouse and growth chamber studies (Bagnall 

and King, 1991a; Nigam et al, 1994). Leong and Ong (1983) quantified the effects of 

temperature on flowering, pegging and podding of one cultivar ('Robut 33-1'), but 

they did not investigate photoperiod effects. 

With respect to cowpea, the effects of photoperiod and temperature on the first 

appearance of flower buds, flowers and mature pods have been quantified with linear 

models based on controlled environment experiments (Hadley et al., 1983a). Linear 

flowering models have also been developed on the basis of field experiments (Ellis et 

al., 1994a). 

Less work has been done on other legumes. For mungbean (Imrie and Lawn, 

1990; Ellis et al., 1994b), chickpea (Roberts et al., 1985; Ellis et al., 1994c), lentil 

(Summerfield et al., 1985; Erskine et al., 1994) and faba bean (Ellis et al., 1990) the 

influence of photoperiod and temperature on flowering of different genotypes has been 

characterized through linear models based on controlled-environment or field 

experiments. 

For bambara groundnut, a first attempt to quantify the influence of photoperiod 

and temperature on the onset of flowering and podding was carried out on three 

Nigerian genotypes (Linnemann and Craufurd, 1994). The present study builds further 

on this by quantifying the photothermal responses of selections from more diverse 

origins, validating the models with independent data and using the models in a field 

situation. 

1.5 Research objective and methodology 

The objective of this study is to quantify the influence of photoperiod and 

temperature on development in bambara groundnut selections from different origins 

8 
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on the basis of controlled environment research. The resulting quantitative models 

should be able to predict development in field situations, which would make them 

useful for identifying crop genotypes that would do well in specific environments. The 

study included the following elements: 

1. experimentation to investigate the effects of photoperiod and temperature on 

development in different selections; 

2. quantification of the effects of photoperiod and temperature on development 

through linear models; 

3. validation of the models through (a) comparison of photothermal responses 

with temperatures and photoperiods in the regions where the selections were 

obtained and (b) comparison of model predictions with data from glasshouse 

experiments and field trials; 

4. exploration of the potential of these models to identify well adapted genotypes 

for specific environments. 

1.6 Outline of the thesis 

First, temperature and photoperiod effects on the onset of flowering and the 

onset of podding of bambara groundnut selections from different origins are quantified 

with linear photothermal models (Chapter 2). It is then investigated whether the time 

from sowing to podding in bambara groundnut can be divided into photoperiod-

sensitive and photoperiod-insensitive phases in the same way as the time between 

sowing and flowering in other crops (Chapter 3). Chapter 4 examines the applicability 

of the findings from controlled environment research with constant photoperiods in 

field situations with fluctuating photoperiods. Chapter 5 investigates the validity of 

some common assumptions in crop modelling: are development and growth 

independent and can development be modelled separately from crop growth? Are dry 

matter partitioning factors dependent on development stage and not directly influenced 
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by photoperiod? In Chapter 6, photothermal models are developed for bambara 

groundnut selections from contrasting origins, near the equator (Tanzania) and near 

the Tropic of Capricorn (Botswana), and these models are validated. Chapter 7 

presents a case-study for Botswana, which shows the implications of genotypic 

differences in responses to photoperiod and temperature in bambara groundnut and 

demonstrates the usefulness of photothermal development models for identifying 

suitable selections for different locations and sowing dates. In Chapter 8, the findings, 

methodology and implications of the whole study are discussed and evaluated. 

10 
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Rates to flowering and podding 

2. RATES OF PROGRESS TOWARDS FLOWERING AND PODDING IN BAMBARA 

G R O U N D N U T (VLGNA SUBTERRANEÀ) A S A F U N C T I O N O F T E M P E R A T U R E A N D 

PHOTOPERIOD 

M. Brink 

Abstract 

The influence of temperature and photoperiod on phenological development of 

three bambara groundnut (Vigna subterraned) selections from Botswana, Zimbabwe 

and Mali was investigated in a semi-controlled environment experiment with factorial 

combinations of three constant temperatures (20.9, 23.4, and 26.2 °C) and four 

constant photoperiods (10.0, 12.5, 13.5, and 16.0 h d"'). In all three selections, the 

onset of flowering was influenced by temperature but not by photoperiod, while the 

onset of pod-growth ('podding') of all three selections was influenced by both factors. 

The influence of temperature and photoperiod was quantified by means of 

photothermal models, linking development rates to temperature and photoperiod with 

linear equations. The rate of progress from sowing to flowering of the three selections 

could be described very well (r2>95%) as a function of temperature; the rate of 

progress from flowering to podding was described reasonably well as a function of 

both temperature and photoperiod by a combination of one to three response planes 

(r2 for the different selections ranging from 63% to 90%). Model testing with 

independent data sets showed good agreement between observed and predicted times 

to flowering and podding. 

13 
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2.1 Introduction 

The leguminous crop bambara groundnut (Vigna subterranea (L.) Verde, syn. 

Voandzeia subterranea (L.) Thouars)) is an important secondary food crop in semi-

arid Africa, where it is mainly grown by smallholders (Linnemann and Azam-Ali, 

1993). It produces protein-rich seeds which are eaten unripe or ripe. Compared to 

groundnut {Arachis hypogaea L.), bambara groundnut performs relatively well under 

water stress and is less susceptible to diseases (Linnemann and Azam-Ali, 1993). 

To explore the potential production of different bambara groundnut selections 

in various agro-ecological regions and assess the possibilities of transferring selections 

to other regions, it is necessary to know how development rates are influenced by 

environmental factors. In most crops, development rates are mainly determined by 

temperature and/or photoperiod (Roberts and Summerfield, 1987; Squire, 1990). Multi-

locational field trials and/or controlled environment research are needed to identify the 

influencing factors and to quantify their effects. However, it is easier to separate the 

effects of photoperiod, temperature, and radiation in controlled environments than in 

field situations. 

Quantification of the influence of temperature and photoperiod on development 

has been done with different types of models (Hodges, 1991; Sinclair et al., 1991). A 

relatively simple method, developed at the University of Reading, uses linear equations 

to relate the rate of progress from sowing to flowering (calculated as the inverse of 

the duration from sowing to flowering) to the mean pre-flowering photoperiod and 

temperature (Hadley et al., 1983b; Summerfield et al., 1991; Lawn et al., 1995). The 

main advantages of this method are that the responses to photoperiod and temperature 

become linear and that interactions between temperature and photoperiod influences 

often disappear (Summerfield et al., 1991). The method has been used to describe the 

flowering response to temperature and photoperiod in various leguminous crops: 

cowpea {Vigna unguiculata (L.) Walp.) (Hadley et al., 1983a; Ellis et al., 1994a); soya 

bean (Glycine max (L.) Merr.) (Hadley et al., 1984; Summerfield et al., 1993); 
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mungbean (Vigna radiata (L.) Wilczek) (Ellis et al., 1994b); chickpea (Cicer 

arietinum L.) (Roberts et al., 1985; Ellis et al., 1994c); lentil {Lens culinaris Medic.) 

(Summerfield, et al., 1985; Erskine et al., 1994); and faba bean {Vicia faba L.) (Ellis 

et al., 1990). 

In the short-day species bambara groundnut, not only the onset of flowering, 

but also the onset of pod growth ('podding') is affected by photoperiod (Harris and 

Azam-Ali, 1993; Linnemann, 1993; Linnemann et al., 1995). Photoperiod usually has 

a stronger effect on the onset of podding than on the onset of flowering. Linnemann 

and Craufurd (1994) applied the Reading method to ascertain the rate of progress 

towards flowering and podding, but they did not validate their results with independent 

data sets. 

The objectives of the present study were to assess the influence of temperature 

and photoperiod on flowering and podding in bambara groundnut selections from 

different origins; to quantify the temperature and photoperiod effects by means of 

photothermal models which relate development rates to photoperiod and temperature 

by means of linear equations; and to test whether these photothermal models 

adequately predict development rates in other situations. 

2.2 Materials and methods 

Experiments 

The study involved eight different experiments: a main semi-controlled 

environment experiment used to construct development models and seven other 

experiments to test the models. 

The main experiment was carried out from 16 May to 2 November 1994 in 

three identical glasshouses in Wageningen, The Netherlands (51°58' N). The 

experimental design was a split-split-plot with temperature (three levels) as first main 
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factor, photoperiod (four levels) as second main factor, and selection (three selections) 

as subfactor. The bambara groundnut selections included were 'GabC92' from 

Botswana, 'NTSC92' from Zimbabwe, and 'Tiga Nicuru' from Mali. 

Temperature in the three glasshouses was set at 20, 23, and 26 °C respectively. 

These temperatures were chosen, because preliminary experiments at the Department 

of Agronomy of Wageningen Agricultural University had indicated that bambara 

groundnut does not grow well at constant temperatures below 20 °C and that the 

optimum temperature for podding of some selections was lower than 28 °C (A.R. 

Linnemann, personal communication). It was not possible to keep the temperature in 

the glasshouses at these predetermined levels all the time, because of the warm, sunny 

weather during the experiment. Measured mean daily temperatures were 20.9, 23.4, 

and 26.2 °C respectively. Relative air humidity in the glasshouses was kept above 

60%, and the glasshouses transmitted 52% of the outside photosynthetically active 

radiation (PAR). 

The photoperiod treatments were constant photoperiods of 10, 12.5, 13.5, and 

16 h d"1. These photoperiod treatments were chosen, because earlier research had 

shown that at an average temperature around 25 °C, the main photoperiod response 

of 'Tiga Nicuru' occurs between photoperiods of 12 and 14 h d'1 (A.R. Linnemann 

personal communication; results have later been published in Linnemann et al. (1995)). 

A photoperiod of 10 h d"1 was expected to be below the critical photoperiod of 'Tiga 

Nicuru' in the temperature range of the experiment, and a photoperiod of 16 h d"1 

above the ceiling photoperiod. A tent with lightproof tent-cloth (a double layer of 

LS 100 from Ludvig Svensson Ltd Company) with four compartments, each 3.10 m 

wide, 1.50 m long, and 2.05 m high, was erected in each glasshouse. The photoperiod 

treatments were randomly allocated over the compartments. The tents were open from 

08:00 h to 16:00 h, and closed from 16:00 h to 08:00 h. The plants in all 

compartments received natural daylight from 08:00 h to 16:00 h. The photoperiod was 

prolonged separately in each compartment by means of low intensity artificial light 

(two Philips TLD 36 W fluorescent tubes (colour no. 84) and two Philips 40 W bulbs 
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in each compartment, together giving around 10 /zmol m"2 s'1 PAR at plant height). 

Artificial light was on from 07:00 h to 8:00 h and from 16:00 h to 17:00 h, 19:30 h, 

20:30 h, and 23:00 h for the 10, 12.5, 13.5, and 16 h d-' photoperiod treatments 

respectively. From 16:00 h to 08:00 h, removable metal roofs were put over the 

glasshouses to exclude daylight and to prevent the temperature inside the tents from 

becoming too high. Each compartment contained a staging, on which 78 plants (26 

plants per selection) were placed randomly. Within each compartment, the plants were 

circulated weekly. 

Seeds were pre-germinated at 30 °C in a germination cabinet. When the root 

tips were visible, the seedlings were put singly in white plastic pots (upper diameter 

20 cm; lower diameter 15 cm; height 20 cm; capacity 4.8 litres), filled with a 1:1 v/v 

mixture of sand and potting compost ('potting compost no.4' from Lentse potgrond 

b.v., consisting of 85% peat and 15% clay). A water extract of the sand/compost 

mixture (1:2 v/v soil and water) contained 66 mg l"1 N, 11 mg l"1 P and 35 mg l"1 K. 

At transplanting, the seedlings were inoculated with Rhizobium spp. strain CB 756, 

obtained from the Department of Microbiology, Wageningen Agricultural University. 

Fertilization was done with a standard complete nutrient solution which had proven 

to give good results in bambara research at Wageningen Agricultural University (A.R. 

Linnemann, personal communication). The standard solution was obtained by mixing 

0.833 g 'Nutriflora-t' (supplied by Windmill Holland b.v.) and 1 g calcium nitrate in 

one litre water, resulting in a nutrient content of 172 mg l"1 N, 39 mg l"1 P, and 263 

mg l"1 K. Nutrient solution was given at 28 (100 ml per plant), 39 (200 ml), 58 (200 

ml) and 96 (200 ml) d after sowing. Water was applied manually when necessary. 

Predators were introduced preventively at regular intervals: Amblyseius cucumeris and 

Orius insidiosus against thrips (Frankliniella occidentalis and Thrips tabaci), and 

Phytoseiulus persimilis against spider mites (Tetranychus urticae). 

Observations included dates of first flowering and onset of podding of each 

plant. The start of podding was defined as the moment the plant had a pod of at least 

0.5 cm long. Direct podding observations were possible because the selections 
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included in the experiment form pods on the soil surface and not below. Podding 

observations in a treatment combination were stopped when 50% of the plants in that 

treatment combination had started podding. The time to flowering in a treatment was 

defined as the time between the sowing date and the date when 50% of the plants in 

that treatment had started to flower ('50% flowering'). Similarly, the time from 

flowering to podding was defined as the time from the date of 50% flowering to the 

date when 50% of the plants had started podding ('50% podding'). 

Data sets from seven other experiments, carried out in Wageningen in 1993 and 

1994 were used to test the models (Table 2.1). Experiments 1-5 were carried out in 

glasshouses, experiment 6 in a Heraeus growth cabinet, and experiment 7 in a growth 

chamber. In the experiments 1, 2, and 5, the photoperiod treatments were established 

as described for the main trial (8 h d"1 natural daylight, extended by low intensity 

artificial light). In the other experiments, there was no photoperiod extension by means 

of low intensity light, but high intensity natural and/or artificial light throughout the 

light period. Experiment 3 received natural daylight; experiment 4 natural daylight 

with supplementary lighting (Philips SON-T lamps giving 130 /xmol m"2 s"' PAR at 

plant height); experiment 6 received light from 16 fluorescent tubes (Philips TLD 58 

W, colour no. 84) and two Philips 100 W incandescent bulbs (total PAR at plant 

height: 230 jumol m"2 s"1); and experiment 7 light from Philips HPI and SON-T lamps, 

fluorescent tubes, and incandescent bulbs (total PAR at plant height: 210 fimol m"2 s"1). 

In all test experiments plants were grown in white 5 1 pots with a mixture of sand and 

potting compost, and crop management was as described for the main trial. The onset 

of flowering and podding was determined directly for individual plants in the same 

way as in the main experiment. For experiments 1 and 2 only flowering data were 

available. 
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Chapter 2 

Modelling 

The influence of temperature and photoperiod on the rate of progress from 

sowing to flowering and the rate of progress from flowering to podding of the three 

bambara groundnut selections was modelled according to the photothermal approach 

developed at the University of Reading (Hadley et al., 1984; Summerfield et al., 

1991). In this approach, the rate of progress to flowering (1//; with/being the number 

of days from sowing to flowering) is related quantitatively to photoperiod (P) and/or 

temperature (T) by means of one to three linear equations, assuming that temperatures 

are between the base and optimum temperatures for flowering. In the most complex 

situation three separate but intersecting planes, characterized by six parameters (a„ b„ 

a2, b2, c2 and a}) can be distinguished (Fig. 2.1): 

A: a thermal plane, characterized by the equation: 

Vf=a, + b,T (1.1) 

B: a photothermal plane: 

l/f=a2 + b2T + c2P (1.2) 

C: a plane of minimum development rate: 

\lf = a3 (1.3) 

Interactions between temperature and photoperiod effects only occur when 

plane boundaries are transgressed. Within the planes, there is no interaction. The 

boundary line between plane A and plane B gives the critical photoperiod (Pcr) as a 

function of temperature: 

Pcr = ((a,-a2) + (bl-b2)T)/c2 (1.4) 

The boundary line of plane B and plane C represents the ceiling photoperiod (.Pce): 

Pce = (a3-a2-b2 T)lc2 (1.5) 

When the actual photoperiod is shorter than Pu, the development rate is influenced 

solely by temperature. At a photoperiod between P„ and Pœ, M f is determined by P 

and T, and above Pœ the development rate is constant. For a given selection, 1 If can 

be described by one of five possibilities: (1) a thermal plane only; (2) a photothermal 
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plane only; (3) a thermal plane and a photothermal plane; (4) a photothermal plane 

and a plane of minimum rate; (5) all three planes. 

1/f(d"1) 

0.05 

Temperature (°C) 30 
Photoperiod (hd1) 

Fig. 2.1. Rate of progress to flowering (1//; with ƒ being the number of days from sowing to 
flowering) as a function of temperature and photoperiod (hypothetical example for a short-day 
plant at temperatures between the base and optimum temperature for flowering; after 
Linnemann and Craufurd, 1994). A, thermal plane; B, photothermal plane; C, plane of 
minimum development rate. 
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In the application of this approach to the results of the experiment, these five 

possibilities were examined not only for the rate of progress from sowing to flowering 

(1//) of each of the three selections, but also for the rate of progress from flowering 

to podding (l/(p-f))- This is different from Linnemann and Craufurd (1994), who 

considered the rate from sowing to flowering and the rate from sowing to podding 

(1/p), and did not look at the rate of progress from flowering to podding. However, 

to study the photothermal effects on flowering and podding, it seems more appropriate 

to separate the two phases completely, and not include the time to flowering in the 

podding analysis. 

The best fit was determined by means of the RoDMod computer program 

(Watkinson et al., 1994), which uses an iterative procedure to minimize the combined 

sums of squares of deviations of observed from estimated rates. The simplest model 

(only a thermal plane) is fitted first, followed by the more complex models. A more 

complex model is accepted only if it statistically significantly reduces the residual 

sums of squares of the deviations of model estimates from observations. The 

temperature values used in the equations were the measured average temperatures from 

sowing to flowering or flowering to podding. 

Model testing 

Predictions of the time from sowing to flowering and the time from flowering 

to podding in the seven test experiments in Table 2.1 were made with the PREDICTF 

routine of the RodMod computer program (Watkinson et al., 1994) on the basis of the 

average daily temperature and photoperiod data from the test experiments and the 

model parameters derived from the main experiment. The PREDICTF routine 

calculates the development rate in 1-day time-steps, on the basis of photoperiod and 

mean temperature of each day separately. The predictions were compared with the 

times from sowing to flowering and the times from flowering to podding observed in 

the experiments. 
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2.3 Results 

Experiment 

Flowers and pods were formed in all treatments. The time from sowing to 50% 

flowering varied from 35 to 53 d for 'Tiga Nicuru', from 40 to 55 d for 'NTSC92' 

and from 42 to 58 d for 'GabC92'. For all three selections, flowering was influenced 

by temperature, but photoperiod had no influence (Fig. 2.2). 

The greatest differences in the time from 50% flowering to 50% podding were 

found for 'Tiga Nicuru': 25 to 82 d. For 'NTSC92' the time from 50% flowering to 

50% podding ranged from 29 to 72 d, and for 'GabC92' from 32 to 74 d. 

Development from flowering to podding in all three selections was influenced by both 

temperature and photoperiod (Fig. 2.3). 

Modelling 

The rate of progress from sowing to flowering of the three selections could be 

adequately (r2 > 95%) described by thermal response planes (Table 2.2, Fig. 2.2). The 

fitted equations for the flowering responses of 'GabC92' and 'NTSC92' had very 

similar parameter values. 

The influence of photoperiod and temperature on the rate of progress from 

flowering to podding of 'GabC92' and 'NTSC92' in the temperature range of the 

experiment could be described by a photothermal response plane, but the fit was much 

better for 'GabC92' than for 'NTSC92' (Table 2.3, Fig. 2.3). For both selections, the 

parameters b2 and c2 had negative values, reflecting that in the temperature and 

photoperiod range of the experiment, the rate of progress from flowering to podding 

decreased with both temperature and photoperiod. 
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Temperature (°C) 

Fig. 2.2. Rate of progress from sowing to flowering {\lf, with/being the number of days from 
sowing to flowering) in bambara groundnut selections 'GabC92' (A), 'NTSC92' (B), and 
'Tiga Nicuru' (C) as a function of temperature under constant photoperiods of 10 h d"1 (o), 
12.5 h d-' (v), 13.5 h d"1 (A), and 16 h d"1 (•). The solid lines refer to the fitted models. 
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Pig. 2.3. Rate of progress from flowering to podding (\l(p-f); with (p-f) being the number of 
days from flowering to podding) in bambara groundnut selections 'GabC92' (A), 'NTSC92' 
(B), and 'Tiga Nicuru' (C) as a function of temperature under constant photoperiods of 10 h 
d'1 (o), 12.5 h d"' (v), 13.5 h d"1 (A), and 16 h d"1 (•). The lines are the fitted model values 
for 10 h d"1 ( ), 12.5 h d"1 ( ), 13.5 h d"1 ( ), and 16 h d' ( • • • • ). 
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Chapter 2 

According to the results of the RoDMod analysis, the rate of progress towards 

podding of 'Tiga Nicuru' was described by a photothermal plane as well. However, 

the experimental results indicate a different model, with a thermal plane, a 

photothermal plane, and a plane of maximum delay (model 5). Therefore, the results 

for 'Tiga Nicuru' were analyzed in an alternative way as well (method 2). The 12 

temperature/photoperiod combinations were divided into three groups, with group 1 

(the thermal plane) consisting of the 10.0 h d"1 treatments; group 2 (the photothermal 

plane) consisting of the 12.5 h d"' and the 13.5 h d"1 treatments except the 26.2 °C / 

13.5 h d"1 treatment; and group 3 (the plane of minimum development rate) of the 16.0 

h d"1 treatments and the 26.2 CC / 13.5 h d"1 treatment. A regression analysis was 

carried out for each plane separately, using the GENSTAT statistical package (Payne 

et al., 1993). Results are shown in Table 2.3. This alternative model fits the 

experimental results very well (Fig. 2.3C). In this model, the critical photoperiod for 

the rate from flowering to podding in 'Tiga Nicuru' decreases from 12.47 h d"1 at 22 

°C to 11.32 h d"1 at 26 °C, the ceiling photoperiod from 13.95 h d"1 at 22 °C to 13.07 

h d"1 at 26 °C (Table 2.4). 

In summary, within the temperature (20.9 - 26.2 °C) and photoperiod (10 - 16 

h d ' ) ranges considered, the rates from flowering to podding of 'GabC92' and 

'NTSC92' decrease with both temperature and photoperiod. The rate from flowering 

to podding of 'Tiga Nicuru' increases with temperature at short photoperiods, is 

constant at long photoperiods, and decreases with photoperiod and temperature at 

intermediate photoperiods. 

Model testing 

Application of the fitted models shown in Tables 2.2 and 2.3 to data sets from 

the test experiments showed that the time from sowing to flowering was well 

predicted: all deviations were within 10% of the predicted values (Fig. 2.4A). 

Predictions for the time from sowing to podding were less accurate (Fig. 2.4B), 
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especially for experiment 5 (Table 2.5). For TigaNicuru', the podding model derived 

by method 2 gave better predictions than the method 1 model (Table 2.5). The values 

for 'Tiga Nicuru' in Fig. 2.4B are those derived with method 2. Predictions of the time 

from sowing to podding, calculated by adding the predictions of the time to flowering 

and the time from flowering to podding were in good agreement with observed data: 

deviations between predicted and observed times from sowing to podding were less 

than 10% (Fig. 2.4C), except for experiment 5 (Table 2.5). 

Table 2.4. Critical (Pa) and ceiling (Pce) photoperiods of bambara groundnut selection 'Tiga 
Nicuru' at temperatures from 22 to 26 °C. 

7T£) Pa (h d') f, (h d') 

22 12.47 13.95 

23 12.18 13.73 

24 11.89 13.51 

25 11.61 13.29 

26 11.32 13.07 

The model in Table 2.3 was used to calculate P„ and P„. 

2.4 Discussion 

Temperature and photoperiod responses 

The results of the main experiment clearly show that flowering in the three 

bambara groundnut selections in the temperature and photoperiod ranges of the 

experiment is influenced by temperature but not by photoperiod (Fig. 2.2). The onset 

of podding, on the other hand, is clearly influenced by both temperature and 

photoperiod (Fig. 2.3). This is a pattern which has been found in most of the bambara 

groundnut selections included in experiments to date, though some selections have 
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been found for which not only podding, but also flowering is influenced by both 

temperature and photoperiod (Linnemann, 1991; Linnemann, 1993). Photoperiod 

research in other legumes has usually been confined to the flowering response, though 

the existence of photoperiod effects on development phases beyond flowering has also 

been reported for soya bean {Glycine max) (Grimm et al., 1994) and groundnut 

(Arachis hypogaea) (Flohr et al., 1990). 

