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STELLINGEN 

1. Uitkruising van transgenen vanuit een kruisbevruchtend gewas, zoals koolzaad, kan niet 
uitgesloten worden. 

Dit proefschrift 

2. Integratie van een transgen op het C-genoom van koolzaad vermindert de uitkruising naar 
wilde verwanten, zoals B. rapa en B. juncea, aanzienlijk. 

Dit proefschrift 

3. Chloroplasttransformatie is dé manier om uitkruising van transgenen zoveel mogelijk te 
beperken. 

Dit proefschrift 

4. De zogenaamde 'transgene-centered approach', waarbij gegevens van het transgen, het pro
duct, substraten en degradatie producten verzameld worden, kan ertoe bijdragen dat de 
discussie tussen verschillende groeperingen over de biologische veiligheid van een bepaald 
transgen helderder wordt. 

Dit proefschrift 

5. De ontwikkeling van gewassen die tolerant zijn voor herbicides, zoals chlorsulfuron en 
bromoxynil, die door hun persistentie of toxische werking een nadelig effect hebben, is 
ongewenst. 

Dit proefschrift 

6. Bij het gebruik van genetisch gemodificeerde planten zijn tijdrovende selectieprocedures 
noodzakelijk voor een stabiele expressie van het (trans)gen in opeenvolgende generaties. 

Dit proefschrift 

7. Een transgen eiwit is niet hetzelfde als een genetisch gemodificeerd eiwit. 

8. De uitspraak van 'the late Rear Admiral Grace Hopper "It is better to ask forgiveness than 
it is to get permission" gaat niet op voor het in het milieu brengen van genetisch gemodifi
ceerde organismen. 

9. Misdaadbestrijding is vergelijkbaar met resistentieveredeling; de dief en het pathogeen zijn 
vaak slimmer. 

10. Een plantenbiotechnoloog heeft zowel 'witte' als 'groene vingers'. 

11. Biotechnologie bij planten maakt tegenwoordig van plantenveredeling vaker een wetenschap 
dan een kunst. 

12. Dat het eerste gekloneerde zoogdier een schaap is, is niet toevallig, immers als er één 
schaap over de dam is ... 

Stellingen behorende bij het proefschrift getiteld "To be or not to be biosafe -an evaluation of 
transgenic phosphinothricin-tolerant oilseed rape (Brassica napus L.)-", door P.L.J. Metz in het 
openbaar te verdedigen op woensdag 4 juni 1997 te Wageningen. 
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Outline 

Within the next few years an increasing number of transgenic crops will be commerciali

zed. Transgenic crops will most likely contribute significantly to future agriculture. 

However, developments in the patenting of genes, discussions on their biosafety, the 

release regulations, performance, food labelling and consumer attitude will influence the 

rate of their implementation. 

Genetic modification techniques enable the introduction of genes of plants and other 

organisms into crops. The general attitude of competent authorities in the Western world 

is, prior to the release of transgenic crops into the environment, to assess their biosafety 

until enough experience with transgenic crops has been gained. This biosafety assessment 

is especially needed to answer questions about impact on the ecological system, if trans-

genes code for new traits like herbicide tolerance and fungal or frost resistance. A limited 

number of crop plants, among which transgenic oilseed rape (Brassica napus L.), is at the 

forefront of field releases and commercialization of transgenic crops. This was the reason 

that several years ago oilseed rape was chosen by the European Union as model plant for 

biosafety studies. 

One of the most frequently used traits transferred to crop plants is herbicide tolerance. 

Phosphinothricin, also known as glufosinate, is a non-persistent, broad-spectrum, non

selective, pre-emergence herbicide having no margin for discrimination between crop and 

weed. Bar and pat, phosphinothricin-N-acetyltransferase encoding genes of the actinomy-

cetes Streptomyces viridochromogenes and 5. hygroscopicus, conferring tolerance to phos

phinothricin, were successfully introduced using standard transformation techniques into 

many crops, among which oilseed rape. In addition to its use as agronomic trait other 

applications of (transgenic) phosphinothricin tolerance in plants are: as selection marker 

during transformation and as selective trait in combination with a gene causing nuclear 

male sterility (Mariani et al. 1989) to multiply the female line for hybrid seed production. 



The scope of this thesis was to gain knowledge about and familiarity with the biosafety of 

transgenic phosphinothricin-tolerant oilseed rape by: 

1) reviewing scientific data concerning oilseed rape, the herbicide phosphinothricin, the 

phosphinothricin tolerance genes, their protein products and their putative metabolites 

2) investigating whether or not the phosphinothricin tolerance transgene could be trans

ferred to intra-specific, inter-specific and inter-generic hybrids of oilseed rape and 

3) monitoring the expression and fate of the transgene in these different genetic back

grounds and in successive generations of selfings and backcrosses. 

In Chapter 1 general aspects are described, such as taxonomy, cytogenetics, sexual 

reproduction and aspects of the biosafety of oilseed rape. Additionally, the biosafety of 

transgenic herbicide-tolerant oilseed rape can be evaluated by reviewing biological, 

biochemical, ecological and toxicological data with respect to the transgene and its gene 

product. As an illustration of such a 'transgene-centered approach', the evaluation of the 

non-persistent phosphinothricin herbicide and the phosphinothricin tolerance transgene is 

presented in Chapter 2. The transfer to different hybrids and monitoring of the expression 

and fate of the herbicide tolerance transgene in different genetic backgrounds and succes

sive sexual offsprings is described in Chapters 3, 4 and 5. In Chapter 6 concluding 

remarks are made and the implications of the results for the market release, seed multipli

cation and breeding programs involving phosphinothricin-tolerant oilseed rape have been 

evaluated. Furthermore, the application of transgenic herbicide-tolerant crop plants is 

discussed in a broader perspective. A distinction is made between tolerance to non-

persistent and persistent herbicides and the concepts of 'biosafety in narrow sense' and 

'biosafety in the broad sense' are introduced in their biosafety assessment. 



Chapter 1 

Aspects of the biosafety of transgenic oilseed rape 

{Brassica napus L.) 

PETER L.J. METZ, EVERT JACOBSEN1 and WILLEM J. STIEKEMA 

' Graduate School Experimental Plant Sciences, Department of Plant Breeding, Wageningen Agricultural 

University, Lawickse Allee 166, 6709 DB Wageningen, The Netherlands 

Summary 

Oilseed rape (Brassica napus L.) is at the forefront in the field release of transgenic crops and 

their commercialization, which makes it a good model crop for biosafety studies. Reviewing its 

taxonomy, cytogenetics, reproductive system and possible hybridization with (wild) relatives 

showed that complete containment of transgenic oilseed rape is not possible. Most inter-specific 

and inter-generic combinations only produce hybrid plants after in vitro culture. However, among 

the oilseed Brassicas B. rapa, B. juncea and B. napus spontaneous hybridization has been 

observed in agricultural fields. 



Introduction 

Genetic modification of crop plants has resulted in plants resistant against pathogens or 

showing improved quality. Within the coming years it is expected that more transgenic 

crops will be commercialized and there is little doubt that transgenic plants will signifi

cantly contribute to agriculture in the future (Dale & Irwin 1995). Calgene's Laurate 

oilseed rape has now full clearance by the US-authorities for commercialization (AP-

HIS/USDA 1994). However, developments in the patenting of genes, the release 

regulations, food labelling and consumer attitude will influence the implementation rate. 

Genetically modified or transgenic plants are defined according to Stiekema & van 

Vloten-Doting (1991) as plants which genome accommodates novel sequences of DNA 

which are introduced by other procedures than sexual crossing. In spite of the fact that 

close similarities exist between the phenotypes of transgenic and non-transgenic crops, the 

application of transgenic plants can not simply be equalled to traditional breeding. Genetic 

modification allows the circumvention of the natural crossing-barriers between species 

established by evolutionary processes. This may have unforeseen consequences (Maessen 

1997) and, therefore, prior to the release of these transgenic crops, their biosafety has to 

be assessed (Kapteijns 1993). This includes the assessment of aspects like gene dispersal 

and introgression of these genes into their wild relatives, via, subsequently, greenhouse 

experiments, small-scale field experiments followed by large-scale field trials (Van 

Raamsdonk & Schouten 1997). In this respect the Dutch government follows a "case by 

case" and "step by step" policy on the biosafety assessment of releases of genetically 

modified transgenic plants into the environment. As starting point the 'yes, provided 

that...' principle is handled, which means that it is allowed to produce and grow 

genetically modified plants, provided that no ecological and toxicological negative side 

effects occur. The OECD 'familiarity principle' (OECD 1993a) -biotechnology is accepta

ble if no additional negative aspects are involved compared to conventional methods- and 

the criterion of 'substantial equivalence' (OECD 1993b) -transgenic food is acceptable as 

long as it meets already accepted threshold values for toxic components- express the same 

policy in an international context. 

In this review aspects concerning the biosafety of transgenic oilseed rape (Brassica 

napus L. ssp. oleifera (Metzg.) Sinsk.) will be discussed. From a biosafety point of view 



oilseed rape is interesting as it is a partially allogamous crop with an average outcrossing 

rate between 15 and 45% (Rakow & Woods 1987; Becker et al. 1992). Furthermore, 

transgenic oilseed rape will be at the forefront in the field release of transgenic crops and 

their commercialization (Dale 1993; Dale et al. 1993; OECD 1993c; APHIS/USDA 1994; 

Ward 1994). In a report published by the OECD (1993c) it is stated that by far the 

biggest part of the field trials involving transgenic crops is done with oilseed rape. Thus, 

oilseed rape is suitable as model plant for biosafety studies. 

Biosafety of transgenic oilseed rape 

In this chapter a short historical perspective is given to illustrate the general appearance 

of oilseed rape. Furthermore, the reproduction system and taxonomy and cytogenetics of 

oilseed rape will be discussed. These determine pollen spread and hybridization potential, 

respectively, which are important factors concerning biosafety of transgenic oilseed rape. 

Finally, the effect of the transgene involved which is an important factor in biosafety 

studies of transgenic crops in general is briefly mentioned. 

History 

Ancient Sanskrit writings in India from 2000 to 1500 B.C. are considered to be the 

earliest references to oilseed rape (Singh 1958; cited in Appleqvist 1972). The Mediterra

nean area is suggested to be the centre of origin of this species which has been cultivated 

for thousands of years in Asia and the Indian subcontinent (Renard et al. 1993). It is 

assumed that both oilseed rape and turnip (B. campestris, syn B. rapd) have been culti

vated as oil crops in those European countries where olive trees and poppy were unknown 

(Schiemann 1932). In one of his reports Linnaeus (1745; cited in Appleqvist 1972) 

remarks the overgrow of barley and rye by rape, reducing the grain yields. He wrote "No 

herb can be more easily planted than this one, which hardly can be eradicated from the 

fields, and thus none could be planted to greater advantage for oil production". 

The abundant growth in grain fields may have led to domestication of rape. In the 17th 

and 18th century, methods to suppress the weed flora were not or not often applied. 

Eventually, rape got the upper hand, outcompeted the major (grain) crops and having 

favourable properties for humans was harvested. In addition to this, crop plants were 



adapted to growing conditions of man-made habitats (De Wet & Harlan 1975). This way, 

new culture forms such as oilseed rape and turnip originated. These crops are called 

secondary crops (Zeven 1975; 1977), in contrast to primary crops like rye and barley. 

Oilseed rape has been domesticated fairly late. A reason for this may be the presence 

of a thioglycoside which hampered the use of the seeds for human consumption, because 

it causes goitre (Johnston & Jones 1966). It is noteworthy that in Canada, presently one 

of the worlds largest oilseed rape producing countries, commercial growing of rape seed 

only started in 1942 (Ohlson 1972). 

The history of oilseed rape shows that it is a rather generally occurring species which, 

providing climatic circumstances are suitable, spreads easily and can even become a threat 

to other crops as noted by Linnaeus. These are relevant characteristics in relation to 

biosafety. 

Taxonomy and cytogenetics 

The genus Brassica belongs to the family of Cruciferae. U (1935) designed a so-called 

triangle, clearly describing the genomic relationships of some Brassiceae (Fig. 1.1). The 

corners of this triangle are the three diploid species: B. rapa or turnip (AA, n=10), B. 

nigra or black mustard (BB, n=8) and B. oleracea or cabbage (CC, n=9). B. napus is an 

B. rapa 
(AA) 2n=20 • 
Turnip 
Chinese cabbage 
Pak choi 

B. napus 
(AACC) 2n=38 
Oilseed rape 
Fodder rape 
Swede 

B. oleracea 
(CC)2n=18 
Cabbages; Kales 
Cauliflower 
Broccoli 

B. juncea 
(AABB) 2n=36 
Brown mustard 

B. carinata 
(BBCC) 2n=34 
Ethiopian mustard 

B. nigra 
(BB)2n=16 
Black mustard 

Figure 1.1 'U-triangle' representing the genomic relations among Brassica species 
(redrawn from U 1935). 



allotetraploid species derived from the hybridization of B. rapa and B. oleracea with the 

genome constitution AACC (2n=38). On the two other sides of the triangle B. juncea or 

Indian or brown mustard (AABB, 2n=36) and B. carinata or Abyssinian mustard 

(BBCC, 2n=34) are denoted. These allopolyploid species are, in contrast to the selfin-

compatible diploid species, self-fertile and show preferential chromosome pairing. They 

have probably arisen from natural hybridization in which 2n gametes were involved. The 

cytogenetic relationships between the diploid species were confirmed by nuclear DNA 

content (Verma & Rees 1974), DNA analysis (Erickson et al. 1983) and by genome spe

cific chromosome markers (Hosaka et al. 1990). It is noteworthy that the A-genome of B. 

rapa is common to the commercial oilseed species: B. juncea, B. napus and B. rapa. 

Based on the results of studies of the chromosome pairing in the pachytene of the 

meiosis of amphihaploid F['s, the basic haploid chromosome number of the diploid 

Brassica's is hypothesized to originate from that of an ancestor with n=6 (Röbbelen 

1960). Based on nuclear Restriction Fragment Length Polymorphisms (RFLP's), Song et 

al. (1990) proposed a new hypothesis, according to which the most ancient group contains 

species with n=7. Duplication and triplication of certain chromosomes might have led to 

the current basic numbers. Mutual crosses of the three diploid species are still allowed in 

very low percentages (U 1935; Olsson 1960; Röbbelen 1966). Due to the independent 

evolution of these species their chromosome structure has altered so much that they are 

no longer homologous, but have become homoeologous, resulting in limited and hampe

red chromosome pairing. 

Based on the two hypotheses about the origin of the three diploid species and the 

allotetraploids and on a study with genome-specific DNA markers (Hosaka et al. 1990), 

to a certain extent homoeologous chromosome pairing due to homologous chromosome 

parts might be expected. However, comparing established cultivars and resynthesized 

oilseed rape Lydiate et al. (1993) showed that only in the latter B. rapa chromosomes 

relatively frequently paired with B. oleracea chromosomes. Analysis with RFLP markers 

revealed 15% homoeologous recombination. This demonstrates the presence of controlled 

chromosome pairing in established B. napus. However, translocations which probably 

result of homoeologous recombination in the allotetraploid genome of oilseed rape, 

suggest that domesticated B. napus is unable to control chromosome pairing completely 

(Sharpe et al. 1995). Due to genetic linkage maps based on RFLP markers which have 



been generated for B. oleracea (Slocum et al. 1990), B. napus (Landry et al. 1991; 

Lydiate et al. 1993; Parkin et al. 1995) and B. râpa (Chyi et al. 1992; Song et al. 1991) 

synteny studies are now in progress (Lydiate 1996). 

Research comparing chloroplast-DNA of several Brassica species, among which B. 

napus, B. rapa and B. oleracea, indicates that probably a third unknown Brassica spe

cies, through introgression, is involved in the origin of oilseed rape (Palmer et al. 1983). 

The chloroplast-DNA from two of the three accessions of B. napus studied strongly 

differed from that of both parents, while the chloroplast-DNA of the third accession 

corresponded with that of B. rapa. These results suggest that B. napus has been arisen 

more than once in different ecological areas. 

Hybridization of B. napus with species in other genera is also reported (McNaughton 

& Ross 1978; Kerlan et al. 1992; Lelivelt 1993; Scheffler & Dale 1994). However, using 

RAPD markers it was shown that Raphanus sativus and Sinapis alba were distinct from 

the Brassica taxa (Demeke et al. 1992). RAPD markers are similar to RFLP markers for 

estimating intra-specific genetic relationships, while estimating inter-specific genetic 

relationships RAPD markers may be less reliable than RFLP markers (Thormann et al. 

1994). In a later section, the ability of B. napus to cross with different Cruciferae species 

and the possible ecological impact involved, are discussed in more detail. 

Reproductive system 

- Flower biology 

The rapeseed flower consists of four half-spreading sepals, four diagonally standing petals 

almost twice as long as the sepals, six stamens, of which two shorter outer standing, and 

a superior ovary with two parietal placentas (Heywood et al. 1993). This flower structure 

is typical for Cruciferae. At the basis of the two shorter stamens oilseed rape flowers 

contain two functional nectaries, while at the basis of both pairs of long stamens two non

functional nectaries are located (Downey et al. 1980). The oilseed rape flowers are 

brightly yellow coloured and the presence of the nectaries, make them very attractive to 

bees. Studies with petal-less B. rapa mutants showed that, in this case, pollination was 

not reduced (Brunei et al. 1994). The floral arrangement of the Brassiceae is a corymbi-

form raceme. The relative position of the buds to the open flowers on a raceme makes it 

possible to distinguish between flowering plants of B. napus and B. rapa (Clapham et al. 



1958; Downey et al. 1980). In B. napus still closed buds overtop the opened flowers, 

while in B. rapa the opened flowers overtop the, compared to B. napus more compact, 

bud cluster. 

Flowering begins at the lowest part of the raceme and from there upward. Both the 

onset of flowering and the duration of the flowering period vary and depend on weather 

conditions, particularly temperature. Flowers open very early in the morning and opening 

is completed at about 9 a.m. From 3 days before to 3 days after opening of the flowers 

the stigma is receptive (Mohammad 1935). Pollen from most of the oilseed rape cultivars 

can be stored for up to a year at low temperature (-20 °C) and desiccation over silica gel 

without any adverse effects on seed yield and embryo development (Brown & Dyer 

1991). Dry pollen of oilseed rape measures about 20 x 40 ^m (Wodehouse 1935). 

- Pollination and fertilization 

In contrast to both its parental species, in which a sporophytic incompatibility mechanism 

in the stigma prevents self-fertilization, oilseed rape is a predominantly self-pollinated 

crop with an average outcrossing rate between 15 and 45% (Rakow & Woods 1987; 

Becker et al. 1992). Environmental factors can greatly influence these outcrossing rates. 

Furthermore, among flowers at different positions on the plant the outcrossing rate varies 

from 11% at the top to 39% at the bottom of the plant (Becker et al. 1992). 

Neither insect visits nor wind are a prerequisite for successful self-pollination of 

oilseed rape, although wind does stimulate this process. However, in greenhouse 

experiments, plants that were standing in an air flow produced more seed than plants that 

were not (Williams 1978; Williams et al. 1986) and under large-scale commercial produc

tion conditions under which insect pollination is of secondary importance, wind is the 

main pollinating agent (Downey et al. 1980; Timmons et al. 1995). For self-incompatible 

B. rapa both insect and wind pollination are important. 

Because pollen is the main vector through which transgenes escape (Ellstrand & 

Marshall 1985; Den Nijs 1989) in the framework of an EU funded biosafety project field 

experiments were performed to study pollen dispersal of transgenic oilseed rape (De 

Greef 1990). It was found that the frequencies of transgene dispersal rapidly decrease 

with the distance to the source of the transgenes. At four meters the outcrossing frequen

cy was already diminished to less than 1 in a 1000 (De Greef 1990), while Pauk et al. 



(1995) observed less than 0.001% outcrossing at 1 m from the pollen source. Paul et al. 

(1995) also detected limited gene dispersal (0.012%) which frequency was strongly 

influenced by the immediately adjacent plants. The very limited transfer was found to be 

characteristic for pollen transfer by bees, but as oilseed rape is also wind-pollinated, the 

strong influence of immediately surrounding plants was not expected. Scheffler et al. 

(1993), who extensively studied pollen dispersal from transgenic oilseed rape, also found 

a sharp decline in outcrossing frequency of 0.02% at 12m. In addition, they did not find a 

directional effect due to wind or insect activity. However, evaluating the effectiveness of 

200- and 400 m isolation distances for small- scale trials of transgenic oilseed rape, the 

frequency of hybrids detected at 400 m was ten times greater than estimated in the earlier 

study (Scheffler et al. 1993) for plants 47 m from the pollen donor source (Scheffler et 

al. 1995). A major difference in the two studies was the area of non-transgenic plants. In 

the second study donor and target plots were smaller and separated by greater distances. 

Therefore, bees may have been forced to forage in more than one plot regardless of the 

greater distance. If they could collect a full load of pollen and nectar in a small area, in 

and around the donor plot, they would not forage in more distant areas (Scheffler et al. 

1995). Surrounding the transgenic plot with a trap or buffer crop of the same species that 

can release emigrating pollinators of transgenic pollen and provide a sufficient source of 

nectar and pollen so pollinators are not inclined to forage more distant sites was an 

effective strategy for reducing the escape of transgenic pollen (Morris et al. 1994; Schef

fler et al. 1995). However, neither barren zones nor trap crops would guarantee total 

isolation. 

Besides that of Scheffler et al. (1995), there are also other reports of large-distance 

pollen flow from B. napus at distances of 360 to 2000m (Downey et al. 1980; Downey & 

Bing 1990; Timmons et al. 1995; 1996). Exposing emasculated and subsequently self-

pollinated plants to airborne pollen from an isolated field of another oilseed rape cultivar 

yielded 3.7% (5/135) inter-cultivar hybrids at 360 m (Timmons et al. 1996). Downey & 

Bing (1990) found 2.1, 1.1 and 0.6% outcrossing at respectively 46, 137 and 366 m from 

the pollen source. Discrepancies between distances of pollen flow may be due to diffe

rences in pollen donor plot size, which was 3 to 10 ha in the study of Timmons et al. 

(1996), while in the experiments of Scheffler et al. (1995) this was only 400 m2. These 

results showed that care should be taken with predicting the performance of genetically 

10 



modified oilseed rape under (semi)-standard agricultural conditions based on extrapolating 

information obtained from small-scale release experiments. 

The above-mentioned outcrossing frequencies are based on pollen dispersal within 

populations. Ellstrand & Marshall (1985), however, concluded based on paternity analysis 

of radish populations that sometimes up to 20% contamination from adjacent populations 

and till 1000m occurred. These data led Klinger et al. (1991) as well as Ellstrand & 

Marshall (1985) to suggest that long-range transport of pollen cannot be ruled out. Thus, 

although reported outcrossing frequencies are low, gene dispersal can not be prevented. 

Therefore, precautions should be practised concerning predictions of pollen spread in 

general and oilseed rape pollen spread in particular as for this crop both insects and wind 

are vectors which act supplementarily. Especially when wind pollination is involved 

pollen spread can not be ruled out. 

- Propagation and seed survival 

Identified areas of concern associated with the release of genetically modified oilseed rape 

are twofold (Crawley et al. 1993). Genetically modified oilseed rape itself may become a 

weed and/or invade natural habitats or releasing genetically modified oilseed rape may 

enable sexual transfer of the inserted genes to neighbouring commercial or natural 

populations whose offspring may then become (more) weedy or invasive. 

