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Abstract 

Meteorological models for numerical weather prediction or climate simulation 
require a description of land surface exchange processes. The degree of complexity of 
these land-surface parameterization schemes — or SVAT's — that is necessary for accurate 
model predictions, is yet unclear. Also, the calibration of these SVAT's for relatively 
complex terrain, such as sparse canopies, is not completely resolved. This thesis pays 
attention to the sensitivity of the atmospheric boundary layer to the parameterization of 
surface exchange processes for a sparse canopy surface. 

During two experimental campaigns carried out in a sparsely vegetated vineyard 
surface in La Mancha, Spain, detailed measurements were collected, including the flux 
densities of sensible, soil and latent heat, radiative fluxes, aerodynamic properties, and soil 
and vegetation characteristics. These measurements were used for calibration and 
validation of various SVAT-models and their components. 

In a theoretical analysis the traditional treatment of aerodynamic transport of heat 
and moisture between a sparse canopy surface and the atmosphere was considered, and 
compared by an alternative formulation based on Lagrangian diffusion theory. An analysis 
of field observations was carried out to quantify the spatial and temporal variability of the 
surface albedo of a sparsely vegetated surface. Furthermore, a model for the stomatal 
conductance, based on the calculation of leaf photosynthesis and its relations with 
stomatal water vapour transport, was tested and scaled-up to the canopy level. 

Various existing SVAT's, designed for sparse canopies, were described and 
compared to field measurements in a zero-dimensional mode, that is, with forcings 
measured at reference height close above the surface. These models were all based on 
different physical treatment of soil heat flux, aerodynamic exchange and canopy 
resistance. None of the included models gave an optimum description of the observed 
fluxes, but a model could be constructed that combined the best parts of each of these 
SVAT's. 

In an additional model study, this new description has been coupled to a one-
dimensional planetary boundary-layer (PBL) model. Parts of the SVAT were replaced by 
other components, and the impact on simulated PBL-dynamics has been evaluated. Large 
effects are found when (a) the reference two-layer model was replaced with a single layer 
('big leaf') model, (b) soil heat flux was simulated with a resistance scheme rather than a 
diffusion or force-restore scheme, and (c) the aerodynamic resistance between the 
reference level and the bare soil was chosen too low. Since vegetation cover was small, 
smaller effects resulted from an alteration of the canopy resistance formulation. Also, it 
was found that the simulated entrainment of heat at the top of the boundary layer is low 
compared to entrainment ratios cited in literature. 

Keywords: sparse canopy, surface fluxes, surface-PBL interaction, land-surface processes. 



Dit boek draag ik op aan mijn vader 
en mijn moeder 

Voorwoord 

Het eeuwige dilemma tussen 'het perfecte levenswerk' en 'het is maar een 
proefschrift' is op het werk dat in dit boek beschreven staat zeker van toepassing. Het 
onderwerp: modellering van land-oppervlak processen in meteorologische weer- en 
klimaatmodellen. Het materiaal waar uit te putten is: een erg groot aantal bestaande land-
oppervlakmodellen, met ieder een eigen gedachtengang, behoefte aan invoergegevens, en 
mate van beschikbare documentatie en validaties. De opdracht: een vooral 'eerlijke' 
vergelijking tussen een aantal van die modellen uit te voeren met behulp van een zelf 
verzamelde dataset. Het lijkt een overzichtelijke opgave, maar de waarheid is anders. 

Nog helemaal niet van plan om te promoveren kreeg ik na mijn vervangende 
diensttijd aan de vakgroep Meteorologie een aanstelling als EFEDA-projectmedewerker 
(wordt in dit boekje verder uitgelegd). Een jaar daarvoor begon Anno van Dijken in het 
kader van een promotie-baan moedig aan het uitvissen van de benodigde mate van detail 
in land-oppervlakmodellen voor meteorologische toepassingen, en wisselde deze 
onderzoeksopdracht in voor een baan bij MeteoConsult. Hij liet een portie denk- en 
programmeerwerk achter waar ik dankbaar gebruik heb kunnen maken. Want, van Henk 
de Bruin kreeg ik het verzoek het promotie-onderzoek af te ronden. Na wat aarzelen, en 
wat passen en meten met betrekking tot een kleine bijstelling van de oorspronkelijke 
onderzoeksvraag — zodat ik het werk wat ik voor EFEDA had gedaan grotendeels kon 
gebruiken voor het proefschrift — heb ik deze baan aanvaard. Aan deze Henk de Bruin 
dank ik niet alleen een slordige zes jaar betaald werk, maar bovendien een enorme 
bijdrage in de vorm van morele steun, kritische en vaak zeer praktisch georiënteerde 
vragen, contact met een flink aantal vakmensen binnen en buiten de EFEDA-gemeenschap, 
een gezonde dosis twijfels en een even grote dosis zelfvertrouwen, een muziek-
compagnon op diverse feestjes, een gewillig oor voor boze en vreugdevolle momenten, en 
zo kan ik nog wel even doorgaan. Hij is verder een drijvende kracht achter gigantisch veel 
werk op de vakgroep, en mijn dank voor al deze bemoeienis is groot, bijzonder groot. 

