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Bibliographie abstract 

Fusarium head blight (FHB) in wheat in North-West Europe is mainly caused by the fungus Fusarium 

culmorum. Toxin contamination of the seeds is one of the greatest hazards of the pathogen. Introducing 

haploidisation and in vitro selection into the wheat breeding process might accelerate the release of new 

FHB-resistant cultivars. For anther culture ability, inheritance studies on crosses between wheat cultivars 

revealed that additive effects accounted for the majority of the genetic variation and that up to six green 

plants per 100 anthers could be achieved. Testing different types of plant material on medium containing 

FHB-toxins showed that the toxin Deoxynivalenol inhibited growth of all types. The FHB-resistance of the 

doubled haploid (DH) genotypes, obtained after colchicine treatment of anther culture derived haploids, 

was assessed in the.field for four consecutive years. Several DH-lines were identified that showed a 

resistance greater than the most resistant parent, thus offering good possibilities for practical wheat 

breeding. 
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Stellingen 

1. Succes' in antherencultuur van tarwe wordt, zoals veel auteurs beweren, niet bepaald door 
de hoeveelheid embryo's en calli die gevormd worden, maar meer door het aantal antheren 
dat een androgenetische respons geeft. 

Dit proefschrift 

2. In tarwe is voldoende genetische variatie tegen Fusarium aarziekte aanwezig. 
Dit proefschrift 

3. Om de resistentie tegen Fusarium aarziekte zo compleet mogelijk te maken verdient het 
aanbeveling de resistentie-genen uit de verschillende resistentiebronnen te accumuleren in 
de toekomstige tarwecultivars. 

Dit proefschrift 

4. Fusarium aarziekte is een van de meest gevaarlijke pathogenen op tarwe en mais, twee van 
de drie belangrijkste voedselgewassen in de wereld. 

Dit proefschrift 

5. Research on Fusarium Head Blight concerns us all. 
This thesis 

6. Indien door gebrek aan financiering onderzoek wordt stopgezet, hoeft dit niet te wijten te 
zijn aan de kwaliteit van het betreffende onderzoek, maar kan ook een gevolg zijn van een 
zekere 'modegevoeligheid' van de financierende instanties. 

7. De uitspraak "Hoe rnooier het jaarverslag, des te lager de winst" gaat gelukkig niet altijd op. 
Mare van Opijnen, Intermediair 32 (37), 13 september 1996. 

8. Bij het schrijven van een nieuw onderzoeksvoorstel kan het uitvoeren van een 
octrooirecherche, naast het uitvoeren van de gebruikelijke literatuurrecherche, de aanvrager 
een hoop ellende besparen. 

9. Leden van een amateurvereniging onderscheiden zich vaak niet van professionals door een 
verminderde inzet of een lagere kwaliteit van het geboden product, maar veel meer door 
het feit dat zij er niet voor betaald worden. 

10.Kunst is de vertekening van de werkelijkheid die ons meer de werkelijkheid doet realiseren. 

11 .Wie van tuinieren houdt, geeft blijk van een positieve kijk op de toekomst. 

12.Nothing is more revealing than movement 
Martha Graham, 1935. 

Stellingen behorende bij het proefschrift: "Fusarium Head Blight resistance in wheat using the 
in vitro androgenic approach", door M.B.M. (Marcel) Bruins. 

Wageningen, 31 maart 1998. 



Introduction 

Chapter 1: General introduction 

Underlying thesis presents the development of an in vitro method to improve resistance to Fusarium 

Head Blight (FHB) resistance in wheat (Tritkum aestivum L). This important disease results in serious yield 

and quality losses throughout the world and can only be controlled by means of resistance. However, 

selection for resistance is at present only feasible under field conditions, and the development of new 

resistant cultivars, especially when using sources of exotic germplasm containing resistance genes, takes 

many years. The development of an efficient in vitro selection technique, combined with the routine 

application of androgenesis and subsequent doubling of the chromosomes, would make the development 

of resistant varieties more feasible. 

This thesis describes the experiments to develop such methodologies in relation to eachother, since if 

in vitro selection could be applied to the haploid stage of androgenesis, such a combination would result 

in a very considerable gain in efficiency and development time of resistant varieties. 

In this first chapter the present knowledge about the disease in wheat, and the state of the art for both 

in vitro selection for disease resistance and in vitro androgenesis are discussed. 

1.1 Fusarium Head Blight in wheat 

At present, wheat is grown on about 230 million hectares in the world, being the most widely grown 

food crop in the world. Wheat diseases, both in temperate and tropical regions, can be severe, and 

because wheat is one of the most important food sources in the world, it is important to find control 

measures. For economic and environmental reasons, host plant resistance is the most appropriate and 

sustainable disease control method (Dubin & Rajaram 1996). FHB is mainly caused by the fungi Fusarium 

culmorum, (W.G. Smith), perfect state unknown and Fusarium graminearum Schwabe, with perfect state 

Gibberella zeae (Schw.) (Mesterhazy 1995), while in the cooler regions of North-Western Europe, F. 

culmorum dominates. The inoculum of the fungi is seed-borne or soil-borne and infected plant material 

of cereals and grasses can be used as such. The fungi can also cause seedling blight and root, crown and 

foot rot. Light brown watersoaked spots on the glumes of the spike are the first symptoms of the disease. 

Subsequently, in a short period, the infected spikelets dry up and look like ripe spikelets in an otherwise 

green ear. Infection of the crop with these fungi can cause considerable yield losses, more than infection 

by other fungal species like Septoria glume blotch (Stagonospora nodorum Berk.XTvaruzek etal. 1996). 

It was also found that gluten from wheat kernels, damaged by Fusarium, contained a lower proportion of 
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glutenins than did healthy kernels. However, no qualitative and quantitative differences in gliadins 

attributable to Fusarium damage were apparent. The effect on loaf volume appeared to be cultivar 

dependent, ranging from cultivars that were virtually unaffected to cultivars that showed a drastic decline 

in loaf volume (Dexter et al. 1996). Infection with the pathogen may also contaminate the seeds with 

toxins, e.g. deoxynivalenol (DON), nivalenol (NIV) and acetyl-deoxynivalenol (ADON), with the isomers 3-

ADON and 15-ADON. Contents of DON of up to 48 mg kg"' wheat seed (Snijders & Perkowski 1990) and 

up to 500 mg kg"' maize seed (Lew et al. 1991) have been found. These mycotoxins have phytotoxic 

effects on wheat plants or parts thereof. Besides phytotoxic effects, these toxins are also hazardous to 

humans and animals. 

1.1.1 Toxicity 

DON, ADON and NIV belong to the group of trichothecene mycotoxins, which are a group of over 148 

structurally similar fungal metabolites produced by species of Fusarium and related fungi, and are capable 

of producing a wide range of toxic effects. DON is found worldwide in crops and is an important safety 

issue because of its toxicity and because it is a very common contaminant of grain. DON is in some reports 

the only detected toxin (Snijders & Perkowski 1990), but in any case the most abundant toxin in grain 

(Abbas etal. 1989, Chelkowski 1989, Langseth & Elen 1996, Logrieco etal. 1990, Maier & Oettler 1996) 

compared with ADON and NIV, which are however, more toxic. The two isomers of ADON are about twice 

as toxic as DON (Mirocha etal. 1989) and NIV is even about 10 times more toxic than DON (Joffe 1986). 

Because DON is by far the most important safety issue, the research reported in this thesis focused on 

DON. Mycotoxins in the trichothecene class are true secondary metabolites and are produced" when the 

fungus suffers a limitation of a specific nutrient, in this case nitrogen (Miller & Blackwell 1986). 

At the cellular level in humans, as well as in animals and plants, the main toxic effect is the inhibition 

of protein synthesis via binding to the ribosome. In animals, moderate to low ingestion of toxin can cause 

a large number of not clearly defined effects, which are associated with reduced performance and immune 

function. The most evident effect at low dietary concentrations is the reduction in food intake (anorexia), 

while higher doses cause vomiting. It is also known that DON can alter brain neurochemicals. Animals that 

are fed on low to moderate doses are able to recover from the initial weight losses, while higher doses 

induce more long-term changes in the feeding behaviour. At lower dosages of DON, hematological, clinical 

and immunological changes are also temporary and decrease when compensatory and adaptation 

mechanisms are established. Due to differences in the metabolism of DON, swine are more sensitive to 

DON than mice, poultry and ruminants, with males being more sensitive than females (Rotter etal. 1996). 

DON alters the functioning of the normal immune system, where the toxin can be immunosuppressive 

or immunostimulatory, depending on the dose and duration of the exposure. 

Immunosuppression can be explained by the inhibition of translation and immunostimulation can be related 

to interference with normal regulatory mechanisms. 

10 
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In vivo, DON suppresses the normal immune response to pathogens and at the same time induces auto

immune like effects which are similar to human immunoglobulin A (IgA) nephropathy. Other effects include 

the superinduction of cytokinine production by T-helper cells (in vitro) and the activation of macrophages 

and T-cells to produce a proinflammatory cytokinine wave that is analogous to that found in 

lipopolysaccharide-induced shock (in vivo). These effects have been intensively studied in mice, but several 

investigations suggest that immunotoxic effects are also likely in domestic animals (Rotter ef ai 1996). 

Similar effects can also occur in humans. Immediate symptoms of poisoning with a member of the 

trichothecene toxin group are: vomiting, irritation of the skin, diarrhea, food refusal, hemorrhages, neural 

malfunctioning,. miscarriages and eventually death (Joffe 1986, Kuiper-Goodman 1985). Also the 

suppression of the immune system is an important side effect that should not be disregarded (Miller & 

Atkinson 1987). Chronic intake of small amounts of these toxins, direct skin contact with infected plants 

(Snijders ef ai 1996) and even inhalation of the spores of these fungal species should be avoided (Trenholm 

etal. 1989): 

Tolerable daily intakes for DON were estimated by Kuiper-Goodman (1985) for adults at 3.0//g DON 

kg"' body weight and for infants at 1.5 //g kg"' body weight, respectively. Current guidelines for tolerable 

daily intake of DON are'in Canada 2 ppm in uncleaned soft wheat and 1 ppm for infant foods. In the USA, 

tolerance limits are 1ppm for bran, flour and germ intended for human consumption (Trucksess 1995). 

As an example we calculated that, based on these guidelines, thé wheat crop in 1979 and 1982 in the 

Netherlands contained DON-concentrations well above these limits, clearly underlining the need for more 

resistant cultivars, with lower contamination levels of the grain. 

1.1.2 Resistance 

From a crop husbandry point of view, no practical chemical treatments are effective against this disease 

in wheat (Bai & Shaner 1994, Milus & Parsons 1994). Fungicide treatment of seeds did generally improve 

germination and emergence but efficacy is dependant on cultivar and temperature at germination (Gilbert 

& Tekauz 1995). Attempts to avoid FHB by varying planting date were not succesfull (Wlersma etal. 1996) 

and it seems that the most efficient way to prevent this disease is to grow resistant cultivars. In wheat, a 

wide range of genetic variation for FHB-resistance has been found, from resistant to very susceptible, but 

immunity has not yet been found. The number of genes involved have been estimated from one to six 

(Liao & Yu 1985a, Snijders 1990a). These resistance genes are thought to be located on the 4A, 4D, 5A, 

7A and the 7B chromosome of bread wheat. The effects of the individual genes can be quite large and 

several publications indicate an additive inheritance, with the dominance effect also being statistically 

significant (Liao & Yu 1985a 8d 985b, Snijders 1990a). Takeda 8i Wu (1996) performed both diallel analysis 

and top cross analysis and showed that the direction and degree of dominance varied with parental 

combinations of diallel and top-crosses, clearly indicating that the genetic system behind the resistance 

11 
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is not simple. Also on the fungal side, the genetic structure is not completely elucidated. Miedaner ef a/. 

(1996) tested 42 isolates of F. culmorum on a winter rye population. All isolates appeared to be 

pathogenic, but differed in their ability to cause disease (aggressiveness). Significant isolate-environment 

interaction was found, but accounted only for 14% of the total variance, and the correlations for 

aggressiveness across environments ranged from 0.6 to 0.8 (p=0.01). However, the aggressiveness of the 

isolates did not depend on their geographic origin (Eeuwijk et al. 1995), year of isolation, host species 

habitat or host organ from which they were isolated. It appeared that F. culmorum isolate IPO 39-01, 

which was used in most of the CPRO-DLO research and which was isolated in 1966, was still one of the 

three most aggresssive isolates. On the basis of RAPD's, cluster and principle coordinate and PCR marker-

based analyses, Miedaner eta/. (1996) concluded that aggressiveness of F. culmorum was inherited as a 

complex trait. 

Breeders could employ 'passive' and 'active' resistance mechanisms in their attempts to create resistant 

varieties. 'Passive' resistance encompasses components as plant height, presence of awns, spikelet density 

and escape mechanisms, whereas 'active' mechanisms comprises physiological processes (Crute etal. 1985) 

e.g. resistance against initial or kernel infection or to spread of the pathogen (Schroeder & Christensen 

1963), resistance to the toxins by decomposing them (Miller etal. 1985, Miller & Arnison 1986, Snijders 

& Perkowski 1990) and tolerance. Tolerance is generally defined as the ability of the plant to endure the 

effects of levels of parasitic infection and disease, which, if they occurred at equivalent levels in other plants 

of the same or similar species, would cause greater impairment of growth or yield and is in this way an 

active resistance mechanism (Clarke 1986, Mesterhazy 1995). Genotypes with awns appeared to be more 

susceptible to head blight when tested under natural epidemic conditions in the field, but this trait did not 

influence head blight severity in artificial inoculations. Dwarf genotypes were more severily infected by head 

blight than tall genotypes under natural conditions, but genotypes of different plant height classes were 

similarly susceptible after artificial inoculations. A high positive correlation between head blight resistance 

and plant height or spike length was found (Liao & Yu 1985b). If selection of dwarf and awned genotypes 

cannot be avoided, the higher susceptibility caused by awns and dwarfness under natural epidemic 

conditions can be decreased by a higher level of physiological resistance like preventing or slowing down 

the initial infection, as variability in physiological resistance is available. In later generations, traits like 

percentage of seed infection or tolerance can be studied by additionally measuring yield reduction and 

grain weight. Stability of disease reaction appears to be connected with resistance level, the most resistant 

genotypes are the most stable, and the most susceptible ones tend to have more unstable reactions in 

different epidemic conditions (Mesterhazy 1995). 

Visual assessment of the head blight infection after artificial inoculation is the most frequently used way 

to screen for resistance (Mesterhazy 1995) and is, on the basis of heritability estimates, considered better 

than screening for yield reduction (Snijders 1990c). Significant transgression of Fusarium resistance of the 
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parental lines was observed in progenies and were considered to be genetically fixed (Snijders 1990b, 

Takeda & Wu 1996). Accumulation of resistance genes is therefore possible and this offers opportunities 

for wheat breeding. The resistance can be transferred from unadapted genotypes to commercial cultivars 

in a backcross breeding programme. 

Resistance to FHB appears to be based on several, probably minor genes and these resistance genes can 

be combined and/or can be transferred to genotypes with good agronomical values like high yield or 

quality. This is usually carried out using a backcross programme. Using doubled haploids can accelerate the 

transfer of the resistance genes by homozygotisation of the F,-lines with the desired resistance genes and 

backcross them again. The best lines from the first backcross generation can after haploidisation produce 

genotypes with the desired agronomical traits and resistance. Such a recurrent haploid selection 

programme is in theory an efficient procedure to transfer quantitative traits to cultivars and shortens the 

process of the creation of new cultivars in self-pollinated species like wheat (Foroughi-Wehr & Friedt 1984, 

Foroughi-Wehr & Wenzel 1990, Gallais 1988, Griffing 1975). 

1.2 In vitro androgenesis 

1.2.1 Introduction 

Androgenesis is the outgrowth of the male reproductive cell into a haploid plant, and with gynogenesis, 

the female reproductive cell grows out. Androgenesis and gynogenesis are abnormalities occurring in 

natural fertilisation processes. Haploid plants formed in this way have been found in more than 100 

angiosperm species and since we have learned how to stimulate this process, gametogenesis has become 

a valuable tool in breeding programmes. In most species, such as the cereals, androgenesis is the most 

efficient way of producing haploid plants (Palmer et al. 1996), however in some species gynogenesis is 

more efficient, e.g. in sugar beet (Pedersen & Keimer 1996) and in onion (Keller & Korzun 1996). 

In normal pollen development, the young microspores originate from the pollen mother cells after 

meiotic divisions. The term microspore is used for male reproductive cells that contain only one nucleus. 

Normally the microspores undergo a pollen mitosis in which the nucleus divides asymmetrically and 

binucleate pollen is formed. In' species with trinucleate pollen, one of the nuclei divides once again in the 

so called second pollen mitosis. This process is called gametophytic development. In androgenesis in 

microspores, symmetric divisions of the nucleus take place. This process is called sporophytic development. 

To induce this change in development, usually a form of stress is needed. 

Androgenesis can be induced in two ways: with anther culture and with microspore culture. 

In anther culture, the complete anther with immature microspores and pollen grains is placed on a nutrient 

medium. A form of stress, such as low temperature or starvation, was already applied to the plant 

beforehand or is applied later after transfer of the anthers to the medium. Part of the pollen grains start 

13 
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to divide in a sporophytic way and form an embryo or callus. After a certain period,, four to six weeks in 

wheat, the haploid embryos and/or callus burst out of the anther. The induction frequency (= percentage 

embryos per 100 excised anthers) differs from crop to crop and from genotype to genotype. The callus or 

the embryos can be made to regenerate into plants. Some species like Nicotiana tabacum or Datura innoxia 

have a fast outgrowth to plants. It takes three to four months from anther inoculation to a mature plant. 

With Paeonia the first step of anther inoculation until the appearance of the first plantlets takes four to 

six months (Sunderland 1974). 

With microspore culture, the immature microspores are isolated from the anther and are placed in or 

on nutrient medium. The isolation can be carried out in two ways: mechanically or by the so called 'shed 

pollen' technique. Stress is not applied to the anthers, but to the isolated microspores. After isolation and 

stress treatment, the microspores are cultured under non-stress conditions. Embryogenesis takes place in 

the same way as in anther culture. 

Most research has been carried out on anther culture and this technique is most widely used in practice. 

Anther culture is an attractive method to produce haploid plants, because the procedure is relatively simple, 

the induction into sporophytic divisions is relatively easy and in some species high induction frequencies 

occur. One of the advantages of anther culture above microspore culture can be the in some species 

bénéficiai influence of the anther wall on sporophytic outgrowth (Ouyang 1986). 

1.2.2. History of androgenesis 

In 1953 for the first time it was achieved to induce haploid callus from mature pollen grains of Ginkgo 

biloba (Tulecke 1953). In the years thereafter pollen of more and more species were cultured. However, 

scientists were only capable of producing undifferentiated callus, that could not be induced to form shoots 

or roots. In 1964, the first embryos were formed in anther culture of Datura innoxia and haploid plants 

were regenerated (Guha & Maheshwari 1964). In the following years, success in the field of anther culture 

was achieved in a number of important crops: in 1967 in tobacco, 1968 in rice and in the 1970-ties in 

barley, wheat, triticale, rye, maize, Brassica spp., tomato, potato. Capsicum, Asparagus, eggplant, and 

Pelargonium (Sunderland 1974, Wenzel er al. 1985). At the moment it is possible to produce haploid plants 

via androgenesis in more than 247 species, belonging to more than 88 genera in 34 families (Sangwan & 

Sangwan-Norreel 1990) and these numbers are still increasing. 

The first doubled haploid (DH) wheat cultivars that were accepted on variety lists were Jinghua no. 1 

in China (Hu 1986) and Florin in France (De Buyser et al. 1987). In China a large number of DH wheat 

cultivars has been released in agriculture. 

In microspore culture, the first successes were obtained with the 'shed pollen' technique, usually 

preceded by a preculture in the anthers. Plants were produced in tobacco (Nitsch & Norreel 1974, 

Sunderland & Roberts 1977), rice (Chen era/. 1980, 1981), wheat (Wei 1980, 1982), barley (Wei et al. 

1986) and maize (Coumans era/. 1989, Pescitelli etal. 1989,1990). For most crops, mechanical isolation 
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of microspores has not yet been studied thoroughly. Most research and subsequent success on isolated 

microspore culture of cereals has been carried out on barley. Also in maize and rice the technique proved 

to be relatively succesful, whereas for wheat only a few succesful reports exist (Jahne & Lörz 1995). 

1.2.3. Applications of androgenesis 

With androgenesis haploid plants are formed. Doubling of the number of chromosomes can take place 

spontaneously in culture, or can be induced by chemical agents (colchicine, oryzaline). The DH-plants are 

extremely useful in plant breeding research. Important applications are: 

- The fast production of homozygous plants. 

The doubled haploid plants are completely homozygous and find their equivalent in inbreeding lines. A 

long inbreeding process is no longer necessary, and a breeding programme can be shortened 

substantially. 

- Genetic analysis at crossings. 

Recessive alleles in the DH-material are no longer masked by dominant alleles, and in this way DH-plants 

present a more accurate picture of the variation in the parental gametes. These recessive alleles can be 

selected for directly, because of their homozygous state. 

- Genetic analysis at the DNA-level. 

The DNA of both sets of homologues is the same and this facilitates genetic studies with DH-lines, e.g. 

molecular marker research and linkage studies (Bohuon etal. 1996, Dion etal. 1995, Kjaer etal. 1995, 

Lefebvre & Palloix 1996, Melchinger 1990). Specific traits can more easily be transferred. 

- Genetic modification through transformation or in vitro selection. 

Microspores or microspore derived embryos of cereals can be subjected to an in vitro selection system 

(Fadel & Wenzel 1993, Sari-Gorla etal. 1994) or can be transformed by direct DNA-transfer (Chair ef 

al. 1996, Harwood etal. 1995, Jardinaud etal. 1995, Loeb & Reynolds 1994, Ritala etal. 1995) or by 

an Agrobacterium vector system (Creissen et al. 1990). The Agrobacterium system, however, is still not 

working optimally in gramineous species (Jahne éf al. 1995). 

Although there are many advantages, there are still many problems that limit the use of the technique: 

- Up till now, the method has been restricted to a few families like the Solanaceae, Cruciferae and the 

Gramineae. Specifically species in the Leguminosae and the Compositae family are still quite recalcitrant 

(Sangwan & Sangwan-Norreel 1990, Theiler-Hedtrich & Hunter 1996). Also in woody angiosperms and 

in gymnosperms, progress is slow (Baldursson & Ahuja 1996). 

- There is a strong genotype effect, some genotypes being much more amenable to androgenesis than 

others. This limits the application to a restricted number of genotypes of a species. 

- Up tot 100-900 embryos per anther can be achieved (Dunwell & Cornish 1985), but estimates of the 

number of microspores per anther range from 10,000 to 17,000 or more (Chuong & Beversdorf 1985, 
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Pan ef al. 1991 ) indicating that the frequency of embryo formation is relatively low. This means that on 

average only a small percentage of the microspores undergoes androgenic development, and of this 

small part, only a small proportion regenerates into mature green plants, due to loss of plants during 

the regeneration process. Sometimes no plants regenerate at all (Regner 1996). 

- It is stated that there is premature and possibly unwanted selection pressure at the microspore level 

(Devaux 1992, Foisset & Delourme 1996). 

- In certain species structurally and physiologically abnormal pollen embryos occur (Lashermes ef al. 1994, 

Schumann ef ai 1991). 

- In certain species the régénérants are genetically instable (Logue 1996). 

- In certain species a large number of non-haploids is formed. This latter phenomenon can be caused 

through fusion of nuclei, outgrowth of anther wall cells, or through endopolyploidisation (Chen ef al. 

1984, Chu ef al. 1978, Hidaka 8c Omura 1989, Lee & Chen 1987, Rose ef al. 1987, Vuteva & Zagorska 

1990). 

- In cereals albino régénérants are a major problem. 20-90% Albino régénérants are reported in wheat 

(Andersen etal. 1987, Zhou & Konzak 1992), 30-99% in barley (Powell 1988, Kasha ef al. 1990), 20-

60% in rice (Chen 1986, Quimio & Zapata 1990) and 70-80% in triticale (Charmet & Bernard 1984). 

1.2.4. Anther culture in wheat 

The method used for anther culture of wheat is comparable to that used in most other crops. In the 

following section, the method for wheat will be described in more detail, and the factors important for the 

success of androgenesis are identified: 

- The genotype of the donor material. 

Embryo formation and plant regeneration are to a great deal genotype dependent. In wheat heritabilities 

for both traits were estimated at 0.6 to 0.7 (Lazar ef al. 1984). The genes responsible for in vitro 

androgenesis are located on the nuclear genome and not on the cytoplasmic genomes (Bullock ef al. 

1982). Genotypes with the TB/1R wheat-rye translocation chromosome all have a higher in vitro 

response (Foroughi-Wehr & Zeiler 1990, Henry & De Buyser 1985, Müller ef al. 1990). For regeneration, 

regions on chromosomes 2D and 5A are involved in green plant regeneration (De Buyser ef al. 1992, 

Szakacs etal. 1988) while regions on chromosomes 1B (long arm) and 5B are involved in albino plant 

regeneration (Agacheefa/. 1989, De Buyser ef al. 1992). 

- Growth of the donor material. 

The growing conditions of the donor plants preceding the moment of anther harvest have a large 

influence on embryo formation. In wheat, anthers from field plants in general give a better response 

than anthers from plants grown in the greenhouse (De Buyser & Henry 1986, Ouyang 1986). However, 

the growing conditions of field plants can not be controlled, and this may explain why some authors 

report a higher and more reliable response from greenhouse plants (Bjornstad ef al. 1989). 
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As no microscopic difference in morphology or developmental stage can be found between microspores 

of different seasons, it is stated that the growing conditions probably influence the endogenous status 

of the donor plants (Wenzel & Foroughi-Wehr 1984). Critical factors are: light intensity, photoperiod, 

nutrient supply and C02 concentration. 

- Developmental stage of the microspores. 

Embryos can be obtained from microspores that are in the meiotic stages until the binudeate stage in 

pollen development. In wheat the late uninucleate stage gives the highest number of embryos (He & 

Ouyang 1984). 

- Stress factors. 

To achieve the shift from a gametophytic to a sporophytic development, various stress treatments are 

possible: low temperature (4-7°C), high temperature (32-35°C), starvation, centrifugation, spraying with 

ethrel, radiation, lowering of the atmospheric pressure or osmotic stress (Wenzel & Foroughi-Wehr 1984, 

Sangwan-Norreel etal. 1986). However, the reported results achieved with these methods are in many 

cases not reproducible by other research groups or contradictory (Sunderland 1974,1983). Most applied 

in anther culture of wheat is a low temperature treatment: the cut wheat spikes are stored on tap 

water for a period ranging from 3 to 14 days at a temperature of 4°C to 7°C (Datta & Wenzel 1987, 

Lazar er al. 1985). However, several publications report an inhibitory effect of this cold pretreatment on 

anther response and callus productivity (Ghaemi et al. 1995, Karimzadeh er al. 1995, Marsolais et al. 

1984, McGregor & McHughen 1990). 

- Induction medium. 

The optimal medium varies between species and also within the species. For wheat the Potato-2 medium 

(P2), to which a* potato extract has'been added, gives good results (Chuang er al. 1978). Other 

gramineous species give high embryo yields on N6-medium (Chu 1978), B5-medium (Gamborg 1970), 

or MS-medium (Murashige and Skoog 1962). The good results of media with potato extract (P1, P2, P4) 

are ascribed to the presence of a large diversity of amino acids (Hughes 1958). A disadvantage of media 

with added organic components is a lower reproducibility of results. 

Besides agar, also agarose is used to gellify the medium (Aldemita & Zapata 1991). Gelrite (Johansson 

& Calleberg 1989), PEG (Mohmand & Nabors 1991 ) en Ficoll-400 (Datta er al. 1986) are used to increase 

the viscosity of the medium. At these higher viscosities, the anthers float on top of the medium and in 

this way a better oxygen supply is assured. Also fluid media, without gellifying agents are used (Henry 

& De Buyser 1981, McGregor & McHughen 1990). 

As carbohydrate source, usually sucrose is used in a relative high concentration, e.g. for wheat anther 

culture 9%. Maltose also gives good results, especially with barley (Last & Brettel 1990, Orshinsky etal. 

1990). 

In the media in general the composition of the anorganic nutrients (macro- and micro salts) does not 

vary much. Na2FeEDTA in almost all media is used in a concentration of 10"* M (Nitsch & Nitsch 1969). 
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For anther culture of most cereals, the growth regulators 2,4-D or 6-Benzylamino-purine (BAP) are added 

(Bhaskaran & Smith 1990, Hoekstra et al. 1992). Of the many tested additives, only glutamin (Henry & 

De Buyser 1981), myo-inositol, kinetin and serin appear to have a positive effect (De Buyser & Henry 

1986, Hassawi etal. 1990). 

- Induction conditions. 

For anther culture induction temperatures between 25°C and 35°C appear to be optimal (Huang 1987). 

Ouyang etal. (1983) reported that a higher induction temperature at the start of the induction (8 days 

32°C), followed by growth at 25°C, gives in certain cases a higher embryo yield. 

The influence of light is still not clear, although higher embryo yields seem to be achieved in complete 

darkness as compared to induction in the light (Bjornstad et al. 1989). 

- Regeneration medium and <onditions. 

The mostly used regeneration medium is a hormone free MS medium, but for wheat the 190-2 medium 

(Zhuang & Xu 1983) is also frequently used. The sucrose concentration in these two regeneration media 

is decreased to 2% to 3%. Liang etal. (1987) developed a medium on which induction of sporophytic 

development as well as regeneration was possible. Pauk et al. (1991) developed a three and four step 

system in which recalcitrant calli can be brought to regeneration by transferring them to media with 

other hormone concentrations. In this way 4% to 14% more régénérants can be produced. The addition 

of silver nitrate in the medium, as an inhibitor of ethylene formation, enhances shoot formation 

(Purnhauser ef al. 1987). In wheat, regeneration usually takes place at a 16 hour light period and at a 

temperature of 25°C till 27°C. 

- Doubling of the chromosomes. 

Colchicine is most frequently used for chromosome doubling. Usually the meristem of the plants is 

submerged for a few hours in a colchicine solution of 0.05%. Attempts were made to treat in vitro 

material with colchicine, with mixed succes (Barnabas et al. 1991, Szakacs & Barnabas 1995, Zhuang 

& Xu 1983). For humans, colchicine is carcinogenic and therefore, to protect laboratory staff, also other 

mitosis inhibitors (oryzalin, trifluralin) were tested for chromosome doubling. However, these appeared 

less effective (Hassawi & Liang 1991). In maize amiprophos methyl (APM) and pronamide showed an 

efficient genome doubling (Wan etal. 1991). 

1.2.5. Isolated microspore culture in wheat 

Anther culture has several advantages over isolated microspore culture, however, in some cases 

microspore culture is preferred above anther culture. Considerations to choose microspore culture are: 

- In general, isolated microspore culture proceeds a lot faster and takes less work, compared to anther 

culture. For research purposes it is important that the effect of certain treatments in an experiment can 

be seen immediately. 

- There is no negative effect of the anther wall that can deteriorate and have a detrimental influence ' 
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(Huang 1986). 

- Also for in vitro selection experiments, single cells are preferred to multicellular structures as a more 

uniform selection pressure (e.g. toxin tolerance) is secured and the microspores are not shielded by the 

anther wall (Gustafson er al. 1995). 

- In some species like barley and rape seed, larger numbers of embryos can be produced compared to 

anther culture (Palmer ef al. 1996). 

- In isolated microspore culture, all formed plants truly originate from microspores, whereas in anther 

culture there is the possibility that plants regenerate from the outgrowth of cells of the anther wall. 

