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Van Dam, J.T.P. 1996. The interaction between nutrition and metabolism in West 
African Dwarf goats, infected with trypanosomes. 

In a series of experiments the interaction between nutrition and energy- and nitrogen 
metabolism of West African Dwarf goats, infected with trypanosomes was studied. 
Animals were injected with trypanosomes, and feed intake, energy and nitrogen 
balance and blood metabolites and hormones were measured for a period of six 
weeks post infection. Trypanosoma vivax infection caused fever and anaemia. The 
degree of anorexia, as indicated by the ratio [dry matter intake during infection / dry 
matter intake before infection] differed between experiments and between animals. 
Some indications were found for a relation between MHC genotype and dry matter 
intake ratio, but also environmental factors like stress and the age of the animals 
probably affected this ratio. Trypanosome infection caused a reduction of the energy 
retention, by decreasing gross energy intake and by increasing maintenance require­
ments with 28 %. This increased maintenance requirement was mainly related to the 
fever. Blood biochemical parameters reflected the undernourished state of infected 
animals. No indications were found for an interaction between the quality of the 
offered diet and the course of infection with respect to feed intake and nitrogen 
metabolism; instead, the effects of diet quality and of trypanosome infection were 
additive. Also no interaction occurred between nutritional history (as indicated by 
growth retardation which had developed prior to infection) and the course of subse­
quent trypanosome infection with respect to energy and nitrogen metabolism. 

Ph.D. thesis, Wageningen Agricultural University, Department of Animal Husbandry, 

Section of Animal Production Systems, PO Box 338, 6700 AH Wageningen, The 

Netherlands. 



/O f J 

Stellingen 

ö^-?Z\li2o 

1. Tijdens de eerste 6 weken van een trypanosomiasis infectie zijn de 

haematocrietwaarde en voederopname niet gecorreleerd. 
dit proefschrift 

2. Slechts in extreme gevallen is tijdens de eerste 6 weken van een 

trypanosomiasis infectie een interactie tussen de kwaliteit van de voeding en 

het verloop van infectie te verwachten. 
dit proefschrift 

3. De gevolgen van trypanosomiasis infectie voor de dierlijke produktie zijn 

vrijwel uitsluitend gelegen in een verlaagde voedselopname en een verhoogde 

onderhoudsbehoefte. 
dit proefschrift 

4. De bevinding van Kyriazakis et al. (1994) dat dieren kunnen compenseren 

voor de negatieve effecten van nematode infectie door middel van selectie van 

hoogwaardiger voer, is in het voordeel van 'browsers' (geiten, schapen) ten 

opzichte van 'grazers' (koeien). 
Kyriazakis, Oldham, Coop and lackson. 1994. Br. \. Nutr. 72: 665-677. 

5. Een duurzame relatie tussen 'veeteelt' en 'milieu' vergt toewijding. 

6. Het is te verwachten dat de opheffing van het Landbouwschap negatieve 

gevolgen zal hebben voor de gehele landbouwsector, vooral met betrekking 

tot het overleg tussen werkgevers en werknemers, en de belangenbehartiging 

richting de politiek. 

7. Het is te betreuren dat in de maatschappelijke discussie over ethische kwesties 

uitzonderingsgevallen vaak fungeren als breekijzer om de bestaande wetgeving 

aan te vechten. 

8. De term 'samenleving' verliest gaandeweg haar inhoud naarmate meer nadruk 

op individuele ontplooiing wordt gelegd. 

9. Voor zowel liefhebbers als haters van de soap 'Goede Tijden, Slechte Tijden' 

(GTST) zou een verandering van deze naam in 'Goede Fijne Tijden' duidelijker 

de aard van de serie aangeven. 



10. 'Onder'zoeken levert kennis op; echte wijsheid kunnen we alleen Boven 

vinden. 

Stellingen behorend bij het proefschrift 'The interaction between nutrition and 

metabolism in West African Dwarf goats, infected with trypanosomes'. 

j.T.P. van Dam, 25 juni 1996. 
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En dan zit het werk erop... Het proefschrift ligt klaar voor de drukker. Het tot-stand­

komen van dit proefschrift zou dit niet mogelijk zijn geweest zonder de hulp en inzet 

van vele mensen. 

In de eerste plaats is dit prof. dr. Dick Zwart. Dick, bedankt voor het vertrouwen 

dat je me door de jaren heen gegeven hebt. Ik vond het in het begin niet altijd 

makkelijk om de verschillende disciplines te integreren in mijn onderzoek, maar j i j 

hebt daar goede begeleiding in gegeven. 

Daarnaast passen woorden van dank aan mijn andere (co-)promotoren, prof. dr. 

ir. Martin Verstegen van de vakgroep Veevoeding en dr. Theo Wensing van de 

vakgroep Inwendige Ziekten en Voeding der Grote Huisdieren, Universiteit Utrecht. 

Martin, je bent de gezelligste prof die ik ken! Je ruime ervaring in het respiratie-

onderzoek zijn voor mij van grote waarde geweest, evenals de bemoediging in de 

wandelgangen. Dr Wensing, uw punctuele commentaar op de manuscripten was een 

grote hulp. Met u was een bespreking nooit saai. Daarom: geen hagel, maar lof! 

Als andere leden van de begeleidingscommissie van de vakgroep Veehouderij 

noem ik ing. Prins van der Hel. Prins, je koppelde een aanstekelijk enthousiasme aan 

grote nauwgezetheid. Het ga je goed! Ook ing. Peter Hofs MSc wil ik graag noemen. 

Peter, bedankt voor je vele tips en adviezen, zowel aangaande de praktijk van het 

proeven doen, als ook de beoordeling van manuscripten. Mijn uithoudingsvermogen 

werd positief door je beïnvloed! Verder dr. ir. Johan Schrama. Johan, j i j hebt gaande­

weg een deel van de begeleiding op je genomen, iets wat ik zeer heb gewaardeerd. 

Je statistische kennis en je heldere schrijftrant waren voor me van grote waarde! Dr. 

ir. Bert Tolkamp, bedankt voor je opbouwend-kritische adviezen, met name op het 

vlak van de proefopzet. 

Mijn dank gaat ook uit naar de 'cellengroep' van de vakgroep: naast Johan en 

Prins zijn dit Marcel Heetkamp, Koos van der Linden en Henk Brandsma. Bedankt 

voor het vele werk dat jullie verzet hebben en de 24-uurs betrokkenheid bij de 

respiratieproeven! Voor het werk in de geitenstal wil ik de collega's van Proefaccomo-

datie 'De Haar' hartelijk danken. Met name wil ik noemen Sylvia van Ewijk, die vele 

jaren de verantwoordelijkheid heeft gehad voor het werk in de geitenstal, en Peter 

Vos, die ook veel werk verzet heeft rond de respiratiecellen. Jullie allen hartelijk 

bedankt! 

Hans Nieuwenhuijs van de vakgroep Parasitologie en Tropische Diergeneeskunde 

van de Universiteit Utrecht wil ik bedanken voor het beschikbaar stellen van het 

virulente beestje waar het in dit onderzoek om draaide: de trypanosoom. 

Ik wil dr. Evert Hensen en zijn collega's van de vakgroep Immunologie en 



Infectieziekten, sectie Immunologie, van de Universiteit Utrecht, bedanken voor de 

onmisbare hulp bij het immunologische onderzoek dat uit mijn project voortkwam. 

Naast nauwkeurigheid van werken legden jullie ook zeer veel geduld aan de dag! In 

Wageningen werd dankbaar gebruik gemaakt van de hulp van Mike Nieuwland en 

Ger de Vries-Reilingh met betrekking tot de verwerking van de vele bloedmonsters. 

Hiervoor dank; binnenkort kom ik de vrieskist uitmesten, Mike! 

Ook wi l ik bedanken Frits Frederiksz en zijn medewerkers van het Biochemisch 

lab van de vakgroep Inwendige Ziekten en Voeding der Grote Huisdieren van de 

Universiteit Utrecht, voor de vele bloed-, urine- en leverbepalingen. Ik wil dr. Mark 

van den Top danken voor het nemen van de leverbiopten bij de dwerggeiten. 

De analyses op het ruwlab waren niet mogelijk zonder de hulp van Inge van 

Langenvelde. Later waren ook Peter Tijsen en dr. ir. Huug Boer hierbij betrokken. 

Bedankt voor jullie inzet. Dr. Ted van den Ingh en medewerkers van de vakgroep 

Pathologie van de Universiteit Utrecht verzamelden minutieus informatie over de 

pathologie van trypanosomiasis aan de gesneuvelde geitjes. Bedankt hiervoor! 

Prof. dr. Daan van der Heide en medewerkers van de vakgroep Fysiologie van 

Mens en Dier bedank ik voor de analyses van T3 en T4. Ook wil ik mijn dank 

betuigen aan Piet van Leeuwen en collega's van het ILOB-TNO, die de operaties 

verrichtten voor het inbrengen van temperatuurzenders in de geiten. 

Ik wi l graag alle studenten en stagiaires bedanken die een bijdrage aan mijn 

onderzoek hebben geleverd: Suliman Ba, Margreet Keetman, Paulien Couenberg, 

Ahmad Vreden, Helen Knowles, Renze Mulder en Dicky Kooistra. Ook gastonderzoe­

ker dr. David Ogwu wil ik hierbij danken. 

Ing. Fokje Steenstra, bedankt voor de computer-ondersteuning. Zonder computer 

geen proefschrift! Peter Vink, hartelijk dank je hulp bij het vele copieerwerk. Verder 

wil ik mijn collega's van de secties Dierlijke ProduktieSystemen en Gezondheidsleer 

en Reproduktie danken voor de zinvolle discussies en uiteraard de gezelligheid rond 

de koffietafel (cq koffiehoek), en jullie collegialiteit. 

Dr. François Beaudeau, merci beaucoup pour la traduction du résumé, et pour 

être un bon ami. Verder noem ik Auke Holwerda. Neef, bedankt voor de prachtige 

voorkant van dit proefschrift! 

Ik wi l mijn paranimfen Lisette Graat en Kees-Jan van Dam danken voor hun inzet 

rond de promotieplechtigheid. 

Ik ben heel veel dank verschuldigd aan mijn ouders, die mij al het goede gegeven 

hebben dat ik ook maar enigszins nodig had. Pappa en mamma, het klinkt afgezaagd, 

maar zonder jullie was ik niet tot hier gekomen. 

Marjo, lieve vrouw van me, jouw bemoedigingen en verstandige raadgevingen 
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General Introduction 

The disease 

Trypanosomiasis, one of the most important livestock diseases in sub-Saharan Africa, is 

caused by the protozoan parasite Trypanosoma spp., and is transmitted by tsetse flies 

{Glossina spp.). The wide occurrence of the disease retards agricultural development 

(Stephen, 1986; ILRAD, 1994). Clinical signs include loss of appetite, anaemia, pyrexia 

and eventually death (Tizard, 1985; Stephen, 1986). The immune response to 

trypanosome infection is antibody mediated; however, the parasite is capable of 

frequently changing its antigenic structures (variable antigen types; VAT's), thus creating 

a chronic course of disease with successive parasite subpopulations emerging in the 

blood (Morrison et al., 1985). During infection, activated phagocytic cells produce 

cytokines, like TNF-ar and interleukin-1 (Sileghem et al., 1993, Sileghem et al., 1994); 

these are thought to induce many of the pathological signs, observed during infection, 

like anaemia (Sileghem et al., 1994), anorexia (McCarthy et al., 1986; Plata-Salaman et 

a/., 1988), fever (Van Miert et al., 1992) and immunosuppression, leading to an 

increased susceptibility to opportunistic infections (Griffin et a/., 1980; Van Dam et al., 

1981; Mwangi eta/., 1990). 

Trypanotolerance 

Several local cattle, goat and sheep breeds like the West African Dwarf (WAD) goats and 

sheep, and the N'Dama and Muturu cattle are tolerant to the effects of infection (Griffin 

and Allonby, 1979; ILCA, 1979,1986). The well recognized tolerance to trypanosomiasis 

of N'Dama cattle (Roberts and Gray, 1973; Starkey, 1984) consists of the ability to limit 

greatly the reduction in packed cell volume (PCV), and keep parasitaemia counts at a 

low level. Also animal production is maintained to a reasonable degree: in N'Dama's, 

the ability to limit the reduction in PCV was positively correlated with reproductive 

performance and cow productivity (Trail et al., 1991; Trail et al., 1992). Therefore, in 

tsetse infested areas the production potential of the N'Dama is superior to that of 

susceptible cattle breeds like the Zebu (Paling et al., 1991; Dwinger et a/., 1992). 

Because small ruminants (goats and sheep) are regarded as ideal for small scale 

farming systems (Luckins, 1992), having a high production potential (Armbruster and 

Peters, 1993), more attention has been given recently to the investigation of the nature 

of the trypanotolerance of the small ruminants in trypanosomiasis endemic regions. 
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Studies indicated that infection of WAD goats caused serious anaemia, and that the 

protein and energy retained in these animals was reduced (Verstegen et al., 1991; Adah 

et a/., 1993; Akinbamijo, 1994; Osaer et a/., 1994). Osaer et al. (1994) suggested that 

the nature of trypanotolerance of small ruminants may be different from that of 

trypanotolerant cattle breeds. They suggested that the observed ability to maintain 

production, should be taken as the real index of resistance, rather than the ability to 

maintain PCV at a normal level. 

Zwart et al. (1991) and Wassink et al. (1993) described a large variation in feed 

intake among trypanotolerant WAD goats during 7. vivax infection and consequently 

large variation in body weight gain. This observation corresponds with studies of 

Roelants et al. (1983) and Clausen et al. (1993) in trypanotolerant Baoulé cattle. More 

knowledge is needed on the question what determines inter- and intra-breed variation 

in the degree of trypanotolerance with respect to feed intake and animal production, i.e., 

has trypanotolerance a genetic basis, or do environmental factors (also) determine the 

degree of tolerance. Studies of Clausen et al. (1993) and Wassink et al. (1993) indicated 

a high repeatability of individual responses to successive infections of trypanotolerant 

animals, with respect to clinical paramters. This implies the possibility of a genetic basis 

for these traits. 

However, trypanotolerance is also found to interact with environmental factors. 

Indications for an interaction with nutrition was detected by Reynolds and Ekwuruke 

(1988), and Agyemang et al. (1990). Agyemang et al. (1992) found indications for an 

interaction of tolerance with the physiological status of the animal, and Kaufmann et al. 

(1992) reported an interaction between the degree of tolerance and secundary infections. 

If substantial interaction between tolerance and nutrition exists, then strategic feed 

supplementation might increase animal production of trypanotolerant breeds to a great 

extent. 

Energy and nitrogen metabolism 

An important area of study is the energy and nitrogen metabolism of the infected host 

during infection. Animal production is mainly determined by the intake of nutrients, 

relative to the needs of the animal. The absorbed nutrients are firstly used for 

maintenance processes and the remainder for production, like body weight gain, milk, 

wool and traction (Blaxter, 1989). As mentioned before, nutrient intake was reduced by 

trypanosome infection (Zwart et al., 1991; Wassink et ai, 1993). Also partitioning 

between protein and energy may be changed by infection. Beisel (1985) described 

increased N losses due to parasitic infection. This may be caused by protein losses via 
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urine or faeces, due to intestinal or renal lesions, or by an increased protein turnover. 

Verstegen et al. (1991 ) studied the energy and nitrogen metabolism of WAD goats during 

T. vivax infection. They found that maintenance requirements were increased by 

infection, leading to reduced productivity. In this study only group means were 

measured, and mean feed intake level differed between infected and control animals. 

More research was needed on the relation between metabolic rate and feed intake in 

infected and control animals, by measuring the variation in energy metabolism 

parameters between animals. 

Aim of the thesis 

This thesis describes a series of studies on the effect of experimental trypanosome 

infection on energy and nitrogen metabolism of trypanotolerant animals, and the possible 

interaction with nutrition. As a model the WAD goat was chosen. The animals were 

infected with the strain T. vivax Y486 (Leeflang et a/., 1976) by intravenous injection. 

Energy and nitrogen metabolism traits were measured during a period of 4 - 6 weeks 

after infection, to study how these were affected, and what were the metabolic costs in 

terms of energy and nitrogen. Special attention was given to the variation in feed intake 

among trypanotolerant animals and to possible mechanisms behind this variation. In 

addition, it was studied if the quality of the offered diet, and the nutritional history of an 

animal influenced the course of T. vivax infection. Because the degree of anaemia due 

to infection is thought to indicate the level of trypanotolerance (Trail et al., 1991), this 

variable was studied too. 

For the series of experiments, which are described in this thesis, three different 

research themes were defined. Firstly, the variation in feed intake reduction between 

animals due to infection was studied. Secondly, the effect of trypanosome infection on 

energy and nitrogen metabolism was studied, and thirdly, the interaction between 

nutrition and trypanosome infection with respect to energy and nitrogen metabolism was 

studied. 

Outline of the thesis 

In chapter 2 and 3, the studies on the variation in ad libitum dry matter intake during 

trypanosomiasis (research theme 1) are described. In chapter 2, a study on the dry matter 

intake (DMI) response to successive trypanosome infections of individual animals is 

reported. Analysis of the variation between successive responses per infected animal in 
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relation to the variation between animals was carried out, and from this indications on 

the relative importance of genetic sources of variation in the feed intake response to 

infection could be obtained. 

Chapter 3 deals with the variation in DMI response to 7. congo/ense infection 

between animals; it was studied if possible genetic mechanisms of feed intake regulation 

during infection exist. Therefore the phenotypic variation among animals was related to 

polymorphism in the Major Histocompatibility Complex (MHC) region of the genome. 

The studies into the effect of T. vivax infection on energy and nitrogen metabolism, 

and energy partitioning, at different feed intake levels (research theme 2) are described 

in chapter 4 and 5. The effect of T. vivax infection on energy and nitrogen retention of 

individually housed WAD goats is presented in chapter 4. To make an isonutritional 

comparison between infected and control animals over a range of intake levels, a design 

with high and low responder animals and a restricted feeding regimen for part of the 

animals was chosen. The relation between energy retention (ER) and metabolizable 

energy (ME) intake, and the relation between nitrogen retention (NR) and ER were 

studied, the latter relationship would give insight in the question if trypanosome infection 

leads to increased N losses. Also blood biochemical parameters, which are informative 

about the energy and protein status of the animal, were measured. 

Chapter 5 describes in more detail the heat production during infection, and the 

relation between body temperature and body posture. Therefore, these traits were 

measured on a continuous basis during infection, and the relation between short term 

variation in heat production and in body temperature was measured. Also the effect of 

body posture on heat production and body temperature was estimated. 

In the chapters 6 - 8, the effect of nutrition on the course of T. vivax infection with 

respect to energy and nitrogen metabolism is described (research theme 3, 2). In chapters 

6 and 7, an infection trial in which goats were fed either a good quality roughage (i.e., 

lucerne), or a poor quality roughage (i.e., grass straw) is described; in chapter 6, the 

organic matter intake, body weight change and nitrogen metabolism during infection is 

described, whereas in chapter 7 the metabolic profile and pathological (PCV, post 

mortem analysis) findings are given. 

Chapter 8 reports on an experiment in which the effect of nutritional history of 

young growing goats on the course of T.vivax infection was studied. Before infection, 

therefore, restricted feeding at maintenance level was applied for half of the experimental 

goats, and the other goats had ad libitum access to feed. The effect of the induced 

retarded growth pattern on energy and nitrogen metabolism during infection was 

examined. 

Finally, in the general discussion, the major findings from the previous chapters are 

discussed, and conclusions and directions for future research are formulated. 
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Abstract 

Twelve adult West African Dwarf bucks were infected with successively Trypanosoma 

congolense and T. vivax, to study the individual response to infection with respect to the vari­

ables dry matter intake, body weight change and packed cell volume. Large variation between 

animals with respect to feed intake parameters was observed. The ratio [dry matter intake during 

infection / dry matter intake before infection] of individual animals was different for the two 

infection periods. This means that repeatability of dry matter intake ratio was low, indicating that 

genetic factors played a minor role. Probably housing in social isolation during the second 

infection period induced changes in the individual feed intake response to infection. 

Introduction 

A number of indigenous livestock breeds of West Africa are recognized as tolerant to the 

devastating effects of t rypanosome infection, e.g. N 'Dama and Muturu cattle and West 

African Dwarf (WAD) goats and sheep (Trail et al., 1980). This tolerance exists in the 

capabil i ty to maintain Packed Cell Vo lume (PCV) level and product iv i ty at an acceptable 

level. Trypanotolerance has a genetic basis (Murray, 1988). Roelants et al. (1983), 

however, found that w i th in the trypanotolerant Baoulé cattle breed both sensitive and 

tolerant animals can be found. Also Zwart et al. (1991) observed large variation in feed 

intake and product iv i ty due to T. vivax infection, among animals f rom the W A D goat 

breed. Wassink et al. (1993) infected W A D goats w i th successively T. congolense and 

T. vivax, w i t h a recovery period between the two infections. They measured the dry 

matter intake (DMI) per animal before and dur ing both infections separately, and 

calculated the ratio [DMI after infection / D M I before infect ion]. From this study a 

ranking correlation between individual DMI response to successive infections of 0.59 

( P < 0.05) was calculated; thus indications were found that at least the DMI response to 

t rypanosome infect ion, irrespective of the trypanosomal species or strain used, can be 

predicted f rom the response dur ing previous infections. This may imply that indiv idual 

11 



12 Chapter 2 

DMI response of WAD goats to trypanosomiasis may be genetically determined. 

However, the correlation between two repeated measurements comprises both variation 

which can be attributed to genotype and variation which can be attributed to constant 

environmental conditions during the two observations. In the study of Wassink et al. 

(1993), environmental conditions (type of feed, housing) were similar for both infection 

periods, which implies that the estimated correlation probably contained a relatively high 

proportion of variation attributable to environmental conditions. 

In the present experiment, therefore, we infected WAD goats with successively 7. 

congo/ense and T. vivax and changed the environmental conditions during the second 

infection period to study the variation in DMI response to infection between animals and 

between successive observations within animals. It was expected that this would give 

more insight in a possible genetic basis of feed intake response to trypanosomiasis. 

Material and methods 

The reported results were part of a larger experiment, in which the effect of feed intake 

level on the course of Trypanosoma vivax infection with respect to energy and nitrogen 

balance was studied (Van Dam et al., in press). 

Animals, feeding and housing 

A group of 48 adult castrated West African Dwarf bucks with a mean body weight (BW) 

of 27.7 (+ 1.0) kg and mean age of 21.0 (+ 1.4) months, was used. 

Before, during and after infection 1, all animals were housed in individual ground 

pens in which eye and ear contact with congeners was possible. During infection period 

2, animals were housed individually in one of two identical respiration chambers, as 

described by Verstegen et al. (1987). 

Throughout the experiment, animals had free access to pelleted lucerne. The lucerne 

contained 93 % dry matter, with on average 18 % crude protein in the dry matter. Water 

and salt lick were freely available. 

Experimental design and time schedule 

Five weeks before infection with T. congolense (Infection 1), 48 West African Dwarf 

goats were housed in individual pens. All animals were infected intravenously with T. 

congolense subakia stabilate, isolated in Nairobi, Kenya in 1961 at a dosage of 

approximately 1x106 parasites per goat. Five weeks after infection the animals were 

treated with 7 mg diminazene aceturate per kg body weight (Berenil, Hoechst Veterinär, 
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München; double dosage), so that they could recover and regain pre-infection weight 

and PCV levels. 

After infection 1, animals were allocated to one of three groups, depending on the 

observed DMI ratio (see under Measurements), viz. low ratio (LRat; Ratio < 0.40), 

medium ratio (MRat; 0.40 < Ratio < 0.60) and high ratio (HRat; Ratio> 0.60). For 

some animals, this ratio could not be calculated because daily DMI was not stable. From 

the animals with a known DMI ratio, 12 animals were selected for a second infection; 

4 animals were selected from the HRat group, and 8 animals were selected from the LRat 

group. Thus only animals that had shown a large or a small reduction of dry matter 

intake during infection with 7. congolense were selected, to minimize the use of animals. 

After a mean recovery period of 11 months, the selected animals were individually 

housed one after the other in one of two respiration chambers in complete social 

isolation. The selected goats had a mean age of 29 (± 1.1) months at the moment of 

infection 2. 

After 1 week in the respiration chamber, the goats were infected intravenously for the 

second time, at a dosage of approximately 1x106 parasites per goat. For this infection a 

different trypanosomiasis species, i.e., T. vivax Y486, isolated in Zaria, Nigeria by 

Leeflang et al. (1976), was used. This challenge with another species was done, because 

trypanotolerant animals are able to better control a secundary (or rechallenge) infection 

with the same trypanosomiasis strain than a primary infection (Paling et al., 1991 ); it was 

assumed that by using a different species, the response to infection 2 would be 

comparable with that to infection 1. 

After 6 weeks of infection the experiment was terminated and the animals were 

euthanized, according to Dutch welfare regulations. 

Measurements 

Feed intake was measured three times per week, from 3 weeks before infection until the 

end of the infection period. Therefore the amount of offered and refused feed was 

measured three times per week, and a weekly composite sample of both fractions was 

taken. Dry matter content of the samples of offered and refused feed was measured (ISO 

5984). DMI per kg metabolic weight per day (g DM-kg"°75-d') was calculated as the 

difference between offered DM and refused DM. 

The mean DMI in a 2-weeks period prior to infection 1 was calculated, as well as the 

mean DMI during infection 1, (day 5 until 35 post infection; a prepatent period of 4 days 

was assumed). Moreover, the mean DMI in the week before infection 2, when the 

animals were already housed in the chamber, was calculated, and DMI during infection 

2 (day 5 until 35 post infection). The ratio DMI [during infection / before infection] was 

calculated per animal per infection period.d 
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Body weight (BW) was measured weekly in the morning just after feeding, throughout 

the experiment. 

Statistical analysis 

Statistical analysis was done with General Linear Models procedure (GLM) of SAS 

Statistical Package (SAS, 1990) using 1-way analysis for analysis of DMI before and 

during infection, as well as DMI ratio for the second infection (with T. vivax; n= 12): 

Y , i - u + R, + eif [1] 

where: Yy= dependent variable; /J= overall mean; R; = effect of Ratio group (LRat or 

HRat; classification was based on results in infection period 1); e ^ error term. 

Moreover, the normal and the ranking (Spearman) correlations between subsequent 

measurements on DMI ratio of individual animals were calculated. 

Results and discussion 

In Table 1 BVV at the start of infection, average DMI before and during infection and the 

DMI ratio are given per infection period per treatment. The BVV at the start of infection 

was higher in period 2 compared with period 1 (P< 0.01). Both the infections with T. 

congolense and T. vivax caused a reduction of DMI and BVV. This corresponds with 

studies of Zwart et a/. (1991). Two animals died before the end of the second infection 

period on day 35 and 39 post infection, respectively. 

The DMI before and during infection 1 and DMI ratio were higher, compared with 

the same parameters, measured during infection 2. During the first infection the DMI 

ratio was higher in HRat than in LRat; however, this was induced by the experimental 

design and therefore an artefact. In the second infection, however, only a small and non­

significant difference between HRat and LRat was found (P= 0.23). 

In Table 2, ranking (Pearson) correlations between clinical parameters, measured on 

the 12 experimental animals during both infections 1 and 2, are presented. The ranking 

correlation between DMI before infection 1 and DMI before infection 2 was positive (P< 

0.01). Also the correlation between DMI before infection 1 and DMI during infection 1 

was significant (P< 0.05), as well as the correlations between DMI during infection and 

DMI ratio, within each of the infection periods (at least P< 0.01). However, the 

correlation between DMI before infection 2 and DMI during infection 2, as well as the 

correlation between DMI ratio during infection 1 and infection 2 was very low and not 

different from zero. 
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Table 1. Least squares means of body weight (BW) at infection, dry matter intake (DMI) 
before and during successive infections with Trypanosoma congolense and Trypanosoma 
vivax and ratio DMI [during infection / before infection] of West African Dwarf goats, 
selected for either a high or a low DMI ratio. 

Treatment' 

No. of observations 

BW at infection, 

DMI , g-kg-0 7 5^1 

Pre-infection 

Infection 
DMI ratio 

BW at infection, 

DMI , g-kg-075-d-' 
Pre-infection 

Infection 
DMI ratio 

kg 

kg 

LRat 

8 

29.3a 

66.1 

19. T 
0.30a 

34.5 

38.4 

10.3 

0.28 

sem 

1.1 

4.0 

2.3 

0.024 

1.3 

4.2 

2.1 

0.056 

H Rat 

4 

1 
24.4b 

79.0 

58.0b 

0.73b 

2 
31.3 

45.9 

16.8 
0.40 

sem 

1.5 

5.6 
3.2 
0.034 

1.8 

6.0 

3.0 
0.079 

P-Value 

* 

ns 

* * * 
* * * 

ns 

ns 

ns 
ns 

': LRat- Low DMI ratio. HRat- High DMI ratio; selection based on DMI ratio in 
infection period 1; 
ab: means with different superscripts per infection period within a row are 
different (P< 0.05). 

Table 2. Ranking (Spearman) correlation r between DMI before infection (DMI-1), 
DMI during infection (DMI-2); DMI ratio (DMI-R), of subsequent infections with 
7. congolense and T. vivax1. 

T. congolense 

DMI-1 DMI-2 

7. congolense infection: 

DMI-1 - 0.64 

(*) 
DMI-2 

DMI-R 

T. vivax infection: 
DMI-1 

DMI-2 

DMI-R 

DMI-R 

0.37 

(ns) 
0.94 

(»,,) 
-

7. vivax 

DMI-1 

0.77 

(**) 
0.40 
(ns) 

0.16 
(ns) 

-

DMI-2 

0.24 

(ns) 
0.37 
(ns) 

0.36 
(ns) 

0.35 

(ns) 

-

DMI-R 

-0.23 
(ns) 
0.20 
(ns) 

0.35 
(ns) 

-0.34 

(ns) 

0.75 

significancy between brackets: ns- not significant; 
** = P< 0.001. 

P< 0.05; P< 0.01; 
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The relation between DMI ratio after infection 1 and DMI ratio after infection 2 is 

also depicted in Figure 1; no relation (P= 0.27) was found. This agrees with findings of 

Dwinger et al. (1992), who observed a small and non-significant ranking correlation 

between body weight change of N 'Dama cows during successive trypanosome infections, 

the body weight change being related to feed intake. Trail et al. (1991), however, 

estimated a heritability of 0.39 for body weight change of N'Dama cattle in trypanosomi-

asis-endemic areas. Also Wassink et al. (1993) found a high ranking correlation between 

individual DMI ratio's to successive trypanosome infections of 0.59. However, re-analysis 

of the data shows that the normal correlation in their experiment was low (r= 0.31; P -

0.29); this was due to the fact that one animal showed an extremely different response 

during the second infection. This observation could be qualified as an outlyer (P< 0.01), 

according to Cook's Distance test (Cook, 1979). Exclusion of this animal from the dataset 

brought correlation to 0.81 (P< 0.001; Wassink et al., 1993). 

Figure 1. The relation between DMI ratio during 7. vivax infection (infection 2) with DMI ratio during T. 

congolense infection (infection 1) of individual animals, A represents LRat animals, • represents HRat 

animals. 
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The low correlation between subsequent DMI ratio's found in the present study, 

compared to Wassink et al. (1993), possibly can be attributed to different factors. Firstly, 

the social isolation of the animals in the respiration chambers may have affected DMI 

and DMI ratio. Carbonaro et al. (1992) observed an increase of norepinephrine in goats 

undergoing short periods of social isolation, which was mainly associated with exercise 

and physical stressors but probably also psychological stress. Van Adrichem and Vogt 
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(1993) found that metabolism of sheep was strongly affected by social isolation for 

periods of 1 week. Therefore possibly in the present study, feed intake and consequently 

DMI ratio was changed by the social isolation. 

Secondly, the age of the animals may have played a role. At the start of infection 2 

the animals were 8 months older than at the start of infection 1 (29 and 21 months, 

respectively). Ketelaars and Tolkamp (1991) observed a decrease of digestible organic 

matter intake per kg metabolic weight, with age, in a group of WAD goats aged between 

22 and 32 months. Together with increasing age, also the body condition and amount 

of body fat increased (our unpublished observations) which may also have led to a 

reduced feed intake. Lee et al. (1995), described a negative relation between fat depth 

and feed intake of mature ewes. Nevertheless, a significantly positive correlation was 

found between DMI before infection 1 and DMI before infection 2, indicating that the 

ranking of animals had not changed largely in the intermediate period. Only during the 

second infection period, infected animals showed a different ranking with respect to DMI 

and DMI ratio. 

It can be concluded, therefore, that little indication was found for a genetically 

determined DMI and DMI ratio during trypanosome infection. Environmental factors 

probably largely determined the DMI and DMI ratio and perhaps also interaction 

between genotype and environment has played a role. 
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Abstract 

A group of 25 mature West African Dwarf goats was experimentally infected with Trypanosoma 

congolense to study possible genetic mechanisms behind variation in clinical variables among 

animals. Therefore, before and during infection, dry matter intake (DMI), body weight change 

and packed cell volume (PCV) were measured. The ratio [DMI during infection / DMI before 

infection] was calculated, and the PCV ratio analogously. From all animals, the class I and class 

II caprine leucocyte antigens (CLA) were determined, by 1-dimensional iso-electric focussing. 

Indications were found for a correlation between on the one hand DMI during infection and DMI 

ratio, and on the other hand CLA genotype polymorphism. It was suggested that the class I and 

II CLA genes acted as a genetic marker for the TNF-a gene or its regulators, and that therefore 

differences in CLA genotype may have been related to different TNF-cr production levels during 

infection. These results therefore offer some evidence for a genetic basis of the degree of 

trypanotolerance. 