Ik weet eerlijk gezegd niet of ik collega-promovendi zoals met name Anne 
Verhoef, Cor Jacobs, Berenice Michels, Rushdi El-Kilani, Aafke Atzema, Joost Nieveen, 
Job Verkaik en Theo Jetten nou moet bedanken, of dat ik gewoon maar blij moet zijn met 
hun aanwezigheid en onze wederzijdse contacten. Nou ja, Anne is natuurlijk een maat uit 
duizenden geweest. Samen zweten in Spanje tijdens de EFEDA-campagne, de talloze 
gesprekken en small-talks over alles in onze werkkamer en daar buiten, en ook het sterke 
gevoel van solidariteit die gepaard ging met de gezamenlijke eindsprint voor een 
proefschrift in het laatste jaar. Als dankjewel het goede woord hiervoor is, nou, dan 
dankjewel. Aan Cor ben ik een vergelijkbare dosis solidariteit verschuldigd, maar omdat 
hij nou eenmaal anderhalf jaar voor liep op ons functioneerde hij ook als veelgebruikte 
vraagbaak en brainstorm-tank. Ook dankjewel. Kamer- en EFEDA-genoot Berenice, de 
talloze bieren bij José van Alhambra (ook in Spanje) zijn memorabel, en daardoor blijvend. 
En we hebben samen een mooie poster gemaakt voor de vakgroep. 

Collega-vakgroepsmensen zijn al net zo bedankbaar. Jon Wieringa, die tijdens mijn 
promotie-tijd als hoogleraar aantrad, en mij als een soort erfenis op zijn bord kreeg: 
bedankt voor de geleverde ondersteuning. Over ondersteuning gesproken: Bert 
Heusinkveld, het 'veulen' van EFEDA, een ware aanwinst voor de vakgroep: heel erg 



dankjewel. Minstens zoveel dank verdienen Kees van den Dries, de computer-beheerder, 
Ad van den Berg en Rolf Krikke, programmeer-nymphen en kroegtijgers, Anton Janson, 
de levensgenieter van de werkplaats, en zijn Siamese tweeling Teun Jansen — de 
conversaties op 13m hoogte boven een Spaanse wijngaard zijn onvergetelijk. Frits 
Antonysen en Johan Birnie die een nieuwe ervaring aan hun levens toevoegden door het 
EFEDA-gebeuren, medezaalvoetballer Willy Hillen, en natuurlijk Dick Weigraven, met zijn 
eeuwig optimisme en bereidheid tot medewerking. Een gigantische ondersteuning kreeg ik 
ook van secretaresse Gerrie van den Brink en haar collega's (Annelies, Jolanda), voor de 
vele even-tussendoor-vraagjes-en-formuliertjes. Voor hen allen gold dat zij hun baan op 
een voor mij erg plezierige manier invulden. Heel veel bedankt daarvoor. 

Van de stafmedewerkers Adrie Jacobs, Leo Kroon en Michael Saraber ontving ik 
naast een prettige hoeveelheid collegialiteit ook vaak repliek op mijn (semi-)wetenschap-
pelijke beschouwingen. En Adries bijdrage aan het EFEDA-werk valt niet op de achterkant 
van een bierviltje te vermelden, en een extra dankjewel is bier op zijn plaats. Dit geldt 
overigens evenzeer voor de verschillende studenten die meer of minder tijd aan EFEDA 
hebben besteed en nog niet zijn genoemd: Arnold Moene, Erik Beek, Laurens Ganzeveld, 
Ad Jeuken, Harold ten Dam, en Diedert Spijkerboer. 

This work is fun! It is funny to share lots of beers in Tomelloso with Henrik 
Segaard and his colleagues, and to share the enthousiasm about well-working material 
with Jan Eibers, Han Dolman and other members of the Winand Staring Centre. It has 
also been a pleasure to have worked with the people from the French Meteorological 
Service CNRM, in particular with Pierre Bessemoulin and Joel Noilhan. Joel probably 
helped me a lot to convince me that the EFEDA-work should be converted into a PhD-
thesis. And now he helps me even more by playing the role of criticizer in my promotion 
committee. I am grateful to that, as I am grateful to Bert Holtslag, Hans Vugts and 
Reinder Feddes. The EFEDA-community consists of many more people with whom I have 
experienced a pleasant collaboration, and taking the risk for forgetting people for granted, 
I would like to thank the people from the Amsterdam Free University, Yadvinder Malhi, 
Ford Cropley and others from the Reading University, the Wageningen colleagues Rene 
Kim, Wim Bastiaanssen, Peter Droogers, Han Strieker and a lot more, Martina Berger 
and others from the Free University of Berlin, Kevin Sene, Howard Oliver, Colin Lloyd, 
Eleanor Blyth and colleagues from the Institute of Hydrology in Wallingford, and 
Antonio Brasa and others from the University of Albacete. 