Significant differences were found in the distribution of weedy characteristics among 

weeds, 'normal plants' and crops (Baker 1965; Keeler 1989). For the average crop plant, 

such as oilseed rape, to become as 'weedy' as the average weed, it would need to acquire 

five weedy traits, which means the simultaneous acquisition of at least five gene substitu

tions. Therefore, it has been concluded that the probability of joint occurrence of new 

alleles producing significantly weedy plants from oilseed rape is extremely low (1025; 

Keeler 1989), provided pleiotropic effects giving stress tolerance are absent. 

Oilseed rape propagates through seeds, which, when mature, disperse by pod shatte

ring. One silique can contain ten to thirty seeds (Downey et al. 1980). After a stay for 

ten years in the soil still 10% of the seed is able to germinate (Cramer 1987). Crop rotati

on of oilseed rape and cereals is recommended as oilseed volunteers can then easier be 

controlled (Cramer 1987). Crawley et al. (1993) did not find a significant effect of depth 

of burial of rape seed on its survival, while seed survival of charlock (Sinapis arvensis 

11 



L.), a weedy relative of oilseed rape, significantly increased with deeper burial. 

In an extensive ecological study Crawley et al. (1993) also found significant differen

ces in seed survival on burial between conventional and transgenic oilseed rape, where 

transgenic lines were less invasive and less persistent compared to non-transgenic lines. 

Although there was substantial variation in seed survival, neither plant growth and seed 

production between sites tested, experimental treatments performed, nor introduction of 

kanamycin resistance or herbicide tolerance through genetic modification does seem to 

increase the invasive potential of oilseed rape. Therefore, oilseed rape will become extinct 

in all experimental treatments and all habitats studied. In competition-free circumstances, 

however, a successful recruitment of oilseed rape from seed might be possible. 

There are two types of oilseed rape, a winter and a summer type. In contrast to the 

latter, which does not require vernalization, the first type needs a period of cold before it 

will flower. Before winter, the plant forms a rosette and in the spring an elongated flower 

stem is formed and the plant starts flowering. Such vernalization requirement is a charac

teristic that contribute to the weedy nature of oilseed rape (Keeler 1989). 

The transgenic trait will also influence the establishment of transgenic oilseed rape. 

Drought tolerance or disease resistance are expected to give a fitness advantage enhancing 

plant performance in natural habitats. Herbicide tolerance will only give a selective 

advantage if the herbicide is widely applied. In addition, also genetic drift, migration and 

mutation will influence this process (Evenhuis & Zadoks 1991; Van Raamsdonk 1995). 

Hybridization 

According to Hoffman (1990), Evenhuis & Zadoks (1991) and Darmency (1994) biosafety 

analyses of gene transfer have to deal with: a) emission, dispersal and deposition of 

pollen from transgenic plants, b) stable integration of the transgene in the host genome 

and introgression of the transgene into other (wild) species, c) stabilization and spread of 

the transgene in such species and d) ecological effects of the transgene in the new host 

population. 

- Hybridization within Cruciferae 

In the family of Cruciferae for several decades inter-specific and inter-generic crosses 

have been performed for different purposes. Since U (1935) gave a clear view of the 
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relationships between different Brassica species, a lot of genetic analyses within the tribe 

of Brassiceae and within the family of Cruciferae were carried out for better understan

ding general genetic mechanisms (Yarnell 1956; Robbelen 1960, 1966; Heyn 1977; 

Clauss 1978). McNaughton & Ross (1978) reviewed the possibilities for forage crop 

improvement through inter-specific and inter-generic hybridization. In this respect the 

development of new crops like x Brassicoraphanus (Oost 1984) or Raphanobrassica, 

resulting from sexual hybridization between R. sativus and B. oleracea or B. rapa 

(Karpechenko 1928; Dolstra 1982; Prakash & Tsunoda 1983) more specifically called 

Radicole (RRCC, McNaughton 1979) and Raparadish (AARR, Toxopeus 1985; Lange et 

al. 1989) should be mentioned. 

- Hybridization of transgenic oilseed rape and related non-oilseed Brassica, Sinapis and 

Raphanus species 

The success of hybridization between crops and wild relatives depends on the relationship 

between species involved. Dale (1994), extensively, described factors, which determine 

the likelihood of hybridization between crop plants and related species and their possible 

establishment in agricultural or natural habitats. In the framework of the EU-BAP 

(Biotechnology Action Program 1990) and EU-BRIDGE (Biotechnology Research for 

Innovation, Development and Growth in Europe 1992, 1993) projects, hybridization of 

transgenic, herbicide tolerant oilseed rape and several related species has been studied 

(Scheffler & Dale 1994). Lefol et al. (1991) obtained 2-3% in v/fro-produced hybrids 

between transgenic oilseed rape and B. adpressa. Using male sterile oilseed rape, hybrids 

with B. adpressa and Raphanus raphanistrum were detected also in the field (Chèvre et 

al. 1992; Eber et al. 1994; Baranger et al. 1995). Such hybrids show normal female ferti

lity. Male fertility is reported to be 13 and 35% for the hybrids with B. adpressa and R. 

raphanistrum, respectively (Eber et al. 1994). Pollen fertility varied from 1 to 30%. 

Kerlan et al. (1992) described reciprocal crosses between herbicide-tolerant oilseed 

rape and five related species: B. oleracea L. var. acephala, B. oleracea L. var. capitata, 

B. nigra L. Koch, B. adpressa L., Raphanus raphanistrum and Sinapis arvensis L. The 

last three are commonly occurring in oilseed rape fields in France and were locally 

collected. All the inter-specific combinations tested were able to produce hybrid plants, 

but only when fertilized ovaries were established in in vitro culture. When rapeseed was 
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used as female parent more hybrid plants were obtained. Probably, this can be explained 

by the higher chromosome number in oilseed rape, which was also found to influence 

hybridization capacity in other studies concerning reciprocal differences in yield of hybrid 

embryos (Mohapatra & Bajaj 1987; Quazi 1988). These observations show severe 

limitation in gene dispersal due to hybridization barriers. In contrast to the hybrids 

formed spontaneously, the B. adpressa and R. raphanistrum hybrids obtained by embryo 

rescue were mostly sterile (Eber et al. 1994). Also the other hybrids were male sterile or 

poorly fertile, except for two amphidiploid B. napus x B. oleracea plants, which showed 

a fertility comparable to oilseed rape. Such a reduced male fertility diminishes the 

possibility for gene dispersal. 

Gene introgression after sexual hybridization depends on the percentage of chromoso

me pairing. The higher this percentage is, the higher the opportunity that a (trans)gene 

introgresses into the genome of the wild relative. Therefore, Kerlan et al. (1993) studied 

the meiotic behaviour of the hybrids between herbicide-tolerant oilseed rape and the five 

related species earlier mentioned together with the physical presence and expression of the 

Basta® tolerance, bar gene. Most of the 75 hybrids studied had a triploid structure 

(ACX). Comparing the percentage chromosome pairing in the hybrids with that of haploid 

oilseed rape allosyndesis between rapeseed AC genomes and the genomes of related 

species occurred. The presence of multivalent association in all hybrids also indicated the 

possibility for recombination. Also a good correlation between presence of the bar gene 

and herbicide tolerance, providing the T-DNA was inserted as a single locus was 

observed. If the T-DNA was present at three loci, two plants having the bar gene were 

nevertheless found to be Basta® susceptible. This might be explained by suppression of 

gene expression through a position effect (De Block et al. 1989) or through DNA methy-

lation followed by gene inactivation (Matzke et al. 1989; Hobbs et al. 1990; Linn et al. 

1990). Other explanations might be partial complementation caused by an insufficient 

transgene expression, co-suppression (Flipse 1995) or (anti)sense inhibition (Jorgensen 

1990; Grierson et al. 1991; Mol et al. 1994; Flipse 1995). 

Based on the study of the occurrence and the cytogenetical characterization of inter

specific hybrids (Kerlan et al. 1992; 1993), the five related Brassica species were ranked 

by decreasing ecological impact: B. oleracea, R. raphanistrum, B. adpressa, S. arvensis 

and B. nigra. Their results showed that gene transfer would not occur to the weedy 
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relatives B. nigra and S. arvensis due to natural cross barriers, which is in agreement to 

what is found by Downey & Bing (1990) and Bing et al. (1991; 1995). Between B. râpa 

and B. nigra gene transfer was shown to be possible, while gene transfer between B. rapa 

and S. arvensis was at the most difficult (Bing et al. 1996). Hybridization of oilseed rape 

and radish (R. sativus) was shown by Metz et al. (1995). However, this will not have an 

ecological impact. Although herbicide tolerance could be transferred from transgenic oil

seed rape to the hybrid, hybridization was only possible under special laboratory 

conditions and, in addition, the hybrid plants were almost completely sterile. 

- Hybridization among (transgenic) oilseed Brassicas iß. napus, B. rapa and B. juncea) 

B. rapa, B. napus and B. juncea are commercially grown oilseed species. The last two 

accommodate the B. rapa A A genome. 

- Hybridization of B. juncea and B. napus 

B. juncea, cultivated in Asia, USA and Canada for oil and mustard production, is found 

as a weed or ruderal in Denmark and Sweden (Frello et al. 1995). In Southern Europe it 

is naturalized (Heywood & Akeroyd 1993). 

Inter-specific hybrids of B. napus and B. juncea are easy to obtain in controlled 

crosses with B. juncea as female parent while spontaneous hybridization is also observed 

(Bing et al. 1991; Frello et al. 1995). On basis of RAPD analysis, a relatively high 

homology between the A-, B- and C-genome was found, making recombination between 

these chromosomes feasible (Quiros et al. 1991, 1994). Such introgression from oilseed 

rape into the genome of B. juncea has been reported (Frello et al. 1995), while hybridiza

tion between B. juncea and B. rapa has been reported too (Anand et al. 1985; Banga 

1986). These hybridizations are not relevant for the Netherlands because B. juncea is not 

cultivated and very seldomly occurs in nature under dutch circumstances. 

- Hybridization of B. rapa and B. napus 

Turnip is an annual or biennial herb, cultivated on a modest scale. It is very frequently 

found on open waysides, disturbed ground and other unnatural habitats. (Sub)spontaneous 

populations are found in the wild, which might be regarded as wild relatives of oilseed 

rape. Many records of escapes of B. napus can be traced back as concerning B. rapa. 
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De Vries et al. (1992) have made so-called botanical files for 42 species of cultivated 

plants grown in the Netherlands using a Dpdf code, consisting of 3 dispersal codes with 6 

indices each. Dp gives an indication for gene dispersal by pollen, Dd for gene dispersal by 

seeds and diaspores and Df for the frequency of the plants in the wild. The numerical 

code is a measure for the possible ecological effects of the cultivated plant on the wild 

flora of the Netherlands (Frietema De Vries 1996). Oilseed rape obtained a Dpdf code of 

2.2.4, indicating that a medium ecological effect can be expected on the dutch flora 

(Frietema De Vries 1996). Turnip (B. rapd) obtained a Dpdf code of 5.5.4, which indica

tes the expectation of a substantial and wide spread ecological effect on the flora of the 

Netherlands. Under dutch circumstances oilseed rape and turnip flower simultaneously 

from April till August (Van der Meijden 1990) and hybridization of B. rapa and B. napus 

has been reported to occur occasionally (De Vries et al. 1992). 

Reports on the crossability between oilseed rape and B. rapa are nevertheless con

troversial (J0rgensen & Andersen 1994). In breeding programs of oilseed rape, crosses 

with B. rapa were performed (Gowers 1982). Natural crosses between these species are 

thought to be either difficult and not likely to happen (Downey et al. 1980) or rather 

common in nature, which was exemplified by spontaneous hybridization in agricultural 

fields (Bing et al. 1991; torgensen & Andersen 1994). In Denmark, B. rapa is a common 

weed in cultivated areas, mostly in oilseed rape fields (Jorgensen & Andersen 1994). The 

hybrid plants identified, produced a small amount of viable seeds after open pollination, 

which indicated that these hybrids might survive the next generation. 

The possibility for gene transfer from B. napus to B. rapa under natural circumstances 

will be less than observed under pollination conditions in field crossing blocks, because 

B. rapa flowers one to two weeks earlier than B. napus and because inter-specific 

hybridization is more successful when B. rapa is used as male parent (Downey & Rakow 

1987; Bing et al. 1991; Bing 1991). It is in contradiction, however, to the results of 

Palmer (1962) who obtained after open pollinations with an excess of pollen, on turnip 

88% hybrid plants and on oilseed rape only 11% hybrid plants. 

Hybrids had quantitatively a good pollen production, but showed reduced fertility 

(Beversdorf et al. 1980; Bing 1991). After staining, viability of the pollen was found to 

be about 60% (MacKay 1977; McNaughton 1973b). The pollen fertility of the hybrid 

plants obtained from seeds harvested on B. rapa ranged from 21 to 86% in different 
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experimental designs (Jergensen & Andersen 1994). If plants were placed in a 1:1 mixtu

re of B. rapa and oilseed rape, hybrids obtained from seeds harvested on oilseed rape 

plants had 41% (16-65%) pollen fertility. In contrast, Röbbelen (1966) observed in the 

cross B. rapa x B. napus complete sterility, which was suggested to be the result of aber

rant embryo development. 

Scheffler & Dale (1994) have reviewed the opportunities for hybridization between 

oilseed rape and related species. They also reported successful selfings and backcrosses of 

hybrids between turnip and oilseed rape. According to U (1935), McNaugton (1973b) 

and Beversdorf et al. (1980) most of such hybrids possessed 29 chromosomes. In the 

metaphase of the méioses 10 bivalents (the A genomes) and 9 univalents (the C genome) 

were observed (U 1935; MacKay 1973; McNaughton 1973b; Rousselle & Eber 1983). 

Apparently, the turnip chromosomes paired completely resulting in vital gametes. 

Introgression is reported from B. rapa into B. napus (MacKay 1977; Goring et al. 

1992). MacKay (1977) introgressed S-alleles from turnip and Goring et al. (1992) 

described the introgression of an S-locus glycoprotein CDNA. Because only oilseed rape 

with the desired cytoplasms was available, introgression of cold tolerance and black-rot 

resistance from B. napus into B. rapa (Pak choi) and B. rapa (Chinese cabbage) was 

accomplished (Guo et al. 1990; Heath et al. 1994). 

We backcrossed hybrids of B. rapa and transgenic herbicide tolerant oilseed rape to B. 

rapa (Metz 1995), while Mikkelsen et al. (1996a) performed the reciprocal backcross. In 

the BQ and BC2 generations herbicide tolerance was detected, which indicates that 

introgression of a transgene into B. rapa seems possible (Mikkelsen et al. 1996a; Metz et 

al., Theor. Appl. Genet, accepted). These results show that if the natural conditions are 

as optimal as in the study of Mikkelsen et al. where inter-specific hybrids were grown in 

small plots together with B. rapa or as our experimental conditions where pollen is put in 

excess on the stigma of the receptor plant, a transgene can be transferred to B. rapa. This 

might confer a fitness advantage to B. rapa under selective conditions. However, it is 

difficult to conceive of a situation in which genetic modification for herbicide tolerance 

will influence the fitness of a plant in the absence of the herbicide (Gliddon 1994). 

Introgression and gene transfer to B. rapa might be limited by introduction of a trans-

gene into the C-genome of B. napus. It is expected that the transgene will probably be 

present in a lower that expected percentage of the plants after 2-3 generations of back-
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crossing with the wild relative B. rapa. However, in general, the occurrence of fertile, 

transgenic B. rapa-like plants after hybridization and two generations of backcrossing 

suggests possible gene dispersal from oilseed rape to its weedy relative B. rapa. 

Impact of transgene features on biosafety of transgenic oilseed rape 

It can be concluded that complete containment of transgenic oilseed rape is not possible. 

In the case of hybrids of B. rapa and oilseed rape, studies about the stability of transgene 

expression over generations and in different genetic backgrounds are relevant. Such stu

dies can show the possible impact of transgene action and stability in these hybrids. 

In general, there will be a shift from the question of possible transgene escape to the 

question of the ecological and toxicological impact of the introduced genes (Timmons et 

al. 1996). By order of the Dutch Ministries of Economic Affairs, and Housing, Spatial 

Planning and the Environment a series of literature reports was written about the ' trans-

gene-centered ' evaluation of genetically-engineered plants. The ecological and toxicolo

gical biosafety aspects of the phosphinothricin tolerance gene (Nap & Metz 1996) and the 

glyphosate tolerance gene (Nap et al. 1996) have been evaluated till now and more 

reports are in progress. Such a transgene-centered approach may prove the more useful in 

the near future (Metz & Nap, 1997). 

Concluding remarks 

It is expected that transgenic oilseed rape will be at the forefront of the commercialization 

of transgenic crops. Therefore, oilseed rape is a good model crop for biosafety studies. 

The taxonomy and cytogenetics of the family of Cruciferae give rise to ample possibilities 

for inter-specific and inter-generic hybridization, either with or without embryo-rescue 

techniques. Pollen is thought to be the main factor through which transgenes may spread. 

Vectors for pollination of oilseed rape are both insects and wind. 

Monitoring pollen movement from (semi) commercial oilseed rape fields showed that 

extrapolating information obtained from small-scale release experiments must be done 

carefully. Although reported outcrossing frequencies were low, pollen spread and gene 

dispersal from transgenic oilseed rape to its (wild) relatives can not be prevented. 

Studies on reciprocal crosses between transgenic oilseed rape and a number of related 
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species showed that all inter-specific and inter-generic combinations tested produce hybrid 

plants, but in most cases only after elaborate in vitro culture. However, for some related 

species spontaneous hybridization has been reported under field conditions. Spontaneous 

hybridization among the oilseed Brassicas (B. rapa, B. juncea and B. napus) has been ob

served in agricultural fields. The occurrence of fertile, transgenic B. rapa-like plants after 

hybridization and two generations of backcrossing suggests gene dispersal from oilseed 

rape to its weedy relative B. rapa and introgression of oilseed rape genes in B. rapa is 

possible. Such gene dispersal and introgression might be limited by inserting the trans-

gene in the C-genome. Studies about the stability of transgene expression over generations 

and in different genetic backgrounds can show the real impact in time of transgene action 

in hybrids of B. rapa and oilseed rape. 

Because complete containment of transgenic oilseed rape is not possible, attention 

should now focus on the ecological and toxicological impact of the introduced genes. 

Such transgene-centered ecological and toxicological evaluation, irrespective of the geneti

cally-engineered plant species may prove useful in the near future. 

19 



Chapter 2 

A transgene-centered approach to the biosafety of 

transgenic phosphinothricin-tolerant plants 

PETER L.J. METZ, WILLEM J. STIEKEMA and JAN-PETER NAP 

Summary 

The impact of the presence of the microbial bar and pat genes in plants is evaluated in a so-called 

'transgene-centered approach' to biosafety. Conferring tolerance to the non-selective herbicide 

phosphinothricin (PPT; sold as Basta or Finale), the use of these genes could imply a considerable 

environmental gain compared to current-day herbicide cocktails. The ecological consequences with 

respect to weediness or spread of the transgenic PPT tolerance are concluded to be sufficiently minor, 

assuming responsible use of this trait in agronomy. The toxicological evaluation depends on whether 

or not the plant was actually spread with PPT. Consumption of the gene and/or gene product from 

unspread transgenic plant material will not have adverse effects. In case of PPT-sprayed material, 

however, PPT or derivatives might be present in food and feed. To date, the toxicological impact of 

such a putative exposure is not sufficiently clear. Premarket testing of and/or more familiarity with 

the trait seem required. 
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Introduction 

With the introduction of transgenic plants, various aspects of the biosafety of such plants 

have been studied to evaluate their admission. Many 'transgene independent' studies con

cluded that transgenic plants should be evaluated on a case-by-case basis. Attention should 

be given to the ecological and toxicological impact of the introduced genes and gene 

products. These aspects are the motivation for the alternative, or 'transgene-centered' 

evaluation, in which all characteristics of a particular transgene are evaluated (Nap et al. 

1992; Metz & Nap 1997). Such an approach helps to generalize outcomes irrespective of the 

plant species into which the transgenic trait is introduced. Furthermore, concentrating on the 

presence of gene x and the gene product X allows definite questions to be evaluated and may 

identify open issues more readily than general considerations. Biochemical, ecological and 

toxicological data of the gene, its product, substrates and degradation products will indicate 

if and if so which further data should be required for decision making. The approach may 

streamline the discussions about the ongoing commercialization of transgenic crops. 

Here, the bar and pat genes whose gene products confer tolerance to the herbicide 

phosphinothricin (PPT) are reviewed as an illustration of the transgene-centered approach. 

The startpoint is: given current agricultural practice, what could be the consequences of 

agronomic crops tomorrow being transgenic PPT-tolerant. 

Phosphinothricin and phosphinothricin tolerance 

Phosphinothricin: properties and applications 

PPT originates from the actinomycetes Streptomyces viridochromogenes and S. hygroscopicus 

(Bayer et al. 1972; Lea et al. 1984). Industrially it is synthesized as a DL-racemic mixture, 

of which only the naturally occurring L-PPT is herbicidal. PPT, or glufosinate, is sold under 

the brand names Basta®, Finale® and Radicale®. It is widely used as broad spectrum, pre-

emergence herbicide and also for pre-harvest desiccation in potato, legumes and oilseed rape 

by application to the leaves. PPT has no margin for discrimination between crop and weed: 

it is a so-called non-selective herbicide (Botterman & Leemans 1988). 

PPT interferes with amino acid synthesis by inhibition of glutamine synthetase. GS is the 

key enzyme in nitrogen metabolism that assimilates ammonia produced by nitrate reduction, 

22 



and recycles ammonia produced by processes such as photorespiration and deamination 

(Kishore & Shah 1988). As a structural analogue of the GS substrate glutamate, PPT inhibits 

GS irreversibly. This inhibition triggers ammonia accumulation to levels up to 100 fold 

higher than in control plants, resulting in cessation of photosynthesis and disruption of the 

chloroplast structure (Devine et al. 1993; Tachibana et al. 1986). 

In common agricultural practice, two to four hours after application photosynthesis slows 

down and the plants will yellow and die in two to five days (Hoechst 1984). Over 40 

monocotyledonous and more than 150 dicotyledonous weeds are sensitive to PPT (Hoechst 

1984). Weeds generally require 0.6 - 2.0 kg/ha, but, for example, sicklepod (Cassia 

obtusifolia) requires 8.5 kg/ha, whereas green foxtail (Setaria viridis) is killed by 0.2 kg/ha. 

There is no example of absolute PPT resistance. 

PPT tolerance 

A successful strategy for obtaining PPT-tolerant crops has been based on the mechanism used 

by the PPT producing actinomycetes, which protect themselves against the autotoxic action 

by metabolizing the compound. They produce phosphinothricin-N-acetyltransferase (PAT) 

that acetylates the free NH2 group of PPT, causing its inactivation. The PAT-encoding bar 

ana pat genes were isolated from S. hygroscopicus and S. viridochromogenes TÜ494, respect

ively (Murakami et al. 1986; Strauch et al. 1988). Both genes code for PAT proteins of 183 

amino acids, which show 85% homology, variations of the genes being confined to the 5'-

noncoding regions (Wohlleben et al. 1988). 

For expression in plants, the PAT-encoding genes driven by plant promoters were suc

cessfully introduced in crops using standard transformation technology (De Block et al. 

1987). Transgenic plants proved tolerant to 4-10 times the dose of PPT required to kill 

control plants. PAT levels of no more than 0.001% of the total soluble protein proved 

sufficient to confer tolerance at field dose applications of the herbicide (De Block et al. 

1987). In large scale field trials, transgenic PAT-containing plants showed similar agronomic 

performance as controls (De Greef et al. 1989; Fredshavn et al. 1995). 