Modelling 

For all three selections, the rates of progress from sowing to flowering of the 

12 treatments in the experiment could adequately be quantified as a function of 

temperature only (Table 2.2; Fig. 2.2). The rate of progress from flowering to podding 

of 'GabC92' was well described by a photothermal response plane, and that of 'Tiga 

Nicuru' by a combination of a thermal response plane, a photothermal response plane, 

and a plane of minimum development rate (Table 2.3; Fig. 2.3). The rate from 

flowering to podding of 'NTSC92' could not be quantified well, which might be due 

to the greater heterogeneity of this selection. 

The critical photoperiod for the rate from flowering to podding in 'Tiga 

Nicuru' decreased from 12.47 h d"1 at 22 °C to 11.32 h d"1 at 26 °C (Table 2.4). These 

critical photoperiods are comparable with those found in other studies. Linnemann and 

Craufurd (1994) found similar critical photoperiods for podding for the bambara 

groundnut selections 'Yola' and 'Ankpa4' from Nigeria: from 12.6 and 13.2 h d"1 at 

20 °C to 11.4 and 11.8 h d"1 at 26 °C. The critical photoperiod for flowering in a 

cowpea genotype from Uganda ('TVu 1188') has been found to range from 16.0 h d~' 

at 15 °C to 11.5 h d"1 at 25 °C (Ellis et al., 1994a). Reports on soya bean are 

contradictory: in a controlled environment study, critical photoperiods for flowering 

in eight cultivars have been found to increase with temperature (Hadley et al., 1984), 

while in field experiments, the critical photoperiods for flowering in nine different 

soya bean genotypes decreased with temperature (Summerfield et a l , 1993). In the 
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latter study, critical photoperiods of 12.6 to 13.6 h d"1 at 20 °C and 11.7 to 13.3 h d"1 

at 25 °C have been found. 

Table 2.5. Predicted (Pr) and observed (Ob) times from sowing to flowering (ƒ), flowering to 
podding (p-f) and sowing to podding (p) for three bambara groundnut selections in various test 
experiments (experiment numbers refer to Table 2.1). 

Selection 

'GabC92' 

'NTSC92' 

'Tiga N.' 

Exp. 

1 

2 

4 

5 

6 

7 

3 

5 

6 

7 

Method 1 3 

6 

7 

Method 2 3 

6 

7 

Photop. 

(h d-') 

10 
12 

12 
14 

12 

11 
14 

12.5 

13.5 

11.5 

11 
14 

12.5 

13.5 

11.5 

12.5 

13.5 

11.5 

12.5 

13.5 

Pr 

45 
45 

46 
46 

51 

46 
46 

55 

50 

44 

44 
44 

52 

47 

39 

48 

43 

ƒ 
(d) 

Ob 

43 
44 

47 
47 

55 

47 
47 

57 

46 

40 

46 
45 

52 

43 

39 

50 

39 

Pr 

35 
41 

41 
49 

41 

42 
62 

37 

43 

34 

34 
48 

34 

39 

34 

37 

46 

27 

30 

64 

P-f 
(d) 

Ob 

n.a. 
n.a. 

n.a. 
n.a. 

33 

49 
87 

41 

44 

37 

44 
72 

33 

36 

23 

34 

60 

23 

34 

60 

P 
(d) 

Pr 

80 
86 

87 
95 

92 

88 
108 

92 

93 

78 

78 
92 

86 

86 

73 

85 

87 

66 

78 

97 

Ob 

n.a. 
n.a. 

n.a. 
n.a. 

88 

96 
134 

98 

90 

77 

90 
117 

85 

79 

62 

84 

99 

62 

84 

99 

The predicted values of/ and p-f were calculated with the models in Table 2.2 and Table 2.3, 
respectively; the predicted value of p was calculated by adding the values oî f una p-f. 
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Fig. 2.4. Deviations (predicted number of days minus observed number of days in independent 
test experiments) of the time from sowing to flowering (A), the time from flowering to 
podding (B), and the time from sowing to podding (C) for bambara groundnut selections 
'GabC92' (•), 'NTSC92' (o), and 'Tiga Nicuru' (•). Solid lines show the limits of ± 10% 
deviation. Predictions of the time from sowing to flowering and the time from flowering to 
podding are based on the models in Tables 2.2 and 2.3; the predicted time from sowing to 
podding was calculated by adding the predicted time from sowing to flowering and the 
predicted time from flowering to podding. 
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The ceiling photoperiod for the rate from flowering to podding in 'Tiga Nicuru' 

decreased from 13.95 h d"1 at 22 °C to 13.07 h d"1 at 26 °C (Table 2.4). Summerfield 

et al. (1993) found that ceiling photoperiods for the rate to flowering in soya bean 

increased with temperature. The difference is due to the fact that the parameter b2 in 

the photothermal response plane of 'Tiga Nicuru' has a negative value (l/(p-f) 

decreases with temperature), while this parameter has a positive value (development 

rate increasing with temperature) for the soya bean genotypes used by Summerfield 

et al. (1993). This means that the photothermal plane of 'Tiga Nicuru' is tilted 

differently than the photothermal plane in Fig. 2.1. 

Model testing 

Model testing showed that the predictions of the time from sowing to 

flowering, based on the linear models derived from the main experiment, agreed well 

with the observed times to flowering in the test experiments: deviations between 

predicted and observed values were always lower than 10% (Fig. 2.4A). 

Predictions of the time from flowering to podding were less accurate. 

Deviations were often higher than 10% (Fig. 2.4B), but in all test experiments except 

experiment 5 the difference between predicted and observed times from flowering to 

podding was less than 10 d (Table 2.5). The extreme long times to podding of 

'GabC92' and 'NTSC92' in experiment 5 might be a result of the maximum 

temperatures for podding being exceeded, because experiment 5 was carried out in a 

glasshouse without forced cooling, and maximum temperatures of 35-40 °C were 

common in the months after flowering. Deviations between predicted and observed 

times from sowing to podding were less than 10%, except for experiment 5 (Fig. 2.4C; 

Table 2.5). 

In the main experiment, the photoperiod was prolonged beyond 8 h d ' by 

means of low intensity artificial light. In the experiments 3, 4, 6, and 7, there was no 

photoperiod extension by means of low intensity light, but high intensity natural 
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and/or artificial light throughout the light period. The good prediction of the times to 

flowering and podding in the experiments 3, 4, 6, and 7 with models based on the 

main experiment indicates that light integral has no effect on development. 

2.5 Conclusion 

This study has shown that the times from sowing to flowering and from 

flowering to podding in bambara groundnut may be predicted with simple linear 

models (relating the rates of progress from sowing to flowering and from flowering 

to podding in bambara groundnut to photoperiod and temperature), based on a semi-

controlled environment experiment. Observed times from sowing to flowering and 

podding are between 90 and 110% of the predicted values. 
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3 THE PHOTOPERIOD-SENSITIVE PHASE FOR PODDING IN BAMBARA GROUNDNUT 

(VlGNA SUBTERRANEÄ) 

M. Brink 

Abstract 

A glasshouse experiment was conducted to determine whether the period 

between sowing and the onset of podding in bambara groundnut (Vigna subterranea) 

can be divided in photoperiod-sensitive and photoperiod-insensitive phases. Treatments 

were established by transferring plants between 14 h d"1 (LD) and 11 h d"1 (SD) every 

two weeks. There were also control treatments of constant LD and SD. Flowering was 

not affected by photoperiod, but the onset of podding was delayed by long 

photoperiods. At an average temperature of 25.7 °C, the main photoperiod effect on 

podding occurred from 42 days after sowing onwards in 'NTSR94' and 'NTSC92', 

and from 57 days after sowing onwards in 'GabC92'. The time from sowing to 

podding could not be divided clearly into photoperiod-sensitive and photoperiod-

insensitive periods, because in all three selections podding tended to be later in early 

transfers from SD to LD than in constant LD, and earlier in the early transfers from 

LD to SD than in constant SD. This phenomenon has been found in rice as well, but 

cannot satisfactorily be explained. 

3.1 Introduction 

Bambara groundnut (Vigna subterranea (L.) Verde.) is an important 

leguminous food crop in tropical Africa (Linnemann and Azam-Ali, 1993). It is an 
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indeterminate annual herb with creeping stems, carrying trifoliate leaves with erect 

petioles. Flowers appear at the base of the petioles, usually in pairs. After pollination, 

the peduncle grows out and pods form on or below the soil surface. Each pod usually 

contains one seed, and both the unripe and ripe seeds are consumed by humans (Duke, 

1981; Linnemann and Azam-Ali, 1993). In many bambara groundnut genotypes, the 

onset of flowering is photoperiod-insensitive, but the onset of podding is retarded by 

long photoperiods (Linnemann, 1991; Linnemann and Craufurd, 1994). In some 

genotypes, both the onset of flowering and the onset of podding are delayed by long 

photoperiods (Linnemann, 1993; Linnemann and Craufurd, 1994). 

In a previous study, the influence of temperature and photoperiod on 

development rates in three bambara groundnut selections has been quantified by means 

of photothermal models, based on a semi-controlled environment experiment with 

constant photoperiods and temperatures (Chapter 2). The rate of progress from sowing 

to flowering of these selections could be described as a function of the average 

temperature in the period from sowing to flowering; the rate of progress from 

flowering to podding as a function of the average temperature and photoperiod in the 

period from flowering to podding. Thus, it was assumed that photoperiod plays a role 

throughout the period from flowering to podding. However, plants which are 

photoperiod-sensitive with regard to the onset of flowering, such as many soya bean 

(Glycine max (L.) Merr.) genotypes, are often not sensitive throughout the entire pre-

flowering period (Wilkerson et al., 1989; Collinson et al., 1993). Three phases are 

usually distinguished between sowing and flowering: (1) a pre-inductive phase (also 

referred to as the juvenile phase) in which plants are not sensitive to photoperiod; (2) 

an inductive phase, in which plants are sensitive to photoperiod and flower induction 

occurs; and (3) a post-inductive phase, in which flower buds develop into open 

flowers and the photoperiod does not play a role (Hodges and French, 1985; Roberts 

et al., 1986; Ellis et al., 1992). In some studies, the pre-inductive phase is defined to 

start at sowing (Ellis et al., 1992). In other studies (Hodges and French, 1985; Roberts 

et al., 1986), a fourth phase, the pre-emergence phase, is distinguished and the pre-
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inductive phase is defined to start at emergence. The duration of the different phases 

can be estimated on the basis of reciprocal transfer experiments, in which plants are 

transferred from long days to short days and vice versa at regular intervals (Van 

Dobben, 1957; Ellis et al., 1992). 

This study aims to determine whether the time from sowing to podding in 

bambara groundnut can be divided into photoperiod-sensitive and photoperiod-

insensitive phases in the same way as the time between sowing and flowering in other 

crops. 

3.2 Material and methods 

Experimental design and plant material 

A reciprocal transfer experiment was conducted in a glasshouse in Wageningen, 

The Netherlands (51°58' N), in the period 18 April to 2 November 1994. The 

experiment included 14 photoperiod treatments (six transfer times of plants from long 

days (LD, 14 h d"1) to short days (SD, 11 h d"1) or vice versa and two control 

treatments of constant LD or SD). Three bambara groundnut selections were used: 

'GabC92', collected in Gaborone, Botswana, and 'NTSR94' and 'NTSC92', obtained 

from 'National Tested Seeds' in Zimbabwe. The results of preliminary unpublished 

experiments by the author of the present study had shown that these three selections 

are insensitive to photoperiod with regard to the onset of flowering, but sensitive to 

photoperiod with regard to the onset of podding. Podding in 'GabC92' had been found 

to start later than in the other two selections, therefore the transfer dates in the present 

experiment were later for this selection than for the other two. The plants were 

arranged in six blocks, each containing one replicate plant per photoperiod treatment 

per selection. Each block consisted of two trolleys, one with SD and the other with 

LD. The treatments and selections were randomly placed on the trolleys. Within each 
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trolley, the plants were circulated weekly. At the start of the experiment, half of the 

plants of each selection were placed in LD and the other half in SD. Every two weeks, 

one plant per selection per replicate was transferred from LD to SD, and one from SD 

to LD. One plant per selection per replicate remained under LD throughout the 

experiment (LD control), and one under SD (SD control). 'NTSR94' and 'NTSC92' 

were transferred at 29, 43, 57, 71, 85 and 99 days after sowing (DAS); 'GabC92' at 

43, 57, 71, 85, 99 and 113 DAS. This experimental set-up has been used frequently 

for research on inductive phases in crops (Van Dobben, 1957; Ellis et al., 1992; 

Collinson et al., 1992, 1993; Yin et al., 1997) and is an intermediate between a 

completely randomized block design and a split plot design. 

Environmental conditions 

Throughout the experiment, the plants were exposed to natural daylight from 

08:00 to 16:00. From 16:00 to 08:00, they were placed in sheds, where the 

photoperiod was prolonged by low-intensity artificial light (fluorescent tubes (Philips 

TLD 36 Watt, colour no. 84) and Philips 40 W bulbs). Therefore, all treatments 

received the same amount of photosynthetically active radiation. During the daylight 

period, the air temperature was set between 26 and 29 °C; the rest of the day between 

22 and 25 °C. However, on sunny days maximum temperatures above 35 °C were 

recorded. The average daily temperature throughout the experimental period was 25.7 

°C, with an average daily maximum of 29.6 °C and minimum of 22.9 °C. 

Plant husbandry 

The seeds were pre-germinated in a germination cabinet at 30 °C. When the 

root tips became visible, the plants were transplanted singly to white plastic pots 

(capacity 5 1), filled with a 1:1 v/v mixture of sand and potting compost (potting 

compost no.4 from Lentse potgrond b.v., consisting of 85% peat and 15% clay). At 
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transplanting, the plants were inoculated with Rhizobium spp. strain CB 756, obtained 

from the Department of Microbiology, Wageningen Agricultural University. All plants 

were fertilised with a standard complete nutrient solution obtained by mixing 0.833 

g Nutriflora-t (supplied by Windmill Holland b.v.) and 1 g calcium nitrate in one litre 

of tap water, resulting in a nutrient content of 172 mg 1"' N, 39 mg 1"' P, and 263 mg 

l"1 K. This nutrient solution (200 ml per plant) was applied at three-weekly intervals 

in the period 3 to 12 weeks after sowing. Water was applied manually, as needed. 

Biological pest control was used: the predators Amblyseius cucumeris and Orius 

insidiosus against thrips {Frankliniella occidentalis and Thrips tabaci), and 

Phytoseiulus persimilis against spider mites (Tetranychus urticae). 

Observations 

The onset of flowering and podding of each plant was recorded on the basis 

of daily observations. Flowering onset was defined as the day on which the plant had 

its first open flower, and podding onset as the first day the plant had a pod at least 0.5 

cm long. This could be observed directly, because the three selections form pods on 

the soil surface. The number of unfolded leaves on each plant was counted weekly. 

A leaf was considered to be unfolded if the angle between the halves of the top leaflet 

was 90° or more. 

Analysis 

Results were analysed separately for each selection with a statistical method 

designed to fit a model of the type presented in Fig. 3.1 to results of reciprocal 

transfer experiments. This method has been used to determine the photoperiod-

sensitive and photoperiod-insensitive phases for flowering in soya bean (Collinson et 

al., 1993) and rice (Oryza sativa L.) (Collinson et al., 1992; Yin et al., 1997). The 

parameters were fitted to the results with the FITNONLINEAR directive of the 
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GENSTAT statistical package (Payne et al., 1993). In this procedure, the estimates of 

the four parameters (a„ Is, IL and a3) are optimised to minimise the residual sum of 

squares of the regression model. Starting values have to be supplied for the parameters 

to be optimised. As indicated by Ellis et al. (1992), the choice of the starting values 

can influence the parameter estimates. Therefore, twenty runs with different starting 

values were carried out for each selection. If runs with different starting values led to 

different models, the model with the lowest residual sum of squares was selected. 

Time from sowing to transfer (d) 

Fig. 3.1. Response model of the time from sowing to the onset of flowering for short-day 
plants transferred from short to long days ( ) or long to short days ( ) at different times 
after sowing (hypothetical example for a short-day plant). The model includes a pre-inductive 
phase (a,), an inductive phase under short photoperiods (7S), an inductive phase under long 
photoperiods (/L), and a post-inductive phase (a3). After Ellis et al. (1992). 
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3.3 Results 

No significant (p<0.05) effects of the treatments on the onset of flowering were 

found in the three selections. The average time from sowing to the first flower was 

45 days for 'NTSR94', 47 days for 'NTSC92', and 49 days for 'GabC92'. 

Treatment effects on the time to the onset of podding were significant 

(p<0.001) for all three selections. The time from sowing to podding in the different 

treatments are presented in Fig. 3.2. The results were not exactly conform the expected 

pattern shown in Fig. 3.1. Podding in all three selections tended to be later in the early 

transfers from SD to LD than in constant LD, and earlier in the early transfers from 

LD to SD than in constant SD. The main photoperiod effect occurred from 57 DAS 

onwards in 'GabC92', and from 42 DAS onwards in 'NTSR94' and 'NTSC92'. 

When the standard model of Fig. 3.1 was applied, the estimated durations of 

the pre-inductive phase (a,), the inductive phase under SD (7S), the inductive phase 

under LD (7L), and the post-inductive phase (a3) under the experimental temperature 

regime were 66, 21, 89, and 6 days respectively for 'GabC92', and 56, 17, 54, and 4 

days for 'NTSR94' (Table 3.1). The overall fit of the model was better for 'GabC92' 

than for 'NTSR94' (Fig. 3.2). The model could not be fitted for the more 

heterogeneous selection 'NTSC92'. 

The number of leaves per plant for six of the treatments is presented in Fig. 

3.3. The other eight treatments were excluded to keep the figures legible, but they fall 

within the extremes of the treatments shown. The number of leaves per plant generally 

increased until the onset of podding. Plants under constant SD tended to have fewer 

leaves than plants which had been under LD for some weeks before transfer to SD 

conditions, especially 'NTSR94'. Similarly, the mean leaf number on plants under 

constant LD tended to be higher than that of plants which had been under SD for 

some time before transfer to LD. 
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Fig. 3.2. Time (d) from sowing to the onset of podding for bambara groundnut selections 
'GabC92' (A), 'NTSR94' (B) and 'NTSC92' (C) transferred from 11 to 14 h d'1 ( •) or 14 to 
11 h d"' (o) at various times (d) after sowing. Vertical bars indicate means ± standard error 
(only visible where larger than the symbols). The lines ( and ) refer to the fitted 
model. It was not possible to fit a model for 'NTSC92'. 
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Table 3 .1 . Means and standard errors of the estimates of the durations (d) of the pre-inductive 
phase (a,) , the inductive phase under short photoperiods (7S), the inductive phase under long 
photoperiods (7L), and the post-inductive phase (a3) at an average temperature of 25.7 °C for 
the bambara groundnut selections 'GabC92 ' and 'NTSR94 ' . It was not possible to fit a model 
for 'NTSC92 ' . 

Parameter 'GabC92' 'NTSR94' 

a, 65.8 ± 3.2 55.6 ± 3.6 

Is 20.8 ± 4.3 16.6 ± 5.0 

/L 89.0 ± 8.4 54.1 ± 8.6 

a3 5.5 ± 3.2 4.1 ± 3.7 

r2 0.73 0.50 

The values of r2 refer to the overall model. 

3.4 Discussion 

The main photoperiod effect occurred from 42 days after sowing onwards in 

'NTSR94' and 'NTSC92', and from 57 days after sowing onwards in 'GabC92'. 

Flowering started at 45, 47 and 49 DAS for 'NTSR94', 'NTSC92' and 'GabC92' 

respectively, so the difference between the onset of flowering and the beginning of the 

main photoperiod influence was small. 

The results shown in Fig. 3.2 do not exactly follow the expected pattern shown 

in Fig. 3.1., but seem to indicate two separate effects. At first the time to podding 

increases when the pods have been longer under SD, but later the trend is reversed and 

the main photoperiod effect takes place. The breakpoint is earlier in plants transferred 

from LD to SD than in plants transferred from SD to LD. 

Similar effects have been reported for rice. In reciprocal transfer experiments 

with four indica rice cultivars, 'Peta' showed delayed flowering at early transfers from 

SD to LD and accelerated flowering at early transfers from LD to SD at an average 

temperature of 28.7 °C but not at 23.8 °C (Collinson et al., 1992). 
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Fig. 3.3. Mean number of leaves per plant for bambara groundnut selections 'GabC92' (A), 
'NTSR94' (B) and 'NTSC92' (C) under different photoperiod treatments: constant 11 h d'1 

photoperiod ( • ) ; constant 14 h d"' photoperiod (o); transfer from 11 to 14 h d"' at 29 DAS 
( • ) , 43 DAS ( T ) and 57 DAS (A) ; and transfer from 14 to 11 h d ' at 29 DAS ( • ) , 43 DAS 
(v) and 57 DAS (A) . Data are shown for constant photoperiods and transfers at 29 and 43 
DAS ('NTSR94' and 'NTSC92') or 43 and 57 DAS ('GabC92'). Vertical bars represent LSD 
at p=0.05 (no significant treatment effect before 37 DAS for 'NTSC92' and 43 DAS for 
'GabC92' and 'NTSR94'; LSD based on all 14 treatments, which are not all shown). 
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In a reciprocal transfer experiment with 20 rice cultivars, Yin et al. (1997) 

found in seven (mainly japonica) cultivars that plants transferred early from SD (10 

h d"1 or 12.5 h d"1) to LD (14 h d ' ) flowered later than plants in the constant LD 

treatment. However, flowering was not found to be strongly accelerated by an early 

transfer from LD to SD compared to the constant SD treatment. Two of the seven 

cultivars were included in three different transfer experiments, and showed similar 

behaviour in all three experiments. 

The results shown in Fig. 3.2 might indicate that the pre-inductive period is 

shorter under LD than under SD, which would imply a long-short day response. It is 

also possible that another factor was confounded with long photoperiods, for instance 

light intensity or temperature. This is unlikely, however, because the light levels used 

for photoperiod extension were very low and the sheds were well ventilated. Another 

reason why confounding with other factors is not probable, is that only part of the 

cultivars in the studies of Collinson (1992) and Yin et al. (1997) showed this pattern. 

The effect could be related to differences in leaf number per plant. The mean 

number of leaves per plant (and hence leaf area) tended to be lower for plants under 

constant SD than for those under LD for some weeks before transfer to SD, and 

higher for constant LD plants than for those which had been under SD for some time 

(Fig. 3.3). A possible influence of leaf number on the onset of podding could be 

through the availability of assimilates, but, as photoperiod is perceived by the leaves 

(Thomas and Vince-Prue, 1997), it could also be through effects of leaf area or age 

on photoperiod perception and the subsequent production of promoting or inhibiting 

substances by the leaves. 

Yin et al. (1997) also mention the possibility that plants may be sensitive to the 

direction of photoperiod change. In the present experiment, any effect of the direction 

of photoperiod change might have been enlarged by the sudden large change in 

photoperiod: from 11 h d ' to 14 h d"1 in one single step. 

If the standard response model of Fig. 3.1 is fitted, the estimated duration of 

the pre-inductive phase is 66 days in 'GabC92' and 56 days in 'NTSR94' (Table 3.1). 
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Flowering in 'GabC92' and 'NTSR94' started at 49 and 45 DAS respectively, so the 

time between the onset of flowering and the beginning of the inductive phase for 

podding would be 17 days for 'GabC92' and 11 days for 'NTSR94'. 

The standard errors of the times to podding were relatively large in the 

treatments with constant LD and early transfers from SD to LD (Fig. 3.2). Similar 

results were obtained in a study on the inductive phase for flowering in the long-day 

species lentil (Lens culinaris Medic): the standard error was relatively large in the 

constant SD treatment and the treatments with a transfer from a more inductive (LD) 

to a less inductive (SD) photoperiod, both for a local land race and for a cultivar 

(Roberts et al, 1986). 

The main photoperiod effect occurred later in 'GabC92' than in 'NTSR94' 

(Fig. 3.2). Linnemann (1994b) reported that in selection 'Tiga Nicuru' from Mali 

podding was already induced before flowering started. Thus, the duration of the pre-

inductive phase varies between bambara groundnut selections. Genotypic differences 

in the duration of the pre-inductive phase have also been found in crops which are 

photoperiod-sensitive with regard to flowering, for example soya bean (Wilkerson et 

al., 1989; Collinson et al., 1993), rice (Collinson et al., 1992; Yin et al., 1997) and 

maize (Zea mays L.) (Kiniry et al., 1983). Differences in the duration of the pre-

inductive phase can be exploited when bambara groundnut selections from higher 

latitudes are transferred to lower latitudes, where photoperiods are shorter than the 

critical photoperiods for these selections. A choice can be made between selections 

with pre-inductive phases of different lengths to obtain a good match between the 

length of the growing season and the crop cycle. 