Apart from this long list of colleague scientists, I am particularly greatful to the 
inspiration I have pleasantly received from a few great (micro)meterologists: Keith 
McNaughton from HortResearch, Palmerston-North, New Zealand, who has spent an 
awfully large amount of time and patience in explaining how Lagrangian theory should 
be interpreted, how to write that down in a scientific paper, how moths can be used as 
meteorological sensor, how Christmas looks in summer, and, last but not least, how 
people are dressed for weddings in New Zealand. His participation to my wedding in 
April 1994 was a party on its own, and he once more proved himself to be a very pleasant 
and easy-to-go-along-with person. In an earlier stage, Dennis Baldocchi brought me 
irreversably on the path of scientific research, by sharing his great enthousiasm while I 
visited Oak Ridge. John Monteith, who has effectively "invented" many ideas micro-
meteorologists work with nowadays, sincerely inspired me at a few occasions, in 
particular during the evaporation workshop in Copenhagen. And finally, the many 
conversations with Anton Beljaars about now-adays SVAT's (see this booklet) turned out 
to be productive enough for writing a joint scientific paper. And of course, I thank him a 
lot for showing his confidence in me by offering a job at KNMI. 

Mijn hart gaat naar veel dingen. Natuurlijk naar mijn vrouw Christien, die me met 
zoveel dingen heeft geholpen. Maar ook naar 'mijn' theatergroep De Stichting Lens, waar 
ik een hele berg van de inspiratie die nog over was naast mijn werken aan SVAT's kwijt 
kon. Een groep bestaat uit mensen, en de mensen van Lens worden erg bedankt. 
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1 The gap between politicians ana 

climate researchers is difficult to bridge, 

as long as politicians don't understand politics, 

and climate researchers don't understand climate 

Introduction 

The population living on the Earth's surface is very familiar with processes as 

heating of the air after sunrise, wilting of crop leaves after a long period without rain, or the 

development of cumulus clouds by the end of a summer day. These processes are all simple 

results of a complex set of interactions between the surface and the air just overlying the 

ground. When the soil receives radiation, it returns this energy partially back into the 

atmosphere by heating it, or by using this energy for evaporation, humidifying the air. 

Heating the air above the ground enhances turbulence intensity, which can cause intense 

mixing with higher air layers. In its turn, this affects the state of the air near the surface. 

Rising of moist air can also result in the formation of clouds, which will modify the amount 

of radiation penetrating to lower levels, or can eventually cause rain (Mcintosh and Thorn, 

1983). The land surface and the overlying atmosphere clearly interact. 

This thesis reports on a study of this interaction. It pays attention to the transport of 

water vapour, sensible heat and momentum between the surface and the atmosphere. It 

focusses on a surface that is only partially covered with vegetation. The framework is 

provided by measurements, theoretical analysis, and modeling efforts. In this chapter we 

will discuss the atmosphere-land surface interaction in more detail, and an outline and the 

main purposes of the research will be given. 

Atmosphere - land surface interaction 

Generally, the land surface-atmosphere interaction influences the dynamics of the 

entire atmosphere, both on the shortterm regional and the longterm global scale. The 

transfer of momentum and sensible and latent heat between the surface and the atmosphere 

primarily modifies the local surface and air adjacent to it, but atmospheric motions act as a 

major redistributor of energy at a global scale (Schmugge and André, 1991). 

By conducting experiments with atmospheric General Circulation Models, GCM's, it 
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has been shown that the large end of the range of spatial and temporal scales, the global 

climate, is sensitive to the land-surface exchange processes (Garratt, 1993). Early GCM studies 

revealed a climate sensitivity to surface evaporation and initial soil moisture content, albedo, 

or surface roughness (see reviews by Mintz, 1984, and Rowntree and Sangster, 1986). For 

instance, Shukla and Mintz (1982) noticed a large reduction of continental precipitation over 

most continents when a potentially evaporating surface was changed into a surface without 

any evaporating at all using a GCM. Charney et al. (1977) found that an increase of the albedo 

of the Sahelian region would lead to a reduction of both the regional evaporation and 

precipitation in the area. Treatment of the transfer of water from deeper soil layers into the 

atmosphere via transpiration plays a significant role in the long term predictions of cloud 

development, precipitation, evaporation and soil moisture content (Milly and Dunne, 1994). 

