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Stellingen 

1. Om de beweging van een drijflaag van organische verontreiniging 
onafhankelijk van de waterbeweging te analyseren, wordt vaak aan
genomen dat de waterdrukgradiënten in horizontale richting verwaar
loosbaar zijn. Deze aanname wordt niet gerechtvaardigd door een 
groot verschil tussen de verticaal geïntegreerde mobiliteiten van wa
ter en organische vloeistof, zoals Bear veronderstelt, maar door een 
groot verschil tussen de lokale mobiliteiten. 

J. Bear, Transport in Porous Media 25, pag. 283-311. 

2. De dipool-oplossing van de poreuze-media-vergelijking in twee ruimte
lijke dimensies geeft in veel gevallen een goede beschrijving van de 
onttrekking van een drijflaag van organische verontreiniging in een 
drie-dimensionaal domein. 

3. Bij persluchtinjectie in een homogene of in een horizontaal gelaagde 
bodem heeft het injectiedebiet vrijwel geen effect op de invloedsstraal 
van geïnjecteerde lucht. 

Dit proefschrift, 

4. Persluchtinjectie in een horizontaal gelaagde bodem leidt bij overgang 
van een goed doorlatende naar een slecht doorlatende laag tot een toe
name van de invloedsstraal van geïnjecteerde lucht. Een model waarin 
voor beide lagen intree-drukken voor lucht zijn opgenomen, geeft aan
leiding tot een stationaire toestand waarin de invloedsstraal oneindig 
is, terwijl een model zonder intree-drukken een eindige invloedsstraal 
voorspelt. 

5. Stolling van halfgeleidermateriaal door warmteafvoer via de randen 
van het koelingsapparaat wordt beschreven door het Stefan probleem. 
In tegenstelling tot de één-dimensionale benadering van dit probleem 
geeft de meer-dimensionale beschrijving geen aanleiding tot het ont
staan van 'mushy' gebieden waar de vaste en vloeibare fase in ther
misch evenwicht naast elkaar bestaan. 

6. Automatisering en computertechnologie hebben het leven sneller en 
meer gespannen gemaakt, omdat we onze tijd niet langer hoeven te 
besteden aan het tijdrovende routinewerk waarmee onze grootouders 
hun geest ontspanden. 

J.I. Packer, Oppervlakkigheid troef? 



7. De 'suggestiestrook' langs de rijbaan suggereert meer voor automobi
listen dan voor fietsers. 

8. De eenmalige overwinning van Deep Blue op Kasparov geeft alleen 
aan dat de schaakcomputer een gelijkwaardige tegenstander van de 
menselijke schaker is geworden. 

9. De toegepast wiskundige moet tijdens zijn opleiding ook iets meekrij
gen van het fundamentele raamwerk dat zich bevindt achter de foefjes 
en regeltjes die tijdens de opleiding worden geleerd. 

Naar een uitspraak van F . d en Hollander, Trouw, 25 juni 1997. 

10. De keuze om over te gaan van een traditionele kerk naar een evan
gelische groepering, of omgekeerd, wordt voornamelijk bepaald door 
iemands karakter. 

Stellingen behorend bij het proefschrift Multi-phase flow modeling of 
soil contamination and soil remediation. Rink van Dijke, 5 december 
1997. 



Abstract 

Van Dijke, M.I.J., 1997, Multi-phase flow modeling of soil contamina
tion and soil remediation, Doctoral thesis, Wageningen Agricultural Uni
versity, The Netherlands. 
ISBN 90-5485-802-8, 149 pages. 

In this thesis multi-phase flow models are used to study the flow behavior 
of liquid contaminants in aquifers and of gases that are injected below the 
groundwater table for remediation purposes. Considered problems are redis
tribution of a lens of light nonaqueous phase liquid (LNAPL) on a horizontal 
water table with emphasis on the effect of NAPL entrapment by water and 
its removal through a well with appropriate multi-phase seepage conditions at 
the well boundary. In addition, air injection into groundwater (air sparging) 
in a homogeneous soil and in a layered soil are modeled. Accurate but very 
time-consuming numerical simulations for the various problems are performed. 
For further analysis appropriate reductions are made. Assuming vertical equi
librium and vertical averaging of the flow equations reduce the geometrical 
dimensionality of the LNAPL lens problems and of the problem of air spar
ging in a layered soil. The air sparging problems are analyzed at steady state, 
which eliminates the time dependence. Sparging in a homogeneous soil admits 
further reduction by neglecting capillary forces in vertical direction. For all 
problems the resulting equations are of nonlinear diffusion type, that can be 
cast into the porous medium equation. For the various problems similarity 
solutions to the porous medium equation exist, that show good agreement 
with numerical results. These analytical solutions give the main features of 
the spreading velocity of an LNAPL lens and the amount of NAPL that becomes 
trapped, of the LNAPL removal rate and the extension of the remaining NAPL 
in case of extraction, and of the air sparging radius of influence in a homo
geneous and in a layered soil. 

Additional index words : soil remediation, multi-phase flow, vertical flow 
equilibrium, fluid entrapment, fluid extraction, air sparging, numerical model
ing, porous medium equation, similarity solutions. 
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Chapter 1 

General introduction 

1.1 Soil contamination and soil remediation 

An important threat of our environment is pollution of the soil. Since con
taminants may adsorb to soil particles or remain trapped in soil pores and 
desorb or dissolve slowly, they can affect crops and infiltrate into the ground
water for years or even decades. Therefore, remediation of contaminated soils, 
preferably on-site or in-situ, has high priority. Effective clean-up requires 
knowledge about the contaminant, the soil and the remediation techniques. 
Below we discuss several important issues that are considered in this thesis. 

One class of contaminants is commonly referred to as nonaqueous phase 
liquids (NAPL'S) : organic fluids that are slightly miscible with water. The 
behavior of NAPL'S after infiltration into the soil leads to consideration of two 
important types of these fluids: the NAPL may accumulate at the groundwater 
table in the form of so called lenses, if it is lighter than water (LNAPL), or the 
NAPL may infiltrate downward to deeper soil layers, if it is heavier than water 
(DNAPL). A LNAPL lens further spreads out along the water table and may be 
moved in the direction of groundwater flow. For the two NAPL classes differ
ent soil remediation techniques are required. Both NAPL types may become 
immobile by entrapment, i.e. the NAPL is fixed in the soil pore structure as 
discrete drops enclosed by water. The mobile fraction of the NAPL may be 
removed by classical pumping methods, but pumping may enlarge the NAPL 
invaded region and thus increase the potential for entrapment. 

Trapped NAPL is removed in-situ by remobilization, e.g. by adding deter
gents that reduce fluid surface tension, by bioremediation or by volatilization. 
Volatilization and in many cases also bioremediation require injection of gas 
c.q. oxygen into the soil. Gas flushing in the vadose zone is commonly referred 
to as bioventing, whereas gas injection below the groundwater table is called 
(air) sparging. Remediation by sparging is a relatively cheap method that has 
become very popular in the last decade. However, gas flow in groundwater is 



2 Chapter 1 

quite unpredictable, because the large density and viscosity ratios of gas and 
water cause unstable flow patterns, that are very sensitive to soil heterogeneity. 

Mechanical soil clean-up methods, which we distinguish from chemical and 
biotechnological processes, depend not only on fluid properties, but are also 
greatly affected by soil structure. Variations in soil properties such as per
meability and porosity, always affect fluid flow. Due to geological processes 
these variations are usually not completely random, but they are structured. 
In many cases these patterns concern almost horizontal layers. As a result 
infiltrated DNAPL spreads out horizontally on top of a low permeable layer 
and the flow pattern of injected air is deflected just below such a layer. 

The mechanical remediation methods always use either injection or ex
traction wells. Although sometimes horizontally drilled wells are used, which 
may inject or extract more effectively, vertical wells are most commonly used, 
because they are much simpler to install. The depth and the length of the well 
filter may regulate the remediation technique. Furthermore, at injection wells 
the required rate and composition of injected gas or fluid can be prescribed, 
although high rates may cause soil deformations. At extraction wells, however, 
only the total rate but not the composition of extracted fluid can be imposed, 
which means that in the worst case only water instead of NAPL is removed. 

1.2 Multi-phase flow modeling 

To analyze the above described processes, multi-phase flow models are used. 
These models have been developed in oil reservoir engineering, e.g. see [3, 14], 
and are commonly used for environmental problems as well, e.g. see [1, 9, 35]. 
In multi-phase flow models gas, water and NAPL are considered as three im
miscible phases, whose pressures are related through capillary pressures. The 
affinity of the phases to infiltrate in soil pores (the wettability) increases in 
the order gas, NAPL, water. The phases are allowed to coexist in the pores, 
which leads macroscopically to fluid saturations, i.e. the fractions of pore 
volume filled with a fluid, that vary between zero and one. In the analyses of 
this thesis we assume additionally incompressibility of the phases. Flow is de
scribed by the phase mass balances and by Darcy's law, that specify the phase 
velocities. Saturations and capillary pressures, and relative permeabilities and 
saturations are coupled by constitutive relations. 

Since multi-phase flow models are developed for flow in oil reservoirs, sim
ultaneous flow of NAPL and water is reasonably well understood and has been 
studied extensively. Combination with the third, gaseous, phase in the un
saturated zone is more complicated and is still under investigation [9, 11]. 
Natural events, such as rainfall and seasonal fluctuation of the water table, 
cause variations of the water saturation, which variations are hysteretic and 
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involve fluid entrapment, e.g. see [23, 51]. Hysteresis and fluid entrapment 
are accounted for in multi-phase flow models, specifically in the constitutive 
relations [37, 38, 48]. 

Another complication is the appropriate definition of the outflow conditions 
at a well or a ditch, where fluid is extracted. The concept behind the conditions 
stems from classical studies on water seepage, like the dam problem [9, 18]. 
The latter describes outflow of water from a dam that separates two water 
reservoirs of different water levels, at the side of the dam where the water level 
is lowest. At this side the position of the water table, the length of the so called 
seepage face and the water outflow rate are a priori unknown. Most studies on 
seepage faces neglected for simplicity the unsaturated zone, assuming a sharp 
interface between air and water. Including an unsaturated zone requires at the 
dam boundary a condition that prescribes either a pressure, at the saturated 
part, or no outflow, at the unsaturated part. Incorporation of a second fluid 
phase, NAPL, at this boundary, which is the well or ditch in our case, requires 
similar conditions [14, 24]. The resulting NAPL outflow may, however, occur at 
very small saturations, which introduces additional computational difficulties. 

Application of multi-phase flow modeling to air sparging is not straight
forward. Until recently, not much was known about the nature of air flow in 
groundwater. With respect to air phase continuity, it was postulated that air 
flow occurs as moving isolated bubbles, but it turned out that this happens 
only for very coarse media [34, 32]. Furthermore, air flow likely occurs through 
small channels, i.e. so called preferential flow paths in regions with relatively 
large permeabilities [15, 62]. Assuming that the density of these flow paths is 
sufficiently large, the air flow can be regarded macroscopically as continuous. 
Another rigorous assumption concerns air compressibility, which is generally 
not negligible, but is small under most sparging conditions [41]. Further
more, air is certainly not immiscible with fluids phases, but the investigation 
of sparging by multi-phase flow modeling is still a reasonable first approach, 
see also [43, 46]. If the air flow field is known, a more complete description of 
clean-up by air sparging can be given by coupling the multi-phase flow model 
to transport models that incorporate, for example, air dissolution in water, 
NAPL volatilization in air and reaction of oxygen and contaminant [57, 62]. 

Although the term multi-phase flow indicates flow of more than one phase, 
in many cases the behavior of one of the phases dominates the flow process. In 
the LNAPL flow problems the air mobility is much larger than the liquid mobil
ities. Hence, neglecting air pressure gradients still yields a good description of 
the flow process. According to this assumption, which is called the Richards 
assumption [56], air flow can be eliminated from the description of flow. Fur
thermore, LNAPL and water movement often happen at vertical equilibrium, 
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which means that vertical flow velocities are negligible, e.g. see [9, 65]. If 
additionally the water saturations and thus the water mobilities are much lar
ger than the NAPL mobilities, water and NAPL flow are segregated and water 
flow can be eliminated [10]. Analysis of air sparging shows similarly that only 
considering the air flow leads to a very good description of the entire flow 
process. 

1.3 Outline of the thesis 

Two chapters of this thesis deal with behavior of LNAPL on the water table 
and two chapters concern air sparging. Chapter 2 describes redistribution 
of a LNAPL lens on a horizontal water table with emphasis on the effect of 
NAPL entrapment. We aim at finding the spreading velocity of the lens and 
the amount of NAPL that becomes trapped. Chapter 3 deals with removal of 
LNAPL through an extraction well with special attention to the incorporation 
of multi-phase seepage conditions. The aim is to obtain the removal rate 
and the extension of the remaining NAPL. Chapter 4 presents and analyzes a 
multi-phase flow model for air sparging in a homogeneous soil and Chapter 5 
describes air sparging in a layered soil. For the effectiveness of sparging it is 
crucial to determine the horizontal extension of injected air. Solutions to all of 
these problems are obtained by numerical and analytical methods and provide 
quantitative information that supports optimization of the soil remediation 
techniques. 

In the following sections of this introduction we discuss the main features 
of the thesis. In Section 1.4 we present the basic formulation of our multi
phase flow model. Section 1.5 introduces the numerical method, which is 
used for computing solutions to the general model of Section 1.4. For the 
specific contamination and remediation cases the global model is reduced to 
subproblems that can be treated mathematically, as indicated in Section 1.6. 
Most of the reduced problems admit so called similarity solutions. These 
explicit or almost explicit analytical solutions are presented in Section 1.7. 
In Section 1.8 we discuss the criteria for the applicability of the analytical 
solutions to the non-reduced problems. As an illustrative example Section 1.9 
shows how a relatively simple flow problem involving NAPL entrapment is 
solved by a similarity solution. 

1.4 General model 

The multi-phase flow model consists basically of the mass balance equations 

•H+B^K- '^e^ 0 - ''="•"• (11) 
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with N = 1, 2, and Darcy's Law 

jj _ Kgbs Kj oPj i-, „-, 
Uj - H dR {1-2) 

&abs krj f u Pj 

for both the wetting (w) and the non-wetting (n) phase. T is time and i? 
and Z are the horizontal and vertical coordinates respectively, where N = 1 
represents a planar and N = 2 an axisymmetric two-dimensional domain. Sj 
is the effective phase saturation, Uj and Vj are phase horizontal and vertical 
flow velocities respectively, Pj is phase pressure, pj phase density, krj phase 
relative permeability, fij phase viscosity, 4> porosity, Ka^s absolute permeability 
and g gravitation. For the two-phase problem of air sparging water is the 
wetting and air the non-wetting phase. For the three-phase problem involving 
LNAPL the latter is the non-wetting phase and air is the third phase. Air is 
present with saturation Sa and has constant pressure (Pa = 0) due to the 
Richards assumption, such that the equations for two phases analyze the flow 
sufficiently. 

To describe three-phase flow completely including possible non-wetting 
phase entrapment, it is convenient [48] to define additionally total fluid sat
uration St, trapped non-wetting phase saturation Snt, free non-wetting phase 
saturation Snf, apparent water saturation Swa and the capillary pressures Pnw 

and Pan-, which satisfy the relations 

(1.4) 

The definition of Swa reflects that trapped NAPL is enclosed by the water 
phase and Swa coincides with Sw if Snt = 0. For the constitutive relations we 
take functions that were originally developed by van Genuchten and that were 
extended for multi-phase flow by Parker and Lenhard [47]. For the hysteretic 
relation between capillary pressures and saturations we use [48] 

1 if Pw > 0 and Pn < Pw 

bw + bn 

st + sa 
Ow + bnt 

&nf + Ont 
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= 
= 
= 
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= 
= 

St 
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P — P 
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-Pn-
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1 if Pn > 0 or Pw > 0 

St = { [l+[—Pan)n)n if-±-Pw<Pn<0 (1.6) 
V Pw9 J J ßan 

&wa II "n < "̂  -MD < 0, 
Pan 

where a > 0 and n > 1 are van Genuchten soil parameters. Furthermore, 
oinw — & ßnw and a<m — ot Am » where ^„„j and ß a n are the ratios of the NAPL-

water and the air-NAPL to the air-water surface tensions, with — h —— = 
Pnw Pan 

1. The latter of relations (1.5) specifies the water saturation in par ts of the 
domain where NAPL is absent. Relative permeabilities satisfy [38] 

krw = s j (l-ll-SJ-1 ) " 1 (1.7) 

krn = (St -Swa)2 1 - SrSâ1 - 1 - Sr1 • (1.8) 

We employ the simplified model for entrapment [36], accounting only for 
non-wetting phase entrapment by water, that may predict a positive trapped 
saturation only at locations where NAPL has been present, according to 

Snt — ' 

1 — <? 
I Own , „ 

11 °wa •? °n 1 + FL(1-S™») 1 + FL(1-Swa) w>* (1.9) 
i c m 
»a — °w o if swa = srn 

whereas the minimum water saturation S™m is given by 

S™n(R,Z,T) = mm SW(R,Z,T')- (1-10) 

Land's factor [37], FL is given by 

where S™ax is the maximum residual NAPL saturation. Observe tha t rela
tion (1.9) predicts only t rapped NAPL if at some earlier t ime the water sat
uration has been smaller, which is usually the case if NAPL recedes. Hence, 
the relation for Snt is implicitly dependent on time and brings hysteresis in 
equations (1.1), (1.2) and (1.3). An example of the hysteretic relation between 
capillary pressure and saturation is shown in Figure 1.4 of Section 1.9. 
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For two-phase flow we have always St = 1 instead of relations (1.6). Hence, 
relation (1.5) reduces to 

1 if Pn < Pw 

*- = < W ^ P n i _ ' » A. > P.. <L12) 

and relations (1.7) and (1.8) to 

i - i \ 2 

krw = S«,* ( 1 - ( l - Ä T 1 1 1 (1.13) 

fcrn = (1-Swa)> ll-SrSä1) . (1.14) 

Soil heterogeneity is included by spatial dependence of the parameter a 
and the absolute permeability Kais. Defining for some location in the soil 
reference values ä and Kaf,s and defining a spatially variable function j(R), 
the spatially variable a and Kabs satisfy the relations 

a = j(R)ä and Kabs = ^2{R) Kabs. (1.15) 

This dependence on spatial heterogeneity is in agreement with the scaling 
theory of similar media, which relates both capillary pressure and absolute 
permeability to the soil pore size [40, 44]. 

We choose to combine equations (1.1), (1.2) and (1.3) into the so called 
Richards equations 

dSj 1 d ( N_x dP3\ d f dP3\ dKj _ 
*jT-R^dR{R K>-dR)-dz{K>^z)-p>g-dZ-°' ( L 1 6 ) 

K h k • 
for j = w,n, where we have introduced the phase mobility Kj = ———— for 

/in
convenience. Equations (1.16) together with the constitutive relations must 
be solved for the variables Sj and Pj due to appropriate boundary and initial 
conditions. These equations are implemented in our numerical model. 

1.5 Numerica l me thod 

Equations (1.16) for a two-dimensional planar or axisymmetric domain to
gether with the hysteretic and spatially dependent constitutive relations have 
been implemented in a numerical code. The flow domain is discretized by 
linear triangular finite elements and time discretization is fully implicit. The 
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numerical model is based on the mixed form of the Richards equation, i.e. the 
formulation of equations (1.16), which involves both saturation and pressure, 
instead of either a pressure based or a saturation based form. This mixed for
mulation admits the so called modified Picard method [13, 35], which solves the 
resulting nonlinear system of algebraic equations by a simple Picard iteration. 
The solution method is supposed to take advantage of the mass conservation 
property of the saturation based formulation, but avoids the problems that 
arise from degeneracy of the equations if one of the phases is absent and the 
discontinuities of the saturation if the soil is heterogeneous. Furthermore, the 
model is able to treat the usual boundary conditions, such as imposing pres
sures, saturations and flow velocities. In Chapter 5 the implementation of 
the variational multi-phase seepage face conditions in the numerical code is 
described. 

Numerical simulations were performed for the described contamination 
and remediation problems, which are mainly used to verify the analytical 
approximations. The simulations indicate how well the assumptions for the 
approximations are met and for which range of the physical parameters the 
analytical solutions are acceptable. Unfortunately, in all cases sufficiently 
accurate simulations require large computation times, varying from a few hours 
to a few days. 

To get an impression of the cases that are investigated, we present in Fig
ures 1.1 and 1.2 examples of numerical results for the various contamination 
and remediation cases. In every situation we consider only R > 0 for sym
metry reasons. Figure 1.1.a shows LNAPL saturations during redistribution 
including entrapment. The NAPL spreads out to the right and the relatively 
large NAPL saturations close to the Z-axis are caused by entrapment. Fig
ures 1.1.b and 1.1.c show the LNAPL lens during extraction at the Z-axis. In 
Figure 1.1.b the domain is unbounded, i.e. NAPL can freely spread out to the 
right, whereas in Figure 1.1.c the domain has an impermeable boundary at 
the right. Figure 1.2 presents air saturations during steady state air sparging, 
i.e. when the amount of injected air is equal to the amount of air that leaves 
the domain at the top. Figure 1.2.a shows sparging in a homogeneous soil 
and Figure 1.2.b in a layered soil. In the latter case air tends to spread in 
horizontal direction just below the low permeable top layer. In both cases the 
dense pattern of horizontal contour lines above Z = 0 denotes the original 
unsaturated zone. 

1.6 Reduced equations 

Although equations (1.16) can be treated numerically, accurate simulations 
are very time consuming. Therefore, for the specific contamination and re-
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s, 
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25.0 
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10.0 

Figure 1.1: Contour plots of NAPL saturations that are obtained by the 
numerical model, for (a) redistribution of a LNAPL lens including NAPL en
trapment, (b) withdrawal at the Z-axis of LNAPL from an unbounded domain 
and (c) withdrawal from a bounded domain. In all situations the level Z = 0 
m denotes the water table. 
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•1.0 

0.05 0.95 1.85 2.75 3.65 

R ( m ) 

(a) 

1.05 0.95 1.85 2.75 3.65 4.55 

R(m) 

(b) 

Figure 1.2: Contour plots of air saturations that are obtained by the numer
ical model for (a) air sparging in a homogeneous soil with a source filter at the 
Z-axis between Z = —5.0 and Z = —4.0 m, (b) air sparging in a layered soil 
with a heterogeneity at Z = —4.0 m and a source filter between Z = —8.5 and 
Z = — 7.5 m. Both domains are axisymmetric and the level Z = 0 m denotes 
the water table. 
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mediation cases we show how these equations can be reduced by eliminating 
equations or terms that are of minor importance, and by decreasing the dimen
sionality of the problem, such that the resulting subproblems can be further 
analyzed and solved. The solutions of the reduced problems usually provide 
a better understanding of the specific situations than numerical results and 
they provide relatively simple relations between input and output parameters. 
Furthermore, they can be used to test the accuracy of numerical codes. 

In all considered situations the equation for the water phase in (1.16) can 
be neglected, as described in the Section 1.2, by assuming that the water 
pressure is distributed hydrostatically, i.e. the pressure varies linearly with 
height and is also constant in horizontal direction, 

Pw = -pwgZ, (1.17) 

where we have chosen Z = 0 as the level where Pw = 0. Using the definition 
of capillary pressure Pnw = Pn — Pw, behavior of the non-wetting phase is 
described by 

dSn I d / ^ _ ! dPnw\ d ( dPnw\ dKn 

(1.18) 
where A p = pw — pn. The four terms of equation (1.18) represent accumu
lation, capillarity in horizontal direction, capillarity in vertical direction and 
gravity effects respectively. 

In case of LNAPL movement on a horizontal water table (Figure 1.1) we 
assume that the horizontal extension of the lens is much larger than the vertical 
extension. As a result, the vertical flow velocities are negligible and capillarity 
in vertical direction and gravity effects balance. Hence, the third and fourth 
term of equation (1.18) cancel. This situation is referred to as vertical flow 
equilibrium [10, 65] for which NAPL pressures are hydrostatically distributed, 
yielding 

Pnw = Apg(Z-Znw), (1.19) 

where Z = Znw(R) denotes the level where Pnw = 0. To eliminate the Z-
dimension the remaining two terms are vertically integrated, e.g. see [10, 31, 
49], which leads with (1.19) to 

F ( ^ ) + A p 9 ^ J L ( R - ^ ) = 0 , (1,0) 

where Wj = (f> ƒ Snf dZ is the free NAPL volume per unit horizontal area 
and K = ƒ Kn dZ is the vertically averaged conductivity. The piecewise linear 
function F represents approximately the hysteretic effect of entrapment and is 
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derived from the nonlinear relation (1.9) for trapped NAPL. By the constitutive 
relations and relation (1.19) Znw can be related to Wf and equation (1.20) is 
transformed into 

an equation for Wf (R, T). 
For air sparging in a homogeneous medium (Figure 1.2.a) we neglect the 

accumulation term of equation (1.18) by considering the steady state. Fur
thermore, because the density difference Ap is very large, we assume that 
in vertical direction gravity effects are dominant. This means that the first 
and the third term of equation (1.18) are negligible, yielding an equation for 
Kn(R,Z), 

1 9 („N-\rs dpnw(Ts x dKn\ dKn 

R^dR{R Kn-dK;{Kn)-dR)-^P9Tz=^ ( L 2 2 ) 

where the constitutive relations provide Pnw as a function of Kn. 
During air sparging in a soil with a horizontal low permeable layer on top 

of a high permeable layer the horizontal spreading of air is governed by the air 
flow in a region just below the low permeable layer. Only across the interface 
that separates the two layers, say at level Z = Z*, a small vertical flow velocity 
exists. Therefore, we assume that within the region below the interface the 
vertical flow velocities are negligible, see Figure 1.2.b. As for the LNAPL flow 
we have again vertical flow equilibrium with hydrostatically distributed air 
pressures, which is now given by 

Pnw = P* + Apg(Z-Z*), (1.23) 

in terms of P*(R), the capillary pressure at the interface. Within this flow 
region the first, the third and the fourth term of equation (1.18) are negligible. 
Vertical integration of equation (1.18) yields an equation for P*(R), 

1 d / „ v _ , ^,^dP 
R"-1 dR 

(RN~1 K(P*) °Jp) - 7
2 (A pgf Kb P*) = 0, (1.24) 

where K = f0 K(p)dp and K(Pnw) = Kn(Sw{Pnw)). The term 
72 (Apg)2 K(jP*) incorporates the small vertical flow velocity across the 
interface, where 7 < 1 is the degree of heterogeneity between the layers. 

Defining the nonnegative functions D\(Wf) = — K{WA (Wf) m 

dWf 
dP 

equation (1.21), D2(Kn) = Kn—^-(Kn) in equation (1.22) and DS(P*) = 
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K{P*) in equation (1.24) shows that the three equations can be classified as 
nonlinear diffusion equations. More specifically, equations (1.21) and (1.22) 
are both nonstationary diffusion equations if we interpret the Z-coordinate 
in (1.22) as time, and equation (1.24) is a stationary diffusion-reaction equa
tion, where the second term represents a nonlinear reaction. The three dif
fusion coefficients satisfy Di(0) — 0, such that the equations may degener
ate. This means for the respective problems that in the horizontal domain a 
bounded region exists where the main variables Wf, Kn and P* are nonzero 
and that is enclosed by a free boundary. In other words, the NAPL lens and 
the cone of injected air always have finite extensions. 

1.7 Similarity solutions 

Equation (1-24) depends only on one variable (R) and we have to treat it in 
this form. Equations (1.21) and (1.22) still depend on two variables and can 
be further reduced. 

In the physical problems that have led to equations (1.21) and (1.22) the 
variables Wf and Kn attain values that are relatively small. For Kn the 
maximum attainable value is estimated in Section 4.4.1. As a result, the 
diffusion coefficients D\ and Z>2 are reasonably well approximated by power 
law functions of the form D(u) = C um for u > 0, with coefficients C, m > 0. 

After appropriate rescaling, where u denotes the scaled Wf and Kn re
spectively, equations (1.21) and (1-22) are reformulated in the dimensionless 
form 

'(fD-^O-"-1»"!;)- <125» 
where for argument y the function ƒ represents the entrapment as 

'H" *!<* <126) 

with p > 1. For p = 1 the left-hand-side side of equation (1.25) becomes 
the simple time derivative. For p > 1 an increase of u with time proceeds 
different from a decrease, which reflects hysteresis. Equation (1.25) is the 
(modified) porous medium equation, which mathematical properties have been 
investigated extensively, e.g. see [2, 52], also with the modified left-hand-
side [29]. 