Introduction 

Over 90 % of sheep and goats in sub-Saharan Africa are found in East and West Africa 

where they provide respectively 30 % of the meat and 15 % of mi lk consumed (ILCA, 

1990). Many aid workers and international agricultural organizations consider these small 

ruminants ideal for increasing livestock productivi ty of low input systems (Luckins, 1992). 

A major constraint, however, for v iable animal product ion systems in sub-Saharan Africa 

is the disease trypanosomiasis, caused by the protozoan Trypanosoma spp. and in Afr ica 

transmitted by the tsetse f ly Glossina spp. The disease causes anorexia, anaemia and high 

mortal i ty if left untreated (Stephen, 1986). Some local goat, sheep and cattle breeds, 

however, are tolerant to infection (ILCA, 1986). Trypanotolerance is described as the 

abi l i ty of indiv idual animals to l imit the anaemia and to maintain animal product ion 

(Murray and Morr ison, 1981 ; Murray, 1988; Trail et a/., 1991). Grif f in and A l lonby 
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(1979) observed that tolerant breeds not only controlled the anaemia during infection, 

but also lost less weight in the first 4 months of infection. In studies on trypanotolerant 

West African Dwarf (WAD) goats, however, a reduction of feed intake was observed, 

which varied largely between animals (Zwart et a/., 1991). Roelants et a/. (1983) also 

reported large differences in tolerance to infection among cattle from the trypanotolerant 

Baoulé breed. 

Notoriously antigen specific immunity is activated during infection, but due to the 

antigenic variation of the parasite less effective. The innate immune system of the host 

has a central role with respect to tolerance to infection in many studies (Murray, 1988; 

Sileghem et a/., 1993). During infection, several hormone-like polypeptides are produced 

by activated mononuclear cells, such as tumour necrosis factor-a (TNF-or) and interleukin-

1 (Sileghem et a/., 1993; Sileghem et a/., 1994). These cytokines regulate local 

inflammatory reactions by cell-to-cell communication, but may also gain access to the 

circulation and induce systemic effects such as anorexia and fever (Plata-Salaman et al., 

1988; Socher et al., 1988; Van Miert, 1995). Karunaweera et al. (1992) demonstrated a 

close relation between short term variation in serum TNF-or levels and magnitude of 

fever. 

It was found by Freund et al. (1992), that polymorphism in the gene, encoding for 

TNF-a production in mice correlated with levels of TNF-or mRNA in infected brain tissue 

and the level of resistance to the development of toxoplasmic encephalitis. Thus different 

alleles of the TNF-o gene may explain variation in TNF-or production between animals, 

and therefore provide a possible mechanism behind the observed variation in feed intake 

response to infection among animals. 

The gene encoding for TNF-ar is located in the central region of the major histocom­

patibility complex (MHC) in mammalian species including the goat, within the MHC 

class I and class II region (Andersson and Davies, 1993). In goats the MHC is called the 

caprine leucocyte antigen system (CLA). The class I and II regions of the CLA are also 

extremely polymorphic; the recombination rate between the class I and II region is low 

(less than 3 % in cattle) and therefore these genes usually cosegregate (Andersson and 

Davies, 1993). The CLA class I and II can be regarded as ideal marker genes for TNF-or 

gene polymorphism, based on the criteria for marker genes (Van der Beek, 1996). 

Therefore, in the present study the individual response to artificial T. congolense 

infection of West African Dwarf goats with respect to the clinical parameters dry matter 

intake (DMI), body weight change and packed cell volume (PCV), was related to CLA 

class I and II polymorphism; these genes were expected to act as marker genes for the 

gene encoding for TNF-a. Results from this study could therefore give insight in the 

possible mechanisms behind the clinical signs due to trypanotolerance. 
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Material and methods 

I. Biochemical genotvping of CLA genotypes 

The method described below was based on the protocol for isoelectric focussing in goats 

(Joosten et al., 1993). 

preparation of the cells 

From each goat, 10 mL of blood was taken by puncture from the vena jugularis using 

vacuumized tubes containing Lithium-heparin. Lymphocytes were isolated by 

centrifugation under Ficoll/NaMetrizoate (S.G. 1.078) for 45' at 850 g. Freshly isolated 

lymphocytes were washed 3 times in Hanks Balanced Salt Solution. Approximately 

20x10 6 cells were kept in methionine free MEM (Gibco Ltd, Paisley, UK), with 10 % 

(v/v) foetal calf serum (FCS; Flow-Lab, Irvine, UK) before labelling, and were incubated 

at 37°C with 5 % C02 , for 45'. Then cells were labelled by adding 100 //Ci of 35S-

Methionine (Amersham Laboratories, UK) and incubated overnight. 

Immunoprecipitation 

After labelling, each cell suspension was transferred to two 1-mL eppendorf tubes 

(approximately 10x106 cells per tube) and was spinned and resuspended two times 

(centrifugation for 3' at 13,000 g). After spinning for the 3rd time, 1 mL of cold NP40 1 

% lysis buffer was added to each eppendorf tube. Also fresh phenyl methyl sulphon 

fluoride (PMSF) was added (10 /yL-mL"1 of a 10 mM solution) and the cells were 

resuspended. After 60' incubation on ice, the supernatant was transferred to a clean tube. 

Preclearing of the supernatant was done twice; each preclearing consisted of the 

following steps. Normal rabbit serum (NRS; 3 /JL) was added to the supernatant and was 

incubated on ice for 60', after which the tubes were spinned for 1 ' at 13,000 g. Then 75 

fjl of a 10 % Staph A solution was added, and after 30' incubation on ice, the tubes 

were spinned again for 3' at 13,000 g. 

In the 2nd preclearing step, incubation with NRS was done overnight on ice. For 

standard precipitation of the Class I products, 3 /JL of mAb B1.1G6 was added to one 

tube of each animal, and for precipitation of the Class II products, 3 //L of mAb human 

poly CT-II was added to the other tube. Both tubes were incubated on ice for 90'. The 

pellet was washed 4 times with NNet buffer. Then it was incubated with 50 fjl 

neuraminidase for 3 h, and, after spinning and washing, incubated overnight with 50 /vL 

neuraminidase after which the samples were frozen at -80°C. 
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One-dimensional isoelectric focusing (1D-IEF) 

1D-IEF was done in vertical Polyacrylamide gels. The composition of the used electrode 

buffer, the overlay buffer and the sample buffer, was as reported by Joosten et al. (1993). 

The precipitates were thawed and resuspended in 40//L IEF-sample buffer, incubated for 

2 h at room temperature, and spinned for 2' at 13,000 g. 20 /JL of supernatant was 

loaded in the wells, and 20 //L of overlay buffer was added carefully. Then the wells 

were filled with upper buffer and the electrophoresis buffer was added. After prerunning 

of the gels for 2 h at a Vm of 400 V, the gels were run for 18 h at a Vm of 800 V and a 

constant current of 15 mA. 

After running, the gels were treated twice with DMSO for 30' and were fluorographed 

by treating the gels with DMSO-PPO for a minimum of 3 h. The gels were washed with 

water and were dried. Class I and II band patterns were autoradiographed on Kodak X-AR 

film for 1 week. 

II. Infection experiment 

Animals, feeding and housing 

From a flock of WAD goats, established at the Agricultural University about 15 years ago 

(Montsma, 1986), a group of 25 mature castrated male goats with a minimal disease 

history were selected. All animals had previously been vaccinated against ecthyma and 

had received anthelminthic treatment with Ivomec (Ivermectin, MSD, AGVET, 

Hoddesdon, UK). The animals were 18 + 0.1 months old and had a mean body weight 

of 27 + 0.6 kg. They were the offspring from four unrelated sires; the selected 

subpopulation included four pairs of full sibs. 

The animals had ad libitum access to pelleted lucerne, drinking water and salt lick. 

The lucerne consisted of 93 % dry matter, 16.8 kj-g"1 gross energy and 18 % crude 

protein. Animals were housed individually in pens on a bedding of wood shavings. They 

were able to have visual contact with adjoining animals. The lights were on from 7.00 

h till 19.00 h. Ambient temperature ranged between 18 and 20°C. 

Experimental design 

Before infection, all animals were housed in individual pens for 4 weeks. On day 0, the 

animals were infected intravenously with 1 x 106 trypanosomes. Therefore, a stabilate 

of T. congolense subakia, isolated in Nairobi, Kenya in 1961 was inoculated in mice, for 

multiplication of the parasite. This mouse blood was used for infection of the goats. 
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After 5 weeks of infection, the animals were treated intramuscularly with 7 mg 

Berenil/kg bodyweight after which recovery started. The time schedule of the experiment 

is given in Table 1. 

Table 1. Time schedule of the experiment. 

Day to infection 
-28 Housing of animals in individual pens; feeding of the experimental feed; start 

measurements on feed intake, body weight and PCV. 
-10 Start measurement body temperature 

0 Infection 
35 Treatment with 7 mg Berenil/kg bodyweight; start recovery. 

Measurements 

The CLA class I and II alleles were determined by 1D-IEF. The definition of the class I 

alleles and the class II alleles was done by the authors, because no literature was 

available on CLA haplotypes of West African Dwarf goats. The nomenclature of the 

different genotypes resulted from the two haplotypes combined in each animal. 

Before and during infection, individual feed intake was measured three times per 

week by offering ad libitum feed and by collecting feed residues afterwards. Composite 

samples of both offered feed and refused feed were analyzed for dry matter content (ISO 

5984); from this, dry matter intake (DMI) per kg metabolic weight (kg075) per day was 

calculated. The mean DMI in the two weeks preceding infection, as well as the mean 

DMI from day 5 until 35 of infection (leaving the prepatent period of 4 days out of the 

calculation) were calculated per animal. Also the ratio DMI [during infection / before 

infection] was calculated per animal. 

The body weight (BW) was measured weekly, in the morning after feeding. For each 

animal, the body weight change during infection was calculated as the difference 

between BW at week 3 p.i. and BW at infection. 

A blood sample was collected weekly from the jugular vene in heparinized tubes. 

The packed cell volume (PCV) in blood was measured by centrifugation of the blood in 

capillaries using a micro-haematocrit centrifuge. The ratio PCV [after 3 weeks of infection 

/ before infection] was calculated for each animal. 

Statistical analysis 

Preliminary analysis showed no effect of sire on the studied parameters. The effect of 

CLA genotype on DMI before and during infection, on the DMI ratio, and on the body 

weight change and PCV ratio was tested using the following model: 
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Y i r/y + G, + e j j [1] 

where: Y||= parameter of study; / / = overall mean; G ^ effect of Genotype ( i= 1,..,6); 

e|j= rest error term. 

The model was tested using the General Linear Models Procedure of the SAS 

Statistical package (SAS, 1990). Only 6 CLA genotypes from 20 animals were included 

because of low incidence of the other genotypes. Differences between genotypes, 

calculated as least square means, were tested simultaneously. For all parameters involved 

a normal distribution of variation was found. 

For all studied parameters, also a mean value per group of animals that shared a 

specific haplotype, was calculated. However, because goats are diploid, animals which 

were heterozygotic for CLA genotype, were included twice in this dataset; therefore, no 

statistical analysis could be done. 

Table 2. Composition of CLA haplotypes and genotypes, and distribution 
frequencies in a flock of West African Dwarf goats. 

Haplotypes 

Number of animals 

Class I allele1 

Class II allele1 

A 

4 

1 

1 

B 

5 

3 

3 

C 

8 

4 

4 

D 

15 

5 

5 

E 

7 

6 

8 

F 

1 

7 

9 

Genotypes in the goat population, observed as combinations of haplotypes2 

AA(1) A B C ) AC (*) AD (*) BE (*) FF (1) 
AB (1) BD (2) CC (4) BD (*) DE (*) 
AC (1) BE (2) CD (3) CD (*) 
AD (1) DD (4) 

DE (5) 

': numbers refer to Figure 1; 
2: number of animals between brackets; 

*: already counted. 

Results 

CLA genotyping 

In the studied population 6 different Class I and also 6 different Class II alleles were 

distinguished. In Figure 1 an autoradiograph of the 1D-IER analysis for class I is given; 

in Figure 2 an autoradiograph for class II analysis is given. An interpretative drawing of 
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the focussing bands of each allele is presented in Figure 1 and 2, besides the autoradio-

graphs. No recombination between class I and class II was detected in the animals 

studied; therefore 6 different CLA haplotypes were defined by both class I and II 

polymorphism of a particular haplotype (A to F; Table 2). Because no CLA Class 1 and 

II typing in WAD goats has been reported before, the definition of the different 

haplotypes was arbitrarily chosen by the authors. The pairwise combination of 

haplotypes in each animals resulted in 11 different genotypes (Table 2). 

Figure 1. One-dimensional isoelectric focusing (1D-IEF) autoradiographic analysis of CLA class I antigens, 
precipitated from cell lysatesfrom non-stimulated peripheral blood mononuclear cells (PBMC), using mAb 
B1.1G6, from a flock of 25 West African Dwarf goats; included is an interpretative drawing of the 
focussing bands of each allele. 
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Figure 2. One-dimensional isoelectric focusing (1D-IEF) autoradiographic analysis of CLA class II antigens, 

precipitated from cell lysates from non-stimulated peripheral blood mononuclear cells (PBMC), using mAb 

human poly o-ll, from a flock of 25 West African Dwarf goats; included is an interpretative drawing of the 

focussing bands of each allele. 
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Relation between CLA and clinical parameters 

All animals showed a first peak of fever after approximately 4 days and parasites were 

detected in the blood. The infection followed a progressive course, without signs of 

recovery until treatment at day 35 of infection. 

In Table 3 the mean voluntary DMI, PCV, body weight and rectal temperature of all 

animals is given. All animals showed intermittent fever and a large decrease in PCV with 

40 % of initial PCV (P< 0.001). All animals showed a reduction of voluntary DMI, but 

the degree of reduction varied substantially between animals. On average, the DMI ratio 

was 0.54 during infection. No correlation was found between individual DMI ratio and 

PCV ratio (P> 0.10). 
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Table 3. Mean dry matter intake (in g-kg"°75-d~') before and during infection wi th 7. congolense, and the 

ratio DMI [during infection / before infection], the packed cell volume before infection and after 3 weeks 

of infection, and the ratio PCV [after 3 weeks of infection / before infection], body weight (in kg) and rectal 

temperature (in ° Q before and after 3 weeks of infection. 

Parameter 1. Before 

Mean 

25 
68.2 
39.8 

27.3 

infection 

se m 

2.6 
0.8 
0.6 

2. During 

Mean 

25 
36.3 
23.9 

26.0 

infection 

se m 

2.9 
0.8 
0.5 

Ratio 2/1 

Mean sem 

0.54 0.04 

0.60 0.01 

Number of animals 

Dry matter intake 
Packed cell volume 

Body weight 
Rectal temperature 38.7 0.35 39.3 0.97 

In Table 4 the mean DMI before and after infection, and the DMI ratio, as well as the 

body weight change and PCV ratio is presented per haplotype. No statistical analysis 

could be done, but the following trends were observed. Mean DMI before infection, 

calculated per haplotype, ranged between 65 and 74 g-kg"°75-d"1.s The mean DMI per 

haplotype during infection, however, varied considerably (between 24 and 46 

g-kg'075^"1), as did DMI ratio (between 0.34 and 0.71). The 'A' haplotype showed the 

lowest DMI ratio, and the 'E' haplotype the highest ratio. Body weight changes during 

infection followed trends in DMI. The PCV ratio was hardly different among haplotypes. 

In Table 5 the mean DMI before and after infection, the DMI ratio, the infection 

weight change and the PCV ratio per CLA genotype group are presented. DMI before 

infection tended to be affected by genotype (P< 0.10), whereas DMI after infection and 

DMI ratio were affected by genotype (P< 0.05). Genotype tended to affect body weight 

change (P< 0.10), but not PCV ratio. 

Table 4. Dry matter intake before and during infection (in g-kg"075-d') and the ratio [DMI during 

infection / DMI before infection], body weight (BW) change during infection (in kg), and the ratio packed 

cell volume [after 3 weeks of infection / before infection] of West African Dwarf goats, infected wi th 7. 

congolense; means per CLA haplotype. 

CLA haplotypes A B C D E F 

Number of animals 4 5 8 15 7 1 
Dry matter intake 

before infection 74 ± 7 6 7 + 1 0 65 ± 5 7 1 + 3 66 ± 5 69 
during infection 2 4 + 1 0 39 ± 10 27 + 4 40 + 4 46 + 3 42 
ratio 0 . 3 4 + 0 . 1 3 0 . 6 0 + 0 . 1 1 0 . 4 5 + 0 . 0 8 0 . 5 6 + 0 . 0 4 0 . 7 1 + 0 . 0 3 0.62 

BVV change - 3 . 7 + 1 . 2 - 1 . 3 + 1 . 2 - 2 . 2 + 0 . 6 - 0 . 9 + 0 . 4 0 . 0 + 0 . 3 0.5 
PCV ratio 0 . 6 3 + 0 . 0 3 0 . 5 8 + 0 . 0 3 0 . 6 4 + 0 . 0 2 0 . 6 0 + 0 . 0 2 0 . 5 9 + 0 . 0 4 0.59 

': haplotype definitions refer to Table 2. 
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Table 5. Dry matter intake before and during infection (in g-kg~°75-d~'), and the ratio DMI [during 
infection / before infection], body weight change during infection (in kg), and ratio packed cell volume 
[after 3 weeks of infection/ before infection] of West African Dwarf goats, infected with 7. congolense; 
means per CLA genotype. 

CLA Genotypes1 

Number of animals 

Dry matter intake 

before infection 

during infection 
ratio 

BW change 
PCV ratio 

BD 

2 

81 

50 
0.59 

0.1 
0.56 

BE 

2 

50 

38 
0.78 
-0.4 

0.55 

CC 

4 

63 

35 
0.59 
-1.4 

0.61 

CD 

3 

60 
24 

0.40 
-2.2 
0.67 

DD 

4 

72 

33 
0.46 

-1.7 
0.55 

DE 

5 

72 

49 
0.69 

0.1 
0.60 

rmse2 

11 

10 
0.12 

1.1 
0.07 

P-val ue3 

t 

* 
* 
t 
ns 

': Genotype definitions refer to Table 2; 
2: Root mean square error (sem- rmseA/n); 
3: Significance of genotype effect; ns- not significant; t= tendency (P< 0.10); * = P< 0.05). 

Discussion 

Six different haplotypes were biochemically defined by both class I and II alleles. 

Because the WAD goat flock from which the animals were derived can genetically be 

seen as a subpopulation, and because the recombination distance between Class I and 

II is low it can be assumed that class I and II genes have cosegregated in the population. 

Consequently this resulted in 6 different MHC haplotypes in the studied population. In 

later studies a larger number of class I and class II alleles was found (unpublished 

results). This was explained by the introduction of unrelated breeding bucks in the 

following years. 

In the present study, large variation in DMI and DMI ratio, and body weight change 

were observed. This corresponds with studies on T. vivax infected WAD goats (Verstegen 

et al., 1991; Zwart et al., 1991). Indications were found for segregation of feed intake 

parameters with the inherited MHC haplotypes. This effect may be linked to CLA 

polymorphism itself or, more likely, to other genes within the MHC locus, like the gene 

encoding for TNF-ar or its regulators. It is not likely that CLA class I and II genes 

themselves exercised large impact on feed intake, as MHC molecules mainly play a role 

in presentation and recognition of specific antigens by T-cells (Nilsson, 1994). The 

specific immune response is, to our knowledge, adequately evaded by the parasite. 

Therefore, the TNF-CT gene or related genes are a more likely candidate for the observed 

interaction. It was demonstrated that TNF-a plays a major role in the pathogenesis of 

trypanosome infection (Lucas et a/., 1993; Sileghem et al., 1994). 
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The mean results per haplotype indicated that animals with haplotypes 'E', 'B' or 'D ' 

seemed more tolerant to infection, and that animals possessing the haplotypes 'A' or 'C' 

were the more susceptible. However, it was not clear if the two haplotypes, combined 

in the same animal, showed additional effects on DMI, or that interaction between 

haplotypes occurred. 

Therefore, animals were grouped per CLA genotype, which facilitated statistical 

analysis. It was found that the CLA genotype had an seffect on the DMI ratio (P< 0.05). 

Pairwise comparison showed that animals with either the genotype 'BE' or 'DE' showed 

a higher DMI ratio than animals with the 'CD' genotype (P < 0.05). Comparison between 

means per haplotype and means per genotype indicate that effects of combined 

haplotypes were probably not additive with respect to feed intake parameters. The results 

should be interpreted with caution, however, because of the low number of observations, 

from only one herd of (partly) related animals. 

It is remarkable that no relation between CLA polymorphism and the degree of 

anaemia was found, although this is considered as one of the main characteristics of 

trypanotolerance. Moreover, a role for TNF-o in the induction of anaemia was 

hypothetized by Lucas et al. (1993) and Sileghem et al. (1994). However, the absence 

of a relation between PCV ratio and MHC polymorphism in our study is consistent with 

the observation that DMI ratio and PCV ratio were not related. It is possible that anaemia 

in trypanosome infection is also determined by other factors, such as interferon-7"(ILRAD, 

1990). 

Conclusions 

A large variation between animals was found with respect to feed intake parameters 

during T. congolense infection. The results indicated that this variation was correlated 

to CLA class I and II polymorphism. CLA class I and II genes probably acted as a genetic 

marker for TNF-ar gene polymorphism and therefore differences in TNF-a production. 

This may offer a genetic basis for differences in trypanotolerance within a trypanotolerant 

livestock breed. 
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Abstract 

Effects of Trypanosoma vivax infection on nitrogen and energy metabolism and serum hormones 

and metabolites were measured using 24 castrated West African Dwarf bucks. In order to 

discriminate between the effect of infection and the effect of feed intake level on energy and 

nitrogen balance, feed quantity restriction was applied for isonutritional comparison; part of the 

animals were not infected and served as controls. Daily dry matter intake was measured, and 

energy and nitrogen balance for a 7-days period in week 2, 4 and 6 after infection. Weekly blood 

sampling for analysis of hormones and metabolites was done. Infected animals had a lower dry 

matter intake, compared with control animals, viz. 38.6 + 3.2 and 16.1 + 2.0 g-kg~°75-d~', 

respectively (P< 0.001). Intake of gross energy and nitrogen followed the same pattern. 

Metabolizability was not changed by infection and averaged 0.44. Heat production was increased 

by infection with on average 33 kj-kg"°75-d"'. Energy and nitrogen retention were negative for 

all groups; infection reduced energy retention and, during week 2 and 4 after infection, also 

nitrogen retention. The required metabolizable energy intake for maintenance was increased in 

infected animals (406 and 335 kj-kg"0"-d"1 for infected and control goats), based on linear 

regression of energy retention on metabolizable energy intake for infected and control animals. 

The efficiency with which energy mobilization from body stores was substituted by dietary 

metabolizable energy was estimated at 0.809 for both infected and control animals. The 

relationship between nitrogen retention and energy retention was not changed by infection. 

Therefore no indications were found for an increased catabolism of protein due to infection. 

Serum thyroxine and triiodothyronine were reduced by infection; serum metabolites and insulin 

levels reflected the negative energy balance in infected animals. 

37 
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Introduction 

Trypanosomiasis is a protozoan disease which is distributed over large parts of sub-

Saharan Africa. In livestock trypanosomiasis causes high mortality and depressed 

productivity. The West African Dwarf (WAD) goat breed is known to withstand the 

deteriorating effects of trypanosome infection to a considerable degree (FAO, 1988; 

ILCA, 1986). This tolerance to infection consists of an ability to prevent anaemia as well 

as loss of productivity (Trail et a/., 1991). 

Verstegen et al. (1991) and Zwart et al. (1991) observed a lower gross energy intake 

(GEI) and an increased heat production (HP), in mature WAD goats, infected with 

Trypanosoma v/Vax, compared with healthy goats. Because in this trial the animals were 

group housed, only a group estimate of HP and ER could be made, without information 

on individual variation. Moreover, feed intake differed between the infected and the 

control group. 

Therefore, in the present trial the effect of T. vivax infection on heat production, 

energy- and nitrogen (N) metabolism and serum concentrations of metabolites and 

hormones, was measured in WAD goats, individually housed in small respiration 

chambers. To create a wide range of feed intake levels after infection, animals with a 

known high or low feed intake during trypanosomiasis were selected. Part of the infected 

and control animals received a restricted feed ration to enable isonutritional comparison. 

This enabled estimation of the efficiency of energy and N metabolism in infected and 

healthy goats, and the energy costs of infection. 

Material and methods 

Animals 

Twenty-four castrated male goats with a mean age of 29 + 0.7 months and a mean 

liveweight of 28 + 0.7 kg were used. The animals had received anthelmintic treatment 

and ecthyma vaccination preceding the experiment. 

Housing and feeding 

Animals were housed in group pens with a bedding of wood shavings. Three weeks 

before infection the goats were moved to individual pens with the same bedding for 

individual measurement of feed intake. One week before infection animals were 

individually housed in one of the dummy chambers ("dummies"); these were replicas of 

the genuine respiration chambers (RC). In these dummies the animals were acclimated 

to the new housing and the complete social isolation which they would experience in 
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the RC's. This procedure was chosen because only two RC's were available; acclimation 

in the RC's itself would be too time-consuming. The dummies were opened once daily 

for measurements. The goats were housed in the dummies in the week before infection 

and week 1, 3 and 5 post infection (p.;.) In weeks 2, 4 and 6 p.i. they were individually 

housed in open-circuit indirect respiration chambers, described as chambers 3 and 4 by 

Verstegen et al. (1987). 

Light was on between 07.00 h and 19.00 h. Temperature in both dummy and RC 

was kept at 20°C and relative humidity (RH) in the RC at 65 %. The RC's were not 

opened during the week; the daily feed ration could be supplied from outside the RC, 

by means of rubber gloves, attached to the inner wall of the RC's. Because only two RC's 

were available, the moment of infection for pairs of goats was scheduled after each other 

in time. The time span in which the respiration measurements were carried out totalled 

36 weeks. 

All animals received ad libitum pelleted lucerne preceding the experiment. During 

the experiment some animals received ad libitum pelleted lucerne, while others received 

a restricted pelleted lucerne ration, according to the experimental design. The dry matter 

(DM) of the feed was 926 + 3.3 g-kg"\ while the ash and N concentration in the DM 

were 112 + 1.1 g-kg' DM and 29.6 + 0.27 g-kg"1 DM respectively. The GE concentra­

tion was 18.4 + 0.07 MJ-kg' DM. Water and salt lick were freely available. 

Infection 

Animals were infected with T. vivax Y486, isolated in Nigeria by Leeflang et al. (1976). 

Blood of a previously infected goat and stored in liquid nitrogen, was defrosted and was 

inoculated into mice. These mice were bled after On average 6 days and mouse blood 

was administered intravenously to the goats at a dosage of approximately 1x106 

parasites per animal. Control animals were sham-infected with saline. In one pair of goats 

infection did not establish after mouse blood administration; a second infection, 7 days 

later, however, succeeded. Results from the first respiration period of these two animals 

were removed from the dataset. 

Experimental design 

To create a wide range of feed intake levels after infection, the animals were selected as 

follows. In a previous experiment a group of 48 castrated WAD goats (mean weight 27.7 

+ 1.0 kg and mean age 21.0 + 1.4 months) had been infected with T. congolense. The 

animals received ad libitum pelleted lucerne. During a period of 4 weeks before and 5 

weeks after this infection, animals were individually fed and feed residues were collected 

3 times per week, to measure feed intake. Then all animals were medically treated with 

7 mg Berenil/kg body weight (Hoechst Veterinär GmbH, München, BRD). 
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The average feed intake before and after infection was calculated per animal, as was 

the ratio feed intake [during infection / before infection]. Wassink et al. (1993) reported 

a high correlation between the dry matter intake ratio's of individual WAD goats during 

succeeding infections with T. congolense and 7. v/vax. Therefore it was expected that 

the feed intake response of WAD goats to T. congolense infection would give a reliable 

estimate of feed intake during future infections. So from the population of 48 goats, 8 

animals with an expected high feed intake after infection were selected for the present 

trial {i.e., low responders, LR; Ratio > 0.60), and 8 animals with an expected low feed 

intake after infection (high responders, HR; Ratio < 0.40). For the control group of 8 

animals, a random selection was made from the remainder of the initial group of 48 

animals. 

To enable study of energy and N metabolism parameters at an isonutritional level, 

4 control animals and 4 LR animals were randomly selected, to receive a restricted feed 

ration; the severity of restriction was established at the expected feed intake level of the 

HR group. This intake level was initially estimated at 50 % of maintenance requirements 

viz. 50 % of 51 g DM-kg"075^"1 (Verstegen et al., 1991) which is approximately 26 g 

DM-kg"°75-d"', but was adjusted to 30 % of maintenance requirements (15 g DM-kg" 
075-d"1) after the first animal of each group had been subjected to infection, and overall 

feed intake had proved to be low. Because of this some variation in severity of feed 

restriction existed among animals within the LRR and CR group. 

This procedure resulted in 5 experimental groups, viz. high responders (HR), low 

responders ad libitum (LRA), low responders restricted (LRR), control ad libitum (CA) and 

control restricted (CR). In Table 1 the experimental setup is depicted. 

Table 1. Experimental setup. 

I 

High Responders 

Ad libitum n - 8; HR 
Restricted 

nfection 

Low Responders 

n - 4; LRA 
n - 4; LRR 

Control 

n - 4; CA 
n - 4; CR 

Measurements and calculations 

Daily dry matter intake (DMI) was measured from one week before infection until 

euthanasia at the end of week 6 p.i. Body weight (BW) was measured at the start of each 

week using an electronic weighing scale. Body temperature was measured continuously 

by means of a temperature transmitter in the abdominal cavity of the goats. This 
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telemetric system was described by Van der Hel et al. (1993). Of continuous body 

temperature measurements one mean value per animal per day was calculated. 

Energy and N balance measurements were carried out in week 2, 4 and 6 p.i. in the 

RC's, viz. Balance Periods (BP's) 1, 2 and 3. Therefore daily feed intake and weekly 

production of faeces and urine were measured. Other collected components of energy 

and nitrogen balance were water, used for cleaning of the chamber, condense water from 

the heat exchanger, and N, evaporated to the air, which was fixed in 25 % solution of 

sulphuric acid. 

Dry matter and ash concentration (ISO 5984) were determined from offered and rest 

feed, and faeces. Gross energy (GE) concentration of offered feed, faeces, urine and 

cleaning water was determined using bombcalorimetry (IKA Analysentechniek GmbH, 

Heitersheim, BRD). Nitrogen was measured (ISO 5983-1991) in offered feed, faeces, 

urine, cleaning water, condense water and 25 % sulphuric acid solution. The 

composition in the DM of refused pelleted feed was assumed to be similar to the offered 

feed. 

A mean HP per respiration week was calculated, using 9-min-interval data on 0 2 

consumption and C0 2 and CH4 production and urinary N output, from 07.00h at day 2 

of housing until 07.00h at day 7 of housing in the RC, according to the equation of 

Brouwer (1965). Within-day variation of heat production and the relation with body 

temperature and physical activity dynamics are reported elsewhere (Van Dam et al., 

1996a). MEI was calculated as the difference between GEI and faecal and urinary energy; 

ER was calculated as MEI minus HP. NR was calculated as nitrogen intake (NI) minus 

faecal and urinary nitrogen. 

A blood sample was taken from the vena jugularis at the start of each week; a last 

sample was taken at the end of week 6 p.i. just before euthanasia. Serum levels of total 

Thyroxine (T4) and Triiodothyronine (T3) were determined using a homologous RIA 

technique; plasma glucose level and serum levels of ß-Hydroxy Buryrate (BHB), total 

protein (TP) and urea (Boehringer Mannheim GmbH Diagnostica, Mannheim, Germany) 

and Non-Esterified Fatty Acids (NEFA) (NEFA C, Instruchemie B.V., Hilversum, The 

Netherlands) were determined enzymatically with commercially available kits. Protein 

spectrum was determined by electroforetic segregation on cellulose-acetate; after staining 

with Ponceau S, percentages of albumin, a-, ß-, and r-globulin were measured. 

Serum concentration of insulin was assessed using Radio Immuno Assay (Coat-a-

Count Insulin, Diagnostic Products Corporation, Los Angeles, CA, US). The time schedule 

and measurements are given in Table 2. 

In whole blood parasitaemia was measured by determining the number of white 

blood cells (WBC) per ml blood and by establishing the WBC/trypanosome ratio in a 

thick smear stained with Giemsa; also Packed Cell Volume (PCV) was measured. 
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After BP 3 at the end of week 6 p.i. the animals were euthanized by injection, in 

accordance with Dutch welfare regulations. All infected and 4 control animals were 

submitted to post mortem gross and microscopic examination. In each animal the weight 

of the liver was assessed, and a fresh liver sample was stored in Phosphate Buffered 

Saline (pH 7.2) and was analyzed for triacylglycerol (TAG) with a commercial kit (Kit No. 

405, Sigma Chemical Co., St. Louis, MO, US), to study whether infection and/or feed 

restriction would affect hepatic lipid metabolism. 

Table 2. Time schedule and measurements1. 

Week p.i. 

Day p.i. 

Housing 

Feed ration 

Procedure 
Feed intake 

Body Temp. 

3/-2 
-7 

ind. 

adl. 

******* 
******* 

Respiration trial 

Body weight 
Blood traits 

* 
* 

-1 

0 

dum. 

adl. 
inf. 

1 

7 

dum. 
exp. 

***************** 
********* 

* 
* 

, * , « » » » » 
* * 
* 
, 

2 

14 

RC 
exp. 

3 

21 

dum. 
exp. 

***************** 
***************** 
* B P 1 » » . 

* 
* 

** 
* 
* 

4 

28 

RC 
exp. 

