
Early diagenesis of phosphorus in 
continental margin sediments 



Promotor: dr. L. Lijklema, hoogleraar in het waterkwaliteitsbeheer 

Co-promotor: dr. ir. W. van Raaphorst, senior onderzoeker bij het 
Nederlands Instituut voor Onderzoek der Zee 



^OpTO* « £ ^ 1 

Early diagenesis of phosphorus in 
continental margin sediments 

Caroline P. Slomp 

Proefschrift 
ter verkrijging van de graad van doctor 

op gezag van de rector magnificus 
van de Landbouwuniversiteit Wageningen, 

dr. C.M. Karssen, 
in het openbaar te verdedigen 

op vrijdag 6 juni 1997 
des namiddags te vier uur in de Aula 

n 9^)39} 



) — 
t — ' -,-

Het onderzoek dat beschreven is in dit proefschrift is uitgevoerd bij het Nederlands 
Instituut voor Onderzoek der Zee (NIOZ), Postbus 59, 1790 AB, Den Burg, Texel. 

Het onderzoek werd gefinancierd door de Nederlandse Organisatie voor 
Wetenschappelijk Onderzoek (NWO), de Europese Gemeenschap (EC-Mast) en het 
project Beleidsgericht Ecologisch Onderzoek Noordzee en Waddenzee (BEON). 

ISBN 90-5485-684-X 



fjN\o8Z0\ noJ-JY 

Stellingen bij het proefschrift 

Early diagenesis of phosphorus in continental margin sediments 

1. In tegenstelling tot wat Caraco et al. (1990) beweren is opgelost fosfaat in de 
meeste mariene sedimenten geen conservatieve tracer van benthische decompositie. 

(Caraco et al., 1990, Biogeochemistry 9: 277-290; dit proefschrift) 

2. De fosfaatconcentratie in poriewater dat opgelost ijzer bevat kan ernstig worden 
onderschat wanneer voorafgaande aan de bepaling het poriewater niet wordt 
aangezuurd. 

(Bray et al., 1974, Science 180: 1362-1364; dit proefschrift) 

3. Wanneer de binding van fosfaat aan ijzeroxiden in 'gekoppelde' diagenetische 
modellen of alleen wordt beschreven als een instantane evenwichtsreactie of in het 
geheel niet wordt opgenomen, kan de sedimentaire fosfaatcyclus met deze modellen 
niet goed beschreven worden. 

(Rabouille and Gaillard, 1991, Geochimica et Cosmochimica Acta 55: 2511-2525; Boudreau, 1996, 
Computers and Geosciences 2: 479-496; dit proefschrift) 

4. Zolang nieuwe veldstudies steeds leiden tot een belangrijke herziening van het 
mondiale budget voor fosfaat in de oceaan, blijft het onderzoek aan fosfaat in mariene 
sedimenten belangwekkend en vernieuwend, terwijl aan de gevonden budgetten niet 
veel waarde gehecht hoeft te worden. 

(Ruttenberg, 1993, Chemical Geology 107: 405-409; Howarth et al., 1995, p323-346. In: Phosphorus 
in the global environment, H. Tiessen, ed. Wiley, New York. Filippelli and Delaney, 1996, Geochimica 
et Cosmochimica Acta 60: 1479-1495; Wheat et al., 1996, Geochimica et Cosmochimica Acta 60: 
3593-3608) 

5. Het gebruik van de term rate (snelheid) om een hoeveelheid toegevoegde stof per 
gewichts- of oppervlakte-eenheid aan te duiden is onjuist omdat de dimensie tijd 
ontbreekt. 

(bijvoorbeeld Gilpatrick, 1969, Phytopathology 59: 973-978; Zakaria et al., 1980, Phytopathology 70: 
495-499; Tsutsuki and Ponnamperuma, 1987, Soil Science and Plant Nutrition 33: 13-33) 

6. De gewoonte om in Amerikaanse speelfilms over de middelbare school de rollen 
van tieners door volwassenen te laten vervullen wijst op huiver voor een directe 
confrontatie met de adolescentie. 

7. Bestuurlijke helderheid neemt toe wanneer de overheid in plaats van een Brede 
Maatschappelijke Discussie voortaan een erkend Orakel van Delphi raadpleegt. 



8. Gedoogbeleid dwingt jongeren met een gezonde hang naar ongeaccepteerd gedrag 
tot extremiteiten. 

9. De oudste, met lens op lichtgevoelige laag vastgelegde, dus fotografische opname, 
dateert van omstreeks 1500, toont het gelaat van Leonardo da Vinci en staat bekend 
als de Lijkwade van Turijn. 

10. Indien de overtuiging heerst dat morele beginselen in eerste en laatste instantie 
door de mens worden bepaald, verliezen in een democratie de mensenrechten hun 
universele geldigheid. 

Wageningen, 6 juni 1997 Caroline P. Slomp 
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Chapter 1 

Introduction 

GENERAL BACKGROUND 

Although continental margin environments occupy only a minor portion of the surface area 

of the oceans (-8.6%; Jargensen, 1983), their importance for oceanic element cycles is 

large. An estimated 18 to 33% of the total oceanic primary production takes place in these 

relatively shallow areas (Wollast, 1991). Whereas, in the rest of the oceans, the produced 

organic material is almost completely remineralized in the water column, 10-50% reaches 

the sea floor in continental margin environments (Jergensen, 1983). A part of this organic 

matter is buried definitely. The major part is decomposed, however, giving rise to a 

multitude of biogeochemical transformations in the sediment. In combination with physical 

processes, these transformations bring about major changes in sediments during burial. 

When these changes occur within several hundred meters below the sediment-water 

interface, they are collectively referred to as early diagenesis (Berner, 1980). 

Phosphorus (P) is an essential nutrient for the growth of marine phytoplankton. The 

availability of P for uptake by phytoplankton in continental margin environments depends 

on, firstly, the inflow of reactive P (i.e. potentially bioavailable P) from rivers and 

neighbouring oceanic waters and, secondly, the return to the overlying water of dissolved P, 

following deposition and decomposition of organic compounds. Since an enhanced supply 

of P is one of the causes of eutrophication in coastal areas (Nixon, 1995), it is important to 

understand the role of sediments as a source and sink for P in these environments on time 

scales of days to years. Results from field studies suggest that the efficiency of continental 

margin sediments in returning the P deposited on the sediment to the overlying water is 

very site-specific. Estimates range from nearly 100% regeneration within a single year for 

estuarine sediments (e.g. Caraco et al., 1990) to values of 12-66% (Balzer, 1984; Klump 

and Martens, 1987; Martens, 1993; Jensen et al., 1995) for coastal environments. Less is 

known about the regeneration of P in sediments in offshore areas. The data that are 

available suggest that substantial temporary retention of P can occur (Van Raaphorst et al., 

1990;Nedwelletal., 1993). 

Because certain marine organisms, e.g. cyanobacteria, are able to fix atmospheric N, it 

has been argued that P is the limiting nutrient for global marine productivity on geological 

time scales (Holland, 1978; Broecker and Peng, 1982; Howarth et al., 1995). If this is so, 

changes in the global ocean burial flux of P can affect organic carbon burial and 

atmospheric CO2 and 0 2 concentrations (Holland, 1978; Broecker, 1982; Broecker and 

Peng, 1982; Van Cappellen and Ingall, 1994 and 1996). Quantification of the modern 
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global ocean burial flux of P and the burial flux in the geological past will improve our 

understanding of the global oceanic P cycle and the interaction with other element cycles. 

This requires information on rates of sediment accumulation and on changes of the 

concentration of reactive sediment P with depth for a variety of sedimentary environments 

on continental margins and in the deep-sea, including both upwelling and non-upwelling 

areas. Current estimates of modern global reactive P burial (Ruttenberg, 1993; Van 

Cappellen and Ingall, 1994; Filippelli and Delaney, 1996) are based on a limited data set 

and should be considered tentative. These studies all recognize continental margins as the 

most important sites for burial of reactive P. 

Continental margin sediments clearly can play an important role as a source or sink for P 

on short and long time scales. This makes it important to understand the controls on P 

release and retention, or in other words, to understand the early diagenesis of P in 

continental margin sediments. In the following two sections, I will give a concise 

description of the sedimentary P cycle and will briefly introduce the topics that are 

addressed in this thesis. 

THE PHOSPHORUS CYCLE IN MARINE SEDIMENTS 

A schematic overview of the sedimentary P cycle in marine sediments is presented in 

Figure 1. There are three main.forms of reactive sediment P: (1) organic P, (2) Fe-bound P 

and (3) authigenic P. In the pH range normal for seawater, dissolved P is mainly present as 

HPO42- (Kester and Pytkowicz, 1967). 

Organic P is the principal carrier of reactive P to sediments (Berner et al., 1993). 

Following deposition, a part of the organic matter decomposes, resulting in a release of 

HPO42" to the pore water. In the oxidized sediment zone, this HPO42" is generally sorbed to 

Fe oxides (e.g. Krom and Berner, 1980; Sundby et al., 1992; Jensen et al., 1995; Van 

Raaphorst and Kloosterhuis, 1994). The sorption process often results in a buffering of pore 

water HPO42" concentrations to low values in this zone (Froelich, 1988), thus allowing only 

limited diffusive transport to the overlying water. Storage of P in bacterial cells, resulting in 

the formation of organic P, may also remove some HPO42" in the oxidized sediment zone 

(Gächter et al., 1988; Ingall et al., 1993). The quantitative role of this redox-dependent 

bacterial uptake is still uncertain. In the reduced sediment zone, HPO42" is not only released 

from organic matter but also from Fe oxides upon their dissolution. In this part of the 

sediment, dissolved HP04
2_ concentrations can become high enough for authigenic mineral 

formation to occur (e.g. Van Cappellen and Berner, 1988). When the oxidized surface layer 

is thin or absent, the HPO42- released from organic matter and from Fe oxides can escape to 

the overlying water (Balzer, 1984; Sundby et al., 1986; Ingall and Jahnke, 1994). In this 
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Fig. 1. A schematic representation of the P cycle in marine sediments. Note that in this view 
biogenic Ca-P, detrital Ca-P, CaCC -̂P and clay-bound P are assumed to be unimportant sources or 
sinks of reactive P. 

case, pore water HPO42" concentrations in the reduced zone may not become high enough 

to create conditions of supersaturation with respect to authigenic P minerals. 

Oxidized surface sediment does not always act as a 'trap' for P, however. There are three 

reasons for this. First, release of dissolved HPO42" from organic matter may occur so near 

the sediment-water interface and may be so rapid that not all the HPO42" can be sorbed by 

Fe oxides (e.g. Martens et al., 1978). Second, sediment irrigation by benthic organisms may 

result in direct, non-local HPO42" transport of deeper pore waters to the overlying water 

(e.g. Aller and Yingst, 1985). Third, desorption of P from Fe oxides near the sediment-

water interface may support a flux to the overlying water, even when HPO42" 

concentrations in the oxidized sediment are low (Schink and Guinasso, 1978; Van 

Raaphorst et al., 1988; Van Raaphorst and Kloosterhuis, 1994). This flux can only be 

maintained as long as there is a sufficient supply of desorbable Fe-bound P to the sediment 

near the sediment-water interface and as long as the HPO42" concentration in the overlying 

water remains relatively low. 

All three forms of reactive sediment P, i.e. organic P, Fe-bound P and authigenic P (Fig. 

1), can act as a long-term sink of P in sediments (Berner et al., 1993; Ruttenberg and 
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Berner, 1993). The organic P which is buried may be present in phosphate esters and 

phosphonate compounds (Ingall et al., 1990; Berner et al., 1993). Fe oxides can act as a 

permanent sink for P since they can persist below the oxidized zone (e.g. Van Cappellen 

and Wang, 1996). Very little is known about the mineral forms of the Fe oxides responsible 

for the binding of P in marine sediments. Results from sequential extraction procedures 

suggest that they may be largely of a poorly crystalline nature (Jensen and Thamdrup, 1993; 

Jensen et al., 1995). Carbonate fluorapatite (CFA), the principal component of phosphorite 

deposits formed in upwelling areas (e.g. Jahnke et al., 1983; Froelich et al., 1988; Schuffert 

et al., 1994), is probably also the most important authigenic P mineral in non-upwelling, 

rapidly accumulating, terrigenous continental shelf sediments (Ruttenberg and Berner, 

1993), continental rise sediments (Lucotte et al., 1994) and deep-sea sediments (Filippelli 

and Delaney, 1996). For a more extensive overview of the P cycle in marine sediments, the 

reader is referred to the reviews of Krajweski et al. (1994) and Howarth et al. (1995). 

OUTLINE OF THIS THESIS 
This thesis concentrates on the relatively short-term processes controlling sediment P 

release and retention in temperate, non-upwelling continental margin environments. The 

research comprised laboratory, field and modelling work and was carried out within the 

framework of three larger projects: (1) A meso/boxcosm project that focused on the benthic 

réponse of marine sandy sediments to eutrophication; (2) The BELS project (BEnthic Links 

and Sinks in North Sea Nutrient Cycling), that aimed at the elucidation of the role of 

sediments in the nutrient dynamics of the North Sea; (3) The OMEX project (Ocean Margin 

EXchange), an EU-funded program which is directed towards an understanding of fluxes of 

particles and organic carbon from the continental shelf to the deep-sea. 

The deposition and decomposition of organic matter is the driving force for most early 

diagenetic processes in sediments. This makes research on the effect of organic matter 

deposition on sediment P dynamics a logical starting point. The effect of single and 

repeated organic matter deposition and macrofauna on sediment-water exchange and 

retention of P in Fe oxide-poor sediments is addressed in Chapter 2. This study was carried 

out in experimental marine sediment systems ('boxcosms'), to allow a better control of the 

added amounts of organic matter than would be possible under in-situ conditions. 

Sorption of P to Fe oxides is the most important short-term process responsible for the 

retention of P in sediments. Very little is known about the nature of the Fe oxides in marine 

sediments, however. In the study presented in chapter 3, the Fe oxides in four sediments 

from contrasting sedimentary environments in the North Sea were characterized and their 

role for the binding of P was evaluated. Since direct determination with conventional 

techniques is not possible, a combination of X-ray powder diffraction measurements 
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(DXRD) and extraction procedures was used. The role of Fe-bound P as a temporary and 

permanent sink for P in these sediments is discussed. 

Fe oxides loose their ability to sorb additional P upon their burial into the sediment zone 

where neither 0 2 nor NO3" are present. In chapter 4, the seasonal and spatial differences in 

the sediment redox conditions in 4 types of sedimentary environments in the North Sea are 

described. Using a steady-state diagenetic model for the Mn and Fe cycle, the potential role 

of Mn and Fe oxides as redox intermediates in organic C oxidation in several of these 

sediments is evaluated. 

In chapter 5, the role of sorption in sediment-water exchange of HPO42" at the North Sea 

locations of chapter 4 is discussed. Furthermore, it is assessed whether both enhanced 

retention and release of HPO42" due to sorption can be described with a diagenetic model 

for the sedimentary P cycle that includes simultaneous equilibrium and first-order kinetic 

HPO42" sorption. 

In chapter 6, the hypothesis is tested whether Fe-bound P plays a key role in authigenic 

CFA formation at two locations on a North Atlantic continental platform. Results from 

selective extraction procedures are combined with pore water data to determine whether 

CFA is forming in these sediments. A diagenetic model for the sedimentary P cycle is 

developed and applied to facilitate the interpretation of the observed depth profiles. 
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Chapter 2 

The effect of deposition of organic matter on phosphorus dynamics 
in experimental marine sediment systems* 

ABSTRACT 
The effect of deposition of organic matter on phosphorus dynamics in sandy marine 
sediments was evaluated using experimental systems (boxcosms) and three different 
strategies: (1) no supply (2) one single addition (3) weekly additions of a suspension of 
algal cells (Phaeocystis spec). Macrofauna (3 species, 6 individuals of each) were added to 
half of the boxes. Both in the case of the single and weekly additions a clear effect of 
increased organic matter loading on phosphorus dynamics was found. Following the 
organic matter addition, porewater phosphate concentrations in the upper sediment layer 
increased, phosphate release rates from the sediment increased by a factor 3-5 and in the 
boxes to which a single addition was applied NaOH-extractable phosphorus increased 
substantially. The increase in phosphate release rates from the sediment was attributed to 
mineralization of the added material and to direct release from the algal cells. No clear 
effect of the presence of macrofauna on sediment-water exchange of phosphate could be 
discovered. The macrofauna were very effective at reworking the sediment, however, as 
illustrated by the organic carbon profiles. It is hypothesized that the sediment-water 
exchange rates of phosphate were regulated by the layer of algal material which was present 
on the sediment surface in the fed boxes. In the boxes to which the single addition was 
applied porewater phosphate concentrations were lower and NaOH-extractable phosphorus 
was higher in the presence of macrofauna, suggesting that macrofauna can stimulate 
phosphate binding in the sediment. 

INTRODUCTION 
Benthic phosphorus regeneration may strongly influence water column chemistry in 

shallow marine systems (e.g. Balzer, 1984; Callender & Hammond, 1982; Fisher et al., 

1982; Hopkinson, 1987; Klump & Martens, 1981 & 1987; Rutgers van der Loeff, 1980). 

Therefore, the role of sediments in phosphorus recycling and eutrophication of these 

systems (e.g. the North Sea, Broekman et al., 1988 & 1990) is of major importance, even 

when phosphorus does not limit primary production (Peeters & Peperzak, 1990; Riegman et 

al., 1990). 

Phosphorus cycling has mostly been studied in organic-rich, high porosity, fine-grained 

sediments (e.g. Froelich et al., 1988; Klump & Martens, 1981 & 1987; Krom & Berner, 

1980 & 1981; Martens et al., 1978). Much less information is available on organic-poor, 

low porosity, sandy sediments (e.g. Hopkinson, 1987; Rutgers van der Loeff, 1980; Van 

This chapter by C.P. Slomp, W. Van Raaphorst, J.F.P. Malschaert, A. Kok and A.J.J. 
Sandee has been published in Hydrobiologia 253: 83-98 (1993) 
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Raaphorst et al., 1990) which can be found in a major part of the North Sea (Eisma, 1990). 

In view of the general concern about increased eutrophication of the North Sea (Postma, 

1985), presumably resulting in increased algal blooms (Cadée, 1990) and oxygen deficiency 

in certain areas (Westernhagen et al., 1986), it is important to obtain more quantitative 

information on the processes controlling phosphorus dynamics in sandy sediments. 

Early diagenesis in marine sediments largely depends on the supply of organic carbon 

(Berner, 1980; Billen et al., 1990; Klump & Martens, 1987). Although a significant 

correlation between the amount of fine particles and of organic matter in sediments can 

often be found (Creutzberg et al., 1984; Billen et al., 1990) deposition of organic matter is 

not limited to fine-grained sediments. Jenness & Duineveld (1985) have shown that 

considerable amounts of phytoplanktonic material can be - at least temporarily - buried in 

sandy sediments down to a depth of 5 cm following deposition in periods of slack tidal 

current. 

Binding of phosphorus in the sediment may cause a time lag between organic matter 

mineralization in the sediment and actual regeneration of phosphorus to the water column. 

Sorption to iron and aluminum oxides and precipitation processes (Lijklema, 1977; Martens 

et al., 1978; Froelich, 1988; Froelich et al., 1982) may substantially reduce regeneration to 

the overlying water. Furthermore, uptake of phosphorus by microorganisms, not only from 

the organic substrate but also from the porewater, may play an important role. This latter 

process obviously depends on the quality (e.g. C:P ratio) of the available organic matter 

(Billen et al., 1990; Gächter et al., 1988 & 1992). Under anoxic conditions, chemically 

bound phosphorus may be released due to reduction of iron oxides (Mortimer, 1941). 

According to Gächter et al. (1988) polyphosphates which have accumulated in bacterial 

cells during oxic conditions may then be released as well. 

The presence of macrofauna can stimulate mineralization of organic matter and uptake 

of phosphorus by microorganisms through reworking of the sediment. Furthermore, 

sediment-water exchange rates of phosphorus can be enhanced, mostly due to bioirrigation 

activity (e.g. Aller, 1982; Hüttel, 1990; Hylleberg & Hendriksen, 1982; Yingst & Rhoads, 

1980). 

In this study, the effect of deposition of organic matter on phosphorus dynamics in a 

sandy marine sediment is evaluated. Furthermore, the role of macrofauna is discussed. To 

allow control of the added amounts of organic matter, experimental sediment systems were 

used. These were modified from the boxcosms described previously by Van Raaphorst et al. 

(1992). This research was part of a larger study on North Sea sediment eutrophication of 

which further results will be published elsewhere. 
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MATERIALS AND METHODS 

Boxcosms. Sediment with a median grain size of 125-160 urn and a content of particles 

<50um of ca. 2-5% was obtained from a station in the southern North Sea (Zeegat van 

Texel: 52°53'N, 4°34'E; depth: 17m). The sediment was stored in large covered containers 

at outdoor (winter) temperatures for ca. 4 months. Before use, the sediment was sieved 

(<0.5 cm) and homogenized in a cement mill. The boxcosm experiments were performed in 

26 cylindrical polypropylene boxes with an inner diameter and height of 30 and 35 cm, 

respectively. The boxes were filled with sediment up to 10 cm from the rim, resulting in a 

sediment depth of 25 cm in each box. Incorporation of air bubbles while filling the boxes 

was avoided as much as possible by adding seawater simultaneously. The thin layer (ca. 5 

mm) of fine particles which subsequently developed on top of the sediment was carefully 

removed. 

The boxes were distributed over 2 separate basins, in order to be able to maintain the 

'starved' and 'fed' boxcosms spatially apart thus avoiding mutual contamination. No 

communication existed between the boxes. To each box ca. 10 cm of overlying water was 

added, which was continuously replaced by filtered (over sand beds, grainsize 1-1.4 mm), 

aged (for several weeks in 2 large containers) North Sea water of constant salinity (29%o), 

an average dissolved organic carbon (DOC) content of 2.1 + 0.4 mg 1 and the following 

average (n = 16) nutrient concentrations: PO4 = 2.7 ± 0.9 umol 1" ; NO3 + NO2 = 54.3 ± 

7.9 umol l"1; Si = 17.2 ± 3.3 umol 1 . The NH4 concentration in the inflow was ca. 1.0 \x 

mol 1 at the beginning, increased to ca. 7 umol 1" at day 14 and subsequently decreased to 

values < 0.8 umol 1 remaining at this level from day 24 onwards. The DOC present in the 

inflow water probably consisted of refractory components (Laane, 1980). The inflow rate of 

10.4 ml min resulted in a residence time of the overlying water of ca. 11 hours. Outflow 

took place by overflow over the rim of the boxes into the basin. Constant bubbling of air 

was performed to keep the water column in the boxes well-mixed and saturated with respect 

to oxygen. The boxcosms were kept in the dark at a temperature of 11.8 ± 0.5 °C. 

One week after installation each box was supplied with micro- and meiofauna through a 

250 ml sediment sample consisting of the 2.5 cm surface layer of freshly collected 

boxcores. Two weeks later three species of macrofauna (Teilina fabula, Nephtys hombergii, 

Echinocardium cordatum; 6 of each, resulting in a total density of 255 ind. per m ) were 

added to 13 of the boxes. Dead individuals visible at the sediment surface were replaced on 

a weekly basis. 

Three different strategies were used to study organic matter deposition: (1) no supply 

('starved'; 8 boxes), (2) one single addition ('fed'; 10 boxes), (3) weekly additions ('fed'; 8 

boxes). The organic matter consisted of a suspension of Phaeocystis spec, a common alga 
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in coastal areas of the North Sea (e.g. Cadée, 1990; Lancelot et al., 1987), which was 

collected in the Schulpengat south-west of Texel with 50 um plankton nets during the 

spring bloom. The material was homogenized by stirring with a paddle in large containers, 

divided into equal portions and subsequently stored at -20°C until use (ca. 4 weeks for the 

first addition). 16 days after the introduction of the macrofauna and 37 days after the 

installation of the boxes the first portion of (thawed) organic matter was added (day 0). The 

organic matter supply to the boxcosms resulted in loadings of ca. 8 g C m and 6.3 mmol P 

m"2 for the weekly additions (during 19 weeks, resulting in a total of 152 g C m"2 and 120 

mmol P m ), and 24 g C m and 19 mmol P m for the single additions. The amount of 

carbon supplied with the single addition is approximately equivalent to the annual 

metabolic loss of sandy North Sea sediments as estimated by De Wilde et al. (1984) and 

Cramer (1991). Although the water circulation was stopped for 24 h following each 

addition not all of the algal material settled on the sediment surface within this period, 

resulting in a loss of organic matter due to outflow from the boxes. This especially was a 

problem in the boxcosms to which the single addition of organic matter was applied. 

Therefore, the actual carbon loading in these boxes was somewhat lower than 24 g C m . 

At each sampling event either intact boxes were used for the measurements (sediment-water 

exchange rates, oxygen uptake rates and penetration depth) or boxes were 'sacrificed' 

(porewater, sediment composition). 

Sediment-water exchange rates. Sediment-water exchange rates of phosphate were 

measured in single boxes which were temporarily disconnected from the water supply. 500 

ml of the overlying water was carefully removed and stored in ajar. At fixed time intervals 

25 ml of sample was taken both from the overlying water and from the jar. The samples 

were filtered (0.45 um cellulose acetate) and analyzed for phosphate. At the end of each 

experiment - which never took more than 8 hours - the water supply was reconnected. 

The fluxes were calculated from the concentration change in time in the overlying water 

of the boxcosm corrected for the removal or production of phosphate in the jar and the 

decreasing depth of the overlying water due to sampling: 

?£o- = L-R (1) 
dt h 

where 

C0 = concentration of the overlying water (molm ); 

t = time (s); 
0 1 

J = sediment-water exchange rate (mol m s" ); 
h = the depth of the overlying water which decreases in time due to sampling (m); 



Organic matter deposition and sediment P dynamics 13 

R = change of the phosphate concentration in the overlying water (mol m s ) due to 

production/removal in the water column (jars). 

Oxygen uptake and penetration. Benthic oxygen uptake was measured using the method 

described by Cramer (1990). The boxcosms were covered with a Plexiglas lid in which a 

stirring device, O2 electrodes (YSI 5739) and a temperature electrode were fitted. Oxygen 

uptake was calculated from the change in the oxygen concentration in the chamber during 

incubation. Oxygen concentrations in the pore water were measured with an O2 micro-

electrode (Helder & Bakker, 1985) at 0.2 mm depth intervals using a micromanipulator. 

The oxygen penetration depth is defined as the depth at which zero oxygen concentrations 

or constant and low readings were obtained. 

Porewater. The boxcosms were sampled with acrylic liners (i.d. 5.2 cm, length 30 cm) 

which were sliced into 5, 10 and 20 mm segments (depending on sediment depth). 

Interstitial water was obtained by squeezing under N2 pressure using Reeburgh-type 

squeezers (Reeburgh, 1967) fitted with 0.45 um cellulose-acetate filters. In all cases 

segments of three cores were pooled. 

Sediment composition. The boxcosms were sampled with PVC tubes (i.d. 4.5 cm) and 

sliced into segments of 5, 10, 20 and 40 mm (depending on sediment depth). Three cores 

were pooled each time. Organic-C contents were measured on a Carlo Erba NA 1500-2 

elemental analyzer following the procedure of Verardo et al. (1990). 

The phosphorus speciation was determined using the sequential extraction scheme 

described by Hieltjes & Lijklema (1980). 50 mg of wet sediment was extracted sequentially 

with (1) 2 x 50 ml of 1 M NH4CI, pH = 7, (2 x 2 hours), (2) 50 ml of 0.1 M NaOH (17 

hours) and (3) 50 ml of 0.5 M HCl (24 hours). These fractions presumably represent (1) 

loosely bound and exchangeable P, (2) P sorbed on surfaces of iron and aluminum oxides 

and (3) P occluded in iron and aluminum oxides and calcium bound P, respectively. NaOH 

may also solubilize some organic P (Levesque & Schnitzer, 1966). A shaking table was 

used for continuous agitation of the suspensions. After each extraction step the suspensions 

were filtered (0.45 urn cellulose-acetate), the filtrate was stored at -20°C until analysis and 

the filter with the sediment was added to the next extraction solution in the sequential 

procedure. The organic carbon content and phosphorus speciation were only determined for 

the sediments of the starved boxes and those that were fed once. 

Easily exchangeable Fe and Mn was determined through an extraction with 0.1 M HCl 

(suprapur). It was assumed that most of the reactive iron and manganese oxides were 
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released by this method. 0.1 gr of dried (60°C) and homogenized (through grinding in an 

agate mortar) sediment was leached with 50 ml of HCl for 18 hours, followed by filtration 

over a pre-acid cleaned 0.45 um cellulose nitrate filter (Duinker et al., 1974). 

Analytical procedures. Phosphate concentrations (analytical precision ± 0.03 umol 1 at a 

concentration of 1 (imol 1 ) were determined on a Technicon AA II autoanalyzer (fluxes, 

porewater) and on a Shimadzu Double beam Spectrophotometer UV-150-02 (sediment 

phosphorus) following the method of Strickland and Parsons (1972). The Fe and Mn 

content of the HCl-leachate was determined with a Perkin Elmer 5100 PC Atomic 

Absorption Spectrophotometer using the standard addition method for calibration 

(analytical precision for Fe and Mn: ± 1 umol 1" and ± 0.5 umol 1 at a concentration of 

18 umol T1). 

RESULTS 
Sediment-water exchange rates. Fig. 1 shows the concentration change with time in the 

overlying water of the weekly fed boxcosms with macrofauna and in the jars on day -8 (no 

jar measurement), 2, 4 and 102. Calculated phosphate release rates from such data 

(assuming a linear relationship between the phosphate concentration and time) are given in 

Fig. 2. Error bars indicate the standard error of the calculated flux. Deviations from a 

straight line, as found, for example, on day 4 (Fig. 1), resulted in large standard errors for 

the estimated fluxes due to the small number of samples (n = 4-7). Phosphate release rates 

were generally low in the starved boxcosms with the exception of the high initial release 

rates in the boxes with macrofauna. Following deposition of organic matter (day 0) an 

increase in phosphate release rates from the sediment was found within 4 days in the case of 

the single additions, followed by a period of very low phosphate release from day 10 (with 

macrofauna) or 15 (without macrofauna) onwards. The interpretation of the results for the 

weekly fed boxes is hampered by the limited amount of measurements and the large errors 

in the estimated fluxes. From Fig. 2 it can be observed, however, that phosphate release 

rates increased within 2 days after the first organic matter addition in the boxes with 

macrofauna and within 4 days after the second addition in the boxes without macrofauna. 

The maximum phosphate release rates were 2-3 times higher in the boxes fed only once 

compared to the weekly fed ones. Apart from a slightly higher maximum phosphate release 

rate in the presence of macrofauna in the boxes which were fed once, no clear effect of the 

presence of macrofauna on the phosphate fluxes was observed. 

The phosphate concentration in the overlying water was generally higher than in the 

inflow water, particularly in the fed boxcosms. In the case of the single addition, the 
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phosphate concentration in the overlying water increased from ca. 3 to ca. 10 umol 1 

immediately following the food supply. This was followed by a decrease to 2-3 umol l"1 

within 2 days. The same pattern was observed in the case of the weekly additions, 

corresponding values being ca. 3, 6 and 3-4 umol 1 , respectively. 

Porewater profiles. In the starved boxcosms the porewater concentration of phosphate 

(Fig. 3) slowly decreased in time, to a concentration of less than 5 umol 1 in the upper 

sediment layer both with and without macrofauna. When the boxcosms were fed only once 

an immediate increase of the porewater phosphate concentration was found (>20 umol 1 ) 

in the upper 30-40 mm of the sediment, followed by a rapid decrease, especially in the 

presence of macrofauna (Fig. 3b). In the case of weekly additions of organic matter only a 

minor increase (Fig. 3b, with macrofauna) or even a decrease (Fig. 3a, without macrofauna) 

of the phosphate concentration in the porewater of the upper sediment layer could be 

detected following the addition of organic matter. Both in the presence and absence of 

macrofauna the phosphate concentration subsequently decreased rapidly, even though 

organic matter additions continued. In all boxes the porewater phosphate concentrations 

measured in the upper 5 mm were higher than those of the overlying water. 

The porewater phosphate concentration declined in all of the boxes during the course of 

the experiments, apart from the initial increase in the fed boxcosms. The phosphate 

concentrations found at the start of the measurements, however, were very high: 15-25 u 

mol 1 . Presumably phosphate was released from the sediment during the period prior to 

the first measurements either due to mineralisation of organic matter and/or due to 

desorption from binding sites. 

Oxygen uptake. Deposition of organic matter caused the benthic oxygen uptake to increase 

substantially (Fig. 4a). After a single organic matter addition oxygen uptake increased to ca. 

20 and 30 mmol O2 m d in the boxes with and without macrofauna, respectively. 

Oxygen uptake rates subsequently decreased to ca. 10 mmol O2 m d within 30 days, 

slightly higher than the original rates (ca. 8 mmol O2 m d ). In the case of weekly supply, 

rates increased from approximately 10 to a maximum of 40 mmol O2 m" d"1. After an 

initial almost linear increase the oxygen uptake rates seemed to stabilize around 30-35 
•y 1 

mmol O2 m d" . No clear effect of the presence of macrofauna on oxygen uptake could 

be discovered in the fed boxcosms. 

Oxygen penetration. The addition of organic matter generally caused the oxygen 

penetration depth to decrease (Fig. 4b). Especially the single addition had a very clear effect 
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Fig. 1. Change in the phosphate concentration (nmol 1" ) with time in the overlying water of 
weekly fed boxcosms with macrofauna and the matching jars during fluxexperiments on day -8, 2, 
4 and 102. Solid lines were obtained through linear regression. 



Organic matter deposition and sediment P dynamics 17 

mmol P04.m-2.d-1 
0.5 

mmol P04.m-2.d-1 
0.5 T 

25 50 75 100 125 150 25 50 75 100 125 150 

SINGLE ADDITION 

20 30 

25 50 75 100 125 150 25 50 75 100 125 150 

DAY NUMBER 

2 1 Fig. 2. Sediment-water exchange rates of PO4 (mmol m d ) measured in the boxcosms. Error 
bars indicate the standard error of the estimated flux. Note the different scales in the plots for the 
single and weekly additions. 

http://P04.m-2.d-1
http://P04.m-2.d-1


18 Chapter 2 

A: WITHOUT MACROFAUNA B: WITH MACROFAUNA 
P04 P04 

(pmol.l-1) 

100 150 

40 

80 

120 
0 10 20 30 40 0 10 20 30 40 

40 

80 

120 

<«J : 

15^20 ' 

>20 

/V 

WEEKLY ADDITIONS 

«5 

r. 

<5 

15 ' 

—4-10 
• 5 

50 100 150 

DAYNUMBER 

Fig. 3. PO4 concentrations (u,mol l" ) in the porewater of the boxcosm sediment a. without 
macrofauna b. with macrofauna. 
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on the oxygen penetration depth both in the boxes with and without macrofauna. In these 

boxes oxygen penetration gradually decreased to depths < 1 mm 10 days after the addition, 

and subsequently increased again to ca. 5-15 mm. In the weekly fed boxcosms with 

macro fauna oxygen penetration depths decreased from ca. 30 to 2 mm during the 

experiment. In the weekly fed boxes without macrofauna large oscillations in the oxygen 

penetration depth were found, but overall, a decrease from 20 mm to 4 mm was observed. 

The oxygen penetration depth in the fed boxcosms with macrofauna was generally smaller 

than in the boxcosms without macrofauna (Wilcoxon's test; n = 21; p < 0.05). 

Sediment composition. In the boxcosms to which no organic matter was added the carbon 

content remained very low, ranging from 0.01 to 0.03% (Fig. 5). After a single addition of 

organic matter the carbon content rapidly rose to 0.04-0.09% in the upper sediment layer, 

both with (Fig. 5b) and without macrofauna (Fig. 5a). When organic matter was added 

weekly and macrofauna were present, this increase of the carbon content was not limited to 

the upper sediment layer but extended down to 50 mm in the boxcosms, indicating 

substantial sediment mixing. 

The leachable Fe- and Mn-contents of the sediment were very low: 0.03-0.04%) (5.4-7.2 

umol Fe g"1) and 0.002% (0.4 umol Mn g"1), respectively. NH4C1-, NaOH- and HC1-

extractable phosphorus amounted to 0.01-0.03, 0.02-0.05 and 0.05-0.11 umol P g"1 

sediment, respectively. The phosphorus contents were lower than those found at a 

comparable sandy station in the North Sea where values of 0.05, 0.25 and 2.2 umol P g"1 

were found for the NH4CI, NaOH and HCl fraction, respectively (unpublished results). The 

low values found here can probably be explained by the removal of a part of the fine 

sediment fraction after filling of the boxes. No clear reaction to the single addition of 

organic matter could be discovered in the NH4CI and HCl fractions. Only NaOH-

extractable phosphorus showed a clear réponse (Fig. 6) with the largest increase occurring 

in the presence of macrofauna. 

DISCUSSION 
Effect of organic matter additions. Both in the case of the single and weekly additions a 

clear effect of increased organic matter loading on phosphorus dynamics was found. 

Following deposition of organic matter, porewater phosphorus concentrations in the upper 

sediment layer increased, phosphate release rates showed a 3-5 fold increase and NaOH-

extractable phosphorus increased substantially in the boxes to which a single addition was 

applied. Furthermore, oxygen uptake rates showed an immediate response. In the case of 
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Figure 6. NaOH-extractable phosphorus ((xmol P gr" sediment) in the sediment from the boxcosms 
which were fed once. 

the single additions of organic matter this was accompanied by a rapid initial decrease of 

the oxygen penetration depth. 

Previous field research on organic matter deposition on sediments has shown a rapid 

response of benthic microbial activity (Graf, 1982 & 1989; Meyer-Reil, 1983; Jensen et al., 

1990) following deposition of a phytoplankton spring bloom. During laboratory 

experiments similar to ours but using intact cores from the field, Graf (1987) found a 

maximum oxygen uptake 3 days after the addition of algal matter. In experimental 

microcosms, Kelly & Nixon (1984) observed a time lag of 2-20 hours between an organic 

matter addition and maximum ammonium release rates. Enoksson (1987) found maximum 

oxygen uptake and phosphate release rates ca. 6 days following an organic matter addition 
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in the form of algal material. The results of our experiments are in accordance with these 

observations: following the single addition of organic material a large increase in oxygen 

uptake and phosphate release rates occurred within 2 and 4 days, respectively. Due to the 

relatively large intervals between sampling events it is impossible to say when the maxima 

occurred exactly. 