Currently, there are three applications of transgenic PPT tolerance in the development and 

use of plant material: as selectable marker during genetic transformation; as agronomic 

character; and in hybrid seed production. 
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Biosafety issues 

Transgenic PPT tolerance raises ecological and toxicological concerns. Transgenic PPT 

tolerance might transform a crop into an uncontrollable weed; it may spread from the crop 

to wild relatives or to other organisms, that as a result become uncontrollable; it might 

disturb ecological relationships of the crop in another way. The presence of the PPT 

tolerance gene or its gene product may directly or indirectly render the plant unsuitable for 

consumption or industrial processing. The use of PPT in transgenic crops may challenge 

consumers with the herbicide or its metabolites. Also, there may be any unexpected 

pleiotropic effects associated with the transgenic PPT tolerance. 

Environmental impact of PPT and its metabolites 

As chemical compound PPT is stable, but in the soil it is rapidly degraded to 3-mefhyl-

phosphinico-propionic acid (MPP) by microbiological activity (Tebbe & Reber 1988). MPP 

is non-phytotoxic (Droge et al. 1992) and has no herbicidal activity (Hoechst 1984). Traces 

of MPP were found for a short period of time. In metabolism studies no residues of the 

active compound could be detected in plants or in animal tissue, indicating there is a rapid 

secretion. Due to the high solubility in water, accumulation in the food chain will not occur 

(Lindhoud 1984). 

Another important issue in the characteristics of transgenic PPT-tolerant plants is the rela

tive environmental load of PPT. Generally, the environmental impact of PPT is considered 

to be less than the impact of the currently used cocktails of herbicides (Van Rijn et al. 1995). 

The use of PPT and PPT-tolerant crops would imply a considerable reduction in amounts of 

active ingredients of herbicides compared to current practice. PPT is considered to be safe 

for water and soil life and will not leach into groundwater in spring. It is considered less safe 

with respect to leaching into groundwater in autumn. 

Weediness 

The weediness of a PPT-tolerant plant largely depends on the interplay between the intrinsic 

characters of the plant, in combination with the specific habitat the plant lives in (Keeler 

1989; Tiedje et al. 1989). The scenario relevant to biosafety is an enhancement of fitness. 

When selective PPT concentrations are found, such as in the field in which the PPT-tolerant 
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crop-of-interest is sprayed with PPT, a selective advantage will be created. Except perhaps 

occasionally in verges adjacent to production fields, it is unlikely that such selective 

conditions will be found elsewhere. 

In the absence of spraying with PPT, PPT tolerance will not contribute to weediness per 

se. Investigating the competitiveness of transgenic PPT-tolerant oilseed rape under non

selective PPT conditions, no significant differences between transgenic and non-transgenic 

lines were observed. Inclusion of the more competitive Sinapis alba in the experimental 

design allowed to conclude that any change in competitiveness would not exceed the natural 

competition level of this reference species (Fredshavn et al. 1995). 

No increase in invasive potential conveyed by the PPT tolerance was observed in a variety 

of habitats and under a range of climatic conditions in which there were no selective concen

trations of PPT present (Crawley et al. 1993). Whenever there was any significant diffe

rence, transgenic lines were less invasive and less persistent than their non-transgenic 

counterparts. In the absence of selective conditions, there is no advantage for PPT-tolerant 

crops and there will be no increased weediness of these crops. The paper by Crawley et al. 

(1993) has been called a 'landmark paper in ecology' (Kareiva 1993), but also resulted in lots 

of discussions among ecologists and others about its scientific merits as well as about the 

experimental designs and the validity and generality of the conclusions drawn (Kareiva 1993; 

Miller et al. 1993; Miller et al. 1994; Crawley 1993; Crawley 1994; Williamson 1992). 

PPT-tolerant crops might be useful for the further development of ecological science, in 

combination with the application of molecular techniques (Williamson 1992). Such a 'molecu

lar ecology' will yield valuable insights into the dynamics and plasticity of ecosystems and 

might contribute to the biosafety assessment of transgenic plants. 

For the issue of biosafety, the experimental data available to date, however, seem suffi

cient to conclude that there is no likelihood for increased weediness of transgenic PPT-

tolerant crops, irrespective of the application of PPT. 

Spread of the transgene 

The spread of the PPT tolerance transgene to wild relatives depends on a myriad of 

ecological situations, genetic factors and stochastic events (Tiedje et al. 1989). In view of 

current large-scale agriculture, it is prudent to assume that the PPT tolerance transgene will 

spread by cross-pollination in some conditions and at some locations. More important, 
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therefore, is the foreseeable effect of this spread. Outcrossing to a weedy wild relative next 

to a field may result in a PPT-tolerant weed that moves back into the field and can not be 

controlled anymore with PPT. Despite more than a decade of commercial use of PPT, no 

acquired PPT tolerance of weeds has been observed in the field. The introduction of 

transgenic PPT tolerance may result in a higher likelihood of the occurrence of acquired PPT 

tolerance in weeds. It is difficult to predict how fast and how total a putative loss of PPT as 

herbicide could be. Having accepted PPT as relatively benign herbicide, any impairment of 

the use of PPT due to transgenic tolerance could result in the need to use more 

environmentally unfriendly herbicides. This should be considered a negative development. 

For example, PPT-tolerant potato, legumes or oilseed rape will not allow the current post-

emergence control with PPT. Therefore, it might be advisable to incorporate the use of PPT 

and transgenic PPT tolerance in a herbicide resistance management scheme. 

A weedy wild relative will only be able to go out of control in case of selective PPT con

ditions outside agricultural fields. As argued above, in the absence of any selective pressure, 

it is unlikely that any wild relative will go out of control. Horizontal gene transfer to another 

organism requires a chain of events, each step having a little likelihood (Schlüter et al. 

1995). The final outcome, irrespective of the time it will take to happen, will be an organism 

that is tolerant to PPT. The consequence of this tolerance will depend on the presence of 

selective conditions and, therefore, it is unlikely that such organism will go out of control. 

The use of PPT and PPT-tolerant crops in the production of hybrid seeds and as selection 

marker during transformation is fully biosafe. In these applications, PPT tolerance is either 

only applied as dominant selective marker under conditions for seed production or under 

controlled laboratory conditions. 

Consumption 

The introduction of the bar or pat transgene in crops, and subsequent use of PPT during crop 

cultivation, imply that three additional classes of molecules will or can be present: the 

transgene, the bar or pat gene, and it metabolites; the transgene product, PAT, and its 

metabolites; and the herbicide PPT and its metabolites. Each of these should be evaluated for 

undesirable effects in consumers. The large amount of DNA that passes the digestive tract 

daily indicates that DNA is not intrinsically toxic to human beings. DNA is efficiently 

degraded and no functional genes are assumed to remain present (Berkowitz 1990). In this 
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respect, bar and pat DNA will not differ from any other DNA and will not pose any adverse 

effects. In the unlikely case that intestinal cells or micro-organisms acquire the bar or pat 

DNA it is comparable to putative horizontal gene transfer in ecosystems. The absence of any 

positive selective pressure for PAT-containing cells or organisms in the digestive tract of 

consumers will preclude any conceivable harm. 

PAT and its metabolites 

Undesirable effects due to presence of the PAT protein could result from enzymatic activity 

of PAT in either transgenic plant or digestive tract, the presence of PAT itself and/or the 

degradation products of PAT. PAT enzyme has a high substrate specificity for L-PPT (Droge 

et al. 1992; Thompson et al. 1987). Glutamate and analogues are poor substrates, having 

affinities at least 500 times lower than PPT. The overall high substrate specificity suggests 

that enzymatic activity of PAT in the transgenic plant will not result in the establishment of 

pools of unfamiliar secondary metabolites. In the human digestive tract, no substrate is likely 

to be available and the gastric conditions preclude catalytic activity. The pH optimum for the 

enzyme is 7.5 and rapid thermo-inactivation is observed at temperatures exceeding 35 °C 

(Botterman et al. 1991; Walter et al. 1992). The gastric fluid has a pH of 2 to 4. PAT loses 

all enzymatic activity within one minute of exposure to gastric pH (Kok, pers. comm.). In 

addition, the required co-factor acetyl-CoA is not stable in such acidic conditions. Enzymatic 

activity of PAT in the human digestive tract can, therefore, be excluded. 

Without enzymatic activity, the PAT protein molecule could prove toxic or allergenic 

upon consumption. Generally, proteins are non-toxic (Jones & Maryanski 1991). The OECD 

has summarized the criteria which do suspect allergenicity of a protein (FDA/EPA/USDA 

1994): a relative abundance; glycosylation; resistance to proteolytic degradation and 

resistance to heat denaturation. The protein is not likely to exceed 0.1% of the total soluble 

protein content of the transgenic plant material. The protein has no glycosylation sites. 

Database comparisons with known protein sequences gave no hint of any allergenic or toxic 

potential of the PAT protein (Trinks 1995). The PAT protein has no homology to known 

toxic peptides and is rapidly and irreversibly degraded in the gastro-intestinal tract (Trinks 

1995) with a halflife of 1-2 min (Kok, pers. comm.). All criteria indicate that no allergenicity 

or toxicity of the PAT protein or its degradation products are to be expected. 
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PPT and its metabolites 

The use of PPT-tolerant crops will imply a shift from the current pre-emergence applications 

to post-emergence applications of PPT. The food and feed safety of transgenic PPT-tolerant 

plants will depend on the additional metabolites present. This, in turn, depends on whether 

or not and when the plant was sprayed with PPT prior to consumption. Without spraying 

with PPT, the additional metabolites that occur in transgenic PPT-tolerant crops are the bar 

and pat transgenes and the PAT enzyme. As shown in the previous paragraphs, these 

metabolites do not have any adverse effects. Transgenic PPT-tolerant plants are safe for 

consumption. All cases in which the PPT tolerance is only used as marker for transformation 

in the laboratory are covered in this scenario. 

In the majority of cases, however, PPT-tolerant crops are likely to be used in combination 

with PPT. The additional metabolites present in transgenic PPT-tolerant plants upon PPT 

spraying are PPT itself, its metabolites and the metabolites formed through PAT activity. 

Commercial PPT is a racemic mixture of D- and L-PPT and requires the evaluation of both 

enantiomers. In plants with relatively high PAT amounts, L-PPT is quantitatively acetylated 

giving acetyl-PPT, while D-PPT remains stably present (Droge et al. 1992; Dröge-Laser et 

al. 1994). If commercialized transgenic crops contain sufficient amounts of PAT protein to 

establish the quantitative acetylation of PPT, the metabolites acetyl-PPT and D-PPT need to 

be evaluated for consumption. Acetyl-PPT is a stable compound that may accumulate in the 

plant and some transport via the xylem into the fruits or seeds may occur (Dröge-Laser et 

al. 1994). Upon oral administration, acetyl-PPT, which is also formed in the gut of animals 

via the normal detoxification pathway (Trinks 1995), is excreted rapidly, the major amount 

via faeces and some via the urine. There is no deacetylation in the stomach that recreates 

PPT. Mammalian toxicity studies yielded LDS0 values for oral and dermal administration 

larger than 2.8 g/kg body weight, indicating that acetyl-PPT is essentially non-toxic. Acetyl-

PPT, therefore, poses no concern for consumption. The fate of acetyl-PPT upon food 

processing is unknown. 

The toxicity of D-PPT has only been determined in combination with L-PPT. Although 

DL-PPT inhibits mammalian GS as well (Ebert et al. 1990), it is generally not or less toxic 

to mammals (LD50 1.5 to 4 g/kg body weight) because of its rapid clearance by the kidneys 

(Kishore & Shah 1988). The commercial formulation of PPT, which includes DL-PPT and 

a wetting agent, must according to EU directive 83/467/EEC be classified as 'harmful' on 
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the basis of the acute oral toxicity tests. It induced slight dermal toxicity and eye irritation 

and was slightly toxic following oral exposure to laboratory animals (Ebert et al. 1990). It 

is unclear whether these effects are due to the L-enantiomer only. No genotoxic, teratogenic 

or carcinogenic potential was observed (Ebert et al. 1990). There was no toxicity for bees, 

earthworms or soilmicro-organisms (Lindhoud 1984). A daily intake of 0.02 mg per kg body 

weight per day is proposed as acceptable (Ebert et al. 1990). It would seem highly unlikely 

that sprayed transgenic plants will ever accumulate such amounts of D-PPT. The fate of D-

PPT upon food processing is unknown. 

In plants with relatively low PAT activity, in addition to substantial amounts of L- and 

D-PPT and acetyl-PPT, the metabolites 4-methylphosphinico-2-oxo-butanoic acid (PPO), 4-

methyl-phosphinico-2-hydroxy-butanoic acid (MHB) and MPP were observed (Droge-Laser 

et al. 1994). Similar to non-transgenic PPT-sensitive plants, deamination of L-PPT results 

in PPO and subsequent decarboxylation yields MPP (Tebbe & Reber 1988). No further 

decarboxylation of MPP was detected (Droge et al. 1992; Dröge-Laser et al. 1994). In 

plants, PPO can alternatively be reduced to MHB. In addition, 4-methyl-phosphinico-butyric 

acid (MB) was a PPT metabolite so far found only in monocots (Dröge-Laser et al. 1994). 

The possibility of species-specific PPT metabolites has therefore to be taken into account in 

the analyses of PPT metabolites in transgenic plants. 

The presence of MHB and MPP in PPT-tolerant plants was dependent on the amount of 

PAT present, indicating a competition between the PPO-MPP/MHB and the PAT metabolic 

routes (Dröge-Laser et al. 1994). Both MHB and MPP were found to be final and stable 

products of the plant's metabolic pathways (Droge et al. 1992; Dröge-Laser et al. 1994). 

Transport of these metabolites via the xylem to the upper regions of the plant was observed. 

No toxicological data concerning MHB and MPP or other putative metabolites are available. 

The putative accumulation and exposure to metabolites such as MPP or MHB deserves 

attention. It is currently insufficiently clear whether consumers are exposed to what levels 

of PPT and/or its metabolites. As long as there is not much familiarity with the trait, it 

would seem to be advisable to develop a protocol to evaluate the levels of PPT metabolites 

in PPT-tolerant plant food. This will indicate if, and if so which, further toxicological data 

are necessary. 
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Pleiotropic effects 

The presence of the bar or pat transgene or its product, or any of its metabolites, may in 

some unexpected way alter any of the manifold ecological relationships or toxicological 

characteristics of the crop. The same applies to any wild relative derived from outcrossing, 

or any organism derived from horizontal gene transfer or any product derived from it. For 

example, the tabtoxin resistance gene (ttr) from Pseudomonas syringae encodes an 

acetyltransferase, which inactivated tabtoxin but not bialaphos (Yoneyama & Anzai 1993). 

In case the PAT enzyme would inactivate the tabtoxin, Pseudomonas resistance could be a 

pleiotropic effect of PPT tolerance. Although there are no reports of PPT-tolerant plants 

tested for tabtoxin resistance, the high substrate specificity of PAT makes the occurrence of 

such a putative pleiotropic effect highly unlikely. In general, it is at the moment unclear 

whether pleiotropic effects do occur to the extent that any effect can be measured. And if any 

effect can be measured, it might be unclear whether such an effect has any relevance for the 

ecological relationships or toxicological characteristics of the crop. And if an effect has any 

relevance, it is unclear whether the outcome should be considered an adverse effect. The 

relatively minor and well documented changes brought about by the bar and pat transgenes 

indicate little need for concern. The dynamics and self-regulatory properties of ecosystems 

and consumers, in combination with the natural background of mutations, changes and 

nutritional versatility are likely to create sufficient 'noise' to allow the conclusion that 

pleiotropic effects will be of no or very minor importance. 

The above evaluation of the transgenic PPT-tolerant phenotype by gathering various data 

of the transgene, its product, substrates and degradation products establishes a file of a 

particular transgene irrespective of the plant species into which the transgene is introduced. 

The availability of such a file is likely to make discussions about this particular gene among 

different groups more transparent and possibly more constructive. Ideally, for every 

individual transgene present in plants such a 'transgene-centered' file with specific data 

should in the future become publicly available. 
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Chapter 3 
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in sexual offspring of transgenic oilseed rape 

(Brassica napus L.) 
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University, Lawickse Allee 166, 6709 DB Wageningen, The Netherlands 

Summary 

The commercial and economic value of genetically modified crops are determined by a predict

able, consistent and stable transmission and phenotypic expression of the transgenes in successive 

generations. No gene inactivation is expected after sellings or crosses with non-transformed plants 

of homozygous transgenic oilseed rape plants if the phenotypic expression of the transgene in 

homozygous or hemizygous nature in such plants is stable. 

The segregation ratios of phosphinothricin (PPT) tolerance in successive generations of selfings 

and mutual crosses of a few independent transgenic PPT-tolerant oilseed rape plants indicated a 

dominant, monogenic inheritance. In within-variety and between-variety crosses no transgene 

inactivation was observed. However, after selfings and backcrosses with non-transgenic oilseed 

rape infrequent loss of the expression of the PPT tolerance transgene was observed independent 

from its homozygous or hemizygous nature. Molecular analysis of PPT-susceptible plants showed 

that the loss of phenotypic expression was due to gene inactivation and not to the absence of the 

transgene. Besides methylation and co-suppression, somaclonal variation was mentioned as one of 

the mechanisms that might cause reduced or even loss of phenotypic expression of the transgene in 

later generations. The implications of this observation for seed multiplication of varieties and 

breeding activities with transgenic oilseed rape are discussed. 
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Introduction 

The ability to integrate (foreign) genes from all organisms into the nuclear genome of 

higher plants and to regenerate the transformants into fertile plants give plant breeders 

additional opportunities to modify and improve crop plants. Such transgenic crops are 

commercialized and transgenic plants most likely will significantly contribute to agricul

ture in the future (Dale & Irwin 1995). However, developments in the patenting of genes, 

the release regulations, food labelling and consumer attitude will influence the imple

mentation rate. Besides these aspects, the commercial use of genetically modified plants 

will be determined by the level of expression and the stability of transgene expression in 

successive generations of seed multiplication of varieties or successive steps in a breeding 

program (Meyer 1995). Only when the transgenes are transmitted and expressed through 

subsequent generations in a predictable, consistent and stable manner, the transgenic crop 

will be of economic value (Conner & Christey 1994; Finnegan & McElroy 1994). 

However, it is generally known that the level of transgene expression in transgenic 

plants varies between different transformants. For this reason, it is necessary to generate 

a large number of independent transformants and to screen them for those plants that have 

the appropriate expression level. For the potential of transgenic plants in agriculture the 

loss of transgene expression (Kilby et al. 1992; Meyer et al. 1992; Cherdshewasart et al. 

1993), the non-expression of introduced traits following selection for a linked selectable 

marker gene (Heberle-Bors et al. 1988; Ottaviani et al. 1993) and non-Mendelian 

segregation of the transgenic phenotype in segregating populations (Deroles & Gardner 

1988a; b; Mittelsten Scheid et al. 1991) are disturbing observations. The loss of expressi

on in most cases was shown to be correlated with inactivation of the transgene rather than 

with the absence of it (Matzke et al. 1989; Mittelsten Scheid et al. 1991). 

Theoretically, assuming the likelihood of inactivation for both alleles after self ing of 

transgenics to be equal, the frequency of gene inactivation in homozygous progeny is the 

square of that in hemizygous offspring. This correlation was observed by Müller et al. 

(1987) using kanamycin resistance in tobacco. However, in another study also in tobacco, 

the frequency of gene inactivation was approximately equal in homozygous and hemizy

gous offspring (Conner et al. submitted) suggesting that the inactivation of each allele did 

not occur independently. If the phenotypic expression of a transgene, when present in 
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homozygous and hemizygous nature is stable in transgenic plants, sellings of and crosses 

between these plants were not expected to give gene inactivation. 

From a biosafety point of view these inactivation phenomena do not have a negative 

impact per se because the transgenes are no longer expressed. For economic use, 

breeding and seed multiplication of transgenic crops, reliable phenotypic expression of 

transgenes is a prerequisite. Therefore, it is appropriate to assess the extent in which the 

phenotypic expression of transgenes follows Mendelian segregation ratios (James et al. 

1995). Studies on partial or complete transgene inactivation and elucidation of the 

underlying mechanisms are important when transgenic plants are to be used in applied 

plant breeding programs (Meyer 1995). 

In this study, the transmission of the phosphinothricin tolerance was determined in 

successive generations of selfings, in mutual crosses of a number of independent transfor

mants and in backcrosses of transformants with non-transformed plants. Harvesting of leaf 

material before spraying with the herbicide made it possible to perform a DNA analysis 

of PPT-sensitive plants. The results give an indication of the infrequent occurrence of 

inactivation of the phosphinothricin tolerance transgene. 

Materials and methods 

Plant material 

Four independent phosphinothricin-tolerant oilseed rape (B. napus) transgenic Rj populati

ons of cv. Drakkar obtained after selfing of 4 transgenics, designated TPI, TP2, TP3 and 

TP4 (kindly provided by Dr. P. Rüdeisheim, Plant Genetic Systems, Ghent, Belgium) 

were used. These lines were transgenic for a T-DNA insertion locus conferring resistance 

to kanamycin and to the active ingredient of the herbicide Basta®/Radicale®, phosphino

thricin (PPT). R, populations were expected to segregate 3 to 1 for PPT tolerance: sensi

tivity. Furthermore, transgenic PPT-tolerant B. napus cv. Westar plants, also kindly pro

vided by Dr. P. Rüdeisheim, were used. This 'Westar T5' line was shown to be a single-

copy transformant homozygous for the bar gene (Baranger et al. 1995). All transformants 

contained the bar gene (De Block et al. 1987; Thompson et al. 1987) from Streptomyces 

hygroscopicus. This encodes an acetyltransferase that inactivates PPT by acetylation of a 

free NH2-group. As non-transgenic parent, B. napus cv. Drakkar was used. 

35 



Experiments 

Crosses that were made could be divided into two categories: 

- within-variety transgenic oilseed rape 

- selfings and backcrosses with non-transgenic plants 

- between independent transformants 

- between-variety transgenic oilseed rape. 

A survey of the crosses made together with the aim of each cross is given in Table 3.1. 

For crosses, female parents were emasculated 2 to 24 h prior to pollination. The emascu

lated pollinated flowers were bagged for three days. For the selfings, using closed 

flowers, this was a week to prevent uncontrolled cross-pollination. The experiments with 

transgenic oilseed rape were conducted according to Dutch regulations using a pollen cage 

placed in a greenhouse. Success of the crosses did not depend on the time of the day they 

were performed. 

Table 3.1 Survey of the crosses made and the aim of the cross 

* within-variety with B. napus 'Drakkar' 

- ® homo- and hemizygous phosphinothricin-tolerant plants from different transformants 

Aim: to study inheritance and stability of the phenotypic expression of a transgene after 
selfing 

- crosses between independent homozygous phosphinothricin-tolerant transformants 

Aim: to study the effect of the introduction of a T-DNA locus in a recipient genome 
containing the same T-DNA locus in the same genetic background at a different 
position 

* between-variety with B. napus 

B. napus 'Drakkar' x B. napus 'Westar' 

Aim: to study transgene expression in the progeny of a cross between two homozygous 
phosphinothricin-tolerant oilseed rape varieties containing the same T-DNA locus 
in a different genetic background at a different position 
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Techniques 

- Phosphinothricin tolerance tests 

Tests to screen for PPT tolerance were performed as described earlier (Metz et al. 1995). 

In the present study, (transgenic) plants were sprayed as uniformly as possible with 

several Radicale® (150 gl"1 PPT) concentrations to determine an optimized Radicale® 

concentration for the selection of tolerant plants. 