The isolation of the microspores can be carried out in two ways: mechanically or by the so called 'shed 

pollen' technique. With mechanical isolation the anther wall is artificially ruptured and the microspores are 

released. With the 'shed pollen' technique the anthers are placed in a medium in which the anthers burst 

open after a few days and the microspores are released. Shed microspore culture has as advantage over 

mechanical isolation that it avoids complicated isolation and purification procedures and possible damage 

to the microspores. However, the shed microspore technique is not completely comparable to mechanical 

isolation as the microspores are still in contact with the anther for a certain period. It is suggested that in 

liquid medium the floating anthers produce a number of conditioning factors (Köhler & Wenzel 1985) and 

the shed microspore technique shows more resemblance to anther culture than to isolated microspore 

culture. With the shed pollen technique in wheat, green régénérants were obtained, however too low to 

be of use for in vitro selection experiments (Kasha ef al. 1990). Isolating the microspores mechanically 

proved to be more successful (Gustafson ef al. 1995, Mejza ef al. 1993, Touraev ef al. 1996, Tuvesson & 

Ohlund 1993). 

With microspore culture the stress is not applied to the anthers, but to the isolated microspores e.g. 

starvation, low or high temperature (Mejza ef al. 1993, Touraev ef al. 1996). After isolation and the stress 

procedure, the microspores are cultured under non-stress conditions. Such a procedure has been shown 

to be effective for tobacco (Garrido et al. 1991 ) or barley (Hoekstra ef al. 1992). A part of the microspores 

will divide sporophyticalry and will form callus and/or embryos. In some species the carbohydrate 

concentration is higher than in anther culture, e.g. for microspore culture of cabbage, lily or tulip 13% 

sucrose proved to be optimal (De Buyser & Henry. 1986, Bulk ef al. 1994). 

Conditioning the culture medium with immature ovaries (Touraev ef al. 1996) and centrifugation over 

a 20% maltose solution (Mejza ef al. 1993) or a Percoll gradient (Touraev ef al. 1996) provided a more 

homogeneous and viable microspore population and a higher number of embryos, whereas a sucrose 

centrifugation step proved to have a detrimental effect (Gustafson ef al. 1995). Also the density of the 

microspores appeared to be important, with optimal microspore densities ranging from 10-20 x 103 

microspores ml'' (Touraev ef al. 1996), 50-100 x 103 microspores ml'' (Mejza ef al. 1993, Tuvesson 8i 

Ohlund 1993) to 200 x 10J microspores ml-1 (Gustafson ef al. 1995). 
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As conclusion it can be stated that green wheat plants have been regenerated from isolated microspore 

culture, as has been reported in several publications, and nowadays also for recalcitrant wheat genotypes 

isolated microspore culture can be successful (Touraev et al. 1996). However, the technique is not yet 

efficient enough to compete with anther culture for the production of doubled haploids that can be used 

in a breeding programme. 

7.2.6. Androgenes!* in practical breeding practice 

For breeding companies, the main advantage of anther culture is the production of doubled haploid, 

homozygous lines. The gain in time in the breeding process can be substantial, especially in crops with a 

relatively long growing season (winter wheat) and with biannual and perennial crops. In crops with a short 

growing season, other methods can be more attractive, e.g. the Single Seed Descent (SSD) method. An 

example for the gain in time in winter wheat is given in Table 1. The table shows that the minimal gain 

in time is two years. This gain in time compared to conventional breeding methods has also been described 

for spring and winter barley (Laubach, 1991). For the French DH-cultivar Florin it took seven years from 

the first cross between the parental lines until acceptance for the variety list. With the conventional 

pedigree method such material would have been in the F,-generation. For Florin it meant a gain in time 

of four years. 

As donor generation for the use of anther culture in a practical breeding programme usually F,- or F2-

material is used. A disadvantage of taking F,-seed as donor material is that the maximum of non-desired 

genes, e.g. susceptibility to certain diseases is included, whereas when a F2-population is used as donor 

material, part of the undesired genes are discarded, but also a part of the gain in time, compared to a 

conventional breeding programme, is lost. An extra problem is that the first field generation (DH0-lines) 

tends to flower relatively open as a result of the high level of inbreeding, showing a relatively high level 

of cross pollination. In this way a large part of the acquired homozygosity can be lost again. 

The amount of work needed for the production of DH-lines is shown in Table 2. For the production of 

500 DH-lines of barley, Luckett & Smithard (1990) needed no more than 23 days of anther culture, but 

only with a good responding genotype (proportion responding anthers = 0.68). This importance of the 

proportion of responding anthers shows again the genotype dependency. When averages are taken of a 

randomly chosen collection of parental lines and crosses, like it was used for the Fusar/um-resistance 

research programme at CPRO-DLO, the proportion of responding anthers is lower compared with a case 

when only one, good responding, genotype is used (Table 2). 

A good economic evaluation of anther culture into the conventional breeding programmes is difficult 

to make and the decision to incorporate anther culture is therefore generally based on personal 

preferences. Most companies with a cereal breeding programme have experimented with anther culture 

of wheat or barley or have contracted the method out to specialised institutions or other companies, e.g. 
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the Resistenzlabor der Saatenunion, Leopoldshöhe, Germany or Florimond Desprez, C appelle en Pévèle, 

France. Ding et al. (1995) estimated the costs of producing anther culture derived DH-lines from Australian 

wheat germplasm to range from $A 1.40 to $A 85.52 per DH-line for the genotypes with the highest and 

lowest cultureability indices, respectively. If selfed seeds were to be produced for shipment to the customer, 

the costs would have to be raised by $A 9.00. Brennan & Kahn (1989) estimated the total cost of 

producing a single, pure breeding line of wheat in a conventional breeding programme in Australia to be 

about $A 18.00. Ding etal. (1995) added the extra costs of $A 9.00 for seed production to the costs for 

the production of the DH-lines, and stated that 27 of the 66 wheat genotypes appeared to be capable of 

competitive homozygous line production. However, the main benefit of using androgenesis in a breeding 

programme is the gain in time (Brennan 1989) and therefore the DH-technique is competitive for most of 

the genotypes tested. 

Table 1. Comparison of the Doubled Haploid (DH) method and the conventional breeding method for winter wheat. 

Year 

0 

0 

0 

0 

2 

3 

4 

5 

6 

Month 

May/July 

Aug/Sept 

Nov 

Dec 

Feb/March 

April 

July 

Sept 

Oct 

July/Aug 

July/Aug 

July/Aug 

July/Aug 

July/Aug 

DH-method 

Select parents 

Vernalisation of the seedlings t growth 

Crosses for F,-seed 

Harvest seed + 

To greenhouse 

Excision of the anthers 

Embryo formation 

Doubling and regeneration 

DH0 to field 

Harvest DH„ 

Select and harvest DH,-rows 

Harvest preliminary yield trials of the DH2 

Harvest of extended yield trials of the DH3 

Harvest of extended yield trials of the DH4 

Conventional method 

in the greenhouse 

vernalisation 

To the field 

Harvest F2-seeds 

Plant F2-seeds 

Harvest F3-seeds 

Harvest F4-seeds 

Harvest F5-seeds 

Select and harvest F6-earrows 

Harvest preliminary yield trials 

(data Baenziger et al. 1984). 
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30 

30 

21,000 

0.68 

8 

1136 

0.44 

500 

28 

27 

70 

53.000 

0.03 (0.73) 

2.4 

45 

0.93 

42 
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Table 2. Comparison of a few important factors in the production of doubled haploid (DH) lines. 

Factor Luckett & Smithard 1990 CPRO-DLO data' 

Number of days anther culture 

Average number of spikes per day, used for DH-production 

Average number of anthers per spike 

Total number of excised anthers 

Proportion of responding anthers 

Number of green régénérants per 100 responding anthers 

Number of green régénérants 

Proportion of fertile régénérants 

Number of fertile DH-lines 

* = Average over 24 genotypes, (between brackets: best genotype). 

1.3. In vitro selection 

The basis for plant breeding is the availability of sufficient genetic variation and discriminating selection 

procedures. In case there is not enough variation within the crop, mutation techniques, crossing with wild 

species and genetic modification can be used to widen the available variation. Also the introduction of in 

vitro culture has revealed a new source of variation: somaclonal variation, i.e. variation induced by in vitro 

culture of plant material (Larkin & Scowcroft 1981). Variation which is observed among plants that were 

regene'ated from cultured gametes is referred to as gametoclonal variation (Evans etal. 1984). These types 

of variation can be caused by changes in structure and number of chromosomes, mitotic recombination, 

(point)mutations or the transposition, methylation, amplification or deletion of DNA in the genomes of the 

nuclei, chloroplasts or mitochondria. When these alterations are of a genetic nature, they are stable and 

will be transmitted to the offspring, but when these alterations are of an epigenetic nature, it will not be 

transmitted to the offspring and therefore hardly usefull in plant breeding for new cultivars. Gametoclonal 

variation is dealt with in more detail in chapter 5. 

Somaclonal and gametoclonal variation are used in plant breeding for improvement of traits that are 

of agronomical importance, e.g. disease resistance, and have together with in vitro selection been used 

to produce new cultivars (Monti & Moore 1992). However, whether the use of soma- or gametoclonal 
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variation is succesfull, depends on the frequency of occurrence of specific and stable variants, and whether 

the selection of these variants can be carried out efficiently. Advantages of in vitro selection for disease 

resistance are that a larger number of genotypes can be screened under controlled conditions and the 

limited amount of space that is needed to screen all these genotypes. Selection for disease resistance might 

be improved by the application of a selection pressure (e.g. toxins) to cells or tissues in culture. 

When focusing on using selection pressures combined with somaclonal or gametoclonal variation, two 

main directions can be distinguished, selection with abiotic or biotic selective agents. For resistance or 

tolerance to abiotic stress, the focus is on salt, drought, herbicides and low temperature (Barakat & 

Abdellatif 1996, Burgutin ef al. 1996, Calleberg 1996, Sari-Gorla ef al. 1992). Within the group of biotic 

selective agents, in vitro selection for disease resistance is most focused on. 

Possible selective agents for disease resistance can be toxins, culture filtrate (Hammerschlag 1988), or 

the pathogen itself (Sacristan & Hoffmann 1979, Sun etal. 1986). Using the pathogen itself often proved 

to be difficult due to problems with the growth of the pathogen itself and creating an uniform selection 

pressure in vitro culture (Daub 1986, Sacristan 1982). However, promising results were achieved and 

resistant plants were found in this way in tobacco (Murakishi & Carlson 1982, Toyoda ef al. 1989). Culture 

filtrates have been used in those cases where the filtrate shows phytotoxic activity, but no well 

characterized toxins are known. In the case of Fusarium oxysporum f.sp. lilil, a pathogen on lily, careful 

HPLC-analysis of the culture filtrate revealed the pathogenic compound: fusaric acid (Löffler 1990). Using 

culture filtrate, wheat plants could be produced that were more resistant to FHB or Helminthosporium 

sativum, respectively, than the donor material it was derived from (Ahmedefa/. 1996, Guo etal. 1991). 

The combination of somaclonal or gametoclonalvariation with in vitro selection for toxin tolerance, has 

already proven to be succesfull in finding disease resistance in a number of crops. For wheat, in this way 

obtained resistance to Pseudomonas syringae pv. syringae and to Helminthosporium sativum was reported 

(Pauly ef al. 1987, Chawla & Wenzel 1987, Chawla 8< Kole 1990). Fadel & Wenzel (1993) tested a mixture 

of F. culmorum and F. graminearum toxins on wheat anthers and anther culture derived embryos from 

parents with different levels of resistance and stated that there were fair possibilities to improve the FHB-

resistance level in wheat. For selection with toxins in cell cultures, it is important that the toxin acts at the 

cellular level and that resistant genotypes in vivo also show toxin tolerance in vitro. This is usually the case 

with host specific toxins, that play a primary role in pathogenesis (Gengenbach ef al. 1977, Larkin 8i 

Scowcroft 1983, Rines & Luke 1985). The mode of action and the properties of a toxin determine whether 

or not it is suitable for use as a selective agent. Also non-specific toxins can be of interest for in vitro 

selection. Toxin resistant cells may be selected from genotypes that are sensitive to the toxin. Plants that 

are resistant to these toxins usually do not show a complete resistance to the pathogen. The FHB-produced 

toxins DON and ADON are considered to be non-specific toxins and are regarded as aggressiveness factors, 
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i.e. they increase the extent of the disease symptoms and colonization, but are not involved in the primary 

interaction that determines compatibility (Al-Heeti 1987, Desjardins 1992, Manka etal. 1985, Snijders & 

Krechting 1992). 

1.4. Scope of this thesis 

No chemical control is effective against FHB and as the toxic effects on man and animal can be quite 

severe, FHB-resistance should have a high priority in wheat breeding programmes. Variation for resistance 

is available, but the resistance genes known up to now are mostly located in exotic genotypes and time-

consuming backcrossing is needed. Introducing a haploid step can accelerate the transfer of the resistance 

genes to cultivars. Applying an in vitro selection pressure has several advantages over in vivo selection as 

more genotypes can be screened in less space and in a shorter period. The aim of this research was to 

develop an in vitro selection method for Fusar/um-resistance to be used on the gametophytic phase in 

wheat and to apply this to populations of wheat segregating for FHB-resistance and to resistant and 

susceptible wheat lines. To achieve this goal, first a genetic analysis was carried out on the anther culture 

ability, on plant regeneration and, after doubling, on seed set of a 7x7 complete diallel in wheat (Chapter 

2). Green plant regeneration was then studied in more detail (Chapter 3). Two of the toxins produced by 

Fusarium culmorum: deoxynivalenol (DON) and 3-acetyl deoxynivalenol (3-ADON), were chosen to act as 

selective agents on seedlings, coleoptile segments, anther derived callus and anther derived embryos 

(Chapter 4). After regeneration the doubled haploid plants were transferred to the greenhouse for 

maturation and seed set. The offspring of the doubled haploids was tested in four subsequent years in the 

field for their reaction to Fusarium (Chapter 5). Finally, research on optimisation of microspore culture of 

wheat was carried out (Chapter 6). The impact of the results in this thesis on practical wheat breeding and 

on wheat research and recommendations for future research are discussed in Chapter 7. 
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Chapter 2: Genetic analysis of anther culture in wheat (Triticum 

aestivum L): androgenic response, regeneration and seed set based 

on a 7x7 complete diallel tross 

Abstract 

Inheritance of androgenic ability in wheat (Triticum aestivum L) anther culture was studied by diallel 

analysis. Seven parental cultivars, differing for their androgenic response and Fusarium Head Blight (FHB) 

resistance, together with the 42 F,-combinations of the complete diallel were evaluated for several 

androgenic traits in five replicates. A total number of 130,000 anthers was cultured of which 14% 

responded. Average embryo induction frequency was 2 1 % and the number of produced embryos per 

responding anther was 1.7. Diallel analysis of anther culture response, regeneration and seed set of the 

DHa-regenerants was based on the model of Gardner and Eberhart. For percentage Responding Anthers 

(RA), Embryo Induction Frequency (EIF) and Embryo induction per Responding Anther (ERA), genetic effects 

explained 62%, 65% and 65% of the total variation, additive effects explained 63%, 75% and 82% of 

the genetic variation and narrow sense heritabilities were 0.39,0.48 and 0.53, respectively. A total number 

of 17,819 embryos was transferred to MS regeneration medium, of which on average 30% regenerated 

into plantlets, of which 11 % was green. Except for two F,-combinations, of all 42 F,-combinations green 

plants could be recovered. Significant genetic differences were found. For percentage green régénérants, 

percentage albino régénérants and percentage embryos with only root formation genetic effects explained 

38%, 48% and 21 % of the total variation, additive effects explained 30%, 65% and 37% of the genetic 

variation and narrow sense heritabilities were 0.11, 0.32 and 0.08, respectively. 

After doubling with colchicine, the doubled haploid régénérants (DH„) were evaluated for their seed set. 

A total number of 500 embryos produced 1,964 plants and 27,185 spikes. Of the embryos, plants and 

9,310 spikes that were analysed, 89%, 84%, 50% showed seed set, respectively. Significant genetic 

differences were found and for percentage seed set on DH0-plants the genetic effect explained 78% of 

the total variation, the additive effect explained 4% of the genetic variation and narrow sense heritability 

was 0.01. On the DH0-plants, over 226,000 seeds were produced, with an average of 116 seeds per DH0-

plant. The DH,-offspring will be tested further in the field for agricultural traits, such as their resistance to 

FHB. 
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Introduction 

In wheat breeding programmes in North-Western Europe, Fusarium head blight resistance is an 

important selection trait. As most resistant germplasm cannot compete with North-Western European 

wheat varieties and is regarded as e/otic, recurrent backcrossing is necessary to introgress the resistance. 

The efficiency of breeding programmes using recurrent selection could be improved by introducing a 

haploid step and in this way shorten the process of the creation of new cultivars in self-pollinated species 

like wheat (Foroughi-Wehr & Friedt 1984, Gallais 1988, Griffing 1975). Selected plants will have acquired 

the desired resistance in a homozygous form. In gramineous species, in vitro androgenesis seems to be the 

optimal method to produce haploid plant material. For barley, the method of isolated microspore culture 

is to be preferred over anther culture, as more embryos can be produced (Hoekstra et al. 1992). In wheat, 

maize, rye, rice and all grasses, anther culture is still a more efficient way to produce large amounts of 

haploid embryos (Bruins ef al. 1996, Gustaf son ef al. 1995), with up to 1002 wheat embryos per 100 

anthers (Otani & Shimada 1993), and 357 green wheat plants per 100 anthers (Orshinksy & Sadasivaiah 

1994). Using isolated microspore culture in wheat, the best genotype produced only 5.5 embryos and 1.6 

green plants per 100 anthers (Tuvesson & öhlund 1993). 

The diallel method has proven to be an efficient way to analyse the genetic background of certain 

agronomically important characters. In an diallel a number of parental genotypes are crossed reciprocally 

in all possible combinations, and the resulting F,-progenies are analysed for the characteristics of interest. 

Several research groups have published methods for analysing diallel data (Gardner & Eberhart 1966, 

Griffing 1956, Hayman 1954, Mather & Jinks 1977, Morley Jones 1965, Walters & Morton 1978). Singh 

& Paroda (1984) stated after evaluating all these methods, except those of Hayman (1954) and Mather & 

Jinks (1977), that the method of Gardner & Eberhart (1966) would be superior to other methods as it has 

several advantages above the others: 

1. The model assumes arbitrary gene frequencies at all loci between the parents, and is therefore equally 

applicable to a fixed set of both homozygous varieties as well as those mating at random. 

2. The variety and cross means can be predicted, and if certain heterosis effects are negligible, the 

predicted variety cross means have smaller standard errors than the observed variety cross means. 

3. Heterosis effects are further sub-divided to provide additional information on the varieties involved. The 

estimates obtained are particularly useful in making predictions and choosing breeding materials and 

breeding methodologies. 

4. An analysis of variance with appropriate F-tests is provided for various types of gene action involved. 

5. The variety effects, as presented by Gardner and Eberhart, depend only on additive X additive gene 

action, regardless of the gene frequencies or correlated gene distribution (Sokol & Baker 1977). 

6. Heterosis can easily be calculated from the estimates obtained in this model. 
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In wheat, in vitro androgenic potential is mainly genetically controlled (De Buyser & Henry 1979, He & 

Ouyang 1984, Jahne & Lörz 1995), with predominantly additive effects (Bullock er al. 1982, Chevrier ef 

al. 1990, Tuvesson ef al. 1989), but also dominance effects (Deaton ef al. 1987), epistasis (Agache ef al. 

1988) and even cytoplasmic or maternal effects were found (Ekiz & Konzak 1991 a,b & c, Sâgi & Barnabas 

1989). 

Green plant regeneration using F,-combinations of highly androgenic responsive genotypes crossed with 

genotypes with a high green plant regeneration was studied earlier (Bruins & Snijders 1995). In this study, 

it was found that genotypic effects accounted for the majority of the total variation. Additive and dominant 

gene action, but no reciprocal differences were detected. 

The percentage fertile DH0-plants resulting from anther culture in wheat tends to vary greatly, ranging from 

21 % (Barnabas ef al. 1991 ) to 96% (Shimada ef al. 1994). 

To combine a high Fusarium resistance with a good androgenic response, seven wheat varieties were 

selected which differed strongly for their Fusarium resistance and their response in anther culture. Our 

investigation is the first to use a complete 7x7 diallel to study the genetic background of androgenic 

response, regeneration and seed set on the same set of wheat genotypes. 

Materials and Methods 

Anther culture 

Based on preliminary experiments, seven wheat genotypes were selected, namely three cultivars Praag 

8, Frontana, Ringo Sztar, and four breeding lines PF 8049, Ft 83-326, SVP 72017-17-5-10-1 and SVP 

73016-2-4 (Table 1). Sources of these lines are given in Snijders (1990a, 1990b). Of these genotypes, four 

had a high FHB-resistance, one a moderate resistance and two were susceptible. One genotype had a high 

response in anther culture, two a moderate response and four a low response (Table 1). Reciprocal crosses 

between these seven parental genotypes were made. The whole set of 42 F,-combinations and seven 

parents was sown in five replicates in time (Table 2). Each replicate contained two to four plants per F,-

combination or parent, so in total 10 to 15 plants of each genotype were tested. F,-plants and parents 

were vernalised for eight weeks at 4°C, prior to transplant to an accurately controlled phytotron chamber. 

Plants were grown under a 16 h photoperiod and a temperature regime of 15°C (light) and 10°C (dark). 

Tillers were harvested in the mid-boot stage, i.e. 43 on the Zadoks growth scale (Zadoks ef al. 1974). Per 

replicate three to six tillers per plant were harvested, the total number of tested tillers per F,-combination 

or parent varied from 23 to 60. Harvest of the tillers from the. donor plants and subsequent anther culture 

was carried out according to Bruins ef al. (1993). Six weeks after incubation, anther response, callus and 

embryo formation were measured. 
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The following calculations were made: 

RA = Percentage Responding Anthers that produced at least one embryogénie or non-embryogenic 

structure. 

CIF = Callus Induction Frequency = Number of formed embryogénie and non-embryogenic structures 

/ total number of plated anthers. 

EIF = Embryo Induction Frequency = Number of formed embryogénie structures / total number of 

plated anthers. 

CIRA = Callus Induction frequency per Responding Anther. 

ERA = Embryo induction frequency per Responding Anther. 

Table 1. Parental genotypes used for the diallel cross, type of material, Fusarium Head Blight Index and percentage 

responding anthers. Fusarium Head Blight-Index measured as the weighed mean of five years (1987-1991) of the 

percentage head blight infection per ear in the field. 

Parent-number Genotype Type Fusarium Head Blight-index Responding Anthers (%) 

1 SVP 72017-17-5-10-1 winter 3.3 0.2' 

2 Praag 8 winter 2.1 0.8 

3 Ft 83-326 spring 0.9 1.9 

4 Frontana spring 1.6 1.9 

5 Ringo Sztar winter 9.6 9.4 

6 PF8049 spring 52.2 5.6 

7 SVP 73016-2-4 winter 43.2 • 4.3 

' Data derived from genotype SVP 72017-17-5-10. 

Data were analysed using a square root transformation to improve normality of the distribution. Diallel 

analyses were carried out according to the model described by Gardner and Eberhart (1966). Genotypic 

effects were subdivided according to Hayman (1954) into: 

additive gehetic effects: 

a) = variation between the mean effects of each parental line, 

and non-additive genetic effects: 

b) = heterosis = variation in the reciprocal sums not ascribable to (a) 

c) = average maternal effects of each parental line, and 

d) = variation in the reciprocal differences not ascribable to (e). 

The heterosis-component (b) was according the model of Gardner and Eberhart (1966) further subdivided 
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into: b, = average heterosis, b2 = variety heterosis and b3 = specific heterosis. These components are similar 

to the three components described by Hayman (1954), where b,) = mean dominance variation, b2) = 

further dominance deviation due to the rth parent and b3) = remaining discrepancy in the rs'h reciprocal 

sum. Narrow sense heritability estimates were calculated as the proportion of additive effects on the 

genetic variation. 

Regeneration of the anther culture derived embryos 

Embryogénie structures larger than 1 mm were transferred to hormone free MS medium (Murashige & 

Skoog 1962), and regeneration of the embryos was scored as the number of embryos that regenerated 

into green shoots, albino shoots, embryos that regenerated only roots or did not regenerate at all. Data 

of the percentages green shoots and embryos with roots only, were analysed using a square root 

transformation to improve the normality of the distribution. Diallel analyses were carried out according to 

the model described by Gardner & Eberhart (1966). 

Seed set on the DH„-régénérants 

Green plantlets were transferred to culture tubes and, after reaching the two-three leaf stage, to soil 

and covered individually. After two weeks, the transparent plastic covers were removed and two weeks 

later all plants were treated with colchicine for chromosome doubling. For this, the plants were removed 

from the soil, the roots were washed and the growth meristems of the plantlets were soaked for 12 hours 

in a 0.05% colchicine solution, rinsed with tap water for three hours and replanted in soil. After another 

two weeks, the plants were vernalised for 8 weeks at 4°C. After vernalisation, plants were grown to 

maturity and seed set was scored. Per plant the number of spikes, spikelets and seeds in the outer two 

flowers of each spikelet were assessed. Percentage seed set was measured on the first five spikes per plant 

as the number of seeds in the outer two flowers of each spikelet, divided by the double number of 

spikelets. Diallel analysis was carried out according to the model described by Gardner & Eberhart (1966). 

Results 

Anther culture 

As indicated in Table 3, correlations between Callus Induction Frequency (CIF) and Embryo Induction 

Frequency (EIF) and between Callus Induction frequency per Responding Anther (CIRA) and Embryo 

induction frequency per Responding Anther (ERA) were very high (0.97 in both cases). Therefore, besides 

percentage Responding Anthers, only Embryo Induction Frequency and Embryo induction frequency per 

Responding Anther will be discussed. Other significant correlations Included % Responding Anthers with 

Embryo Induction Frequency and Embryo Induction Frequency with Embryo induction frequency per 
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Responding Anther. Table 2 shows the Responding Anther, Embryo Induction Frequency, and Embryo 

induction frequency per Responding Anther values averaged over all 49 genotypes per replicate. Mean 

percentage Responding Anthers varied between the five replicates from 11.3% to 13.8%, Embryo 

Induction Frequency from 18.5% to 26.7% and Embryo induction frequency per Responding Anther from 

1.67 to 2.17, respectively. Table 4 shows the androgenesis data for the complete diallel averaged over the 

five replicates in time. Genetic effects were highly significant for all measured variâtes. The Half-Sib families 

of Ringo Sztar, in which this cultivar was either used as a male or female parent, showed the highest values 

for anther culture response and embryo induction frequency, which confirmed the earlier results from 

1990, as already indicated in Table 1. Comparison of the mean values indicated that genotype Ft 83-326, 

either used as a male or female parent, had the highest values for Embryo induction frequency per 

Responding Anther. 

Significant Best-Parent heterosis, where the androgenic value of the F,-combination outperformed the 

value of the best parent, was found for 3 (7%), 9 (21%) and 6 (14%) of the 42 F,-combinations for 

percentage Responding Anther, Embryo Induction Frequency and Embryo induction frequency per 

Responding Anther, respectively (Table 4; see * ). 

Table 5 shows the results of the ANOVA. Complete balancing of the replicates appeared to be difficult 

as-a result of incomplete germination of the F,-seeds. In nine occasions seeds of a F,-combination failed 

to germinate, resulting in 235 degrees of freedom instead of 245. The replicate effects were low but 

significant for RA, and were highly significant for Embryo Induction Frequency and Embryo induction 

frequency per Responding Anther (Table 5). Replicate 5 (July-Oct) produced significantly less responding 

anthers and less embryos. Replicates 1 & 5 produced significantly less embryogénie structures per 

responding anther (Table 2). Genetic effects and additive effects (component a) were highly significant for 

all three variâtes. Narrow sense heritabilities for percentage Responding Anthers, Embryo Induction 

Frequency and Embryo induction frequency per Responding Anther were 0.39,0.48 and 0.53, respectively. 

When the seven parents were compared to the 42 F,-combinations (average heterosis) only low significance 

for percentage Responding Anthers was found, accounting for only 1.2% of the total variation. Variety 

heterosis was highly significant for all three variâtes, but accounted only for 8%, 5% and 4% of the total 

variation of percentage Responding Anthers, Embryo Induction Frequency and Embryo induction frequency 

per Responding Anther, respectively. No maternal effects (component c) were observed and small but 

significant reciprocal differences, not ascribable to maternal effects (component d) were found. 
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Table 3. Correlation matrix of the anther culture variâtes of a 7x7 full diallel in wheat based on replicate means. 

Degrees of Freedom = 47. 

CIF 

EIF . 

CIRA 

ERA 

green 

albino 

root 

seed set 

0.90" 

0.79" 

0.32' 

0.18 

0.20 

0.46" 

-0.32' 

-0.14 

RA 

0.97" 

0.66" 

0.54" 

0.13 

0.56" 

-0.40" 

-0.22 

CIF 

0.78" 

0.69" 

0.08 

0.55" 

-0.42" 

-0.19 

BF 

0.97" 

-0.08 

0.45" 

-0.28 

-0.16 

CIRA 

-0.14 

0.40" 

-0.28 

-0.06 

ERA 

-0.19 

' -0.34" 

-0.29 

green 

0.09 

0.03 

albino 

-0.02 

root 

• significant at the 0.05 and 0.01 level of probability, respectively. 

Genotype 5 (Ringo Sztar) had significantly the highest GCA values for percentage Responding Anthers 

and Embryo Induction Frequency (Table 6), and is a very suitable parent to transmit favourable alleles 

responsible for a high androgenic production. Genotype 3 (Ft 83-326) has significantly the highest GCA 

value for Embryo induction frequency per Responding Anther, and is a suitable parent for transferring 

alleles for a good androgenic embryo production per responding anther. Highly significant differences in 

SCA values were found (Table 4; see underlined data). Estimated SCA values varied from: -0.69 (genotype 

2 = Praag 8) to 0.69 (cross 5x7) for percentage Responding Anthers, from -1.33 (genotype 2 = Praag 8) 

to 1.41 (cross 4x6) for Embryo Induction Frequency and from -0.31 (genotype 4 = Frontana) to 0.25 (cross 

1x7) for Embryo induction frequency per Responding Anther. Significant SCA values were found for 6 

(12%), 6 (12%) and 5 (10%) of the 49 entries for percentage Responding Anthers, Embryo Induction 

Frequency and Embryo induction frequency per Responding Anther, respectively. In six of these 17 

occasions a parent had a significant SCA^value. A significant positive SCA-value indicates that this specific 

combination yielded a higher value as can be expected from the GCA values, a negative sign indicates the 

opposite. With genotypes 6 (PF 8049) and 7 (SVP 73016-2-4), when used as a male parent, all significant 

SCA-values were positive, and with genotypes 2 (Praag 8) and 5 (Ringo Sztar), when used as a male 

parent, all significant SCA-values were negative (Table 4). With genotype 4 (Frontana) the significant SCA 

value for RA was positive, the other two values were negative. 
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Table 4. Percentage Responding Anthers (RA), Embryo Induction Frequency (EIF) and Embryo Induction per Responding 

Anther (ERA) of 42 F, combinations and seven parents of a 7x7 complete diallel in wheat, averaged over five replicate 

means in time. 1-7: see Table 1. . 