When studying phosphorus dynamics it is of major importance to know what mechanism 

is controlling whether phosphorus is being released or bound in the sediment. The 

mechanisms involved can be of a chemical (adsorption/desorption and 

precipitation/dissolution) or biological nature (uptake or release by bacteria, excretion by 

macrofauna) or a combination of both (e.g. anoxic conditions mediated by bacteria resulting 

in release of sorbed phosphorus from iron oxides). 

In the starved boxcosms a relatively large release of phosphorus, especially in the 

presence of macrofauna, was observed compared to the corresponding oxygen uptake. The 

average 02-uptake/P-release atomic ratio in the starved boxes was low, ca. 55, indicating 

that oxic mineralization was not the dominating process. Excretion by macrofauna (Nixon 

et al., 1980) may explain part of these results. Initial porewater concentrations in the 

sediment were high and only gradually decreased, supporting the observed phosphorus 

release during almost the entire length of the experiment. 

Following the addition of organic matter increased phosphate release occurred in the fed 

boxcosms. This can be attributed to (1) mineralization of the added organic matter, (2) 

release from iron oxides upon their reduction and (3) direct release from algal cells due to 

cell lysis. 

In the same set-up, Van Duyl et al. (1992) measured increased bacterial numbers (from 

ca. 0.5 to 1.5 x 10 bacteria cm ) and bacterial production rates (from ca. 7 to 140 mg C 

m d ; methyl- H-thymidine incorporation method) on day 5 compared to day -4 in the 0-

3 mm sediment layer of the boxes which were fed once. In combination with the higher 

oxygen uptake rates from day 2 onwards, this indicates the potential importance of oxic 

mineralization for the phosphate fluxes. 

If reduction of iron oxides controls the phosphate release, a decrease in the oxygen 

penetration depth would be expected during this period. Fig. 4b shows that oxygen 

penetration decreased to depths < 1 mm on day 10 in the case of the single additions. 

Although sulfate reduction may have taken place in locally reduced spots, diagenesis 

probably did not proceed beyond nitrate reduction as nitrate was generally still present in 

the porewater (not shown). Furthermore, only a relatively small amount of phosphorus was 

present in the NaOH-extractable phosphorus fraction at the start of the experiment and this 

fraction was found to increase from ca. 0.02 to 0.05 umol P g during the period of 
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maximum phosphate release. Apparently, the adsorption capacity of the sediment was not 

eliminated, making a chemical control of the increased phosphate release improbable. 

Preferential P-release due to cell lysis is known to occur rapidly on death of algal cells 

(Balzer, 1984; Garber, 1984; Krom & Berner, 1981) and certainly may have occurred in the 

Phaeocystis suspensions. 

In the boxes to which a single addition was applied the sediment-water exchange rates of 

phosphate were very low from day 10-15 onwards, coinciding with a gradual decrease in 

the oxygen uptake rate. When the organic matter was applied weekly, however, substantial 

phosphate release continued to occur. Furthermore, the oxygen uptake rates roughly 

stabilized and further depletion of the porewater did not occur. It is unlikely that a steady 

state situation was reached, however, as the sediment organic carbon content still continued 

to increase. 

A tentative budget for the fate of the phosphorus added to the boxcosms through the 

organic matter additions is presented in Table 1. As the various input and output terms 

could not be quantified accurately, a great deal of assumptions were necessary. Each 

output/storage term in Table 1 is the highest value of the estimates with and without 

macrofauna. A loss of 20% of the added organic matter due to outflow over the rim was 

assumed for both feeding regimes. The release of phosphate from the sediment was 

estimated from the area under the curves in Fig. 2. The amount of added phosphorus which 

was bound in sediment organic matter and in the NaOH-extractable fraction of the sediment 

was calculated from Fig. 5 and 6 (assuming a sediment density of 2.65 g cm , an average 

porosity of 0.40, a sediment depth of 10 cm and a C:P ratio for the organic matter of 106; 

Redfield et al., 1963). An estimate of the amount of phosphorus bound in bacteria was 

obtained from the increase in bacterial biomass in the weekly fed boxes with macrofauna 

integrated over 63 mm depth during 130 days (2.4 g C m ; Van Duyl et al., 1992) 

assuming a C:P weight ratio of 20 for the bacteria (Gächter et al., 1992). Ca. 40-60% of the 

phosphorus added through the organic matter is not accounted for in Table 1. Neither the 

phosphorus bound in bacteria in the case of the single additions nor the NaOH-extractable 

phosphorus in the sediment of the weekly fed boxes can account for this difference. 

During the experiment total rates of oxygen uptake amounted to ca. 0.26 and 3.3 mol O2 

m (calculated from the area under the curve in Fig. 4 and corrected for the uptake in the 

starved boxes) in the boxes with single and weekly additions, respectively. This 

corresponds to a carbon respiration of ca. 18-36% of the added material for both treatments 

when assuming a respiration quotient of 0.85 (Hargrave, 1973) and a loss due to outflow of 

20%. These results suggest that for both feeding regimes a major part of the added organic 

matter was not mineralized during the experiment. This is in accordance with the fact that a 
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Table 1. A tentative budget for the fate of the phosphorus added to the fed boxcosms (in mmol P 
m" ). n.d. = not determined. 

Single addition Weekly addition 
(mmol P nr2) (mmol P m'2) 

Input +15 +95 
Output/storage 

P flux -4 -29 
Organic P -0.2 -3 

NaOH-P -5 n.d. 
Bacterial P nxi. -4 

Unaccounted for +5.8 (39%) +59 (62%) 

layer of algal material was present on the sediment surface in most of the fed boxes during 

the entire experiment. 

Effect of macrofauna. The macrofauna added to the boxcosms consisted of sub-surface 

and surface deposit feeders generally found in sandy sediments in the North Sea 

(Creutzberg et al., 1984). Apart from the sessile bivalve Tellina, of which up to 5 

individuals per boxcosm had to be replaced during the experiment, the macrofauna 

generally had a low mortality and were very effective at reworking the sediment, as 

illustrated by the organic carbon profiles. Only Echinocardium reached high growth rates 

(Duineveld, pers. comm.). In some of the sampled boxes, however, the macrofauna 

{Echinocardium in particular) were completely inactive. Further details on the macrofauna 

in this study will be published elsewhere. 

Previous research has shown that macrofauna can directly increase sediment-water 

exchange rates of oxygen and nutrients due to bioirrigation activity (Aller & Yingst, 1985; 

Hylleberg & Hendriksen, 1980; Kristensen & Blackburn, 1987) and indirectly due to the 

fact that macrofaunal feeding and burrowing can stimulate microbial activity in the 

sediment (Aller, 1982; Aller & Yingst, 1985; Kristensen & Blackburn, 1987; Yingst & 

Rhoads, 1980). Both in the case of the weekly and single additions of organic matter no 

clear effect of the presence of macrofauna on sediment-water exchange of phosphate and 

oxygen uptake rates could be discovered. The role of the burrowers Echinocardium and 

Nephtys was most likely limited to reworking of the sediment. Therefore, only indirect 

effects of macrofauna on solute transport would be expected. 

The increase in substrate availability (higher organic carbon contents) at greater depths 

probably resulted in increased mineralization (Van Duyl et al., 1992) below the uppermost 

sediment layer explaining the smaller oxygen penetration depth in the presence of 

macrofauna. The increase of oxic mineralization below the upper sediment layer was 
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apparently too small to have a substantial effect on the total oxygen uptake rates. The 

organic carbon profiles show that mixing of the food into the sediment took several weeks, 

thus causing a major portion to remain at the sediment surface. In any case, this holds for 

the most labile, freshly deposited material in the weekly fed boxcosms. Consequently, most 

of the organic matter mineralization probably took place in the algal layer on the sediment 

surface and the processes in this layer most likely determined the phosphate and oxygen 

fluxes. Apparently, the processes in this layer were not substantially affected by the 

presence of macrofauna. 

In the weekly fed boxes with macrofauna higher phosphate concentrations were 

observed in the upper em's of the sediment in the second half of the experiment, 

corresponding to the higher organic carbon contents in these boxes. In the case of the single 

additions this was not observed, probably because time was too short to mix a substantial 

amount of carbon deeper into the sediment. In these boxes porewater phosphate 

concentrations were lower and NaOH-extractable phosphorus was higher in the presence of 

macrofauna. This suggests that macrofauna can stimulate phosphate binding in the 

sediment. 

CONCLUSIONS 

The results demonstrate that deposition of substantial amounts of organic matter on iron 

oxide poor sandy marine sediments enhances the sediment-water exchange of phosphate. 

This enhanced phosphate release is due to mineralization of the organic material and due to 

direct release of phosphate from algal cells. When the algal material largely remains at the 

sediment-water interface, this organic layer may regulate the sediment-water exchange of 

phosphate. The presence of burrowing macrofauna may stimulate phosphate binding in the 

sediment. 
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Chapter 3 

Phosphorus binding by poorly crystalline iron oxides 
in North Sea sediments* 

ABSTRACT 
Differential X-ray powder diffraction (DXRD) and extraction procedures were used to 
characterize the iron oxides present in four sediments from contrasting environments in the 
North Sea. Stations were located in depositional areas on the southern shelf (German Bight) 
and on the north-eastern shelf-slope transition (Skagerrak) and in areas with no net 
deposition in the southern North Sea. Poorly crystalline ferrihydrite and akageneite 
(extractable with 0.1 M HCl and 0.2 M NH^oxalate) were identified in the fine sediment 
fraction (<10 urn) of surface samples at all locations. Evidence for the dominant role of 
these Fe oxides in the binding of phosphorus in North Sea sediments was obtained from the 
good relationship of both the content of Fe-bound P and the linear adsorption coefficient for 
phosphate with NH4-oxalate extractable Fe. A tight coupling of porewater Fe2+ and 
HPO42" was observed at 3 stations. Porewater Fe2+/HP042" ratios at maximum porewater 
concentrations of Fe2+ were similar to NH4-oxalate Fe/Fe-bound P ratios for surface 
sediment at these locations, and were in the range known for synthetic poorly crystalline Fe 
oxides. This suggests that porewater HPO42" production at the time of core collection was 
dominated by release from poorly crystalline Fe oxides. In contrast, at the German Bight 
station, much higher HPO42" levels and a decoupling of porewater Fe2+ and HPO42" was 
observed, suggesting a larger contribution of mineralization of organic matter to porewater 
HPO42- than at the other sites. Solid phase P analyses indicate possible redistribution of Fe-
bound P to another inorganic phase at depth at the Skagerrak station, but not at the other 
stations. The persistence with depth of poorly crystalline Fe oxides and Fe-bound P 
suggests that these Fe phases can act as both a temporary and permanent sink for P in 
continental margin sediments. 

INTRODUCTION 
Iron oxides, hydroxides and oxyhydroxides (henceforth called Fe oxides) can provide 

sorption sites for compounds with a high affinity for the Fe oxide surface such as many 

trace metals, silica and phosphorus (P). The large effect of these sorption processes on the 

cycling of P in marine sediments is well-documented. Fe oxides present in the oxidized 

surface layer of the sediment can act as a 'trap' for porewater HP04
2_ diffusing upwards 

(Krom and Berner, 1980; Sundby et al., 1992; Slomp and Van Raaphorst, 1993). Rapid 

sorption and release of P from 'reactive' Fe oxides can control porewater HPO42" 

concentrations and thus directly affect sediment-water exchange (Sundby et al., 1992; Van 

This chapter by C.P. Slomp, S.J. Van der Gaast and W. Van Raaphorst has been 
published in Marine Chemistry 52: 55-73 (1996) 
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Raaphorst and Kloosterhuis, 1994). Simultaneous release of P and fluoride from Fe oxides 

may provide the necessary conditions for early diagenetic carbonate fluorapatite (CFA) 

precipitation (Ruttenberg and Berner, 1993). The persistence of some Fe oxides with depth, 

as has been observed in many marine sediments (e.g. Sundby et al., 1992; Jensen and 

Thamdrup, 1993; Kostka and Luther, 1994), enables Fe-bound P to become an important 

permanent reservoir for P in marine sediments (Ruttenberg, 1993). As the mineralogy and 

crystallinity of Fe oxides strongly influence their HPO42" sorption characteristics 

(Borggaard, 1983a; Parfitt, 1989; Ruttenberg, 1992) and their susceptibility to reduction 

(Schwertmann, 1991), knowledge of the character of these Fe phases in marine sediments is 

essential for a correct understanding of their role in the P cycle. 

The reported occurrences of Fe oxides in the marine environment compiled by Murray 

(1978) and Burns and Burns (1980) mostly apply to concretions or nodules found in deep 

sea sediments. Very little is known about the mineral forms of Fe oxides in coastal marine 

sediments. Direct determination with conventional techniques (e.g. X-ray powder 

diffraction, X-ray microanalysis) is difficult due to their low concentrations, their 

(presumably) poor crystallinity, and the fact that they are generally present as coatings on 

other particles. As an alternative, extraction techniques which have been tested for their 

selectivity using pure mineral phases are widely employed (e.g. Canfield, 1988, 1989; 

Kostka and Luther, 1994). When applied to natural materials these techniques are only 

operationally defined. Firstly, extractants always suffer from a lack of absolute specificity 

in mineral or phase separation. Secondly, mineral phases in sediments may have very 

different solubilities compared to the standard materials used for calibration, e.g., due to 

another mode and environment of formation and variations in the extent of weathering prior 

to deposition. 

Sequential X-ray powder diffraction measurements in combination with extraction 

schemes (Differential XRD: DXRD) partly circumvent the above mentioned problems by 

lowering the detection limit for Fe oxides and making direct identification of extracted 

phases possible (Schulze, 1981; Van der Gaast, 1991; Wang et al., 1993). In this study the 

DXRD technique is applied to the fine sediment fraction (<10 urn) of surface samples from 

four contrasting environments in the North Sea with the aim of identifying the Fe oxides 

present. The DXRD results are combined with bulk sediment solid phase speciation 

(determined using extraction procedures) and porewater profiles of Fe2+ and HPO42" to 

determine whether the identified Fe oxides are responsible for the binding of P in these 

sediments. The results show that poorly crystalline akageneite and ferrihydrite are the most 

important Fe oxides in these continental margin sediments and that these Fe phases are 

responsible for the binding of P. 
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MATERIALS AND METHODS 

Study sites and sample collection. The North Sea is a semi-enclosed part of the north-west 

European shelf with water depths gradually increasing from less than 30 m in the south to 

about 200 m in the area between the Shetlands and the Norwegian coast. To the northeast, 

in the Skagerrak/Norwegian channel, the seafloor slopes down to a depth of 700 m. The 

water circulation and transport of suspended matter are predominantly counterclockwise 

(Fig. 1). Net sedimentation of material is negligible outside the deposition areas of the inner 

German Bight and the Skagerrak/Norwegian Channel (Eisma and Kalf, 1987), where 

estimated sedimentation rates vary between 0.5-1 cm yr1 (Von Haugwitz et al., 1988; 

Eisma and Kalf, 1987) and 0.1-0.5 cm yr1 (Van Weering et al., 1987; Anton et al., 1993), 

respectively. An estimated 50 to 70% of total North Sea suspended matter eventually is 

deposited in the Skagerrak/Norwegian Channel (Eisma and Kalf, 1987). Local sources of 

suspended matter, due to past dredging and dumping of harbour sludge, may be of some 

importance in the German Bight (Irion et al., 1987). In contrast to the Skagerrak area, large 

seasonal variations in deposition and mineralization rates of organic matter occur in the 

German Bight area, leading to sediment anoxia in summer (Lohse et al., 1995). 

Four locations with a wide range of sediment characteristics (Table 1) were selected for 

this study. Stations 9 and 13 (medium silt) are located in the main depositional areas 

(Skagerrak and German Bight), whereas stations 5 and 14 (fine sand) are both located in 

areas with no net deposition. Station 14 lies right outside the German Bight depositional 

area. 

In February 1992 sediment cores were obtained with a cylindrical box corer (31 cm i.d.) 

which enclosed 30 to 50 cm of sediment column together with 15 to 25 1 of overlying 

bottom water. Subsamples were taken from the box core with acrylic liners which were 

closed with rubber stoppers. Only cores without any visible surface disturbance were used. 

At all stations a brown surface layer was observed, varying in thickness from ~ 5-7 cm (st. 

5, 13, 14) to ~10 cm (st. 9). The underlying sediment was either black (st. 13), brown/black 

(st. 5, 9) or grey/black (st. 14). 

Porewater and solid phase analysis. To obtain porewater, sediment from 10-15 subcores 

(i.d. 3.1 cm) was sliced in a nitrogen flushed box immediately after collection. Slices from 

9 depth intervals (0-0.4, 0.4-1, 1-1.5, 1.5-2, 2-3, 3-4, 4-6, 6-8, 8-10 cm) were pooled in 

polyethylene centrifuge tubes with a built-in filter specially designed for sandy, low 

porosity sediments (Saager et al., 1990) at stations 5 and 14, and in 50 ml polypropylene 

centrifuge tubes at stations 9 and 13. These were centrifuged for 10 min. at 1700 g. The 

filtered (cellulose acetate, 0.45 um) samples were acidified to pH » 1 and stored at 4°C 
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Fig. 1. Map of the North Sea showing the sampling locations and station numbers. Main transport 
routes of water and suspended matter in the North Sea are indicated (arrows). Stippled areas 
indicate main depositional regions. 

Table 1. Location, depth and some general characteristics of the sediment at the sampling locations 
(median grain size determined in the upper 0-0.5 cm of the sediment, all other parameters are 
averages for the 0-1.0 cm layer). Sediment classification is based on the Wentworth size scale 
(Pettijohn et. al., 1972). 
St. Location Water Poro- Org. C Org. N Org.P CaC03 <10um Median Sediment 
no. Lat. Long, depth sity fraction grain classification 

size 
N E (m) (v/v) (%) (%) (%) (%) (%) (um) 

5 
9 
13 
14 

54°25' 
58°20' 
54°05' 
54°14' 

4°04' 
10°27' 
8°09' 
7°20' 

49 
330 
19 
39 

0.49 
0.89 
0.64 
0.56 

0.17 
2.83 
0.82 
0.36 

0.027 
0.338 
0.097 
0.047 

0.0023 
0.0291 
0.0108 
0.0050 

1.7 
9.6 
10.3 
6.5 

8 
72 
42 
7 

103 
6 
15 
98 

very fine sand 
medium silt 
medium silt 

very fine sand 
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until analysis for HPO42", Fe2+ and Mn2+. All sample manipulations took place at in situ 

temperature (4.4 to 6.4°C). 

Sliced sediment from 8-10 additional subcores was pooled and stored frozen (-20°C) 

until solid phase analysis. Sediment from 7 depth intervals (0-0.5, 0.5-1, 1-2, 2-4, 4-6, 6-8, 

8-12 cm) was subjected to five (non-sequential) extraction procedures for Fe: (1) 0.1 M 

HCl for 18 h (Duinker et al., 1974); (2) 1 M HCl for 24 h (Canfield, 1988); (3) 0.2 M NH4-

oxalate/oxalic acid buffer (pH = 3.0) for 2 h under oxic conditions in the dark 

(Schwertmann and Cornell, 1991); (4) 0.5 M oxalic acid for 2 h (pH = 1.7) (Schwertmann 

and Cornell, 1991); (5) Citrate-dithionite-bicarbonate solution (CDB, pH = 7.3, 8 h, 20°C) 

(Ruttenberg, 1992). We tested the effect of the use of a higher temperature (70°C) and a 

shorter extraction time (15 min.) as suggested in the original procedure for CDB-extractable 

Fe (Mehra and Jackson, 1960) using surface sediment from stations 5 and 9. We found no 

significant difference with the 8 hour extraction at room temperature (20°C), even upon 

repeated (2x) extraction. Oven-dried (60°C), ground (teflon mortar and pestle) material was 

used for the HCl extractions. Untreated, wet sediment was used for all other procedures. 

Oven-drying may lead to phase modification and transformation of particularly poorly 

crystalline Fe oxides, and this may result in changes in their solubility (Schwertmann and 

Cornell, 1991). We checked whether this occurred at our relatively low oven-temperature 

by extracting both oven-dried and wet surface sediment from station 5 with 1 M HCl. We 

found no significant difference between the quantities of Fe extracted. All extraction 

procedures were performed with sediment under oxic conditions, therefore all Fe profiles 

include oxidized FeS. We have no data on FeS in these sediments, but based on results of 

other studies on Fe in North Sea sediments (Jergensen, 1989; Canfield et al, 1993) we 

assume that FeS accounted for less than 10% of CDB-Fe. 

Table 2 gives an overview of the percentages of Fe that are extracted from common Fe-

containing phases as determined using standard minerals and four types of extraction 

solutions with similar active components (i.e. oxalic acid, 1 M HCl, oxalate and dithionite) 

to those applied in this study. A part of the observed variation in the efficiency of the 

extractions can be attributed to differences in the extraction conditions used in each study 

(extraction time, buffer system, etc.). Oxalate extractable Fe is often used as a rough 

indication of the amount of poorly crystalline Fe oxides in a sediment. 1 M HCl would be 

expected to additionally extract Fe from clay minerals. Although no evidence from 

experiments with standard minerals are available, oxalic acid may also extract clay mineral 

Fe (due to its low pH) and would be expected to give results comparable to 1 M HCl. 

Dithionite extractable Fe should give a measure for total Fe oxide Fe. No tests of 0.1 M 
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Table 2. Percentages of Fe extracted from common Fe-containing phases as determined either 
directly or estimated using standard minerals and four types of extraction solutions under various 
extraction conditions. 
Mineral 

amorphous Fe oxide 
ferrihydrite 
(Fe5HOg.4H20) 
akageneite (ß-
FeOOH) 
lepidocrocite 
(Y-FeOOH) 
goethite (a-FeOOH) 
hematite (a-Fe2C>3) 
magnetite ^ 3 0 4 ) 
amorphous Fe sulfide 
mackinawite (FeS) 
greigite (Fe3S4) 
pyrite (FeS2) 
chlorite 
smectite 
vermiculite 
nontronite 
illite 
glauconite 
biotite 
garnet 

Oxalate 
%Fe 
40-70 

47-82,70-
80,100 
<3,+ 

<2, 42, 50 

<1,<3,35 
<1,<5 

20, 60, 70, 95 
100 

<3,3 
-

<3 
-

<3 
<3 
<3 

ref 
b 

d,f,ag 

f,e 

f,d,a 

gab,f,b 
gab,f 
b,g,f,a 

g 

a,g 
j 

a 

j 
a 
a 
a 

1 M HCl 
%Fe 
34-72 
100 

7 

<0.5, <3 
<0.5,<3 
< 0.5,<3 

100 
92 

40-67 
0 
32 

7 

10 
22 
<3 

ref 
b 
a 

a 

b,a 
b,a 
b,a 
c 
c 
c 
c 
a 

a 

a 
a 
a 

Oxalic ac. 
%Fe 
95 

4-6 
7-12 

ref 
b 

b 
b 

28-35,100 b,m 

Dithionite 
%Fe 

100 

100 

60-93,100 
5-30,63,98,100 

3,90 
100 

-
2,5,7 

-
+ 
27 
-
10 

<3 

ref 

a,l,g 

a 

fikg,a,l 
f,g,a,kl 

a,g 
g 

h 
i,g,a 

j 
k 
a 
j 
a 

a 

Key to the references: (a) Canfield, 1988; (b) Chao and Zhuo, 1983; (c) Cornwell and Morse, 1987; 
(d) Karim, 1984; (e) Kauffman and Hazel, 1975; (f) Kodama and Ross, 1991 (g) Kostka and 
Luther, 1994; (h) Lord, 1982; (i) Lucotte and d'Anglejan, 1985; (j) McKeague and Day, 1966; (k) 
Mehra and Jackson, 1960; (1) Ruttenberg, 1992; (m) Schwertmann and Cornell, 1991. + and -
indicate substantial and minor dissolution, respectively, but % Fe extracted unknown. Letters not 
subdivided by commas refer to the same percentage in the table. 

HCl extractions with standard minerals are known, but it is assumed to extract the same 

phases as 1 M HCl with less attack on clay minerals (Duinker et al., 1974). 

CDB-extractable P is used as a measure for total Fe-bound P (Ruttenberg, 1992). 

Inorganic and total P were determined as 1 M HCl-extractable P (24 h) before and after 

ignition of the sediment at 550°C (2h). The difference between total and inorganic P is used 

as a measure for organic-P (Aspila et al, 1976; Ruttenberg, 1992). Dilute (0.1 M) HCl, 

NH4-oxalate, and oxalic acid extractions can partially solubilize apatite P (Lucotte and 

d'Anglejan, 1985) and P attached to surfaces of crystalline Fe oxides. Therefore, it is not 

possible to differentiate directly between P bound to different types of Fe oxides with these 

extractions. 
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Porosity was determined by weight loss of the sediment after drying at 60°C for 48 h and 

assuming a specific sediment weight of 2.65 kg dm-3. Grain size distribution was 

determined with a Malvern particle analyzer. Total C and N and organic C were measured 

with a Carlo Erba 1500-2 elemental analyzer (Verardo et al., 1990). All sediment N was 

assumed to be in an organic form. CaCC>3 contents were calculated from inorganic C 

contents. A good correlation with CaCC>3 values calculated from 1 M HCl extractable Ca 

was found (HCl-CaC03 = 0.93 x Inorg.C-CaC03 + 0.11; R2= 0.93). 

Differential X-ray powder diffraction. The < 10 um fraction of surface sediment from all 

four stations was used for the XRD analysis for two reasons. Firstly, Fe oxides are expected 

to be mostly present in the fine sediment fraction, either in the form of coatings on other 

particles such as clay minerals or as very small crystals (5-150 nm in size; Schwertmann, 

1991). Secondly, the particle size of substances analyzed with XRD is preferred to be below 

10 urn (Van der Gaast, 1991). 

In order to concentrate the Fe oxides the <10 (im fraction of sediment from 0.5-1.0 cm 

depth (insufficient material was available from the 0-0.5 cm depth layer) was separated by 

repeated centrifugation and resuspension. Microscopic examination (lOOOx magnification) 

showed that indeed very few particles larger than 10 urn were present. Calcium carbonate 

was removed by a 1 h extraction with 1 M sodium acetate buffer (pH=5) to prevent the 

formation of a Ca-oxalate complex during extraction with oxalic acid or NH^oxalate. The 

XRD characteristics of smectites depend on the type of cation that they hold in their 

exchange sites. To ensure that the exchange sites of the sediment smectites were always 

saturated with Ca, the sediment was exchanged with Ca using a CaCl2 solution after each 

extraction step. This was followed by a rinse to remove the excess Ca. An ethanol-water 

mixture (1/1) was used for this rinse, to minimize hydrogen ion substitution for the 

exchangeable Ca (Moore and Reynolds, 1989). XRD analysis was performed on vacuum 

dried samples before and after each extraction. The sediment portions from each station 

were extracted non-sequentially with NH4-oxalate and oxalic acid. The sample from station 

5 was also extracted with 0.1 M HCl. Only following the oxalic acid extraction the 

sediment residues were subjected to two sequential CDB-extractions. 

Randomly oriented specimens were prepared by gently pressing -10 mg of sample 

material in a depression of a monocrystalline Si-disc which provides a very low background 

and no diffraction peaks. The XRD analysis was carried out using CoKa-radiation (40 kV, 

40 mA) and a wide angle goniometer (PW 1050/25, Philips). The apparatus was equipped 

with a long fine focus X-ray tube, a graphite monochromator and a vacuum-helium device. 

Further details on instrumentation and methodology are given by Van der Gaast (1991). 
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DXRD patterns were obtained by subtraction of the XRD pattern after treatment from 

that before treatment. The patterns were normalized by calculating an intensity-ratio from a 

part of the pattern between 15 and 18° 20, from which only incoherent radiation was 

detected. After subtraction, the patterns were smoothed over nine points of equal weight. 

The removal of Fe oxides from sediments often results in an improved orientation of clay 

minerals (Moore and Reynolds, 1989). This causes an increase in their 00/ (i.e. the 

diagnostic reflections used for the identification of the clay minerals) and a decrease in their 

hk (non-diagnostic) reflections. As a consequence, subtraction results in negative and 

positive peaks in the DXRD pattern, at the positions of the diagnostic and non-diagnostic 

reflections, respectively. These positive peaks are thus not indicative of clay mineral 

dissolution but solely reflect the change in clay mineral orientation. The same holds for 

positive peaks in the DXRD pattern for feldspar and quartz. 

Due to a strong shift in the reflections of smectite as a result of NH4 fixation in all 

samples extracted with NH^oxalate, interpretation of the matching XRD and DXRD 

diagrams was not possible (also see Kodama and Ross, 1991). We tried using Na-oxalate as 

an alternative, but found that a precipitate was formed when making a 0.2 M buffer solution 

of pH 3. Consequently, DXRD could only be applied to the 0.1 M HCl, oxalic acid and 

CDB extracted sediments. 

Chemical analysis. Total Fe and Mn in the porewater (mostly present as Fe2+ and Mn2+), 

Fe and Mn in the sediment extracts, and Ca in the 1 M HCl extracts were determined with a 

Perkin Elmer 5100 PC Atomic Absorption Spectrophotometer. Porewater HPO42" and 1 M 

HCl-extractable P were determined on a Shimadzu Double beam Spectrophotometer with 

the method of Strickland and Parsons (1972). Total Fe, Al, Si and P in the NH4-oxalate, the 

oxalic acid and the CDB solutions and in the DXRD-0.1 M HCl solution for station 5 were 

determined with an ICP Spectroflame (Spectro Analytical Instruments). Oxalic acid 

extractable elements were only analyzed for three sediment depths (5-10, 20-40, 60-80 

mm). There was a good agreement between the Fe analysis with the AAS and ICP 

(R2=0.93). Reproducibility of the analysis of the porewater and of the sediment extractions 

of bulk samples and of the <10 um fraction was generally better than 4%, 5% and 15%, 

respectively. The relatively large variation for the extractions of the fine material can be 

explained by the larger effect of sample heterogeneity when using small quantities of 

sample. 
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RESULTS 
Differential X-ray powder diffraction (< 10 um fraction). XRD and DXRD analysis of 

the fine sediment fraction from 0.5-1.0 cm depth at all four stations gave essentially the 

same results. To avoid repetition of very similar patterns only those for station 5 and 14 are 

presented. When 'reading' the diagrams in Fig. 2-5, it should be kept in mind that (1) peak 

positions (each mineral is characterized by a 'set' of peaks) indicate which mineral has been 

detected, (2) peak itensities or height may be used to, very roughly, quantify the amount of 

this mineral, and (3) peak width indicates how well-crystalline a mineral is. As DXRD 

patterns are obtained by subtraction of the XRD diagram after treatment from the XRD 

diagram obtained before treatment, minerals that have been dissolved will appear as 

positive peaks in the pattern. 

Chlorite, mica/illite, kaolinite, feldspar, pyrite and quartz were identified in all 'start' 

diagrams (Fig. 2 and 3). The broad peak at 15.2 Â, overlain by a small, sharp chlorite peak, 

is indicative of smectite. The more pronounced broadening of this peak at station 14 (and 

13) then at station 5 (and 9) suggests the presence of a poorly crystalline smectite at the first 

two stations. Based on the peak height a decrease in chlorite, mica/illite and kaolinite 

contents was observed in the stations sequence: 5 > 9 > 13 » 14. Highest pyrite contents 

were found at station 13, subsequently decreasing in the stations sequence 14 > 5 « 9. 

In the XRD patterns (Fig. 2 and 3), an increase in intensity of the diagnostic clay mineral 

reflections and a decrease in intensity of the feldspar and quartz and the non-diagnostic (hk) 

clay mineral reflections were observed after oxalic acid and 0.1 M HCl extraction. This 

resulted in negative peaks at the locations of the diagnostic clay mineral reflections and 

positive peaks at the locations of the quartz, feldspar and non-diagnostic clay mineral 

reflections in the corresponding DXRD patterns (Fig. 4A and B and 5A). These peaks are 

attributed to changes in mineral orientation (see methods section) and thus do not indicate 

mineral dissolution. Instead of the expected increase in intensity of the diagnostic chlorite 

peak at 14.1 Â after the oxalic acid treatment, a decrease was observed at stations 9, 13 and 

14 (shown for stat. 14 in Fig. 3), resulting in positive peaks in the DXRD patterns (shown 

for station 14 in Fig. 5A). This suggests dissolution of chlorite or alteration of the chlorite 

Fe/Mg-hydroxide interlayer upon oxalic acid extraction. 

All DXRD patterns obtained after the oxalic acid extraction, as shown for stations 5 and 

14 (Fig. 4A and 5A), showed several broad bulges (indicated with curved lines) underlying 

the sharper reflection peaks. Similar broad bulges were obtained in the DXRD patterns after 

the 0.1 M HCl extraction at station 5 (Fig. 4B). These broad bulges suggest dissolution of 

poorly crystalline material with oxalic acid and 0.1 M HCl. The positions of the bulges in 

the DXRD patterns in Fig. 4A, 4B and 5 A, suggest dissolution of opal (4.1Â), ferrihydrite 
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Fig. 2. X-ray powder diffraction (XRD) patterns for the < 10 um sediment fraction from station 5. 
Patterns labelled 'start', 'ox.ac.' and 'HCl', were made before extraction, after oxalic acid extraction, 
and after 0.1 M HCl extraction, respectively. Sm = Smectite, C = Chlorite, M/I = Mica/Illite, K = 
Kaolinite, Q = Quartz, F = Feldspar, P = Pyrite, hk = non-diagnostic clay mineral reflections. 

(2.6Â) and akageneite (2.5 and 3.3Ä). Schematic XRD patterns for opal (Van der Gaast, 

1991), natural siliceous ferrihydrite (Parfitt et al., 1992) and synthetic akageneite 

(Schwertmann and Cornell, 1991) are shown in Fig. 4C and 5C for comparison. The 5.3 

and 7.4 Â reflections (at 19 and 14°20) observed for synthetic akageneite by Schwertmann 

and Cornell (1991) are weak or absent in our patterns. As the presence, width and intensity 

of the observed reflections are a direct result of the morphology of the particles, this 

suggests that the akageneite in our samples may be of different morphology than the 

synthetic akageneite of Schwertmann and Cornell (1991). 
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Fig. 3. X-ray powder diffraction (XRD) patterns for the < 10 urn sediment fraction from station 14. 
Patterns labelled 'start', 'ox.ac' and 'CDB', were made before extraction, after oxalic acid extraction, 
and after two sequential CDB extractions, respectively. Peak labels as in Fig. 2. 

As removal of several wt% of organic matter may also give this type of bulges in DXRD 

patterns (Van der Gaast, 1991), the effect of oxalic acid and 0.1 M HCl on organic material 

was addressed. Organic C and N contents on average increased ~ 10% upon extraction with 

oxalic acid (Table 3). After the 0.1 M HCl extraction for station 5 a similar increase in 

inorganic N and even a larger increase in organic C (~ 25%) was found. The increase can be 

explained by weight loss during extraction due to dissolution of Fe oxides (up to ~ 5 wt%) 

and other compounds. Obviously, extraction of organic material cannot account for the 
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Fig. 4. Differential X-ray powder diffraction (DXRD) patterns for the < 10 um sediment fraction 
from station 5. Patterns labelled (A) 'start-ox.ac.' and (B) 'start-HCl', were obtained through 
subtraction of the 'ox.ac.' diagram from the 'start' diagram and through subtraction of the 'HCl' 
diagram from the 'start' diagram. Op = Opal, Fh = Ferrihydrite, Ak = Akageneite. Patterns labelled 
(C) Op, Fh and Ak are schematic XRD patterns for opal (Van der Gaast, 1991), natural siliceous 
ferrihydrite (Parfitt et al., 1992) and synthetic akageneite (Schwertmann and Cornell, 1991), 
respectively. All further peak labels as in Fig. 2. 
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Fig. 5. Differential X-ray powder diffraction (DXRD) patterns for the < 10 \m\ sediment fraction 
from station 14. Patterns labelled (A) 'start-ox.ac.' and (B) 'ox.ac-CDB', were obtained through 
subtraction of the 'ox.ac.' diagram from the 'start' diagram and through subtraction of the 'CDB' 
diagram from the 'ox.ac.' diagram. Patterns labelled (C) Op, Fh and Ak are schematic XRD patterns 
for opal (Van der Gaast, 1991), natural siliceous ferrihydrite (Parfitt et al., 1992) and synthetic 
akageneite (Schwertmann and Cornell, 1991), respectively. All peak labels as in Fig. 2 and 4. 
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Table 3. Organic C and N contents (in wt %) in the <10 \im fraction before and after oxalic acid 
and 0.1 M HCl extraction. 

Station 
5 
9 
13 
14 

Before extraction 
Org.C 
(%) 
3.17 
4.05 
4.74 
4.25 

Org.N 
(%) 
0.41 
0.47 
0.56 
0.54 

Oxalic 
Org.C 
(%) 
3.63 
4.34 
5.35 
4.70 

acid treated 
Org.N 

(%) 
0.59 
0.46 
0.63 
0.55 

0.1 M HCl treated 
Org.C 
(%) 
4.34 

-
-
-

Org.N 
(%) 
0.46 

-
-
-

(positive) bulges in Fig. 4A, 4B and 5A. We conclude that, although identification of 

ferrihydrite and akageneite based on one or two broad peaks remains provisional, it is the 

most likely explanation for the observed DXRD patterns. 

After two extractions with the CDB-solution (only shown for station 14 in Fig. 5B), the 

intensity of the diagnostic clay mineral reflections (especially chlorite) further increased. 

All DXRD patterns showed almost complete removal of pyrite, as shown for station 14 in 

Fig. 5B. 

Chemistry of sediment extractions (<10 fim fraction). The sum of the Fe extracted by 

consecutive oxalic acid and CDB treatments varied between 375 (st. 9) and 482 umol g_1 

(st. 5) or 2.1-2.7 wt% Fe (Table 4). Most Fe (60-69% of total extracted Fe) was dissolved in 

the oxalic acid step. Oxalic acid always extracted more Fe than NH4-oxalate (a factor 1.8 

and 2.0, and 1.3 and 1.4, at stations 5 and 9, and 13 and 14, respectively), whereas NH4-

oxalate extracted only slightly more (1.2 times) Fe than 0.1 M HCl (st.5). 

Of the total extractable Al and Si, oxalic acid extracted 52-58% and 9-14%, respectively. 

The remaining extractable Al and Si was extracted in the two following CDB steps. No 

large differences between stations could be observed for oxalic acid and CDB-extractable 

AI. CDB-extractable Si showed a clear gradient, however, decreasing in the station 

sequence: 13 > 14 > 9 > 5. Generally, the amount of Fe extracted relative to Al and Si 

decreased with each successive extraction step resulting in a decrease in Fe/Al and Fe/Si 

ratios. 