5 
35 

dum. 

exp. 

****************** 
****************** 
* B P 2 * * * 

* 
* 

6 
42 

RC 
exp. 

PM 

******* 
******* 

* . . B P 3 * » . 

* 
* 

* 
* 

': ind. individual; dum.- dummy chamber; RC- Respiration chamber; ad l . - ad libitum ration; exp-
experimental ration; inf.- infection; PM- Post mortem autopsy; BP 1,2,3- Balance period 1, 2, 3. 

Statistical model 

Statistical analysis was carried out using SAS Statistical Package (SAS, 1990). The effect 

of experimental treatment, balance week and their interaction on the above described 

parameters were tested by means of F-test using a split-plot model [CLM procedure (SAS, 

1990)], with week values within goats taken as repeated measurements: 

Y i jk= (J + TR; + ANrrR^ + BPk + (TRxBP)ik + eijk; [1] 

where: Y i jk= dependent variable; fj= overall mean; TR,= fixed effect of treatment (i = 

1 ..5); AN(TR)ii= random animal effect, nested within treatment group (j = 1 ..8 for HR or 

j = 1..4 for other treatments); Bk= fixed effect of balance period (k= 1..3); (TRxBP)ik = 

effect of interaction between BP and Treatment; ejjk= error term. 

TR| was tested against AN(TR)jj as error term; BPk and (TRxBP)ik were tested against 

eijk. When effects were not significant they were removed from the model. 

Custom hypothesis tests were carried out on the effect of Infection treatment using 

Analysis of Variance; For this purpose, only data of ad libitum fed animals were used 
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(from experimental groups HR, LRA and CA). Covariance analysis, using model [1] with 

the addition of covariables (1) GEI, to test ME intake, (2) MEI, to test ER, and (3) ER, to 

test NR, was carried out on mean values per goat for the three balance periods, or in the 

case of NR, analysis was performed separately per BP. 

Results 

General course of infection 

After infection all animals showed fever after approximately 5 days and were found 

blood positive for T. vivax parasites, except two animals; these were infected again one 

week later. Clinical signs included intermittent fever and severe anaemia. PCV dropped 

to an average 22 % in week 5, after which it stabilized. Infected animals showed 

intermittent fever, with average deep body temperature increased from 38.51 + 0.04°C 

to 39.76 ± 0.07°C (control vs. infected goats; P< 0.001). Parasitaemia was high, on 

average 6.3 x109 ± 1.4x109trypanosomes-L"1 blood, but greatly fluctuated; towards the 

end of the infection period sometimes no parasites could be detected. 

Two animals died before the end of the experiment. One animal of the LRA group 

died on day 39 as a result of T. vivax infection, and one animal of the HR group died 

on day 35, probably due to the combined effect of 7. vivax and Clostridium entero-

toxaemia infection. At day 42 the remaining animals were euthanized. Gross and 

microscopic post mortem examination of the infected animals revealed a marked reactive 

lymphoid hyperplasia of the lymph nodes and spleen. Several infected animals had 

lymphocytic infiltration of the endocardium, epicardium and myocardium. No renal or 

intestinal lesions were found in infected animals. The liver showed a non-specific 

reactive hepatitis; often a mild to moderate zonal fatty infiltration of the liver was seen. 

Control animals showed no abnormalities except two animals showing (some) zonal fatty 

infiltration of the liver. 

Liver weight of the experimental groups at autopsy was 743 + 32, 676 + 44, 764 

± 78, 559 ± 19, and 536 ± 25 g for respectively HR, LRA, LRR, CA and CR group. 

Infected ad libitum fed animals had a higher liver weight than ad libitum fed controls 

(P< 0.01). When expressed as liver weight-kg-075 significance was even stronger (61.2 

± 2.0 vs. 42.3 + 3.8 g-kg"075 for infected and control goats respectively; P< 0.001). 

Feed intake and body weight change 

In Figure 1 the average daily DMI is depicted for the 5 treatment groups. Overall feed 

intake was relatively low. DMI of HR animals was not significantly different from DMI 

of LRA animals. Housing of CA goats in individual RC's significantly reduced DMI 
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compared with their DMI in the dummy (33.1 ± 2.3 and 44.6 + 2.0 g DM-kg"°75-d"1, 

respectively; P< 0.001). Average ad libitum DMI from week 1 p.i. until week 6 p.i. was 

significantly reduced in infected animals, compared with control animals, from 38.6 + 

3.2 to 16.1 ± 2.0 g-kg-°75-d-' (P< 0.001). 

Figure 1. Dry Matter intake (DMI) of West African Dwarf goats after infection with Trypanosoma vivax 
(HR — • — , LRA — • — , LRR — A — , CA — D — and CR — A — ; error bars indicate sem). 

2 3 4 
Week after Infection 

In Figure 2 the BVV relative to week 0 is presented. All treatment groups lost weight 

during the infection period; this loss was up to 21 % in the HR group. A significant effect 

of infection on BVV was found from 3 weeks p.;. onwards (P< 0.001). Daily BVV change 

of ad libitum fed groups, calculated over the infection period, was more negative in ad 

libitum fed infected animals (-144 ± 14 g-d"1, compared with -29 ± 23 g-d"1 for ad 

libitum fed control animals; P< 0.001). 

Energy metabolism 

In Table 3 energy metabolism data are presented. No significant effect of BP was found 

on the parameters involved; consequently one Least Square mean per treatment group 

for the whole infection period was estimated. Compared with ad libitum fed controls, 

GEI and MEI were reduced in ad libitum fed infected animals (P< 0.001), while HP was 

increased with 33 kj-kg"075^"1 to 345 kj-kg"075-d ' (P< 0.05) and the respiratory 

quotient (RQ) was lower (0.80 vs. 0.94; P< 0.001). This resulted in a lower ER in 
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infected animals of -271 kj-kg-07S-d"1, compared with -113 kj-kg"075-d"1 in control 

animals (P< 0.001). 

Figure 2. Body Weight (BW) of West African Dwarf goats after infection wi th Trypanosoma vivax, as a 

percentage of Body Weight at week 0 (HR — • — , LRA — • — , LRR — A — , CA — D — and CR — A — ; 

error bars indicate sem). 
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Table 3. Energy metabolism parameters of West African Dwarf goats after infection wi th Trypanosoma 

vivax (in kJ-kg-°"-d-'). 

Treatments' 

No. animals 
GEI 

MEI 
HP 

RQ 
ER 

HR 

8 
162a 

46" 
342a 

0.78" 
-296" 

LRA 

4 

291" 
102ab 

349a 

0.83ab 

-246ab 

LRR 

4 

288a 

113ab 

340ab 

0.83ab 

-227ab 

CA 

4 
520b 

199b 

312ab 

0.94c 

-113c 

CR 

4 

299a 

123ab 

292b 

0.85b 

-168bc 

rmse2 

97 

54 
15 

0.03 
47 

— P-values3 — 
Model Inf. 

* * * * * * 
* * * * * 
* » 

* * * * * * 
* * * * * * 

': Treatment H R - High Responder; LRA= Low Responder ad libitum feeding; LRR= Low Responder 
Restricted feeding; C A - Control animals ad libitum feeding; C R - Control animals Restricted feeding; 
J: Root mean square error ( sem- rmse/v/n); 
!: Significancies of F-test of full model and of infection treatment (HR+LRA vs. CA); n s - not significant; 

* P < 0.05; * * P < 0 .01; * * * P < 0.001; 
•'b'r: treatment means wi th common superscripts do not differ (P-level 0.05). 
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Covariance Analysis of MEI, using model [1] with the addition of covariable GEI and 

one mean value per goat, showed a significant effect of GEI on MEI, with no effect of 

infection treatment. Therefore one regression equation was estimated: 

MEI= -22.9 ( + 6.1) + 0.444 (± 0.019) x GEI (n= 24; r2= 0.96) 

(MEI and GEI in kj-kg-07S-dn; sem between brackets). 

[2] 

Both intercept and slope of the equation were not affected by infection. 

Analysis of Variance of ER, using model [1] with the addition of MEI as a covariable, 

with one mean value per goat, revealed a significant effect of MEI on ER. The estimated 

regression equation of ER on MEI ran as follows for infected and control animals 

(different intercept, P< 0.001; slopes not significantly different and estimated simulta-

nuously) and is depicted in Figure 3: 

Infected: ER= -328 (+ 8.3) + 0.809 (± 0.081) x MEI 

Control: ER= -271 (+ 11.7) + 0.809 (± 0.081) x MEI 

(ER and MEI in kj-kg"0 7S-d '; n= 24; r2= 0.93; sem between brackets). 

[3] 

[4] 

Figure 3. The relation between Energy Retention (ER) and Metabolizable Energy intake (MEI) after infection 

wi th Trypanosoma vivax (infected animals — • — , control animals - - A - -). 
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Nitrogen metabolism 

In Table 4 results on the N metabolism are given. Because BP had a significant effect on 

the parameters describing N metabolism, they are presented separately for each of the 

three BP's. N intake was affected by infection throughout the infection period (P< 0.05 

in BP 1; P< 0.001 in BP 2 and BP 3). NR was reduced by infection in BP 1 and 2 (P< 

0.05 respectively P< 0.001) but not any more in BP 3. 

Addition of ER as a covariable to model [1] showed no effect of infection on NR; so 

model [1] was reduced to a linear regression model and resulted in the following 

equations: 

BP 1: NR= 0.171 (±0.049) + 0.00189 (±0.00021) x ER; 

BP 2: NR= 0.201 (±0.035) + 0.00188 (±0.00015) x ER; 

BP 3: NR= 0.158 (±0.038) + 0.00136 (±0.00017) x ER, 

(NR in g-kg-075^1; ER in kj-kg"07S-d'; sem between brackets). 

(n= 22; r2= 0.81); [5] 

(n= 24; r2= 0.88); [6] 

(n= 23; r2= 0.76);[7] 

Table 4. N metabolism parameters of West African Dwarf goats after infection wi th Trypanosoma vivax 
(in g-kg-075**"')-

Treatments' 

No. of animals 
N intake 

urinary N 
faecal N 

N retention 

No. of animals 
N intake 
urinary N 

faecal N 
N retention 

No. of animals 
N intake 
urinary N 
faecal N 

N retention 

HR 

6 
0.258a 

0.543 
0.112a 

-0.402" 

8 
0.308a 

0.518 
0.1 34d 

-0.351a 

7 
0.319a 

0.41 Y 
0.135J 

-0.238 

LRA 

4 

0.548ab 

0.569 
0.226ab 

-0.257ab 

4 
0.452a 

0.527 

0.206ab 

-0.294ac 

4 
0.518ab 

0.410a 

0.180ab 

-0.085 

LRR 

4 
0.470ab 

0.556 
0.175ab 

-0.267ab 

4 
0.527ab 

0.569 

0.201ab 

-0.248ab 

4 
0.512ab 

0.436a 

0.1 72a 

-0.102 

CA 
BP 1 

4 
0.704b 

0.605 
0.298b 

-0.210b 

BP ^ 

4 
0.949b 

0.586 
0.358b 

-0.0026 

BP 3 

4 
1.059b 

0.690b 

0.388b 

-0.025 

CR 

4 

0.483ab 

0.436 
0.173ab 

-0.131b 

4 

0.535ab 

0.423 
0.196ab 

-0.089bc 

4 
0.544ab 

0.401a 

0.183ab 

-0.046 

rmse2 

0.198 

0.104 

0.073 

0.090 

0.199 

0.092 

0.073 
0.125 

0.272 

0.075 
0.095 

0.153 

- P-values3 — 

Model 

* 
ns 

* 
* * 

** 
ns 

* * 
* * 

* * 
* * * 
* * 
ns 

Inf. 

* 
ns 

* * 
* 

* * * 
ns 

*** 
* * * 

* * * 
* * * 
* * * 
ns 

': Treatment HR= High Responder; LRA= Low Responder ad libitum feeding; LRR- Low Responder 
Restricted feeding; C A - Control animals ad libitum feeding; C R - Control animals Restricted feeding; 
J: Root mean square error ( sem- rmseZ/n); 
•': Significances of F-test of full model and of infection treatment (HR + LRA vs. CA); n s - not significant; 

* P < 0.05; * * P < 0 .01; * * * P < 0 .001; 
l l " : treatment means wi th common superscripts do not differ (P-level 0.05). 
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Serum metabolite and hormone levels; liver TAC level 

In Table 5 the serum levels of glucose, BHB and NEFA are given. Because within either 

the period before or after infection no effect of week number was found, results are 

presented as least square means before and after infection. Levels of glucose and BHB 

were not affected, but NEFA level was increased in infected animals (P< 0.001). The 

concentration of hepatic TAG at autopsy averaged 18.6 ± 3.3, 14.0 + 3.2, 18.4 ± 2.4, 

6.4 ± 1.9 and 14.5 ± 5.2 g-kg1 wet weight for HR, LRA, LRR, CA and CR treatment 

respectively. A negative correlation between DMI during the infection period and TAG 

level was found (n= 24; r= -0.69; P< 0.001). The average NEFA concentration per 

animal over the infection period was negatively correlated with average DMI during the 

infection period (n= 24; r= -0.66; P< 0.001) and positively correlated with liver TAG 

level, measured at autopsy (n= 24; r= 0.44; P< 0.05). 

Serum urea level tended to be increased in infected animals, compared with control 

animals, in week 1 p.i. only (11.9 + 1.0 vs. 8.1 ± 1.6 mmol-L"1; P= 0.06). One anoma­

lous urea value was removed from the dataset. Serum concentration of insulin was 

significantly reduced (P < 0.001 ) in all groups during the experimental period compared 

with the pre-experimental concentration (10.0 ± 2.0 vs. 23.8 ± 2.0 mi.u.-L"1). 

Figure 4. Serum levels of total protein (TP) and r-globulins (CG) of West African Dwarf goats after 

infection wi th Trypanosoma vivax ( — • — TP of infected animals, — A — TP of control animals, — O — 

r-globulins of infected animals, and — A — r-globulins of control animals; error bars indicate sem). 
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In Figure 4 the average serum levels of TP and r-globulins are given for the infected 

and control animals. Both TP and r-globulins were increased in infected animals from 

week 3 p.i. onwards (P< 0.001). Albumin level was decreased in infected animals in 

week 5 and 6 p.i. (P< 0.05). In Figure 5 the serum concentration of total T4 and T3 are 

depicted for the 5 different treatment groups. Both T4 and T3 levels were decreased in 

infected animals from 3 weeks p.i. onwards (P< 0.001). 

Figure 5. Serum levels of a. Thyroxine (T4) and b. Triiodothyronine (T3) of West African Dwarf goats (in 

nmol-mL') after infection with Trypanosoma vivax (HR — • — , LRA — • — , LRR — A — , CA — D — 

and CR — A — ; error bars indicate sem). 
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Discussion 

General course of infection 

Infection followed a similar pattern as in previous studies with 7. vivax infection in WAD 

goats (Akinbamijo et al., 1992; Verstegen et a/., 1991; Van den Ingh et al., 1976b) with 

hardly any signs of recovery to the end of the experimental period. Nevertheless most 

animals still had considerable body fat reserves at autopsy, due to luxuous body 

condition at the start of the experiment. Towards the end of the infection period, 

sometimes no parasites were detected due to the large fluctuation in parasite levels in 

trypanosomiasis (Van den Ingh et al., 1976b) and also the relatively low sensitivity of the 

counting procedure. 

The observed lymphocytic infiltration of the endocardium, epicardium and 

myocardium was also reported in cattle, infected with the same T. vivax strain (Van den 

Ingh et al., 1976a). In the present study liver weight of infected animals was increased. 

Probably this was associated with the observed non-specific reactive hepatitis. 

The observed severity of infection is not in agreement with the assumed trypanotole-

rance to infection of WAD goats (FAO, 1988). However, after an initially severe course 

of infection the animals may show spontaneous recovery, as observed in WAD goats by 

Osaer et a/. (1994), about two months after infection with T. congolense. 

Table S. Glucose, NEFA and BHB concentration in serum of West African Dwarf goats before and after 

infection wi th Trypanosoma vivax (in mmol-L"'). 

Treatments' 

No. of animals 

glucose 
NEFA 
BHB 

glucose 
NEFA 

BHB 

HR 

8 

3.19 

0.256 
0.129 

2.89 

0.745a 

0.491 

LRA 

4 

3.15 
0.199 
0.126 

2.97 

0.543db 

0.290 

LRR CA 

4 4 

Before infection 

2.98 3.06 

0.175 0.283 
0.148 0.234 

2.87 3.02 

0.714a 0 .201b 

0.681 0.133 

CR 

4 

2.90 
0.209 
0.131 

2.90 
0.381ab 

0.173 

rmse2 

0.26 

0.156 
0.149 

0.51 

0.306 
0.861 

— P-va 

Model 

ns 

ns 
ns 

ns 

* * 
ns 

ues — 
Inf 

ns 
ns 
ns 

ns 

* * 
ns 

': Treatment HR= High Responder; LRA- Low Responder ad libitum feeding; LRR- Low Responder 
Restricted feeding; C A - Control animals ad libitum feeding; C R - Control animals Restricted feeding; 
2: Root mean square error (sem - rmseA/n); 
': Significancies of F-test of full model and of infection treatment (HR + LRA vs. CA); ns= not significant; 

* P < 0.05; * * P < 0 .01 ; * * * P < 0 .001; 
d'b,c: treatment means wi th common superscripts do not differ (P-level 0.05). 
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Feed intake and body weight change 

Overall DMI was extremely low, also in the CA treatment group, compared with pre-

experimental level. Consequently the level of the chosen feed restriction for the LRR and 

CR group proved higher than the ad libitum DMI of the HR group. Nevertheless, of the 

LRR group only one animal had considerable left-overs in the first BP; in general the 

other restricted animals readily consumed their ration. From previous studies (Akinbamijo 

et al., 1992; Zwart et a/., 1991 ) a higher DMI for both healthy and infected animals had 

been expected (with a mean DMI around 45 g DM-kg"°75-d~'). As a result of low DMI 

all groups lost weight during the experimental period. 

A possible reason for the very low DMI may be the effect of the social isolation that 

the animals were submitted to in the RC's, which was more complete than in the 

dummies; there the animals could still hear each other. Van Adrichem and Vogt (1993) 

and Bowers et al. (1993) found indications for stress in sheep, due to social isolation. 

Also the fatness of the animals may have led to a lower DMI compared with previous 

studies (Forbes, 1995). 

The DMI reduction, relative to pre-infection level, of high and low responders (HR 

and LRA group) was not correlated with their DMI response in the previous infection 

(Van Dam et al., 1996a); also no significant difference was found between mean DMI 

of the HR and LRA group. This conflicts with findings of Wassink et al. (1993). A 

possible reason for the low correlation between the two subsequent DMI responses to 

infection is the different housing systems in the two infection trials. 

Energy metabolism 

GEI was reduced in all treatments as compared to pre-experimental level. Metaboliz-

ability was estimated at 0.44, being the slope of equation [2]. This was about the same 

as reports of Verstegen et al. (1991). Equation [2] was not affected by infection, i.e., no 

increase of faecal and/or urinary energy losses was found at a given GEI level. This 

indicates that digestion and renal function were not negatively affected by infection, and 

this was confirmed at autopsy. 

Heat production was increased by infection with 33 kj-kg"°75-d'. The intercepts of 

equation [3] and [4], which represent HP at ME= 0 were -328 and -271 kj-kg"075^"1 for 

infected and control animals respectively; these can be considered as a measure of Basal 

Metabolic Rate (BMR). Infection increased the intercept with 58 kj-kg"075-d"\ The 

difference of intercept between infected and control animals is a more accurate estimate 

of HP increase due to infection, because it is corrected for feed intake level. 

Ketelaars and Tolkamp (1991) estimated Fasting Heat Production (FHP) of goats at 

275 kj-kg"075^1, which is in accordance with our estimated BMR for controls. Blaxter 

and Boyne (1982) estimated FHP for adult sheep on 240 kj-kg075-d\ 
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The ME requirements for maintenance (MEJ were calculated as the MEI at zero ER, 

and were 335 and 406 kj-kg"075^"1 for control and infected animals, respectively 

(increase of 22 % in infected animals). MEm gives an indication of the energy cost of 

infection for animals around maintenance intake level. The slope of equations [3] and 

[4] represents an estimate of the efficiency with which MEI substitutes for depletion of 

body energy stores, km. This estimate was the same for infected and control animals, viz. 

0.809. The efficiency with which MEI is converted in body growth (kf, for intake levels 

above maintenance) could not be estimated in the present trial, due to the low feed 

intake. 

Verstegen et al. (1991) estimated MEm at 375 kj-kg"075-d"1 for control animals and 

464 kj-kg"075^'1 for infected animals (25 % increase). However, their calculation of MEm 

was based on assumed efficiencies with which MEI substitutes for body energy stores. 

NRC (1981) reported an MEm for healthy goats of 424 kj-kg"0 7S-d"1, based on 10 original 

estimates from literature; Zemmelink et a/. (1991) reported an MEm of 384 kj-kg"°75-d"\ 

in two experiments with 24 young healthy WAD goats. 

Our estimate of km of 0.809 is higher than the average km of 0.66 for pelleted feeds 

with a metabolizability of 0.44, as reported by ARC (1980), but is in agreement with the 

assumed km of 0.80 of Verstegen et al. (1991). 

The low MEm for control goats and the relatively high km in the present experiment 

may have been induced by feed restriction. Olthoff et a/. (1989) showed that a period 

of feed restriction of sheep prior to a respiration study led to a lower MEm and an 

increased km. In our experiment possibly both the experimental feed restriction of LRR 

and CR goats, and the intake reduction due to isolated housing may have triggered a 

lower MEm. 

Nitrogen metabolism 

The intake level of N followed the feed intake pattern. Apparent N digestibility was 

estimated at about 0.61 (Table 4); this is slightly higher than Verstegen et al. (1991) 

reported. No effect of infection was found; this agrees with studies of Akinbamijo et al. 

(1992) and Verstegen et al. (1991). 

The regression equations of NR on ER (equations [5-7]) were not different for infected 

and control animals. Overall N utilization in relation to ER was very efficient with an 

estimated positive NR of on average 0.153 + 0.038 g-kg"°75-d"' at ER= 0 and a slope 

of 0.0016 + 0.00016 g NR-kJ"1 ER (average values per goat; n= 24; r2= 0.82). 

Verstegen et al. (1991) found a slope between 0.0009 and 0.0013 g NR-kJ ' ER, which 

is much lower. Possibly the low feed intake level induced a more efficient N metabolism 

at a given ER. Also Akinbamijo et al. (1992) showed that N metabolism became more 
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efficient when animals received a restricted feed ration. Our observed values should 

therefore be treated with caution. 

Concluding, infection did not reduce efficiency of N utilization at a given ER. The 

general conception that infection induces catabolism rather than lipolysis, as reported by 

Beisel (1985) is not confirmed in this experiment. 

Serum metabolite and hormone levels; liver TAC level 

Serum urea was increased by infection only in week 1 p.i. This may have been caused 

by a slight increase of protein catabolism (Payne, 1989); this was also found incidentic-

ally by Verstegen et al. (1991). Taking into account the N balance data, however, this 

increase was of minor importance. 

NEFA level tended to be increased in the HR and LRR group, compared with the CA 

group; this indicates an increased lipolysis. This corresponded with the reduced feed 

intake and the low insulin levels, relative to pre-infection. 

Liver TAG level was increased in animals with low DMI. This was probably the only 

experimental factor of influence, without a direct effect of infection on TAG level. Our 

TAG levels were comparable to those of dairy goats, either restricted or fed ad libitum 

in a 2-months period before parturition (Van den Top et al., 1995). They also observed 

a negative relationship between feed intake and liver TAG level. Veenhuizen et al. 

(1991), however, found much higher hepatic TAG levels in dairy cows with experimen­

tally induced ketosis (8 to 10 % of wet weight). 

NEFA level was positively correlated with liver TAG level. This was also found by 

Veenhuizen et al. (1991) and Van den Top et al. (1995). The increased hepatic TAG 

level probably resulted from an increased hepatic uptake of NEFA. No evidence was 

found for impairment of liver function by infection with respect to lipid metabolism; on 

average mobilization of energy substrates was not hampered and ketogenesis was 

limited. 

Serum TP level was increased in infected animals, mainly due to increase of the r-

globulin fraction; this is a common finding in trypanosomiasis where antibodies are 

produced to the variable antigen types (VAT's) of each successive wave of parasitaemia 

(Morrison et a/., 1985). 

T3 and T4 levels were decreased due to infection. Abebe and Eley (1992) and 

Mutayoba and Gombe (1989) found the same for T4. This is a consistent finding in 

trypanosomiasis, despite the fact that HP was increased after infection (Zwart et a/., 

1991). Abdullah and Falconer (1977) found a positive correlation between feed intake 

and serum T4 concentration in goats. In the present study T3 level of the CR group 

tended to be higher than T3 of the CA group, despite a lower intake of the former 

group. 1 
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Conclusions 

West African Dwarf goats, infected with Trypanosoma v/Vax, showed a reduced DMI and 

increased heat production. Consequently, energy and N balance were reduced in 

infected animals to levels below zero retention, and ME requirements for maintenance 

were increased. However, metabolizability and the estimated km were not changed by 

infection. No indications were found for an increased catabolism of protein due to 

infection. 
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Abstract-

The relationships between heat production, body temperature, and body posture (standing/lying) 

were studied in goats suffering from trypanosomiasis. Sixteen goats were selected and infected 

with 1 x 106 Trypanosoma vivax parasites and 8 goats served as controls. In weeks 2, 4, and 6 

after infection heat production, body posture, and body temperature were measured at 15-minute 

intervals. Heat production was higher (P< 0.01) in infected animals compared with control 

animals (342, respectively 306 kj-kg"°75-d'), body temperature was also higher (P< 0.001) in 

infected goats (39.78°C, respectively 38.51 °C). The standing related energy costs per day were 

lower in infected animals (27 respectively 36 kj-kg"°75-d"'). Infected animals, therefore, masked 

part of the energy costs of infection by reducing the standing time. The heat production of 

infected animals was increased by 21 kj-kg*"-d"1 per 1°C fever (7 % increase). During periods 

of standing, body temperature increased with time, whereas during lying periods, it decreased. 

The number of standing periods was increased in infected animals. It was discussed whether 

postural behaviour is influenced by thermoregulatory mechanisms. 

Introduction 

The protozoa Trypanosoma vivax, wh i ch in sub-Saharan Africa is transmitted by flies of 

the genus Clossina 5pp., is a major constraint to animal product ion. In tsetse infested 

areas all domestic species are at risk of infection. The disease causes intermittent fever, 

anorexia, and anaemia. The dynamics of the fever reflect the immune response to 

subsequent peaks of parasite sub-populations in the b lood (Stephen, 1986). Zwart et al. 

(1991) showed that heat product ion (HP) was increased in goats infected w i th T. vivax. 

Heat product ion partly results f rom physical activity (Blaxter, 1989). Van Diemen et 

al. (1995) demonstrated that about 24 % of the total heat product ion of pigs was related 

to activity. Animal behaviour may be changed by infection and consequently thereby 

also heat p roduct ion. Normal ly animals are less active dur ing disease (Hart, 1985). Van 
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Diemen et al. (1995) showed that exposure to Pasteurella multocida toxin tended to 

decrease activity-related HP in young pigs. 

Apart from the indirect effect of activity, total heat production can be affected by fever 

due to infection. An increase in body temperature (BT) wil l accelerate chemical processes 

(Blaxter, 1989). According to the theoretical Van 't Hoff/Arrhenius relationship, heat 

production increases by 10 % per °C increase in BT (the 'energy cost of fever'). 

However, in clinical studies in which fever is induced, large variations in the energy cost 

of fever are found (Baracos et a/., 1987). 

Therefore, in the present study it was investigated how a Trypanosoma vivax infection 

in West African Dwarf goats affected heat production, body temperature, and physical 

activity. From these results the metabolic cost of trypanosome infection was estimated 

and it was studied if physical activity, measured as body posture (standing/lying 

behaviour), affected this relation. 

Material and methods 

Experimental design and housing 

In the present study, data on heat production, posture, and body temperature were used 

from a previously reported experiment on the effect of T. vivax infection on energy and 

nitrogen balances (Van Dam et al., In press). From a group of 24 castrated West African 

Dwarf goats, 16 animals were randomly selected and were infected intravenously with 

T. vivax Y486 stabilate (Leeflang et a/., 1976), with about 1 x106 parasites per animal. 

The remaining 8 animals served as controls and were injected with saline. The moment 

of infection was defined as the start of the experimental period. From both treatment 

groups 4 animals were assigned randomly to a restricted lucerne ration of 17g-kg"°75-d~\ 

All other animals had ad libitum access to lucerne. Every day, animals were given feed 

between 08.00h and 09.00h. The animals were housed individually in 'dummy' 

chambers, to allow them to adapt to the respiration chambers, in the week before 

infection, as well as in the 1st, 3rd, and 5th week post infection (p.i.) In weeks 2, 4, and 

6 p.i., goats were housed individually in one of two open-circuit, indirect climatic 

respiration chambers, with an iron mesh floor (Verstegen et al., 1987). Goats were 

tethered but could move freely to stand up and lie down. Lights were on between 7.00h 

and 19.00h and ambient temperature was maintained at 20°C. In the respiration 

chambers the relative humidity was maintained at approximately 65 %. 
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Measurements 

After 1 week of adaptation in the dummy chamber, and 1 day in the respiration 

chamber, measurements were started. The consumption of 0 2 and production of C0 2 

and CH4 were measured for each goat during successive 9-minute intervals. From this 

gaseous exchange, HP was calculated according to Brouwer (1965). BT was recorded in 

succeeding intervals of about 7.5 minutes with a temperature transmitter using a 

telemetric system as described by Van der Hel et al. (1993). Therefore, 3 weeks before 

infection, a temperature transmitter was implanted surgically in the abdominal cavity of 

each goat. Implantation was carried out after laparotomy in the left side under complete 

halothane anaesthesia. No health problems occurred after surgery. Within 3 days after 

surgery, feed intake returned to normal levels and 1 week after surgery the wound was 

healed. 

The goat's body posture (standing or lying) was registered with a photo-electric cell 

(Télémécanique, XUG-F04031, Technische Unie, Arnhem, The Netherlands), as 

described by Schrama et al. (1993). Posture was recorded every minute within each 9-

minute period associated with the measurement of HP. The body posture during a 

specific 9-minute period was defined as 'standing', if the goat had stood for more than 

50 % of this interval; otherwise it was defined as 'lying'. 

Calculations 

Measurements during the feeding period (08.00h to 09.00h) were excluded. Total heat 

production (HPtot) was the average of all 9-minute HP values during day 2 to 7 of each 

week that the animals were housed in the respiration chamber. Heat production during 

standing (HPst) and during lying (HP,y) were obtained by averaging the 9-minute HP 

values during standing and lying respectively. The energy cost of standing (ECS) was the 

difference between HPS, and HP,y. Total daily body temperature (BTlot), BT during 

standing (BTst), BT during lying (BT,y), and the difference between BTst and BT!y were 

calculated as described for the HP variables. Time spent standing (fst) was obtained from 

the daily percentage of 9-minute periods spent standing. The extra daily amount of 

energy expenditure due to standing (HPfxECS) was obtained by multiplication of ECS by 

the time spent standing. Furthermore, the number of standing periods (N5t) and the 

average duration of a standing (Tst) and of a lying (T!y) period were derived from the 9-

minute body posture measurements. 

These HP, BT, and posture variables were calculated for each goat separately per 

respiration period. Zwart et al. (1991) demonstrated in goats that the effect of T. vivax 

on HP varied within a day. Therefore, HPto„ time spent standing, and HP!y (heat 

production corrected for standing) were calculated separately for the light (07.00h to 

19.00h) and dark phases of the respiration week (19.00h to 07.00h). 
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For the study on the relationship between BT and HP the separate datasets on BT and 

HP were merged into one dataset with a mean BT, body posture, and HP, per 15-minute 

period. The relation between HP and BT, representing the energy cost of fever (ECF), was 

assessed by linear regression of the 15-minute data for HP on BT per goat for either 

standing or lying periods. 

The average BT for successive 30-minute intervals after the onset of either a standing 

or lying period was calculated, to study the time-related change due to body posture. 

Therefore BT was related to time after the onset of either standing or lying, by linear 

regression. Data recorded 200 minutes after postural changes were excluded, because 

of very low frequency. 

Statistical analysis 

Statistical analysis was carried out using the SAS statistical package (1990). Preliminary 

testing of the parameters described above revealed no effect of experimental feed ration 

(restricted versus ad libitum) nor an interaction with other treatments, and thus this 

variable was removed from the statistical model. The effects of infection, respiration 

week, and their interaction on the above described parameters of HP, BT, and posture 

were tested by means of F-test, using a split-plot model [GLM procedure (SAS, 1990)], 

with week values within goats taken as repeated measurements: 

Y i jk= fj + INF; + e,;ij + WEEKk + (INF x WEEK)ik + e2;ijk [1] 

in which Y i jk= Parameter studied; fj= overall mean; INF| = fixed effect of infection (i = 

1,2); e1;jj= error term 1 which represents the random effect of goat nested within 

infection treatment i (for i= 1, j = 1,..,8; for i= 2, j = 1,..,16); WEEKk= fixed effect of 

respiration week (time after infection) (j= 1,2,3); (INF x WEEK)jk= interaction effect 

between infection and week; e2;ijk= error term 2. The effect of infection was tested 

against error term 1, whereas the effect of week and the interaction was tested against 

error term 2. 

For different reasons, the data for 3 infected animals and 1 control animal were 

omitted from the dataset. 