3.5 Conclusion 

At an average temperature of 25.7 °C, the main photoperiod effect on podding 

occurred from 42 days after sowing onwards in 'NTSR94' and 'NTSC92', and from 
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57 days after sowing onwards in 'GabC92'. The time from sowing to podding could 

not be divided clearly into photoperiod-sensitive and photoperiod-insensitive phases 

in the same way as the time between sowing and flowering in other crops. This was 

because podding in all three selections tended to be later in early transfers from SD 

to LD than in constant LD, and earlier in the early transfers from LD to SD than in 

constant SD. This phenomenon has been found in rice as well, but cannot satisfactorily 

be explained. 
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4 EFFECTS OF CONSTANT, INCREASING AND DECREASING PHOTOPERIODS ON 

REPRODUCTIVE DEVELOPMENT AND YIELD IN BAMBARA GROUNDNUT (VLGNA 

SUBTERRANEÀ) 

M. Brink 

Abstract 

The influence of constant and gradually increasing or decreasing photoperiods 

on the reproductive development and yield of four bambara groundnut (Vigna 

subterraned) selections from eastern and southern Africa was studied in a glasshouse 

experiment. Treatments included constant photoperiods of 12, 13, and 14 h d"1, a 

decreasing photoperiod (14 h d"1 decreasing to 11 h d"1 at a rate of 1 min d"1), an 

increasing photoperiod (12 h d"1 increasing to 15 h d"1 at a rate of 1 min d'1) and a 

photoperiod that first increased (from 13 h d'1 to 14 h d"1 at a rate of 1 min d"1) and 

later decreased (from 14 h d"' to 12 h d"1 at a rate of 1 min d"1). No significant 

photoperiod effect on the rate of progress from sowing to flowering was found in any 

of the selections, but the rate of progress from flowering to podding was influenced 

by photoperiod in all four selections. The average photoperiod between flowering and 

podding determined the rate from flowering to podding, and a gradual increase or 

decrease did not affect that rate. Therefore, bambara groundnut models intended to 

predict development in field situations with fluctuating photoperiods may be based on 

studies with constant photoperiods. Final harvest results showed that a prolonged time 

from sowing to podding led to a higher total plant dry weight, but a lower seed yield, 

because of a lower harvest index. The harvest index and seed yield per plant seemed 

not to be affected by the photoperiod and the direction of change in photoperiod in the 

pod-filling phase. 
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4.1 Introduction 

Crop development is mainly determined by temperature and/or photoperiod 

(Roberts and Summerfield, 1987; Squire, 1990). When the influence of photoperiod 

on development in legumes is modelled, direction and rate of change in photoperiod 

are usually ignored (e.g. Hodges and French, 1985; Sinclair et al., 1991; Summerfield 

et al., 1991; Grimm et al., 1994). The photoperiod reaction is assumed to be 

instantaneous, previous photoperiods are assumed to be irrelevant, and daily 

development rates may simply be accumulated. However, Constable and Rose (1988) 

found different development rates for similar average photoperiods and temperatures 

in spring and autumn sowings in soya bean {Glycine max (L.) Merr.) field 

experiments. They concluded that the interval from emergence to flowering and from 

flowering to maturity in soya bean was not only affected by temperature and 

photoperiod, but also by the rate at which the photoperiod changed. In contrast, Acock 

et al. (1994) found no effect of the direction of change in photoperiod on the time to 

flowering in soya bean in a controlled environment experiment. 

In the leguminous food crop bambara groundnut (Vigna subterranea (L.) 

Verde), an indeterminate annual herb with pods on or below the soil surface, the onset 

of flowering and the onset of pod growth ("podding") can be affected by photoperiod. 

In some genotypes, both flowering and podding are delayed by long photoperiods, but 

in many others flowering is photoperiod-insensitive, and only podding is retarded by 

long photoperiods (Linnemann, 1991; Linnemann and Craufurd, 1994). The effects of 

photoperiod and temperature on rates of progress from sowing to flowering and 

flowering to podding have been quantified in linear models for different bambara 

groundnut selections on the basis of semi-controlled environment research with 

constant photoperiods (Chapter 2). These linear models, however, do not include 

effects of changing photoperiods. It has been found that bambara groundnut plants 

transferred from long (14 h d"1) to short (11 h d"1) days started podding earlier than 

plants kept under constant short days, and plants transferred from short to long days 

54 



Constant, increasing and decreasing photoperiods 

started podding later than plants kept under constant long days (Chapter 3). These 

effects may have been caused by changing photoperiods influencing development. 

The objective of the present study was to assess the effect of gradual changes 

in photoperiod on development rates in bambara groundnut. It was expected that if 

there are any effects, these would be that a gradual increase in photoperiod retards 

development, whereas a gradual decrease accelerates it. If there are no effects, 

bambara groundnut development models can be based on results of studies with 

constant photoperiods. 

4.2 Material and methods 

Experiment 

A glasshouse experiment was conducted from 25 April to 25 October 1995 at 

Wageningen Agricultural University, The Netherlands (51°58' N). The experimental 

design was a split-plot with photoperiod (six treatments) as main factor and bambara 

groundnut selections (four) as split factor, in two replicates. The selections, all cream 

coloured, were: 'GabC92' and 'GabC94', collected from markets in Gaborone, 

Botswana (24°40'S); 'DipC94', collected from a farmer at Diphiri, near Gaborone; and 

'DodC94', collected from a market in Dodoma, Tanzania (6°10'S). The six 

photoperiod treatments were (Fig. 4.1): constant photoperiods of (1) 12, (2) 13 and (3) 

14 h d ' ; (4) a continuously decreasing photoperiod (from 14 h d"' at two days after 

sowing (DAS) to 11 h d~' at 182 DAS); (5) a continuously increasing photoperiod 

(from 12 h d ' at 2 DAS to 15 h d"1 at 182 DAS); and (6) a photoperiod initially 

increasing (from 13 h d"' at 2 DAS to 14 h d"1 at 62 DAS at a rate of 1 min d"1) and 

then decreasing (from 14 to 12 h d ' at a rate of 1 min d"1). The treatments were 

chosen such that the average photoperiod in the changing photoperiod treatments 

would remain between the lowest (12 h d ' ) and highest (14 h d ' ) constant 
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photoperiod treatment. This range was selected because it was known that bambara 

groundnut is photoperiod sensitive in this range (Linnemann et al., 1995; Chapter 2). 
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Fig. 4.1. Schematic overview of the six photoperiod treatments included in the experiment: 
(1) constant photoperiod of 12 h d'; (2) constant photoperiod of 13 h d"1; (3) constant 
photoperiod of 14 h d'; (4) photoperiod decreasing at 1 min d"1 from 14 h d"' at 2 DAS to 11 
h d"' at 182 DAS; (5) photoperiod increasing at 1 min d"1 from 12 h d ' at 2 DAS to 15 h d"1 

at 182 DAS; and (6) photoperiod increasing at 1 min d"' from 13 h d"1 at 2 DAS until 62 DAS 
and decreasing at 1 min d'' from 62 DAS to 12 h d"1 at 182 DAS. 

A replicate consisted of six trolleys, each subjected to a separate photoperiod 

treatment and carrying six plants per selection, grouped by selection. Within each 

trolley, the plants were circulated weekly. From 08:00 to 16:00 h all plants were 

exposed to natural daylight, from 16:00 to 08:00 h the trolleys were placed inside 

sheds, where the photoperiod was prolonged by means of low intensity artificial light 
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(fluorescent tubes (Philips TLD 36 Watt, colour no. 84) and Philips 40 W bulbs). 

Artificial light was on from 07:00 to 08:00 h and from 16:00 h to a time dependent 

on the photoperiod treatment. All photoperiod treatments received the same amount 

of photosynthetically active radiation. 

From 08:00 to 16:00 h the glasshouse temperature was set between 26 and 29 

°C; the rest of the day it was between 22 and 25 °C. However, on sunny days, 

maximum temperatures higher than 35 °C were recorded. Average daily glasshouse 

temperature during the experiment was 26.3 °C, with an average daily maximum of 

31.3 and an average daily minimum of 21.7 °C. 

Seeds were pre-germinated in a germination cabinet. Two days after sowing, 

the plants were transplanted singly in white plastic pots (4.8 1), filled with a 1:1 v/v 

mixture of sand and potting compost ('potting compost no.4' from Lentse potgrond 

b.v., consisting of 85% peat and 15% clay). At transplanting, Rhizobium spp. strain 

CB 756, obtained from the Department of Microbiology, Wageningen Agricultural 

University, was put in the planting hole. The plants were fertilized at three-weekly 

intervals from 5 to 14 weeks after sowing, with 200 ml of a standard complete 

nutrient solution obtained by mixing 0.833 g 'Nutriflora-t' (supplied by Windmill 

Holland b.v.) and 1 g calcium nitrate in one litre water, resulting in a nutrient content 

of 172 mg I"' N, 39 mg l"1 P, and 263 mg l"1 K. The plants were kept well-watered. 

Pests were controlled by regular introduction of Amblyseius cucumeris and Orius 

insidiosus against thrips (Frankliniella occidentalis and Thrips tabaci), and 

Phytoseiulus persimilis against spider mites (Tetranychus urticae). 

Non-destructive observations included the dates of onset of flowering and 

podding of each plant. The onset of flowering was defined as the day the plant had 

its first open flower; the onset of podding as the day the plant had a pod of at least 

0.5 cm long. Direct podding observations were possible because the selections 

included in this study form pods on the soil surface. From the daily observations, the 

dates when 50% of the plants had started flowering ('50% flowering') and 50% of the 

plants had started podding ('50% podding') were calculated for each treatment in each 
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replicate. At the final harvest (183 DAS), the dry weights of above ground vegetative 

parts, pods and seeds were determined for each plant. 

Analysis 

Results of the three constant photoperiod treatments were subjected to analysis 

of variance with the GENSTAT statistical package (Payne et al., 1993) to determine 

whether the rate of progress from sowing to flowering (1//; with/being the number 

of days from sowing to flowering) and the rate of progress from flowering to podding 

(l/(p-/); with (p-f) being the number of days from flowering to podding) were 

influenced by photoperiod. Subsequently, the results of the changing photoperiod 

treatments were compared with those of the constant photoperiod treatments, to 

determine their possible effect on development. Final harvest results were also 

subjected to analysis of variance with the GENSTAT statistical package. 

4.3 Results 

All plants formed flowers during the experiment. The time from sowing to 50% 

flowering (ƒ) in the different treatments varied from 43 to 50 days for 'GabC92', from 

38 to 40 for 'GabC94', from 38 to 41 for 'DipC94' and from 43 to 57 for 'DodC94'. 

Analysis of variance on the constant photoperiod treatments showed that selection 

effects on the rate of progress from sowing to flowering (1//) were significant 

(p<0.01), but photoperiod effects and interaction effects of selection and photoperiod 

were not. The selections can be divided into two groups with regard to l/f. 'DodC94' 

and 'GabC92' on one hand, 'GabC94' and 'DipC94' on the other (Table 4.1). The rate 

of progress from sowing to flowering was similar in shifting photoperiods and 

constant photoperiods (Fig. 4.2). 
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Table 4.1. Rate of progress from sowing to flowering (\/f) and flowering to podding (\l(p-fj) 
for four bambara groundnut selections and three constant photoperiods. No interaction effects 
occurred between selection and photoperiod treatments. 

w U(p-f) 

Selection 

Photoperiod (h d"1) 

LSD005 selection 
LSD005 photoperiod 

GabC92' 

GabC94' 

DipC94' 

DodC94' 

12 

13 

14 

0.0219 

0.0256 

0.0256 

0.0220 

0.0241 

0.0236 

0.0235 

0.00281 
n.s. 

0.0196 

0.0263 

0.0277 

0.0188 

0.0348 

0.0210 

0.0135 

0.00371 
0.00579 

Pods were formed on all plants except the 'DodC94' plants in the increasing 

photoperiod treatment. The time from 50% flowering to 50% podding (p-J) ranged 

from 34 to 94 days for 'GabC92', from 26 to 67 days for 'GabC94', from 23 to 70 

days for 'DipC94' and 37 to >140 (no pods formed) for 'DodC94'. The rate of 

progress from flowering to podding {\lip-f}) in the constant photoperiod treatments 

was significantly influenced by selection and photoperiod, but interaction effects were 

not significant. On the basis of the rate of progress from flowering to podding, the 

four selections can be divided into the same two groups as for the rate of progress 

from sowing to flowering: lower rates for 'GabC92' and 'DodC94', higher rates for 

'GabC94' and 'DipC94' (Table 4.1). From Fig. 4.3, which shows \l{p-f) as a function 

of the average photoperiod in the period between flowering and podding, it can be 

concluded that the increasing photoperiods do not have a retarding effect and that the 

decreasing photoperiods do not have an accelerating effect. 
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Fig. 4.2. Rate of progress from sowing to flowering (l/f, with/being the number of days from 
sowing to flowering) in bambara groundnut selections 'GabC92' (A), 'GabC94' (B), 'DipC94' 
(C), and 'DodC94' (D) as a function of the average photoperiod between sowing and 
flowering under different photoperiod regimes: constant photoperiods of 12, 13, or 14 h d"1 

(•); photoperiod decreasing at 1 min d"' from 14 h d"' at 2 DAS (v); photoperiod increasing 
at 1 min d"' from 12 h d"1 at 2 DAS (A); and photoperiod increasing at 1 min d"1 from 13 h 
d"1 at 2 DAS until 62 DAS and decreasing at 1 min d"1 from 62 DAS onwards (o). Vertical 
bars indicate means ± standard error (only visible where larger than the symbols). 
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Fig. 4.3. Rate of progress from flowering to podding (l/(p-f); with (p-f) being the number of 
days from flowering to podding) in bambara groundnut selections 'GabC92' (A), 'GabC94' 
(B), 'DipC94' (C), and 'DodC94' (D) as a function of the average photoperiod between 
flowering and podding under different photoperiod regimes: constant photoperiods of 12, 13, 
or 14 h d"1 (•); photoperiod decreasing at 1 min d"1 from 14 h d'1 at 2 DAS (v); photoperiod 
increasing at 1 min d"1 from 12 h d"1 at 2 DAS (A); and photoperiod increasing at 1 min d"1 

from 13 h d' at 2 DAS until 62 DAS and decreasing at 1 min d"1 from 62 DAS onwards (o). 
Vertical bars indicate means ± standard error (only visible where larger than the symbols). 
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The total time from sowing to podding ranged from 77 to 140 days for 

'GabC92', from 66 to 105 days for 'GabC94', from 64 to 109 days for 'DipC94' and 

from 80 to >183 days for 'DodC94'. Fig. 4.4 shows that the selections 'GabC94' and 

'DipC94' had similar times from sowing to podding in all photoperiod treatments, but 

the third selection from Botswana, 'GabC92', always needed a longer time. 

Total dry matter production (excluding roots) was higher for 'GabC92' and 

'DodC94' than for 'GabC94' and 'DipC94' and higher under constant 13 and 14 h d"1 

photoperiods than under constant 12 h d"1 (Table 4.2). The highest seed yield (17.2 g 

per plant) was obtained from 'GabC92' in the constant 12 h d"1 treatment. Total plant 

dry weight increased with increasing time from sowing to podding, whereas seed dry 

weight and harvest index were lower when podding occurred later (Fig. 4.5). The 

harvest index and seed yield per plant were not affected by the photoperiod and the 

direction of change in photoperiod in the pod-filling phase, though the harvest index 

tended to be slightly lower in the increasing photoperiod treatment than in other 

treatments with similar times to podding. 

'GabC92' 

Treatment 
Fig. 4.4. Means and standard errors of the time from sowing to podding in four bambara 
groundnut selections in the six photoperiod treatments of Fig. 4.1. 'DodC94' in treatment 5 
had not started podding when the experiment was terminated (183 DAS). 
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Table 4.2. Total plant (excluding roots), pod and seed dry weights and harvest index (seed 
weight as a fraction of total plant weight) at the final harvest (183 DAS) for four bambara 
groundnut selections in the six photoperiod treatments of Fig. 4.1. 

Dry weight 

(g plant"1) 

Total 

Pods 

Selection 

'GabC92' 

'GabC94' 

'DipC94' 

'DodC94' 

Mean 

'GabC92' 

'GabC94' 

'DipC94' 

'DodC94' 

Mean 

1 

37.8 

28.2 

25.7 

28.6 

30.1 

20.9 

17.7 

18.1 

16.6 

18.3 

2 

45.0 

31.7 

32.4 

38.6 

36.9 

L t̂Jo.os 

17.6 

17.1 

17.9 

8.6 

15.3 

3 

41.7 

37.2 

32.5 

41.6 

38.3 

treatment 

Treatment 

4 

37.8 

30.8 

33.0 

37.7 

34.8 

5 

47.3 

31.1 

28.3 

45.6 

38.1 

5.38; LSD005 selection 
LSD005 interaction 

5.3 

13.5 

13.4 

2.6 

8.7 

16.9 

17.5 

19.2 

11.2 

16.2 

n.s. 

8.8 

15.5 

15.5 

0.0 

10.0 

6 

48.2 

38.7 

35.9 

43.9 

41.7 

4.16; 

10.1 

14.7 

11.8 

2.6 

9.8 

Mean 

43.0 

33.0 

31.3 

39.3 

36.6 

13.3 

16.0 

16.0 

6.9 

13.1 

LSD0M treatment: 1.48; LSD005 selection: 2.07; 
LSD00S interaction: 4.54; 

LSD005 interaction (within same treatment): 5.06 

Seeds GabC92' 

GabC94' 

DipC94' 

DodC94' 

Mean 

17.2 

15.0 

15.2 

13.7 

15.3 

14.5 

14.7 

15.2 

6.8 

12.8 

4.2 

11.6 

11.7 

2.0 

7.4 

14.0 

14.8 

16.5 

9.4 

13.7 

7.1 

13.1 

13.1 

0.0 

8.3 

8.4 

12.9 

10.1 

1.9 

8.3 

10.9 

13.7 

13.6 

5.6 

11.0 

LSD00S treatment: 1.37; LSD00S selection: 2.06; 
LSD0„S interaction: 4.51; 

LSD005 interaction (within same treatment): 5.05 

Harvest index 'GabC92' 

'GabC94' 

'DipC94' 

'DodC94' 

Mean 

0.46 

0.53 

0.59 

0.48 

0.52 

0.32 

0.46 

0.47 

0.18 

0.36 

0.10 

0.31 

0.36 

0.05 

0.21 

0.37 

0.48 

0.50 

0.25 

0.40 

0.16 

0.42 

0.46 

0.00 

0.26 

0.17 

0.33 

0.28 

0.04 

0.21 

0.26 

0.42 

0.44 

0.17 

0.32 

LSD0„5 treatment: 0.043; LSD00! selection: 0.032; 
LSD„„s interaction: 0.077; 

LSD„05 interaction (within same treatment): 0.079 
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Fig. 4.5. Total dry weight per plant (excluding roots) (A), seed dry weight per plant (B) and 
harvest index (seed dry weight as a fraction of total plant dry weight) (C) at the final harvest 
(183 DAS) in the treatments 1 (•), 2 ( • ) , 3 (•), 4 (v), 5 (A) and 6 (o) of Fig. 4.1. 
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4.4 Discussion 

It was shown that when the rate of progress from flowering to podding is 

plotted against the average photoperiod between flowering and podding, there are no 

indications that increasing photoperiods have a strong retarding effect or decreasing 

photoperiods a strong accelerating effect on the rate of progress from flowering to 

podding (Fig. 4.3). Hence, the average photoperiod determines the time to podding in 

bambara groundnut and a gradual change in photoperiod does not affect development 

rates. The assumption that the photoperiod reaction is instantaneous and that daily 

development rates may be accumulated appears to be valid for the period to podding 

in bambara groundnut. Therefore, it is possible to base photothermal models intended 

for prediction of bambara groundnut development in field situations on studies with 

constant photoperiods. 

The findings of the present study are not in agreement with those of Constable 

and Rose (1988), who suggest that development rates in soya bean are affected by the 

rate of change in photoperiod. However, they confirm those of Acock et al. (1994), 

who found no effect of the direction of change in photoperiod on time to flowering 

in soya bean. There are contradictory reports for cereals too. In multilocation field 

experiments with maize (Zea mays L.), Bonhomme et al. (1991) did find a significant 

effect of rate of change in photoperiod on total leaf number. However, in a field 

experiment with wheat (Triticum aestivum L.) and an outdoor pot experiment with 

spring barley (Hordeum vulgare L.), both including constant and increasing 

photoperiod treatments, no effect of rate of change on development rates independent 

of the average photoperiod was found (Slafer et al., 1994; Kernich et al., 1995). 

Reports that rate of change in photoperiod does affect development rates are often 

based on field experiments with different sowing dates and natural photoperiods 

(Constable and Rose, 1988; Bonhomme et al., 1991), where rate of change in 

photoperiod might be confounded with other factors, such as temperature, radiation 

and availability of water and nutrients. In studies with simultaneous artificially 
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constant and changing photoperiod treatments and the same sowing date for all 

treatments, no effects of rate of change in photoperiod on development rates are 

usually found (Acock et al., 1994; Slafer et al., 1994; Kernich et al., 1995; this study) 

In all six photoperiod treatments, the time from sowing to podding was longer 

for 'GabC92' than for the other two selections from Botswana, 'GabC94' and 

'DipC94' (Fig. 4.4). Therefore 'GabC92' can be characterized as a relatively late 

selection, and the other two as relatively early selections. The reason that no podding 

occurred in 'DodC94' in treatment 5 is probably that photoperiods longer than 14 h 

d"1 strongly retard or inhibit podding in this selection. 

Final harvest results showed that a prolonged time from sowing to podding led 

to a higher total plant dry weight, which, however, did not translate into higher yields 

at six months after sowing. It is possible that the harvest index and yield of plants 

with a longer vegetative period would have been higher if the plants had been allowed 

to grow longer. In soya bean, for example, it has been found that reducing the 

vegetative period of late maturing cultivars did not lead to lower seed yields, because 

the harvest index became higher, whereas in two early maturing cultivars, a reduced 

vegetative phase led to lower seed yields (Schweitzer and Harper, 1985). The finding 

that seed yield and harvest index were strongly related to the time to podding and not 

to the photoperiod and the direction of change in photoperiod in the pod-filling phase, 

indicates that there is no influence of photoperiod on dry matter partitioning in the 

pod-filling phase. 

4.5 Conclusion 

The average photoperiod in the period between flowering and podding 

determines the rate from flowering to podding, and a gradual increase or decrease in 

photoperiod has no effect independent of the average photoperiod. Therefore, 

photothermal models intended to predict bambara groundnut development in field 
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situations with fluctuating photoperiods may be based on studies with constant 

photoperiods. Final harvest results showed that a prolonged time from sowing to 

podding led to a higher total plant dry weight, but a lower seed yield, because of a 

lower harvest index. Harvest index and seed yield per plant seem not to be affected 

by the photoperiod and the direction of change in photoperiod in the pod-filling phase. 
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Abstract 

A semi-controlled environment study was conducted to investigate the 

interaction between growth and development in bambara groundnut (Vigna 

subterranea) and the influence of photoperiod on dry matter partitioning. The 

experimental design was a split-plot with four photoperiods (10.5, 11.8, 13.2 and 14.5 

h d ' ) and two light treatments: unshaded and shaded (42% light reduction). The 

selection used was 'DipC94' from Botswana. The dates of 50% flowering and 50% 

podding were determined, and samples of plants were harvested at 22, 36, 50, 64, 78, 

92, 106, and 120 days after sowing. Total dry matter production was 41% lower in the 

shaded treatment than in the unshaded treatment, but the rates of progress from sowing 

to flowering and flowering to podding decreased by only 3 and 12 % respectively. 

This suggests that growth and development in bambara groundnut are largely 

independent. Photoperiod influenced dry matter partitioning indirectly, through its 

influence on the onset of podding. There were, however, no strong direct photoperiod 

effects on dry matter partitioning, either before or after the onset of podding. 