Oxalic acid dissolved 64-86% of total extractable P. The remaining P was dissolved in 

the first CDB step. Generally, similar amounts were extracted at all stations, both with 

oxalic acid and NH4-oxalate. Only at station 9, less P was extracted than at the other 

stations (11 versus 19-25 umol g"1). Fe/P ratios at all stations were very similar (-9-11 for 

NH4-oxalate, -12-14 for oxalic acid with the exception of the value of 20 for st. 9). Fe/P 

ratios for the first CDB step ranged from 16 to 25. 77-90% of total Mn was extracted in the 
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Table 4. Fe, Al, Si, and P (in umol g"') extracted from the fine sediment fraction (<10 um) with 
0.1 M HCl (st. 5), NH^oxalate and sequentially with oxalic acid and CDB (all stations). 
Solution 

0.1 M HCl 

NH 4 -
oxalate 

Oxalic 
acid 

CDB-I 

CDB-II 

Sum 

Station 

5 

5 
9 
13 
14 

5 
9 
13 
14 

5 
9 
13 
14 

5 
9 
13 
14 

5 
9 
13 
14 

Fe 
nmol/g 

131 

166 
114 
222 
211 

307 
224 
287 
290 

145 
125 
109 
107 

29 
27 
26 
26 

482 
375 
422 
423 

Al 
umol/g 

167 

27 
27 
50 
41 

110 
98 
103 
97 

48 
55 
58 
59 

31 
29 
33 
32 

189 
183 
194 
188 

Si 
(jmol/g 

198 

64 
50 
80 
55 

52 
64 
75 
89 

235 
321 
539 
426 

81 
85 

201 
164 

369 
470 
814 
680 

P 
|jmol/g 

n.d. 

19 
12 
25 
19 

26 
11 
23 
21 

5.7 
6.1 
6.3 
6.7 

0 
0 
0 
0 

31 
17 
29 
28 

Mn 
umol/g 

1.4 

1.5 
1.8 
5.5 
6.0 

2.5 
1.9 
4.6 
5.3 

0.8 
0.5 
0.8 
0.6 

0 
0 
0 
0 

3.3 
2.4 
5.4 
5.9 

Fe/Al 
mol/mol 

0.8 

6.1 
4.2 
4.5 
5.2 

2.8 
2.3 
2.8 
3.0 

3.0 
2.2 
1.9 
1.8 

0.9 
0.9 
0.8 
0.8 

2.5 
2.1 
2.2 
2.3 

Fe/Si Si/Al 
mol/mol mol/mol 

0.7 

2.6 
2.3 
2.8 
3.8 

5.8 
3.5 
3.8 
3.3 

0.6 
0.4 
0.2 
0.3 

0.4 
0.3 
0.1 
0.2 

1.3 
0.8 
0.5 
0.6 

1.2 

2.3 
1.9 
1.6 
1.4 

0.5 
0.7 
0.7 
0.9 

4.9 
5.8 
9.3 
7.2 

2.6 
2.9 
6.1 
5.2 

2.0 
2.6 
4.2 
3.6 

Fe/P 
mol/mol 

-

8.9 
9.4 
8.7 
11.3 

12 
20 
12 
14 

25 
21 
17 
16 

_ 
-
-
-

15 
22 
14 
15 

oxalic acid step. Mn contents at stations 5 and 9 are a factor 2 lower than at stations 13 and 

14. 

Of the non-sequential extraction procedures used, oxalic acid extracted the most Fe at all 

stations. Much less Fe was extracted in the two following CDB extractions. No clear 

relationship was observed between extracted Fe and Si, Al and Mn. 

Porewater profiles. Porewater profiles of Fe2+ and HP04
2" (Fig. 6), and solid phase Mn 

and porewater Mn2+ profiles (not shown) indicate the presence of an oxidized surface layer 

at all stations. This is confirmed by simultaneously measured NO3" profiles (Lohse et al., 

1995), which show that NO3" was virtually absent below 2-3 cm depth at all stations. Here, 

porewater Fe2+ (Fig. 6) reaches maximum values of- 50 umol H at the sandy stations (5 

and 14) and ~ 120 and ~ 100 umol H at the silty stations (9 and 13). At all stations Fe2+ 
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Fig. 6. Porewater profiles of Fe2+ and HPO42" (umol 1"') at the four stations. 

concentrations drop sharply to relatively constant values between 2.5 and 5 umol H in the 

oxidized surface layer, implying precipitation of Fe2+ in the upper 2-3 cm of the sediment. 

Porewater HPO42" profiles show a strong resemblance to the Fe2+ profiles at stations 5, 

9 and 14, with maximum values which are a factor 7-10 lower than those for Fe2+, and 

relatively constant values in the oxidized surface layer between 0.8 and 2 umol 1"1. At 

station 13, much higher HP04
2" concentrations (-200 umol l"1) and a decoupling of 

porewater Fe2+ and HPO42" is observed. 
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Fig. 7. Solid phase profiles of Fe (|xmol g"1) as obtained with five (non-sequential) extraction 
procedures. 

Solid phase profiles. Solid phase profiles of Fe obtained with the various extraction 

solutions are shown for each location in Fig. 7. NH4-oxalate extracted -10% more Fe than 

0.1 M HCl, but both extradants give similar profiles. Oxalic acid extracted 1.8-2.4 and 1.5-

1.6 times more Fe than NH4-oxalate at stations 5 and 9, and 13 and 14, respectively. Oxalic 

acid extracted equal or higher amounts of Fe compared to 1 M HCl but overall, there was a 

good correlation (Fe-oxalic acid = 1.08 x Fe-1 M HCl -1.12, R2 = 0.98; n=12). CDB 

dissolved similar amounts of Fe as NH4-oxalate and 0.1 M HCl at station 13 (3 depths) and 
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Fig. 8. Solid phase profiles of P (umol g_1) as obtained with four (non-sequential) extraction 
procedures. 

14, but much higher amounts at stations 5 and 9. The profile shapes obtained with the 5 

methods are quite consistent at stations 13 and 14, but are much more variable at stations 5 

and 9. Sediment analysis (particle size, porosity, organic C, N, P, microscopic examination 

(8-50x magnification)) indicated an enrichment in aggregated particles (presumably faecal 

pellets) comprised of fine material between 1.5 and 7 cm at station 13. This observed 

enrichment correlates with the high extractable Fe, suggesting a relationship. 

Extraction with CDB (which gives a measure of Fe-bound P) and NH4-oxalate resulted 

in similar profiles for P at stations 5, 13 and 14 (Fig. 8). At station 9, however, much more 
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P was extracted with NH4-oxalate than with CDB and the profile of NH4-oxalate P was 

almost identical to that of inorganic P. This indicates that NH4-oxalate dissolved apatite P 

besides Fe-bound P at this station. Fe-bound P and inorganic P both show a decrease with 

depth at stations 5, 9 and 14. Only at station 9 the decrease of Fe-bound P is significantly 

larger than that of inorganic P (and total P), suggesting an increase of another inorganic 

phase containing P with depth. From the difference between inorganic and CDB P this non-

Fe-bound inorganic P phase can be estimated to increase from ~2 |amol g"1 in the surface 

sediment to ~7 umol g"1 in deeper layers. Fe-bound P on average accounts for -21 and 

30%, and ~ 68 and 70% of inorganic P at the sandy (5 and 14) and silty (13 and 9) stations, 

respectively. Total P profiles relative to those for inorganic P suggest a slight decrease of 

organic P with depth at stations 9 and 14 and an enrichment of organic P between 1.5 and 7 

cm at stations 5 and 13. Organic P on average contributes to 10 and 12%, and 22 and 37% 

of total P at the sandy (5 and 14) and silty (13 and 9) locations, respectively. 

DISCUSSION 
Sediment composition (< 10 u.m fraction). The similar mineralogical composition of the 

fine sediment fraction at all four locations suggests a common source for most of the 

deposited fine material. This is in line with the large contribution (up to 85%) of well-

mixed North Atlantic, Channel and seafloor erosion derived material to suspended matter 

transported through the North Sea (Eisma and Kalf, 1987; Fig. 1). The suggested presence 

of a poorly crystalline smectite at the German Bight stations (13,14) may be indicative of 

the contribution of more local sources in this area (Irion et al., 1987). 

The much higher pyrite contents (Fig. 2 and 3) in the fine sediment at stations 13 and 14 

(German Bight) when compared to stations 5 and 9 (Oystergrounds and Skagerrak, 

respectively) can be attributed to diagenetic processes, since only the sediments at the 

former stations become completely anoxic in summer (Lohse et al., 1995). Despite their 

difference in grain-size, a greater degree of consistency between the Fe extraction results 

(e.g. NH4-oxalate and oxalic acid Fe ratios) was observed for stations 13 and 14 than for 

stations with a more comparable grain size (st. 9 and 5, respectively). This could also be 

explained by diagenetic processes. A higher clay mineral content of the fine sediment 

fraction at the latter stations, and perhaps a different clay mineral composition are more 

likely explanations, however, as will become clear from the calibration of the Fe extractions 

with DXRD further in the text. 
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Fig. 9. Relationship between the quantity of Fe, Al, P, and Si extracted from the fine sediment 
fraction (open circles) and from bulk sediment samples (filled circles) at all four stations using (A) 
oxalic acid and (B) NF^-oxalate. 

Identification of Fe oxides with DXRD (< 10 fim fraction). The results of the DXRD 

analysis (Fig. 4 and 5) indicate that both poorly crystalline ferrihydrite and akageneite were 

dissolved with oxalic acid and 0.1 M HCl during the extraction of the fine sediment 

fraction. Results from laboratory and field studies suggest that both ferrihydrite and 

akageneite could form under conditions typical for coastal marine environments. 

Ferrihydrite is a relatively common Fe oxide in soil and sediment environments where 

oxidizing and reducing conditions alternate and hence an active Fe turnover exists 
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(Schwertmann, 1988a; Schwertmann and Cornell, 1991). Inhibitors, such as phosphate, 

silicate and organics are known to stabilize ferrihydrite and to retard its transformation into 

more crystalline minerals (Karim, 1984; Cornell, 1985; Cornell et al., 1987; Schwertmann 

and Cornell, 1991). Akageneite, in contrast, is very rare in soils. The conditions for 

formation of akageneite in the marine environment are favourable, however, as high CI" (or 

F") concentrations are a prerequisite for its formation (Childs et al., 1980; Schwertmann and 

Cornell, 1991). Murray (1978) found it to be the form of Fe that precipitates from Fe3+ in 

seawater and suggested (1979) that hydrolysis of Fe2+ in seawater may also produce 

akageneite. 

No evidence for the presence of goethite, which is the most probable crystalline Fe oxide 

in temperate regions (Schwertmann, 1988a), was found in the XRD or DXRD patterns. As 

the detection limit for goethite in our laboratory is -0.5% wt% (œ 55 umol g'1), it can 

account for some but not all of the Fe dissolved during the two CDB extractions. At 

stations 13 and 14 pyrite dissolution (~1 wt% FeS2 = 83 umol g"1) contributes substantially 

to extracted Fe, as indicated by the DXRD diagram for station 14 (Fig 5), which showed 

almost complete removal with CDB. Due to the low pyrite contents at stations 5 and 9, 

another source should be responsible for most of the extracted Fe there. The dissolution of 

pyrite by CDB was unexpected (Table 2; Kostka and Luther, 1994), but may be explained 

by the strong complexing activity of the citrate and, possibly, by instability of the pyrite 

after exposure to oxidized conditions. Again, this illustrates the pitfalls involved in the use 

of extraction procedures for natural sediments. 

Calibration of the extraction procedures for bulk sediment samples. Oxalic acid 

dissolved Al, Si, Fe and P in similar proportions both from the fine sediment fraction and 

from the bulk sediment samples (Fig. 9A). This was also the case for NF^-oxalate 

extractable AI, Fe and P (Fig. 9B). Only NF^-oxalate extractable Si contents relative to Fe 

(and Al) were grain size dependent. Ratios of NFL -̂oxalate and oxalic acid extractable Fe 

were similar for the fine (1.8 and 2.0, and 1.3 and 1.4, at stations 5 and 9, and 13 and 14, 

respectively) and bulk sediment (1.8 and 2.4, and 1.5 and 1.6). This implies that the same 

Fe phases were dissolved from the fine and bulk sediment samples with both extradants. 

Thus it is possible to use the DXRD and extraction results for the < 10 urn fraction as a 

calibration of the non-sequential extraction procedures for Fe for bulk sediment samples. 

Only a fraction of total sediment Al and Si was extracted with oxalic acid, NI-14-oxalate 

and CDB. Due to the large differences in affinity of oxalate and citrate for Al, Si and Fe 

(Furrer and Stumm, 1986; Bennett, 1991; Kodama and Ross, 1991) and the many mineral 

sources possible (besides Fe oxides also clay minerals, amorphous silica, quartz), the 
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quantity of Al and Si extracted and the Fe/Al, Fe/Si and Si/Al ratios can not be used for 

direct identification of Fe sources in the extractions. For example, it is apparent that CDB-I-

Fe and CDB-I-Si have a different source (Table 4), given the fact that samples from stations 

where the highest quantities of Fe were dissolved showed the least release of Si, and vice 

versa. All calibration is thus solely based on the amount of Fe extracted with each 

procedure and the DXRD results. 

The DXRD diagrams for the < 10 urn fraction from station 5 indicate that ferrihydrite 

and akageneite were dissolved both with 0.1 M HCl and oxalic acid (Fig. 4 and 5). The 

amount of Fe extracted with 0.1 M HCl was less than half of that extracted with oxalic acid 

(Table 4). A good correlation between 0.1 M HCl Fe and NH4-oxalate Fe was observed 

(Fig. 7). This suggests that (1) 0.1 M HCl Fe and NH4-oxalate Fe are both a good measure 

for the ferrihydrite and akageneite content in these sediments, and that (2) oxalic acid 

extracts additional Fe from another source. The ratios of NH4-oxalate/oxalic acid Fe 

indicate that this source is more important at stations 5 and 9 than at stations 13 and 14. 

The CDB extractions can not be calibrated in a similar manner, as the extraction of the < 

10 um fraction was performed as part of a sequential extraction scheme, in contrast to the 

non-sequential bulk sediment extractions. It is clear, however, that the various sources of Fe 

in the < 10 um fraction and in the bulk sediment samples do not contribute to CDB Fe in 

similar proportions. Pyrite dissolution accounts for an important part of CDB Fe in the < 10 

urn fraction at stations 13 and 14. CDB, 0.1 M HCl and NH4-oxalate Fe were 

approximately equal in the bulk sediment samples at these stations (Fig. 7). Therefore, 

pyrite dissolution cannot contribute substantially to the CDB Fe extracted from the bulk 

sediment samples either at stations 13 and 14 or 5 and 9. This is in line with previous 

observations that bulk sediment pyrite contents in North Sea sediments are low (Jorgensen, 

1989; Canfield et al, 1993). As CDB Fe was substantially higher than 0.1 M HCl and NH4-

oxalate Fe in the bulk sediment extractions for stations 5 and 9 (Fig. 7), this leaves us with 

an unknown source of CDB Fe at these locations. 

As mentioned earlier, goethite may account for some but not all of this CDB Fe. Minor 

quantities of Fe2+ are known to catalyze the reduction and dissolution of crystalline Fe 

oxides in the presence of oxalate (Sulzberger et al, 1989; Kostka and Luther, 1994). This 

catalysis reaction does not occur when using 0.1 M HCl as an extradant for poorly 

crystalline Fe oxides. The good correlation between 0.1 M HCl and NH4-oxalate Fe at all 

stations and the much higher quantities of CDB Fe at stations 5 and 9 suggest that this 

catalysis reaction did not occur during the oxalate extraction. This provides further support 

for only a minor contribution of crystalline Fe oxides to CDB Fe. 

Both oxalic acid and CDB may extract Fe from chlorite interlayers (Harward and 

Theisen, 1962; Weaver and Pollard, 1972). The higher chlorite content of the sediments at 
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stations 5 and 9 relative to those of stations 13 and 14 supports the role of chlorite as an 

important source of the 'extra' Fe. Additional evidence in the case of the oxalic acid 

extraction is provided by the alteration of the chlorite peaks in the DXRD patterns (Fig. 

5A), and the good correlation of oxalic-acid extractable Fe with 1 M HCl extractable-Fe 

(bulk sediment extractions; Fig. 7), as 1 M HCl should dissolve some fraction of the clay 

minerals but not the most crystalline Fe oxides (Table 2). 

Combining these results with the Fe profiles in Fig. 7, we conclude that at stations 13 

and 14, ferrihydrite and akageneite are practically the only Fe oxide phases present. At 

stations 5 and 9, ferrihydrite and akageneite are also present but account for only ~ 65 and ~ 

50% of CDB-Fe in the surface sediment. Remarkably, NH4-oxalate and 0.1 M HCl 

extractable Fe show no gradient with depth at stations 5 and 9, whereas CDB-Fe does. 

Substantial release of Fe from clay minerals upon burial at these locations is unlikely (e.g. 

Hathaway, 1979). Incomplete extraction of the less crystalline Fe oxides by the NH4-

oxalate and 0.1 M HCl, e.g., due to protection by adsorbed Si, P or organics (Karim, 1984; 

Borggaard, 1991; Schwertmann, 1991), is a more probable explanation. 

Fe oxides and the binding of P in North Sea sediments. A close relationship between P 

adsorption or the amount of Fe-bound P, and the concentration of total or poorly crystalline 

Fe oxides has been demonstrated frequently for different types of soils and sediments (e.g. 

Borggaard, 1983b; Jensen and Thamdrup, 1993). Both experiments with natural and 

synthetic mineral phases (Borggaard, 1983a and b; Schwertmann, 1988b; Parfitt, 1989; 

Torrent et al., 1992) have shown that the specific surface area of Fe oxides largely 

determines their P sorption capacity and intensity and that, due to their larger surface areas, 

poorly crystalline or 'amorphous' Fe oxides have a larger potential for P sorption than more 

crystalline Fe phases. 

Evidence for the dominant role of poorly crystalline Fe oxides in the binding of P in 

North Sea sediments was obtained by plotting Fe-bound P and the buffer intensity for 

HP04
2" (linear adsorption coefficient K at [HPO42"] = 1 umol H, including results from 

four additional stations; Slomp and Van Raaphorst, 1993; Slomp et al., 1997) versus NH4-

oxalate Fe and CDB Fe (Fig. 10A and B, respectively). K and the concentration of Fe-

bound P are well correlated with NH4-oxalate Fe and CDB Fe at all stations where similar 

amounts of Fe were extracted with both solutions. At station 9 the 'extra' Fe phase (relative 

to NH4-oxalate Fe) extracted with CDB apparently had no affinity for P and did not 

contribute to Fe-bound P. Fe contents at station 5 were too low to enable similar 

observations. This strongly supports binding of P to poorly crystalline ferrihydrite and 

akageneite in these sediments, and provides further support for the suggested minor 
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contribution of crystalline Fe oxides to the 'extra' CDB Fe at stations 5 and 9, as a 

contribution to P binding would be expected for crystalline Fe oxides but not necessarily 

for clay minerals (Krom and Berner, 1980; Parfitt, 1989). 
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A tight coupling of porewater HPO42" and Fe2+ was observed at stations 5, 9 and 14. 

Here, Fe2+/HP04
2" ratios at maximum porewater concentrations of Fe (-7-14) were in the 

same range as NH4-oxalate Fe/Fe-bound P ratios for the fine fraction (-9-11), and for bulk 

sediment samples (-7-13) from the upper layer, and as Fe/P values known for synthetic 

poorly crystalline Fe oxides (-10; Borggaard, 1983a; Gerke and Hermann, 1992). This 

suggests that at these three stations porewater HPO42" production at the time of core 

collection (February 1992) was dominated by release from poorly crystalline Fe oxides. 

Only at station 13, a decoupling of porewater Fe2+ and HP04
2_ was observed. At the 

maximum in porewater Fe2+, the Fe2+/HP042" ratio (-13) was still in the range suggesting 

release from Fe oxides, but at depth in the sediment much higher HPO42" concentrations 

(-200 umol I"1), and much lower Fe2+/HP042" ratios were observed. This suggests a larger 

production of HPO42" due to organic matter mineralization in deeper layers than at the other 

stations. The NH4-oxalate Fe/Fe-bound P ratios are comparable to amorphous Fe/Fe-bound 

P ratios found previously for the Kattegat (-8) and Aarhus Bay (-8-9) (Jensen and 

Thamdrup, 1993) and to total Fe-oxide Fe/Fe-bound P (-10) in Laurentian Trough 

sediments (Sundby et al., 1992). Jensen and Thamdrup (1993) found higher amorphous 

Fe/Fe-bound P ratios ( -17) in Skagerrak sediment and concluded that here the Fe oxides 

might be less capable of adsorbing P or were less saturated with P. They determined 

amorphous Fe as the difference between total Fe extracted with 0.5 M HCl and Fe(II) 

extracted with oxalate buffer under anoxic conditions. As 0.5 M HCl probably extracts 

more Fe from clay minerals than NH4-oxalate (Table 2), and as we found the same high 

Fe/P ratio of 17 in Skagerrak surface sediment when using CDB or oxalic acid Fe as a 

measure for Fe in Fe oxides, it is probable that they attributed Fe from clay minerals to 

amorphous Fe. We conclude that ratios of poorly crystalline Fe oxides and Fe-bound P are 

very similar (-10) in many marine sediments. 

HPO42" released to the porewater can (1) (re)adsorb to Fe oxides in the upper part of the 

sediment; (2) escape to the overlying water or (3) precipitate as an authigenic phase in the 

sediment. The decrease with depth of both Fe-bound and inorganic P at the stations where 

no net sedimentation of material occurs (st. 5 and 14; Fig. 8) suggests that here most of the 

P released upon reduction of Fe oxides (Fig. 6) is readsorbed in the upper part of the 

sediment or released to the overlying water. Only in the depositional area of the Skagerrak 

(st. 9) a substantial increase of another inorganic phase containing P with depth can be 

inferred from Fig. 8. Although non-steady state changes in composition of the deposited 

material cannot be ruled out, this may be indicative of an early diagenetic 'sink switching' 

from Fe oxides to another inorganic phase (e.g. CFA), as has recently been suggested for 

Laurentian Trough sediments (Lucotte et al., 1994). 
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Poorly crystalline Fe oxides and Fe-bound P clearly persisted into the reduced zone 

(down to 10-12 cm), thus making these Fe oxides at least a temporary sink for P in North 

Sea sediments. Persistence of Fe-bound P with depth (down to 160 cm) at a deeper 

Skagerrak station (Jensen and Thamdrup, 1993) suggests that poorly crystalline Fe oxides 

may also form a permanent sink for P, as has been observed for other continental margin 

sediments (e.g. Ruttenberg and Berner, 1992; Berner et al., 1993). This implies that these 

Fe oxide forms are protected against reduction, presumably due to coatings with reduced 

iron compounds (Postma, 1993) and due to the presence of surface bound P, Si and 

organics (Borggaard, 1991; Biber et al., 1994). 

The absence or only minor role of crystalline Fe oxides, such as goethite, in North Sea 

surface sediments, despite their higher resistance against reduction compared to poorly 

crystalline phases, can be attributed to three factors. First, there is a relatively low input of 

terrestrial material adding crystalline Fe oxides in this shelf sea due to trapping of material 

in estuaries (Eisma et al., 1982; Eisma and Kalf, 1987). Second, long residence times of 

material on the shelf due to frequent deposition and resuspension prior to burial in the main 

deposition areas (Eisma and Kalf, 1987), combined with a frequent cycling of Fe between 

oxidized and reduced Fe forms (Canfield et al., 1993), promote formation of poorly 

crystalline Fe oxides. Third, inhibition of formation of crystalline Fe oxides in continental 

margin sediments is expected due to the abundant presence of P, Si and organics (Cornell, 

1985; Cornell et al., 1987). 

CONCLUSIONS 
In this study, a combination of extraction procedures and X-ray powder diffraction has been 

used to identify the Fe oxides responsible for the binding of P in four sediments from 

contrasting environments on a continental margin. Poorly crystalline akageneite and 

ferrihydrite (extractable with 0.2 M NF^-oxalate or 0.1 M HCl) were found to be the most 

important Fe oxides at all locations. A good relationship of both the concentration of Fe-

bound P and the linear adsorption coefficient for HPO42" with NH4-oxalate Fe provides 

evidence for the dominant role of this poorly crystalline ferrihydrite and akageneite in the 

binding of P in these sediments. The ratios of NH4-oxalate Fe/Fe-bound P were comparable 

to values found for synthetic poorly crystalline Fe oxides, and for amorphous Fe or total Fe-

oxide/Fe-bound P ratios in other marine sediments. This suggests that ratios of poorly 

crystalline Fe oxides and Fe-bound P may be very similar (-10) in many marine sediments. 

Porewater HPO42" can be produced both due to organic matter decomposition and due to 

release from Fe oxides. The tight coupling of porewater Fe2+ and HPO42" and the observed 

Fe2+/HP042" ratios at maximum porewater Fe2+ concentrations at three locations suggest 

that here, porewater HPO42" production at the time of core collection was dominated by 
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release from poorly crystalline Fe oxides. Only at the German Bight station, the much 

higher HP0 4
2 _ levels and decoupling of porewater Fe2 + and HPO42" suggest a larger direct 

contribution from mineralization of organic matter to porewater HPO42" than at the other 

sites. 

The solid phase P profiles at the stations with no net sedimentation suggest that here 

HPO42" released to the porewater is either readsorbed to Fe oxides in the upper part of the 

sediment or released to the overlying water. In the Skagerrak, however, the decrease with 

depth of Fe-bound P and the suggested increase of another inorganic phase containing P, 

may indicate an early diagenetic 'sink switching' of P. 

The persistence of poorly crystalline Fe oxides and Fe-bound P with depth, as observed 

in this study, is in line with the large range in susceptibility to reduction known for Fe 

oxides in sediments. This enables these Fe phases to act as both a temporary and permanent 

sink for P in continental margin sediments. 
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Chapter 4 

Iron and manganese cycling in different sedimentary environments 
on the North Sea continental margin* 

ABSTRACT 
Pore water O2, NO3", Fe2+ and Mn2+ and solid phase Fe and Mn profiles were measured in 
sediments located in 4 different types of sedimentary environments in the southern and 
eastern North Sea in August 1991 and February 1992. A steady-state diagenetic model 
describing solid phase and pore water metal profiles was developed and applied to Mn and 
Fe data for 11 and 3 stations, respectively. The quality and quantity of the organic matter 
deposited in each sedimentary environment are shown to determine whether sediments 
become sufficiently depleted of O2 and N03" to allow for (1) Fe and Mn reduction and (2) 
escape of dissolved Fe2+ and Mn2+ to the overlying water, thus determining whether these 
metal cycles extend into the water column. Reversible sorption in combination with 
sediment mixing is shown to enhance diffusive transport of dissolved metals. Precipitation 
of Fe2+ and Mn2+ in the form of reduced authigenic minerals is suggested to be responsible 
for the reversal in gradient of pore water Fe2+ and Mn2+ at depth at many stations. Most 
North Sea sediments are relatively poor in Fe and Mn oxides. High surface concentrations 
of Fe and Mn oxides (up to 245 and 13 umol g"1, respectively) were only found in the areas 
receiving significant amounts of terrigenous material, i.e. the German Bight and Skagerrak. 
Comparison of model calculated rates of Mn and Fe reduction to 0 2 uptake rates indicates 
that Fe and Mn oxides do not play an important role as redox intermediates in organic C 
oxidation (accounting for <4%) in most North Sea sediments. Only in the depositional 
environment of the Skagerrak, model results suggest that metal oxide reduction may 
contribute substantially to organic C oxidation (-20%). 

INTRODUCTION 

A substantial proportion (up to 50%) of pelagic primary production may reach the sea floor 

in continental margin environments (Jorgensen, 1983). Most of this deposited organic 

matter is mineralized close to the sediment-water interface, with O2, NO3", Mn and Fe 

oxides or SO42" acting as electron acceptors (Froelich et al., 1979). Oxic respiration and 

SO42" reduction have been assumed each to account for roughly half of the total organic 

matter decomposition in most continental margin sediments, leaving only a minor role for 

NO3" and metal oxide reduction (Jergensen, 1982). More recent work has shown, however, 

that when surface sediments are strongly enriched in Mn or Fe oxides and are characterized 

by high physical or biological mixing rates, Fe and Mn reduction coupled to organic matter 

This chapter by C.P. Slomp, J.F.P. Malschaert, L. Lohse and W. Van Raaphorst has 
been accepted for publication in Continental Shelf Research 
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Fig. 1. Schematic representations of the sedimentary Mn cycle in sediments to illustrate the 
difference between (A) internal and (B) external cycling of metals. When the Mn cycle is largely 
internal, all of the dissolved Mn2+ produced due to Mn oxide reduction is reoxidized in the surface 
sediment and practically no Mn2+ escapes to the overlying water. When the cycle is completely 
external, Mn 2 + oxidation takes place outside the sediment and Mn oxide reduction in the sediment 
is dependent on the flux of Mn oxide from the overlying water. Precipitation of Mn2+ as reduced 
authigenic minerals may take place in both cases (e.g. Aller, 1994). For simplicity we denote these 
phases as MnCC>3 or Mn carbonate, although in reality calcite or a mixed Mn-Ca carbonate phase 
may also control Mn solubility (Middelburg et al., 1987; Shimmield and Pedersen, 1990). The Fe 
cycle is very similar except that (1) the redox boundary for Fe lies at a greater depth than that for 
Mn (2) FeS and FeS2 are formed instead of a carbonate phase and (3) these Fe sulfides are known 
to be largely reoxidized to Fe oxides upon upward mixing in most sediments (e.g. Jorgensen, 1982 
and 1989). 

oxidation can become important (Aller, 1986, 1990 and 1994; Burdige, 1993; Canfield et 

al., 1993a and b). This coupling is either direct, with the Fe and Mn oxides acting as 

electron acceptors in the decomposition of organic material (Aller, 1990), or indirect, with 

Fe and Mn oxides acting as an intermediate between, for example, sulfide produced during 

S0 4
2" reduction and 0 2 (Canfield et al., 1993a and b; Aller, 1994). In both cases, a large 

proportion of the sediment 0 2 uptake may be used for the reoxidation of the reduced metals 

and oxic decomposition of organic matter may be relatively unimportant. 

Strong surface enrichments in Fe and Mn oxides occur in areas where the flux of metal 

oxides from the overlying water is large and/or as a result of long-term internal cycling of 
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Fe and Mn (Fig. 1). A large flux of metal oxides can be supported by a high input from 

nearby riverine sources (e.g. on the Amazon shelf; Aller et al., 1986), by redeposition of 

metal oxide-rich material eroded from other areas (e.g. in coastal environments; Aller, 

1994; Thamdrup et al., 1994b), or by deposition of metal oxides formed in the water 

column. The importance of internal cycling of Fe and Mn depends on the redox conditions 

in the sediment and the overlying water and, thus, is usually closely linked to the quality 

and quantity of the organic matter deposited on the sediment and the rate at which it is 

decomposed (Hunt, 1983; Aller, 1994). 

In the present study, we examine the Mn and Fe cycle at 15 stations in 4 different types 

of sedimentary environments on the North Sea continental margin. These environments 

differ with respect to the input of both organic and terrigenous material. The aims of our 

study are (1) to determine and explain differences in the cycling of Fe and Mn and (2) to 

investigate whether Fe and Mn reduction can play an important role, direct or indirect, in 

the decomposition of organic matter in these environments. To reach these aims, pore water 

O2, NO3", Fe2+ and Mn2+ and solid phase Fe and Mn profiles were measured in August 

1991 and February 1992, and a simple reaction-diffusion model for Fe and Mn diagenesis 

was developed and applied to the data. 

STUDY SITES 

The North Sea is a semi-enclosed shelf sea with water depths gradually increasing from less 

than 30 m in the south to about 200 m in the area between the Shetlands and the Norwegian 

coast. To the northeast, in the Skagerrak/Norwegian Channel, the seafloor slopes down to a 

depth of 700 m. The water circulation and transport of suspended matter are predominantly 

counterclockwise (Fig. 2). Most of the suspended matter is concentrated along the coast. An 

estimated 30-50% of total North Sea suspended matter is deposited in the inner German 

Bight (sedimentation rate: 0.5-1 cm yr1; Eisma and Kalf, 1987; Von Haugwitz et al., 

1988), on tidal flats and in rivermouths. The Skagerrak/Norwegian Channel acts as a sink 

for the remaining 50-70% (sedimentation rate: 0.1-0.5 cm yr1; Van Weering et al., 1987; 

Antonetal., 1993). 

A total of 15 stations in the southern and eastern North Sea, including the Skagerrak 

were sampled during 2 cruises on the RV Pelagia in August 1991 and February 1992 (Fig. 

2). Geographical positions and water depths of these stations are listed in Table 1. Station 3 

was only visited during the August cruise. Seasonal changes in bottom water temperature 

are related to the depth of the stations (Table 1). The largest seasonal variation occurred at 

the shallow station in the German Bight (st. 13), whereas temperature changes are 

negligible at the deepest station in the Skagerrak (st. 9). Bottom water 0 2 concentrations 

were close to saturation values at most stations in both seasons. 



64 Chapter 4 

58° 

Fig. 2. Map of the North Sea showing the sampling locations and station numbers. Main transport 
routes of water and suspended matter are indicated by arrows. Stippled areas indicate main 
depositional regions. 

Based on sediment grain size distributions, Lohse et al. (1995) grouped these stations 

into 3 clusters (Table 2). Cluster I consists of stations with silty sediments which are found 

in the depositional areas of the inner German Bight and the Skagerrak (st. 9, 10, 13). 

Cluster II consists of stations with fine sandy sediment characterized by frequent temporary 

deposition of organic material (st. 2, 5, 6, 7, 8, 12, 14, 16) during periods of minor wind or 

slack tide (see Jago et al., 1993). Cluster III, finally, includes stations with medium sands 

where erosion is dominant and where organic matter deposition is limited (st. 3, 4, 11, 17). 

Lohse et al. (1995) further differentiated the German Bight station 13 and the Skagerrak 

stations 9 and 10 as clusters IA and IB, respectively, because the nature of the organic 
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matter deposited in these areas is quite different. In the shallow area of the German Bight 

large amounts of locally produced fresh organic matter (Joint and Pomroy, 1993) are 

deposited in summer. In the Skagerrak, local primary production is of less importance, and 

organic matter inputs are dominated by the inflow of relatively refractory organic matter 

from other areas, such as the Scandinavian mainland, the Baltic and, in particular, the North 

Sea shelf (Van Weering et al., 1987; Anton et al, 1993). Sediment-water exchange rates of 

N03- and NH4+ (Lohse et al., 1995), Si(OH)4 (Gehlen et al., 1995) and HP04
2" (Slomp et 

al., 1997), measured at these stations exhibit a distinct spatial pattern: (1) high effluxes of 

nutrients and an extremely large seasonal variation in these fluxes were observed in the 

German Bight (cluster IA), (2) low nutrient fluxes and minor seasonal variations were 

encountered in the Skagerrak (cluster IB) and (3) intermediate exchange rates of nutrients 

and a distinct seasonal variation in these fluxes were found in the areas dependent on 

temporary organic matter deposition (clusters II and III), with the lowest fluxes at the 

cluster III stations. Macrofaunal abundance is highest at the German Bight stations (cluster 

IA: -4000 nr2). Lower numbers are found in the Skagerrak (cluster IB: ~ 800 nr2), and at 

the cluster II (-1500 nr2) and cluster III (-400 nr2) stations (average values for August 

1991 and February 1992; H.W. van der Veer, pers. comm.). Both the nutrient fluxes and the 

macrofaunal abundance results support the suggested classification; we will use this 

classification as an aid in presenting our results. 

EXPERIMENTAL METHODS 

Sampling. Sediment cores were obtained with a cylindrical box corer (31 cm i.d.) which 

enclosed 30 to 50 cm of sediment column together with 15 to 25 1 of overlying bottom 

water. Subsamples were taken from the box core with acrylic liners and were closed with 

rubber stoppers. Only cores without any visible surface disturbance were used. All 

subsequent sediment handling took place at in situ temperature. 

Pore water profiles of O2, NO3", Fe2+ and Mn2+. Immediately after obtaining the cores, 

pore water O2 profiles were determined using Clark-type oxygen-microelectrodes as 

described previously (Lohse et al., 1993 and 1996). To obtain porewater for NO3", Fe2+ and 

Mn2+ measurements, sediment from 10-15 subcores (i.d. 3.1 cm) was sliced under N2 

atmosphere immediately after collection. Slices from 9 depth intervals (0-0.4, 0.4-1.0, 1.0-

1.5, 1.5-2.0, 2.0-3.0, 3.0-4.0, 4.0-6.0, 6.0-8.0, 8.0-10.0 cm) were placed in polyethylene 

centrifuge tubes with a built-in filter specially designed for low porosity sandy sediments 

(Saager et al., 1990). At the stations with silty sediments (st. 9 and 13), disposible 

polypropylene centrifuge tubes (50 ml) were used instead. After centrifugation for 10 min. 

at 1700 g, the filtered (cellulose acetate, 0.45 urn) samples were split into two portions. One 
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Table 1. Number, name, geographical position 
concentration (August 1991 and February 1992) 

Chapter 4 

water depth, bottom water temperature and oxygen 
at the 15 visited stations. 

No. 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
16 
17 

Station 

Boundary 
Silverpit 
Doggerbank 
Oystergrounds 
Weiss Bank 
Tail End 
Skagerrak W. 
Skagen 
Hirtshals 
Jutland 
Esbjerg 
Helgoland Bight 
Elbe Rinne 
Frisian Front 
Hook of Holland 

Geographical position 
Lat. 

N 
53°30' 
53°28' 
54°50' 
54°25' 
55°17' 
56°00' 
57°26' 
58°20' 
57°50' 
56°40' 
55°12' 
54°05' 
54014' 
53°42' 
52°07' 

Long. 

E 
03°or 
00°40' 
01°00' 
04°04' 
06°00' 
04°38' 
07°37' 
10°27' 
10°01' 
06°43' 
07°38' 
08°09' 
07°20' 
O4032' 
03°45' 

Water depth Tempérât 

(m) 
33 
89 
58 
49 
49 
50 
130 
330 
64 
41 
25 
19 
39 
39 
26 

Aug-91 
16.8 
14.4 
8.2 
10.2 
12.2 
9.5 
7.3 
6.9 
12.2 
10.0 
17.7 
18.7 
16.5 
17.4 
18.5 

ure (°C) 

Feb-92 
5.8 
-

6.4 
6.4 
5.8 
6.1 
6.4 
7.0 
6.8 
5.2 
4.8 
4.4 
5.4 
6.3 
5.8 

O2 concentration 
(umol dm"-') 

Aug-91 
210 
272 
267 
209 
227 
230 
311 
276 
243 
175 
241 
196 
186 
232 
259 

Feb-92 
338 
-

326 
321 
337 
333 
317 
313 
319 
330 
345 
353 
329 
327 
329 

Table 2. General sediment characteristics and CDB-Fe at the 15 stations. Clusters indicate (IA and 
B) depositional, (II) transitional, and (III) erosional areas (Lohse et al., 1995). Porosities are 
averages over the upper 3 cm of the sediment in August 1991 and February 1992. All other 
sediment parameters were determined in the 0-0.5 cm sediment layer collected in February 1992. 
Sediment classification is based on the Wentworth size scale (Pettijohn et al., 1972). 