- Pollen stainability 

Freshly harvested pollen was stained with Alexander's stain (Alexander 1969). Pollen 

stainability was expressed as the percentage of red pollen grains. 

- DNA analysis 

The DNA extraction method, the labelling system and the Southern blot analysis were 

described earlier (Metz et al 1995). As probes radioactively labelled AphA2 (Koncz & 

Schell 1986) or bar (Wilmink 1996) gene fragments were used. 

- Statistical analysis 

Phenotypic classes were tested for goodness-of-fit. P-values for significant differences 

were calculated using a \2 test with P<0.05. 

- Herbicide spray and DNA analysis of PPT-sensitive plants 

Pilot experiments have been made with different concentrations of the herbicide Radica

le®. Transgenic, PPT-tolerant plants survived a treatment with 1, 0.5 and 0.05% (Fig. 

3.1 A), although especially at 1 and 0.5%, they showed a retarded growth compared to 

un-treated plants. Non-transgenic plants died within 12 days after the Radicale® treatment 

(Fig. 3.IB), while spraying with a solution of 5% Radicale® was also for the transgenic 

plants too heavy for survival. Spraying with different herbicide concentrations did not 

influence the quality and the quantity of the pollen produced in surviving plants (data not 

shown). For the experiments, it was decided to use 0.5% or 1% Radicale® for selection 

of PPT-tolerant progeny plants. 

In case a progeny was completely sensitive, new seeds were sown. To be able to per

form a DNA analysis of PPT-sensitive plants from all resown plants one or two leaves 

were harvested and kept at -80 °C before spraying with PPT. After spraying the PPT-

sensitive plants could be identified and from their stored leaf material DNA was isolated. 

In this way, leaf material of these plants was saved for further analysis. 
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Figure 3.1 A-B Transgenic phosphinothricin-tolerant (A) and non-transgenic (B) oilseed 
rape cv. Drakkar after spraying with 0.5% Radicale, 12 days after treatment. Control 
means non-transgenic wildtype cv 'Drakkar' oilseed rape. 
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Results 

- Monogenic inheritance of the PPT tolerance 

Spraying of 30-45 plants of each of the four transgenic P^ populations, showed that in all 

populations about 75 % of the plants was PPT-tolerant as expected for a normal monoge

nic Mendelian segregation (Table 3.2). Backcrosses of a PPT-tolerant plant from two of 

these R, populations, TP2 and TP3, with non-transgenic oilseed rape gave an expected 

segregation ratio not deviating of 1:1 (Table 3.2). 

Table 3.2 Number and percentage of phosphinothricin (PPT) tolerant plants in four trans
genic R{ populations (TP1 to TP4), in two backcross populations with non-transgenic 
'Drakkar' (WT) and in the two non-transgenic varieties 'Drakkar' and 'Westar' of oilseed 
rape (B. napus L.) after spraying with 0.5% Radicale (150 gl"1 PPT). 

Population 

'Drakkar' 
'Westar' 
TP1 
TP2 
TP3 
TP4 
WT x TP3 
WT x TP2 

Number 
Tolerant 

0 
0 

35 
35 
22 
30 
23 
15 

Sensitive 

36 
18 
12 
11 
7 
7 

21 
18 

Percentage 

0 
0 

75 
76 
76 
81 
52 
46 

X2(3:l) X2(l:l) 

0.95>P>0.90 
0.90>P>0.80 
0.95>P>0.90 
0.40>P>0.30 

0.90>P>0.75 
0.75>P>0.60 

- (Instability of PPT tolerance 

To study the stability of PPT-tolerance, the number of PPT-tolerant plants was determi

ned in the sexual offspring of homozygous transgenic oilseed rape after selfings and in 

backcrosses with non-transgenic plants. The percentages of PPT-tolerant plants in the 

progeny during three generations of selfing are shown in Table 3.3. The progenies from 

plants TP1-101 and TP3-25 were already homozygous. After two more selfings their 

progenies remained, as expected, entirely PPT-tolerant using a PPT concentration of 

0.5%. Although all TP 1-101-2 plants did survive a treatment with 1% Radicale, using 

this concentration, two TP1-101-2-1 plants did not. This is in contrast to what was found 

for TP3 selfings. 
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Table 3.3 The number and percentage of phosphinothricin tolerant plants in three 
successive generations (S1 to S3) of selfed phosphinothricin tolerant oilseed rape originated 
from different transgenic populations (TP) and backcrosses to non-transgenic oilseed rape 
(NT) after spraying with 0.5% or 1% Radicale (150 gl1 PPT). NT control plants did not 
survive either treatment. ' Coding indicates that a PPT-tolerant progeny plant is again 
selfed, f.i. tolerant plant 2 from the progeny of TP1-101. 

Generation 
Selfing 

S„ TP1-101 
S2, TP1-101-21 

S3, TP1-101-2-1 

Sit TP2-6 
S2> TP2-6-2 
S3, TP2-6-2-2 

Si, TP2-9 
S2, TP2-9-2 
S3, TP2-9-2-2 

Si, TP3-25 
S2, TP3-25-3 
S3> TP3-25-3-16 

S„ TP4-14 
S2, TP4-14-2 

Backcross 
NT x 2-6-2-2 
NT x 2-9-2-2 
NT x 3-25-3-16 

0.5% 
Tolerant 

29 
17 
18 

22 
22 
22 

13 
18 
0 

32 
27 
7 

23 
24 

25 
0 

23 

Sensitive 
0 
0 
0 

2 
0 
0 

10 
0 

41 

0 
0 
0 

6 
0 

0 
29 
0 

% 
100 
100 
100 

92 
100 
100 

57 
100 

0 

100 
100 
100 

79 
100 

100 
0 

100 

Tolerant 

27 
37 

8 
40 

24 
0 

6 
9 

1% 
Sensitive 

0 
2 

0 
3 

0 
35 

0 
0 

% 

100 
95 

100 
93 

100 
0 

100 
100 

The progenies of the two plants of TP2 (2-6 and 2-9) showed neither a 1:0 nor a 3:1 

ratio of PPT-tolerant and -sensitive plants, as expected for a homozygous or hemizygous 

plant, respectively. The occurrence of PPT-sensitive plants in the offspring of TP2-6 and 

TP2-9 might be due to a reduced transgene expression in individual plants. The TP4 pro

geny gave the expected 3:1 PPT tolerant:sensitive segregation ratio, indicating TP4-14 

was hemizygous. After one extra selfing homozygous plants were identified in the proge

nies of TP2-6 (TP2-6-2), TP2-9 (TP2-9-2) and TP4-14 (TP4-14-2) on the basis of their 
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100% PPT-tolerant progenies irrespective of the Radicale dose used. However, after one 

more selfing of a tolerant progeny plant (2-6-2-2) using 1% Radicale, a few of its pro

geny plants was no longer PPT-tolerant in contrast to a treatment with 0.5%. Although 

TP2-9-2 was found to be homozygous, the selfed progeny of one of the surviving plants 

(TP2-9-2-2) was completely sensitive to both a 0.5 and 1% PPT treatment. These results 

were confirmed by the presence or absence of PPT-tolerant progeny plants in the back-

crosses with non-transgenic oilseed rape. All plants of the backcross with TP2-9-2-2 were 

sensitive and those of both backcrosses with TP2-6-2-2 and TP3-25-3-16 were tolerant. 

From the 41 sensitive TP2-9-2-2 selfing and the 29 sensitive TP2-9-2-2 backcross pro

geny plants, leaf material of respectively 7 and 5 randomly chosen plants was rescued as 

earlier described and tested on Southern blot using a bar probe. They all showed the 3 kb 

band, characteristic for TP2, indicating presence of the bar gene in these plants. 

- Combination of different T-DNA inserts by intra-specific crosses 

Within-variety crosses between independent transformants 

From all four TP populations homozygous plants were selected on the basis of the absen

ce of segregation for PPT tolerance after selfing (see Table 3.3). These plants were used 

Drakkar control 
TP1 
TP1-101-3 
TP2 
TP3 
TP3-25-4 
TP4 
TP4-2xTP1-13 
TP4-2 x TP3-4 

Figure 3.2 DNA blot hybridization showing the specific banding pattern for plants from 
four independent phosphinothricin-tolerant oilseed rape {B. napus) transgenic R, populati
ons of cv. Drakkar, designated TP1, TP2, TP3 and TP4 and from some crosses made 
with these plants using bar gene fragments as probe. 
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Table 3.4 The percentage phosphinothricin (PPT)-tolerant plants after crosses between 
homozygous and hemizygous PPT-tolerant oilseed rape plants originated from four inde
pendent transgenic populations (TP) after spraying with 0.5% Radicale (150 gl"1 PPT). 
N = number of plants tested. ' Hemizygous TP4 plant. 

$ \ <? TP1 TP2 TP3 TP4 

TP1 
TP2 
TP3 
TP4 
TP41 

-
100 (N =47) 

100 (N=21) 
100(N=21) 

-

100 (N= 105) 

100 (N=48) 
100 (N=51) 

-
100 (N=49) 
100 (N = 87) 

100 (N=4) 

-

for the following crosses: TP1 with TP3 and TP4, TP2 with TP1 and TP3 and TP4 with 

TP1 and TP3. Furthermore, a hemizygous TP4 plant was crossed with a homozygous 

plant of each of the three other populations. After testing of the progeny plants, it was 

shown that in all cases these progenies were entirely PPT-tolerant (Table 3.4). This is in 

accordance with the expectation of no segregation for PPT tolerance. Also, when in the 

crosses one hemizygous crossing parent was involved, no PPT-sensitive plants were ob

tained in the progeny.On Southern blot using bar gene fragments as probe, all TP1, 2, 3 

and 4 plants showed a banding pattern specific for each transformation event (Fig. 3.2). 

Combinations of plants from two TPs could be identified, showing the cumulative 

banding pattern of both TP parents. 

Crosses between different varieties 

In the progeny of crosses between homozygous PPT-tolerant variety 'Westar' plants and 

homozygous PPT-tolerant TP1 and TP3 plants of variety 'Drakkar' the number of PPT-

tolerant offspring plants was determined. The number of plants tested for both crosses 

was 68 and 108, respectively and all progeny plants were PPT-tolerant as expected (Table 

3.5). From both progenies, randomly, six plants were selected, which were analysed on a 

Southern blot. Hybridization with the bar probe showed for all progeny plants the two 

expected banding patterns of either parents. So, all bands were present and there was no 

loss of PPT tolerance in the progeny. 
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Table 3.5 Number and percentage of phosphinothricin (PPT)-tolerant plants in the 
progeny of crosses between plants of homozygous PPT-tolerant 'Drakkar' (TPI and TP3) 
and 'Westar' (T5.5) oilseed rape varieties after spraying with 0.5% Radicale (150 gl ' 
PPT). Plants of the three transgenic populations used in the crosses and non-transgenic 
(NT) 'Drakkar' and 'Westar' were sprayed for positive and negative control, respectively. 

Genotype/Cross Number Percentage 
Tolerant 

TP1-101-1 
TP3-25-3 
T5.5 
TP1-101-1 x T5.5 
TP3-25-3xT5.5 
NT 'Drakkar' 
NT 'Westar' 

17 
15 
15 
68 

108 
0 
0 

Sensitive 

0 
0 
0 
0 
0 

25 
16 

100 
100 
100 
100 
100 

0 
0 

Discussion 

PPT tolerance of the transformants was shown to be dominant and monogenic. The 

segregation ratios indicated that the plants of the four transgenic PPT-tolerant oilseed rape 

R̂  populations contained a single T-DNA insertion locus. If two or more (unlinked) T-

DNA loci would be involved, other segregation ratios of tolerant to sensitive plants 

should be expected (Heberle-Bors et al. 1988; Cherdshewasart et al. 1993). 

In selfings and backcrosses involving transgenic PPT-tolerant TP1 and TP2 plants, 

deviating segregation ratios in PPT tolerant:sensitive were observed. In some selfings 

there was partial loss of phenotypic expression of PPT tolerance, which in the S3 

generation depended on the PPT concentration used. A more stringent selection resulted 

in a few sensitive plants possibly due to a weaker phenotypic expression of the transgene 

in some individual offspring plants. The sensitive plants could not be saved after the PPT 

treatment. The reduced phenotypic expression in both the S, and S3 generation might be 

the result of somaclonal variation. In Petunia and tobacco either complete loss of the 

transgene, weak or variable phenotypic expression of the gene or non-Mendelian 

segregation ratios among seedlings have been observed resulting in irregular segregation 

patterns (Heberle-Bors et al. 1988; Deroles & Gardner 1988a). 
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In case of TP2-9-2-2 (Table 3.3), there was a complete loss of PPT tolerance both in 

the progeny after one generation of selfing and in the progeny of the backcross of a TP2-

9-2-2 plant with the wild type B. napus. Southern analysis of selfing and backcross 

progeny plants of TP2-9-2-2 from newly sown seeds showed that there was loss of pheno-

typic expression of PPT tolerance despite the presence of the transgene. Possible 

explanations for the discrepancy between the presence of the transgene and absence of 

phenotypic expression of PPT tolerance might be methylation or co-suppression as 

reported in other studies (Jorgensen 1990; Matzke & Matzke 1991; Kilby et al. 1992; 

Matzke et al. 1993; Ingelbrecht et al. 1994). Other reports did not indicate a correlation 

between (reversible) gene inactivation and methylation, but the discrepancy of the 

presence of the transgene and phenotypic expression was the result of a reduced level of 

transcription of the transgene in the sensitive transformants (Mittelsten Scheid et al. 

1991). Because only selfing of TP2-9-2-2 and not of TPI, TP3 or TP4 resulted in this 

gene inactivation, this could indicate that the integration position of the T-DNA locus is 

involved. Chromosomal position effects of the transferred gene have earlier been 

described for the maize Al gene in Petunia hybrida (Linn et al. 1990). Because the 

transgene is present, instability and subsequent deletion of the inserted T-DNA locus can 

not explain the results obtained. 

Another explanation for the complete gene inactivation leading to a loss of the pheno

typic expression of PPT tolerance is a combination of a position effect of the T-DNA 

locus integration and the occurrence of somaclonal variation. When only somaclonal 

variation is involved, the result will be a reduced phenotypic expression. In our experi

ments in the case where complete gene inactivation was found, the loss of phenotypic 

expression of the transgene was independent from homozygosity or hemizygosity. Further 

studies on the plants that lost phenotypic expression of the PPT tolerance have to clarify 

the underlying mechanisms involved. Determination of the copy number, the presence and 

number of inverted repeats and the transcription level may give additional information. 

Treatment with a demetylating agent can indicate whether the suppression of gene 

expression was due to methylation or not. The possible influence of position effects of the 

T-DNA locus integration and/or somaclonal variation is difficult to study. 

In crosses between independent homozygous PPT-tolerant 'Drakkar' plants and be

tween homozygous PPT-tolerant 'Drakkar' and 'Westar' plants, which have different 

44 



genetic backgrounds, no gene inactivation was observed within the number of progeny 

plants tested. Southern blot analyses of progeny plants of some within- and between-

variety crosses showed that the inserted T-DNA loci of both parents were present. The 

transgenes while both present, did not interact in such a way that altered phenotypic 

segregation ratios were found due to (partial) loss of expression of PPT tolerance, 

indicating that frara-inactivation does not occur often in our plant material. This is in 

contrast to the observation in Petunia hybrida where introduction of additional genes 

could lead to suppression of both the transformed and the corresponding endogenous 

genes (Napoli et al. 1990; van der Krol et al. 1990). 

Meaningful predictions about long-term stability of transgenic DNA seem to be 

difficult and require better understanding of the mechanisms that regulate chromosome 

stability. Molecular cytogenetics might help to elucidate these mechanisms. In our study, 

within- and between-variety crosses did not show altered phenotypic segregation ratios, so 

this will not cause problems during breeding activities. However, in subsequent generati

ons of selfing in some cases (partial) loss of phenotypic expression was observed, 

disturbing reliable transgene expression in plants necessary for a sound economic use, for 

instance during seed multiplication of varieties and in breeding programs. During seed 

multiplication spraying with the herbicide is no longer selective and thus might cause 

problems. The loss of phenotypic expression is not associated with the absence of the 

transgene and therefore, Southern blot analysis is no alternative for testing the occurrence 

of this loss. Thus, during seed multiplication and in breeding programs it should be tested 

whether selected lines stably express PPT tolerance during successive generations or not. 

The observation that the level of transgene expression in transgenic plants varies 

between different transformants makes it necessary to generate a large number of 

independent transformants and to screen them for those plants that have the appropriate 

expression level. This labor intensive procedure can possibly be avoided by inclusion of 

nuclear scaffold or matrix-associated regions (MAR) flanking the transgene. In earlier 

studies, these MARs increased the expression level and reduced the variability in 

transgene expression in tobacco plants (Stief et al. 1989; Breyne et al. 1992; Allen et al. 

1993; Mlynârovâ et al. 1994; 1995). 

Molecular breeding does simplify the introduction of new traits, but to guarantee stable 

expression of such transgenes, breeders have to follow similar time-consuming selection 
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procedures as required for the generation of new lines and for seed multiplication in 

conventional breeding programs. 
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Chapter 4 

The impact on biosafety of the phosphinothricin tolerance 

transgene in inter-specific B. rapa x B. napus hybrids 

and their successive backcrosses 

P.L.J. METZ, E. JACOBSEN1, J.P. NAP, A. PEREIRA and W.J. STIEKEMA 

' Graduate School Experimental Plant Sciences, Department of Plant Breeding, Wageningen Agricultural 

University, Lawickse Allee 166, 6709 DB Wageningen, The Netherlands 

Summary 

There is strong evidence indicating that gene flow from transgenic B. napus into weedy wild 

relatives is inevitable following commercial release. Research should now focus on the transmissi

on, stability and impact of transgene expression after the initial hybridization event. The present 

study investigated the transfer of a phosphinothricin tolerance transgene by inter-specific 

hybridization between B. rapa and two transgenic B. napus lines. The expression of the transgene 

was monitored in the F, hybrids and in subsequent backcross generations. The transgene was 

transmitted relatively easily into the F, hybrids and retained activity. Large differences in the 

transmission frequency of the transgene were noted between offspring of the two transgenic lines 

during backcrossing. The most plausible explanation of these results is that the line showing least 

transmission during backcrossing contains a transgene integrated into a C-genome chromosome. 

Approximately 10% of offspring were retained the tolerant trait in the BC3 and BC4 generations. 

The implications of these findings for the stable introgression of transgenes carried on one of the 

chromosomes of the C-genome from B. napus and into B. rapa are briefly discussed. 

47 



Introduction 

The genus Brassica includes several economically important species, such as B. oleracea, 

B. rapa, B. napus, B. juncea and B. nigra. The genomic relationships of these Brassiceae 

are described in the so-called triangle of U (1935). The A-genome occurs in B. juncea, B. 

napus and B. rapa, which are all grown for oil production. Oilseed rape (B. napus) is 

allotetraploid with the genome constitution AACC (2n=38). The cytogenetic relationships 

were confirmed by nuclear DNA content (Verma & Rees 1974), DNA analysis (Erickson 

et al. 1983) and genome-specific chromosome markers (Hosaka et al. 1990). 

The production of transgenic Brassicas has raised the question of whether transgene 

dispersal into natural populations can be expected or not (Metz et al. 1997). In the 

Netherlands, (semi)spontaneous populations of B. rapa are found in the wild. These might 

be regarded as wild relatives of B. napus. In Denmark and Canada, B. rapa is a common 

weed in cultivated areas, mostly in oilseed rape fields. 

Crosses between B. rapa and B. napus are frequently described as successful (U 1935; 

Palmer 1962; Nwankiti 1971; MacKay 1977; Beversdorf et al. 1980). Spontaneous hy

bridization with B. napus was observed in agricultural fields (Bing et al. 1991; fegensen 

& Andersen 1994; tagensen et al. 1996a). In the Netherlands spontaneous hybridization 

also occasionally occurs in nature (De Vries et al. 1992). In addition, under open pollina

tion conditions small amounts of viable seeds from the hybrid plants were obtained, indi

cating that hybrids are able to survive to the next generations (Bing et al. 1991). Further

more, it has been shown that inter-specific hybrids can backcross as female with B. rapa 

(Mikkelsen et al. 1996a; b), even under field conditions (Jorgensen et al. 1996a). 

Most of the hybrids between B. rapa and B. napus possess 29 chromosomes. At meta-

phase I of meiosis most pollen mother cells have been shown to contain 10 bivalents, pre

sumably between the A-genome chromosomes and 9 univalents, representing the C-

genome chromosomes (U 1935; Beversdorf et al. 1980). During evolution of Brassica 

species, the chromosome structure seems sufficiently conserved for the potential occur

rence of homoeologous pairing between chromosomes of the A and C genomes. Meiosis 

in hybrids of B. napus and B. rapa and in backcross generations, gives the opportunity 

for genomic recombination leading to introgression of (trans)genes (Quiros et al. 1994; 

Jergensen et al. 1996b; Mikkelsen et al. 1996a; b). Introgression of traits by breeding has 
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been reported from B. rapa into B. napus (MacKay 1977; Gowers 1982; Goring et al. 

1992). Also reciprocally, there were reports of introgression of cold tolerance and black-

rot resistance from B. napus into Pak choi and Chinese cabbage (Guo et al. 1990; Heath 

et al. 1994). 

There is strong evidence that gene flow from B. napus and introgression into weedy 

relatives is inevitable (Timmons et al. 1995; 1996; Mikkelsen et al. 1996a; Kerlan et al. 

1993), and so research on transgenic Brassica species should now focus on the impact 

and stability of transgene expression and its fate after inter-specific hybridization (Metz & 

Nap 1997). In our study, transgenic phosphinothricin-tolerant B. napus plants were 

crossed under controlled conditions with the B. rapa representatives Pak choi and Chinese 

cabbage to investigate whether the transgene could be transferred to the inter-specific 

hybrid and whether it remains active. In successive generations of backcrosses with B. 

rapa, the expression and fate of the transgene was monitored. 

Materials and methods 

Plant material 

- Transgenic material 

Two phosphinothricin (PPT)-tolerant oilseed rape (B. napus) transgenic Rj populations 

obtained after selfing of two primary transformants of cv. Drakkar, were kindly provided 

by Dr. P. Rüdeisheim (Plant Genetic Systems, Ghent, Belgium). These populations were 

designated TP2 and TP3, respectively. Both lines were transgenic for a T-DNA insertion 

containing 3'ocs-MT//-neo and pSsuAra-bar-3'g7 conferring kanamycin resistance and 

phosphinothricin - the active ingredient of Basta®/Radicale® - tolerance, respectively. For 

both populations it was not known whether the transgene locus was located on chromoso

mes of the A- or of the C-genome (Rüdelsheim pers. comm.). The two lines were the 

result of independent transformation events. 

PPT tolerance is conferred by the bar gene (De Block et al. 1987; Thompson et al. 

1987). The bar gene encodes an acetyltransferase that inactivates the PPT by acetylation 

of a free NH2-group. PPT inhibits glutamine synthetase resulting in a rapid accumulation 

of ammonia leading to cell death (Tachibana et al. 1986). 
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- Non-transgenic material 

Non-transgenic oilseed rape cv. Drakkar, self-incompatible Pak choi (B. rapa Chinensis 

group [B. chinensis], origin China, accession number BC30.02) and self-compatible 

Chinese cabbage (B. rapa Pekinensis Group [B. pekinensis], origin China, accession 

number BC20.08) were used as crossing parents. 

Crossing experiments 

Twenty individual PPT-tolerant P^ plants were selfed and two were crossed with non-

transgenic B. napus to study the genetics of this trait. Crosses of Pak choi and Chinese 

cabbage were performed with two transgenic, PPT-tolerant B. napus R{ plants, which 

were hemizygous for this trait. All plants that were used as female parent were emascu

lated and the pollinated flowers were bagged for three days prior to pollination to prevent 

uncontrolled cross-pollination. 