5.1 Introduction 

The leguminous crop bambara groundnut {Vigna subterranea (L.) Verde.) is 
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an important secondary food crop in Africa, mainly grown by smallholders in drier 

regions (Linnemann and Azam-Ali, 1993). Bambara groundnut is an indeterminate 

annual herb, with creeping stems carrying trifoliolate leaves with erect petioles. 

Flowers are formed at the base of the petioles, usually in pairs. After pollination, the 

peduncle grows out and pods form on or under the ground. The pods usually contain 

one seed. Unripe and ripe seeds are used for human consumption (Linnemann and 

Azam-Ali, 1993). 

It is generally assumed that photoperiod and temperature are the main 

environmental factors influencing reproductive development in annual crops 

(Summerfield et al., 1991; Hodges, 1991; Sinclair et al., 1991). In most bambara 

groundnut genotypes investigated, the onset of flowering is photoperiod-insensitive and 

the onset of podding is retarded by long photoperiods (Linnemann, 1994a; Chapter 2 

of this thesis). The effects of photoperiod and temperature on rates of progress from 

sowing to flowering and flowering to podding have been quantified in linear models 

for different bambara groundnut selections, using data from semi-controlled 

environment research (Chapter 2). These models operate under the widely held 

assumption that interaction between development and growth may be ignored and that 

crop development may be modelled separately from crop growth. 

Another common assumption in crop growth modelling is that dry matter 

partitioning factors depend mainly on development stage and are not directly 

influenced by photoperiod. In bambara groundnut, photoperiod influences dry matter 

partitioning indirectly through its influence on reproductive development. The onset 

of podding coincides with a major shift in the assimilate distribution, which becomes 

mainly directed towards pod growth (Linnemann et al., 1995). Linnemann et al. (1995) 

suggested that the partitioning factors before this major switch from vegetative to pod 

growth may not be constant, but directly influenced by photoperiod. They found that 

the percentage of above ground matter partitioned to the leaf blades of selection 'Tiga 

Nicuru' was higher under short (10 or 12 h d ' ) than under long (14 or 16 h d ' ) 

photoperiods and the percentage partitioned to the stem parts (petioles and stems) 
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lower. They also suggested that the partitioning factors after the onset of podding are 

directly influenced by photoperiod, because the pod growth rate in selection 'Ankpa4' 

was higher under a 10 h d"1 photoperiod than under a 12 h d"1 photoperiod. In soya 

bean (Glycine max (L.) Merr.), the proportion of dry matter increase partitioned to the 

reproductive structures has also been found to be greater under short days than under 

long days or treatment with interrupted nights (Cure et al., 1982; Morandi et al., 

1988). 

The two objectives of the present study on bambara groundnut were therefore 

to find out if there is any interaction between growth and development and whether 

photoperiod has a direct effect on dry matter partitioning. 

5.2 Material and methods 

A semi-controlled environment experiment was conducted in the period 26 May 

to 23 September 1996 in Wageningen, The Netherlands (51°58' N). The experimental 

design was a split-plot with photoperiod (four levels) as main factor and shading (two 

levels) as split factor, and two replicates. The experiment was carried out in two 

identical glasshouses with forced ventilation, which function as replicates. 

A tent with four compartments was placed in each glasshouse, which made it 

possible to apply four different photoperiods. From 08:00 h to 16:00 h, the tents were 

removed and the plants received natural daylight. From 16:00 h to 08:00 h, the plants 

were covered by the tents, and the photoperiod in the compartments was prolonged 

to a different extent by means of low intensity artificial light (four Philips TLD 36 W 

fluorescent tubes (colour no. 84) and two 40 W bulbs per compartment). This ensured 

there was no difference in the amount of photosynthetically active radiation (PAR) 

received in different photoperiods. The constant photoperiods in the four compartments 

in each glasshouse were 10.5, 11.8, 13.2, and 14.5 h d"1. Artificial light was supplied 

from 07:00 to 08:00 h and from 16:00 to respectively 17:30, 18:50, 20:10, and 21:30 
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h for the different photoperiods. Removable metal roofs were put over the glasshouses 

from 16:00 h to 08:00 h, to exclude daylight and to prevent the temperature inside the 

tents from becoming too high. 

Each compartment contained a staging with 80 plants of bambara groundnut 

selection 'DipC94', a cream coloured selection collected from a farmer at Diphiri, near 

Gaborone, Botswana (24°40'S; 25°55'E). One half of each table (40 plants) was 

covered from 08:00 to 16:00 h with a frame of green shade netting. The nets were 

removed from 16:00 to 08:00 h, and both halves of each table received the same 

amount of low intensity artificial light. To estimate the light reduction by the 

glasshouse structure and the shading treatment, ceptometer measurements were carried 

out five times: in the morning and in the afternoon at the beginning and at the end of 

the experimental period, and in the afternoon in the second half of June, when outside 

radiation reached a peak. The PAR at plant level in the unshaded treatments was 52% 

of that outside the glasshouse. Shade netting caused a further average PAR reduction 

of 42%. The mean global radiation in the experimental period, measured in a 

meteorological station at about 500 m distance from the glasshouse, was 15.9 MJ m"2 

d"1 (Department of Meteorology, Wageningen Agricultural University), which 

corresponds to about 8 MJ m"2 d ' PAR. The radiation between 08:00 and 16:00 can 

be estimated on 77% of the daily radiation in the period June to September (Anon., 

1989). 

From 10:00 to 16:00 h, the temperature in the glasshouse was set at 27 °C; 

from 18:00 to 08:00 h at 23 °C. Between 08:00 and 10:00 h the temperature was set 

to increase gradually from 23 to 27 °C; from 16:00 to 18:00 h to decrease gradually 

from 27 to 23 °C. The average temperature over the whole experiment was 25.0 °C. 

The seeds were pre-germinated in a germination cabinet at 30 °C. When the 

root tips became visible, the plants were transplanted (one plant per pot) in white 

plastic 5 1 pots, filled with a 1:1 v/v mixture of sand and potting compost ('potting 

compost no.4' from Lentse potgrond b.v., consisting of 85% peat and 15% clay). At 

transplanting, Rhizobium spp. strain CB 756, obtained from the Department of 
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Microbiology, Wageningen Agricultural University, was put in the planting hole. The 

plants were fertilized with a complete nutrient solution obtained by mixing 0.833 g 

'Nutriflora-t' (supplied by Windmill Holland b.v.) and 1 g calcium nitrate in one litre 

of tap water, resulting in a nutrient content of 172 mg l"1 N, 39 mg l"1 P, and 263 mg 

I"1 K. The solution (220 ml per plant) was applied four times at two-weekly intervals 

between 24 and 82 days after sowing. The plants were kept well-watered. Biological 

pest control was used: Amblyseius cucumeris and Orius insidiosus were introduced 

regularly against thrips {Frankliniella occidentalis and Thrips tabaci), and Phytoseiulus 

per similis against spider mites (Tetranychus urticae). The plants were circulated 

weekly and earthed-up individually on the day they had a pod longer than 0.5 cm. 

Non-destructive observations included dates of first flowering and onset of 

podding of each plant. Flowering onset was defined as the day on which the plant had 

its first open flower, and podding onset as the first day the plant had a pod at least 0.5 

cm long. Direct podding observations were possible because the selection included in 

this study forms pods on the soil surface. On the basis of the individual plant 

observations, the dates when 50% of the plants in a treatment had started flowering 

('50% flowering'), and 50% of the plants in a treatment had started podding ('50% 

podding') were determined. Daily flower counts were carried out on 6 plants per 

treatment per replicate from the onset of flowering to the onset of podding of these 

plants. 

Eight harvests of five plants per photoperiod/radiation combination per replicate 

were carried out at two-weekly intervals, at 22 days after sowing (DAS). At each 

harvest, leaf area, number of leaves and pods, and dry weight of roots, leaf blades, 

petioles, stems and pods were determined. Fallen plant material was collected 

throughout the experiment. Dry matter partitioning factors were calculated by dividing 

the weight increases of the various organs between two successive harvests by the 

increase in total plant dry weight in the same period. 

Statistical analysis (analysis of variance) of the results was done with the 

GENSTAT 5.3 statistical package (Payne et al., 1993). 
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5.3 Results 

Growth 

Total plant dry weight was significantly influenced by shading throughout the 

experimental period, but photoperiod and interaction effects between photoperiod and 

shading were not significant. The final total plant dry weight was 41% lower in the 

shaded treatment than in the unshaded treatment (Table 5.1). The average growth rate 

over the experimental period was 0.23 g d'1 for the unshaded treatment and 0.14 g d"1 

for the shaded treatment. Dropped flowers, aborted ovaries and dead roots were not 

included in the total plant weight, so the actual total dry matter production must have 

been somewhat higher than given in Table 5.1. 

Table 5.1. Mean plant dry weights (including roots) in the unshaded (Unsh.) and shaded (Sh.) 
treatments at different harvests, and the difference between the two treatments as a percentage 
of the dry weight in the unshaded treatment. The differences between the shaded and unshaded 
treatments were significant for all eight harvests. There were no significant photoperiod effects 
or interaction effects of photoperiod and shading on the mean plant dry weight. 

Time (DAS) 

22 

36 

50 

64 

78 

92 

106 

120 

Mean plant 

Unsh. 

1.1 

3.1 

6.8 

11.8 

16.2 

20.7 

24.6 

27.8 

dry weight (g) 

Sh. 

0.9 

2.2 

4.3 

7.1 

10.0 

11.3 

14.6 

16.4 

Difference (%) 

24.6 

28.1 

37.3 

39.9 

38.0 

45.8 

40.6 

41.1 
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Development 

The rate of progress from sowing to flowering (l/f, with/being the number 

of days from sowing to 50% flowering) was not influenced by photoperiod, but 

shading reduced the rate slightly (Table 5.2). No significant interaction was found 

between photoperiod and shading. The average time to flowering was 41.6 days for 

the unshaded and 42.9 days for the shaded treatments. In all treatments, the date of 

50% flowering was between the second and third harvests. Therefore the flowering 

data are based on 30 plants per treatment per replicate. 

The rate of progress from flowering to podding (\l{p-f), with (p-f) being the 

number of days from 50% flowering to 50% podding) was strongly influenced by 

photoperiod and to a lesser extent by shading (Table 5.2). The interaction effect of 

both factors was not significant. The time from flowering to podding ranged from 20.5 

days (10.5 h d"1; unshaded) to 53.5 days (14.5 h d'1; shaded). 

Table 5.2. Rate of progress from sowing to flowering (1//) and rate of progress from flowering 
to podding (\l{p~f)) in the unshaded (Unsh.) and shaded (Sh.) treatments under constant 
photoperiods of 10.5, 11.8, 13.2, and 14.5 h d'. 

Photoperiod 

(h d ' ) 

10.5 

11.8 

13.2 

14.5 

Mean 

Significance level: 
- shading effect 
- photoperiod effect 
- interaction effect 
LSD005 photoperiod: 

Unsh. 

0.0238 

0.0238 

0.0244 

0.0241 

0.0240 

Vf 

Sh. 

0.0230 

0.0233 

0.0234 

0.0235 

0.0233 

** 
n.s. 
n.s. 

Mean 

0.0234 

0.0235 

0.0239 

0.0238 

0.0237 

Unsh. 

0.0488 

0.0438 

0.0357 

0.0193 

0.0369 

V(p-f) 

Sh. 

0.0403 

0.0408 

0.0301 

0.0187 

0.0325 

** 
** 
n.s. 

0.00667 

Mean 

0.0445 

0.0423 

0.0329 

0.0190 

0.0347 
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In the unshaded treatments, the total time from sowing to podding was for the 

10.5, 11.8, 13.2 and 14.5 h d"1 photoperiods respectively 62.5, 65.0, 69.0 and 93.5 

days. The equivalent figures for the shaded treatments were 68.5, 67.8, 76.0 and 96.0 

days, which is 3 to 7 days longer. Because of the intermediate harvests, the podding 

data are based on 20 plants per treatment per replicate for the 10.5, 11.8 and 13.2 h 

d"1 photoperiods, and on 10 plants per treatment per replicate for the 14.5 h d"1 

photoperiod. 

The number of flowers per plant between the onset of flowering and the onset 

of podding ranged from 60 to 251 and increased with photoperiod (Table 5.3). This 

effect is partly attributable to the longer interval between flowering and podding under 

longer photoperiods. However, the number of flowers per day was also influenced by 

photoperiod. It was lower under 10.5 or 11.8 h d"1 than under 13.2 or 14.5 h d"1 

photoperiods (Table 5.3). Shading also influenced the number of flowers per day, 

which was lower in the shaded plants. 

Table 5.3. Total number of flowers per plant between the onset of flowering and the onset of 
podding and the number of flowers per day in this period in the unshaded (Unsh.) and shaded 
(Sh.) treatments under constant photoperiods of 10.5, 11.8, 13.2, and 14.5 h d"1. 

Photoperiod 
(h d ' ) 

10.5 

11.8 

13.2 

14.5 

Mean 

Significance level: 
- shading effect 
- photoperiod effect 
- interaction effect 
LSD005 photoperiod: 

Total number of flowers 

Unsh. 

69 

67 

128 

251 

129 

Sh. 

60 

62 

132 

207 

115 

n.s. 
*** 
n.s. 
17.4 

Mean 

64 

64 

130 

229 

122 

Number of flowers 

Unsh. Sh. 

3.05 2.50 

3.10 2.55 

4.25 3.75 

4.80 3.65 

3.80 3.11 

** 
*** 
n.s. 

0.265 

per day 

Mean 

2.78 

2.83 

4.00 

4.23 

3.46 
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The number of leaves and the leaf area were significantly influenced by 

shading from the second harvest (36 DAS) onwards (Fig. 5.1). Leaf number was 

significantly influenced by photoperiod from the third harvest (50 DAS) onwards, leaf 

area from the fourth (64 DAS). Significant interaction effects between photoperiod and 

shading were found at the last two harvests (106 and 120 DAS) only. The mean 

number of pods was significantly lower in the shaded treatments from 78 DAS 

onwards. Photoperiod effects and interaction effects between photoperiod and shading 

were only significant at the harvests at 78 and 92 DAS. At the final harvest there was 

no significant difference between the photoperiod treatments in the mean number of 

pods per plant. Fig. 5.1 shows that the rapid increase in the number of pods per plant 

in the first few weeks after the onset of podding coincides with a slowing down of the 

increase in the number of leaves per plant. 

Dry matter partitioning 

The photoperiod effects on partitioning of the dry matter increase before the 

onset of podding were generally not significant. However, partitioning to the stems 

tended to be higher under longer photoperiods, and partitioning to the roots lower 

(Table 5.4). Significant shading effects were mainly found in the first three weeks 

after sowing. Partitioning to the leaf blades remained constant in the pre-podding 

period, but after 36 DAS partitioning to the roots decreased and partitioning to petioles 

and stems increased. The partitioning of the dry matter increase after the onset of 

podding was analysed using data on the 10.5, 11.8, and 13.2 h d"' photoperiods. Data 

on the 14.5 h d"1 photoperiod were not used, because 50% podding occurred much 

later in that treatment. Partitioning after the onset of podding was not influenced by 

photoperiod (in the range from 10.5 to 13.2 h d"1) or by shading. The vegetative plant 

parts still showed some growth in the first two weeks after the onset of podding, but 

thereafter dry matter was reallocated to the pods (Table 5.5). In the 14.5 h d"1 

treatment, partitioning after the onset of podding showed the same trend (Table 5.6) 

79 



Chapter 5 

as in the other photoperiods. At the final harvest, the pod dry weight per plant in the 

shaded treatments was half that in the unshaded treatments (Table 5.7). Pod dry 

weights under 10.5, 11.8 and 13.2 h d"1 photoperiods were very similar, but they were 

much lower under 14.5 h d ' . 
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Fig. 5.1. Mean green leaf number (A), leaf area (B), and pod number (C) per plant against 
time after sowing for plants grown in the unshaded treatment under constant photoperiods of 
10.5 (A), 11.8 (o), 13.2 (v), and 14.5 h d"1 (•), and the shaded treatment under constant 
photoperiods of 10.5 (A), 11.8 (•), 13.2 (T), and 14.5 h d'1 (•). 
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Table 5.5. Fraction of the plant dry weight increase partitioned to different organs after the 
onset of podding (based on all treatments except the 14.5 h d"1 treatment). The average onset 
of podding was 68 DAS. 

Period 
(DAS) 

64-78 

78-92 

92-106 

106-120 

Roots 

0.00 

-0.04 

-0.09 

-0.12 

Leaf blades 

0.15 

-0.09 

-0.12 

-0.04 

Petioles 

0.08 

-0.12 

-0.10 

-0.13 

Fraction 

Stems 

0.06 

-0.02 

-0.04 

-0.01 

Pods 

0.72 

1.27 

1.34 

1.29 

Total 

1.00 

1.00 

1.00 

1.00 

Table 5.6. Fraction of the plant dry weight increase partitioned to different organs after the 
onset of podding in the 14.5 h d"1 treatment. The average onset of podding was 95 DAS. 

Period 
(DAS) 

92-106 

106-120 

Roots 

0.08 

-0.18 

Leaf 
blades 

0.12 

-0.26 

Fraction 

Petioles 

0.00 

-0.07 

Stems 

0.06 

-0.03 

Pods 

0.74 

1.54 

Total 

1.00 

1.00 

5.4 Discussion 

Interaction between growth and development 

In this study, it was found that shading (42% light reduction) resulted in a 

lower plant dry matter production (41%) (Table 5.1). This was accompanied by a 

slight decrease in the rate of progress from sowing to flowering (3%) and the rate of 

progress from flowering to podding (12%) (Table 5.2). This suggests that there may 

be some interaction between growth and development in bambara groundnut, but that 
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the effect is small. These results also imply that the onset of flowering and podding 

in bambara groundnut grown as an intercrop and shaded by taller cereals will not be 

very different from that in sole-cropped bambara groundnut. 

The finding that photoperiod did not significantly affect total plant growth, is 

in accordance with Linnemann et al. (1995), who found no photoperiod influence on 

above ground dry matter accumulation in bambara groundnut selection 'Ankpa4' from 

Nigeria and only a slight influence in 'Tiga Nicuru' from Mali. The photoperiod effect 

on the rate of progress from flowering to podding was much more pronounced than 

the shading effect (Table 5.2). 

Photoperiod and dry matter partitioning 

The findings of this study confirm that the onset of podding coincides with a 

major shift in the assimilate distribution, which becomes mainly directed towards pod 

growth. As photoperiod has a strong influence on the onset of podding, the indirect 

effect of photoperiod on dry matter partitioning is obvious. Direct photoperiod effects 

on dry matter partitioning before the onset of podding were not significant, but 

partitioning to the stems tended to be higher under longer photoperiods (Table 5.4). 

This tendency is in agreement with earlier findings that the percentage of above 

ground matter partitioned to the leaf blades is higher under short photoperiods and the 

percentage partitioned to the stem parts lower (Linnemann et al., 1995). A direct effect 

of photoperiod on dry matter partitioning after the onset of podding was not found, 

which is in contrast with earlier findings in bambara groundnut (Linnemann et al., 

1995) and soya bean (Cure et al., 1982; Morandi et al., 1988). However, it confirms 

the findings of Chapter 4, where it was found that seed yield in bambara groundnut 

is strongly related to the time to podding and not to the photoperiod regime in the 

pod-filling phase. 
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Table 5.7. Mean pod dry weight (g) per plant in the unshaded (Unsh.) and shaded (Sh) 
treatments and under different photoperiods. Shading and photoperiod effects were significant 
from 78 DAS onwards. There were no interaction effects. 

Time (DAS) 

22 

36 

50 

64 

78 

92 

106 

120 

Shading 
treatment 

Unsh. 

0.0 

0.0 

0.0 

0.1 

2.2 

5.0 

8.4 

12.5 

Sh. 

0.0 

0.0 

0.0 

0.1 

0.7 

2.1 

4.4 

6.3 

10.5 

0.0 

0.0 

0.0 

0.1 

2.9 

4.8 

8.1 

10.1 

11.8 

0.0 

0.0 

0.0 

0.1 

1.8 

5.1 

7.7 

11.0 

Photoperiod 
(h d ' ) 

13.2 

0.0 

0.0 

0.0 

0.0 

1.1 

4.1 

7.9 

11.2 

14.5 

0.0 

0.0 

0.0 

0.0 

0.0 

0.1 

2.0 

5.3 

LSD005 

n.s. 

n.s. 

n.s. 

n.s. 

1.57 

2.00 

2.81 

2.66 

Determinacy 

Loomis and Connor (1992) distinguish determinate, indeterminate and 

facultative determinate crops. In determinate crops, vegetative growth ceases at 

flowering, because the shoot's apical meristem is converted to the reproductive 

structure. In indeterminate crops, flowering overlaps with vegetative growth and can 

continue for weeks or months. In this situation, the apical meristem continues to 

produce leaves, while flowers are formed from axillary meristems. The advantage of 

indeterminacy is that prolonged flowering enables the plant to compensate for loss of 

flowers or seed as a result of temporary adverse conditions (Loomis and Connor, 

1992). Under certain conditions, reproductive growth in some indeterminate plants 

monopolizes all assimilates and apical activity ceases, resulting in facultative 

determinacy. In the present study it was found that the onset of podding in bambara 

groundnut coincides with a slowing down of the leaf appearance rate (Fig. 5.1). This 
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suggests that though bambara groundnut is an indeterminate plant (leaf formation is 

not influenced by the onset of flowering), the onset of podding leads to facultative 

determinacy. 

Podding observations 

In the studies by Linnemann and Craufurd (1994) and Linnemann et al. (1995), 

the onset of flowering in bambara groundnut was determined in the same way as in 

the present study, but the onset of podding was not. In the present study, podding was 

observed directly, whereas Linnemann and Craufurd (1994) and Linnemann et al. 

(1995) determined the onset of podding through linear regression of pod weights at 

different harvests against time. Because intermediate harvests were carried out in the 

present study, it was possible to compare the two methods. The results obtained by the 

different methods do not differ much (Table 5.8), which implies that both methods can 

be used. An important advantage of observing podding directly is that far fewer plants 

are required. However, the method cannot be used on bambara groundnut selections 

that form pods underground or when plants are earthed-up before the onset of 

podding. 

Table 5.8. Means and standard errors of the times from sowing to podding in the different 
treatment combinations as determined by direct podding observations (method 1) and by linear 
regression of the pod weights at intermediate and final harvests against time (method 2). 

Photoperiod 
(h d') 

10.5 

11.8 

13.2 

14.5 

Non-shaded 

Method 1 

62.5 ± 1.5 

65.0 ± 3.0 

69.0 ± 1.0 

93.5 ± 2.5 

Method 2 

61.5 ± 3.0 

65.6 ± 2.5 

72.1 + 0.9 

92.4 ± 1.8 

Shaded 

Method 1 

68.5 ± 2.5 

67.5 ± 1.5 

76.0 ± 0.0 

96.0 ± 1.0 

Method 2 

65.7 ± 0.0 

66.7 ± 0.1 

77.0 ± 0.4 

93.7 ± 0.9 
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5.5 Conclusion 

In the shaded treatments, total dry matter production was 41% lower than in 

the unshaded treatment, but the effects of shading on development were minor. The 

rates of progress from sowing to flowering and flowering to podding were reduced by 

only 3 and 12 % respectively. This suggests that growth and development in bambara 

groundnut are largely independent. Photoperiod influenced dry matter partitioning 

indirectly, through its influence on the onset of podding. Strong direct photoperiod 

effects of dry matter partitioning, either before or after the onset of podding, were not 

found. 
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6 Q U A N T I F Y I N G P H O T O T H E R M A L I N F L U E N C E S O N R E P R O D U C T I V E D E V E L O P M E N T 

IN BAMBARA GROUNDNUT (VLGNA SUBTERRANEA): MODELS AND THEIR VALIDATION 

M. Brink, K.P. Sibuga, A.J.P. Tarimo and G.M. Ramolemana 

Abstract 

The effects of photoperiod and temperature on reproductive development in two 

bambara groundnut (Vigna subterranea) selections from contrasting origins were 

quantified by means of linear models. The two selections were 'DodR94' from 

Tanzania, near the equator, and 'DipC94' from Botswana, near the Tropic of 

Capricorn. The models were based on a semi-controlled environment study with four 

constant photoperiods (10.5, 11.8, 13.2, and 14.5 h d"1, covering the range of 

photoperiods in the tropics) and four constant temperatures (20, 23, 26, 29 °C). Higher 

temperatures were included as well, but plants died at constant temperatures of 33 and 

36 °C. The rate of progress from sowing to flowering of both selections could be 

described by a thermal response plane. For 'DipC94', the rate of progress from 

flowering to podding could be described well by a combination of a thermal response 

plane and a photothermal response plane. In the case of the podding response of 

'DodR94', the intervals between the experimental photoperiods were too large to allow 

quantification of the photoperiod effect. The photoperiod and temperature response of 

the selections could be explained very well by the photothermal conditions in the 

regions from which the selections came. Validation of the photothermal models with 

the results of glasshouse experiments in The Netherlands and field experiments in 

Tanzania and Botswana gave mixed results: predicted and observed time to flowering 

for 'DipC94' corresponded well, and predicted and observed time from flowering to 

podding reasonably well. Flowering predictions for 'DodR94' were not accurate, 
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possibly because this selection experiences photoperiod effects when temperatures are 

higher than those applied in the experiment on which the models were based. 