Cluster 

IA 
IB 

II 

III 

St. 
no. 
13 
9 
10 

2 
5 
6 
7 
8 
12 
14 
16 

3 
4 
11 
17 

Org.C 
(wt %) 
0.74 
2.76 
0.82 

0.19 
0.17 
0.17 
0.15 
0.14 
0.07 
0.39 
0.28 

_ 
0.03 
0.03 
0.04 

CaC03 

(wt %) 
10.26 
9.64 
8.43 

4.14 
1.73 
1.80 
0.00 
0.64 
0.03 
6.52 
8.95 

_ 
2.23 
0.58 
1.21 

porosity 
(dm3 dm"3) 

0.66 
0.88 
0.69 

0.47 
0.46 
0.46 
0.41 
0.42 
0.39 
0.51 
0.53 

0.37 
0.40 
0.43 
0.37 

CDB-Fe 
(umolg"1) 

72 
245 
103 

43 
40 
40 
12 
22 
17 
57 
59 

_ 
60 
59 
26 

Median 
grain size 

(um) 
15 
6 
36 

128 
103 
96 
125 
175 
187 
98 
75 

>350 
>295 
>300 
>340 

Sediment 
classification 

medium silt 
medium silt 
coarse silt 

fine sand 
very fine sand 
very fine sand 

fine sand 
fine sand 
fine sand 

very fine sand 
very fine sand 

medium sand 
medium sand 
medium sand 
medium sand 
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portion was analyzed on board for N03" on a TRAACS-800 autoanalyzer according to the 

method of Strickland and Parsons (1972). The other portion was acidified to pH « 1 and 

stored at 4°C. Total dissolved Fe and Mn was determined in these samples with a Perkin 

Elmer 5100 PC Atomic Absorption Spectrophotometer within several weeks. No loss of 

dissolved Fe and Mn occurred during the storage period. All dissolved Fe and Mn is 

assumed to be present as Fe2+ and Mn2+. The analytical precision for pore water NO3" and 

for Fe and Mn was generally better than 1% and 5%, respectively. Detection limits for Fe 

and Mn were 0.5 umol dm-3 and 0.2 umol dm-3, respectively. 

Solid phase profiles of Fe and Mn. Sediment from 7 depth intervals (0-0.5, 0.5-1.0, 1.0-

2.0, 2.0-4.0, 4.0-6.0, 6.0-8.0, 8.0-12.0 cm) from 8-10 additional subcores was stored frozen 

(-20°C) until solid phase analysis. Four non-sequential extraction procedures for sediment 

Fe and Mn oxides were applied: (1) 0.1 M HCl for 18 h; (2) 1 M HCl for 24 h; (3) 0.2 M 

NH4-oxalate/oxalic acid buffer (pH = 3.0) for 2 h under oxic conditions in the dark; (4) 

Citrate-dithionite-bicarbonate solution for 8 h (CDB, pH = 7.3, 20°C). Further details on 

sample preparation and extraction procedures are given by Slomp et al. (1996). The 0.1 M 

HCl extraction was applied to all sediment samples from the August 1991 cruise. Profiles 

of 0.1 M HCl, 1 M HCl, NH4-oxalate and CDB extractable metals were obtained for 5 

stations (Cluster IA: 13; IB: 9; II: 5 and 14; III: 4) sampled in February. These extractions 

were also applied to the surface sediment (0-0.5 cm) collected at the 10 remaining stations 

in February. Dissolved Fe and Mn in the extracts was measured in a similar manner as 

described for pore water Fe and Mn. 

Both 0.1 and 1 M HCl should dissolve Mn carbonate phases and 'reactive' Mn oxides 

(most probably in the form of amorphous or poorly crystalline 5-MnÜ2 or vernadite; Burns 

and Burns, 1980). NH4-oxalate and CDB are expected to be more selective for Mn oxides 

(e.g. Canfield et al., 1993a) and to leave Mn carbonate phases largely intact. The Fe phases 

extracted from North Sea sediments (Cluster IA: 13; IB: 9 II: 5 and 14) with the four 

applied methods have been discussed previously (Slomp et al., 1996). Here, we will use the 

CDB-Fe profiles to obtain an estimate of the change with depth of'reactive' Fe-oxides. 

General sediment characteristics. Sediment porosity was determined from the weight loss 

of the sediment after drying at 60°C for 48h and assuming a specific weight of 2.65 kg 

dm-3. Total and organic C were measured with a Carlo Erba 1500-2 elemental analyzer. 

Organic C was determined as the concentration of C in the sample after treatment with 

sulfurous acid (Verardo et al., 1990). CaCC^ contents were calculated from inorganic C 

contents as determined from the difference between total and organic C. A good correlation 

with CaC03 values calculated from 1 M HCl extractable Ca was found. Grain size 
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distribution in sediment from the 0-0.5 cm depth interval at each station was determined 

with a laser diffraction particle sizer (Malvern 2600 E; McCave et al., 1986) after removal 

of carbonates and organic matter with HCl and H2O2. 

DESCRIPTION OF THE MODEL 

Several multicomponent early diagenetic models have recently been developed that 

explicitly describe the coupling of the cycles of Mn and Fe to those of 0 2 , C, S, and N 

(Rabouille and Gaillard, 1991; Boudreau, 1996; Dhakar and Burdige, 1996; Soetaert et al., 

1996; Van Cappellen and Wang, 1996). We use a more simple approach (1) to limit the 

number of free or not well-defined parameters, (2) to ensure that the uncertainties in the 

model description or in the results for other elements do not affect our results for Mn and 

Fe and (3) to allow the presentation and quantitative interpretation of the Mn and Fe data 

for as many of the North Sea stations as possible. 

Most continental margin environments are dynamic environments. It is assumed here 

that this can be approximated by a series of steady states. Although pore water metal 

concentrations can be strongly suppressed by anoxic precipitation (Aller, 1990; Canfield et 

al., 1993a and b) and sorption processes (Canfield et al., 1993a and b), none of the steady 

state models currently available for the description of the sedimentary cycles of Mn 

(Robbins and Callender, 1975; Aller, 1980, 1990, Burdige and Gieskes, 1983; Gratton et 

al., 1990) and Fe (Aller, 1980) include both these processes. We, therefore, develop a 

steady state reaction-diffusion model that includes anoxic precipitation and sorption. 

The model is applied to pore water Mn2+ and Fe2+ and solid phase Mn and Fe profiles 

measured in North Sea sediments. In order to reduce the length of this paper, only the 

equations for Mn are presented. Where Mn2+, Mn oxide, Mn carbonate are mentioned in 

the following description of the model, Fe2+, Fe oxide, Fe sulfide may be substituted to 

obtain the corresponding equations for Fe. Mn2+ and Fe2+ are assumed to be oxidized by 

O2 and NO3", respectively. The boundaries below which Mn and Fe switch from an 

oxidized to a reduced state are given, therefore, by the maximum depth of 0 2 penetration 

(i.e. the oxic/anoxic interface) and the maximum depth of NO3" penetration. 

A one-dimensional model is assumed; thus, spatial variability and lateral transport are 

ignored. Dissolved Mn2+ (C) and Mn oxide (S) profiles are considered to be at steady state. 

The sediment column is divided into two zones, an oxic surface zone (I: 0 < x < Lj) and an 

anoxic zone (II: x > L{). Transport of solid phase Mn in both zones is assumed to be the 

result of sediment accumulation and bioturbational/physical mixing (described as a 

biodiffusion process). Transport of dissolved Mn2+ in both zones takes place through 

molecular diffusion. Oxidation of dissolved Mn2+ occurs only in the oxic surface zone (I) 

and is described as a first-order process in the dissolved Mn concentration with kox as the 
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oxidation rate constant. In the anoxic zone (II), both production and removal of dissolved 

Mn2+ occur. Dissolved Mn2+ production due to Mn oxide reduction is described as a first-

order process in the reactive Mn oxide concentration with kr as the dissolution rate constant 

and Sr as the concentration of unreactive Mn oxide. Mn2+ removal due to authigenic Mn 

carbonate formation is described as a first order process, assuming the dissolved Mn2+ 

concentration to approach an equilibrium value (C^ with depth and ka as the precipitation 

rate constant. Instantaneous reversible sorption of dissolved Mn2+ is assumed (Berner, 

1976; Schink and Guinasso, 1978) with Ks as the linear sorption coefficient (the amount of 

Mn sorbed to the sediment = Ks x C). The molecular diffusion (Ds in m2 d"1) and 

biodiffusion (Dj, in m2 d"1) coefficents, all rate constants (kox, kr, ka in d_1), the sorption 

coefficient (Ks in dm3 dm-3), and sediment porosity (<j> in dm3 dm-3) are assumed to be 

depth-independent in each relevant layer. The sedimentation rate (co in m d"1) is assumed to 

be constant. Pore water Mn2+ and solid phase Mn have units of mol per m3 pore water and 

umol per gram of dry sediment, respectively. A factor 9 (gram of dry sediment per cm3 of 

pore water) allows conversion between these components of the model: 

a = P,[(i-4»)/4>] (i) 

where p s is the average density of the sediment (2.65 g cm-3). 

The differential equations for the one-dimensional distribution of dissolved Mn2+ and 

solid phase Mn oxide are given in part A of the Appendix. These equations were solved 

analytically after assuming continuity in concentrations and fluxes of both dissolved Mn2+ 

and solid phase Mn at the boundary of the two sediment zones (L|) and appropriate 

conditions at the external boundaries of the system (see Appendix, part B). C0 stands for 

the dissolved Mn2+ concentration in the overlying water, and Jsx=o is the flux of Mn oxide 

at the sediment-water interface. The solutions are given in part C of the Appendix. 

Four parameters (kr, ka, Sr and Jsx=o) w e r e varied to fit the model to experimental data. 

Variance-weighted sums of squares for both the pore water Mn2+ and Mn oxide were 

minimized simultaneously using iteratively reweighted regression (Draper and Smith, 

1967). All other parameters (kox, L\, Ds, DD, co, Ks, C0, C^ were fixed, based on 

experimental results obtained in this study and on literature data. 

EXPERIMENTAL RESULTS 
General sediment characteristics. Organic C concentrations and sediment porosity were 

highest in the silty sediments (cluster IA and B) and lowest in the medium sands (cluster 

III, Table 2). Highest CaC03 concentrations (-8.4-10.3 wt %) were observed at stations 9, 
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10, 13 (cluster IA and B) and 16 (cluster II). At the remaining stations, CaC03 

concentrations ranged between 0 (st. 7) and 6.5 wt % (st. 14). 

Sediment porosity, organic C and CaC03 concentrations were similar in August and 

February. Sediment porosity generally decreased with depth. Over the depth interval 

sampled here (0-12 cm), this decrease was on average 9%. At station 13 (cluster I A), a 

broad subsurface maximum in porosity was observed between 1.5 and 7 cm depth. Organic 

C and CaC03 concentrations generally showed very little change with depth. At station 13, 

however, a subsurface maximum in organic C was found at the same depth as the porosity 

maximum. Microscopic examination (8-50x magnification) and grain size analysis of 

untreated sediment indicated an enrichment in aggregated particles in this same zone. 

Pore water profiles of O2, NO3", Mn2+ and Fe2+. As pore water profiles of 0 2 are 

discussed elsewhere (Lohse et al., 1993 and 1996), only the depths of 0 2 penetration in 

both seasons (Fig. 3) are presented here. Penetration depths varied between less than 250 

Urn (the resolution of the profiles) and -2.5 cm at cluster I A, IB and II stations. 0 2 

penetrated much deeper into the sediment of the cluster III stations, with a maximum of-15 

cm at station 11 in February. At almost all cluster IA, IB and II stations, penetration depths 

in February were higher than in August. All stations with penetration depths less than 250 

urn in August (st. 12, 13, 14) are located in the German Bight region. No significant 

seasonal change in 0 2 penetration was found at the deep station in the Skagerrak (st. 9). 

NO3" pore water profiles exhibited a similar seasonal pattern as that observed for 0 2 at 

the cluster IA, IB and II stations (Fig. 4A and B). At most stations, NO3" concentrations 

were high in a broad surface sediment zone (down to ~2 to 5 cm depth) in February, 

whereas in August the sediment was almost completely depleted of NO3" below -1-2 cm 

depth. Except for station 4, little seasonal change in the N03" concentrations was found at 

the cluster III stations (Fig. 4C). For further details on the NO3" profiles, see Lohse et al. 

(1995). 

At depths where the sediment became depleted of 0 2 (Fig 2), Mn2+ appeared in the pore 

water at most stations (Fig. 5). Mn2+ concentrations were highest at the cluster IA and B 

stations, ranging up to -220 |imol dm-3. Cluster II stations mostly had concentrations below 

20 umol dm-3, whereas those of cluster III (with the exception of st. 4) did not rise above 2 

umol dm-3. Dissolved Mn2+ concentrations in the upper sediment layer of stations 13 and 

10 (cluster IA and B) were higher in August than in February. A reverse seasonal pattern 

was observed below -0.5 cm depth at all cluster IA and B stations. At the cluster II stations, 

pore water Mn2+ concentrations were generally higher in August than in February. No 

seasonal pattern was observed at the cluster III stations, except at station 4, where results 

were similar to those for cluster II. The high dissolved Mn2+ concentrations in the upper 0.4 
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Fig. 3. Maximum O2 penetration depths (cm) at all stations in August (black bars) and February 
(white bars). 

cm of the sediment at most cluster I A, IB and II stations in August indicate that Mn2+ can 

escape to the overlying water at this time of the year. There is a distinct reversal in gradient 

of pore water Mn2+ at depth in the sediment at many cluster IA, IB and II stations 

indicating removal of pore water Mn2+. 

Increased levels of pore water Fe2+ (Fig. 6) appeared upon depletion of sediment NO3-

(Fig. 4). Maxima in pore water Fe2+ occurred at greater depths than those for Mn2+. As 

with Mn2+, the highest Fe2+ concentrations (up to -180 umol dm"3) were observed at the 

cluster I stations. At the cluster II and HI stations, Fe2+ concentrations mostly remained 

below -70 and -5 umol dm-3, respectively. The seasonal variation in pore water Fe2+ was 

similar to that observed for Mn2+, with high Fe2+ concentrations in the surface sediment of 

station 10 and 13 (Cluster I) and at most cluster II stations in August compared to February, 

and the reverse seasonal pattern in the deeper sediment layers at the cluster IA and B 

stations. Except for station 4, little seasonal change was observed at the cluster III stations. 

The pore water profiles at many cluster IA, IB and II stations point at removal of Fe2+ at 

depth in the sediment. 
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Fig. 4. Pore water NO3" profiles (umol dm"3; A: Cluster IA and B, B: Cluster II, C: Cluster III) in 
August (filled circles) and February (open circles). 
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in August (filled circles) and February (open circles). 
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Fig. 6. Pore water profiles of Fe2+ (umol dm"3; A: Cluster IA and B, B: Cluster II, C: Cluster III) 
in August (filled circles) and February (open circles). 
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Fig. 7. Depth distributions of 0.1 M HCl/1 M HCl Mn (urnol g"1; open circles) and NH4-
oxalate/CDB Mn (umol g"1; filled circles) at stations from each cluster (A: Cluster IA and B, B: 
Cluster II, C: Cluster III) in February 1992. 

Solid phase profiles of Mn and Fe. NH4-oxalate buffer and CDB extracted similar 

amounts of sediment Mn (slope = 1.0; R2 = 0.93; n= 52). The same holds for the 0.1 and 1 

M HCl solutions (slope = 1.0; R2 = 0.96, n = 52). Average depth distributions for both sets 

of extractions at 6 stations are presented in Fig. 7. HCl always extracted more Mn than 

NH4-oxalate/CDB, which is in line with the dissolution of Mn carbonate phases, in addition 

to Mn oxides, by HCl. The results suggest that Mn carbonate concentrations increase with 

depth at stations 13 and 9 (cluster IA and B), whereas they remain relatively constant with 

depth at the other stations. Only the 0.1 M HCl extration was applied to the sediments from 

all stations. Therefore, we will use the results of this extraction, which provides a measure 

of the Mn present as Mn carbonate and Mn oxide, for comparison of the solid phase Mn 

contents at the different stations. 
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Fig. 8. Solid phase profiles of 0.1 M HCl Mn (umol g"1; A: Cluster IA and B, B: Cluster II, C: 
Cluster III) in August (filled circles) and February (open circles). 
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Fig. 9. Solid phase profiles of CDB-Fe (umol g"1; A: Cluster IA and B, B: Cluster II, C: Cluster 
III) in February. 

Highest solid phase Mn concentrations (up to ~13 u,mol g"1) were observed at the 

stations in the Skagerrak (cluster IB: st. 9 and 10) and the German Bight (cluster IA: st. 13) 

(Fig. 8). At all other stations, surface Mn concentrations were mostly between 1 and 3 umol 

g"1. At most stations, surface enrichments typical for Mn oxides were found. Only at station 

13, high concentrations of Mn were found at depth. Apart from station 9, where much 

higher Mn contents were observed in summer than in winter, no significant seasonal 

changes in Mn contents were observed at the stations where whole profiles were available. 
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At several of the cluster II and III stations (st. 7, 8, 11, 12, 17), surface Mn contents were 

lower in winter than in summer. 

Highest concentrations of CDB-Fe (up to -110 and 245 umol g"1) were found at the 

cluster I stations (Table 2). CDB-Fe profiles at four of the five selected stations (Fig. 9) 

decrease with depth. At station 13 a broad subsurface maxium in CDB-Fe was found 

between 1.5 and 7 cm depth. 

APPLICATION OF THE MODEL 

The model was applied to stations where profiles of both solid phase (0.1 M HCl Mn and 

CDB Fe) and pore water metals were available. The Mn profiles of stations 13 (cluster IA) 

and 3, 11 and 17 (cluster III) and the Fe profiles of stations 13 (cluster I A) and 4 (cluster 

III) were not modelled, however. At these stations, the pore water and solid phase profiles 

suggest an important role for processes not included in the model. At station 13, high 

concentrations of CDB- and HCl-Mn and of CDB-Fe at depth (Fig. 7, 8 and 9) coincided 

with a maximum in porosity, organic C and aggregated particles. This may be due to a local 

enrichment with faecal pellets containing fine material in this zone. At the cluster HI 

stations 3, 11, 17 a Mn oxide-rich surface zone was observed (Fig. 8). Active redox cycling 

cannot be responsible for this enrichment as C"2 is abundant in these sediments (Fig. 3) and 

pore water Mn2+ concentrations are very low and do not change appreciably with depth 

(Fig. 5). The same holds for station 4 in February, where CDB-Fe decreases with depth 

(Fig. 9) although NO3" is present throughout the whole interval sampled. 

In the model calculations, two rate constants (kr and 1%), the flux of Mn or Fe oxide 

from the overlying water (Jsx=o)> dia^ m e m e t a l oxide concentration at which no further 

release of dissolved metal occurs (Sr) were used as fitting parameters. Values for the fixed 

parameters (Lj, Ds, Dj,, co, kox, Ks, C0, C^ are listed in Table 3 with references to their 

origin. Additional model runs, in which (1) Sr was set to the lowest metal oxide 

concentration measured in each sediment core or (2) Ca was used as a fitting parameter, 

were carried out for all stations. Generally, only minor differences were observed between 

the model results with and without Ca or Sr as fitting parameters. The model was very 

insensitive to the values assumed for kox. Consequently, the value of this parameter had to 

be fixed. The biodiffusion coefficient, D^, which is a critical parameter in the model, is 

derived from the equation: 

öè=15.7co0'6 (2) 

with co in units of cm y"1 and Dj, in units of cm2 y 1 (Boudreau, 1994) at the cluster I 

stations (Table 3). This equation cannot be used at the cluster II stations as co is unknown. 
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Table 3. The fixed parameters used for the model calculations. 

Parameter 
Unit 

Mn model 

IB 

II 

III 

IB 
II 

III 

Station 
9 aug 

10 aug 
2 aug 
5 aug 
6 aug 
7 aug 
8 aug 

12 aug 
14 aug 
16 aug 
4 aug 

9feb 
5feb 

14feb 
4feb 

Fe model 

IB 
II 

station 
9feb 
5feb 

14feb 

(1) 
Ll 
(m) 

0.025 
0.0037 
0.0023 
0.0039 
0.0029 
0.0031 
0.0073 
0.00025 
0.00025 
0.025 
0.0028 

0.011 
0.020 
0.017 
0.03 

0.02 
0.03 
0.025 

(2) 

Ds 
(lO"5 m2 d" 

3.04 
2.02 
2.27 
1.83 
1.95 
1.60 
1.52 
1.93 
2.44 
2.60 
1.49 

2.77 
1.61 
1.72 
1.43 

2.89 
1.68 
1.79 

(3) 

Db 
') (10-6m2d-

2.74 
2.74 
1.37 
1.37 
1.37 
1.37 
1.37 
1.37 
1.37 
1.37 

0.027 

2.74 
1.37 
1.37 

0.027 

2.74 
1.37 
1.37 

(4) 
CO 

!) (lO^md"1) 

13.7 
13.7 

0.027 
0.027 
0.027 
0.027 
0.027 
0.027 
0.027 
0.027 
0.027 

13.7 
0.027 
0.027 
0.027 

13.7 
0.027 
0.027 

(5) 

^ox 
(d-1) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 

10 
10 
10 

(6) 
Ks 

(-) 

4 
4 
1 
1 
1 
1 
1 
1 
1 
1 
1 

4 
1 
1 
1 

4 
1 
1 

(7) 

Co 

(8) 

Ca 
(mol m"-') (mol m" )̂ 

0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 

0.0001 
0.0001 
0.0001 
0.0001 

0.0001 
0.0001 
0.0001 

0.013 
0.005 
0.005 
0.004 
0.002 
0.004 
0.004 
0.0024 
0.009 
0.005 
0.005 

0.010 
0.005 
0.009 
0.005 

0.050 
0.008 
0.025 

Sources: (1) Lj: depth of O2 penetration (Mn model) or NO3" penetration (Fe model) unless 
indicated otherwise in the text; (2) Ds: derived from the data of Li and Gregory (1974) correcting 
for temperature and <|> (Ullman and Aller, 1982); (3) co: see study sites for cl. IB, at the cl. II and III 
stations, a value of 0.001 cm y~' is assumed to enable a model solution; (4) D(,: see text; (5) kox: 
for Mn2+ the value was based on a first-order rate constant calculated from the work of Thamdrup 
et al. (1994a); the oxidation kinetics for Fe2+ are assumed to be more rapid (e.g. Aller, 1980); (6) 
Ks: for cluster IB the value observed in Mn-poor Skagerrak sediments (S6; Canfield et al., 1993a) 
and assumed for Long Island Sound sediments by Aller (1994) is used; for cluster II and III a lower 
value is assumed; (7) C0 is set at a value that is typical for oxygenated North Sea water (e.g. 
Tappin et al., 1995); (8) Ca is set equal to or slightly lower than the lowest observed metal 
concentration at depth. 

Here, a Dj, value of 5 cm2 y 1 was assumed. This value is close to the maximum Dfo value 

observed in low sedimentation environments (co < 0.01 cm y-1) as compiled by Boudreau 

(1994). For station 4 of cluster III, the Dfo was set to 0.10 cm2 y-1, as no model solutions 

could be obtained for higher Dj, values. It should be noted, however, that this low value is 

not necessarily correct since one of our model assumptions could be wrong. The range in 
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Fig. 10. Model fits (solid lines) to profiles of pore water Mn2+ (umol dm"3; filled circles) and 0.1 
M HCl Mn (umol g'1; open circles) at 11 stations (A: Cluster IB, B: Cluster II, C: Cluster III) in 
August. Dashed lines indicate the depth of O2 penetration. 
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Fig. 10. (continued) 

Dfo values used here is similar to the range of 0.5-12 cm2 y 1 estimated for North Sea 

sediments from 210Pb profiles (Albrecht, 1991, cited in Pohlmann and Puis, 1994). We 

have not accounted for possible seasonal changes in sediment mixing. At 4 stations (9 and 

16 in August and 5 and 14 in February), pore water Mn2+ profiles suggest that NO3", not 

O2, acts as the oxidant for dissolved Mn2+ (Fig. 3, 4 and 5). Although never demonstrated 

directly, this is theoretically possible and has been suggested previously in order to explain 

concave-upward Mn2+ distributions in anoxic sediment (Aller, 1990). For these stations, the 

depth of NO3" penetration is used as the depth (Lj) at which Mn shifts from an oxidized to 

reduced state. 

Model fits for Mn and Fe. Model fits to the Mn oxide and pore water Mn2+ profiles for 11 

stations in August and 4 stations in February are shown in Fig. 10 and 11, respectively. As 

no model fit could be obtained when using 0.1 M HCl Mn as a measure for solid phase Mn 

at station 9 in February, the result of the CDB/NH4 oxalate extraction was used for this 

station (Fig. 7 and 11). Model fits to the solid phase Fe and pore water Fe2+ profiles for 3 

stations in February7 are shown in Fig. 12. The model gives a reasonably good description of 

the measured metal profiles at most stations, particularly when the zone where metal 
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Fig. 11. Model fits (solid lines) to profiles of pore water Mn2+ (umol dm"3; filled circles) and 0.1 
M HCl Mn (umol g"1; open circles) at 3 stations (A: Cluster IB, B: Cluster II, C: Cluster III) in 
February. Dashed lines indicate the depths of O2 penetration. 
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Table 4. First-order rate constants for Mn and Fe reduction (kr) and precipitation of reduced 
authigenic Mn and Fe (ka), and the concentrations of unreactive Mn and Fe oxide (Sr) obtained by 
fitting the model to pore water and solid phase profiles of these metals. 

Mn model 
IB 

II 

III 

IB 
II 

III 

Fe model 
IB 
II 

Parameter 

Unit 
Station 
9 
10 
2 
5 
6 
7 
8 
12 
14 
16 
4 

9 
5 
14 
4 

Station 
9 
5 
14 

aug 
aug 
aug 
aug 
aug 
aug 
aug 
aug 
aug 
aug 
aug 

feb 
feb 
feb 
feb 

feb 
feb 
feb 

kr 
(d-1) 

0.2 
0.024 
0.092 
0.41 
0.015 
0.20 
0.11 
0.024 
0.069 
0.0057 
0.00012 

0.017 
0.0072 
0.030 
0.010 

0.016 
0.0032 
0.0025 

ka 
(d-1) 

25 
0.025 
0.0053 

2.9 
1.4 
14 

0.78 
100 
2.7 

0.025 
l.OxlO"11 

0.0036 
0.27 
2.0 

l.OxlO"11 

0.70 
0.29 
0.52 

sr 
(umolg"1) 

3.00 
2.30 
1.21 
0.84 
0.41 
0.21 
0.43 
0.03 
1.82 
2.13 
0.35 

1.69 
0.78 
1.82 
0.70 

186.5 
33.0 
47.0 

oxidation takes place is thin (Fig. 10). The model underestimates dissolved metal 

concentrations in the oxidation zone at most stations when this zone extends to greater 

depths (Fig. 10, 11 and 12). 

Values for kr and ka estimated from the model fits are listed in Table 4. Rate constants 

for Mn reduction (kr) range from 0.00012 to 0.41 d"1. Rate constants for anoxic 

precipitation of Mn2+ (k^ range from 0.0053 to 100 d"1 (no anoxic precipitation is taking 

place at st. 4). For Fe, ranges of 0.0025 to 0.016 d"1 and 0.29 to 0.70 d"1 were found for kr 

and ka, respectively. The fitted values for the Mn and Fe oxide flux from the overlying 

water (JSx=o) an(l calculated rates of Mn and Fe oxide reduction, Mn and Fe oxide 

precipitation, anoxic precipitation of Mn2+ and Fe2+ and sediment-water exchange of Mn2+ 

and Fe2+ are listed in Table 5. Rates of Mn and Fe reduction range from 0.0039 to 0.46 

mmol m-2 d"1, and 0.18 to 2.1 mmol m-2 d_1, respectively. A large proportion of the Mn2+ 

and Fe2+ liberated at most stations (generally ranging from -50 to -90% for Mn2+ and -60 

to -70% for Fe2+) is precipitated as a reduced authigenic mineral in zone II 
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Table 5. The metal oxide flux obtained by fitting the model to experimental data and model 
calculated rates of metal oxide reduction, formation of metal oxides, authigenic mineral formation 
and the flux of dissolved metals across the sediment-water interface. Rates of metal oxide 
reduction are compared to calculated rates of O? uptake. 

Parameter 

Unit 
Station 

Mn model 
IB 

II 

III 

IB 
II 

III 

9 aug 
10 aug 
2 aug 
5 aug 
6 aug 
7 aug 
8 aug 

12 aug 
14 aug 
16 aug 
4 aug 

9feb 
5feb 

14feb 
4feb 

Fe model 
IB 
II 

9feb 
5feb 

14feb 

(1) 
oxide flux 

atx=0 
(JSx=0) 

0.30 
0.18 
0.041 
0.19 
0.16 
0.38 
0.11 
0.38 
0.46 
0.012 
0.0037 

0.12 
0.013 
0.10 

0.0000 

2.1 
0.22 
0.12 

(2) 
oxide 

red. rate 
zone II 

0.37 
0.17 
0.045 
0.20 
0.16 
0.39 
0.14 
0.38 
0.46 
0.033 
0.0048 

0.25 
0.022 
0.13 

0.0039 

2.1 
0.30 
0.18 

(3) 
oxide 

prec. rate 
zone I 

(mmol m"2 

0.08 
0.02 
0.004 
0.02 
0.00 
0.01 
0.03 
0.00 
0.00 
0.021 
0.0011 

0.13 
0.009 
0.03 

0.0039 

0.8 
0.09 
0.07 

(4) 
auth. min. 
prec. rate 
zone II 

d"1) 

0.29 
0.04 
0.002 
0.14 
0.13 
0.34 
0.09 
0.34 
0.24 
0.009 
0.0000 

0.02 
0.013 
0.10 

0.0000 

1.3 
0.21 
0.11 

(5) 
diss, metal 

flux 
atx = 0 

0.00 
0.10 
0.039 
0.05 
0.03 
0.04 
0.02 
0.04 
0.21 
0.000 
0.0037 

0.08 
0.000 
0.00 

0.0000 

0.00 
0.00 
0.00 

(6) 
02-uptake 

calc. 

5.2 
9.4 
8.8 
4.4 
6.9 
8.9 
1.9 

28.4 
24.8 
6.7 
-

5.3 
9.4 
5.0 
0.8 

5.2 
4.9 
4.8 

(7) 
contr.Fe or 

Mn red. 
to C-ox. 

(%) 

4% 
1% 
0% 
2% 
1% 
2% 
4% 
1% 
1% 
2% 
-

2% 
0% 
1% 
0% 

19% 
2% 
2% 

DISCUSSION 

Internal and external metal cycling and rates of Fe and Mn reduction. Fe and Mn 

reduction rates in sediments depend on (1) the supply of metal oxides from an internal or 

external source (Fig. 1) and on (2) the reducing capacity of the sediment. The depths of 

NO3" and O2 penetration in a sediment and the rates of sediment mixing determine the 

importance of internal metal cycling. In many continental margin sediments, in-situ 

formation of metal oxides is the dominant source for metal oxides (Fig. 1A). As a result, 

high surface concentrations of metal oxides develop, and Fe and Mn reduction rates often 

become orders of magnitude higher than suggested by the supply rates from the overlying 

water (Table 6). 
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In North Sea sediments outside the major depositional areas, comparatively minor 

surface enrichments of Fe and Mn oxides are present (Fig. 8), suggesting less efficient 

retention of metal oxides. Even when sediment mixing is substantial, as assumed for most 

of our stations, Fe and Mn reduction rates remain comparatively low (Table 6). Detailed 

studies on the sedimentary Mn cycle in coastal environments (Aller, 1994; Thamdrup et al., 

1994b) have shown seasonal shifts from a largely internal cycle to an external cycle, 

following the almost complete disappearance of O2 from the surface sediment in summer. 

As the flux of dissolved Mn2+ out of the sediment was larger than the external supply of 

Mn oxides, these sediments were depleted of Mn at this time of year. When oxic conditions 

were reestablished in winter, the external input from the overlying water was sufficient to 

allow for a rapid build-up of surface Mn oxide concentrations. Similar seasonal variations 

in the redox conditions in surface sediments are observed in most non-depositional North 

Sea environments. We cannot accurately evaluate the magnitude of the seasonal change in 

the balance between external and internal supply of Mn oxide in these sediments without 

knowledge of the Dj, values. Nevertheless, the results in Table 5 indicate that internal 

cycling of Mn is more important in winter than in summer. The external Mn oxide supply 

in winter is apparently insufficient to cause a large build-up of Mn oxide concentrations at 

this time of year (st. 5, 14 and 4; Fig. 8). We conclude that in most non-depositional North 

Sea sediments (cluster II and III) high surface concentrations of Fe and Mn oxides do not 

develop. At typical Dfc values for continental margin sediments this leads to relatively low 

rates of Fe and Mn reduction in these sediments. 

In a previous study on Fe and Mn reduction in the depositional area of the Skagerrak 

(Table 6; Canfield et al., 1993a and b), a high Mn reduction rate was observed in a sediment 

from the deepest part of the Skagerrak (S9, 695m) where the surface sediment was strongly 

enriched in Mn oxides. At two other stations outside this deep area (S4, 190m; S6, 380 m), 

surface sediments were rich in Fe oxides instead of Mn oxides. At these latter stations, Mn 

reduction rates were low but Fe reduction rates were high. The surface enrichments were 

attributed to long-term internal metal cycling at all locations. We also find low rates of Mn 

reduction at our stations located at 330 and 64 m depth (st. 9 and 10, respectively). The rate 

of Fe reduction calculated for station 9 is substantially higher than that observed in any of 

the other North Sea environments, but it is still a factor 10 lower than that reported by 

Canfield et al. (1993a and b) for station S6 at a comparable depth. There are three possible 

explanations. First, Canfield et al. (1993a and b) calculated metal reduction rates from 

sediment incubation results (Table 6) and may have overestimated actual rates in the 

sediment and, as a result, the Dj, values necessary to sustain these rates. Second, we may 

have underestimated the Dfo value at station 9. In view of the low number of macrofauna 
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Fig. 12. Model fits (solid lines) to profiles of pore water Fe2+ (umol dm"3; filled circles) and CDB-
Fe (umol g"'; open circles) at 3 stations (A: Cluster IB, B: Cluster II) in February. Dashed lines 
indicate the depths of NO3" penetration. 

encountered at station 9 (see study sites), it is unlikely, however, that we greatly 

underestimated the actual Dj, value. Third, there may be very large spatial variations in 

sediment mixing rates and, as a consequence, rates of metal oxide reduction in the 

Skagerrak. 

First-order rate constants for Mn reduction derived from model calculations in the 

literature vary over a wide range. Values of 3.1 x 10-5 and 4.7 x 10"5 d"1 have been found 

for east equatorial Atlantic (Burdige and Gieskes, 1983) and Chesapeake Bay (Holdren et 



Fe and Mn cycling in North Sea sediments 87 

al., 1975) sediments, respectively. Aller (1980) calculated a range of 0.022 - 0.068 d"1 for 

Long Island Sound sediments, whereas Gratton et al. (1990) found a value of 0.68 d_1 for 

Laurentian Trough sediments. This wide range is not surprising as this parameter lumps a 

great number of processes and, thus, depends on several factors, including the reactivity of 

the Mn oxides and the type of reductant involved. The values calculated here (Table 5) 

cover a similar wide range. Except for the fact that the lowest value is found for the cluster 

III station 4, there is no evidence for a link between the sedimentary environment and the 

value for kr. No estimates of rate constants for in-situ Fe oxide reduction are available in 

the literature for comparison. Rate constants for Fe reduction at stations 9, 5 and 14 are 

respectively equal to, a factor of 2 lower and a factor of 10 lower than those for Mn at these 

same stations. The latter observations are in line with the fact that Mn oxides are generally 

more easily reduced than Fe oxides (Froelich et al., 1979). 

Fe and Mn reduction and organic C oxidation. The potential direct or indirect role of Fe 

and Mn in the decomposition of organic matter in each of these North Sea environments is 

evaluated by comparing the rates of Fe and Mn reduction to total rates of sediment O2 

uptake, calculated from O2 profiles (Table 5; for details, see Lohse et al., 1996). Sediment 

O2 uptake can be viewed as a rough measure for total organic C oxidation, if NH4-

oxidation and denitrification are relatively unimportant and all O2 is utilized for oxic 

decomposition of organic material or for oxidation of reduced products of anoxic 

decomposition processes (Fe2+, Mn2+ and H2S). In addition, there must be no net storage of 

reduced by-products (e.g. FeS, FeS2, etc.). If Fe and Mn reduction are coupled to organic C 

oxidation, 4 and 2 moles of Fe and Mn oxides must be reduced, respectively, for each mole 

of organic C that is oxidized and, thus, for each mole of 0 2 taken up by the sediment 

(Canfield et al., 1993b). 

The results in Table 5 show that, at most stations, the calculated contribution of Fe or 

Mn reduction to organic C oxidation ranges between 0 and 4%. The only exception is the 

Skagerrak station 9 where -19% of organic C oxidation can be linked to Fe reduction in 

February. We conclude that Fe and Mn oxides do not play an important role in organic C 

oxidation in most North Sea sediments. The contribution from metal oxide reduction may 

be substantial only in the Skagerrak. 

The fate of the dissolved Fe2+ and Mn2+- Dissolved metal produced by metal oxide 

reduction can precipitate as a reduced authigenic mineral, or after upward transport, 

reprecipitate as an oxide in the surface sediment or escape to the overlying water. The 

diffusive transport of the dissolved metals may be enhanced due to reversible sorption on to 

sediment particles in combination with sediment mixing (Schink and Guinasso, 1978). 
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To illustrate the potential effect of reversible sorption on the pore water metal profiles in 

North Sea sediments, the model results for pore water Mn2+ for station 10 (cluster IB), 8 

(cluster II) and 4 (cluster III) in August (Fig. 10) are compared to model scenarios with both 

larger and smaller sorption coefficients (Fig. 13 A, B and C). The greatest sorption 

coefficient used here is the maximum value observed for an extremely Mn oxide-rich (475 

umol g"l), silty sediment in the Skagerrak (assuming a porosity of 0.9 dm3 dm"3 and a 

sediment density of 2.65 g cm-3; Canfield et al., 1993a). The model results show that at the 

small Dj, values, such as those assumed at the cluster III station 4 (0.1 cmy 1 ) , sorption has 

very little effect on the pore water profiles of Mn2+ (Fig. 13 C). At larger D\> values, such 

as assumed at the cluster IB and II stations (10 and 5 cm y 1 , respectively), reversible 

sorption can have a substantial effect on pore water distributions of Mn2+ (Fig. 13A and B). 