RA 

EIF 

ERA 

Genotype S 
9 

1 
2 
3 
4 
5 
6 
7 

MEAN 

1 
2 
3 
4 
5 
6 
7 

MEAN 

1 
2 
3 
4 
5 
6 
7 

MEAN 

1 

7.8 
8.8 
8.8 
9.6 

18.8 
9.6 

10.8 
10.6 

4.9 
7.5* 

11.9 
9.7 

26.8 
10.0 
11.7 
11.0 

0.7 
0.9* 
1.6 
1.1 
1,5 
1.2 
1.2 
1.2 

2 

8.2 
6.9 

10.8 
13.6 
24.5 
11.2 
8.6 

12.0 

6.7' 
2.9 

17.8 
24.3' 
36.7 
17.1 
8.2 

14.4 

0.9' 
0.5 
2.0 
1.9" 
1.6 
1.6 
1.1 
13 

3 

10.8 
9.9 
8.6 

10.9 
18.7 
10.7 
11.9 
11.6 

15.4 
18.6 
27.5 
25.6 
47.2 
21.3 
22.9 
24.7 

1.5 
2.3 
3.2 

• 2.7 
2.7 
2.0 
2.1 
23 

4 

16.0 
16.2 
9.3 

12.7 
17.6 
15.1 
2.2 

14.2 

23.5" 
22.6" 
20.9 
19.6 
36.5 
40.0* 
17.8 
253 

1.7 
1.4 
3.4' 
1.7 
2.3 
2.8 
1.6 
2.1 

5 

21.5 
23.1 
16.1 
16.9 
21.7 
19.6 
15.1 
19.1 

30.4 
33.2 
30.3 
42.4 
48.0 
41.7 
21.9 
34.9 

1.6 
1.5 
2.1 
2.8' 
2.5 
2.2 
1.5 
2.0 

6 

10.1 
18.2' 
14.9' 
16.5 
21.0 
10.1 
10.0 
144 

11.1 
26.4* 
39.1' 
49.1* 
38.4 
23.9 
12.8 
27.0 

1.3 
1.5 
2.8 
3.0' 
2.2 
2.7 
1.6 
2.1 

7 

5.3 
10.2 . 
8.4 
9.5 

26.3' 
9.7 

17.7 
124 

4.2 
10.5 
12.0 
10.9 
43.7 
11.2 
21.5 
14.5 

1.0 
1.1 
1.8 
1.3 
1.8 
1.2 
1.4 
13 

MEAN 

114 
133 
11.0 
12.8 
21.2 
123 
123 
13.5 

12.2 
15.6 
21.8 
24.1 
393 
22.1 
16 2 
20.9 

1.2 
1.3 
24 
2.0 
2.1 
1.9 
1.5 
1.7 

' = Best-Parent heterosis at the 0.05 level of probability. 

= Estimated SCA-effect significantly different from zero at the 0.05 level of probability. 

Regeneration of the anther culture derived embryos 

Ofthe 27,271 formed embryos, 17,819 (65%) were larger than 1 mm and were transferred to hormone 

free MS-medium for regeneration. Of these transferred embryos, 30% regenerated into plantlets (Table 

2), of which 11 % was green, 27% regenerated into albino plantlets, 14% of the embryos only regenerated 

into roots and 56% of the embryos did not regenerate at all. On average, 0.5 green plants per 100 anthers 

were produced. 

Correlation data showed that the percentage green régénérants had only one significant correlation: the 

negative correlation with percentage embryos with only root formation (Table 3). None of the other 

androgenic traits showed a correlation with percentage green régénérants. Correlation data of percentage 

albino régénérants were positive for the anther culture response variables percentage Responding Anthers, 

Embryo Induction Frequency and Embryo induction frequency per Responding Anther. All correlations were 
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positive and significant at the 0.01 level of probability. Percentage embryos with only root formation had 

significant negative correlations with percentage Responding Anthers and Embryo Induction Frequency 

(Table 3). 

Table 5. Analysis of variance (mean squares, according to the method of Gardner and Eberhart 1966), for percentage 

Responding Anthers (RA), Embryo Induction Frequency (EIF) and Embryo Induction per Responding Anther (ERA), of 

a 7x7 full diallel in wheat, averaged over five replicates in time. 

Code 

a 

b 

b, 

b2 

b3 

c 

d 

Factor 

Replicates 

Genotypes 

varieties 

heterosis 

average 

variety 

specific 

maternal 

reciprocal 

Genotypes x 

Total 

differences 

replicates 

d.f. 

4 

48 

6 

21 

1 

6 

14 

6 

15 

183 

235 

Mean squares 

RA 

1.00' 

2.33'" 

11.66"' 

1.31*" 

2.17* 

2.33'" 

0.81" 

0.74 

0.66' 

0.35 

0.77 

EIF 

7.34'" 

9.30'" 

55.43'" 

3.27'" 

2.92 

5.63'" 

2.28' 

1.78 

2.30' 

1.18 

2.95 

ERA 

0.39'" 

. 0.31'" 

1.99"' 

0.08" 

0.01 

0.14" 

0.07' 

0.03 

0.05 

0.04 

0.10 

', " , " ' significant at the 0.05, 0.01 and 0.001 level of probability, respectively 

d.f. = degrees öf freedom. 

Table 7 shows the regeneration data of the anther culture derived embryos of the 42 F,-combinations 

and parents. Percentages green régénérants varied from 0.0% to 13.5% (cross 7x2), percentages albino 

régénérants varied from 9.3% (cross 1x7) to 45.0% (cross 2x5) and percentages embryos that had only 

root regeneration varied from 7.2% (cross 4x5) to 21.3% (cross 7x2). 

For percentage green plants, genotypes 2 (Praag 8), 5 (Ringo Sztar) and 7 (SVP 73016-2-4) had on 

average the highest values, when used as a male or female parent. The two reciprocal F,-combinations 2x7 

and 7x2 showed significantly a higher green plant regeneration as compared to the rest of the 42 F,-

combinations, both with over 13% green plants (Table 7). One F,-combination (3x1) and genotype 4 
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(Frontana) failed to produce green régénérants. For percentages albino régénérants, genotypes 3 (Ft 83-

326) and 5 (Ringo Sztar) had on average the highest values when used as a male or female parent. For 

percentages embryos that gave only root regeneration, genotype 2 (Praag 8) had the highest values. 

Significant Best-Parent Heterosis was found for 10 (24%), 1 (2%) and 6 (14%) of the 42 F,-combinations 

for percentage green plants, percentage albino plants and percentage embryos with only root formation, 

respectively (Table 7, see " ). 

Table 6. Estimated GCA-effects of 'each wheat parent as used in the 7x7 full diallel, averaged over the five replicates 

on the basis of square root transformed data, except for the percentage albino plants and the percentage seed set on 

the DH0-regenerants. A positive sign indicates that this genotype will easily transmit the characteristic to its offspring, 

a negative sign indicates the opposite. 1-7: see Table 1. 

Parent-number 

1 

2 

3 

4 

5 

6 

7 

RA 

-0.30 

-0.08 

-0.28 

0.05 

0.96" 

0.06 

-0.42 

EIF 

-1.17" 

-0.52 

0.30 

0.50 

1.53" 

0.44 

-1.08' 

ERA 

-0.22" 

-0.15" 

0.24" 

0.15' 

0.06 

0.07 

-0.14 

% green 

-0.37 

0.19 

-0.55 

-0.01 

0.47 

0.00 

0.27 

% albino 

-5.55 

0.68 

6.44 

-3.59 

7.05 

-0.73 

-4.30 

seed set 

-2.1 

-3.4 

-0.8 

-1.0 

-3.0 

-0.4 

9.5 

*, " Significantly different from zero at the 0.05 and 0.01 level of probability, respectively. 

Table 8 shows the results of the ANOVA for regeneration. Replicate effects were significant for 

percentage albino plants and percentage embryos with only root formation, caused by replicate 4 (April-

June) in which significantly more albino régénérants and by replicates 4 & 5 in which significantly lower 

percentages embryos with root regeneration were produced (Table 2). Genetic effects were significant for 

percentage embryos with only root formation and highly significant for percentage green and percentage 

albino régénérants. Additive effects were highly significant for all three variâtes and narrow sense 

heritabilities for percentage green plants, percentage albino plants and percentage embryos with only root 

formation were 0.11, 0.32 and 0.08, respectively. Average heterosis was not significant, variety heterosis 

(component b2) was only significant for percentage green plants and specific heterosis (component b3) was 

significant for percentage green plants and percentage albino plants. No maternal and reciprocal 

differences were detected for regeneration. 
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Table 7. Percentages green régénérants, albino régénérants and calli with only root-regeneration of seven parents and 

42 F,-combinations used in the 7x7 full diallel averaged over five replications in time. 1-7: see Table 1. 

% 
green 

% 
albino 

% 
root 

Genotype <î 
9 

1 
2 
3 
4 
5 
6 
7 

MEAN 

1 
2 
3 
4 
5 
6 
7 

MEAN 

1 
2 
3 
4 
5 
6 
7 

MEAN 

1 

3.8 
4.5 
0.0 
1.8 
2.7 
3.2 
1.7 
2.5 

19.1 
21.7 
34.9 
20.4 
30.8 
17.5 
22.3 
23.8 

19.8 
20.0 
15.8 
7.5 

15.5 
17.6 
14.7 
15.8 

2 

2.2 
2.3 
0.5 
1.8 
2.3 
5.4 

13.5' 
4.0 

19.7 
20.2 
34.4 
31.0* 
38.7 
20.7 
19.5 
26.3 

14.8 
20.3 
17.3 
13.3 
11.9 
20.4 
21.3' 
17.0 

3 

2.9 
2.3 
0.3 
1.3* 
2.2 
4.6 
0.9 
2.1 

22.5 
31.8 
37.9 
32.1 
38.8 
32.8 
29.8 
32.2 

11.2 
17.8 
11.0 
17.9' 
8.6 

10.8 
8.0 

12.2 

4 

0.8 
6.2' 
1.7' 
0.0 
9.1' 
5.3 
3.2' 
3.8 

23.7 
24.8 
20.7 
18.4 
26.9 
18.0 
25.1 
22.5 

10.4 
19.3 
16.1* 
13.8 
7.9 

13.6 
11.8 
133 

5 

4.5 
2.4 
3.4 
3.5 
3.9 
2.6 

10.6' 
4.4 

24.9 
45.0 
41.4 
23.7 
38.9 
31.5 
24.0 
32.8 

13.9 
9.0 

12.1' 
7.2 
8.1 

13.9 
9.9 

10.6 

6 

1.5 
4.0 
1.6 
2.1 
3.2 
7.0 
2.6 
3.1 

18.8 
26.2 
29.2 
25.4 
40.2 
21.3 
27.8 
27.0 

19.7 
16.7 
10.5 
8.2 
8.5 

20.6 
9.7 

13.4 

7 

3.7 
13.4' 
0.9 
5.0' 
5.8' 
1.6 
0.7 
4.4 

9.3 
15.5 
38.2 
14.5 
26.5 
26.7 
15.2 
20.8 

18.0 
15.6 
14.2' 
8.5 

15.2' 
15.8 
11.5 
14.1 

MEAN 

2.8 
5.0 
1.2 
22 
4.2 
4.2 
4.7 
3.5 

19.7 
26.5 
33.8 
23.6 
344 
24.1 
23.4 
26.5 

15.4 
17.0 
13.9 
10.9 
10.8 
16.1 
MA 
13.8 

* = Best-Parent heterosis at the 0.05 level of probability. 

= Estimated SCA-effect significantly different from zero at the 0.05 level of probability. 

For percentage green plants, genotypes 3 (Ft 83-326) and 5 (Ringo Sztar) and for percentage albino 

plants genotypes 1 (SVP 72017-17-5-10-1 ) and 5 (Ringo Sztar) showed the highest and lowest GCA values, 

respectively (Table 6). However, none of the GCA values were found to be significant. Estimated SCA 

values varied from: -1.06 (genotype 4 = Frontana) to 1.24 (cross 2x7) for percentage green plants, from -

9.04 (cross 3x4) to 10.47 (cross 2x5) for percentage albino plants and from -0.85 (cross 4x1) to 0.98 (cross 

4x3) for percentage embryos with only root formation. Significant SCA values were found for 7 (14%), 5 

(10%), and 1 (2%) of the 49 genotypes for percentage green plants, percentage albino plants and 

percentage embryos with only root formation, respectively (Table 7, see underlined data). In two of these 

13 cases a parent had a significant negative SCA-value for percentage green plants. Also negative SCA-

values had F,-combinations 5x2 for percentage green plants and 1x7, 2x7 and 3x4 for percentage albino 

plants. The rest of the significant SCA-values were positive. 
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Table 8. Analysis of variance (mean squares, according to the method of Gardner and Eberhart 1966), for percentage 

green régénérants, percentage albino régénérants, embryos with only root regeneration and percentage seed set 

averaged over five replicates in time. 

Code 

a 

b 

b, 

b2 

b3 

c 

d 

Factor 

Replicates 

Genotypes 

varieties 

heterosis 

average 

variety 

specific 

maternal 

recipro diff 

Genotypes x replicates 

Total 

d.f. 

4 

48 

6 

21 

1 

6 

14 

6 

15 

183 

235 

Mean squares 

% green 

1.63 

2.79'" 

6.65'" 

3.24" 

1.79 

3.90" 

3.06" 

1.94 

0.95 

1.18 

1.51 

% albino 

596.44'" 

314.61 • " 

1656.47'" 

133.61' 

200.49 

33.55 

171.72" 

104.51 

115.30 

75.02 

132.84 

% root 

22 .71 ' " 

76.89' 

4 .87 ' " 

1.52 

0.72 

1.00 

1.80 

1.15 

0.69 

1.11 

1.58 

d.f. 

1 

44 

6 

20 

1 

5 

14 

6 

12 

32 

77 

Mean 
squares 

% seed set 

27.3 

733.2' 

220.1 

897.0' 

1976.4' 

838.5' 

840.8" 

570.3 

798.6" 

276.7 

534.4 

*, " , *" significant at the 0.05, 0.01 and 0.001 level of probability, respectively, 

d.f. = degrees of freedom. 

Table 9 shews the regeneration data of the 49 combinations. It can be seen that for the number of 

régénérants per 100 plated embryos, genotypes 2 (Praag 8), 3 (Ft 83-326) and 5 (Ringo Sztar) showed the 

highest mean values when used as a male or as a female parent. For the percentage green plants per total 

number of regenerated plants the highest values were observed for genotypes 4 (Frontana), 5 (Ringo Sztar) 

and 7 (SVP 73016-2-4) when used as a male parent and for genotypes 2 (Praag 8), 6 (PF 8049) and 7 (SVP 

73016-2-4) when used as a female parent. Genotype 3 (Ft 83-326) and its Half-Sib families had the lowest 

percentage green plants and relatively more albino régénérants than the other genotypes, which was 

confirmed by extremely low green/albino ratios. For green plants per 100 plated anthers on average 

genotype 5 (Ringo Sztar), when used as a male or as a female parent, and more specific F,-combination 

5x4 showed the highest values. For green plants per 100 produced embryos, the highest values were 

observed for genotypes 4 (Frontana), 5 (Ringo Sztar) and 7 (SVP 73016-2-4) when used as a male parent 

and for genotypes 2 (Praag 8), 5 (Ringo Sztar) and 7 (SVP 73016-2-4) when used as a female parent. 

Green/albino ratios were highest for F,-combinations (2x7), (7x2) and (7x5). 
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Seed set of the DH0-regenerants 

As a result of a large spread in the maturation of the DH0-plants the replications could not be 

distinguished for percentage seed set. Table 10 shows the seed set values of the 49 genotypes, averaged 

over all five replications. On average 10 embryos per F,-combination lead to a mature green plant, 40 DH0-

plants, 555 spikes and over 4600 seeds were derived from one F.-combination or parent. 62% of the 

flowers was sterile, averaged per parent ranging from 43% to 76%. The variation in seed set between the 

individual F,-combinations was much larger: 8% to 98%. In total 27,185 spikes were formed, of which 

only the first five ears per plant, in total 9,310 were analysed for their seedset. Of the 9310 analysed 

spikes, 50.2% was sterile. On average 487 and 46 seeds were found per fertile entry and analysed fertile 

spike, respectively. Parent 5 and its Half Sib families showed the highest values for the number of embryos, 

DH0-plants, DH0-spikes and total number of seeds. For percentage sterile flowers, 3 out of 42 (7%) showed 

Best Parent Heterosis for the lowest percentage sterile flowers, all when genotype 1 was used as a male 

parent (Table 10, see " ). Genotype 3 and F1 combinations 3x2 and 3x7 show the lowest percentages 

sterile flowers, with 13%, 8% and 5% sterile flowers respectively. 

Calculations showed that the percentage seed set was not significantly correlated with any of the other 

variables (Table 3). Table 8 shows the results of the ANOVA for percentage seed set. The replicate and 

additive effects were not significant, whereas a small but significant genotype effect was detected. Narrow 

sense heritability for percentage seed set was 0.01. A smalj but significant genotypic effect was found. 

Average, variety and specific heterosis components were all significant for seed set percentage. No 

significant maternal effects were detected. Reciprocal differences, however, were highly significant but no 

significant GCA values were found for percentage seed set (Table 6). Estimated SCA values (data not 

shown) varied from: -13.4 to 13.4, however none of them was significant. 

Of the green plants surviving colchicine doubling, 5.3% of the plants stayed vegetative and 18.2% of 

the plants produced only sterile spikes. 
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Table 9. Regeneration of seven parents and 42 F,-combinations used in the 7x7 full diallel, 
replications. 1-7: see Table 1. -

Genotype S 1 
9 

Régénérants per 100 plated 

2 3 .4 5 

embryos 

6 7 

Diallel analysis 

averaged over five 

MEAN 

1 
2 
3 
4 
5 
6 
7 

MEAN 

23.5 
28.0 
34.1 
21.8 
32.8 
20.9 
23.7 
273 

25.2 
31.0 
35.9 
32.2 
41.3 
22.6 
31.5 
333 

Percentage green plants / total number of 

1 
2 
3 
4 
5 
6 
7 

MEAN 

17.9 
13.5 
0.0 
7.7 
9.9 

15.6 
7.7 
9.4 

11.4 
11.5 

1.3 
4.6 
5.3 

19.1 
39.3 
10.2 

23.8 
35.3 
39.3 
34.9 
41.3 
32.7 
30.2 
35.7 

22.5 
30.7 
25.0 
17.5 
33.3 
20.4 
23.6 
25.7 

regenerated plants 

10.2 
7.9 
1.3 
4.0 
5.0 

10.4 
3.8 
5.1 

3.9 
22.6 

6.7 
0.0 

27.7 
20.9 
10.8 
16.5 

30.2 
43.1 
46.0 
27.4 
42.4 
33.3 
34.2 
36.7 

13.6 
6.5 
7.4 

17.5 
9.9 
8.9 

34.1 
13.0 

21.6 
30.7 
28.2 
25.9 
39.8 
26.9 
29.3 
29.2 

6.7 
15.6 
5.7 
4.7 
5.6 

24.1 
10.3 
103 

24.7 
22.5 
37.2 
16.9 
32.7 
27.3 
16.2 
25.5 

21.6 
32.8 

1.4 
16.1 
18.7 
5.9 
6.2 

14.9 

25.1 
33.0 
364 
26.7 
37.9 
27.8 
26.2 
31.2 

11.0 
13.9 
3.8 
7.8 

11.1 
14.0 
17.7 
11.1 

[Green plants / albino plants] ratio 

1 • 

2 
3 
4 
5 
6 
7 

MEAN 

0.2 
0.2 
0.0 
0.1 
0.1 
0.2 
0.1 
0.1 

0.1 
0.1 

0.01 
0.1 
0.1 
0.2 
0.7 
0.1 

0.1 
0.1 

0.01 
0.04 

0.1 
0.1 

0.04 
0.1 

0.04 
0.3 
0.1 
0.0 
0.4 
0.3 
0.1 
0.2 

0.2 
0.1 
0.1 
0.2 
0.1 
0.1 
0.5 
0.2 

0.1 
0.2 
0.1 
0.1 
0.1 
0.3 
0.1 
0.1 

0.3 
0.5 

0.01 
0.2 
0.2 
0.1 
0.1 
02 

0.1 
0.2 

0.04 
0.1 
0.1 
0.2 
0.2 
0.1 

Green plants per 100 plated anthers 

1 
2 
3 
4 
5 
6 
7 

MEAN 

0.1 
0.2 
0.0 
0.2 
0.6 
0.3 
0.1 
02 

0.1 
0.1 
0.1 
0.2 
0.5 
0.5 
0.7 
0 3 

0.3 
0.4 
0.1 
0.2 
0.6 
0.6 
0.2 
0.3 

0.2 
1.0 
0.3 
0.0 
2.2 
0.9 
0.3 
0.7 

0.8 
0.7 
0.7 
1.2 
1.2 
0.9 
1.5 
1.0 

0.1 
0.8 
0.4 
0.4 
0.5 
0.8 
0.3 
0.5 

0.3 
0.5 
0.1 
0.2 
1.5 
0.1 
0.1 
0 4 

0 3 
0.5 
02 
0A 
1.0 
0.6 
0.5 
0.5 

Green plants per 100 produced embryos 

1 
2 
3 
4 
5 
6 
7 

MEAN 

2.2 
2.3 
0.0 
1.3 
2.0 
2.5 
0.9 
1.6 

1.3 
1.8 
0.2 
0.8 
1.3 
2.7 
7.6 
1.9 

1.5 
1.5 
0.3 
0.8 
1.2 
2.4 
0.7 
1.1 

0.6 
4.5 
1.0 
0.0 
5.5 
2.0 
1.5 
2.5 

2.2 
1.6 
1.9 
2.8 
2.3 
1.6 
7.0 
2.7 

0.9 
3.0 
0.8 
0.7 
1.2 
2.8 
1.7 
1.6 

3.1 
4.0 
0.3 
1.7 
3.4 
1.0 
0.7 
2 3 

1.6 
2.7 
0.8 
12 
1A 
2.1 
2.8 
2.0 
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Table 10. Fertility data over five replications of seven parents and 42 F,-combinations used in the 7x7 full diallel. 
1-7: see Table 1. 

Genotype â 
9 

1 2 3 4 5 6 7 MEAN 

Number of different anther culture derived embryos that lead to a mature green plant 

1 
2 
3 
4 
5 
6 
7 

MEAN 

Total number of DH0 

1 
2 
3 
4 
5 
6 
7 

MEAN 

Total number of DH0 

1 
2 
3 
4 
5 
e 
7 

MEAN 

48 
2 
-
2 

11 
3 
3 

12 

.. 
1 
1 
4 
7 
7 

12 
5 

3 
3 
3 
4 
7 
6 
3 
4 

-plants derived from one F,-combination 

139 
3 
-
5 

39 
15 
18 
31 

_. 
3 
1 

25 
26 
22 
66 
20 

4 
10 
5 

15 
16 
24 
4 

11 

3 
10 
3 
-

25 
4 
1 
8 

or parent 

5 
24 
7 
-

133 
7 
7 

31 

-spikes within one combination or parent 

1268 
39 
-

39 
467 
149 
339 
384 

Total number of seeds, harvested on 

1 
2 
3 
4 
5 
6 
7 

MEAN 

13616 
91 
-

923 
10733 
3062 
3151 
5263 

.. 
53 
13 

354 
370 
265 

1284 
390 

DH„-plants, 

__ 
39 

355 
4835 
4719 
1510 
8307 
3294 

Number of sterile flowers of the five biggest spik 

1 
2 
3 
4 
5 
6 
7 

MEAN 

70 
88 
-

28* 
37 
28' 
46* 
49 

„ 

n.d. 
8 

48 
50 
83 
67 
51 

34 
36 
39 
53 

147 
199 
44 
79 

within one i 

14 
230 

1232 
399 

3003 
3777 

192 
1264 

71 
366 
24 
-

1494 
37 

152 
357 

23 
7 
6 

15 
53 
9 

43 
22 

75 
60 
29 
64 

226 
48 

169 
96 

1238 
1172 
317 
692 

3245 
578 

3279 
1503 

2 
9 
5 
7 
6 

22 
4 
8 

4 
20 
23 
16 
26 

110 
10 
30 

48 
220 
143 
146 
94 

957 
115 
246 

combination or parent 

383 
4430 
309 

-
5807 
484 
219 

1939 

21446 
4641 
790 

2597 
30064 
3044 

18689 
11610 

332 
5916 
343 

1489 
802 

6767 
916 

2366 

es / double number of spikelets from the 

98 
93 
13 
45 
62 
66 
68 
64 

79 
46 
82 
-

74 
66 
77 
71 

50 
71 
78 
67 
55 
61 
72 
65 

62 
45 
71 
70 
68 
61 
78 
65 

3 
9 
1 
5 

36 
-

10 
11 

13 
82 

' 3 
30 

156 
-

21 
44 

132 
1022 

65 
669 

2454 
-

370 
785 

574 
7184 
1864 
2045 

18668 
-

1858 
5366 

same spikes 

96 
64 

5 
86 
73 
-

73 
66 

14 
6 
3 
6 

21 
9 

11 
10 

34 
29 
10 
26 
89 
32 
42 
40 

465 
415 
100 
326 

1182 
364 
798 
555 

6061 
3219 
816 

2048 
10542 
3107 
4762 
4624 

76 
68 
43 
57 
60 
61 
69 
62 

' = Best-Parent heterosis at the 0.05 level of probability (best parent is considered the parent with the lowest 
percentage sterile flowers). 
- = No green régénérants or no plants could be regenerated to maturity, n.d. = not determined. 
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Discussion 

Anther Culture 

Anther culture response in Table 4 was higher than in previous experiments, as indicated in Table 1. In 

the preliminary experiments, the method for anther culture was apparently at that time sub-optimal. 

However, ranking of the parental genotypes stayed similar, with the highest percentages responding 

anthers in genotype Ringo Sztar. 

In agreement with all previous reports on diallel studies of anther culture in wheat (Lazar etal. 1984, 

Ekiz & Konzak 1994a) and barley (Hou etal. 1994, Powell 1988), highly significant genotypic differences 

for anther culture ability were found in this study. Also the predominance of the additive effects found in 

this study, accounting for 63% to 82% of the total genetic variation, is in agreement with other genetic 

studies in wheat (Bullock ef al. 1982, Hou ef al. 1994, Lazar et al. 1984, Tuvesson et al. 1989) or Triticale 

(Balatero ef al. 1995). However, Ekiz and Konzak (1994b) testing a 4x4 complete diallel in wheat, found 

dominance and epistatic effects to be a major source of genetic variation, and Andersen ef al. (1987) 

testing 215 wheat cultivars found the interactions between genotypes and replicates to be dominating, 

accounting for 45% to 50% of the variation. In our study significant SCA effects were found for 

percentage Responding Anthers, Embryo Induction Frequency and Embryo induction frequency per 

Responding Anther, indicating non-additive gene effects, e.g dominance or epistasis. Deaton etal. (1987) 

analysed three spring wheat parents with their F„ F2 and backcross generations and found dominance 

effects for callus induction frequency. Balatero ef al. (1995) stated that the three parameter additive 

dominance (AD) model fitted well for embryo induction, indicating absence of epistatic effects. When the 

model was extended to include estimates of epistatic effects (six-parameter model), using the method of 

Jinks & Jones (1958), no significant epistatic effects were obtained, confirming the adequacy of the three 

parameter AD model (Balatero ef al. 1995). 

Genetic effects explaining the majority of the total variation do not imply rapid introgression of 

androgenic traits, due to genotype x environment variation (Jones 8i Petolino 1987), dominance and 

epistatic effects and large random variation components (Deaton ef al. 1987). Heritability estimates of 

androgenic traits might therefore produce more information on the efficiency of the introgression process. 

Narrow sense heritabilities in this study were 0.39, 0.48 and 0.53 for percentage Responding Anthers, 

Embryo Induction Frequency and Embryo induction frequency per Responding Anther, respectively, so 

progress can be made. Other authors found narrow sense heritabilities of 0.62 to 0.70 for percentage 

Responding Anthers in wheat (Lazar ef al. 1984) and 0.28 or 0.24 for percentage Responding Anthers in 

barley (Dunwell ef al. 1987, Powell 1988, respectively). Deaton ef al. (1987) found in only one out of three 

wheat crosses a significant narrow sense heritability of 0.94 for RA. As shown by Hou ef al. (1994) testing 
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F2- and ^-combinations of barley, progress in anther culture response by crossing and selection is possible, 

but the choice of the genotypes has to be made carefully. 

In the present study best-parent heterosis for percentage Responding Anthers, Embryo Induction 

Frequency and Embryo induction frequency per Responding Anther was found for 7%, 21 % and 14% of 

the 42 F,-combinations, respectively (Table 4), indicating trangression of traits. In the study of Charmet & 

Bernard (1984), testing a 7x7 complete diallel in hexaploid Triticale also best-parent heterosis was found 

for embryogenesis. Ouyang (1986) testing 17 wheat crosses found in 7 1 % of the F,-combjnations best-

parent heterosis for pollen callus induction frequency. However, Abd El-Maksoud & Bedö (1993) studying 

four wheat cultivars and their hybrids found no significant best-parent heterosis. 

Low but significant reciprocal differences were found for percentage Responding Anthers and Embryo 

Induction Frequency. This would indicate a smal) role for cytoplasmic factors for these two traits. Lazar et 

al. (1984) and Charmet & Bernard (1984) also found significant reciprocal effects, but in the latter study 

these were caused by one line with Tritkum t/moprieew-cytoplasm. If this line with Triticum tlmopheevi-

cytoplasm was excluded, no significant reciprocal effects were detected. 

Whether the reciprocal effects found in the underlying study are truly of cytoplasmic origin can be 

analysed with the F2-generation. In case the reciprocal effects are still present in the F2-generation, 

cytoplasmic inheritance is most likely the cause of the differences, as was demonstrated by Ouyang (1986) 

with 17 crosses of wheat and by Hou et al. (1994) in a 4x4 complete diallel of barley. However, 

Goodenough (1984) states that in higher eukaryotes cytoplasmic inheritance of genetic traits is usually 

synonymous with maternal inheritance. In our study, no maternal effects (component c) were found and 

small but significant reciprocal differences, not ascribable to maternal effects (component d) were found 

for percentage Responding Anthers and Embryo Induction Frequency (Table 5), again indicating towards 

cytoplasmic factors. 

Regeneration of the anther culture derived embryos 

On average, 30% of the embryos regenerated into plantlets, with the highest percentage for the F,-

combination 3x5, with 46 régénérants per 100 embryos. Three other publications on wheat reported 

regeneration frequencies of 49 plants per 100 embryos for the genotype with the highest regeneration 

frequency (Agache et al. 1988, Lazar et al. 1984, Lazar et al. 1985). In the underlying study, 11% of the 

régénérants was green, with the highest percentage for F,-combination 7x2, with 39.3 green plants per 

100 régénérants. On average 0.5 green plants per plated 100 anthers were produced. Lazar ef al. (1985) 

found 7 green plants per 100 anthers. The main reason for this difference is probably that in our study no 

selection for a high green plant regeneration was made between the parental lines. Genotypes in this study 

were merely chosen for their anther culture abilities and their Fusarium Head Blight resistance. 

In this study additive components were significant to highly significant and explained 30 to 65% of the 
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variation for the three regeneration traits (Table 8). Ekiz & Konzak (1994a) found additive effects and 

epistasis for plant regeneration and green plant frequency, but did not give the percentage variation 

explained by these effects. Balatero etal. (1995) tested three reciprocal crosses in triticale and found that, 

as well as for embryo induction, also for plant regeneration the simple three parameter additive dominance 

(AD) model was sufficient. However, in not all crosses significant additive and dominance effects were 

found and the authors explained this with a higher sensitivity of plant regeneration to environmental 

factors. 

In Table 9 it can be seen that of the parental lines, genotype 6 (PF 8049) had the highest green/albino 

ratio. This genotype also ranked relatively high for percentage green plants, green plants per 100 plated 

anthers and green plants per 100 produced embryos. However, this genotype did not transmit this trait 

to its offspring as the means of the F,-combinations, where PF 8049 is one of the parents, did not show 

these high values. A high percentage green régénérants is apparently not always inherited to the offspring. 

This was confirmed by the fact that the narrow sense heritability for green plant regeneration in this study 

was low: 0.11. Charmet & Bernard (1984) testing triticale, found a broad sense heritability of 0.54 for 

green plant regeneration and 0.27 for green plant production. F,-combinations 2x7, 7x2 and 7x5 had 

higher green/albino ratios, while their parents had a lower green/albino ratio, and low percentages green 

plants. This indicated heterosis, and was confirmed by the fact that the heterosis component for green 

plant regeneration was significant at the 0.01 level of probability. 