GCM studies were also applied to investigate the impact of large scale changes in vegetation 

cover. Particularly, a series of simulations was dedicated to the effects of tropical 

deforestation (Henderson-Sellers and Gornitz, 1984; Dickinson and Henderson-Sellers, 

1988). 

Also, at somewhat smaller timescales a sensitivity of atmospheric behaviour to land 

surface description is evident. Beljaars et al. (1995) found a considerable difference in 

predicted USA rainfall after changing the land surface parameterization scheme in the ECMWF 

Numerical Weather Prediction (NWP) model. Moene et al. (1995) used the meso-scale High 

Resolution Limited Area Model (HIRLAM) covering Western-Europe, and found very 

different rainfall predictions for different soil moisture initializations. 

At smaller time and spatial scales, the interaction with the Planetary Boundary Layer 

(PBL) is important. The PBL is defined as the layer which is directly affected by the state of 

the underlying surface. It senses the diurnal variations of the surface properties (such as the 

surface temperature or evaporation) and adapts to a change of surface roughness. The 

condition and growth of the PBL depends on the partition of available energy at the surface. 

Using a numerical PBL-model with a simple energy balance scheme as lower boundary 

condition, Troen and Mahrt (1986) found a non-linear reduction of the PBL height when the 

surface evaporation was increased. 

The turbulent mixing of air in the PBL partly determines the state of the atmosphere 

at screen height, just above the surface. Since the driving force of heat and water vapour 

exchange at the surface is the gradient of the particular constituent between the surface and 

a reference level just above, feedback processes between the surface and the boundary layer 

contribute to the properties of the lowest layers of the atmosphere (De Bruin, 1987). This 

mechanism is denoted as PBL-feedback. 

PBL-feedback can result in either an increase or a decrease of the effect of changing 

surface properties on the energy balance of the surface. Jacobs and de Bruin (1992) 

demonstrated that including PBL-dynamics implies a negative feedback on evaporation 

when the crop resistance is modified: a reduction of the resistance causes at first instance an 

increase of the evaporation, which results in a decrease of the humidity deficit at reference 

height when boundary layer mixing is considered. Alternatively, positive feedback on 

evaporation occurs when the net radiation is changed, for instance due to a changing 

albedo. Both sensible and latent heat will be reduced when total radiant energy is reduced. 

Accounting for boundary layer mixing, also a reduction of the reference temperature will be 
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simulated, which reduces the humidity deficit and thus the evaporation. Rowntree (1991) 

pointed at a positive feedback mechanism that occurs when the surface resistance increases 

due to a removal of vegetation. A progressive reduction of the vegetation may be the result 

of a drying atmosphere and a decrease of precipitation. 

A second mechanism of feedback is the response of stomata to ambient conditions. 

In coupled models in which the stomatal conductance for water vapour is reduced as the 

ambient humidity deficit increases, a positive feedback on surface evaporation is simulated. 

A reduction of evaporation will result in a drier and warmer boundary layer, which will 

more rapidly entrain into the free atmosphere owing to the larger amount of sensible heat 

supplied from below. This entrainment will further reduce the air humidity close to the 

surface, to which vegetation often responds by a further reduction of the stomatal aperture 

(Jacobs, 1994). These feedback mechanisms obviously have a pronounced effect on the 

interaction between the surface and the atmosphere, and thus on the atmospheric response 

to surface characteristics. 

The implications of the feedback mechanisms for the exchange between the surface 

and the atmosphere on a regional scale have been made clear by use of simple concepts to 

describe PBL-dynamics and surface fluxes. For instance, De Bruin (1983) coupled a simple 

slab model for the convective PBL (Driedonks, 1981) to the Penman-Monteith combination 

equation providing surface fluxes. He showed that the the ratio of the surface evaporation to 

the so-called equilibrium evaporation (Priestley and Taylor, 1972) depends on the surface 

resistance for water vapour transfer, entrainment of heat from above the PBL, and 

aerodynamic surface characteristics. Monteith (1995a) explored the accomodation between 

transpiration from vegetation and the convective boundary layer by use of a similar model 

for the PBL and a linear response of stomatal conductance to ambient humidity. 

McNaughton and Jarvis (1983) introduced the concept of a 'coupling factor' fl, to indicate 

the degree of interaction between a (vegetated) surface and the atmosphere. A strong 

interaction is present when the aerodynamic exchange occurs very efficient, or when the 

surface resistance is large. 