Air sparging takes place only in an axisymmetric domain, i.e. N — 2, 
without entrapment, i.e. p = 1. For LNAPL redistribution we consider both 
N = 1 and N = 2, and include entrapment, i.e. p > 1. In both domains a 
free boundary, say r = a(t), occurs, which denotes the maximum horizontal 
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extension of LNAPL and air respectively. The boundary conditions for these 
problems are 

o u 
— (0,i) = 0 and u(a(t),t) = 0, (1.27) 
or 

i.e. a no-flow condition and a condition specifying that u vanishes at the free 
boundary. 

For LNAPL removal we consider N = 1 and p > 1 in either an unbounded 
domain involving a free boundary or in a domain that is bounded to the right, 
say at r = I, see Figures 1.1.b and 1.1.c respectively. On the bounded domain 
u is everywhere decreasing with time, which means that in this case even for 
p > 1 equation (1.25) is not hysteretic. The removal through the well at r — 0 
is treated by the condition [7] 

u ( 0 , t ) =0 . (1.28) 

In the unbounded domain we have again u = 0 at the free boundary (1.27) 
and in the bounded domain a no-flow condition is imposed at r = I. 

For equation (1.25) a class of similarity solutions exists, i.e. 

v(r,t) = {t-tQy^h{ri) with rj = r{t-to)'", (1.29) 

with similarity profile h and parameters fi, v and to- If a free boundary occurs, 
it is represented by r = A (t — to)_i / with 0 < A < oo, thus introducing the 
additional parameter A. In the bounded domain we set A = I and require 77 = 
r, i.e. v — 0. Hence, the similarity solution reduces to v(r, t) = (t — to)~ß h(r), 
which is a simple separation of variables. 

Furthermore, substitution of (1.29) in (1.25) yields an ordinary differential 
equation for h(r]) for 0 < 77 < A and the relation 

2i/ + m / i - l = 0 . (1.30) 

This implies for the bounded domain that fx = — and a solution for h in terms 
771 

of beta-functions is obtained, which was found by Boussinesq [9] for m = 2. 
For the problems on the unbounded domain we must find a second relation 
between ß and v, say for k = —. It is fairly easy to show that k = N for 

v 
the redistribution without entrapment and for the sparging problem, i.e. for 
conditions (1.27) and p = 1. Furthermore, the corresponding profile h is an 
explicit function of 77 called the Barenblatt-Pattle point source solution [5, 50]. 
For the LNAPL removal without entrapment, we find k = N + 1 and the 
corresponding profile is the explicit dipole solution [8]. Both solutions for h 
contain the yet unknown parameter A. 
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For p > 1 we find the value of k by solving the differential equation for 
h(r]) numerically. Since the equation is invariant under a scaling with A, 
the computation yields a transformed solution h(Ç) for 0 < £ < 1, which is 
independent of A. Hence, for both the redistribution and the removal problems 
the value of k which depends on the value of p, is obtained and the respective 
profiles h are determined. For the redistribution we have always k > N and 
for the removal k > N + 1. 

1.8 Applicability of the similarity solutions 

The similarity solutions v (1.29) still contain the unknown parameters A and 
to. These parameters must be determined from the initial conditions of equa
tion (1.25). Unfortunately, the initial conditions in general do not have the 
similarity shape of v. However, it is proven that for increasing times the shape 
of u corresponding to arbitrary initial conditions converges reasonably fast to 
the shape of v [2]. Therefore, we compare u and v at some time after the start 
of the process and determine the values of A and to, such that for all later times 
good agreement between u and v is guaranteed. To achieve a good comparison 
we formulate global characteristics of the similarity solution corresponding to 
data that can also be obtained in practical situations. For example, A could 
be obtained by comparison of the position of the free boundaries of u and v, 
but measuring this position is difficult and suffers much from local deviations. 

One of the global characteristics is the mass of the solution, i.e. for u 
of equation (1.25) the N — 1 st moment of ƒ rN~l u dr. Spatially integrating 
equation (1.25) for p = 1 and applying the boundary conditions (1.27) shows 
mass conservation, i.e. the mass of u is independent of time. Similarly, if for 
the unbounded domain with p = 1 condition (1.28) is imposed, integration 
shows that the Nth moment ƒ rN udr is independent of time. Evaluating 
the equivalent moments of v (1.29) reveals that these are also independent of 
time, because ß — N v and fi — (N + 1) v respectively, which is equivalent 
to the earlier obtained values k = N and k = N + 1 for the respective cases. 
However, it turns out that these moments for v are special cases of the general 
moment Mk-i = ƒ rk~l v dr which for all p > 1 is independent of time. As a 
result, identification of Mk-i with its equivalent for u yields an estimation of 
the value of A independent of £o-

Furthermore, except for the mass conservative cases of LNAPL redistribu
tion without entrapment and air sparging the mass depends on time and can 
be used to obtain an approximate value for the time scale to- For the removal 
problem the mass is directly related to the outflow rate, which is easily meas
ured in practice. Only for the mass conservative cases other characteristics 
must be used to find to- F° r example, for air sparging in a homogeneous soil 
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Figure 1.3: Initial water saturations for the one-dimensional redistribution 
problem. 

where the Z-coordinate was interpreted as time, the vertical position of the 
center-point of the sparging filter is taken for to. 

Although equation (1-24) for air sparging in a layered soil has a different 
nature than equation (1.25), computation of its solution can also be completed 
only by a mass balance argument. 

1.9 Horizontal redistribution of NAPL and water involving 
NAPL entrapment 

The effect of NAPL entrapment by water and the use of similarity solutions 
is illustrated by the following relatively simple problem of horizontal redis
tribution of NAPL and water. This process can be analyzed analogous to a 
study of horizontal redistribution of water in a long homogeneous soil column 
including hysteresis of the capillary pressure function [53]. In this study only 
flow of water was taken into account, according to Richards assumption for air. 
The resulting one-dimensional single-phase flow problem started from uniform 
but different water saturations in the two halves of the column, say Sw = £* 
for X < 0 and Sw = S* for X > 0 respectively, as shown in Figure 1.3. 
In [53] a similarity solution was derived for the water saturations during the 
redistribution. Here we show that this similarity solution is also applicable 
to the essentially two-phase problem of horizontal redistribution of NAPL and 
water, even when entrapment of NAPL by water, according to the hysteretic 
constitutive relations of Section 1.4, is taken into account. 

Since the redistribution process involves flow of two phases, i.e. water (w) 
and NAPL (n), in one horizontal dimension, we obtain from equations (1.2) 
and (1.3) for the flow velocities 

TT R-abs krj O ij /1 o i \ 
Uj = i-5T?> J = w,n. (1.31) 

ßj o X 
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However, because no overall flow through the column exists, it follows by a 
simple mass balance argument that Uw = —Un. Hence, only one of the velocit
ies needs to be found. According to the so called fractional flow approach [9, 14] 
we subtract equations (1.31) and obtain for the water velocity 

TT _ &abs A O Pnw 
Uw - ßw dx ' [Là2) 

where Pnw = Pn — Pw denotes the capillary pressure and 

A = krnkrw , (1.33) 

the mobility function with the mobility ratio M = ——. Since for two-phase 

flow Sw + Sn = 1, we consider only the mass balance equation for water (1.1) 
in one dimension 

4>~dT+~dY = ° for T > °' ~°° K x < °°' (L34) 

To formulate equation (1.34) with (1.32) as a problem for Sw only, we 
specify the functions Pnw(SWa), krw{Sw) and krn(Swa) by relations (1.12), 
(1.14) and (1.13), where Swa = Sw + Snt and Snt is given by relation (1.9). 
Furthermore, we impose initially 

W = (* axtl, ( L 3 5 > 
as in Figure 1.3, where the constant S* and S* satisfy 0 < S* < S* < 1, and 
we assume that initially no NAPL is trapped. 

We introduce the dimensionless variables 

r - n X t - Kabs Pw 9 ii - ^ U n - -^— P (1 36Ï 
<PHw KabsPwQ Pw9 

where a is defined by equation (1.12). Hence, we obtain 

dS«L + duvL = Q { o i t > 0 0 0 < x < 0 0 ( L 3 7 ) 

ot ox 

and 
uw = -\—z—, (1.38) 

ox 
with 

«.<*•»>-{£ l l t l , <139> 
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Furthermore, the dimensionless relation for the capillary pressure according 
to (1.12) is given by 

Pnw(Swa) = (sJr - l ) n (1.40) 

Since S* < S*, for X < 0 the water saturation increases as a function 
of time and NAPL entrapment can occur only in this half of the domain, i.e. 
according to (1.9) 

L — o* 1 — owa . -
it x < 0 Snt={ 1 + FL{1-S>) l + FL(l-Swa) (1-41) 

0 if x > 0. 

Hence, Sw and Swa are related by 

Sw = Swa - 1 + F ^ f - 5.) + 1 + W-Swa)
 i f X < ° ' ( L 4 2 ) 

whereas 5^ and Swa coincide if x > 0. Typical examples of the resulting 
capillary pressure and mobility functions, pnw and A are shown in Figure 1.4 
as hysteretic functions of Sw. 

By substitution of (1.38) in (1.37) we obtain the nonlinear diffusion equa
tion 

dSw d / , „ , dS, 
(D{SW) -~^j for - o o < x < o o * > 0 (1.43) 

dt dx 

with the diffusion function 

D(SW) = ~X^(SW), (1.44) 

which has different definitions for x < 0 and x > 0, according to (1.42). 
For all t > 0, we require continuity of water velocity uw and capillary 

pressure pnw at x = 0 [53, 59], whereas by continuity oi pnw(Swa) (1-40) the 
latter implies continuity of the apparent water saturation Swa at x = 0, i.e. 

Swa(Si) = Sr, (1.45) 

with Si(t) — limx-|-o Sw(x,t) and Sr(t) = limX4_o Sw(x,t). Imposing initial con
ditions (1.39) to equation (1.43) yields a well-posed problem for Sw. 

We solve (1-43) by means of the similarity transformation [53, 60] analogous 
to (1.29) 

Sw(x, t) = h(rj) with r) = xt~*, (1.46) 
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4.0 

(a) 

(b) 

Figure 1.4: Dimensionless hysteretic capillary pressure (a) and mobility (b) 
functions of water saturation, with parameters n = 2.5, M = 2.0, S™fx — 0.3, 
i.e. FL = 2.33, and S1* = 0.3. The graphs follow different paths for increasing 
and decreasing water saturations. 
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Figure 1.5: Similarity solutions for the water and apparent water saturations 
at three different times for parameter values m = 0.6, M = 2.0, S™ax = 0.3, 
i.e. FL = 2.33, S* = 0.3 and S* = 1.0. 

where we have taken to = 0 in view of the initial conditions at t = 0 (1.39). 
For h{r]) the ordinary differential equation 

-rjti + {D{h)h')' = 0 f o r - o o < r / < o o (1.47) 

is obtained. The initial condition (1.39) requires the boundary conditions 

h{—oo) = S* and h(oo) = S*. (1.48) 

At r? = 0 we have continuity of ha(h) and of D(h)h', where ha(h) = Swa(h). 
For 77 < 0, ha is defined by the inverse of relation (1.42), which can be obtained 
explicitly, and ha = h for r/ > 0. At 77 = 0 we define hi = lim^o M7?) a n d 
hr = lim^o M7?) analogous to the definition of Si(t) and Sr(t). 

Since hi and hr are a priori unknown, numerical solution of equation (1.47) 
on the two halves 77 < 0 and 17 > 0 respectively is a nontrivial exercise, which 
is described in [60] for a redistribution problem where hysteresis occurs due 
to different material properties at both sides of rj = 0. 

In case of degenerate diffusion, i.e. for the present diffusion function (1.44) 
if S1* = 0 or S* = 1 [58] where D — 0, we find the finite numbers 77* < 0 or 
77* > 0, satisfying (̂77*) = 5* or (̂77*) = S*, with (̂77) = 5* for 77 < 77* or 
h(rj) = S* for 77 > 77*, respectively. 

For the hysteretic relations of Figure 1.4 we show in Figure 1.5 in dimen-
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sionless coordinates for three different times the similarity solution of equa
tion (1.43) for the water saturation Sw(x, t) = h(rj) and for the apparent water 
saturation Swa. At x = 0 we identify Si = hi and Sr = hr. The solution for 
the trapped NAPL saturation Snt is found as the difference Swa — Sw and for 
the free NAPL saturation as 1 — Swa. Observe that for x > 0 the curve of 
Sw attains the value S* = 1 at a finite distance x = rj*t~î because of the 
degenerate diffusion. 

The study of this geometrically simple problem shows how behavior of one 
phase may completely determine the entire flow process. Furthermore, al
though the complicated phenomenon of hysteresis is incorporated, a similarity 
transformation and an almost explicit solution can be obtained. The simil
arity solution helps testing numerical models, especially around x = 0 and 
at the location of the free boundary, where discontinuities of the solution or 
its derivative occur. Finally, the similarity solution facilitates investigation of 
the effect of varying parameters, such as the spreading velocities of the profile 
with and without entrapment. 

Notation 

A position of free boundary in similarity profile 
a position of free boundary for similarity solution 
Di, D various diffusion coefficients 
F ( ƒ ) (scaled) trapping function 
FL Land's factor 
g gravity [ms -2] 
h (h) (scaled) similarity profile 
ha similarity solution for Swa in Section 1.9 
hi, hr values of similarity solution at r\ = 0 in Section 1.9 
Kabs absolute permeability [m2] 
Kj phase j conductivity [ms -1] 
K, K various averaged NAPL conductivities 
k trapping parameter in similarity profile 
krj phase j relative permeability 
/ dimensionless length of bounded domain 
M mobility ratio 
Mk-i dimensionless time-independent moment of free NAPL saturation 

per unit lateral area 
m power in coefficient of porous medium equation 
N number of horizontal dimensions 
n van Genuchten parameter 
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phase j pressure [Pa] 
(dimensionless) phases j , k capillary pressure [Pa] 
capillary pressure at interface between soil layers [Pa] 
trapping constant in function ƒ 
(dimensionless) horizontal coordinate [m] 
phase j saturation 
saturations at x = 0 in Section 1.9 
free non-wetting phase saturation 
trapped non-wetting phase saturation 
maximum residual non-wetting phase saturation 
total fluid saturation 
apparent water saturation 
minimum water saturation 
initial saturations in Section 1.9 
(dimensionless) time [h] 
starting time of similarity solution 
(dimensionless) phase j horizontal flow velocity [ms_1] 
variable in porous medium equation 
similarity solution 
phase j vertical flow velocity [ms -1] 
free NAPL volume per unit lateral area [m] 
(dimensionless) horizontal coordinate [m] 
vertical coordinate [m] 
elevation where Pnw is zero [m] 
vertical position of interface between soil layers [m] 
van Genuchten parameter [m^1] 
ratios of air-NAPL and NAPL-water to air-water surface tensions 
degree of heterogeneity 
scaled similarity variable 
positions of free boundaries in Section 1.9 
mobility function 
powers in similarity solution 
phase j viscosity [Pa s] 
phase j density [kg m - 3 ] 
porosity 
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A similarity solution for oil lens redistribution 
including capillary forces and oil entrapment 

2.1 Introduction 

Spills of hydrocarbons have caused contamination of numerous aquifers. Non
aqueous phase liquids that are less dense than water, such as gasoline, (hence
forth called oil for brevity) may accumulate as a lens at the phreatic water 
surface and spread laterally. Spreading of such a lens is due to gravity and 
both air-oil and oil-water capillary forces. The redistribution often proceeds 
at near-hydrostatic pressures. At locations within the lens where the water 
saturation increases, part of the oil becomes trapped as discrete drops enclosed 
by water. The entrapment affects the redistribution process and causes con
siderable problems for remediation of contaminated aquifers. Therefore, it is 
important to predict the lateral extension of oil lenses and the amount and 
location of trapped oil. 

For prediction of oil redistribution, constitutive saturation-capillary pres
sure and relative permeability-saturation relations are necessary. These re
lations become complicated when the hysteric entrapment mechanism is in
cluded. Parker and Lenhard [38, 48] proposed an extended closed-form model 
for these constitutive relations. In many situations reduced versions of this 
model provide reasonable approximations of the flow equations. 

A common way to reduce the flow equations is to assume that vertical pres
sure distributions are hydrostatic, i.e. variables depend only on the difference 
between the vertical position and a reference elevation, e.g. the level separ
ating the water and the water-oil regions. Using this assumption the vertical 
dimension of the multi-phase flow problem can be eliminated by vertical integ
ration of variables [9, 49] and only the oil flow equation needs to be considered. 
Two vertical equilibrium approximations are often used [31]. The simplest is 
the gravity-segregated flow model with sharp interfaces, without [17, 25, 26] 
or including [31, 45] trapping effects. This model applies generally during the 

23 
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early stages of spreading when the oil lens is relatively thick or in relatively 
coarse porous media, where capillary forces can be neglected. However, a ma
jor disadvantage is that the constant oil saturation must be known a priori. 
More involved is the capillarity-gravity-segregated flow model, where vertical 
capillary and gravitational forces balance [10, 11]. 

Kaluarachchi and Parker [36] numerically studied oil redistribution in two 
dimensions using the three-phase hysteretic constitutive relations [38, 48], 
where hysteresis was restricted to entrapment of oil by water. Huyakorn e.a. 
and Wu e.a. [31, 63] numerically investigated three-dimensional spreading of 
an oil lens using vertical integration. However, their investigation was re
stricted to the part of the oil lens where only water and oil were present and 
neglected the three-phase part. 

Miller and Van Duijn gave explicit similarity solutions for redistribution 
without oil entrapment of a two-dimensional axisymmetric oil lens for the 
gravity-segregated flow model [45]. They included also oil entrapment by 
water and showed that in this case no explicit solution exists, but that a 
similarity solution remains, which predicts the lateral area where trapped oil 
is present. The latter solution was found by Kochina, see [7], who investigated 
a sharp-interface model for spreading of a water mound during which residual 
water is left behind. 

Recently Bear e.a. [10] presented analytical solutions for spreading of a 
LNAPL lens on the water table using a capillarity-gravity-segregated flow model. 

As accurate numerical computations for oil lens redistribution, which re
quire flow domains of small height (a few meters) and large width (several 
tens to hundreds of meters), are still far from trivial, approximate analytical 
solutions can be very helpful. Our scope is to find an analytical solution that 
provides a reasonable approximation of the full flow model for redistribution 
of a designated oil volume in a two-dimensional planar or axisymmetric homo
geneous domain including both the effect of capillary forces and the effect of oil 
entrapment. We use the vertical equilibrium assumption of capillarity-gravity-
segregated flow to reduce the vertically integrated form of the multi-phase flow 
constitutive relations [10, 38, 48] and present the criteria for the validity of 
this assumption. Hysteresis is incorporated by a nonlinear model for oil en
trapment in water [36], but we show that under the present conditions the 
expression for the vertically integrated trapped oil saturation can be reduced. 
The resulting differential equation admits an analytical solution for the free 
oil volume per unit lateral area as a function of time and the lateral space 
coordinate. 

To show that the analytical solution provides a good approximation of 
the oil lens redistribution, we have carried out several illustrative numerical 
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simulations, which are based on the nonreduced flow model and the nonlinear 
model for oil entrapment, and compare the results with the analytical solution. 

2.2 Mode l 

We use for both water (w) and oil (o) the mass balance equations 

and Darcy's Law 

Uj = rj--ä£ 2.2 
J pj on 

Kkrj (dPj \ ,nns 

Vj = — ^ - [ - ä i + pjg), J = W,O, (2.3) 

where N = 1,2 specifies the lateral dimensionality. T is time and R and Z are 
the horizontal and vertical coordinates respectively. Sj is effective phase satur
ation, Uj and Vj are phase horizontal and vertical flow velocities respectively, 
Pj is phase pressure, pj phase density, kTj phase relative permeability, pj phase 
viscosity, <ƒ> porosity, K absolute permeability and g gravitation. We assume 
that the soil is homogeneous and isotropic, that both fluids are incompressible 
and that air is present with saturation Sa and constant pressure (Pa = 0). 
We define according to [48] total fluid saturation St, trapped oil saturation 
Sot, free oil saturation S0f, apparent water saturation Swa, oil-water capillary 
pressure Pow and air-oil capillary pressure Pao, which satisfy the constitutive 
relations 

bw + ib0 

St + Sa 

&W T Oot 

S0f + Sot 
P 
x ow 
p 
1 ao 

For the retention functions we use 

r l 

= 

= 

= 

= 

= 

= 

St 

1 

dwa 

So 

P — P 
1 0 -1 w 
-Po-

if Pw > 0 and P0 < Pw 

&wa — * 
an 

Pw9 

-l f 0 < Pw < P0 or 

J l f \ Pw < 0 and P0 > ~PW (2-4) 
Pao 

-a „ \n\n~1 .„ „ 1 
1 + 1 Pw) ) if Po < TTPW < 0 

Pw9 J J Pao 
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1 if P0 > 0 or Pw > 0 

St = i ( l+f-^fLpJfy it-Lpw<po<0 (2.5) 
K Pw9 J J ßao 

&wa !i "o < "7̂  M O < U, 
Pao 

where a > 0 and n > 1 are van Genuchten soil parameters. Furthermore, 

enow = & ßow and aao = aßa0, where /3ol„ and ßao are the ratios of the oil-

water and the air-oil to the air-water surface tensions, with — \- —— = 1. 
Pow Pao 

Relative permeabilities satisfy [38] . 

krw = s j 1 1 - ll-SJT1') j (2.6) 

n — 1 \ ( 1 o n — 1-fcro = {St-Swa)ï Ul-SJï1) -(1-Sr1) 1 • (2.7) 

We employ the simplified model for oil entrapment [36], that may predict 
a positive trapped oil saturation only at locations where oil has been present, 
according to 

i qmin i c 
1 °w 1 J™°- \e c ^ qmin 

1 1 '-'wa -* >->•>, Sot = { 1 + FL(1-S™) l + FL(l~Swa) _ wa' w^n (2.8) 
0 if owa = Sw , 

whereas the minimum water saturation 5™ n is given by 

Srn(R,Z,T) = min SW(R,Z,T'). (2.9) 

Land's factor [37], FL is given by 

'-'or 

where S™ax is the maximum residual oil saturation. 
To describe the redistribution of an oil lens we solve equations (2.1), (2.2) 

and (2.3) for time T > 0 in the domain R > 0, - co < Z < oo. Defining the 
Z-axis as the axis of symmetry we impose the no-flow boundary conditions 

U
T7 Z r]\ for i? = 0, - oo < Z < oo. (2.11) 
U0 — U I 
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air + water 

water 

Figure 2.1: Geometry of oil lens. 

The free oil is confined to two layers [49] as shown in Figure 2.1. Between 
the levels Z = Zu and Z = Zao water, oil and air are present, whereas between 
the levels Z = Zao and Z = Zow water and oil are present. Zu, Zao and Zow 

coincide at the water table outside the oil lens Z = 0 for R = Ri. Hence, 
Zow{R,T), Zao{R,T), ZU{R:T) and Rt(T) are defined by 

St = I, S0f = 0 if Z < Zow 

St = 1, S0f > 0 if Zow < Z < Zao 

St<l, Sof>0 if Zao<Z<Zu 

St<l, Sof = 0 if Z>ZU, 

for 0 < R < Ri and Zow = Za 

pressures these levels are given by 
Zu = 0 for R > R[. In terms of capillary 

*ow(£ow) — U, J aol-^aoj — U, rao\Zju) — -foto [ ^u)-
Pao 

Pow 
(2.12) 

Assuming that oil has infiltrated in the domain before T = 0, we prescribe 
an initial oil saturation 

Si (R, Z) 
0 

for Zow < Z < Zu 

elsewhere, 
(2.13) So(R,Z,0) = 

such that an oil volume 

/

oo roo 
/ RN~1Sl{R,Z)dRdZ (2.14) 

-oo JO 

is present in the flow domain, where we have also assumed that at T = 0 no 
oil is trapped. 
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2.3 A n approximate analytical solution 

2.3.1 Vertical flow equilibrium 

For our analysis we assume that the oil lens is at vertical equilibrium and 
that water and oil flow are segregated. At vertical equilibrium vertical flow 
velocities are negligible as the result of a balance of vertical capillary and 
gravitational forces. The corresponding flow pattern is generally referred to as 
capillarity-gravity segregated and has been analyzed extensively for two-phase 
flow, see e.g. [31, 65]. 
For the present three-phase flow process we consider the vertical oil flow ve
locity V0 that follows from (2.3), in terms of the fractional flow function, see 
e.g. [9], 

kro/p0 
fo = k la +k la ' ( } 

" T O / P'o ' " T IU /A 'U ; 

the vertical total flow velocity Vt — Vw+V0 and the capillary oil-water pressure. 
This yields 

Vo = îoVt-^Lfo(
dJ^L-±pg) iovZow<Z<Zu, (2.16) 

Pw V oZ J 
where Ap = pw — p0. In the three-phase layer we consider alternatively the 
vertical oil flow velocity in terms of the capillary air-oil pressure, yielding 

Vo = ^ T ( ^ " p o 9 ) forZao<z<Zu- (2"17) 

Consequently, these flow velocities are negligible if the vertical capillary pres
sure distributions are approximately hydrostatic, i.e. 

Pow = Apg{Z- Zow), for Zow < Z < Zu (2.18) 

Pao = p0g(Z-Zao), for Zao<Z<Zu, (2.19) 

where we have used the first and second expressions of definition (2.12). These 
distributions occur if the lateral extension of the layer where free oil is present, 
say Ri, is much larger than its thickness [10, 65], i.e. 

Zu ~ Zow « 1. (2.20) 
Ri 

With the pressure distributions (2.18) and (2.19) we obtain the fractional 
flow formulations for the lateral oil flow velocities U0 from (2.2), i.e. 

U0 = f0Ut + Z±Zf0Apg^ iovZow<Z<Zu (2.21) 
Pw oR 

U0 = -^Lp0g
d-^- îorZao<Z<Zu, (2.22) 

p0 ÓR 
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where Ut = Uw + U0. 
Furthermore, we assume that everywhere inside the oil lens, the water 

mobilities krw/p.w are much larger than the oil mobilities kro/p,0. Hence, we 
use the definition of f0 (2.15) to approximate 

/ o ~ 0 and ^ / o ^ ^ £ (2.23) 
Pw Po 

in equation (2.21). Because of the large water mobilities we obtain that the 
water pressure distribution is approximately hydrostatic with Pw = 0 for Z = 0 
at every lateral position, which implies that water and oil flow are segregated. 

In view of relations (2.6) and (2.7) the oil mobilities are relatively small if 
the free oil saturations are small. The latter are everywhere less than 1 — Swa, 
whereas inside the oil lens Swa as well as St is minimum at Z = Zu. According 
to relations (2.4) and (2.5) the capillary pressures P0W(ZU) and Pao{Zu) must 
be sufficiently small. Hence, we require that 

— P„Ä) = ~Pao(Zu) < 1 (2.24) 
Pw9 Pw9 

or, when we use the pressure distributions (2.18) and (2.19), 

Oiow (Zu - Zow) = a>ao [Zu - Zao) — < 1. (2.25) 
Pw Pw 

Observe that these constraints for the layer thicknesses that are made for the 
assumption of segregated flow, are rather strict. Alternatively, we may assume 
that the thickness of the oil lens is much smaller than the depth of the (water) 
saturated zone of the aquifer. Then, averaging over the depth of the aquifer, 
the water mobilities are much larger than the oil mobilities, which also justifies 
a segregated flow approach [10]. In most situations, except for very shallow 
aquifers, the latter constraint is met earlier. 

As the water pressures satisfy Pw — —pw g Z, the separating levels are 
related according to 

zow = --^ zao, zu = Jam- zao, with D = % ^ A (2.26) 
A/9 1-D ßaoPo 

where we have used the third expression of definition (2.12). Expressing the 
layer thicknesses as 

Zu — Zow = —— — Zao and Zu — Zao = — — Zao (2.27) 
Ap 1 — D Ap 1 — D 

the condition (2.25) coincides to 

an 

1-D 
Zao < 1. (2.28) 
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Furthermore, the expression (2.21) for the oil flow velocity coincides with 
expression (2.22) depending on Zao only, which is valid in the entire oil lens. 

Combination of equation (2.22) with the oil mass balance equation (2.1) 
yields one differential equation that describes the entire flow process, i.e. 

where we neglected the vertical flow velocity. Observe that condition (2.28) 
implies that free oil is confined to a lens of finite thickness [10, 11, 39], if 

D < 1. (2.30) 

We introduce the characteristic lengths and time 

ZC = , Re = I ,n XJV-1 ry ) Tc =
 C ° , (2.31) 

Oiow V(2 7r)iV lZc) Kp0g 

where the definition of Zc is based on condition (2.28). Hence, we define the 
dimensionless variables 

7 7? T 

Z/c nc J c 

Similarly, we make Zow, Zao, Zu and Ri dimensionless by scaling with Zc and 
Rc. This yields the differential equation 

which provides positive values of S0f = S0 — S0t for 0 < r < r;, zow < z < zu 

and t > 0. 