The PPT-tolerant inter-specific hybrids were used as male parent and backcrossed with 

Pak choi or Chinese cabbage, producing BQ generations segregating for PPT tolerance. 

With Pak choi as female and PPT-tolerant backcross plants as male parent, another three 

rounds of backcrosses were made resulting in BC2, BC3 and BC4 populations segregating 

for PPT tolerance. A schematic presentation of the crosses is given in Fig. 4.1. Crosses 

were conducted in a pollen cage, placed in the greenhouse, with underpressure to avoid 

transgenic pollen spread by air flow and a double-door entrance to prevent insects ente

ring the cage, according to regulations ordered by the Dutch Committee of Genetic 

Modification (COGEM). 

Techniques 

- Phosphinothricin tolerance test 

Plants, at the two- to four-leaf stage were sprayed from approximately 20 cm distance, 

using a normal household plant spray, with 0.5% Radicale® (150 gl"1 PPT) as uniformly 

as possible. Alternatively, leaf discs of hybrids were tested for the activity of the PPT 

tolerance gene non-destructively on MS-10 containing 7.5 mgl"1 Radicale® and 50 mgl"1 

chlorophenol red (Metz et al. 1995). This test made it possible to screen the PPT-

sensitive plants for presence or absence of the transgene. 
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B. rapa, ARA\ hh x B. napus, ANANCC, H. 
Pak choi 
Chinese cabbage 1 PPT tolerance selection 

B. rapa, ARAR, hh x F,, ARANC, Hh 

I PPT tolerance selection 

B. rapa, ARAR, hh x BC„ ARAN or ARRA + (C), Hh 

I PPT tolerance selection 

B. rapa, ARAR, hh x BC2, A
RAN or ARRA + (C), Hh 

I PPT tolerance selection 

B. rapa, ARAR, hh x BC3; A
RAN or ARRA + (C), Hh 

i PPT tolerance selection 

BC4, A
RAN or ARRA + (C), Hh 

Figure 4.1 Crossing scheme. Phosphinothricin (PPT)-tolerant inter-specific hybrid plants 
were backcrossed to B. rapa followed by three more backcrosses of PPT-tolerant plants 
on B. rapa. AR and AN represent the A-genome of B. rapa and B. napus, respectively. 
(C) indicates that only part of the C-genome may be present containing the PPT toleran
ce. H. indicating the presence of PPT tolerance in either homozygous (HH) or hemizy-
gous (HO) configuration; hh indicates the absence of the bar gene implying herbicide 
sensitivity. 

- Pollen stainability 

Pollen stainability was assessed by staining freshly harvested pollen with Alexander stain 

(Alexander 1969). Ten samples were collected and per sample 100 pollen grains were 

counted. Stainability was expressed as the number of red pollen grains per number of 

pollen grains that was counted. 

- Flow cytometry 

Preparation of the nuclear samples and flow cytometry were performed as described by 

Bino et al. (1993). The fluorescence signals are presented as frequency distribution 

histograms, the DNA amount being expressed as relative C values. The 1C value repre-
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sents the DNA amount of the unreplicated haploid chromosome complement, which is for 

oilseed rape AC. 

- Southern analysis 

Southern analysis was conducted according to the method described by Metz et al. 

(1995). In brief, about 5 ßg DNA, extracted from young leaf tissue (Dellaporta et al. 

1983), was digested using Hindlll and run on a 0.8% agarose gel overnight. DNA was 

transferred onto a Hybond N+ filter (Amersham) by vacuum blotting (Pharmacia Bio

tech). Probes labelled with 32P were hybridized onto the filter, washed with 2xSSC (with 

1% SDS) and exposed to Kodak X OMAT-AR or Fuji RX films. The hybrid nature of the 

putative hybrid plants was analysed using AphA2 (Koncz & Schell 1986) or bar (Wilmink 

1996) gene fragments as probes. 

- Statistical analysis 

Phenotypic segregation ratios were tested for goodness-of-fit by x2 tests. 

Results 

The original transgenic Rl PPT-tolerant B. napus TP2 and TP3 plants were sprayed with 

0.5% Radicale. Selfings of individual tolerant Ri plants resulted in R2 populations and 

crosses between individual R[ plants and non-transgenic B. napus were made in order to 

study the genetics of this transgenic trait. Inter-specific hybrid plants of either Pak choi or 

Chinese cabbage and PPT-tolerant B. napus and successive backcross populations were 

analysed for the presence and expression of the bar gene conferring PPT tolerance. 

Furthermore, plants from different generations were analysed using flow cytometry. 

Fate of herbicide tolerance 

- Intra-specific crosses 

None of the 54 non-transgenic B. napus control plants survived the PPT spray. Forty-six 

and 29 randomly chosen plants of the primary R^ transgenic B. napus TP2 (92.2) and 

TP3 (92.3), respectively, were tested for PPT tolerance by spraying with Radicale. These 

populations displayed a segregation ratio PPT- tolerant: sensitive plants not deviating 

significantly from a 3:1 ratio (Table 4.1). Selfed progenies of selected PPT-tolerant Rt 

plants yielded, as expected, a 1:0 or 3:1 segregation (data not shown). This indicated that 
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Table 4.1 Number and percentage of the observed and expected phosphinothricin (PPT)-
tolerant plants in transgenic R, populations (TP) and in intra-specific backcrosses after 
spraying with 0.5% Radicale (150 gl"1 PPT). T and S are PPT-tolerant and sensitive 
plants respectively. WT means wild type B. napus. 

Population (number) 
/Cross 

Observed 
Number Percentage 

Expected probability 
V 2 
X 1:1 X 2 3 , 

WT 
TP3 (92.3) 
TP2 (92.2) 
WT x 92.3.20 
WTx 92.2.12 

0 
22 
35 
23 
15 

54 
7 
11 
21 
18 

0 
76 
76 
52 
46 

0.75-0.90 
0.60-0.75 

0.90-0.95 
0.80-0.90 

the PPT-tolerant Ri plants were either homozygous or hemizygous for a single T-DNA 

insertion expressing PPT tolerance. 

A cross between a non-transgenic 'Drakkar' B. napus plant with a hemizygous PPT-

tolerant TP2 Ri plant (92.2.12), yielded 33 plants of which 15 were PPT-tolerant. The 

same cross using a hemizygous PPT-tolerant TP3 R, plant (92.3.20) gave 23 tolerant 

plants of 44 plants tested. This is again in agreement with a monogenic (1:1) segregation 

ratio (Table 4.1). 

- Inter-specific hybrids 

Controlled inter-specific crosses and backcrosses were performed with the transgenic allo-

tetraploid species B. napus. The PPT-tolerant inter-specific hybrid or backcross plants 

were male and Pak choi or Chinese cabbage plants were female parents. In gene dispersal 

from the (transgenic) crop to its wild relative, the initial hybridization event is most 

probably with B. rapa as the female parent. Crossing of Pak choi and Chinese cabbage 

with PPT-tolerant B. napus R{ plants from TP3 (92.3.20) and Pak choi with TP2 

(92.2.12) respectively, resulted in viable, fertile hybrids, denoted Pak choi*3, Chinese 

cabbage*3 and Pak choi*2. They were morphologically intermediate exhibiting traits from 

both parents. The hybrids had less trichomes on their leaves than B. rapa. The glaucous 

leaves resembled B. napus more than B. rapa. The inflorescence of the hybrid mirrored 
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the B. napus parent and had open flowers rising above the closed flower buds. The pollen 

stainability of the inter-specific hybrids was about 60%, while that of the parents was 

100%. Backcrosses of the male-fertile hybrids with Pak choi or Chinese cabbage as 

female parent yielded over 600 seeds. However, selfing of Pak choi*2 and Chinese 

cabbage*3 hybrids did not yield any seed-bearing siliques. Selfings of Pak choi*3 hybrids 

were not performed. 

Table 4.2 gives the number and percentage of PPT-tolerant hybrid plants in Pak 

choi*2 and Chinese cabbage*3. As expected from the selfings and test cross results, both 

inter-specific F! hybrid progenies segregated 1:1 for PPT tolerance:sensitivity. All PPT-

tolerant F, plants which were tested by Southern blotting with an AphA2 probe, displayed 

the presence of the transgene (Fig. 4.2). All PPT-tolerant Pak choi*2 hybrids showed the 

two bands characteristic for tolerant plants from TP2. Pak choi *3 and Chinese cabbage*3 

hybrids showed the single band of tolerant plants from TP3. The results of the DNA 

analysis were in agreement with the chlorophenol red test. This indicated that the non

destructive bar enzyme activity determination was reliable. All 24 leaf discs of the three 

PPT-tolerant Fl plants turned the colour of the medium into orange/yellow showing the 

presence of the active bar gene while the leaf discs of the PPT-sensitive F[ plants and the 

non-transgenic B. napus coloured the medium purple. 

- Backcrosses for indications of the presence of transgenes on chromosomes of the A- or 

C-genome 

PPT tolerance could be transferred to the next generation by backcrossing PPT-tolerant 

Chinese cabbage*3 hybrids with Chinese cabbage or the PPT-tolerant Pak choi*3 hybrid 

with Pak choi (Table 4.2). In the first backcross the segregation ratio observed did not 

deviate significantly from a 1:1 ratio. This was expected when the PPT tolerance gene 

was present on one of the chromosomes of the A-genome of plants from TP3. Pollen 

stainability of Chinese cabbage*3 hybrid plants was about 20%. 

By backcrossing PPT-tolerant Pak choi*2 hybrids with Pak choi, PPT tolerance could 

also be transferred to the next generation. However, only 26% of the progeny expressed 

PPT tolerance instead of 50%. The PPT tolerance:sensitivity segregation clearly deviated 

from 1:1, having a deficiency in the class of PPT-tolerant plants. This observation is 

different from the expected segregation if this trait was located on one of the chromo-
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Table 4.2 Number and percentage of the observed and expected phosphinothricin (PPT) 
tolerant plants in inter-specific F,'s of transgenic B. napus with B. rapa (Pak choi, Pc or 
Chinese cabbage, Cc) and hemizygous PPT-tolerant B. napus plants from transgenic R̂  
populations TP2 and TP3 and backcrosses (BC„) onto B. rapa, after spraying with 0.5% 
Radicale (150 gl"1 PPT). T and S are PPT-tolerant and -sensitive plants, respectively. 

Cross 

Chinese cabbage*TP3 
Cc x 92.3.20 (Fj) 

CcxF , . l (BQ.l) 
Ce x F!.2 (BQ.2) 
Ce x F!.3 (BC,.3) 
Ce x Fi.4 (BC!.4) 
BQ total 

Pak choi*TP3 
Pc x 92.3.20 (F,) 
P cxF i . l (BC,) 

Pak choi*TP2 
Pcx 92.2.12 (F,) 

P cxF , . l (BC,.l) 
Pcx F,.2 (BC,.2) 
Pcx F,.3 (BC,.3) 
Pc x F!.4 (BQ.4) 
BQ total 

Observed 
Number 

T S 

6 6 

4 5 
10 11 
5 5 
14 17 
33 38 

1 0 
4 7 

7 6 

9 30 
7 23 
15 40 
_8 20 
39 113 

Percentage 

T 

50 

46 

100 
36 

54 

26 

Expected probability 
X2i:1 

1.00 

0.50-0.60 

0.30-0.40 

0.70-0.80 

< 0.0005 

Pcx BC!. 1.1 (BC2.1) 
PcxBC,.3.1 (BC2.2) 
Pc x BQ.3.2 (BC2.3) 
Pc x BQ.4.2 (BC2.4) 
BC2 total 6 111 5 < 0.0005 

PcxBC2.1.2(BC3.l) 
PcxBC2.3.1 (BC3.2) 
Pc x BC2.4.2 (BC3.3) 
BC3 total 33 267 11 < 0.0005 

PcxBC3.2.1 (BC4.1) 1 10 9 0.005-0.01 
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Figure 4.2 Southern blot, using an AphA2 probe, of non-transgenic Brassica napus, Pak 
choi, Chinese cabbage, plants from two independent transgenic B. napus populations (TP) 
and several F / s of Pak choi or Chinese cabbage with transgenic B. napus. 
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Figure 4.3 Southern blot, using a bar probe, of 15 randomly chosen Pak choi x (F,, Pak 
choi x transgenic Brassica napus) BC, plants indicated as Pc x (Pc x TP2). 

56 



somes of the A-genome. On a Southern blot, using a bar probe, three PPT-tolerant Pak 

choi BQ plants out of 15 plants tested showed the band of TP2, which was not found for 

the 12 sensitive plants (Fig. 4.3). The pollen stainability of the BC, plants was about 

40%. 

In the successive BC2 generation, using a PPT-tolerant BC! plant as male, only 5% of 

the plants was PPT-tolerant (Table 4.2). The male and female (self)fertility of the BC2 

plants was completely restored. The pollen stainability was found to be 100% and after 

selfing one of the tolerant BC2 plants, viable seeds were obtained. 

The following BC3 generation, with a PPT-tolerant BC2 plant used as male parent, 

gave only 11% PPT-tolerant plants, while for the BC4, testing a limited number of plants, 

only one out of 11 plants was found to be PPT-tolerant (Table 4.2). A random sample of 

ten PPT-sensitive BC3 plants was screened for the presence or absence of the PPT-

tolerance gene on Southern blot. The PPT gene was absent in all ten PPT-sensitive plants. 

As expected, the BC3 and BC4 plants that survived a PPT spray resembled the Pak choi 

parent in morphology. 

The number of PPT-tolerant plants transmitted to the BC, population produced with 

TP2 differed from those made with TP3. The most plausible explanation for these results 

is that in TP2 the PPT tolerance gene is present on one of the chromosomes of the C-

genome. This explanation is supported by the low transmission percentages found in the 

BC2, BC3 and BC4 generations. 

Flow cytometric analyses 

Flow cytometric analyses of a mixed sample with Pak choi, the Pak choi*2 hybrid and B. 

napus nuclei, showed that the peak of the hybrid was clearly between the peaks of both 

parents (Fig. 4.4A). This confirmed that the DNA content of the Pak choi*2 hybrid was 

intermediate between the DNA contents of Pak choi and B. napus, which are 1.05 pg/2C 

peak and 2.45 pg/2C, respectively (Arumuganathan & Earle 1991). This indicated that the 

inter-specific hybrid had the expected triploid genomic constitution (see also Fig. 4.1). 

Compared to this F, hybrid, the DNA content of the BC! plant showed a shift towards the 

Pak choi peak (Fig. 4.4B). The peaks of the tested BC2 and BC3 plants coincided with 

that of the recurrent Pak choi parent (Fig. 4.4C and D). It was not easy to define the 

presence of only 1 or 2 additional (parts of) C-chromosomes using flow cytometry. 
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Figure 4.4 A-D Relative DNA content. Histograms of flow cytometric analyses of nuclei 
from leaves of a mixed sample of Pak choi, the Pak choi-Brassica napus hybrid and 
transgenic B. napus (A) and the subsequent BC^ (B), BC2 (C) and BC3 (D) on Pak choi. 
Nuclei from leaves show peaks at the 2C and 4C level. Totals refer to the number of 
nuclei measured. 
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Discussion 

Crosses between transgenic, PPT-tolerant and non-transgenic B. napus and selfed pro

genies of PPT-tolerant B. napus exhibited the normal Mendelian segregation. In both 

populations (TP2 and TP3) PPT tolerance was inherited as a stable, single dominant trait. 

From transmission genetics and male and female fertility of the transgenic B. napus, 

introduction of the PPT tolerance gene did not indicate a fitness disadvantage due to the 

transformation event. Controlled crosses between Pak choi and Chinese cabbage with 

PPT-tolerant B. napus showed that the transgene could relatively easily be transmitted to 

the inter-specific hybrids and that it was still active in the hybrid. This inter-specific 

transfer occurred in an expected ratio and was confirmed by several analyses. The flow 

cytometric analysis indicated that the genomic constitution of the hybrid was probably 

triploid. 

The formation of the B. rapa x B. napus hybrid in controlled crossing experiments has 

been reported previously by several researchers (Palmer 1962; Nwankiti 1971; MacKay 

1977; Mikkelsen et al. 1996a). In our study only controlled inter-specific crosses were 

performed with the allotetraploid species as male parent. In subsequent backcrosses PPT-

tolerant (backcrossed) hybrid plants were used as male parent. The initial hybridization 

event is most probably with B. rapa as female parent. In subsequent generations, 

however, the hybrid will be more fertile as female rather than as male. It has been found 

that B. rapa x B. napus hybrids could be good female parents (Mikkelsen et al. 1996a). 

As expected, in agricultural fields and field trials spontaneous hybridization between both 

species have also been observed (Bing et al. 1991; targensen & Andersen 1994; Jargen-

sen et al. 1996a; Mikkelsen et al. 1996a). 

In the literature, hybrids regularly were reported to have good pollen production, but 

they showed reduced fertility (Beversdorf et al. 1980). Values similar to the pollen staina-

bility of about 60% found here, were observed in other studies (MacKay 1977; McNaug-

hton 1973). Jorgensen & Andersen (1994) reported hybrid pollen stainability that ranged 

from 16-86%, while in a later study (Jorgensen et al. 1996a) stainability was reduced to 

35%. In our hands, pollen production and fertility of the hybrids were sufficient to obtain 

viable BCt seeds, but not to obtain selfed progenies. 

The 'Pak choi and Chinese cabbage BQ' progeny using TP3 segregated 1:1 for PPT-

59 



tolerance, as expected. In this case the PPT tolerance gene was probably inserted in the 

A-genome. Previous studies have reported backcross plants with 2n=20 in controlled 

crosses between (B. napus x B. rapa) and B. rapa (Quiros et al. 1987; McGrath & 

Quiros 1990), and also (spontaneous) backcrossing under field conditions, in the first 

backcross generation producing B. rapa-like plants with 20 chromosomes and a high 

pollen fertility was found (Jergensen et al. 1996a; Mikkelsen et al. 1996b). These data 

support the hypothesis that a transgene located on the A-genome of B. napus can be 

transferred to B. rapa within two backcross generations. 

The 'Pak choi BQ' progeny using TP2 yielded only 26% PPT-tolerant plants, while 

50% was expected as a result of the earlier observed monogenic inheritance. The diffe

rence in transmission of PPT-tolerant plants in the BQ generations made with TP3 and 

TP2 must be due to the specific integration position of the transgene. The most plausible 

explanation for this deficiency in PPT-tolerant plants is the presence of the transgene on 

one of the chromosomes of the C-genome in TP2. In the backcrosses of the inter-specific 

hybrid to Pak choi the C-chromosomes have no homologous partners during meiosis. Due 

to irregular transmission of the single C-chromosomes to the gametes, a (trans)gene loca

ted on the C-genome of B. napus is expected to be transmitted at a low frequency in the 

gametes and, to be lost after one or a few generations. In studies with RFLP and isozyme 

markers, transmission of the C- chromosomes from inter-specific hybrids to BQ and F2 

populations was often found to be lower than 50% and varied between individual C-chro

mosomes (McGrath & Quiros 1990; Chen et al. 1990). Deviations from expected co-

segregation of markers belonging to the same linkage group indicated the occurrence of 

the possibility of inter-genomic recombination or breakage of chromosomes (Mikkelsen et 

al. 1996b). Transmission of three out of 33 B. napws-specific RAPD markers from the 

inter-specific hybrid to the backcross progeny was significantly different from 50%. 

Also in successive backcross generations with Pak choi, under selective conditions, 

much lower percentages of PPT-tolerant plants were found than normally expected for 

monogenic transmission. These results confirm that the transgene must be present on one 

of the chromosomes of the C-genome. Our results indicate that the transmission of a C-

genome linked transgene is stabilized at about 10%. The underlying mechanisms 

explaining these results might be inter-genomic recombination between the A- and C 

genome, chromosome substitutions or disomic chromosome additions (Jacobsen et al. 
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1994; Jergensen et al. 1996a). In Brassica species, both intra- and inter-genomic 

recombination have been described (Armstrong & Keller 1982; Attia et al. 1987) and 

inter-genomic recombination between A- and C-chromosomes have been reported (Quiros 

et al. 1987; Chen et al. 1990). Partial homology between the A, B and C-genomes has 

been revealed by studies of inter-specific hybrids and marker analysis (U 1935; Hosaka et 

al. 1990; Kerlan et al. 1993; Frello et al. 1995) which incidently may trigger cross-overs 

between the chromosomes of these genomes. Additional studies using chromosome-

specific (RAPD) markers, which are available for both the A- and C-genome (Quiros et 

al. 1991; 1994; Jorgensen et al. 1996b; Mikkelsen et al. 1996b) and molecular cyto

genetics using genomic in situ hybridization (GISH) might help to monitor the presence of 

the C-chromosome carrying the PPT transgene and possibly demonstrate interchanges 

between the A- and C-genome. 

By studying the possible gene flow from transgenic B. napus to its weedy relative B. 

rapa, it was shown that inter-specific hybridization and backcrossing of these hybrids with 

B. rapa occurred spontaneously under field conditions (J0rgensen & Andersen 1994; 

J0rgensen et al. 1996a; Mikkelsen et al. 1996a). Also the results we obtained suggest that 

gene flow from (transgenic) B. napus to B. rapa is inevitable. However, the data of our 

study support the hypothesis of Mikkelsen et al. (1996b) of possible 'safe' integration 

sites, chromosome regions with a low probability of transfer to backcross generations 

with B. rapa via homo(eo)logous recombination. Specifically, the presence on either 

chromosomes of the A-genome or C-genome determined the transmission frequency of the 

PPT tolerance gene in subsequent backcross generations. Concerning the aspect of gene 

dispersal in the specific case of transgenic B. napus to B. rapa we suggest that the 

transgene is selected for its presence on chromosomes of the C-genome. This study 

showed that this might limit the transfer to B. rapa. Integration of the transgene on 

chromosomes of the C-genome would also reduce the probability of gene transfer to B. 

juncea. It might, however, increase the chances of exchange to some other related species 

containing (parts of) the C-genome, such as B. oleracea and B. carinata. 
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Chapter 5 

Hybridization of radish (Raphanus sativus L.) and 

(phosphinothricin-tolerant) oilseed rape (Brassica napus L.) 

through a flower-culture method 

PETER L.J. METZ, JAN-PETER NAP and WILLEM J. STIEKEMA 

Summary 

Hybridization between radish and oilseed rape has been cumbersome, requiring elaborate embryo 

rescue techniques. With a modified flower culture method, we have achieved successful hybridization 

of radish with non-transgenic and transgenic phosphinothricin-tolerant oilseed rape without the labor

ious and technically demanding in vitro ovule or embryo rescue techniques. 

The hybrid nature of the inter-generic hybrids was demonstrated using morphological traits, and DNA 

analyses. Transgenic inter-generic hybrids contain the bar gene and, therefore, survived a treatment 

with phosphinothricin. The described method will facilitate the generation of Raphanobrassica hybrids 

useful for biosafety studies of the potential for transgenes to spread in weedy Cruciferae as well as 

for breeding programs aimed at introducing useful radish genes, e.g. nematode resistance genes, into 

oilseed rape. 
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Introduction 

Within the tribe of Brassiceae natural hybridization has resulted in several amphidiploid or 

allotetraploid species. For example, B. campestris (syn. B. rapa), turnip hybridized with B. 

oleracea, cabbage resulting in oilseed rape (Brassica napus L.). The interrelationships 

between different Brassicaceae was shown by U (1935) and Prakash & Hinata (1980). More 

recently, Demeke et al. (1992) concluded from comparisons of Brassica, Raphanus and 

Sinapis species that Random Amplified Polymorphic DNA (RAPD) markers were useful for 

taxonomie studies. RAPD bands revealed the classical 'U triangle' relationship between 

diploid and amphidiploid Brassica species. The results of Thormann et al. (1994), comparing 

Restriction Fragment Length Polymorphism (RFLP) and RAPD markers to estimate genetic 

relationships, indicate that RAPD markers were similar to RFLP markers for estimating 

intraspecific genetic relationships, while estimating interspecific genetic relationships RAPD 

markers may be less reliable than RFLP markers. 