Anoxic authigenic mineral formation can be responsible for the reversal in gradient of 

the pore water metal profiles at depth. This is illustrated for Mn in Fig. 13D and E where 

the model results for pore water Mn2+ at stations 10 and 8 are compared to a model 

scenario where anoxic precipitation of Mn2+ is absent. The results show that this process 

also may lead to lower maximum pore water metal concentrations. The model results for 

station 4 (Fig. 13F) remain unchanged as no anoxic removal occurs at this station. It should 

be noted, however, that biological irrigation at depth in the sediment can also result in a 

reversal in gradient of pore water profiles (Aller, 1980 and 1990; Emerson et al., 1984). 

Since this process is not included in our model, the calculated rates of anoxic precipitation 

of dissolved Fe2+ and Mn2+ may overestimate actual rates. 

Rates of SO42" reduction in southern North Sea sediments mostly are <1 mmol S04
2~ 

nr2 d"1 in winter. Over 80% of the SO42" in these sediments is reduced to acid volatile 

sulfides (AVS = H2S and FeS; Upton et al., 1993). Slightly higher S04
2" reduction rates, 

ranging up to 4 mmol m-2 d"1 have been observed in Skagerrak sediments. A large 

proportion of the reduced sulfur in these sediments is converted to FeS (Jorgensen, 1989; 

Canfield et al., 1993b). This indicates that the rates of reduced authigenic mineral formation 

calculated for Fe at our North Sea stations (Table 5) are not unreasonable. Furthermore, it 

suggests that most of the dissolved Fe2+ precipitates as FeS. Relatively little of this FeS is 

permanently stored in these marine sediments, either as FeS or FeS2, as evidenced by solid 

phase analysis. The reason is that most of the Fe2+ in these Fe sulfides is (1) redissolved to 

Fe2+ and reoxidized or (2) directly converted to Fe oxide upon upward mixing into the 

oxidized sediment or upon changes in sediment redox conditions (Jorgensen, 1982; 

Canfield et al., 1993a and b; Thamdrup et al., 1994b). In the second case, this results in an 

additional internal cycle of Fe in which the reduced Fe does not pass through the dissolved 

Fe2+ phase, and thus cannot escape the sediment through diffusion. Consequently, Fe 

sulfide formation may limit the extent to which the Fe cycle extends into the water column, 
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Fig. 13. Comparison of model results for pore water Mn2+ from Fig. 9 (thick solid line) to 
alternative model scenarios (thin solid line). Panels (A, B and C) show the effect of variations in 
the value of the sorption coefficient (Ks: 0, 1, 4 and 16) for stations 10, 8 and 4. Panels (D, E and 
F) show what happens at these stations when anoxic precipitation is absent (ka: 1.0 x 10"11 d"1). 
All other parameters are as in Tables 3 and 4. Note the difference in scale of D, E and F when 
compared to A, B and C. 

even under steady state conditions. A similar argument may hold for Mn carbonate 

formation and the Mn cycle. 

We could not include a description of this second internal metal cycle in the model as 

this would require (1) detailed information about the reduced mineral forms of Fe and Mn 

in these sediments (2) more insight in to the reoxidation processes involved and (3) greater 

sampling resolution for both pore water and solid phase metals. When upward transport and 

reoxidation of authigenic reduced Fe and Mn minerals is an important source for Fe and Mn 

oxides, this omission could result in an overestimation of the metal oxide fluxes from the 

overlying water calculated for our North Sea sediments (Jsx=o; Table 5). 

The Fe2+ and Mn2+ produced due to metal oxide reduction that is not precipitated as a 

reduced authigenic mineral will diffuse upwards and will be oxidized in the surface layer of 



Fe and Mn cycling in North Sea sediments 91 

the sediment or will escape to the overlying water. The efficiency of the oxidation process 

depends on the rate of oxidation and the thickness of the oxidized sediment zone. Fe2+ is 

oxidized more rapidly than Mn2+ (Table 3; Stumm and Morgen, 1981) and, as a result, the 

former metal will more easily be retained in the sediment. The seasonal variation in the 

thickness of the oxidized sediment zone has important consequences for the retention of 

both metals. This is demonstrated by the model calculations for Mn at stations 5, 14 and 4 

in August and February (Table 5). Whereas dissolved Mn2+ may escape the sediment in 

August, this loss is limited in February. 

It should be noted, however, that the simplified model description of the oxidation 

process causes this seasonal difference to be exaggerated. This particularly becomes 

apparent from the discrepancy between the measured and modelled pore water metal 

profiles in the surface zone in February (Fig. 11 and 12). There are two reasons for this poor 

model fit. Firstly, a single, first-order oxidation rate constant (kox) cannot adequately 

describe oxidative removal of dissolved metals (see Thamdrup et al., 1994a; Yeats and 

Strain, 1990). Secondly, 'background' concentrations of several umol dm-3 of both Mn2+ 

and Fe2+ in the surface oxidized zone at all stations (Fig. 5 and 6) are not accounted for by 

the model. This background Fe2+ and Mn2+ may be associated with dissolved organic 

compounds or may be the product of Fe and Mn oxide reduction in reduced micro-sites in 

the surface sediment (Burdige, 1993). 

To obtain a more accurate estimate of the fluxes across the sediment-water interface, we 

calculated diffusive fluxes directly from the measured pore water profiles with Fick's first 

law. An advantage of this approach was that this enabled us to obtain an estimate of rates of 

sediment-water exchange at all stations and not only those to which the model was applied. 

The average concentration in the 0-0.4 cm depth interval was assumed to be representative 

for the dissolved metal concentration at 0.2 cm, and the concentration in the overlying 

water was set at zero. Parameters § and Ds are as given in Tables 2 and 3, respectively. 

Figure 14 shows that very little Fe2+ and Mn2+ is released from the sediments of cluster III. 

In the cluster II environments, enhanced release of dissolved Mn2+ may occur in August; 

conversely, this only holds for two stations in the case of Fe2+. At the depositional site in 

the German Bight (st. 13; cluster IA) and at the shallowest station in the Skagerrak region 

(st. 10; cluster IB) sediment-water exchange of both Fe2+ and Mn2+ display a seasonal 

pattern with highest release rates in August. The reverse pattern is observed at the other 

Skagerrak site (st. 9; cluster IB). These results are explained below. 

Fe and Mn cycling in the different sedimentary environments. The porewater and solid 

phase metal profiles (Fig. 5, 6, 7, 8 and 9), diffusive fluxes of Mn2+ and Fe2+ across the 

sediment-water interface (Fig. 14) and model results (Table 5) indicate distinct differences 
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Fig. 14. Calculated diffusive fluxes of (A) Mn2+ and (B) Fe2+ (in mmol m"2 d"1) across the 
sediment-water interface at 15 North Sea stations in August 1991 (black bars) and February 1992 
(white bars). 
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in the cycling of Fe and Mn in the four types of sedimentary environments encountered in 

the North Sea during this study. These differences can be explained largely by seasonal and 

spatial variations in the amount and quality of the deposited organic material and the supply 

of metal oxides. 

In the areas where erosion is dominant (cluster III), organic matter deposition is limited 

to short periods during the slack tide (Jenness and Duineveld, 1985). Sediment 

accumulation rates in these areas are low and sediment mixing is probably limited to a 

relatively thin surface layer. As a result, most of the organic matter is decomposed close to 

the sediment-water interface. Mineralization rates are so low, both in August and February, 

that with the exception of station 4, the sediments are not sufficiently depleted of O2 and 

NO3" to allow for Fe and Mn oxide reduction (Fig. 3, 4, 5 and 6) within the upper 10 cm of 

the sediment. The enrichment of the surface sediment with Mn oxide in August (Fig. 8) at 

stations 3, 11 and 17 is either a 'relict' dating from more reduced conditions in other parts of 

the year, e.g. immediately following the spring bloom, or the result of a biological or 

physical redistribution process. Resuspension of surface sediment during storms is common 

in the southern North Sea (Eisma and Kalf, 1987; Jago et al., 1993) and has been suggested 

to account for elevated concentrations of Fe and Mn in North Sea suspended matter in 

winter (Tappin et al., 1995). Upon resedimentation during calmer periods, this may result in 

a concentration of Mn-rich fine-grained particles in the surface layer of cluster III 

sediments. The large seasonal change in the Mn oxide concentration in the surface sediment 

at stations 11 and 17 (Fig. 8) supports this view. 

In the areas where temporary deposition of organic matter is more frequent (cluster II), 

organic matter decomposition rates are so rapid in August that the (^-containing sediment 

layer becomes very thin or even is absent (Fig. 3). In February, the input of organic matter 

is low, and the (^-containing sediment zone extends to greater depths. As a result, the Mn 

cycle shifts seasonally between an external cycle in summer, when Mn2+ can escape to the 

overlying water, and an internal cycle in winter, when in-situ Mn oxide formation results in 

retention of most dissolved Mn2+ in the sediment (Fig. 5 and 14; Table 5). This is in line 

with the seasonal pattern in dissolved Mn2+ concentrations, with largest values in summer, 

reported for southern and central North Sea surface waters by Tappin et al. (1995). A tight 

coupling between sediment redox conditions and the release of dissolved Mn2+ to the water 

column has also been suggested previously for several sandy southern North Sea sediments 

(Dehairs et al., 1989). NO3" penetrates deeper into the sediment than 0 2 and creates a 

barrier that allows the Fe cycle to remain largely internal in both summer and winter (Fig. 

14; Table 5). Mn oxides can also act as an oxidant for Fe2+ (Postma, 1985; Myers and 

Nealson, 1988) and, thus, may contribute to this barrier. The presence of 'background' 

concentrations of dissolved Fe2+ in the oxidized surface sediment suggests that, 
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nevertheless, some dissolved Fe2+ may escape to the overlying water. Despite the partial 

internal cycling, sediment mixing rates and surface enrichments with Fe and Mn oxides are 

not sufficient to allow Mn and Fe reduction to play a quantitatively important role in 

organic C oxidation in these sediments. 

The two depositional areas, the German Bight (cluster IA) and the Skagerrak (cluster 

IB), are the only sedimentary environments studied here that receive substantial amounts of 

terrigenous material. In both areas, dissolved Fe2+ and Mn2+ concentrations at depth in the 

sediment are higher in winter than in summer (Fig. 5A and 6A), indicating a seasonal shift 

in the balance between production and removal of both dissolved metals. SO42" reduction 

and, thus, Fe sulfide precipitation rates are expected to vary seasonally in the German 

Bight, but this is less likely in the deeper parts of the Skagerrak. An alternative explanation 

is the occurrence of an enhanced input of Fe and Mn oxide-rich mineral material which has 

been eroded from cluster III and, perhaps also cluster II (see st. 7, 8 and 12, Fig. 8 and 

Tappin et al., 1995) type environments by winter storms. 

The large difference in the types of organic matter deposited in the German Bight and 

the Skagerrak has large consequences for the cycling of Fe and Mn. Large quantities of 

mostly locally produced fresh organic matter reach the sediment in the shallow, inner 

German Bight in spring and summer. As a result, the sediments become almost completely 

depleted of O2 and NO3" in August (Fig. 3 and 4). At this time of the year, SO42" reduction 

rates are very high (e.g. 17 mmol m-2 d"1; Jergensen, 1989), and precipitation of Fe sulfide 

in the sediment strongly suppresses pore water concentrations of Fe2+ (Fig. 6). Pore water 

profiles of Mn2+ suggest both production and removal of dissolved Mn2+ in the upper 

anoxic 2 cm of the sediment. Some of the dissolved Mn2+ and Fe2+ will escape to the 

overlying water (Fig. 14). We cannot quantify Fe and Mn reduction at station 13, but such 

rates are probably substantial in summer, as concentrations of both Fe and Mn oxides are 

high (Fig. 8 and 9) and a large number of macrofauna are present (see study sites), ensuring 

high sediment mixing rates. In winter, input rates of organic matter and mineralization rates 

are lower than in summer, and the O2 and NO3" containing surface layer is reestablished 

(Fig. 3 and 4). Dissolved Mn2+ and Fe2+ concentrations in the surface sediment are now 

lower than in summer, and less of these metals will escape to overlying water (Fig. 5, 6 and 

14). 

The Skagerrak (cluster IB), finally, is characterized by a regular input of large amounts 

of refractory organic matter. Primary production rates are substantially lower than in the 

German Bight region, and due to the greater water depths (ranging from <50 m to -700 m), 

only a relatively small proportion of this 'fresh' authochtonous material will reach the 

sediment. Despite the high flux of organic material to the sediment, mineralization rates are, 

therefore, relatively low in this region (Table 5; also see Jorgensen, 1989; Canfield et al., 
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1993b). In the shallower parts of the Skagerrak, such as at station 10, which is located at a 

depth of 64 m, the increased input of authochtonous material and increase in bottom water 

temperature in summer (Table 1) are nevertheless sufficient to cause a seasonal change in 

mineralization rates and thus in the redox conditions in the sediment (Fig. 3, 4, 5 and 6). 

Here, both the Fe and Mn cycle may extend in to the water column in summer (Fig. 14). 

Surface enrichments with Mn oxides remain low, and Mn reduction coupled to organic C 

oxidation is unimportant (Table 5). We have no insight in the role of Fe reduction in this 

area. 

In the deeper parts of the Skagerrak, such as at station 9, which is located at 330 m 

depth, bottom water temperature is constant throughout the year (Table 1). Here, the input 

of authochtonous material is so low that the organic matter flux to the sediment and 

mineralization rates are independent of season (Table 5). The results suggest that, at this 

station, the reduced sediments are permanently 'capped' with an 0 2 and N03~ containing 

sediment layer (Fig. 3 and 4). This allows the build-up of higher concentrations of Mn 

oxide than at station 10, but does not completely preclude loss of dissolved Mn2+ and Fe2+ 

to the overlying water (Fig. 14). Mn reduction linked to organic C oxidation is still not very 

important at this station (Table 5), but the contribution of Fe reduction may be substantial 

(Table 5 and 6). In deeper parts of the Skagerrak than sampled in our study (down to -700 

m), the thickness of the oxidizing 'cap' increases further (Canfield et al., 1993a and b) thus 

acting as a more efficient trap for both Mn2+ and Fe2+ and accounting for very large surface 

enrichments of these oxides (Nolting and Eisma, 1988; Canfield et al., 1993a and b; Jensen 

and Thamdrup, 1993). As shown for Mn by Canfield et al. (1993a and b), metal oxide 

reduction coupled to organic C oxidation may be very important here. 

CONCLUSIONS 

Most North Sea sediments are relatively poor in Fe and Mn oxides. High surface 

concentrations are found only in the depositional areas receiving significant amounts of 

terrigenous material, i.e. the German Bight and Skagerrak. Results of a reaction-diffusion 

model developed to describe the sedimentary Fe and Mn cycles indicate that Fe and Mn 

oxides play only a minor role in organic C oxidation in most North Sea sediments. In the 

depositional environment of the Skagerrak, and perhaps also in the German Bight, metal 

oxide reduction may contribute substantially to organic C oxidation. 

With our model, we demonstrate that reversible sorption, in combination with sediment 

mixing enhances the diffusive transport of dissolved metals. Formation of reduced 

authigenic minerals can be responsible for the reversal in gradient of pore water Fe2+ and 

Mn2+ at depth at many stations. If this is so, little permanent storage of these reduced 
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phases occurs. The efficiency of the oxidation of dissolved Fe2+ and Mn2+ in the surface 

sediment is shown to depend on the thickness of the NO3" and 0 2 containing zones. 

Pore water and solid phase metal profiles, diffusive fluxes of Fe2 + and Mn2 + across the 

sediment-water interface and model results indicate distinct differences in the cycling of Fe 

and Mn in the 4 different types of sedimentary environments encountered in the southern 

and eastern North Sea. These differences are shown to be determined by (1) the quality and 

quantity of the deposited organic matter and (2) the supply of metal oxides in each 

environment. 
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APPENDIX 
A. The differential equations for dissolved Mn2+ and Mn oxide in the oxic (I: 0 < x < L]) and 
anoxic (II: x > Lj) sediment zone are: 

Dissolved Mn 2 + (C) 

[{\ + Ks)Db+Ds}^J--m(\ + Ks)^--k0XC]=Q (Al) 
dx ax 

[(l + Ks)Db+Ds]^f-(û(l + Ks)^--ka(Cll-Ca) + Mr(SI,-Sr) = 0 (A2) 
dx ax 
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Mn oxide (S) 

D^L.a^L + hsSLC,^ (A3) 
b dx2 dx 9 

Db^f-*^JL-kr(S„-Sr) = 0 (A4) 
ax2 <& 

* * 
B. WithZ)5 = (1 + .KS)Z)L+Z)s and co = (1 + X5)<D , the boundary conditions used to solve 
equations (A1)-(A4) are: 

a tx = 0 

at x = Z,, 

C,=C0 (Bl) 
ff7 

Ox 
JSx=o=-lDb^r-<»si^ (B2) 

C/=C// (B3) 

S/=Sfl (B4) 
* dC, * „ *dCn * tu<;\ 

Ds - r ^ - f l ) C,=Z)5 - 7 ^ - œ C„ (B5) 
ax ax 

at x—>oo 

Q/=Cfl (B7) 

S„ = Sr (B8) 

C. With the boundary conditions (Bl) to (B8) the solutions of equations (Al) to (A4) for the oxic 
(I: 0 < x < L[)) and anoxic (II: x > Lj) zone are: 

Cj = A] exp[(0 + P)x] + A2 exp[(0 - P)x] 

Cj, = B2 exp[(0 - Q)x] + G, exp[( M - N)(x - Lx )] + Ca 

(CI) 

(C2) 

S, = Cx + C2 exp[(—)x] + Dj exp[(0 + P)x] + D2 exp[(0 - P)x] (C3) 
Db 

S„ = E2 exp[(M- NXx - Li)] + Sr 

where 

(C4) 

M = J^- N h2+AkrDb • 0_ co* : r_^*2+4koxDs* . ^*2 +4kaDs* 
2Db ' 2Db 2DS* 2D* Js 
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ß = exp[(0 + P)I, ] ; y = exp[(0 -ƒ»)!,] ; S = exp[(0 - 0 1 , ] Î n = exp[(-£-)Z, ] ; 

, ~ , . , c0ßCP + g) + c a ( o - g ) + G i ( Q - g - M + ;v) . 
A = Cn - A ' A-, = —^ • = a, + a, G, » 

_ ^ i ß + ^ 2 Y - C a - G 1 . 5 2 _ , 

D,D,{0+P) + D2D,(0-P) ^ = ^ 

ta T) 

A = *«^! = dlAl 

koxAi = d A ; G = 9 ^ ; 

ô[Z>é(0-/>)2-a>(0-.P)] Z ) / ( M - 7 V ) 2 - W * ( M - 7 V ) - ^ 

. CO . 

' ~Dh Dh(0+P) Dh{0-P) 
E2=—-s. ; / ,=i+(rf igif l 2X— +ß- i ) - ( r f 2 f t a2X— + Y - i ) ; 

Db 

'2=-^~-Sr+(d]C0-dia,X-^ + ß -1) + (a,^2 ) ( -2 + y - l ) ; 
axp» CO CO 

ti=(M-N) + dlgia2P(0+P)-d2gla2y(0-P); t4 =ß(0+PXdlC0-dlal)+y(0-P)d2a1. 

D. Depth integrated processes: 
L, 

'~ •• Al n n x l A , A2 Oxic prec. rate =Wox \C, =#OJC tri^ „,. ( l - ß ) + <t>*ox , ^ m 0 - Y ) 

Anoxic prec. rate = <|>*a 1 ^ , , - ^ ) = ^ — ^ - ( S - t ) + # a — L - ( l - X ) 

withx = e x p [ ( 0 - 0 i 2 ] ; X = exp[(M-N)(L2 - Z,,)] 

and with Lj being the lower boundary of the sediment-column under study 

Mn oxide red. rate = $Mr j(S-Sr) = tydkr — ^ — (X, -1) 

Lj (M-N) 

Sediment-water exchange rate of dissolved Mn2+: 
dC, 
dx 

Ds*M^L)x=0 = Ds\[Ax(0+ P) + A2(0- P)] 



Chapter 5 

The role of sorption in sediment-water exchange of phosphate in 
North Sea continental margin sediments* 

ABSTRACT 
The effect of sorption on the sediment-water exchange of HPO42" was investigated for 
sediments located in 4 different types of sedimentary environments in the southern and 
eastern North Sea in August 1991 and February 1992. Non-linear sorption isotherms for 
oxidized sediment from 8 stations indicate that North Sea sediments differ widely in their 
capacity to sorb HPO42" A good correlation between the value of the sorption coefficient at 
a HPO42" concentration of 1 umol dm-3 and NH4-oxalate Fe was observed. Results of 
kinetics experiments for 2 stations show that the sorption process can be adequately 
modelled assuming concurrent equilibrium and first-order kinetic sorption. A combination 
of the sorption data with pore water HPO42" profiles, solid phase results, and measured and 
calculated rates of sediment-water exchange of HP04

2_ for 15 stations in both August and 
February indicates that sorption plays an important role in controlling sediment-water 
exchange of HPO42" during at least a part of the year in 3 of the 4 North Sea environments. 
At most stations, HPO42" adsorption constrains the flux of HPO42" to the overlying water. 
At one station in the depositional environment of the Skagerrak, however, desorption is 
responsible for the maintenance of a flux of HPO42" to the overlying water. A one-
dimensional reaction-diffusion model describing pore water HP04

2- and solid phase P 
profiles was developed and applied to results for 2 stations. The model results show that 
both enhanced retention and enhanced release of HPO42" due to sorption can be adequately 
described when simultaneous equilibrium and first-order kinetic reversible sorptive 
reactions are assumed. 

INTRODUCTION 
A substantial proportion (10-50%) of the pelagic primary production may reach the sea 

floor in continental margin environments (Jargensen, 1983). When this organic material is 

mineralized in the sediment, this results in a release of dissolved HPO42" to the pore water. 

This HPO42" can be retained in the sediment but may also escape to the overlying water, 

where it once again can become available for uptake by phytoplankton (e.g. Howarth et al., 

1995). 

Phosphorus (P) retention and release in marine sediments at short time scales are usually 

considered to be redox-dependent. When an oxidized surface layer is present, substantial 

amounts of HPO42" can be retained in the sediment through sorption to Fe oxides (e.g. 

This chapter by C.P. Slomp, J.F.P. Malschaert and W. Van Raaphorst has been submitted 
for publication in Limnology and Oceanography 
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Krom and Berner, 1980b and 1981; Sundby et al., 1992; Jensen et al., 1995). This sorption 

process generally results in a buffering of pore water HP04
2_ concentrations to low values 

in the oxidized sediment zone (Froelich, 1988; Sundby et al., 1992), thus allowing only 

limited diffusive transport of HP04
2_ to the overlying water. When, in contrast, the 

oxidized surface layer is thin or absent, the HPO42" released from organic matter and from 

Fe oxides upon their reduction can escape to the overlying water. This was first decribed for 

lake sediments by Einsele (1936) and Mortimer (1941, 1942). Redox-dependent sediment 

HPO42" release has also been simulated in long-term bell-jar incubations of coastal 

sediments (Balzer, 1984; Sundby et al., 1986) and has been observed in several continental 

margin environments (Ingall and Jahnke, 1994). 

The presence of an oxidized surface layer containing Fe oxides does not preclude release 

of dissolved HPO42" from sediments, however. There are three reasons for this. First, 

organic matter deposited on the sediment can be mineralized rapidly at or close to the 

sediment-water interface, allowing a large proportion of the released HPO42" to escape 

directly to the overlying water (Martens et al., 1978). Second, sediment irrigation may 

result in direct, non-local transport of pore water from below the oxidized zone to the 

overlying water (e.g. Aller, 1980, Emerson et al., 1984; Boudreau, 1984; Aller and Yingst, 

1985). Third, the sorption to Fe oxides is rapid and at least partly reversible (Carritt and 

Goodgal, 1954; Froelich, 1988; Sundby et al., 1992). Thus, sorption may allow the 

sustainment of a sharp gradient in dissolved HPO42" near the sediment-water interface. This 

may result in a substantial flux of dissolved HPO42" to the overlying water, even when 

HPO42" concentrations in the oxidized surface sediment are low. This has been 

demonstrated for intertidal sediments with a kinetic model for HPO42- sorption in surface 

sediments (Van Raaphorst et al., 1988; Van Raaphorst and Kloosterhuis, 1994). 

Such a desorption enhanced flux can only be maintained over longer periods of time 

when there is a sufficient supply of HPO42" to the sediment near the sediment-water 

interface. Since the buffering of pore water HPO42" concentrations precludes supply 

through aqueous diffusive transport of HPO42", this P must be supplied as desorbable Fe-

bound P. This Fe-bound P may be deposited from the overlying water or may be formed 

near the redox boundary and subsequently transported upward through bioturbation. The 

importance of this latter mechanism depends on the rate of sediment mixing and the in-situ 

sorption coefficient, as was demonstrated with an equilibrium model for sorption by Schink 

and Guinasso (1978). 

In the current models used to describe the effect of sorption on sediment-water exchange 

of dissolved constituents, sorption is assumed to be either instantaneous (Schink and 

Guinasso, 1978) or is assumed to follow first-order kinetics (Van Raaphorst et al., 1988). 

Many laboratory studies with synthetic and natural Fe oxides have shown, however, that P 
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sorption comprises both fast and slow reactions. Rapid P sorption presumably results from 

the reaction of P with surface sites on Fe oxides (Parfitt, 1978). Slow P sorption has been 

attributed to slow diffusion into Fe-oxide crystals (Barrow, 1983; Parfitt, 1989) or 

aggregates of crystals (Madrid and Arambarri, 1985; Willett et al., 1988; Torrent et al., 

1992), and slow formation of P-containing precipitates (Van Riemsdijk et al., 1984). Slow 

sorption is usually found to be more pronounced for poorly ordered Fe oxides, such as e.g. 

ferrihydrite, than for more crystalline minerals such as hematite and goethite (Parfitt, 1989; 

Torrent et al., 1992). The Fe oxides that are formed in-situ in marine sediments and that are 

responsible for the binding of P are probably mainly poorly crystalline (Slomp et al., 

1996a). Consequently, the present practice of assuming only one type of sorption reaction 

when modelling the effect of sorption on sediment-water exchange of HP04
2~ in marine 

environments may strongly bias the results. 

The aim of this study was to determine the role of HP04
2" sorption to Fe oxides in 

controlling sediment-water exchange of dissolved HPO42" in different types of continental 

margin environments. To reach this aim, we measured pore water profiles of HPO42" and 

Fe2+, rates of sediment-water exchange of HPO42" and solid phase P and Fe concentrations 

in the surface sediment at 15 locations in the southern and eastern North Sea, in August 

1991 and February 1992. The results for 2 stations are combined with data on HP04
2_ 

sorption and profiles of solid phase P (Fe-bound, organic and Ca-bound P) using a one-

dimensional reaction-diffusion model. This model describes the sedimentary cycle of P and 

takes both fast and slow HPO42" sorption kinetics into account. 

STUDY SITES 

A total of 15 stations located in the southern and eastern North Sea, including the 

Skagerrak, were visited during 2 cruises with RV Pelagia in August 1991 and February 

1992 (Fig. 1). The positions, water depths and bottom water temperatures of these stations 

are listed in Table 1. An extensive description of the general characteristics of the stations 

visited (Lohse et al., 1995; Slomp et al., 1997) as well as data on 0 2 dynamics, NH4 

sorption and Fe, Mn, N and Si cycling are given elsewhere (Gehlen et al., 1995; Lohse et 

al., 1993, 1995, 1996; Slomp et al, 1996a, 1997; Van Raaphorst and Malschaert, 1996). 

The stations are located along the main transport route of suspended matter in the North Sea 

(Fig. 1). Based on sediment grain size and the quality of the organic matter deposited at 

these stations, 4 clusters of stations are distinguished (Table 2 and Lohse et al., 1995). 

Cluster IA and IB consist of stations with silty sediments located in the depositional 

environments of the German Bight and the Skagerrak with sedimentation rates of 0.5-1 cm 

y-' (Eisma and Kalf, 1987; Von Haugwitz et al., 1988) and 0.1-0.5 cm y 1 (Van Weering et 
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58° 

Fig. 1. Map of the North Sea showing the sampling locations and station numbers. Arrows indicate 
the main transport routes of water and suspended matter in the North Sea. Stippled areas indicate 
main depositional regions. 

al., 1987; Anton et al., 1993), respectively. Large amounts of fresh organic material are 

deposited in the shallow area of the German Bight in summer. Organic matter inputs in the 

Skagerrak are dominated by a more or less constant inflow of relatively refractory 

compounds from other areas. Cluster II consists of stations with fine sandy sediment in 

areas with frequent temporary deposition of organic matter. Cluster III, finally, consists of 

stations with medium sandy sediments, where erosion is dominant and where organic 

matter deposition is restricted to periods of calm weather. 
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Table 1. Number, name, geographical position, water depth and bottom water temperature 
(February, August) at the 15 visited stations. 
No. 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
16 
17 

Station 

Boundary 
Silverpit 
Doggerbank 
Oystergrounds 
Weiss Bank 
Tail End 
Skagerrak W. 
Skagen 
Hirtshals 
Jutland 
Esbjerg 
Helgoland Bight 
Elbe Rinne 
Frisian Front 
Hook of Holland 

Geographical position 
N 

53°30' 
53°28' 
54°50' 
54°25' 
55°17' 
56°00' 
57°26' 
58°20' 
57°50' 
56°40' 
55°12' 
54 05' 
54° 14' 
53°42' 
52°07' 

E 
03°01' 
00°40' 

oroo' 
04°04' 
06°00' 
04°38' 
07°37' 
10°27' 
10°01' 
06°43' 
07°38' 
08°09' 
07°20' 
04°32' 
03°45' 

Water depth 
(m) 
33 
89 
58 
49 
49 
50 
130 
330 
64 
41 
25 
19 
39 
39 
26 

Temperature (°C) 
Aug-91 

16.8 
14.4 
8.2 
10.2 
12.2 
9.5 
7.3 
6.9 
12.2 
10.0 
17.7 
18.7 
16.5 
17.4 
18.5 

Feb-92 
5.8 
-

6.4 
6.4 
5.8 
6.1 
6.4 
7.0 
6.8 
5.2 
4.8 
4.4 
5.4 
6.3 
5.8 

EXPERIMENTAL METHODS 
Sample collection. Sediment cores were collected with a cylindrical box corer (31 cm i.d.) 

which enclosed 30 to 50 cm of sediment column together with 20 to 40 cm of overlying 

water. Subcores were taken with plastic liners. All subsequent sediment handling took place 

on board ship at in situ temperature. 

Pore water and solid phase analysis. To obtain pore water, sediment was sliced in 9 depth 

intervals (0-0.4, 0.4-1.0, 1.0-1.5, 1.5-2.0, 2.0-3.0, 3.0-4.0, 4.0-6.0, 6.0-8.0, 8.0-10.0 cm) 

under N2 immediately after core collection. Slices from each interval were pooled and 

centrifuged at 1700 g for 10 minutes. Bottom water samples were obtained from the 

overlying water from one of the box cores. The filtered (cellulose acetate, 0.45 um) samples 

were acidified to pH « 1 and stored at 4°C until analysis for HP04
2_ and Fe2+. Unacidified 

samples gave erroneously low HPO42" concentrations for slices from below the oxidized 

zone, presumably due to Fe oxide precipitation in the sample vials (see Bray et al., 1973). 

Sediment sliced from 7 depth intervals (0-0.5, 0.5-1.0, 1.0-2.0, 2.0-4.0, 4.0-6.0, 6.0-8.0, 

8.0-12.0 cm) was stored frozen (-20°C) until solid phase analysis. Porosity was determined 

by weight loss of the sediment after drying at 60°C for 48 h and assuming a specific 

sediment weight of 2.65 kg dm"3. Organic C and total N were measured with a Carlo Erba 

1500-2 elemental analyzer. Organic C was determined as the C concentration in the 

samples after treatment with sulfurous acid (Verardo et al., 1990). All sediment N was 

assumed to be present in an organic form. Grain size distribution was determined with a 
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Malvern particle analyzer (McCave et al., 1986) after removal of carbonate and organic 

matter with HCl and H202 . 

Three non-sequential extraction procedures were used for the determination of the 

sediment P speciation: (1) Citrate-dithionite-bicarbonate extractable P (CDB P; pH=7.3, 8 

h, 20°C) was assumed to represent total Fe-bound P (Ruitenberg, 1992); (2) 1 M HCl 

extractable P (24h, 20°C) was used as a measure for inorganic P; (3) 1 M HCl extractable P 

after ignition of the sediment (24 h, 550°C) was assumed to represent total P. Organic P was 

determined as the difference between total and inorganic P (Aspila et al., 1976; Ruttenberg, 

1992). The difference between inorganic and Fe-bound P was used as a measure for Ca-

bound P (presumably detrital and authigenic apatite and perhaps also some CaCC^-bound 

P). Untreated, wet sediment was used for the CDB procedure. Oven-dried (60°C), ground 

(teflon mortar and pestle) material was used for the HCl extractions. The extractions were 

applied to surface samples (0-0.5 cm) from all stations collected in February (CDB, HCl) 

and August (HCl). Complete profiles were only obtained for stations 9 (February) and 14 

(February and August). The precision of the individual P extractions was generally -5%. At 

stations where organic P concentrations were low (< 2 |imol g"1), the organic P 

concentration was equal to the very small difference between relatively large numbers. This 

resulted in large uncertainties in the organic P concentrations (on average -50 %) and these 

results should therefore be interpreted with caution. 

0.2 M NH4-oxalate/oxalic acid buffer (2 h, oxic conditions in the dark; Schwertmann 

and Cornell, 1991) was used to dissolve Fe present in poorly crystalline Fe oxides (Slomp 

et al., 1996a) in surface sediment (0-0.5 cm) collected at all stations in February 1992. 

Sediment-water exchange rates of HPO42". Fluxes of HPO42" across the sediment-water 

interface were measured using 5 intact sediment cores (i.d. 10 cm) of which the overlying 

water was carefully replaced by 0.75 dm3 of filtered (cellulose acetate, 0.45 um) bottom 

water to exclude effects of algae or suspended particles on the measured fluxes. All cores 

were incubated for 6 h at in-situ temperature under constant bubbling of air which kept the 

overlying water well-mixed and saturated with 0 2 (Van Raaphorst and Kloosterhuis, 1994). 

Samples (a total of 7) were taken each 30-120 minutes, filtered (cellulose acetate, 0.45 urn) 

and analyzed for HPO42" on board. Fluxes were calculated from the change in the amount 

of dissolved HPO42" in the overlying water corrected for the volume change due to 

sampling. 

Diffusive fluxes were calculated from the pore water profiles using Fick's first law. The 

concentration gradient at the sediment-water interface was estimated from the dissolved 

HPO42" concentration in the overlying water and the average concentration in the 0-0.4 cm 
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Table 2: General sediment characteristics at the 15 stations. Clusters indicate depositional (IA and 
B), transitional (II) and erosional (III) areas. All sediment parameters were determined for the 0-0.5 
cm sediment layer in February 1992 (with the exception of station 3). Sediment classification is 
based on the Wentworth size scale (Pettijohn et al, 1972). 

Cluster 

IA 
IB 

II 

III 

Station 
no. 
13 
9 
10 

2 
5 
6 
7 
8 
12 
14 
16 

3 
4 
11 
17 

Organic C 
(wt %) 
0.74 
2.76 
0.82 

0.19 
0.17 
0.17 
0.15 
0.14 
0.07 
0.39 
0.28 

_ 
0.03 
0.03 
0.04 

Organic N 
(wt %) 
0.092 
0.334 
0.099 

0.034 
0.026 
0.023 
0.025 
0.018 
0.014 
0.049 
0.033 

_ 
0.004 
0.008 
0.002 

Porosity 
(vol vol"1) 

0.63 
0.89 
0.73 

0.50 
0.49 
0.58 
0.42 
0.41 
0.40 
0.57 
0.54 

_ 
0.44 
0.36 
0.37 

Median 
grain size 

(um) 
15 
6 
36 

128 
103 
85 
125 
175 
187 
98 
75 

>350 
>295 
>300 
>340 

Sediment 
classification 
(Wentworth) 
medium silt 
medium silt 
coarse silt 

fine sand 
very fine sand 
very fine sand 

fine sand 
fine sand 
fine sand 

very fine sand 
very fine sand 

medium sand 
medium sand 
medium sand 
medium sand 

depth interval in the sediment. The diffusion coefficient (Ds) was calculated from the data 

of Krom and Berner (1980a) correcting for temperature and porosity. 

Sorption experiments. Sorption isotherms were determined for 8 stations (st. 5, 8, 9, 10, 

13, 14, 16 and 17) directly after sediment retrieval in February. Centrifuge tubes (50 cm3) 

were filled with 5 or 15 cm3 of fresh wet surface sediment (0-0.5 cm depth) and 30 or 15 

cm3 of filtered (0.2 um), low nutrient ([HPO42"] = 0.05 umol dm-3), ocean water spiked 

with various amounts of dissolved HPO42". The added amounts of HPO42" were such that 

final HP04
2_ concentrations at the end of each experiment mostly ranged between 0.5 and 

10 umol dm"3. The total volume of the sediment slurries was either 30 or 35 cm3. All tubes 

were shaken vigorously immediately, then every 15 minutes during the first hour and 

subsequently, every few hours until final sampling after 48 hours. After centrifugation 

(1700 g, 15 min.) the supernatant was removed, filtered (0.45 urn) and analyzed for HPO42" 

and Si(OH)4. The Si(OH)4 analysis was included to determine whether silicate sorbed to Fe 

oxides was displaced by HPO42". The sediment residue was dried (60°C) and weighed. The 

amount of P sorbed to the sediment was calculated from the change in the HPO42" 

concentration during the experiment. 
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To obtain insight in the kinetics of sorption, 4-6 centrifuge tubes were filled with 15 cm3 

of fresh wet sediment and incubated with 15 cm3 of oceanwater. Initial concentrations of 

HP04
2" ranged between 6 and 10 umol dm-3. The tubes were removed at different time 

intervals during the 48 hour incubation (the first at t = 15 min.). Additional incubations 

were carried out with sediment from 2 North Sea locations representative for stations 5 and 

17 during a separate cruise in February 1993. In this case, 18 to 20 tubes were filled with 5 

cm3 wet sediment and 30 cm3 ocean water and initial HPO42" concentrations were higher: 

55.4 (st. 5) and 41.2 umol dm"3 (st. 17). 