2.3.2 Vertical integration 

Because vertical pressure distributions are hydrostatic, we further reduce equa
tion (2.33) by vertical integration, which requires evaluation of 

wf = cj> r Sof dz = 4> r {St - Swa) dz (2.34) 
rzu fzu 

AC = / fcro\bwa-> &t) &Z = / kro{Dwa, Of) CLZ, yZ.ôo) 
J Zow J Zow 

where Wf(r,t) represents the free oil volume per unit lateral area and k(r,t) 
the vertically integrated relative permeability [31, 49, 63]. To rewrite equa
tion (2.33) in terms of the variable wj only, we approximate both k and zao 
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Figure 2.2: Vertically integrated free oil saturation Wf as a function of time 
during redistribution. 

by power law functions of Wf in Appendix 2A. Therefore, we approximate the 
retention functions (2.4) and (2.5) by power law functions, which is reasonable 
if condition (2.28) is satisfied. We obtain 

= Ai i Wf and k = \2uir 
5 n - 2 

2 ( n + l ) (2.36) 

where Ai and A2 are given by (2.75) and (2.76). 
Additionally, we define w0(r, t) as the total oil volume per unit lateral area, 

wt(r, t) as the trapped oil volume, whereas wt = w0 — Wf, and wm(r, t) as the 
maximum oil volume, i.e. 

wm{r,t) = max Wf(r,t'). 
t'<t 

(2.37) 

The hydrostatic pressure assumption implies that for every lateral position 
the integrated apparent water saturation attains its minimum at the time 
Wf attains its maximum. Furthermore, it is obvious that the redistribution 
proceeds as indicated by Figure 2.2, i.e. for every lateral position there exists 
one time tm > 0, for which Wf attains its maximum. 

In view of our numerical results we approximate the integrated form of the 
trapping mechanism (2.8) by a linear model, which predicts 

wt = < 
Ct • {wm - Wf) if 

0 if 

dwj_ 
dt 

dwf_ 
dt 

< 0 

> 0 
(2.38) 

at every lateral position where Wf is positive. The positive trapping constant 
ct must be fitted. In Appendix 2B we vertically integrate an a priori lin
ear trapping model under the assumptions that are used for the derivation 

file:///2uir
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of (2.36). The t rapping constant that results from this model is used to show 

tha t ct is always smaller than ——. 
Pw 

Writing the vertically integrated time derivative of equation (2.33) as 

[*m± if ^ > o 
d t dwf n \ -f dwf / n 

i^r (1-Ci) l f ^ < 0 ' 
we arrive a t the nonlinear diffusion equation 

' ( l ^ H ^ ^ - W ^ ) fort>0,0<r<r„ (2.40) 

where 

P = T^—, P > 1 (2.41) 

1 - C i 
ZcP X1X2 /„ AO, 

7 = p / , ^ (2-42) i?c(n + l) 
3 n - 2 

9 - WTTy I < 9 < 2 (2-43) 

and F is defined for some function y by 

^ ( y ) = ( p y ^ y " ! (2.44) 
yy> \ y if y < 0. v ; 

Because the 'diffusion' coefficient to? of equation (2.40) vanishes when wj 
reaches zero, the free boundary rj , which separates the regions where Wf > 0 
and Wf = 0, is at finite distance from the z-axis. 

We impose the boundary and initial conditions corresponding to (2.11) 
and (2.13), 

dwf 

dr 
(0,i) = 0 a n d wf(r,0) = wt(r), (2.45) 

where W{ = (ft ƒ Sidz is the initial oil volume per unit lateral area. According 
to condition (2.14) W{ satisfies 

H rN-l
Wl{r)dr = 1. (2.46) 

Jo 
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2.3.3 The similarity solution 

Equation (2.40) is the modified porous medium equation, that admits a sim
ilarity solution of the form [7, 29] 

Wfa(r,t) = l i ~ " h ^ ^ ^ iorO<r<rA 
3 V ' ' \ 0 for r > rA, K ' 

where we have introduced t = j • (t — to) and to represents the time at which 
the solution becomes singular. rA = Av~ï t", A G (0, oo), represents the free 
boundary beyond which wja = 0. The function F in equation (2.40) gives rise 
to a second free boundary TB = Bv~ï tv', B G (0,A), which separates the 
regions with and without trapping. 

Substitution of (2.47) into equation (2.40) shows that the similarity profile 
h(r/), with variable n = ruï t~u, satisfies the nonlinear ordinary differential 
equation 

nl~N [r]"-1 hQ h')' = F(-r)h' ~kh) for 0 < r] < A (2.48) 

(primes ' denote differentiation with respect to 77), and that the positive con
stants ß and v satisfy 

2I / + 9 J U - 1 = 0 . (2.49) 

Therefore, we have introduced the ratio k = —, which reflects the influence of 
v 

trapping on the similarity profile. We obtain the boundary conditions 

/ i ' ( 0 )=0 , h{A) = 0, (2.50) 

whereas at r\ = A an extra condition is valid [10, 19], i.e. 

hq-1h'{A) = -pA. (2.51) 

To simultaneously compute the similarity profile and the correct value of 
k, we scale h according to 

h(0 = A-lh(A0, £ = ^ , (2.52) 

see [45]. Hence, h is the solution of equation (2.48) for 0 < £ < 1, for which 
the solution procedure is described in Appendix 2C. We obtain the trapping 
parameter k as a function of p, which is shown in Figure 2.3 for different 
q-values. Observe that for p = 1, k equals N and is independent of q. 

The similarity solution wja (r, t) does not generally satisfy the initial con
dition of (2.45) and its volume condition (2.46). However, if we can obtain 
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Figure 2.3: Parameter fcasa function of p for several values of q (see (2.43)) 
and the lateral dimension N. 

the appropriate values of A and to, the similarity solution provides a good 
approximation of the solution of equation (2.40) with its boundary and initial 
conditions after a sufficiently large time. Therefore, we define the 'moment' 
m = frk~1 Wf dr, which yields for the similarity solution in terms of h(£) the 
time-independent expression 

m„, = v 'A k+-
Jo 

(2.53) 

By comparison to the corresponding 'moment' of the general solution, we 
obtain the appropriate value of A independent of to. In case of entrapment, 
p > 1, the volume of free oil in the entire domain Vf = J rN~l wj dr is time-
dependent and is given for the similarity solution by 

Vfa{t) tNv-^v- •N AN+-

/ ' 
JO 

- 7 V - 1 

r-lH0dt. (2.54) 

In Appendix 2C we present explicit forms for the integral of relation (2.54). 
Comparison to the free oil volume of the general solution at a given time 
yields the value of to- Observe that in case of no entrapment, p — 1, the 
'moment' (2.53) and the free oil volume (2.54) are equal. To obtain the value 
of to we use another time-dependent characteristic, e.g. the value of Wf at the 
z-axis. 

Determination of the trapped oil volume (2.38) from Wfa involves the max
imum oil volume per unit lateral area. For small r the free oil volume decreases 
for all t > 0, where the maximum oil volume is identical to the initial oil volume 
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0 rB(t,) 

Figure 2.4: Different values of wma shown in the r — t plane. 

per unit lateral area. Hence, taking the initial condition of (2.45), which gen
erally does not have the similarity structure, as the maximum volume per unit 
lateral area yields a poor approximation of the trapped oil volume at later 
times. However, due to the linear nature of the trapping model (2.38) we may 
take Wfa at any positive time, say t\, as a new initial condition, from which 
wta, the oil volume per unit lateral area that becomes trapped for t > t\, 

can be obtained. By definition 
dt 

changes sign for r = rB(t) and for 

0 < r < rB{t\) the maximum has been attained at t = t\. For t > t\ and 
r > rB{t\), we derive the maximum oil volume wma from the evolution of wfa, 
which yields for every lateral position rßiti) < r < rsit) the 'maximum' time 
tm, at which the free boundary TB has passed. From the definition of rg we 

find tm — r v 2 
~1T 

Consequently, we obtain for wma as shown in Figure 2.4 

w„ 

Wfa{r,h) 

i(r,t) = { _ J Wfa 
r v 2 

wfa(r,t) 
0 

if 0 < r < rB(h) 

if rB(h) < r < rB{t) 

if rB{t) <r <rA{t) 
if r > 7\4(ï) 

(2.55) 
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and wta = ct • {wma — wja), which is assumed to be valid for t>t\. 

2.4 Applicabi l i ty of the s imilarity solut ion to numerical s imu
lat ions 

2.4.1 Numerical results 

To show the validity of the similarity solution we compare it with the numer
ical solutions of the model described in Section 2.2. In the numerical model, 
see also Section 4.3, equations (2.1), (2.2) and (2.3) are combined into the 
mixed form of the Richards equation [13, 36] for both water and oil. Com
putations were done in non-transformed physical variables. The flow domain 
was discretized by linear triangular finite elements of constant size in case of 
one lateral dimension and of increasing width for increasing R in case of two 
lateral dimensions. Time discretization was fully implicit. The resulting al
gebraic equations were solved by the modified Picard method [13], that gave 
good mass balances. Convergence was obtained for the Picard iterations by 
adjusting the time steps. The initial time step was 0.10 hours and the max
imum allowable time step 50 hours. A typical computation time was 3 h on a 
HP 9000 735/125 workstation. 

Some soil and fluid parameters were not varied : 

Kabs = 7.09 
/iw = 1.00 
Ho = 5.00 
g = 9.80 

10"12 m2, 
10~3 Pas, 
10"4 Pas, 

_ 0 

ms . 

<t> 
Pw 
Po 

= 0.400, 
= 1.00 • 103 

= 7.00 • 102 
kg m 3 

kgm - 3 

With respect to the reference case (case 1) we varied the parameters iV, m, 
o w , ßow, Vi a n d S™ax as summarized in Table 2.1. Additionally, the end 
of the computations Te and the characteristic lengths and times are listed. 
Observe that in all computations condition (2.30) was satisfied. 

We used a rectangular domain of height 3 m, discretized by 19 nodes. The 
lateral extension of the domain was chosen such that oil, which was initially 
only present at the leftmost part of the domain (a region close to the Z-
axis), did not reach the right boundary during the simulations. The domain 
width (e.g. 75 m for the reference case) was divided into 1 m wide elements 
in case of one lateral dimension. At T = 0 h we imposed water and oil 
hydraulic heads, which for example in the reference case resulted in oil volumes 
of 0.3795 m3 between R = 0 and R = 1 m, 0.2973 m3 between R = 1 and 
R = 2 m, 0.2152 m3 between R = 2 and R = 3 m, and 0.1076 m3 between 
R = 3 and R = 4 m, and no oil elsewhere. We imposed no-flow conditions at 
every boundary, except at the right one, where the water pressure distribution 
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Table 2.1: Parameters and characteristic lengths and times that were used in 
the computations. Case 2 involved identical parameters but a different initial 
condition as case 1. 

case N n 

1 
2* 
3 
4 
5 
6 
7 ] 
8 1 

9 ] 
10 ] 
11 ] 
12 ] 

13 1 
14 ] 

15 Ï 
16 ; 

L 3.0 

L 3.0 
I 3.0 
L 3.0 
L 3.0 
L 3.0 
L 2.0 
L 4.0 

L 5.0 
L 3.0 
L 3.0 

3.0 
L 3.0 
L 3.0 
! 3.0 
> 3.0 

Otow 

m" 1 

2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
4.50 
9.00 
1.80 
2.25 
2.25 
2.25 
2.25 

Pow 

2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
1.80 
2.25 
2.25 
2.25 
2.25 

Vi 
m3 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

0.500 
2.00 
30.5 
7.61 

çmax 

0.20 
0.20 
0.00 
0.10 
0.40 
0.60 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 

Te 

103h 

100 
100 
100 
100 
100 
120 
68.0 
120 
120 
150 
180 
120 
100 
150 
120 
100 

Ze 

m 

0.206 
0.206 
0.206 
0.206 
0.206 
0.206 
0.206 
0.206 
0.206 
0.103 
0.0516 
0.365 
0.206 
0.206 
0.206 
0.206 

Äc 

m 

4.85 
4.85 
4.85 
4.85 
4.85 
4.85 
4.85 
4.85 
4.85 
9.69 
19.4 
2.74 
2.42 
9.69 
4.85 
2.42 

Tc 

h 

13.8 
13.8 
13.8 
13.8 
13.8 
13.8 
13.8 
13.8 
13.8 
27.7 
55.4 
7.82 
6.92 
27.7 
13.8 
6.92 

T-ve 

103 

0.7 
0.8 
1.4 
1.0 
0.4 
0.3 
0.7 
1.4 
2.6 
2.9 

>3 .2 
<0 . 3 
0.4 
1.3 
0.3 

< 0 . 3 

was kept hydrostatic with atmospheric pressure (Pw = 0) at 1 m above the 
bottom of the domain. To investigate the effect of an initially wider spread oil 
distribution, we imposed for case 2 0.1908 m3 oil between R = 0 and R = 3 
m, 0.1369 m3 between R = 3 and R = 4 m, 0.0830 m3 between R = 4 and 
R = 7 m, and 0.0415 m3 between R = 7 and ß = 8 m . 

The total oil mass balance errors were small, varying from of 0.4 to 1.6 
percent for computations in one lateral dimension and varying from 2.0 to 3.0 
percent in two lateral dimensions. Test simulations showed that the errors 
decreased with smaller lateral grid distances, but did not uniformly decrease 
with smaller vertical grid distances. The largest part of the mass balance 
errors occurred shortly after the start of the simulations. During the rest of 
the simulation only at a few times convergence required significant decrease 
of time steps, which resulted in additional small mass balance errors. We 
observed that these times varied with a changing Z-grid. 

Results are presented in dimensionless variables. The numerically obtained 
saturations were vertically integrated for comparison with the similarity solu
tion. This leads to the free Wfn, trapped Wtn and maximum Wmn oil volumes 
per unit lateral area, where the subscript n identifies the numerical solution. 
The dimensionless Wfn, u>tn and wmn follow after division by the characteristic 
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0.36 

0.27 

£ 0.18 

0.09 

0.00. 

, trapped 
t-1445 
t=7225 

Figure 2.5: Free and trapped oil volumes per unit lateral area for case 1 at 
two times. 

vertical length Zc (2.31). In Figure 2.5 we show the vertically integrated oil 
saturations for the reference case at t = 1445 and t = 7225. Observe that be
fore t = 1445 near the z-axis Wfn decreased rapidly from 1.84 to 0.172 leaving 
behind much trapped oil, whereas during all later times wjn decreased slowly. 

To show the effect of varying parameters on the amount of trapped oil, 
we computed for all cases Vtn = J'rN~x wtndr at t = 3252. In Figure 2.6 we 
present vtn as a function of 

qmax 
qmax Jor 

or — qmax ' 
L-J nr r 

n = 
n 
nr 

(%mn — — , Vi = =p-, (2.56) 

which represent the varied parameters of Table 2.1, that are normalized with 
respect to the parameters of the reference case (subscript r). For case 2 (differ
ent initial condition) we obtained vtn = 0.245, for case 12 (values of aow and 
aao interchanged) we obtained vtn = 0.353 and for cases 15 and 16 (two lateral 
dimensions) we obtained vtn = 0.403 and vtn = 0.427 respectively. Observe 
that the initial condition and volume have some effect on vtn, but that vtn 

is almost independent of aow. For small n the horizontal spreading was very 
fast, which resulted in a large vtn. In two lateral dimensions the decrease of 
Wfn near the z-axis was faster, which leaded to larger values of vtn-

We assessed when the lenses were at vertical flow equilibrium in view of 
condition (2.28). Hence, we list in Table 2.1 the times tve at which at the center 
of the lens (roughly) zao = 1, where zao(0, tve) is computed from relation (2.36). 
These times were small compared to the simulated times, except for the cases 
with small capillary forces (large n and aow). 
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Figure 2.6: Volumes of trapped oil versus the normalized parameters. The 
S™ax-curve reflects values of the parameters for cases 3-6, the n-curve for cases 
7-9, the a^-curve for cases 10-11 and the Vi-curve for cases 13-14. 

2.4.2 Agreement between the numerical solution and the similarity 
solution 

To reveal the similarity behavior of the numerical solution at larger times 
and the corresponding trapping constant Q we computed the 'moment' mn = 
ƒ rk~l Wfndr (2.53), rather than the ratio wtn/(wmn —Wfn), see (2.38), be
cause the latter is too sensitive to local computation errors. We found that for 
every simulation a value of k exists for which after some time mn becomes ap
proximately time-independent. Except for case 11 (large aow) this happened 
in the first quarter of the simulated time. In Figure 2.7 we present for several 
cases of Table 2.1 mn as a function of time. The corresponding values of k 
are given in Table 2.2. Notice that case 2 (different initial condition) leads 
to exactly the same value of k as case 1. We observed that mn accurately 
recorded the reported mass balance errors. In some cases several significantly 
different values of k could be found that matched constant values of mn on 
different time intervals. For example for case 5 we found that & = 1.45 per
fectly matched a constant mn for 900 < t < 3800, but that k = 1.56 matched 
a constant mn for 3800 < t < 7200, where around t = 3800 convergence prob
lems resulted in a mass balance error. In Appendix 2D we discuss how k can 
be estimated in practical situations and indicate that the solution is not very 
sensitive to changes in k. 

With the obtained values of k we computed the scaled similarity profiles 
h(Ç) and the appropriate values of p as described in Appendix 2C. With p we 



40 Chapter 2 

1.90 

1.70 

1.50 

1.30 

1.10 

0.90 

0.70 

0.50 

/ • 

/ 
-I 
I 

7 
I 
r — 
1-VF— r 

^_ -— 

case 14 
case 10 

case 2 
case 1 

case 16 

case 12 

case 9 

**— case 6 
/ i i i i i 

1500 3000 4500 

t 
6000 7500 9000 

Figure 2.7: Evolution of the 'moment' of the numerical solution for several 
computations. 

Table 2.2: Parameter values for the similarity solution and deviations of the 
numerical solution from the similarity solution. 

case 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

k 

1.24 
1.24 
1.00 
1.12 
1.45 
1.73 
1.32 
1.18 
1.17 
1.17 
1.15 
1.32 
1.32 
1.21 
2.55 
2.79 

Ct 

0.316 
0.316 
0.0 

0.185 
0.476 
0.611 
0.395 
0.245 
0.236 
0.245 
0.220 
0.385 
0.385 
0.286 
0.385 
0.483 

7 

0.0236 
0.0236 
0.0161 
0.0198 
0.0308 
0.0414 
0.0461 
0.0178 
0.0164 
0.00538 
0.00129 
0.159 
0.0524 
0.0113 
0.0262 
0.0623 

A 

1.15 
1.18 
1.30 
1.22 
1.02 

0.926 
1.30 
1.08 
1.04 
1.13 
1.11 
1.18 
1.16 
1.15 
1.15 
1.18 

*o 

-437 
-501 
-517 
-782 
-286 
-167 
-286 
-544 
-733 
-478 
-445 
-150 
-652 
-512 
-12 
216 

Vta 

0.0661 
0.0703 

-
0.0386 
0.0816 
0.0856 
0.0810 
0.0500 
0.0467 
0.0483 
0.0407 
0.0836 
0.0796 
0.0578 
0.106 
0.126 

et 

0.0795 
0.0712 

-
0.106 
0.143 
0.0340 
0.0601 
0.227 
0.146 
0.136 
0.161 
0.113 
0.0490 
0.121 
0.143 
0.0527 
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Figure 2.8: Numerical and analytical free oil volumes per unit lateral area 
for case 1 after fitting constants at t = 1879. 

computed the values of Q and 7, which are listed in Table 2.2. The variation 
of ct is in accordance with the variations of vtn of Figure 2.7, although ct 
does decrease with increasing values of aow. To obtain the values of A and 
to, we set the numerical 'moment' and free oil volume mn and Vfn, equal to 
their analytical equivalents ma (2.53) and vja (2.54) at t = te/4. For case 3 
(no entrapment) we obtained to from comparison of Wfn(0, t) and Wfa(0,t) = 
t~ß h(0). The results are listed in Table 2.2 as well. Observe from the values 
of to that the matched similarity profile for case 2 started earlier than for case 
1, which reflects the wider spread initial condition of case 2. 

The values of k, A and to determine Wfa(r,t). In Figure 2.8 we present 
Wfn and Wfa for case 1 at several times. Observe that for times larger than 
t = 723 the agreement is good. Taking t\ = te/4 in relation (2.55) for the 
maximum oil volume, we computed at t = te for case 1 wma and wta as shown 
in Figure 2.9. Here, wta(r,te) represents the oil volume per unit lateral area 
that has become trapped after t = te/A. For comparison we showed also its 
numerical equivalent, i.e. the reduced wtn(r, te) = wtn(r, te) — wtn(r, te/A). For 
all cases we quantified the difference between the analytical and the numerical 
solutions by the deviation 

Vtnjte) -Vtajte) ,„ „ , . 

Vtn(te) 

where vtn = ƒ rN~l wtn dr and vta = ƒ rN_1 wta dr. Observe that the latter is 
directly computed from relation (2.54) as 

Vta(te) = vfa(te/4) - vfa(te) = vfa(te/4)(l - 4N^), (2.58) 
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Figure 2.9: Numerical and analytical free and trapped oil volumes per unit 
lateral area for case 1 at t = 7225, where the maximum oil volume followed 
from the profile at t = 1879. 

where Vfa(te/4) = Vfn(te/4). We listed the values of et in Table 2.2. In most 
cases the agreement is good. Observe that for increasing S™ax (cases 4, 1, 5, 
6) the deviation decreases, except for case 5, which suffered from a numerical 
error as reported before. For increasing n (cases 7, 1, 8, 9) the deviation 
increased, except for case 8, which suffered from a similar numerical error. 
The deviations increased for decreasing capillarity (larger n and aow) and for 
increasing initial oil volumes, which is reasonable if we consider the increasing 
times at which the vertical equilibrium condition was met, see Table 2.1. 

2.5 Conclusions 

We investigated redistribution of a lens of organic contaminant with prescribed 
volume along the water table, with emphasis on the effect of entrapment of 
oil by water, in a two-dimensional planar or axisymmetric domain. For this 
three-phase flow process we presented the conditions for the vertical flow equi
librium assumption, for which gravity and capillary forces balance, in terms of 
of capillary forces, fluid densities and layer thickness. This assumption allowed 
vertical integration of the variables for oil, resulting into explicit approximate 
relations for the free oil volume per unit lateral area and the vertically aver
aged oil relative permeability in terms of the vertical position of the interface 
between zones with either two or three phases. The vertically integrated form 
of the nonlinear relation for the trapped oil saturation was approximated by 
a linear relation between the trapped oil volume per unit lateral area and the 
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difference of the maximum and the free oil volume per unit lateral area. The 
constant of linearity is not known a priori, but we showed that it is bounded 
from above by the oil-water density ratio. 

The resulting single differential equation admitted a similarity solution for 
the free oil volume per unit lateral area as a function of time and the lateral 
space-coordinate, from which also the amount and location of trapped oil was 
obtained. The analytical solution is not explicit, but we showed a simple 
method to compute it from an ordinary differential equation. 

Several numerical simulations, which were based on the nonreduced flow 
model with varying physical parameters, were carried out to test the validity 
of the similarity solution. We assessed when the lenses were at vertical equilib
rium, which happened in an early stage of the simulations, except for situations 
with small capillary forces. In spite of numerical difficulties, we revealed the 
similarity behavior of the numerical solution and the corresponding constant 
of linearity in the approximate trapping model, using a time-independent 'mo
ment' for the free oil distribution in the domain. As the similarity solution 
is initially not applicable, we fitted two parameters concerning the time scale 
and the mass of the solution shortly after the start of the simulations. From 
that time on the similarity solution provided a good approximation of the 
computed horizontal extension of the lens and the fraction of oil that became 
trapped. 

Appendix 2A 

Vertically integrated variables 

The vertically integrated free oil saturation (2.34) is 

wf = 4> fZu (1 - Swa) dz-cji fZu (1 - St) dz (2.59) 
•J Zow J Zao 

We use the first two terms of the Taylor series expansion for small values 

of I ———— I and I ———— I in relations (2.4) and (2.5) and use rela-
V Pw9 J V Pw9 J 

tions (2.18) and (2.19) to approximate 

1 - Swa ~ ( 1 — 
nj \ pwg 

= ( I - s ) (" - D ) ^)" ( *-* -»" (2'60) 

l-St ~ 1 -
lao -1 ao 

nj \ pwg 
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= (l--) f(l - D) ̂ ^Y (z - zao)\ (2. 
V nj V OiowpwJ 

61) 

where we introduced dimensionless z, 2;ou) and zao according to (2.31). Us
ing also layer thicknesses (2.27) we integrate (2.60) and (2.61) to approxim
ate (2.59) as 

Wf-S.z^1 (2.62) 

where 

^^-T^TÏT/r- (2-63) 

n(n + 1) A/9 

The vertically integrated relative permeability (2.35) is 

k = ƒ {l-Swa)2 f l - 5 ^ - 1 ) dz + 

+ jZ\st - Swa)ï ( (l - S ^ * " - ( l - S ^ l j dz. (2.64) 

We use again the Taylor series expansion to approximate 

1-SÉ1 ~ (^^)n=((l-D)^-Y (z-zow)n (2.65) 
V Pw9 J V Pw J 

l - S r 1 ~ f — V = ((1 - D) - ^ 2 - V (z - zao)
n. (2.66) 

V Pw9 J \ OtowPw/ 

Only the first integral of equation (2.64), denoted by k\, can be approximated 
analytically. With 

Ap 

derived from (2.27) we obtain 

h=Ô2zJ \ (2.68) 

where 
i 

O^'fr 1 -">*"'• <2-69» 5n — 2 V n 

The second integral of equation (2.64), denoted by &2, is 

h = hhzJ \ (2-70) 

where 
i 

^ - I ̂ ) ' % T^n ( - ' 
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and the integral 

Ik(n,D) = j\(Dy + l-D)n-yn)12((Dy + l-D)n-1~yn-iy dy, 

(2.72) 
that does not depend on zao and must be approximated numerically. 

As a result we obtain 

(2.73) 

(2.74) 

where 

ao 

k 

= Ax«,/1 

5 n - 2 
\ 2 ( n + l ) 

= \2Wf 

- 1 -1 

2-5n 

A2 = (62 + IkS3)6l
2(n+1) = 

3-4n 3 n - 4 
, 2 - 5 " / n - l \ 2 ( n + l ) , ^N 5 n - 2 / A o \ 2 ( n + l ) 

= (/)2(n + l / j ( n + l ) 2 ( n + l) l_L\ * 

Appendix 2B 

An a priori linear trapping model 

To obtain the upper bound for the trapping constant Q in (2.38), we propose 
a priori a linear trapping model instead of the nonlinear model (2.8), i.e. 

{ a IQ qmin\ : f o -^ qmin 

V \iJwa >->w ) I* >Jwa --* Jw Icy rjrj\ 

o aswa = s™n, ^•", 

with constant 6 G [0,1], at locations where oil has been present. Assum
ing as in Appendix 2A that the oil lens thickness is small, we can vertically 
integrate (2.77), yielding 

w!in ft (2.78) 
0 'f-9r^°' 

which we compare with (2.38). 

file:///iJwa
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To evaluate w}171 we introduce the additional elevations z™n, z™ax and 
z™ax, which determine the maximum oil and minimum water saturations. 
The trapped oil volume per unit lateral area is defined by 

zmax 

wt = <t> I Sotdz, (2.79) 

which yields for the linear model 

7max / zmax 

w[in = 9<t> U (Swa- S™n) dz = 9U / " (1 - S™in) dz + 
J zow \ J zo« 

rZ zmax \ 

- <f> ƒ \l-Swa)dz-<t> ƒ " (l-Swa)dz\. (2.80) 

Using (2.60) and (2.61) we obtain 
zmax z c 

<t>\ (1 - S™n) dz - cj> / " (1 - Swa) dz ~ — L - {{zZax)n+l - C + 1 ) • 

(2.81) 
For z„ < 2 < z™ax Swa is given by the third expression of (2.4), therefore we 
approximate 

r C 1 /a(l-D)\n fz™ax 

<ƒ,/ (1-Sw a)<fe ~ ^ ( l - - ) — M / z"d* = 

= </> " ~ \ - ^ f ( C O I ) n + 1 - ^ao+1) • (2-82) n(n + l) 1 - D vV ao ' ao J \ ) 

Hence, we combine (2.81) and (2.82) to obtain 

wun = 619%- ((zZx)n+l - C + 1 ) , (2-83) 
Pw 

which yields with the expression for Wf (2.62) 

wlr = e^{wm-ws) (2.84) 
Pw 

andc / i n = 0 - ^ . 
Pw 

We observe that according to the nonlinear model (2.8) everywhere in the 
domain Sot > 0 and Sot < Swa - 5™ n = 5jt

m|e=i for all FL > 0. Hence, 
vertical integration yields 

wt<W i n | f l=i = — (vm-u>f) (2.85) 
Pw 

and we obtain Q < —-. 