Only for a constant surface forcing, both in time and space, the PBL will eventually be 

completely adapted to the underlying surface. Adaptation to spatially heterogeneous 

surfaces depends on the scale of the surface inhomogeneities. Hypothetically, fluxes from 

small scale heterogeneities are blended at the scale of the boundary layer, but the PBL will 

adjust to the local surface when the scale of the heterogeneities is large enough (De Bruin, 

1987; Shuttleworth, 1988). Raupach (1991) pointed out that a PBL is rarely fully adapted to 

the underlying surface, due to the relatively short time scale of the change of the lower 

boundary conditions associated with the diurnal variation. This scale consideration provides 

a second justification for considering surface-atmosphere interaction by using coupled 

surface-PBL models to simulate surface boundary conditions for large scale modelling 

purposes (Brutsaert, 1986). 

These conceptual studies reveal the significance of land-atmosphere interactions, but 

their results are not directly applicable as surface forcing in GCM's or NWP models. For these 

applications a large range of parameterization schemes have been developed in the last two 

decades. In the next section we will pay attention to these schemes. 
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1.2 Land surfaces and land-surface models 

The experiments listed above clearly demonstrate the need for a realistic land surface 

parameterization scheme in meteorological models. The surface energy balance equation is 

widely used to provide the lower boundary condition for atmospheric modelling purposes: 

Qt = H + XE + G (1.1) 

Here, Q» is the net radiation absorbed by the surface, H and XE are the sensible and latent 

heat released to the atmosphere, respectively, and G is the heat stored in the ground and 

surface elements, such as vegetation. A list of all symbols and acronymns can be found in 

Appendix I. In eq. 1.1 the radiation term is defined positive downwards, while the 

remaining terms are defined positive when directed away from the surface. Small amounts 

of energy used for photosynthesis or other chemical processes are ignored and excluded 

from this equation. Eq. 1.1 states that the total amount of radiative energy that is absorbed 

by the Earth's surface is used to heat the air, to heat the soil, or to evaporate liquid water 

that is a source of latent heat that can be used to heat higher atmospheric layers, when 

condensation of evaporated water vapour occurs. 

The amount of radiative energy absorbed by the surface, or its partitioning over the 

terms on the right hand side of eq. 1.1, is importantly determined by the type of surface. For 

polar regions covered with fresh snow a large part of the incoming shortwave radiation will 

be reflected, leaving relatively little energy that can be used to melt ice (incorporated in G) 

or heat the air aloft. A bare dry soil will show a quick increase of its temperature when Q» is 

positive due to the absence of available water that can be evaporated. The low thermal 

conductivity of a bare dry soil will result in a relatively small heat loss to G, and the surface 

will thus release most of its energy as sensible heat (Oke, 1978). When vegetation is present, 

it allows a significant energy release as latent heat, due to its capacity to transport water 

from deeper soil layers via the root system. However, the water transport capacity of most 

vegetation types is limited, and a vegetated surface will also act as a source of sensible heat. 

Many micrometeorological studies have been dedicated to the description of the 

energy balance for vegetated surfaces. A very well known concept is the so-called T îg leaf' 

model (Monteith, 1965), that regulates the partitioning of available energy (Q. - G) over 

sensible and latent heat by means of a series of transport resistances, which are governed by 

both aerodynamic and plant physiological characteristics. Using such scheme a surface must 

be characterized by parameters describing its aerodynamic roughness (Thorn, 1975), 

radiative properties (Goudriaan, 1977) and physiological resistance for evaporation (Kelliher 

et al, 1995). 

Parameterizations using the simple big-leaf concept are often based on detailed 

modelling and measurement studies of the microclimate within a canopy. Even for 

horizontally homogeneous vegetation covers a significant vertical variation of radiation, 

temperature or moisture exists within a vegetation stand. Multi-layer models describing 

these gradients (see e.g. Waggoner and Reifsnyder, 1968) require often too much input data 

and computation time to be useful in GCM's. Single layer models are more useful for this 

purpose, as made clear in a — suggestively entitled — paper by Raupach and Finnigan (1988). 

The simple 'big leaf' concept appears to lack realism in cases where the vegetation 

• 14 Sparse canopy parameterizations for meteorological models 



structure becomes more complex, for example, if the surface is only partially covered with 

plants. In this case, a major part of the available radiative energy reaches the bare soil and 

contributes to additional processes as heating of the underlying ground or of the air close to 

it. This heating leads to interaction between the heat fluxes from the canopy and bare soil 

components, in particular in cases where the canopy resistance is a function of ambient 

temperature or air humidity. Furthermore, canopy evaporation is generally smaller than that 

of fully vegetated surfaces as a result of the reduced leaf area. These surface types are 

denoted as sparse canopies. Agricultural crops early in the growing season, natural vegetation 

in dune landscape, tundra or savannah, or permanent orchards or vineyards in semi-arid 

areas are general and widespread examples of sparse canopies. 