No correlation was found between percentage green régénérants and percentage Responding Anthers, 

Embryo Induction Frequency or Embryo induction frequency p.er Responding Anther (Table 3). This was in 

agreement with other cereal studies on the correlation between embryo induction and plant regeneration 

(Balatero et al. 1995, Charmet & Bernard 1984, Deaton ef a/. 1987, Foroughi-Wehr etal. 1982). Anther 

culture response and green plant regeneration appear to be under genetically independent control 

mechanisms. Balatero ef al. (1995) state that the inheritance of plant regeneration might be more complex 

due to a higher sensitivity to environmental factors. In our study the environment for donor plant growth 

consisted of an accurately controlled phytotrort chamber in which the changes of environment could be 

neglected. There were highly positive correlations between percentage albino régénérants and percentage 

Responding Anthers, Callus Induction Frequency, Embryo Induction Frequency, Callus Induction frequency 

per Responding Anther and Embryo induction frequency per Responding Anther. This means that 

genotypes that produce well in anther culture also tend to have high percentages albino régénérants. As 

the majority of the régénérants is albino, this is not surprising. The percentage embryos with only root 

formation had a significant negative correlation with percentage Responding Anthers, Callus Induction 

Frequency and Embryo Induction Frequency. 

Significant SCA values were detected for all three investigated regeneration traits, indicating dominance 
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and/or epistasis. Studying a population of 38 DH-lines developed from the F, between 2 wheat parents, 

Agache et al. (1988) also found epistatic control of regeneration ability of the total number of plants. 

Unfortunately no statistical data were given on green plant regeneration. 

In this study no' maternal effects (component c) or reciprocal differences not ascribable to maternal 

effects (component d) were detected for regeneration. This is confirmed by Balatero etal. (1995) who also 

found no significant reciprocal differences stated that there was no indication for maternal effects. In the 

underlying study no significant GCA effects were found. This is in contrast with Charmet & Bernard (1984), 

who found significant GCA-, SCA- and reciprocal effects for green plant regeneration and for plant yield. 

The GCA/SCA ratio was significant for green plant regeneration, indicating predominantly additive gene 

action. However, the authors concluded that non-additive gene action and cytoplasmic influences or 

nucleo-cytoplasmic interaction were also involved, as both SCA and reciprocal effects were significant. As 

earlier mentioned, one line with T. timopheevi cytoplasm was responsible for the reciprocal effect. The 

maternal effects appeared to be more important than specific reciprocal effects and the authors concluded 

that cytoplasmic influences were involved (Charmet & Bernard 1984). 

Heterosis was significant for percentage green plants and percentage albino plants, with a significant 

variety heterosis for percentage green plants and significant specific heterosis for percentage green plants 

and percentage albino plants. Significant heterosis for regeneration was also described in other publications 

(Charmet & Bernard 1984, Ekiz & Konzak 1994a). Balatero etal. (1995) tested three crosses of hexaploid 

triticale and found overdominance for regeneration as the green plant regeneration efficiencies exceeded 

those of the parents. 

For green plants per 100 régénérants and for green plants per 100 embryos, genotype 2 (Praag 8) 

mainly contributed in a positive way, when used as a female parent and genotype 4 (Frontana) mainly 

contributed in a positive way when used as a male parent. Genotypes 5 (Ringo Sztar) and 7 (SVP 73016-2-

4) contributed in either case in a positive way to a higher number of green plants. This indicates the need 

of carefull parent selection and also as which parent (male or female) a genotype is to be used. 

Seed set on the DH„-regenerants 

Of two combinations no green plants could be regenerated and of three combinations no seeds were 

obtained. Before doubling with colchicine, the majority of the plants showed the haploid phenotype: small 

thin leaves and a 'grassy, bushy' structure. Flow cytometry experiments indicated that all plants with such 

a phenotype had the haploid chromosome number as compared to well-known cultivars used to serve as 

control samples (results not presented). Percentages spontaneous doubled haploids in wheat range from 

4.3% to 42% (Gustafson ef al. 1995, Li et al. 1988, Loschenberger et al. 1995, Ziegler et al. 1990) and 

was 63% in winter barley (Devaux 1987). 

Although a high percentage of the variation could be explained by genetic effects (78%), only a small 
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amount of the genetic effects could be contributed to additive effects (4%). Narrow sense heritability for 

percentage seed set was therefore extremely low (0.01) and progress for this trait will be slow. 

In this study, the haploid régénérants were doubled with colchicine in the conventional way, and showed 

a relatively high percentage of 84% fertile DH0-plants and 116 seeds per DH0-plant. Other publications in 

which the haploid régénérants were doubled in the conventional way, report of 21 % fertile DH0-plants and 

31 seeds per DH0-plant (Barnabas et al. 1991). In the latter study, the authors found that applying 

colchicine in the induction phase increased the number fertile plants up to 69% and the number of seeds 

per plant increased up to 58. Gustafson et al. (1995) found fertility rates of 87% for spontaneously 

doubled haploid wheat régénérants derived from microspore culture and 27% for colchicine doubled wheat 

régénérants from the same experiments. Devaux (1987) reported 70.7% fertility and on average 97 seeds 

per plant on colchicine treated anther culture derived barley régénérants, and 73% fertility and 188 seeds 

per plant on spontaneously doubled haploids, derived from anther culture. It is clear that colchicine 

treatment has a detrimental effect on seed set, as compared to spontaneous doubling. In our case, 84% 

of the plants contained one or more seeds, however, not more than half of the analysed spikes set seed. 

Seed set of monocotyledoneous species after an in vitro phase is a major problem. Due to the in vitro 

process, fertility of the doubled haploids is reduced. He er al. (1993) tested haploid cell suspensions, derived 

from anther culture and found only 2 out of 14 DH-plants to be fertile. Ahmed & Sagi (1993) achieved only 

1 fertile plant out of 1000 regenerated shoots, derived from embryogénie cell suspsensions. Shimada ef 

al. (1994), testing Japanese wheat cultivars, found only 11 out of 285 (3.8%) regenerated doubled haploids 

to be fertile. Lanaud (1987) studied doubled haploids in cocoa (Theobroma cacao) and it appeared that 

the DH-plants usually had a lower fertility than the parents. A lack of differentiation of the ovules was the 

main reason for the lower fertility, however, these unfavourable characters were not observed in the cross 

progeny of the DH-plants. Authors stated that the lower fertility was caused by homozygosity, forced on 

a normally allogamous plant. Ovule fertilities were 70% to 77% and pollen fertilities 60% to 88%. 

No correlation was found between the seed set percentage with any of the measured anther culture 

or regeneration traits. Genetic control of the measured traits appears to be independent. This is confirmed 

by Takacs ef al. (1994) who found no correlation between in vitro seed set and the haploid plant 

regeneration frequency. They also concluded that the genetic components were independent, htrodudng 

anther culture in a conventional breeding programme can quickly provide the breeder with genotypes that 

have a higher embryo production. However, the final measure of efficiency of the anther culture method 

is the number of green plants that can be regenerated from a certain number of cultured anthers. Best 

parent heterosis for green plant regeneration was found in 10 out of 42 F,-combinations and therefore 

carefull parent selection is of eminent importance. Heritabilities for anther culture are more promising than 

for green plant regeneration, and therefore more emphasis should be paid to parents which, after crossing, 

result in F,-hybrids with a good green plant regeneration. 
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Inheritance of green plant regeneration 

Chapter 3: Inheritance of anther culture derived green plant 

regeneration in wheat (Triticum aestivum L) 

Abstract 

A study was set up to determine the inheritance and combining ability of the factors anther culture 

response and green plant regeneration. Reciprocal crosses were made between cultivar Ringo Sztar, 

showing high anther culture response and the cultivars Ciano 067 and Benoist H77022, showing a high 

level of green plant regeneration. Averaged over all genotypes, 23.0% of the anthers responded and a 

callus induction frequency of 77.8% was observed. Of all the embryos, 43.0% developed into plantlets, 

25.6% of the régénérants being green, the result being that 3.3 green plants per 100 anthers were 

formed. Genotypic effects accounted for 57.7%, 86.3% and 77.5% of the total variance of anther culture 

response, callus induction frequency and embryo induction frequency, respectively. Additive and dominant 

gene action was detected for all characteristics, including green plant regeneration. No reciprocal 

differences were found for anther culture response, embryo induction frequency and green plant 

regeneration, indicating no cytoplasmic effects. A small but significant reciprocal difference was found for 

callus induction frequency. Embryo production was primarily correlated with anther culture response and 

not with the number of embryos produced per plated anther or per responding anther. Possible 

mechanisms for the inheritance of green plant regeneration are discussed. 
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Introduction 

Gramineous species have proven to be recalcitrant crops with regard to in vitro androgenesis techniques 

such as anther- and microspore culture. In general, many genotypes of most of the species respond poorly. 

In particular green plant regeneration is low, either because regeneration of albino plantlets occurs or no 

regeneration at all. The occurrence of high numbers of albino plants has been frequently reported. In 

wheat 97% albino plants for cultivar Edwall were found by Zhou & Konzak (1989) and 88% averaged over 

four German spring wheat cultivars by Ziegler etal. (1990). High percentages of non-regenerating embryos 

(excluding albino's) were also reported in wheat, e.g. 90% by De Buyser & Henry (1979) and 80% by De 

Buyser er al. (1989). However, some wheat genotypes showed high levels of expression for certain other 

androgenic traits, e.g. anther culture response, callus and embryo induction frequencies, green plant 

regeneration and may therefore be used in crossing programmes to try to improve androgenesis in general 

in agronomical important cultivars. Wheat cultivars that are thought to express androgenic traits at high 

levels are e.g. Ciano 067, Pavon 076 and Dirkwin, which showed callus induction frequencies of 115, 334 

and 479 calli per 100 anthers and a green plant yield of 70, 72 and 357 green plants per 100 anthers, 

respectively (Ouyang etal. 1983; Zhou etal. 1991; Orshinsky 8t Sadasivaiah 1994). Cultivar Gernard 81 

produced up to 1002 embryos per 100 anthers (Otani & Shimada 1993). 

Optimization of anther culture conditions (i.e. growth conditions of the donor plants, culture medium 

and pretreatments of the anthers), has improved the efficiency of anther culture through the years. 

Foroughi-Wehr & Friedt (1984) reported in the barley genotype Igri 2.4 green plants per 100 anthers. 

Cistué et al. (1994) reported ten years later in the same genotype up to 1800 green plants per 100 

anthers. However, previous studies have indicated that androgenic traits are also under strong genetic 

control. Heritabilities were estimated in various studies. Lazar ef al. (1984b) found in wheat narrow sense 

heritabilities for callus production frequency and regeneration frequency of 0.6-0.7, and Ekiz & Konzak 

(1994a) estimated in wheat narrow sense heritabilities of 0.68, 0.54 and 0.43 for callus induction, green 

plant percentage and green plant yield, respectively. A relatively high heritability indicates that introgression 

of that androgenic trait will show rapid progress. However, significant environmental variances (Lazar et 

al. 1984a) and relatively high error variances (Deaton ef al. 1987) may slow down the introgression process. 

Nuclear, as well as cytoplasmic or maternal effects are known to influence anther culture efficiency. In 

addition, interactions between several traits were found (Lazar ef al. 1984b; Andersen ef al. 1987). 

Extensive deletions in the plastid genome are primarily suggested to be the cause for microspore derived 

albino plants in wheat and barley (Day & Ellis 1984, 1985). 

This study was carried out to investigate the inheritance .of green plant regeneration in relation to anther 

culture response in wheat. A wheat genotype with a high anther culture response, but low green plant 

regeneration was reciprocally crossed with two wheat genotypes with relatively low anther culture 
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response, but high green plant regeneration. Genotypes that combine high values of both traits are 

presumed to be suitable genotypes for in vitro selection experiments (Bruins etal. 1993). For that reason, 

one of the genotypes in this study (Ringo Sztar) was chosen for its high Fusarium Head Blight (FHB) 

resistance level in the field. In vitro selection for FHB-resistance with highly responsive and regenerative 

genotypes at the haploid level would be an efficient way of producing homozygous FHB-resistant 

genotypes. 

Materials and methods 

Three wheat cultivars (Ringo Sztar, Ciano 067 and Benoist H77022), known for their extreme response 

in anther culture and green plant regeneration were used in this study. Ringo Sztar had previously shown 

to have a high anther culture response (Bruins etal. 1993). 18-20 Responding anthers and 60-70 calli per 

100 anthers were found in several experiments. However, plant regeneration percentages were extremely 

low: 0.3 green plants and 1.1 albino plants per 100 embryos. For comparison: the means for plant 

regeneration, averaged over 23 genotypes from the same experiment, including Ringo Sztar, amounted 

to 3.4 green plants per 100 embryos and 33 green plants per 100 regenerated plants. Tuvesson ef al. 

(1989) found in their experiments that the parents Ciano 067 and Benoist H77022 gave 19 and 24 

embryos per 100 anthers, and had relatively high regeneration frequencies of 53 and 32 green plants per 

100 regenerated plants, respectively. 

Seeds of these three parent cultivars were sown and vernalized for eight weeks. Plants were grown in 

the greenhouse with a 14 h photoperiod and a temperature regime of 15°C (light) and 10°C (dark). 

Reciprocal crosses were made between cultivar Ringo Sztar and the other two parents. Seeds of the four 

F,-combinations were sown together with the parental cultivars and vernalized for eight weeks. Plants were 

grown in the greenhouse with a 14 h photoperiod for five weeks and a temperature regime of 15°C (light) 

and 10°C (dark). After that, plants were transferred to the field. At least ten F,-plants per combination 

were tested. The first three heads of each plant were chosen for anther culture. Anther culture was carried 

out according to Bruins ef al. (1993), in short: excision of the anthers at the mid-uninucleate stage, tillers 

were surface sterilized spraying with 70% ethanol, the anthers were plated on P2 medium and culture 

conditions were 28°C in the dark. After six weeks of culture, the following factors were assessed: the 

number of responding anthers per spike that produced at least one embryogénie or non-embryogenic 

structure (watery callus) and the number of embryogénie structures and non-embryogenic structures per 

spike. The following calculations were made: number of responding anthers/number of plated anthers x 

100% (=anther culture response; RA), total number of embryogénie and non-embryogenic 

structures/number of plated anthers x 100% (=callus induction frequency; CIF), number of embryogénie 

structures/number of plated anthers x 100% (=embryo induction frequency; EIF), total number of 
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embryogénie and non-embryogenic structures per responding anther (CIRA), number of embryogénie 

structures per responding anther (ERA). 

Embryos larger than 1 mm were transferred for regeneration to MS medium (Murashige & Skoog 1962), 

supplemented with 3% sucrose, 1 mg I"' silver nitrate, 160 mg I'' glutamine and 0.5 mg I"' thiamine. After 

two to three weeks, regeneration of the embryos was assessed. Plated embryos were subdivided into four 

classes: green shoots, albino shoots, only roots or no regeneration. All data were transformed by taking 

the square root to improve the normality of the distribution. The transformed data were analyzed on the 

basis of predicted means from Residual Maximum Likelihood (REML) Variance Component Analysis (Genstat 

5 Committee 1993). 

Results 

In vitro androgenic development could be induced in all parents and F,-combinations (Table 1). Highly 

significant differences for anther culture response were found among entries. Ringo Sztar, which was 

chosen because of its good anther culture response, proved to have significantly the highest anther culture 

response of all three parents with 32.3% responding anthers. Ciano 067 had the lowest androgenic 

response (4.2%) and Benoist H77022 showed an intermediate response (13.8%). The F,-combinations 

Ringo Sztar x Ciano 067 and Ciano 067 x Ringo Sztar showed intermediate anther culture responses 

(18.4% and 11.8%, respectively) between the two parents, indicating additive inheritance. The anther 

culture response values for the reciprocals were not significantly different from each other, implying no 

cytoplasmic effects. Anther culture response values of the F,-combinations Benoist H77022 x Ringo Sztar 

and Ringo Sztar x Benoist H77022 were not significantly different from parent Ringo Sztar, indicating 

dominant inheritance, and were not significantly different from each other. Ranking for callus induction 

frequency and embryo induction frequency was similar to anther culture response (Table 1 ). For green plant 

regeneration, Ciano 067 showed the highest (39.7%), Benoist H77022 an intermediate (17.3%) and Ringo. 

Sztar the lowest frequency (2.8%)(Table 2), a ranking identical to previous results and literature (Tuvesson 

etal. 1989). The reciprocal F,-combinations Ringo Sztar x Ciano 067 and Ciano 067 x Ringo Sztar were 

not different from each other. These combinations also showed intermediate green plant regeneration 

(20.4% and 25.0%, respectively) between the two parents, indicating additive inheritance. The reciprocal 

F,-combinations Benoist H77022 x Ringo Sztar and Ringo Sztar x Benoist H77022 showed a comparable 

low green plant regeneration (1.2% and 1.6%, respectively) as parent Ringo Sztar. The absence of 

reciprocal differences for anther culture response, embryo induction frequency and green plant 

regeneration indicates no role for cytoplasmic factors for these three traits. 

60 



0) 

1 1 
t j ID 

I g» 
ö 1 
f ft 

•2 cl 

il 
vi C 
3 O 

=S O. 
10 VI 

5? 2 
E § m -a 

u 

c o 
't! 3 
"D 
C 

& 
c 
ar 
3 er a> 

ro 
O l 

ai 
«— 

u 
o 
ai 
to 

X> 

oo 
ps! 

m 

T 3 
i~-

r-̂  
<— 

T 3 
f . 

od 
»~ 

• o 
l O 
« • ^ 

(N 

3 

c 
T ) 
C 

H 
ai 
cc 

ai 
r 
r 
10 

^ 

'S £ 
« 1 
r> ni 
E -o 
3 ai 

Z j o 
a. 

c o 

3 
3 

c < 

ai 
S 

ai a. 
f 
c 
ai 

(N 

O l 
I N 
(N 

r-. 

«— Ol 
fN 
I N 

m o m 
IN 

•o 
c < 

o a. 
E o 

> 

i n 
IN 

m 

ID 

oo 
m 

Ol 
oo 
IN 

oo 
oo 

10 

IN 

O l 
IN 

to 
IN 

U 

•<* 

xi to 

3 
Ol 

X I 
O l 00 

E 

10 

o 

Ol 

o 
o 

X I 

od 

XI 
0 0 

jf 
u 

IN 
m 

o 
to 

u 
ni 

x> 
oo 
ni 

o 
I-» 
I N 
I N 

oo 
Ol 
LT) 
I N 

lO 
to 
to 
m 

to 
I N 
r-

Ol 
LTI 
Ol 

»-

1 -

o 
t 

V 

CN 
I N 

l~N 
to 
O 
O 
c 
ID 

U 

to 
O 
o 
c 
I D 

U 

X 
w 
IO 
tg 
t / i 
O 
O l 
c 

'oc 

ID 
4-* N 
t/1 

O 
a i c 
et 
X 

p~ 
IO 
o 
o 
c 
ID 

'G 

k _ 

s tt t/1 
o 
O l 
c 

s 

o 
O l 

IN 
IN 
O 
r~ 
l~. 
X 

Ol <N X IN 
IN ° ° rN 
O X O 
f* i_ r-~ 
r^ ID r^ 

* « = 
« "> « O c 
Ol 

o 
O l 
ç 

be 

O 
c 
ai 
oa 



Chapter 3 

Table 2. Plant 

Genotype 

regeneration from anther derived embryos of three wheat parents and four F,-crosses. 

Number of 
plated 

embryos 

green 
shoots 

<%> 

albino 
shoots 

(%) 

roots 
only 
(%) 

green plants 
per responding 

anther 

green 
plants per 

100 anthers 

Ciano 067 

Ringo Sztar x Ciano 067 

Ciano 067 x Ringo Sztar 

Ringo Sztar 

Benoist H77022 x Ringo Sztar 

Ringo Sztar x Benoist H77022 

Benoist H77022 

290 

759 

661 

601 

809 

1687 

683 

39.7 

20.4 

25.0 

2.8 

1.2 

1.6 

17.3 

26.9 

32.5 

28.3 

36,9 

34.9 

39.3 

11.3 

7.9 

8.3 

7.4 

7.5 

8.5 

6.7 

10.7 

0.74 

0.30 

0.36 

0.03 • 

0.01 

0.02 

0.27 

5.1 

6.0 

4.5 

1.0 

0.5 

0.7 

5.3 

Mean ~ 11.0 32.0 7.9 0.14 33 

For callus induction frequency a low but significant reciprocal difference shows that Ringo Sztar as a 

female parent favours callus induction more than as male parent. No large differences between parents 

and/or F,-combinations for the percentage of embryos that regenerated only roots was found, and it varied 

from 6.7% to 10.7%. Averaged over all genotypes, of the 18,444 anthers, 23.0% had responded with 

embryos or non-embryogenic structures. On these responding anthers 9028 embryos and 5322 non-

embryogenic structures were found, most anthers producing more than one structure. The 5490 embryos 

that were larger than 1 mm were transferred to regeneration medium. Eleven percent of them developed 

into green plants, 32.0% into albino plants and 57.0% did not regenerate or developed only roots. Overall, 

of the embryos regenerated into plantlets, 25.6% was green. Per 100 anthers on average 3.3 green plants 

were formed. 

Table 3 shows correlations between the different androgenic characters. Combinations with a significant 

high positive correlation were: percentage responding anthers with callus- and embryo induction frequency; 

callus induction frequency with embryo induction frequency (0.98; not shown); callus induction per 

responding anther with embryo induction per responding anther; and non-embryogenic structures with 

albino régénérants. Combinations with a significant high negative correlation were: anther culture response 

with green plant regeneration; callus- and embryo induction frequency with green plant regeneration (-0.96 

and -0.96; not shown); and non-embryogenic structures and albino régénérants with root regeneration. 

Variance analysis showed that genotypic components for anther culture response, callus induction 

frequency and embryo induction frequency accounted for 57.7%, 86.3% and 77.8% of the total variance, 

respectively. 
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Table 3. Correlation matrix of different traits. Presented are the values of r. *=P<0.05, "=P<0.01. 

CIF 

EIF 

CIRA 

ERA 

% Non-embryos 

% green 

% albino 

% root 

% No regeneration 

0.95" 

0.94" 

0.17 

0.08 

0.22 

-0.98" 

0.55 

-0.16 

0.75 

0.89" 

0.68 

0.07 

0.58 

-0.57 

-0.47 

0.27 

0.41 

0.04 

-0.08 

-0.51 

-0.49 

0.99 

-0.91 

-0.08 

-0.49 

0.14 

-0.49 

-0.86 

-0.10 0.39 

RA CIRA ERA Non-Embryos % green % albino %-root 

Discussion 

Average anther culture response and callus induction frequency values in this experiment of 23.0% and 

77.8%, respectively, were higher than anther culture response and callus induction frequency values 

reported in most other publications on anther culture of wheat: 20.3% and 41.0% (Barnabas ef al. 1991 ); 

7.8% and 20.0% (Abd El-Maksoud & Bedö 1993); 18.0% and 57.4% (He ef al. 1993), for anther culture 

response and callus induction frequency, respectively. The regeneration frequency was 12.8 plants per 100 

plated anthers, of which 25.6% was green, whereas Tuvesson ef al. (1989) reported a percentage of 23.4 

plants per 100 plated anthers of which 15.3% was green. However, Ouyang ef al. (1983) produced 72 

green plants per 100 anthers in cultivar Ciano 067, whereas under our conditions with the same cultivar, 

only 5.1 green plants per 100 anthers were produced. 

The majority of the total variance of the androgenic traits could be explained by genotypic effects. In 

this study, additive and dominant gene, action were found for anther culture response and callus- and 

embryo induction frequency. Previous publications indicated that androgenic traits were mainly controlled 

by nuclear genes, with the additive gene action being predominant (Zhou & Konzak 1992). Dominant gene 

action was reported in wheat by Lazar ef al. (1984b). 

The absence of reciprocal differences for several androgenic traits, found in our experiments, is in 

agreement with other publications on wheat and barley where no indication for reciprocal effects (Bullock 

ef al. 1982; Zhou & Konzak 1992) or small reciprocal effects (Foroughi-Wehr ef al. 1982; Lazar ef al. 

1984b) were reported. However, other reports on barley and wheat indicated significant reciprocal effects 
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for callus induction, green plant percentage and green plant yield (Powell 1988; Ekiz & Konzak 1994a). In 

the study of Ekiz & Konzak (1994a) the reciprocal effects were mainly caused by two cross combinations. 

Sagi & Barnabas (1989), using alloplasmic lines, found significant cytoplasmic effects for anther culture 

response. For plant regeneration no cytoplasmic effects could be detected. Ekiz & Konzak (1991 a,b,c) 

found significant reciprocal differences and explained the absence of such reciprocal differences in other 

publications by a narrow base of cytoplasm genetic variation or by relatively low levels of anther culture 

response, caused by the methods used. In our study a narrow base of cytoplasm genetic variation is 

unlikely because of the distant relationship between the three parents. Ringo Sztar is a Hungarian cultivar 

and Ciano 067 and Benoist H77022 are CIMMVT and French cultivars, respectively. Besides this, the levels 

of callus induction frequency in the present study, up to 122 calli per 100 anthers, are similar to those 

found by Ekiz & Konzak (1991c) for genotypes Chris and Edwall (123 and 133 calli per 100 anthers, 

respectively). 

Ouyang (1986), on the other hand, stated that pollen callus induction frequency is controlled mainly by 

genes of the diploid anther wall tissue and not by genes of haploid pollen cells. Such maternal effects 

occurred when pollen lines derived from F,-hybrids with great heterosis for pollen callus yield were used 

again as anther donors. The pollen callus induction frequencies were much lower than the induction 

frequencies of the F,-hybrids, showing the disappearance of heterosis. 

As the pollen population in our study was formed in the anthers of F,-plants, it consisted of a 

segregating F2-population, and possible mechanisms of inheritance for green plant regeneration can be 

speculated upon, with the assumption that there is no gametic selection. The genetic constitution of the 

gametes is likely to play a role, however parental effects cannot be excluded. The intermediate percentages 

of green plant regeneration per 100 embryos or per responding anther in the F,-combinations between 

Ringo Sztar and Ciano 067 indicate segregation and that it is unclear whether the genetic constitution of 

the F2-pollen population or of the F,-maternal tissue caused the intermediate reaction. The low percentages 

of green plant regeneration per 100 embryos, per responding anther or per 100 anthers in the F,-

combinations between Ringo Sztar and Benoist H77022, comparable to parent Ringo Sztar, is most likely 

to be caused by the genetic constitution of the F,-plant, which could be caused by a maternal effect. 

The number of embryogénie structures per responding anther (ERA) was not significantly different 

between the genotypes and varied from 1.81 to 2.75. This is in agreement with other publications were 

the ERA value varied not significantly from 1.9 to 2.4 (Barnabâs ef al. 1991) or from 2.2 to 2.7 (Takâcset 

al. 1994). Using four tetraploid Triticum turgidum genotypes on nine different media combinations, the 

ERA value was found to vary from 1.2 to 1.9, with one exception of a genotype producing 2.3 embryos 

per responding anther (Ghaemi ef al. 1994). This ERA value appears to be an independent character of the 

medium used and which might be under genetic control. 

The correlation between anther culture response and callus induction frequency or embryo induction 

frequency was high (r=0.95 and 0.94, respectively), similar to the results that were found by Pauk et al. 

64 



Inheritance of green plant regeneration 

(1991). In their report 6 parents and 10 F2-populations were tested on two media and the correlations 

between anther culture response and callus induction frequency were r=0.92 and r=0.91 for the two 

media, respectively. This correlation indicates that the production of embryos and non-embryogenic 

structures is mainly dependent on anther culture response and not on the number of structures per plated 

anther. No correlation was found between anther culture response and callus induction per responding 

anther or embryo induction per responding anther. This, combined with the fact that the number of 

embryogénie structures per responding anther was not significantly different between the genotypes, 

suggests that embryo production is predominantly related to anther culture response and not to the 

number of formed embryos per responding anther. In several previous reports anther culture efficiency was 

subdivided into three components: 1) Callus Induction Frequency; 2) Plantlet Regeneration Frequency (= 

number of structures producing green or albino plantlets/number of calli x 100%; 3) Green Plantlet Yield 

(= number of green plants produced/number of anthers cultured x 100%)(Ouyang era/. 1983; Konzak & 

Zhou 1991). Considering the strong correlation between anther culture response and callus induction 

frequency, found in our set of data and in previous publications where also both parameters were assessed 

(Chapter 2, Knudsen ef ai 1989, Pauk étal. 1991), while no reports of no correlation are known, and the 

absence of significant differences for calli or embryos per responding anther, suggests that in this 

experiment the genetic variance for anther culture response was larger than for callus induction frequency. 

Therefore, another component can be formulated which can be added to the above mentioned three, or 

in this study even replace the first component, namely: Anther culture response (the number of anthers 

giving one or more structures). 

This set of genotypes showed a high negative correlation between anther culture response, callus 

induction frequency, or embryo induction frequency with green plant regeneration. This is not so surprising, 

as the genotypes in the present study were selected for their extreme response in green plant regeneration; 

Ringo Sztar giving large numbers of embryos, but mainly albino régénérants and the other two parents 

giving less,embryos but much higher percentages green régénérants. In contrast, the majority of other 

publications on the genetic basis of androgenic traits in wheat reported no significant correlation 

coefficients between different anther culture response components and regeneration components, 

indicating that these two groups of components may be controlled by different genetic factors (Agache 

etal. 1988; Ekiz & Konzak 1994b). 

The F,-combinations Ringo Sztar x Ciano 067 and Ciano 067 x Ringo Sztar combine a relatively high 

anther culture response with a relatively high percentage of green plant regeneration. The combination of 

these two traits in one genotype might provide a suitable genotype for in vitro selection experiments. The 

inclusion of a cultivar with a relatively high level of resistance against Fusarium head blight, Ringo Sztar, 

ensures the genetic variation needed for such in vitro selection experiments. 
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Chapter 4: Phytotoxicity of deoxynivalenol to wheat tissue with 

regard to in vitro selection for Fusarium head blight resistance. 

Abstract 

Four types of wheat plant material I.e. seedlings, coleoptlle segments, anther derived callus and anther 

derived embryos, were tested at different concentrations of deoxynivalenol (DON) and 3-

acetyldeoxynivalenol (3-ADON). DON inhibited growth of all types of plant material. Seedling growth 

response to 4x 10'5 M DON of a large set of genotypes, did not differentiate between tolerant and sensitive 

genotypes according to observed Fusarium Head Blight (FHB) resistance level in the field. In general 

coleoptile segments showed a growth reduction at 105 M DON. A concentration of 10"4 M DON appeared 

to be the optimum concentration to differentiate between haploid wheat calli for DON- tolerance. 

However, growth analysis data of 40 callus clones did not show any correlation with the known FHB-

resistance levels of the original donor genotypes and -populations. Regeneration of the anther derived 

embryos in the embryo selection experiment was decreased 100-fold on DON-containing medium. 

Averaged across the callus and embryo selection experiments, green plant regeneration showed a decrease 

of approximately 20-fold on medium containing toxin. 
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Introduction 

Fusarium Head Blight (FHB) is a fungal disease of wheat (Triticum aestivum L.) occurring in both 

temperate and sub-tropical regions. FHB is predominantly caused by Fusarium graminearum Schwabe and 

F. culmorum (W.G. Smith) Sacc. Even low infection levels lead to significant yield losses and contamination 

of grain with mycotoxins. Genetic variation for FHB-resistance is widely present in the available gene pool. 

However, the resistance is quantitative and probably based on several minor genes, making it difficult to 

select for. Complete resistance has not yet been discovered. For estimating the amount of fungal biomass, 

visual scoring of FHB is an adequate tool. This estimation can be used as a reliable parameter of the 

resistance level in large scale screening of varieties or breeding lines 

(Snijders 1990 a-c. Snijders & Krechting 1992). For early selection in segregating populations, a laboratory 

method is highly desirable. The large number of individuals that can be screened and the limited space that 

is needed makes the application of in vitro selection an attractive approach. 