Sorption isotherms were obtained by plotting the amount of HPO42" adsorbed on or 

desorbed from the sediment, calculated from the change in dissolved HPO42" during the 

experiment, on the y-axis, and the final HPO42- concentration in solution on the x-axis. The 

results were described with a Freundlich isotherm: 

NAP+Psor=KFCV" (1) 

where NAP (Native Adsorbed P) is the amount of P sorbed to the sediment at the start of 

the experiment (umol g_1), Psor is the amount of P sorbed to the sediment during the 

experiment (umol g"1), KF(dm3 g"1) and n (dimensionless) are empirical constants and C is 

the final HPO42" concentration (umol dm-3). Values for NAP, KF and n were obtained by 

fitting equation (1) directly to the experimental data by minimizing the sum of squared 

differences between the measured and calculated amounts of sorbed P. The HP04
2_ 

concentration at which no sorption or desorption of HP04
2_ occurs (Equilibrium Phosphate 

Concentration or EPC0; e.g. Froelich, 1988), was calculated from: 

EPC0= 10 F (2) 

Sorption coefficients (KF) were calculated from the slope of the isotherms: 

^ l = ^ C ( l / » - D (3) 
F n 

The value of KF' thus depends on the HP04
2- concentration. At C = 1 umol dm-3, KF' is 

equal to KF/n. Dimensionless sorption coefficients (K^jm) were obtained by multiplying 

KF' by a conversion factor &, the in-situ solid-solution ratio in gram of dry sediment per 

dm3 of pore water (Krom and Berner, 1980b): 
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S = P*[(1-*)/*] (4) 

where p s is the average density of the sediment particles (2650 g dm-3) and <|> is the 

sediment porosity (dm3 dm"3). 

A simple model was developed to describe the change in the HPO42" concentration with 

time during the kinetics experiments. The model is compatible with the assumption that two 

types of sorption sites are present which differ in their accessibility for HPO42" (Fuller et 

al., 1993; Lookman et al., 1995). These are presumably surface sites on Fe oxides and sites 

in Fe oxide crystals or aggregates of crystals (see introduction). HPO42" sorption is assumed 

to consist of 2 simultaneous, reversible reactions: an instantaneous, equilibrium reaction 

and a first-order process: 

<1 + * / » > f = - r**S<C-^> (5) 

where Kim is a linear sorption coefficient for equilibrium sorption (dimensionless), C is the 

HPO42" concentration (umol dm"3), t is time (d_1), r is the solid-solution ratio during the 

incubation (g dm-3), k^ is the sorption mass transfer coefficient for the first-order reaction 

(dm d"1), S is the specific surface area of the sorbing solids (dm2 g"1), and Ce is the 

equilibrium HPO42" concentration (umol dm"3) for the first-order reaction. It is important to 

note that the first-order approach gives a rather simple, non-mechanistic description of the 

slow sorption processes. The equilibrium that is assumed to be reached is an apparent, not 

actual equilibrium and the constant value of Ce has no direct physical or chemical 

relevance. Equation (5) was solved for the boundary conditions: C = C0 at t = 0, where C0 

is the equilibrium concentration for the instantaneous sorption reaction and C —» Ce when 

t —> 00. This gives: 

-( TkkS ), (6) 
C=(C0-Ce)e

 ( 1+A: '« ) +Ce=(C0-Ce)e-V+Ce 

Values of ß, C0 and Ce were estimated by fitting equation (6). An additional fit procedure 

was carried out in which Ce was set equal to the EPC0 value calculated from the sorption 

isotherm (Table 4). Kim was calculated as: 

K
 Psor = (CJ-CQ) (7) 
H" (C0-EPC0) (C0-EPC0) 

with Cj being equal to the initial HPO42" concentration of the incubation solution (umol 

dm"3) and P s o r to the amount of P sorbed to the sediment (umol dm-3) through equilibrium 
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sorption. The value of k^ x S was then calculated from ß (equation 6). At in-situ sediment-

solution ratios the first-order rate constant for the slow reaction is equal to k^ x S x 9 (d-1). 

Chemical analysis of P, Fe and Si. HP04
2~ was measured as soluble reactive P according 

to the method of Strickland and Parsons (1972) using either a Shimadzu Spectrophotometer 

(HCl extracts, pore water) or a TRAACS-800 autoanalyzer (sorption and flux experiments). 

Total P in the CDB solutions was measured using an Inductively Coupled Plasma-Atomic 

Emisson Spectrophotometer (ICP-AES; Spectro Analytical Instruments). Total Fe in the 

pore water samples (mostly present as Fe2+) and in the NF^-oxalate buffer solutions was 

measured using a Perkin Elmer 5100 Atomic Absorption Spectrophotometer. Si(OH)4 in 

the sorption samples was measured on a TRAACS-800 autoanalyzer following the 

procedure of Strickland and Parsons (1972). 

DESCRIPTION OF THE REACTION-DIFFUSION MODEL 
To obtain more insight in the effect of sorption in surface sediments on the sediment-water 

exchange of HP04
2_, a one-dimensional reaction-diffusion model describing the 

sedimentary P cycle was developed. The steady state model describes the concentration 

change with depth of pore water HP04
2~ (C), and 4 forms of particulate P, i.e. organic P 

(G), Fe-bound P (M), sorbed P (S), and Ca-bound P (A) which includes both detrital Ca-P, 

CaC03-P and authigenically formed carbonate fluorapatite (CFA; Van Cappellen and 

Berner, 1988; Ruttenberg and Berner, 1993; Slomp et al., 1996b). Transport of solid phase 

P is assumed to occur through bioturbational/physical mixing, described as a biodiffusion 

process, and through sediment accumulation. Transport of dissolved HPO42" additionally is 

assumed to take place through molecular diffusion and burrow irrigation. The latter process 

is modelled by including a non-local source/sink term that permits the exchange of pore 

water from any depth in the sediment (within the depth interval under study; this should not 

exceed the depth where burrowers can be active) and the overlying water (Emerson, et al., 

1984;Boudreau, 1984). 

The sediment column is divided into 2 zones (Fig. 2): an oxidized surface zone (I: 0 < x 

< L]) and a reduced sediment zone (II: x > Lj). The processes included are (1) release of 

HPO42" from organic P due to organic matter mineralization (zone I and II), (2) reversible 

kinetic sorption of HPO42" to Fe oxides resulting in Fe-bound P formation (zone I), (3) 

reversible equilibrium sorption of HPO42" assuming a linear isotherm resulting in the 

presence of sorbed P (zone I and II), (4) release of HPO42" from Fe-bound P due to 

reductive dissolution of Fe oxides (zone II) and (5) precipitation of an authigenic Ca-P 

mineral (zone II). All release and removal processes, with the exception of (3) are described 

as first-order reactions, with the rate being equal to a rate constant times the difference 
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water column 

Org. P 

k V 

HPO42 ' I < ~ Fe-P 

» oxidized sediment 

I 
Detr. Ca-P 

Sorbed P 
eql 

Org. P 

I 
reduced sediment 

vm 
HPQ4

Z' J <r Fe-P Detr. Ca-P 

l ^ | s o r b e d p | J J 
Keq2 

n 

Auth. Ca-P 

I 
Fig. 2. Schematic representation of the sedimentary P cycle as assumed in the model. For an 
explanation of the symbols, see the text. 

between the actual concentration and an equilibrium (pore water) or asymptotic (solid 

phase) value. The rate constants for the processes (1), (2), (4) and (5) listed above are kg, 

ks, km, and ka, respectively. The pore water equilibrium concentrations for kinetic sorption 

and for authigenic P precipitation are Cs and Ca, respectively. The particulate P 

concentrations of Fe-bound and organic P at which no further release occurs are equal to M 

00 and G«,. The dimensionless sorption coefficients for equilibrium sorption in zone I and II 

are Keq] and Keq2, respectively. 

Pore water HP04
2" and the particulate P forms have units of mol per m3 pore water and 

umol per gram of dry sediment, respectively. A conversion factor 9 (equation 4, in units of 

g cm"3) is used to enable combination of dissolved HP04
2" and solid phase P in one model. 

The molecular (Ds) and biodiffusion (Dj,) coefficients (both in units of m2 d"1), the 

sedimentation rate (ra, in units of m d"1), the non-local transport coefficient (a, in units of 

d"1), the reaction rate constants (kg, ks, km and ka in units of d"1), the sorption coefficients 
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for equilibrium sorption in each zone (Keq] and Keq2) and sediment porosity (<)>, in units of 

m3 nr3) are assumed to be constant with depth in each relevant layer. 

The set of differential equations for the one-dimensional distribution of pore water 

HP04
2" (C) and three particulate P forms (G, M, A) are given in the Appendix (A1-A8). 

Instantaneous, reversible linear equilibrium sorption makes the amount of sorbed P (S) a 

known function of pore water HPO42" (Appendix: A9-A10). The equations A1-A8 were 

solved analytically assuming continuity in concentrations and fluxes of both dissolved 

HPO42" and solid phase P at the boundary between the two sediment zones (x = L]) and 

considering appropriate conditions at x = 0 and x —> 00. Constant fluxes of organic P, Fe-

bound P and Ca-bound P from the overlying water to the sediment were assumed at x = 0 

(JGx=0' JMX=0- JAX=0> respectively). The pore water HP04
2" concentration at x = 0 was 

assumed to be equal to the bottom water concentration (C0). When x -> 00, asymptotic 

values for organic P and Fe-bound P (GQO and M^) are assumed to be reached. 

Additionally, the pore water HPO42" concentration is assumed to reach a constant value (E), 

and the gradient in authigenic P (A) is assumed to be zero. This latter assumption only 

holds when Ca = C0, so when including authigenic P formation in the model calculations, 

Ca must always be set equal to C0. The mathematical expressions for these boundary 

conditions are given in the Appendix (Al 1-A26). 

Three model settings (termed model i, ii and iii) were used when applying the model to 

measured pore water HPO42" and solid phase P profiles. Further details are given in the 

model application section. In each model setting, up to 8 of the following 9 parameters 

(JGX=O> -"AX=0' J]VIX=0' GOO> MQQ, ks, kg, ka, a) were varied to fit the model to experimental 

data using iteratively reweighted regression (Draper and Smith, 1967). Variance-weighted 

sums of squares of the difference between the modelled and experimental values were 

minimized for all 4 components, i.e. HPO42", organic P, Fe-bound P and Ca-bound P, 

simultaneously. This means that up to 8 fit parameters were used for 4 profiles with a total 

of 30 data points. The relatively large number of parameters did not lead to a large degree 

of freedom when fitting the parameters, due to the strongly coupled nature of the equations 

(see Van Cappellen and Wang, 1996). The other parameters (Lj, (|>, Ds, D ,̂, co, C0, Ca, Cs, 

Keq], Keq2, km) were fixed based on experimental results obtained in this study and data 

from the literature. 

EXPERIMENTAL RESULTS 
Sediment characteristics. Sediment porosity, organic C, N and P and inorganic P 

concentrations were considerably higher in the silty sediments (cluster IA and B) than in the 

sandy sediments (cluster II and III; Tables 2 and 3). There was no significant seasonal 

difference in organic C, N and P, and inorganic P concentrations in the surface sediment 



Sorption and sediment-water exchange of phosphate 115 

Table 3. Sediment P speciation and 0.2 M NFfy-oxalate/oxalic acid extractable Fe for the 0-0.5 cm 
sediment layer at 15 North Sea locations in August 1991 (in italics) and February 1992. No 
representative sample for station 3 could be obtained due to the very coarse and heterogeneous 
nature of the sediment. 

Cluster 

IA 
IB 

II 

III 

Station 
no. 

13 
9 
10 

2 
5 
6 
7 
8 
12 
14 
16 

3 
4 
11 
17 

Org.P 
(umol g" 

4.75 
11.35 
3.59 

1.31 
0.97 
0.28 
0.59 
1.38 
0.86 
1.52 
2.54 

. 
0.48 
1.68 
1.11 

') 

3.50 
9.16 
3.33 

1.13 
0.76 
0.96 
0.40 
0.31 
0.27 
1.58 
1.20 

-
0.75 
1.66 
1.65 

Inorg. 
(umol g 

15.39 
18.79 
13.38 

8.02 
3.70 
5.36 
5.81 
4.52 
3.58 
9.92 
9.48 

-
7.75 
7.49 
2.84 

P 
-') 

15.22 
16.87 
13.66 

7.64 
7.77 
6.03 
4.80 
4.17 
2.74 
9.91 
8.79 

-
5.84 
2.62 
1.91 

Fe-bnd. P 
(umolg-1) 

9.90 
14.70 
7.97 

2.97 
2.17 
2.31 
2.18 
2.30 
1.58 
3.90 
2.52 

_ 
4.10 
4.06 
1.52 

NH4-0X. Fe 
(umol g"1) 

67.2 
108.8 
68.8 

33.6 
24.4 
27.6 
9.8 
13.5 
2.7 
53.3 
57.8 

_ 
32.0 
5.8 
4.4 

(paired t-test, p = 0.05). Fe-bound P is correlated with NH4-oxalate Fe in February (Fe-bnd. 

P = 0.11 x NH4-0X. Fe + 0.60, r2 = 0.75, n = 14). Fe-bound P accounts for between 25 and 

60% of total P in these sediments. 

Pore water profiles of Fe2+ and HPO42". The redox conditions in February 1991 and 

August 1992 at these 15 stations have been discussed in detail in a separate paper on Fe and 

Mn cycling (Slomp et al., 1997). In short, maximum depths of O2 and NO3" penetration 

ranged between < 250 urn to -2.5 cm and ~1 to ~5 cm, respectively, at most cluster IA, IB 

and II stations. O2 and NO3" penetrated much deeper into the sediment at the cluster III 

stations (for O2 mostly between ~3 to ~15 cm depth). With the exception of these latter 

stations and the deep station in the Skagerrak (cl. IB; st. 9), penetration depths of both O2 

and NO3" were significantly larger in February than in August. All stations with 0 2 

penetration depths less than 250 urn in August are located in the German Bight region (st. 

12, 13 and 14). Increased levels of pore water Mn2+ and Fe2+ were generally observed at 

depths where the sediment became depleted of O2 and N03", respectively. Only the Fe2+ 

profiles are repeated here. 



116 Chapter 5 

A. Cluster IA and IB 
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o 
•o 

200 400 800 800 

Fe2+ (Mmol dm"3) 

50 100 150 

HPO/- (umol dm-') 
0 5 10 0 

B. Cluster II 

0 20 40 

Fe2+ (umol dm3) 

Fig. 3. Pore water profiles of HPO42" and Fe2+ (|imol dm"3) at all stations (A: Cluster IA and B, B: 
Cluster II, C: Cluster III) in August 1991 (filled circles) and February 1992 (open circles). 
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Fig. 3. (continued) 
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A. Measured HP04
2" flux (mmol m"2 d"1) 
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Fig. 4. Rates of sediment-water exchange of HPO42" at all stations in August 1991 (black bars) and 
February 1992 (white bars) as (A) measured in flux core incubations and (B) calculated assuming 
molecular diffusion. Positive fluxes are directed to the water column. Error bars in (A) indicate the 
standard deviation (n=5). Note the difference in scale in panels (A) and (B). 



Sorption and sediment-water exchange of phosphate 119 

Comparison of the pore water Fe2+ and HP04
2" profiles (Fig. 3) shows that HP04

2_ 

concentrations were generally much lower in oxidized sediment than in reduced sediment. 

This is presumably due to removal of HP04
2" in oxidized sediment through sorption to Fe 

oxides. S-shaped HPO42" profiles were found at stations in the depositional environments 

of cluster IA and IB. This type of profile is characterized by a sharp increase in pore water 

HPO42" concentrations when going from the bottom water to the oxidized surface sediment, 

nearly constant pore water concentrations in the oxidized zone, and a rapid increase below 

this region. Remarkably, the HPO42" pore water profiles of station 13 suggest that sorptive 

removal of HPO42" extended into the reduced zone both in August and February. The effect 

of seasonal changes in sediment redox conditions on pore water HPO42" concentrations was 

most pronounced for station 13 (cl. IA) and many cluster II stations. Here, sharp HPO42" 

gradients were found near the sediment-water interface in August which were absent in 

February. At many cluster II stations, a decrease of the HPO42" concentration with depth 

was observed in a part of the reduced zone. Concentrations of both Fe2+ and HPO42" were 

very low at the cluster III stations. 

Sediment-water exchange of HPO42-. The flux of dissolved HPO42" was directed from 

the sediment to the bottom water at all stations in August (Fig. 4A). The highest effluxes 

(up to 1.7 mmol nr2 d"1) were measured at stations 12, 13 and 14 in the German Bight 

where the sediment was almost completely anoxic at this time of year. In February, both 

small influxes and effluxes of HPO42" were measured at the cluster II and III stations. The 

effluxes were generally lower than in August. The largest seasonal change occurred at 

station 13 (cluster IA) where the efflux of HPO42" in February was a factor 110 lower than 

that in August. 

Diffusive fluxes calculated from the pore water profiles (Fig. 4B) were much lower (up 

to a factor 30) than measured fluxes at most stations. Station 16 was the only station for 

which a minor influx of HPO42" was calculated in February. 

Sorption experiments. At all 8 stations, the Freundlich equation gave a good description of 

the isotherms (Fig. 5). Values for EPC0 were approximately equal to or lower than 

measured pore water concentrations in the upper 0.4 cm of the sediment (Table 4). Sorption 

coefficients at a HPO42" concentration of 1 umol dm"3 (KF'=KF/n) were well correlated with 

sediment porosity, NH4-oxalate Fe, Fe-bound P and % organic C (r2: 0.71-0.84). 

Dimensionless sorption coefficients (K(jjm) ranged from 32 at station 17 (cluster III) to 584 

at station 13 (cluster I A). There was a linear relationship between the amount of P sorbed to 

the sediment and silicate release from the sediment above a large background release of 



120 Chapter 5 

0.8^ 

0.6-
^ 
'oo 
ö 0.4-
E 
3. 

°- 0.2-

•S 
° n ri­tt) u.u-

-fl 9-
C 

13 

) 2 4 6 

A 

5 

8 10 

0.8-

~ 0.6-
'o> 
"5 
E 0.4-

Q. 

so
rb

ed
 

> 
o

 

u.u-

-0.2-

13 
S 

16 

10 

B 

14 

— — 5 

. 8 
17 

r/ / ' 

10 

HPO/- (Mmol dm-3) 

Fig. 5. Sorption isotherms for (A) stations 5 and 13 (including data points) and (B) stations 5, 8, 9, 
10, 13, 14, 16 and 17 (data points omitted for clarity). Final HP04

2" concentrations at t = 2 days are 
given on the x-axis. The amount of P adsorbed to or desorbed from the sediment during the 
sorption experiments (P so r; equation 1) is given on the y-axis. Lines are Freundlich isotherms 
fitted to the data (mean r2 = 0.95 for the linear form). 

silicate at all stations. This indicates a displacement of sorbed silicate by HPO42". The ratio 

between the amount of HPO42" sorbed and the extra Si(OH)4 released ranged from 8.3 to 50 

mol mol"1 (Table 4). 

Practically all of the HPO42" sorbed to the sediment during the kinetics experiments at 

low intial HPO42" concentrations, was removed from solution within the first 15 minutes, as 

shown for stations 9 and 13 in Fig. 6A and B. In the experiments where higher initial 

HPO42" concentrations were used, HPO42" was also removed rapidly from solution (Fig. 6C 
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Fig. 6. Changes in the HP04
2" concentration (umol dm-3) with time during kinetics experiments 

with low (A, B) and high (C, D) initial HP04
2" concentrations for stations 9, 13, 5 and 17, 

respectively. The molar ratio of P sorbed during the experiment with high initial HP04
2" 

concentrations and NH4-ox.-Fe for stations (E) 5 and (F) 17. Thin solid lines indicate fits to a first-
order model. Fits to the model assuming simultaneous equilibrium and first-order sorption 
(equation 6) are indicated with thick solid (Ce free) and thick dotted (Ce fixed) lines. 

and D). In this case, however, HP04
2~ concentrations continued to decrease slowly 

throughout the experiment. The corresponding plots of sorbed P normalized to 

concentrations of solid NH^oxalate Fe are given in Fig. 6E and F. Model fits to the data 

using both a first-order model and the model assuming simultaneous equilibrium and first-

order kinetic sorption (equation 6) are shown in Fig. 6C-F. At both stations, the latter model 

gives the best description of the results, regardless of whether C e is a free or fixed 

parameter. Fitted values of C e were 10.0 and 32.2 ^mol dm-3 and corresponding values of 



122 
Organic P (jjmol g"1) 

5 10 0 1 2 

Chapter 5 

Fe-bound P ((jmol g ) 
0 5 10 15 0 2 4 

Ca-bound P (|jmol g"1) 
4 8 0 4 

Fig. 7. Organic P, Fe-bound P and residual P at station 9 (cluster IB) and station 14 (cluster II) in 
February (open circles) and August (filled circles). 

1% x S amounted to 7.5 and 7.4 cm3 g"1 d~' for stations 5 and 17, respectively. When Ce 

was fixed at the value for EPC0 (st. 5: 0.77; st. 17: 0.36; Table 4) fitted values for k^ x S 

were 2.7 and 0.2 cm3 g"1 d"1, for these stations. The corresponding in-situ sorption 

coefficients ( k^xSx 9) are 20 d"1 and 33 d"1 (Ce fixed) and 7.2 and 0.9 d"1 (Ce free). 
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Table 4. The empirical constants for the Freundlich isotherms (Kp, n), the calculated amount of 
Native Adsorbed Phosphorus (NAP) and the calculated equilbrium phosphate concentration 
(EPC0), pore water HPO42" concentrations measured in the upper 0.4 cm of the sediment (pw. 
HPO42"), sorption coefficients calculated from the gradient of the isotherms at C = 1 umol dm"3 

(Kp/n) and corresponding dimensionless sorption coefficients (Kdjm), and the ratio between the 
amount of HPO42" sorbed to and Si(OH)4 released from the sediment during the sorption 
experiments (-dP/dSi). 

St. 
no. 
5 
8 
9 
10 
13 
14 
16 
17 

Kp 
(dm3 g-1) 

0.22 
0.05 
1.06 
0.58 
1.81 
0.16 
0.14 
0.030 

n 

(-) 
3.08 
1.84 
2.43 
2.39 
4.82 
2.32 
2.08 
4.26 

NAP 
(umolg-1 

0.21 
0.06 
1.29 
0.62 
1.66 
0.11 
0.08 
0.023 

EPC0 

(umol dm" 
0.77 
1.78 
1.62 
1.16 
0.67 
0.37 
0.34 
0.36 

pw. HPO42-
3) (umol dm"3) ( 

0.82 
1.52 
1.58 
1.67 
1.39 
0.82 
0.93 
0.79 

Kp/n 
:m3 g"1) 

73 
25 
436 
243 
375 
70 
65 
7 

Kdim 
(-) 
201 
94 
143 
238 
584 
139 
147 
32 

-dP/dSi 
(mol mol"') 

18 
8.3 
8.7 
15 
6.5 
18 
10 
50 

Sediment P profiles. Organic P concentrations decrease slightly with depth at station 9 

(Fig. 7). At station 14, organic P concentrations are very low and show substantial 

scatter.At both stations, concentrations of Fe-bound and total inorganic P decrease with 

depth. Ca-bound P concentrations increase with depth at station 9, but remain relatively 

constant with depth at station 14. Apart from Fe-bound P, no clear seasonal change in 

sediment P speciation was observed at station 14. 

APPLICATION OF THE REACTION-DIFFUSION MODEL 

To obtain more insight in the role of sorption in controlling sediment-water exchange of 

HPO42" in both high and low sedimentation environments, the model was applied to the 

pore water HPO42" and solid phase P profiles of station 9 (cluster IB) for February and 

station 14 (cluster II) for February and August. 

Three model settings (termed model i, ii and iii) were used. In model (i) P sorption is 

solely decribed as a reversible equilibrium process. All Fe- and Ca-bound P is supplied 

from the overlying water. In model (ii), both equilibrium and kinetic sorption are assumed 

to be operative. Slow, kinetic sorption is responsible for in-situ formation of Fe-bound P. 

All Ca-bound P but only a part of the Fe-bound P is supplied from the overlying water. In 

model (iii), conditions are as in model (ii) except now all Ca-bound P is assumed to have 

been formed in the sediment. Model calculated rates of non-local transport are directly 

linked to rates of HPO42" production and to rates of HPO42" removal through authigenic 

Ca-bound P formation. By comparing the results of model (iii) and (ii) it is possible to 

evaluate whether, at a given rate of HPO42" production, it is likely that non-local transport 
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Fig. 8. Model fits to profiles of pore water HP04
2", organic P, Fe-bound P, Ca-bound P and sorbed 

P for the 4 model settings for stations 9 (February) and 14 (February and August).(i): dotted lines, 
(ii): thin solid lines, (iii) thick solid lines. The dashed lines indicate the depth of the redox 
boundary at each station. 

contributes substantially to HP0 4
2 _ removal in the sediment and to sediment-water 

exchange of HPO42". 

Fixed parameters. The fixed parameters used in the model calculations are listed in Table 

5. The sedimentation rate of 0.1 cm y 1 assumed for station 9 is at the low end of the range 

known for the Skagerrak (Van Weering et al., 1987). A value of 4 cm2 y 1 for the sediment 

mixing rate (Dj,) at station 9 is derived from the equation: 
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Db = l5.7ü>0-6 (8) 

with co in units of cm y"1 and Dfo in units of cm2 y 1 (Boudreau, 1994). Net sedimentation 

outside the main depositional environments in the North Sea is negligible (Eisma and Kalf, 

1987). For station 14, a sedimentation rate of 0.001 cm y 1 is assumed to enable a model 

solution. The Dfc at this station is set at 0.5 cm2 y 1 . These D\y values fall within the range 

of 0.5-12 cm2 y 1 estimated for North Sea sediments from 210Pb profiles (Albrecht, 1991, 

cited in Pohlmann and Puis, 1994) and are a factor 2.5 and 10 lower than the values 

assumed for stations 9 and 14, respectively, in our study on Fe and Mn cycling in North Sea 

sediments (Slomp et al., 1997). In the latter study we used very large values to ensure that 

we did not underestimate the role of Fe and Mn reduction. The lower values assumed here 

are probably closer to the actual values. 

Model fits. Model fits for all 3 model settings agree reasonably well with the measured 

profiles of pore water HP04
2" and solid phase P at station 9 in February and station 14 in 

August and February (Fig. 8). In February, the best description of the pore water HPO42" 

profile in the oxidized surface sediment at both stations is obtained when describing 

sorption as a combination of an equilibrium and kinetic process (ii and iii) (Fig. 8A and F). 

In August, including kinetic sorption has no effect on the model fit to the pore water 

HPO42" profiles (Fig. 8K). Modelled profiles of organic, Fe-bound and Ca-bound P are very 

similar in all cases (Fig. 8B-D, G-I, L-N). This particularly holds for models (ii) and (iii). 

Model calculated concentrations of sorbed P decrease when going upwards from the redox 

boundary to the sediment-water interface (Fig. 8E, J, O). Sorbed P concentrations are low 

compared to values for Fe-bound P (sorbed P/Fe-bound P < 5%). 

The fitted parameters for all 3 model settings and both stations are listed in Table 6. The 

values of the rate constants are in line with ranges estimated from laboratory experiments 

and other diagenetic models (for a see Emerson et al., 1984; for the other rate constants see 

discussion in Slomp et al., 1996b). Calculated rates of HPO42" production and removal in 

the sediment are given in Table 7. Release from Fe-bound P is the major source for 

dissolved HPO42" at both stations in all model calculations. In the case of model (i), most of 

the produced HPO42" is released to the overlying water. Non-local transport accounts for an 

important part of the sediment-water exchange flux at both stations in February, but is 

relatively unimportant at station 14 in August. 
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Table 7. Rates of HPO42" production and removal for stations 9 (February) and 14 (February and 
August) as calculated with the three model settings (i, ii, iii). 

Rates in umol m"2 d'l 

HPOjZ- production 
Release from solid phase P 

- org. P zone I 
- org. P zone II 
- Fe-bnd. P zone I 
- Fe-bnd. P zone II 

Sedimentation flux at x = 0 

Total 

HPOf' removal 
Formation of solid phase P 

- Fe-bnd. P zone I 
- auth. P zone II 

Sediment-water exchange 
- diffusive flux 
- non-local 

Flux at lower system 
boundary 

- diffusive flux 
- sedimentation flux 

Total 

St. 9 

(0 

0.3 
1.2 
-

30.6 
0.2 

32.3 

-
-

16.4 
13.3 

2.5 
0.1 

32.3 

- February 

(Ü) 

0.3 
1.1 

37.2 
33.5 
0.2 

72.3 

16.5 
-

39.3 
13.8 

2.6 
0.1 

72.3 

(iii) 

0.3 
1.1 

37.5 
33.7 
0.2 

72.8 

16.7 
2.6 

39.7 
11.1 

2.6 
0.1 

72.8 

St. 14 

(0 

0.2 
0.4 
-

5.7 
0.0 

6.4 

-
-

2.7 
3.4 

0.3 
0.0 

6.4 

- February 

(ii) 

4.0 
0.9 
0.0 
8.4 
0.0 

13.3 

6.6 
-

1.9 
4.5 

0.3 
0.0 

13.3 

(iii) 

4.2 
0.9 
0.0 
8.4 
0.0 

13.5 

6.8 
0.2 

1.9 
4.3 

0.3 
0.0 

13.5 

St. 14 

(i) 

0.2 
1.6 
-

35.8 
0.0 

37.6 

-
-

31.2 
4.1 

2.3 
0.0 

37.6 

-August 

(ii) 

0.2 
1.6 
0.0 
35.8 
0.0 

37.6 

0.6 
-

30.6 
4.1 

2.3 
0.0 

37.6 

(iii) 

0.2 
1.6 
0.0 
35.3 
0.0 

37.2 

0.6 
0.2 

30.3 
3.8 

2.3 
0.0 

37.2 

The total production of HPO42" calculated with model (ii) at stations 9 and 14 in 

February is more than twice as high as that calculated with model (i). At station 9, the 

sediment-water exchange of HPO42" is also substantially higher. This is the result of a 

higher diffusive flux due to a sharper HPO42" gradient at the sediment-water interface 

compared to model (i). The model results for this station indicate that substantial desorption 

of HPO42" occurs in the top cm of zone I. This desorption exceeds the adsorption in the 1-2 

cm interval below. This implies that there is no net sorptive removal of HPO42" at this 

station. At station 14 in February, in contrast, the importance of the diffusive flux for 

sediment-water exchange of HPO42" has decreased. Here, only adsorption occurs in zone I 

and Fe-bound P is a net sink for HPO42". There is little difference between the results of 

model (i) and (ii) for station 14 in August. 

The results of model (iii) show that the assumption that all Ca-bound P has been formed 

in-situ has very little effect on the magnitude of the non-local exchange flux. 
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DISCUSSION 
Sorption of HPO42" to North Sea sediments. The results of the sorption isotherms 

indicate that North Sea surface sediments differ widely with respect to their capacity to sorb 

HPO42". The good correlation between the value of the sorption coefficient, calculated from 

the gradient of the sorption isotherm at [HPO42"] = 1 umol dm-3 (KF/n), and NH4-oxalate 

Fe suggests that the HPO42" is sorbed mostly to poorly crystalline Fe oxides (also see 

Slomp et al., 1996a). The enhanced release of Si(OH)4 upon HP04
2_ sorption, with dP/dSi 

ratios largely in the range known for silicate displacement from Fe oxide surfaces (-1-17 

for ferrihydrite and goethite; Parfitt, 1989; Torrent et al., 1992), supports this view. Fits of 

HPO42" sorption isotherms to the Freundlich equation are compatible with a heterogeneous 

type of adsorbing surface (Weber et al., 1992) and are common for natural and synthetic Fe 

oxides (Torrent et al., 1992; Colombo et al., 1994). 

Controls on sediment-water exchange of HPO42" in the North Sea. Combination of the 

sorption, solid phase and pore water data with measured and calculated rates of sediment-

water exchange of HPO42" enables us to distinguish the most likely controls on sediment-

water exchange of HPO42" in the 4 types of North Sea environments studied here, and thus, 

to determine where sorption may be important. 

Organic matter mineralization rates in the cluster III sediments are so low that these are 

not sufficiently depleted of O2 and N03
_ to allow for substantial Fe oxide reduction either 

in August or February (Fig. 3C). The low pore water HPO42" concentrations at these 

stations reflect low rates of HPO42" release to the pore water and are not the result of strong 

sorption (Fig. 5B, Tables 3 and 4). Despite the lack of a seasonal variation in the HPO42" 

pore water profiles (Fig. 3C) and calculated diffusive fluxes (Fig. 4B), measured rates of 

sediment-water exchange of HP042"(Fig. 4A) were distinctly higher in August than in 

February. Results from previous studies suggest that in these sediments temporarily 

deposited organic matter is decomposed close to the sediment-water interface (Lohse et al., 

1995; Slomp et al., 1997). This decomposition is not resolved with our relatively coarse 

pore water sampling procedure. We conclude that in the cluster III sediments release of 

HPO42" from organic matter at or close to the sediment-water interface controls the 

sediment-water exchange of HPO42" and sorption is relatively unimportant. 

At the cluster II stations, in comparison, deposition of organic matter is much more 

frequent. Most deposition takes place in summer leading to a distinct seasonal variation in 

the depths of 0 2 and NO3" penetration (Lohse et al., 1995; Slomp et al., 1997). This has 

important consequences for the control of sediment-water exchange at these stations. The 

shapes of the pore water Fe2+ and HPO42" profiles for February indicate removal of upward 

diffusing Fe2+ and HPO42" in the oxidized surface sediment (Fig. 3B). The results of the 
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sorption experiments (Fig. 5; Table 4) and the solid phase analyses (Table 3) indicate that 

most of these surface sediments have the capacity to sorb HPO42". Calculated diffusive 

fluxes suggest that little HPO42" escapes out of the sediment at this time of the year (Fig. 

4B). Measured fluxes of HP04
2"(Fig. 4A) even suggest influxes of HPO42" at 5 stations in 

February. We conclude that, in February, sorption can play an important role in limiting the 

flux of HPO42" to the overlying water at many cluster II stations. 

In August, the oxidized surface layer is very thin at most cluster II stations. The shape of 

the pore water HPO42" and Fe2+ profiles suggests that the role of sorption is limited to this 

very thin surface layer. Measured fluxes of HPO42" are substantially (up to a factor 19) 

higher than calculated fluxes at most stations suggesting that if sorption is operative, it does 

not lead to a retention of HPO42" in the sediment. Release of HPO42" from organic material 

at the sediment-water interface, and enhancement of the HPO42" flux due to turbulent 

diffusion in the upper millimetres of the sediment (Lohse et al., 1996) and due to non-local, 

bioirrigative transport may be important at this time of year. 

The sorption experiments demonstrate that the surface sediments in the depositional 

environments of cluster IA and IB all have a strong affinity for HPO42", and that HPO42" 

sorption may be important at in-situ conditions, particularly at station 13 (Table 4). Pore 

water HP04
2" profiles for both clusters show a distinct S-shape, which is generally 

attributed to sorptive removal of HPO42" (e.g. Sundby et al., 1992). Despite these 

similarities, there are distinct differences in the cycling of P in the German Bight (cluster 

IA) and the Skagerrak (cluster IB) which are related to the quality and quantity of the 

organic matter deposited in each area. 

In the German Bight (cluster IA; station 13), large amounts of mostly fresh produced 

organic matter are known to reach the sediment in spring and summer. Pore water 

concentrations of HPO42" in the reduced zone are exceptionally high, ranging up to -200 

umol dm-3 in February and -700 umol dm"3 in August. In February, O2 and NO3" penetrate 

down to depths of-0.5 and - 2 cm, respectively (Lohse et al., 1995; Slomp et al., 1997). 

Both the measured and calculated fluxes indicate that very little dissolved HPO42" escapes 

out of the sediment, suggesting effective retention of HPO42" in the sediment. In August, 

the sediment is almost completely depleted of O2 and NO3" and high concentrations of 

HPO42" occur in the upper 0-0.4 cm of the sediment. Fluxes to the overlying water are 

substantial although measured rates are a factor -17 higher than calculated diffusive fluxes. 

This difference is presumably due to a combination of sediment irrigation, release of 

HPO42" from organic matter at the sediment-water interface and an underestimation of the 

actual gradient at the sediment-water interface. The concave-upward shapes of the pore 

water HPO42" profiles, starting at -5 and 6 cm depth, in both August and February suggest 

sorptive removal of HPO42" is not limited to the zone of NO3" penetration. Non-local 
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mixing of 'fresh' sediment Fe oxides with unoccupied sorption sites into the reduced zone 

could explain these results. The sub-surface maximum of NH4-oxalate Fe observed between 

2 and 6 cm depth at this station in February (Slomp et al., 1996a) supports this conjecture. 

In the Skagerrak (cluster IB), mostly refractory organic matter is deposited and organic 

matter mineralization rates are relatively low and show little seasonal change. This 

particularly holds for the deeper stations, such as station 9. Here, the depths of O2 and NO3" 

penetration and the pore water HPO42" profiles show very little change between August and 

February (Lohse et al., 1995; Slomp et al., 1997). The pore water HPO42" profiles indicate 

strong sorptive removal of the HPO42" diffusing upwards from the reduced zone into the 

oxidized zone. Nevertheless, a relatively sharp gradient in pore water HP042- at the 

sediment-water interface (Fig. 3A) and a flux of HPO42" to the overlying water are 

maintained in both seasons (Fig. 4A and B). Rapid release of HPO42" from organic material 

close to the sediment-water interface is unlikely due to the refractory nature of the organic 

matter. Therefore, desorption of HPO42" from Fe oxides probably supplies the necessary 

HPO42". The discrepancy between the measured and calculated rates of sediment-water 

exchange is presumably largely due to the fact that the gradient determined from the pore 

water profile underestimates the actual gradient at the sediment-water interface. 

Summarizing, the results show that sorption plays an important role in controlling 

sediment-water exchange of HPO42" during at least a part of the year in 3 of the 4 North 

Sea environments studied here. The role of sorption is most important when the oxidized 

sediment zone is relatively thick, which is the case at all cluster IA, IB and II stations in 

February and at station 9 in February and August. Then, HPO42" sorption limits the flux to 

the overlying water at most stations. At station 9, however, sorption is suggested to be 

responsible for the maintenance of a flux of HPO42" to the overlying water throughout the 

year. 