Black et al. (1970) were probably the first to present a surface model computing the 

evaporation from a surface that was only partially covered with vegetation. A few years 

later, Deardorff (1978) presented a so-called two-component land surface scheme. In this 

approach, the energy balance of a surface is split into a canopy and a bare soil component. 

Deardorff's model was the first Soil-Vegetation-Atmosphere-Transfer (SVAT) model that 

could be applied in large scale meteorological models. Since then several SVAT's were 

developed which either regarded the Earth's surface as a single layer with various surface 

components (Noilhan and Planton, 1989), or proposed major improvements to Deardorff's 

model (Dickinson et al., 1986), or applied the Penman-Monteith combination equation to a 

similar two-component scheme (Shuttleworth and Wallace, 1985). Apart from these papers, 

numerous surface schemes were proposed that adapted one of these models for specific 

conditions or modified the complexity of these schemes to either the simpler or more 

complicated end (e.g. Sellers et al., 1986; Warrilow et al., 1986; Choudhury and Monteith, 

1988; Shuttleworth and Gurney, 1990; Xue et al., 1991; Koster and Suarez, 1992; Dickinson et 

al., 1993; Dolman, 1993; Braud et al, 1995; Viterbo and Beljaars, 1995; Bosilovich and Sun, 

1995). 

This abundant number of surface schemes provokes the call for intercomparison 

experiments. Various studies have been dedicated to comparing several of these surface 

schemes at various temporal and spatial scales. For instance, Dolman and Wallace (1991), 

Inclân and Forkel (1995) and Huntingford et al. (1995) compared various SVAT's with ranging 

complexity in a zero-dimensional mode, that is, by simulating fluxes using atmospheric 

forcings measured close above the surface. At the global scale, Sato et al. (1989) and Sud et al. 

(1990) compared the impact of replacing a very simple bucket hydrological model (Manabe, 

1969) by the sophisticated Simple Biosphere (SIB) model (Sellers et al, 1986). The 

aforementioned review of Mintz (1984) compares the sensitivity analysis of Shukla and 

Mintz (1982) to a similar experiment conducted by Suarez and Arakawa (cited by Mintz, 

1984) (and found considerable differences in continental rainfall for some areas). Recently, 

the Project for Intercomparison of Land surface Parameterization Schemes (PILPS; 

Henderson-Sellers et al, 1993; 1995) has been started, designed for a systematic 

intercomparison of about thirty surface schemes that are operational in current GCM's or 

NWP models. PILPS foresees in an extensive model documentation, sensitivity tests, and 

intercomparison experiments ranging from zero-dimensional model runs, using both 

synthetic and really measured forcings, to runs using fully coupled 3-dimensional global 

scale meteorological models. 
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1.3 A sensitivity analysis using a coupled SVAT-PBL model 

Comparison experiments have shown that considerable differences exist between 

surface fluxes simulated by different SVAT's. GCM and NWP simulations are shown to be 

particularly sensitive to the parameterization of moisture transfer from deeper soil layers to 

the atmosphere (Henderson-Sellers et al, 1995), and the treatment of this transfer is executed 

rather differently by the various models. 

An important question — one that is also one of the research topics in this thesis — 

that arises is what level of complexity a land surface scheme must contain (Garratt, 1992, 

1993). The large scale GCM or NWP sensitivity simulations contain so many degrees of 

freedom that the results are often difficult to interpret, and can only be expressed in very 

general terms. On the other hand, the stand-alone verifications of the various surface models 

using in situ observations allow a more transparent evaluation of aspects that play a key role 

in the exchange processes between the land surface and the atmosphere (and should be 

parameterized well in meteorological models). A disadvantage of these zero-dimensional 

intercomparison experiments is that atmospheric feedback processes cannot be taken into 

account, and their results seem to depend strongly on the test conditions and input data 

chosen. Furthermore, the number of processes that is simulated — even in relatively simple 

surface schemes as Deardorff (1978) — is still large enough to inhibit a straightforward 

interpretation of results. 

In order to answer the question about the required level of model complexity, the 

drawbacks of both the large global scale and small zero-dimensional comparison studies 

should be avoided optimally. The strategy that is adopted in the current study is to consider 

surface-atmosphere interaction using a coupled one-dimensional SVAT-PBL model. The single 

dimension of the analysis allows a focus on the surface exchange processes, and disregards 

large scale atmospheric effects as horizontal advection, cloud formation, radiation 

penetration through the air mass, precipitation and other synoptic events. By considering 

the transport of momentum, latent and sensible heat in a vertical column with a height 

exceeding the typical PBL-height, surface-atmosphere feedback processes are allowed to 

modify the surface fluxes. 