Useful genes from other members of the Cruciferae family are introduced into Brassica 

to transfer certain characteristics such as disease resistances. Chèvre et al. (1991) attempted 

to introduce Alternaria resistance from white mustard (Sinapis alba L.) into oilseed rape, and 

Hagimori et al. (1992) transferred resistance to clubroot disease from Japanese radish into 

cauliflower (B. oleracea) through somatic hybridization. To obtain resistance against the 

white beet cyst nematode (BCN, Heterodera schachtii Schmidt 1871) in oilseed rape, both 

radish (Raphanus sativus L.) and white mustard were used. For both, sexual (Dolstra 1982; 

Thierfelder et al. 1992; Lelivelt et al. 1993a) and somatic (Lelivelt & Krens 1992; Lelivelt 

et al. 1993b; Rosén & Olin-Fatih 1993) hybridization was performed with oilseed rape. 

Lelivelt (1993) showed that BCN resistance is expressed at a high level in the few hybrid 

plants she obtained. 

Turesson & Nordenskiöld (1943) were successful in crossing tetraploid radish with diploid 

oilseed rape. With oilseed rape as female parent, six hybrids were obtained, while the 

reciprocal cross yielded three hybrids. Also, McNaughton & Ross (1978) obtained a few 

hybrids from a large number of pollinations. In contrast, Chopinet (1944) only obtained 

hybrids with oilseed rape when a colchicine-doubled 4x radish was used as female parent. 

Successful hybridization between radish and oilseed rape has also been reported after a bridge 

cross of B. rapa with Raphanobrassica (Clauss 1978) or with in ovulo embryo rescue tech-
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niques (Paulmann & Röbbelen 1988; Thierfelder et al. 1992). 

Oilseed rape has whole genomes in common with four of the Brassica species belonging 

to the Brassica triangle. Therefore, oilseed rape might hybridize with most of them. This 

may imply that when transgenic varieties of oilseed rape are released in the field (trans)genes 

may move to related species and become established in wild populations. The opportunities 

of such a gene transfer from transgenic oilseed rape to related species were recently reviewed 

(Scheffler & Dale 1994). A relative ranking of species by their ability to form F2 and 

backcross progeny when crossed to oilseed rape indicated that both progenies were reported 

for turnip and neither of them for radish. 

In order to study the gene transfer between members of Brassica, we attempted crosses 

between radish and (transgenic phosphinothricin-tolerant) oilseed rape through a flower-

culture method which simulates natural systems. Lardon et al. (1993) developed a flower-

culture method to study pollination, fertilization and early seed development in oilseed rape. 

Our study shows that, providing normal crosses do not yield viable seeds, such flower-culture 

methods can be used as a simple way to obtain hybrids and circumvent the need for in vitro 

embryo rescue techniques. 

Materials and Methods 

- Plant material 

The plants used in this study were (1) oilseed rape (B. napus L.) cv. Drakkar, (2) transgenic 

oilseed rape cv. Drakkar tolerant for the herbicide phosphinothricin (PPT, sold as Basta® or 

Radicale®) and (3) radish (R. sativus L.) cv. French Breakfast. PPT tolerance is due to the 

presence of the bar gene (De Block et al. 1987; Thompson et al. 1987). The bar gene, which 

originates from Streptomyces hygroscopicus, was isolated and characterized by Murakami et 

al. (1986). The bar gene encodes an PPT-acetyltransferase (PAT) that inactivates PPT by 

acetylation of a free NH2-group. PPT inhibits glutamine synthetase, resulting in a rapid 

accumulation of ammonia and leading to cell death (Tachibana et al. 1986). 

- Hand pollination and flower culture 

Closed buds of radish were emasculated and hand-pollinated with pollen of oilseed rape. In 

the flower culture method (Lardon et al. 1993) these pollinated flowers were cut off, and 

their flower petioles were surface-sterilized by immersion in a 2% sodium hypochlorite 
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Figure 5.1 A-B Flower culture method of oilseed rape and radish flowers (A) and the 
siliques of the radish x oilseed rape hybrids, formed 21 days after pollination (B). 
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solution for two minutes followed by rinsing with sterile water twice for five minutes. The 

flower petioles were put in the holes of the cover of 6-well plates (Fig. 5.1 A-B). The wells 

contained 9 ml of liquid Murashige & Skoog medium (Murashige & Skoog 1962) with 10 

or 30 g/1 sucrose (MS-10 and MS-30 resp.). Seeds formed were put on MS-10 medium to 

speed up growth of the hybrids. 

- Flow cytometry 

Preparation of the nuclear samples and flow cytometry were performed as described by Bino 

et al. (1993). The fluorescence signals are presented as frequency distribution histograms, 

the DNA amount being expressed as relative C values. The 1C value represents the DNA 

amount of the unreplicated haploid chromosome complement. 

- DNA analysis 

From approx. 1 g of young leaf tissue DNA was extracted as described by Dellaporta et al. 

(1983). Aliquots of 5 tug DNA were digested overnight at 37°C with 50 u//*l Hindlll, EcoRI, 

BamHI and Bglll with addition of ImM spermidine. After a sodium-acetate/isopropanol DNA 

precipitation, the samples were run overnight on a 0.7% agarose gel at 4°C (28V, 30mA). 

After electrophoresis, the gel was coloured in an ethidiumbromide (EfBr) containing buffer, 

put in 0.25 M HCl for 10 minutes, soaked twice in 0.4 M NaOH and vacuum-blotted with 

a 2016 VacuGene (Pharmacia) on Hybond-N+ (Amersham). The DNA was probed with the 

5' end of the Male Sterility 2 gene (MS2) of Arabidopsis thaliana (Aarts et al. 1993), a 

transposon-tagged cDNA of A. thaliana (Aarts, in preparation) and a pea ribosomal DNA 

(r-DNA) probe (Nap, unpublished), which were radioactively labelled according to the USB 

random primed labelling kit or the Life Technologies RadPrime labelling system. 

Hybridization took place at 65 °C overnight. The excess of radioactive label was removed by 

washing 5 minutes with 2x SSC and 30 minutes with 2xSSC 1 %SDS at 65 °C. If the number 

of counts was still too high a similar 30 minutes wash step was performed. Hybridizing 

bands were visualized by autoradiography using Kodak X OMAT-AR or Fuji RX films. The 

hybridity of the putative hybrid plant was analysed by Southern analysis using the radio-

actively labelled bar-gene (Murakami et al. 1986). 

- Pollen viability 

Pollen viability was assessed by staining freshly harvested pollen with 0.5 mg/ml fluoresceïne 

diacetate (FDA) in a 9% sucrose solution. Pollen viability was determined as the number of 

yellow-green fluorescent pollen per about 100 pollen grains. 
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- PPT tolerance tests 

Rooted cuttings of putative PPT-tolerant hybrids with three or four leaves were sprayed with 

0.5% Radicale® (150 gl"1) to test PPT tolerance. Furthermore, in order to test non-

destructively, leaf discs of putative hybrids, expected to contain the PPT tolerance gene, were 

screened on MS-10 containing 7.5 mg/l Radicale® and 50 mg/1 chlorophenol red (CPR) 

according to a method developed by Kramer et al. (1993). CPR is a pH indicator which is 

red at pH 6, purple at higher pH and yellow/orange at lower pH. PPT-tolerant leaf discs turn 

the red medium into yellow/orange due to the acetylation of the free NH2-group of PPT, 

while control leaf discs colour the medium purple as a result of the accumulation of 

ammonia. 

Results 

In total, 447 hand pollinations between radish and oilseed rape resulted in 50 siliques, but 

no viable seeds were obtained due to seed abortion (Table 5.1). With the flower culture 

method, the percentage of seeds formed per pollinated flower was about 1% for both 

wildtype and transgenic PPT-tolerant oilseed rape. Both types did not differ in siliques 

production per pollinated flower and the seed yield per siliques obtained in the flower culture 

method (Table 5.1). Hybrid plants were obtained for both wildtype and transgenic oilseed 

rape, although the yield of hybrid plants per pollinated flower was low. 

Table 5.1 Number of pollinated flowers, siliques, seeds, and hybrid plants from the cross 
of radish with wildtype or transgenic, phosphinothricin-tolerant oilseed rape (osr) either by 
hand pollination or flower culture. 

Method # pollinated # siliques # seeds # hybrid 
flowers plants 

Radish x wildtype osr 
Hand pollination 111 31 
Flower culture 15 7 1 1 

Radish x transgenic osr 
Hand pollination 336 19 
Flower culture 215 114 13 2 
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Figure 5.2 Vigour of the hybrid radish-oilseed rape plant (middle) and its parents radish 
(left) and oilseed rape (right) 

Non-transgenic inter-generic hybrid 

The radish-oilseed rape hybrid showed very strong vigour (Fig. 5.2) and exhibited traits from 

both parents (Table 5.2). It had the blue-green colour, that is characteristic for the wax layer 

of oilseed rape. The leaves of the hybrid lacked the broadened, undeeply cordate base half-

clasping the stem, characteristic for radish. On the other hand, they have, like radish, lyrate-

pinnatifid leaves with some pairs of smaller distant laterals and a large rounded terminal 

lobe. The hybrid contained bristles, as does radish, but less many and not on the stem, but 

on the leaves only. In contrast to radish which showed anthocyanin coloration in the tuber, 

stem and petioles, the hybrid was purple only at the base of the petioles. 

The flower colour of the hybrid was the same as that of radish, although the purple veins 

typical for the radish flowers were absent from the hybrid flowers. The inflorescences of the 

hybrid and both its parents were similar. The flowers of the hybrid developed normally with 

four sepals, four petals and six stamens. No flower abortion was observed. The amount of 

pollen formed per flower was about half that produced by the flowers of the parent plants, 

and FDA staining showed about 1% to be viable. Selfing of the hybrid and reciprocal back-

crosses were not successful. 
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Table 5.2 Morphological characteristics of radish (?), oilseed rape (c?) and the radish-oilseed 
rape hybrid. 

Trait 

Flower colour 
Tuber formation 
Wax layer 
Anthocyanins 
Bristly 

Radish 

white 
yes 
no 
yes 
yes 

Hybrid 

white 
no 
yes 
yes 
yes 

Oilseed rape 

yellow 
no 
yes 
no 
no 

Flow cytometric analyses for radish, the hybrid and oilseed rape, respectively are shown 

in Fig. 5.3. A mixed sample showed that the peak of the hybrid was clearly between the 

peaks of both parents (Fig. 5.3D). This confirmed that the DNA content of the hybrid is 

intermediate between the DNA contents of radish and oilseed rape, which are 1.09 pg/2C 

peak and 2.34 to 2.56 pg/2C, respectively (Arumuganathan & Earle 1991). 

Using the pea r-DNA as probe, it was found that the putative hybrid contained bands of 

both radish and oilseed rape (Fig. 5.4A). Also by Southern analyses with the MS2 and a 

transposon-tagged CDNA of Arabidopsis thaliana as a probe, the hybrid nature was 

demonstrated on the basis of similarities in band pattern with both parents (Fig. 5.4 B-D). 

Transgenic inter-generic hybrids 

In crosses with PPT-tolerant oilseed rape as male parent, two putative hybrids could easily 

be distinguished by spraying the progeny plants with 0.5 % Radicale® and by the non-destruc

tive pH indicator test. Both progeny plants survived a treatment with PPT. Fig. 5.5 shows 

the result of the pH indicator test for one of the PPT-tolerant hybrids. Their hybrid nature 

was also confirmed by hybridization of a Southern blot with a ear-probe. The specific band, 

indicating the presence of this gene from the male parent, was detected in these plants (Fig. 

5.6). 

The morphology of the PPT-tolerant hybrids was similar to that of the non-transgenic 

hybrids, exhibiting traits from both parents. After FDA staining, about 3% of the pollen of 

tolerant hybrids was shown to be vital which is not significantly different from the pollen 

viability of the non-transgenic hybrid. Also, these PPT-tolerant hybrids could not be selfed, 

and backcrosses on radish yielded only two very small seeds which did not germinate. 
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Figure 5.3 A-D Histograms of flow cytometric analysis of nuclei from leaves of radish (A), 
the radish-oilseed rape hybrid (B) and oilseed rape (C). A mixed sample of leaf material 
gives the peaks of A, B and C in one histogram (D). Nuclei from leaves show peaks at the 
2C and 4C DNA level. Totals refer to the number of nuclei measured 
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Figure 5.4 A-D Southern blot hybridizations of DNA of radish, the radish-oilseed rape 
hybrid and oilseed rape, digested with Hindlll (A, D), BamHI (B) and BglII (C) and 
hybridized with pea r-DNA (A), Arabidopsis thaliana MS2 (B, C) and Arabidopsis thaliana 
transposon-tagged CDNA (D) probes. 

R. sativus 
Rs x Bn 2-6 
B. napus 2-6 
R. sativus 
RsxBn 2-1-1 
B. napus 2-1-1 

Figure 5.6 Southern blot hybridizations of DNA of two hybrids of radish and PPT-tolerant 
oilseed rape (2-6 and 2-1-1) and their parents digested with Hindlll and hybridized with the 
bar probe. 
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Figure 5.5 Chlorophenol red pH-indicator test of the hybrid of radish and PPT-tolerant 
oilseed rape (Rs x 2-6) and the wild type oilseed rape (control). 

Discussion 

The flower culture method in which the flowers were cut from the plant after pollination, 

resulted in a total of three hybrids of radish and oilseed rape out of 230 pollinated flowers 

(1.5%). When the pollinated flowers were left on the plant, seed abortion occurred probably 

due to the malfunctioning of the endosperm (Kato & Tokumasu 1976). Becker (1951), 

Tokumasu (1965), Takeshita et al. (1980) and Lelivelt et al. (1993a) also failed to obtain 

hybrid plants by crossing oilseed rape with radish. Crosses with diploid oilseed rape were 

only successful with natural tetraploid radish (Turesson & Nordenskióld 1943) or with a 

colchicine doubled 4x radish as female parent (Chopinet 1944). McNaughton & Ross (1978) 

reported radish- oilseed rape hybrids, but they did not mention the plant material used. 

Paulmann & Röbbelen (1988) obtained 34 hybrids by in vitro embryo culture after pollinating 

765 buds (4.4%), and Thierfelder et al. (1992) obtained 1.6% hybrids by dissecting ovules. 

These percentages are similar to those obtained in this study. By radish/oilseed rape 

protoplast fusion, Lelivelt & Krens (1992) obtained one hybrid out of 286 régénérants. 
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The method described here is less artificial and less laborious than the above-mentioned 

procedures. The only difference to reproduction in nature is the removal of the pollinated 

flowers from the plant. Apparently, when the flowers are still attached to the plant 

mechanisms are effective that prohibit the formation of viable seeds after inter-generic 

crosses. These can be circumvented by removal of the pollinated flowers, and their transfer 

to a flower culture medium. These mechanisms are not yet understood. Lardon et al. (1993) 

found the culture of isolated flowers a suitable tool for studying pollination and early seed 

development. This method may therefore also be useful in unravelling the mechanisms 

preventing successful inter-generic hybridization. 

All three hybrids had normally developed anthers but produced only few viable pollen 

grains (1 to 3%) which reduces the chance for successful selfing or backcrossing. Paulmann 

& Röbbelen (1988) and Thierfelder et al. (1992) obtained (partially) fertile AACCRR 

(2n=56) individuals after colchicine treatment. Backcrosses with the monogenomic ancestral 

species B. rapa and B. oleracea yielded only offspring after the in vitro culture of ovules. 

Studies on chromosome pairing at meiotic metaphase I indicated partial homology of the A 

and C genomes of oilseed rape with the R genome of radish (Dolstra 1982; McNaughton 

1973a; Mizushima 1980; Namai 1976; 1978). This means that introgression of Raphanus 

genes into a Brassica species is possible. 

The vigour of the hybrid plant is probably due to a heterosis effect and not to the tetra-

or hexaploidy of the plant, as shown by the flowcytometric measurements which suggest that 

the genomic constitution of the hybrid is ACR. The crosses with the transgenic, PPT-tolerant 

oilseed rape showed that with the flower culture method a dominant, monogenic trait can be 

transferred to the hybrid. If fertility can be partially restored, for example by doubling the 

chromosome number with colchicine, such hybrids can be used in a backcross programme 

for the introduction of genes-of-interest in the recurrent parent. For biosafety studies, these 

hybrids are interesting because they afford an opportunity to study the expression of a 

transgene in different genetic backgrounds. The possibility that these hybrids will have an 

ecological impact, by transferring the PPT tolerance gene from oilseed rape to radish, is 

negligible, as hybridization is only successful in the laboratory, and the hybrids produce only 

a small amount of viable pollen. Scheffler & Dale (1994), who reviewed the opportunities 

of gene transfer from transgenic oilseed rape to related species, reported that in nature, 

hybrids between radish and oilseed rape were not able to form F2 and backcross progeny. 
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In conclusion, the described flower culture method is likely to be a good alternative for 

embryo rescue techniques and will facilitate the generation of hybrids. It is less laborious and 

does not require any specific skills in preparing embryos or ovules. 
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General discussion 
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Introduction 

Using standard transformation techniques, isolated genes of plants and other organisms 

can be introduced into plants. Because genetic modification hypothetically may result in 

unforeseen consequences, prior to the release of transgenic crops in the environment their 

biosafety has to be assessed following a 'case by case' and 'step by step' policy in order 

to build up more familiarity (OECD, 1993a). This means that, subsequently, greenhouse 

experiments, small-scale field experiments and large-scale field trials have to precede the 

release of transgenic plants in the environment before market introduction and normal 

agricultural practice will be allowed. Such transgenic crops will significantly contribute to 

agriculture in the near future. However, genetic modification will not be a substitute for 

traditional plant breeding, but will be an additional tool to improve the applicability and 

quality of crop plants. 

Legislation 

In the specific case of the release of transgenic herbicide-tolerant crops three legal 

frameworks are relevant: that for genetically modified organisms (GGO), that for herbici

des and that for new agricultural and horticultural varieties (Bijman & Lotz 1996). The 

EU plays an important role in the legislation of biotechnology and in the near future there 

will be a further shift from national legislation by national competent authorities to EU 

legislation. Table 6.1 shows the Dutch frameworks and the Ministries concerned in addi

tion to the EU Directives regulating the same aspects at EU level. The Dutch framework 

for the admission of a GGO comprises two aspects: environmental safety and food safety. 

For the environmental safety the Minister of Housing, Spatial Development and the 

Environment is the competent authority, which can ask the Dutch Committee of Genetic 

Modification (COGEM) for advice. The competent authority for food safety is the 

Minister of Health, Welfare and Sports, which can obtain additional advice from the 

Provisional Committee on the Safety of Novel Food (safety and food aspects) and the 

Subcommittee on Novel Foods of the Food and Commodity Act (for social aspects, 

mainly labelling). With respect to herbicide-tolerant crops it is important whether or not 

the current regulations for the application of the herbicide involved can be applied to its 

novel use in combination with plants tolerant to the herbicide, for instance post-emergen

ce instead of pre-emergence use of the herbicide. Based on governmental guidelines, the 
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Table 6.1 Survey of the Dutch legal frameworks with respect to herbicide-tolerant trans
genic plants with the Ministries concerned and the EU Directives regulating the same 
aspects on EU level. Abbreviations: GGO genetically modified organisms; VROM Hou
sing, Regional Development and the Environment; VWS Health, Welfare and Sports; 
LNV Agriculture, Nature Management and Fisheries; SZW Social Affairs and Employ
ment. 

Framework 

GGO 
- Environment 
- Food 

Herbicides 

Plant Varieties 

Ministry 

VROM 
VWS 

VROM, VWS 
LNV, SZW 

LNV 

EU Directive 

90/220/EEG 
Draft Novel Food 

and Food Ingredients 

91/414/EEG 

70/457/EEG (Agriculture) 
70/458/EEG (Vegetables) 

Regulated in 

Decree GGO 
Novel Food Order 

Pesticides Act 1962 

Seed and Plant 
material Act 1966 

Board for the Authorization of Pesticides (College voor de Toelating van Bestrijdings

middelen) will decide whether or not the use of a herbicide is allowed on transgenic 

tolerant crop plants and under which conditions. Furthermore, genetically modified crop 

plants should, as conventionally bred varieties, comply with the Distinct, Uniform, Stable 

(DUS) criteria and prove their cultural and economic value to be legally protected and to 

get permission to be traded. 

Scope of this thesis 

In the field release of transgenic crops and their commercialization transgenic phosphi-

nothricin (PPT)-tolerant oilseed rape (Brassica napus L.) is at the forefront (OECD, 

1993c). At the beginning of the project this fact played a decisive role in the choice of 

this particular trait-crop combination for a biosafety assessment. The aim of the study 

described in this thesis was to obtain more insight in and familiarity with the biosafety of 

transgenic PPT-tolerant oilseed rape. Knowledge about the biosafety of PPT-tolerant oil

seed rape was gained in two ways. In Chapters 1 and 2 existing biological, biochemical, 

ecological and toxicological data on oilseed rape, the herbicide PPT, the bar and pat 
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transgenes, the transgene product phosphinothricin-N-acetyltransferase (PAT) and putative 

metabolites were reviewed. In Chapters 3, 4 and 5 experiments were performed to obtain 

data about the transfer of PPT tolerance to different genetic backgrounds and the fate of 

the expression of the transgene in successive sexual offspring. This research was comple

mentary to simultaneously running EU-funded biosafety projects (Biotechnology Action 

Program, 1990; Biotechnology Research for Innovation, Development and Growth in 

Europe, 1992), where field trials were performed to assess pollen dispersal of transgenic 

oilseed rape and hybridization of transgenic PPT-tolerant oilseed rape and several related 

species, others than used here (see Chapter 1). 

The results of biosafety studies, as presented here, are of help for competent authori

ties responsible for the release approval of herbicide-tolerant oilseed rape. In Denmark, 

for instance, the application for marketing PPT-tolerant oilseed rape in the EU was 

negatively assessed, because there was no analysis of the effect of PPT use and of long-

term environmental effects of such crops (Bijman & Lotz 1996). However, the EU 

approved this release, based on the opinion that the questions about agricultural effects 

were no part of EU directive 90/220/EEG, which regulate the release of transgenic plants 

in the environment, but of directive 91/414 (pesticide regulations). 

Oilseed rape 

Chapter 1, reviewing the taxonomy, cytogenetics and reproduction system of oilseed rape 

and its possible hybridization with (wild) relatives showed that complete containment of 

transgenic oilseed rape in the field is not possible. For the related oilseed Brassicas, B. 

rapa and B. juncea, hybridization has been found in artificial crossings and spontaneously 

- which means without the elaboration of in vitro techniques - under field conditions, 

resulting in fertile inter-specific offspring (Bing et al. 1991; Jargensen et al. 1996a; 

Mikkelsen et al. 1996a). Although reported outcrossing frequencies were shown to be 

low, the spread of the transgene from transgenic oilseed rape to (wild) relatives could not 

be ruled out. Therefore, attention was focused on the ecological and toxicological impact 

of the introduced transgenes. 
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Transgene-centered evaluation of the PPT tolerance transgene 

As a consequence, Chapter 2 describes the transgene-centered approach to evaluate trans

genic plants. In this approach all characteristics of a particular transgene and its pro

duces) are assessed. The added value of this approach is two-fold. It helps to generalize 

outcomes irrespective of the plant species into which the transgenic trait is introduced. 