Oil lens redistribution with entrapment 47 

Appendix 2C 

Evaluation of the ordinary differential equation 

For the scaled variable h(Ç) we solve the nonlinear differential equation 

^~N^N-1hqh')' = F(-£h'-kh) forO<£<l (2.86) 

with boundary conditions 

h'(0)=0, h(l)=0. (2.87) 

In the no-trapping case p = 1, k equals N and the solution is explicitly given 

by 

MO=(j(l-r)J , (2-88) 
which is called the Barenblatt-Pattle point source solution [5, 50], tha t was 
applied to oil lens spreading in [10]. 

In case p > 1, k is a strictly increasing function of p [29], see Figure 2.3, 
and h is not explicitly known. The extra boundary condition (2.51) has t rans
formed into 

h"-1h'(l) = -p. (2.89) 

We transform equation (2.86) into a system of two first order ordinary 
differential equations, with 

hq ~ 
j/i = — and y2 = hq~l h' (2.90) 

(primes ' denote differentiation with respect to £). Hence, we solve 

y{ = 2/2 
N-l 

2/2 = t 2/2 - - y l + F ( 
qy\ V 

- ^ 
QVi 

k 
(2.91) 

for £ G (0,1), with boundary conditions 

2/2(0) = 0, y i ( l ) = 0 and y 2 ( l ) = ~p. 

System (2.91) is solved by shooting backward from £ = 1 using a fourth 
order Runge-Kutta scheme. As 3/2(0) is a monotone function of k we can use 
a simple iteration to vary k until the solution satisfies 1/2(0) = 0. Inversely, 
if we know the value of k, we can use a similar iteration to obtain h and the 
value of p. 
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We evaluate the integral of relation (2.54). For p = 1, we use expres
sion (2.88) to obtain 

Jo 

r^+i»^ blN=1 2 r d + J) V2/ ( 2 92 ) 

9 ' " for N = 2, 
I q + 2 \2 

B 
where T denotes the gamma-function. For p > 1, we set B = — and integrate 

equation (2.48) from 0 to B and from B to 1 subsequently. Because F vanishes 
at £ = i?, we find 

-Bh'{B)-kh(B) = 0. (2.93) 

We obtain 

f\N-1Ht)dt= ( l - i ) ^ ß f f - 2 / » ' + 1 ( ß ) . (2.94) 

Appendix 2D 

Parameter estimation for the similarity solution 

Prediction of the behavior of an oil lens requires estimation of the parameters 
et, A and to- To achieve this, measurements of free oil per unit lateral area wj 
at two times (£1,̂ 2) are necessary. We use w\ = Wf(0, t\), W2 — Wf(0, £2) and 
the free oil volume in the domain v\ = Vf(t\), V2 = Vf (£2)- Denning w = w\jW2 
and v = v\/v2 we identify according to the similarity solution (2.47) and (2.54) 

w = r>1 and u = £" f - ' i ( £# + 1 \ (2.95) 

which yields the estimated value of \x and as a result the values of v and 
k. With k we compute the scaled similarity solution h and the values of p 
and ct. Furthermore, we obtain the values of A and to from the moment 
m(t2) = ƒ rk~l Wf(r,t2) dr and V2 by comparison with the analytically ob
tained moment (2.53) and volume (2.54). 

The sensitivity of the results to measured data is illustrated using numer
ical data of case 1 in Table 2.1. In Table 2.3 we show data for four different 
times (ta, tb, tc and t^ respectively). Using ta and % we computed w/a(r, td), 
which is referred to in Figure 2.10 as fit 1. This fit yielded k = 1.193, 
ct = 0.2657, A = 1.153 and t0 = -367.9, with wfa{0,td) = 0.09712 and 
vfa{td) = 0.6838. Using tb and tc we computed Wfa(r,t({), which is referred to 
as fit 2. This fit yielded k = 1.215, ct = 0.2887, A = 1.149 and t0 = -618.7, 
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Table 2.3: Data of case 1 for illustration of measurement sensitivity. 

wf(0,t) v(t) 

722.5 0.2220 0.7790 
1445 0.1725 0.7478 
2890 0.1314 0.7127 
7225 0.09205 0.6575 
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Figure 2.10: Computed free oil volume per unit lateral area compared with 
predictions from data at t = 722.5 and t = 1445 (fit 1) and from data at 
t = 1445 and t = 2890 (fit 2). 
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with Wfa(0,td) = 0.09446 and t>/a(id) = 0.6730. These fits indicate tha t a sig
nificant difference of the estimated values of Q does not lead to large deviations 
of the predicted results. 

Notation 

A position of oil free boundary in similarity profile 
B position of t rapped oil free boundary in similarity profile 
ct t rapping constant 
D parameter determining finiteness of lens thickness 
et deviation between analytical and numerical solution 
F t rapping function 
FL Land's factor 
f0 oil fractional flow function 
g gravity [ms - 2 ] 

h (h) (scaled) similarity profile 
K absolute permeability [m2] 
k t rapping parameter in similarity profile 
krj phase j relative permeability 
k vertically integrated oil relative permeability 
77i dimensionless moment of free oil saturation per unit lateral area 
N number of lateral dimensions 
n van Genuchten parameter 
p t rapping constant in function F 
Pj phase j pressure [Pa] 
Pjk phases j , k capillary pressure [Pa] 
q power in coefficient of diffusion equation 
R (r) (dimensionless) horizontal coordinate [m] 
Rc characteristic horizontal length [m] 
Ri (ri) (dimensionless) horizontal position of lens outer boundary [m] 
TA position of oil free boundary for similarity solution 
TB position of t rapped oil free boundary for similarity solution 
Si initial oil saturation 
Sj phase j saturation 
S0f free oil saturation 
S0t t rapped oil saturation 
gmax maximum residual oil saturation 
St total fluid saturation 
Swa apparent water saturation 
S™m minimum water saturation 
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T (t) (dimensionless) time [h] 
Tc characteristic time [h] 
Te (te) (dimensionless) maximum computed time [h] 
to starting time of similarity solution 
t time in similarity solution 
Uj phase j horizontal flow velocity [ms_1] 
Ut total horizontal flow velocity [ms_1] 
Vj phase j vertical flow velocity [ms -1] 
Vt total vertical flow velocity [ms -1] 
V\ initial oil volume [m3] 
Vf dimensionless free oil volume 
vt dimensionless trapped oil volume 
Wj (wf) (dimensionless) free oil volume per unit lateral area [m] 
Wi dimensionless initial oil volume per unit lateral area 
Wm (wm) (dimensionless) maximum oil volume per unit lateral area [m] 
Wt (wt) (dimensionless) trapped oil volume per unit lateral area [m] 
Z (z) (dimensionless) vertical coordinate [m] 
Zc characteristic vertical length [m] 
Zao (zao) (dimensionless) elevation beyond which air is present [m] 
Zow {tow) (dimensionless) elevation beyond which oil is present [m] 
Zu (zu) (dimensionless) elevation beyond which no oil is present [m] 
a van Genuchten parameter [m_1] 
ßao-, ßow ratios of air-oil and oil-water to air-water surface tensions 
7 dimensionless parameter in nonlinear diffusion equation 
r\ (£) (scaled) similarity variable 
Ai, A2 constants in power law approximations of zao and k 
H, v powers in similarity solution 
fij phase j viscosity [Pa s] 
Pj phase j density [kg m~3] 
(j> porosity 
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Chapter 3 

Analysis of oil lens removal by extraction through a 
seepage face 

3.1 Introduction 

Spills of hydrocarbons have caused contamination of numerous aquifers. Non-
aqeous phase liquids, such as gasoline, that are less dense than water (hence
forth called oil for brevity), may accumulate as a lens at the phreatic water 
surface. To remediate the contaminated aquifers, the bulk of oil in the lens is 
usually first removed by pump and treat methods, after which the remaining 
(trapped) oil is removed by other techniques, such as air sparging or biore-
mediation. 

Pumping is commonly done through vertically drilled extraction filters or 
in horizontal ditches in case of shallow lenses. If the extraction well or ditch is 
partially filled with fluid, two fluid phases may seep out of the soil above the 
well fluid level, similar to water seepage in the dam problem [9, 18]. Multi
phase seepage is a complicated process, since the non-wetting phase may seep 
out at virtually zero saturations [3, 64]. 

During pumping often a drawdown of the water table is created to facil
itate oil flow towards the extraction well. Such a local lowering of the water 
table may smear out the oil and increase both the oil-invaded region and the 
amount of trapped oil. For this reason the drawdown of the water table is 
preferably kept small. If the slope of the water table is small, the lens may 
be at vertical flow equilibrium, except close to the pumping well or ditch. At 
vertical equilibrium pressure distributions are hydrostatic and therefore the 
vertical dimension of the multi-phase flow problem can be eliminated by ver
tical integration of variables. In that situation only the oil flow equation needs 
to be considered, see [10, 45, 49] and Section 2.3.1. 

Corapcioglu e.a. [16] modeled an axisymmetric two-pump recovery system, 
in which the lower well was assumed to create a drawdown of the water table 
and the upper well was assumed to extract free oil at a constant rate. They 
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used a sharp-interface approach and assumed that the well was located within 
the oil lens at any time, which may only be realistic during the early stages 
of pumping when the oil layer is relatively thick. After linearizing equations 
analytical solutions were obtained. 

Huyakorn e.a. and Wu e.a. [31, 63] numerically investigated withdrawal of 
an oil lens in a three-dimensional domain assuming vertical flow equilibrium. 
In [31] withdrawal wells were assumed to operate under prescribed volumet
ric extraction rates, where the separate water and oil extraction rates were 
determined by the phase mobilities. In [63] the well bore pressure and the 
productivity index for a local grid block were computed as in the oil reservoir 
engineering literature, see e.g. [21], to determine the separate water and oil 
extraction rates. Both studies were restricted to the part of the oil lens where 
only water and oil were present, thus neglecting the three-phase zone. 

Wu e.a. [64] discussed numerical implementation of seepage boundary con
ditions, also for three-phase flow. Although at seepage boundaries the well 
pressure is known, they imposed sink terms for water and oil similar to the 
well conditions of [63] with a large artificial productivity index. 

In this study we present a model for the behavior of an oil lens on the water 
table in a two-dimensional domain for two lens geometries, where withdrawal 
occurs through a well with constant fluid level. To treat the corresponding 
multi-phase seepage face conditions, we impose the so called Signorini condi
tions. Numerically, we compared implementation of these conditions as sink 
terms according to [64] to a more direct implementation. For the situation 
in which the well fluid level is equal to the phreatic water surface in the soil, 
we perform several numerical computations and give an indication of their 
accuracy, especially near the seepage boundary. 

As numerical models still require large computation times and are not al
ways able to handle the boundary conditions accurately, approximate analyt
ical solutions can be very helpful. We use the vertical equilibrium assumption 
of capillarity-gravity-segregated flow to reduce the multi-phase flow problem 
to a single equation for oil flow. In the vertically integrated problem for the 
layer thickness we approximate the well boundary condition by taking lens 
thickness equal to zero. Similar problems for water outflow from an aquifer, 
with sharp interfaces, were studied by Boussinesq [9] and by Barenblatt [7] 
who derived analytical solutions. We use the generalizations of these analyt
ical solutions that account for capillary forces, to describe oil lens extraction 
with possible incorporation of oil entrapment by water. In Appendix 3B we 
show that a similar analytical solution can be obtained for oil removal in a 
semi-infinite three-dimensional domain. 

The analytical solutions are compared with the numerical results. We 
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indicate in which cases the analytical solutions with the approximate well 
condition appropriately approximate the solutions of the non-reduced flow 
model. 

3.2 Mode l 

We model withdrawal of an oil lens in a two-dimensional domain 0 < X < L, 
—oo < Z < oo, with L > 0, and a well at X = 0. Two important situations 
that are different with respect to the horizontal extension of the domain, are 
considered. The first concerns a horizontally bounded domain as shown in 
Figure 3.1.a, i.e. L < oo, which reflects either the left half of a symmetric 
domain with a second well at X = 2 L or a situation with a vertical impervious 
boundary at X = L. The second concerns a domain, that is unbounded to 
the right, as shown in Figure 3.1.b, i.e. L = oo, where the oil lens is bounded 
by X = X\ and can spread out in horizontal direction. We use for both water 
(w) and oil (o) the mass balance equations 

±8Sj dUj 8Vj n . 
* J- + — f + — ^ = 0 , j=w,o (3.1) dT dX dZ 

and Darcy's Law 

_ _Kkrj dPj_ 
Uj - H dx [6-Z) 

Kkrj (OP, \ / o oN 

V3 = - - I L ^ + p ^ , J=w,o, (3.3) 

where T is time, X and Z are the horizontal and vertical coordinates respect
ively, Sj is effective phase saturation, Uj and Vj are phase horizontal and 
vertical flow velocities respectively, Pj is phase pressure, pj phase density, krj 
phase relative permeability, \Xj phase viscosity, <p porosity, K absolute per
meability and g gravitation. We assume that the soil is homogeneous and 
isotropic, that both fluids are incompressible and that air is present with sat
uration Sa and constant pressure (Pa = 0). According to [48] we define the 
total fluid saturation St, trapped oil saturation S0t, free oil saturation 5 0 j , 
apparent water saturation Swa, oil-water capillary pressure Pow and air-oil 
capillary pressure Pao, which satisfy the constitutive relations 

Sw "I" S0 = &t 
St + Sa = 1 

Ow + D0t
 = °wa 

S0f + Sot — S0 
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(a) 

air + water 

water 

(b) 

Figure 3.1: Geometry of an oil lens in a domain that is bounded to the right 
(a) and that is unbounded to the right (b). 
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For the retention functions we use 

1 

<? — I 
'-'wa — » 

1 + 

1 + 

an 

Pw9 

—a 

Pw9 

n x ^ - l 

"X i - 1 

St = < 1 + 1 ^ 2 - P a 
Pw9 

n\ i - 1 

if P^ > 0 and P0 < P„, 

0 < Pw < P0 or 
l f { Pw<0 and P0 > -*-P™ (3-4) 

Pao 

if P0 < -±-Pw < 0 
Pao 

if P0 > 0 or Pw > 0 

if —P«, < P0 < 0 
Pao 

if P0 < ^-Pw < 0, 
Pao 

(3.5) 

where a > 0 and n > 1 are soil parameters. Furthermore, aow = aßow and 
QW = Oißao, where ßow and ßao are the ratios of the oil-water and the air-oil 

to the air-water surface tensions, with — 1- —— = 1. Relative permeabilities 
Pow Pao 

satisfy [38] 

™rw — Sw
 2 I 1 I 1 " w 

kro = (St -Swa)2 1 - 5 , 

1 - -

n-l 
>wa i - sr1 

1 - 1 \ 2 

(3.6) 

. (3.7) 

Motivated by the results of Chapter 2 we model oil entrapment by a linear 
relation, i.e. 

Snt — 
" [&wa ~ bw ) i t Jwa > S,t 

0 

mm 
w 

\f c qmin 
11 Jwa — " n i j 

where the minimum water saturation S™m is given by 

S™n(X,Z,T) = mm SW(X,Z,T'). 

(3.8) 

(3.9) 

The constant 0 € [0,1] is the maximum trapped oil saturation, which is ob
tained when S™in = 0 and Swa = l. 

Equations (3.1), (3.2) and (3.3) are solved for time T > 0 in the domain 
of Figure 3.1. The free oil is confined to two layers [49]. Between the levels 
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Z = Zu and Z = Zao water, (free) oil and air are present, whereas between 
the levels Z = Zao and Z = Zow only water and (free) oil are present. At the 
level Z = Zw we have Pw = 0, which corresponds outside the oil lens to the 
phreatic surface. For L = oo the levels Zu, Zao and Zow coincide for X = X[ 
at Z = Zw. Hence, Z0W{X,T), Zao(X,T), ZU{X,T) are denned by 

St — 1, S0f = 0 if Z < Zow 

St = 1, S0f > 0 if Zow < Z < Zao 

St<l, Sof>0 if Zao<Z<Zu 

St<l, Sof = 0 iîZ>Zu, 

In terms of capillary pressures these levels are given by 

Pow {Zow) = 0, Pao (^ao) = 0, —— Pao \ZU) = Pow (Zu) . (3.10) 
How 

In the well at the left side of the boundary X = 0 the fluid level is fixed 
at Z = 0. We impose well conditions, which may include seepage of oil at the 
entire boundary X = 0 and seepage of water for Z > 0. At seepage boundaries 
a certain phase can only flow out, in which case its pressure is equal to the 
pressure outside the porous medium [14, 18]. Hence, similar to water seepage 
in the dam problem [9, 18], we impose the Signorini conditions [4, 24] for 
multi-phase seepage 

"w _ -'out) Uw -i ") (•*'w "out) Uw 

Po < Pout, U0 < 0, (P0 - Pout) U0 

and also 
Pw = Pout for X = 0, Z < 0, (3.12) 

where 

« - < * > = { - ™ * £ * < * (3'13) 
For L < oo we impose additionally no-flow conditions at X = L, i.e. Uj = 0 
for j — w, o. 
At T = 0 we take initial pressure distributions 

ft&Io) = %$$} *»o<^<^.-»<««». (3-"> 
such that oil has nonzero saturation S0,i in a lens with the finite horizontal 
extension X\ < L, which has prescribed volume 

/

OO TOO fZu rXi 

/ S0tl dXdZ = <f> / (St{P0ti) - Swa(Pw,ü Pos)) dX dZ. 
-oo JO JZow JO 

(3.15) 

= 0 
0 

for X = 0, Z > 0 
for X = 0, - oo < Z < oo, 

(3.11) 
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If L < oo we identify Xi = L. At T — 0 no oil is trapped. 
We define characteristic horizontal length-scales according to 

Xc=lL „ ? r f < 0 ° (3.16) 
[ ow Vo for L = oo v ; 

and a characteristic vertical length-scale, velocity, pressure and time according 
to 

ZC = J - , £/c = ^ , Pc = ^ , Tc = £ (3.17) 
Otow P'O (%ow U c 

This leads to the dimensionless variables 

Ui Vi Pi X Z T . 
UJ = jj, VJ = if' pj = p~' x = x~' z = Y' Y' J = w,°' ^ ' 

Similarly, Pout, Pw>i, P0>i, Xh Zw, Zow, Zao and Zu become dimensionless 
by scaling with Pc, Xc and Zc. 

Combining equations (3.1), (3.2) and (3.3) into two Richards equations the 
resulting problem is (j = w, o) 

for x > 0, — oo < z < oo, t > 0. The boundary conditions become 

Pj < 0) uj < 0, pj uj = 0 for x = 0, z > 0 

Pw 
Pw = z 

Po 

_, Pw ^ r\ I i Pw \ n 
Po < Z, Uo < 0, (Po-\ Z ) U0 = 0 

Po V Po 

(3.20) 
» for £ = 0, z < 0 

and additionally for the bounded domain Uj = 0 for x = 1, —oo < z < oo. 
The initial conditions are 

pw(x,z,0) = Pw,i{x,z)\ f o r x > o, - oo < ^ < oo, (3.21) 
po(x,z,0) = p0j(x,z) J 

with 
l-Zu rxi 

4> I J {St(p0,i) - Swa{pWti,Po,i)) dxdz = v0, (3.22) 

Vn 

where VQ 
Vo 

Xr Zr 
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3.3 Numerical results 

3.3.1 Numerical model 

We simulated the withdrawal of an oil lens with our numerical model, see also 
Sections 2.4.1 and 4.3, which we adapted for the seepage face boundary con
ditions. In this model equations (3.1), (3.2) and (3.3) are combined into the 
mixed form of the Richards equation [13, 36] for both water and oil. Com
putations were done in non-transformed physical variables. The flow domain 
was discretized by linear triangular finite elements. Time discretization was 
fully implicit. The resulting algebraic equations were solved by the modified 
Picard method [13], that gave good mass balances. Convergence was obtained 
for the Picard iterations by adjusting the time steps. The initial time step was 
0.10 hours and the maximum allowable time step 50 hours. 

Some soil and fluid parameters were not varied : 

Kabs = 7.09 
ßw = 1.00 
Ho = 5.00 

10"12 m2, 
10~3 Pas, 
10-4 Pas, 

4> 
Pw 
9 

= 0.400, 
= 1.00-103 

= 9.80 
kg m 3 

_ 9 

ms . 

We varied the parameters L, Vo, n, a, ßow, p0 and 9 as summarized in 
Table 3.1. Additionally, the maximum computed times Te and the charac
teristic lengths and times are listed. 

3.3.2 Treatment of seepage face conditions 

Condition (3.11) requires that at nodes of the seepage boundary either a ve
locity (no-flow) or a pressure is prescribed. We compare two approaches to 
dealing with this condition numerically. 

In an attempt to model all types of boundary conditions by source / sink 
terms, it has been proposed [64] to treat this variational condition by imposing 
at every phase j seepage node the sink term (in physical dimensions) 

Uj = -X ^ - ^ max (0, P3 - Pout), (3.23) 

where % is a large number. In this condition the pressure gradient of the 
horizontal flow velocity (3.2) is replaced by the product x ' {Pj ~ Pout) and 
consequently a large value of x represents a fine mesh in the X-direction. 
The underlying concept is that the flow velocity U3 remains non-zero, even 
at nodes where the oil relative permeability approaches zero, which happens 
if both fluids are flowing, or if the pressure difference Pj — Pout goes to zero. 
During every time step condition (3.23) is evaluated implicitly, such that after 



Oil lens removal 61 

Table 3.1: Parameters and characteristic lengths and times that were used in 
the computations. Case 1 reflects the simulation with different treatments of 
the seepage face conditions, case 2 the simulation with grid refinements, case 
3-10 the simulations on the unbounded domain and case 11-18 the simulations 
on the bounded domain. 

case 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

L 

m 

oo 
10.0 

0 0 

oo 
oo 
oo 
oo 
oo 
oo 
oo 

10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 

Vo 
m3 

0.200 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

n 

3.0 
3.0 
3.0 
2.0 
5.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
2.0 
5.0 
3.0 
3.0 
3.0 
3.0 
3.0 

a 

m" 1 

1.00 
1.00 
1.00 
1.00 
1.00 
2.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
2.00 
1.00 
1.00 
1.00 
1.00 

Pow 

2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
1.80 
2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
2.25 
1.80 
2.25 
2.25 
2.25 

Po 

k g m - 3 

700 
700 
700 
700 
700 
700 
700 
850 
700 
700 
700 
700 
700 
700 
700 
850 
700 
700 

e 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.30 
0.45 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.30 
0.45 

Te 

103h 

1.00 
10.0 
50.0 
50.0 
50.0 
50.0 
50.0 
50.0 
50.0 
50.0 
60.0 
30.0 
100 
100 
60.0 
60.0 
60.0 
60.0 

Zc 

m 

0.444 
0.444 
0.444 
0.444 
0.444 
0.222 
0.556 
0.444 
0.444 
0.444 
0.444 
0.444 
0.444 
0.222 
0.556 
0.444 
0.444 
0.444 

xc 
m 

0.450 
10.0 
2.25 
2.25 
2.25 
4.50 
1.80 
2.25 
2.25 
2.25 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 

Tc 

h 

1.29 
28.6 
6.43 
6.43 
6.43 
12.9 
5.14 
5.29 
6.43 
6.43 
28.6 
28.6 
28.6 
28.6 
28.6 
23.5 
28.6 
28.6 

convergence the correct outflow velocity and pressure Pj are approximated. 
For a flowing phase the latter becomes almost equal to Pout. Unfortunately, if 
X is large, the convergence requires large numbers of iterations. 

Alternatively, the well-conditions can be treated straightforwardly by im
posing at every seepage node 

Pj 
Uj=0 

out if Uj < 0 
if Pi < P( out-

(3.24) 

Hence, if the pressure is imposed exactly equal to the outside pressure, the flow 
velocity is computed as usual from equation (3.2) using the pressure gradient 
over the grid element adjacent to the boundary and the element averaged 
oil relative permeability. For a sufficiently fine X-discretization, we obtain 
accurate results with a limited number of iterations. As the stiffness matrix 
with its modifications for Dirichlet conditions is not changed during a time 
step, we evaluate condition (3.24) at the end of each time step, where the 
automatic time stepping guarantees sufficient accuracy. 
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To compare the effect of the 'iterative' condition (3.23) and the 'direct' 
condition (3.24), we simulated flow with the set of parameters of case 1 of 
Table 3.1. A domain of 16.5 m wide and 1.5 m high was used, with uniform Z-
discretization (19 nodes). For the X-discretization (41 nodes) element widths 
increased from 0.068 m to 0.679 m for increasing X. The top and bottom 
boundaries were taken impermeable to both phases and the right boundary 
was impermeable to oil. The water level at the well boundary at the left side 
(X = 0), was taken at 0.5 m above the bottom of the domain. At the right 
boundary, water pressures were taken hydrostatic with Pw — 0 again at 0.5 m 
above the bottom, yielding an essentially horizontal water table. At T = 0 h 

we imposed hydraulic heads (Hj l = —^- -\—- Z) for each phase, given by 
pw g Pw 

•"u),i — 

Ho,i — < 

0.0 m 
0.0 m 

0.172 m 
0.0 m 

for 0.0 < X < 16.5 m, -0 .5 < Z < 1.0 m 
for 0.0 < X < 0.1 m, -0 .5 < Z < 1.0 m 
for 0.1 < X < 4.0 m, -0 .5 < Z < 1.0 m 
for 4.0 < X < 16.5 m, -0 .5 < Z < 1.0 m, 

(3.25) 

such that 0.200 m3 oil was present in the domain. This simulation reflects 
withdrawal in an unbounded domain (L = oo) in the sense of Figure 3.1.a. 
Multi-phase flow during 1000 h was computed, where the well conditions were 
treated either by condition (3.23) with x = 100 m _ 1 a n d X = 1000 m _ 1 

respectively, or by condition (3.24). In Figure 3.2 we compare the results in 
terms of the vertically integrated (free) oil saturations Wf = </> ƒ S0f dz at three 
times and in terms of the oil volume in the domain v = 4> ƒ ƒ S0f dxdz. As 
oil flows out only through the well boundary, the oil volume can be obtained 
from the cumulative oil outflow rate : J0 Jz uo(0, (, r ) d( dr = 1 — v. Figure 3.2 
shows that as x increases, the 'iterative' solutions appear to converge to the 
solution obtained with the 'direct' condition. 

Figure 3.2.c shows the oil pressure distribution at the well boundary. At 
about z = 0.35 the well condition switches from the zero pressure to the no-
flow condition, whereas the oil pressure is hydrostatic for z > 0.35. This 
level marks the top of the oil seepage face. For z < 0 the oil pressure is 
equal to the water pressure and hence the oil saturation is zero, but oil flows 
out at those nodes where oil is present inside the domain. We observe that 
the 'iterative' condition yields a smoothed approximation of the correct oil 
pressure p0 at the well boundary. For the larger value of x the approximation 
is slightly better in agreement with the exact condition. However, the number 
of (Picard) iterations and time steps needed for convergence becomes very 
large: the present simulation with x = 100 took about 6 h and with x = 1000 
about 45 h, whereas the simulation with the 'direct' condition required only 
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Figure 3.2: Comparison of seepage face treatment (case 1) by the 'iterative' 
condition (with x = 100, X ~ 1000) and the 'direct' condition in terms of (a) 
vertically integrated oil saturations wj as a function of x, (b) oil volume in 
the domain v as a function of t and (c) oil pressure distribution p0 at the well 
boundary as a function of z at t — 156. 
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20 min. Hence, at least for this type of computations the 'direct' approach is 
preferable. 

3.3.3 Grid refinements 

Especially near the part of the well boundary where oil flows out, large pres
sure gradients occur and the effects of discretization may be substantial. To 
investigate this, we performed a series of simulations in which we refined both 
the X-grid and the Z-grid near the well boundary. A domain of 10.0 m wide 
and 2.5 m high was used. For every simulation the X-grid between 1.0 and 
10.0 m had 15 elements, whose widths increased from 0.351 to 0.849 m, and 
the Z-grid between 0.5 and 2.0 m had 15 elements of uniform height. The X-
discretization between 0.0 and 1.0 m and the Z-discretization between —0.5 
and 0.5 m were varied as follows: 

grid xl : 3 elements, width increasing from 0.111 to 0.556 m, 
grid x2 : 6 elements, width increasing from 0.028 to 0.306 m, 
grid x3 : 12 elements, width increasing from 0.007 to 0.160 m, 
grid zl : 5 elements, height 0.20 m, 
grid z2 : 10 elements, height 0.10 m, 
grid z3 : 20 elements, height 0.05 m. 