The effect of sorption on sediment-water exchange of HPO42". The results of the 

sorption kinetics experiments (Fig. 6) indicate concurrent fast and slow sorption of HPO42". 

The rate constants for the slow sorption process found for stations 5 and 17 in these 

experiments (0.9 to 33 d"1) are reasonably close to the values obtained with the reaction-

diffusion model for stations 9 and 14 (0.5 to 15 d"1). The results of the reaction-diffusion 

model (Fig. 8) show that the best description of pore water HPO42" concentrations in the 

oxidized surface layer is obtained when including both fast and slow processes by assuming 

concurrent equilibrium and first-order kinetic sorption (models ii and iii) instead of only 

equilibrium sorption (model i). 

In model (i), where only instantaneous, reversible equilibrium sorption is assumed, 

sorption in combination with bioturbation enhances vertical transport through aqueous 
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diffusion of dissolved HP04
2_ in the oxidized surface zone (Schink and Guinasso, 1978). 

The enhancement depends on the values of D^ and Keqi (see equation Al of the Appendix) 

and amounts to a factor of 4.5 and 2.8 at stations 9 and 14, repectively. This allows a 

substantial diffusive flux of HPO42" to the overlying water to be maintained at these 

stations, even when modelled pore water HPO42" gradients are relatively low. With this 

model, substantial retention of HPO42" in the sediment, one of the most important effects of 

HPO42" sorption to Fe oxides in sediments, can not be adequately described. 

When including instantaneous, equilibrium sorption and relatively slow kinetic sorption 

(model ii and iii), sorption can cause (1) a decrease of the flux from the sediment to the 

overlying water and (2) an enhancement of this flux. The first effect is the classical view of 

sorption in which the oxidized zone acts as a trap for upward diffusing HPO42" from the 

reduced zone (Einsele, 1936; Mortimer, 1941, 1942). This is observed when the apparent 

equilibrium HPO42" concentration (Cs) is equal to or lower than the overlying water 

concentration (C0). Kinetic sorption results in adsorption of HPO42" and net Fe-bound P 

formation in the oxidized zone. Equilibrium sorption in combination with bioturbation 

enhances the aqueous diffusion through the oxidized zone. When the pore water HPO42" 

gradient in the oxidized zone, and the Dj, and Keqi values are small, this enhancement is 

relatively unimportant. This is the situation as calculated for station 14 in February (model 

ii and iii; Fig. 8, Tables 5 and 7). Release of HPO42" from organic P in zone I and upward 

diffusion of HPO42" from zone II supply the P for Fe-bound P formation. Release of 

HPO42" from organic P accounts for the relatively sharp gradient in the model calculated 

HPO42" profile close to the sediment-water interface and thus supplies the HPO42" that still 

manages to escape out of the sediment through diffusion. 

The second effect, an enhancement of the flux to the overlying water, occurs when the 

equilibrium HPO42" concentration (Cs) is higher than the overlying water concentration 

(C0). Desorption of HPO42" from Fe-bound P now allows a sharp gradient at the sediment-

water interface and thus a flux of HPO42" to the overlying water to be maintained. 

Equilibrium sorption in combination with bioturbation enhances this flux. This situation 

was observed at station 9 (models ii and iii; Fig. 8, Tables 5 and 7). Under steady-state 

conditions, a continous re-supply of Fe-bound P to the surface layer is necessary, either 

through deposition from the overlying water or through formation in deeper parts of the 

oxidized zone and upward bioturbational transport of Fe-bound P. For station 9, the model 

calculations (model ii; Tables 6 and 7) suggest that the Fe-bound P necessary to maintain 

the diffusive flux of HPO42" at the sediment-water interface is supplied from the overlying 

water. 

This Fe-bound P must have been formed in an environment with a higher HPO42" 

concentration than that in the overlying water to explain the slow release. With a diagenetic 
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model for Fe (Slomp et al., 1997), a maximum sedimentation flux of Fe oxides of -350 

(imol nr2 d~' can be calculated from the Fe oxide and pore water Fe2+ profiles for station 9 

using the D^ and co values of this study. Since the calculated flux of Fe-bound P is -70 

umol nr2 d_1 (Table 6), this suggests an Fe/P ratio of the sedimenting Fe oxides of 5. 

Although similar Fe/P values have been reported previously for Fe oxides in coastal marine 

sediments (Jensen et al., 1995), this value is rather low (Slomp et al., 1996a). A possible 

explanation is that we overestimated the flux of Fe-bound P from the overlying water. If 

sediment mixing at station 9 is not adequately described as a biodiffusive process, and, for 

example, transport in the surface sediment is actually of a non-local, conveyor-belt nature 

(Boudreau, 1986), Fe-bound P could also be transported upward across the oxidized zone. 

When the oxidized surface zone at station 14 becomes very thin in August and the rate 

constant for sorption is assumed to be similar to that for February (Table 5), very little Fe-

bound P is formed in the sediment (Table 7). Most dissolved HP04
2_ produced in the 

sediment now escapes to the overlying water through diffusion. 

The role of sorption in controlling sediment-water exchange of HPO42" not only depends 

on the thickness of the oxidized layer but also on the extent to which this layer covers the 

reduced sediment. Well-irrigated animal burrows provide a means for direct transport of 

dissolved constituents from the reduced zone to the overlying water (Aller, 1980). When a 

large number of such burrows are present, the role of sorption in controlling the HPO42" 

flux to the overlying water is diminished. We used the approach of non-local exchange to 

describe the effect of sediment-irrigation. We did not account for possible effects of 

sorption to Fe oxides formed along burrow linings. Non-local exchange can result in a 

reversal of pore water gradients at depth in the sediment (Fig. 8) and can account for a 

substantial proportion of the HPO42" flux to the overlying water (Table 7). The results of 

model (iii) show that authigenic Ca-bound P formation can account for only a small part of 

the HPO42" removal in the reduced zone at both stations at the D ,̂ values assumed here, 

suggesting an important role for non-local transport. It should be noted, however, that a Dj, 

value which is too high will lead to an overestimation of the contribution of non-local 

exchange. A comparison of the model calculated rate of sediment-water exchange of 

HPO42" (-51-53 umol nr2 d"1; models ii and iii; Table 7) to the measured flux (~ 35 umol 

nr2 d"1; Fig. 4A) for station 9 in February suggests that at this station we may have slightly 

overestimated the actual D^ value and thus the role of non-local exchange. The uncertainty 

in the measured flux for station 14 in February is too large to enable a similar comparison. 

At station 14 in August, the measured flux to the overlying water (-180 umol nr2 d~'; Fig. 

4A) is much higher than the model calculated flux (-35 umol nr2 d"1; Table 7). At this 

station, the actual Dj, value may be higher at this time of year and non-local exchange may 

account for a major proportion of the HP04
2_ flux. Furthermore, release of HP04

2_ from 
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organic matter at the sediment-water interface or turbulent diffusion in the upper 

millimetres of the sediment may also be important (Lohse et al., 1996). 

CONCLUSIONS 

A good correlation between the value of the sorption coefficient at [HP04
2"] = 1 umol dm"3 

(KF/n) and NH4-oxalate Fe and an enhanced release of Si(OH)4 upon HP0 4
2" sorption was 

observed for sediment from 8 North Sea stations. This suggests that the HP0 4
2 _ removed 

from solution during sorption experiments with oxidized surface sediment was sorbed 

mostly to Fe oxides. Results of kinetics experiments for 2 stations suggest that the sorption 

process can be adequately described with a model assuming simultaneous instantaneous 

equilibrium and first-order kinetic sorption. 

Combination of pore water and solid phase data with measured and calculated rates of 

sediment-water exchange of HP0 4
2" indicates that sorption plays an important role in 

controlling sediment-water exchange of HP04
2" during at least a part of the year in 3 of the 

4 North Sea environments studied here. Sorption is most important when the oxidized 

sediment zone is relatively thick. At most stations, HP0 4
2" sorption is suggested to 

constrain the flux of HP0 4
2" to the overlying water. At one station in the depositional 

environment of the Skagerrak, however, desorption is suggested to be responsible for the 

maintenance of a flux of HP04
2" to the overlying water. Application of a reaction-diffusion 

model to pore water HP0 4
2" and solid phase P profiles for 2 stations demonstrates that both 

of these effects of sorption on sediment-water exchange of HP04
2" can be adequately 

described when instantaneous equilibrium and first-order kinetic sorption is assumed in the 

model. 
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APPENDIX 
The differential equations for each P reservoir in the (I) oxidized surface zone (0 < x < Lj) and (II) 
reduced sediment zone (x > Lj) are as follows: 

Pore water HP04
2" (C) 

^ + Keqx)~<Db{\ + Keqx) + Ds}^—(ä{\ + Keqx)
d^L + kgHGI-Gao)+ (Al) 

- a ( C y - C o ) - M C , - Q ) = 0 

(\ + Keg2)^L = [Db(\ + Keq2) + Ds]^L-m(\ + Keq2)~IL + kgHGII-Gao)+ (A2) 
dt L-t>^ • ~«ii' • - » dx2 - v - - « f 2 ' dx 

-a(CIl-Co)~ka(CIl-Ca) + kmHMI1-Mœ) = 0 

Organic P (G) 

Fe-bound P (M) 

^ = ̂ ^-.f-W-O.)-0 (A3) 

^DÊl^L^^L^C-C^O (A5) 
dt b dx2 dx 9 ' s' 

dM,, „ d2Mjj dMn , , . , . . . n , A , , 
-D, " -a—^-km(M„-Mœ) = 0 (A6) dt ° dx2 dx 

Authigenic P (A) 

^ L = D , ^ - c o ^ = 0 (A7) 
dt b dx2 dx 

_-_Z) è-^- f f l—+ — ( C „ - C a ) - 0 (A8) 



Sorption and sediment-water exchange of phosphate 139 

Instantaneous, reversible linear equilibrium sorption gives: 

Sorbed P(S) 

(A9) 

S„=^1CII (A10) 

The boundary conditions used to solve the equations (Al) to (A8) are 
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Chapter 6 

A key role for iron-bound phosphorus in authigenic apatite 
formation in North Atlantic continental platform sediments* 

ABSTRACT 
A combination of pore water and solid phase analysis was used to determine whether 
authigenic carbonate fluorapatite (CFA) is currently forming in the sediment at two 
locations (OMEX I and II) on the North Atlantic continental platform Goban Spur 
(southwest of Ireland). Results of selective P extractions suggest that an early diagenetic 
redistribution of Fe-bound P to an authigenic P phase may be occurring at both stations. A 
steady-state diagenetic model describing the depth profiles of pore water HPO42" and three 
solid phase forms of P (organic P, Fe-bound P and authigenic P) was developed and applied 
to the data of station OMEX-I. The model results indicate that CFA formation can account 
for the observed increase of authigenic P with depth at this station. Furthermore, the results 
show that an intense cycling of P between Fe-bound P and pore water HP04

2_ at the redox 
interface can create conditions beneficial for CFA formation. This internal P cycle is driven 
by downward, bioturbational transport of mainly in-situ formed Fe-bound P into the 
reduced sediment zone. Losses from the internal P cycle due to CFA formation and HPO42" 
diffusion are compensated for by sorption of HP04

2_ released from organic matter to Fe 
oxides in the oxidized surface sediment. Fe-bound P thus acts as an intermediate between 
organic P and CFA. CFA can account for between 25 and 70% of the total burial flux of 
reactive P at station OMEX-I and thus may act as an important sink for P in this low 
sedimentation, continental margin environment. 

INTRODUCTION 

Phosphorus (P) is an essential nutrient for marine phytoplankton and has been suggested as 

the limiting factor for oceanic primary production on geological timescales (Howarth et al., 

1995). As sediments form the only important sink for P in the marine environment, changes 

in the burial rate of P in sediments can modify the oceanic inventory of P and thus 

profoundly influence marine carbon cycling (Broecker and Peng, 1982). Most removal of P 

from the water column takes place through sedimentation of organic matter (Berner et al., 

1993). Consequently, it is of prime importance to know the fate of the P in organic matter 

upon reaching the sediment. 

As shown in the schematic overview of the sedimentary P cycle in Figure 1, part of the P 

in organic matter is buried directly as organic P. The nonrefractory portion of the organic 

matter decomposes, however, resulting in a release of HPO42" to the pore water. In the 

oxidized part of the sediment, this HPO42" escapes to the overlying water through upward 

This chapter by C.P. Slomp, E.H.G. Epping, W. Helder and W. Van Raaphorst has been 
published in the Journal of Marine Research 54: 1179-1205 (1996) 
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diffusion or is sorbed, either reversibly or irreversibly, to sediment Fe oxides (e.g. Sundby 

et al., 1992; Slomp et al., 1996). In the reduced sediment zone HPO42" is not only released 

from organic matter but also from Fe oxides upon their reduction. In this part of the 

sediment, dissolved HPO42" concentrations can become high enough for authigenic mineral 

formation to occur (e.g. Van Cappellen and Berner, 1988). Whether this actually takes place 

is important, as P bound in authigenic minerals may not be solubilized again, whereas Fe-

bound and organic P can still be released upon deep burial. 

Evidence for authigenic mineral formation in marine sediments outside classical 

phosphorite accumulation environments in upwelling areas (e.g the Peru continental 

margin; Froelich et al., 1988) is difficult to obtain. Due to the low concentrations of 

authigenic P, direct identification with e.g. X-ray diffraction, is often impossible. This 

makes it necessary to rely on indirect methods. These include calculation of the saturation 

state of the pore water with respect to authigenic P minerals (Martens et al., 1978; Jahnke et 

al., 1983), the use of stoichiometric models describing NH4
+ and HPO42" regeneration to 

detect a possible deficit of HPO42" with respect to NH4
+ (Martens et al., 1978), and 

application of selective extraction procedures (Ruttenberg, 1992). 

Using all of these methods, Ruttenberg and Berner (1993) showed that authigenic 

carbonate fluorapatite (CFA) formation is occurring in rapidly accumulating continental 

margin sediments dominated by terrigenous material. Based on mirror-image profiles of 

organic and authigenic P, they concluded that at their two study sites HPO42- released from 

organic material is almost completely retained in the sediment due to an early diagenetic 

'sink-switching' to CFA. Using the same selective extraction procedure for authigenic P, 

Lucotte et al. (1994) showed that P retention due to CFA formation may also occur in 

continental rise sediments. In this case, however, Fe-bound P acted as the major source of P 

and the overall CFA precipitation rate was much lower. 

We expect Fe-bound P to play a key role in CFA formation in many marine sediments 

for two reasons. Firstly, Fe-bound P can act as an intermediate between organic P and CFA. 

Dissolved HPO42" released from labile organic matter, that otherwise would rapidly escape 

to the overlying water, is retained in the sediment. This HPO42" can then cycle between the 

dissolved and Fe-bound P pool many times, before being permanently bound in CFA. 

Secondly, HPO42" release from Fe oxides has been observed to be accompanied by a 

simultaneous release of fluoride. The resulting spike of both solutes may provide the 

condition of supersaturation required for the precipitation of CFA (Heggie et al., 1990; 

Ruttenberg and Berner, 1993). 

In this study, we apply the extraction procedure for authigenic P developed by 

Ruttenberg (1992) to sediments from two low sedimentation environments on a North 

Atlantic continental platform. These results are combined with pore water and solid phase 
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Fig. 1. A schematic overview of the sedimentary P cycle. Note that in this view, biogenic Ca-P, 
CaCC>3- and clay-bound P and detrital Ca-P are assumed to be unimportant as a source or sink for 
dissolved reactive phosphorus. 

data to determine whether CFA formation is an early diagenetic event in these sediments, 

and if so, whether there is evidence for a key role of Fe-bound P in CFA formation. A 

diagenetic model for the sedimentary P cycle is developed and applied to the data to 

facilitate interpretation of the observed depth profiles. 

STUDY SITES 

Two locations on the continental platform Goban Spur, which is situated in the North 

Atlantic Ocean, south-west of Ireland (Fig. 2), were selected for this study. This broad 

platform (200-2000 m water depth) is connected to the Celtic Sea continental shelf in the 

east, is incised by deep canyons on its southern side, whereas to the north and west, the 

platform slopes down into the Porcupine Basin and the Porcupine Abyssal Plain, 

respectively. Sediment trap and current meter deployments show that the platform is a 

biologically and physically dynamic environment, dominated by lateral particle transport 

and high current velocities (Antia and Von Bodungen, in prep.). Samples were collected 

during an OMEX (Ocean Margin Exchange) cruise with RV Pelagia in October 1993. 

Station OMEX-I (49°24.72' N, 11°31.86' W) is located on the eastern, relatively shallow 
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part of the platform (at a water depth of 670 m), whereas station OMEX-II (49° 11.20' N, 12 

°49.18' W) is located on the deeper, western part of the platform (at a water depth of 1425 

m). 

Bottom water temperature was higher at station I (10°C) than at the deeper station II 

(5.9°C). Holocene sediment accumulation rates of 0.0025 and 0.0011 cm y"1 were estimated 

for stations I and II, respectively, using planktonic foraminiferal biostratigraphy and 

radiocarbon dating (Van Weering and De Stigter, pers. comm.). More than 90% of the 

macrofauna at these stations were present in the upper 5 cm of the sediment (Flach and 

Heip, 1996). This indicates that sediment mixing due to bioturbation was mainly limited to 

this surface layer. Sediment mixing or biodiffusion coefficients (Dj,) calculated from excess 

210pb profiles (Van Weering and De Stigter, pers. comm.), assuming a uniformly mixed 

surface zone of 5 cm overlying undisturbed sediment, amount to 0.18 and 0.05 cm2 y~' at 

stations I and II, respectively. 

EXPERIMENTAL METHODS 
Sampling. Sediment cores with overlying bottom water were obtained with a cylindrical 

box corer (either 30 or 50 cm i.d.). Subsamples were taken from the box cores with Plexi­

glas or acrylic liners (3.1, 5.4 or 10 cm i.d.) which were closed with rubber stoppers. Only 

cores without any visible disturbance were used. 

Pore water analysis. Subcores (3.1 cm i.d.) were sliced into 16 depth intervals down to a 

depth of 15 cm under nitrogen and at in-situ temperature immediately after collection. Pore 

water was collected from these slices using teflon Reeburgh-type squeezers under N2-

pressure (Reeburgh, 1967) and 0.2 urn cellulose acetate filters. Bottom water samples were 

obtained from the overlying water in one of the subcores. The samples were immediately 

analyzed for NH4+ (phenol-hypochlorite method; Helder and De Vries, 1979), NO3" and 

HP04
2_ (Strickland and Parsons, 1972). Aliquots of pore water were acidified to pH ~ 1 

and analyzed for Fe2+ (ferrozine method; Stookey, 1970) and Mn2+ (formaldoxime method; 

Brewer and Spencer, 1971). All analyses were carried out on a Technicon TRAACS-800 

autoanalyzer. The analytical precision of the determinations was 2% for NH4+ and HPO42" 

and 1% for all other compounds. The acidified pore water samples were additionally 

analyzed for HP04
2_ to determine whether loss of pore water HPO42- due to Fe2+ oxidation 

and subsequent sorption of HPO42" (Bray et al., 1973) had occurred in the sample cups. No 

significant difference in the pore water HP04
2_ concentration in acidified and nonacidified 

pore water samples was found. 
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Fig. 2. (A) Location of the deep-water continental platform Goban Spur; (B) positions of the 
stations OMEX-I and OMEX-II. 

Pore water O2 profiles were determined in subcores (5.4 cm i.d.) on-deck with Clark 

type micro-electrodes (Diamond Corporation, type 737, 60 urn tip diameter; further details 

will be given in Epping et al., in prep.). 

Solid phase analysis. The sediment remaining after the collection of the pore water was 

dried (60°C) and ground (teflon mortar and pestle) to < 125 urn. These samples were used 

for all subsequent solid phase analyses. Inorganic sediment P was fractionated in to Fe-

bound P, authigenic P (this includes CFA, biogenic Ca-P, CaC03-bound P and possibly 

smectite-bound P) and detrital Ca-P using a sequential extraction procedure modified from 

the sedex method of Ruttenberg (1992). Fe-bound P was determined as citrate-dithionite 

bicarbonate (CDB, pH = 7.3, 8 h, 20°C) extractable P. The sediment residue was 

subsequently extracted with 1 M Na-acetate buffer (pH = 4, 6h, 20°C) and treated with a 1 

M MgCl2 (pH = 8, 0.5 h, 20°C) wash solution. Authigenic P was calculated as the sum of 

the P extracted in these last two steps. The sediment residue was then treated with 1 M HCl 

(24 h, 20°C) and the amount of extracted P was used as a measure of detrital Ca-P. There 

are three differences with the original 13-step procedure of Ruttenberg (1992). First, the 1 

M MgCl2 step to extract exchangeable or loosely sorbed P was omitted. Our Fe-bound P 

fraction thus includes easily exchangeable P. Second, we omitted all but one of the MgCl2 

washes and all H20 rinses. These were included in the original procedure to reverse 

secondary sorption of P on to residual solid surfaces during the extractions. The results of 
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Ruttenberg (1992) show, however, that this process is not important during the CDB and 

HCl extractions and can be largely reversed with only one MgCl2 extraction following the 

acetate buffer treatment. Third, we determined organic P in a separate procedure, since 

organic P concentrations may be underestimated when using the sequential sedex procedure 

(Ruttenberg, 1992; Berner et al., 1993). 

Organic P was determined nonsequentially as the difference between 1 M HCl 

extractable P (24 h) before and after ignition of the sediment (550°C, 2h; Aspila et al., 

1976). Total P is calculated as the sum of this organic P and the inorganic P determined 

with the sequential procedure. Inorganic P concentrations determined as the sum of Fe-

bound P, authigenic P and detrital Ca-P were approximately equal to P concentrations 

obtained with the 1 M HCl extraction in the one-step procedure. Only at some depth 

intervals in the upper 2 cm at stations I and II significantly more P (up to ~ 1 umol g"1) was 

extracted with the sequential procedure. We attribute this discrepancy to incomplete 

extraction of inorganic P (most probably of Fe-bound P) with 1 M HCl. 

All extractions were performed in duplicate. The P concentration in the CDB extracts 

(Fe-bound P) was determined using an Inductively Coupled Plasma-Atomic Emisson 

Spectrophotometer (ICP-AES; Spectro Analytical Instruments). All other P analyses were 

carried out using a Shimadzu Spectrophotometer with the method of Strickland and Parsons 

(1972). Precision of the individual extractions was generally -5%. As the organic P 

concentration was determined as the relatively small difference between two large numbers, 

the uncertainty in the organic P concentrations is large (up to 30%). 

The Fe and Mn concentrations in the CDB solutions of the P-extractions were measured 

using an ICP-AES and a Perkin Elmer 5100 PC Atomic Absorption Spectrophotometer, 

respectively. CDB-extractable Fe is assumed to be a measure of total Fe bound in Fe oxides 

(CDB may also extract some Fe from clay minerals and from Fe sulfides; Slomp et al., 

1996). CDB extractable Mn is used as a measure of the total Mn oxides in the sediment 

(Canfield et al., 1993). 

Total C and N and organic C were measured on a Carlo Erba 1500-2 elemental analyzer. 

Organic C was determined as the concentration of C in the sample after treatment with 

sulfurous acid (Verardo et al., 1990). CaC03 content was calculated from inorganic C 

concentrations determined as the difference between total and organic C. All sediment N 

was assumed to be present in an organic form. Grain size distribution was measured with a 

laser diffraction particle sizer (Malvern 2600 E). Sediment porosity was measured in 

samples from three additional subcores (3.1 cm i.d.). These were sliced into 10 depth 

intervals (slices of 0.5 cm thickness down to a depth of 5 cm) and the samples were dried at 

105°C(24h). 
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DESCRIPTION OF THE MODEL 

To obtain more quantitative insight in the redistribution of sediment P with depth, a 

mathematical model describing the sedimentary P cycle, as outlined in Fig. 1, was 

developed and applied to the data. The steady-state model describes the concentration 

change with depth of pore water HP04
2_, and three forms of particulate P, i.e., organic P, 

Fe-bound P and authigenic P. The latter phase is assumed to include all P phases extractable 

with acetate buffer (see methods section). Transport of solid phase P occurs through 

bioturbational/physical mixing (described as a biodiffusion process) and sediment 

accumulation. Transport of dissolved HPO42" additionally takes place through molecular 

diffusion. 

The sediment column is divided into 3 zones: an oxidized surface zone (I: 0 < x < Lj), a 

reduced sediment zone with bioturbation (II: Lj < x < L2) and a reduced sediment zone 

without bioturbation (III: x >L2). The processes included are (1) release of HPO42" from 

organic P due to organic matter mineralization (zone I, II, III), (2) reversible sorption of 

HPO42" to Fe oxides (zone I), (3) release of HPO42" from Fe-bound P due to reductive 

dissolution of the Fe oxides (zone II, III) and (4) CFA precipitation (zone II, III). All release 

and removal processes are described as first-order reactions, with the rate being equal to a 

rate constant times the difference between the actual concentration and an equilibrium (pore 

water) or asymptotic (solid phase) value. The rate constants for the processes (1) to (4) 

listed above are kg, ks, km, and ka, respectively. The pore water equilibrium concentrations 

for sorption and CFA precipitation are Cs and Ca. The asymptotic Fe-bound P and organic 

P concentrations are equal to Mx and G ,̂. 

There are two major differences with the only other diagenetic P model known to us that 

includes both HPO42" release from organic matter and release from Fe oxides (Van 

Capellen and Berner, 1988). Firstly, we include transport through bioturbational/physical 

mixing in the upper part of the sediment. This increases the downward transport of organic 

and Fe-bound P and thus enhances the cycling of P in the sediment (as shown for the Mn 

cycle by Aller (1990)). Furthermore, this results in upward transport of CFA and thus in a 

'background' concentration of CFA at the sediment-water interface. Secondly, sorption of 

HPO42" is modeled as a first-order process and not as simple linear equilibrium sorption. 

Sorption isotherms for oxic sediments may deviate from linearity, and P sorption has been 

shown to be rapid but not instantaneous (e.g. Slomp and Van Raaphorst, 1993). Description 

of P sorption as a first-order process has proved to be successful in the past (Van Raaphorst 

et al., 1988, 1990; Van Raaphorst and Kloosterhuis, 1994). 

Pore water HPO42" and the particulate P forms have units of |imol per cm3 pore water 

and umol per gram of dry sediment, respectively. A conversion factor 9 (gram of dry 
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sediment per cm3 of pore water) is introduced to enable a combination of dissolved HP04
2~ 

and solid phase P in one model: 

» = p , [ ( l - + ) / « (1) 

where p s is the average density of the sediment particles (2.65 g cm"3) and § is the porosity 

of the sediment (in units of cm3 cm-3). The molecular (Ds) and biodiffusion (Dj,) 

coefficients (both in units of cm2 d"1), the sedimentation rate (co, in units of cm d"1), the 

reaction rate constants (k„, ks, km and ka, in units of d_1) and the sediment porosity (<j>) are 

assumed to be constant with depth in each relevant layer. This is a common assumption in 

many diagenetic models (e.g. Berner, 1980). 

The set of differential equations for the one-dimensional distribution of pore water 

HPC>42_ and the three particulate P forms is given in the Appendix (A1-A12). These 

equations were solved analytically assuming continuity in concentrations and fluxes of both 

dissolved HPO42" and solid phase P at the boundaries between the three depth zones, i.e. at 

x = L] and x = L2, and considering appropriate boundary conditions for the system at x = 0 

and x —> 00. Constant fluxes of organic P, Fe-bound P and authigenic P from the overlying 

water to the sediment were assumed at x = 0 (JGX=O> JMX=0
 an<^ JAx=o> respectively). The 

pore water HPO42" concentration at x = 0 was assumed to be equal to the bottom water 

concentration (C0). When x -» co, equilibrium values for pore water HPO42" (C^, and 

asymptotic values for organic and Fe-bound P (Goo, M«) a r e assumed to be reached. The 

mathematical expressions for these boundary conditions are given in the Appendix (A 13-

A35). 

It is important to note that three processes can contribute to a 'background' concentration 

of authigenic P at the sediment-water interface: (1) formation of CFA in the surface layer of 

the sediment, (2) upward bioturbational/physical transport of CFA formed in-situ in deeper 

layers and (3) deposition of authigenic P which has been formed elsewhere (JAx=o)- m m e 

model, it is assumed that the first process is not important when an oxidized surface layer is 

present. This is a reasonable assumption when sorption of HPO42" to Fe-oxides in the 

oxidized layer is rapid. This results in a buffering of pore water HPO42" concentrations to 

low values in the surface sediment thus presumably precluding supersaturation of the pore 

water with respect to CFA. The contribution of the other two processes to the background 

concentration of authigenic P can be calculated with the model when Lj, L2, Ds, Dj, and co 

are fixed. 

Values of kg, ks, km, ka, JGx=0> JAX=0> G<»> anc^ Mœ were varied to fit the model to 

experimental data. Variance-weighted sums of squares of all 4 components were minimized 

simultaneously using an iteratively reweighted regression (Draper and Smith, 1967). This 
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Table 1. Sediment characteristics of the surface layer (0-0.25 cm) at stations OMEX-I and -II. The 
sediment classification is based on the Wentworth size scale (Pettijohn et al., 1972). 

porosity 

org. C 

org. N 

CaC03 

median grain size 

sed. fraction < 2 um 

sed. classification 

Unit 

(v/v) 

(wt%) 

(wt%) 

(wt %) 

(urn) 

(%) 

OMEX-I 

0.50 

0.37 

0.05 

51 

92 

0 

very fine sand 

OMEX-II 

0.48 

0.64 

0.09 

61 

55 

5 

coarse silt 

means that 8 fit parameters were used for 4 profiles with a total of 64 data points. The other 

parameters (Lj, L2, Ds, D0, a>, C0, Cs, Ca, JMX=O)
 w e r e f"ixed based on existing data. 

EXPERIMENTAL RESULTS 
General sediment characteristics. Some general sediment characteristics of the two 

stations are listed in Table 1. Both sediments have a low porosity, are organic-poor and 

contain substantial amounts of CaCC^, mainly in the form of foraminiferal remains. The 

sediment from station II is finer grained and contains higher concentrations of organic C 

and N and CaC03 than that from station I. 

At both stations, CaCC>3 concentrations decrease with depth (Fig. 3A and B). This 

decrease is confined to the surface 6 cm of the sediment at station I, whereas it occurs 

between 6 and 14 cm depth at station II. The organic C profile at station I displays a large 

degree of scatter (Fig. 3C). At station II, organic C concentrations decrease sharply close to 

the sediment-water interface followed by a more gradual decrease with depth (Fig. 3D). 

Organic N concentrations rapidly decrease in the upper 2 cm of the sediment at station I, 

succeeded by relatively constant values with depth (Fig. 3E). At station II, the organic N 

profile closely follows the trend of the organic C profile (Fig. 3F). Sediment porosity 

decreases slightly with depth at both stations. The sediment grain size distribution does not 

change significantly with depth at station I, but the amount of fine sediment material 

increases between 10 and 15 cm depth at station II (the median grain size decreases from 50 

urn to 23 urn in this depth interval). 

Pore water profiles. Bottom water Oj concentration levels were 231 and 241 umol dm-3 at 

stations I and II, respectively, and were close to saturation values. Maximum 0 2 penetration 

depths were shallower at station I (0.91 cm) than at station II (5.0 cm; complete profiles 
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OMEX-I (670 m) OMEX-II (1425 m) 
CaC03 (wt%) 
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org. C (wt%) 
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0-t 
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Fig. 3. Profiles of (A,B) CaC03, (C, D) organic C and (E, F) organic N (wt%) at stations OMEX-I 
and -II. 

will be given in Epping et al., in prep.). Pore water NO3" concentrations (Fig. 4A and B) 

reached a maximum close to the sediment surface at both stations. At station I, NO3" 

concentrations rapidly decreased to low values within the upper 2 cm of the sediment, 

whereas at station II, NO3" penetrated down to 14 cm depth. In the following text, we will 

use (1) the maximum depth of O2 penetration as the boundary between the oxic and anoxic 

sediment zones and (2) the depth where NO3" concentrations reach a background value as 

the boundary between the oxidized and reduced sediment zones, as relevant for Fe. 
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Fig. 4. Pore water profiles of (A, B) N03", (C, D) NH4+, (E,F) Mn2+, (G, H) Fe2+ and (I, J) 
HP04

2" (nmol dm"3) at stations OMEX-I and -II. 
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OMEX-I (670 m) OMEX-II (1425 m) 

Mn (pmol g"1) 
1 o 1 

Fig. 5. Solid phase profiles of CDB-extractable (A, B) Mn and (C, D) Fe (^mol g"1) at stations 
OMEX-I and -II. 

Pore water NH4
+ concentrations rapidly increased with depth (to ~ 45 umol dm-3 at 15 

cm) in the reduced zone at station I (Fig. 4C). At station II, the NH4
+ profile reached a 

maximum (~14 umol dm-3) close to the sediment-water interface, followed by a decrease to 

concentrations below ~5 umol dm-3 at depth (Fig. 4D). Mn2+ and Fe2+ pore water profiles 

indicate dissolution of sediment Mn and Fe oxides upon NO3" depletion at station I (Fig. 4E 

and G). At station II, pore water Mn2+ and Fe2+ concentrations were very low (< 2 umol 

dm-3) throughout the sediment (Fig. 4F and H). 

The pore water HPO42" profile at station I shows a remarkable resemblance to the Fe2+ 

profile, suggesting a coupling between the release of HPO42' and Fe2+ in the sediment (Fig. 

4G and I). HPO42" concentrations are buffered to low values (-1-2 |xmol dm-3) in the 

oxidized surface zone of the sediment. The sharp increase in the HPO42- concentration with 

depth below this zone (to ~ 18 umol dm"3) is followed by a steep decrease below ~5 cm, 

indicating removal of dissolved HPO42" in the reduced part of the sediment. At station II, 
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the HP04
2" profile has a distinctly different shape (Fig. 4J). The HPO42" concentration 

increases immediately below the sediment-water interface but the gradient levels off below 

2.5 cm. The maximum HPO42" concentration reached (~8 umol dm~3) is much lower than 

at station I. The small but simultaneous maxima of Mn2+, NH4
+, Fe2+ and HPO42" in the 2-

2.5 cm depth interval, suggest very local, reduced conditions due to organic matter 

decomposition in the oxidized sediment at station II (Fig. 4D, F, H and J). 

Solid phase profiles of Mn, Fe and P. The sharp subsurface peak in sediment Mn oxide 

(Fig 5A) at station I is typical for mobilization and reprecipitation of Mn at the redox 

interface for Mn in a low sedimentation and low bioturbation sediment environment 

(Burdige and Gieskes, 1983). The redox interface for Mn is generally assumed to occur at 

the oxic/anoxic interface (Aller, 1990). The depth of the solid phase Mn and pore water 

Mn2+ peaks at station I indicate that either the on-deck O2 profiles underestimate actual in-

situ 0 2 penetration or that N03" is acting as the main oxidant for Mn2+. At station II, Mn 

oxide concentrations decrease with depth but show a large variability (Fig. 5B). Several of 

the local minima in the Mn oxide profile occur in the same depth intervals as maxima in the 

pore water Mn2+ profile (2-2.5, 4-5 and 11-13 cm; Fig. 4F). This suggests that the observed 

variability in the Mn oxide profile is due to local Mn oxidation and reduction in the 

'oxidized' sediment of station II. 

A decrease in total Fe oxides with depth is observed at both stations (Fig. 5C and D) 

with the largest decrease occurring in the upper 2 cm of the sediment. This is followed by a 

more gradual decrease down to ~8 and ~6 cm at stations I and II, respectively. Reduction of 

Fe oxides apparently occurs in the 'oxidized' sediment zone at station II. 

The sediment P profiles, as determined with the selective extractions, are shown in Fig. 

6A-H. Organic P (Fig. 6A and B) remains relatively constant or even slightly increases with 

depth at station I, whereas a decrease is observed at station II. At both stations, a decrease 

of Fe-bound P and a concomitant increase of authigenic P (Fig. 6C and D) with depth was 

found. Detrital Ca-P concentrations (Fig. 6E and F) are relatively constant at station I, but 

slightly increase with depth at station II. At station I, inorganic and total P concentrations 

(Fig. 6G and H) increase slightly with depth. At station II, inorganic P concentrations 

remain relatively constant with depth, whereas total P concentrations decrease. 

The acetate extraction is not strictly selective for CFA (see methods section and 

Ruttenberg, 1992). If foraminiferal shells contain little P, as suggested by the results of 

Sherwood et al. (1987), an increase of the contribution of CaCC^ to the total sediment flux 

with time may result in a dilution of acetate extractable P phases which have not been 
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OMEX-I (670 m) OMEX-II (1425 m) 

P (pmol g"1) 
0 2 4 6 0 2 4 6 

Fig. 6. Solid phase profiles of P (umol g"1) at stations OMEX-I and -II as determined with the 
extraction procedures: (A, B) organic P, (C, D) Fe-bound P (filled circles) and authigenic P (open 
circles), (E, F) detrital Ca-P, (G, H) inorganic P (filled circles) and total P (open circles) and (I, J) 
authigenic P on a CaCC>3 free-basis. 
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formed in-situ. Consequently, lower concentrations of authigenic P will be found at the 

sediment-water interface than at depth without in-situ CFA formation. In this study, CaCC>3 

concentrations decreased with depth at both stations (Fig. 3A and B). This can be the result 

of an increase in the contribution of CaCC^ to the sediment flux with time. To assess 

whether this could account for the observed authigenic P increase, authigenic P 

concentrations are presented on a CaC03-free basis in Fig. 61 and J. The results suggest that 

admixing with CaC03 cannot account for the increase of authigenic P observed at station I, 

but may be responsible for a large part of the observed increase with depth at station II. 

APPLICATION OF THE MODEL 

Both the pore water and solid phase profiles indicate that reduction of Fe and Mn oxides 

occurs in the oxidized sediment of station II, thus implying a strong heterogeneity of the 

sediment at this station. As the model is based on a strictly vertical redox zonation, it 

cannot be applied to the results of station II and we will therefore concentrate on station I. 

Fixed parameters. The fixed parameters used for the model fits and their source are listed 

in Table 2. The burial flux of Fe is calculated from the sediment accumulation rate (Table 

2) and the Fe concentration of the material being buried (Fig. 5). Assumption of steady-

state requires that all Fe thus removed through burial is replenished through sedimentation 

of Fe oxides. As these Fe oxides necessarily contain some P, this results in a flux of Fe-

bound P to the sediment (JMx=o)- The Fe/P ratio of the sedimenting material is of course 

crucial for the value of this P flux. We assume the Fe/P ratio of these incoming Fe oxides to 

be equal to 10, which is a value typical for both synthetic (Gerke and Hermann, 1992) and 

natural (Jensen and Thamdrup, 1993; Sundby et al., 1992; Slomp et al., 1996) poorly 

crystalline Fe oxides. 