Furthermore, concentration on the characteristics of the transgene and the gene product 

allows the formulation of definite questions. The evaluation of biochemical, ecological 

and toxicological data may help to identify what kind of further data should be required 

before a safe release can be approved. 

To illustrate the transgene-centered approach, the bar and pat transgenes, as well as 

the gene products conferring PPT tolerance were reviewed. Transgenic PPT-tolerance is 

currently applied in the development and use of plant material as selection marker during 

transformation, as agronomic character and in female line multiplication for hybrid seed 

production. The specific and relatively little change brought about by the introduction of 

the bar or pat transgene will theoretically result in a transgenic plant identical to the 

untransformed parent plant, with the exception of the added PPT tolerance. 

Biosafety concerns with respect to PPT and transgenic PPT tolerance enclose both eco

logical and toxicological issues. Following the transgene-centered approach, it can be 

concluded that the use of PPT and PPT-tolerant crops in the production of hybrid seeds 

and the use of PPT tolerance as selection marker are ecologically fully biosafe. The 

agronomic application of PPT and PPT-tolerant plants could imply a considerable envi

ronmental gain compared to the application of current-day herbicide cocktails and can be 

considered to be ecologically biosafe too. However, by spread of the bar or pat gene at 

some places some wild relatives of a crop plant will acquire PPT tolerance. It is not 

expected that this will give uncontrollable situations in agronomy. 

Toxicologically, the consequences of consumption of PPT-tolerant plants are less clear. 

Because consumption of plants containing bar or pat transgenes or the gene product, the 

PAT enzyme, will have no adverse effects, without spraying, transgenic PPT-tolerant 

plants are toxicologically fully biosafe. Upon spraying with PPT, the amount of PAT 

activity determines whether all L-PPT is acetylated or not. In the most likely case this 

activity is sufficiently high and only D-PPT and acetyl-PPT, which themselves will not 

pose concern for consumption, may be present in the plant material. However, at present 
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it is unknown how these metabolites will behave upon food processing. In plants having a 

low PAT activity, in addition to acetyl-PPT and D-PPT, PPT-derived metabolites may be 

formed. To what extent such metabolites might accumulate is unclear and no toxicological 

data on these metabolites have been found in the available literature. 

A protocol to assess the levels of various PPT metabolites in transgenic PPT-tolerant 

plants or food will indicate if and if so which further toxicological data might be 

necessary before these crops can be considered safe for consumption. Such assessment 

might also answer the question whether or not regulations, now valid for the use of PPT 

as total herbicide, can also be applied for the use of the herbicide in combination with 

PPT-tolerant crops. PPT is used for post-emergence, pre-harvest desiccation in potato, 

legumes and oilseed rape (Trinks et al. pers. comm.). In the Netherlands this use of PPT 

is allowed by the Board for the Authorization of Pesticides (see Table 6.1) only for 

desiccation in potatoes and the Board has still to decide upon the new post-emergence 

application of PPT in combination with PPT-tolerant crops. Another example of the 

transgene-centered evaluation in which familiarity with a transgene was obtained is the 

study on the biosafety of the kanamycin resistance gene (Nap et al. 1992). This example 

and our findings (Chapter 2) showed that the transgene-centered approach, by gathering 

various data of the transgene, its product, substrates and putative degradation products, is 

powerful in identifying if and if so, which further data should be required for a safe 

release of transgenic crops. The availability of such data most likely will make biosafety 

discussions about a particular gene more transparent and possibly more constructive. 

Transmission and expression of the PPT tolerance transgene 

The PPT-tolerance bar gene was successfully transmitted in intra-specific, inter-specific 

and inter-generic crosses (Chapters 3, 4 and 5). Successive generations of selfings and 

mutual within-variety crosses showed that PPT tolerance is dominantly and monogenically 

inherited. A predictable, consistent and stable transmission and expression of transgenes 

are prerequisites for commercial success of genetically-modified crops. Studying the 

segregation ratios of PPT tolerance stable transmission and expression was found in 

within- and between-variety crosses. However, due to gene inactivation occasional loss of 

the phenotypic expression of the PPT tolerance gene was observed after selfmg of indi

vidual PPT-tolerant plants and after backcrosses with non-transgenic plants (Chapter 3). 
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For seed multiplication of varieties and in breeding programs this (partial) loss of pheno-

typic expression implies that spraying with PPT is sometimes no longer selective for all 

oilseed rape plants of the same transgenic variety. Possible explanations for the discrepan

cy between the presence of the transgene and absence of phenotypic expression of PPT 

tolerance might be methylation or co-suppression as reported in other studies (Jorgensen 

1990; Matzke & Matzke 1991; Kilby et al. 1992; Matzke et al. 1993; Ingelbrecht et al. 

1994) or a position effect of the T-DNA locus integration as described earlier for Petunia 

(Linn et al. 1990). We would like to hypothesize a combination of such a position effect 

and the occurrence of somaclonal variation. Further molecular analyses of the PPT-

susceptible transgenic plants and their offspring have to clarify the underlying mechanisms 

involved. These observations support the view that breeders with transgenic plants have to 

follow similar time-consuming selection procedures to ensure stable expression of transge-

nes as required for the generation and multiplication of new lines or varieties in conventi

onal breeding. 

In inter-specific hybrids of B. rapa and B. napus and their successive backcrosses, the 

frequency of transmission of the PPT tolerance transgene was suggested to be dependent 

on its presence on chromosomes of either the A- or C-genome of B. napus (Chapter 4). 

Comparing the percentages of PPT-tolerant plants in BC, generations which were made 

with plants from populations of two independent transgenic parents, the specific integrati

on position of the transgene gave different transmission frequencies. In case expected 

frequencies of PPT-tolerant plants were observed in the BQ and BC2's the location of the 

transgene on one of the chromosomes of the A-genome of B. napus was suggested. When 

located on one of the chromosomes of the C-genome, a high deficit in PPT-tolerant 

offspring plants was observed. In three generations of backcrosses involving plants 

accommodating the transgene on a chromosome of the C-genome, the percentage PPT-

tolerant plants was low (Table 4.2). Only approximately 10% of offspring had retained 

the tolerant trait in the BC3 and BC4 generations. 

From a biosafety point of view the inter-generic crosses between B. napus and radish 

(Raphanus sativus L.) will have no impact (Chapter 5). Only by the use of a modified 

flower culture method the PPT tolerance transgene could be transferred to hybrids, which 

produced a small amount of stainable pollen. The hybrid plants could not be selfed and 

backcrosses on radish did not yield any seeds which germinated. This makes potential 
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spread of the PPT tolerance transgene from oilseed rape to radish negligible. 

Biological containment 

The outcome of the inter-specific hybridization studies can be predicted theoretically. In 

backcrosses of the inter-specific hybrid to Pak choi having only the A-genome, the C-

chromosomes have no homologous partners during meiosis. Due to irregular transmission 

of the single C-chromosomes to the gametes, a transgene located on one of the chromoso

mes of the C-genome of B. napus is expected to be transmitted in a much lower frequen

cy to the gametes than with transgene location on one of the chromosomes of the A-ge

nome. This difference is clearly supported by our experimental data (Table 4.2) which 

suggested that, although gene flow from (transgenic) B. napus to B. rapa can not be ruled 

out, this transfer can be limited considerably through selection for the presence of the 

PPT tolerance transgene on one of the chromosomes of the C-genome of B. napus. The 

probability of gene transfer from B. napus to B. juncea, with the genomic constitution 

AABB, might also be reduced by integration of transgenes on chromosomes of the C-

genome. However, the probability for the exchange to B. oleracea (CC) and B. carinata 

(BBCC), related species containing the C-genome, might be increased. Both these species 

do not occur in nature in the Netherlands. 

To ensure containment of a transgene in a certain crop plant a new approach has 

become available. Only recently, a technique for plastid transformation has been develo

ped. Stable chloroplast transformants of tobacco were obtained by Maliga and co-workers 

following particle bombardment (Svab et al. 1990; Carrer et al. 1993; Svab & Maliga 

1993) and by PEG-mediated DNA uptake by protoplasts (O'Neill et al. 1993; Golds et al. 

1993). Since the plastid in most plant species are maternally inherited (Gillham et al. 

1991), plastid transformation will prevent the spread of transgenes to (wild) relatives 

through transfer of pollen (Dix & Kavanagh 1995; McBride et al. 1995). As additional 

advantage, this method simplifies the introduction of transgenes in commercial hybrids 

(Maliga 1993; McBride et al. 1995). 
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Herbicide tolerance in a broader perspective 

Part of this thesis was focussed on transgenic oilseed rape in which the bar gene had been 

introduced conferring tolerance to PPT and the impact of this trait has been discussed in 

Chapter 2. Here, herbicide tolerance in general will be discussed in a broader perspec

tive, because in the whole process of modification, testing, introduction into the environ

ment and commercialization of transgenic crops, the herbicide-tolerant crops are at the 

forefront and the first products now on the market. 

At the end of 1996 transgenic soybeans grown in the US, which were tolerant to an

other herbicide, glyphosate (Roundup®), after introduction of a bacterial mutant epsp 

gene, were shipped to Europe for further processing to end products. Transgenic soybean 

is difficult to ban based on the agreements within the World Trade Organisation, unless 

human health is at risk. Import of these transgenic soybeans into Europe led to strong 

protests from (Dutch) environmental organisations such as "Greenpeace" and "Natuur en 

Milieu". According to their argumentations the use of glyphosate during growth of 

tolerant soybeans would have a negative effect on the environment and drinking water 

supplies. The use would imply a negative effect on human fertility and the danger of 

exposure to putative carcinogenic substances. The first two arguments were refuted by 

findings in numerous studies, such as by the American Food and Drug Administration, 

the British Advisory Committee on Novel Foods and Processes, the Dutch Centrum voor 

Landbouw en Milieu and the World Health Organization, which all indicate that glyphosa

te, which is already used for over 20 years without problems, has a low environmental 

burden and does not impose risks for animal and human health and is not carcinogenic. 

Glyphosate and its metabolites do not leach into the ground water, but can be found in the 

surface water after incompetent use or heavy rainfall. Due to their low toxicity this has 

little effect for the environment. Weed control by glyphosate in soybean fields led to a 

30% reduction in the use of other herbicides, which often have a higher environmental 

burden. Furthermore, glyphosate application reduces the necessity for mechanic weed 

control which is in some parts of the US the main cause of erosion. 

In soil, high concentrations of glyphosate - much higher than the recommended 

application ratios- in combination with high concentrations of sodium nitrite may generate 

N-nitrosoglyphosate (Khan & Young 1977). This compound belongs to the family of the 

N-nitrosoamines which can be toxic, mutagenic and/or carcinogenic (Reddy & Hayes 

85 



1989). In plants, both nitrite and glyphosate occur in the chloroplast. In a kinetic study, 

the pH optimum for nitrosation was determined to be 2.5, suggesting that in plants the 

reaction would not occur. In soils, however, nitrosation was pH independent, what theo

retically also might be the case in the chloroplast. Possibly, formation of N-nitrosoglyp-

hosate occurs when sufficient amounts of glyphosate and nitrite are combined in the acid 

environment of the human stomach. No study concerning the toxicology or carcinogenic 

properties of N-nitrosoglyphosate was found, although the compound was reported to be 

weakly mutagenic (Seiler 1977). More data for the putative formation of this compound 

and its toxicological characteristics seem required, which was also one of the outcomes of 

the transgene-centered evaluation of glyphosate tolerance transgenes (Nap et al. 1996). 

Although there is no convincing evidence, environmental organisations are critical 

concerning possible negative effects of glyphosate on human fertility. This is based on 

two publications from one research group (Yousef et al. 1995, 1996). One is a model 

study to develop in vitro toxicity tests for sperm cells, which did not allow to draw 

conclusions about the glyphosate toxicity for human sperm cells. Because the applied dose 

and the mode of application were not well described no conclusions could be drawn from 

the second study in which glyphosate was given to two groups of four rabbits. In other 

toxicity studies with rodents no effect of glyphosate on reproductive organs was observed 

(World Health Organization 1994). 

It is noteworthy that the arguments put forward by environmentalists against glyphosa-

te-tolerant soybeans concern primarily the herbicide itself and not the transgenic trait or 

the transgene (product). However, glyphosate may currently be applied pre-harvest in ce

reals not later than 4 days before harvest to better get rid of weeds compared to in stub

ble. Spot application is allowed in other consumption crops, like potato, beet and legumes 

in the Netherlands as determined by the Board for the Authorization of Pesticides. In the 

USA, glyphosate is currently also allowed to be applied pre-harvest in soybean (unpublis

hed). The use of glyphosate-tolerant crops allows, if necessary, a much earlier application 

of herbicide during the plant development. This can imply that, for instance, the current 

soybean contains more residues of glyphosate than the glyphosate-tolerant soybean. 

Admission of the glyphosate-tolerant soybean was tested against the EU directive 

90/220/EEG, to determine if such a crop did not impose a burden on the environment. 

Furthermore, this transgenic crop was approved to be safe for food application by the 
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governments of the US, Canada, Japan, the UK and The Netherlands. Based on findings 

of experts, the European Committee decided to give permission for the import, storage 

and processing of these soybeans. 

'Narrow sense' and 'Broad sense' biosafety 

In the assessment of the biosafety of genetically modified crops a distinction can be made 

between 'biosafety in narrow sense' and 'biosafety in the broad sense' (Metz & Nap 

1997). Concerns with respect to the biosafety in the narrow sense involve the ecology and 

toxicology of both release and use of transgenic herbicide tolerant crop plants. The eco

logical concerns focus on weediness and vertical and horizontal spread of the gene. The 

toxicological concerns focus on food safety and consumption. The concerns and issues 

with respect to the biosafety in the broad sense in plants reflect, in addition, social, 

ethical and/or economic views with respect to current agriculture. A few examples, which 

not only apply for herbicide tolerant transgenic crops, but for transgenic crops in general 

will be mentioned in random order of arguments that have been put forward and should 

ideally be included in assessments of biosafety in the 'broad sense'. Genetic modification 

that overcomes species barriers is seen as tampering with the natural order of life. 

Evolutionary 'boundaries' should be considered as provisional warning signs of danger 

(Suzuki & Knudtson 1989). Transgenic crops could threaten the centers of crop diversity 

(Rissler & Mellon 1993). Resources used for genetic modification are thought to be better 

spent on more important issues. Research into transgenic herbicide-tolerant crops, for 

example, could distract from research into alternatives such as mechanical weed control 

(Reijnders 1993). The combination herbicide tolerance transgene/transgene-containing 

crop/transgene substrate, being the herbicide, is generally owned by the 'agro-industrial 

complex'. This may limit the options of farmers, may impair development of agriculture 

in third-world countries and generally will result in too high profits for only a few 

(Lucassen et al. 1990; Rissler & Mellon 1993). 

Companies, on the other hand, point out that the investments made into agricultural 

biotechnology are high. Preferably early in its development a product should promise to 

be cost-effective. Cost-effectiveness will depend on patent and license fees, alternatives, 

environmental impact, environmental policies and taxes (Bijman 1994). Such concerns 

play also a role in the social and public acceptance of the transgenic crops. Related topics 
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are the information of consumers about risks and benefits; the developments with respect 

to property rights; as well as the necessity for and methods of labelling foods derived 

from modern biotechnology. Each of these topics is currently generating a respectable 

bibliography (e.g. Scholten et al. 1991; Durant 1992; Bryant & Leather 1992; Dunwoody 

1992; van Wijk et al. 1993; Barefoot et al. 1994). Full clearance and/or clarity for 

particular transgenes in an early stage of development would be advantageous especially 

for small and medium-sized enterprises. 

Unfortunately, between (and within) EU member states there are clear differences in 

the conceptualization of 'risk' and disagreements with respect to the environmental 

impacts that should be taken into consideration. For example, application of a herbicide-

tolerant transgenic crop might cause, upon outcrossing, that the herbicide can no longer 

be used, whereas the herbicide itself is considered to be more environmentally friendly 

than alternatives. The latter effects, the potential loss of the applicability of the herbicide 

and the environmental impact of the herbicide, are clearly secondary or indirect effects, 

or, in the terminology we propose, issues of biosafety in the broad sense. Regulatory 

authorities in EU member states such as the UK and The Netherlands tend to consider 

mainly the narrow sense effects of the transgenic plants to be a biosafety issue (Bijman & 

Lotz 1996). Broad sense effects are not seen as an issue of biosafety. Such effects are 

considered to be the competence of other committees and/or are covered by different laws 

and jurisdiction (see Table 6.1). Other member states, such as Austria, Denmark and 

Sweden, however, indicate that broad sense effects should be more included in asses

sments of transgenic plants. Their national legislation links biotechnology with broader 

criteria, such as sustainability, socioeconomics and ethics. Commandeur et al. (1996) 

recently described the situation in various EU countries. 

In such a complex and politically sensitive context, full assessments of all aspects of 

the 'biosafety in the broad sense' are highly demanding and interdisciplinary tasks. 

Consensus on the 'narrow sense' issues of individual transgenes may contribute to 'broad 

sense' assessments. It is possible that a herbicide tolerance transgene is evaluated to be 

biosafe in the narrow sense, but that it poses undesirable characteristics with respect to its 

biosafety in the broad sense. An example would be a particular transgene conferring 

herbicide tolerance to a herbicide with an adverse environmental or toxicological impact. 

The presence of the transgene and the transgene product in plants could be fully biosafe, 
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but the associated increased use of the environmentally or toxicologically adverse 

herbicide would imply a negative effect in the broad sense. Examples of this are bro-

moxynil-tolerance and tolerance to some acetolactate synthase (ALS) herbicides. The 

agronomic application of bromoxynil-tolerant plants is considered to be biosafe with 

respect to its ecological and toxicological consequences. However, the herbicide has been 

qualified as harmful to mammals and various fish species. Bromoxynil butyrate and its 

commercial formulations might form an unacceptable risk of toxicity in persons handling 

these compounds (Campt 1989). 

Tolerance to persistent and non-persistent herbicides 

In the discussion about the biosafety of herbicide tolerant crops a distinction should be 

made between tolerance to non-persistent herbicides such as PPT and glyphosate and per

sistent herbicides such as some ALS herbicides, like chlorsulfuron. Although crops tole

rant to either of these three herbicides were considered to be ecologically and toxicologi

cally biosafe, the use of ALS herbicide tolerant crops may stimulate the use of a persis

tent herbicide. Depending on the soil type and environmental conditions, chlorsulfuron for 

instance applied to monocots like wheat, can preclude farmers from growing dicot crops 

for at least 4 years or longer after application (McHughen & Holm 1991). On the other 

hand it has been argued that transgenic ALS-tolerant crops such as flax, can be grown on 

soils 'polluted' with ALS herbicides used to control weeds in cereal crops and therewith 

provide farmers with an option to flexible crop rotation by taking advantage of the 

residual activity of these herbicides (McHughen 1989; McHughen & Holm 1991). 

However, it is expected that the use of these ALS herbicide tolerant crops in combination 

with the herbicide will not be restricted to those treated areas. Therefore, a critical 

consideration of the type of crop into which this trait should be introduced and under 

which conditions they should be used seems justified. 
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Summary 

Genetic modification is an additional tool for conventional plant breeding to improve the 

application and quality of crop plants. No longer hampered by natural crossing barriers, 

application of genetic modification results in a nearly infinite pool from which genes, 

after isolation, can be introduced in crop plants. At this moment more and more geneti

cally modified crops are coming on the market and these crops will probably significantly 

contribute to near-future agriculture. However, since the introduction of transgenic plants 

in the environment the biosafety regulation of these crops has been discussed and devel

oped. Preceding the release of transgenic plants within existing legal frameworks several 

stages of containment were passed through and a new regulation concerning biotechnolo-

gical products was set up. In the process leading to commercialization of transgenic 

plants, herbicide-tolerant crops, such as phosphinothricin (PPT)-tolerant oilseed rape are 

at the forefront and the first varieties are at present on the market. This fact played five 

years ago a decisive role to use this particular trait-crop combination for biosafety studies. 

The aim of the study described in this thesis was to gain knowledge about and fami

liarity with transgenic PPT-tolerant oilseed rape in relation to its biosafety. This was 

made in two ways: 1) scientific data concerning oilseed rape were reviewed and the eco

logical and toxicological impact of the PPT tolerance transgene and the herbicide PPT 

was evaluated (Chapters 1 and 2); 2) experiments were performed to investigate whether 

or not PPT tolerance could be transmitted to intra-specific, inter-specific and inter-generic 

hybrids and if so, what the fate of the transgene and its expression was in these different 

genetic backgrounds and in successive selfings and backcrosses (Chapters 3, 4 and 5). 

Reviewing the taxonomy and cytogenetics of the family of Cruciferae revealed that 

there were ample possibilities for inter-specific and inter-generic hybridization, either with 

or without embryo-rescue techniques (Chapter 1). Pollen dispersal by both insects and 

wind is the main factor through which transgenes in oilseed rape may spread. Gene 

dispersal from transgenic oilseed rape to its (wild) relatives can not be ruled out. 

Hybridizations, such as oilseed rape (genome constitution AACC) with B. rapa (AA) and 

B. juncea (AABB) have been described to occur spontaneously under field conditions. 

Assuming outcrossing occur, attention should be given to the ecological and toxicologi

cal impact of the introduced PPT tolerance transgenes in combination with the use of PPT 
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(Chapter 2). To illustrate the so-called 'transgene-centered approach' in which all charac

teristics of a particular transgene and its product are assayed the pat and bar transgenes, 

whose gene products, confer PPT tolerance were reviewed. The use of PPT-tolerant crops 

in combination with PPT could imply a considerable environmental gain compared to cur

rently used herbicide cocktails. Assuming responsible use of PPT-tolerance in agronomy, 

the consequences with respect to weediness or spread of this trait are minor. Consumption 

of unspread transgenic PPT-tolerant plant material containing the bar or pat transgenes 

and/or the gene product PAT will have no adverse effects. Bar and pat DNA will not dif

fer from any other DNA that passes the digestive tract daily and all data found, indicate 

that no toxicity or allergenicity of PAT are to be expected. Upon spraying PPT-tolerant 

plants, PPT or derivatives might be present in food and feed. To date, it is insufficiently 

clear to what extent consumers are exposed to PPT (metabolites) and what the toxicologi-

cal impact of such exposure might be. As long as there is not much familiarity with the 

trait, pre-market evaluation of the levels of PPT metabolites in PPT-tolerant plant food 

will indicate, which further toxicological data are necessary for safe consumption. 

Because biological containment cannot be obtained for oilseed rape, studying the trans-

gene transmission and its fate in different genetic backgrounds and over generations can 

indicate the transgene impact in time in sexual offspring. Only when the transgenes are 

transmitted and expressed in a predictable, consistent and stable manner in subsequent 

generations during seed multiplication or subsequent steps in a breeding program, trans

genic crops have commercial value. The bar gene was successfully transmitted to intra-

specific, inter-specific and inter-generic hybrids. In crosses among independent transge

nics of one variety and between transgenics of different varieties, no transgene inactivati-

on was observed (Chapter 3). This is what has been expected, because the phenotypic ex

pression of the transgene in homozygous and hemizygous nature in these transgenics was 

stable. However, independent from its homozygous or hemizygous nature, infrequent loss 

of expression of the PPT tolerance transgene was found after selfings and backcrosses of 

some individual transgenic plants with non-transgenic oilseed rape. Molecular analyses of 

susceptible plants showed that the transgene was still present. Gene inactivation might be 

caused by methylation or co-suppression while also somaclonal variation might be one of 

the mechanisms responsible for a reduced of even a loss of phenotypic expression in later 

generations. These observations indicate that breeders should test whether selected lines 
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stably express PPT tolerance during subsequent generations as is also required in 

conventional breeding programs. 