6.1 Introduction 

In semi-arid Africa, where rainfall is low, soil fertility poor and production 

conditions are difficult to control, increased food production requires crops and crop 

genotypes well adapted to local environments. An important aspect of plant adaption 

is the way reproductive development is influenced by environmental factors. 

Temperature and photoperiod are the main factors influencing the development of 

annual crops and there are often large genotypic differences in the response to these 

factors (Roberts and Summerfield, 1987). Quantification of the effects of photoperiod 

and temperature on reproductive development in crop genotypes is important when 

ascertaining the potential of genotypes for a particular agro-ecological region. 

Bambara groundnut (Vigna subterranea (L.) Verde.) is one of the crops that 

could be used to increase food production. It is a leguminous food crop, which is 

already widely cultivated in tropical Africa (Duke, 1981), with a reported high drought 

resistance (Linnemann and Azam-Ali, 1993). It is an indeterminate annual herb, which 

forms pods on or under the soil. In many bambara groundnut selections, the onset of 

flowering is photoperiod-insensitive, but the onset of pod growth ('podding') is 

retarded by long photoperiods. In some genotypes though, both the onset of flowering 

and the onset of podding are delayed by long photoperiods (Linnemann, 1991; 

Linnemann and Craufurd, 1994). The photoperiod influence on flowering and podding 

has been demonstrated in glasshouse (Linnemann, 1991) and field experiments (Harris 

and Azam-Ali, 1993). Recently, it has been shown that the time from sowing to 

flowering of bambara groundnut selections in independent experiments could be well 

predicted with photothermal models based on a semi-controlled environment 

experiment, and the time from flowering to podding reasonably well (Chapter 2). 
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However, that study included only temperatures up to 26 °C, and the results were not 

validated with field data. 

The present study was intended to remedy this. Its aims were: (1) to quantify 

the influence of temperature and photoperiod on reproductive development of bambara 

groundnut selections from contrasting origins with linear models; and (2) to validate 

these models by: (a) comparing the photothermal responses of the selections with the 

photothermal conditions in the regions where they were obtained; and (b) comparing 

the model predictions with results from glasshouse experiments in The Netherlands 

and field experiments in Tanzania and Botswana. 

6.2 Material and methods 

The study included seven experiments: a main, semi-controlled environment 

experiment, used to derive photothermal development models, and six validation 

experiments. 

Main experiment 

The main experiment included four constant photoperiods (10.5, 11.8, 13.2, and 

14.5 h d"1) and six constant temperatures (20, 23, 26, 29, 33, and 36 °C), covering the 

range of photoperiods and temperatures in the tropics. Two bambara groundnut 

selections, collected from farmers, were used: 'DipC94', a cream coloured selection 

collected at Diphiri, near Gaborone, Botswana (24°40'S; 25°55'E); and 'DodR94', a 

red coloured selection collected near Dodoma, Tanzania (6°10'S; 35°46'E). Long-term 

climatic data for Dodoma and Gaborone are shown in Table 6.1. 

Development at temperatures of 20, 23 and 26 °C was studied in three identical 

phytotron glasshouses in Wageningen, The Netherlands (51°58'N) in the period 9 May 

to 15 November 1995. The air temperature in the glasshouses was maintained by 
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forced ventilation at 20, 23 and 26 °C respectively. A tent with four compartments, 

each with different constant photoperiod (10.5, 11.8, 13.2, or 14.5 h d"1) was placed 

within each glasshouse. Every day, the tents were removed from 08:00 to 16:00 h and 

the plants were exposed to daylight. The radiation at plant level was 52% of the 

photosynthetically active radiation (PAR) outside the glasshouse. The tents were in 

position from 16:00 to 08:00 h, during which time the photoperiod was prolonged with 

low intensity artificial light (four Philips TLD 36 W fluorescent tubes (colour no. 84) 

and two 40 W incandescent bulbs per compartment). Low intensity light was used to 

ensure that plants in all photoperiod treatments received the same amount of PAR. To 

create the four photoperiods, artificial light was supplied daily from 07:00 to 08:00 h 

and from 16:00 to respectively 17:30, 18:50, 20:10, and 21:30 h. From 16:00 h to 

08:00 h, the glasshouses were covered with removable metal roofs to exclude daylight 

and to prevent the temperature inside the tents from becoming too high. Each 

compartment contained twenty plants of both selections and the plants were circulated 

weekly. Relative air humidity was kept above 60%. 

Development at higher temperatures was studied in three Heraeus growth 

cabinets. From 10 July to 2 October 1995, these were used to grow plants under a 10 

h d"1 photoperiod at temperatures of 29, 33 and 36 °C. From 3 October 1995 to 12 

March 1996, they were used to grow plants at 29 °C under photoperiods of 11.8, 13.2, 

and 14.5 h d ' . Six plants of 'DipC94' and six plants of 'DodR94' were placed in each 

cabinet. Temperature and relative humidity in the growth cabinets were recorded with 

thermohygrographs. Light was provided by 16 fluorescent tubes (Philips TLD 58 W, 

colour no. 84) and four 100 W incandescent bulbs. The plants were circulated weekly. 

Seeds were pre-germinated in a germination cabinet. After the root tips had 

emerged, the seedlings were put singly into white plastic pots (capacity 4.8 litres), 

filled with a 1:1 v/v mixture of sand and potting compost ('potting compost no.4' 

from Lentse potgrond b.v., consisting of 85% peat and 15% clay). At transplanting, 

Rhizobium spp. strain CB 756, obtained from the Department of Microbiology, 

Wageningen Agricultural University, was put in the planting hole. The plants were 
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fertilized with a standard complete nutrient solution obtained by mixing 0.833 g 

'Nutriflora-t' (supplied by Windmill Holland b.v.) and 1 g calcium nitrate in one litre 

of tap water, resulting in a nutrient content of 172 mg l"1 N, 39 mg l"1 P, and 263 mg 

l"1 K. This nutrient solution (220 ml per plant) was applied four times at three-weekly 

intervals in the period 28 to 90 days after sowing. Plants were kept well-watered. 

Biological pest control was used: the predators Amblyseius cucumeris and Orius 

insidiosus against thrips {Frankliniella occidentalis and Thrips tabaci), and 

Phytoseiulus persimilis against spider mites (Tetranychus urticae). 

Table 6.1. Average photoperiod (P), daily maximum (Tmax) and minimum temperature (Tmill), 
and rainfall (R) for Dodoma (Tanzania, 6°10'S; 35°46'E; altitude 1120 m) and Gaborone 
(Botswana, 24°40'S; 25°55'E; altitude 980 m). Source of photoperiod data: Watkinson et al. 
(1994); source of temperature and rainfall data: Smith (1993). Temperature and rainfall data 
are based on 52 (Dodoma) or 30 (Gaborone) years. 

Month 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

Total 

P' 
(h d ' ) 

13.19 

13.03 

12.93 

12.68 

12.58 

12.53 

12.55 

12.63 

12.77 

12.95 

13.13 

13.24 

Dodoma 

T 
'max 

(°C) 

29.3 

29.3 

29.1 

28.7 

28.0 

27.3 

26.6 

27.3 

29.2 

30.6 

31.7 

30.6 

T 
' m m 

(°C) 

18.3 

18.1 

18.0 

17.6 

16.1 

13.8 

13.0 

13.8 

14.9 

16.4 

17.9 

18.6 

R 
(mm) 

151 

115 

123 

51 

5 

1 

0 

0 

1 

5 

20 

106 

578 

P* 
(h d ' ) 

14.32 

13.73 

13.39 

12.30 

11.74 

11.47 

11.59 

12.05 

12.70 

13.44 

14.12 

14.49 

Gaborone 

T 
* max 

(°C) 

32.5 

32.1 

30.5 

26.8 

24.5 

21.7 

22.0 

25.1 

29.5 

31.3 

31.5 

31.6 

T 
* mm 

(°C) 

19.3 

19.0 

17.1 

13.2 

7.6 

4.1 

3.6 

6.5 

11.5 

15.7 

18.2 

18.5 

R 
(mm) 

82 

81 

69 

51 

15 

11 

4 

3 

13 

44 

59 

88 

520 

Civil twilight included 
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Observations included the onset of flowering and podding of each plant. The 

onset of flowering was defined as the day the plant had its first open flower; the onset 

of podding as the day the plant had a pod of at least 0.5 cm long. The dates when 

50% of the plants in a treatment had started flowering ('50% flowering') and 50% of 

the plants in a treatment had started podding ('50% podding') were established from 

observations of individual plants. 

Validation experiments 

The photothermal models were validated with the data from two glasshouse 

experiments in Wageningen in 1995 and 1996, and four field experiments in the 

1994/95 and 1995/96 rainy seasons in Tanzania and Botswana (Table 6.2). There were 

three experiments in Tanzania: one in Morogoro (6°49'S; 37°40'E) and two in 

Hombolo (5°54'S; 35°57'E), near Dodoma (Table 2). The Botswana experiment was 

conducted in Sebele (24°33'S; 25°54'E), near Gaborone. Daily photoperiods, 

minimum and maximum temperatures and rainfall data during the experimental period 

are shown in Fig. 6.1. 

Management and observations in the glasshouse validation experiments were 

as described for the main experiment. For details on the 1995 and 1996 experiments, 

see Chapters 4 and 5, respectively. 

The Tanzanian field experiments were conducted under rainfed conditions in 

a randomized complete block design with four replicates and a plot size of 5.6 by 5.6 

m. The land was tractor-ploughed and ridges were made with hoes. Each plot 

contained 16 ridges, 35 cm apart. Before sowing, NPK-fertilizer (25:5:5) was applied 

equivalent to 40 kg N ha'1. The crop was sown on the ridges with a within-row 

distance of 10 cm and thinned to a distance of 20 cm at 21 days after sowing (DAS). 

The date of first flowering was recorded for 25 (Morogoro) or 20 (Hombolo) 

individual plants per plot. The onset of podding was estimated through linear 

regression of pod weights at different harvests against time. Earlier research has shown 
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that the results obtained with this method do not differ much from those obtained with 

the method described above for the main experiments (Chapter 5). Six plants per plot 

were harvested at 21, 34, 48, 62, 76, 97 and 118 days after sowing. 

Table 6.2. Glasshouse (1-2) and field (3-6) experiments used to validate the development 
models. 

No. Location Season Selections Photoperiod 
treatments 

Sowing 
dates 

Wageningen, 
The Netherlands 

Wageningen, 
The Netherlands 

Morogoro, 
Tanzania 

Hombolo, 
Tanzania 

Hombolo, 
Tanzania 

Sebele, 
Botswana 

1995 

1996 

1994/95 

1994/95 

1995/96 

1995/96 

'DipC94' 

'DipC94' 

'DodR94' 

'DodR94' 

'DipC94', 
'DodR94' 

'DipC94' 

12 h d"1 

13 h d'1 

14 h d"' 
14-11 h d ' * 
12-15 h d'1 ** 

13-14-12 h d"' *** 

10.5 h d-1 

11.8 hd'1 

13.2 h d"1 

14.5 h d-' 

Natural 

Natural 

Natural 

Natural 

25 Apr 

26 May 

22 Dec 
13 Jan 
3 Feb 
9 Mar 

30 Mar 
20 Apr 

4 Jan 
24 Jan 
13 Feb 

4 Jan 
21 Jan 
7 Feb 

18 Dec 

Photoperiod decreasing from 14 h d~' at sowing to 11 h d"1 at 180 days after sowing (DAS), 
with a gradual decrease of 1 min d'. 
Photoperiod increasing from 12 h d'1 at sowing to 15 h d"1 at 180 DAS, with a gradual increase 
of 1 min d"'. 
Photoperiod first increasing (from 13 h d"1 at sowing to 14 h d"1 at 60 DAS, with a gradual 
increase of 1 min d'1 ), and later decreasing (from 14 h d~' at 60 DAS to 12 h d'1 at 180 DAS, 
with a gradual decrease of 1 min d"'). 
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The Botswana experiment had a split-plot design with moisture level (rainfed 

and irrigated) as main plots and phosphorus levels (0, 10, 20, 40 and 80 kg ha ') as 

subplots. It had four replicates and the plot size was 6 x 6 m. Phosphorous (single 

superphosphate) was broadcast after the land had been ploughed and was worked into 

the soil. No other nutrients were applied. Seeds were sown 10 cm apart in rows 40 cm 

apart, and thinned to a within-row distance of 50 cm at 23 DAS. Weeding and pest 

control were done when necessary. The number of plants with at least one open flower 

was counted daily in each plot. The date of 50% flowering was defined as the date 

half of the plants in each plot had at least one open flower. Twelve plants per plot 

were used to monitor the onset of podding. The date of 50% podding was defined as 

the day six of these had at least one pod 0.5 cm long. 

— 14 
"O 
o 

CL 
O 10 
O 

-§. 8 

°. 6 

I4 
Ü5 2 
e 
TO n 

A 

li U. j , ül kü 

40 O 

30 <D 

20 ra 
5 
Q. 
E 

o fi 

10 

- -10 

305335365 30 60 90 120150180 210240 

•b 16 
.C 

v" 
O 
s 1 2 
CL 
O 10 

3, 4 

iff 2 
ç 

0, .JJ J 

40 ü 

30 jj) 

20 'S 
Sü 

10 g-

0 fi 

-10 

0C 305 335 365 30 60 90 120 150180 210240 

•b 16 
JZ 
w 14 

'S« 
CL 

O 10 
o 
€ 8 
°. 6 

S 4 

j5 2 

ç 

t£ °305 335 365 30 60 90 120150180210240 

Julian day number 

C 

IUN, 

hihi .!.. i. 

40 O 

3 0 <1) 

•b 16 
JZ 

o 

s 1 2 

CL 
O 10 
o 

e - 8 

^5 2 

J5- -

AN: 
M .1 _L 

40 Ü 

30 <U 

10 g-

o: "305 335 365 30 60 90 120 150180 210240 

Julian day number 

Fig. 6.1. Daily photoperiod (dashed line), maximum (upper solid line) and minimum 
temperature (lower solid line), and rainfall (vertical bars) during the four field experiments: 
Morogoro 1994/95 (A); Hombolo, 1994/95 (B) and 1995/96 (C); and Sebele, 1995/96 (D). 
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Modelling approach 

The results of the main experiment were used to quantify the influence of 

temperature and photoperiod on development rates with the photothermal approach 

(Hadley et al., 1983b; Roberts and Summerfield, 1987), which has been applied to 

quantify temperature and photoperiod effects on the time to flowering in a range of 

annual legumes (Lawn et al., 1995). In this approach, linear equations are used to 

relate development rates to mean photoperiod and temperature. 

In the absence of photoperiod effects, the development rate (l/x; with x being 

the number of days from sowing to development stage x) increases linearly with 

temperature from zero at the base temperature (Tb) to a maximum rate at the optimum 

temperature (70); beyond T0, the development rate decreases linearly with temperature 

to zero at the ceiling (or maximum) temperature (Tce) (Fig. 6.2A). 

When photoperiod effects play a role, the development rate is related to 

photoperiod (P) and/or temperature (7) by means of response planes. Most published 

studies have considered photothermal effects between Tb and T0 only, and in that case 

a maximum of three planes can be distinguished (Fig. 6.2B): 

(1) a below-optimum thermal response plane: 

l/x = a, + b,T (6.1) 

(2) a photothermal plane: 

\lx = a2 +b2 T+c2P (6.2) 

(3) a plane of minimum development rate: 

l/x = a3 (6.3) 

A slight temperature effect may be found in plane 3 (Watkinson et al., 1994), which 

would give an alternative third plane: 

l/x = a3+ b3T (6.4) 

The parameter b2 in Eq. 6.2 usually has a value of zero or higher, but earlier bambara 

groundnut research (Chapter 2) has shown that it may assume a negative value, which 

means that the development rate decreases with temperature in the photothermal plane. 
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Fig. 6.2. Theoretical model of the effects of temperature and photoperiod on development rate 
(1/x; with x being the number of days from sowing to development stage x) in a short-day 
plant. Temperature effects only (A); temperature and photoperiod effects between base and 
optimum temperature (B); and temperature and photoperiod effects between base and ceiling 
temperature (C). The symbols refer to photoperiods (•: all photoperiods; o: 11 h d'; v: 12 
h d"1; A: 13 h d'; • : 14 h d"1); the lines refer to planes in photothermal models: a below-
optimum thermal response plane (-
a photothermal plane ( • • 

- ); an above optimum thermal response plane ( ); 
); and a plane of minimum development rate ( ). 
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Complete photothermal models over the temperature range from Tb to Tœ are 

scarce in the literature. However, the two models outlined above can be combined to 

give a four-plane model (Fig. 6.2C), consisting of the three planes mentioned above 

(Eq. 6.1, 6.2 and 6.3 or 6.4) and: 

(4) an above-optimum thermal response plane: 

l/x = a4 + b4 T. (6.5) 

In the present study, models were fitted with the RoDMod computer program 

(Watkinson et al., 1994). This program starts with fitting the simplest model (only a 

thermal plane, Eq. 6.1) and subsequently fits more complex models. A more complex 

model is accepted only if it statistically significantly reduces the residual sums of 

squares of the deviations of model estimates from observations. The RoDMoD 

program can fit models with three planes at most (Fig. 6.2B). If results in the present 

study indicated a more complex model than could be fitted with the program, an 

alternative model was fitted by grouping the data by eye and carrying out linear 

regression for each group separately with the GENSTAT statistical package (Payne 

et al., 1993). 

Model validation 

The models were validated in two ways: (a) by comparing the photothermal 

responses of the selections with the photothermal conditions in the regions where they 

were obtained; and (b) by comparing model predictions with results from glasshouse 

experiments in The Netherlands and field experiments in Tanzania and Botswana. 

Predictions of the time from sowing to flowering and the time from flowering 

to podding in the validation experiments were calculated in one-day time-steps on the 

basis of model parameters and the daily photoperiod and average temperature. Average 

daily temperatures in the field experiments were obtained by averaging the measured 

daily maximum and minimum temperatures. Daily photoperiods in the field 

experiments were calculated on the basis of latitude and day of the year. The 
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photoperiod was assumed to include civil twilight, which means that the photoperiod 

is defined to start and end when the centre of the sun is 6° below the horizon. This 

assumption is common practice and seems to be justified for soya bean (Glycine max 

(L.) Merrill), common bean (Phaseolus vulgaris L.) and chickpea (Cicer arietinum L.) 

(Summerfield and Roberts, 1987). At a latitude of 5°, civil twilight (morning and 

afternoon together) ranges from 42 to 46 minutes; at a latitude of 25°, from 46 to 52 

minutes (List, 1958). The model predictions were compared with the times from 

sowing to flowering and flowering to podding observed in the different validation 

experiments. 

6.3 Results 

Main experiment and models 

The plants kept at constant temperatures of 33 and 36 °C died, so results were 

only available for the 20, 23, 26 and 29 °C treatments. The results for 'DodR94' in 

the 14.5 h d"V 29 °C treatment were not included in the analysis because differences 

between individual plants were very large: in some plants flowering was very late and 

podding did not occur in the experimental period. 

The time from sowing to 50% flowering (ƒ) ranged from 34 to 56 days in 

'DipC94' and 36 to 57 days in 'DodR94'. In both selections, the rate of progress from 

sowing to flowering (\lf) increased with temperature (Fig. 6.3). The rate of progress 

from sowing to flowering of both selections could be described by a thermal response 

plane (Eq. 6.1) (Table 6.3). However, in 'DodR94', there was a tendency for longer 

photoperiods at the highest temperature included in the experiment to induce a slight 

delay (Fig. 6.3B). If only the results under 10.5 h d"1 were analysed, the thermal 

response plane was characterized by the equation: \lf= -0.006742 + 0.001182 T. 

The time from 50% flowering to 50% podding (p-f) ranged from 15 to 112 
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days in 'DipC94' and from 13 to 76 days in 'DodR94'. The rate of progress from 

flowering to podding (l/(p-/)) in 'DipC94' was affected by both temperature and 

photoperiod (Fig. 6.3C). In 'DodR94' there was a clear division between the 10.5 and 

11.8 h d"' treatments on one hand, and the 13.2 and 14.5 h d"1 treatments on the other. 

At photoperiods below 11.8 h d"1 or above 13.2 h d"1, the rate of progress from 

flowering to podding was influenced by temperature only (Fig. 6.3D). The temperature 

effect was much stronger at short photoperiods than at long. 

0.035 p*— 
A 

18 20 22 24 26 28 30 32 

Temperature (°C) 
18 20 22 24 26 28 30 32 

Temperature (°C) 

Fig. 6.3. Rate of progress from sowing to flowering (1//) in bambara groundnut selections 
'DipC94' (A) and 'DodR94' (B), and rate of progress from flowering to podding (\l(p-f)) in 
'DipC94' (C) and 'DodR94' (D) as a function of temperature under constant photoperiods of 
10.5 (o), 11.8 (v), 13.2 (A), and 14.5 (o) h d'. The solid lines refer to the fitted models of 
Table 6.3. 
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Models and validation 

The rate of progress from flowering to podding in 'DipC94' could be described 

well by a combination of a below-optimum thermal response plane (Eq. 6.1) and a 

photothermal response plane (Eq. 6.2), in which photoperiod and temperature effects 

are additive (Table 6.3). In the case of the podding response of 'DodR94', the 

experimental photoperiods were outside the range in which the photoperiod effect 

occurred (Fig. 6.3D) and the photoperiod response could not be quantified. The 

temperature model for \l{p-f) in Table 6.3 was fitted by dividing the observations into 

three groups by eye and carrying out linear regression for each group separately with 

the GENSTAT statistical package (Payne et al., 1993). The model consists of a below-

optimum response plane (Eq. 6.1), a plane of minimum development rate with a slight 

temperature effect (Eq. 6.4) and an above-optimum thermal response plane (Eq. 6.5). 

Validation 

The photoperiod responses of the two selections show their adaptation to the 

environment where they come from. In 'DipC94', the rate of progress from flowering 

to podding generally decreases with photoperiod in the range 10.5 to 14.5 h d"1, while 

the natural photoperiod (including civil twilight) in the region of origin of 'DipC94' 

(near Gaborone) ranges from 11.5 to 14.5 h d"1 (Table 6.1). In the case of 'DodR94', 

the main photoperiod response occurs between 11.8 and 13.2 h d"' photoperiods, while 

in the region where 'DodR94' comes from (Dodoma) the photoperiod ranges from 

12.5 to 13.2 h d"1. 

The flowering models imply base temperatures for flowering of 6 °C for 

'DipC94' and 2 °C for 'DodR94'. The optimum temperature for the rate of progress 

from sowing to flowering of both selections is higher than 29 °C (Fig. 6.3A). The 

base, optimum and ceiling temperatures for the rate of progress from flowering to 

podding in 'DodR94' would be respectively 16, 24 and 32 °C. The base temperature 

for the rate from flowering to podding in 'DipC94' is around 14 °C. The optimum and 

ceiling temperatures of 'DipC94' cannot be calculated, because the above-optimum 
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thermal response plane (Eq. 6.5) could not be determined. Though the base and ceiling 

temperatures were obtained by extrapolating beyond the temperature range of the main 

experiment, they give an indication of the temperature requirements of the selections 

involved. Comparison with temperature data for the Dodoma region (Table 6.1) shows 

that the interval between the base and ceiling temperature for the rate from flowering 

to podding in 'DodR94' roughly coincides with the interval between the mean daily 

minimum and maximum temperature in the rainy season in the region of origin. 

The predicted and observed times from sowing to flowering and flowering to 

podding, and the resulting times from sowing to podding of 'DipC94' in the validation 

experiments are shown in Table 6.4. 