Results 

In Table 1 mean HPtot, HP during standing (HPst) and lying (HPly), energy cost of standing 

(ECS), time spent standing (f5t), and the standing related HP (HPfxECS) are given for 

infected and control animals. HPtot was increased (P< 0.01) with 36 kj-kg"°75-d"' in 
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infected animals. HPst tended to be increased in infected animals (P< 0.10) by 35 kj-kg 
0 7 5 -d ' \ whereas HPly was increased (P< 0.01) in infected animals by 45 kJ-kg-°75-d'\ 

Both ECS and fst were slightly lower in infected goats (ns), leading to a significant 

difference in HPfxECS of 9 kj-kg"075^"1 between control and infected animals. 

Table 1. Average heat production (HPtol; k|-kg'075-d~') and heat production during 

standing (HPst) and lying (HP,y), the energy cost of standing (ECS), the t ime spent 

standing (fsl, %), and the standing related heat production (HPf)<ECS) in infected and 

control W A D goats. 

Infected sem Control sem P-valuea 

n = 13 n - 7 

HP,„, 
HPS1 

HPly 

ECS 

f« 
H P , , ECS 

': n s - not significant, P > 0.10; t e n d - tendency, P < 0.10; * P < 0.05; * * P < 0 .01. 

In Table 2 the number of standing periods (Nsl) and the duration of lying periods (T,y) 

and standing periods (Tst) are given for infected and control goats. Infected animals 

changed position more often within each 24-hour period than control animals did (P< 

0.001). Consequently both T,y (P< 0.001) and T5t (P< 0.01) were reduced in infected 

animals compared with control animals. 

Table 2. Number of standing periods per day (Nsl) and duration of standing 

(Tsl; minutes) and lying periods (T,y) of infected and control W A D goats. 

342 

393 
315 

78 

36 
27 

6.8 

9.9 

7.0 

5.5 
2.7 

1.8 

306 

358 
270 

88 
43 

36 

9.3 

13.5 
9.6 

7.5 
3.7 

2.5 

** 
ten 

* * 
ns 

ns 

* 

N„ 
Ts, 

\ 

Infected 
n = 13 

22.8 
25.9 

41.9 

sem 

1.2 

4.8 
2.9 

Control 
n - 7 

13.8 

51.0 
67.9 

sem 

1.6 
6.6 
4.0 

P-valuea 

* * * 
* * 
*** 

'': * * P < 0 .01; * * * P < 0 .001. 

In Table 3, values on HPt0„ HP5„ HP|y, and f5t during either the light phase (07.00 -

19.00 h) or dark phase (19.00 - 07.00 h) are presented, as are differences between light 

and dark phases. HP10t during the dark phase was increased in infected animals by 54 
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kj-kg"°75-d"1 (P< 0.001) compared with controls. During the light phase, however, the 

increase in HPtol due to infection was only 20 kj-kg"0 75-d"1 (ns). Consequently, the 

difference in HPt0, between the light and dark phase was smaller in infected goats (P< 

0.001). 

Table 3. Heat production (HP,M; kj-kg"0 "-d"1), HP corrected for standing (HPS1), 
HP corrected for lying (HPly), and frequency of standing (fsl; %) measured during 
light phase and dark phase and the difference between light period and dark phase 
values in infected and control WAD goats. 

HPtM l ight phase 

HPtot dark phase 
difference 

HP5, light phase 
HPst dark phase 

difference 

HPly l ight phase 

HP|y dark phase 

difference 

fs, light phase 

fs, dark phase 
difference 

Infected 

n = 13 

352 

333 
19 

391 
396 
-5 

318 

315 

3 

48 
23 
26 

sem 

7.9 
6.2 
4.4 

10.4 

9.5 
5.0 

7.8 

6.8 

3.3 

4.1 

2.3 
3.4 

Control 
n - 7 

332 

279 
53 

360 
344 
15 

272 

270 

1 

71 

14 
57 

sem 

10.8 

8.5 
6.0 

14.2 
12.9 
6.9 

10.6 

9.2 

4.5 

5.6 

3.2 
4.6 

P-valuea 

ns 

*** 
* * * 

ns 

* * 
* 

* * 
* * 
ns 

* * 

* 
* * * 

ns- not significant, P> 0.10; * P< 0.05; ** P< 0.01; * ** P< 0.001. 

Moreover, there were differences in the time spent standing during the light and the 

dark phase, i.e., in infected animals, f5t was higher during the dark phase (P< 0.01), 

whereas it was reduced during the light phase (P< 0.05) compared with controls. HP|y 

was increased by 45 kj-kg"0 75-d"1 in infected animals, irrespective of the light or dark 

phase. HPst was increased by infection during the dark phase (P< 0.01) but not during 

the light phase. The difference between HPst during the dark and light phase was greater 

in control animals than in infected animals (P< 0.05). 

In Table 4, results on BT are given. Large within-day variations in BT were found in 

infected animals, with BT changes up to 0.40°C per hour. BTtol, and BT during lying 

(BT|y) and standing (BT5t) were increased by infection throughout the experiment. Over 

the whole infection period, BT10t was 39.78°C and 38.51 °C for infected and control 

animals, respectively; infection BTtot was increased by 1.27°C (P< 0.001). BTst was 

significantly higher than BT,y in infected animals in week 2 p.i. (P< 0.01) and 4 p.i. (P< 
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0.05), but not in week 6 p.i. No difference was found between BTst and BTly in control 

animals. 

Table 4. Average body temperature (BTT0I; °C), body temperature during standing 

(BTSI) and lying (BT,y), and the difference between BTS1 and BT,y in infected and 

control W A D goats in week 2, 4 and 6 after infection. 

Week 2 p.i. 

BT„ 
BTS1 

BT,y 

difference 
Week 4 p.i. 

BT,01 

BTS1 

BT l y 

difference 
Week 6 p.i. 

BT,0, 
BTS, 

BTly 

difference 

Infected 
n = 13 

40.04 

40.24 

39.87 
0.37 

39.81 
40.01 
39.73 

0.28 

39.49 

39.61 

39.46 
0.15 

sem 

0.07 
0.07 

0.07 

0.05 

0.08 
0.10 
0.07 

0.07 

0.13 
0.13 

0.13 

0.08 

Control 
n - 7 

38.51 
38.56 

38.49 
0.07 

38.51 
38.53 
38.50 

0.03 

38.52 
38.54 

38.51 
0.03 

sem 

0.09 

0.09 

0.09 
0.07 

0.10 

0.13 
0.10 

0.09 

0.17 
0.18 
0.18 
0.11 

P-valuea 

*** 
*** 
** * 
* * 

*** 
*** 
* ** 

* 

** * 
* * * 
** * 
ns 

not significant, P > 0.10; * P < 0.05; * * P < 0 .01; * * * P < 0.001 

Table 5. Increase in heat production per 1 °C BT increase (energy cost of fever, 

ECF; k J -kg^^ -d ' ^C ' ) during standing and lying and the difference between 

standing and lying, in infected and control W A D goats . 

Infected sem Control sem P-valuea 

n = 13 n - 7 

Energy Cost of fever (ECF) 
during standing 18.8 

during lying 22.8 
difference -4.1 

': * P < 0.05; * * P < 0 .01. 

In Table 5, estimates for ECF, calculated by linear regression analysis per animal per 

infection week, are presented. ECF during standing was higher in control animals, 

whereas ECF during lying was higher in infected animals (both P< 0.05). However, the 

estimates for ECF of control animals had a very low r2 of 0.02 and may not have been 

3.0 
2.7 
3.8 

32.9 

12.2 
20.8 

4.1 
3.6 
5.1 
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very accurate, whereas the average r2 for infected animals was about 0.20. The difference 

between ECF during lying and ECF during standing in infected animals was not different 

from zero; in controls however, ECF during standing was significantly higher than ECF 

during lying (P< 0.01). 

Within a standing or a lying period, BT was not constant with time (Figure 1). BT 

increased with time during standing periods but decreased with time during lying 

periods. The following regression equations were estimated for infected and control 

animals, either standing or lying (BT in °C; TIME in h, sem between brackets): 

Inf., st.: 

Inf., ly.: 

Cont., st.: 

Cont., ly.: 

BT = 39.92( + 0.052) + 0.066(±0.0216) * TIME; n= 13; r2= 0.61 

BT= 39.94(±0.055)-0.164(±0.0218) * TIME; n= 13 ; r 2 =0.90 

BT= 38.35( + 0.021) + 0.118(±0.0086) * TIME; n= 7; r2= 0.97 

BT= 38.63(±0.024)-0.045(±0.0087) * TIME; n= 7; i2= 0.81 

[2] 

[3] 

[4] 

[5] 

Figure 1. Body temperature as affected by time after onset of either a standing or lying period in infected 

and control W A D goats The line — A — represents infected animals (standing); — • — represents infected 

animals (lying); — A — represents control animals (standing); — O — represents control animals (lying). 
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The decrease in BT per hour in lying infected animals was larger (P< 0.001) than that 

in lying control animals. However, the increase in BT per hour during standing was not 

significantly different between infected and control animals. For HP no trends with time 

were observed after the onset of either a standing or lying period. 
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Discussion 

In this experiment, data on HP, BT, and body posture were collected continuously, with 

mean values for every 15 minutes. Thus short-term variation could be monitored and 

relations between HP, BT, and body posture were studied. 

Metabolic costs of infection 

The average HP was increased by 36 kj-kg"075^"1 in infected animals (12 % increase; 

Table 1). This is in accordance with the increase of 14 % reported elsewhere for T. vivax 

infected goats (Verstegen et al., 1991). 

In the present study, time spent standing (fst) tended to decrease in infected animals. 

Also ECS was somewhat lower in infected animals, leading to a significantly decreased 

HPfxEcs- This means that infected animals masked part of the increased metabolic 

demands by reducing their standing-related energy costs. 

The energy cost of standing was estimated at respectively 78 and 88 kj-kg^75-d"' in 

infected and control goats (increase of 25, respectively 29 %, relative to HP,y of control 

animals). Schrama et al. (1993) observed a difference between standing and lying of 114 

kj-kg"°75-d"' (Ta at 18°C) in young calves (27 % increase). Ortigues et al. (1994) reported 

a value of 107 kj-kg"°75-d'' (23-27 % increase) for young calves, and Purwanto et al. 

(1993) reported 106 kj-kg"°75-d'' for dairy heifers on a low feed intake (21 % increase). 

The absolute estimates of ECS, therefore, were lower than those of other reports; 

however, when expressed as a percentage of total HP, the results of the present study 

corresponded well with those of other studies. 

The difference in total HP (HPtot) during the dark and light phase (Table 3) was also 

observed by Zwart et al. (1991). Differences between dark and light phase, however, 

were fully explained by different fst. Consequently HP,y was the same for the dark and 

light phase, and a mean difference of 45 kj-kg"°75-d"' between infected and control 

animals, irrespective of the dark or light phase, was estimated. HPst, however, was higher 

during the light phase than during the dark phase in control animals. This may be 

because the animals were more active during daytime standing periods (feeding, 

explorative behaviour). Ortigues et al. (1994) also observed differences in activity during 

standing between the day and night phase. The higher activity could possibly account 

for the slightly higher ECS of control animals. 

Many studies report a positive relationship between fever and metabolic rate. The 

average rate of chemical reactions, and consequently heat production, is thought to 

increase by approximately 10 % per °C temperature increase (Van 't Hoff/ Arrhenius 

relationship; Blaxter, 1989). In the present study, the metabolic cost of infection can be 

estimated as the increase in HPtot of 36 kj-kg'075^"1, divided by the increase in BT. This 
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was (12 % HP increase/ 1.27°C fever) - 9.3 % per °C fever. However, this underesti­

mated the energy cost of fever because part of the HP increase was masked by the 

reduced standing related HP. Therefore, the difference between HP,y of infected and of 

control goats may be a better estimate of the metabolic costs of infection. This amounts 

to a metabolic cost of infection of 45 kj-kg"075^"1 (16.7 % increase compared with 

control animals; Table 3), with an increase of BT,y of 1.19°C in infected animals (Table 

4). Thus the HP increase per degree centigrade was 14.0 %. Du Bois (1921) estimated 

the metabolic costs of 1 °C fever, caused by a variety of different diseases in humans, at 

13 %. However, periods of shivering were left out of his calculation; during shivering 

HP may be doubled (7). Baracos et al. (1987) observed a large variation in the increase 

in HP, from 13 to 35 % per °C fever. 

However, not all energy costs involved in infection can be attributed to fever per se. 

Additional energy costs comprise thermoregulatory heat production, i.e., shivering 

periods (Baracos et al., 1987), and other metabolic costs, i.e., higher protein turnover, 

immune response, and tissue repair (Beisel, 1985). As the occurrence of shivering in 

infected goats was not monitored, the results on HP were related to BT by linear 

regression to obtain a more accurate estimate of increase of HP due to the direct effect 

of fever (Table 5). Within-animal variations in HP and BT were positively correlated with 

each other, with an average increase in HP per 1 °C difference in BT of 21 kj-kg"°75-d"1 

(average of regression equations for standing and lying periods; Table 5). The regression 

estimate is relatively low compared with that of other reports and the theoretical 

relationship of Van 't Hoff/ Arrhenius. The regression estimate explains approximately 

60 % of the observed differences in HP,y between infected and control animals, with the 

remaining 40 % of energy costs of infection probably being accounted for by 

thermogenesis and/or other metabolic costs (Beisel, 1985). 

Body temperature and body posture 

Both average BT,ot and the short-term variation in BTtot were increased by infection (Table 

4). Fluctuating fever is a typical symptom of trypanosomiasis, which reflects the response 

to successive waves of parasitaemia (Stephen, 1986). The body temperature set point in 

the hypothalamus is then changed under the influence of pyrogenic stimuli released 

during infection (Baracos et a/., 1987; Kluger, 1989). The animal then responds to the 

increase in the BT set point by increasing its body temperature. This increase in BT 

(hyperthermia) can be achieved by increasing HP without changing heat loss, or it may 

be achieved by reducing heat loss (eg. by vasoconstriction and higher tissue insulation) 

without changing HP (Simon, 1993). 

In the present experiment in week 2 and 4 p.i., BT during standing and during lying 

was different in infected animals (Table 4). Moreover, analysis of repeated measurements 
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within a standing or lying period revealed an increase in BT with time while animals 

were standing, and a decrease with time while lying (Figure 1; equations [2] to [5]). 

Apparently during standing, the balance between heat production and heat loss was 

positive, while during lying it was negative. The decrease in BT during lying may have 

been induced by the absence of bedding material and the use of an iron mesh floor, 

which may have increased conductive heat loss. Mount (1967) demonstrated, in a study 

with newborn piglets, that conductive heat loss was affected strongly by the type of floor. 

The time-related alterations in BT during standing and lying periods may have 

implications for thermoregulation, and it is possible that animals change their posture 

due to thermal distress. The higher frequency of posture change in infected animals, and 

the more even distribution of standing periods over the dark and light phase, supports 

this hypothesis, because the temperature set point changes frequently in infected animals. 

Also Schrama et al. (1993) postulated that body posture might be thermoregulatorely 

induced. Diseased animals may change their behaviour for thermoregulatory purposes 

(Hart, 1985). Van Diemen et al. (1995) showed that the activity of pigs infected with 

Pasteurella multocida was reduced. 

Thermoregulatory mechanisms are aimed at bringing the actual BT to the set point 

temperature with a minimum of energy costs. The manipulation of body posture might 

well fit in this strategy. However, other factors, such as the needs of the animal with 

respect to eating/drinking or movement/rest, might also play a role in the induction of 

postural change. 

Conclusions 

Both HP and BT were increased in goats infected with Trypanosoma vivax. The daily 

energy costs of standing were reduced in infected animals. This masked part of the 

increased HP due to infection. The largest part of the energy costs of infection were 

explained by fever, according to the Van 't Hoff/Arrhenius relationship. The frequency 

of change of body posture was increased in infected animals; BT increased with time 

during a standing period, whereas it decreased with time during a lying period. 
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Abstract 

In an experiment studying the interaction between diet quality and the course of trypanosome 

infection, 29 West African Dwarf goats were randomly allotted to either a diet of pelleted lucerne 

with a high N content (n= 14) or chopped grass straw with a low N content (n= 15). Nine 

lucerne fed animals and ten grass straw fed animals were infected with Trypanosoma vivax to 

study its effects on feed intake and efficiency of N utilization during the first 6 weeks of infection. 

Infection reduced organic matter intake from 54.9 (± 2.1) to 37.7 (± 1.7) g-kg"°7S-d"'. Lucerne 

fed animals had a higher organic matter intake than grass straw fed animals. The relative decrease 

of digestible organic matter intake (DOMI) due to infection was the same in animals fed lucerne 

or grass straw diet (36 and 35 %). Retention of N was lower in infected animals and in animals 

fed grass straw. By relating N retention to DOMI the efficiency of N utilization, corrected for feed 

intake level, could be estimated. No effect of infection or diet type on the efficiency of N 

utilization was detected. One overall regression equation was estimated: 

N Retention = -0.450 (± 0.038) + 0.0167 ( + 0.0015) x DOMI (n= 29; x2= 0.86). Serum urea 

concentration was higher in lucerne fed animals than in grass straw fed animals; within the 

former group, infected animals showed a lower urea concentration post infection than control 

animals. Serum creatinine concentration was higher in grass straw fed animals than in lucerne 

fed animals. From the former group, infected animals had a lower creatinine concentration post 

infection than controls. It was concluded that infection affected feed intake, but that efficiency 

of N utilization was not changed by infection. 

Introduction 

Trypanosomiasis is a protozoan disease, wh ich is endemic in large parts of sub-Saharan 

Africa (ILCA, 1986). Parasitic infections often induce an increase of N losses in the host 

due to intestinal or renal damage (Holmes, 1987). In addit ion Seed and Hal l (1985) 

reported a higher protein turnover and increased catabolism in t rypanosome infect ion. 
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On the other hand, trypanosomiasis often leads to feed intake reduction, which in turn 

causes an increase of catabolic processes and consequently N losses (Verstegen et a/., 

1991). Therefore, in order to correctly estimate direct effects of trypanosome infection 

on N losses of the host, differences in feed intake level should be corrected for. 

Regression analysis of nitrogen retention (NR) on digestible organic matter intake 

(DOMI), viz. NR = b0 + b, x DOMI, gives information about the relation between net 

protein and net energy availability to the tissues (Ketelaars and Tolkamp, 1991; Oosting 

et a/., 1995). They found that both b0 and b, were not affected by fibrous feed type or 

metabolizability of diets, if animals were offered ad libitum diets. Hereby the efficiency 

of nitrogen utilization could be estimated, corrected for energy intake level, irrespective 

of fibrous feed type. Akinbamijo et al. (1992) studied the relation between NR and 

DOMI in West African Dwarf goats, infected with T. vivax and fed lucerne pellets, a feed 

which is rich in crude protein (CP). They found no indications for a changed relation 

between NR and DOMI in infected animals. It cannot be excluded, however, that a diet 

which has a lower CP level than lucerne, might well have aggravated the N losses due 

to infection, leading to a different relation between NR and DOMI. 

In the present work, therefore, the effect of fibrous feed quality, as reflected in the N 

content of the feed, on the course of infection with T. vivax in West African Dwarf goats 

was studied. The variables of study were feed intake and body weight change, and the 

efficiency of N utilization, measured as the relationship between NR and DOMI. 

Material and methods 

The experiment was evaluated and approved of by the University Ethical Committee on 

Animal Welfare. 

Animals 

Twenty-nine castrated male WAD goats were used averaging 23 (+ 0.8) kg BW and 12 

(± 0.1) months of age. They were derived from the university flock of WAD goats, 

which had been established some 15 years ago (Montsma, 1986). The experimental 

animals had never been exposed to trypanosome infections before. Prior to the 

experiment they received an anthelmintic treatment and were vaccinated against 

ecthyma. 
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Feeds and housing 

Two different feeds were used viz. pelleted lucerne and chopped grass straw. Lucerne 

had a high N content, whereas grass straw had a low N content. The composition of the 

two feeds is given in Table 1. Salt lick and water were freely available. Animals were 

housed in group pens nine weeks before infection to adapt to the experimental diets. 

Four weeks before infection (ante infectio; a./.) they were randomly placed on individual 

digestibility cages. During the whole experiment ambient temperature was kept at 20°C 

and lights were on from 07.00h to 19.00h. 

Table 1. Composition of the experimental feeds: dry matter (DM; in g-kg"' fresh feed), and organic matter 
(OM) and crude protein (CP; both in g-kg"' dry matter). 

Diet DM OM (in DM) CP (in DM) 

pelleted lucerne 933 863 172 
chopped grass straw 929 936 68 

Infection 

The animals were infected intravenously with approximately 1 x105 T. vivax parasites 

from strain Y486, isolated by Leeflang et al. (1976). This was defined as day 0 of the 

experiment. 

Experimental design 

Fourteen animals were randomly allocated to an ad libitum ration of pelleted lucerne, 

and 15 animals were allocated to an ad libitum ration of chopped grass straw. Before the 

moment of infection they were assigned to infection or control treatment as follows: per 

diet group animals were sub-divided in groups of 3 animals with approximately the same 

body weight and feed intake. Per group two animals were randomly allotted to the 

infection and 1 animal to the control group. Accordingly, a 2 x 2 scheme was adopted 

using four different experimental groups viz. Infected animals fed Lucerne (IL; n= 9), 

Control animals fed Lucerne (CL; n= 5), Infected animals fed Grass straw (IG; n= 10) 

and Control animals fed Grass straw (CG; n = 5) group. Also during the infection period, 

all animals had ad libitum access to feed. This was necessary because the b0 in the 

equation NR= b0 + b, x DOMI tends to increase under the influence of feed 

restriction, which would complicate the comparison between treatments (Akinbamijo et 

al., 1992); Blaxter (1989) reported a decrease in energy maintenance requirements due 

to food restriction. As a consequence, the employed experimental design did not allow 

for an iso-nutritional comparison of infected and control goats. 
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Sample procedures and sample preparation 

In Table 2 the time schedule and measurements are presented. Daily feed intake was 

recorded from 1 week a.i. until week 6 after infection (post infectio; p.i.) in early 

morning by collection of refused feed of the previous day and offering fresh feed, at an 

excess of 40 % over daily intake (based on individual intake data from the preceding 

week). Body weight was measured weekly at the start and at the end of a nitrogen 

balance trial. Rectal temperature was measured daily before feeding from 1 week a.i. 

until the end of the experiment, and blood samples were taken weekly; these 

measurements are reported elsewhere, as well as the post mortem micro- and 

macroscopic examination after week 6 p.i. (Van Dam et al., submitted). 

Table 2. Time schedule and measurements 

Housing | group pen j individual digestibility cages 1 

N balance trials | #1 j | #2 | | #3 | | #4 j 

Procedure1 I PM 

Feedintake | group intake j daily individual 1 

Body Temp. j 1 

Blood traits and body weight x x x x x x x x 

Week ! -9 | -8 | -7 ! -6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | 

': I: infection with T. vivax, PM: Post mortem examination. 

Four N balance trials were carried out in wk 1 a.i. and wk 2, 4 and 6 p.i. All N 

balance trials lasted 7 days. Per N balance trial the amounts of offered feed, refused feed, 

faeces and urine were measured. For analysis of composition, samples were taken from 

offered feed (one composite sample per N balance period per diet), refused feed, faeces 

and urine (one composite sample per N balance per animal). Sulphuric acid was added 

to urine for keeping the pH of urine low in order to prevent NH3 escape. Formalin was 

added to the faeces to avoid fermentation. 

Once per balance period a 20-h sample of urine was collected for urea and creatinine 

determination. Once per week a blood sample was taken for measurement of serum urea 

concentration. 

N content of feed offered, feed residues, fresh faeces and urine were determined 

using Kjeldahl technique (ISO 5983-1991); DM and ash content of offered feed, feed 

residues and faeces were determined (ISO 5984). Organic matter intake (OMI) was 

calculated as the organic matter (OM) offered minus OM refused; digestible organic 

matter intake (DOMI) was calculated as OMI minus organic matter in faeces. NR was 

calculated as the difference between N intake (NI) and N losses via faeces (FN) and urine 
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(UN). Data on OMI, DOMI, NI, FN and UN were expressed per kg metabolic weight 

(kg075) per day. 

Urea and creatinine concentration in serum and urine were determined with a 

Synchron 5 autoanalyzer using Beekman reagents (Beekman Instruments GmbH, 

München, Germany). 

Statistical model 

Statistical analysis of the data was carried out using SAS Statistical Package (SAS, 1990). 

The effect of infection, diet, week number either before or after infection, and their 

interaction on the above described intake and N metabolism variables were tested by 

means of F-test using a split-plot model [GLM procedure (SAS, 1990)], with week values 

within goats taken as repeated measurements: 

Y i jkl= u + O-, + I, + (DxOij + e1;ijk + WK, + (WKxl)„ + e2;i|kl [1] 

where: 

Y i jk|- dependent variable; fj= overall mean; D,= effect of Diet ( i= 1,2); 1,= effect of 

Infection ( j= 1,2); ( D x l ) ^ effect of interaction between Diet and Infection; e1;jjk= Error 

term 1: randomized effect of Animal nested within D x l subgroup; D;, I,, and (Dxl);, 

were tested against error term 1 ; WK, = effect of Week number/ Balance trial (I = 1 ,...,3 

post-infection N balance trials or l = 1,...,6 post-infection weeks); (WKxl)||= effect of 

interaction between Week number (or balance trial) and Infection; e2.ijk|= error term; WK, 

and (WKxl)ji were tested against error term 2. 

Class factors which did not significantly contribute to the model were excluded. The 

relation between NR and NI, and the relation between NR and DOMI, were studied. 

Therefore, results on NR were pooled per animal, and were tested using model [1] with 

the addition to the model of either NI or DOMI as a covariable. 

Results 

General course of infection 

Four animals died before the end of the experiment or were euthanized when moribund 

of the effects of trypanosome infection, viz. two animals of the IL group on day 32 and 

33 p.i. and two animals of the IG group on day 30 and 40 p.i. From the animal that died 

on day 40 p.i., the results of the N balance period 4 were included in the study. From 

results on packed cell volume and parasite count (reported by Van Dam et al., submitted) 

it was concluded that the disease was fully established in all infected animals. 
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Feed intake and body weight change 

In Figure 1 OMI is depicted from week 1 a.i. until week 6 p.i. The average intake per 

animal per day, calculated for the whole infection period, was reduced in infected 

animals, compared with control animals, viz. 37.7 (± 1.7) and 54.9 (± 2.1), respectively 

(P< 0.001). The mean OMI over the total infection period per treatment was not 

significantly affected by fibrous feed quality. The apparent increase of mean OMI of the 

IL group in week 6 p.i. was mainly caused by the death of two animals with a very low 

feed intake. 

Figure 1. Organic matter intake (OMI) after infection wi th Trypanosoma vivax of goats, fed different diets. 
The line — • — represents infected animals fed lucerne, — O — control animals fed lucerne, — A — 
infected animals fed grass straw, and — A — control animals fed grass straw; error bars indicate sem. 

«? 

Week after infection 

Daily body weight change per kg075, averaged over the whole infection period, was 

for the IL group -3.0 (± 1.2) g-kg0 7 5^1 , for the CL group 4.2 (± 0.9) g-kg-°75-d', for 

the IG group -11.6 (± 1.4) g-kg0 7 5^1 and for the CC group -0.5 (± 0.5) g-kg0 7 5^1 . 

Infection reduced body weight gain (P< 0.001). Animals fed grass straw had a lower 

mean body weight gain than lucerne fed animals (P< 0.001). No statistical interaction 

between diet quality and infection treatment was detected (P> 0.10). 
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Table 3. Body weight (BW; in kg), organic matter intake (OMI) and digestible organic matter intake 
(DOMI; both in g-kg"° "•d"1), organic matter digestibility (OMD), N intake (NI), N excretion in faeces (FN) 
and urine (UN), N retention (NR; all in g-kg"075^"') and N digestibility (ND), before and after infection 
wi th Trypanosoma vivax of goats, fed different diets; least square means of pre-infection N balance trial 
and combined post-infection N balance trials. 

Variable 

No. of animals 

BW 
OMI 

DOMI 
O M D 

NI 
FN 

ND 
UN 

NR 

Number animals 
BW, kg 

OMI 

DOMI 

O M D 
NI 

FN 
ND 

UN 
NR 

LS Means of treatments' 

IL CL 

9 5 

22.1 24.0 
53.1 56.5 

32.6 34.3 
0.615 0.609 

1.646 1.776 
0.733 0.821 

0.556 0.545 
0.818 0.856 

0.094 0.098 

9 5 
21.8 25.1 

36.8 59.4 
23.6 36.6 

0.641 0.616 
1.131 1.867 

0.472 0.843 
0.580 0.553 

0.695 0.892 
-0.034 0.131 

IC 

10 

22.1 
50.3 

26.0 
0.518 

0.615 
0.426 

0.312 
0.135 

0.054 

10 
19.5 

33.9 
17.9 

0.509 
0.429 

0.312 
0.271 

0.284 
-0.162 

CC 

- Pre-In 

5 

22.0 
48.8 

25.6 
0.522 

0.562 
0.394 

0.304 

0.146 

0.023 

rmse3 

ection Period 

3.8 
8.5 

4.6 
0.020 

0.240 
0.148 

0.053 
0.087 

0.045 

5 
21.8 

51.9 
27.5 

0.530 
0.597 

0.408 
0.314 

0.148 
0.042 

6.2 

12.9 
7.9 

0.037 

0.299 

0.181 
0.068 

0.106 
0.157 

P-va 

diet 

ns 
ns 

* * * 
* ** 
»». 
* ** 
* * * 
* * * 
* * 

ns 

ns 

* ** 
* * * 
* * * 
* * * 
* ** 
* ** 
* * 

lues2 

inf 

ns 

ns 

ns 
ns 

ns 
ns 

ns 
ns 

ns 

ns 

* * * 
* * * 
ns 

* * * 
* * * 
ns 

ns 

*** 

int 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

ns 

ns 

ns 
ns 

ns 

»»* 
* * 
ns 

* * * 
ns 

': I L - Infected animals fed Lucerne, C L - Control animals fed Lucerne, IG= Infected animals fed Crass 
straw, CC - Control animals fed Grass straw; 
2: Significance of treatments; inf: infection, int: interaction; n s - not significant; * * - P < 0 . 0 1 ; * * * = P < 
0 .001; 
': Root mean square error (sem - rmseA/n). 

In Table 3 intake of OM, DOM and N, as well as FN, UN, and N retention per kg075 

per day are presented, with mean values a.i. and p.i., and mean body weight before and 

after infection. All presented traits, except BW and OMI, were affected by diet quality 

throughout the experiment. In lucerne fed animals DOMI, N intake, and urinary and 

faecal N losses were higher than in grass straw fed animals (P< 0.001). Also N retention 

was higher in lucerne fed animals (P< 0.01). In post-infection N balance trials, OMI, 

DOMI, N intake and N retention were lower in infected animals of both diet groups, 

compared with control animals (P< 0.001). DOMI decrease due to infection was 36 % 

in lucerne fed animals and 35 % in grass straw fed animals. 



80 Chapter 6 

N Metabolism 

In Figures 2a to 2d the relation between NR and NI is presented in the four successive 

N balance trials. NI affected NR (P< 0.001), but the relation between NR and NI was 

different for either the grass straw or the lucerne fed goats (P< 0.05). No time effect was 

found on the relation between NR and NI, so data were pooled per animal for the 

balance trials p.i. For grass straw fed animals one linear regression equation (P< 0.05) 

was estimated: 

NR= -0.536 (± 0.077) + 0.904 (± 0.154) x NI; [2] 

(n= 15; r2= 0.73; NR and NI in g-kg"075^"1; sem between brackets). 

For lucerne fed animals two linear equations which pivoted at NI = 1.34 g-kg 0 7 5^ 1 had 

a higher r2 than one linear regression: 

For N l < 1.34: NR= 0.071 (± 0.076) + 0.512 (± 0.121) x (NI-1.34); [3] 

For N l > 1.34: NR= 0.071 (± 0.076) + 0.125 (± 0.107) x (NI-1.34); [4] 

(n= 14; r2= 0.81; NR and NI in g-kg"075^"1; sem between brackets). 

Both the intercepts of equation [3] and [4], and the slope of equation [4] were not 

different from zero (P> 0.25). 

In Figures 3a to 3d the relation between N retention and DOMI for the four different 

N balance trials is shown. Covariance analysis of N balance trials p.i. demonstrated that 

the class factors diet and infection (with interaction) and time effect (N balance number) 

did not have a significant effect on this relationship. Consequently the statistical model 

was reduced to a simple regression model with DOMI as the only factor, and data per 

animal p.i. were pooled. The estimated regression equation was as follows: 

NR= -0.450 (± 0.038) + 0.0167 (+ 0.0015) x DOMI; [5] 

(n= 29; r2= 0.86; NR and DOMI in g-kg"073^1; sem between brackets). 

Figure 4 shows serum concentrations of urea. Throughout the infection period, urea 

concentration was higher in the lucerne fed animals (P< 0.001), except in week 0. In 

week 3 and 4 p.i. interaction between diet and infection was observed (a reduction of 

urea concentration in the IL group but not in the IG group (P< 0.05). Figure 5 shows 

serum concentrations of creatinine. Creatinine concentration was higher in grass straw 

fed animals throughout the infection (P < 0.01 ); infection decreased creatinine concentra­

tion from week 2 p.i. onwards (P< 0.05). 
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Figure 2. The relation between N retention (NR) and N intake (NI) after infection with Trypanosoma vivax 
of goats, fed different diets in four subsequent N balance trials: a. wk 1 a./.; b. wk 2 p./.; C. wk A p.i.; 
d . wk 6 p.i. • represents infected animals fed lucerne, O control animals fed lucerne, * infected 
animals fed grass straw, and A control animals fed grass straw. 

a. b. 