During the last two decades many studies have been carried out to obtain plants with increased levels 

of disease resistance using toxic metabolites produced by the pathogen as selection agent, mostly applied 

at callus level (Bulk, 1991). Selection for resistance with toxic compounds was not successful in a 

considerable number of studies, possibly also because fundamental knowledge about the role of toxic 

components in pathogenesis, the mode of action and properties of toxins and their interaction with host 

cells was lacking in many cases. Van den Bulk (1991 ) lists disease resistant plants of various crops obtained 

by in vitro selection. Most successes were obtained with host-specific toxins. Successful in vitro selection 

for Fusarium resistances is limited to F. oxysporum in tomato, potato and alfalfa, using culture filtrate 

containing toxic metabolites or pure fusaric acid. It should be noted that for most of these toxic 

metabolites their role in the pathogenesis has not been elucidated yet, and that these studies were aimed 

at taking advantage of somaclonal variation occurring in tissue cultures. Somaclonal variation is a rather 

undirected way of creating variation as many factors can affect its nature and frequency. In the study 

reported here segregating populations of wheat have been used as the main source of variation. 

Fusaric acid was used to select microcalli (Wenzel et al. 1984) or embryogénie calli (Chawla & Wenzel, 

1987) of barley for resistance against fusaric acid, in order to obtain resistance to the Fusarium disease 

causing seedling blight, root rot and head blight. Plants could be regenerated from the surviving resistant 

calli and testing by leaf bio-assay revealed that many were resistant to the toxin. However, it was not 

demonstrated whether barley plants with an increased resistance to Fusarium were obtained. 

Both Fusarium graminearum and F. culmorum produce the non-macrocyclic trichothecenes 

deoxynivalenol (DON) and 3-acetyldeoxynivalenol (3-ADON). There are strong evidences that trichothecene 

production may be involved in the pathogenicity of Fusarium spp. (Desjardins et al. 1989, Snijders & 

Perkowski 1990, Beremand ef al. 1991 ). Even in low concentrations (< 10"5 M) these toxins are highly toxic 

to plant and animal tissue as they inhibit eukaryotic protein synthesis by blocking the peptidyl transferase 
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step (Carter ef al. 1980). DON and 3-ADON are non-specific toxins and are regarded as aggressiveness 

factors, i.e. they increase the extent of disease symptoms and colonization but are not involved in the 

primary interaction that determines compatibility (Snijders & Krechting 1992, Al-Heeti 1987, Desjardins 

1992, Manka et at. 1985). Plants tolerant to these toxins do not show complete resistance, but an 

increased resistance (Snijders & Krechting 1992). Our study reported here is aimed at the development of 

a system to select for FHB-resistance in segregating wheat material using DON as the selective agent. 

Experiments were carried out on seedling, coleoptile, anther derived callus and embryo level, and compared 

with available information from field experiments. 

Materials and Methods 

Plant material of 41 wheat genotypes and segregating populations was used in the experiments. The 

FHB-resistance of these genotypes, given as the weighted mean of five years (1987-1991 ), is given in Table 

1 (Snijders 1990c). FHB-resistance was assessed in the field as the percentage head blight per individual 

plant. All genotypes used are part of the Fusarium resistance breeding programme at the CPRO-DLO. No 

preliminary selection for in vitro response was carried out. 

Toxins 

Deoxynivalenol (DON) and 3-acetyldeoxynivalenol (3-ADON) were obtained from Sigma and J.D. Miller, 

Plant Research Centre Agriculture Canada, Ottawa, Canada. DON and 3-ADON were dissolved in 2 ml 

ethanol (70%), diluted with 2 ml H20, sterilized by membrane filtration (0.22 jum OPTEX, Millipore) and 

added to the medium. 

Effect at seedling level 

Seeds of 18 winter wheat genotypes were disinfected by dipping in 70% ethanol for a few seconds and 

then immersing in a 1 % calcium hypochlorite solution for 10 minutes, followed by several rinses in sterile 

distilled water. Seeds were incubated on wet filter paper under sterile conditions at a temperature of 16°C. 

After 48 hours, germinated seeds were transplanted to 180x16 mm culture tubes with 12.5 ml MS medium 

(Murashige & Skoog 1962), solidified with 8 g I"' purified agar (Oxoid) and containing 0 M, 1.7 x10"5 M, t 

2.7 x10'5 M, 3.4 x 10-5 M and 4.1 x10"5 M DON (5, 8,10 and 12 mg I"' respectively). Incubation took place 

at 16°C with a day length of 16 hours. Each experiment had a randomized block design with 4 replicates, 

representing the four levels in the incubator. Coleoptile and root lengths were measured every 24 h for 

20 days. 
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Table 1. Resistance of 41 wheat (Triticum aestivum L.) genotypes, expressed as Fusarium head blight index", and 

inclusion (*) in selection experiments at seedling (S), coleoptile (CO), callus (CA) and embryo (E) level. Genotypes are 

presented in descending order of FHB-resistance. 

Genotype Code" 

FHB-index Selection level 

(%) S CO CA 

Ft 83-326c 

Frontana' 
Ning 8343c 

Praag 8 
SVP 72017-17-5-10-1 
SVP 72107-17-5-10 
SVP 77076-1 
Anna 
SVP 77076-4 
SVP 77076-38 
Nobeokabozu komugic 

Ringo Sztar 
Kraka 
Kaluzskaja 9 
SVP 77078-30 
SVP 72003-4-2-4 
Saiga 
SVP 77079-15 
SVP 75059-28 
Arminda 
Obelisk 
SVP 75059-32 
SVP 73030-8-1-1 
SVP 73016-2-4 
SVP 75059-46 
SVP 73012-1-2-3 
CWW 4055/3 
PF 8049c 

Nautica 
SVP 72005-20-3-1 
Pf 80271e 

BR 14 (Pf 79780)c 

SVP 77071-2-6 
SVP C8703 F2 (IVxXI) 
SVP C8709 F2 (IVxlX) 
SVP C8726 F2 (VlllxlX) 
SVP 88001 F2 (lllxll) 
SVP 88002 F2 (Xxl) 
SVP 89002 Fl (IVxVI) 
SVP 89002 F2 (IVxVI) 
SVP 89004 F2 (VllxV) 

1 

II 
III 

IV 

V 
VI 

VII 

VIII 

IX 

X 

XI 

0.9 
1.6 
1.7 
2.1 
3.3 
7.6 
7.9 
8.4 
8.6 
9.5 
9.6 
9.6 

11.1 
11.6 
13.3 
14.9 
18.2 
18.3 
21.3 
24.2 
37.8 
39.9 
42.7 
43.2 
47.8 
48.7 
49.6 
52.2 
56.8 
57.5 
59.2 
59.6 
69.2 

segregating 
segregating 
segregating 
segregating 
segregating 
segregating 
segregating 
segregating 

" Weighed mean of five years (1987-1991). Infection measured as the percentage head blight per ear in the field. 
b Parental code used for F,- and F2-populations. 
c Spring wheat. 
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The measurements obtained from a particular culture tube with a specified genotype within a replicate 

constitute repeated measurements on the same object. The measurements in time in this experiment can 

be modelled by a simple function like a logistic curve, as it concerned a growth experiment with a clearly 

defined lower limit, being the length of the coleoptile or root after 2 days germination, which was 2 mm, 

and an upper limit, the maximum attainable length within the tube: 115 mm for coleoptile length, 65 mm 

for root length (Keen et al. 1986, Rowell & Walters 1976). Subsequently the parameters K, (the slope 

parameter) and tSO (the point of inflexion of the curve, the time at which the coleoptile or root has a 

length equal to half of the tube) of these curves were analyzed in an ordinary analysis of variance as new 

characteristics describing the behaviour of the objects in time. 

Effect at coleoptile tissue level 

Coleoptile growth of seedlings of which the root growth in the DON-containing medium is completely 

inhibited seems more like a tolerance reaction of the plant to inhibition of root activity. To evade this 

problem, the effect on coleoptile tissue, directly incubated in a DON-containing solution, was studied. The 

method used was based on that of Wang & Miller (1988). Wheat seeds were surface sterilized as described 

above. Seeds were sown in moist sterile sand in 200 ml jars which were placed in a dark incubator for 3 

days at 22-25°C, the temperature depending on the known germination speed of the genotype. Using a 

device consisting of three razor blades mounted 3 mm and 4 mm apart on a handle, a 4 mm coleoptile 

section was cut from each seedling after the apical 3 mm had been discarded. DON was added to a buffer 

(1.794 g I"' KH2P04; 1.019 g I"1 citric acid monohydrate; pH 5.6) at 0 M, 10"6 M, 10s M 10"4 M, and 10"3 

M. DON was initially sterilized in 2 ml ethanol. After evaporation of the ethanol, a stock solution was made 

with sterile buffer. Ten coleoptile sections were incubated in a 10 ml tube containing 2 ml of DON-

containing sterile buffer with 2% sucrose, or in buffer with 2% sucrose without DON (control). The 

segments floated on the medium and were well provided with oxygen. The tubes were then incubated in 

the dark at 25°C on a horizontal rotary shaker at 50 rpm and an amplitude of 1.9 cm for 20 h. At the end 

of this period, the size of the segments was measured using an image analyzer system. Three replicates 

were used. Data were analyzed for differences in mean growth of the sections between treatments and 

the control. Similar experiments were performed with 3-ADON. 

Production of anther derived callus and embryos 

Anthers were cultured according to the method of Ouyang (1986). Basically tillers from field grown 

plants were collected in the mid-boot stage, i.e. 43 on the Zadoks growth scale (Zadoks et al. 1974), when 

the boots are swollen but the flag sheath has not yet opened. Anthers from spikelets centrally positioned 

within the head were squashed in drops of acetocarmine. Heads containing microspores in the mid- to late 

uni-nucleate stage were sterilized with 0 .1% HgCI2 solution for 8 minutes, followed by four rinses with 

sterile water. For callus induction, anthers were aseptically excised and placed on Potato-2 medium (P2) 
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(Chuang et al. 1978) in 6 cm Petri dishes. The cultures were incubated in the dark at 29°C. After 30 days, 

embryos were transferred from the induction medium to callus propagation medium (MS medium 

supplemented with 160 mg I ' L-glutamine, 0.5 mg I'' thiamine, 2 mg T' 2,4-D, 3% sucrose and 0.6% agar 

(Oaichin), pH 5.8); ten days later this was repeated for newly emerged embryos. The calli were subcultured 

every three weeks, until sufficient material was available for the selection experiments. 

Determination of the differentiating DON-concentration at callus and embryo level. 

To define the differentiating DON-dose for selection, two experiments, each including three different 

DON-concentrations were performed, namely 0 M, 10s M, 3x10"5 M and 12x10'5 M DON (0, 3, 9, 36 

mg I'), and 0 M, 3 x 10"5 M, 9 x 10"5 M and 27 x 105 M DON (0, 9, 27, 81 mg I"'), respectively. Callus from 

the FHB-susceptible winter wheat cultivar Kraka was used. Five callus pieces were plated per Petri dish ( 0 

6 cm). In experiment 1 each replicate consisted of calli from the same clone. In experiment 2 each replicate 

consisted of calli derived from anthers of the same head. The experiment consisted of a complete 

randomized design with seven or eight replicates (Petri dishes). Incubation was as described above. Initial 

callus fresh weight and final callus fresh weight were measured per Petri dish after three weeks of 

incubation for experiment 1 and and after four weeks for experiment 2. Values were expressed as a 

percentage of the growth on control medium. 

Effect at callus level. 

Each callus clone tested was derived from one embryo. The calli were obtained as described above. As 

the callus clones did not all grow at the same rate, the number of subcultures (2-3) and the number of calli 

per callus clone involved in the experiment were different. Half the number of calli per callus clone was 

placed on control medium, the other half on DON-containing medium. Initial weight of the callus pieces 

used for the selection experiments was about 30 mg. Selection media had the same composition as the 

medium for callus propagation, except that they were solidified with 0.6% SeaPlaque agarose (FMC) 

instead of agar. 

DON was sterilized in 70% ethanol from which a stock solution was prepared and added to the sterile 

medium. The media were checked for DON-degradation with time, using the analysis method described 

in Snijders & Krechting (1992). After four weeks of incubation the change in callus fresh weight was 

measured for each individual callus pjece. In this experiment an image analyzer was used to measure also 

the area of a 2-dimensional projection of each callus, relative to a fixed area x. For two genotypes this was 

done at weekly intervals and for five other genotypes only at the beginning and end of the experiment. 

Effect at embryo level. 

Embryos produced in anther culture were directly transferred to DON-free regeneration medium or 

regeneration medium with 10"4 M DON. To both media 10 mg T' AgN03 was added to inhibit ethylene 
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action (Purnhauser et al. 1987). Regeneration was expressed as the number of embryos that had formed 

green or albino shoots or roots after eight weeks. Regenerated plants from anther derived callus and 

embryo selection experiments were transferred to soil and cultivated under a 16 h light period and a 

temperature regime of 15°C (day) and 10°C (night). 

Results 

Effect at seedling level 

For coleoptile and root growth the parameters K, and tSO were analyzed per experiment for both control 

and treated seedlings. In all experiments genotype and medium effects were significant. There were no 

genotype, x medium interactions indicating that the growth of the genotype on the control medium was 

related to the growth on DON-containing medium. Expressing K„ the slope parameter, and t50, point of 

inflexion of the curve of the coleoptile growth on medium with 4.1 x 10'5 M DON as a percentage of the 

growth on control medium, K, averaged 52% and varied for the genotypes between 39% and 69%; t50 

averaged 154% and varied between 131% and 167%. In general the coleoptile growth rate on DON-

containing medium was 50% slower. Figure 1 illustrates coleoptile growth for the genotypes SVP 72017-

17-5-10 and SVP 72005-20-3-1 and difference in t50 between control and DON-containing medium. 

Maximum root length on DON-containing medium was, for all genotypes, never more than 4 mm. There 

was no correlation between reaction of seedling growth on DON-containing medium and FHB-resistance 

as described in Table 1. 

Effect at coleoptile tissue level 

The results of the effect of DON and 3-ADON on the growth of coleoptile sections are given in Table 

2. For both DON and 3-ADON there was a considerable reduction in growth for concentrations 10'5 M and 

higher. For some genotypes a complete growth reduction was obtained at 10"4 M or 10'3 M toxin. Only 

one wheat genotype, SVP 72017-17-5-10-1, a line selected from SVP 72017-17-5-10, showed a relatively 

high trichothecene tolerance. Coleoptile segments of this line were the least affected by the two toxins at 

all four concentrations, except at 10"3 M DON where the genotype CWW 4055/3 showed a higher 

tolerance to the toxin. 
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Table 2. Growth of wheat (Triticum aestivum L) coleoptile tissue in the presence of DON and 3-ADON, expressed as 

a percentage of the growth on control medium (DON-free). Genotypes are presented in descending order of FHB-

resistance (see Table 1). - = not measured. 

Genotype Growth (%) 

D O N 10*M 

Ft 83-326 
Frontana 
Ning 8343 
Praag 8 
SVP 72017-17-5-10-1 
SVP 72017-17-5-10 
SVP 77078-30 
SVP 72003-4-2-4 
Saiga 
SVP 75059-28 
SVP 75059-32 
SVP 73030-8-1-1 
SVP 73016-2-4 
SVP 73012-1-2-3 
C W W 4055/3 
SVP 72005-20-3-1 

Mean 

114 
103 
83 

108 
149 
104 
71 

107 
86 
80 
93 
69 
89 

116 
120 
74 

98 

3-ADON 10*M 

Ft 83-326 
Frontana 
Ning 8343 
Praag 8 
SVP 72017-17-5-10-1 
SVP 72017-17-5-10 
SVP 77078-30 
SVP 72003-4-2-4 
Saiga 
SVP 75059-28 
SVP 75059-32 
SVP 73030-8-1-1 
SVP 73016-2-4 
SVP 73012-1-2-3 
C W W 4055/3 
SVP 72005-20-3-1 

Mean 

79 
56 
96 
85 

163 
92 
91 
93 

109 
94 
97 
99 
79 
93 
83 
98 

94 

105M 

29 
24 

-
5 

60 
19 
14 
22 
28 
24 
12 
18 
24 
33 
40 
32 

26 

10-'M 

38 
36 
47 
36 
94 
38 
34 
32 
46 
35 
20 
28 
30 
20 
39 
26 

37 

lO^M 

28 
17 
0 

16 
34 
0 

18 
2 

19 
6 
2 

12 
20 
26 
21 
19 

15 

10-"M 

15 
16 
22 
15 
31 
3 

13 
7 

14 
19 
5 

13 
8 
7 
5 
8 

13 

10°M 

3 
7 

15 
4 

20 
0 

20 
4 
0 
0 
0 

16 
10 
14 
27 
9 

9 

10"3M 

2 
10 
10 
10 
23 
0 

13 
1 
0 
4 
4 

12 
5 
6 
3 
9 

7 

Determination of the differentiating DON-concentration at callus and embryo level 

The callus induction frequency (number of calli/number of cultured anthers x 100%) for Kraka was 9%. 

Of the calli derived from Kraka, 51 % gave embryogénie callus. The reduction in callus weight gain during 

incubation, expressed as percentage of the control, has been measured for five DON- concentrations 

(Figure 2) in two experiments. 
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O 4 8 12 16 20 

incubation time (days) 
Figure 1 . Seedling coleoptile growth of the wheat lines SVP 72017-17-5-10 and SVP 72005-20-3-1 on control medium 

and medium containing 4.1 x10"5M DON as a function of days of incubation. Coleoptile growth is expressed as the 

fraction of the distance to the top of the tube covered by the coleoptile. - - • = SVP 72005-20-3-1 control, — = SVP 

72017-17-5-10 control, —= SVP 72005-20-3-1 DON, ——= SVP 72017-17-5-10 DON. The point of inflexion of the 

curve tSO is indicated by • . 
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Taking into account the standard errors of the means, in experiment 1 there was no significant 

difference between the concentrations of 10'5 M and 3x10"5 M DON. At 12x10'5 M DON, the reduction 

in callus weight gain averaged 48.6% and ranged from 30.0% to 76.5% of the control. None of the calli 

died at this concentration. In experiment 2 the reduction in callus fresh weight gain at 27x10"5 M DON 

averaged 49.3% of the control. So, even this highest concentration of DON used, did not kill the calli. 

Based on the means of each experiment the response of callus fresh weight gain to DON-concentration 

can be described by an exponential curve (Figure 2). 
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Figure 2. Reduction of weight gain of wheat (Triticum aestivum L.) callus after culture on DON-containing medium. 

Values have been expressed as a percentage of the growth on control medium (DON-free). The data presented are 

the means, and regressions for experiment 1 (A—) and experiment 2 (•—). Vertical lines on the points represent the 

standard errors. 
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The coefficient of determination (Ä2) was 79% for experiment 1 and 99% for experiment 2 (Steel & 

Torrie 1981). As the lowest DON-concentrations with a clear effect are located between 9x10"5 M and 

12 x 105 M DON, a concentration of 10"* M DON was chosen to evaluate the reactions of different wheat 

genotypes. 

Effect at callus level 

The reaction of 40 callus clones derived from 15 genotypes differing in FHB-resistance was measured 

at the differentiating DON-concentration determined, i.e. 10"4 M. In total 1624 callus pieces were measured 

with an average of 40 callus pieces per callus clone. 

Anther culture response varied greatly with genotype. The highest percentage of responding anthers 

(number of anthers giving one or more calliAotal number of anthers) was for the Hungarian winter wheat 

variety Ringo Sztar (18.6%). This genotype also had the highest callus induction frequency (63.8%). Table 

3 shows the reduction of callus weight gain and callus area gain of the DON-treated calli, expressed as a 

percentage of the control. Testing more than one callus clone per parental line showed that results were 

similar, with the exception of genotype SVP 73016-2-4, which showed growth data varying from 17% to 

100%. For segregating material there was, as expected, a large variation in growth of the different callus 

clones within a population. Although in most cases only two clones of a population could be tested, still 

a large variation for growth was observed e.g. SVP C8703 F2 no.9 and no. 9.3. Growth of clone 9 was 

inhibited by the toxin (20%) whereas clone 9.3 was stimulated (110%). Clones SVP C8726 F2 no.3A and 

no. 3D.3.2 showed a similar variation (202% and 18% respectively). Different callus clones derived from 

one embryo, e.g. SVP 88002 F2 no. 8A, were all strongly inhibited by the toxin. On the control medium, 

the growth of calli did not differ significantly between genotypes. 

For two spring wheat genotypes, Ning 8343 and FT 83-326, the area changes of calli were measured 

at weekly intervals (Figure 3). For both genotypes the increase in callus area per unit time on DON- and 

control-medium was linear. This linearity implies that for measuring changes in area, measuring the initial 

and final area will be sufficient. Based on the data of all individual callus pieces, there was a linear 

correlation between change in weight and change in area for the control (r=0.62) and for DON (r=0.66). 

Based on the means per genotype (Table 3), the correlation coefficient is 0.97. Weight change is a more 

reliable and simple criterium than area change for selection on DON-tolerance and is thus to be preferred. 

The regeneration of the calli was poor. Out of 812 callus pieces on control medium, only 11 green 

régénérants could be obtained; two from Praag 8 no.7, one from SVP 73016-2-4 no. 46.2.1 and eight 

from SVP 88002 F2 no.3-5. As a result of selection on toxin medium, only one green régénérant could be 

obtained, namely from the genotype Praag 8 no.7. 
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Table 3. Effect of 10"4 M DON on the reduction of callus fresh weight gain of 40 wheat (Triticum aestivum L.) callus 

clones and on the reduction of callus area gain of seven callus clones. Results have been expressed as a percentage 

of the growth on control medium (DON-free). 

Genotype 
Number of call! 

40 
42 
56 
30 
32 
20 
42 
42 
16 
16 
32 
10 
10 
56 
16 
20 

Weight gain change 
(%) 

45 
9 

20 
47 
43 
47 
23 
24 
37 
40 

100 
43 
84 
17 
32 
25 

Area gain change (%) 

Cultivars and lines 

Ft 83-326 40 45 31 
Kaluzskaja9 no. 28.1.1 
Kaluzskaja 9 no. 28.2.3 
Ning8343 30 47 54 
Praag 8 32 43 38 
Praag 8 no. 7 
RingoSztar 9.1.1 
RingoSztar 51.2.2 
SVP 72005-20-3-1 16 37 32 
SVP 72017-17-5-10 16 40 44 
SVP 73016-2-4 32 100 106 
SVP 73016-2-4 no. 22 
SVP 73016-2-4 no. 22.2 
SVP 73016-2-4 no. 46.2.1 
SVP 75059-32 16 32 25 
SVP 75059-32 no. 20 

Segregating material 

SVP C8703 F2 no. 9 30 20 
SVP C8703 F2 no. 9.3 154 110 
SVP C8709 F2 no. 8.1 40 5 
SVP C8709 F2 no. 8.2 30 1 
SVP C8726 F2 no. 3A 56 202 
SVP C8726 F2 no. 3D.3.2 56 18 
SVP 88002 F2 no. 1 20 66 
SVP 88002 F2 no. 3.5 30 40 
SVP 88002 F2 no. 3.7 56 9 
SVP 88002 F2 no. 6.3 42 18 
SVP 88002 F2 no. 8A1 56 17 
SVP 88002 F2 no. 8A1.15 42 13 
SVP 88002 F2 no. 8A2 56 11 
SVP 88002 F2 no. 8A3 42 8 
SVP 88002 F2 no. 8A4 42 5 
SVP 88002 F2 no. 8A5 42 9 
SVP 88002 F2 no. 8A6 42 17 
SVP 89002 F1 no. 2.1 42 30 
SVP 89002 F1 no. 9A.1 42 39 
SVP 89002 F2 no. 10.1.1 42 61 
SVP 89004 F2 no. 12.1.1 42 98 
SVP 89004 F2 no. 14.1.1 42 110 
SVP 89004 F2 no. 14.1.8 56 20 
SVP 89004 F2 no. 14G 42 125 
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Effect at embryo level 

Table 4 shows the results of anther culture for 23 wheat genotypes. High-responding genotypes from 

the callus selection experiments again gave a high response to anther culture, up to a maximum 

percentage responding anthers of 20.2% for Ringo Sztar. The Brazilian spring wheat line 

PF 8049 showed the highest callus induction frequency of 66.7%. For eight genotypes more than 100 

embryos were plated. More than 900 embryos of Ringo Sztar were plated. In general, regeneration of the 

embryos was poor. On a total of 1336 embryos plated on toxin-free regeneration medium, 45 embryos 

with green primordia or green shoots were obtained. On ninety embryos albino shoots developed and on 

104 embryos only roots. Of the 1184 embryos plated on toxin-containing regeneration medium, green 

shoots were obtained on two embryos and roots only on two other embryos. 

Table 4. Anther culture response of 23 wheat (Triticum aestivum L.) genotypes and regeneration of the embryos 

formed in the embryo selection experiment. AE = number of anthers excised, AR = % responding anthers, CIF = callus 

induction frequency, ET = number of embryos tested, ALB = % calli with albino shoots, GS = % calli with green 

shoots, R = % calli with roots only. 

Genotype AE AR CIF FT ALB GS 

BR 14 (Pf 79780) 
CWW 4055/3 
Frontana 
Ft 83-326 
Kaluzskaja 9 
Kraka 
Ning 8343 
Nobeokabozu komugi 
Obelisk 
Pf 80271 
PF8049 
Praag 8 
Ringo Sztar 
SVP 72005-20-3-1 
SVP 72017-17-5-10 
SVP 73016-2-4 
SVP 75059-32 
SVP C8709 F2 
SVP C8726 F2 
SVP 88001 F2 
SVP 88002 F2 
SVP 89002 F1 
SVP 89002 F2 

1764 
1041 
1289 
2708 
984 

3342 
3185 
1142 
2844 
2534 
2310 
3570 
2480 
321 

1292 
1955' 
803 
246 
432 

1076 
1035 
2295 
1518 

2.8 
0.8 
1.9 
1.9 
0.8 
0.3 
3.7 
1.9 
0.3 
1.0 
5.6 
0.8 
9.4 
0.3 
0.2 
4.3 
1.5 
0.8 
0.5 
2.7 
1.0 
6.6 
2.2 

5.3 
0.9 
4.0 
3.7 
2.3 
0.3 
6.6 
3.9 
0.3 
1.8 

14.2 
1.1 

20.2 
0.3 
0.5 
4.8 
2.7 
0.8 
0.9 
4.1 
1.7 

12.3 
3.0 

102 
7 

18 
103 
20 
10 

108 
11 
5 

24 
352 
40 

909 
2 
5 

181 
17 
3 
6 

16 
18 

331 
232 

4 
0 

10 
26 
0 
0 
9 
0 
0 
5 
5 
0 

10 
0 
0 
4 
0 
0 
0 
0 

22 
3 
0 

16 
0 
0 
0 
8 
0 
0 
0 
0 
5 
T 
0 
3" 
0 
0 
7 
0 
0 
0 
0 
0 
2 
0 

20 
0 

10 
8 

17 
0 

26 
17 
0 
0 

16" 
0 
5 
0 
0 

10 
13 
0 
0 
0 

22 
3 
0 

Total 
Average 

40166 2520 
2.6 5.0 

a one green shoot on DON-containing medium. 
b two calli with only roots on DON-containing medium. 
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Figure 3. Area changes of wheat (Triticum aestivum L.) calli during culture on a DON-containing (10"4 M) and control 

(DON-free) medium for two spring wheat genotypes during a 28 day culture period. Values have been expressed as 

a percentage of the initial area. An image analyzer was used to measure the area of a 2-dimensional projection of the 

callus, relative to a fixed area. 

( A — = Ft 83-326 control, • — =Ning 8343 control. *•••= Ft 83-326 DON, ••••= Ning 8343 DON). 

Discussion 

The primary aim of this study was to develop an efficient in vitro selection system for screening large 

numbers of genotypes for their FHB-resistance. This FHB-resistance is thought to be based on several minor 

genes, and accumulation of these genes in a variety is highly desired. In a breeding programme the 

Fusarium resistance genes of a donor are brought into a background with high agronomic value by 

repeated backcrossing. The efficiency of a backcross programme would be highly increased with the 
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production of doubled haploids of a BC, (,= 1,2,3..), especially when an in vitro selection at the haploid 

level would be possible. Also accumulation of resistance genes in a donor could be obtained in an efficient 

way with use of anther culture of F, or F2 material derived from crosses between two partially resistant 

genotypes. In field experiments transgression for FHB-resistanee was found in F2-material derived from 

crosses between two partially resistant genotypes with different genetic backgrounds (Snijders 1990a,b). 

Wheat seedling growth has been shown to be completely inhibited at a concentration of 10"4 M DON 

(Shimada & Otani 1990, Snijders 1988). Snijders (1988) suggested that a DON-concentration between 

1.5x105 M and 2.5x10"5 M would be optimal to screen seedlings for tolerance to DON. Wakulinsky 

(1989) observed significant inhibition of germination and a reduction of wheat seedling growth rate at 

3.4x10"5 M DON and 3.2x105 M 3-ADON. Particularly root growth was strongly inhibited, which is in 

agreement with our results, the observations of Shimada & Otani [24] and those of Bottalico ef al. (1980) 

of tomato seedling root growth at 2x10"5 M DON. Wakulinsky [26] concluded that based on coleoptile 

growth of seedlings on DON-containing medium it was possible to differentiate between three genotypes 

according to FHB-level in the field. However, in our study seedling growth response of a large set of 

genotypes covering the whole range of resistance did not correlate with FHB-resistance level in the field. 

Shimada-& Otani (1990) concluded the same for nine spring wheats. 

Growth of wheat coleoptile tissue was strongly inhibited at 10"* M and 10"3 M DON and 3-ADON. This 

is in accordance with the observations of Wang & Miller [18]. Only one wheat genotype, 'SVP 72017-17-5-

10-1, showed a trichothecene tolerance, as observed for other genotypes in Wang & Miller (1988). The 

DON-tolerant winter wheat line has a high level of resistance to FHB. The parental line it was selected from, 

SVP 72017-17-5-10, showed inhibition of DON-translocation from chaff to kernel resulting in a low 

colonization level by F. culmorum (Snijders & Krechting 1992). Wang & Miller (1988) demonstrated a high 

trichothecene tolerance in Frontana, which was not found in our study. The fact that the Frontana 

accessions were obtained from different sources might explain this discrepancy. 

DON had a clear effect on callus growth rate and regeneration. In 85% of the callus clones in the 

selection experiment a growth reduction was observed. Regeneration in the embryo selection experiment 

was decreased 100-fold on DON-containing medium. Averaged across the callus and embryo experiments, 

green plant regeneration was decreased 20-fold on medium containing toxin. Ahmed ef al. (1991) tested 

wheat calli from diploid embryos for tolerance to toxic metabolites of F. graminearum and F. culmorum 

via a double-layer culture technique and observed that regeneration ability of the tolerant calli was lower 

than that of the unselected calli. Guo ef al. (1991) observed that F. graminearum culture filtrate inhibited 

the induction of callus and plantlets in anther culture and finally could kill the calli. Also maize embryos 

grown on medium with water suspensions, water filtrate or chloroform extract from maize contaminated 

with F. graminearum showed a lower weight gain compared to medium with a water suspension from non-

contaminated maize and led to inhibition and deformation of embryo organs (Brodnik et al. 1978). The 

early phase of embryo development depends on the intensity of respiration and mobilization of 
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carbohydrates, which in turn depend on the activity of enzymatic processes in embryogénie cells. A low 

DON-concentration blocks protein synthesis and thus enzym synthesis, which would explain the observed 

callus and embryo growth reduction. 

The growth analysis data of the 40 callus clones did not show any correlation with the FHB-resistance 

levels of the original donor populations (r = 0.028). This raises the question whether callus selection for in 

vitro tolerance to DON is possible. However, Guo ef al. (1991) observed that somaclonal variation and 

induced variation after gamma-ray irradiation resulted in callus pieces tolerant to F. graminearum culture 

filtrate. Tolerant calli were not colonized by F. graminearum. Mantlets grown from these calli were tolerant 

to the culture filtrate and regenerated plants showed a high FHB-resistance even surpassing the resistance 

of the highly resistant Chinese cultivar Sumai #3. 