The time to podding in the field experiments was predicted under the 

assumption that civil twilight is included in the photoperiod. If the photoperiod was 

defined as the time from sunrise to sunset only, the predicted time from flowering to 

podding was 3 or 4 days shorter (data not shown). It was not possible to predict the 

time from flowering to podding for 'DodR94', because no complete photothermal 

model was available. No flowering data were available for the third sowing date in 

experiment 5. In the Botswana field experiment (experiment 6), phosphorus 

application had no effect on the time to flowering, but significant (P<0.001) 

differences were found between rainfed and irrigated treatments. Because of practical 

difficulties it was not possible to carry out daily podding observations in experiment 

6. Therefore, the date of 50% podding for the different treatments could not be 

determined exactly, but it was between 64 and 73 DAS. The time to flowering of 

'DipC94' in both the glasshouse and the field experiments was predicted well: the 

deviation between observed and predicted values did not exceed 10%, except for the 

second sowing date in experiment 5. Flowering predictions for 'DodR94' in the field 

were not accurate. The predicted time to flowering increased with sowing date, 

whereas the observed time to flowering decreased with sowing date. Predicted and 

observed times from flowering to podding in 'DipC94' corresponded reasonably well 

in the glasshouse experiments, but the observed times tended to be longer than the 
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predicted times, with the difference larger at longer photoperiods. Validation with data 

from field experiments showed good agreement between predicted and observed times 

to podding for this selection. 

6.4 Discussion 

The flowering response of 'DipC94' found in the present study is very similar 

to that of the two bambara groundnut selections from Botswana ('GabC92') and 

Zimbabwe ('NTSC92') described earlier (Chapter 2) (Table 6.5). The flowering 

response of 'DodR94' is different, but this could be due to photoperiod effects at 

higher temperatures. When only the results under a photoperiod of 10.5 h d"1 are 

considered, the response is similar to that of 'DipC94', 'GabC92' and 'NTSC92'. The 

selections 'Ankpa2' and 'Yola' (Linnemann and Craufurd, 1994) have similar values 

for b, as 'DipC94', 'GabC92' and 'NTSC92', but the values for a, and the base 

temperatures are lower. The parameter values for 'Tiga Nicuru' are very different from 

those for all other selections and the base temperature is considerably higher. Note that 

the base temperatures in Table 6.5 are only indicative; they were obtained by 

extrapolation beyond the temperature range of the main experiment. 

The general trend in the podding response of 'DipC94', a declining rate of 

progress from flowering to podding with increasing temperature and photoperiod at 

temperatures higher than 21-23 °C (Fig. 6.3C), is similar to the response found for 

'GabC92' and 'NTSC92' in Chapter 2, though rates were higher in the present study. 

In 'DodR94', the intervals between photoperiods in the main experiment were too 

large, because the photoperiod response occurred between 11.8 and 13.2 h d"1 (Fig. 

6.3D). Therefore the central photothermal plane for 'DodR94' could not be determined 

and no useful photothermal model could be made. 
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Table 6.4. Predicted (Pr) and observed (Ob) times from sowing to flowering (ƒ), flowering to 
podding (p-f), and sowing to podding (p) in the validation experiments described in Table 6.2. 
The models in Table 6.3 were used to make the predictions. No comparison was made for p-f 
and p for selection 'DodR94', because no complete photothermal podding model was 
available. 

Expe
riment 

1 

2 

3 

4 

5 

6 

Selection 

'DipC94' 

'DipC94' 

'DodR94' 

'DodR94' 

'DodR94' 

'DipC94' 

'DipC94' 

Photo-
period 
(h d ') 

12 
13 
14 

14-11 
12-15 

13-14-12 

10.5 
11.8 
13.2 
14.5 

Natural 

Natural 

Natural 

Natural 

Sowing 
date 

25 Apr 

26 May 

22 Dec 
13 Jan 
3 Feb 
9 Mar 

30 Mar 
20 Apr 

4 Jan 
24 Jan 
13 Feb 

4 Jan 
21 Jan 
7 Feb 

4 Jan 
21 Jan 
7 Feb 

18 Dec 

Pr 

41 
41 
41 
41 
41 
41 

44 
44 
44 
44 

43 
43 
44 
44 
46 
49 

46 
47 
47 

47 
47 
46 

45 
45 
45 

45 
45 

ƒ 
(d) 

Ob 

41 
39 
39 
38 
40 
39 

42 
42 
41 
42 

59 
50 
51 
47 
48 
43 

55 
52 
45 

43 
37 
na 

43 
36 
na 

45' 
49" 

Pr 

26 
32 
45 
33 
31 
43 

18 
21 
27 
37 

26 
24 
21 

28 
28 

P-f 
(d) 

Ob 

23 
42 
63 
36 
25 
70 

21 
23 
28 
52 

30 
30 
na 

na 
na 

Pr 

67 
73 
86 
74 
72 
84 

62 
65 
71 
81 

71 
69 
66 

73 
73 

P 
(d) 

Ob 

64 
81 
102 
74 
65 
109 

63 
65 
69 
94 

73 
66 
na 

na 
na 

Irrigated treatment; " Rainfed treatment 
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A possible explanation for the disparity between the observed time to flowering 

of 'DodR94' in the field and the prediction is, that maximum temperatures in the field 

experiments were higher than those in the experiment on which the model was based 

(Fig. 6.1), and that photoperiod plays a role at higher temperatures. In the (field) 

experiments 3 and 4, daily maximum temperatures during the first three months of the 

experiment were generally above 30 °C (Fig. 6.1), and deviations between predicted 

and observed times to flowering are more pronounced in this experiment than in 

experiment 5, where temperatures were lower. 

Table 6.5. Parameter values for the thermal response plane (l/f= a, + b, T) and calculated 
base temperature (Tb) for the rate of progress from sowing to flowering of different bambara 
groundnut selections. 

Selection 

'DipC94' 

'DodR94'* 

'DodR94' " 

'GabC92' 

'NTSC92' 

'Tiga Nicuru' 

'Ankpa2' 

'Ankpa4' 

'Yola' 

Origin 

Botswana 

Tanzania 

Tanzania 

Botswana 

Zimbabwe 

Mali 

Nigeria 

Nigeria 

Nigeria 

Parameter values 

°i 

-0.006948 

-0.002035 

-0.006742 

-0.007464 

-0.006867 

-0.017104 

-0.0039 

-0.0013 

-0.0038 

*, 
0.001215 

0.000976 

0.001182 

0.001176 

0.001195 

0.001721 

0.0013 

0.0009 

0.0012 

T„ 
(°C) 

5.7 

2.1 

5.7 

6.3 

5.7 

9.9 

3.0 

1.4 

3.2 

Source 

This chapter 

" 

" 

Chapter 2 

" 

" 

Linnemann and Craufurd (1994) 

" 

" 

* All photoperiod treatments included. 
** Only 10.5 h d~' treatments included. 

The fact that the observed time to flowering in experiments 3 and 4 decreased 

with sowing date (Table 6.4) does indeed suggest that photoperiod effects that could 

not be determined in the temperature range of the main semi-controlled environment 
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experiment do play a role at higher temperatures. The results from experiment 6 

indicate that the rate of progress to flowering in bambara groundnut may be influenced 

by moisture availability. Glasshouse experiments in the U.K. have shown that podding 

may also be delayed under drought conditions (Collinson et al., 1996). Further 

research to investigate the influence of water stress on development rates in bambara 

groundnut seems justified. 

The predicted and observed times from flowering to podding in 'DipC94' 

corresponded reasonably well in the glasshouse experiments (Table 6.4). A possible 

explanation for the larger deviations in experiment 1 might be the lack of forced 

cooling in the glasshouse, which resulted in maximum temperatures of 35-40 °C on 

warm, sunny days. The model predictions were based on the average daily temperature 

(which was around 25 °C, near the optimum temperature for the rate from flowering 

to podding) without taking into account minimum (around 22 °C) and maximum 

temperatures (up to 40 °C), which makes it probable that V{p-f) was overestimated. 

The overestimate will be larger under long photoperiods, where the ceiling temperature 

is lower (Fig. 6.3C). Another explanation might be that the relative humidity of the 

air in this glasshouse could not be kept above 60% on hot, sunny days, when all 

windows were open for cooling purposes. It has been found that flowering in cowpea 

can be delayed by high pre-flowering saturation deficits of the air (Craufurd et al., 

1996). Validation with data from field experiments showed good agreement between 

predicted and observed times to podding for 'DipC94', but the range in observed data 

was small. 

The finding that the time from sowing to flowering of 'DipC94' in the 

validation experiments was predicted better than the time from flowering to podding 

agrees with an earlier study on other bambara groundnut selections (Chapter 2). It may 

partly be due to the fact that flowering in the selections concerned is influenced by 

temperature only, whereas podding depends on both photoperiod and temperature. 

Also, the models are based on a limited number of photoperiod/temperature 

combinations (16 in the present study; 12 in Chapter 2). To derive quantitative 
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photothermal models which can be used to predict the time from flowering to podding 

more accurately, a larger number of photoperiod and temperature treatments may be 

needed. It is also possible that other factors than temperature and photoperiod, such 

as relative humidity, have a stronger effect on the onset of podding than on the onset 

of flowering. 

6.5 Conclusion 

This study has demonstrated that photoperiod and temperature effects on the 

rates of progress from sowing to flowering and flowering to podding may be 

quantified by means of linear models on the basis of semi-controlled environment 

experiments. Responses to photoperiod and temperature in bambara groundnut 

selections from different latitudes could be explained very well by the prevailing 

photothermal environment in the regions where the selections were obtained. 

Validation of the photothermal models with the results of glasshouse experiments in 

The Netherlands and field experiments in Tanzania and Botswana gave mixed results: 

predicted and observed time to flowering for 'DipC94' corresponded well, and 

predicted and observed time from flowering to podding reasonably well. Flowering 

predictions for 'DodR94' were not accurate, possibly because this selection 

experiences photoperiod effects when temperatures are higher than those applied in the 

experiment on which the models were based. 
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U S I N G P H O T O T H E R M A L D E V E L O P M E N T M O D E L S T O I D E N T I F Y 

S U I T A B L E B A M B A R A G R O U N D N U T (VLGNA SUBTERRANEÄ) S E L E C T I O N S 

FOR DIFFERENT SOWING DATES AND LOCATIONS IN BOTSWANA 



Using photothermal development models 

7 U S I N G P H O T O T H E R M A L D E V E L O P M E N T M O D E L S T O I D E N T I F Y S U I T A B L E 

B A M B A R A G R O U N D N U T {VLGNA SUBTERRANEÀ) S E L E C T I O N S F O R D I F F E R E N T S O W I N G 

DATES AND LOCATIONS IN BOTSWANA 

M. Brink 

Abstract 

A simulation study was carried out to investigate the implications of genotypic 

differences in photothermal responses in bambara groundnut (Vigna subterraned) and 

to demonstrate the usefulness of photothermal development models in identifying 

suitable selections for different locations and sowing dates in Botswana. Times to 

flowering and podding for different selections were calculated for different sowing 

dates at two locations (Sebele and Francistown) in two rainy seasons (1992/93 and 

1993/94). Calculations were made with photothermal development models for the 

selections 'DipC94' and 'GabC92' from Botswana and 'Tiga Nicuru' from Mali and 

actual daily minimum and maximum temperatures and photoperiods (with or without 

civil twilight). The simulation results indicate that for early sowing dates 'GabC92' 

and 'Tiga Nicuru' may be used to prolong the time to podding and thus to promote 

vegetative growth. For later sowing dates, the risk of water shortage in the pod-filling 

phase is greater for these selections than for 'DipC94'. When sown very late, the 

differences between the three selections become very small, but pod yields will be 

absent or very low because of water shortage. Differences between the two locations 

were small, which implies that photoperiod differences within Botswana are probably 

not large enough to merit using selections with different photoperiod sensitivities for 

different locations. Early sowing resulted in longer predicted times to podding than 

late sowing, but not to such an extent that podding always occurred at the same date, 
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irrespective of the sowing date. The inclusion or exclusion of civil twilight in the 

photoperiod did affect the simulated time to podding, especially for 'Tiga Nicuru'. 

Therefore, determination of the responsiveness of bambara groundnut to dim light 

would increase the usefulness of the photothermal models. 

7.1 Introduction 

Bambara groundnut (Vigna subterranea (L.) Verde.) is a leguminous food crop, 

widely cultivated in tropical Africa (Duke, 1981). It is mainly grown for the seeds, 

which are used as food, but the vegetative parts may be used as fodder (Hepper, 

1970). An important advantage of bambara groundnut is that immature seeds are 

suited for human consumption and can be used to fill the 'hungry gap' during the 

growing season, when stores are empty and the main crops are not yet harvestable. 

Bambara groundnut performs better under dry conditions than groundnut (Arachis 

hypogaea L.) and other legumes, and is relatively free of pests and diseases 

(Linnemann and Azam-Ali, 1993). 

In most bambara groundnut selections, the onset of flowering is photoperiod-

insensitive, whereas the onset of podding is retarded under long photoperiods 

(Linnemann, 1994). In some selections, both the onset of flowering and the onset of 

podding are delayed by long photoperiods (Linnemann and Craufurd, 1994). The onset 

of podding is the most important event in the phenology of bambara groundnut, 

because it coincides with a major shift in assimilate partitioning and the end of 

vegetative growth (Chapter 5). Maturity is less important, because highly valued food 

is produced even if the crop does not reach maturity. The influence of temperature and 

photoperiod on the rates of progress from sowing to flowering and flowering to 

podding of selections from various origins has been quantified on the basis of semi-

controlled environment research (Chapters 2 and 6). 

The objectives of this simulation study are to investigate the implications of 
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genotypic differences in photothermal responses in bambara groundnut and to 

demonstrate the usefulness of photothermal development models for identifying 

suitable bambara groundnut selections for different locations and sowing dates. The 

study focuses on Botswana, a country in southern Africa between 17 and 27 °S, with 

low rainfall and poor soils. Most rains fall in the rainy season of October/November-

March/April. In Botswana, 75% of the population live in rural areas and a large 

majority of them practise arable farming in addition to other economic activities such 

as livestock keeping or commercial activities (Radcliffe et al., 1992). At present, the 

most important crops are sorghum (Sorghum bicolor (L.) Moench), maize (Zea mays 

L.) and cowpea (Vigna unguiculata (L.) Walp.) (Baker, 1987; Brink et al., 1996). 

Bambara groundnut is a secondary crop, mainly grown by women both for home 

consumption and for sale, with low use of external inputs (Brink et al., 1996). 

However, the importance of bambara groundnut in Botswana may increase, because 

of its tolerance to low soil fertility and drought (Linnemann and Azam-Ali, 1993). 

7.2 Methodology 

Photothermal development models for three bambara groundnut selections 

('DipC94' and 'GabC92' from Botswana and 'Tiga Nicuru' from Mali) were used to 

predict the times to flowering and podding for different sowing dates at two locations 

in the 1992/93 and 1993/94 rainy seasons in Botswana. The models have been 

developed using semi-controlled environment experiments (Chapters 2 and 6) and link 

the rate of progress from sowing to flowering (IIf, with/being the number of days 

from sowing to flowering) and the rate of progress from flowering to podding (l/(p-f), 

with (p-f) being the number of days from flowering to podding) to mean photoperiod 

and temperature by means of linear equations, following the photothermal approach 

(Hadley et al., 1983b; Roberts and Summerfield, 1987). In all three selections, the rate 

of progress from sowing to flowering is influenced by temperature but not by 
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photoperiod, whereas the rate of progress from flowering to podding is influenced by 

both temperature and photoperiod (Table 7.1). 

Table 7.1. Models describing the rate of progress from sowing to flowering (\/J) and from 
flowering to podding (l/(p-/)) as a function of temperature (7) and photoperiod (P) for the 
bambara groundnut selections 'DipC94', 'GabC92', and 'Tiga Nicuru'. The models were 
developed in Chapters 2 and 6. 

Selection Model 

'DipC94' 1//= -0.006948 + 0.001215 T 

V(p-f) = -0.096623 + 0.006864 T (for P < Pa) 
\l{p-f) = 0.258885 - 0.004788 T- 0.007751 P (for P > PJ 

'GabC92' \lf= -0.007464 + 0.001176 T 

V(p-J) = 0.091579 - 0.001650 T- 0.002193 P 

'Tiga Nicuru' \lf= -0.017104 + 0.001721 T 

l/(p-J) = 0.013100 + 0.000994 f (for P < PJ 
\l(p-f) = 0.285300 - 0.003177 T - 0.014470 P (for Pa > P > Pa) 

\l(p-f) = 0.013591 (for P > PJ 

Pa, critical photoperiod; />„, ceiling photoperiod 

Based on the linear photothermal models of Table 7.1 and daily mean 

temperature and photoperiod, the time from sowing to flowering (/) and the time from 

flowering to podding (p-f) was predicted for different sowing dates, years and 

locations. From the simulated sowing date onwards, the daily rates of progress to 

flowering were accumulated until the date on which the accumulated daily rates of 

progress from sowing to flowering reached the value 1, which is, by definition, the 

predicted flowering date. From this date onwards, the daily rates of progress from 

flowering to podding were accumulated until the date on which the sum of daily rates 

of progress from flowering to podding reached the value 1, which is, by definition, the 

predicted podding date. Actual daily maximum and minimum temperatures for the 
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different locations and seasons were obtained from the Botswana Meteorological 

Services. Mean daily temperatures were calculated by averaging measured daily 

minimum and maximum temperatures. Daily photoperiods were calculated on the basis 

of latitude and date. The photoperiod is usually assumed to include civil twilight, 

which means that the photoperiod is defined to start and end when the centre of the 

sun is 6° below the horizon (List, 1958). This assumption seems justified for soya 

bean {Glycine max (L.) Merrill), common bean (Phaseolus vulgaris L.) and chickpea 

(Cicer arietinum L.), but not for lentil {Lens culinaris Medic.) (Summerfield and 

Roberts, 1987). Because it is not known whether this assumption is valid for bambara 

groundnut, two sets of simulations were carried out, the first under the assumption that 

photoperiod includes civil twilight, the second under the assumption that photoperiod 

only includes the time from sunrise to sunset. In the latter case, the photoperiod is 

defined to start and end when the centre of the sun is 0.833° below the horizon (List, 

1958). 

The locations included were Sebele (24°33'S; 25°54'E), near Gaborone, the 

capital of Botswana, and Francistown (21°13'S; 27°30'E). The two locations are about 

400 km apart and located respectively at the southern and northern ends of the main 

arable farming zone of the country (Brink et al., 1996). Long-term meteorological 

observations for Gaborone and Francistown are shown in Table 7.2. For both 

locations, predictions were made for the 1992/93 and 1993/94 rainy seasons. 

Photoperiod, temperature and rainfall characteristics of the different locations and 

seasons are shown in Fig. 7.1. Temperature and rainfall data were available from 1 

October onwards for Sebele 1993/94, from 1 November onwards for Francistown 

1993/94 and from 1 December onwards for both locations in 1992/93. Model 

predictions were made from these dates onwards at two-weeks intervals. 

117 



Chapter 7 

Table 7.2. Long-term (30-31 years) average daily maximum temperature (Tmax), average daily 
minimum temperature (Tmin) and average amount of rainfall (R) per month for Gaborone 
(24°40'S; 25°55'E) and Francistown (21°13'S; 27°30'E). Source: Smith (1993). 

Month 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

Total 

T 
x max 

(°C) 
32.5 

32.1 

30.5 

26.8 

24.5 

21.7 

22.0 

25.1 

29.5 

31.3 

31.5 

31.6 

Gaborone 

T 
"min 

CO 
19.3 

19.0 

17.1 

13.2 

7.6 

4.1 

3.6 

6.5 

11.5 

15.7 

18.2 

18.5 

R 
(mm) 

82 

81 

69 

51 

15 

11 

4 

3 

13 

44 

59 

88 

520 

T 
* max 

<°C) 
31.0 

30.0 

29.7 

27.7 

25.7 

22.6 

23.0 

25.6 

29.1 

31.8 

31.3 

30.2 

Francistown 

T 
(°C) 

19.1 

18.5 

17.1 

14.1 

8.8 

5.8 

5.7 

8.3 

12.5 

16.8 

18.7 

18.8 

R 
(mm) 

85 

87 

54 

22 

7 

4 

1 

0 

3 

19 

62 

92 

436 

7.3 Results 

The effect of sowing date on reproductive development in the three selections 

is best shown in the results for the 1993/94 rainy season in Sebele, which started early 

(Fig 7.IB). For early sowing dates (October to December), 'Tiga Nicuru' always has 

the longest time to podding, and 'DipC94' the shortest (Fig. 7.2B). For sowing dates 

from January onwards, the time to podding decreases for all three selections, but most 

for 'Tiga Nicuru', and the differences between the selections become smaller at later 

sowing dates. However, the time to podding remains several weeks longer for 
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'GabC92' than for 'DipC94' until sowing date 1 March, when the time to podding is 

very similar for the three selections. 

In the range of sowing dates studied, the general trend in the 1992/93 Sebele 

rainy season was roughly the same as in the 1993/94 season: the later the sowing date, 

the smaller the genotypic differences and the shorter the time to podding (Fig. 7.2). 

Because temperatures dropped earlier in the 1992/93 than in the 1993/94 season (Fig. 

7.1), the time to flowering of all three selections starts to increase at sowing dates 

from sowing date 1 January 1993 onwards. The model predictions for Francistown 

were very similar to those for Sebele in the corresponding seasons (Fig. 7.2). 
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Fig. 7.1. Daily photoperiod with (upper dashed line) and without (lower dashed line) civil 
twilight, maximum temperature (upper solid line), minimum temperature (lower solid line) and 
rainfall (vertical bars) in the 1992/93 (A) and 1993/94 (B) rainy season in Sebele, and the 
1992/93 (C) and 1993/94 (D) rainy season in Francistown. 
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Fig. 7.2. Predicted times from sowing to flowering (open symbols) and to podding (closed 
symbols) for bambara groundnut selections 'DipC94' (o,«), 'GabC92' ( • ,•) and 'Tiga 
Nicuru' (v,*) in the 1992/93 (A) and 1993/94 (B) rainy season in Sebele, and the 1992/93 
(C) and 1993/94 (D) rainy season in Francistown. Times from sowing to flowering and 
flowering to podding were calculated with the models in Table 7.1 and were based on the 
photoperiod including civil twilight. 

When civil twilight is assumed not to be included in the photoperiod, the 

simulated times to podding become shorter (Fig. 7.3). The difference between the 

predictions based on photoperiods including and excluding civil twilight is usually less 

than a week for 'DipC94' and 'GabC92', but is greater for 'Tiga Nicuru'. The greatest 

difference, 20 days, is found for 'Tiga Nicuru' sown on 16 December in the 1993/94 

season in Francistown. 
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Fig. 7.3. Predicted times from sowing to flowering (open symbols) and to podding (closed 
symbols) for bambara groundnut selections 'DipC94' (o,#), 'GabC92' ( • ,•) and 'Tiga 
Nicuru' (V,T) in the 1992/93 (A) and 1993/94 (B) rainy season in Sebele, and the 1992/93 
(C) and 1993/94 (D) rainy season in Francistown. Times from sowing to flowering and 
flowering to podding were calculated with the models in Table 7.1 and were based on the 
duration of daylight only (civil twilight not included). 

7.4 Discussion 

The simulation results indicate that at early sowing dates, genotypic differences 

in photothermal responses may be used to choose the time to podding. The use of 

'DipC94' instead of 'Tiga Nicuru' would reduce the time to podding with 30-40 days, 
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yielding food earlier (Fig. 7.2). At intermediate sowing dates, the differences between 

the selections may have important implications for moisture availability in the pod-

filling phase. The 1993/94 rainy season in Sebele ended by the end of March, which 

implies that 'DipC94' sown later than mid-January would have to rely on residual soil 

moisture in the pod filling phase. The same applies to 'GabC92' and 'Tiga Nicuru' 

sown after 16 December. In the 1993/94 Francistown rainy season, the rains had ended 

by the end of February, which implies that 'DipC94' planted after mid-December, 

'GabC92' planted after mid-November and 'Tiga Nicuru' planted after early 

November would have to rely on residual soil moisture in the pod-filling phase. These 

results indicate that for the two locations, the selections 'GabC92' and 'Tiga Nicuru' 

may be used to prolong the time to podding and thus vegetative growth at very early 

sowing dates, e.g in October. At later sowing dates, the risk of water shortage in the 

pod-filling phase is greater for these selections than for 'DipC94'. The effects of water 

shortage in the pod-filling stage of bambara groundnut have not yet been investigated, 

but in groundnut and cowpea this is the stage in which water shortage has the largest 

effects on seed yield (Nageswara Rao et al., 1985; Turk et al., 1980). At very late 

sowing dates, the differences between the selections become very small, but pod yields 

will be absent or very low because of lack of moisture. 