We considered the combinations (xl,z3), (x2,z3), (x3,z3), (x3,zl) and (x3,z2) 
and simulated flow with the set of parameters of case 2 of Table 3.1. The top, 
bottom and right boundaries were taken impermeable to both phases, which 
reflects withdrawal from an essentially bounded domain, see Figure 3.1.b. The 
water level at the well boundary was taken at 0.5 m above the bottom of the 
domain. At T = 0 h we imposed for each phase hydraulic heads 

HWii = 0.0 m for 0.0 < X < 10.0 m, -0 .5 < Z < 2.0 m . 
H0'i = 0.215 m for 0.0 < X < 10.0 m, -0 .5 < Z < 2.0 m ^ ' ' 

such that 1.0 m3 oil was present in the domain. Multi-phase flow during 10000 
h was simulated. 

In Figure 3.3 the solutions corresponding to the refinements are presented 
in terms of the vertically integrated oil saturations at three times. The solu
tions corresponding to the rr-grid refinement seem to converge, but since the 
differences between solutions corresponding to the z-grid refinement do not 
uniformly decrease, the dependence on the z-grid near the well boundary is 
less straightforward. 

The situation near the well boundary is illustrated by Figure 3.4. In Fig
ure 3.4.a oil pressures are given for X between 0.0 and 0.5 m and Z between 
—0.5 and 0.5 m in dimensionless variables at T = 10000 h. Observe that 
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Figure 3.3: Vertically integrated oil saturations Wf (case 2) as a function of 
x for refinement of the x-grid near the well boundary (a) and for refinement 
of the z-grid near the well boundary (b). 
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Figure 3.4: Oil pressure contour lines in the neighborhood of the well bound
ary at t = 350 (a) and water and oil flow velocities at the well boundary at 
several times (b) for the grid refinement (x3,z3) (case 2). 

roughly above z = 0.30 oil pressures are negative and nearly hydrostatically 
distributed and no oil flows out. Below z = —0.80 oil pressures are equal to 
the hydrostatic water pressures, which means that oil is neither present nor 
does it flow out. Between z = —0.80 and z = 0.30 oil flows out and large oil 
pressure gradients occur, which cause numerical difficulties. 

Figure 3.4.b shows the horizontal water uw and oil u0 flow velocities at the 
well boundary between z = —0.60 and z = 0.60 at 5 different times. For the 
present situation with no decline of the water table throughout the domain 
only water inflow occurred below the well water level. Oil flowed out mainly 
above this water level with velocities, that were much larger than the water 
inflow velocities. Between t = 210 and t — 350 the maximum level where oil 
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flowed out, i.e. the top of the oil seepage face, decreased from z = 0.3375 to 
z = 0.225, which are the positions of two horizontal grid lines. As oil outflow 
is maximum just below and vanishes abruptly at the top of the seepage face, 
this may be another source of numerical difficulties. 

3.3.4 Sensitivity analysis 

With condition (3.24) and grid refinement (x3,z3) near the seepage boundary, 
we performed a series of simulations in which we varied parameters as shown in 
Table 3.1, with case 3 as a reference case for the unbounded domain simulations 
3 to 10 and case 11 for the bounded domain simulations 11 to 18. For the 
unbounded domain the X-grid (from 1 to 55 m) consisted of 42 elements, 
whose widths increased from 0.356 to 2.215 m, and the Z-grid for the entire 
domain was the same as near the well boundary, with 15 elements of uniform 
height between 0.5 and 2.0 m, which yielded 1980 nodepoints in total. Initially, 
we imposed water hydraulic heads HWti = 0.0 m throughout the entire domain 
and oil hydraulic heads such that 1.0 m3 oil was present in the domain (e.g. for 
case 3 H0yi = 0.215 m for 0.0 < X < 9.6 m, H0fi = 0.107 m for 9.6 < X < 12 m 
and H0j = 0.0 m for X > 12 m). These computations took typically 16 h on 
a HP 9000 735/125 workstation. For the bounded domain the discretization 
(1008 nodepoints) and initial conditions were taken the same as in case 2. The 
corresponding computation times were typically about 3 h. 

For the unbounded domain cases the profiles of Wf were similar to those 
shown in Figure 3.2.a, whereas for the bounded domain cases the profiles 
looked like those of Figure 3.3. The varied parameters n, a, ßow and p0 most 
likely affect the thickness of the oil layers and thus the seepage flow rate. 

In Figure 3.5 we present the removal rates, i.e. the evolution of v. We 
observe that removal happens much slower in the unbounded domain (Fig
ure 3.5.a) than in the bounded domain (Figure 3.5.b). As expected the van 
Genuchten parameter n largely affects the removal rate, in the sense that large 
values of n correspond with slow removal (cases 5 and 13). The effects of chan
ging a, ßow and p0 (cases 6, 7, 8, 14, 15 and 16) are not very large. The larger 
value of the parameter a (cases 6 and 14) slightly fastens the removal, which is 
contrary to the effect that a has on other processes like oil lens redistribution, 
see e.g. Chapter 2. The coincidence of cases 7 and 8 happened by chance. 
As expected also the trapping parameter 9 is important, especially because a 
large amount of oil cannot be removed at all. 

In Figure 3.6 we present for the unbounded domain cases the first mo
ment in x-direction of the vertically integrated free oil saturations M\ = 
<\) J xwf dx dz. These moments itself have no important physical meaning, 
but we observe that for most cases they became almost constant after a very 
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Figure 3.5: Oil volumes as a function of time (a) for the unbounded domain 
and (b) for the bounded domain (relative to the initial volume). For cases 9, 
10, 17 and 18 also the trapped oil volumes are shown. 
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Figure 3.6: First moments of the vertically integrated free oil saturations as 
a function of t ime for the unbounded domain. 

short t ime, which we will come back to in Section 3.4.3. Only for a large 
value of n (case 5) and for the entrapment cases 9 and 10 the moment did not 
become constant. 

3.4 Analytical approximations 

3.4.1 R educed equat ions 

To obtain analytical approximations for the decay of the oil lens at an es
sentially horizontal water table, we assume that vertical oil velocities can be 
neglected. According to [9] a necessary condition for this vertical flow equilib
rium is that the horizontal extension of the lens is much larger than its vertical 
extension, say Xi/(ZU — Zow) 3> 1. Then, the vertical capillary and the gravit
ational forces balance and capillary pressures are hydrostatically distributed. 
Furthermore, if additionally the oil saturations, and thus the oil mobilities, are 
much smaller than the water saturations and mobilities, we may assume tha t 
the water pressures are hydrostatically distributed with reference level pw = 0 
at z = 0, and thus water and oil flow are segregated. The numerical results 
indicate that the vertical equilibrium assumption is justified shortly after the 
s tart of the flow process everywhere in the lens away from the well boundary, 
see also Chapter 2. The vertical pressure distributions are given by 

Pu for 00 < z < oo 
Po 

(3.27) 
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Po = z<xo- z for zow < z < zu. (3.28) 

According to definition (3.10) we may relate the separating levels in the oil 
lens by 

Po Pow . , , T-. Pow ^ P /0 <->n\ 
Zow = - - 7 — Zao, Zu = Zao With D = — (3.29) 

A p 1 - D ßaoPo 
and A p = pw — p0. To ensure that oil is confined to layers of finite thickness, 
we take D < 1 [11, 39]. Neglecting vertical velocities, equation (3.19) for oil 

dS0 Zc d ( dzao\ 

^-dT-Y^y^^-)^0 (3-30) 

describes the entire flow process, see Section 2.3.1. 
Because vertical pressure distributions are hydrostatic, we further reduce 

equation (3.30) by vertical integration, which requires evaluation of 

rzu rzu 

'/ = 4> S0fdz = (p {St - Swa) dz (3.31) 
rzu rzu 

k = I kro\owa, ot) dz = I kro(bwa, Of) dz, (o.oZ) 
*• Zrtin " Zntn 

where Wf(r,t) represents the free oil volume per unit lateral area and k(r, t) 
the vertically integrated relative permeability, see Section 2.3.3. To rewrite 
equation (3.30) in terms of the variable Wf only, we approximate both k and 
Zao by power law functions of Wf as described in Appendix 2A. We obtain 

i 

zao = \lWf
n+1 and k = X2wf

nn+1), (3.33) 

where Ai and À2 are given by 

-1 / n ( n + l ) \ " + ï / A o \ " + ï , n , 
\ 1 = ^ MT ( I \ ') ( _ £ ) ( 1 - I > ) Ï Ï + Ï (3.34) 

\ n-l J V Pw J 

A 2 = </>2( n + l) n 
n 

5 n - 2 

1) 

(1 

5n—2 
2 ( n+ l ) 

D 

- D ) 2 

\Pw ) 

T, 
5 n - 2 1K 
( n+ l ) 1 

( n+ l ) 

1 
* 

n ( 5n -2 ) 
(!_!,) 2(n+i) + ^ _ _ h \ (3.35) 

and /fc is the integral given by (2.72). 
Additionally, we define w0(r,t) as the total oil volume per unit lateral 

area, wt(r,t) as the trapped oil volume, with wt = w0 — wj, and wm(r,t) as 
the maximum oil volume, i.e. 

wm{r,t) = max Wf(r,t'). (3.36) 
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The hydrostatic pressure assumption implies that for every lateral position the 
integrated apparent water saturation at tains its minimum at the t ime Wf a t
tains its maximum. Hence, the vertically integrated t rapping mechanism (3.8) 
is given by 

Ct {wm - Wf) 

«" = < o a«,, < 3 ' 3 7 ' 
dt 

if ^r>° 
dt 

Po at every lateral position where wt is positive, with Q = — #, see Appendix 2B. 
Pw 

Writing the vertically integrated time derivative of equation (3.30) as 

dw0 

dt = < 
dt 

dwf 
dt tt-ct) 

we arrive at the nonlinear diffusion equation 

wf 

dt = 7-
d 

d~x V"f ~d w 
dwf 

where 

for t > 0, 0 < x < xi, 

(3.38) 

(3.39) 

P = 

7 = 

m = 

1 - c t ' 
ZcpXi A2 

Xc (n + 1) 
3 n - 2 

2 (n + l ) ' 

and F is defined for argument y by 

p > i 

1 3 
- < m < -
4 2 

if y > 0 

if y < 0. 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

Observe tha t if entrapment is not included, p = 1 and F(y) = y for all 
y, whereas for the bounded domain Wf is decreasing everywhere and simply 
yields F(y) = y. 

Near the well boundary oil pressures are not hydrostatically distributed 
and equation (3.39) is not valid. Therefore, it is not possible to relate Wf 
to the level zao (3.33) and to transform the well condition (3.20) into an 
appropriate condition for Wf at the well boundary. However, we know that 
below the well water level oil saturations are zero and we assume that the par t 
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of the seepage boundary above the water level is small. Hence, we impose the 
Dirichlet condition 

wf{0,t) = 0 (3.44) 
o 

and mention that for (3.44) the outflow rate q(t) = —^wT1 (0,t) is 1 ox 
. , , dwf ln . 

nonzero provided (0, t) — oo. 
ox 

Furthermore, if L < oo we impose at the right boundary the no-flow con
dition 

^ ( M ) = 0. (3.45) 

The initial condition corresponding to (3.14) is 

Wf(x,0) = Wi(x), (3.46) 

where W{ = <f> ƒ S{dz is the initial oil volume per unit lateral area. According 
to condition (3.15) Wi satisfies 

rxi 

I Wi (x)dr = v0. (3.47) 
Jo 

For L = oo we mention two important features of Wf which can be verified 
easily. The 'diffusion' coefficient wT1 vanishes for wf = 0, which implies that 
the free boundary x\ which separates the regions where Wf > 0 and wj = 0, 
is at every time at finite distance from the z-axis. Considering that the speed 
si at which the free boundary moves is equal to the horizontal oil velocity at 
the free boundary, this speed is given by [7, 10] 

s /= Urn to T 1 - 1 ^ . (3.48) 
x\xi J O X 

Furthermore, if p = 1 the first moment of Wf satisfies [7] 

i 
XI 

xwf dx = const. (3.49) 
o 

3.4.2 Analytical solutions 

Equation (3.39) is the (modified) porous medium equation which admits sim
ilarity solutions of the form [6, 30] 

wfa(x, t) = t~ß h(x t~u), (3.50) 

with constant /i and v. We have introduced t = 7 (t — to) with to representing 
the time at which the solution becomes singular. 
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For L < oo, the solution of equation (3.39) is positive on the fixed region 
[0,1], which requires v = 0, and the transformation (3.50) is a simple separa
tion of variables. Substitution of (3.50) with v = 0 into equation (3.39) yields 

H = — and the ordinary differential equation 
m 

(hmh')' = -— f o r 0 < r ; < l (3.51) 
m 

for h(rj), with rj = x. To facilitate the computation of h, we apply the scaling 

M0 = c-™/i(C£), £ = § , (3-52) 

for any positive constant C (2.52). In this case we take C = 1, because the 
length of the domain is equal to 1 and h is the solution of equation (3.51) on 
the domain 0 < £ < 1, where primes ' denote differentiation with respect to 

Scaling of the boundary conditions (3.44) and (3.45) yields h(0) — 0 and 
h'(l) = 0. To derive the corresponding solution of equation (3.51), which 
was obtained by Boussinesq [9] for m = 1, we substitute y = —hmh', the 
transformed oil flux. The resulting equation for y(h) has the solution 

^> - - V J ^ + Ï ) ^ * * 1 " » - * - " - (3'53) 

Hence, we obtain implicitly for h(Ç) 

. , mhm{l) fm + 1 V 

^ 2 ( ^ 5 f e r + 2 U T 2 ' 2 j ' (3-54) 
Mi) 

where 

•Aa,b)= f Ta-1{l-T)b-1dT, (3.55) 

is the incomplete ß-function. Substitution of £ = 1 into equation (3.54), yields 
the value of h(l). Inserting h(l) in (3.53) gives the flux y(h), in particular at 
( = 0. 

For L = oo, we write the similarity solution (3.50) for convenience as 

/ ^ \ t-^h{xv\ru) ioTiü<x<Av-\tv ,occS 

Wfa(x,t)= ' _i (3.56) 
I 0 lor x > Au 2 t", 
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ï 
where Au i tv, with positive A, represents the free boundary beyond which 
Wfa = 0. Substitution of (3.56) into equation (3.39) shows that the similarity 
profile h(r]), with variable 77 = xvï t~~v', satisfies the equation 

(hmh')' = F(-r]h' -kh) for 0 < 77 < A, (3.57) 

with k = —, and /J and 1/ satisfying 

2i/ + m / i - l = 0. (3.58) 

Observe that the moment M/j_i = J xk~1 wjdx (2.53) for the similarity 
solution (3.56) is independent of time, i.e. 

Mfc_1>a = v-\k [A r,"-1 h(V) dr,, (3.59) 
Jo 

which is a generalization of property (3.49). 
After the scaling (3.52) with C = A, h is the solution of equation (3.57) 

for 0 < £ < 1. Boundary condition (3.44) yields h(0) = 0 and at the free 
boundary we have h(l) = 0. 

For p = 1 property (3.49) requires k = 2, i.e. 

H = 2u = - , (3.60) 
m + 1 v ' 

and equation (3.57) has the explicit Dipole solution [8, 30] 

*«)=(=££*«*-<'))*. P.«) 
The transformed oil flux y — — hm h' &t t; = 0 is given by 

iK = 0) = . _ L _ M™ V>V + ". (3.62) 
y v s ; m + 1 V m + 2 y v ; 

The first moment of h, which is the transformed version of the moment (3.59) 
for k — 2, i.e. ƒ ÇhdÇ, is given by 

ü r ^ / m ( ^ ^ /m + 1 1_ N 
m + 2 V m + 2 7 Vm + 2 ' m 7 v y 

where B = Bi (3.55) is the B-function. 
For p > 1 the trapping parameter A; and the solution of equation (3.57) 

cannot be found exactly. Hence, we compute numerically the similarity profile 
and the value of k, see also Appendix 2C, for which the procedure is described 
in Appendix 3A. We obtain the trapping parameter A; as a function of p, which 
is shown in Figure 3.7 for different m-values. 

In Appendix 3B we show that a similarity solution similar to (3.56) can 
be obtained for oil removal in a semi-infinite three-dimensional domain. 



Oil lens removal 75 

Figure 3.7: Parameter A; as a function p for several values of m. 

3.4.3 Agreement between numerical and analytical approximations 

The similarity solutions Wfa(x,t) only provide reasonable approximations of 
the withdrawal process, if we find appropriate values of to and also of A for the 
unbounded domain. As the initial condition (3.46) in general does not have 
the similarity shape and as vertical equilibrium conditions are only established 
some time after the start of the flow process, we estimate the unknown values 
from oil lens (shape) properties after a sufficiently large time, rather than from 
the initial condition. We compute to and A from the numerical solutions for the 
free oil volume per unit lateral area wjn of Section 3.4.1, where the subscript 
n identifies the numerical solution, by comparing Wfn with the analytical Wfa 

of Section 3.4.2. In practice, it is relatively easy to determine to and A by 
measuring the outflow rate and by comparing it with the analytically obtained 
outflow rate. Measuring once yields the value of to for the bounded domain, 
whereas measuring at two different times yields the values of both A and to 
for the unbounded domain. 

To obtain the values of A and to from the numerical solution for L = oo 
(cases 3-10 of Table 3.1), we use at one time the moment Mk-\ (3.59) and 
the oil outflow rate, q(t) = f0 Jz uo(0, (,T) d( dr. Observe from Figure 3.6 
that except for case 5 (large n) all cases with zero entrapment (k = 2) had 
an approximately time-independent first moment in agreement with (3.49) 
after a short time. In case of entrapment (case 9 and 10) we computed k = 
2.29 and k = 2.48 respectively and Mfc_i]n became time-independent as well. 
This indicates that, except for a large value of n (case 5), the flow processes 
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Table 3.2: Parameter values for the similarity solution and deviations of the 
analytical solution from the numerical solution. 

case 

3 
4 
5 
6 
7 
8 
9 
10 

7 

0.0680 
0.100 

0.0621 
0.0170 
0.215 
0.108 
0.0860 
0.0992 

A 

1.68 
1.89 
1.62 
1.41 
1.74 
1.64 
1.63 
1.60 

to 

-188 
-63.3 
-1250 
-104 
-92.9 
-92.1 
6.82 
-30.1 

Av 

0.0305 
-0.00766 

0.359 
-0.0106 
0.00794 
0.0196 
0.0269 
0.0573 

case 

11 
12 
13 
14 
15 
16 
17 
18 

7 

0.0153 
0.0225 
0.0140 
0.00764 
0.0387 
0.0244 
0.0194 
0.0223 

to 

-207 
-83.6 
-330 
-266 
-101 
-137 
-168 
-180 

Aw 

0.0821 
0.114 
0.710 
0.0127 
0.0744 
0.0225 
0.105 
0.138 

quickly satisfied the vertical equilibrium conditions and that the boundary 
condition (3.44) was a good approximation of the non-reduced well condition. 
For the similarity solution we have 

Mk-lta = v-*kAk+%Mk-u (3.64) 

where Mfc-i = ƒ (k~1 h d£, the moment in terms of the transformed h(£) (3.52), 
which is given by (3.63) for k = 2 and obtained numerically for k > 2. By 
identifying Mfc_i,n and Mk-\>a at £ = 0.1 te, we obtained the values of A, 
which are listed in Table 3.2. 

The outflow rate is given for the similarity solution by 

dwfgt 

dx 

with t = 7 (t — to). For p = 1 y(£ = 0) is given by (3.62) and for p > 1 it 
is computed numerically. We identify qa and its numerical equivalent qn at 
t = 0.1 te and obtain the values of to, which are also listed in Table 3.2. 
The values of k, A and to determine Wfa(r,t). In Figure 3.8.a we present u>fn 

and Wfa for case 3 at several times. Observe that the agreement between the 
profiles is good, except near x = 0. 

In Figure 3.8.b we present also the free oil volume v which is a global 
and practically relevant characteristic. The analytically and numerically ob
tained volumes show very good agreement at all times. For all cases (3-10) we 
calculated the relative deviations of v at the maximum computed time te 

qa(t) = -jwfl ^(0,t) = 7 ^ r ^ 1 ) " - " A 1 + £ y(£ = 0), (3.65) 

AV = ^(te)-v(te)_ 
Vn(te) 

The values of Av which are listed in Table 3.2, are less than 6 percent, except 
for large n. 
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F i g u r e 3 .8: Numerical and analytical free oil volumes per unit lateral area 
(a) and free oil volumes in the domain (b) for case 3 after fitting parameters 
at t = 778. 



78 Chapter 3 

When oil entrapment is taken into account (cases 9-10), the trapped oil 
volume per unit lateral area according to the analytical solution can be found 
from relation (2.55). 

For L < oo we obtain the value of to by identifying the numerical oil 
outflow rate qn(t) at x = 0 and the outflow rate corresponding to the similarity 
solution, i.e. 

qa(t) = - 7 t i # ^ ( 0 , t ) = 7 Ï - - - 1 y(£ = 0), (3.67) 

with y(Ç = 0) given by (3.53), at t — 0.1 te. In Figure 3.9 we present Wfn and 
Wfa for case 11 at several times and the free oil volumes vn and va. The profiles 
show good agreement, except near x = 0 and the volumes agree very well at all 
times. For all cases (11-18) we computed also the deviations Av (3.66), which 
are listed in Table 3.2. These deviations are less than 14 percent, except for 
large n (case 13). The deviations for the bounded domain are slightly larger 
than for the unbounded domain. This may be caused by numerical errors, as 
the absolute values of the remaining free oil volumes for the bounded domain 
became very small, see Figures 3.5.b and 3.9.b. 

Although the approximation (3.44) of the well boundary condition, i.e. 
Wf(0, t) = 0, is not in agreement with the numerically obtained free oil volume 
per unit lateral area iu/n(0, t), see Figures 3.8.a and 3.9.a, this approximation 
leads to almost correct outflow rates and thus to almost correct solutions. At 
the well boundary most oil is present above the oil seepage face, where no 
outflow occurs. This means that the largest fraction of Wfn(0,t) does not 
contribute to the outflow rate. For large values of n (cases 5 and 13) as well 
as for small values of a (not shown here) the analytical approximations are 
less accurate and removal happens relatively slowly. For these parameter val
ues the capillary pressure functions {P0w{SWa)-, Pw(Swa) and Pao(St) of rela
tions (3.4,3.5)) decrease rapidly from a relatively large value to zero, when the 
respective saturations approach one. This behavior corresponds to large entry 
pressures, which may explain that a larger fraction of Wfn(0,t) contributes 
to the outflow rate and that the approximation (3.44) of the well boundary 
condition is less adequate. 

3.5 Conclusions 

We modeled withdrawal of a lens of organic contaminant in a two-dimensional 
domain, which is either finite or semi-infinite in the horizontal direction. At 
the well we imposed seepage face conditions for multi-phase flow, i.e. a phase 
can only flow out, in which case its pressure is equal to the pressure outside 
the soil. 



Oil lens removal 79 

0.12 

0.10 

0.08 

gT 0.06 

0.04 

0.02 

°-°8.o 00 0.20 0.40 0.60 

X 

(a) 

numerical 
| analytical , 

* ^— ' ' 

t = 2 i q , . - - - - " 

t=420 

t=480 

t=2101 

. - " i i i i 

0.80 1.00 

0.25 

0.20 
numerical I 
analytical , 

1800.0 2400.0 

(b) 

F i g u r e 3.9: Numerical and analytical free oil volumes per unit lateral area 
(a) and free oil volumes in the domain (b) for case 11 after fitting parameters 
at t = 210. 
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Using a numerical multi-phase flow model we simulated the withdrawal 
process with a constant fluid level in the well that is equal to the phreatic 
surface in the soil. Implementation of the seepage face conditions as sink 
terms with a large artificial productivity index, as was proposed earlier, was 
compared with the direct implementation of the variational condition. For 
increasing values of the index the sink term solutions converged to the 'direct' 
solutions, but required much more computation time. Hence, the 'direct' 
implementation is both more accurate and more efficient. Close to the well 
boundary steep pressure gradients occurred. Refinement of the X-grid led to 
convergence of solutions near the seepage face. Oil outflow velocities showed a 
steep peak in vertical direction just below the top of the oil seepage face, which 
required very accurate discretization. Simulations for different parameters 
showed that removal was slower in the semi-infinite domain in which the oil 
lens continued to spread horizontally. For large values of the parameter n the 
removal rate was small. Even for the present simulations with no drawdown 
of the water table much oil became entrapped. 

To derive analytical approximations we assumed vertical equilibrium of the 
oil lens and we integrated the oil flow equation vertically. We approximated 
the seepage face conditions by taking the oil volume per unit lateral area equal 
to zero, yielding however a nonzero outflow rate. Both for the bounded and 
the unbounded domain similarity solutions of the resulting differential equa
tions were available, which were either explicit or easy to compute. For the 
unbounded domain a time-independent moment of the similarity solution was 
determined. The approximate independence of time of this moment for the 
corresponding numerical solution justified the vertical equilibrium assumption 
and the approximation of the well boundary condition. Comparison of the 
analytical and numerical moments for short times yielded the value of one of 
the unknown constants in the analytical solution. The remaining unknown 
constant was obtained by comparison of the numerically and analytically ob
tained outflow rates for the bounded and the unbounded domain. After fitting 
the two constants for a small time, the analytical solution was used to pre
dict for larger times. Except for larger values of n, the agreement between 
analytical approximations and numerical results was good. In practice, the 
determination of the two constants in the analytical solution may be done 
using outflow rates, which are easily accessible, for two different times. 
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Append ix 3A 

Evaluat ion of the ordinary differential equation 

For the scaled variable h(() we solve the nonlinear differential equation 

(hmh')' = F(-th'-kh) f o r O < e < l , (3.68) 

with boundary conditions 

h{0) = 0, h{l) = 0. (3.69) 

Furthermore, in view of condition (3.48) we impose 

hm-1h'(l) = -p. (3.70) 

Therefore, on the right half of the domain we transform equation (3.68) into 
a system of two differential equations with 

j/r,i = hm and s/,.,2 = hm~l h'. (3.71) 

This yields 

< i = rnyr)2 

Vr,l \ Vr,l J 

with boundary conditions yr,i(l) = 0 and yr$ = —p. 
Since near £ = 0 the flux hmh' is nonzero and bounded, on the left half 

of the domain we transform equation (3.68) into a system of two differential 
equations with 

yi,i = hm+1 and yli2 = hmh'. (3.73) 

This yields 

vU 
for 0 < £ < J, (3.74) 

1//.2 = Fl-t^-kViT1] 2 

V i/,r / 
with boundary condition y;,i(0) = 0. 

Imposing continuity of h and h' at £ = - , the two systems (3.72) and (3.74) 
Ai 

are solved sequentially by shooting backward from £ = 1 using a fourth order 
Runge-Kutta scheme. As j//i(0) varies monotonically with k we can use a 
simple iteration to vary k until the solution satisfies yi\(0) = 0. 
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Append ix 3B 

Removal in a three-dimensional domain 

Removal of oil through a horizontal ditch in a three-dimensional semi-infinite 
domain under vertical flow equilibrium conditions is described similar to equa
tion (3.39) by 

F\~a) = T V ' (w?Vwiï for i > 0 ' ° <Xl < 0 ° ' °<x2< f{xi,t) 
(3.75) 

where the ditch is located at x\ = 0. The curve x2 = f{x\,t) defines the free 
boundary beyond which no oil is present and we assume that ƒ is finite for all 
values of xi > 0 and t > 0. Similar to (3.44) and (3.46) we impose 

wf(0,x2,t) = 0 (3.76) 

and 
Wf(xi,x2,0) = Wi(xi,x2), (3.77) 

with 
r°° rf 

/ / Wi(xi,X2)dx2dxi = l, (3.78) 
Jo Jo 

the prescribed initial volume. Furthermore, we impose by symmetry 

^ ( x i , 0 , * ) = 0 . (3.79) 
ox2 

In analogy to (3.56) equation (3.75) admits a similarity solution of the 
form [30] 

v>fa(xi,x2,t) = t-»h(ff), ff=(1^\=uh-,/(X
x
1), (3.80) 

with constants fj, and v satisfying (3.58), which is positive for 0 < rj\ < a 
and 0 < rj2 < 3(771) with a — g(0). The set T = {0 < 771 < a, 772 = 3(771)} 
denotes the free boundary for the similarity solution. Substitution of (3.80) 
into equation (3.75) yields 

V-{hmVh) + iJ-Vh + kh = 0 for 0 < 771 < a, 0 < 772 < 3(771), (3.81) 

with k = —. Imposing the transformed versions of conditions (3.76) and (3.78), 
v 

i.e. 
n i 

M*/)lm=o = 0 and — - ( T 7 ) | % = 0 = 0, (3.82) 
0772 
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requires k > 3, whereas k = 3 for p = 1 (no trapping). Similar to prop
erty (3.70) we have 

{hm-1Vh + rf)-Vh = 0 for ffeT. (3.83) 

Since h is also invariant under a scaling similar to (3.52), it is possible to 
solve for this similarity solution in two dimensions and to obtain an analytical 
approximation of light oil removal in a three-dimensional situation. 