From Figure 2 it can be concluded that a DON-concentration higher than 27 x 10'5 M will not result in 

a further reduction of callus weight, although this concentration did not kill the calli. Menke-Milczarek & 

Zimny (1991 ) observed that diploid calli from immature embryos died at 34x 10'5 M DON. The regeneration 

capacity of the calli (forming shoots of about 2 mm) in their study decreased exponentially with increasing 

DON-concentration, comparable with Figure 2 in our study. Their data confirmed that a concentration of 

10"4 M DON is the optimum concentration to differentiate wheat calli for DON-tolerance. A higher 

concentration of DON would not lead to improvement of differentiation. 

The lower sensitivity of calli compared to the coleoptile tissue bioassay could be explained by the fact 

that the coleoptile segments are incubated in a liquid solution with DON, surrounding the whole tissue. 

In callus culture only a relatively small part of the tissue surface is in contact with the medium. No facts 

are known on the mode of DON-penetration into calli. This problem might be overcome by using a single 

cell selection system e.g. microspore culture. In that way a more homogenous selection pressure can be 

assured for each individual genotype. 

Regeneration of the haploid wheat material in our experiments proved to be a severe bottle neck. In 

the callus selection experiment only 0.7% of the callus pieces regenerated green shoots and in the embryo 

selection experiment 1.9%. High percentages of albino shoots and embryos with only root formation were 

observed. 

Régénérants from the callus and embryo selection experiments are currently growing. Offspring of these 

plants together with the parents and F2 populations will be tested in the field for Fusarium resistance. After 

artificial inoculation, the resistance level of these doubled haploid lines will give additional information on 

the possibilities to use in vitro selection for FHB-resistance in wheat. 
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Chapter 5: Resistance and gametoclonal variation of doubled 

haploid wheat lines with regard to Fusarium head blight 

Abstract 

In four consecutive years crosses were made between Fusarium Head Blight (FHB) resistant and 

susceptible cultivars and breeding lines. Parents, F,- or F2-populations were used as donor material for 

anther culture and were together with the anther culture derived doubled haploid (DH) wheat lines tested 

in the field for their FHB-resistance. Date of flowering and percentage of infection were measured, three 

and four weeks after artificial inoculation. For two years also straw length was measured. The phenotypes 

within the DH-lines proved to be stable and homogeneous and no visible segregation occurred. In most 

cases the F,-, F2-populations and anther culture derived doubled haploid (DH) lines had infection levels 

intermediate between the two parents, indicating an additive inheritance/However, in some cases the F2-

population or the DH-lines showed a significant lower infection level than the most resistant parent. Two 

causes for this transgression were identified: segregation and gametoclonal variation. In cases where the 

F2-populations were significantly more resistant than the two parents, it was concluded that accumulation 

of resistance genes of the partially resistant parents had occurred. 

When DH-lines, directly derived from cultivars or breeding lines, were more resistant than the parental lines, 

it was attributed to gametoclonal variation. A strong correlation was observed for the infection percentage 

after three weeks, with that after four weeks. No evidence for the occurrence of additional genetic 

variation obtained after a long callus phase was found, as compared to direct regeneration of the 

microspores via embryogenesis. 
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Introduction 

Fusarium Head Blight (FHB) of wheat (Triticum aestivum L.) is a fungal disease that causes severe losses 

in humid and semi humid wheat-growing areas of the world. In the Netherlands, FHB is mainly caused by 

Fusarium culmorum. The pathogen can cause root-, foot- and crown rot, reduced kernel setting and kernel 

weight, leading to yield reduction. FHB-invaded kernels show destroyed starch granules, storage proteins 

and cell walls. The pathogen can also produce mycotoxins in the crop, of which the toxins in the 

trichothecene group are the most notorious. Deoxynivalenol (DON), acetyl-deoxynivalenol (ADON), with 

the isomers 3-ADON and 15-ADON, and Nivalenol (NIV) are members of the trichothecene group. These 

toxins inhibit protein synthesis via binding to the ribosome and are through this capacity able of producing 

a wide range of toxic effects, including skin irritation, diarrhea, vomiting, hemorrhages, miscarriages and 

eventually death (Rotter et al. 1996). 

No chemical treatment is effective in preventing this pathogen. Resistant cultivars are the most suitable 

method in eliminating this problem. Crossing resistant genotypes and using the F,- and F2-populations as 

donor material for anther culture, might provide the breeder with genotypes that have accumulated the 

resistance genes in a homozygous way. Accumulation of resistance genes was already proven for two 

genotypes with each two different resistance genes by Ginkel ef ai (1996), and for a 10x10 half diallel of 

winter wheat lines (Snijders 1990d). Previous studies indicated that at least 1 to 6 genes are involved in the 

resistance (Gu 1983, Liao & Yu 1985a, Snijders 1990b, Yu 1982, Zhang & Pan 1982, Zhou ef a/. 1987). 

In most studies an additive inheritance was found (Liao & Yu 1985b, Snijders 1990c). However, also non-

additive effects were detected (Li & Yu 1988, Liao & Yu 1985b) and of the non-additive effects dominance 

of resistance predominated over recessiveness (Snijders 1990c). 

Another way of creating variability, besides crossing and mutation techniques, is the use of somadonal 

variation, i.e. variation induced by in vitro culture of plant material (Larkin & Scowcroft 1981). A clone can 

be defined as a population of cells or organisms that is derived from one single cell or from a common 

ancestor by means of mitosis (Webber 1903). Induction of somadonal variation occurs either during plant 

development or during the in vitro cell culture, in the mitotic process. Related to this is the variation 

between derivatives of cultured gametic cells, i.e. cultured cells, their régénérants or the progeny thereof, 

and which is referred to as gametodonal variation (Evans ef a/. 1984). These gametoclonal variants can be 

the result of meiotic or mitotic divisions (Huang 1996). However, when referring to gametoclonal variation 

three different types of variation are recognized besides the variation resulting from segregation and 

independent assortment: 

1. New genetic variation which is induced as a result of the cell culture procedures. 

2. New variation at the haploid level which is induced by the chromosome doubling procedure. 

3. New variation induced at the diploid level, resulting in heterozygosity (Morrison & Evans 1987). 

Somadonal and gametoclonal variation have provided practical breeders with many usefull variants to be 
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selected and were also used to produce new cultivars (Baenziger er al. 1991, Grunewaldt & Dunneman 

1990, Monti & Moore 1992). 

The role of the chromosome doubling procedure should not be underestimated. In this study for 

doubling of the chromosome number, colchicine was used, which is known for its ability to cause 

additional mutations (Franzke & Rose 1952, Luckett 1989). Suenaga & Nakajima (1993) stated that most 

of the variation detected in 15 of the 110 doubled haploid (DH) lines derived from one wheat variety was . 

caused by the colchicine treatment, rather than by the in vitro culture procedure. This is contradicted by 

Sariah etal. (1993) who claimed that the variability between the anther culture derived DH-lines of barley 

was mainly caused by the in vitro methods and to the possibility of the parental line not being completely 

homozygous. Koba et al. (1991) stated that the variation between doubled haploid wheat lines is mainly 

caused by mutations occurring during anther culture and Snape etal. (1992) did not find any evidence for 

gametoclonal variation in their DH-lines of wheat. 

This study was conducted to see in which way the resistance was expressed in the doubled haploid lines, 

whether or not the resistance could be accumulated in a homozygous way and to what extent 

gametoclonal variation influences the level of FHB-resistance of the DH-lines" derived from varieties. 

Material and methods 

Mant material 

Crosses were made between resistant and susceptible wheat cultivars or breeding lines or between two 

resistant cultivars or breeding lines. Resistant cultivars and breeding lines, with FHB-indices lower than 10.0, 

as presented by Snijders (1990a) were in descending order of resistance: Ft 83-326 (S), Ning 8343 (S), 

Praag 8 (W), Ning 7840 (S), SVP 72017-17-5-10 (W) and Ringo Sztar (W). The growing type of the 

genotype is presented in brackets with S for Spring wheat and W for Winter wheat. The other cultivars and 

breeding lines: SVP 73016^2-4 (W), CWW 4055-3 (W), SVP 75059-32 (W), SVP 72005-20-3-1 (W) and PF 

8049 (S) were considered to be moderate susceptible to susceptible with ascending FHB-indices from 30.0 

to 51.8. 

Anther culture and seed set 

Parents, F,- and F2-populations were used as donor material for anther culture. Anther culture and the 

subsequent regeneration were performed as described in Bruins et al. (1993). Green regenerated plantlets 

were transferred to culture tubes and after reaching the two-three leaf stage, transferred to soil and 

covered individually with a transparent cover. After two weeks, the covers were removed and two weeks 

later, all plants were treated with colchicine for chromosome doubling. For this, plants were removed from 

the soil, roots were washed and the growth meristems of the plantlets were soaked for 12 hours in a 
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0.05% colchicine solution, rinsed with tap water for three hours and replanted to soil. All DH„-plants were 

regenerated from toxin-free regeneration medium, except for three plants from the callus selection 

experiments in 1990 (Bruins et al. 1993). These three plants were regenerated from calli that had been 

subjected to the toxin DON, present in the subculture medium. Of these three green plants, only one green 

DH0-plant set seeds after colchicine treatment. 

Field experiments 

All DH0-plants, from toxin and control medium, were grown to maturity, selfed, seeds were harvested 

and were sown together with their parents and F,- or F2-populations. Numbers of seeds that were sown 

for a parent, F,-(or F2-)population or DH-line were 50, 100 and 50, respectively. As some of the parents 

were of the winter type, all parental lines and DH,-seedlings were vernalised for 8 weeks at 4°C. Plants 

were transferred to the field and planted in rows of one meter, with an interrow distance of 30 cm and 

a distance between the plants of 15 cm. As the occurrence of natural epdemics is unpredictable, plants 

were artificially inoculated. Lines were inoculated with a hand sprayer at the first day of flowering of each 

individual row with a spore suspension of Fusarium culmorum with a density of 250.000 spores ml"1. 

Inoculation took place until run-off, i.e. until the spore suspension ran off the spikes. This inoculation was 

repeated after four days. F. culmorum isolate IPO 39-01 was used, which was found to have the highest 

toxigenic potential (Snijders 1990b). Computerised overhead mist irrigation was used for a period of two 

weeks after inoculation, to ensure a high humidity and a good initial infection of the pathogen. No plants 

were placed under the water outlets of the irrigation system. In all four years the first date of flowering 

and the FHB-levels, three and four weeks after the artificial inoculation (FHB3 and FHB4, respectively), were 

visually assessed. In 1991 and 1993 also the straw length of the plants was measured. 

Four DH0-genotypes of Ringo Sztar did not produce enough seeds on the DH0-plants, so they were 

multiplied in 1993 and the DH2-genotypes were tested in 1994 for their FHB-resistance. In 1992, some of 

the DH,(F2 88002) lines showed a much lower infection level as compared to the parents, so these 

combinations were retested with their parents in 1994. In the field experiment of 1994 the cultivars Wang 

Shui Bai and Ning 7840 (also known as Nanjing 7840) were included in the tests as both cultivars were 

described to be highly resistant against FHB (Bai & Shaner 1996, Ginkel ef al. 1996). Statistical analysis of 

the head blight data was based on the average genotype means. For all four years, correlations were 

calculated between FHB3 and FHB4, straw length and flowering date. Six of the eleven parents and 

breeding lines were tested in more than one year: five in three years and one in two years, and in this way 

serving as multi-year replications. For the genotypes tested in more than one year, correlations were 

calculated between FHB-data in the various years. 

Sister line crossing programme 

In'the field experiment of 1992, the Praag 8-7 sisterlines, of which some of the calli had been subjected 
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to toxin stress, appeared to be highly resistant. There was significant variation among sisterlines subjected 

to toxin stress and control lines, that were all derived from the same anther culture derived.embryo. 

Reciprocal crosses were made between the Praag 8-7 sisterlines with the highest levels of resistance, 

derived from control and from toxin containing medium, and these lines were also reciprocally backcrossed 

to the parent Praag 8-7. The parent Praag 8-7, DH,-, DH2-, backcross (BC)-lines and F,(DH,)-populations 

were tested in 1994 for their FHB-resistance. 

Results 

In Table 1 the results from the field experiment in 1991 are shown, and it can be seen that for FHB3 

and FHB4 in all five crosses the percentage of FHB-infection of the F2-populations was intermediate or 

equal to one of the two parents (dominance). In all except one case, the infection level of the DH,-lines 

was intermediate or not statistically different from the original parents, used in the cross to produce the 

F2-populations. Only DH,(F2 88001 )-7 was more susceptible than the most susceptible parent (Praag 8). For 

flowering date only one DH,-line differed significantly from the parents. Four out of nine DH,-lines had 

significantly a different straw length as compared to the parental or F2-populations: two of them were 

shorter and two were significantly longer. The observed characteristics of the plants plants within each DH,-

line were very stable and homogeneous and no visible segregation occurred. 

In the field experiment of 1992, the DH,-lines directly derived from a cultivar or breeding line were 

investigated (Table 2A). In most cases the DH,-lines showed a similar infection level as the two donor lines 

Praag 8 and SVP 73016-2-4. For FHB3 however, in six out of 18 cases, the DH,-line had a significantly 

lower infection level, and for FHB4, three DH,-lines had significantly a lower infection level as compared 

to the homozygous parents used for doubled haploid regeneration. In the case of Praag 8, for FHB3 five 

of ten DH,-lines and for FHB4 three out of ten DH,-lines were significantly more resistant than the resistant 

donor genotype Praag 8. For FHB3, plant numbers 2 & 3 from the ICI-line were significantly more 

resistant than plant numbers 2 & 3 from the 1T2-line, which were regenerated from calli selected on toxin 

containing medium. These inter-callusline differences were not detected for FHB4. The DH,(SVP 73016-2-4-

3)-lines were all equally susceptible to FHB as the susceptible donor genotype, except for DH,(SVP 73016-2-

4-3)-4 which was for FHB3 less infected and for DH,(SVP 73016-2-4-3M which was for FHB4 more 

infected. 

In Table 2B doubled haploids of F2-plants of two cross combinations have been investigated. With 

F2(88002), for FHB4, two DH,-lines were significantly different from their parents CWW 4055-3 and Ft 83-

326: one more resistant and the other one more susceptible. The F2(89002)-population and the DH,-lines 

derived thereof showed all a lower infection level than the parental genotypes, for FHB3 as well as for 

FHB4. The DH,-lines were significantly more resistant as the F2-populations, they were derived from. 
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Table 1. Five wheat crosses analysed for flowering date, straw length and Fusarium Head Blight infection (% infected 

spikelets) in 1991, three (FHB3) and four weeks (FHB4) after artificial inoculation, with the parental genotypes (P, & 

P2), the F,- & Repopulations and the F,- and F2-derived DH,-lines. 

Genotype 

P,: SVP 72017-17-5-10 
P2: SVP 72005-20-3-1 
F2 C8703 
DH,(F2 C8703)-7 
DH,(F2 C8703)-8 

P,: SVP 72017-17-5-10 
P2: SVP 73016-2-4 
F2 C8709 
DH,(F2C8709) 

P,: SVP 75059-32 
P2: SVP 73016-2-4 
DH,(F2 C8726)-2 
DH,(F2 C8726)-3 

P,: Praag 8 
P2: Ning 8343 
F2 88001 
DH,(F2 88001 yi 

P,: Ft 83-326 
P2: CWW 4055-3 
F2 88002 
DH,(F, 88002)-1 
DH,(F, 88002)-2 
DH,(F2 88002)-6 

Flowering date 
Oune)1 

23.3 
25.3 
24.9 
23.2 
24.5 

23.3 
27.2 
26.0 
24.5 

22.3 
27.2 
33.5 
25.5 

28.3 
17.3 
22.3 
23.0 

22.3 
31.0 
24.5 
23.0 
24.4 
26.3 

FHB3 (%) 

13.5 
36.9 
20.0 
28.2 
10.0 

13.5 
61.6 
20.5 
33.5 

29.4 
61.6 
36.7 
42.6 

2.5 
0.8 
2.1 
LZ 
7.2 

66.2 
23.1 
20.9 
31.1 
22.1 

FHB4 

(%) 

29.7 
63.3 
49.1 
60.9 
28.9 

29.7 
84.8 
49.2 
69.6 

59.4 
84.8 
75.2 
70.4 

7.2 
9.4 
6.7 
9.8 

15.3 
84.2 
53.2 
48.9 
67.5 
85.9 

Length2 

(cm.) 

97.2 
103.1 
102.3 
91.8 

115.0 

97.2 
99.8 
98.5 
75.5 

85.0 
99.8 

104.3 
93.3 

141.3 
89.8 

123.6 
122.5 

126.1 
86.5 

109.4 
96.9 
98.4 
85.8 

No. of plants 

91 
50 
81 
45 
54 

91 
97 
64 

105 

55 
97 
47 
50 

46 
41 

105 
32 

47 
50 
90 
59 
40 

100 

': Flowering date in June, e.g. 33 = 3rd of July. 

2: Straw length in cm. 

Underlined values: Significantly higher or lower values (p=0.05) than highest or lowest value of parental- and donor 

genotypes. 
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Table 2. DH-regenerants directly derived from homozygous lines (A), or from F2-populations (B), analysed in 1992 for 
their Fusarium Head Blight infection (% infected spikelets), three (FHB3) and four weeks (FHB4) after artificial 
inoculation, together with their Donors (D) or Parents (P, & P2). 

Genotype 

A D: Praag 8 
DH,(Praag8-7 1C1)-1 
DH,(Praag 8-7 1C1)-2 
DH,(Praag 8-7 1CD-3 
DH,(Praag 8-7 1C1)-4 
DH,(Praag 8-7 1CD-5 
DH,(Praag8-7 1CD-6 
DH,(Praag 8-7 1T2)-1 
DH,(Praag 8-7 1T2)-2 
DH,(Praag 8-7 1T2)-3 
DH,(Praag 8-7 2C4) . 

D: SVP 73016-2-4 
DH,(SVP 73016-2-4-3)-1 
DH,(SVP 73016-2-4-3)-2 
DH,(SVP73016-2-4-3)-3 
DH,<SVP73016-2-4-3M 
DH,(SVP73016-2-4-3)-5 
DH,(SVP 73016-2-4-3)-6 
DH,(SVP73016-2-4-3)-7 
DH,(SVP73016-2-4-3)-8 

B P,:CWW 4055-3 
P2: Ft 83-326 
D: F2 88002 
DH, (F2 88002-3-5)-1 
DH, (F2 88002-3-5)-2 
DH, (F2 88002-3-5)-3 
DH, (F2 88002-3-5)-4 
DH, <F2 88002-3-5)-5 
DH, (F2 88002-3-5 1C2)-1 
DH, (F2 88002-3-5 1C2)-2 
DH, (F2 88002-3-5 2C2)-1 
DH, (F2 88002-3-5 2C2)-2 
DH, (F2 88002-3-5 2C4)-1 

• DH, (F2 88002-3-5 2C4)-2 
DH, (F2 88002-3-5 3C1)-1 
DH, (F2 88002-3-5 3C1)-2 

P,: SVP 72017-5-10 
P2: Ringo Sztar 
D: F2 89002 
DH,(F2 89002-14)-1 
DH,(F2 89002-14)-2 
DH,(F2 89002-14)-3 

C = derived from control medium, T 

Flowering 
date (lune)1 

12.5 
11.0 
11.0 
110 
13.0 
13.0 
12.8 
12.4 
11.6 
11.9 
12.5 

10.2 
11.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.6 
11.0 

15.8 
0.0 
3.4 
8.3 
3.0 
3.0 
3.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
2.1 
5.3 
5.0 

6.2 
1.0 
3.6 
3.0 
3.6 
3.5 

FHB3 

(%) 

4.4 
8.9 
0.6 
0.6 
1.2 
3.7 
2.4 
2.8 
U 
1.6 
4.3 

45.7 
51.7 
41.7 
34.2 
31.4 
45.7 
47.1 
38.6 

" 42.9 

26.9 
52.5 
35.5 
13.33 

33.7 
40.82 

36.2 
58.3 
51. V 
54.32 

38.8 
25.73 

22.0 
31.4 
21.2 
11.23 

49.2 
39.6 
12.4 
8.54 

9.84 

62" 

Range 
FHB3 

0-20 
0-30 
0-1 
0-1 
0-5 

0-10 
0-5 

0-10 
0-10 
0-10 
0-10 

15-70 
30-80 
30-60 
15-40 
10-50 
20-60 
20-60 
20-50 
30-60 

0-70 
15-100 
5-100 

5-20 
10-70 
10-80 
5-70 

30-90 
20-70 
30-90 
10-60 
20-30 
0-60 
5-60 

0-100 
0-30 

5-80 
10-60 

1-60 
0-20 
1-25 
0-30 

= derived from toxin containing medium 
Values: Sian. hiaher or lower values (p=0.05) than highest or 

FHB4 

(%) 

9.4 
18.9 
6.3 
3.3 
5.3 

10.7 
10.1 
8.6 
5.8 
6.9 

16.4 

76.4 
84.2 
71.7 
75.0 
67.1 
68.6 
68.6 
70.0 
67.1 

44.0 
70.2 
70.2 
26.7 
52.1 
62.9 
63.3 
83.8 
61.7 
81.4 
70.6 
65.7 
52.0 
65.0 
28.1 
25!0 

64.2 
67.5 
29.2 
21.6" 
22.14 

16.64 

Range 
FHB4 

0-30 
5-60 
0-10 
1-10 
1-10 
1-20 
1-20 
1-30 
0-10 
0-30 
1-35 

60-90 
80-90 
60-80 
60-90 
40-80 
40-90 
60-80 
60-80 
40-90 

0-80 
20-100 

5-100 
20-35 
25-90 
40-85 
25-95 

60-100 
30-80 
70-90 
60-90 
40-80 
20-80 
15-90 
0-100 

5-60 

20-100 
60-80 

5-70 
5-50 
5-40 
0-60 

No. of 
plants 

24 
9 
8 
9 
8 
9 
9 

15 
18 
18 
50 

22 
6 
6 
6 
7 
7 
7 
7 
6 

24 
24 
51 
3 

12 
12 
12 
12 
6 
7 
8 
7 
5 
7 
8 
5 

24 
24 
48 
19 
19 
19 

lowest value of parental- and donor genotypes. 
': Flowering date in June, e.g. 3 = 3 r t of June. 
2: Significantly different from parent CWW 4055-3, but not significantly different from donor F2 88002 
3: Significantly different from donor F2 88002, but not significantly different from parent CWW 4055-3 
4: Significantly different from donor population F2(89002). 
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Table 3. Doubled haploid régénérants from a cultivar and two breeding lines together with their Donor genotypes (D), 

analysed in 1993 for flowering date, straw length and Fusarium Head Blight infection (% infected spikelets), three 

(FHB3) and four weeks (FHB4) after artificial inoculation. 

Genotype 

D: Ringo Sztar 
DH, (Ringo SztarM 
DH, (Ringo Sztar)-3 
DH, (Ringo Sztar)-5 
DH, (Ringo Sztar)-6 
DH, (Ringo Sztar)-8 
DH, (Ringo Sztar)-1 1 
DH, (Ringo Sztar)-19 

D: SVP 73016-2-4 
DH, (SVP 73016-2-4)-10 

D: PF 8049 
DH, (PF 8049)-2 
DH, (PF 8049)-7 

Flowering date 
(June)' 

29.3 
31.7 
31.9 
30.6 
31.1 
31.2 
31.7 
32.4 

39.3 
41.2 

26.3 
25.6 
26.1 

FHB3 

(%) 

3.9 
3.5 

14.8 
3.2 
3.9 
2.0 
2.8 
15. 

34.5 
29.2 

6.9 
8.2 
7.7 

FHB4 

(%) 

7.1 
5.9 

25.4 
7.3 
6.8 
3.5 
7.8 
H 

59.0 
54.4 

13.3 
17.2 
19.1 

Length2 

(cm.) 

91.0 
91.6 
73.2 
83.9 
90.1 
84.3 
80.0 
88.3 

83.5 
87.5 

93.4 
90.1 
92.2 

No. of 
plants 

15 
21 
37 
54 
62 
57 
47 
55 

19 
43 

17 
32 
34 

': Flowering date in June, e.g. 39 = 9* of July. 
2: Straw length in cm. 

Underlined values: Significantly higher or lower values (p=0.05) than highest or lowest value of parental- and donor 

genotypes. 

As an example, in table 2 the ranges are given in FHB3- and FHB4-level of the parents, the F2 

populations and the DH,-lines. Ranges varied greatly, and therefore for one cross combination also the 

frequency distributions were drawn (Figure 1). It appeared that the moderately resistant parental line SVP 

72017-17-5-10 had a greater range than the moderately resistant parent Ringo Sztar. The F2 89002 

population showed an intermediate range between its two parents. For the three DH-lines the range for 

FHB3-values was smaller than for FHB4. 

In the field experiment of 1993 DH1-lines of cultivar Ringo Sztar and of the breeding lines SVP 73016-2-

4 and PF 8049 were investigated. For FHB3 and for FHB4, two of the seven DH,-lines derived f rom the 

moderately resistant cultivar Ringo Sztar had significantly a lower and one a higher level of infection than 

the parent itself (Table 3). For the three DH,-lines f rom the two other (susceptible) donor genotypes, one 

gave for FHB4 a significantly higher infection level as compared to the parent, the rest was not significantly 

different. For f lowering date, most of the DH,-lines differed f rom their parents. For the straw length of the 

DH,(Ringo Sztar)-lines, five out of seven were significantly shorter than the donor parent and the DH,(SVP 

73016-2-4)-10-line was significantly taller than its donor. 
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Table 4. Doubled haploid (DH) régénérants derived from homozygous lines (A), or from F2-populations (B), analysed 

in 1994 together with the Parental- (P, & P2) and Donor genotypes (D), for flowering date 'and Fusarium Head Blight 

infection (% infected spikelets), three (FHB3) and four weeks (FHB4) after artificial inoculation. 

Genotype 

Wang Shui Bai 
Ning 7840 

A P: Praag 8 
C: DH,(Praag 8-7-1CD-3 
T: DH,(Praag 8-7-1T2)-2 
DH2(Praag 8-7-1C1)-3 
DH2(Praag 8-7-1T2)-2 
PxC = F,[Praag8xDH,(1C1)] 
CxP = FJDH.CICD-a x Praag 8] 
PxT = F, [Praag 8 x DH,(1T2)-2] 
TxP = F,[DH,(1T2)-2 x Praag 8] 
CxT = FJDH.OCD-a x DH,(1T2)-2] 
TxC = F,[DH,(1T2)-2 x DH,(1C1)-3] 

D: Ringo Sztar 
DH2(Ringo Sztar)-3 
DH2(Ringo Sztar)-4 
DH2(Ringo Sztar)-7 
DH2(Ringo Sztar)-VI-33-1 

B P,: CWW 4055 
P2: Ft 83-326 
D: F2 (88002) 
DH2 (F2 88002-3-5)-2C4 
DH2(F288002-3-5)-3C1 

Flowering date 
(June)4 

26.0 
23.0 

36.0 
36.0 
36.0 
36.0 
36.0 
36.0 
36.0 
36.0 
36.0 
36.0 
36.0 

26.0 
29.0 
27.0 
26.0 
26.0 

46.0 
29.0 
33.0 
34.8 
35.8 

FHB3 

(%) 

16.0 
40.5 

42.9 
36.4 
39.0 
39.1 
39.4' 
40.0 
41.4 
55.02 

42.1' 
36.7 
35.3 

51.6 
86.6 
79.3 
52.3 
77.9 

67.9 
77.6 
68.3 
51.1 
38.0 

FHB4 

(%) 

29.3 
65:5 

58.4 
52.23 

55.0 
56.7' 
56.5' 
52.1 
60.1' 
74.02 

57.4 
49.2 
49.1 

86.0 
98.1 
96.2 
79.6 
95.8 

88.1 
84.8 
81.6 
66.8 
54.4 

No. of 
plants 

15 
10 

45 
97 
54 

147 
176 
31 
42 
20 
53 
6 

17 

74 
49 
82 
42 
12 

26 
29 
23 
79 
71 

C = derived from control medium 
T = derived from toxin containing medium. 
Underlined values: Significantly higher or lower values (p=0.05) than highest or lowest value of parental- and donor 
genotypes. 
': Significantly different from DH,(Praag 8)-7-1C1. 
2: Significantly different from all four DH,- and DH2-genotypes. 
3: Significantly different from the two DH2-genotypes. 
4: Flowering date in June, e.g. 36 = 6* of July. 

In the field experiment of 1994, the FHB-levels were much higher than in previous years (Table 4). All 

previously resistant cultivars, including Wang Shui Bai and Ning 7840, showed considerably higher infection 

levels than the multi-year FHB-index as presented in Snijders (1990a). This increase in infection was most 

evident in the genotypes Praag 8 and Ringo Sztar. Praag 8 showed a 10-17 times and Ringo Sztar a 12-13 

times increase in 1994, as compared to previous years. Relative ranking for FHB-infection of the different 

genotypes, however, stayed the same for the four years. 
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Table 5 

Year 

Correlation coefficients (r) between FHB-values of genotypes that 

FHB3 

were tested 

FHB4 

in more than one year. 

FHB3 & FHB4 

1991 vs. 
1992 vs. 
1993 vs. 
1991 vs. 
1991 vs. 
1992 vs. 

1992 
1993 
1994 
1993 
1994 
1994 

0.10 

0.30 
0.75 

0.39 

0.67 
0.83 

All four years 

0.37 
0.54 

0.54 
0.82 
0.26 

- : Insufficient data for correlation calculations. 

In 1994 t w o Depopu la t i ons were tested. From the four Ringo Sztar DH2-populations, no data for the 

DH,-generation were available, due to insufficient seed set on the DH0-plants. For the 88002 DH,- and Pro

lines it appeared that, except for the almost equal FHB4-infection levels of the DH,- and DH2-lines derived 

f rom F2 88002-3-5-2C, the infection levels of the DH,-lines in 1992 were all consistently lower than of the 

DH2-lines in 1994. 

For the Praag 8 sisterline crossing programme it was observed in 1994 that the selected DH,- and DH2-

lines derived f rom control medium were more resistant than the DH,- and DH2-lines derived f rom toxin-

containing medium. Similar results were obtained for DH,-lines in 1992. In the case of Ringo Sztar, for 

FHB3, all significant differences concerned a higher infection level. Wi th FHB4, all four DH2-lines differed 

significantly f rom the parent, one of them was more resistant than the donor Ringo Sztar. The DH2-lines 

derived f rom the F2(88002)-population were both for FHB3 and for FHB4 more resistant than the parents 

and the F2-donor population. 

Correlations calculated for all four years between FHB3 and FHB4, straw length and f lowering date 

revealed, as expected, to be high between FHB3 and FHB4, w i th a correlation coefficient 'r ' ranging f rom 

0.88 to 0.99. Correlations of FHB3 and FHB4 wi th straw length were lower, in 1991 ranging f rom -0.50 

to -0.66, and in 1993 f rom -0.23 to -0.20, respectively. Correlations of FHB3 and FHB4 w i th f lowering date 

were highest in 1993, ranging f rom 0.73 to 0 .71, and lowest in 1994, ranging f rom -0.22 to -0.32, 

respectively. Correlations between FHB3- and FHB4-infection levels for genotypes that were tested in more 

than one year are shown in Table 5. Relatively high values were found between FHB4-infection levels in 

1991 and in 1994 and for FHB3- and FHB4-infection levels in 1992 and 1994. 
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SVP 72017-17*10 FHB4 

Infection level 

Ringo Szter FHB4 

Infection level 

•ME 

F2 89002 FHB4 

tü MM;'::X 

ï ^ l ^ ' ; * * 

DH1 (F2 89002-14H FHB4 ' 

m 

Inf action level v.;;;.:; ' 

:wmm 

: DH1 (F2 89002-14>-2 FHB4 

•:; Infetfibh tevet s •*!: ;: 

DH1 (F2 89002-14>-3 FHB4 

Figure 1. Range in FHB4-values for the two parents, the F2-donor population and three DH,-lines. 
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Discussion 

The intermediate reactions to FHB of most of the F2-populations and DH,-lines indicate an additive 

inheritance, which is confirmed by other studies (Liao & Yu 1985b, Snijders 1990c). Also in barley, additive 

genetic factors control Fusarium Head Blight resistance. However, Takeda & Wu (1996) found that 

dominance effects were still statistically significant and in some varieties also maternal effects were found. 