Model fits and calculated rate constants. Model fits for pore water HPO42" and the three 

diagenetically active solid phase P forms agree reasonably well with the measured profiles 

(Fig. 7A-D). The major discrepancy between the model and field results occurs for the pore 

water HPO42" profile (Fig. 7A). The sharp transition from low concentrations in the 

oxidized sediment zone to 'peak values' below the redox boundary is not accurately 

described. Due to the large scatter in the organic P data (Fig. 7B), it is difficult to check the 

validity of the model fit for this component. The organic C profile is of little assistance, as a 

large variability was also observed in this profile (Fig. 3C). The sharp decrease in organic N 

(Fig. 3E) in the upper 2 cm of the sediment, however, supports the modeled decrease of 

organic P with depth. The results of the model calculations indicate that CFA formation can 
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Table 2. Values of the fixed parameters as used in the diagenetic P model. 

Para- Description 
meter 

Units Value Source 

cm3 cm"3 

n2d-l 

Lj boundary oxidized/reduced 
zone 

L2 boundary bioturbated/non-
biot. zone 

<j> sediment porosity 

D s whole sediment diffusion 
coeff. 

Df, sed. mixing or biodiffusion cm^d"' 
coeff. 

a> sedimentation rate cmd ' ' 

C0 overlying water HPO42- umol cm-3 

cone. 
Cs equilibrium cone, for P umol cm"-' 

sorption 
Ca equilibrium cone, for CFA umol cm-3 

prec. 
JMX=0 fux °f Fe-bound P to the umol cm"2 d"' 

sediment 

2.0 depth where NO3" reaches 
background values (Fig. 4) 

5.0 macrofaunal densities (see study 
sites) 

0.43 mean porosity top 5 cm 

2.1x10-! Krom and Berner ( 1980) 

4.9 x 10_4 Van Weering & De Stigter (pers. 
comm.) 

6.9 x 10"6 Van Weering & De Stigter (pers. 
comm.) 

9.1 x 10_4 measured bottom water 
concentration 

1.0 x lu"3 Froelich (1988), Slomp & Van 
Raaphorst (1993) 

3.7 x lu"3 Atlas & Pytkowicz (1977), 
assuming pH=7.5 

0.2 x 10"4 see text 

account for the increase of authigenic P with depth at station I. Fitted values for JGX=0> 

JAX=0> GOO and Moo and for the rate constants ks, k„, k m and k a are listed in Table 3. 

DISCUSSION 

Diagenetic redistribution of P. Pore water profiles of NO3", Mn2+ and Fe 2 + indicate the 

presence of an oxidized surface zone of ~2 cm overlying reduced sediment at station I. Both 

the solid phase P (Fig. 6) and pore water HPO42" and Fe2+ (Fig. 4) profiles at this station 

suggest a redistribution of Fe-bound P to an authigenic P phase in the reduced part of the 

sediment. The model results (Fig. 7) support this view and show that CFA formation can 

account for the increase of authigenic P at station I. The discrepancy between the pore water 

model and field results close to the redox-boundary may be explained by the fact that pore 

water profiles are much more sensitive indicators of short-term, non-steady state events 

than solid phase profiles. This is illustrated in Fig. 8, which shows the results of a scenario 

in which the model was fit to the pore water HP0 4
2 - profile and the corresponding Fe-

bound P and authigenic P profiles were subsequently calculated. The organic P profile was 

assumed to be similar to that of Fig. 7 and deposition of authigenic P from the overlying 
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Fig. 7. Model fits (solid lines) to profiles of (A) pore water HPO42* (umol dm"3), (B) organic P, 
(C) Fe-bound P and (D) authigenic P (all three in umol g"') for station OMEX-I. The dotted lines 
in each panel indicate the boundaries between the oxidized and reduced sediment zones (Lj = 2 
cm) and between the bioturbated and nonbioturbated zones (L2 = 5 cm). The dashed line in panel 
(D) is the profile of the authigenic P which has not been formed in-situ. The profile in panel (E) is 
the sum of the solid phase P forms (B, C, D) and the solid line is the sum of their model fits. 

water was assumed to be absent (JAX=0
 = 0)- The sharp peak in the pore water HP04

2_ 

profile clearly does not match with the measured Fe-bound P and authigenic P profiles. 

These results can be explained by a very temporary increase of the sediment mixing rate, 

resulting in a temporary increase of the release of HPO42" from Fe oxides in the reduced 

sediment zone. It is also important to note that uniform rate constants, transport coefficients 

and equilibrium concentrations throughout each sediment zone are assumed in the model, 

whereas in reality these will vary with depth, particularly close to the redox boundary. Thus 

the model gives an overly simplistic description of the complex HPO42" sorption, 

precipitation and release processes. 
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Fig. 8. The model fit (solid line) to the profile of (A) pore water HPO42" (urnol dm"3) and model 
calculated (solid lines) profiles of (B) organic P, (C) Fe-bound P and (D) authigenic P (all three in 
l*mol g~') for station OMEX-I. The dotted lines in each panel indicate the boundaries between the 
oxidized and reduced sediment zones (Lj = 2 cm) and between the bioturbated and non-bioturbated 
zones (L2 = 5 cm). ks = 2.3 d"1, ka = 4.7 x 10"3 d"1, km = 2.0 x 10"4 d"1 and JAX=0 = ° u m o 1 c m" 2 

d"'. All other parameters are as in Tables 2 and 3. 

To illustrate the extent to which the pore water HP04
2_ profile is modified by authigenic 

P formation, the model results of Fig. 7 are compared to a model scenario in which CFA 

precipitation is absent and the profiles of Fe-bound P and organic P remain unchanged (Fig. 

9). The results show that CFA precipitation suppresses pore water HPO42" concentrations 

and is responsible for the downward gradient of the profile below ~ 4 cm depth. That Fe-

bound P and not organic P is acting as the main source of pore water HPO42" at station I, is 

illustrated in Fig. 10. Here, the model fits of Fig. 7 are compared to a model scenario in 

which Fe-bound P plays no role. The results show that a much larger decrease of organic P 
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Fig. 9. Model results from Fig. 7 (thick solid lines) for profiles of (A) pore water HPO42" (umol 
dm"3), (B) organic P, (C) Fe-bound P and (D) authigenic P (all three in umol g"1) and results of an 
alternative model scenario (thin solid lines). The dotted lines in each panel indicate the boundaries 
between the oxidized and reduced sediment zones (Lj = 2 cm) and between the bioturbated and 
nonbioturbated zones (L2 = 5 cm). For the alternative scenario: ka = 1.0 x 10"16 d~', ks = 0.2 <H. 
All other parameters are as in Tables 2 and 3. 

with depth than could ever be supported by the measured profile must be invoked to explain 

the profiles of HP0 4
2 _ and authigenic P. 

Comparison of the rate constants obtained for the model fits of Fig. 7 (Table 3) to rate 

constants observed in other sediments should provide insight into the validity of the model 

calculations. Very little is known, however, about the actual in-situ rate constants for the 

reactions controlling pore water HPO42" concentrations in marine sediments. Estimates 

from diagenetic models for P are only available for the rate constants for sorption (ks) and 

authigenic apatite formation (ka). The present value of the sorption rate constant k s falls 
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Fig. 10. As in Fig. 9. For the alternative scenario: ks = 1.0 x 10"16 d"1, km = 1.0 x 10"16 d"1, k( 

3.8 x IQ"5 d-1 and JG x = 0 = 4.5 x 10"4 umol cm"2 d"1. 
g 

within the lower part of the range of 0.1-23.8 d"1 estimated for sandy North Sea sediments 

(Van Raaphorst et al., 1990). Van Cappellen and Berner (1988) estimated a first-order rate 

constant of 0.17 d"1 for nonsteady state CFA precipitation in a well-defined layer of a 

Mexican continental margin sediment. The rate constant determined for dispersed, steady 

state CFA precipitation ( k^ in our study is substantially lower. Tromp et al. (1995) 

proposed the following relationship between the oxic degradation rate constant for organic 

C (kc in units of y"1) and sedimentation rate (co in units of cm y_1): 

A:c=2.97co 0.62 
(2) 

With a sedimentation rate of 2.5 x 10"3 cm y"1 (Table 2) this gives a kc o f -2 .0 x 10"4 d"1 

for station I. This value is very close to the rate constant for organic P decomposition (k„) 



umol cm"2 d"l 

umol cm"2 d"' 

Hmol g'l 

umol g" ' 

d-1 

d-1 

d-1 

d-1 

d-1 

d-1 

3.11 x ÏO"4 

0.18 x lu"4 

1.94 

1.99 

2.6 x 10-1 

7.4 x 10-4 

5.3 x 10-4 

1.0 x 10-3 

2.5 x lu"3 

1.8 x 10-3 
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Table 3. Values of the fitted parameters for station OMEX-I. 

Parameter Description Units Value 

JGX=0 fux °f organic P to the sediment at x = 0 

JAX=0 fux °f authigenic P to the sediment at x = 0 

G«, asymptotic cone, for organic P 

M œ asymptotic cone, for Fe-bound P 

ks rate constant for P sorption 

k„ rate constant for organic P decomposition 

km rate constant for Fe-bound P release 

ka rate constant for CFA precipitation 

kg kg x y 

km' km x ° 

estimated for station I, particularly when taking into account that preferential regeneration 

of P relative to C oxidation is believed to occur upon oxic decomposition of organic 

material (Ingall and Van Cappellen, 1990). The rate constant for P release due to reduction 

of Fe oxides (km) observed for station I is lower than most first-order rate constants for 

reductive dissolution of Fe oxides due to chemical reductants or by microorganisms under 

laboratory conditions (Lovley, 1991; Schwertmann, 1991; Stumm and Sulzberger, 1992). 

Canfield et al. (1992), for example, calculated values ranging from 6.0 d_1 for amorphous 

Fe oxide to 0.03 d"1 for synthetic hematite upon reduction of these Fe oxides with sulfide (1 

raM). We conclude that, with the exception of kg, the values of the rate constants calculated 

here are lower than most values obtained in other modeling or laboratory studies, thus 

suggesting less optimal conditions for the relevant processes in the sediment at station I. 

At station II, pore water Fe2+ , Mn2+ , HP04
2", NH4+ (Fig. 4) and solid phase Mn (Fig. 5) 

profiles suggest the occurrence of locally reduced spots associated with organic matter 

decomposition at several depths in an otherwise oxidized sediment. This concept of micro-

environments has been suggested previously to explain both Mn reduction (Kalhorn and 

Emerson, 1984; Heggie et al., 1986) and SO42- reduction (Jergensen, 1977) in the 'oxic' 

zone of several sediments. Apparently, organic matter degradation is so rapid locally that 

the consumption of O2 is faster than the resupply by molecular diffusion. As O2 is supplied 

from the overlying water, most of the Fe2+ and Mn2+ diffusing out of such micro-sites will 

be oxidized at the 'top' of each site. When these micro-sites are quantitatively important in a 

sediment and the rate of sediment accumulation is low, this can eventually result in the net 
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Fig. 11. Fluxes of P (in 10"4 umol cm"2 d"1) between the pore water and the sediment P reservoirs 
as calculated with the model for each sediment zone at station OMEX-I. Zone I (0 < x < 2 cm) is 
the oxidized surface zone. Zone II (2 cm < x < 5 cm) is the reduced sediment zone with 
bioturbation. Zone III (x > 5 cm) is the reduced sediment zone without bioturbation. 

decrease in the amount of Mn and Fe oxides with depth observed here. The results of the 

sediment P extractions (Fig. 6) suggest that a redistribution of Fe-bound P to CFA may be 

occurring in these micro-sites below ~6 cm depth at station II. We cannot exclude, 

however, the possibility that the increase of authigenic P with depth at this station is not due 

to in-situ formation of authigenic P but is the result of a gradual change in the flux of 

CaCC>3 to the sediment with time. 

In conclusion, the results indicate that CFA may be forming at the expense of Fe-bound 

P in both Goban Spur sediments. We will concentrate on the results of station I in the 

further discussion, as the results for this station are less equivocal than those for station II. 
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A key role for Fe-bound P in CFA formation. Further insight into the mechanism 

responsible for the early diagenetic redistribution of Fe-bound P to CFA at station I is 

provided by the fluxes of P between the sediment P reservoirs and pore water HPO4.2- in 

each sediment zone. These fluxes were calculated with the model and are presented in Fig. 

11. Combining Fig. 7 and 11, the following description of the sedimentary P cycle results. 

Most P deposited at the sediment-water interface is associated with organic matter. A 

large proportion (-85%) of this organic P is decomposed in the oxidized surface layer. Most 

of the thus produced pore water HPO42" is released very close to the sediment-water 

interface and immediately escapes to the overlying water. Some of this HP04
2_ is sorbed to 

Fe oxides, however, and enters the intense cycle of P at the redox boundary. This cycle of 

P, which is mainly driven by bioturbation through downward transport of Fe-bound P, is 

responsible for the continuously high concentrations of pore water HPO42" immediately 

below the redox boundary. These high HPO42" concentrations favour CFA precipitation. 

Losses from the internal P cycle occurring due to CFA formation and due to diffusive 

escape of HPO42" are compensated for by input of HPO42' released from organic matter in 

the oxidized surface zone. Bioturbation causes the CFA, formed in the reduced, bioturbated 

zone (between Lj and L2), to be mixed upwards into the oxidized zone, accounting for a 

'background' concentration of CFA at the sediment-water-interface. The total background 

concentration of authigenic P is higher, however, due to a flux (JAX=O) °f authigenic P 

formed elsewhere. This authigenic P is only truly authigenic, in the sense that its formation 

has resulted in the removal of reactive P (i.e. potentially biologically available P) from 

seawater (see Ruttenberg and Berner, 1993), when it has been formed in a marine 

environment. In the non-bioturbated zone, release of HPO42" from organic P and Fe-bound 

P is small and downward diffusion of HPO42" supplies most P for CFA formation. In this 

zone of the sediment, the CFA profile is no longer disturbed by mixing and the CFA 

concentration (Fig. 7D) and the sum of organic, Fe-bound and authigenic P (Fig. 7E) 

gradually increase with depth. This increase will cease when the porewater reaches 

equilibrium with respect to CFA. 

Assuming that all sediment P phases in Fig. 11 consist of reactive P, the total downward 

flux of reactive P at the lower boundary of the sediment interval under study here (at 15 cm 

depth) becomes 1.1 umol m"2 d"1. CFA formed in-situ accounts for -25% (0.3 umol m"2 

d"1) of this downward flux of reactive P. If the pore water HPO42" diffusing downward (0.2 

umol m-2 d"1) is also incorporated in CFA, this authigenic mineral phase accounts for 

-45% of the downward reactive P flux. If Fe-bound P and authigenic P supplied from the 

overlying water consist of non-reactive P phases, total reactive P burial decreases to 0.7 
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umol m-2 d"1. Now the contribution of CFA formed in-situ to reactive P burial will be 

-40% when downward diffusing HP04
2_ is not incorporated in CFA and -70% when it is. 

In the model calculations we assumed a small flux of Fe oxides from the overlying water 

with an Fe/P ratio of 10. The Fe/P ratio of the Fe oxides being buried was also -10 at 

station I (depth interval 13-15 cm, Fig. 5C and Fig. 6D). Since, under steady-state 

conditions, the flux of Fe-oxides from the overlying water is equal to the burial flux of Fe, 

the same also holds for the deposition and burial fluxes of Fe-bound P (Fig. 11). The flux of 

Fe-bound P from the overlying water is only of minor importance for the internal P cycle at 

the redox interface as this cycle largely depends on in-situ formation of Fe-bound P. 

Intercomparison of the rate constants obtained in this study provides more insight in the 

kinetics of the relevant processes. To enable the values of km and k„ (first-order in the solid 

phase concentrations of Fe-bound P and organic P) to be compared to those of ka and ks 

(first-order in the pore water HP04
2" concentration), the former constants were multiplied 

by S, giving km ' and k„' (Table 3). The high ks value relative to km ' and kg' indicates that, 

as expected, sorption of HPO42" to Fe oxides in the oxidized sediment zone is a more rapid 

process than HPO42" release from either organic matter or from Fe oxides. The rate constant 

for CFA precipitation (kg) is of the same order of magnitude as km ' and kg'. This suggests 

that both Fe-bound P and organic P are kinetically suited as sources of HPO42" for CFA. 

We conclude that CFA formation is sufficiently rapid to keep up with release of HP04
2_ 

from both sources. Which of the two actually acts as the source of P for CFA depends on 

the location in the sediment where the HPO42" release occurs and on the availability of 

sufficient pore water fluoride. 

Summarizing, these results illustrate how an intense cycling of P between Fe-bound P 

and pore water HPO42" can account for elevated concentrations of HPO42" below the redox 

boundary, thus promoting early diagenetic CFA formation. This internal P cycle is driven 

by downward transport of in-situ formed Fe-bound P and refueled by P release from 

organic matter. This mechanism, in which Fe-bound P plays a key role in early diagenetic 

CFA formation, acting as an intermediate between organic P and CFA, may be of particular 

importance in marine sediments with low sedimentation rates where organic matter 

decomposition takes place close to the sediment-water interface. Remineralized HPO42" 

which would otherwise escape to the overlying water is thus largely retained in the 

sediment. This could also explain why Fe-bound P acts as the P source for CFA in a low 

sedimentation environment in the Labrador Sea (Lucotte et al., 1994). In terrigenous, high 

sedimentation continental margin environments where relatively labile organic matter is 

buried rapidly, there is less need for an intermediate role of Fe-bound P. Here, organic P 

may act as a direct source of HPO42" for CFA as suggested by Ruttenberg and Berner 

(1993) for Long Island Sound and Mississippi Delta sediments. 
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CFA as a sink for P. The major importance of CFA formation in marine sediments lies in 

the fact that CFA acts as a permanent sink for reactive P. The contribution of CFA to the 

total burial flux of reactive P at station I was estimated to range between -25 and 70%, 

depending on whether downward diffusing HPO42" is assumed to be incorporated in CFA 

and whether Fe-bound and authigenic P supplied from the overlying water are assumed to 

consist of reactive P. This indicates that CFA is a very important sink for reactive P in this 

sediment. Ruttenberg (1993) estimated a contribution of authigenic P to global reactive P 

burial of -28 to 50 % based on P speciation results for only three locations: the two high 

sedimentation, continental margin sites from the study of Ruttenberg and Berner (1993) and 

one pelagic sediment in the equatorial Atlantic. Our results for a low sedimentation, 

continental margin environment support this important role of CFA for global reactive P 

burial. 

CONCLUSIONS 

The results of solid phase P speciation for sediments from two stations on the North 

Atlantic continental platform Goban Spur indicate that authigenic carbonate fluorapatite 

(CFA) may be forming in the sediment at the expense of Fe-bound P. 

Application of a diagenetic phosphorus model to solid phase P (organic P, Fe-bound P 

and authigenic P) and pore water HP0 4
2 _ profiles, indicates that CFA formation can 

account for the increase of authigenic P with depth at one station. The model results 

demonstrate that an intense cycling of P between Fe-bound P and pore water HPO42" can be 

responsible for elevated pore water HPO42" concentrations below the redox-interface, thus 

creating conditions beneficial for CFA formation. This cycle is driven by bioturbation 

through downward transport of in-situ formed Fe-bound P and refueled by sorption of 

HPO42" released from organic matter to Fe oxides. This mechanism, in which Fe-bound P 

plays a key role, acting as an intermediate between organic P and CFA, may be of particular 

importance in marine sediments with low sedimentation rates where organic matter 

decomposition takes place close to the sediment-water interface. In these environments, 

CFA may then become an important sink for P. 
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APPENDIX 
The differential equations for each P reservoir in the (I) oxidized surface zone (0 < x < Lj), (II) 
reduced sediment zone with bioturbation (Lj < x < L2) and (III) reduced sediment zone without 
bioturbation (x > L2), with S as given in equation (1) and all other symbols as listed in Tables 2 
and 3, are as follows: 

Pore water HPO42- (C) 

^J- = [Db+Ds]^-m^ + kgHGI-Gœ)-ks(C,-Cs) = 0 (Al) 

^ L = [ ö è + O i ] ^ L - f f l ^ - + *g&(G / /-Goo)-fca(C / /-Ca) + ̂ d (A / / / -M Q O ) = 0 (A2) 

^IL = Ds^L-a^l!IL + k »(G,,, -Gœ)-ka(Cln -Ca) + kmd(Mnl - Mœ) = 0 (A3) 
or dx ox 

Organic P (G) 

ôGj ~ d Gr dGj j ,~ ~ . „ , * A\ 

^ = z ^ - w ^ - * s ( G / - G œ ) = 0 (A4) 

dG„ n d2G„ dG 
dt b dx2 dx 

dt ^ a ^ L - * g ( G / / / - G o o ) = ° (A6) 
Fe-bound P (M) 

dGJlL = -a, 8G'" 
3/ dx 

^ = j D .^L_ w ^L + k ( C / - C s ) = 0 (A7) 
dt b dx2 dx S v ' s' 
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—^- = Dh " -co—-ü--km(M I I-M (X>) = 0 (A8) 
at ° dx ox 

dt ox 
Authigenic P (A) 

^ = D , ^ - c o ^ = 0 (AIO) 
dt b dx2 dx 

9A„ _ n d2A„ dA„ , k a ( r r , _ ( ) r A ] n 

d^/// 
3/ ~ dx ' $ 

= ̂ Ä + ^ L ( C / / / - C a ) = 0 (A12) 

The boundary conditions used to solve the equations (Al) to (A12) are: 

a tx = 0 C,=C0 (A13) 

JGx=0=-**lDb^-<aGlx*Q (A14) 

X=o= H^ 9 [ Z )*^"< D^ j e= 0 (A15) 

^ ^ » [ ^ - - c o ^ ^ o (A16) 

at x = i . 

at x = L2 

Ci=C„ (A17) 

G,=G„ (A 18) 

il// = M„ (A 19) 

^ / = A„ (A20) 

[ÖA + Z> J ]^ - -a>C, =[Z)Ä +Ds]^-(ùCn (A21) 

Z ^ - c o G / = D ^ - c o G , / (A22) 

D ^ - M A / / = Z ) è ^ L - c o M / / (A23) 

D
b
d-t-°A<=D

b
d-t-»A» (A24) 

^ 7 = ^ / / (A25) 

G„=Gm (A26) 

M// = M /w (A27) 

A„ = A,„ (A28) 

[Db + Ds]^—<ûC„ = ß 5 ^ f - -G>C f f / (A29) 
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(A30) 

(A31) 

(A32) 

Db 

Db 

Db 

dG„ 
dx 

dM„ 
dx 
dA„ 
dx 

C 

-<ùG„ = 

-mM/f = 

-(ÙA„ = 

m -* ca 

G m -* GQC 

-<ùGm 

-®Min 

-uAm 

M„I -> Moo 

when x —» oo 

(A33) 

(A34) 

(A35) 

The solutions to the equations and the Excel worksheet containing the model can be obtained from 
the first author upon request. 



Summary 

Most of the organic material in the oceans that reaches the sea floor is deposited on 

continental margins and not in the deep sea. This organic matter is the principal carrier of 

phosphorus (P) to sediments. A part of the organic material is buried definitely. The other 

part decomposes, resulting in a release of dissolved HPO42" to the pore water. This HPO42" 

either returns to the overlying water and becomes available for uptake by phytoplankton, or 

is retained in the sediment in an organic or inorganic form. 

Quantification of the P release from and P retention in sediments on relatively short time 

scales of days to years is necessary for a correct understanding of the nutrient dynamics in 

regional seas such as, for example, the North Sea. An accurate assessment of the modern 

global ocean burial flux of reactive P (i.e potentially bioavailable P) and the burial flux in 

the geological past is important for understanding the global oceanic P cycle. This, in turn, 

can provide insight in possible controls on organic C burial and atmospheric concentrations 

of CO2 and O2, because P may limit oceanic primary production and thus determine the 

amount of organic material in the oceans on geological time scales. 

The research presented in this thesis concentrates on the short-term processes controlling 

sediment P release and retention in temperate, non-upwelling, continental margin 

environments. The research commenced with a laboratory study on the effect of organic 

matter deposition and macrofauna on sediment-water exchange and retention of P in Fe 

oxide-poor, sandy sediments (Chapter 2). A suspension of dead algal cells (Phaeocystis sp.) 

was applied to sediment in experimental systems (boxcosms), either once or every week 

during 19 weeks. The results demonstrate that deposition of organic matter on this type of 

sediment enhances pore water concentrations and sediment-water exchange of HPO4.2-. 

The enhanced HPO42" release was due to microbially mediated mineralization of the 

organic material and due to direct release of HPO42" from the algal cells (lysis). A major 

portion of the algal material remained at the sediment-water interface and this organic layer 

probably regulated the sediment-water exchange of HPO42" directly. The activity of the 

macrofauna was mainly limited to reworking of the sediment. The effect of the macrofauna 

on the sediment-water exchange of HPO42" was negligible. In the boxcosms to which 

organic material was added only once, the concentration of NaOH-extractable sediment P 

increased following the addition, especially in the presence of macrofauna. 

Sorption of P to Fe oxides is the most important short-term process responsible for the 

retention of P in sediments. Using a combination of differential X-ray diffraction (DXRD) 

and extraction procedures, the character of the Fe oxides that bind P in 4 North Sea 

sediments was studied (Chapter 3). The results indicate that poorly crystalline ferrihydrite 

and akageneite were present in the fine sediment fraction (< 10 urn) of surface samples 
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from all locations. Combination of these results with bulk sediment extractions of Fe and P 

and sorption characteristics for P provides evidence for the dominant role of poorly 

crystalline Fe oxides for the binding of P in these North Sea sediments. These poorly 

crystalline Fe oxides are suggested to act as both a temporary and permanent sink for P. 

The redox conditions in continental margin sediments can vary both seasonally and 

spatially. To obtain more insight in the redox conditions in North Sea sediments, the Mn 

and Fe cycle at 15 locations in 4 different sedimentary environments was studied in 2 

contrasting seasons (Chapter 4). The quality and quantity of the organic matter deposited in 

each environment was found to determine whether sediments become sufficiently depleted 

of O2 and NC^- to allow for (1) Fe and Mn reduction and (2) escape of dissolved Fe2+ and 

Mn2+ to the overlying water. A steady-state diagenetic model describing solid phase and 

pore water metal profiles was developed and applied to Mn and Fe data for 11 and 3 

stations, respectively. The model results demonstrate that (1) reversible sorption in 

combination with sediment mixing can enhance diffusive transport of dissolved metals; (2) 

precipitation of Fe2+ and Mn2+ in the form of reduced authigenic minerals can explain the 

reversal of the pore water Fe2+ and Mn2+ gradients at depth at many stations, and (3) in 

most North Sea sediments, Fe and Mn oxides do not play an important role as redox 

intermediates in organic C oxidation (accounting for < 4 %); only in the depositional 

environment of the Skagerrak, metal oxide reduction may contribute substantially to 

organic C oxidation (-20%). 

Reversible sorptive reactions can both constrain and enhance the flux of HPO42" from 

the sediment to the overlying water. The role of sorption in sediment-water exchange of 

HPO42" in North Sea sediments was investigated for 15 locations in 2 seasons (Chapter 5). 

P sorption data, pore water HPO42" profiles, solid phase results and measured and 

calculated rates of sediment-water exchange of HPO42" were combined. Sorption was found 

to play an important role in controlling sediment-water exchange of HPO42" during at least 

part of the year in 3 of the 4 North Sea environments. At most stations, adsorption limits the 

flux of HPO42" to the overlying water. At one station in the Skagerrak, however, desorption 

is responsible for the maintenance of a flux of HPO42" to the overlying water. A one-

dimensional reaction-diffusion model describing the sedimentary P cycle was developed 

and applied to the results for 2 stations. The model results show that both enhanced 

retention and enhanced release due to sorption can be adequately described when 

simultaneous equilibrium and first-order reversible sorptive reactions are assumed. 

P bound in authigenic minerals may not be solubilized again, whereas Fe-bound and 

organic P can still be released upon deep burial. Therefore, more insight in the extent of 

authigenic P mineral formation in continental margin sediments is important. A 

combination of pore water and solid phase analysis was used to determine whether 
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authigenic carbonate fluorapatite (CFA) is currently forming at two locations on a North 

Atlantic continental platform (Chapter 6). Results of selective extractions suggest that an 

authigenic P phase is forming at the expense of Fe-bound P at both stations. A steady-state 

diagenetic model for the P cycle was developed and applied to the data of 1 station. The 

model results indicate that CFA formation can account for the observed increase of 

authigenic P with depth at this station. Furthermore, the results show that an intense cycling 

of P between Fe-bound P and pore water HPO42" at the redox interface can create 

conditions beneficial for CFA formation. This internal P cycle is driven by downward, 

bioturbational transport of mainly in-situ formed Fe-bound P into the reduced sediment 

zone. Losses from the internal P cycle due to CFA formation and HPO42" diffusion are 

compensated for by sorption of HPO42" released from organic matter to Fe oxides. Fe-

bound P thus acts as an intermediate between organic P and CFA. Burial of CFA can 

account for between 25 and 70% of the total burial flux of reactive P and thus may act as an 

important sink for P in this low sedimentation, continental margin environment. 



Samenvatting 

Het grootste deel van het organisch materiaal in de oceanen dat de zeebodem bereikt, komt 

terecht op het continentale plat en de continentale helling (samen de continental margin) en 

niet in de diepzee. Voor het sediment is dit organisch materiaal de belangrijkste bron van 

reactief, d.w.z. potentieel voor mariene organismen beschikbaar fosfaat. Een deel van dit 

organisch materiaal wordt definitief begraven. Het overige gedeelte breekt af, wat resulteert 

in het vrijkomen van opgelost fosfaat in het poriewater. Dit fosfaat keert öf terug naar het 

bovenstaande water, en komt daarbij weer beschikbaar voor opname door fytoplankton, öf 

wordt in het sediment vastgelegd in organische of anorganische vorm. 

Kwantitiatief inzicht in de rol van sedimenten als een bron en opslagplaats voor fosfaat, 

op tijdschalen van dagen tot jaren, is van belang voor een goed begrip van de dynamiek van 

nutriënten in randzeeën, zoals bijvoorbeeld de Noordzee. Voor een juist begrip van de 

fosforcyclus in de oceanen als geheel is het belangrijk te weten met welke snelheid fosfaat 

op mondiale schaal definitief in sedimenten wordt opgeslagen. Dit is vooral interessant 

omdat fosfaat mogelijk de limiterende factor voor de totale primaire productie in de 

oceanen op geologische tijdschalen is. De hoeveelheid beschikbaar fosfaat kan dus bepalen 

hoeveel organisch materiaal er in de oceanen gevormd en begraven wordt en daarmee de 

atmosferische concentraties van kooldioxide en zuurstof beïnvloeden. 

Het onderzoek dat in dit proefschrift beschreven is, beperkte zich tot het bestuderen van 

de korte termijn-processen die verantwoordelijk zijn voor de vastlegging en afgifte van 

fosfaat door sedimenten van continental margins in gematigde gebieden waar geen 

opwelling plaatsvindt. Het onderzoek begon met een laboratoriumstudie naar het effect van 

de depositie van organisch materiaal en de aanwezigheid van macrofauna op de sediment-

wateruitwisseling en retentie van fosfaat in zandige, ijzer-arme sedimenten (Hoofdstuk 2). 

Een suspensie van dode algencellen (Phaeocystis sp.) werd, eenmalig of iedere week 

gedurende 19 weken, op sediment in experimentele systemen (boxcosms) aangebracht. De 

resultaten laten zien dat depositie van organisch materiaal op dit type sedimenten leidt tot 

een verhoging van de poriewaterconcentraties en sediment-wateruitwisseling van fosfaat. 

De verhoogde fosfaatafgifte was het gevolg van de mineralisatie van het organisch 

materiaal en het direct vrijkomen van opgelost fosfaat uit de algencellen. Een groot deel van 

het algenmateriaal bleef op het sediment liggen en deze organische laag reguleerde 

waarschijnlijk direct de sediment-wateruitwisseling van fosfaat. De activiteit van de 

macrofauna bleef grotendeels beperkt tot het omwoelen van het sediment. Het effect 

hiervan op de sediment-wateruitwisseling van fosfaat was verwaarloosbaar klein. In de 

boxcoms waaraan eenmalig organisch materiaal was toegevoegd, nam de concentratie 
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NaOH-extraheerbaar sediment fosfaat direct na de gift toe, vooral in de aanwezigheid van 

macrofauna. 

Sorptie van fosfaat aan ijzeroxiden is het belangrijkste korte termijn-proces dat zorgt 

voor de vastlegging van fosfaat in sedimenten. Met behulp van een combinatie van 

differentiële röntgendiffractiemetingen (DXRD) en extractiemethoden, werd onderzocht 

wat voor ijzeroxiden fosfaat binden in 4 Noordzee sedimenten (Hoofdstuk 3). De resultaten 

geven aan dat wéinig-kristallijn ferrihydriet en akaganeite aanwezig was in de fijne 

sediment fractie (<10 |im) van oppervlakte monsters van alle locaties. Combinatie van deze 

gegevens met bulk-sedimentextracties voor ijzer en fosfaat en sorptiegegevens voor fosfaat, 

wijzen op een belangrijke rol van deze ijzeroxiden voor de binding van fosfaat in Noordzee 

sedimenten. Deze ijzeroxiden zorgen waarschijnlijk voor een tijdelijke en een permanente 

opslag van fosfaat in het sediment. 

De redoxcondities in sedimenten van continental margins kunnen zowel in de ruimte als 

in de tijd sterk variëren. Om meer inzicht te verkrijgen in de redoxcondities in Noordzee 

sedimenten, werd de mangaan- en ijzercyclus op 15 locaties in 4 verschillende 

sedimentatiemilieus in 2 contrasterende seizoenen bestudeerd (Hoofdstuk 4). De resultaten 

laten zien dat de kwaliteit en kwantiteit van het organisch materiaal dat in ieder milieu 

gedeponeerd wordt bepaalt of het sediment voldoende arm is aan zuurstof en nitraat om (1) 

de reductie van ijzer- en mangaanoxiden mogelijk te maken en (2) opgelost gereduceerd 

ijzer en mangaan naar het bovenstaande water te laten ontsnappen. Er werd een reactie-

diffusiemodel ontwikkeld om de vaste fase- en poriewaterprofielen voor ijzer en mangaan 

te beschrijven. Dit model werd vervolgens toegepast op de gegevens voor ijzer en mangaan 

voor, respectievelijk, 4 en 11 stations. De modelresultaten laten zien dat (1) reversibele 

sorptie in combinatie met menging van het sediment het diffusieve transport van opgeloste 

metalen kan versnellen; (2) precipitatie de afname van de opgelost ijzer- en 

mangaanconcentraties met de diepte in de gereduceerde sediment zone kan verklaren; (3) in 

de meeste Noordzee sedimenten ijzer- en mangaanoxiden geen belangrijke rol spelen als 

oxidator bij de afbraak van organisch materiaal (<4% bijdrage); alleen in het Skagerrak 

kunnen deze metaaloxiden een substantiële bijdrage leveren (-20%). 

Reversibele sorptie van fosfaat aan ijzeroxiden kan de fosfaatflux van het sediment naar 

het bovenstaande water niet alleen beperken maar ook versterken. Het effect van sorptie op 

de sediment-wateruitwisseling van fosfaat in Noordzee sedimenten werd bestudeerd voor 

15 locaties in 2 seizoenen (Hoofdstuk 5). Sorptiegegevens, poriewaterprofielen en gemeten 

en berekende sediment-water fluxen voor fosfaat werden gecombineerd met vaste-

fasegegevens. Sorptie bleek een belangrijke controlerende factor te zijn voor de sediment-

wateruitwisseling van fosfaat gedurende een deel van het jaar in 3 van de 4 bezochte 

Noordzee gebieden. Op de meeste locaties beperkte adsorptie de fosfaatafgifte van het 
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sediment naar het bovenstaande water. Op een locatie in het Skagerrak was desorptie 

daarentegen verantwoordelijk voor de instandhouding van de flux van fosfaat naar het 

bovenstaande water. Er werd een reactie-diffusiemodel voor de sedimentaire fosforcyclus 

ontwikkeld en toegepast op de resultaten voor 2 stations, waaronder die in het Skagerrak. 

De modelresultaten laten zien dat zowel een door sorptie verhoogde retentie van fosfaat als 

een verhoogde afgifte adequaat met het model beschreven kan worden, indien gelijktijdige 

evenwichts en eerste-orde reversibele sorptieprocessen worden aangenomen. 

Fosfaat dat in het mariene milieu in minerale vorm precipiteert komt waarschijnlijk niet 

meer in oplossing, dit in tegenstelling tot fosfaat dat gebonden is aan ijzeroxiden of in 

organisch materiaal. Het is daarom van belang te weten in welke mate deze zogenaamde 

authigene mineralen in sedimenten van continental margins worden gevormd. In dit 

onderzoek (Hoofdstuk 6) werden poriewater- en vaste-fasegegevens gecombineerd om te 

bepalen of authigene carbonaatfluorapatite (CFA) gevormd wordt op twee locaties op een 

Noord-Atlantisch continentaal platform. Resultaten van selectieve extracties wijzen op de 

vorming van een authigene fosfaatfase ten koste van ijzergebonden fosfaat op beide 

locaties. Er werd een reactie-diffusiemodel voor de sedimentaire fosforcyclus ontwikkeld 

en toegepast op de resultaten voor een van de twee locaties. De modelresultaten laten zien 

dat de vorming van CFA de toename van de authigene fosfaatfase met de diepte op deze 

locatie kan verklaren. Bovendien wijzen de modelresultaten op een intensieve cyclus van 

fosfaat tussen ijzergebonden fosfaat en poriewaterfosfaat bij het grensvlak tussen het 

geoxideerde en gereduceerde deel van het sediment. Deze interne cyclus van fosfaat wordt 

gedreven door een neerwaarts transport door menging van vooral in-situ gevormd 

ijzergebonden fosfaat van de geoxideerde zone naar de gereduceerde zone. Het verlies van 

fosfaat door CFA vorming en door diffusie wordt gecompenseerd door sorptie van fosfaat 

aan ijzeroxiden in de geoxideerde zone. Dit fosfaat is afkomstig van organisch materiaal. 

Uzergebonden fosfaat fungeert dus als een intermediair tussen organisch fosfaat en CFA. 

Deze authigene fosfaatfase kan verantwoordelijk zijn voor 25 tot 70% van de totale 

hoeveelheid van het fosfaat dat begraven wordt in deze sedimenten en kan dus een 

belangrijke bijdrage leveren aan de definitieve opslag van fosfaat in dit laag-sedimentatie 

continental margin gebied. 
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