Within this one-dimensional framework a range of surface models of varying 

complexity will be coupled to a model for the PBL, and its response evaluated by performing 

simulations over a specified surface. Parameterizations are compared that currently are used 

in large scale meteorological models. This strategy differs in two ways from the PBL-

sensitivity experiments conducted by for instance Troen and Mahrt (1986) or Jacobs and de 

Bruin (1992), who altered the lower boundary condition of a coupled surface-PBL model by 

changing some of the surface parameters (albedo, crop resistance or fraction of potential 

evaporation, aerodynamic roughness length): 

(1) the interactions between surface and atmosphere are investigated for a specified surface, 

rather than studying the effect of changing the land surface itself 

(2) different existing parameterization schemes for land surfaces will be coupled to a 

selected PBL-model, rather than that the sensitivity of one selected SVAT to the values 

of the model parameters or input data is considered. 
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A further attempt to focus on the physical exchange processes is carrried out by 

disentangling the various parameterizations of the surface models. The various processes 

that play a role in a land-surface parameterization scheme show many mutual interactions. 

For instance, suppose that a certain SVAT that is used to calculate the energy balance of a 

sparsely vegetated surface under conditions of strong radiation, describes an erroneously 

small transport of water within the soil. Under the specified conditions, the bare soil surface 

will soon dry out, which shows up as a strong increase of the soil surface temperature, 

which affects net radiation and reduces the aerodynamic resistance owing to a stability 

correction, which perhaps enhances the evaporation from the canopy component, which will 

lead to an increase of the atmospheric humidity, etcetera. A sensitivity study will only be 

able to compare various soil water transport modules if these are implemented in an 

identical reference framework that describes the aerodynamic resistance, net radiation, 

canopy fluxes etcetera. 

In this study, we coupled a reference SVAT to a PBL-model, and four — more or less 

isolated — parts of this SVAT are replaced with parameterizations taken from other land 

surface schemes. The SVAT components that are distinguished and the reason for their 

selection are: 

(1) the representation of an incomplete vegetation cover. A crucial issue in the complexity of 

land surface schemes is the importance of discerning between bare soil and 

vegetation, in terms of surface temperature, radiation absorption and latent and 

sensible heat exchange 

(2) the type of soil model used. Various degrees of complexity are in use with respect to the 

number of soil layers and the parameterization of heat and moisture fluxes within 

the soil 

(3) the aerodynamic exchange between the surface and the atmosphere. Apart from selection 

of appropriate aerodynamic surface characteristics, a range of parameterizations can 

be applied to account for the turbulent exchange efficiency 

(4) the canopy resistance for evaporation. Not only the value of a minimum canopy 

resistance can be specified according to the type of present vegetation, also the 

complexity of crop resistance models varies widely. 

Most of the parameterizations of these components are taken from models that have 

been published in literature. We feel that the range of existing SVAT's is large enough, and 

the development of new schemes should be based on an evaluation of existing material. The 

results of the strategy of replacing model components will partly depend on the choice of 

the reference model and the simulated surface. The coupling between various surface 

processes will be different for different ways of representing surface processes or types of 

surfaces. 

As discussed before, the representation of sparsely vegetated areas induces stronger 

demands on land-surface parameterization than closed canopies. The applicability of the 

big-leaf model for dense vegetation covers has been demonstrated successfully, if the 

surface resistance for evaporation can be well defined. A larger discrepancy between various 

models is expected for sparse canopies, and these therefore serve as a better test 

environment for our purpose. Sparse canopies form a common surface type in semi-arid 
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areas, where the limited amount of available water constrains the biomass growth. A second 

reason for focusing on sparse canopy surfaces is that, at the time when this project was 

started, relatively little was known about the energy balance of a sparse canopy surface. 

Since then, considerable work on this issue has been published, and these studies have been 

useful here. 

For the current study, a well-defined sparse canopy surface is selected to serve as test 

case. This surface is a sparsely vegetated vineyard in a Mediterranean climate zone in La 

Mancha, Spain, which was one of the investigated sites during the regional scale EFEDA 

experiment (Bolle et al., 1993). EFEDA focussed on the surface energy balance of various types 

of vegetation covers in the Mediterranean summer season, during which the evaporative 

fraction of the surface available energy decreased considerably for many vegetation types. 

This change of the surface energy balance enabled the verification of measurement and 

modelling techniques in a large evaporation range in semi-arid conditions. Relevant for the 

current study are data for calibrating the surface models, providing initial and temporal 

forcings, as well as verification material. In the framework of this thesis these data were 

collected during two measurement campaigns conducted in the summer growing seasons in 

1991 and 1994. 

The central aims of this thesis are: 

(1) to provide insight in the physical processes governing the transport of momentum and 

sensible and latent heat between a sparsely vegetated (Mediterranean) vineyard 

canopy and the overlying atmosphere 

(2) to compare existing land surface parameterization schemes for this particular dataset 

with respect to the simulation of these fluxes 

(3) to evaluate the sensitivity of the Planetary Boundary Layer to modifications of the land 

surface parameterization scheme. 