• 

d. 

0 S 1 0 1 S 2 0 W 3 0 U 4 0 4 6 0 5 10 I I M U M M 

DOW, g-kg*7»»*1 

Urinary excretion of urea and creatinine was increased in lucerne fed animals 

throughout the experiment (P< 0 .001 ; Table 4). In week 2 p.i. infection slightly 

increased urea and creatinine excretion (P< 0.05). In week 4 and 6 p.i. urea excretion 

was decreased in infected, compared w i th control lucerne animals (P< 0.001). 
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Figure 3. The relation between N retention (NR) and digestible organic matter intake (DOMI) after 

infection wi th Trypanosoma vivax of goats, fed different diets in four subsequent N balance trials: a . 

wk 1 a./.; b . wk 2 p.i.; C. wk 4 p.i.; d . wk 6 p.i. • represents infected animals fed lucerne, O control 

animals fed lucerne, A infected animals fed grass straw, and A control animals fed grass straw. 
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Discussion 

Feed intake and body weight change 

Average OMI p.i. was reduced in both infection groups, compared with control groups 

(Figure 1). This may be caused by cytokines, like Tumour Necrosis Factor (TNF) and 

interleukin-1, which are produced by activated mononuclear cells during infection 

(Sileghem et al., 1994; Van Miert, 1995), and often play a role in the induction of 

anorexia (Van Miert et al., 1992, Plata-Salaman et al., 1988). 
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Table 4. Urinary excretion of urea and creatinine (in g-d'1), after infection wi th Trypanosoma 

vivax of goats, fed different diets; least square means of the four subsequent balance trials. 

LS means of treatments' P-values2 

1.73 
0.054 

1.85 
0.050 

2.05 
0.057 

1.83 

0.044 

0.24 
0.021 

0.58 

0.033 

0.72 
0.032 

0.52 

0.020 

0.24 

0.031 

0.26 

0.029 

0.26 
0.025 

0.22 

0.026 

0.24 
0.009 

0.21 

0.010 

0.36 
0.012 

0.21 

0.012 

ns 
ns 

* 
* 

ns 

ns 

ns 

ns 

ns 
ns 

ns 

ns 

* * 
* 

* * 
ns 

Variable IL CL IG CG rmse3 diet inf int 

N balance trial 1 (week 1 a.i.) 
urea 1.57 

creatinine 0.050 

N balance trial 2 (week 2 p.i.) 
urea 1.88 

creatinine 0.068 
N balance trial 3 (week 4 p.i.) 

urea 1.33 

creatinine 0.045 

N balance trial 4 (week 6 p.i.) 
urea 1.44 

creatinine 0.036 

': I L - Infected animals fed Lucerne, C L - Control animals fed Lucerne, I G - Infected animals 
fed Grass straw, C G - Control animals fed Grass straw; 
2: Significance of treatments; inf: infection, int: interaction; n s - not significant; * - P < 0.05; 
* * - P < 0 .01; * * * - P < 0.001; 

3: Root mean square error ( sem- rmseA/n). 

DOMI was affected both by infection and diet type. The percentage decrease of 

DOMI due to infection, however, was not different for lucerne and grass straw fed 

animals, i.e., no significant statistical interaction between infection and feed quality was 

observed with respect to DOMI. 

The offered diets were homogenized, and the animals were not able to select for the 

better parts of the diet. This was concluded from the fact that composition of the offered 

and residual feed was not significantly different from each other. Under farm conditions, 

however, it may well be possible that West African Dwarf goats, being good browsers, 

select the better parts of their diet, thus improving the nutritive value of the ingested feed 

(Bosman et a/., 1995). Kyriazakis et al. (1994) demonstrated that growing sheep, suffering 

from an intestinal nematode infection, compensated for reduced feed intake due to 

infection, by showing a higher preference for feed with a high N content, compared with 

healthy controls, when offered free choice between diets with low and high N content. 

Infection decreased body weight gain. The grass straw diet resulted in lower body 

weight gain, compared with lucerne fed animals. No statistical interaction between 

infection and diet was detected. This corresponds with results from Blackburn et al. 

(1991), who observed no significant interaction between the effect of two planes of 

dietary energy and the effect of 3 levels of Haemonchus contortus infection on weight 

gain of goats. In their study, however, a tendency for a larger reduction of liveweight 
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gain of infected animals, compared with controls, was observed at the low feeding plane. 

Katunguka-Rwakishaya et al. (1993) concluded that T. congolense infection had a more 

negative impact on body weight gain in sheep fed low protein diet, compared with 

sheep fed a high protein diet. Also Fagbemi et a/. (1990) found evidence for an 

interaction between the effect of 3 planes of nutrition and the effect of Trypanosoma 

brucei infection on liveweight gain in growing pigs, although they found the largest 

reduction due to infection at a medium plane of nutrition, as compared with low and 

high plane. 

Figure 4. Serum concentration of urea after infection with Trypanosoma vivax of goats, fed different diets. 
The line — • — represents infected animals fed lucerne, —O— control animals fed lucerne, —*— 
infected animals fed grass straw, and —a— control animals fed grass straw; error bars indicate sem. 

O 
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£ 
CD 
O 

Day after infection 

N Metabolism 

The digestibility of OM and N was not affected by infection. Post mortem examination 

of intestines and kidneys revealed no lesions (Van Dam et al., submitted), so it is unlikely 

that protein leakage to faeces and urine has occurred. Still, from Figure 2C, it can be 

derived that some animals showed a very low N retention at a relatively low NI level in 

week 4 p.i. These were severely diseased animals; the animals to which the three most 

extreme NR values belonged, succumbed to the infection in week 5 p.i. This moribund 

state in week 4 p.i. may have led to increased protein catabolism, because it was shown 
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at autopsy that the fat deposits of these animals were depleted (Van Dam et al., 

submitted). 

Figure 5. Serum concentration of creatinine after infection with Trypanosoma vivax of goats, fed different 
diets. The line — • — represents infected animals fed lucerne, — O — control animals fed lucerne, — A — 
infected animals fed grass straw, and — A — control animals fed grass straw; error bars indicate sem. 

O 
E 
a, 

CB 

Day after Infection 

The results on N excretion and N retention were affected by intake level of individual 

animals (Table 3). Because mean DOMI in infected and control groups was different, this 

complicated the comparison of mean NR among groups. Therefore, NR was related to 

the intake variables DOMI and NI by linear regression, to quantify the effect of infection 

on NR, independent of intake level. Digestible organic matter intake was considered as 

the best intake variable to be related to NR, because it had been demonstrated by 

Oosting et al. (1995) and Ketelaars and Tolkamp (1991) that the relation between NR 

and DOMI is not affected by type of roughage diet or by diet metabolizability in small 

ruminants, fed ad libitum diets. The diets that were used in their study included wheat 

straw, grass straw and pelleted lucerne. Oosting et al. (1995) postulated that the 

mechanism behind the constant relation between NR and DOMI is, that voluntary intake 

in ruminants is established at a level at which net protein (represented by NR) and net 

energy (represented by DOMI), available to the tissues, are balanced, irrespective of diet 

type. Although DOMI does not provide a direct estimate of net energy, the conversion 

of DOMI into net energy is thought fairly constant for a wide range of diet types and diet 
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metabolizabilities, in ad libitum fed ruminants (Tolkamp and Ketelaars, 1994). However, 

it cannot be excluded that during fever, the relation between DOMI and net energy is 

changed; Verstegen et al. (1991) reported increased ME maintenance requirements due 

to fever. 

In our experiment no effect of infection or diet type was observed on the relationship 

between NR and DOMI. The slope of the overall equation of 0.0167 (± 0.0015) g-kg 
075-d'1 is not different from 0.0144 (+ 0.0014) g-kg°75-d"1, estimated by Ketelaars and 

Tolkamp (1991) for WAD goats, neither from 0.0154 (+ 0.0026) g-kg"075^'1, reported 

by Oosting et al. (1995). Elliott and Topps (1964) reported a similar coefficient for sheep, 

i.e., 0.0146 (± 0.0008) g-kg"075^"1; data from their study were converted from total 

digestible nutrient (TDN) system to DOMI, by accepting that 1 g TDN contains 0.95 g 

of DOMI. The range of DOMI values of the different treatments, however, only partly 

overlapped each other, which complicated comparison among treatments. 

The intercepts of regression equations, i.e., NR at DOMI= 0, for either infected or 

control animals, were not different. The intercept of the overall equation [5] of -0.450 

(± 0.038) g-kg"075^"1 was identical to Oosting et al. (1995) but lower than in the study 

of Ketelaars and Tolkamp (1991), who reported -0.378 (± 0.045) g-kg-°75-d\ Elliott and 

Topps (1964) presented data for sheep, from which an even higher intercept of -0.292 

(± 0.030) g-kg"°75-d"' could be derived. 

DOMI maintenance requirements were derived from equation [5] at NR= 0; this 

averaged 26.9 g-kg"075^"1, which is identical to estimates of Ketelaars and Tolkamp 

(1991) with 26.3 g-kg^-d'1 DOMI, and NRC (1981) with 26.8 g-kg"075^"1 DOMI, but 

somewhat higher than estimates of 24.3 g-kg"°75,d"' DOMI by Zemmelink et al. (1991). 

In conclusion, we found no evidence for a changed relation between NR and DOMI, 

due to infection or to diet quality. This confirms the observations of Akinbamijo et al. 

(1992). A few moribund animals showed very high protein catabolism (Figure 3C); the 

pooled regression equations for infected animals fed either grass straw or pelleted 

lucerne, however, were not altered significantly by these few observations. 

The relation between NR and NI was different for lucerne and grass straw animals. 

This is probably caused by different N concentration in the two diets. For lucerne fed 

animals a segmented model with two linear regressions had a higher r2 than one linear 

regression estimate. It is not clear, whether the relation between NR and NI was changed 

due to different efficiencies below and above maintenance level, or that the steeper line 

below maintenance was caused by infection, as most infected animals had a low NI. 

Lobley (1992) also reports a biphasic réponse of alterations in protein dynamics observed 

between fasted and ad libitum intake conditions for healthy ruminants. 

Findings on daily urea excretion (Table 4) in the urine showed the same picture as 

urinary N from Kjeldahl analysis (Table 3). Urinary urea and creatinine excretion were 
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in line with serum urea and creatinine concentrations. This is an indication that kidney 

function was intact, which was also confirmed at autopsy (Van Dam et al., submitted). 

The feeding of lucerne diet resulted in a higher urea concentration in blood and a higher 

excretion in urine, compared with grass straw diet. This agrees with findings of Cheema 

et al. (1991), who observed increased serum urea concentration in lambs, after protein 

supplementation of the diet. The effect of infection was relatively small in this 

experiment, compared with the effect of diet type. Nevertheless, urea levels were 

increased in both serum and urine in infected animals in wk 1 p.i. only. This may either 

have been caused by a short-lived increase of protein catabolism due to infection, or by 

a passing glomerulonephritis (Van den Ingh et al., 1976). Variation in creatinine 

excretion indicates differences in muscle mass of the animal and may therefore give 

information about possible muscle breakdown (Kaneko, 1989). The decrease of serum 

creatinine concentration in infected animals may support this; however, the difference 

in creatinine concentration between lucerne fed animals and grass straw fed animals, 

which was already present before infection, must have been caused by dietary factors. 

Conclusions 

The results obtained from this study provide little evidence for the suggestion that an 

interaction exists between trypanosome infection and feed quality, with respect to feed 

intake, body weight change and N metabolism, during the acute phase of infection. 

Intake, expressed as DOMI, was reduced by infection with the same percentage in both 

diets, whereas the relation between N retention and DOMI was not significantly different 

between treatments and not different from literature. This implies that improving feed 

quality under practical conditions may offset (part of) the negative effect of infection on 

productivity. 
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Abstract-

Effects of trypanosome infection and fibrous feed quality on the metabolism of trypanotolerant 

West African Dwarf goats were measured. Goats were allotted to either a diet of lucerne pellets 

(n= 14) or a diet of chopped grass straw (n= 15); 5 animals per feed group served as controls 

and the other animals were infected with Trypanosoma vivax parasites. Before and after infection, 

blood samples were taken weekly, and analyzed for packed cell volume and parasitaemia, and 

for serum metabolites and hormones concentrations. Six weeks after infection post mortem 

analysis was carried out to study pathology of disease. Infected animals showed reduced feed 

intake, increased plasma non-esterified fatty acids concentration, and decreased serum insulin 

concentration. Liver triacylglycerol concentration was increased in all grass straw fed animals, 

and some infected goats fed lucerne diet. Infection drastically reduced serum concentration of 

thyroxine and triiodothyronine. Infection caused an increased weight of the liver and prescapular 

lymph nodes in animals from both diet treatments, but lymph nodes were more enlarged in 

infected animals fed lucerne. Pathological findings were typical for T. vivax infection in goats, 

irrespective of diet quality. Packed cell volume was reduced by infection in both feed groups to 

values below 20 per cent point. Serum p-globulin concentration was increased in infected 

animals, but more in those fed lucerne than in those fed grass straw. It was concluded, that by 

feeding a better quality diet, nutritional status of infected West African Dwarf goats was 

improved. This was reflected in the serum concentrations of some metabolites and hormones. 

However, in general no indications for an interaction between infection and fibrous feed type 

with respect to nutritional status were found. Feed quality did not change the nature and severity 

of pathological variables, measured at autopsy after 6 weeks of infection. 

93 
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Introduction 

Trypanosoma vivax causes nagana disease in livestock. The disease causes anorexia, 

anaemia and cachexia, and eventually death (Stephen, 1986). In sub-Saharan Africa, 

several local breeds of cattle, goats and sheep show a milder course of infection; this is 

called trypanotolerance (ILCA, 1979). Also the West African Dwarf (WAD) goat breed 

can be considered as trypanotolerant (Osaer et a/., 1994). This tolerance, however, is not 

absolute; the outcome of disease is a delicate balance between immune response and 

parasite performance. External factors like body condition and nutrition may affect the 

course of infection too (Ferguson, 1988). Literature on the extent of interaction between 

external factors and the course of infection, however, is scarce. 

Feed quality, one of these external factors, is highly variable in tropical regions. The 

WAD goat is often not able to maintain itself on poor quality tropical grasses (Ademosun 

et al., 1988). In the present experiment it was studied whether, and if so, how fibrous 

feed quality affects the course of T. vivax infection in WAD goats. Therefore, the 

variables feed intake, serum metabolites and hormones (which signify trends in energy 

metabolism) packed cell volume and other pathological variables have been monitored 

during the first 6 weeks of an induced infection with Trypanosoma vivax in WAD goats, 

fed either a high or a poor quality fibrous feed. 

Material and methods 

Material and methods are described in more detail by Van Dam et al. (submitted). 

Animals, feeding and housing 

Twenty-nine castrated male adult WAD goats with an average body weight of 23 (± 

0.78) kg and an average age of 12 (± 0.03) months were used. Before the experiment 

they received an anthelmintic treatment and were vaccinated for ecthyma. Two different 

feeds were used viz. pelleted lucerne and chopped grass straw. Lucerne contained 27.5 

g N-kg"1 dry matter, whereas grass straw contained 10.9 g N-kg' dry matter. The 

animals had ad libitum access to experimental diets during both the adaptation and the 

experimental period. Salt lick and water were freely available. 

Infection 

The way that animals were infected is decribed elsewhere (Van Dam et al., submitted). 

Fly density in the stable was kept low by applying UV lamps and insecticide, in order 

to prevent cases of mechanical transmission of trypanosomiasis. 
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Experimental design 

Animals were allocated to either trypanosome Infection, fed Lucerne (IL; n = 9), Control, 

fed Lucerne (CL; n= 5), Infection, fed Grass straw (IG; n= 10) and Control, fed Grass 

straw (CG; n= 5) treatment. Animals from the IL and IG group were infected at day 0 

and were followed for 6 weeks, after which they were euthanized by administration of 

T61 (Hoechst Veterinär GmbH, München, BRD) in the jugular vein. 

Sample procedures and sample preparation 

Daily dry matter intake (DMI) was measured by daily offering ad libitum feed to animals 

and collecting refusals after 24 h. Dry matter (DM) content of offered and refused feed 

was measured from weekly samples per animal, as described by Van Dam et al. 

(submitted), and DMI was calculated as the difference between daily offered DM and 

refused DM. 

Rectal temperature was measured every morning, just before feeding. Blood samples 

were taken weekly from 2 weeks ante infectio (a./.) until 6 weeks post infectio (p.i.). 

Blood was collected from the jugular vein in evacuated tubes (Venoject vacuum tubes, 

Terumo, Leuven, Belgium). Blood samples, with the addition of heparin, were processed 

for analysis of packed cell volume (PCV) and parasitaemia. The PCV was assessed by 

means of spinning heparinized capillaries containing heparinized blood, for 3' in a 

micro-hematocrit centrifuge. Parasitaemia was measured by determination of the white 

blood cell count, and establishment of the WBC/ trypanosome ratio in a thick smear 

stained with Giemsa. 

Furthermore, a number of clinical biochemical variables in the blood was quantified. 

In blood, collected with NaF/ K-oxalate coated tubes, plasma glucose concentration was 

measured (Boehringer Mannheim GmbH Diagnostica, Mannheim, Germany). In blood, 

collected with Li-heparin/paraoxon coated tubes, plasma non-esterified fatty acids (NEFA) 

concentration was measured (NEFA C, Instruchemie B.V., Hilversum, The Netherlands). 

Furthermore serum samples were analyzed for ^-hydroxy butyrate (BHB) concentration 

(Boehringer Diagnostica). Serum total protein (TP) concentration, and protein spectrum 

were measured, according to the method, described by Wensing et al. (1989), and from 

this the concentrations of albumin and /-globulin were calculated. Serum insulin 

concentration was measured using a radio immuno assay kit (Coat-a-Count Insulin, 

Diagnostic Products Corporation, Los Angeles, CA, USA). The serum concentration of 

thyroxine (T4) and triiodothyronine (T3) was measured using homologous RIA technique. 

Immediately after euthanization, a fresh liver sample was harvested and deep frozen 

in liquid nitrogen. From these samples, triacylglycerol (TAG) was measured using a 

commercial kit (Kit No. 405, Sigma Chemical Co., St. Louis, MO, USA). Liver glycogen 

was measured, as described by Van den Top et al. (1995). Gross and microscopic post 
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mortem examination was done. Additionally the post mortem weight of liver, thyroid 

gland, adrenals and prescapular lymph node were measured. 

Statistical model 

Preliminary analysis showed that, for either pre-infection or post-infection period, no time 

effect in the repeated measurements of plasma glucose and NEFA and serum BHB was 

present. Therefore these data were pooled per animal, for either pre- or post-infection 

period, and were subjected to statistical analysis. For the variables DMI, PCV, 

parasitaemia, TP, albumin, p-globulin, insulin, T3 and T4, which had been weekly 

measured in each animal, an effect with time after infection was detected. These data 

were therefore analyzed per measuring week. Data on hepatic TAG and glycogen, and 

post mortem weights of liver, adrenals, thyroids and prescapular lymph nodes were only 

measured once. 

The following statistical model was used to test effects of treatments (General Linear 

Models procedure, SAS, 1990): 

Y i j k=/y + O-, + lj + (Dxl)y + eijk [1] 

where: Y i jk= dependent variable; JJ= overall mean; Dj= effect of Diet ( i= 1,2); l,= effect 

of Infection (j = 1,2); (D x l)y = effect of interaction between Diet and Infection; eijk = error 

term. Least square (LS) means were calculated and differences between treatments were 

tested using the F-test. Correlations were calculated between different variables, using 

individual data that were pooled over the post-infection period. 

Results 

General course of infection 

After day 4 p.i. all infected animals showed intermittent fever with temperature peaks 

reaching over 42°C. The mean rectal temperature from day 5 p.i. onwards was 39.9 ( + 

0.07)°C, 38.6 (+ 0.08)°C, 39.6 (+ 0.06)°C and 37.9 (± 0.08)°C in IL, CL, IG and CG 

animals, respectively. The group means were all significantly different from each other 

(at least P< 0.05). 

One week after infection, parasites were detected in the blood of all infected animals. 

In each infection group two animals died before the end of the experiment or were 

euthanized when moribund. The two animals belonging to the IL group died on days 32 

and 33, whereas the two animals from the IG group died on days 30 and 40. 
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Dry matter intake, metabolites and hormones 

Dry matter intake was decreased in infected animals throughout the infection period (P< 

0.001; Figure 1). Grass straw DMI was lower than lucerne DMI (P< 0.05). No statistical 

interaction between infection and feed quality was detected (P> 0.10). 

Because no effect of week number p.i. on glucose, BHB and NEFA was observed, 

repeated measurements, either before or after infection were pooled per animal, and 

least squares means per treatment were calculated (Table 1). Results per animal p.i. were 

pooled, and LS means per treatment were estimated. Glucose concentration was not 

affected by diet or infection. Before infection BHB concentration was slightly lower and 

NEFA concentration slightly higher (P< 0.05) in groups, which were selected for 

infection. Lucerne diet decreased (P< 0.05) and infection increased (P< 0.001) NEFA 

concentration during the infection period. 

Figure 1. Daily dry matter intake (DMI) during infection with Trypanosoma vivax and two experimental 
diets. The line — • — represents infected animals fed lucerne, —O— control animals fed lucerne, — A — 
infected animals fed grass straw, and — A — control animals fed grass straw. 
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Table 1. Serum glucose, beta-hydroxy butyrate (BHB) and non-esterified fatty acids (NEFA) 
concentrations (all in mmol-L''), during infection with Trypanosoma vivax and two different diets; least 
square means of pre-infection and post-infection period. 

No. of animals 

glucose 
BHB 

NEFA 

No. of animals 

glucose 

BHB 

NEFA 

LS Means of treatments' 

IL 

9 

3.36 
0.141 

0.145 

9 
3.12 

0.318 
0.267 

CL 

5 
3.34 
0.157 

0.115 

5 
3.25 

0.170 
0.108 

IG CC 

- Pre-lnfection Per 

10 

3.13 
0.115 
0.177 

10 

3.06 
0.171 

0.366 

5 

3.09 
0.133 
0.158 

period4 

5 
3.05 

0.113 
0.192 

rmse3 

od4 

0.46 
0.041 

0.066 

0.66 

0.478 
0.211 

P-va 

diet 

ns 
ns 

ns 

ns 

ns 

* 

ues2 

inf 

ns 

* 
* 

ns 

ns 

* * * 

int 

ns 
ns 

ns 

ns 

ns 
ns 

': IL= Infected animals fed Lucerne, CL= Control animals fed Lucerne, I C - Infected animals fed Grass 
straw, C G - Control animals fed Grass straw; 
2: Significance of treatments; inf- infection, in t- interaction; ns- not significant; * - P< 0.05; * ** -
P< 0.001; 
3: Root mean square error (sem- rmseA/n); 
*: pooled per animal. 

Serum concentrations of total T3 and T4 are presented in Figure 2. Infection reduced 

both serum T3 and T4 concentration (P< 0.001). From wk 1 p.i. statistical interaction 

between diet and infection was observed with respect to serum T4 concentration, 

whereas in wk 3, 5 and 6 p.i. this was also noted for serum T3 concentration (P< 0.05). 

Serum insulin concentration was lowest in the IG group throughout infection and was 

highest in the CL group (Figure 3). No explanation is available that could account for the 

sudden depression of control group insulin levels in wk 4. During the entire experimen­

tal period animals from the lucerne diet treatment had a higher insulin concentration 

than animals from the grass straw treatment (P< 0.01). T. vivax infection led to a 

reduction of serum insulin concentration, except in week 4 p.i. 

In Table 2 the hepatic TAG and glycogen concentrations are presented. Animals fed 

grass straw had a higher TAG content than animals fed lucerne (P< 0.001). No effect 

of treatments on the hepatic glycogen content was observed. 

Packed cell volume and serum proteins 

The PCV of infected animals (Figure 4) initially showed a sharp decrease in the first 

weeks of infection but stabilized after wk 3 p.i. at a much lower level than the control 

groups (P< 0.001). The CG group showed a lower PCV than the CL group from wk 1 
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p.i. onwards (P< 0.001); also significant interaction between diet and infection was 

observed after week 1 p.i. (P< 0.01). 

Figure 2. Serum concentration of a. Triiodothyronine and b. Thyroxine during infection with Trypano­
soma vivax and two experimental diets. The line — • — represents infected animals fed lucerne, — O — 
control animals fed lucerne, —*— infected animals fed grass straw, and — A — control animals fed grass 
straw; error bars indicate sem. 
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Serum TP concentration increased in infected animals during the course of infection 

(P< 0.001). Average concentrations at six weeks p.i. were 98 (+ 3.1), 71 (+ 3.6), 77 

(± 2.7) and 67 (± 3.6) g-L"' TP in IL, CL, IG and CG group respectively. The serum y-

globulin concentration increased in infected animals during the course of infection (P< 

0.001; Figure 5). From week 4 p.i. onwards, IL animals had a higher /-globulin 
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concentration than IG animals (P< 0.05). Statistical interaction between the effect of 

infection and the effect of diet on p-globulin was observed from week 4 p.i. onwards (at 

least P< 0.05). 

Table 2. Post mortem hepatic concentrations of triacylglycerol (TAG) and glycogen (both in g-kg"1 l iver), 

6 weeks after infection wi th Trypanosoma vivax and two different diets; least square means per treatment. 

No. of animals 

TAG 
Glycogen 

LS Means of treatments' 

IL 

6 
29 

26 

CL 

5 
24 

22 

IG 

8 
62 

18 

CG 

5 
70 

28 

rmse3 

25 

10 

P-

diet 

* ** 
ns 

va ues2 

inf 

ns 

ns 

int 

ns 

ns 

': I L - Infected animals fed Lucerne, C L - Control animals fed Lucerne, I G - Infected animals fed Grass 
straw, C G = Control animals fed Grass straw; 
2: Significance of treatments; inf: infection, int: interaction; n s - not significant; * * * - P < 0 .001; 
3: Root mean square error ( sem- rmseA/n). 

Figure 3. Serum concentration of insulin during infection wi th Trypanosoma vivax and two experimental 

diets. The line — • — represents infected animals fed lucerne, — O — control animals fed lucerne, — » — 

infected animals fed grass straw, and — A — control animals fed grass straw; error bars indicate sem. 
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Figure 4. Packed Cell Volume during infection with Trypanosoma vivax and two experimental diets. The 
line — • — represents infected animals fed lucerne, —O— control animals fed lucerne, — A — infected 
animals fed grass straw, and —A— control animals fed grass straw; error bars indicate sem. 
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Table 3. Weights of liver, thyroid gland, adrenals and prescapular lymph node (all in g), 6 weeks after 
infection with Trypanosoma vivax and two different diets; least square means per treatment. 

No. of animals 
liver 

liver-kg-075 

lymph node 

thyroid gland 
adrenals 

LS 

IL 

9 
604 

61 

14.6 
2.1 
2.1 

means of treatments1 

CL 

3 

436 
40 

4.0 

1.8 
1.7 

IG 

10 

488 

57 
7.3 

1.5 
2.2 

CG 

3 
291 

29 
3.3 

1.4 
1.4 

rmse3 

110 

8 

5.0 
0.5 
0.4 

P-

diet 

* 
ns 
ns 

* 
ns 

values2 

inf 

** 
* * * 
* * 
ns 

* * 

int 

ns 

ns 
ns 

ns 
ns 

': I L - Infected animals fed Lucerne, CL- Control animals fed Lucerne, IG= Infected animals fed Grass 
straw, CG= Control animals fed Grass straw; 
2: Significance of treatments; inf: infection, int: interaction; ns- not significant; * - P< 0.05; ** - P< 
0.01; * * * - P< 0.001; 
': Root mean square error (sem- rmseAAi). 

Serum albumin concentration decreased in the course of infection, in infected 

animals. Thus average albumin concentration was lower in infected animals than in 

control animals from week 2 p.i. onwards (P< 0.05). At 6 weeks p.i., albumin 

concentration was 25 (± 0.8), 38 (± 1.0), 27 (+ 0.7) and 37 (± 1.0) g-L"1 in the IL, CL, 

IG and CG group, respectively. 
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Figure 5. Serum concentration of ^-globulins during infection with Trypanosoma v/vax and two 
experimental diets. The line — • — represents infected animals fed lucerne, — O — control animals fed 
lucerne, — A — infected animals fed grass straw, and — A — control animals fed grass straw; error bars 
indicate sem. 
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Post mortem examination 

Parasitaemia level and relative decrease of PCV were not correlated, neither were 

parasitaemia level and DMI. 

Gross and microscopic examination was carried out on all infected and six control 

animals. PM autopsy revealed in infected animals a typical picture of subacute to chronic 

7. vivax infection with marked hyperplasia of lymphoid tissues; often a mononuclear 

myocarditis (11 cases out of 19), associated with the presence of extravascular 

trypanosomes, was observed. In one animal a mononuclear meningo-encephalitis was 

detected, also associated with extravascular trypanosomes. Most infected animals showed 

a non-specific reactive hepatitis. 

Fatty livers were encountered in all infected and non-infected grass straw animals and 

some goats from the IL group with a low DMI. The animals that died during the trial, 

virtually had no fat deposits left. No indications were found for specific mineral or 

vitamin deficiencies from gross or microscopic examination. No intestinal or renal 

lesions, that could be attributed to trypanosomiasis, were detected. In 5 animals, 

however, two of which were in the control groups, minor intestinal lesions were 

detected, which were probably caused by paratuberculosis. 
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The PM weight of some organs and tissues is shown in Table 3. The liver weight 

per kg075 was increased in infected animals (P< 0.001). The total liver weight showed 

the same effect of infection (P< 0.01). Animals fed lucerne showed an increased total 

liver weight compared with animals fed grass straw (P< 0.05). The right prescapular 

lymph node, and the adrenals were enlarged in infected animals (P< 0.01). The thyroid 

gland was enlarged in animals fed lucerne (P< 0.05). 

Discussion 

General course of infection 

Infection followed a severe course, with > 20 % of the infected animals dying within 

6 weeks. The severity and pattern of the fever were typical for T. vivax infection in WAD 

goats (Zwart et al., 1991, Van den Ingh et al., 1976). Rectal temperature was slightly 

lower in IG animals, compared with IL animals. The difference in rectal temperature 

between control animals fed either lucerne or grass straw was remarkable. Possibly CG 

animals had a lower morning rectal temperature, because of a lower feed intake than CL 

animals (Akinbamijo et al., 1996). 

Dry matter intake, metabolites and hormones 

Dry matter intake in both fibrous feed groups was reduced by infection (Figure 1). This 

led to body weight loss implying a negative energy balance and lypolysis (Van Dam et 

a/., submitted). As a consequence the concentrations of circulating NEFA and BHB 

increased at low DMI levels as expected (Payne, 1989; Van den Top et al., 1995). 

Increased plasma NEFA concentration coincided with a higher hepatic TAG concentra­

tion in IG animals, but not in IL animals (Table 2). Van den Top et al. (1995) postulated 

that hepatic TAG accumulation is correlated with high plasma NEFA concentration. 

However, in the present trial animals from the CG treatment had a higher hepatic TAG 

concentration but a lower plasma NEFA concentration than the IL treatment. Possibly, 

besides hepatic NEFA uptake, TAG accumulation is also dependent on diet quality. 

Serum glucose and BHB concentrations were not changed by treatments. Apparently 

serum NEFA is a more sensitive indicator of nutritional status of the animal than serum 

glucose or BHB under the present experimental design. Van den Top et al. (1995), 

however, concluded that serum glucose, NEFA and BHB were all good indicators of a 

negative energy balance in peri partum goats, glucose being decreased and NEFA and 

BHB being increased. Our findings on serum BHB were highly variable in underfed 

animals; especially some moribund animals showed extremely high values in the 

terminal phase. However, due to large variation among infected animals, group means 
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of BHB were not significantly affected by treatments. Wolkers (1993) observed hardly 

any increase of NEFA and BHB in underfed red deer, and postulated that ketogenesis 

does not play the same role in the different ruminant species. In the present experiment 

no effects of treatments on liver glycogen were observed. This agrees with findings of 

Van den Top et al., (1995) who observed no effect of undernutrition on liver glycogen 

level in goats around parturition. 

Insulin concentrations showed large variation both between and within treatments 

(Figure 3). Significant effects of both diet and infection were observed in most post­

infection weeks. In general animals fed lucerne had higher serum insulin concentrations 

than animals fed grass straw. Infection was found to reduce serum insulin concentration. 

The changes in insulin were found to correspond with the observed trends in DMI and 

plasma NEFA concentration in these treatment groups. Plasma glucose concentration is 

positively related to insulin level, and is the most important factor that controls insulin 

release (Hardy, 1981). However, only small differences in glucose concentration were 

observed between treatments, in spite of a lower DMI in infected animals (Table 1; 

Figure 1). This may be explained by an increased gluconeogenesis in underfed animals. 

T3 and T4 levels were severely depressed in infected animals (Figure 2). Mutayoba 

and Gombe (1989) postulated that thyroid gland function is impaired during trypanoso-

me infection, which may explain the serum T3/T4 reduction in our trial. Reincke et al. 