Differences between the two locations were small. As Sebele (near Gaborone) 

and Francistown are located at respectively the southern and northern ends of the 

major cropping region in Botswana, it is probable that photoperiod differences within 

Botswana are not large enough to make it worthwhile using selections with different 

photoperiod sensitivities for different locations. 

In cowpea (Vigna unguiculata (L.) Walp.), it has been found that the flowering 

of local West African cultivars is regulated by photoperiod in such a way that they 

flower at the end of the rains at their latitude of origin, irrespective of the sowing date 

(Wien and Summerfield, 1980). In the present study, early sowing resulted in longer 

predicted times to podding than late sowing, but not to such an extent that podding 

always occurred at the same date, irrespective of the sowing date. This finding is in 
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agreement with the results of a field experiment carried out in Botswana in 1991 

(Harris and Azam-Ali, 1993), in which the time from sowing to podding was found 

to range from 98 days for plants sown at the end of October to 52 days for plants 

sown at the beginning of January. Thus, a difference in sowing date of 9-10 weeks led 

to a difference in time to podding of only 46 days. This implies that the photothermal 

regulation of reproductive development in bambara groundnut selections from 

Botswana is probably less strict than that reported for West African cowpea cultivars. 

A possible explanation is that the end of the rainy season is more variable in 

Botswana than in West Africa. 

The results of the present study are in agreement with the results of a farmers' 

survey carried out in Botswana in February 1995 (Brink et al., 1996), in which most 

farmers said that bambara groundnut should ideally not be sown later than December. 

Most farmers also said that the harvest date varies between years, depending on 

sowing date and rainfall, which confirms the finding that photoperiod sensitivity in 

bambara groundnut does not ensure that podding always occurs at the same date, 

irrespective of the sowing date. 

It is much easier and cheaper to use models to study reproductive development 

of different bambara groundnut selections for a range of sowing dates and locations 

than to conduct field experiments at each location for several rainy seasons. The 

present study was intended to illustrate the use of models, and calculations were only 

made for two years. For a better assessment of the suitability of different selections, 

predictions for more years will be necessary, covering the variation between rainy 

seasons for a given location. To assess the risk of water shortage during specific 

development phases, photothermal models could be used in combination with rainfall 

probabilities for different months, based on long-term rainfall data. 

A difficulty in the application of the models is, that it is not known to what 

extent twilight should be included in the photoperiod. It is common practice to include 

civil twilight in the photoperiod (Summerfield and Roberts, 1987). This study has 

shown that exclusion of civil twilight leads to shorter simulated times to podding, 
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especially for 'Tiga Nicuru'. Investigations on the responsiveness of bambara 

groundnut to dim light would help to determine to what extent twilight should be 

included in the photoperiod. This knowledge would improve the applicability of 

photothermal development models. As long as it is not known whether the photoperiod 

should include civil twilight, it seems appropriate to carry out simulations for both 

cases and to indicate the range of simulated flowering and podding dates. 

The models used in this study consider only the photothermal regulation of 

reproductive development. To make yield predictions under different circumstances, 

growth processes have to be taken into account as well. This could be done by 

incorporating the development models used in this study into crop growth models. 

7.5 Conclusion 

Photothermal development models can be a useful tool to find well adapted 

crop genotypes for specific environments. The simulation results indicate that for early 

sowing dates in Botswana the selections 'GabC92' and 'Tiga Nicuru' may be used to 

prolong the time to podding and thus vegetative growth. For later sowing dates, the 

risk of water shortage in the pod-filling phase is greater for these selections than for 

'DipC94'. Early sowing resulted in longer predicted times to podding than late sowing, 

but not to such an extent that podding always occurred at the same date, irrespective 

of the sowing date. The inclusion or exclusion of civil twilight in the photoperiod 

affected the simulated time to podding, especially for 'Tiga Nicuru'. Therefore, 

determination of the responsiveness of bambara groundnut to dim light would increase 

the usefulness of the photothermal models. 
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General discussion 

8 G E N E R A L D I S C U S S I O N 

8.1 Quantifying photothermal influences on reproductive development in 

bambara groundnut 

In this chapter, the findings presented in earlier chapters are discussed and 

evaluated in the context of the objective of the study, which was to quantify the 

influence of photoperiod and temperature on reproductive development in bambara 

groundnut (Vigna subterranea (L.) Verde.) selections from different origins on the 

basis of controlled environment research. The resulting quantitative models had to be 

able to predict bambara groundnut development in field situations, so they could be 

used to identify crop genotypes that would do well in specific environments. 

Model development 

In this study, photoperiod and temperature effects on flowering and podding 

were quantified for five bambara groundnut selections: 'GabC92' and 'DipC94' from 

Botswana, 'DodR94' from Tanzania, 'NTSC92' from Zimbabwe and 'Tiga Nicuru' 

from Mali. The resulting photothermal models were based on the assumption that there 

is no interaction between development and growth and that crop development can be 

modelled separately from crop growth. In Chapter 5 it was shown that a light 

reduction of 42 % by shading led to total dry matter production being 41% less, but 

that the effects on development were relatively small: the rates of progress from 

sowing to flowering and flowering to podding were decreased by only 3 and 12% 

respectively. From this, it was inferred that growth and development in bambara 

groundnut are indeed largely independent. 

In all five selections, the rate of progress from sowing to flowering increased 

with temperature in the temperature range of the experiments (21-27 °C and 20-29 °C) 
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and this rate could be quantified very well (r2>95%) as a linear function of 

temperature only. In four of the five selections, photoperiod had no influence on the 

onset of flowering, but in 'DodR94' there seemed to be a slight photoperiod effect on 

flowering at an average temperature of 29 °C. Base temperatures for flowering in the 

five selections ranged from 5.7 to 9.9 °C, but these base temperatures were obtained 

by extrapolating beyond the temperature range of the main experiments. The base 

temperatures found in the present study were higher than those reported earlier for the 

Nigerian selections 'Ankpa2', 'Ankpa4' and 'Yola', which were 3.0, 1.4 and 3.2 °C 

respectively (Linnemann and Craufurd, 1994). They compare well with those reported 

for mung bean {Vigna radiata (L.) Wilczek), which range from 6.5 to 8.6 °C (Ellis 

et al., 1994b), soya bean {Glycine max (L.) Merrill), which were found to range from 

4.6 to 10.0 °C in a controlled-environment study (Hadley et al., 1984) and from 5.5 

to 12.5 °C in field experiments (Summerfield et al., 1993) and cowpea {Vigna 

unguiculata (L.) Walp.), which range from 7.2 to 10.8 (Hadley et al., 1983a; Ellis et 

al., 1994a; Craufurd et al., 1997). Base temperatures for flowering in bambara 

groundnut are lower than those reported for groundnut {Arachis hypogaea L.), which 

range from 9.6 to 14.0 °C (Leong and Ong, 1983; Bagnall and King, 1991a; Nigam 

et al., 1994). 

The rate of progress from flowering to podding in all five selections was 

influenced by both temperature and photoperiod. The general trend was that this rate 

declined with increasing temperature and photoperiod at temperatures higher than 21-

23 °C, the exception being 'Tiga Nicuru'. The rate of progress from flowering to 

podding could be quantified reasonably well (r2 for the different selections ranging 

from 63% to 90%) as a function of both temperature and photoperiod by a 

photothermal response plane ('GabC92', 'NTSC92'), a combination of a thermal and 

a photothermal response plane ('DipC94') or a combination of a thermal response 

plane, a photothermal response plane and a plane of minimum development rate ('Tiga 

Nicuru'). In the case of 'DodR94', the intervals between the experimental 

photoperiods were too large to allow the photoperiod effect on podding to be 
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quantified. In this selection, a strong photoperiod response occurred between 11.8 and 

13.2 h d"1 in the whole temperature range of the experiment. A complete, three-plane 

model was obtained for 'Tiga Nicuru' only. In this selection, the critical photoperiod, 

which is the photoperiod below which the development rate is not influenced by 

photoperiod, for the rate of progress from flowering to podding decreased from 12.47 

h d"1 at 22 °C to 11.32 h d"1 at 26 °C. The ceiling photoperiod, which is the 

photoperiod above which the development rate is not influenced by photoperiod 

decreased from 13.95 h d"1 at 22 °C to 13.07 h d"1 at 26 °C (Table 2.4). It is difficult 

to make comparisons with the photothermal podding responses of other legumes, 

because most efforts to quantify photothermal influences on reproductive development 

in legumes have focused solely on flowering. 

The development models were based on semi-controlled environment 

experiments under constant photoperiods. In field situations, however, the photoperiod 

changes. In Chapter 4 it was shown that the average photoperiod between flowering 

and podding determined the rate of progress from flowering to podding, and that a 

gradual increase or decrease in photoperiod did not affect that rate. This implies that 

studies with constant photoperiods can be used to make models that predict bambara 

groundnut development in field situations with changing photoperiods. It also confirms 

that the rate of progress from flowering to podding can be modelled as a function of 

the average temperature and photoperiod in the period from flowering to podding. 

Model validation 

The photothermal models were validated by: (a) comparing the photothermal 

responses of the selections with the ecological conditions in the regions where they 

were obtained (Chapter 6); and (b) comparing the model predictions with results from 

glasshouse experiments in The Netherlands (Chapters 2 and 6) and field experiments 

in Tanzania and Botswana (Chapter 6). As shown in Chapter 6, responses to 

photoperiod and temperature in bambara groundnut selections from near the equator 
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and near the Tropic of Capricorn could be explained very well by the photothermal 

environment prevailing in the regions where the selections were obtained. The time 

to flowering in glasshouse and field validation experiments could be predicted well, 

except for selection 'DodR94', possibly because this selection experiences photoperiod 

effects when temperatures exceed those applied in the experiment on which the models 

were based. The time from flowering to podding in the validation experiments was not 

always predicted well. This may be caused by podding being less predictable than 

flowering, but it may also be that there were too few photoperiod/temperature 

combinations to obtain accurate podding models, which include more parameters than 

the flowering models. Another explanation may be that some of the validation 

experiments were conducted in glasshouses without forced cooling in which maximum 

temperatures were very high (35-40 °C) on warm, sunny days. As model predictions 

were based on the average daily temperature (around 25 °C), development rates may 

have been overestimated. Furthermore, relative humidity of the air in the glasshouse 

experiments could not always be kept at the preset level on hot, sunny days. This may 

have affected development rates, because it has been found that flowering in cowpea 

can be delayed by high pre-flowering saturation deficits of the air (Craufurd et al., 

1996). 

Model use 

The photothermal development models developed in this study are intended to 

be used to identify crop genotypes that are well adapted to specific environments. 

Chapter 7 presented an example of how the models can be used to simulate 

reproductive development as a function of sowing date in different years and for 

different locations. It was shown that at early sowing dates, differences in 

photothermal responses between the selections 'GabC92', 'DipC94' and 'TigaNicuru' 

may be used to select the desired length of the crop cycle. If it is important for 

farmers to have some yield as early as possible in the season, a selection that sets pods 
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early may be sown. However, if the farmer prefers to have more vegetative growth, 

for instance to obtain fodder, a selection that sets pods later is preferable. At later 

sowing dates, the risk of drought stress in the pod-filling stage can be reduced by 

using 'DipC94', because of its faster development. 

When daily meteorological data are available for a range of years, simulations 

can be carried out for typical early, average and late years to obtain general 

recommendations for a given location. To assess the risk of water stress during 

specific development phases, photothermal models can be used in combination with 

rainfall probabilities for different months, based on long-term rainfall data. 

A difficulty in the application of the models in field situations is, that it is not 

known whether in the case of bambara groundnut twilight should be included in the 

photoperiod. The photoperiod is usually assumed to include civil twilight. This 

assumption seems justified for soya bean, common bean (Phaseolus vulgaris L.) and 

chickpea (Cicer arietinum L.), but not for lentil (Lens culinaris Medic.) (Summerfield 

and Roberts, 1987). In the Botswana case-study (Chapter 7), it was shown that the 

predicted time to podding in bambara groundnut may become considerably shorter 

when civil twilight is not included and the photoperiod is assumed to include only 

daylight. As long as it remains unknown whether or not the photoperiod perceived by 

bambara groundnut includes civil twilight, simulations should be conducted for both 

cases, and the range of simulated flowering and podding dates should be indicated. 

8.2 Methodological issues 

The development stages considered 

The study addressed photothermal effects on flowering and podding. The onset 

of podding is the most important event in bambara groundnut development, as it 

coincides with a major shift in assimilate partitioning (Chapter 5). Photothermal effects 
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on maturity could not be quantified, because development in the long photoperiod 

treatments was delayed to such an extent that the plants did not reach maturity before 

the experiments ended, not even in the long experiments of Chapters 3 (198 days), 4 

(183 days) and 6 (190 days). Furthermore, there are no clear criteria for defining 

maturity in bambara groundnut. Criteria such as brown patches appearing on the pods 

(Doku and Karikari, 1970) were difficult to apply, because the plants were earthed-up 

after the onset of podding to mimic common practice among bambara groundnut 

farmers in Africa (Linnemann, 1988; Linnemann; 1990; Brink et al., 1996). The 

maturity criteria used by farmers are yellowing and falling of the leaves (Doku and 

Karikari, 1971; Linnemann, 1990; Brink et al., 1996). However, these criteria seem 

rather arbitrary for exact quantification in a research context, and leaf yellowing and 

shedding may also be affected by factors such as light intensity and water and nutrient 

availability. 

Temperature range 

The narrow range of constant temperatures in which bambara groundnut can 

be grown was an important constraint. Earlier research had shown that the crop does 

not grow well at temperatures below 20 °C (Linnemann, personal communication), 

and in the present study it appeared that the plants died at constant temperatures of 33 

and 36 °C (Chapter 6). An alternative is to grow the plants at higher day and lower 

night temperatures, but then the optimum temperature for flowering may be exceeded 

during part of the day. In that case, the relation between rate of progress from sowing 

to flowering and average temperature will not be assessed correctly. 

Photoperiod extension 

Photoperiod levels in most experiments described in this study were established 

by extending an 8 h d"1 natural daylight period with low intensity artificial light to 
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ensure that all treatments received the same amount of photosynthetically active 

radiation. The low-intensity artificial light was a combination of fluorescent tubes and 

incandescent bulbs, so that the light spectrum resembled natural daylight. In soya bean, 

it has been found that light with a relatively low red/far-red (R/FR) ratio causes 

stronger photoperiod responses than light with a higher R/FR ratio. Fluorescent light 

alone (high FR/R) gave the smallest photoperiod response, incandescent light (low 

R/FR) the largest (Cober et al., 1996b). Experiments that directly compare the effect 

of different light qualities on photoperiod responses in bambara groundnut might 

reveal whether photoperiod effects in bambara groundnut are influenced by light 

quality. However, no such experiments were conducted in the present study. 

Other influences on reproductive development 

Though it is generally accepted that photoperiod and temperature are the major 

factors controlling reproductive development in annual crops, other factors such as 

water and nutrient availability may also have influence. In pea (Pisum sativum L.), 

short-term drought stress led to an earlier end of flowering and fewer flowering nodes, 

but it did not affect the rate of progress to flowering, beginning of seed filling and 

physiological maturity. Long-term water stress, however, did advance the beginning 

and end of seed filling (Jeuffroy and Ney, 1997). In soya bean, it has been found that 

non-nodulating isolines flowered later and matured earlier than their nodulating 

counterparts because of nitrogen shortage (George et al., 1990). The effects of water 

and nutrient availability were not included in the present study, because they are 

investigated by other partners within the research programme Evaluating the potential 

for bambara groundnut as a food crop in semi-arid Africa. The effects of moisture 

availability on growth, development and yield are studied at the University of 

Nottingham, U.K., where glasshouse experiments have shown that the onset of 

podding may be delayed under severe drought (Collinson et al., 1996). Effects of both 

nutrient and water availability are investigated in Botswana (Ramolemana et al., 1997). 
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In the field experiment which was used for validation in Chapter 6, phosphorus 

application had no effect on the time to flowering, but plants in the rainfed treatment 

flowered later than plants in the irrigated treatment. 

Empirical and mechanistic models 

The development models presented in this thesis do not explain the underlying 

mechanisms of the effects of photoperiod and temperature on reproductive 

development. They can be classified as empirical models and not as mechanistic ones 

(Hodges, 1991). This applies to most efforts to model the influence of environmental 

factors on crop development to date, because the physiological mechanisms underlying 

development regulation are complicated and not well understood. However, some 

aspects are known, and the next section attempts to integrate these with the available 

information on bambara groundnut. 

8.3 Mechanisms underlying photothermal influences on reproductive development 

It is probable that photoperiod and temperature influence the activity of genes 

that affect assimilate partitioning to different organs. In soya bean, five genes, each 

with two alleles (E,/e„ E2le2, E3le}, EJe4 and Es/e5), have been reported to control time 

to flowering and maturity (Upadhyay et al., 1994; Cober et al., 1996a). Under short 

days, the E alleles do not affect development and act similar to e alleles; under long 

days, they respond by delaying flowering and maturity (Cober et al., 1996a). In a 

study with eight isolines of the E,le„ EJe2 and E3le3 genes, the isolines showed no 

difference in their flowering response to temperature, but their photoperiod sensitivity 

was different, which implies that temperature sensitivity and photoperiod sensitivity 

are under different genetic control (Upadhyay et al., 1994). It has been postulated that 

lack of photoperiod gene activity allows assimilates to be partitioned to potential buds, 
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flowers, pod or seeds, whereas photoperiod gene activity leads to partitioning to 

vegetative organs (Wallace et al., 1993). 

Many common bean genotypes are photoperiod-insensitive for flower bud 

initiation, but photoperiod-sensitive for continued development of flower buds. The 

delay in flowering under long days is a result of the buds growing slower and/or 

aborting (Wallace et al., 1993). The photoperiod effect on podding in bambara 

groundnut is probably basically similar. A microscope study on a Nigerian selection 

(Linnemann, 1993) revealed that under short (11.5 h d"1) and long (>14 h d ' ) days 

embryo development was identical up to 17 days after flowering, with all embryos 

growing slowly. Thereafter, some embryos in plants grown under short days increased 

rapidly in size, reaching their ultimate size at about 41 days after flowering. In plants 

grown under long days, all embryos stopped growing at about 17 days after flowering 

and began to shrivel at about 32 days after flowering. This suggests that photoperiod 

does influence assimilate partitioning to embryos in bambara groundnut in the same 

way that it influences partitioning to flower buds in common bean. In groundnut too, 

the greatest photoperiod response was found in the development of pegs to pods, 

whereas pollen production and fertilization were insensitive to photoperiod (Bagnall 

and King, 1991b). 

Photoperiodic signals are perceived by the leaves, where promoting or 

inhibiting substances are formed (Thomas and Vince-Prue, 1997). It is this release of 

plant growth substances which may cause a shift in assimilate partitioning. In an 

experiment with soya bean, plants were kept under short days until 11 days after 

anthesis, after which half of the plants were transferred to a night interruption 

treatment, which is comparable to a long-day treatment. The concentration of abscisic 

acid (ABA) in the seeds of soya bean plants kept under short days increased more 

rapidly than that in plants transferred to the long-day treatment. Sucrose accumulated 

in embryos after the ABA concentration had peaked, which suggests that ABA 

stimulates sucrose transport to the seeds (Morandi et al., 1990). 
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8.4 Agronomic implications 

Photoperiod sensitivity 

The present study confirms earlier findings that the onset of flowering in most 

bambara groundnut selections is photoperiod-insensitive and the onset of podding is 

retarded by long photoperiods (Linnemann, 1994a). This phenomenon is not unique 

for bambara groundnut, because it has been shown that photoperiod may have strong 

effects on pod formation in groundnut genotypes with photoperiod-insensitive 

flowering (Flohr et al., 1990; Bagnall and King, 1991a; Bell et al., 1991). It is not 

clear why soya bean and cowpea are photoperiod-sensitive for the onset of flowering, 

whereas bambara groundnut and groundnut are photoperiod-sensitive for later 

development stages. According to Linnemann (1994a) the advantage of photoperiod 

regulation of podding instead of flowering is that it increases the flexibility of the 

crop, because the period of flexible duration is extended: from sowing to podding 

instead of from sowing to flowering. 

It has been argued that photothermal effects on post-flowering growth and 

development of cowpea are not of major importance, because in most of the 

environments where the crop is grown podding occurs at shortening photoperiods 

(Craufurd et al., 1997). However, the present study has shown that flowering in 

bambara groundnut may occur before the photoperiod reaches its maximum (Chapter 

7) and that photothermal influences on post-flowering development cannot be ignored. 

It seems probable that this will also hold for cowpea, especially for genotypes which 

are photoperiod-insensitive for flowering and which may flower as soon as 35 days 

after sowing under West African field conditions (Craufurd et al., 1997). Therefore, 

the quantification of photothermal effects on development in cowpea and other grain 

legumes should not remain restricted to the flowering response. 
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Onset of podding and harvest index 

If the reproductive phase starts early, little vegetative matter is produced, which 

may limit the production potential of the crop. If the reproductive phase starts later, 

more vegetative dry matter is produced, but seed yields will be high only when the 

growing season is long enough for the harvest index to be high. In Chapter 4 it was 

shown that the harvest index in four bambara groundnut selections was inversely 

related to the time from sowing to podding and that pod and seed yields at 183 days 

after sowing were not higher in plants which had a long vegetative period and a high 

total biomass production, because the harvest index was very low. 

Differences in the time to podding and thus in the length of the vegetative 

phase and in total biomass production can be exploited when designing appropriate 

cropping systems. To secure a high harvest index, it may be decided to sow selections 

that will start podding early under the prevailing photothermal conditions. The reduced 

biomass and light interception per plant can be compensated for by using higher plant 

densities (Lawn and Williams, 1987). However, sowing at higher densities implies the 

use of more seed and thus higher risk for the farmer. 

Choice of genotypes 

Bambara groundnut is usually not sown immediately after the first rains, 

because other crops (cereals) tend to get priority. This is illustrated by the great 

variation in bambara groundnut sowing dates encountered in field surveys in Botswana 

(Brink et al., 1996) and Zambia (Linnemann, 1990). In both countries, sowing dates 

ranged from November to February. A large variation in sowing date has also been 

reported for Nigeria: the bambara fields are usually prepared when the main food 

crops have been planted (Linnemann, 1988). It is agronomically sensible to sow 

cereals at the beginning of the rainy season and legumes later, because the nitrogen 

flux after the onset of the rainy season is more important for cereals than for legumes, 
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which are able to fix atmospheric nitrogen. As shown in Chapter 7, model predictions 

of the time from sowing to podding can be used to choose appropriate selections and 

sowing dates for particular locations. It is much cheaper to use models based on 

controlled-environment experiments with carefully chosen photoperiod and temperature 

treatments than to conduct field experiments at a range of locations during several 

rainy seasons. 

The study considered only the photothermal regulation of development. For 

predicting yield, however, growth processes also have to be taken into account. This 

could be done by incorporating the development models into crop growth models such 

as the bambara groundnut PARCH model (Collinson, 1997), which is being developed 

at the University of Nottingham, U.K., in the framework of the international research 

programme Evaluating the potential for bambara groundnut as a food crop in semi-

arid Africa. The PARCH (Predicting Arable Resource Capture in Hostile 

environments) model is a combination of a crop growth module, based on light and 

water capture and the efficiency of conversion of light and water into dry matter, and 

a soil profile divided into layers (Bradley and Crout, 1992). The bambara groundnut 

PARCH model was developed on the basis of glasshouse studies and is in the process 

of being validated with field data (Collinson, 1997). 

The finding that shading led to a lower total dry matter production, but only 

a small delay in development (Chapter 5) implies that the onset of flowering and 

podding in bambara groundnut intercropped with taller cereals will not be very 

different from that in sole-cropped bambara groundnut. Therefore, the development 

models can be used to for both intercropped and sole-cropped bambara groundnut. 

Adaptation through photothermal regulation 

It has been reported that the flowering of local West African cowpea cultivars 

is regulated by photoperiod in such a way that they generally flower at the end of the 

rains at their latitude of origin, irrespective of the sowing date (Wien and 
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Summerfïeld, 1980). In the simulation study for Botswana (Chapter 7), it was shown 

that early sowing of bambara groundnut in Botswana resulted in longer predicted times 

to podding than late sowing, but not to such an extent that podding always occurred 

at the same date, irrespective of the sowing date. This finding was in agreement with 

the results of a field experiment carried out in Botswana in 1991, in which difference 

in sowing date of 9-10 weeks led to a difference in time to podding of 46 days (Harris 

and Azam-Ali, 1993). Thus, the present study indicates that photothermal regulation 

of development in bambara groundnut is somewhat less strict than has been reported 

for cowpea in West Africa, which may be due to the end of the rainy season being 

more variable in Botswana than in West Africa. 