Notation 

A position of oil free boundary in similarity profile 
ct trapping constant 
D parameter determining finiteness of lens thickness 
F trapping function 
g gravity [ms~2] 
Hjti phase j initial hydraulic head [m] 
h (h) (scaled) similarity profile 
K absolute permeability [m2] 
k trapping parameter in similarity profile 
krj phase j relative permeability 
k vertically integrated oil relative permeability 
Mi (Mi ) (scaled) dimensionless first moment of free oil saturation per 

unit lateral area 
Mjz-i (Mfc_i) (scaled) dimensionless time-independent moment of free oil 

saturation per unit lateral area 
m power in coefficient of diffusion equation 
TV number of lateral dimensions 
n van Genuchten parameter 
p trapping constant in function F 
Pj (pj) (dimensionless) phase j pressure [Pa] 
Pjk (Pj,k) (dimensionless) phases j , k capillary pressure [Pa] 
Pjti (pjj) (dimensionless) phase j initial pressure [Pa] 
Pout outside pressure at seepage face [Pa] 
q dimensionless oil outflow rate 
Sj phase j saturation 
S0j free oil saturation 
S0j initial oil saturation 
S0t trapped oil saturation 
S™ax maximum residual oil saturation 
St total fluid saturation 
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Swa apparent water saturation 
gmm minimum water saturation 
T (t) (dimensionless) time [h] 
Tc characteristic time [h] 
Te (te) (dimensionless) maximum computed time [h] 
to starting time of similarity solution 
t time in similarity solution 
Uj {uj) (dimensionless) phase j horizontal flow velocity [ms_1] 
Vj (VJ) phase j vertical flow velocity [ms"1] 
Vo (vo) (dimensionless) initial oil volume [m3] 
v dimensionless oil volume 
A v deviation of analytical from numerical solution 
Wf dimensionless free oil volume per unit lateral area 
Wi dimensionless initial oil volume per unit lateral area 
wm dimensionless maximum oil volume per unit lateral area 
u>t (dimensionless) trapped oil volume per unit lateral area 
X (x) (dimensionless) horizontal coordinate [m] 
Xc characteristic horizontal length [m] 
Xi (xi) (dimensionless) horizontal position of lens outer boundary [m] 
y scaled oil flux in similarity solution 
Z (z) (dimensionless) vertical coordinate [m] 
Zc characteristic vertical length [m] 
Zao {zao) (dimensionless) elevation beyond which air is present [m] 
Zow {zow) (dimensionless) elevation beyond which oil is present [m] 
Zu {

zu) (dimensionless) elevation beyond which no oil is present [m] 
Zw {zw) (dimensionless) elevation with zero water pressure [m] 
a van Genuchten parameter [m_1] 
ßao, ßow ratios of air-oil and oil-water to air-water surface tensions 
7 dimensionless parameter in nonlinear diffusion equation 
r\ (£) (scaled) similarity variable 
0 maximum trapped oil saturation 
Ai, À2 constants in power law approximations of zao and k 
/i, v powers in similarity solution 
ßj phase j viscosity [Pa s] 
pj phase j density [kg m~3] 
<p porosity 
X large number in 'iterative' seepage condition [m_1] 
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Multi-phase flow modeling of air sparging 

4.1 Introduction 

A method for remediating an aquifer, which is contaminated by organic liquids 
(solvents, gasoline) trapped in the saturated zone, is to inject air or oxygen 
into the aquifer. Injection of air may enhance microbial degradation and 
volatilization. 

For remediation of the unsaturated zone, gas venting has been studied 
both experimentally and numerically [20, 27, 33]. Besides the use of soil vapor 
extraction wells, injection of air at a small distance below the water table to 
remove contaminants at groundwater level has been considered [27]. 

For remediation of the saturated zone the use of a vacuum vaporizer well 
has been described [28]. Emphasis was laid on assessing the sphere of in
fluence of the water circulation, where dissolved oxygen enhances microbial 
degradation. 

Direct injection of air in the saturated zone, known as air sparging, to
gether with vapor extraction in the unsaturated zone, has been put forward as 
an effective in-situ remediation technique. Air sparging has been studied ex
perimentally on both field [12, 42] and laboratory [32, 61] scales in the last few 
years, with emphasis on the region in the saturated zone where air is present 
(radius of influence). A numerical study of air sparging at steady state has 
been provided for the case of injection just below the original water table [46]. 

Although laboratory experiments with air injection in a glass bead me
dium [32] showed that air flow can occur as isolated bubbles for bead diamet
ers exceeding 2 mm, it is assumed that under natural subsurface conditions 
air flow is most likely to occur in small continuous channels [32, 34]. A recent 
field study for a uniform soil with mean grain size of 0.25 mm [41], indicated 
that the density of channels in the main region of air flow must be very high. 
Therefore, it is reasonable to model air flow macroscopically as a continuum. 
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Air sparging is only possible in relatively coarse-grained soils. The reported 
injection rates varied from about 3 m3/hr up to 100 m3/hr for thick sandy-
gravelly deposits [12, 34]. Injection in fine textured soils requires high air 
entry pressures, which may cause fracturing of the soil. This may result in 
the formation of a few channels through which air flows upwards [42]. Hence, 
knowledge of soil layering and heterogeneity is important because these affect 
the radius of influence [34]. 

Besides flow continuity air phase compressibility may be a complicating 
factor in modeling air sparging. In the early stage of sparging when air path
ways from the injection filter to the unsaturated zone have not yet been es
tablished, air density is not constant. However, emphasizing the steady state 
situation in which continuous channels to the vadose zone exist, compressib
ility is expected to play a minor role. This expectation is supported by the 
field study [41], which describes sparging at a rate of 34.2 m3/hr, resulting 
into a pressure increase of 10.5 kPa at a distance of 0.6 m from the filter. This 
causes an air density increase of about 10 % only. 

Important for dimensioning the technique of air sparging is quantitative 
knowledge of the effect of soil, fluid and filter parameters on the radius of in
fluence of an injection filter. This motivated us to study an axially symmetric 
model for air injection through a vertically positioned filter in an initially sat
urated region below the vadose zone. In the model we consider air and water 
as two immiscible incompressible continuous phases. The interaction between 
the fluid phases and the soil matrix is described by the saturation depend
ent relative permeability and capillary pressure functions. Contaminants are 
assumed to be part of the soil matrix and do not affect the flow process. 

The basic equations are given and discussed in Section 4.2, where they are 
reformulated in terms of dimensionless numbers (that are combinations of the 
physical parameters). In Section 4.3 we discuss a numerical method, which 
is based on the mixed form of the Richards equation for both water and air. 
Results of numerical computations are presented in terms of the distribution 
of air saturations and the volume of air that is stored in the domain. In 
Section 4.4 we discuss two analytical approximations which are valid in the 
relevant part of the flow domain. One is an upper bound that explains the 
occurrence of small saturations. The other is an explicit solution for the steady 
state situation, which is derived under the assumptions that water is immobile 
and that gravity is the dominant effect in the vertical direction. The explicit 
solution provides an expression for the radius of influence of sparging. In 
Section 4.5 we quantify the agreement between the analytical and numerical 
solutions at steady state. 
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4.2 Model 

We use Darcy's Law for both air (a) and water (w) 

ûi = _K^hnv{p. + PigZ)f J = Wjü (41) 

and the mass balance equations 

In Equation (4.2) Sj denotes the effective fluid saturation and </> the effective 
porosity, i.e. redefined according to 

Sw •= -~^T1, ^a := 1 _"g , <ƒ> := (1 - Sr) </>, 

where Sr is the residual water saturation. Furthermore, K^ is soil absolute 
permeability, <j> soil porosity, Uj fluid Darcy velocity, Sj fluid saturation, krj 
fluid relative permeability, /ij fluid viscosity, Pj fluid pressure, pj fluid density 
and g gravity. We assume that the soil is homogeneous and isotropic and that 
both fluids are incompressible. 

The set of equations (4.1) and (4.2) is completed by the constitutive re
lations Sw + Sa = 1, the capillary pressure Pc = Pa — Pw, Sj = Sj(Pc) and 
krj = krj(Sj) and is solved for the unknowns Sw, Sa, Pw, Pa, Uw and Ua. 
The dependence of capillary pressure and relative permeability on the satur
ations is given by the well-known expressions [47] 

Pc(Sw) = ^ ( s j™ - l ) (4.3) 

krw(Sw) = SJ (l-(l-sè)m) (4.4) 

kra(Sa) = SJ ( l - (1 - Sa) ^f™ , (4.5) 

where 0 < m < 1 and a > 0 are given constants. Note that SW(PC) is defined 
for Pc > 0. For Pc < 0 we set Sw = Sw{0) = 1. Hence, 0 < Sw < 1 for all 
values of Pc [35, 47]. 

Equations (4.1) and (4.2) are solved in the two-dimensional axially sym
metric domain of Figure 4.1. The level Z = 0 corresponds to the initial 
position of the water table, where Pw = 0. Along the top boundary of the 
domain, Z = Ht, the air pressure equals Pa = 0. The water pressure along this 
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Figure 4 .1: Schematic of the domain (Q,) for air sparging. 

boundary is selected such that the water table is situated at Z = 0. Hence, 

Pj = Pjt for R > E, Z = Hu (4.6) 

for j = w,a, where Pwt = —pwgHt and Pat = 0. Air is injected with velocity 
[/in into this domain through a filter with radius E > 0 and length Hi — 
Hu, giving the total injection rate Q = 2irE(Hi — Hu)Um. Writing Uj = 
(Ujr, UjjZ), we have the flux boundary conditions 

Uu = 0 

ka,r — ^in 
Uj,r = 0 

for R = E, -Hi< Z < -Hu 

foiR = E, Z < -Hi, -Hu <Z <Ht. 

The initial conditions at T = 0, say, are 

Pj = Pjt + Pj g {Ht -Z) for r > E, Z < Ht. 

We introduce the dimensionless variables 

t = 
TUu 

4>H ' 

C/in' 
Pi = 

R 

H' 

aP^ 

Pw9 

Z=H> 

j = w,a 

(4.7) 

(4.8) 

(4.9) 
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where H = "^ ' , the depth of the filter center, is chosen as a characteristic 
length. Furthermore, we define the dimensionless constants 

E Hu Hi Ht aPjt 

The flow problem is now determined by the the mobility ratio, the gravity 
numbers for water and air, the capillary number and the dimensionless filter 
surface, i.e., 

Mw N. _ -^abs Pj 9 N __ Kabs Pw 9 . _ Q 
Pa' J9 PaUin ' ° ßaUmH a UinH

2' 

For both water and air, equations (4.1) and (4.2) are combined into the 
mixed form of the Richards equation [13, 35]. Together with the boundary 
and initial conditions the resulting problem is : 

= V • ( krw V ( —j pw + - ~ z 
dt V \M^W M 

dSa 
> 'm r > e, z < ht, t > 0 

= V • {kraV (NcPa + Nagz)) 

for r = e, —hi < z < —hu, t > 0 

dt 

Uj>r = 0 for r = e, z < —hi, —hu < z < ht, t > 0 

Pj = Pjt for r >e, z = ht, t>0 
N-

Pj = Pjt + -TT (ht - z) for r > e, z < ht, t = 0, 
N, c 

(4.11) 
N 

where pwt = — ~ - ht and pat = 0. The dimensionless capillary pressure, 

which depends now on Sa, is, according to the redefinition of the phase pres
sures, 

pc(5a) = ( ( l - 5 a ) - ^ - l ) 1 - m , (4.12) 

with Sa = 0 for pc < 0. Problem (4.11) is solved for one of the phase satura
tions and one of the phase pressures. In general, however, it cannot be solved 
explicitly due to the nonlinear nature of the equations. 

To develop an understanding of the behavior of the solution, we consider 
a numerical solution technique based on the formulation of Problem (4.11). 
In addition, we characterize some aspects of the solutions analytically. To 
achieve this we construct a single equation for the air saturation only. We find 
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in terms of S„ [9, 14] : 

d Sa _ 
-^— + V • ua = 0 

Ua = faUt + NgXëz- NCX Vpc, 

(4.13) 

where 
M kra , 

'• - T-TWT ( « 4 ) 
'•rw > ly± "Ta 

denotes the air fractional flow function and 

A = krwkra (4.15) 
«TU; • M- "Va 

denotes the mobility function. Ng = Nwg — Nag and e2 is the unit vector in the 
^-direction. Further, üt = üw + üa denotes the total velocity, which satisfies 
the incompressibility condition 

V • ut = 0. (4.16) 

Observe that in case gravitational and capillary effects are neglected, the air 
velocity ua is the fraction fa of the total velocity. 

Setting S = Sa we arrive at the initial-boundary value problem 

9 5 
dt 

V • ut = 0 

+ V • (faSt + Ng\ez-NcXWPc) = 0 

or 
Ut,r = 

or 
Ut,r = 0 

Pc = Pt 

= 1 

= 1 

for r > e, z < ht, t > 0 

for r = £, —hi < z < —hu, t > 0 

for r = e, z < —hi, —hu < z < ht, t > 0 

for r > e, z = ht, t > 0 
iV 

Pc = Pt- TT (ht - z) ÎOT r> e, z < ht, t = 0, 

(4.17) 
AT 

where pt = Pat — Pu;t = —— ht = a H ht- Note that this problem is equivalent 

to the original description (4.11) in terms of the separate phase saturations and 
pressures. However, to understand the qualitative behavior of the solution, one 
often considers üt in (4.17) as given, leading to a nonlinear advection-diffusion 
equation in terms of S only, which is more accessible to analysis. 
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In Problem (4.17) fa(S), X(S) and pc(S) are nonlinear functions of S. 
These nonlinearities are grouped in the functions 

F(S,Üt) = fa(S)üt + Ng\(S)ëz, D(S) = Nc\(S)d^(S). (4.18) 

In Figure 4.2 we show some typical examples of (4.18). We note here that the 
r-component of the flux Fr is increasing in S for all ut^r > 0. The ^-component 

Fz, however, need not be monotone in S [54]. This only occurs if —— > 1. 
Ut,z 

Under this condition we find a unique value St, the threshold saturation, for 
which Fz satisfies 

Fz(St,ut,z) = Fz(l,ut,z) = u t ls, (4.19) 

and 

Fz{S,ut,z) > Fz(l,ut,z), for St < S < 1. (4.20) 

One easily verifies that (4.19) is equivalent to 

krASt) = ^ - (4.21) 

The formulation of Problem (4.17) shows that the two-phase flow process 
is determined by the dimensionless numbers M, Ng, Nc, and A, and by the 
exponent m in the nonlinearities. 

4.3 Numerical solution 

Using a numerical two-phase flow model we solve Problem (4.11) on the finite 
domain E < R < Rb and —Hi, < Z < Ht (Hi, > Hi). Hence, we impose also 
conditions at the lower (no-flow) and right (hydrostatic pressure) boundaries 

UjjZ = 0 for E < R < Rb, Z = -Hb 

^îil tu. _ 7\ t™ o - p. _ u. / v / u (4.22) p3 = Pjt + ^3-(Ht- Z) for R = Rb, -Hb < Z < Ht. 

Numerical computations are done in non-transformed physical variables. 
The flow domain is discretized by linear triangular finite elements and 

the time discretization is fully implicit. The resulting algebraic equations are 
solved by the modified Picard method [13], giving good mass balance. In in
direction, the grid is finest close to the Z-axis (19 nodes in total, the width of 
an element is 1.08 times the width of the previous element),whereas the grid 
size is constant in Z-direction (3 nodes per meter). Convergence is obtained 
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Figure 4.2: Graphs of (a) the radial component Fr of F for u^r = 0.1 and 
the vertical component Fz for ut>z = 0 . 1 , and of (b) D (M = 73A, Ng = 
6.64, Nc = 1.48 and m = 0.500). ' 
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for the Picard iterations by adjusting the time steps. For the hydraulic head 
for each phase j at nodal point i, 

m •• - P j l 4- Pj 7 <Pl i — I A ) 
Pw9 Pw 

we require that 

max 

k+l,n+l fc+l,n 
'Pji' -vu 

fc+l,n+l 
<Pji 

< e. 

is reached within 20 Picard iterations. Here k refers to time and n to the Pi-
card iteration level. Due to large differences in density and viscosity between 
air and water, the flow problem is dominated by advection. This requires rel
atively small time steps to reach convergence in 20 iterations, and hence large 
computation times. The initial time step is 0.03 seconds and the maximum 
allowable time step is 15 seconds. For all computations we use the relative 
convergence error ec = 0.001. 

The following soil and fluid parameters are fixed during all computations : 

#abs = 5.30 
lia = 1-77 
fj,w = 1.30 
9 = 9 . 8 

10" 1 1 m2 , 
10"5 Pas, 
10"3 Pas, 

ms . 

<f> = 0.390, 
pa = 1.24 kgm"3 

pw = 1.00- 103 kgm"3 

The effective porosity <f> = 0.390 reflects a soil porosity of 0.400 and a residual 
water content of 0.010. Parameters involving the boundary conditions are : 

E = 5.00-10"2 m, 
Ht = 1.50 m, 
PMt = -1 .47-10 4 Pa, 

Rb 

Hi-

Pat 

= 3.65 m, 
-Hu= 1.00 m, 

= 0.0 Pa, 

whereas Hb is adjusted for each computation, such that the lower boundary 
does not affect the air flow. 

The van Genuchten parameters a and m, the air injection velocity Um and 
the filter depth H are varied, which implies the variation of the exponent m 
and the dimensionless numbers Ng, Nc and A. The mobility ratio M = 73.4 
is kept constant. In Table 4.1 the data for the reference case (case 1) and for 
the other cases are summarized. Observe that in the reference case, the total 
injection rate Q = 5.00 m3 h r - 1 . 

All results are presented in terms of the dimensionless variables (4.9). Typ
ical contourplots of the air saturations for the reference case are shown in 
Figure 4.3. 
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I.Ol 0.21 0.41 0.61 0.81 

r 

(a) (b) 

(c) 

Figure 4.3: Air saturation contourplots at (a) t = 0.302, (b) t = 1.21 and 
(c) t = 15.1 (case 1). 
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Table 4.1: Parameters and dimensionless numbers used in computations. 
Relative to the reference case (case 1), m is varied for cases 2-5, Ng for cases 
6-9, Nc for cases 10-13 and A for cases 14-17. 

case 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

a 

m" 1 

2.00 
2.00 
2.00 
2.00 
2.00 
0.800 
1.00 
1.50 
3.00 
2.50 
1.67 
1.00 

0.500 
1.20 
1.46 
1.64 
2.57 

[/in 

l O ^ m s " 1 

4.42 
4.42 
4.42 
4.42 
4.42 
11.1 
8.84 
5.90 
2.95 
4.42 
4.42 
4.42 
4.42 
4.42 
4.42 
4.42 
4.42 

H 

m 

4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
7.50 
6.17 
5.50 
3.50 

m 

0.667 
0.400 
0.500 
0.750 
0.800 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 

N9 

6.63 
6.63 
6.63 
6.63 
6.63 
2.675 
3.32 
4.97 
9.95 
6.63 
6.63 
6.63 
6.63 
6.63 
6.63 
6.63 
6.63 

Nc 

10"3 

0.738 
0.738 
0.738 
0.738 
0.738 
0.738 
0.738 
0.738 
0.738 
0.590 
0.885 
1.48 
2.95 
0.738 
0.738 
0.738 
0.738 

A 

15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
15.5 
5.59 
8.26 
10.4 
25.6 

The time dependence is illustrated by showing the increase of the volume 
of air that is stored in the domain : 

V(t) = 27T f* fbrS{r,z,t)drdz-2n f * [ ' r S{r,z,0) dr dz, (4.23) 
J—hi, Je J—hi, JE 

where r\, = — . In Figure 4.4, V(t) is shown for cases 1, 3, 10 and 14. For 
H 

some cases oscillations occur, which are caused by physical instabilities. When 
injected air reaches the water table an amount of stored air leaves the flow 
domain through the unsaturated zone, which takes place much faster than the 
injection of air. Hence, the stored air volume decreases. This process can 
occur several times. Note, however, that the resolution of the calculations can 
also affect the extent of oscillation. 

The plots in Figure 4.4 show that a steady situation is reached before 
t = 20 for all cases considered. This is equivalent to about 2 hours in real 
time. To characterize the numerical results, we show in Figure 4.5 for the 
reference case a cross-section of the saturation profile at z = —0.2 at steady 
state. For a time ii > 20, we determine the saturation Se = S(e,—0.2,ti) 

and the radial position r\ for which S(r\, — 0.2, ii) = - SE. Both Se and r\ 
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Figure 4.4: Air volume stored in the flow domain (cases 1, 3, 10 and 14). 
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Figure 4.5: Cross-section of the air saturation profile at z = —0.2 (case 1). 
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Figure 4.6: Dependence of (a) the maximum saturation S£ and (b) the radial 
position n on the dimensionless numbers. For instance, the m-curve reflects 
values of the parameters for cases 2-5, see Table 4.1. 
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a 

A A A A A A A 

Figure 4.7: Schematic of the domain (Oi) for air injection through a hori
zontal disk. 

are shown in Figure 4.6 as a function of the dimensionless numbers, which are 
normalized with respect to the reference case, indicated by the subscript 1 : 

m 
m„ = m i 

AT = * * 
gn N, 

™cn — 
9l 

Nc 

N, 
An — 

cl 

A_ 
(4.24) 

From the numerical results we conclude that the air saturation is much 
less than one in the entire flow domain and that the water pressure is almost 
hydrostatic at large times. This allows us to treat the steady state air flow as 
a single-phase process. 

4.4 Bounds and approximations 

4.4.1 One-dimensional flow 

To explain the small values of the air saturation in the flow domain, we consider 
a relatively simple auxiliary problem involving an air saturation, which is above 
the saturation of Problem (4.17). For this auxiliary problem we assume, as in 
Figure 4.7, that air is injected through a horizontal disk at z = — hu with a 
uniform rate nfliZ = 1. This leads to a much higher flow rate at z = —hu than 
in case of injection through the vertical filter. At z = 0 we impose the natural 

d S 
outflow condition —— = 0. Consequently, the air saturation in this simplified 

o z 



(4.25) 
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case serves as an upper bound for the air saturation in case of injection through 
a vertical filter. 

The injection through the horizontal disk leads to a one-dimensional analog 
of Problem (4.17), for —hu < z < 0 in which utjZ = 1. We therefore consider 
the problem 

F(S) - D(S) | ^ = 1 for z = -K, t > 0 
dS 
—- = 0 for z = 0, t > 0 
o z 

S1 = 0 for - hu < z < 0, t = 0, 

where the boundary condition at z = —hu, with F(S) = Fz(S,uttZ = 1), 
ensures the injection of air only. Note that F is non-monotone if Ng > 1, 
see (4.20). We show below that the saturation of the auxiliary Problem (4.25) 
is below the threshold saturation St, see (4.19). 

By an elementary argument based on the maximum principle [55], one 
finds that a solution of Problem (4.25) attains its maximum value at z = —hu, 

with —— < 0. This statement can also be obtained on physical grounds, when 

remembering that Problem (4.25) describes injection of air from the bottom 
into a medium which is completely filled with water at t = 0. To assess 
the maximum value, denoted by Sm, we find from the boundary condition at 
z = -hu 

F(Sm) = 1 + D(Sm) | ^ < 1, 
oz 

implying Sm < St- Hence, we have shown 

S(z,t)<St, for -hu<z<0, t>0. (4.26) 

To check the validity of this upper bound we also make a comparison 
with the numerical solution. To this end we compare the saturation just 
above the injection filter, 5 m a x = S(e, —hu,t), with the threshold value St for 
ut>z = 1 and for all values of the parameters in a relevant range. For example, 
Figure (4.8) shows St as a function of m and Ng, as St appears to depend 
on these numbers, see (4.21). The saturation just above the filter is chosen 
because it appears to be stationary and maximum on the flow domain. 

4.4.2 Steady state flow 

At steady state the time derivative in the saturation equation in Problem (4.17) 
vanishes. The reduced equation must be solved subject to the same bound-
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(a) 

12.0 

(b) 

Figure 4.8: Comparison of St for uttZ = 1 and Smax as a function of (a) the 
exponent m and (b) the gravity number Ng. The m-curve reflects values of 
the parameters for cases 2-5 and the Ng-curve for cases 6-9 of Table 4.1. 
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ary conditions. Inherited from the initial pressure distribution we impose in 
addition 

Pc 
N P t ~ l t (ht ~~ ̂  for r —> oo, z < ht 

(4.27) 
r > e, z —• —oo. 

The numerical results show that the water pressure is approximately hydro
static at large times. This implies that the water velocity can be disregarded 
with respect to the air velocity, i.e. 5 ( = ua. Using this in Problem (4.13) 
yields for the air velocity 

ua = Nn kra ez - Nc kra V pc. (4.28) 

Consequently, we obtain in terms of the air saturation the approximate prob
lem: 

V • Kra 

iVc rCra 

dS 
dr 

Pc = 

Pc -> 

[N9ë 
dpc 
dr 

0 

Pt 

Pt-

Nc Vpc) = 0 in r > e, z < ht 

= 1 for r = e, —h[ < z < —hu 

for r = e, z < —hi, —hu < z < ht 

Nr_ 
(ht - z) 

for r > e, z = ht 

r —f oo, z < ht 
r > e, z —>• —oo. 

for 

(4.29) 
In view of the large difference between the densities of air and water we 

assume tha t upwards from the injection filter and below the water table, flow 
in the z-direction is dominated by advection, i.e., 

u kra 
9T7 » Nr 

d_ 

d~z 
\kra r, ) 

oz 
(4.30) 

As a consequence we are left with a nonlinear diffusion equation in the variables 
r and z. When solving this equation, no boundary condition can be imposed at 
z = ht, representing a 'future t ime'. Hence, we consider the flow domain above 
the well of infinite extent, represented by z > —hu. Interpreting solutions only 
up to z — 0 will produce a reasonable approximation in this region. Assuming 
furthermore tha t the well-radius £ « 1, we arrive at the problem, setting 
k(r,z) = kra(S{r,z)) : 

N 
dk ld_ 

r dr 
rD(k) 

d_k 

dr 
dk 

(0,z) 0 
dr 
k(oo,z) = 0 

in r > 0, z > —hu 

for z > —hu 

for z > —hu, 

(4.31) 
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Figure 4.9: Graph of D(k) with m=0.750. 

N - dpc 
where iVi = —y- and D(k) = k -j-^ (k). In Figure 4.9 we show an example of Nr dk 
D{k). 

At z = — hu we need to impose an 'initial condition', which should reflect 
the influence of the injection filter. First, we observe by a straightforward 
continuity argument that 

/•oo 
2-7T / ruazdr = A for all z > —hu. 

Jo 
(4.32) 

Using the approximation implied by (4.30), this can be rewritten in terms of 
k : 

f°° N2 

/ rk(r,z)dr = — for all z > — hu, (4.33) 
Jo 2 

where N2 = . For computational purposes we assume that the injection 
TTN9 

of air only takes place at the center point of the filter, i.e. r = 0, z = — 1. This 
leads us to consider (4.31) and (4.33) for all z > —1, subject to the 'initial 
condition' 

k(r, - 1 ) = 0 for all r > 0. (4.34) 

In other words, the injection of air is described by a delta-distribution at the 
point r = 0, z — —1. 

Only for special diffusion coefficients D(k) Problem (4.31) admits an expli
cit solution. For example when D is a power law function a solution is known 
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in terms of similarity variables. This solution is known as the Barenblatt-
Pattle point source solution [5, 50]. As a result of the upper bound derived in 
the previous section, we may conclude that k is small throughout the flow do
main. We use this observation to approximate D(k) by a power law function, 
see Appendix 4A : 

D{k)~nDkPD, (4.35) 

where 
2 ( l - m ) 

nD = — — - m 4m+i, nD > 0, 

9(7 \ (4-36) 

2 (1 — m) 
PD = A , / , 0 < p D < 2 . 

Am + 1 
Note that in most cases of practical interest po < 1. 

Hence, following [5, 50] we find that for sufficiently small k the solution of 
Problem (4.31) with the conditions (4.33) and (4.34) can be approximated by 

k(r, z) = < 

where 

and 

727T 1 ~ T27T for 0 < r < f(z), z > - 1 
PD f2(z) \ f2{z)J 

0 for r > f(z), z > - 1 , 
(4.37) 

f(z) = f0 . (z + 1) 2(PD+D for z > - 1 (4.38) 

i 

/.=(^^)""+,>C^)ä- '«9) 
Observe that the function f(z) represents the interface that separates the re
gion where k, S > 0 from the region where k, S = 0. In the mathematical 
jargon the set {(/(z),z) ; z > —1} is known as the free boundary of Prob
lem (4.31). Strictly speaking, the Barenblatt-Pattle solution (4.37) is valid 
for all z > —1. However, since Problem (4.31) is formulated for z above the 
injection filter, i.e. z > —hu, we restrict the solution to these values of z. 
Furthermore, since (4.35) is a good approximation for small k, we expect that 
the quality of the approximation (4.37) increases with z. 