(1993) also found indications for impaired thyroid function; he observed increased TSH 

levels but reduced T3 and T4 levels in infected human subjects. Microscopic examina­

tion of thyroids in our experiment, however, revealed moderate activity of follicular 

epithelium, which means that T3/T4 production was not impaired. Another possible 

explanation for decreased T3/T4 during infection was given by Beisel (1985), who 

described an increase in the rates of thyroid hormone uptake and degradation by 

peripheral tissues and blood neutrophils during infection, as well as an increased 

clearance rate by the liver. Enomoto et al. (1990) showed that mouse serum T4 levels 

were reduced after administration of the cytokine interleukin 1-a (IL-1-cr), which is also 

produced during trypanosome infection, and the thyroid rendered unresponsive to 

thyroid stimulating hormone (TSH). The same clinical signs were observed in an infection 

trial by Reincke et al. (1993), which was accompanied by an increase of Tumor Necrosis 

Factor-a (TNF-a). Sweep et al. (1992) concluded that chronic infusion of a subanorectic 

dose of TNF-a in rats caused a reduction of serum T3 and T4 concentration. In their 

experiment, thyroid function, responsiveness to TSH and peripheral thyroid hormone 

metabolism, however, were not affected by TNF-a. They postulated that the blood levels 

of T4 Binding PreAlbumin (TBPA) were reduced by TNF-a, which limited the binding 

capacity in the blood, thus leading to lower serum T3/T4 concentrations. This may also 
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have been the case in the present experiment. It is not clear, if at cellular level T3 

availability was changed. 

Concluding, serum metabolites and hormones reflected the nutritional status of 

individual goats. Because infection led to a reduced DMI, also metabolites and hormones 

concentrations were altered. Probably the sharp reduction of serum concentrations of T3 

and T4 were a direct effect of trypanosome infection. 

Packed cell volume and serum proteins 

The decrease of the PCV in both infection groups (Figure 4) to values below 20 % was 

larger than in previous studies with 7. vivax Y486 in dwarf goats (Verstegen et al., 1991 ; 

Akinbamijo et al., 1992) but corresponded with studies on T. congolense infection in 

WAD goats of Adah et al. (1993) and Osaer et al. (1994). However, the N'Dama, an 

extensively studied cattle breed, is able to minimize PCV reduction after infection (Trail 

et al., 1991). Probably WAD goats are not as tolerant as N'Dama cattle. 

Lucas et al. (1993) suggested an important role for TNF in the induction of anaemia 

during trypanosomiasis, by hyperactivation of macrophages and a subsequent increase 

of erythrophagocytosis, which may have been the case in the present experiment. TNF-or, 

as well as other cytokines like Interferon-/ (IFN-p) and IL-1, may also play a role in 

parasite control and immunosuppression (Lucas et al., 1993). Lomo et al. (1995) 

observed that anaemia due to 7. congolense infection in rabbits was related to the 

decrease of serum T3 and T4 concentration; treatment of infected animals with 

replacement doses of L-thyroxine reduced parasitaemia levels and partly prevented the 

occurrence of anaemia. The mechanism behind this was not clear, however. Also in the 

present trial anaemia coincided with reduced serum T3/T4 concentration. 

In the present study no indications were found for an effect of diet quality on the 

decrease of PCV. Agyemang et al. (1990) showed that high quality supplement to the 

diet did not change the PCV response to infection. This finding corresponds with the 

view held by Murray and Dexter (1988) who stated that anaemia during trypanosomiasis 

is mainly caused by immunological mechanisms. In contradiction to this, Trail et al. 

(1991 ) reported that BW gain, which is a reflection of the amount of ingested nutrients, 

showed a positive correlation with the ability to control anaemia. However, their 

conclusions were based on a long term field study in which chronic, instead of acute 

infections were often encountered. 

The difference in PCV between CC and CL group was remarkable, approximately 10 

% points during the whole experiment. This may be explained by the low protein intake 

of the CG group, which averaged 3.68 (+ 0.48) g-kg"°75-d\ The NRC (1981) mentions 

maintenance requirements of 4.15 g-kg"075^'1. 
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Serum TP level was increased by infection. This agreed with results from a study of 

Akinbamijo et al. (1992) with lucerne fed goats, infected with T. vivax. In an infection 

trial with T. congolense in Scottisch Blackface sheep, however, infected animals tended 

toward a lower TP level, compared with healthy sheep (Katunguka-Rwakishaya et al., 

1995). The TP concentration at wk 6 p.i. of the IG group was lower than the TP level 

of the IL group. This also may have been caused by dietary protein deficiency (Payne, 

1989). The serum concentration of f-globulins was increased in both infected groups 

(Figure 5), which explains the increased TP level, despite the slightly lower albumin 

concentration in infected animals. The decreased albumin concentration in infected goats 

was supported by results from a study of Katunguka-Rwakishaya et al. (1993); they found 

in sheep, that both J. congolense infection and a low protein diet led to a reduction of 

the serum albumin concentration. 

Post mortem examination 

The weight of the right prescapular lymph node was used as a reflection of the 

stimulation of the immune system by the T. vivax infection. It was evident that infected 

animals had larger lymph nodes (Table 3). It cannot be excluded that the detected 

difference between IL and IG results from inadequate nitrogen sources for massive 

lymphocellular proliferation in grass straw fed animals, but most other pathological 

variables were not different between the IL and the IG group. The higher p-globulines 

in lucerne fed animals apparently did not result in a more successful immune response. 

Liver weight of infected animals was higher than that of controls. This corresponds 

with findings of Anosa and Isoun (1983) and Losos and Mwambu (1979). Probably 

hepatic TAG accumulation has not accounted for most of the liver weight increase in the 

infected animals. That animals from the CG group showed increased TAG but no liver 

weight increase supports this suggestion. Therefore, the liver weight increase may be a 

direct pathological effect of trypanosome infection, resulting from the observed non­

specific reactive hepatitis. 

Fatty infiltration in the liver mainly develops in animals with large fat depots brought 

to negative energy balance (Payne, 1989). This may have occurred in grass straw 

animals, with a DMI around or below maintenance requirements for a prolonged period, 

and for some animals from the IL group with low DMI. 
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Conclusions 

Fibrous feed quality differences did not interact with the metabolic changes induced by 

trypanosome infection. Dry matter intake was reduced by the infection, and changes in 

the serum concentrations of some relevant clinical biochemical variables, which are 

typical for ruminants in a negative energy balance, were detected. The serum p-globulin 

concentration, and the weight of prescapular lymph nodes was more increased in 

infected animals fed lucerne, than in infected animals fed grass straw. In animals fed 

grass straw, hepatic triacylglyceride content was increased. Serum thyroxine and 

triiodothyronine concentrations were decreased by the infection. 

Therefore, improving the quality of the diet does not abate most of the studied 

variables during the acute phase of trypanosome infection; only the nutritional status of 

the animal is improved. 
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Abstract-

The effect of growth retardation, resulting from feed restriction for a prolonged period, on the 

course of infection with Trypanosoma vivax was studied. Therefore, 12 male castrated West 

African dwarf goats were subjected to a restricted feeding regimen of 55 g'kg"°75,d~' pelleted 

lucerne for on average 17 weeks. Twelve other animals were fed pelleted lucerne ad libitum, 

resulting in a normal growth pattern. After this period, all animals were fed pelleted lucerne ad 

libitum, and six animals of each previous feeding regimen treatment were infected with 

Trypanosoma vivax. The other animals served as controls. In week 2 and 4 p.i. energy and 

nitrogen balances were measured. In the week before infection and during infection also blood 

biochemical and clinical parameters were measured. Two weeks before, and 4 weeks after 

infection, a liver biopsy was taken for measurement of triacylglycerol. Infection caused 

intermittent fever and anaemia. The first peak of fever persisted longer in infected animals with 

normal growth than in infected animals with retarded growth. Cross energy and metabolizable 

energy intake, and energy retention were reduced in infected animals. Metabolizable energy 

requirements for maintenance were increased by infection. Results suggested that in animals with 

retarded growth, maintenance requirements were less increased by infection than in animals with 

normal growth. Plasma NEFA and glucose concentrations were increased in infected animals, 

whereas serum T3/T4 concentrations were decreased. Plasma urea concentration and liver 

triacylglycerol were not affected by treatments. No interaction of growth retardation with 

infection with respect to blood biochemical parameters was found, apart from plasma NEFA in 

week 2 p.i.. Nitrogen retention was not significantly affected by treatments. Concluding, minor 

indications were found for an interaction of growth retardation as applied in this study, with 

trypanosome infection in West African Dwarf goats, with respect to energy and nitrogen 

metabolism. 

113 
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Introduction 

Trypanosomiasis, a protozoan disease of (sub-)humid regions of Africa, causes anorexia, 

anaemia and intermittent fever in domestic animals (Van den Ingh et a/., 1976; Zwart et 

a/., 1991); energy requirements for maintenance of West African Dwarf goats are 

increased by approximately 25 % during the acute phase of the infection (Verstegen et 

al., 1991). As a consequence of what is called trypanotolerance, several local breeds of 

goats, sheep and cattle, however, are able to survive from the disease (Murray & 

Morrison, 1981). 

Malnutrition often interacts with the severity of disease (Beisel, 1985). Also the degree 

of trypanotolerance is affected by nutritional status of the host animal (Murray, 1988). In 

tropical countries malnutrition frequently occurs due to shortage of good quality 

roughage. In small ruminants malnutrition was found to be related to increased mortality 

due to trypanosome infection (Reynolds & Egwuruke, 1988). Van Dam et al. (1996a) fed 

fibrous diets with a high or a low nutritional quality for 3 months to trypanotolerant West 

African Dwarf goats. They observed no interaction between trypanosome infection and 

fibrous feed quality with respect to N retention, i.e., the negative effect of infection was 

not greater in animals, fed a poor quality diet compared with animals fed a good quality 

diet. However, in both feed groups, animals were in a good body condition at the start 

of infection, meaning that they could mobilize (part of their) body reserves during 

infection. 

In the present trial, it was therefore investigated, how dietary limitations (by offering 

maintenance feed to growing animals) for a prolonged period would affect the course of 

a subsequent infection with T. vivax with respect to energy and nitrogen metabolism. 

Material and methods 

Experimental design 

1. Feed restriction period 

At the start of the feed restriction period, pairs of goats with similar body weight were 

selected from a group of castrated West African Dwarf goats with a mean age of 3.3 ( + 

0.1) months. From each pair of animals, 1 animal was randomly allocated to restricted 

feeding, (retarded growth group, R); the other was to receive ad libitum ration (normal 

growth group, N). The initial mean body weight of the retarded growth group was 13.34 

(+ 0.72) kg, and of the normal growth group 13.24 (+ 0.45) kg. The mean duration of 

the feed restriction period was 16.5 (± 0.7) weeks. During this period, the applied feed 
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ration of restricted animals was 55 g fresh feed per kg metabolic body weight per day 

(g-kg"075^"1; approximately maintenance level). 

2. infection period 

After the feed restriction period all animals received ad libitum pelleted lucerne for a 

period of 2 weeks, preceding the moment of infection. This period of 2 weeks was 

meant for adaptation of the restricted animals to the ad libitum feeding regimen which 

would be applied for all animals during infection. Then half of the animals of both feed 

groups (n= 6) were randomly selected, to be infected with trypanosomes. Therefore, a 

2 x 2 factorial design was used, i.e., infected normal growth (IN; n= 6), infected retarded 

growth (IR, n= 6), control normal growth (CN; n= 6) and control retarded growth (CR; 

n - 6). 

The goats from the IN and IR group were infected with 1 x 106 parasites from strain 

Trypanosoma vivax Y486, isolated by Leeflang et al. (1976). Control animals were sham 

infected by intravenous injection of 2 ml_ saline. 

During the infection period all animals received ad libitum pelleted lucerne. At the 

day of infection (day 0) the mean body weight of the animals with retarded growth was 

15.60 (+ 0.84) kg, and the mean body weight of the animals with normal growth was 

21.59 (± 0.87) kg; mean body weight change over the feed restriction period was 17 

and 64 g-d_1 for animals with retarded and animals with normal growth, respectively. 

After day 28 p.i. animals were euthanized by intravenous administration of 5 mL of 

T61 (Hoechst Veterinär GmbH, München, Germany), according to animal welfare 

regulations. 

Feeding and housing 

Throughout the experiment, a diet of pelleted lucerne was offered to the animals. The 

average dry matter content of the feed was 924 g-kg"1, with 175 g crude protein and 

16.2 MJ gross energy per kg dry matter. Before infection animals were housed 

individually in balance cages for at least 3 weeks. 

The time schedule of housing and measurements is presented in Table 1. In week 1 

and 3 p.i. animals were housed in a dummy chamber to adapt the goats to housing 

conditions in the climatic respiration chamber. They were housed in one of two identical 

climatic respiration chambers (described by Verstegen et a/., 1987) in week 2 and 4 p.i. 

In each chamber two goats were housed. This was done to prevent stress due to social 

isolation (Carbonaro et al., 1992). The two animals were separated by a wired fence, in 

order to facilitate the individual measurement of feed intake. The space allowance per 

goat was 1.00 x 0.40 x 0.97 m (I x w x h) in both the dummy and respiration 

chambers. The light period was between 7.00 a.m. and 7.00 p.m. Temperature was 
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maintained at 20°C. In the respiration chambers relative humidity was maintained at 65 

%. The allocation of different treatments over the two chambers was balanced. Because 

only 4 animals were housed in the respiration chamber at the same time, animals were 

infected in groups of 4, after each other. The treatment sequence over time was 

balanced. 

Table 1. Measurements and time schedule for each pair of goats1. 

day after infection -14 -7 0 7 14 21 28 
housing indiv. pen | dum | RC j dum | RC j 
treatment B inf eut;B 
feed intake + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
rectal temperature + + + + + + + + + + + + + + + + + + + + + 
body weight + + + + + + + 
blood samples + + + + + + 
energy balance measurements j 1 | 1 

': dum.- dummy chamber; RC- respiration chamber; B- Biopsy; inf.- day of infection; 
eut.= day of euthanization. 

Measurements and calculations 

From day 0 (day of infection) onwards, rectal temperature was measured daily just before 

morning feeding to monitor fever during infection. Blood samples were collected on day 

-7, 0, 7, 14, 21 and 28 in the morning after feeding. Blood was extracted from the 

jugular vein, using Venoject vacuum tubes (Terumo, Leuven, Belgium). From heparinized 

blood, packed cell volume (PCV) was measured by means of a microhaematocrit 

centrifuge. Also from heparinized blood, parasitaemia was measured by assessment of 

the number of leucocytes per mL in a Coulter Counter, and the number of parasites 

relative to leucocytes in a thick smear stained with Giemsa, and was expressed as the 

number of parasites per mL. 

Both in the restriction period and in the infection period the body weight was 

measured every week. Daily body weight gain over the infection period (day 0 to day 

28) was calculated per animal per day and per kg075 per day. 

From day-14 (i.e., 14 days before infection) onwards, individual daily feed intake was 

measured by offering ad libitum lucerne pellets in early morning, and subsequent 

collection of feed residues the next day. Dry matter content of offered feed and feed 

residues was measured according to the ISO 5984 instructions, in composite samples, 

collected per animal per week; from this daily dry matter intake (DMI) per kg metabolic 

weight was calculated. 

Fourteen days before infection, from all animals a liver biopsy was taken (method 

described by Van den Top et al., 1995). After euthanization of the animals at 28 days 



Interaction between nutritional history and infection 11 7 

p.i., another liver sample was taken by incision of the thoracic wall. Liver samples were 

stored in saline and analyzed for triacylglycerol (TAG) with kit no. 405 (Sigma Chemical 

Co., St. Louis, MO, USA) to monitor the effects of treatments on liver fat metabolism. 

When housed in the climatic respiration chambers, the following parameters were 

measured to calculate the energy and nitrogen balance for pairs of goats for a 7-day 

period. The 0 2 consumption and C0 2 and CH4 production were measured during 

successive intervals of 9 minutes. For each interval, heat production was calculated from 

these gaseous exchanges, using the equation of Brouwer (1965). Faeces and urine, and 

the water that was used to clean the chamber, were collected and weighed at the end 

of the balance period and a representative sample was taken and analyzed for N (ISO 

5983). Gross energy was measured, using bomb calorimetry (IKA Analysentechniek 

GmbH, Heitersheim, BRD). In faeces samples also dry matter and ash content were 

analyzed (ISO 5984). The weekly amount and composition (dry matter, ash, nitrogen and 

gross energy) of offered and refused feed were measured. Gross energy (GE) was 

calculated as the amount of ingested energy in feed. Metabolizable energy (ME) was 

calculated as GE minus the energy in faeces, urine, expired CH4 and the energy trapped 

in cleaning water. Energy retention (ER) was calculated as ME minus the produced heat. 

For each observation the ME maintenance requirements (MEJ were calculated. It was 

assumed that energy above maintenance had been deposited with a partial efficiency of 

0.6, whereas energy mobilization from the tissues could be prevented by offering 1.25 

kj ME-kJ-' body energy loss (partial efficiency of 0.8; ARC, 1980). 

Nitrogen retention (NR) was calculated as the difference between N intake and N 

losses via faeces and urine, and was expressed in g-kg"075^"1. Furthermore, NR was 

corrected for N that was evaporated from faeces and urine to the air. Protein gain was 

calculated as the product of retained protein (NR x 6.25) and the energy content of 1 

g deposited protein, (23.7 kj). Fat gain was calculated, being the difference between ER 

and protein gain. NR was expressed in g-kg"°75-d"1. The ME, HP, ER, MEm, fat gain and 

protein gain were expressed in kj-kg"075-d_1. 

In the respiration chambers, for pairs of goats, physical activity was measured 

continuously using Doppler-radar activity meters (Radar MD5, Suther, Vierpool, 

Amsterdam). The visual movements of the animals housed in the respiration chambers 

were converted into counts, per interval of 9 minutes which corresponded with a HP 

measurement interval. The relation between number of activity counts and HP was 

assessed per goat pair per respiration week by linear regression. These regression 

estimates were used to calculate activity related heat production, HPact. The difference 

between HP and HPact was the HP, corrected for activity, HPcor. 

The following blood parameters which can be associated with energy metabolism 

were measured. From blood containing Li-heparin and paraoxon, plasma non esterified 
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fatty acids (NEFA) concentration was analyzed enzymatically (NEFA C, Instruchemie B.V., 

Hilversum, The Netherlands). From blood containing NaF and K-oxalate as anti­

coagulants, plasma glucose concentration was measured enzymatically (Boehringer 

Mannheim GmbH Diagnostica, Mannheim, Germany). Serum triiodothyronine (T3) and 

thyroxine (T4) were measured using a homologous radio immuno assay (RIA); serum 

insulin concentration was measured by means of RIA (Coat-a-Count Insulin, Diagnostic 

Products Corporation, Los Angeles, USA). Serum urea, being an indicator of nitrogen 

metabolism, was was measured enzymatically (Boehringer Mannheim GmbH 

Diagnostica, Mannheim, Germany). 

After euthanization, gross and microscopic examination was done. 

Statistical model 

The results were analyzed, using the General Linear Models (GLM) procedure of SAS 

Statistical package (SAS, 1990). From preliminary analysis of the results, it was concluded 

that both respiration chamber number, as well as the time sequence in which the 

animals entered the experiment did not affect the data. Therefore, these factors were not 

included in the statistical model. 

For energy and nitrogen balance traits, each pair of goats represented an experimental 

unit; for all other traits, the experimental unit was the individual animal. Measurements 

before and after infection were analyzed separately. 

Treatment effects were tested using 2-way analysis with repeated measurements; the 

effect of time after infection was taken up in the model: 

Yijki- /J + I: + Cj + ( IxOi j + e1;ijk + T, + e2;ijkl [1] 

where: Yijk,= dependent variable; JJ= overall mean; I ;- fixed effect of Infection (j= 1,2); 

Gj= fixed effect of Growth pattern in pre-infection period ( i - 1,2); ( lxG)y= fixed effect 

of interaction between Infection and Growth pattern; e l i j k= error term 1 which 

represents the random effect of goat nested within infection x growth pattern treatment 

(k= 1,..,6);T|= fixed effect of Time after infection (I = 1,..,4 weeks; l= 1,..,28 days); 

e2i|kl= error term 2. 

The li, G, and ( I x G ^ effects were tested against error term 1; T, was tested against 

error term 2. 

Preliminary analysis showed that HP, body temperature, DMI, and the blood traits 

PCV, parasitaemia, NEFA, insulin, T4, T3 were affected by the time after infection. For 

these traits, the factors e, j|k and T, were removed from the model and the results at 

different moments of measurement were analyzed separately. This reduced model was 
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also applied for the single measurents: hepatic TAG before and after infection, and body 

weight change during the restriction and infection period. 

For all energy and nitrogen balance parameters, except HP, no time effect was 

observed, and model [1] was used with the exclusion of the T, factor. 

To study partial efficiency with which ME is deposited, the relation between data on 

ER and ME, pooled per animal, was studied using linear regression. Also the relation 

between NR and ER was studied, using data pooled per animal. 

Results 

General course of infection 

All infected animals developed intermittent fever about 4 days after inoculation of the 

T. vivax parasites (Figure 1). The mean rectal temperature from day 4 until day 28 p.i. 

was 39.89 (± 0.083)°C and 38.60 (+ 0.020)°C for infected and control goats, 

respectively. The first peak of fever persisted for a longer time in the animals with normal 

growth, compared with animals with retarded growth (P< 0.05). After this, fever 

fluctuated to the same extent in both infected animals with normal growth and infected 

animals with retarded growth. 

Packed cell volume gradually decreased in all infected animals with time after 

infection (P< 0.001) to an average 17 % in week 4 p.i. (control animals had a mean 

PCV of 38 %). Also interaction between infection and growth retardation with respect 

to PCV was observed in week 1 and 2 p.i. (P< 0.01), i.e., control animals with retarded 

growth had a PCV that was 5 percent points lower than the PCV of control animals with 

normal growth, but this difference was not present between infected animals with either 

retarded growth or normal growth. 

All infected animals showed parasites in the blood, but parasitaemia followed an 

irregular course; toward the end of the infection period some animals had undetectable 

parasite levels. Parasitaemia was not significantly different between the animals with 

retarded growth and the animals with normal growth (P> 0.10). 

Dry matter intake and body weight gain 

In Figure 2 the mean daily dry matter intake of animals belonging to the different 

treatments is presented; 2 mean values per week were calculated (3- and 4-day means). 

Infection reduced DMI in days 5 to 22 p.i. (at least P< 0.05); from day 23 onwards, no 

effects were detected (P> 0.10). No interaction between growth retardation and 

infection was observed (P> 0.10). 
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Figure 1. The effect of Trypanosoma vivax infection and different growth patterns of goats, on morning 
rectal temperature (in °C). The line — A — represents infected goats (normal growth), — • — infected 
goats (retarded growth), — A — control goats (normal growth), and — O — control goats (retarded 
growth); error bars indicate sem. 
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Body weight gain during the infection period was affected by growth retardation, i.e., 

animals from the group with retarded growth before infection, gained more weight after 

infection, both per day, and per unit metabolic weight per day, compared with the 

animals with normal growth (P< 0.05; Table 2). 

Energy and nitrogen balance 

Results on energy balance parameters, protein gain, and derived maintenance 

requirements are presented in Table 3. Infection reduced GE and ME (P< 0.05). Heat 

production tended to be increased in infected goats (P< 0.10). The metabolizability 

(ME/GE) was not changed by treatments (P> 0.10), and averaged 0.56, 0.57, 0.54, and 

0.56 for IN, IR, CN, and CR treatment, respectively. Energy retention was decreased by 

infection (P< 0.001). Moreover, ER was lower in animals with a normal growth pattern, 

compared with animals with retarded growth (P< 0.05). There was no interaction 

between growth retardation and infection with respect to these parameters (P> 0.10). 
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Figure 2. The effect of Trypanosoma vivax infection and different growth patterns of goats, on dry matter 
intake (in g-kg"075^1). The line — A — represents infected goats (normal growth), — • — infected goats 
(retarded growth), — A — control goats (normal growth), and —O— control goats (retarded growth); 
error bars indicate sem. 
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Table 2. The effect of Trypanosoma vivax infection and different growth patterns of goats, on body weight 
gain over the infection period, expressed in g-d', and in g-kg"075,d''. 

Infection: 
Growth pattern: 

observations 

in g-d"1 

in g-kg-075-d-' 

Infected 
Normal 

6 

-19.3 
-1.83 

Retarded 

6 

0.8 
0.39 

Control 
Normal 

6 

-13.4 
-1.36 

Retarded 

6 

14.4 

2.05 

rmse' 

27.1 
3.06 

F-statistic2 

I 

ns 
ns 

C 

* 
* 

I x C 

ns 
ns 

': Root mean square error (sem= rmseA/n); 
2: level of significancy of Infection (I), Growth pattern (G) or interaction (I xG) effect; ns- not significant, 
P> 0.10; * - P< 0.05. 
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Table 3. The effect of Trypanosoma vivax infection and different growth patterns of goats, on gross energy 
intake (CE), metabolizable energy intake (ME), heat production (HP), energy retention (ER), protein gain, 
fat gain and ME for maintenance (MEm; all parameters in kj-kg"075*d"1). 

Infection: 

Growth pattern: 

observations 
replicates 

GE 

ME 
H 

ER 
Protein gain 

Fat gain 

MEm 

Infected 

Normal 

3 
2 

885 

498 
492 

6a 

13 

-r 
483a 

Retarded 

3 
2 

923 

530 

480 
5 0 a b 

22 

28a 

452ab 

Control 
Normal 

3 
2 

1017 

552 
427 
1 2 5 b c 

20 

105b 

373b 

Retarded 

3 
2 

1141 

639 
457 

183c 

33 

150b 

376b 

rmse' 

69 

42 
16 

36 
16 
27 
22 

F-statistic2 

I 

* 
* 
t 

* * * 
ns 

* * * 
* * * 

G 

ns 

ns 
ns 

* 
t 

* 
ns 

IxC 

ns 

ns 
ns 
ns 
ns 

ns 
ns 

': Root mean square error (sem= rmseA/n); 
2: Level of significancy of Infection (I), Growth pattern (G) or interaction (IxG) effect; ns= not significant, 
P> 0.10; t - tendency, P< 0.10; * - P< 0.05; * ** - P< 0.001; 
a'bc: Values with common superscripts do not differ (P< 0.05). 

Nitrogen digestibility was not changed (P> 0.10) by treatments and averaged 0.543. 

The energy deposited in body protein tended to be higher in animals with a normal 

growth pattern (P< 0.10). Fat gain was decreased in infected animals (P< 0.001) and 

was increased in animals with retarded growth (P< 0.05). The calculated MEm was 

increased (P< 0.001) by 25 % in infected animals. A tendency toward a different MEm 

was observed between infected animals either with normal or with retarded growth (483, 

respectively 452 g-kg"075^1; P= 0.25). 

A positive relation between ER and ME intake was observed (Figure 3). However, no 

differences among treatments were detected (P> 0.10). A positive relation was also 

observed between NR and ER (Figure 4) without effect of treatments (P> 0.10). 

Heat production was affected by time after infection. Therefore results on HP, HPrar 

and HPact were analysed for week 2 and 4 p.i. separately (Table 4). In week 4, but not 

in week 2 p.i., HP was higher in infected animals. If HP was corrected for physical 

activity (HPcor), a stronger significant effect of infection occurred both in week 2 p.i. (P< 

0.05) and in week 4 p.i. (P< 0.01), compared with the effect on HP. Activity related 

heat production (HPart) tended to decrease in infected animals (P< 0.10). No effect of 

growth retardation or the interaction between infection and growth retardation was found 

for HP traits (P> 0.10). 



Interaction between nutritional history and infection 123 

Figure 3. The effect of Trypanosoma vivax infection and different growth patterns of goats, on the relation 
between energy retention (ER) and metabolizable energy intake (ME; both in kj-kg"075^''). The symbol 
A represents infected goats (normal growth), • infected goats (retarded growth), A control goats (normal 
growth), and O control goats (retarded growth). 
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Figure 4. The effect of Trypanosoma vivax infection and different growth patterns of goats, on the relation 
between N retention (NR; in g-kg"°75-d') and energy retention (ER; in kj-kg"07S-d~1). The symbol A 
represents infected goats (normal growth), • infected goats (retarded growth), A control goats (normal 
growth), and O control goats (retarded growth). 
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Serum and hepatic metabolic parameters 

Plasma glucose concentration was increased by infection (P< 0.001). A tendency toward 

higher values in goats with normal growth was observed, compared with goats with 

retarded growth (P< 0.10). No effect of the time after infection was detected (P> 0.10). 

Mean glucose levels were 3.796 (± 0.059), 3.683 (± 0.057), 3.492 (± 0.061), and 

3.358 (+ 0.057) mmol-L1, for IN, IR, CN, and CR treatment, respectively. 

Compared to controls, serum insulin concentrations (Figure 5) were lower in infected 

animals in week 1 p.i. (P< 0.05) and tended to be lower in week 2 p.i. (?< 0.10). In 

week 2 p.i. growth retardation tended to affect serum insulin (P< 0.10). Also a tendency 

toward an interaction between growth retardation and infection was observed (P> 0.10). 

After week 2 p.i. no effect of treatments was detected (P> 0.10). 

Table 4. The effect of Trypanosoma v/vax infection and different growth patterns of goats, on heat 
production (HP), heat production, corrected for physical activity (HPcor), and heat production, attributed 
to physical activity (HPK1) in week 2 and 4 after infection (in kj-kg'075^"1). 

Infection: 

Growth pattern: 

observations 

HP 
H Pcor 

HPac, 

observations 
HP 

HPcor 

HPaa 

Infected 
Normal 

3 

489 

437 
52 

3 

495 
448 

47 

Retarded 

3 
461 

405 
56 

3 

500 
442 

57 

week 2 

week i 

Control 

Normal 

• p.i. 

3 
433 

361 
71 

p.i. 

3 
421 

354 

67 

Retarded 

3 
449 

379 
70 

3 

464 
389 

75 

rmse' 

38 
37 

17 

36 

36 

16 

F-statistic2 

I 

ns 

* 
ns 

* 
* * 
t 

G 

ns 

ns 
ns 

ns 
ns 

ns 

I x G 

ns 

ns 

ns 

ns 

ns 
ns 

': Root mean square error ( sem- rmseA/n); 
2: Level of significancy of Infection (I), Growth pattern (G) or interaction ( I xG) effect; n s - not significant, 

P < 0.10; t - tendency, P < 0.10; * - P < 0.05; * * - P < 0 .01. 

Plasma concentration of non esterified fatty acids (NEFA; Figure 6) were increased in 

infected animals (P< 0.001). NEFA concentration tended to be higher in IN animals than 

in IR animals (P< 0.10). Plasma NEFA concentration was positively correlated with 

plasma glucose (Pearson's correlation r= 0.44; P< 0.01). 

The T4 concentration was lower in infected animals. Mean values for infected and 

control goats were 72 (± 3) and 152 (+ 4) mmol-L"1, respectively (P< 0.001). Also T3 

concentration in infected animals was lower with mean values of 1.26 (+ 0.08) and 2.10 

(+ 0.08) mmol-L1 for infected and control goats, respectively (P< 0.001). No effect of 

growth retardation was detected (P> 0.10). 
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Figure 5. The effect of Trypanosoma vivax infection and different growth patterns of goats, on serum 
insulin concentration (in /ulUmL'1). The line —*— represents infected goats (normal growth), — • — 
infected goats (retarded growth), — A — control goats (normal growth), and — O — control goats 
(retarded growth); error bars indicate sem. 
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Serum urea concentration was not affected by post infection week number, infection 

or growth retardation (P> 0.10). The average concentration was 7.6 (± 1.3) mmol-L"1. 

Hepatic triacylglycerol (TAG) concentration (Table 5) was higher in animals with a 

normal growth pattern at day 14 before infection (P< 0.05). At day 28 after infection, 

only a tendency toward a higher TAG concentration in goats with a normal growth 

pattern was observed (P< 0.10). Overall TAG concentration on day 28 after infection 

was higher than on day-14 (P< 0.001). Liver TAG was positively correlated with plasma 

NEFA concentration (Pearson's correlation r= 0.53; P< 0.001). 

Pathology 

Gross and microscopic examination after euthanization revealed hyperplasia and a 

plasmacellular reaction of lymph nodes, hyperplasia of the spleen, and mononuclear 

infiltration of several organs and tissues, including the brain of some animals. The thyroid 

showed active epithelial cells, in a few cases cuboidal cells, with many follicles present. 

The liver of many infected animals showed mild to moderate fat accumulation. The bone 

marrow of many infected animals was activated and showed extended erythropoiesis and 

to a smaller extent myelopoiesis. 
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Figure 6. The effect of Trypanosoma vivax infection and different growth patterns of goats, on plasma non 
esterified fatty acids concentration (in mmol-L"'). The line — A — represents infected goats (normal 
growth), — • — infected goats (retarded growth), — A — control goats (normal growth), and — O — 
control goats (retarded growth); error bars indicate sem. 
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Table 5. The effect of Trypanosoma vivax infection and different growth patterns of goats, on liver 
triacylglycerol (TAG) concentration before and 28 days after infection (in mg-g"1). 

Infection: 
Growth pattern: 

observations 

day -14 
day 28 

Infected 
Normal 

6 

15.9 
22.6 

Retarded 
6 

14.0 
19.3 

Control 
Normal 

6 

15.0 
23.3 

Retarded 

6 

12.6 
20.2 

rmse' 

2.14 
4.18 

F-statistic2 

I G 

ns * 
ns t 

IxC 

ns 
ns 

': Root mean square error (sem- rmse/v'n); 
2: Level of significance of Infection (I), Growth pattern (G) or interaction (I xG) effect; ns- not significant, 
P< 0.10; t= tendency, P< 0.10; * = P< 0.05. 
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Discussion 

Effect of T. vivax infection 

In this study, infection affected most studied variables with respect to energy and 

nitrogen metabolism, and pathology of disease. Intake of CE and N was reduced by 

infection, and this led to changes in retention and in the blood metabolic profile, which 

are typical for suboptimal nutrition; however, most infected animals still showed a 

positive energy balance. 