By inter-specific hybridization between B. rapa (AA) and two transgenic oilseed rape 

lines, the PPT tolerance transgene was relatively easily transmitted into the F, hybrids and 

retained active (Chapter 4). During backcrossing, between offspring of the two investiga

ted transgenic lines large differences in transmission frequency of the transgene were 

noted. The line showing low transmission contained the transgene most probably integra

ted into a C-genome chromosome and in the line showing high transmission it was proba

bly integrated into a chromosome of the A-genome. Therefore, gene transfer from oilseed 

rape (AACC) to B. rapa (AA) and B. juncea (AABB) can be limited considerably by inte

gration of the transgene on chromosomes of the C-genome. An alternative approach to 

prevent gene dispersal through pollen transfer is integration of the transgene into the 

DNA of plastids, since these organelles are maternally inherited in most plants. 

The inter-generic crosses between transgenic PPT-tolerant oilseed rape and radish 

(Raphanus sativus) have no biosafety impact (Chapter 5). Potential spread of transgenes 

from oilseed rape to radish is negligible, because hybridization can only be accomplished 

using a modified flower culture method. Hybrids produced small amounts of stainable 

pollen, but they could not be selfed and backcrosses on radish did not yield any viable 

seed. 

In the biosafety assessment of genetically modified plants a distinction between 

'biosafety in the narrow sense' and 'biosafety in the broad sense' was proposed (Chapter 

6). With respect to 'biosafety in narrow sense', ecological concerns focus on weediness 

and vertical and horizontal transgene spread and toxicological concerns focus on food 

safety and consumption. With respect to 'biosafety in the broad sense', concerns also 

reflect social, ethical and/or economic views related to current agriculture. Regulatory 

authorities in the UK and the Netherlands tend to consider mainly the 'narrow sense' 

biosafety questions of transgenic plants. Austria and the Scandinavian EU members take 

the position that 'broad sense' effects should also include linkage of safety aspects of 

transgenic plants with criteria such as sustainability, socio-economics and ethics. 

At the end of 1996 transgenic glyphosate-tolerant soybeans were shipped to Europe, 

which led to protests. Arguments put forward by environmentalists against these soybeans 

concern primarily the herbicide, which was already allowed to be applied pre-harvest for 
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wild type soybean (USA) and other crops (The Netherlands). Both application of the 

herbicide and tolerant plants are approved following Dutch and EU regulations. Permissi

on was given to import, store and process in food these glyphosate-tolerant soybeans. 

However, this does not mean that all herbicide-tolerant crops are biosafe. When a 

herbicide tolerance transgene is evaluated to be 'biosafe in the narrow sense', it might 

still possess undesirable characteristics with respect to its 'biosafety in the broad sense'. 

For example, a particular transgene confers tolerance to a herbicide with an adverse 

environmental or toxicological impact, such as bromoxynil or the persistent herbicide 

chlorsulfuron. Introduction of crops tolerant for such herbicides might stimulate the use of 

these herbicides. In the cases of bromoxynil and chlorsulfuron it is questionable whether 

or not this is a benign development due to respectively their toxicity and persistence in 

the soil for years. 

The major issues described in this thesis are summarized as follows: 

- the spread of the PPT tolerance transgene from oilseed rape to (wild) relatives occurs, 

especially when the transgene is integrated into a chromosome of the A-genome 

- gene flow from PPT-tolerant oilseed rape to B. rapa (AA) and B. juncea (AABB) can 

be limited considerably through selection for the presence of the PPT tolerance 

transgene on one of the chromosomes of the C-genome of oilseed rape or through 

integration of the transgene into the chloroplast genome 

- the transgene-centered approach shows that without spraying with PPT, PPT-tolerant 

crops are ecologically and toxicologically biosafe. Upon spraying, however, it is 

currently insufficiently clear whether consumers are exposed to what levels of PPT 

and/or its metabolites. No toxicological data are available of PPT-derived metabolites 

or how they behave upon food processing 

- in intra-specific crosses involving PPT-tolerant oilseed rape occasional loss of 

phenotypic expression of the PPT tolerance was observed. This implies that breeders 

have to follow time-consuming selection procedures to ensure stable expression of 

transgenic traits, which are similar to those followed in conventional breeding 

- because inter-generic hybrids between transgenic oilseed rape and radish are difficult 

to make and almost sterile, transgenes cannot spread in the environment through radish 

and these hybrids, therefore, have no impact from a biosafety point of view 
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in the assessment of the biosafety of genetically modified crops a distinction can be 

made between 'biosafety in the narrow sense' and 'biosafety in the broad sense'. 

'Biosafety in the narrow sense' involves the ecology and toxicology of both release and 

use of transgenic plants. 'Biosafety in the broad sense' also implies social, ethical and/ 

or economic aspects of transgenic crops with respect to current agriculture 

permission for commercialization of a particular herbicide tolerance-herbicide-crop 

combination does not create a precedent for other herbicide tolerance-herbicide-crop 

combinations, but their 'biosafety in the broad sense' should be evaluated as a new 

case. 
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Samenvatting 

Al dan niet biologisch veilig 

- een evaluatie van transgeen fosfinothricine-tolerant koolzaad (Brassica napus L.) -

Bij de verbetering van kwaliteit en toepassingsmogelijkheden van cultuurgewassen vormt 

genetische modificatie een uitbreiding van de technieken die in de plantenveredeling 

gebruikt kunnen worden. Bij de toepassing van genetische modificatie zijn natuurlijke 

kruisingsbarrières niet langer beperkend. Alle organismen vormen hierdoor een bijna 

onuitputtelijke bron van eigenschappen waarvan de verantwoordelijke genen geïsoleerd en 

vervolgens in cultuurplanten ingebracht kunnen worden. Op dit moment worden meer en 

meer genetisch gemodificeerde gewassen geïntroduceerd in het milieu en op de markt 

gebracht en verwacht mag worden dat deze gewassen in de nabije toekomst een signifi

cante bijdrage zullen leveren aan de landbouw. Sinds de introductie van transgene planten 

in het milieu worden er discussies gevoerd over hun biologische veiligheid en over de 

regulering voor de markttoelating van deze gewassen. Voorafgaand aan het in het milieu 

en op de markt brengen van transgene planten moeten binnen vastgestelde wettelijke 

kaders verschillende stadia van inperking doorlopen worden en zijn wettelijke regels met 

betrekking tot het op de markt brengen van biotechnologische voedingsproducten opge

steld. Herbicide tolerante gewassen, waaronder fosfinothricine (FFT)-tolerant koolzaad, 

vormen de voorhoede bij het op de markt brengen van transgene gewassen. Daarom werd 

deze specifieke gewas-eigenschap combinatie als model gekozen voor deze studie naar de 

biologische veiligheid van transgene gewassen. 

Het doel van het in dit proefschrift beschreven onderzoek was het vergaren van kennis 

over en het vervolgens evalueren van de biologische veiligheid van FFT-tolerant kool

zaad. Ten behoeve van een tweeledige aanpak is een literatuurstudie naar de eigenschap

pen van koolzaad en naar de ecologische en toxicologische impact van het FFT tolerantie 

gen tezamen met het FFT herbicide uitgevoerd (Hoofdstukken 1 en 2). Tevens zijn 

experimenten uitgevoerd om te bepalen of FFT tolerantie via kruising kan worden 

overgebracht naar intra-specifieke, soort- en geslachtshybriden en wat het lot van de 

activiteit van het transgen in de verschillende genetische achtergronden en in opeenvolgen

de zelfbevruchtingen en terugkruisingen is (Hoofdstukken 3, 4 en 5). 
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Gegevens over de taxonomie en cytogenetica binnen de familie der cruciferen geven 

aan dat soort- en geslachtskruisingen mogelijk zijn, al dan niet met behulp van in vitro 

technieken (Hoofdstuk 1). Pollen overdracht door insecten en de wind is de belangrijkste 

manier waarop transgenen in koolzaad zich kunnen verspreiden. Onder veldomstandighe-

den zijn spontane kruisingen tussen koolzaad (genoomsamenstelling AACC) en B. rapa 

(AA) en B. juncea (AABB) mogelijk en genoverdracht van transgeen koolzaad naar de 

(wilde) verwanten is dan ook niet uit te sluiten. 

Omdat uitkruising kan optreden dient er aandacht besteed te worden aan de ecologische 

en toxicologische gevolgen van het geïntroduceerde herbicide tolerantie transgen in 

combinatie met het gebruik van het herbicide FFT (Hoofdstuk 2). Ter illustratie van de 

aanpak waarbij het transgen centraal staat, de zogenaamde 'transgene-centered approach' 

werden de bar en pat transgenen, waarvan de producten tolerantie voor FFT geven, be

studeerd. Uit deze evaluatie waarbij alle eigenschappen van het transgen en het gen

product werden onderzocht, bleek dat het gebruik van FFT-tolerante gewassen in combina

tie met FFT in vergelijking met de huidige in gebruik zijnde herbicide cocktails een aan

zienlijke milieuwinst kan opleveren. Indien FFT landbouwkundig verantwoord wordt ge

bruikt, dan zijn de consequenties met betrekking tot veronkruiding en verspreiding van 

FFT tolerantie gering. Consumptie van onbespoten FFT-tolerant plant materiaal heeft 

geen nadelige effecten omdat het bar en pat DNA niet verschillen van ander DNA dat 

dagelijks het spijsverteringskanaal passeert. Bovendien wijzen alle gevonden gegevens 

erop dat het genproduct, het fosfmothricine acetyltransferase eiwit, niet toxisch of aller-

geen is. Na bespuiting van FFT-tolerante planten met FFT, kunnen FFT of omzet

tingsproducten van FFT in voedsel en veevoer voorkomen. Op dit moment is het niet 

duidelijk of en zo ja in welke mate mens en dier aan FFT of FFT-metabolieten worden 

blootgesteld bij consumptie van FFT-tolerante gewassen en wat daar de toxicologische 

gevolgen van zijn. 

Omdat biologische inperking van koolzaad niet mogelijk is, is het lot van het transgen 

in sexuele nakomelingen in de tijd gevolgd. Hiervoor is de transgenoverdracht bestudeerd 

en tevens de expressie van het transgen in verschillende genetische achtergronden en 

(terugkruisings)generaties. Bij commercialisatie van transgene gewassen is het noodzake

lijk dat een transgen voorspelbaar en stabiel overerft en een stabiele expressie in opeen

volgende generaties tijdens zaadvermeerdering of in een veredelingsprogramma laat zien. 
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Het bar gen kon worden overgebracht naar intra-specifieke, soort- en geslachtshybriden. 

Er werd geen transgeninactivatie waargenomen in kruisingen tussen onafhankelijke 

transgene lijnen van één ras of van verschillende rassen (Hoofdstuk 3). Dit was conform 

de verwachting, omdat de fenotypische expressie van het transgen in homozygote en 

hemizygote toestand daadwerkelijk stabiel bleek te zijn. Soms werd na zelfbevruchting 

van individuele FFT-tolerante koolzaad planten of na terugkruising van deze planten met 

niet-transgeen koolzaad echter verlies van expressie van het FFT tolerantie gen gevonden. 

Moleculaire analyse van deze FFT-gevoelige planten toonde aan dat het transgen wel aan

wezig was. De gevonden geninactivatie kan veroorzaakt worden door methylering of co-

suppressie. Ook somaclonale variatie kan één van de verantwoordelijke mechanismen zijn 

die tot verlies of een verminderde fenotypische expressie van het FFT-tolerantie gen in 

latere generaties leidt. Deze waarnemingen geven aan dat, net zoals in conventionele 

veredelingsprogramma's, ook geselecteerde lijnen van transgene gewassen getest moeten 

worden op het stabiel tot expressie komen van het ingebrachte transgen tijdens opeenvol

gende generaties. 

Door soortkruising tussen B. rapa (AA) en twee transgene koolzaadlijnen (AACC) kon 

de FFT-tolerantie relatief gemakkelijk naar F! hybriden worden overgebracht waarin het 

stabiel tot expressie kwam (Hoofdstuk 4). Gedurende vier terugkruisingen met B. rapa, 

werd er echter tussen de twee transgene ouderlijnen een verschil waargenomen in de 

frequentie waarmee het transgen naar de volgende generatie werd overgebracht. In de 

ouderlijn met de laagste FFT-tolerantie overdracht, was het transgen hoogstwaarschijnlijk 

in één van de chromosomen van het C-genoom en in de ouderlijn met de hoogste over

dracht in één van de chromosomen van het A-genoom geïntegreerd. Dit gegeven laat zien 

dat genoverdracht vanuit koolzaad (AACC) naar B. rapa (AA) en B. juncea (AABB) aan

zienlijk beperkt kan worden door integratie van het transgen in één van de C-genoom 

chromosomen. Een alternatieve manier om genoverdracht via pollenverspreiding tegen te 

gaan is de integratie van het transgen in het DNA van plastiden, omdat deze organellen in 

de regel maternaal overerven. 

De geslachtskruising tussen koolzaad en radijs heeft geen consequenties voor de biolo

gische inperking van transgeen koolzaad. Mogelijke verspreiding van transgenen vanuit 

koolzaad naar radijs is verwaarloosbaar, omdat hybridisatie slechts met behulp van een in 

vitro bloemcultuurmethode lukte. Aldus verkregen hybriden produceerden een kleine hoe-

l i l 



veelheid vitaal pollen, maar de hybriden konden niet worden zelfbevrucht en terugkruisin

gen op radijs leverden geen kiembare zaden op. 

Bij de analyse van genetisch gemodificeerde planten kan een onderscheid gemaakt wor

den tussen 'biologische veiligheid in engere zin' en 'biologische veiligheid in ruimere zin' 

(Hoofdstuk 6). Bij 'biologische veiligheid in engere zin' concentreren de ecologische 

aspecten zich op veronkruiding, verticale en horizontale genoverdracht, terwijl de toxi

cologische aspecten zich concentreren op voedselveiligheid en -consumptie. Bij 'biologi

sche veiligheid in ruimere zin' wordt ook rekening gehouden met maatschappelijke, ethi

sche en economische standpunten betreffende de huidige landbouw. Regelgevende autori

teiten in het Verenigd Koninkrijk en Nederland neigen bij transgene planten vooral biolo

gische veiligheidsaspecten in 'engere zin' in beschouwing te nemen. Oostenrijk en de 

Scandinavische EU lidstaten staan echter meer op het standpunt dat biologische veilig

heidsaspecten in 'ruimere zin' ook beschouwd moeten worden en dus gekoppeld moeten 

worden aan criteria, als duurzaamheid, sociaal-economische aspecten en ethiek. 

Eind 1996 is het eerste glyfosaat-tolerante soja naar Europa verscheept, wat tot pro

testen van diverse actiegroepen heeft geleid. Argumenten van de milieubeweging tegen 

deze soja hebben voornamelijk betrekking op het gebruik van het herbicide glyfosaat, dat 

echter in Nederland voor andere gewassen al toegelaten is voor het doodspuiten van het 

gewas vlak voor de oogst. Zowel toepassing van dit herbicide als van de glyfosaat-tole

rante planten zijn goedgekeurd op basis van Nederlandse en Europese regelgeving. Deze 

glyfosaat-tolerante soja mag dus worden ingevoerd, opgeslagen en verwerkt in voedings

middelen. Dit betekent echter niet dat alle herbicide-tolerante planten biologisch veilig 

zijn. Als een herbicide tolerantiegen na evaluatie 'in de engere zin' biologisch veilig is 

bevonden, kan het nog steeds ongewenste eigenschappen bezitten in relatie tot biologische 

veiligheid 'in ruimere zin'. Voorbeelden hiervan zijn transgenen die gewassen tolerant 

maken voor herbiciden die een ongewenst toxicologisch of milieu effect hebben, zoals het 

herbicide bromoxynil of persistente herbiciden, zoals chlorsulfuron. Introductie van ge

wassen tolerant voor dergelijke herbiciden zal het gebruik van deze herbiciden stimuleren, 

hetgeen een ongewenste ontwikkeling is gezien hun respectievelijke toxiciteit en jarenlan

ge persistentie in de bodem. 

112 



De belangrijkste in dit proefschrift beschreven aspecten kunnen als volgt worden 

samengevat: 

- verspreiding van het FFT tolerantie gen vanuit koolzaad naar (wilde) verwanten treedt 

op. Dit is vooral het geval als het transgen op een chromosoom van het A-genoom van 

koolzaad is gelocaliseerd, omdat zowel B. rapa als B. juncea het A-genoom bezitten 

- genoverdracht van FFT-tolerant koolzaad naar B. rapa kan biologisch aanzienlijk 

beperkt worden door integratie van het transgen op één van de chromosomen van het 

C-genoom van koolzaad of door integratie in het chloroplastgenoom dat normaliter 

maternaal overerft 

- de analyse die het transgen centraal stelt, laat zien dat zonder FFT bespuiting, het 

FFT-tolerante gewas, ecologisch en toxicologisch biologisch veilig is. Na FFT bespui

ting van een dergelijk gewas is het echter onduidelijk of en in welke mate consumenten 

worden blootgesteld aan FFT en/of omzettingsproducten van FFT en of dit een effect 

heeft op hun gezondheid 

- in intra-specifieke kruisingen wordt soms onverwacht het verlies van de expressie van 

het FFT transgen waargenomen. Dit impliceert dat, net als in de conventionele verede

ling, tijdrovende selectie procedures gevolgd moeten worden om zeker te zijn van sta

biele transgenexpressie gedurende een reeks van generaties 

- omdat geslachtshybriden tussen koolzaad en radijs moeilijk zijn te maken en bovendien 

bijna steriel zijn, kunnen transgenen niet via radijs verspreid worden in het milieu en 

hebben deze hybriden geen consequentie voor de biologische veiligheid van transgeen 

koolzaad 

- er kan een onderscheid gemaakt worden tussen 'biologische veiligheid in engere zin' 

en 'biologische veiligheid in ruimere zin'. 'Engere zin' heeft betrekking op de ecologi

sche en toxicologische gevolgen van de introductie en het gebruik van transgene 

planten. 'Ruimere zin' heeft ook betrekking op sociale, ethische en/of economische 

aspecten van transgene planten in relatie tot de huidige landbouw 

- goedkeuring voor het vermarkten van een bepaalde herbicide tolerantie-gewas combi

natie schept geen precedent voor andere combinaties. Hun biologische veiligheid 'in 

ruimere zin' moet iedere keer opnieuw beschouwd worden, zeker als het tolerantie 

voor een herbicide betreft dat persistent is of een nadelig toxicologisch effect heeft. 
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Nawoord 

Dit proefschrift beschrijft de resultaten van een 'niet-promotie' onderzoek. Lange tijd zag 

het er namelijk naar uit dat het moeilijk zou zijn om op dit project te promoveren. 

Immers kon een onderwerp als biologische veiligheid wel wetenschappelijk benaderd 

worden en konden er in een drie-jarig onderzoek voldoende resultaten verkregen worden? 

Gaandeweg kwam het besef dat het er misschien inzat en groeide het vertrouwen op een 

goede afloop. Dat er uiteindelijk toch een proefschrift voor u ligt is mede te danken aan 

de bijdrage van vele mensen die ik hierbij wil bedanken. 

Jan-Peter, jij hebt vooral in de latere fase van het onderzoek een heel belangrijke bijdrage 

geleverd. Concepten als 'transgene-centered approach' en 'biosafety in the narrow and the 

broad sense' zijn door jou bedacht. Op taalkundig gebied heb ik veel van je geleerd. Een 

concept bij jou ingeleverd kwam vaak behoorlijk gekleurd en bijna per omgaande terug. 

En in veel gevallen wist jij het net iets bondiger en 'more to the point' te formuleren. 

Regelmatig informeerde je hoe de vorderingen waren, hetgeen voor mij mede aanleiding 

vormde om de vaart erin te houden. Gedurende het schrijven van de biologische veilig-

heidsrapporten was het plezierig met jou samen te werken. 

Willem Stiekema, mijn co-promotor, jou wil ik bedanken voor het in mij gestelde 

vertrouwen door mij destijds voor het project aan te nemen. Verder heb je mij altijd heel 

veel vrijheid gegeven tijdens het onderzoek, hetgeen ik gewaardeerd heb. In de afronden

de fase hebben jouw op- en aanmerkingen de leesbaarheid van de samenvatting en 

algemene discussie zeer bevorderd en ze hebben ertoe bijgedragen dat het beoogde doel 

toch nog snel bereikt werd. 

Prof. Evert Jacobsen, u ben ik ook heel veel dank verschuldigd, niet alleen omdat u 

bereid was als mijn promotor op te treden, maar ook voor uw inbreng tijdens de vele 

discussies die we hebben gevoerd (bij voorkeur aan het eind van de dag, maar 8 uur 's 

morgens was ook geen probleem). Deze 'sessies' leidden vaak tot nieuwe inspiratie en na 

afloop had ik altijd het gevoel dat er weer een flinke stap gezet was op het pad leidend tot 

dit proefschrift. Nadat alle hoofdstukken in één map verzameld waren, ging het heel snel 

en binnen korte tijd was het proefschrift klaar om aan de leescommissie aan te bieden. 

Uw pragmatische aanpak heeft zeker tot deze snelle afronding bijgedragen. 

Johan Hulsman, ook jij hebt een grote bijdrage geleverd aan de totstandkoming van dit 
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proefschrift. Zonder jouw uitstekende verzorging van het plantmateriaal zouden de 

kasexperimenten niet zo goed geslaagd zijn. Door de ongedwongen sfeer die er bestond 

heb ik het altijd prettig gevonden met je samen te werken. Harry Verhoeven en Rene 

Smulders wil ik bedanken voor hun hulp bij de flow cytometric bepalingen. Oene Dolstra, 

bij jou kon ik altijd aankloppen met mijn vragen over koolzaad en (cyto)genetica, waar

voor ik je zeer erkentelijk ben. Graag wil ik hier vermelden dat de meeste foto's in dit 

proefschrift tot stand zijn gekomen door de vakkundigheid van de collega's van de afde

ling Fotografie en Beeldverwerking van SC-DLO, Peter Stad, Joop van Os, Frank Klinge 

en Dick Vermeer. 

Het was wel even wennen in het begin als veredelaar tussen moleculaire biologen, maar 

Moleculaire Biologie bleek een leuke afdeling en het werken binnen deze afdeling gaf mij 

de gelegenheid mijn kennis en ervaring uit te breiden. De goede sfeer en de belangstelling 

en betrokkenheid van mijn afdelingsgenoten heb ik altijd als heel prettig ervaren. Zonder 

anderen tekort te doen wil ik hier mijn kamergenoten Jos en Fred bedanken voor de 

gezellige tijd en Bas en Andy voor het begeleiden van mijn eerste schreden op het 'mole

culaire pad'. 

Het voltooien van een proefschrift lukt niet zonder de steun van thuis. Angélique, jij bent 

degene die mij door de 'dipjes' heen hebt geholpen en heel wat huishoudelijke taken voor 

je rekening hebt genomen, zodat ik 's avonds achter mijn bureau kon gaan zitten. De vele 

zondagen waarop we in de kas samen koolzaad hebben staan kruisen zal ik niet vergeten. 

Het klinkt misschien als een cliché, maar jouw inbreng in dit proefschrift is, ofschoon 

niet zo zichtbaar, heel groot geweest. Bedankt! 
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