Using (4.48) the expression for k is easily converted into an expression for 
the saturation 5. 

4.5 Applicability of the analytical steady state approximation 

The approximation for the steady state depends only on the three numbers 
JVi, N2 and m and is valid for z > — hu. We check whether the numerically 
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Table 4.2: Parameters and dimensionless numbers for checking dependence 
of the steady state solution on Ni, N2 and m. 

case 

18 
19 

a 

m" 1 

1.00 
1.41 

Uin 

1 0 - 3 m s _ 1 

4.42 
2.21 

H 

m 

7.50 
5.30 

771 

0.667 
0.667 

N9 

6.63 
13.3 

Nc 

10"3 

0.885 
1.77 

A 

5.59 
11.2 

0.010 

0.008 

0.006 

0.004 

0.002 

0.000„ 

case 1 9 ^ -

0.0 8.0 10.0 

Figure 4.10: Comparison of stored air volumes for cases 18 and 19. 

obtained steady state solution also depends on these three numbers for z > 
—hu. This is done by simulations 18 and 19, for which the input parameters 
are shown in Table 4.2. The other parameters are the same as in Section 4.3. 
Observe that although the numbers Ng, Nc and A are different N\ and iVjj 
are the same. Computations result into almost identical contour plots of air 
saturation at steady state, i.e. at large time. However, the transient behavior 
is different. This is illustrated in Figure 4.10, where the stored air volume V(t) 
is plotted. We conclude that both steady states are identical. Therefore, also 
the numerical solutions at steady state depend only on m and the (combined) 
numbers N\ and 7V2 for — hu < z < 0. 

We investigated the agreement between the analytical and numerical solu
tions at steady state in terms of the relative permeability, k(r, z). For the 
numerical solution, k is calculated from the air saturation by the van Ge-
nuchten relation (4.5). For —hu < z < 0, the relative permeability contour 
plots of both the analytical and numerical solution for case 1 are shown in Fig-
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Figure 4.11: Comparison of the relative permeability contour plots of (a) 
the analytical and (b) the numerical solution (case 1). 
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Figure 4.12: C 

>num (r) at 
I: Cross-section of the relative permeability profiles A;an(^) and 
= -0.2 (case 1). 

ure 4.11. Taking the cross-section of the solutions for z = —0.2, we use k&n(r) 
and knum(r) to represent the analytical and numerical solutions respectively, 
as shown in Figure 4.12. We find that the two profiles give excellent qualitative 
agreement. 

To obtain a quantitative criterion, we compute the masses involved, i.e. 

see (4.33), and 

-i: rkan(r)dr, 

rknum(r)dr. 

Note that Jnum 

r„„ -
AI = 

•'an -'num 

depends only on N\, N2 and m. To plot the relative error 

for various values of m, N\, and N2, we make use of Table 4.3, 

which reflects the same computations as shown in Table 4.1. AI is shown in 
Figure 4.13 as a function of the dimensionless numbers, which are normalized 
with respect to the reference case, indicated by the subscript 1 : 

m 
mn = 

m\ 
Nm = 

Nn 
N2n = 

N2 

JV21 ' 

for those cases in which only one of the numbers is varied. We observe that 
the relative error is nearly constant and small (less than 2 %) for most cases, 
except for values of the parameters taken from case 17. In this case the 



Multi-phase Row modeling of air sparging 107 

Table 4.3: Dimensionless numbers characterizing the steady state. 

case 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

m 

0.667 
0.400 
0.500 
0.750 
0.800 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 

M 

8.99 
8.99 
8.99 
8.99 
8.99 
3.59 
4.49 
6.74 
13.5 
11.2 
7.49 
4.49 
2.25 
8.99 
8.99 
8.99 
8.99 

N2 

io-4 

7.45 
7.45 
7.45 
7.45 
7.45 
18.6 
14.9 
10.0 
4.96 
7.45 
7.45 
7.45 
7.45 
2.68 
3.97 
4.98 
12.3 

0.10 

0.08 
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Figure 4.13: Relative errors A J of the volume integrals versus the dimen
sionless numbers. The m-curve reflects values of the parameters for cases 2-5, 
the iVi-curve for cases 10-13 and the AT2-curve for cases 14-17 of Table 4.3. 
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injection depth h is small and as a consequence both the geometry of the filter 
and the outflow boundary condition have a relatively large influence on the 
numerical approximation. 

We may conclude that at steady state (t > 2 hours) the complex two-
phase flow process can be accurately approximated by the relatively simple 
expressions (4.37) and (4.38). An important qualitative feature of the solution 
is its radius of influence, r = ƒ (0) = /o, see (4.39), which denotes the outflow 
radius of the injected air. 

4.6 Conclusions 

We modeled continuous air injection below the groundwater level as multi
phase flow of two immiscible fluids, with emphasis on the development of the 
region containing air and the air saturation profile within this region. We 
found that the solutions depend on four dimensionless numbers, composed of 
soil, fluid and injection parameters. 

Using a numerical model based on the mixed form of the Richards equation 
for two phases, we made computations for different values of the dimension-
less numbers. The computations provided accurate quantitative information 
about the development of an air cone in the flow domain and about the cor
responding saturations. For some cases, the numerical computations showed 
instabilities during the development of the air cone. Within a short time 
(about two hours) a steady state situation was reached, which was approxim
ately a single-phase (air) flow process. For all cases air saturations were small 
in the entire flow domain. Unfortunately, the numerical computations were 
very time consuming. 

An alternative for the use of the two Richards equations is the fractional 
flow formulation. This formulation involves one equation for the air saturation 
and one time-independent equation for the total velocity. It presents an un
derstanding of the nonlinearities of the equations and is used for derivation of 
an upper bound on the air saturation in the flow domain and an approximate 
analytical solution for the steady state. The observation of small air satura
tions enabled us to approximate the complicated expressions for the relative 
permeability and capillary pressure functions by simple power law functions. 
Assuming that flow in the vertical direction is dominated by advection, we 
derived the analytical solution for the steady state situation which is valid 
for the flow domain above the injection filter. This analytical solution was 
proved to be in good agreement with the numerical results and it depends on 
three dimensionless numbers, which are a combination of the four numbers 
mentioned before. 
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For practical reference we give the expression of the approximate analyt
ical solution for the air saturation and the expression for the dimensionless 
numbers involved in this approximation. The numbers are 

Ni = (Pw-Pa)Ha^ 

Pw 

N2 = ».MW-g (4.41) 
-Kabs {Pw - Pa)gHZ 

and the exponent m in the nonlinearities. The analytical solution is given by 

S(r,z) = { 
ns ( ^ J ^ V * I 1 PD P(z)J \ \f(z), 

for 0 < r < f(z), -K < z < 0 

for r > f(z), -hu < z < 0, 

(4.42) 

where 

with 

f(z) = f0-(z + l) 2^ + 1>, for - K < z < 0 (4.43) 

i 

A =(^ . )— "(^±iy (,44, 
represents the outer boundary of the air cone. 

Note, that in (4.42) dimensionless spatial coordinates r and z need to be 
inserted. To obtain FQ, the radius of influence in real physical dimension, /o 
must be multiplied by the characteristic length H. Furthermore, 

ns = m Am+l, ps — 4m + l ' 
2 ( l - m ) jn=±_ 2 ( l - m ) 

4m + 1 Am + 1 

For reasonable values of m, such as 0.30 < m < 0.90, we have 0.52 < ns < 
0.92, 0.43 < ps < 0.90, 0.043 < nD < 0.93 and 0.043 < pD < 0.64. 
To give an impression of the width of air cones, we list the outflow radii Fo in 
Table 4.4 for the computations of Section 4.3. 

Ps 1 Ps 
Observe that the coefficient — = in Equation (4.42) satisfies — > 

PD 1 - m po 
1 for all 0 < m < 1, which means that the saturation profile in the r-direction 
always has zero derivative at the free boundary. Hence, the profile shows a 
relatively large zone where 5 is almost zero. Since for remediation purposes 
a minimum air saturation is necessary, we need to know of the air saturation 
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Table 4.4: Outflow radii. 

case 

1 
2 
3 
4 
5 
6 

F0 

m 

2.31 
1.61 
1.87 
2.53 
2.65 
3.65 

case 

7 
8 
9 
10 
11 
12 

Fo 

m 

3.27 
2.67 
1.89 
2.10 
2.50 
3.10 

case 

13 
14 
15 
16 
17 
18 

Fo 

m 

4.15 
3.56 
3.02 
2.74 
1.87 
3.85 

profile to determine at what distance from the injection axis this minimum 
saturation is reached. 

In our calculations we imposed at the filter an influx, which is equally 
distributed over the length of the filter. However, in practical situations most 
air leaves the filter near the top [42]. Because for the approximate analytical 
solution we assumed point source injection, the use of this approximation can 
be improved by setting the injection level higher than the center of the filter. 

Appendix 4A 

Power law approximation of the diffusion coefficient 

According to the observation that for z > —hu S(r, z) is significantly smaller 
— d T) 

than one, we approximate S(k) and D{k) — k —— by power law functions 
of the form nskPs and no kPD respectively, where rij and pj (j = S, D) are 
constants depending on m. The relations (4.5) and (4.12) for the capillary 
pressure and the relative permeability are : 

Pc(S) = ( ( 1 - 5 ) - ™ - l ) 

k{S) = 5 2 ( l - ( 1 - 5 ) - ) 

1—m 

2m 

Expanding (1 — 5) ™ in a binomial series 

(1 - 5) à = 1 - - S + l ( - - l ) -S2 + 0(S3), (4.45) 
m 2 \m J m 

we obtain for k 
k(S)=m-2mS2m+z +0(54m+5). (4.46) 
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For Dk(S) = D(k(S)) = k(S) ^(S) / ^(S) we find 

1—m 

US) - ^ = > «(i-C-f)*) 
(1-5)™ ( l - ( l - , S ) - + 4 S ' ( l - 5 ) m - 1 J m 

Again using the series (4.45), we obtain 

£ fc(g) = 2
4

(1 ^ ) m m - 1 g 1 - m + 0 ( g 2 - 2 m ) , (4.47) 

which is only accurate for S close to zero. 
Taking first order terms we get 

4m 2 

S{k) ~ m ^ + i i ^ + i (4.48) 
i=>/,x 2 ( 1 — m ) rn-l 2(l-m) 

-D(fc) ~ - r i m 4 m + i / ; 4™+! . (4.49) 

Observe that these approximations are only good for small m, because when 
m f 1 the first and the higher order terms of equations (4.46) and (4.47) 
become of the same order of magnitude. We get 

ns = m4"'+1 , 0 < ns < 1, 
2 2 

PS = -: —r, - < p 5 < 2 , 
4m + 1 5 
2 ( l - m ) J»=L (4-50) 

«D = - : —— m 4m+', n D > 0, 
4m + 1 

2 ( l - m ) 
Pß = -j —T' 0 < p D < 2 . 

4 7 7 1 + 1 
Note, that using the upper bound for 5, i.e. S < St, see (4.26), or equi-

valently k < ——, it is possible to find other power law functions by regression 
M 9 

analysis, which approximate D(k) for 0 < k < ——. Figure 4.14 shows the 

function D(k) with approximations for 771 = 0.750, which must be valid for 

k < — = 0.151. Because the approximation by binomial series shows the 

correct limiting behavior of D{k) for k J. 0, we use this approximation for the 
derivation of the analytical solution. 
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0.24 

0.04 

O.Ol «, 

regression 

binomial 

oo 0.03 0.06 0.09 0.12 

k 
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Figure 4.14: Approximations of D(k) with m = 0.750 for k < 0.151. Approx
imation by binomial series yields (n£),p£>)=(0.127, 0.125), whereas regression 
analysis yields (nn,p£>)=(0.182, 0.146). 

Notation 

A dimensionless filter surface 
D dimensionless diffusion function for two-phase flow dependent on S 
D dimensionless diffusion function for single-phase flow dependent 

on k 
ez unit vector in z-direction 
ƒ dimensionless radial position of free boundary 
F dimensionless z-component of flux function 
F dimensionless flux function 
Fo (/o) (dimensionless) radial position of free boundary at water table [m] 
fa air fractional flow function 
g gravity [ms~2] 
H filter depth [m] 
Hb (hb) (dimensionless) vertical position of bottom boundary [m] 
Hi (hi) (dimensionless) vertical position of lower side of filter [m] 
Ht (ht) (dimensionless) vertical position of top boundary [m] 
Hu (hu) (dimensionless) vertical position of upper side of filter [m] 
k redefined air relative permeability 
-Kabs absolute permeability [m2] 
krj phase j relative permeability 
m van Genuchten parameter 
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M mobility ratio 
N\, Â 2 dimensionless numbers determining steady state situation 
Nc capillary number 
Njg phase j gravity number 
Ng gravity number 
ns, nry constants in power law approximations 
Pc (Pc) (dimensionless) capillary pressure [Pa] 
Pj (j>j ) (dimensionless) phase j pressure [Pa] 
Pjt (pjt) (dimensionless) phase j pressure at top boundary [Pa] 
PS, PD powers in power law approximations 
pt dimensionless capillary pressure at top boundary 
Q air injection rate [m3s_1] 
R (r) (dimensionless) radial coordinate [m] 
Ä& (»"ft) (dimensionless ) radial position of right boundary [m] 
S redefined air saturation 
Sj phase j saturation 
Sr residual water saturation 
St air threshold saturation 
T (t) (dimensionless) time [s] 
Uj (UJ) (dimensionless) phase j Darcy velocity [ms_1] 
Uin air injection velocity [ms_1] 
ut dimensionless total fluid velocity 
V dimensionless air volume in flow domain 
Z (z) (dimensionless) vertical coordinate [m] 
a van Genuchten parameter 
E (e) (dimensionless) filter radius [m] 
A mobility function 
Uj phase j viscosity [Pa s] 
Pj phase j density [kg m~3] 
(j) porosity 



114 Chapter 4 



Chapter 5 

Modeling of air sparging in a layered soil 
numerical and analytical approximations 

5.1 Introduction 

A method for remediating an aquifer which is contaminated by organic liquids 
(solvents, gasoline) trapped in the saturated zone, is to inject air or oxygen 
into the aquifer. Injection of air into the saturated zone, known as air sparging, 
may enhance microbial degradation and volatilization. 

Air sparging has been studied experimentally on both field [34, 41, 42] and 
laboratory [32, 61] scales, with emphasis on defining the region in the saturated 
zone where air is present (radius of influence). These studies emphasize that 
variations in soil texture strongly affect the air flow. Air sparging is only 
possible in relatively coarse-grained soils [34] and in most cases air flow appears 
to occur in small continuous channels. 

The assumption of flow continuity has been used to model air sparging as 
a multi-phase flow process, see also [43, 46, 57] and Chapter 4. Besides flow 
continuity, air-phase compressibility may be a complicating factor in modeling 
air sparging. In Chapter 4 the conclusion was reached, supported by a field 
study [41], that in the steady state situation in which continuous channels to 
the vadose zone exist, compressibility is likely to play a minor role. 

Considering air and water as two immiscible incompressible continuous 
phases, in Chapter 4 the effect of soil, fluid and filter parameters on the radius 
of influence of a single injection filter in a homogeneous medium was analyzed. 
In many situations, however, aquifers contain less permeable regions, which 
may control the main direction of air flow. The effect of heterogeneities has 
been demonstrated by several numerical studies [43, 57]. In this chapter we 
model air sparging below a less permeable horizontal layer with large lateral 
extension. We assume that the different layers have similar structure but 
different mean pore size, i.e. the similar media assumption [40, 44]. Our 
purpose was to investigate the air flow through layered soils, in particular 
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the quantitative effect of the degree of heterogeneity and the position of the 
interface, that separates the layers, on the resulting radius of influence. 

In Section 5.2 we present the transient model: the basic equations with 
their saturation dependent relative permeability and capillary pressure func
tions and the geometry of the domain including the two different layers. To 
accommodate analysis of the steady state situation, we reformulate the prob
lem in dimensionless form and identify the governing dimensionless numbers. 
Thus, we present similar equations with different parameters for the two sub-
domains, which are linked by continuity of capillary pressure and of the vertical 
air velocity component at the interface. 

In Section 5.3 we analyze the steady state situation that occurs when air 
flow from the injection well to the vadose zone has been established. Emphasis 
is given to the region just below the interface, where air mainly spreads hori
zontally. We assume that flow in this region is ruled by vertical equilibrium, 
despite a small vertical air velocity component across the interface. An ordin
ary differential equation for the capillary pressure at the interface governs the 
radial extension of air below the interface. 

In Section 5.4 we present the results of numerical simulations that are 
based on the transient model, which show that indeed a steady state situ
ation is approached. In terms of capillary pressure the numerical solutions 
are compared to the analytical approximation. On the basis of our analyt
ical approximation, we carried out a sensitivity analysis of the effect of the 
dimensionless numbers, especially the measure of the heterogeneity, on the 
saturation profile at the interface. 

Our analysis is related to a study on DNAPL flow on a low permeable layer 
of finite horizontal extension, where conditions for DNAPL infiltration into the 
layer in terms of the contrast in entry pressures were derived [22]. Therefore, 
we show in Appendix 5B that with a few modifications, the present study may 
also reveal how DNAPL leaks through a low permeable layer. 

5.2 Mode l 

According to Chapter 4 we use for both air (o) and water (w) Darcy's Law 

Uj = 3-V{Pj+PjgZ), j = w,a (5.1) 

and the mass balance equations 

0 ^ + V - C / ^ O j = w,a, (5.2) 
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Figure 5.1: Schematic of the domain for air sparging. 

where K denotes soil absolute permeability, </> soil porosity, Sj effective fluid 
saturation, Uj fluid Darcy velocity, kj fluid relative permeability, /J.J fluid 
viscosity, Pj fluid pressure, pj fluid density and g gravity. We assume that 
both fluids are incompressible and that the soil is isotropic, but consists of 
two layers. 

The set of equations (5.1) and (5.2) is completed by the constitutive re
lations Sw + Sa — 1, the capillary pressure Pc = Pa — Pw, Sj = Sj(Pc) and 
kj = kj(Sj). The dependence of capillary pressure and relative permeability 
on the saturations is given by the expressions [47] 

Pc(Sa) = 

^w\^w) = 

ka(ba) = 

, & £ ( ( , _ « . , - * _ , ) 

= sj(l-(l-Sj)m) 
i / l \ 2 m 

= Sa
2 ( l - (1 - Sa) ™) , 

l—m 
(5.3) 

(5.4) 

(5.5) 

where 0 < m < 1 is a given constant and a > 0 differs for each layer. 
Equations (5.1) and (5.2) are solved in the two-dimensional axially sym

metric domain of Figure 5.1 for time T > 0. The level Z = H corresponds to 
the initial position of the water table. Hence, the water pressure along the top 
boundary of the domain, Z = Ht, is Pw = pw g (H — Ht), and the air pressure 
equals Pa = 0. For T > 0, air is injected with velocity U[n into this domain 
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through a vertical filter with radius E > 0, located between Z = ± L / 2. This 
yields a total injection rate Q = 2TTELU-m. The remaining part of the ver
tical line R = E that represents the injection well tube, is considered to be 
impermeable. 

We consider two subdomains, separated by an interface at depth Z = Z*, 
where 

„ J K- for Z < Z* . \ a~ for Z < Z* ,_ „. 
K=\K+ forZ>Z* a n d a = { a + for Z > Z\ ( 5 ' 6 ) 

We assume that the two layers have similar structure, reflected by a single 
m-value for the entire domain, but that they have different mean pore size. 
Hence, in agreement with the scaling theory of similar media [40, 44] we take 
K+ = 7 2 K~ and a+ = 7 a " , with constant K~ and a~ and heterogeneity 
factor 0 < 7 < 1. At the interface Z = Z*, we have continuity of capillary 
pressure Pc and of the vertical components of the Darcy velocities UjtZ. 

With numerical simulations, which are described in Section 5.4, we show 
that flow approaches a steady state. At steady state the water pressure is 
approximately hydrostatic, see [43] and Section 4.3, and air flow is described 
by the mass balance 

V • Ua = 0, (5.7) 

with 

Ua = -^V(Pc-ApgZ), (5.8) 

where Ap = pw - pa. 
We introduce the dimensionless variables 

R Z ^ Ua a-Pc 
r = 7 7 i z = 77' ua = —, pc= , (5.9) 

H H [7in Pw9 

where H, the depth of the filter center below the water table, is chosen as a 
characteristic length. Furthermore, we define the dimensionless constants 

E * Z* Ht 
£ = îr z =H' ht=H 

and 

f. = ̂ ^ , NC = JÇJ^, A - « (5.10) 
ßaUin paU-mHa UmHz 

which are the gravity number, the capillary number and the dimensionless 
filter surface respectively. The resulting equations are 

V • ua = 0, (5.11) 
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with 
-NckaVpc + Ngkaez for z < z* 

-jNckaVpc + ^y^ Ngkaez forz>z*, 
(5.12) 

where ez is the unit vector in the vertical direction. The capillary pressure 
function has transformed into 

( Pc(Sa) for z<z* x_m 

Pc{Sa) = '-PdSa) for z > z*, W i t h ^ = ft1 - *"> -* - 0 • 
{ 7 

(5.13) 
As shown in Chapter 4 the steady state flow problem is determined by the 

combined dimensionless numbers 

AT A 
m = -f and JV2 = - — (5.14) 

and the exponent m. The number N2 is derived from the total flow rate 

rua!Zdr = A, (5.15) ••'I 
Jo 

Furthermore, z* and 7 characterize the position and the degree of heterogen
eity. 

5.3 S teady s tate flow analysis 

To analyze the steady state situation we distinguish three regions which have 
different air flow regimes as shown in Figure 5.2. Provided that the distance 
between the injection filter and the interface is large enough, we assume that 
upwards from the filter a region (/) exists where the vertical velocity com
ponent is dominated by advection. In view of a study on DNAPL infiltration 
above a low permeable layer [22] and supported by our numerical simulations, 
we expect that just below the interface that separates the low and the high 
permeable subdomains, a region (/ƒ) exists where the radial spreading of the 
air flow is much larger than in the advection dominated region, whereas in the 
vertical direction diffusion and advection are of equal magnitude. We assume 
that above the interface and below the water table (region / / / ) advection dom
inates the vertical velocity component. The three regions are enclosed outward 
by the free boundaries r = fi(z), r = fn(z) and r = fni(z) respectively. 

In region I saturations are significantly smaller than one, which allows 
approximation of the relations between saturation, relative permeability and 
(reduced) capillary pressure by simple power law functions, see Appendix 4A. 
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Figure 5.2: Regions with different steady state air flow regimes. 

The relations for the saturation and the (reduced) capillary pressure in terms 
of the relative permeability are given according to Appendix 4A by 

Sa(ka) ~ ns k™ and pc(ka) ~ ^ k™, 
PD 

where 

ns = m 4m+!, ps = 

(5.16) 

2 ( l - m ) 2 2 ( l - m ) mui. 

4 m + l 4 m + l 4 m + l 
_ (5.17) 

Considering the filter as a point source and neglecting the filter diameter, 
the air flow is described by a similarity solution, the Barenblatt-Pattle point 
source solution (4.37), that in terms of capillary pressure is given by 

Pc(r,z) = < 
PD + l N2 

PD f2(z) 

PD 

1 -
fHz) 

0 

for 0 < r < f(z), z>0 

for r > f(z), z>0. 
(5.18) 

The free boundary ƒ separating the regions with and without air is given by 

f(z) = f0z
2(rD+D for z>0 

with 

h=[^N2^) ^^) PD + l 

PD 

(5.19) 

(5.20) 
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This approximation is valid for (r, z) in region I, where fi(z) = f(z). 
To develop an approximate solution for region II, we consider the continu

ity conditions at the interface. Continuity of the vertical component of the 
velocity yields with (5.12) 

lim -Nc k a ^ + Ngka ~ lim 7
2 Ng ka (5.21) 

ztz* O Z ziz* y 

assuming that above the interface advection is dominant. Continuity of pres
sure yields with (5.13) 

lim pc — 7 lim pc, (5.22) 
z\.z* z'fz* 

which shows for 7 < 1 that saturations and relative permeabilities above the 
interface are smaller than below, i.e. 

lim ka < lim ka. (5.23) 
z\,z* z^z* 

Hence, we may neglect the right-hand side of relation (5.21), and we obtain 
for the pressure gradient just below the interface 

dpc NQ y 9 (5.24) r\^ 

dz N, c 

Equation (5.24) is the vertical equilibrium assumption, which controls flow in 
region II. Neglecting for convenience the transition zone between the advec
tion dominated and the vertical equilibrium regime, regions I and / / meet at 
some level z = z* (0 < z* < z*) as shown in Figure 5.2. Here, we define ƒ"" as 
the radial position where ƒ/ changes into ƒ//. Furthermore, ƒ+ indicates the 
radial position where ƒ// changes into ƒƒƒ/. 

Especially if the contrast of material properties below and above the in
terface is large (7 <C 1), we expect that f~ <C / + . Consequently, we as
sume that the advection dominated regime only slightly affects the vertical 
equilibrium regime. Hence, we analyze the flow in region / / separately, thus 
neglecting continuity with region I at z = z*, except that the total flow rate 
condition (5.15) is satisfied for every horizontal plane. 

We vertically integrate in region II the hydrostatic pressure relation (5.24) 
until the interface, i.e. 

N 
pc(r,z)=p(r)-j^(z*-z), (5.25) 

which shows that the capillary pressure at the interface p(r) = pc(r,z*) also 
determines the capillary pressure elsewhere in the vertical equilibrium region. 



122 Chapter 5 

Furthermore, relation (5.25) specifies a boundary z = zj(r) for e < r < / + , 
where pc = 0, i.e. 

AT 

(5.26) 
Nr 

Zf(r) = z* - - £ p ( r ) . 
JV„ 

We vertically integrate the mass balance equation (5.11) from zj to z*, which 
yields 

d ( rz 

TrV 
/ uatrdz \ +ruatZ(r,z*) = 0 f o r e < r < / + . (5.27) 

To evaluate the integral, i.e. the effective horizontal flux, we derive from 
relation (5.25) 

(5.28) 
dpc dp Nc —— = — and dz = —- dpc, or dr Jyg 

leading to 

f ua,rdz = -Nc f ka^dz = -^D(p)^. (5.29) 
Jzf Jzf or Ng dr 

The effective 'diffusion' coefficient is defined by D = JQ k(Ç)dÇ, with k(pc) = 
ka(Sa{pc)), where £ is a dummy variable for integration over the range of 
pc values. By continuity the vertical velocity component ua>z(r,z*) is given 
by the right-hand side of relation (5.21). Using also continuity of capillary 
pressure (5.22), we obtain 

~^N"t ( r Z ? ( P ) ^ ) + r 7 2 J V * * ( 7 P ) = 0. (5.30) 

Integration of equation (5.27) over r from e to ƒ + and application of the 
mass balance condition (5.15) at the interface yields the boundary condition 

-*«%{"*»% (5.31) 

where we have used that the flux (5.29) vanishes at r = f+. Hence, we must 
solve the boundary value problem 

4- (rD{p)^\ -ry2N?khp) = 0 for e < r < f 
dr V dr J 

rD(p) 
dp 
dr 

N?N2 p ( / + ) = 0, 
(5.32) 
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for p(r), where we have used definitions (5.14) for iVi and N2- In Appendix 5A 
d T) 

we show that at r = ƒ+ the derivative -— ( / + ) satisfies 
dr 

drU+) = - l l + ^ N l . (5.33) 
dr 

Hence, we solve problem (5.32) simultaneously for p(r) and f+ as described 
in Appendix 5A. 

Using the solutionp(r) in equation (5.26), we find z = Zf(r). Intersection of 
z = Zf(r) and r = f(z) (5.19), yields the pair (ƒ", z*). Hence, we approximate 
capillary pressure for z < z* (region I) by equation (5.18) and for z* < z < z* 
(region II) by equation (5.25) and the solution p(r) of system (5.40). The free 
boundary r = fu(z) along region II is given by r = zj1(z) for z* < z < z*. 

Assuming that above the interface flow is dominated by advection and 
saturations are small, we may expect that the pressure distribution satisfies 
approximately the similarity profile (5.18). However, the radial extension of 
the air distribution is already so large at the interface, that upwards to the 
unsaturated zone the radial spreading according to this profile will be small. 
Moreover, numerical simulations show that in the vicinity of the water table 
the extension tends to decrease. Hence, we approximate for region III 

pc{r,z) =pc(r,z*) for z>z*, (5.34) 

with fm(z) = ƒ+. 