The following pathological findings were present. All infected animals developed 

anaemia to the same extent, irrespective of growth retardation. The PCV level after 4 

weeks of infection was very low, compared with reports of Verstegen et al. (1991) and 

Akinbamijo et al., 1992) on WAD goats, and reports of (Paling et al., 1991) on infected 

N'Dama's. Parasitaemia extremely fluctuated with time, which is a normal phenomenon 

in trypanosome infection (Stephen, 1986). Also other pathological findings at autopsy 

revealed the typical picture of T. vivax infection (Van den Ingh et al., 1976). 

Feed intake was reduced; DMI was about 20 % lower in infected animals; this is a 

smaller decrease than the 35 % intake decrease reported by Van Dam et al. (1996a). 

Metabolizability of GE, and digestibility of N were not changed. This corresponds with 

previous studies (Verstegen et al., 1991; Akinbamijo et al., 1992; Van Dam et al., 

1996c). It means that kidneys and intestines were intact, which was confirmed at 

autopsy. Moreover, no indications for a decrease of NR at a given ER level (Figure 4) 

were found. 

The observed reduction in intake has obviously affected the decrease in serum insulin 

concentration. The increased plasma NEFA concentration demonstrates that this decrease 

in insulin has induced lipolysis (Payne, 1989). Wassink eta/. (1993) reported a negative 

correlation coefficient r of -0.76 between NEFA and DMI in T. vivax infected WAD 

goats. This is in agreement with the present study. That liver TAG at day 28 p.i. was not 

increased may imply that the lipolysis as induced by the reduction of energy retention, 

was mild to moderate. Van den Top et al. (1995) found increased liver TAG in peri-

partum goats, probably due to negative energy balance and substantially increased NEFA 

supply from the blood to the liver. The obtained data neither offered evidence for 

increased hepatic TAG under influence of immunological products like TNF, described 

by Feingold et al. (1990), although post mortem analysis indicated some zonal fat 

accumulation in livers of infected goats. 

The increase of plasma glucose in infected animals was unexpected, given the results 

in previous studies (Akinbamijo et al., 1992; Van Dam et al., 1996c). In animals with a 

negative energy balance the glucose level is often decreased (Payne, 1989). In our study 

most animals showed a positive energy balance, however. Serum T3/T4 was decreased 



128 Chapter 8 

in the infected animals; this corresponds with earlier findings (Abebe & Eley, 1992; Van 

Dam et al., 1996c). No effect of growth retardation was detected, however. 

Heat production in infected animals was increased by about 10%. This is lower than 

reports of Verstegen et al. (1991 ), who reported 16 % increase in WAD goats due to T. 

vivax infection. Heat production due to physical activity, measured with Doppler-radar 

activity meters, tended to be reduced in week 4 p.i. in infected animals. Van Dam et al. 

(19966) reported a reduction of standing time of WAD goats, due to T. vivax infection. 

Lying down costs less energy due to a lower muscle tone and an increased thermal 

insulation (Hart, 1985). We did not monitor postural behaviour in this study, however. 

Interaction between nutritional history and infection 

The MEm was increased by 25 % in the infected group. This can be referred to as the 

metabolic costs of infection. Both the absolute level of MEm and the increase due to 

infection agrees with findings of Verstegen et al. (1991). Baracos et al. (1987) attributed 

the increment of MEm to increase of basal metabolic rate due to fever, and to other 

metabolic costs, like mounting of the immune response and increased protein turnover. 

However, MEm increase due to infection tended to be lower in animals with retarded 

growth, i.e., 20 % increase in IR animals compared with 29 % in IN animals. Thus both 

infected groups showed a higher MEm than controls, but it appeared that goats with 

retarded growth lost less energy due to infection than goats with normal growth. 

It is not clear, what caused the lower MEm in IR animals, compared with IN animals. 

This could possibly be related to differences in the severity of the fever (Baracos et al., 

1987; Van Dam et al., 1996b). However, rectal temperature of IN and IR goats in week 

2 and 4 p.i. was not different (39.84°C in IN goats and 39.86°C in IR goats). Other 

factors which are known to affect HP and consequently MEm, like physical activity 

(Blaxter, 1989) and feed uptake (ARC, 1980) were not significantly different between IN 

and IR animals, either. 

Figure 3 shows the relation between ER and ME. Regression analysis of this relation 

can also provide an estimate for MEm, i.e., the point of intersection with the X-axis; 

however, no statistical effects of treatments were observed, which is at least partly 

explained by the low number of observations. The same problem prevented statistical 

analysis of the relation between NR and ER, although it can be derived from Figure 4, 

that NR was at least not decreased at a given ER in infected animals. This implies that 

maintenance requirements for nitrogen probably were not increased by infection, as was 

also reported by Verstegen et al., (1991) and Van Dam et al. (1996a). 

The lower MEm of IR animals compared with IN animals, together with a slightly 

higher GE, led to a somewhat higher ER of IR animals. This was also reflected in the 
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higher NEFA concentration at day 14 p.i. of the IN group, compared with the IR group, 

indicating a higher lipolysis in IN animals (Payne, 1989). 

Apart from the tendencies found for MEm and ER, only minor (if any) carry-over effects 

of previous growth check on the course of infection were observed. Katunguka-

Rwakishaya et al. (1995) reported a more severe anaemia and greater growth retardation 

under influence of T. congolense infection, in sheep on a low energy intake level 

compared with those on a high energy intake level. Reynolds & Ekwuruke (1988) 

observed an increased mortality of T. vivax infected WAD sheep if fed at a low plane of 

nutrition. This corresponds with the view of Murray (1988) that shortage of nutrients 

negatively affects the immune response during infection. 

An experiment with chicken, however, provided no evidence that nutritional stress 

in early life has an effect on disease resistance (Zulkifi et a/., 1994).. Kim & Lovell 

(1995), reported reduced resistance of 1-year old catfish to infection with Edwardsiella 

ictaluri, if they had experienced a period of starvation. However, they observed the 

opposite for 2-year old catfish: they showed increased survival if subjected to starvation 

prior to infection. The latter is in line with observations of Murray & Murray (1979) who 

reported a sharp increase of mortality of mice after infection with Listeria monocytogenes 

when mice were force-fed, compared with their anorectic congeners. These last studies 

emphasise a negative relation between intake level and disease resistance during early 

infection, possibly by reducing the available nutrients for the invading micro-organism, 

and/or by production of specific substances that slow down development of the 

infectious agent. This was also concluded by Isoun (1972), who found evidence that 

malnutrition leads to lower parasitaemias and increased survival times in rats, infected 

with J. brucei, and fed a diet deficient in protein, thiamine or vitamin A, by comparison 

with controls adequately fed (Isoun, 1972). In the present experiment, no such effect of 

growth retardation treatment on parasite counts of infected goats was observed. The 

shorter duration of the first peak of fever in animals with growth retardation, however, 

may indicate a quicker clearance from the blood of the first parasite peak (Stephen, 

1986). 

Effect of growth retardation on intake and energy balance 

The differences in feeding regimen in the restriction period led to large differences in 

body weight at the moment of infection, but apparently the applied feed restriction did 

not induce substantial lipolysis, because 2 weeks before infection liver TAG was not 

increased in restricted animals compared with animals fed acf libitum (Table 5). 

Although DMI during the infection period was not significantly affected by growth 

retardation, body weight gain over the infection period was higher in these retarded 

animals than in animals with normal growth (Table 2). According to Hogg (1992) this 
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may be caused by compensatory mechanisms taking place in animals, just after a period 

of feed restriction, i.e., a higher feed intake, an increase of gut f i l l, together with initially 

lower maintenance requirements. In infected animals, only slightly higher DMI was 

observed in animals with retarded growth. The observed decrease of MEm of IR animals 

compared with IN animals was not seen in control animals with retarded growth, but 

they showed a larger increase of DMI. It is also possible that gut fill gradually increased 

in animals with retarded growth in the course of the experiment, due to adaptation from 

restricted to ad libitum feed intake. 

Although indications were found for some compensatory intake and body weight gain 

in animals with retarded growth, these may have been only minor effects, compared with 

the effect of trypanosome infection. 

Conclusions 

The course of a Trypanosoma vivax infection in West African Dwarf goats with a 

retarded growth pattern, generally was not different from that in WAD goats with a 

normal growth pattern. Feed intake and energy retention were reduced. Blood 

biochemical variables of infected goats were consistent with the reduced energy balance; 

blood glucose, however, was increased in infected animals. Heat production and ME 

requirements for maintenance were increased. However, the increase of ME requirements 

for maintenance tended to be lower in animals with retarded growth; this would imply 

a lower metabolic cost of infection of animals with retarded growth. 
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Introduction 

This thesis describes the results of a series of experiments which were designed to study 

the effect of experimental trypanosome infection on feed intake, and energy and nitrogen 

metabolism of trypanotolerant West African Dwarf goats. The following wil l first report 

on the general course of infection with respect to anaemia during trypanosome infection. 

Then possible mechanisms behind the variation in feed intake reduction wil l be 

discussed. Subsequently, the effect of trypanosome infection on energy and nitrogen 

metabolism wil l be adressed, and the effect of nutrition on the course of infection. 

Finally, the major conclusions and implications drawn from our studies are formulated. 

Anaemia due to trypanosome infection 

Infection with Trypanosoma vivax caused a progressive anaemia in WAD goats in all 

reported experiments. The lowest mean packed cell volume (PCV) level reached ranged 

from 24 % after 3 weeks T. congolense infection (chapter 3) down to 17 % after 4 weeks 

T. vivax infection (chapter 8). The decrease is in accordance with studies of Adah et al. 

(1993) and Osaer et al. (1994) on WAD goats, and puts serious questions either on the 

degree of trypanotoleranceof the WAD goat breed or on universality of the PCV variable 

as the ultimate indicator of trypanotolerance of livestock (Murray, 1988; Trail et a/., 

1991). 

The development of anaemia during the acute phase of infection is mainly induced 

by the immune system (Murray and Dexter, 1988). It is generally accepted that anaemia, 

certainly in the acute phase, is created by a sharp increase of erythrophagocytosis by 

macrophages (Murray and Dexter, 1988; Anosa et a/., 1992; Sileghem et al., 1993), 

possibly triggered by cytokines like TNF-or (Lucas et al., 1993; Sileghem et al., 1994). 

Also erythropoiesis in the bone marrow may be disturbed (ILRAD, 1994). 

From our studies no apparent relation between PCV and feed intake and/or feed 

quality could be found; this means that the development of anaemia during the acute 

phase of infection is not affected by nutritional status of the animal. This is in agreement 

with the conclusions of Agyemang et al. (1990). They found no effect of feed 

supplementation of N'Dama cattle on the severity of anaemia during the acute phase of 

T. congolense infection. Also Katunguka-Rwakishaya et al. (1993) found no effect of 

dietary protein level of the diet on the degree of anaemia due to T. congolense infection 

in sheep. The type of anaemia differed between animals fed different protein levels. 

135 
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The variation in feed intake reduction due to infection 

In all experiments, a significant feed intake reduction was observed in infected WAD 

goats, which is one of the typical signs of trypanosome infection, besides fever and 

anaemia (Stephen, 1986). This anorexia is probably triggered by cytokines, like TNF-ar 

(Bielefeldt Ohmann et al., 1989), interleukin-1 (McCarthy et al., 1986), prostaglandins 

and interferon-r(IFN-r; Van Miert, 1995). Fever which occurs during infection does not 

affect feed intake in itself, but is merely another manifestation of cytokine action on the 

hypothalamus (McCarthy et a/., 1986; Van Miert et a/., 1986) and coincides with 

reduced forestomach motility in ruminants (Van Miert et al., 1992). Therefore, bouts of 

fever often coincide with periods of anorexia. Wassink et a/. (1993) found a ranking 

(Pearson) correlation of -0.60 between infection DMI and rectal temperature of WAD 

goats. The observed anorexia during infection may be benificial to survival of the host 

(Murray and Murray, 1979), or might be an undesirable side-effect of the excess 

production of cytokines (Lucas et a/., 1993). 

The mean feed intake level in our studies differed largely per experiment. In Table 1, 

the dry matter intake of infected and control animals is presented, and the mean ratio 

[DMI infected animals / DMI control animals]. Infection DMI was calculated as the mean 

DMI from day 5 to the end of the infection period, thus taking into account a prepatent 

period of 4 days. 

Table 1 . Ad libitum dry matter intake (DMI, in g-kg"075^1) during trypanosome infection in the 

experiments, reported in this thesis. 

Experiment, 

reported in: 

chapter 3 

chapter 4/5 
chapter 6/7 

chapter 8 

Tryps 

Species 

T. cong. 

T. vivax 
J. vivax 

T. vivax 

Duration 
weeks 

5 
6 
6 

4 

Age 

months 

18 
29 
14 

7 

n 

25 
12 
19 

12 

Infected 
DMI 

36.3a 

13.5a 

38.1a 

49.4a 

se m 

2.9 

2.1 
2.0 

3.1 

n 

25 
4 

10 

12 

Control 

DMI sem 

68 .2 ' b 2.6 

35.7" 2.3 
61.6b 3.0 

62 .1 b 2.5 

Ratio 
nf/Con 

0.54 

0.38 
0.62 

0.80 

\ DMI before infection served as control DMI level 
a,b: different superscripts indicate a significant difference between treatments. 

In the T. congolense study (chapter 3), all animals were infected, so the control 

DMI was estimated as the pre-infection DMI of the same animals. The animals 

showed a mean DMI decrease of 46 %. In the respiration study with individually 

housed WAD goats (chapter 4), a very low feed intake level was observed, which led 

to negative energy balances, even in control goats. The overall low feed intake in this 

experiment was ascribed to both the stress due to social isolation in the respiration 
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chamber (Carbonaro et al., 1992), and the luxurious body condition of the animals. 

Evidence for a negative relation between feed intake and fat depth was found by Lee 

et al. (1995) in mature ewes. The respiration study with pair-housed animals (chapter 

8) resulted in intake levels above maintenance for most infected and all control goats. 

Finally, the nitrogen balance study (chapter 6/7) showed an intermediate reduction of 

38 %, compared with control goats; half of the animals received a chopped grass 

straw diet, but this did not have significant influence on the relative DMI decrease. 

The results from Table 1 cannot be compared directly with other studies, due to 

differences in experimental design, like restricted feeding of control animals (Zwart et 

al., 1991; Akinbamijo et al., 1992) or because of adding supplement to the basal diet, 

which encourages diet selection (Akinbamijo et al., 1994a,b). Wassink et al., (1993) 

studied DMI reduction of WAD goats after infection with successively T. congolense 

and T. vivax. The ratio [DMI during infection / DMI before infection] was 0.65 (± 

0.036) after T. congolense infection and 0.67 (± 0.047) after T. vivax infection; the 

mean age of the animals was 18 months. 

The presented data in Table 1 suggest that there is a negative relation between age 

and DMI ratio, i.e., older animals would suffer more from anorexia during infection. 

The larger fat deposits in older animals may be a reason for this (Lee et al., 1995). It 

is also possible that the pathological signs during trypanosomiasis are more pro­

nounced in adult animals, compared to young animals. Likewise is reported that 

young calves are less susceptible to T. congolense infection than adults (Fiennes, 

1970; Morrison et al., 1985). Foster et al. (1992) reported a higher TNF production 

after lipopolysaccharide injection in aged rats, compared to young rats, which 

provides a possible mechanism behind this observation. A more severe DMI reduc­

tion in older animals would imply an even larger effect of infection on animal 

production, because the normal voluntary intake level per kg metabolic weight 

decreases with age, as was observed in a study with WAD goats (Ketelaars and 

Tolkamp, 1991). A complicating factor in the comparison of DMI reduction, however, 

is that the housing and the experimental treatments in our studies were not always 

the same. 

Besides differences in average DMI during infection in the different studies, also 

variation between animals within studies was observed, and day-to-day variation of 

individual infected animals. Table 1 indicates that the standard deviation between 

animals in infected groups (derived from the presented sem), did not increase, 

compared with healthy controls. This is in conflict, however, with findings of Zwart et 

al. (1991); with respect to DMI response to infection they identified low, medium and 

high responders, with the standard deviation of the infected group at least doubled, 
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compared with the control group. Possibly the variation in DMI response in their 

study was related to variation in the age of the animals ( 18 -32 months). 

Studies of Wassink et a/. (1993) and Clausen et al. (1993) indicated a high 

repeatability of individual response to successive infections; this may imply an innate 

characteristic of genetic origin; in addition Clausen et a/. (1993) found indications for 

acquired resistance. The results from the study reported in chapter 3 also provide 

some evidence that DMI response to infection is affected by genetic factors. As 

suggested there, this correlation may originate from functional relationships between 

polymorphism of genes in the CLA region (the TNF-a gene being the most promising 

candidate) and the degree of anorexia. 

In the study described in chapter 2, however, the repeatability of individual DMI 

response to successive infections was very low. Because the environmental conditions 

were different during infection period 1 and 2, it is possible that environmental 

factors played a major role, or possibly that genotype x environment interaction 

occurred. 

Finally, the day-to-day variation of individual DMI was increased by infection; in 

the N balance experiment (chapter 6/7), the standard deviation of repeated daily DMI 

measurements increased from on average 5.5 g-kg~°75-d"' to 9.6 g*kg"°75*d"'; this was 

also observed in the other trials. It is likely that the consecutive emergence of 

trypanosome sub-populations in the blood during infection, and the resulting immune 

responses with its cascade of cytokines (Van Miert, 1995) have created the higher 

day-to-day variation in feed intake. 

It can be concluded that the DMI reduction of WAD goats during acute trypano­

some infection is considerable. Average reduction ranges between 20 and 62 %, 

depending on the severity of disease, the experimental design and the physiological 

status of the animal. Although environmental conditions like housing and age of the 

animals seem to play a role, possibly also genetic factors play a role as was suggested 

by the observed association between polymorphism in the CLA region of the genome 

and DMI response to infection. 

The effect of infection on energy and nitrogen metabolism 

As discussed in the previous section of this chapter, daily intake was reduced in 

infected animals. This implies that both energy and nitrogen intake were reduced to 

the same extent. The large variation in energy and N intake between experiments and 

within experiments between animals produced profound differences in energy 

retention (ER). In chapters 4 and 8, energy and N balances of infected and control 



General Discussion 139 

animals are given, whereas in chapter 6 a N balance is presented. In the experiment 

described in chapter 4, infected animals showed a highly negative ER and N retention 

(NR). Nearly all infected animals in the experiment in chapter 8, however, showed 

positive ER and NR. The infected animals in the experiment reported in chapter 6 in 

general showed negative N retention if fed grass straw and an NR of around zero if 

fed pelleted lucerne. 

In order to investigate the metabolic processes associated with infection, it was 

studied whether infection leads to increased energy and N losses. Hence the apparent 

digestibility of energy and nitrogen was estimated, as well as the metabolizability of 

energy. Apparent digestibility of energy and N, expressed as the proportion digested 

nutrients relative to intake, was not changed by infection. However, a few animals 

with very low intake showed somewhat lower apparent digestibilities. These may 

have been very susceptible animals whose DMI gradually decreased during infection. 

At very low intake levels, the endogenous fraction in the faeces wil l be larger; true 

digestibility of energy and N may not have been changed by infection. 

Figure 1. Effect of gross energy (GE) on metabolizable energy (ME) intake in infected and control 
WAD goats; datapoints consist of pooled observations per animal, and were derived from two separate 
energy balance trials. The symbol * represent infected goats in trial 1; & control goats in trial 1; • 
infected goats in trial 2, and O control goats in trial 2. The line represents the regression 
equation through datapoints from trial 1; the regression equation through datapoints from trial 2. 
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In Figure 1, results on the relation between metabolizable energy (ME) and gross 

energy (GE) are presented, showing data from the two energy balance experiments 

(energy balance trial 1, described in chapter 4, and energy balance trial 2 in chapter 

8). Linear regression analysis showed that the slope of the relation was different (P< 

0.001) for the two experiments, i.e., 0.444 for trial 1 and 0.517 for trial 2. However, 

no effect of infection on the slope or intercept of the equation was found. This 

implies that energy losses in faeces or urine, relative to energy intake level, were not 

increased in infected animals. Post mortem marco- and microscopic examination of 

intestines and kidneys also showed no lesions or improper function in the different 

experiments. 

Figure 2 shows the relation between energy retention (ER) and ME, consisting of 

datasets from energy balance trial 1 and 2. The two energy balance trials covered a 

wide range of intake levels, from zero intake up to about 1.8 times maintenance. 

Regression analysis showed an effect of infection on the intercept (P< 0.001), but no 

effect on the slope of the line. 

Figure 2. Effect of metabolizable energy (ME) intake on energy retention (ER) in infected and control 
W A D goats; datapoints consist of pooled observations per animal, and were derived from two separate 
energy balance trials. The symbol A represent infected goats in trial 1; A control goats in trial 1; • 

infected goats in trial 2, and O control goats in trial 2. The line represents the regression 
equation through datapoints of control goats, and the regression equation through datapoints of 

infected goats. 
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This resulted in 2 equations (in kj*kg"°7S-d"1 ; sem between brackets; combined r2 = 

0.98): 

Infected: ER = -319 (+ 6) + 0.678 (± 0.017) x ME (n= 22); [1] 

Control: ER= -250 (+ 8) + 0.678 (± 0.017) x ME (n= 14); [2] 

This means that the decrease of ER due to infection (the difference between the 

intercepts of equation [1] and [2]), was not affected by ME intake level. It is remark­

able that the slope of the equation below maintenance (efficiency km) is not different 

from that above maintenance (efficiency kf); ARC (1980) reported for pelleted feeds 

with a metabolizability of 0.50, a km of 0.67 and a kf of 0.48; our kf is much higher. 

Infection caused a reduction in ER of 125 kj-kg"075-d_1 in both energy balance 

trials (chapters 4 and 8). This decrease consisted of about 70 kj-kg"°75-d"1, attributable 

to increased heat production mainly due to the fever (difference between intercepts 

[1] and [2]), and the remainder (55 kj-kg^-d"') attributable to the intake reduction 

due to infection (ME intake reduction of 81 kj-kg"°75-d"'). If results on digestible 

organic matter intake (DOMI) from the N balance study described in chapter 6, are 

converted to ME (conversion factor 15.8 kj ME-g"' DOM, NRC, 1981), the resultant 

average decrease of ME due to infection was 205 kj-kg"075^1, much larger than the 

81 kj in the two studies included in Figure 2. 

From equations [1] and [2], ME maintenance requirements (MEJ of 368 and 471 

kj-kg"075^"1 in healthy and infected WAD goats can be derived, showing an increase 

of more than 100 kj-kg"°75-d"1 (28 %). The increase of MEm was explained by the 

increased basal metabolic rate due to the observed fever and possibly other metabolic 

costs of infection, like the rise of the immune response, and several repair mecha­

nisms like increased erythropoiesis (chapter 5). Apparently, this increase was indepen­

dent from intake level. Baracos et a/. (1987) reported on a series of clinical studies in 

which the increase of basal metabolic rate due to fever ('Q10 effect'), resulting from 

infectious disease or from lipopolysaccharide stimulation, ranged between 13 and 45 

% per degree °C. However, this increase included shivering periods, in which heat 

production may be doubled. 

It is noteworthy, that infected animals showed some degree of compensatory 

behaviour with respect to the increased MEm, by reducing the standing related energy 

costs (chapter 5). This reduction of standing time was effected in spite of a higher 

frequency of postural change than in healthy controls, the latter probably caused by 

thermal discomfort which occurs more frequently during flucutating fever. The change 

in behavioral mode of infected animals fits well in the general pattern observed 

during infection and is closely associated with thermoregulation (Hart, 1988). Also 
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results on activity related heat production (chapter 7) indicated a decrease of energy 

spent on physical activity (standing, moving). 

Figure 3. Effect of energy retention (ER) on nitrogen retention (NR) in infected and control WAD goats; 
datapoints consist of pooled observations per animal, and were derived from two separate energy 
balance trials. The symbol A represent infected goats in trial 1; A control goats in trial 1; • infected 
goats in trial 2, and O control goats in trial 2. The line represents the regression equation 
through datapoints from trial 1; the regression equation through datapoints from trial 2. 
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In Figure 3, the relation between N retention (NR) and ER is depicted for energy 

balance trials 1 and 2. No effect of infection on the regression equation was detected. 

A piecewise linear function, pivoting at ER= -85 kj-kg"07S-d ', was found to fit the 

data better than simple linear regression (NR in g-kg"°75-d''; ER in kj'kg"075^"1; sem 

between brackets; combined r2= 0.93): 

for ER < -85kJ-kg^75-d1: 

NR= 0.0173 (± 0.0828) + 0.00162 (± 0.00015) x (ER + 85.2); (n= 24); [3] 

for ER> -85 kj-kg"075^': 

NR= 0.0173 (+ 0.0828) + 0.00075 (± 0.00023) x (ER + 85.2); (n = 12); [4] 
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This means, that the relationship between energy and N retained (below mainte­

nance: energy and N depleted) was not changed by infection. These results should be 

interpreted with care, however, because each of the two linear parts of the line 

describe observations from only one of the two experiments. Thus an effect of experi­

ment may play a role here. No effect of infection was found on the slopes or inter­

cept of equation [3-4]. This implies that infection did not induce an increase of N 

losses at a comparable ER as healthy controls. Thus infection caused animals to move 

down along equation [3-4], rather than moving from the equation. 

Therefore the suggestion of Oosting et al. (1995) that a balance exists between 

energy and N available to the tissues, was confirmed. Moreover it was shown that 

this also holds for infected animals. This was also concluded in our N balance study, 

reported in chapter 6, in which the relation between NR and DOMI was not different 

for infected and control animals. However, in this study a linear relationship between 

NR and DOMI was found, rather than a piecewise linear function. Simple linearity 

was also reported by Elliott and Topps (1964), Ketelaars and Tolkamp (1991), and 

Oosting et al. (1995). However, the intake level in their studies did not reach below 

60 % of maintenance (approximately 14 g-kg"075^"1 DOMI), whereas in our energy 

balance trial 1, much lower ME intake levels were reported. Nevertheless, our 

observations at very low intake level consisted mainly of infected animals. A few of 

these observations were made during a moribund state of the animal; it is well 

possible that in these animals, the energy and N metabolism may have been disrupt­

ed due to moribund conditions, as was also suggested for some animals in the N 

balance trial, reported in chapter 6. 

Blood and liver biochemical variables 

In the infected goats, generally serum concentrations of non esterified fatty acids 

(NEFA), ß-hydroxy butyrate (BHB), glucose and insulin appeared to reflect the energy 

status of the animal. NEFA and insulin concentrations were found to be most sensitive 

to a negative energy balance (chapter 4, 7 and 8), whereas glucose remained normal 

and BHB remained low during light to moderate energy shortage. Only in an 

extremely negative energy balance, glucose concentration decreased and consequent­

ly BHB increased, in order to secure the supply of energy substrates to the nervous 

system (Payne, 1989). However, in energy balance trial 2 (chapter 8), glucose 

concentration was found to increase in infected animals, despite a reduced intake 

level. r-Globulines showed a large increase during infection, and albumin showed a 

reduction. This led to an overall increase of serum protein. 
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The decrease of T3 and T4 in infected animals was consistent throughout the 

reported studies (chapter 4, 7 and 8). Possible mechanisms included a reduced T4 

production by the thyroid gland (Mutayoba and Combe, 1989), increased T3/T4 

uptake and degradation by peripheral tissues and increased clearance by the liver 

(Beisel, 1985), probably triggered by systemically active blood levels of cytokines like 

TNF-ff (Sweepeta/., 1992). 

Liver triacylglycerol (TAG) was increased in both infected and control animals with 

a negative energy balance. Therefore, no apparent indications for a direct effect of 

infection on liver TAG concentration was found. This is in contrast with Grunfeld et 

al. (1989), who found that TNF-or administration induced an increase of hepatic 

triglyceride production in rats. Post mortem examination of our goats showed a non­

specific reactive hepatitis in most infected animals. The reduced T3/T4 serum levels 

may have led to impaired mitochondrial respiratory activity (Lomo et a/., 1993). 

However, the major cause of TAG accumulation in the liver probably was the very 

high plasma NEFA supply to the liver during a negative energy balance of the 

animals, and an inadequate capacity of the liver to convert the absorbed NEFA into 

ketone bodies for use as an energy substrate (Van den Top, 1995). 

In Table 2, measurements on DMI, PCV, rectal temperature (Trect), and blood 

clinical and biochemical variables are presented for animals that died before the end 

of the experiment, as compared with infected congeners that survived throughout the 

infection period. Some of the reported animals died spontaneously. Some were 

euthanized, when spontaneous decease within 24 hours was expected. The DMI was 

calculated over 7 days preceding decease, whereas mean Trect is calculated over 3 

days preceding death. For the values of the blood clinical and biochemical variables, 

the last observation in the week preceding death is given. 

Moribund animals all showed very low DMI. Rectal temperature often was normal, 

despite high parasitaemia. Apparently the animals did not show a fever response any 

more to a new subpopulation of parasites emerging in the blood. This may indicate a 

dysfunction of the immune system. Total protein was usually rather low; however, it 

cannot be deduced if this indicated a deficient immune response. PCV was low in 

moribund infected animals, although not different from other infected animals. In a 

few cases plasma glucose concentration was very low, with NEFA and BHB in­

creased. However, no consistent picture was observed. The in some moribund cases 

very high serum level of BHB indicates that only in the terminal phase production of 

ketone bodies was significantly increased, which is in agreement with studies of 

Wolkers (1993). Urea was increased in some cases, probably due to increased protein 

catabolism. Serum insulin concentration was often very low, reflecting the intake 

level of the animal. 
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Table 2. Clinical parameters of individual moribund WAD goats, infected with 7. vivax, measured 
within 3 days from death (spontaneously or by euthanasia); mean values of week 6 p.i. of the 
remaining infected animals is included. 

Goat Decease 
day p.i. 

Experiment 1 

1 39 
2 35 

Other infectée 
avg 42 

std 

Experiment 2 
3 32 

4 40 

5 33 
6 30 

Other infectée 
avg 42 

std 

Nat./ DMI 
eut. 

nat. 
nat. 

1 T 2 
1 rect 

g-kg075 °C 

3.6 
12.3 

animals in 
eut. 

eut. 

eut. 
eut. 

nat. 

16.4 

10.5 

4.9 

12.9 
4.7 

12.9 

animals in 

eut. 42.7 

12.5 

38.2 
40.3 

Parasit. 
,0 log 

5.7 
7.8 

experiment 1 (not 
39.5 

0.8 

38.5 

38.9 
38.7 

39.9 

4.8 

2.2 

6.6 

6.8 

8.2 

6.3 

3 PCV 

% 

28 
20 

moribu 
22 

4 

18 

13 
18 

17 

glucose 

2.5 
3.2 

id) 
2.9 

0.6 

1.2 

3.7 

1.2 

2.4 

experiment 2 (not moribund) 

39.3 

0.8 

5.1 

1.1 

18 

3 

3.0 
0.4 

NEFA 
mmol-L" 

0.73 
0.58 

0.65 

0.43 

0.73 

1.58 

0.16 

0.54 

0.23 

0.10 

BHB 

0.65 
0.10 

0.87 

1.99 

1.16 

1.95 

5.20 

0.26 

0.15 
0.05 

Urea insulin 
/y lU-mL' g-

6.0 

6.9 

7.1 

2.8 

6.5 

7.6 

8.5 

6.0 

5.8 

1.6 

nd4 

11 

9.2 

5.2 

nd 
1.7 

1.7 

1.4 

9.0 

8.8 

TP 
L-1 

64 
80 

93 
13 

70 

58 
64 

66 

88 
12 

': mean dry matter intake over the week preceding decease; 
2: mean rectal temperature over the 3 days preceding decease; 
3: Parasitaemia, packed cell volume, glucose, non esterified fatty acids, ß-Hydroxy butyrate, urea, 
insulin and total protein measured from blood, taken in the week preceding decease; from goat 
numbers 2-2 and 3-2, blood was taken just before euthanization; 
4: non detectable levels (< 1 //lUimL''). 

The data on the death cases therefore roughly provide a picture of a severely 

malnourished animal, with corresponding blood and liver metabolic profile. High 

parasitaemia without apparent host response indicate a dysfunction of the defense 

mechanisms. 

The interaction between nutrition and course of infection 

In the N balance experiment, described in chapter 6 and 7, two fibrous feeds with a 

different quality were fed to infected animals. In addition to the usual experimental 

feed in other studies (pelleted lucerne), chopped grass straw was chosen, which had a 

low protein content (68 g-kg"1 DM). It was aimed to study the interaction between 

diet quality and the course of infection with respect to feed intake and N metabolism. 

Infected animals fed chopped grass straw showed a lower intake than infected 

animals fed pelleted lucerne. However, the relative decrease of DMI in each feed 

group, due to infection, was the same (35 - 36 %). Also the relation between NR and 
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DOMI was not changed by diet type, and agreed with literature reports (Elliott and 

Topps, 1964; Ketelaars and Tolkamp, 1991; Akinbamijo et al., 1992). Noteworthy is 

the different r-globulin fractions of infected animals on either good or poor quality 

diet. Because a large proportion of the circulating r-globulins is not specific to the 

prevalent subpopulation of trypanosomes (Stephen, 1986), this finding does not 

necessarily indicate differences in immunity. 