Cultivars have a much higher level of homozygosity than F,- or F2-populations and, therefore, it is 

expected that DH,-lines derived from pollen of an F,- or F2-population differ more from each other than 

DH,-lines derived from pollen of a cultivar. Looking at the variation between different DH,-lines derived 

from F2-populations and from a cultivar or breeding line showed that significant differences occurred for 

flowering date, FHB3, FHB4 and straw length. These differences appeared on either side of the average 

value, e.g. DH,-lines flowering significantly earlier and later than the parental genotype were observed. 

However, with the measurements in this study it could not be concluded whether DH,-lines derived from 

F2-populations show more variation between the lines than those derived from a cultivar or breeding line. 

The number of tested DH,-lines per donor genotype was in several cases relatively low, so more research 

is needed to substantiate the above mentioned assumption. 

In 1992, the F2(89002)-population showed a significantly lower infection level than the two parents 

(Table 2). It can be assumed that the resistance genes of both partially resistant parents (Ringo Sztar and 

SVP 72017-17-5-10) have accumulated in the F2-population. The three DH,(F2 89002)-lines all showed a 

significantly lower infection level than the average infection level of the F2(89002)-population and it was 

concluded that in these DH,-lines segregation in favour of a higher level of resistance occurred. DH-lines 

surpassing the better parent and also heterotic F,-populations have been described in previous publications 

(Caligari et al. 1987). 

Besides variation based on segregation and independent assortment, also new variation induced by the 

in vitro culture procedure (Type 1, Morrîson & Evans 1987) was found. In 1992 and 1994, some DH,(Praag 

8-7)-lines were significantly more resistant and some significantly more susceptible than the parental 

cultivar. In 1993 for FHB3 and FHB4, two of the seven DH,-lines derived from cultivar Ringo Sztar, had 

significantly a lower level of infection and one had a significantly higher level of infection than the parent 

itself (Table 3). As the donors Ringo Sztar and Praag 8 are commercial cultivars, and expected to be 

homozygous, the transgression indicates the occurrence of gametoclonal variation in the narrow sense, i.e. 

variation introduced by the in vitro procedure (Type 1). Whether the gametoclonal changes were stable 

or not has to be concluded from the offspring of the DH-lines. Some of the DH2-lines of Praag 8, tested 

in 1994, showed a resistance level similar to DH,-lines. So it can be concluded that for this genotype the 

changes were of a genetic nature. 

As colchicine was used to double the chromosome number, variation induced by the chromosome 
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doubling procedure (Type 2) might also be one of the sources of the observed variation. Variation induced 

at the diploid level, resulting in heterozygosity (Type 3) is less likely to be one of the reasons of the interline 

variation, as the plants within all the DH-lines were homogeneous and no visible segregation had occurred. 

The DH-lines tested in 1991 and 1992 were regenerated from a callus selection programme (Chapter 

4). In this programme several callus subcultures were used to ensure an adequate amount of calli for in 

vitro selection experiments on toxin tolerance (Bruins etal. 1993). The lines tested in 1993 and 1994 were 

derived from the direct embryo induction selection programme in which no callus-phase was used. A long 

callus-phase increases the chance of mutations and a direct embryo regeneration system could prevent this 

(Murigneux et al. 1993). Therefore, it might be expected that the lines produced via direct regeneration 

from the embryos in 1993 and 1994 show less variation for the investigated traits than the callus derived 

lines in 1991 and 1992. When looking at the number of altered traits it appeared that 13%, 34%, 44% 

and 57% of all measured traits on the DH-lines were significantly different from the parental values in 

1991, 1992, 1993 and 1994, respectively. Therefore, in this study it could not be concluded that a longer 

callus phase increases the level of variation, more the opposite. This conclusion can also be drawn from 

the DH,-lines from F2(88002-3-5), tested in 1992. The first five lines were regenerated without a long callus 

phase, whereas the other eight DH,-lines of that genotype had undergone a long callus phase. No large 

differences for the traits tested could be detected between the two groups of DH,-lines. 

The range in FHB-values, as indicated in Table 2, showed for some genotypes a relatively high range. 

This might indicate 'escapes', e.g. genotypes that escaped a thorough inoculation. From the frequency 

distributions (Figure 1) it can be concluded that these extreme values occurred only rarely. From a breeding 

point of view, genotypes varying into highly susceptible genotypes are not agronomically of importance 

and have to be discarded. 

In 1993, the shortest DH,-line, DH,(Ringo Sztar)-3, was also the most susceptible one. The relation 

between straw length and resistance has been described in earlier publications (Mesterhazy 1995, Liao & 

Yu 1985b) which stated that shorter genotypes were more severely infected, however only under natural 

conditions. However, after artificial inoculation, genotypes of different height classes were similarly 

susceptible (Mesterhazy 1995). DH,(Ringo Sztar)-3 was significantly shorter than the second shortest DH,-

line: DH,(Ringo Sztar)-11. This latter line however, was significantly more resistant than its parent. 

Correlation coefficients between straw length and FHB3 or FHB4 were all negative: -0.50 and -0.66 in 1991 

and -0.23 and -0.20 in 1993, respectively. As the correlation between the infection levels and straw length 

is negative in both years, this would indicate a trend that shorter genotypes are more susceptible than 

longer ones. Liao 8i Yu (1985b) found a high positive correlation between resistance to Fusarium head 

blight and spike length. Praag 8 had a relatively long spike and was one of the most resistant parents in 

this and other studies (Bürstmayer ef al. 1996). Genotypes with a shorter spike in this study, like CWW 
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4055 appeared to be susceptible to highly susceptible. However, more research has to be carried out in 

order to elucidate this view. 

The FHB-infection levels in 1994 were significantly higher than in the other three years. Previously highly 

resistant cultivars like Praag 8 (Bürstmayer ef al. 1996), showed high infection levels in 1994. As the 

concentration of fungal spores, the fungal isolate and the other experimental conditions were exactly the 

same, a significant influence of the climate is proposed. Weather data for the years 1991-1994 over the 

months May, June and July for location 'De Bilt' were retrieved from the national weather station KNMI 

in the Netherlands. Maximum and minimum temperature at 1,5 meter, duration and amount of rain, sun 

hours and evaporation data were compared with FHB-infection levels. It appeared that maximum and 

minimum temperature were highest in July 1994, maximum temperature being 4°C higher than the second 

highest value of 23.6°C in July 1991. Correlation data showed that maximum and minimum temperature 

in July had a high positive correlation (0.88<r<0.99) with FHB3- and FHB4-levels for all genotypes tested. 

Evaporation was highest In July 1994 with 123,6 mm against the second highest value 109.5 in May 1992 

and correlation studies revealed that evaporation had a high positive correlation (0.91 <r<0.99) with FHB3-

and FHB4-levels for all genotypes tested. Amount and duration of rainfall was highest in July 1993, but as 

the field plots were artificially irrigated with an overhead mist irrigation, rainfall was not considered a 

discriminating factor. It can be concluded that warm and moist conditions most favour growth and spread 

of FHB. This is also confirmed by other publications on this subject (Daamen et al. 1991, Logrieco et al. 

1988, Parry et al. 1995, Sutton 1982, Wiersma ef al. 1996). A strong year effect was found by Nijs ef al. 

(1996) who compared fungal infections in cereals, grown in the Netherlands in 1991 and 1993. They found 

that in 1993 a higher number of samples was infected with Fusarium (83%) than in 1991 (34%). Similar 

year effects were observed earlier (Bedö ef al. 1992, Snijders 1990a) and were explained by weather 

conditions. 

Offspring of the DH,-lines could provide information about the stability of the resistance. DH2-plants of 

several genotypes were tested in 1994. The DH2(Praag 8)-lines showed similar infection levels as compared 

to the corresponding DH,-lines. For Ringo Sztar no DH,-data were available. For the F2-88002 population 

it appeared that the infection levels of the DH2-lines in 1994 were almost all higher than the levels for the 

DH,-lines in 1992. However, as the infection levels of all genotypes were higher in 1994 as compared to 

previous years, no conclusion can yet be drawn about the stability of the resistance in different generations. 

In order to elucidate more the genetic basis of this resistance, offspring of the DH-lines has to be tested 

in several years for their FHB-resistance, to see whether the resistance is stably transmitted or not. 

In all four years minimum and maximum temperatures were lowest in May and highest in July. If 

temperature is one of the determining environmental factors for FHB-resistance, than early genotypes 

which have been growing in lower temperature regimes than late genotypes, would show a lower infection 
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level. Correlations between flowering date and FHB-infection levels ranged from -0.44 for FHB4 in 1992 

to 0.73 for FHB3 in 1993 and were negative in 1992 and 1994 and positive in 1991.and 1993. Ringo Sztar, 

being one of the earliest flowering genotypes, proved to be one of the most resistant ones, whereas Praag 

8, flowering moderately late, was also one of the most resistant genotypes. No clear conclusion could be 

drawn in our experiments for the relation between earliness and resistance. The relatively high correlation 

coefficients between FHB3 or FHB4 values of genotypes that tested in more than one year would indicate 

the absence of genotype x year interactions, but more research is needed to validate this assumption. 

The Praag 8 sisterline crossing programme, in which resistant DH,-lines derived from Praag 8 were 

crossed, showed that for FHB3 the DH,- and DH2-lines regenerated on control medium were more resistant 

than the DH,- and DH2-lines regenerated on toxin medium. For FHB4 this was only the case for the DH,-

lihes. Similar results were found in 1992 where for FHB3 the DH,(Praag 8-7)-1 C1 plant numbers 2 & 3 were 

more resistant than the three DH,-lines derived from toxin-containing medium. However, in 1992 four 

weeks after inoculation this difference had disappeared. The significant bifference that occurred in several 

cases between the homozygous parents and the DH-lines indicates that the toxin stress could be effective, 

however, the 1C1-lines, not selected by toxin stress, were even more resistant than 1T2-lines, due to 

gametoclonal variation. 

In this study, for several traits, transgression in DH,-lines from F2-populations and gametoclonal variation 

in DH,-lines from homozygous parents were shown. Both methods can provide the commercial wheat 

breeder with agronomically interesting genotypes which are more resistant to Fusarium Head Blight. 
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Chapter 6: Isolated microspore culture in wheat (Tritijcum aestivum 

L): the effect of co-culture of wheat or barley ovaries on 

embryogenesis. 

Abstract 

In this study the effects of different ovary co-culture methods on sporophytic development of wheat 

microspores were investigated. Mechanically isolated microspores of greenhouse grown donor plants of 

wheat (Triticum aestivum L) were co-cultured with wheat or barley ovaries either in agarose rings or in 

culture plate inserts. The viability of the microspores was better in co-culture with wheat ovaries from one 

cultivar as compared to co-culture with a mixture of wheat ovaries from four cultivars. Co-culture of the 

microspores with ovaries in culture plate inserts had no significant effect on viability of the microspores, 

but had, in comparison with culture inagarose rings, a large positive effect on the percentage swollen 

microspores. No clear genotypic effect could be detected. A significant correlation between the number 

of swollen microspores and the number of multicellular structures was found. 
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Introduction 

The main goal of our microspore culture studies is to exploit the advantages of selection at the cellular 

level with regard to Fusarium head blight resistance in wheat (Triticum aestivum L), for which the 

Fusarium-Xox\n deoxynivalenol (DON) also known as vomitoxin, could be used as selection agent (Snijders 

& Schepers unpublished results). Selection using haploid tissue is preferred, as all genes, whether dominant 

or recessive, are expressed, and regenerated doubled haploids will give homozygous offspring. Selection 

with microspore-derived tissue was studied earlier, and large differences for growth on toxin containing 

medium were detected (Bruins ef al. 1993). However, the regeneration capacity of green plantlets after 

the sélective stage was too low to be of use for in vitro selection purposes. 

The use of isolated microspore culture has several advantages over anther culture: in certain species a 

higher production of embryos and green régénérants per anther can be achieved, the method is less 

laborious, and regeneration from anther tissues is excluded. Also, in case of in vitro selection experiments, 

single cells are preferred to multicellular structures or callus, as selection pressure will be more uniform. 

In barley, cultures using mechanically isolated microspores resulted in higher percentages of embryos 

per anther as compared to the shed pollen technique (Hoekstra ef al. 1992). Improvements of protocols 

for barley isolated microspore culture, e.g. maltose as carbohydrate source (Scott & Lyne 1994), 

conditioning of the media with ovaries or anthers (Kasha ef al. 1990a), starvation of the anthers in 

mannitol (Roberts-Oehlschlager & Dunwell 1990) or addition of phenyl acetic acid (PAA) (Ziauddin et al. 

1992) have been found to be only to a minor extent effective for wheat isolated microspore culture (data 

not presented). 

Using the shed pollen technique in wheat microspore culture, calli and green régénérants have been 

obtained (Kasha ef al. 1990b), but at a rate too low to be of use for in vitro selection. Mechanical isolation 

of the microspores and subsequent sporophytic divisions also resulted in microcalli, embryos and green 

plants (Mejza ef al. 1993, Tuvesson and Ohlund 1993). The protocol of Mejza ef al. (1993) consisted of 

a pretreatment of the spikes of 2 days at 25°C or 7 days at 5°C. Microspores were isolated with a blender 

and centrifugated over a 20% maltose solution to remove the dead microspores. Culture of the 

microspores was done in CHB-2 medium (Chu ef al. 1990) at 25°C in the dark and embryos and green 

plants were produced. In preliminary experiments in our laboratory, when the microspores were cultured 

without ovaries, percentages viable microspores were lower and fewer swollen microspores were observed 

as compared to co-culture with ovaries (Bruins & Snijders 1993), in agreement with Mejza ef al. (1993). 

When the wheat microspores were cultured with wheat ovaries in direct co-culture, or with the ovaries 

cultured in agarose rings, higher percentages viable microspores were observed. Also the percentages of 

swollen microspores, the first stage of sporophytic development, were higher. Centrifugation of the isolated 

microspore slurry over a 20% maltose solution showed a relative higher number of viable microspores in 

a microspore population. However, this protocol did not lead to plant regeneration, and adjustments 
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needed to be made. Culture plate inserts were tested in comparison to agarose rings. In this chapter, the 

effect of different pretreatments of the ovary donor spikes, as well as ovary co-culture methods of the 

microspores on viability and embryogenesis of mechanically isolated wheat microspores will be described. 

Materials and methods 

Plant material 

Plants of the wheat cultivars, Chris, Ciano 067, Frontana and Ringo Sztar, and one barley cultivar, Igri, 

were used in this study. Chris, Ciano 067 and Ringo Sztar were chosen for their high in vitro androgenic 

abilities (Bruins ef al. 1993), whereas Frontana was included because of its consistent high resistance 

against Fusarium Head Blight (Bürstmayer ef al. 1996, Ginkel era/. 1996). All genotypes were vernalized 

at 4°C (10 h photoperiod) for 8 weeks prior to transplanting to the greenhouse. Plants were grown in 

potting compost, fertilized every month with an artificial fertilizer (12-10-18 NPK). No pesticides were used. 

Supplemental light was provided by HPI/T lamps to extend daylength to 14 hours in the early spring period. 

Greenhouse temperature conditions were 15°C (light) and 10°C (dark). Spikes were collected in the mid 

boot stage, when the microspores were in the mid- or late uninucleate stage. The flag leaf was removed 

and the wheat spikes were stored with the basal ends in tap water and were given a pretreatment in the 

dark for two days at 25°C. 

Isolation and culture of the microspores 

After pretreatment, the leaf sheath was disinfected with 70% ethanol and air dried in a laminar flow 

cabinet. A total of 40-60 anthers of the central part of each spike were excised under sterile conditions, 

transferred to 1.0 ml filter-sterilized liquid CHB-2 medium (Chu etat. 1990) and squeezed gently with the 

backside of a syringe to isolate the microspores. Subsequently the slurry was filtered through a nylon sieve 

of 88 fjm, the filtrate was collected in 50 ml centrifuge tubes and centrifuged at 1000xg for five minutes. 

The pellet was washed two times with 50 ml of medium and centrifuged as above, resuspended in 5 ml 

of medium, placed on top of a 45 ml 20% maltose solution and centrifuged at 2500xg for 5 minutes, to 

remove the dead microspores. Usually this did not lead to clear bands of microspores in the upper part of 

the solution as described by Mejza ef al. (1993), so the upper 10-15 ml was collected and centrifuged at 

1000xg for final pelleting. The microspores were cultured in co-cultivation with wheat or barley ovaries 

either in 6-well plates, or in agarose rings in Petri dishes. In case of the 6-well plates 0.5 ml of liquid 

medium was pipetted into the well (diameter 3.5 cm). Ovaries were harvested from the same spikes that 

were used for microspore culture. Twelve wheat or barley ovaries per well were placed In the medium and 

covered by a culture plate insert (CPI) (Millicel-CM PICM 030 50, pore size 0.4ym). Inside the culture plate 

insert, 0.5 ml of the microspore solution was pipetted (Figure 1A). For the Petri dishes (diameter 6 cm), a 
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ring of 0.5 ml medium with 1 % agarose (diameter 2 cm) was poured at the bottom of the dish. After 

solification of the medium twenty ovaries were positioned with the basal end in the agarose ring. One ml 

of microspore solution was pipetted inside the agarose ring (ARXFigure 1B). Microspores were also cultured 

without ovaries. 

Microspore density was measured at each experiment without adjustment to a fixed density. Viability 

of the microspores was assessed one day after isolation by the fluorochromatic assay with FDA (fluorescein 

diacetate) and the developmental stage was assessed with DAPI (4',6-diamidino-2-phenylindole) staining 

to certify that the microspores were in the mid- and late uninucleate stage. 

Swelling of the microspores precedes sporophytic divisions in microspore culture of many species e.g. 

barley and maize (Hoekstra ef al. 1993, Pretova ef al. 1993). Therefore in these experiments the 

percentages swollen microspores were assessed, two days after incubation (Figure 1C). Data of the 

percentages swollen microspores were transformed by taking the square root to improve normality of the 

distribution. Microspores were cultured in CHB-2 medium and incubated in the dark at 28°C. 

Macroscopically visible embryos (Figure 1F), developed from microspores, were transferred for regeneration 

to MS medium (Murashige & Skoog 1962) supplemented with 3% sucrose and solidified with 0.30% 

Gelrite (Kelco). All data were analyzed on the basis of predicted means from Residual Maximum Likelihood 

(REML) Variance Component Analysis (Genstat 5 Committee 1993). In the statistical analyses, density was 

considered a covariate. After analysis, the data for swollen microspores were back-transformed to actual 

percentages. Twenty anthers from at least five spikes of every microspore isolation replication of tested 

spikes were placed on the potato-based P2 anther culture medium (Chuang etal. 1978) to determine the 

quality of the donor material as measured by anther culture. Anther culture was carried out according to 

Bruins er al. (1993). 

Effect of ovary source and culture method on the sporophytic development of the microspores. 

All wheat spikes were pretreated for two days at 25°C and four different types of ovary co-culture were 

tested: 

- wheat ovaries from one cultivar (the same cultivar that was used for microspore culture), 

- a mixture of wheat ovaries from all four cultivars, three ovaries from each cultivar. 

- barley ovaries excised from pretreated donor spikes (4°C for 7 days) 

- barley ovaries, excised from non-pretreated donor spikes. 

The four ovary sources were each tested in three replications with microspores pooled from at least three 

spikes per replication. Microspores were cultured in agarose rings or in culture plate inserts. 

Figur« 1. (pagina 109) A) Culture of the microspores in a Culture Plate Insert (upper right corner) (Bar=1cm). B) Culture 
of the microspores inside an Agarose Ring with ovaries (Bar=0.5cm). C) Swollen microspore (Bar=25/ym). D) 
Multinucleate structure stained with DAPI (Bar=25/mi). E) Multicellular structure (Bar=25//m). F) Microspore derived 
embryo (Bar=100//m). 
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Results and discussion 

Effect of ovary source and culture method on the sporophytic development of the microspores. 

Table 1 shows the percentages viable microspores in co-culture with wheat or barley ovaries after one 

day of incubation. Only in one case, that of co-culture with ovaries from pretreated barley spikes, was a 

significantly higher number of viable microspores found in the CPI method in comparison with the AR 

method. Co-culture with wheat ovaries from one cultivar showed significantly higher numbers of viable 

microspores when compared to co-culture with a mixture of ovaries from four cultivars, irrespective of the 

culture method. Pretreatment of the barley spikes at 4°C for seven days, has only in the CPI method a 

pronounced positive effect on viability. There was no consistent genotype effect. 

Table 1 .Percentage viable microspores after one day of incubation, of four different wheat cultivars in co-culture with 

wheat (WH) or barley (BA) ovaries. AR = Agarose Ring, CPI = Culture Plate Insert. 

AR 

ÇPI 

Genotype 

Frontana 

Ringo Sztar 

Chris 

Ciano 067 

Mean 

Frontana 

Ringo Sztar 

Chris 

Ciano 067 

Mean 

Ovary co-culture type' 

WH ovaries. 

one cultivar 

75 abed 

51 def 

89 a 

88 ab 

76 hi 

82 abc 

90 a 

84 ab 

83 abc 

85 h 

WH ovaries. 

mix of cultivars 

56 def 

66 bed 

62 cde 

52 def 

59 j 

75 abed 

67 bed 

80 abc 

53 def 

69 ij 

BA ovaries. 

pretreated 

72 abed 

68 bed 

65 bede 

79 abc 

71 i 

90 a 

91 a 

89 a 

63bcde 

83 h 

BA ovaries. 

non-p retreated 

79 abc 

65 bede 

63 bede 

-
72 hij 

28 f 

62 cde 

62 cde 

42 ef 

53 j 

Mean 

70 kl 

62 1 

69 kl 

72 kl 

69 q 

69 kl 

78 k 

79 k 

60 1 

72 q 

• = Means not followed by the same letter are significantly different at the 0.05 level of probability as determined by 

REML Variance Component Analysis. Four levels of means are presented: genotype x co-culture type x culture 

method (a-f), co-culture type x culture method (h-j), genotype x culture method (k-l) and culture method (q). 
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Table 2 shows the back-transformed percentages of swollen microspores in co-culture with wheat or 

barley ovaries. In the AR method, only a few swollen microspores were observed. Except when using non-

pretreated barley ovaries, significantly higher percentages of swollen microspores were found when the 

microspores were cultured in the CPI method, as compared to the corresponding AR method. Co-culture 

with wheat ovaries showed a significantly higher percentage of swollen microspores in comparison with 

the corresponding co-culture treatment with barley ovaries (Table 2). Mejza et al. (1993) tested wheat 

microspores in co-culture with wheat, barley and maize ovaries and found the highest positive effect on 

the development of microspore derived embryos with barley ovaries, while co-culture with wheat ovaries 

showed a slightly lower positive effect, and co-culture with maize ovaries did not result in any sporophytic 

divisions. 

Table 2. Percentage swollen microspores after two days of incubation, of four different wheat cultivars in co-culture 

with wheat (WH) or barley (BA) ovaries. AR = Agarose Ring, CPI = Culture Plate Insert. 

AR 

££! 

Genotype 

Frontana 

Ringo Sztar 

Chris 

Ciano 067 

Mean 

Frontana 

Ringo Sztar 

Chris 

Ciano 067 

Mean 

Ovary co-culture type' 

WH ovaries. 

one cultivar 

9.7 def 

0.0 i 

5.2 defgh 

5.1 def 

2.9 rs 

50.2 be 

9.7 de 

59.2 ab 

36.1 c 

37.2 p 

WH ovaries. 

mix of cultivars 

1.4fghi 

5.2 defgh 

5.3 defgh 

10.3 d 

5.3 r 

29.9 c 

42.0 be 

79.8 a 

9.7 def 

373 p 

BA ovaries. 

pretreated 

0.0 i 

0.9 hi 

0.0 i 

LOefgh 

03 t 

7.7 ab 

9.8 de 

51.3 bc 

6.0 efgh 

23.0 q 

BA ovaries. 

non-pretreated 

0.0 i 

0.8 ghi 

0.9 ghi 

-
0.5 st 

19.6 def 

5.2 defg 

10.5 def 

0.5 hi 

4.8 rs 

Mean 

1.4x 

0 A x 

1.2 x 

73 w 

2.0 y 

34.8 u 

15.2 V 

52.3 u 

7.8 w 

23.0 z 

" = Means not followed by the same letter are significantly different at the 0.05 level of probability as determined by 

REML Variance Component Analysis. Four levels of means are presented: genotype x co-culture type x culture method 

(a-i), co-culture type x culture method (p-t), genotype x culture method (u-x) and culture method (y-z). 

Averaged over all four genotypes, pretreatment of the barley ovaries in the CPI method had a positive 

effect on the percentage of swollen microspores, in comparison with no pretreatment of the barley spikes. 

Only with Frontana and Chris a significantly higher number of swollen microspores was found in the CPI 
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method with barley pretreated ovaries. In the CPI method, averaged over the four culture methods, only 

Ciano 067 did not show a significantly higher number of swollen microspores. Correlation between 

percentage of viable microspores and percentage of swollen microspores was relatively high (r=0.62, 

p<0.01). 

No multicellular structures (MCS) or embryos were produced in the AR method. Table 3 shows the 

number of MCS produced in the CPI method. All genotypes, except Ciano 067, produced multinucleate 

(Figure 1D) and multicellular structures (Figure 1E). Chris produced the highest number of MCS, in co-

culture with a mixture of wheat ovaries, whereas Frontana was the only genotype that produced MCS in 

case of nón-pretreated barley ovaries. The 16 MCS with Chris (Table 3) were produced at a density of 42 

x 103 microspores ml"' (data not shown) so one MCS could be produced per 2600 microspores. Correlation 

of the number of MCS with the percentage of viable microspores was low and non-significant (r=0.18), 

but the correlation of the number of MCS with the percentage swollen microspores was relatively high 

(r=0.57, p<0.05). 

In the CPI-method, two embryos were formed with Frontana in co-culture with its own ovaries (Table 

3) and two were formed in co-culture with pretreated barley ovaries. Four embryos were formed by Ringo 

Sztar in co-culture with pretreated barley ovaries. No plants could be regenerated from any of the embryos. 

Table 3. Total number of multicellular structures of four different wheat cultivars formed in co-culture with wheat (WH) 

or barley (BA) ovaries in the CPI-method. In parentheses the number of formed embryos. 

Genotype 

Frontana 

Ringo Sztar 

Chris 

Ciano 067 

Mean 

Ovary co-culture 

WH ovaries. 

one cuitivar 

6(2) 

2 

10 

0 

4.5 

type 

WH ovaries. 

mix of cultivars 

0 

0 

16 

0 

4 

BA ovaries. 

pretreated 

6(2) 

6(4) 

5 

0 

4.3 

BA ovaries. 

non-pretreated 

10 

0 

0 

0 

2.5 

The density of the microspores varied from 21 to 67 x 103 microspores ml'1. No effect of the density on 

the viability or percentage of swollen microspores could be detected using the co-variate analysis. Mejza 

et al. (1993), however, did find a density effect in isolated microspore culture of wheat with better results 

with 50 x 103 microspores ml"' as compared to 100 x 103 microspores ml'1. Other authors also found a 

density effect in isolated microspore culture of wheat (Gustafson etal. 1995) with an optimal density of 
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200 x 103 microspores ml ' . The used range of 21-67 x 103 microspores ml"' in the present study might 

have been too narrow to detect a density effect in the experiments. 

When microspores were cultured without ovaries, percentages of viable microspores were much lower 

and ranged from 14 to 37%, and no swollen microspores were observed (data not shown). The induction 

of sporophytic divisions appears to be difficult without conditioning the medium with anthers or ovaries 

(Köhler & Wenzel 1985), co-culture of the microspores with ovaries (Mejza ef al. 1993) or pre-culture of 

the microspores in the anthers (Cho & Zapata 1990). Apparently, isolated microspores are lacking the 

beneficial substances provided by anther or ovary tissues, necessary for induction. Several researchers 

observed that during the early stages of development the pollen derived embryoid was connected with the 

anther wall by a tube-like structure which later developed into a suspensor-like or multilayered cell bar of 

the callus adhered to the anther wall (Chen 1983). In this way the anther wall tissue may offer the essential 

nutrients to pollen grains during de-differentiation. Furthermore, the anther wall tissue absorbs, stores and 

transforms the exogenous substances in the medium, and thus acts as a metabolite pool for the pollen 

grains (Zhong & Liang 1980). 

Anther culture, from the same spikes as used for isolated microspore culture, showed average 

percentages responding anthers ranging from 3.0% for Ciano 067 to 22.6% for Ringo Sztar. This was 

comparable to and even higher than previous results (Bruins ef al. 1993), so the growth conditions of the 

donor plants were considered to be adequate for succesfull anther culture. From the anther culture derived 

embryos, green plants could be regenerated. 

As mentioned by Tuvesson & Öhlund (1993), it appears also in this study that the limiting step of wheat 

isolated microspore culture was the formation of embryos from the multicellular structures, since these 

multicellular structures can be produced in all genotypes, except Ciano 067. However, Ciano 067 is known 

for its low androgenic response (Bruins & Snijders, 1995). Isolated microspore culture of wheat still does 

not produce the amount of embryos that can be produced in anther culture of wheat, but it can be a 

useful technique in developmental and transformation studies. In conclusion, it can be stated that culture 

plate inserts might prove to be a promising method in isolated microspore culture of wheat, and probably 

worthwhile to investigate its effect for other recalcitrant species in microspore culture. 
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Chapter 7: General discussion 

Anther culture in the practical breeding process 

It can be questioned whether or not to introduce anther culture in the practical breeding process of 

wheat. Many studies were dedicated to compare several breeding methods in wheat. For the production 

of (near-)homozygous lines in wheat and barley, research groups focused on the Single Seed Descent (SSD) 

method, the Hordeum bulbosum method (HB) and anther culture (AC). In wheat, in a field experiment, 

a comparison was made between AC-, SSD- and HB-lines, all from the same cross. No significant 

differences could be found between lines produced by the three methods (Henry er al. 1988). This was 

confirmed by Picard et al. (1986) who found that the variance of the doubled haploid (DH) lines was in the 

same order of magnitude as that of the SSD- and bulk-lines for earliness, height and reactions to Puccinia 

striiformis and Erysiphe graminis. Also in other crops, e.g. Brussels sprouts or oilseed rape, no clear 

differences could be detected between AC- and SSD-derived lines (Chen & Beversdorf 1990, Kubba etal. 

1989, Pink et al. 1987). However, other publications do report of differences between these selection 

methods. In barley, comparisons were made between AC-, Pedigree-, SSD- and HB-derived lines, and it 

appeared that AC-lines in most cases had a lower mean grain yield and 1000 grain Weight, but had a 

higher number of grains/spike (Morden ef al. 1989). Devaux (1987) compared AC- and HB-lines of winter 

barley and found that anther culture seemed to be slightly more efficient in comparison with the H. 

bulbosum method. An advantage of anther culture would be that the DH-method tends to preserve 

existing linkages, and therefore produces a higher proportion of lines exceeding the better parent, than 

the SSD method (Caligari ef al. 1987). According to Snape (1988), DH-lines have practical and 

computational advantages over SSD-populations in calculations of recombination frequencies when many 

loci are segregating. A disadvantage of DH-populations would be that they are technically more difficult 

to produce and population size for most crosses is likely to be small, whereas SSD-populations are relatively 

cheap and easy to produce. 