5.4 Results 

5.4.1 Numerical computations 

Using the numerical model of Section 4.3 we solved the transient two-phase 
flow problem of Section 5.2 described by equations (5.1-5.6) on the finite do
main E < R < Rb and —Hf, < Z < Ht (Hb > 0), where Rb and Hb were 
chosen such that injected air never reached these boundaries. We imposed at 
the lower boundary a no-flow condition (UjjZ = 0). At the right boundary we 
imposed hydrostatic water pressures (Pw = pw g (H — Z)), no air flow below 
the water table (Ua>r = 0 for Z < H) and hydrostatic air pressures above the 
water table (Pa = pa g (Ht — Z) for Z > H). The flow domain was discretized 
by linear triangular finite elements and time discretization was fully implicit. 
The resulting algebraic equations were solved by the modified Picard method, 
that gave good mass balances [13]. In iî-direction we used 30 elements of lin
early increasing width (the width of the last element was 4.63 times the width 
of the first element). The Z-grid was uniform with 0.25 m elements, except 
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Table 5.1: Parameters and dimensionless numbers used in computations. 
Relative to the reference case (case 1), 7 is varied for cases 2-6, z* for cases 
7-10, JVi for cases 11-12, N2 for cases 13-14 and m for cases 15-16. 

case 

1 
2 
3 
4 
5 
6 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

7 

0.600 
1.00 

0.800 
0.700 
0.500 
0.400 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 
0.600 

* z 

0.500 
0.500 
0.500 
0.500 
0.500 
0.500 
0.188 
0.313 
0.688 
0.875 
0.500 
0.500 
0.500 
0.500 
0.500 
0.500 

m 

0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.700 
0.800 
0.556 

Ni 

16.0 
16.0 
16.0 
16.0 
16.0 
16.0 
16.0 
16.0 
16.0 
16.0 
7.99 
32.0 
16.0 
16.0 
16.0 
16.0 

N2 

10~5 

20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
50.0 
4.00 
20.0 
20.0 

for a 0.5 m thick layer from the interface downward, where we expected the 
vertical equilibrium regime. There, we used 5 elements of linearly decreasing 
thickness (the thickness of the last element was 0.220 times the thickness of 
the first element at the top of the layer). Convergence was obtained for the 
Picard iterations by adjusting the time steps. Computations were done in 
non-transformed physical variables. 

The following soil and fluid parameters were fixed during all computa
tions: 0=0.400, Ha=\.77 • 10"5 Pas, /oa=1.24 kgm"3 , ^ = 1 . 3 0 • 10"3 Pas, 
pw=1.00 • 103 kgm"3 , #=9.8 ms" 2 , Uin = 7.07 • 10 - 3 ms" 3 , whereas the lat
ter reflects a total injection rate of 8.00 m 3 / i _ 1 . Parameters involving the 
boundary conditions were: £=5.00-10"2 m, £,=1.00 m, if=8.00 m, Ht=9.00 
m. We varied the exponent m, the dimensionless numbers N\ and N% and the 
heterogeneity parameters 7 and z* with respect to the reference case (case 1) 
as is summarized in Table 5.1. Variations in N\ and N2 were due to variations 
in a~ and K~ respectively: for the reference case we used K~ = 1.00 • 10~10 

m2 and a~ = 2.00 m _ 1 . 

The numerical results revealed that in every case the air flow became sta
tionary. Defining the steady state time as the time where after the increase 
of air volume stored in the domain, see Section 4.3, is less than 1 percent, 
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we found that this time varied between 1 and 5 h for all cases, except for 
case 5 (7 h), case 6 (35 h) and case 18 (25 h). The simulations required 
large computation times : roughly between 8 and 48 h on a HP 9000 735/125 
workstation. 

Results are presented in dimensionless form, see (5.9). We use capillary 
pressure (pc) as the main variable, because it is continuous over the entire do
main and has a non-zero gradient normal to the free boundary, which makes 
it easy to determine the position of this boundary. In Figure 5.3 the capillary 
pressure contours for case 1 and case 6 (large material contrast) at steady 
state are shown. These contours show a sharp transition from the advection 
dominated region to the vertical equilibrium region just below the interface. 
Furthermore, we observe that above the interface the solution is almost con
stant in the z-direction. As the solution at the interface is characteristic for 
air injection in layered media, we present in Figure 5.4 the development of 
capillary pressure at the interface towards the steady state. After injected air 
has reached the water table (which occurred between 10 and 15 min), air still 
accumulates at larger radial distances until a steady state is attained. 

5.4.2 Applicability of the analytical approximation 

In Figure 5.5 we present the capillary pressure contours for case 6 as com
puted according to the analysis of Section 5.3 in regions I, II and III, which 
describe the situation between the upper part of the filter and the water table. 
Comparison with Figure 5.3.b shows good agreement between the two solu
tions. In Figure 5.6 we show the numerical pn{r) and analytical pa(r) steady 
state capillary pressure functions at the interface for case 1 and 6. Observe 
that the agreement is much better for the larger material contrast (smaller 7) 
of case 6. 

To quantify the agreement we compared the positions of the free boundary 
at the interface of the numerical ƒ+ and the analytical ƒ+ solution. Despite the 
fine discretization just below the interface the numerical profiles exposed small 
fluctuations near the free boundary. Nevertheless, we were able to accurately 
estimate ƒ+ from the almost constant slope of the profile at the left side of 
the fluctuations. In Figure 5.7 we present the relative errors 

Af+=Jn_Ja. (5.35) 
tt 

as functions of 

7' Z " ' m=m' Nl = W 2 = ÏVV (5-36) 
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Figure 5.3: Capillary pressure contours for (a) case 1 and (b) case 2. 
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Figure 5.4: Capillary pressure as a function of the radial coordinate at the 
interface for different times. 

which are the dimensionless numbers of Table 5.1 that are normalized with 
respect to the numbers of the reference case (subscript r) . Observe that for 
larger values of z*, i.e. the distance between the filter and the interface, the 
agreement became worse, because the advection dominated solution below 
the interface resulted in wider air cones, that lead to larger spreading at the 
interface. Furthermore, we observe that the various soil and fluid parameters, 
which are combined in 7V"i, iV~2 and m, affect the error A ƒ + , but we expect that 
in every situation with sufficiently small 7 the vertical equilibrium assumption 
is satisfied and that the error A ƒ + is negligible. In most practical situations 
the value of 7 is much smaller than for the reference case (7 = 0.600) and the 
analytical approximation performs very well. 

5.4.3 Sensitivity analysis 

For remediation purposes saturation is more directly related with mass trans
fer limitations to volatilization of organic contaminants and to biodégradation 
than capillary pressure. Therefore, we present in Figure 5.8 for several values 
of 7, but with the other parameters as in case 1, the saturation profiles at 
the upper side of the interface, which are based on the analytical approxim
ation. Because for smaller 7 the profile has a very long tail with almost zero 
saturations, we use the first moment 

M = 
J£

f+r2Sa(r,z*)dr 

| / + rSa(r,z*)dr 
(5.37) 

file:///NSl/l
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Figure 5.5: Contours of the analytically approximated capillary pressure for 
(a) case 1 and (b) case 6. 
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F i g u r e 5.6: Comparison of the numerically and analytically computed capil
lary pressures as a function of the radial coordinate for (a) case 1 and (b) case 
6 at the interface. 
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Figure 5.7: Relative errors A ƒ+ of the position of the free boundary at the 
interface versus the normalized dimensionless numbers. The 7-curve reflects 
values of the parameters for cases 2-6, the z*-curve for cases 7-10, the m-curve 
for cases 15-16, the TVi-curve for cases 11-12 and the ./VVcurve for cases 13-14. 
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Figure 5.8: Analytical approximations of the saturation at the upper side 
of the interface as a function of the radial coordinate for several degrees of 
heterogeneity. 
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as a characteristic distance for the horizontal extension of these profiles rather 
than the number ƒ+. M is shown in Figure 5.9 as a function of 7 for several 
sets of the dimensionless numbers m, N\ and N2. For small contrasts we 
expect that the analytical approximation is not valid. To obtain an upper 
bound 7s on the values of 7 for which we may apply the approximation, we 
computed the first moment Ms of the similarity solution (5.18) at the interface 
for the homogeneous situation. Hence, we define 7S such that M (7,5) = Ms 

and we present in Figure 5.9 M versus 7 up to this upper bound j s . 
The analysis shows that the spreading is almost insensitive to variations of 

N2, but that it varies significantly with JVi and m. Observe that the analytical 
approximation does not depend on the position of the interface z*, whereas the 
results of the numerical simulations reveal an effect of this parameter which 
diminishes for decreasing 7, as we showed earlier. 

5.5 Conclusions 

We modeled air sparging into an aquifer below a less permeable horizontal layer 
as multi-phase flow of two immiscible fluids. The two layers were assumed to 
have similar structure but different mean pore size. 

We found that flow approaches a steady state, that is characterized by 
three dimensionless numbers which also control the flow problem for a ho
mogeneous domain and by two numbers which correspond to the position of 
the interface between the two layers and to the degree of material contrast re
spectively. Analyzing the steady state situation we distinguished three regions 
with different flow regimes. In the lower layer above the injection filter the 
vertical flow component is dominated by advection. Just below the interface 
a regime with almost vertical flow equilibrium conditions develops, where air 
tends to spread mainly horizontally. Above the interface the vertical flow com
ponent is dominated by advection. In the lowest region steady state flow is 
approximated by a similarity solution that applies in homogeneous situations, 
see Section 4.4.2. We analyzed the region just below the interface separately 
from the lowest region, but incorporated continuity of pressure and vertical 
flow velocity at the interface towards the less permeable region. Assuming 
hydrostatic pressures we derived a diffusion equation for the capillary pres
sure at the interface with a 'loss term' corresponding to the flow through the 
interface. With a simple numerical procedure we obtained the solution of this 
ordinary differential equation, which is non-zero within a finite interval of the 
radial coordinate. This solution determines the capillary pressures in the re
gion below the interface and the free boundary enclosing this region, beyond 
which air is absent. Between the interface and the water table we assumed 
that no further changes occur in the radial direction compared to the solution 
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Figure 5.9: First moment M of the horizontal extension of the analytically 
approximated saturation profiles at the interface versus heterogeneity 7 for 
several values of (a) m, (b) Ni and (c) N2-
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at the interface. 
Using a numerical two-phase flow model we made transient computations 

for several values of the dimensionless numbers. These computations were very 
time consuming. In every case we found that the flow reached a steady state 
situation. However, the time that this was the case and the horizontal spread
ing of air below the interface increased much with increasing heterogeneity and 
with increasing values of the exponent m. Only for almost homogeneous flow 
domains, the position of the interface relative to the injection filter affected 
the steady state air flow significantly. 

We compared the numerical and analytical approximations of the steady 
state situation with emphasis to the solution at the interface. The agreement 
between the numerically and analytically obtained radii of influence at the in
terface was very good when these radii were large compared to the radii of the 
corresponding homogeneous situations. Else, the vertical equilibrium assump
tion was less satisfied or the flow below the region with vertical equilibrium 
affected the numerical solution at the interface significantly. 

Because from the remediation point of view the saturation is one of the 
most important variables, we considered the analytically obtained saturation 
profile at the interface. We observed that for large values of the radii of 
influence saturations are almost zero in a large part of the profile. Therefore, 
we carried out an analysis of the relation between the degree of heterogeneity 
and the first moment of the horizontal extension of the saturation profile at the 
interface for several values of the remaining dimensionless parameters. As was 
expected this spatial moment increases much with increasing heterogeneity 
and is most sensitive to variations in the exponent m and the dimensionless 
number N\. 

With minor modifications the present analysis enables the description of 
the maximum radius of horizontal spreading in case of DNAPL flow over a low 
permeable layer. 

Appendix 5A 

Evaluation of the boundary value problem 

For steady state flow the free boundary Zf(r) is tangential to the air flow 
direction. This yields at r = ƒ+ 

dzj 

dr 
= lim !Slp£l = lim -fWlPir)) (5 38) 

where we have used the right-hand side of relation (5.21) for ua>z(r, z* ) . We 
differentiate equation (5.26) with respect to r and use it in relation (5.38), 
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which yields 

l i m ( ^ ( r , z - ) V = l i m T 2 ^ ^ ^ . (5.39) 
r^f+Kdr^ ') r->/+ k(p{r)) v ; 

Using the power law approximation for k(p) (5.16), which is exact if k and p 
approach zero, we obtain condition (5.33). 

Setting q — p', where primes ' denote differentiation with respect to r, we 
transform problem (5.32) into the system of first order equations 

for r G (e,f+), with boundary conditions 

(rD(p)q)\r=e=-\2, p(f+) = 0, ? ( / + ) = -A3 , (5.41) 

where 

X1=7
2Nl A2 = ^ ^ , A 3 = 7 1 + ^ ^ i - (5.42) 

Using again the power law approximation for k{p) in system (5.40), we obtain 

additionally q'{f+) = -rr Ö ö> with p ^ given by (5.17). Hence, we use a 
ƒ+ 6pD + 2 

fourth order Runge-Kutta routine to integrate (5.40) iteratively from r — f+ 

to r = e, while varying / + until the condition at r = e is matched. 

Appendix 5B 

Applicability of the analytical approximation to a DNAPL spill 
above a less permeable layer 

With only minor modifications the analysis of this chapter also describes 
DNAPL flow below the phreatic surface towards and through a low permeable 
layer of large horizontal extension. In [22] DNAPL flow above a low permeable 
layer of finite horizontal extension was investigated. It was assumed that to 
enter this layer DNAPL must overcome a positive entry pressure. An analysis 
of the steady state situation for which all DNAPL migrates downward along the 
lateral boundaries of the layer, revealed the conditions under which the entry 
pressure is exceeded and DNAPL may infiltrate into the low permeable layer. 

Here, we assume that a possible entry pressure has been overcome and that 
at steady state all DNAPL flows through the low permeable layer. As in [22] we 
assume that the distance between the DNAPL source and the low permeable 
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layer is large enough for the development of a region with mainly horizontal 
flow. Provided that the DNAPL can flow downward away from the interface, 
after sufficiently large time a steady state situation is reached at the interface. 
Hence, the steady state solution for the vertical equilibrium region provides 
an estimate of the maximum horizontal spreading at the interface. 

With emphasis on steady state flow above and across the interface, we 
outline the modifications of the air sparging analysis, that are necessary for the 
DNAPL flow problem. For this case, the interface Z* of Figure 5.1 separates the 
high permeable top and low permeable bottom layers, such that (for 0 < 7 < 1) 

v J K- for Z > Z* j a - for Z > Z* fK AQ. 
K = \ K + iorZ<Z* a n d a = { a + lorZ<Z\ ( 5 ' 4 3 ) 

with K+ = 7 K~ and a+ = 7 a " as before. Assuming that the horizontal 
extension of the source and of the DNAPL flow field in the high permeable 
layer is small, horizontal spreading mainly occurs just above the interface. 
For convenience we still consider a domain with R > E to avoid singularities 
at R = 0. 

Equations (5.1) and (5.2) are used with the subscript a for air replaced by 
o for oil (DNAPL). Because in this steady state situation the water velocity is 
not negligible due to the smaller difference in density and viscosity [22], we use 
instead of equation (5.8), the fractional flow formulation for the oil velocity, 
see e.g. [9, 14], 

Ü0 = F0Üt-^^F0V(Pc-Ap9Z), (5.44) 

where the oil fractional flow function F0 and the mobility ratio M are defined 
by 

the total flow velocity Ut — Uw + U0 and Ap = p0 — pw. We obtain in 
dimensionless form 

V • u0 = 0, (5.46) 

and 

_ f F0Üt-MkwF0{NcVpc~Ngez) for z > z* 
Uo \F0Üt-MkwF0{1NcVPc-1

2N9ëz) iorz<z\ [^') 

with the obvious substitution of the newly defined Ap in Ng, iV"i and A^-
Using similar assumptions as in equations (5.21-5.23) we arrive at the 

vertical equilibrium assumption 

dPc N9 (K Aü\ 

ô7 ~ 'Ni (5-48) 
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for the entire region of thickness Zf — z* on top of the low permeable layer. 
If oil saturations are small, we may assume that the total velocity ut = 0, i.e. 
counter-current flow uw = —u0 [22]. 

Following the derivation of Section 5.3 we obtain the boundary value prob
lem for the pressure at the interface p(r) : 

— (rD{p)j-\ -r~f2Nf\(jp) = 0 for e < r < ƒ+ 

2 „ (5.49) 
^ , p<n-o, 

where D = J^A(£)d£, with X(pc) = Mkw{S0(pc)) F0(S0(pc)). However, as p 
and S0 are small, the water mobility kw/'fiw is much larger than the oil mobility 
k0/fio and as a result the function X(p) is approximately equal to k{p). Hence, 
the boundary condition 

^r(f+) = -l1+J^N1 (5.50) 
dr 

is also valid for problem (5.49). Furthermore, we conclude that for small p 
and S0 problem (5.32) is a good approximation of problem (5.49). 

The number ƒ + provides an estimate of the maximum spreading radius of 
DNAPL on top of the low permeable layer. 

Notation 

A dimensionless filter surface 
D dimensionless effective diffusion function 
ez unit vector in z-direction 
ƒ dimensionless radial position of free boundary in 

homogeneous soil 
/o dimensionless radial position of free boundary at water 

table in homogeneous soil 
/ / i fil-, fin dimensionless radial positions of free boundaries enclosing 

various flow regions 
f~ dimensionless radial position where ƒ/ changes into fn 
ƒ + dimensionless radial position where fu changes into f m 
g gravity [ms"2] 
H height of water table above filter [m] 
Hf, vertical position of bottom boundary [m] 
Ht (ht) (dimensionless) vertical position of top boundary [m] 
k redefined air relative permeability 
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K absolute permeability [m2] 
kj phase j relative permeability 
L length of injection filter [m] 
m van Genuchten parameter 
M dimensionless first spatial moment of air saturations at interface 
iVi, N2 dimensionless numbers determining steady state situation 
Nc capillary number 
Ng gravity number 
ng, riD constants in power law approximations 
Pc (Pc) (dimensionless) capillary pressure [Pa] 
Pj (pj) (dimensionless) phase j pressure [Pa] 
Pjt (Pjt) (dimensionless) phase j pressure at top boundary [Pa] 
p dimensionless capillary pressure at interface 
pc dimensionless reduced capillary pressure 
PS, PD powers in power law approximations 
Q air injection rate [m3 s_1] 
R (r) (dimensionless) radial coordinate [m] 
Rf, radial position of right boundary [m] 
Sj phase j saturation 
T time [s] 
Uj (UJ) (dimensionless) phase j Darcy velocity [ms -1] 
Um air injection velocity [ms -1] 
Z (z) (dimensionless) vertical coordinate [m] 
Z* (z*) (dimensionless) vertical position of interface between soil layers [m] 
z* dimensionless vertical position where lower regions meet 
Zf dimensionless vertical position of free boundary enclosing 

vertical equilibrium region 
a van Genuchten parameter 
7 degree of heterogeneity 
E (e) (dimensionless) filter radius [m] 
/j,j phase j viscosity [Pa s] 
Pj phase j density [kg m - 3 ] 
(j) porosity 
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Samenvatting 

Eén van de grootste bedreigingen van ons milieu is verontreiniging van de 
bodem. Wanneer verontreinigende stoffen adsorberen aan bodem-deeltjes of 
ingevangen blijven in de bodem-poriën en daarna slechts langzaam weer desor-
beren of oplossen, kunnen ze jarenlang gewassen blijven aantasten en het 
grondwater besmetten. Daarom is sanering van verontreinigde bodems van 
groot belang. Zo mogelijk gebeurt dit in-situ, dat wil zeggen op de locatie van 
de verontreiniging zelf, omdat dit relatief goedkoop is. 

In dit proefschrift worden verontreiniging met organische vloeistof of 'non
aqueous phase liquid' (NAPL), verwijdering van deze verontreiniging door 
middel van afpompen en reiniging van de bodem door middel van injectie van 
lucht in grondwater bestudeerd. De techniek van luchtinjectie of 'air sparging' 
bevordert vervluchtiging en biologische afbraak van organische verontreinigin
gen. In al deze situaties vereist een effectieve sanering grondige kennis van het 
gedrag van de fasen water, verontreinigende vloeistof en lucht in de bodem. 
Dit gedrag wordt beschreven met zogeheten meer-fasen stromingsmodellen, 
omdat er sprake is van meer dan één naast elkaar voorkomende fasen die ver
ondersteld worden onderling niet oplosbaar te zijn. 

Met behulp van een numeriek meer-fasen stromingsmodel wordt in twee 
dimensies, al dan niet axiaalsymetrisch, de tijdsafhankelijke stroming van de 
verschillende fasen berekend. Nauwkeurige simulaties vergen echter veel re
kentijd. Daarom worden de afzonderlijke problemen met behulp van passende 
aannames gereduceerd tot deelproblemen die een lagere geometrische dimen
sie hebben of de stationaire tijdsonafhankelijke situatie beschrijven. Daarnaast 
domineert steeds één fase het totale stromingsprobleem, zodat alleen bestu
dering van het gedrag van die fase noodzakelijk is. De zogeheten analytische 
oplossingen van deze deelproblemen bieden gewoonlijk meer inzicht in het stro
mingsgedrag dan de numerieke resultaten en leveren relatief simpele relaties 
tussen invoer- en uitvoer-parameters. 

In drie van de vier gevallen wordt gebruik gemaakt van 'gelijkvormigheids-
oplossingen', wat simpel gezegd betekent dat in termen van plaats- en tijds
afhankelijkheid de vorm van de oplossing op ieder tijdstip hetzelfde is, maar 
dat de grootte met de tijd verandert. Voor toepassing van deze expliciete of 
bijna expliciete oplossingen op praktijkproblemen worden relatief gemakkelijk 
meetbare criteria geformuleerd. Zo wordt onder andere gebruik gemaakt van 
de totale massa van de onderzochte fase die op een bepaald moment in het 
systeem aanwezig is. 

Hoofdstuk 2 beschrijft het gedrag van organische vloeistof die lichter is 
dan water en die zich als een zogenaamde drijflaag op een horizontale grond
waterspiegel bevindt. De oorspronkelijk dikke laag zakt onder invloed van 
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de zwaartekracht in horizontale richting uit. Daardoor wordt in het centrum 
van de laag de verzadiging met organische vloeistof steeds kleiner en vindt zo
geheten 'entrapment' plaats waarbij de verontreiniging druppelsgewijs wordt 
ingesloten in de poriën-structuur van de bodem. Deze insluiting zorgt dat de 
verontreiniging immobiel is en bemoeilijkt de sanering. De snelheid waarmee 
de laag in horizontale richting uitspreidt en de hoeveelheid organische vloei
stof die ingesloten raakt, worden geanalyseerd als functie van de verschillende 
bodem- en vloeistofparameters. 

Hoofdstuk 3 beschrijft verwijdering van een drijflaag via een ontrekkings-
filter of gegraven sloot. Omdat bij onttrekking hooguit de hoeveelheid maar 
niet de samenstelling van de onttrokken vloeistof kan worden opgelegd, wordt 
speciale aandacht besteedt aan implementatie van randvoorwaarden die deze 
onttrekking goed beschrijven. De onttrekkingssnelheid en de horizontale uit
breiding van de overblijvende verontreiniging worden onderzocht. 

In hoofdstuk 4 wordt een meer-fasen model geformuleerd voor injectie van 
lucht in grondwater via een verticaal injectiefilter. Hierbij wordt het gedrag 
van verontreinigende vloeistof buiten beschouwing gelaten, zodat de stroming 
van de twee fasen water en lucht overblijft. De lucht beweegt zich snel in 
verticale richting naar het grondwater-oppervlak door een zich in horizon
tale richting uitbreidende conus. De straal van deze conus, de invloedsstraal, 
bepaalt hoeveel injectiefilters nodig zijn om een bepaald gebied te reinigen. 
Voor de stationaire situatie waarin de hoeveelheid geïnjecteerde lucht gelijk is 
aan de hoeveelheid lucht die via de grondwaterspiegel verdwijnt, worden de 
invloedsstraal en de luchtverzadigingen binnen de conus berekend. 

Hoofdstuk 5 beschrijft luchtinjectie in grondwater in een horizontaal ge
laagde bodem met een goed doorlatende laag onder een minder goed door
latende laag. Door het verschil in doorlatendheid spreidt geïnjecteerde lucht 
zich vlak onder het scheidingsvlak tussen de twee lagen ver uit in horizontale 
richting. Hierdoor wordt de invloedsstraal groter, maar worden de luchtver
zadigingen in de slecht doorlatende laag aanzienlijk kleiner. Deze grootheden, 
die de effectiviteit van de luchtinjectie-operatie bepalen, worden geanalyseerd 
als functie van onder andere het verschil in doorlatendheid. 
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Nawoord 

Na afronding van dit proefschrift is het goed om terug te blikken op mijn OIO-
tijdperk en enkele personen met name te noemen die daarin een rol hebben 
gespeeld. 

In het voorstel voor het NWO-project 'Niet-lineaire transport-verschijnselen 
in poreuze media', gecoördineerd door Hans van Duijn, werd onder het kopje 
'oil spills' melding gemaakt van een promovendus die in Wageningen onder 
leiding van Sjoerd van der Zee onderzoek zou gaan verrichten. Ik heb die 
onderzoeksplaats gekregen en ik stelde mezelf ten doel om mijn wiskundige 
kennis uit Delft in het Wageningse milieu-onderzoek toe te passen. 

Het is vooral Hans van Duijn geweest, die direct of indirect de specifieke 
onderwerpen voor het onderzoek heeft aangedragen. In eerste instantie kwam 
hij met 'air sparging' op de proppen, een techniek die pas later populair is 
geworden in Nederland en waar ik mijn huidige NOBIS-contract aan heb te 
danken. Via het werk van Clarence Miller en Hans kwam ik terug bij het 
oorspronkelijke onderwerp 'oil spills', wat resulteerde in de drijflaag-artikelen. 
Daarnaast ben ik Hans erkentelijk voor zijn inbreng op het gebied van partiële 
differentiaalvergelijkingen. 

Op de Wageningse 'werkvloer' was het vooral Sjoerd met wie ik in de over
wegend chemische omgeving van de vakgroep Bodemkunde en Plantenvoeding 
de fysische aspecten van het onderzoek grondig bediscussieerde. Verder heeft 
hij steeds kritisch meegekeken bij het schrijven van de artikelen en geholpen 
bij allerlei voorkomende aangelegenheden rondom het onderzoek, zoals het 
voorbereiden van presentaties voor congressen. 

Op vakinhoudelijk gebied wil ik ook Michel de Neef expliciet bedanken 
voor de gevoerde discussies over stroming in gelaagde bodems. Daarnaast zijn 
er nog veel anderen, onder meer bij Wiskunde en bij Mijnbouw in Delft en bij 
het CWI in Amsterdam, die meegeholpen hebben bij het onderzoek. 

Of ik ben geslaagd in mijn opzet om wiskunde in te brengen in het Wa-
geningense milieu-onderzoek, laat ik graag aan de lezers van dit proefschrift 
over. Naast het bezig zijn met mijn eigen onderzoek heb ik het leuk gevonden 
om deze en gene bij de vakgroep te helpen bij het oplossen van zijn of haar 
'sommen' en Richard Walet en Robert Huiberts bij de begeleiding van hun 
afstudeervak 'bodemhygiëne en bodemverontreiniging'. 

De vakgroep wordt voor mij gepersonifieerd door Frans de Haan, die mij 
ook geholpen heeft bij alle formaliteiten rond de promotie. Ik bedank met 
hem de medewerkers van de vakgroep voor hun collegialiteit. 

Omdat ik niet altijd even handig ben met computers, heb ik veel te danken 
aan de ondersteuning op dit gebied door Ron Beuger en later door Joost de 
Groot in Wageningen en door Gerard van Hoorn in Delft. En zonder de en-



149 

thousiaste hulp van L^I^X-er Chris van Uffelen had dit boekje er waarschijnlijk 
een stuk minder mooi uitgezien. 

Op 'sociaal' gebied wil ik speciaal mijn waardering uitspreken voor de 
collega's uit 'de kelder', die mij onder andere consequent bleven uitnodigen 
voor de lunch, ook al gaf ik er zelf vaak de voorkeur aan om mijn boterhammen 
op mijn kamer te nuttigen. 

Buiten het werk was het mijn vrouw Margrethe die me geholpen heeft om 
het hele onderzoeksgebeuren wat te relativeren. Juist haar relativeringsvermo
gen zorgde voor de motivatie om met frisse moed verder te gaan op momenten 
dat het onderzoek weer eens dreigde vast te lopen. Vrijwel tegelijk met de 
geboorte van onze dochter Anne werd ook dit boekje 'geboren'. Het leek me 
daarom goed om het proefschrift aan haar op te dragen. 

Rink van Dijke 

Ede, oktober 1997 