On basis of these results it was concluded that no interaction between feed quality 

and course of infection with respect to nutrient metabolism had played a role. Several 

literature reports, however, indicate that there is interaction between diet quality and 

production parameters during trypanosome infection, i.e., Katunguka-Rwakishaya et 

al. (1993) found that weight gain of sheep, fed a diet with a high dietary protein 

content was not reduced in infected animals compared with controls, whereas sheep 

fed a low protein diet showed a reduced weight gain due to infection. Also Hecker 

(1994) observed in Djallonké sheep a smaller decrease of weight gain of due to 

infection, if they were supplemented with concentrate. Also our reported studies, 

however, do not exclude an interaction of nutrition and infection on animal produc­

tivity. This interaction may be twofold. In the first place, in a field setting in which 

poor feed quality prevents for a high animal productivity (often the case in tropical 

small ruminant production systems; Ademosun et al., 1988), an extra stress factor like 

trypanosome infection may bring productivity to zero; in animals fed a better quality 

feed, however, still some production is possible. Supplementation could therefore 

increase animal productivity by acting as a lever (due to the fact that a large part of 

the ingested feed is used for maintenance requirements). In the second place, 

interaction may be detected with respect to the number of cases of severe undernutri­

tion, which was more often observed in the low quality diet group than in the high 

quality diet group in our studies; this would probably have led to increased mortality 

after week 6 post infection, and consequently to a negative flock productivity. 

In practical goat keeping, therefore, it is recommendable to pay attention to the 

quality of the diet, especially during detected trypanosome infection. The applicability 

of supplements or other high quality feeds, however, is dependent on many factors, 

including production goals (physical production vs. insurance/financing motives for 

small ruminant keeping), costs of supplements and of labour, and other management 

constraints (Bosman, 1995). 

In the experiment, reported in chapter 8, the effect of nutritional history on the 

course of infection with respect to energy and N metabolism was studied. Our 

considerations for studying nutritional history included the notion that under practical 

husbandry conditions, feed quality may be poor during part of the year (Ademosun et 

a/., 1988); animals may lose weight during this period, which may leave them more 
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susceptible to trypanosomiasis (Ferguson, 1988). However, we have found minor 

interactions with respect to energy and N metabolism during the acute phase (first 4 

weeks) of infection. Noteworthy is that infected animals with retarded growth showed 

a tendency toward lower ME requirements for maintenance, compared with infected 

congeners with a normal growth pattern; however, this tendency disappeared in the 

combined data analysis (Figure 2). It was concluded that the course of infection was 

far more affected by the actual energy and N intake during the infection period, than 

by nutritional history of the infected animal. It is possible, however, that the applied 

feed restriction in our reported study was not severe enough to create differences in 

the response to infection. The compensatory feed intake often observed at realimenta-

tion after a period of feed restriction, however (Hogg, 1992), may invert the proposed 

negative effects on the course of infection. 

Conclusions 

1. The anaemia due to trypanosome infection was severe, indicating that the 

suggested tolerance of West African Dwarf goats to trypanosomiasis is different 

from that in N'Dama cattle. 

2. Induced trypanosome infection leads to a reduction in feed intake in West 

African Dwarf goats, during the acute phase of infection (first 6 weeks of 

infection). A large variation between animals exists; possible mechanisms 

behind this variation include: 

age of the infected animal; 

genotype of the animal, viz. polymorphism in the MHC region, most 

probably the gene encoding for TNF-a production; 

environmental conditions, like housing in social isolation. 

3. Trypanosoma vivax infection increases metabolizable energy requirements for 

maintenance (average from our studies 28 %). This increase is independent 

from intake level, and is caused by increased basal heat production, due to 

fever, and possibly other metabolic costs of infection, like the induction of an 

immune response. 

4. Energy retention is decreased in infected animals due to reduced energy intake 

and increased energy requirements for maintenance. 
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5. Infected animals compensate for increased maintenance requirements by 

reducing activity related energy expenditure (viz. standing and moving). 

6. Digestibility of dietary N and gross energy are not affected by T. vivax infection; 

metabolizability of the diet is not affected either. The relation between energy 

retention and nitrogen retention is not changed in 7. vivax infected animals; this 

means that infection does not induce an increase of N losses, compared with 

healthy animals at the same feed intake level. 

7. Blood and liver biochemical variables reflect the anorectic state of infected 

animals. Infection leads to reduced serum concentration of thyroid hormone (T3 

and T4), this being independent from feed intake level or quality of the diet. 

8. Under the applied experimental conditions, no interaction between diet quality 

and infection with respect to feed intake and N balance was observed. Effects of 

diet quality and of trypanosome infection on metabolism are therefore additive. 

Nevertheless, animal production may be boosted by improving diet quality. 

9. During the acute phase of infection, under the applied experimental conditions, 

no detrimental effects of a retarded growth pattern of young dwarf goats on the 

energy and N metabolism occur; the actual energy and N intake during infec­

tion play a more important role. 

10. More knowledge is needed on the mechanisms behind the regulation of feed 

intake during trypanosome infection, since in our studies variation in feed 

intake response to infection was proven to affect animal production most. 
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Summary 

This thesis describes a series of experiments, which were designed to study the effect of 

trypanosome infection on the energy- and nitrogen (N) metabolism of West African 

Dwarf (WAD) goats. The possible interaction with nutrition and nutritional status were 

investigated. Special attention was given to the feed intake response to infection of 

individual animals, and possible mechanisms behind the variation between animals. 

Therefore, castrated WAD bucks were infected experimentally with Trypanosoma 

vivax parasites and were followed for a maximum of 6 weeks afterwards (acute phase of 

infection). During this period, various traits were measured: individual feed intake, body 

weight, body temperature, packed cell volume, parasitaemia, energy- and N balance 

parameters. Moreover blood and liver biochemical variables, signifying the metabolic 

profile were measured, i.e., serum (or plasma) concentrations of glucose, non esterified 

fatty acids, ß-hydroxy butyrate, urea, insulin, thyroxine (T4) and triiodothyronine (T3) and 

hepatic triacylglycerol (TAG). After termination of the experiment, the animals were 

euthanized and post mortem micro- and macroscopic examination was done. 

In general infection caused severe anaemia, fluctuating fever and parasitaemia. Post 

mortem analysis showed the signs of 7. vivax infection, with hyperplasia of the lymphoid 

tissues and mononuclear infiltrates in several tissues. Also oedema of lungs and other 

tissue was observed, and frequently a mononuclear myocarditis. 

Variation in dry matter intake (DMI) reduction due to infection differed widely 

between animals and experiments. The mean ratio (DMI during infection / DMI before 

infection) for the different experiments ranged between 0.38 and 0.80, whereas variation 

in individual response was even higher. In the infection trial reported in chapter 2, it was 

studied if the individual DMI responses to successive trypanosome infections had a high 

repeatability if environmental conditions were changed during the second infection 

period. This would give insight in the sources of variation that caused the differences in 

DMI response among animals. Little correlation was found between the individual DMI 

response to successive trypanosome infections. It is concluded that environmental factors, 

like a different housing system in the subsequent infection periods, has played a large 

role in the DMI response. In the study described in chapter 3, the variation in clinical 

traits among infected goats was related to polymorphism of the major histocompatibility 

complex (MHC) region on the genome. Some evidence was found that differences in 

DMI response among animals was related to MHC class I and II polymorphism. It is 

suggested that this correlation may be attributed to genetic differences among animals 

153 



154 Summary 

in the production capacity of tumor necrosis factor-a (TNF-CT), a cytokine which 

negatively affects feed intake during infection. 

In chapters 4 and 8 results from two experiments are reported, which were designed 

to study the effect of trypanosome infection on energy- and N metabolism. The results 

demonstrate that infection led to reduced dietary energy- and N uptake, with no changes 

in diet digestibility and metabolizability. Metabolizability was found to be different for 

the two experiments (general discussion). The metabolizable energy (ME) requirements 

for maintenance were increased by infection (average increase over different studies 

equalled 28 %). This increase appeared to be independent from feed intake level 

(general discussion), and was mainly caused by an increase of heat production (HP) in 

infected animals. Individual heat production, body temperature and body posture were 

measured continuously to study the effect of infection on these traits and the relation­

ships between these traits (chapter 5). It could be concluded that the short term variation 

in HP increase was related to the fluctuant fever during infection. Infected animals spent 

less time standing, which reduced energy costs. Indications were found that postural 

behaviour was thermoregulatory induced. Possibly also other metabolic costs like the 

induction of an immune response played a role in the increase of ME maintenance 

requirements. 

The increase of N retention with energy retention was not different in infected and 

control animals. Therefore infection did not induce an increase of N losses at iso-

nutritional comparison. A piecewise linear function was found to describe the combined 

dataset best (chapter 9), indicating a different relationship below and above zero 

maintenance, and/or a difference between the two energy balance experiments (chapters 

4, 8). 

The blood and metabolic biochemical parameters generally reflected the nutritive 

state of the experimental animals, with insulin and non esterified fatty acids being most 

sensitive to undernutrition. Fatty livers were observed in both infected and control 

animals with a negative energy balance. T3 and T4 were largely decreased by infection, 

irrespective of feed intake level (chapters 4, 7, 8). 

It was concluded from an experiment with a good and a poor quality fibrous feed 

(chapters 6, 7), that diet quality did not interact with the course of infection. This means 

that the effects of diet quality and of infection were additive. A few moribund animals 

with very low feed intake tended to show increased N losses. Therefore, under practical 

husbandry conditions, strategic supplementation during infection may offset the wasting 

effects of infection, and prevent for high mortality. 

The nutritional history of young dwarf goats , viz. a retarded growth pattern, did not 

interact with the course of trypanosome infection. However, a tendency toward lower 

ME maintenance requirements in infected animals with retarded growth, compared with 
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infected animals with a normal growth pattern was observed. It was concluded that the 

dietary provisions during infection were far more important for the outcome of disease 

than the nutritional history of the infected animal. 

The results of these studies make clear that future research should concentrate on the 

variation in feed intake response to infection in (trypanotolerant) breeds, as the major 

determinant of biological production. 



Résumé 

Cette thèse décrit un ensemble d'essais conduits afin d'étudier l'effet de l'infestation par 

le trypanosome sur le métabolisme énergétique et azoté de la chèvre naine d'Afrique de 

l'ouest (West African Dwarf goats, WAD). Les interactions pouvant exister avec 

l'alimentation et le statut nutritionnel ont été recherchées. L'effet sur l'ingestion de 

l'infestation des animaux, et les mécanismes pouvant expliquer les variations entre 

individus ont fait l'objet d'une attention particulière. 

Ainsi des boucs WAD infestés expérimentalement avec des parasites Trypanosoma 

vivax ont fait l'objet d'un suivi sur une période maximale de 6 semaines suivant 

l'infestation expérimentale. Durant cette période correspondant à la phase aiguë de 

l'infestation, plusieurs critères ont été mesurés : quantités ingérées, poids vif, température 

corporelle, hématocrite, parasitémie, paramètres décrivant les bilans énergétique et azoté, 

paramètres métaboliques sanguins et hépatiques - glucose, acides gras non estérifiés, ß-

hydroxy-butyrate, urée, insuline, thyroxine (T4), triiodothyronine (T3) et triacylglycérol 

(TAG) -. A la fin de l'expérimentation, les animaux ont été enthanasiés et ont fait l'objet 

d'examens macro- et microscopiques post-mortem. 

Dans le cas général, l'infestation provoque une anémie sévère, une fièvre oscillante 

and une parasitémie. L'autopsie permet de mettre en évidence des signes liés à 

l'infestation par T. vivax, en particulier une hyperplasie des tissus lymphoides et des 

infiltrats mononucléaires dans plusieurs tissus. Cet examen a également permis 

d'observer un oedème des poumons et de plusieurs autres tissus, ainsi que fréquemment 

une myocardite mononucléaire. 

La réduction de quantités de matière sèche ingérée (MSI) avec l'infestation varie 

fortement entre animaux et essais. Les valeurs du rapport moyen entre quantité de MSI 

au cours de l'infestation et quantité de MSI avant infestation s'étendent de 0,38 à 0,80 

d'un essai à l'autre, tandis que ce rapport présente de plus larges variations entre 

animaux. 

Dans l'essai décrit au chapitre 2, la répétabilité des quantités de MSI en réponse à 

des infestations successives par T. vivax a été étudiée dans le cas où les facteurs environ­

nementaux étaient modifiés pendant la seconde période d'infestation. Cette étude avait 

pour but d'évaluer les facteurs de variation des quantités de MSI entre individus. Les 

quantités de MSI en réponse à des infestations successives sont faiblement corrélées. 

Ainsi, les facteurs environnementaux, tels que les différents types de logement dans les 

périodes successives d'infestation, jouent un rôle important dans les variations de 

quantité de MSI. 
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Dans le chapitre 3, les relations entre les différents signes cliniques observés chez les 

chèvres infestées et le polymorphisme du Complexe Majeur d'Histocompatibilité ont été 

étudiées. Il apparaît que des différences de quantité de MSI par les animaux peuvent être 

liées au polymorphisme des classes I et II du Complexe Majeur d'Histocompatibilité. 

Cette corrélation pourrait être attribuée à des différences génétiques dans l'aptitude à 

produire le facteur a de nécrose des tumeurs (tumor necrosis factor-a, TNF-ar), ce facteur 

étant une cytokine qui réduit l'ingestion au cours de l'infestation. 

Les essais décrits dans les chapitres 4 et 8 avaient pour objectif d'étudier l'effet de 

l'infestation par le trypanosome sur le métabolisme énergétique et azoté. Les résultats 

montrent que l'infestation conduit à une diminution de l'absorption d'énergie et d'azote 

des aliments, alors que la digestibilité et la valeur métabolisable de la ration ne varient 

pas. La valeur métabolisable des rations était différente d'un essai à l'autre (cf. discussion 

générale). Les besoins d'entretien exprimés en énergie métabolisable augmentent avec 

l'infestation (augmentation moyenne de 28 % sur la base de différents essais). Cette 

augmentation apparaît indépendante du niveau d'ingestion (cf. discussion générale), et 

semble principalement due à une augmentation de la production de chaleur chez les 

animaux infestés. 

Dans le chapitre 5, la production de chaleur, la température corporelle et la posture 

des animaux ont été mesurées en continu afin d'étudier l'effet de l'infestation sur ces 

critères et les relations entre ces critères. Les variations à court terme de production de 

chaleur sont liées à une fièvre oscillante pendant l'infestation. Les animaux infectés 

passent moins de temps debout, ce qui réduit les dépenses énergétiques. Il apparaît que 

le comportement postural estthermorégulé. D'autres éventuel les dépenses métaboliques, 

telles que l'induction d'une réponse immunitaire jouent un rôle dans l'augmentation des 

besoins d'entretien exprimés en énergie métabolisable. L'augmentation de la rétention 

azotée avec la rétention d'énergie ne diffère pas entre animaux infectés et témoins. Ainsi, 

l'infestation n'induit pas d'augmentation de pertes azotées pour des régimes iso-

nutritionnels. 

Dans le chapitre 9, une fonction linéaire d'ajustement aux données a été décrite, 

permettant de montrer des relations différentes en fonction du niveau de couverture des 

besoins d'entretien, et des différences entre les bilans énergétiques des deux essais 

(chapitres 4 et 8). 

Les paramètres métaboliques et sanguins reflètent en général l'état nutritionnel des 

animaux. Les concentrations en insuline et acides gras non estérifiés apparaissent plus 

sensibles à la sous-nutrition. Des foies steatoses ont été observés chez les animaux 

infectés comme chez les témoins avec des bilans énergétiques négatifs. Les concentra­

tions en T3 et T4 sont fortement diminuées chez les animaux infectés, indépendemment 

du niveau d'ingestion (chapitres 4, 7 et 8). 
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Un essai conduit avec deux qualités de ration fibreuse (bonne/mauvaise) a permis de 

montrer que la qualité de la ration n'interagit pas avec l'évolution de l'infestation 

(chapitres 6 et 7). Les effets de la qualité de la ration et de l'infestation sont donc 

additifs. Quelques animaux moribonds avec une faible ingestion ont montré des pertes 

accrues en azote. Ainsi, en pratique, une supplementation pendant l'infestation pourrait 

contrecarrer les effets négatifs de l'infestation, et empêcher la mortalité élevée. 

Les antécédents nutritionnels de jeunes chèvres naines, mesurés au travers de leur 

retard de croissance, n'interagit pas avec l'évolution de l'infestation par le trypanosome 

(chapitre 8). Toutefois, les besoins d'entretien exprimés en énergie métabolisable tendent 

à être plus faibles chez les animaux infestés avec un retard de croissance que chez les 

animaux infestés avec une croissance normale. Ainsi, il apparaît que l'effet du niveau des 

apports alimentaires pendant l'infestation sur les conséquences de la maladie est bien 

plus important que celui des antécédents nutritionnels des animaux infestés. 

Les résultats de ces essais montrent que les futurs travaux de recherche devraient plus 

particulièrement porter sur l'étude des variations de quantités ingérées en réponse à 

l'infestation dans les races trypanotolérantes, en raison de son rôle majeur sur la 

production. 



Samenvatting 

Het proefschrift dat voor u ligt, is het resultaat van viereneenhalf jaar promotieonderzoek 

naar de invloed van trypanosomiasis (slaapziekte) op een aantal aspecten van de 

stofwisseling van Westafrikaanse dwerggeiten. Eerst zal op de achtergrond van dit 

onderzoek worden ingegaan, waarna de belangrijkste resultaten zullen worden 

besproken. 

Introductie 

Slaapziekte is een protozoaire ziekte, en komt voor in een groot aantal Afrikaanse landen 

ten zuiden van de Sahara; de ziekte bedreigt zowel mens als dier. De herkauwers onder 

de landbouwhuisdieren (koeien, schapen, geiten) worden relatief het vaakst besmet met 

Trypanosoma vivax en Trypanosoma congolense, twee van de species die slaapziekte 

veroorzaken. De ziekte wordt overgebracht via de bloedzuigendetseetseevlieg. Naar het 

ziektebeeld is veel onderzoek verricht; men vond dat infectie in het algemeen leidt tot 

sterke bloedarmoede (anaemie), koorts en verminderde eetlust, en dat de afloop vaak 

dodelijk was. Het afweersysteem heeft enige tijd nodig voor de specifieke herkenning 

van de indringer en het ontwikkelen van een afweerreaktie ('immuun respons') hiertegen; 

als deze immuun respons in werking treedt, blijken ondertussen echter enige protozoën 

zich te hebben 'vermomd' voor het immuunsysteem, zodat zij niet gevoelig zijn voor 

deze immuun respons. Deze protozoën kunnen zich daardoor enige tijd ongehinderd 

vermeerderen, waarna de volgende wèl tegen hen gerichte immuun respons in werking 

treedt. Ondertussen hebben sommige parasieten echter een wéér ander 'jasje' 

aangetrokken, en het proces herhaalt zich. Zo kan dit lange tijd doorgaan, terwijl de 

patient langzaam wegkwijnt. 

Reeds lang geleden werd door onderzoekers de aandacht gevestigd op een aantal 

runder-geiten-en schapen rassen, afkomstig uit de landen waar slaapziekte voorkomt, die 

tolerant bleken te zijn voor slaapziekte. Dit betekent dat dieren wel geïnfecteerd kunnen 

worden, maar dat de ziekte een veel milder verloop heeft en vaak weer spontaan 

geneest. Uitgebreid onderzoek aan zo'n 'trypanotolerant' runderras, de N'Dama, wees 

uit dat deze dieren tijdens een infectie met trypanosomen weinig anaemie vertonen, en 

zelfs kunnen blijven doorgroeien, zodat de boer toch nog enige productie van zijn kudde 

heeft. De mate van deze tolerantie voor slaapziekte lijkt echter afhankelijk van 
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omgevingsfactoren, zoals de kwaliteit van de voeding van het dier, het productieniveau 

en eventueel tegelijkertijd optredende andere infecties. 

De laatste jaren is meer aandacht gekomen voor de mogelijkheden van kleine 

herkauwers (schapen en geiten). Zij zouden beter passen in kleinschalige en in 

gemengde landbouwsystemen dan runderen, en daarnaast is hun produktiviteit relatief 

hoog. Het algemene voordeel van herkauwers daarbij is, dat ze laagwaardige en voor 

menselijke consumptie ongeschikte voedingsbronnen kunnen omzetten in voor de mens 

nuttige produkten zoals melk, vlees, huiden, trekkracht en mest. In de gebieden waar 

slaapziekte voorkomt, zouden daarom trypanotolerante kleine herkauwers een bijdrage 

kunnen leveren aan de ontwikkelingvan een duurzame(re) landbouw. 

De mate van tolerantie van kleine herkauwers (geiten, schapen) is echter minder 

uitgebreid onderzocht dan die van runderrassen. Een serie veldstudies onder wisselende 

omstandigheden heeft inzicht gegeven in de produktiviteit van verschillende rassen 

geiten en schapen, maar naar het effect van trypanosomiasis op de stofwisseling (energie-

en eiwithuishouding) en andere fysiologische processen en de eventuele wisselwerking 

met de aangeboden voeding is nog weinig onderzoek verricht. Een vergroting van het 

inzicht in deze onderliggende processen kan indirect helpen om de produktiviteit van 

de dierlijke component van kleinschalige landbouwsystemen te vergroten. Daarnaast kan 

het bijdragen aan het vergroten van het inzicht in andere, vergelijkbare ziekten. 

Doel en methoden van het onderzoek 

In dit onderzoek bestudeerden we de mate van trypanotolerantie van Westafrikaan se 

dwerggeiten, één van de belangrijkste geitenrassen in door slaapziekte geteisterde 

gebieden. Hiertoe infecteerden we groepen gecastreerde bokken kunstmatig door een 

dosis van 100.000 tot 1.000.000 trypanosomen per dier in de halsader te spuiten. Ver­

volgens bestudeerden we van individuele dieren de voedselopname (het voedsel bestond 

in de meeste proeven uit gepelletteerde luzerne). Verder waren we geïnteresseerd in de 

variatie tussen dieren, en zochten we naar verklaringen voor het verschil in reactie tussen 

dieren. Daarnaast bestudeerden we de invloed van infectie op de energie- en 

eiwithuishouding van het dier, en onderzochten we of de kwaliteit van de geboden 

voeding invloed had op het verloop van de infectie. 

De energie- en eiwit-huishouding werd bestudeerd in respiratiecellen; dat zijn 

afgesloten ruimten waarin het zuurstofgebruik en de kooldioxide/methaan productie van 

de dieren bepaald kunnen worden. Met deze gegevens kan de warmteproductie 

berekend worden. Als van de opgenomen hoeveelheid energie ('bruto energie') de 

energie in faeces en urine, en de energie in de uitgeademde hoeveelheid methaan wordt 
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afgetrokken resteert de zg. metaboliseerbare energie. Als van deze metaboliseerbare 

energie de warmteproductie wordt afgetrokken, blijft de zg. energie retentie over, 

hetgeen de hoeveelheid energie is, die door het dier gebruikt kan worden voor enige 

vorm van productie (melk, vleesgroei, trekkracht). Deze energie balans is daarom een 

methode om te bepalen hoeveel energie een dier produceert (of inteert) in relatie tot de 

opgenomen hoeveelheid opgenomen energie, en ook kan de invloed van omgevingsfac­

toren, zoals kwaliteit van voeding en het voorkomen van infecties, op de energiebalans 

worden beoordeeld. 

De eiwithuishouding werd bestudeerd met behulp van de stikstofbalans (stikstof is 

een kenmerkende bouwsteen van eiwitten). De stikstofbalans is evenals de energiebalans 

opgebouwd uit enerzijds opname (van in dit geval stikstof dat in het voedsel zit) en 

anderszijds uit verliezen (stikstof in faeces en urine en in vervluchtigde ammoniak), en 

kan zowel in respiratiecellen als in balanskooien gemeten worden. Het verschil tussen 

stikstof opname en stikstof verliezen is de stikstof retentie. De verschillende onderdelen 

van de energie- en stikstofbalans worden gecorrigeerd voor verschillen in 

lichaamsgewicht tussen dieren, door te delen door het lichaamsgewicht tot de macht %; 

hierdoor worden gegevens van lichte en zware dieren met elkaar vergelijkbaar. 

Naast de hiervoor beschreven metingen, werd de concentratie van een aantal stoffen 

in het bloed gemeten, die informatie geven over de energiebalans; dat zijn de 

concentraties in het bloed van glucose, insuline, vrije vetzuren, ß-hydroxyboterzuur, 

ureum, thyroxine (T4) en triiodothyronine (T3). Omdat een van de gevolgen van een 

negatieve energiebalans is dat lichaamsvet wordt gemobiliseerd en dat daardoor in 

extreme gevallen leververvetting kan optreden is aan het einde van de infectie ook het 

vetgehalte van de lever gemeten. Om een indruk te krijgen van de ernst van de 

opgewekte infectie werd de mate van de door de infectie veroorzaakte bloedarmoede 

(anaemie) gevolgd. Hiertoe werd regelmatig het celvolume (haematocriet) van het bloed 

gemeten. Verder werden het aantal parasieten per ml bloed, en de lichaamstemperatuur 

gemeten. 

Uitkomsten van het onderzoek 

De opgewekte infectie leidde tot onregelmatige koorts met pieken en dalen, en tot sterke 

anaemie. Het lymfesysteem (lymfeknopen, thymus) was sterk geactiveerd; de longen en 

sommige andere organen vertoonden oedeem. Vaak werd een ontsteking van de 

hartspier geconstateerd. 

In de hoofdstukken 2 en 3 wordt de invloed van infectie op de voedselopname 

(uitgedrukt als de drogestofopname) beschreven. De drogestofopname bleek bij alle 
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geïnfecteerde dieren verlaagd te zijn tijdens de infectie. Bij de verschillende 

experimenten die we hebben gedaan, werden verlagingen tussen 20 en 62 % gevonden. 

De mate waarin de drogestofopname was verlaagd, uitgedrukt als de ratio 

(drogestofopname tijdens infectie / drogestofopname voor infectie), verschilde echter 

sterk van dier tot dier. Het bleek, dat als dieren tweemaal achter elkaar worden 

geïnfecteerd met verschillende soorten trypanosomen (respectievelijk 7. congolense en 

T. vivax), de individuele voedselopnamedaling beide keren niet even groot was (Hfdst. 

2). Dit werd met name veroorzaakt door de verschillende omstandigheden waaronder 

de twee infectie-experimenten plaatsvonden. Bij de tweede infectie waren de dieren 

individueel gehuisvest, waarbij de dieren geen soortgenoten konden zien of horen. Dit 

heeft waarschijnlijk stress veroorzaakt, hetgeen weer de voedselopname negatief 

beïnvloedde. Bovendien waren de dieren zwaarder (en vetter) tijdens de tweede infectie; 

in het algemeen zorgt dit voor een verlaging van de voedselopname. 

In een ander experiment werd een aanwijzing gevonden voor een verband tussen de 

variatie in de ratio drogestofopname tussen dieren enerzijds, en bepaalde genetische 

eigenschappen van deze dieren anderzijds. Van alle dieren in deze proef was namelijk 

het zg. Major Histocompatibility Complex (MHC) klasse I en II bepaald. Dit complex van 

genen is nauw betrokken bij de immuun respons tegen infecties. We vonden dat dieren 

met een bepaald MHC klasse I en II genotype een hogere ratio drogestofopname 

vertoonden dan dieren met een ander MHC genotype. Twee verklaringen zijn hier 

mogelijk. Het is mogelijk dat de MHC genen zelf betrokken zijn bij de voedselopname-

regulatie tijdens infectie, maar het is ook mogelijk dat andere genen op hetzelfde 

chromosoom de voedselopname tijdens infectie reguleren. Dit laatste ligt meer voor de 

hand, omdat het gen dat de productie van tumor necrosis factor-ff (TNF-o) reguleert 

vlakbij de klassen I en II van het MHC gelegen is. En van dit TNF-ar is weer bekend dat 

het tijdens slaapziekte infectie geproduceerd wordt, en een negatieve invloed op de 

voedselopname heeft. Als dit verband tussen voedselopname tijdens infectie en TNF-a 

genotype werkelijk bestaat, kan dit een handvat vormen om de dieren met de kleinste 

voeropnamedaling in een populatie te selecteren. 

In de hoofdstukken 4 en 5 wordt het onderzoek beschreven naar de energie- en 

stikstofbalans van geiten, die geïnfecteerd zijn met 7. vivax. De energie- en 

stikstofopname daalde onder invloed van de infectie. De energie- en stikstofverliezen in 

de faeces en urine bleken echter steeds een vast percentage van de opgenomen 

hoeveelheden aan energie en stikstof uit te maken, onafhankelijk van het feit of dieren 

geïnfecteerd waren of niet. Dit betekent dat de schijnbare verteerbaarheid van energie 

en stikstof (d.i. de verteerde hoeveelheid gedeeld door de totale opgenomen hoeveel­

heid) en de metaboliseerbaarheid van energie (d.i. de metaboliseerbare energie als 
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proportie van de bruto energie) niet werden beïnvloed door infectie. Het verteringsproces 

wordt dus waarschijnlijk niet beïnvloed door trypanosomiasis. 

De infectie bleek echter wel aanleiding te geven tot een sterke verhoging van de 

warmteproductie. Deze verhoogde warmteproductie, samen met de verlaagde bruto 

energie-opname, leidde tot een veel lagere en zelfs negatieve energie retentie bij 

geïnfecteerde dieren, met als gevolg dat geïnfecteerde dieren gewicht verloren. Verder 

was ook de stikstof retentie negatief; het bleek dat de energie retentie en de stikstof 

retentie nauw met elkaar verbonden waren. Deze relatie werd niet verstoord door de 

infectie. In een volgende proef, die beschreven is in Hfdst. 8, lag het voedselopname-

niveau van de proefdieren hoger. Hierdoor was de energie- en stikstof retentie van 

geïnfecteerde dieren nog positief en namen de dieren nog licht in gewicht toe. Op basis 

van de resultaten van deze twee experimenten werd geschat dat in de acute fase van de 

infectie de onderhoudsbehoefte aan energie 28 % verhoogd is. Dit wil zeggen dat 

geïnfecteerde dieren ten opzichte van gezonde dieren gemiddeld 28 % meer energie 

moeten opnemen om alle onderhoudsprocessen in het lichaam te bekostigen. Uiteraard 

betekent dit een sterke verlaging van de productie ten opzichte van gezonde dieren. 

Vervolgens werd de variatie van uur tot uur van de individuele warmteproductie 

bestudeerd in relatie tot de variatie in lichaamstemperatuur en tot het gedrag van deze 

dieren (Hfdst. 5). We vonden dat de verhoging van de warmteproductie bij geïnfecteerde 

dieren duidelijk in verband staat met de verhoogde lichaamstemperatuur. Ook zagen we 

dat zieke dieren energie besparen door meer te blijven liggen, omdat dit minder energie 

kost dan staan. Daarnaast werden aanwijzingen gevonden dat het moment waarop zieke 

dieren opstaan of juist weer gaan liggen, te maken heeft met gevoelens van onderkoeling 

of oververhitting. 

In een tweetal proeven, beschreven in hfdst. 6 - 8 , werd onderzocht of de kwaliteit 

en/of de aard van de voeding invloed kan hebben op het verloop van de infectie. 

Daartoe kregen de dieren onbeperkt voer aangeboden (ca. 40 % meer dan ze opkunnen). 

De ene groep kreeg een laagwaardig ruwvoeder (gehakseld grasstro) aangeboden, de 

andere een goede kwaliteit ruwvoeder (gepelletteerde luzerne). Het bleek dat het 

laagwaardige voeder in vergelijking met het hoogwaardige voeder tot een lagere 

voedselopname leidde en tot een lagere lichaamsgroei. In de groep geïnfecteerde dieren 

was de voedselopname en lichaamsgroei lager dan in de groep gezonde dieren. We 

vonden echter een even grote procentuele verlaging van de voedselopname door de 

infectie in beide voedingsgroepen (ca. 35 % verlaging ten opzichte van gezonde dieren). 

Hieruit valt af te leiden dat er geen sprake was van een interactie tussen de infectie en 

de voerkwaliteit voor wat betreft de voedselopname, hetgeen toch de belangrijkste 

bepalende factor in de dierlijke productie is. Op grond hiervan zou geconcludeerd 

kunnen worden dat het niet uitmaakt of je hoogwaardig of laagwaardig ruwvoeder 
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verstrekt aan geïnfecteerde dieren. Toch kan het raadzaam wezen een hoogwaardig 

ruwvoeder te verstrekken aan geïnfecteerde dieren, omdat de dieren hiermee beter in 

conditie blijven en wellicht op de langere termijn beter de infectie de baas kunnen. 

In de proef, beschreven in Hfdst. 8, werd onderzocht welke invloed een periode van 

ondervoeding heeft op een daaropvolgende slaapziekte infectie. Het is immers bekend, 

dat in de tropen regelmatig perioden van ondervoeding voorkomen, bijvoorbeeld door 

verslechtering van de voederkwaliteit in de droge tijd. Deze proef werd als volgt 

uitgevoerd. Aan jonge, groeiende bokken werd gedurende een periode van 17 weken 

een beperkte hoeveelheid luzerne gevoerd ('vertraagde groei'), terwijl een groep 

leeftijdsgenoten volop luzerne konden eten ('normale groei'). Dit leidde tot een verschil 

in gewicht van 6 kg tussen deze twee groepen dieren aan het begin van de infectie. Om 

de mogelijke verschillen in het verloop van de infectie uitsluitend te kunnen toeschrijven 

aan de in de voorperiode opgelegde verschillen in het rantsoen, werd tijdens de infectie 

periode aan alle dieren volop voeder verstrekt. 

Ook in deze proef werden er weinig aanwijzingen gevonden voor een interactie 

tussen infectie en de voederrantsoenen. Het bleek dat de nutriëntenopname niet 

wezenlijk verschilde tussen de geïnfecteerde dieren met normale groei en met 

groeiachterstand. Wel werden aanwijzingen gevonden, dat bij dieren met een 

groeiachterstand de verhoging van deonderhoudsbehoefteals gevolg van infectie, kleiner 

was. Dit zou kunnen wijzen op een efficiëntere stofwisseling van deze dieren. Op grond 

hiervan kwamen we tot de conclusie dat het belangrijker is kwalitatief hoogwaardig 

voeder beschikbaar te stellen tijdens de infectie, dan in de periode voor de infectie. 
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