Phenological plasticity 

A good match between crops or crop genotypes and specific environments can 

be achieved by different strategies (Loomis and Connor, 1992). Soya bean cultivars 

have been classified into maturity groups, each of them best adapted to a certain 

production zone in the United States (Evans, 1993). Cultivars grown south of their 

zone flower too soon, cultivars grown north of their zone too late (Loomis and 

Connor, 1992). In other crops, such as wheat (Triticum aestivum L.), photoperiodicity 

has been suppressed or eliminated by breeding, which has led to improved cultivars 

with a wide geographic suitability. Breeding for day neutrality in bambara groundnut 

would eliminate its phenological plasticity. This phenological plasticity is one of the 

typical traits of tropical grain legumes, which enables the crop to compensate for stress 

and to respond to the environment (Lawn, 1989). Therefore, the use of development 

models to classify genotypes and to match bambara groundnut genotypes to specific 

locations, sowing dates and farmers' objectives seems a better approach than breeding 

for day neutrality. 
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8.5 Conclusion 

This study has confirmed that the onset of flowering in most bambara 

groundnut selections is dependent on temperature, but is not photoperiod-sensitive, 

whereas the onset of podding is influenced by both temperature and photoperiod. The 

onset of podding coincides with the major shift in the assimilate distribution from 

vegetative to reproductive growth, and the timing of the onset of podding determines 

the length of the vegetative phase. This implies that for given locations and sowing 

dates genotypes can be selected which will have an optimal balance between 

vegetative and reproductive phases, taking into account farmers' objectives. The 

influence of photoperiod and temperature on the rate of progress from sowing to 

flowering and the rate of progress from flowering to podding in different selections 

can be quantified through descriptive linear models, using data from semi-controlled 

environment experiments with constant temperatures and photoperiods. The models 

predicted the time to flowering in validation experiments generally well, but the time 

from flowering to podding was not always predicted accurately. Nevertheless, the 

models did characterize the photothermal response of the selections reasonably well. 

Therefore, these quantitative models, either on their own or incorporated into a crop 

growth model, can be useful instruments for matching bambara groundnut genotypes 

to specific environments. 
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Summary 

SUMMARY 

Introduction and objective 

It seems likely that it is more realistic to increase food production in semi-arid 

Africa by growing crops and crop genotypes that are adapted to existing production 

constraints like low rainfall and poor soils, than by trying to overcome these 

constraints by applying irrigation and fertilizer. The extent to which plants are adapted 

to their environments is largely dependent on the way their development is affected 

by climatic factors. Crops should be able to complete their reproductive development 

within the growing season, have an optimal balance between vegetative and 

reproductive phases, and critical stages of their development should not coincide with 

unfavourable conditions. Reproductive development in bambara groundnut (Vigna 

subterranea (L.) Verde), a crop considered to be adapted to semi-arid Africa because 

it tolerates drought and low soil fertility, is known to be influenced by temperature 

and photoperiod. The objective of this study was to quantify the influence of 

photoperiod and temperature on reproductive development in selections from different 

origins on the basis of controlled environment research. The resulting quantitative 

models had to be able to predict reproductive development in field situations, which 

would make them useful for identifying crop genotypes that would do well in specific 

environments. 

Quantifying photothermal effects on flowering and podding 

Temperature and photoperiod effects on the onset of flowering and the onset 

of podding of bambara groundnut selections 'GabC92' (Botswana), 'NTSC92' 

(Zimbabwe) and 'TigaNicuru' (Mali) were quantified with the photothermal approach 

that has been used to quantify photoperiod and temperature influences on flowering 

in other leguminous crops (Chapter 2). In this approach, development rates are linked 
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to photoperiod and temperature with linear equations. This was done on the basis of 

a semi-controlled environment experiment with factorial combinations of three 

constant temperatures (20.9, 23.4, and 26.2 °C) and four constant photoperiods (10.0, 

12.5, 13.5, and 16.0 h d"1). In all three selections, the onset of flowering was 

influenced by temperature but not by photoperiod, whereas the onset of pod growth 

('podding') was influenced by both factors. The rate of progress from sowing to 

flowering of the three selections could be modelled very well as a function of 

temperature; the rate of progress from flowering to podding could be modelled 

reasonably well as a function of both temperature and photoperiod. Model testing with 

independent data sets showed good agreement between observed and predicted times 

to flowering and podding. 

The photoperiod-sensitive phase for podding 

Chapter 3 describes an experiment to investigate whether the time from sowing 

to podding in bambara groundnut can be divided into photoperiod-sensitive and 

photoperiod-insensitive phases in the same way as the time between sowing and 

flowering in other crops. The reciprocal transfer experiment was done with three 

selections: 'GabC92' from Botswana and 'NTSR94' and 'NTSC92' from Zimbabwe. 

Treatments were established by transferring plants between 14 h d"1 (LD) and 11 h d~' 

(SD) every two weeks. There were also control treatments of constant LD and SD. 

Flowering was not affected by photoperiod, but the onset of podding was delayed by 

long photoperiods. At an average temperature of 25.7 °C, the main photoperiod effect 

on podding occurred from 42 days after sowing onwards in 'NTSR94' and 'NTSC92', 

and from 57 days after sowing onwards in 'GabC92'. The time from sowing to 

podding could not be divided clearly into photoperiod-sensitive and photoperiod-

insensitive phases, because in all three selections podding tended to be later in early 

transfers from SD to LD than in constant LD, and earlier in the early transfers from 

LD to SD than in constant SD. 
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Effects of constant, increasing and decreasing photoperiods 

In Chapter 4 it is examined whether information obtained from experiments 

with constant photoperiods can be used in field situations where photoperiods 

fluctuate. This was investigated in a glasshouse experiment with four selections: 

'GabC92', 'GabC94' and 'DipC94' from Botswana and 'DodC94' from Tanzania. 

Treatments included three constant photoperiods (12, 13, and 14 h d"1) and three 

gradually changing photoperiods: a decreasing photoperiod (14 —> 11 h d"1), an 

increasing photoperiod (12 —> 15 h d ' ) and a photoperiod that first increased and later 

decreased (13 -> 14 -> 12 h d"1). No photoperiod effect on the rate of progress from 

sowing to flowering was found in any of the selections, but in all four selections the 

rate of progress from flowering to podding was influenced by photoperiod. The 

average photoperiod between flowering and podding determined the rate from 

flowering to podding, and a gradual increase or decrease did not affect that rate. 

Therefore, it is concluded that models intended to predict bambara groundnut 

development in field situations with fluctuating photoperiods can be based on studies 

with constant photoperiods. 

Development, growth and dry matter partitioning 

Chapter 5 discusses the validity of some common assumptions in crop 

modelling. The first assumption is that development and growth are independent and 

that crop development can be modelled separately from crop growth; the second that 

dry matter partitioning factors are dependent on development stage and not directly 

influenced by photoperiod. An experiment was conducted with four photoperiods 

(10.5, 11.8, 13.2 and 14.5 h d"1) and two light treatments: unshaded and shaded (42% 

light reduction). The selection used was 'DipC94' from Botswana. Total dry matter 

production was 41% lower in the shaded treatment than in the unshaded treatment, but 

the rates of progress from sowing to flowering and flowering to podding decreased by 
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only 3 and 12 % respectively. This led to the conclusion that growth and development 

in bambara groundnut are largely independent. Photoperiod influenced dry matter 

partitioning indirectly, through its influence on the onset of podding. There were, 

however, no strong direct photoperiod effects on dry matter partitioning, either before 

or after the onset of podding. 

Models and validation 

In chapter 6, linear photothermal models are developed for bambara groundnut 

selections from contrasting origins: 'DodR94' from Tanzania, near the equator, and 

'DipC94' from Botswana, near the Tropic of Capricorn. The models were based on 

a semi-controlled environment study with four constant photoperiods (10.5, 11.8, 13.2, 

and 14.5 h d"'), covering the range of photoperiods in the tropics) and four constant 

temperatures (20, 23, 26, 29 °C). Higher temperatures were included, but plants died 

at constant temperatures of 33 and 36 °C. The models were validated by comparing 

the photothermal responses of the selections with the photothermal conditions in the 

regions where they were obtained, and by comparing model predictions with results 

from glasshouse experiments in The Netherlands and field experiments in Tanzania 

and Botswana. The photoperiod and temperature response of the two selections could 

be explained very well by the photothermal conditions in the regions from which the 

selections came. Validation of the photothermal models with the results of glasshouse 

and field experiments gave mixed results: predicted and observed time to flowering 

for 'DipC94' corresponded well, and predicted and observed time from flowering to 

podding reasonably well. Flowering predictions for 'DodR94' were not accurate, 

possibly because this selection is sensitive to photoperiod when temperatures are 

higher than in the experiment on which the models were based. 
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Using photothermal development models 

The implications of genotypic differences in responses to photoperiod and 

temperature in bambara groundnut and the usefulness of photothermal development 

models for identifying suitable selections for different locations and sowing dates are 

demonstrated in a simulation study for Botswana (Chapter 7). Times to flowering and 

podding for the selections 'DipC94', 'GabC92' and 'Tiga Nicuru' were calculated for 

different sowing dates at two locations (Sebele and Francistown) in two rainy seasons. 

Calculations were made with photothermal development models developed in Chapters 

2 and 6 and with actual daily minimum and maximum temperatures and photoperiods 

(with or without civil twilight). The simulation results indicate that for early sowing 

dates 'GabC92' and 'Tiga Nicuru' may be used to prolong the time to podding and 

thus to promote vegetative growth. For later sowing dates, the risk of water shortage 

in the pod-filling phase is greater for these selections than for 'DipC94'. When sown 

very late, the differences between the three selections become very small, but pod 

yields will be absent or very low because of water shortage. Differences between the 

two locations were small, which implies that photoperiod differences within Botswana 

are probably not large enough to merit using selections with different photoperiod 

sensitivities for different locations. Longer photoperiods early in the rainy season 

resulted in longer predicted times to podding, but not to such an extent that podding 

always occurred on the same date, irrespective of the sowing date. When civil twilight 

was assumed not to be included in the photoperiod as perceived by bambara groundnut 

plants, the simulated times to podding became shorter, especially for 'Tiga Nicuru'. 

Therefore, determination of the responsiveness of bambara groundnut to dim light 

would increase the usefulness of the photothermal models. 

Discussion and conclusion 

In Chapter 8, the main findings, methodological issues and agronomic 
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implications of the study are discussed, together with some physiological mechanisms 

underlying the photothermal regulation of reproductive development. It is concluded 

that the influence of photoperiod and temperature on the rate of progress from sowing 

to flowering and the rate of progress from flowering to podding in different bambara 

groundnut selections can be quantified through descriptive linear models, using data 

from semi-controlled environment experiments with constant temperatures and 

photoperiods. Though predictions in validation experiments, especially of the time 

from flowering to podding, were not always accurate, the models did characterize the 

photothermal response of the selections reasonably well. It is therefore concluded that 

these quantitative models, either on their own or incorporated into a crop growth 

model, can be useful instruments for matching bambara groundnut genotypes and 

specific environments. 
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SAMENVATTING 

Inleiding en doelstelling 

Bij het streven naar verhoging van de voedselproductie in semi-aride Afrika, 

is het waarschijnlijk realistischer om te proberen gebruik te maken van gewassen en 

genotypen die aangepast zijn aan beperkingen zoals geringe regenval en lage 

bodemvruchtbaarheid, dan om te proberen dergelijke beperkingen op te heffen door 

het gebruik van irrigatie en kunstmest. De mate waarin gewassen aangepast zijn aan 

hun omgeving wordt grotendeels bepaald door de wijze waarop hun ontwikkeling 

wordt beïnvloed door klimaatsfactoren. Gewassen moeten in staat gesteld worden hun 

reproductieve ontwikkeling te voltooien en een optimaal evenwicht te handhaven 

tussen vegetatieve en reproductieve fasen, waarbij kritieke momenten in hun 

ontwikkeling niet mogen samenvallen met ongunstige omstandigheden. De 

ontwikkeling van bambara aardnoot (Vigna subterranea (L.) Verde), een gewas dat 

is aangepast aan semi-aride Afrika, wordt met name beïnvloed door temperatuur en 

fotoperiode. 

Het doel van dit onderzoek was het kwantificeren van de invloed van 

temperatuur en fotoperiode op de reproductieve ontwikkeling van selecties van 

verschillende herkomst op basis van onderzoek onder gecontroleerde omstandigheden. 

Met de te ontwikkelen kwantitatieve modellen zou de reproductieve ontwikkeling 

onder veldomstandigheden moeten kunnen worden voorspeld, waardoor deze modellen 

een nuttig instrument zouden zijn om geschikte genotypen te identificeren voor 

specifieke locaties. 

Het kwantificeren van de effecten van fotoperiode en temperatuur op de bloei en 

peulvorming 

De effecten van temperatuur en fotoperiode op het begin van zowel de bloei 

155 



Samenvatting 

als de peulvorming van de bambara aardnoot selecties 'GabC92' (Botswana), 

'NTSC92' (Zimbabwe) en 'Tiga Nicuru' (Mali) werden gekwantificeerd met behulp 

van een benadering die eerder was gebruikt om de invloed van temperatuur en 

fotoperiode op de bloei van andere vlinderbloemigen te kwantificeren (Hoofdstuk 2). 

In deze benadering worden ontwikkelingssnelheden gerelateerd aan temperatuur en 

fotoperiode door middel van lineaire vergelijkingen. De vergelijkingen werden 

gebaseerd op een experiment onder semi-gecontroleerde omstandigheden met factoriële 

combinaties van drie constante temperaturen (20.9, 23.4 en 26.2 °C) en vier constante 

fotoperioden (10.0, 12.5, 13.5 en 16.0 uur per dag). Het begin van de bloei van alle 

drie selecties bleek te worden beïnvloed door de temperatuur, maar niet door de 

fotoperiode. Het begin van de peulvorming, echter, werd door zowel temperatuur als 

fotoperiode beïnvloed. De ontwikkelingssnelheid van zaai tot bloei van de drie 

selecties kon uitstekend worden gekwantificeerd als een functie van temperatuur; de 

ontwikkelingssnelheid van bloei tot peulvorming kon goed tot redelijk gekwantificeerd 

worden als een functie van zowel temperatuur als fotoperiode. Bij het toetsen van de 

modellen met onafhankelijke datasets kwamen de voorspelde en waargenomen 

tijdstippen van bloei en peulvorming goed met elkaar overeen. 

De voor fotoperiode gevoelige fase 

In Hoofdstuk 3 wordt onderzocht of de periode van zaai tot peulvorming in 

bambara aardnoot op dezelfde manier in voor fotoperiode gevoelige en ongevoelige 

fasen kan worden onderverdeeld als de periode van zaai tot bloei in andere gewassen. 

Een overzet-experiment werd uitgevoerd met drie selecties: 'GabC92' uit Botswana 

en 'NTSR94' en 'NTSC92' uit Zimbabwe. De behandelingen werden gecreëerd door 

elke twee weken een aantal planten over te zetten van een fotoperiode van 14 uur per 

dag (LD) naar een fotoperiode van 11 uur per dag (KD) en vice versa. Er waren ook 

controle-behandelingen met een vaste LD of KD. De bloei bleek niet te worden 

beïnvloed door fotoperiode, maar het begin van de peulvorming werd vertraagd door 
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lange fotoperioden. Bij een gemiddelde temperatuur van 25.7 °C vond het 

belangrijkste fotoperiode-effect op de peulvorming plaats vanaf 42 dagen na de zaai 

in 'NTSR94' en 'NTSC92', en vanaf 57 dagen na de zaai in 'GabC92'. De tijd van 

zaai tot peulvorming kon niet duidelijk worden verdeeld in voor fotoperiode gevoelige 

en ongevoelige fasen, omdat de peulvorming in de drie selecties later plaatsvond bij 

vroeg overzetten van KD naar LD dan in constante LD, en eerder bij vroeg overzetten 

van LD naar KD dan in constante KD. 

Effecten van constante, toenemende en afnemende fotoperioden 

In Hoofdstuk 4 wordt nagegaan of informatie verkregen uit experimenten met 

constante fotoperioden gebruikt kan worden in veldsituaties waarin de fotoperiode 

fluctueert. Dit werd onderzocht in een kasproef met vier selecties: 'GabC92', 

'GabC94' en 'DipC94' uit Botswana en 'DodC94' uit Tanzania. De behandelingen 

omvatten drie constante fotoperioden (12, 13 en 14 uur per dag) en drie geleidelijk 

veranderende fotoperioden: een afnemende fotoperiode (14 -> 11 uur per dag), een 

toenemende fotoperiode (12 -> 15 uur per dag) en een fotoperiode die eerst toenam 

en later afnam (13 —» 14 —> 12 uur per dag). Voor geen van de selecties werd een 

fotoperiode-effect op de ontwikkelingssnelheid van zaai tot bloei gevonden, maar in 

alle selecties werd de ontwikkelingssnelheid van bloei tot peulvorming wel beïnvloed 

door de fotoperiode. De gemiddelde fotoperiode tussen het begin van de bloei en het 

begin van de peulvorming bepaalde de ontwikkelingssnelheid van bloei tot 

peulvorming; een geleidelijke toename of afname had geen invloed. Er wordt daarom 

geconcludeerd dat modellen die bedoeld zijn om in veldsituaties met een fluctuerende 

fotoperiode de ontwikkeling van bambara aardnoot te voorspellen, gebaseerd kunnen 

worden op studies met constante fotoperioden. 
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Ontwikkeling, groei en droge stof verdeling 

Hoofdstuk 5 behandelt de geldigheid van enkele gangbare aannames in de 

gewasmodellering. De eerste is dat ontwikkeling en groei onafhankelijk zijn en dat de 

ontwikkeling van een gewas afzonderlijk van de gewasgroei kan worden 

gemodelleerd; de tweede dat de droge-stof verdeling afhankelijk is van het 

ontwikkelingsstadium en niet direct door de fotoperiode wordt beïnvloed. Er werd een 

experiment uitgevoerd met vier fotoperioden (10.5, 11.8, 13.2 en 14.5 uur per dag) en 

twee lichtbehandelingen: onbeschaduwd en beschaduwd (42% lichtreductie). De 

gebruikte selectie was 'DipC94' uit Botswana. In de beschaduwde behandeling was 

de totale droge-stofproductie 41% lager dan in de onbeschaduwde, maar de 

ontwikkelingssnelheden van zaai tot bloei en van bloei tot peulvorming waren slechts 

respectievelijk 3 en 12 % lager. Dit leidde tot de conclusie dat groei en ontwikkeling 

van bambara aardnoot grotendeels onafhankelijk zijn. De fotoperiode had een indirecte 

invloed op de droge-stofverdeling, via de invloed op het begin van de peulvorming. 

Noch vóór, noch na het begin van de peulvorming werd echter een duidelijk direct 

effect van de fotoperiode op de droge-stofverdeling gevonden. 

Modellen en validatie 

Hoofdstuk 6 beschrijft hoe lineaire fotothermale modellen werden ontwikkeld 

voor bambara aardnoot selecties van uiteenlopende oorsprong: 'DodR94' uit Tanzania, 

dichtbij de evenaar, en 'DipC94' uit Botswana, dichtbij de steenbokskeerkring. De 

modellen werden gebaseerd op een experiment onder semi-gecontroleerde 

omstandigheden met vier constante fotoperioden (10.5, 11.8, 13.2 en 14.5 uur per 

dag), die de spreiding van fotoperioden in de tropen omvatten, en vier constante 

temperaturen (20, 23, 26 en 29 °C). In het experiment werden ook hogere 

temperaturen gebruikt, maar de planten gingen dood bij constante temperaturen van 

33 en 36 °C. De modellen werden gevalideerd door de fotothermale respons van de 
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selecties te vergelijken met de fotothermale omstandigheden in de gebieden van 

herkomst en door modelvoorspellingen te vergelijken met resultaten van kasproeven 

in Nederland en veldproeven in Tanzania en Botswana. De fotoperiode- en 

temperatuur-respons van de selecties kon zeer goed worden verklaard met de 

fotothermale omstandigheden in de gebieden van herkomst. Validatie van de 

fotothermale modellen met de resultaten van kas- en veld-proeven gaf wisselende 

resultaten: de voorspelde en gevonden tijden van zaai tot bloei van 'DipC94' kwamen 

goed overeen, en de voorspelde en gevonden tijden van bloei tot peulvorming redelijk 

goed. De voorspellingen met betrekking tot de bloei van 'DodR94' waren niet 

nauwkeurig, mogelijk doordat deze selectie fotoperiode-gevoelig is als de temperatuur 

hoger is dan in de proef waarop de modellen werden gebaseerd. 

Het gebruik van fotothermale ontwikkelingsmodellen 

Een simulatiestudie voor Botswana (Hoofdstuk 7) toont de implicaties van 

genotypische verschillen in de fotoperiode- en temperatuurs-reactie van bambara 

aardnoot en de bruikbaarheid van fotothermale ontwikkelingsmodellen om geschikte 

selecties te identificeren voor verschillende locaties en zaaidata. De tijd tot bloei en 

peulvorming van de selecties 'DipC94', 'GabC92' en 'Tiga Nicuru' werd berekend 

voor verschillende zaaidata op twee locaties (Sebele en Francistown) in twee 

regenseizoenen. De berekeningen werden gemaakt met fotothermale 

ontwikkelingsmodellen uit Hoofdstuk 2 en 6 en met werkelijke dagelijkse minimum 

en maximum temperaturen en fotoperioden (met of zonder schemering). De resultaten 

van de simulatie wijzen erop dat voor vroege zaaidata 'GabC92' en 'Tiga Nicuru' 

gebruikt kunnen worden om de tijd tot het begin van de peul vorming te verlengen en 

zodoende de vegetatieve groei te vergroten. Voor latere zaaidata is het risico van 

watertekort in de peulvormingsfase voor deze selecties groter dan voor 'DipC94'. Bij 

erg late zaai worden de verschillen tussen de drie selecties zeer klein, maar in dit 

geval zal de peulopbrengst laag zijn vanwege watertekort. De verschillen tussen de 
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twee locaties zijn klein, hetgeen betekent dat de verschillen in fotoperiode binnen 

Botswana waarschijnlijk niet groot genoeg zijn selecties met een verschillende 

fotoperiode-gevoeligheid te gebruiken op verschillende locaties. Langere fotoperioden 

in het begin van het regenseizoen leidden tot een langere voorspelde tijd tot 

peulvorming, maar niet in die mate dat de peul vorming altijd omstreeks dezelfde 

datum plaats zou vinden, onafhankelijk van de zaaidatum. Indien aangenomen werd 

dat schemering niet meegeteld moest worden bij het berekenen van de daglengte, werd 

de gesimuleerde tijd tot peulvorming korter, met name voor 'Tiga Nicuru'. Daarom 

zal bepaling van de gevoeligheid van bambara aardnoot voor schemerlicht de 

bruikbaarheid van de fotothermale modellen vergroten. 

Discussie en conclusie 

In Hoofdstuk 8 worden de belangrijkste bevindingen, methodologische kwesties 

en agronomische implicaties van het onderzoek besproken. Tevens wordt er aandacht 

besteed aan de fysiologische mechanismen die ten grondslag liggen aan de 

fotothermale regulering van reproductieve ontwikkeling. Er wordt geconcludeerd dat 

de invloed van fotoperiode en temperatuur op de ontwikkelingssnelheid van zaai tot 

bloei en de ontwikkelingssnelheid van bloei tot peulvorming in bambara aardnoot 

selecties gekwantificeerd kan worden met behulp van beschrijvende lineaire modellen. 

Deze modellen kunnen gebaseerd worden op proeven onder semi-gecontroleerde 

omstandigheden met constante temperaturen en fotoperioden. Hoewel voorspellingen 

in validatie-experimenten, met name voor wat betreft de tijd van bloei tot 

peul vorming, niet altijd accuraat waren, karakteriseerden de modellen de fotothermale 

respons van de verschillende selecties redelijk goed. Er kan daarom worden 

geconcludeerd dat dergelijke kwantitatieve modellen, hetzij op zichzelf staand, hetzij 

als onderdeel van een gewasgroeimodel, een nuttig instrument kunnen zijn om 

geschikte bambara aardnoot genotypen te identificeren voor specifieke locaties. 
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