For practical breeding purposes anther culture has already proven its importance. The first anther culture 

derived wheat cultivars were accepted on variety lists in 1986 and 1987. Since then, several cultivars have 

been released using the in vitro androgenesis technique. Using an F,-population, the breeder chooses to 

accept a maximum of undesired genes, e.g. susceptibility to certain diseases, whereas if an F2-population 

is used, part of the undesired material is already discarded, but also a part of the gain in time is lost. The 

androgenesis technique can also be used at the end of a breeding programme to instantly purify near 

cultivar lines. Breeders usually take the F,-population as donor population for anther culture as the gain 

115 



Chapter 7 

in time is more important compared to the extra effort to get rid of the undesired genotypes. 

As the in vitro androgenesis technique is working for most of the wheat genotypes (Touraev era/. 1996) 

and also the costs of the DH-technique are competitive to that of other techniques producing 

(near)homozygous lines (Brennan 1989, Brennan & Kahn 1989, Ding etal. 1995) there seem to be enough 

reasons for implementing the DH-technique in practical wheat breeding programmes. 

Fusarium Head Blight 

Toxicity 

In 1993 three percent of the tested cereal samples collected in the Netherlands contained deoxynivalenol 

in levels of over 500 //g kg"' (Nijs et al. 1996). DON appears to be a very stable compound, during both 

storage and processing of food, and does not degrade at high temperatures (Scott 1991). On average, 

baking and cooking reduced the amount of DON in wheat or wheat products by 40% (Abbas etal. 1988, 

Besling ef al. 1983, Carvajal et al. 1987, Isohata er al. 1986, Young e: al. 1984). This means that wheat 

products that are made from DON-containing wheat will still contain DON. Snijders (199Ô) calculated that 

in the Netherlands, in the period 1979-1986, in several years the estimated daily intake of DON was about 

equal to the limit of tolerance as advised in Canada and the USA. 

Selection 

As natural head blight infections are only occurring irregularly, visual evaluation after artificial inoculation 

is the most important way to screen for resistance in the early years of a breeding programme. Other more 

precise and labour consuming assessments like tolerance or 1000-kernel-weight can be applied later in the 

breeding programme. Although Bai & Shaner (1996) state that a mixture of local isolates would be an 

appropriate inoculum to screen for FHB-resistance, other authors found no indications for Fusarium strain 

specific resistance, indicating that one isolate would be sufficient to screen different wheat populations for 

their FHB-resistance. Any aggressive isolate can be used for testing resistance to FHB, without special regard 

to the origin or the host source of the isolate (Eeuwijk et al. 1995, Miedaner er al. 1996, Snijders 1994). 

Selection for a higher level of physiological resistance can decrease an eventual higher susceptibility 

caused by awns and dwarf ness. In later generations, traits like percentage of seed infection or tolerance 

can be identified by additionally measuring yield reduction. Stability of disease reaction appears to be 

connected with resistance level, the most resistant genotypes are the most stable, and the most susceptible 

ones tend to have more unstable reactions in different epidemic conditions (Mesterhazy 1995). 

Prerequisites for in vitro selection level are that the toxins act at the cellular level and the resistant 

genotypes show toxin tolerance in vitro. Only a few doubled haploid genotypes, derived from cultivar Praag 

8 survived the toxin treatment, subsequent regeneration and seed set. These proved to be more resistant 
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than the parent Praag 8. Other lines, however, from the same parent that were regenerated without toxin 

stress, proved to be even more resistant, also after setting. No toxin stress was applied, so it can be 

concluded that the variation for this trait in a large part of this research was created by gametoclonal 

variation, which was present after plant regeneration. As expected, after crossing, transgression was 

observed in the F2-populations, also in this study, so there are possibilities for the breeders to use anther 

culture in a breeding programme for improving the resistance. Accumulation of resistance genes can be 

achieved. Even when the accumulation takes place in unadapted genotypes this does not render the 

selected variants worthless. The resistance can be transferred to commercial cultivars in a breeding 

programme. 

Plant breeders should be aware of the complexity of the resistance to Fusarium. Every resistance type 

and its components may have its own genetic background, which up to now seem to be based on oligo-

or polygenic mechanisms. The problem with the few genetic analyses made to date is that they only 

recognize head infection severity without differentiating between components. This means that the genetic 

background is largely unknown. 

In breeding for Fusarium head blight a few factors may be considered. Highly resistant cultivars are 

known and although these cultivars are of exotic origin, the FHB-resistance genes can be introduced in 

breeding programmes to introgress the resistance and accumulate the resistance genes into commercial 

varieties. 

Agricultural production has grown tremendously in the last 30 years and the world produces enough 

food to provide every person with more than 2700 Calories per day, which is normally sufficient to ensure 

that every person has access to adequate food, if distribution is more or less equal. 

These agricultural production gains are based on the widespread use of new high-yielding cultivars, new 

technologies and the increased reliance on food imports. Net cereal imports in developing countries in the 

70ies tripled from 20 million tonnes to 67 million tonnes per year. However, still more than 800 million 

people in the developing world suffer from chronic undernutrition. Over the past few years, the world grain 

stocks have dwindled to dangerously low levels, showing the vulnerability of the food supplies in the world 

where the population is expected to reach 7 billion people by the year 2010. It was calculated that 

approximately 25% of the world's food crops are affected by mycotoxins annually (Council for Agriculture 

Science and Technology 1989). Not only wheat is affected with Fusarium head blight. F. graminearum is 

the causal pathogen of ear rot in maize, and with this, two of the three most important food crops in the 

world are threatened by Fusarium Head Blight. Outbreaks of toxicosis associated with the consumption of 

mold-contaminated wheat and corn, related to the presence of Fusarium Head Blight have been reported 

in Japan, India and China (Kuiper-Goodman 1994, Beardall & Miller 1994). It is strikingly clear that, 

amongst other factors, also resistant cultivars are of the utmost importance, ensuring that the little food 

supplies that reach the undernourished, are of a good and non health-threatening quality. 

Research on Fusarium Head Blight concerns us all. 
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immary 

Wheat (Triticum aestivum I.) belongs to the three most important food crops in the world. In certain 

years, the crop can suffer considerable damage as a result of Fusarium Head Blight (FHB), especially as no 

chemical control is effective against this disease. This disease is mainly caused by the fungi Fusarium 

culmorum and F. graminearum but in the cooler regions of North-Western Europe, F. culmorum 

predominates. The pathogen causes a wide range of different damage, of which toxin contamination of 

the seeds is among the most threatening. These toxins, of which deoxynivalenol (DON), nivalenol (NIV) and 

acetyldeoxynivalenol (ADON), with the isomers 3-ADON and 15-ADON are most notorious, are capable of 

inhibiting protein synthesis and are, therefore, extremely hazardous to man and animal. For economic and 

environmental reasons, host plant resistance is the most appropriate and sustainable disease control 

method and should be given a high priority in any wheat breeding programme. 

Androgenesis is the outgrowth of the male reproductive cell into a haploid plant. Up until now, for more 

than 250 plant species haploid plants have been produced via in vitro androgenesis. However, when using 

the in vitro androgenesis technique there are still specific problems to be solved for the individual crops. 

The applications and advantages of in vitro androgenesis are for example rapid production of haploid plants 

evoking à shorter breeding regime, easier genetic analyses both at crossings and at the DNA level and 

possibilities for genetic modification and in vitro selection. In vitro selection has been used efficiently to find 

agronomically altered traits and to produce new cultivars. With the use of toxins as selective agent new 

resistances have been found in wheat, e.g. against Pseudomonas syringae pv. syringae or 

Helminthosporium sativum. A general overview on Fusarium Head Blight (FHB), on toxicity of the toxins 

produced by this pathogen, on in vitro androgenesis and in vitro selection is presented in Chapter 1. 

In Chapter 2, the results of a 7x7 full diallel on the inheritance of androgenic ability in wheat anther 

culture are presented. Seven parental cultivars, differing in both androgenic response and FHB-resistance, 

together with the 42 F,-combinations of the complete diallel were evaluated for several androgenic traits 

in five replicates. In total 130,000 anthers were cultured, of which 14% responded. Diallel data were 

analysed by the model of Gardner and Eberhart and it appeared that most of the genetic variation could 

be explained by additive genetic effects. A total of 17,819 embryos were transferred to MS regeneration 

medium, of which on average 30% regenerated into plantlets. Of them 11 % was green. Except for two 

combinations, green plants were recovered from all 42 F,-combinations. Significant genetic differences 

were found and genetic effects explained 38%, 48% and 2 1 % of the total variation for the percentage 

of green régénérants, the percentage of albino régénérants and the percentage of embryos that formed 

only roots, respectively. Additive effects explained 30%, 65% and 37% of the genetic variation and narrow 
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sense heritabilities were 0.11, 0.32 and 0.08, respectively. Replicate effects were highly significant for the 

factors percentage albino régénérants and percentage embryos with only root formation. No significant 

General Combining Ability (GCA) effects were found. Variety heterosis was only significant for the 

percentage green régénérants and specific heterosis was significant for percentage green- and percentage 

albino régénérants. No reciprocal effects were found. Large significant differences in Specific Combining 

Ability (SCA) values were observed, with 13.5% of the F,-combinations outyielding the best parent. 

About 2,000 plants were doubled with colchicine and 84% of the doubled haploid (DH) plants could 

be grown to seed set. For seed set, genetic effects explained 78% of the total variation, but additive 

effects where responsible for only 4% of the genetic variation and, therefore, the narrow sense heritability 

was low (0.01). According totieritabilities, for embryo production progress can be rapid, for green plant 

regeneration it will be important to choose the parents very carefully and for seed set, progress is more 

hard to make. No correlation between embryo production, plant regeneration or seed set could be found. 

Over 200,000 seeds were formed on the PH-genotypes. 

A low green plant regeneration is considered to be one of the main bottlenecks for efficient use of the 

in vitro androgenesis technique in wheat. To study the inheritance of anther culture response and green 

plant regeneration more specifically, reciprocal crosses were made between the wheat cultivars Ringo Sztar, 

Ciano 067 and Benoist H77022, each of which had both a good response in anther culture and a high 

frequency of green plant regeneration (Chapter 3). It was found that, averaged for all genotypes, 23.0% 

of the anthers responded and a callus induction frequency of 77.8% was observed. Furthermore it 

appeared that of all the embryos, 43.0% developed into plantlets, 25.6% of the régénérants being green, 

resulting in 3.3 green plants per 100 anthers. It was also found that genotypic effects accounted for 

57.7%, 86.3% and 77.5% of the total variance of anther culture response, callus induction frequency and 

embryo induction frequency, respectively. Additive and dominant gene actions were detected for all 

androgenesis and regeneration characteristics and no reciprocal differences were found, indicating the 

absence of cytoplasmic effects. It was concluded that embryo production was primarily correlated with 

anther culture response and not with the number of embryos produced per plated anther or per 

responding anther. 

Advantages of in vitro selection compared to in vivo selection are that a larger number of genotypes 

can be screened under controlled conditions and that a limited amount of space is needed to screen all 

genotypes. For wheat, resistance against several diseases was reported through in vitro selection with the 

help of toxins as selective agent. In order to elucidate the phytotoxicity of FHB-produced toxins, effects 

were studied on four types of wheat plant material i.e. seedlings, coleoptile segments, anther derived callus 

and anther derived embryos, using different concentrations of DON and 3-ADON (Chapter 4). It appeared 

that DON inhibited growth of all types of plant material and that the seedling growth response to 4 x 10s 

122 



. Summary 

M DON of a large set of genotypes did not differentiate between tolerant and sensitive genotypes 

according to the observed FHB-resistance level in the field. In general, coleoptile segments showed a 

growth reduction at 10'5 M DON, whereas a concentration of 10"4 M DON appeared to be the optimum 

concentration to differentiate between haploid wheat calli for DON-tolerance. However, growth analysis 

data of 40 callus clones did not show any correlation with the known FHB-resistance levels of the original 

donor genotypes and populations. Regeneration of the anther derived embryos in the embryo selection 

experiment was decreased 100-fold on DON-containing medium. Averaged across the callus and embryo 

selection experiments, green plant regeneration showed a decrease of approximately 20-fold on medium 

containing the toxin. 

Most of the resistance genes against FHB that are known up to now, are located in for European 

standards considered exotic wheat genotypes and introduction of these genes into varieties requires 

extensive backcrossing. A haploid step could accelerate the transfer of the genes to cultivars. The final aim 

of our research was selection for high FHB-resistance in the field and, therefore, crosses were made 

between resistant and susceptible genotypes for four consecutive years (Chapter 5). Parents, F,- or F2-

populations were used as donor material for anther culture and were, together with the anther culture 

derived doubled haploid (DH) wheat lines, tested in the field for their FHB-resistance. Percentage infection 

was measured three and four weeks after artificial inoculation. Besides infection, also date of flowering 

and, during two years, straw length was scored. The observed plant traits within the various DH-lines were 

stable, homogeneous and no visible segregation occurred. In most cases, the F,-, F2-populations and the 

DH-lines were for infection level intermediate between the two parental infection levels, indicating an 

additive inheritance. However, the infection levels of some of the doubled haploids were significantly lower 

than the levels of the most resistant parent. In cases where the F2-populations were significantly more 

resistant than the two parents, it was concluded that accumulation of resistance genes of the partially 

resistant parents had occurred. In cases where the DH-lines, derived from cultivars were significantly more 

resistant than the cultivars, it was attributed to gametoclonal variation. No evidence was found that a 

longer callus phase might lead to a higher level of variation. In 1994 infection levels were substantially 

higher than in the three previous years, probably due to higher maximum temperatures in the inoculation 

period. 

Microspore culture has several advantages over anther culture, e.g. for in vitro selection experiments, 

single cells are preferred to multicellular structures as a more uniform selection pressure is secured. The 

possibility of using isolated microspore culture of wheat for in vitro selection experiments are described in 

Chapter 6. Experiments were carried out to optimise the isolation and culture of isolated microspores of 

this recalcitrant crop. It was found that the viability of the microspores was better when co-cultured with 

wheat ovaries from one cultivar as compared to co-culture with a mixture of wheat ovaries from four 
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cultivars. Furthermore it appeared that co-culture of the microspores with ovaries in culture plate inserts 

had no significant effect on viability of the microspores, but had, in comparison with culture in agarose 

rings, a large positive effect on the percentage of swollen microspores. A significant correlation between 

the number of swollen microspores and the number of multicellular structures was found. 

For future research it will be necessary to analyse the progenies of the diallel-derived DH-regenerarits. 

for their FHB-resistance for several generations. It has to be elucidated whether or not the resistance levels 

of the highly resistant DH-genotypes will also be found in their offspring. "Because in some DH-lines 

accumulation of resistance genes appears to have occurred; these lines will be very useful in breeding for 

introgression of this trait into commercial varieties. 

Wheat and maize, two of the three most important food crops in the world, are affected by Fusarium 

head blight. Research on FHB resistance and resistant cultivars are of the utmost importance to ensure an 

adequate food supply around the world. 

124 



Samenvatting 

Samenvatting 

Een algemeen beeld van Fusarium aarziekte, de toxiciteit van de door het pathogeen geproduceerde 

toxines, in vitro androgenese en in vitro selectie op veranderde eigenschappen wordt gegeven in hoofdstuk 

1. Tarwe (Triticum aestivum L) behoort tot de drie meest belangrijke voedselgewassen in de wereld. In 

sommige jaren kan het gewas zware schade oplopen als gevolg van Fusarium aarziekte, o.a. door het feit 

dat er geen effectieve chemische bestrijding van de ziekte mogelijk is. De ziekte wordt voornameljk 

veroorzaakt door de schimmels Fusarium culmorum en F. graminearum, maar in het koelere noord-west 

Europa komt vnl. F. culmorum voor. 

Het pathogeen veroorzaakt schade op verschillende manieren, waaronder besmetting van de zaden met 

toxines. Deze toxines, waarvan deoxynivalenol (DON), nivalenol (NIV) en acetyldeoxynivalenol (ADON), met 

de isomeren 3-ADON en 15-ADON, het meest berucht zijn, zijn in staat de eiwit-synthese te blokkeren en 

zijn hierdoor zeer gevaarlijk voor mens en dier. Uit economisch en milieu-oogpunt is waardplant-resistentie 

het meeste geschikte en duurzame controle-middel en zou een hoge prioriteit moeten krijgen in ieder 

tarweveredelingprogramma. 

Androgenese is de uitgroei van een mannelijke geslachtscel tot een haploide plant. Tot nu toe is het 

mogelijk gebleken om in meer dan 250 plantensoorten haploide planten te produceren via in vitro 

androgenese. Bij een groot aantal van deze gewassen, waaronder tarwe, zijn er nog steeds een aantal 

specifieke problemen die opgelost dienen te worden. Enkele voordelen van in vitro androgenese zijn: een 

snelle productie van haploide planten, resulterend in een kortere veredelingscyclus, eenvoudiger genetische 

analyses bij kruisingen en op DNA-niveau en mogelijkheden voor genetische modificatie en in vitro selectie. 

In vitro selectie is al vele malen op een efficiënte manier toegepast om te selecteren op eigenschappen die 

van agronomisch belang zijn en om nieuwe cultivars te produceren. Met behulp van toxines als selectieve 

agentia zijn er in het verleden in tarwe nieuwe resistenties gevonden, o.a. tegen Pseudomonas syringae 

pv. syringae en tegen Helminthosporium sativum. 

In hoofdstuk 2 worden de resultaten van een 7x7 volledig kruisingsprogramma (diallel) weergegeven. 

Gekeken werd naar de overerving van androgenese vermogen in tarwe antherencultuur. Hiervoor zijn 

zeven ouderlijnen, die van elkaar verschilden in androgenetische respons en resistentie tegen Fusarium 

aarziekte, samen met de 42 F,-combinaties van de complete diallel geëvalueerd op hun androgenetische 

respons in vijf herhalingen. In totaal werden meer dan 130.000 antheren uitgelegd, waarvan 14% een 

respons gaf, d.w.z. tenminste een embryo of callus produceerde. Het bleek dat het grootste deel van de 

genetische variatie in androgenetische respons verklaard kon worden door additieve effecten. 

Bijna 18.000 embryos werden overgezet op MS-regeneratie medium waarvan gemiddeld 30% tot plant 
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regenereerden, waarvan 11 % groen waren. De rest van de regeneranten waren albino, een probleem dat 

veelvuldig optreedt bij regeneratie van plantensoorten uit de Gramineeën familie. Op twee F,-combinaties 

na, konden van alle 42 F,-combinatiës groene planten geregenereerd worden. Er werden significante 

genetische verschillen gevonden en genetische effecten verklaarden 38%, 48% en 2 1 % van de totale 

variatie voor het % groene regeneranten, het percentage albino regeneranten en het percentage embryos 

die alleen maar wortels regenereerden, respectievelijk. De additieve effecten verklaarden respectievelijk 

30%, 65% en 37% van de genetische variatie en de waarden voor de erfelijkheidsgraad (heritability) in 

nauwe zin waren respectievelijk 0,11, 0,32 en 0,08. Herhalingseffecten waren alleen significant voor het 

% albino regeneranten en voor het % embryos met alleen maar wortelvorming. Er werden geen 

significante algemene combinatie geschiktheids effecten gevonden. Er werden geen reciproke effecten 

gevonden, maar wel significante verschillen in specifieke combinatie geschiktheid, waarbij 13,5% van de 

F,-combinaties een hogere score hadden dan de beste ouder. 

Van ca. 2000 haploide planten werd het chromosoomaantal met colchicine verdubbeld en hiervan zette 

84% zaad. Voor zaadzetting verklaarden de genetische effecten 78% van de totale variatie, echter 

additieve effecten verklaarden slechts 4% van de genetische variatie en hierdoor was de erfelijksheidsgraad 

in de nauwe zin laag (0,01). Afgaande op de erfelijkheidsgraden kan door selectie op embryo productie 

via selectie een snelle progressie geboekt worden, voor en hoog percentage groene plant regeneratie bleek 

de keuze van de ouders zeer belangrijk. Er werd geen correlatie gevonden tussen embryo productie, plant 

regeneratie en zaadzetting. Er werden meer dan 200.000 zaden gevormd op de verdubbelde haploide 

planten. 

Een lage regeneratie frequentie van groene planten bij tarwe wordt als één van de voornaamste 

beperkingen gezien voor een efficiënte toepassing van de in vitro androgenese techniek in de 

tarweveredeling. Om de overerving van antherencultuur respons en groene plant regeneratie in tarwe 

nader te bestuderen werden reciproke kruisingen gemaakt tussen de tarwecultivars Ringo Sztar, Ciano 067 

en Benoist H77022. Alledrie cultivars vertoonden een hoge respons in antherencultuur en een relatief hoge 

frequentie van groene plant regeneratie (hoofdstuk 3). 

Gemiddeld over alle genotypen bleek 23% van de antheren een respons te geven, d.w.z. vormde 

tenminste een embryo of callus. Er werd een callus inductie frequentie van 78% gevonden en het bleek 

dat van alle embryo's 43% tot planten regenereerden, en 26% van de regeneranten bleek groen te zijn 

Dit resulteerde in 3,3 groene planten per 100 uitgelegde antheren. 

Genotype effecten verklaarden 58%, 86% en 78% van de totale variantie voor antherencultuur respons, 

callus inductie frequentie en embryo inductie frequentie respectievelijk. 

Additiviteit en dominantie werden voor alle waargenomen androgenese en regeneratie-eigenschappen 

gevonden. Er werden geen reciproke verschillen gevonden, duidend op de afwezigheid van 

cytoplasmatische effecten. Er kon geconcludeerd worden dat de embryo productie voornameljk afhangt 
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van antheren cultuur respons en niet van het aantal embryos dat per uitgelegde of responderende anthère 

gevormd werd. 

Voordelen van in vitro selectie boven in vivo selectie zijn dat een groter aantal genotypen onder 

gecontroleerde omstandigheden op een kleiner oppervlak getoetst kan worden. Zo zijn m.b.v. in vitro 

selectie met toxines als selectieve agentia bij tarwe al verschillende nieuwe resistenties gevonden. Om de 

fytotoxiciteit van de door Fusarium-soorten geproduceerde toxines meer op te helderen werd het effect 

van deze toxines op vier typen plantmateriaal bestudeerd: zaailingen, coleoptiel-segmenten, calli en 

embryos uit antherencultuur (hoofdstuk 4). Deze typen plantmateriaal werden bij verschillende 

concentraties van DON en 3-ADON bestudeerd. Het bleek dat DON de groei van alle vier typen 

plantmateriaal rerftde. De in het veld geobserveerde verschillen tussen vatbare en resistente genotypen 

werden niet terug gevonden in verschillen in de zaailing-groei van een groot aantal genotypen bij 4x10'5 

M DON. 

In het algemeen bleek dat coleoptiel-segmenten een groeireductie te zien gaven bij 10"s M DON, terwijl 

een concentratie van 10** M DON optimaal was om bij haploide tarwe calli te differentiëren op DON-

tolerantie. Echter, groeianalyse-data van 40 callusklonen vertoonden geen correlatie met de bekende 

Fusarium aarziekte resistentieniveau's van de oorspronkelijke donor genotypes en -populaties. Regeneratie 

van de embryos uit antherencultuur werd -. met een 100-voud geremd op DON-bevattend medium. 

Gemiddeld over de callus- en embryo-selectie experimenten bleek dat groene plant regeneratie met een 

20-voud verminderd werd op DON-bevattend medium. 

De meeste resistentie-genen tegen Fusarium aarziekte die tot nu toe bekend zijn, zijn aanwezig in voor 

Europese begrippen exotische tarwegenotypes en de introductie van deze genen in N.W. Europese cultivars 

vergt tijdsrovende terugkruisingen. Een haploide stap in het selectieprogramma kan de overbrenging van 

de genen naar cultivars aanzienlijk versnellen. Omdat het uiteindelijke selectiedoel een hoge Fusarium 

aarziekte resistentie in het veld was, werden er kruisingen gemaakt tussen resistente en vatbare genotypen. 

Ouderlijnen, F,- en F2-populatie's werden gebruikt als donormateriaal voor antherencultuur en deze 

ouderlijnen, F,- en F2-populatie's werden samen met de uit antherencultuur voortgekomen verdubbelde 

haploide tarwelijnen (DH) in vier opeenvolgende jaren in het veld op hun Fusarium aarziekte resistentie 

getest (hoofdstuk 5). Drie en vier weken na kunstmatige inoculatie werd het infectieniveau gemeten. Naast 

infectieniveau werden ook nog bloeidatum en, gedurende twee jaren, strolengte en gebaardheid 

waargenomen. De planten binnen de verschillende DH-lijnen waren zeer stabiel en homogeen en er was 

geen uitsplitsing zichtbaar. 

In de meeste gevallen vertoonden de F,- en F2-populaties en de DH-lijnen een intermediair infectieniveau 

t.o.v. die van de beide ouders, duidend op een additieve overerving. Echter, in sommige gevallen waren 

de infectieniveau's van de DH-lijnen significant lager dan die van de meest resistente ouder. In de gevallen 
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waar de F2-populaties significant resistenter waren dan de twee ouders lijkt dit toegeschreven te kunnen 

worden aan accumulatie van de resistentie-genen van de partieel resistente ouders. In de gevallen waarin 

de DH-lijnen, afgeleid van cultivars, significant resistenter waren dan de cultivar zelf ligt gametoclonale 

variatie meer voor de hand. Er werden geen aariwijzigingen gevonden dat een langere callusfase leidt tot 

een hoger niveau van variatie binnen de regeneranten. De infectieniveau's in het veld waren in 1994 hoger 

dan in de drie voorgaande jaren, waarschijnlijk door de hogere temperatuur in de inoculatie-periode. 

Er zijn verschillende voordelen van geïsoleerde microsporencultuur boven antherencultuur te noemen 

bijvoorbeeld bij het gebruik van in vitro selectie hebben individuele cellen de voorkeur boven multicellulaire 

structuren, omdat bij in vitro selectie met individuele cellen een homogenere selectiedruk te bereiken is. 

De mogelijkheid om geïsoleerde microsporecultuur van tarwe verder te optimalisererf om uiteindelijk te 

kunnen gebruiken voor in vitro selectie experimenten wordt beschreven in hoofdstuk 6 bestudeerd. Er 

werden experimenten uitgevoerd om de isolatie en de cultuur van de microsporen van dit recalcitrante 

gewas te optimaliseren. Het bleek dat de vitaliteit van de microsporen in co-cultuur met tarwe-ovaria van 

één cultivar hoger was dan in co-cultuur met tarwe-ovaria van vier cultivars. Verder bleek dat co-cultuur 

van de microsporen met de ovaria in "cultuurplaat weis" geen significant effect had op de vitaliteit van 

de microsporen. Deze opkweekmethode had, in vergelijking met cultuur van de tarwe-ovaria in agarose-

ringen, een duidelijk positief effect op het percentage gezwollen microsporen. Er werd een significante 

correlatie gevonden tussen het aantal gezwollen microsporen en het aantal meercellige structuren.. 

Voor toekomstig onderzoek zal het nodig zijn om de verdubbelde haploide nakomelingschappen uit de 

eerdergenoemde diallel te analyseren. Er zal onderzocht moeten worden of en hoe de hogere resistentie 

niveau's die gevonden zijn in sommige verdubbelde haploide genotypen naar hun nakomelingen overerven. 

In verschillende verdubbelde haploide lijnen lijkt accumulatie van resistentie-genen opgetreden te zijn en 

derhalve zouden deze geselecteerde lijnen als kruisingsouder zeer bruikbaar kunnen zijn voor de inkruising 

van Fusarium aarziekte resistentie in commerciële cultivars. 

Tarwe en mais, twee van de drie meest belangrijke voedselgewassen in de wereld, worden allebei 

aangetast door Fusarium aarziekte. Onderzoek naar Fusarium aarziekte resistentie en resistente cultivars 

is van het grootste belang voor een adequate voedselvoorziening in de wereld. 
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Het is er dan toch nog van gekomen: Het proefschrift is af. Phew! 

Tijdens de jaren dat ik er aan gewerkt heb, hebben velen hun bijdrage aan dit proefschrift geleverd en ik 

wil eenieder dan ook hartelijk bedanken voor alle steun en hulp. Zonder volledig te kunnen zijn wil ik toch 

graag een paar mensen met name noemen. 

Allereerst wil ik mijn co-promotor Charles Snijders bedanken voor zijn onophoudelijke inzet om het 

onderzoek in goede banen te leiden. We hebben het onderzoek bediscussieerd, proeven waargenomen 

in het veld en je maakte het mede mogelijk dat ik een aantal zeer interessante dienstreizen kon 

ondernemen naar Hongarije, Duitsland, Denemarken, Oostenrijken China. Dank voor alles. Veelsukses met 

"De Hegge" I In de tweede plaats wil ik mijn promotor professor Jacobsen bedanken voor de altijd weer 

stimulerende discussies en de menselijke manier waarmee je me tegemoet trad. De discussies die we 

voerden deden me vaak weer heel andere kanten van de materie zien. 

Het praktische werk was niet mogelijk geweest zonder de hulp van Jans Schepers. Je hebt heel wat 

afgekruist in de kas. Ook de collega's van de proefvelddienst wil ik graag bedanken voor hun inzet bij alle 

kas- en veldproeven gedurende vier jaar. Paul Keizer wil ik bedanken voor alle statistische bijscholing die 

ik kreeg. Van de uren die we achter je terminal doorbrachten blijven me echter niet alleen de discussies 

over de statistische invalshoeken van mijn data bij. Ook je visie op de wereld om je heen werd niet onder 

stoelen of banken gestoken. 

I would like to thank the co-authors lldiko Karsai' and Monika Rakoczy-Trojanowska for all the work that 

we did and enjoyed together. Tjerk Santegoeds, jij hebt met je werk in de microsporen ook je steentje 

bijgedragen aan dit stuk onderzoek. De contacten met mijn collega's, met name van de afdelingen 

Akkerbouw- en Voedergewassen (AKVO) en Ontwikkelingsbiologie, waren zeer plezierig. De periode bij 

AKVO en de club van het 'Theecafe' zal ik niet snel vergeten. We hebben tijdens en naast het werk veel 

plezier gehad en ik hoop dat jullie dat allen mogen blijven houden in de rest van je leven. 

Hans Dons en zijn toenmalige collega's van de afdeling Ontwikkelingsbiologie wil ik bedanken voor de 

mogelijkheid om in de periode dat ik aan microsporencultuur werkte in de vergaderingen van de afdeling 

Ontwikkelingsbiologie mee te draaien. De discussies die we daar voerden waren van groot belang voor de 

progressie van het onderzoek. 
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plezierige manier waarmee we de zakelijke kanten van het contract steeds hebben kunnen afhandelen: 

Annelies van der Zweep-Prins, Dingena Donner en Christianne Marcelis-van Acker. Uit de 

begeleidingscommissie van het project wil ik Fred Roothaan en Leo Groenewegen bedanken voor hun 

inzichten in de praktische kanten van de tarweveredeling. Twee collega's vanuit CPRO-DLO waren 

betrokken bij de begeleidingscommissie: Tineke Creemers-Molenaar en Ruud van den Bulk. Bedankt voor 

jullie inzet! 

Coosje Hoogendoorn, Fred van Eeuwijk en Jan Custers wil ik bedanken voor het lezen van de 

manuscripten en het geven van waardevol commentaar. 

Alle vrienden bij de musicalvereniging "Sempre Sereno" (de oudste musicalvereniging van Nederland) 

wil ik ook bedanken voor alle steun door de jaren heen. We hebben lief en leed met elkaar gedeeld en 

ik wens jullie allen en de vereniging een goede toekomst. 

Ik ben zeer erkentelijk voor de financiële steun van de stichting 'Fonds Landbouw Export Bureau 

1916/1918' bij het gereedkomen van dit proefschrift. 

Dit proefschrift heb ik opgedragen aan mijn ouders, onder meer om hen te bedanken voor de liefde en 

steun door de jaren heen. Ze hebben me de mogelijkheid gegeven om een wetenschappelijke studie te 

volgen en altijd vertrouwen in mij gehad en dat ook getoond. Bedankt! 
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