1.4 Organization of the thesis 

This thesis pays attention to various aspects of (Mediterranean) sparse canopies, land 

surface and PBL schemes and their intercomparisons. In chapter 2 the case study area is 

described. A setup of the EFEDA project is discussed, and the site layout and measurements 

collected in the Spanish vineyard area are presented. Special care was dedicated to existing 

theory concerning corrections to measured quantities, in particular eddy-correlation. An 

outline of the correction algorithms applied is included in one of the appendices to this 

thesis. 

Chapter 3 contains a survey of some processes governing the exchange between a 

sparsely vegetated surface and the overlying atmosphere. It discusses the implementation of 

sophisticated Lagrangian theory in the traditional aerodynamic exchange resistances, and 

the shortwave reflectance (or albedo) of the case study area, illustrated by measurements. 

Also discussed is the crop resistance for evaporation, where attention is focussed on the 

application of a photosynthesis model for describing crop resistance (Jacobs, 1994). 

Chapter 4 presents an overview of the land surface schemes and PBL model that are 

selected for this analysis. The included surface models are selected in order to cover a 

certain range of complexity with respect to aerodynamic transfer, soil heat and moisture 
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transport, and surface representation. Selected are a form of the 'big leaf' model (Monteith 
1965), and the earlier mentioned models of Deardorff (1978), Choudhury and Monteith 
(1988), and Viterbo and Beljaars (1995). The selected range could arbitrarily have been 
extended, but encompasses the desired range of possible parameterizations. Both single- and 
dual source models are included, as are differences in treatment of soil heat flow, 
aerodynamic exchange and canopy resistance. Also, special attention is paid to a small 
modification of the model of Viterbo and Beljaars (1995), which results in a clear 
improvement of flux predictions under some conditions. For the range of canopy resistance 
models the schemes of Choudhury and Monteith (1988) and Viterbo and Beljaars (1995) 
were chosen. Also included here is an operational version of the photosynthesis-resistance 
model of Jacobs (1994). A description of the latter canopy resistance model is included in 
chapter 3. The boundary layer model that was selected is originally developed by Troen and 
Mahrt (1986), modified by a convective closure scheme proposed by Holtslag and Moeng 
(1991). This is the same model as was used for the work carried out by Jacobs and de Bruin 
(1992) and Jacobs (1994). 

In chapter 5 three land surface models that describe surface fluxes by explicitly 
discerning between vegetation and bare soil (Deardorff, 1978; Choudhury and Monteith, 
1988; Viterbo and Beljaars, 1995) are compared by means of a five day simulation of EFEDA 
measurements collected during the 1991 campaign. This comparison is zero-dimensional, 
which implies that forcings measured at screen height were used as boundary conditions. 
The intercomparison focusses on the aerodynamic transfer and sensible heat flux, the soil 
heat flux, and the canopy evaporation and soil moisture budget. 

Based on this comparison the SVAT components are selected that provide an 
optimum description of the observations. From these different components a reference 
model is constructed, for use in the coupled sensitivity runs reported in chapter 6. The 
coupled SVAT-PBL model is run for two artificial sets of initial and temporal boundary 
conditions separately. Components of the reference SVAT are replaced as outlined above, and 
the response of the boundary layer to this exchange is discussed. The PBL-response is 
evaluated in terms of surface and entrainment fluxes, mixed layer height, -temperature and 
-specific humidity. After this set of artificial simulations, measured initial and temporal 
boundary conditions are applied to the coupled SVAT-PBL model, in order to evaluate its skill 
to reproduce the actually measured meteorological conditions. This time the PBL-response is 
evaluated relative to a model run using measured surface fluxes as lower boundary 
conditions. The conclusion section of chapter 6 discusses the results, and presents 
suggestions regarding the sensitivity of the PBL to the parameterization of the land surface 
fluxes over a sparsely vegetated Mediterranean vineyard canopy. 
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2 To measure is to know 

(for what unknowns to correct for) 

Data collection and processing 

This chapter addresses the collection and processing of the data, used for this study. 

The data presented in this chapter were collected in the context of the so-called EFEDA-

project, of which purpose and context will be explained first. Also the correspondence 

between the EFEDA-purpose and that of this study is discussed. Then, the contribution of the 

Wageningen Department of Meteorology to two EFEDA-measurement campaigns is 

presented, including a description of the measurement sites. The data collection strategy is 

discussed, where methods for determination of scalar and momentum flux densities, 

available radiative energy, soil heat flux density, and vegetation parameters are adressed 

separately. Finally, some quantities derived from the described measurements are 

presented: aerodynamic roughness, roughness length for heat, soil thermal properties and 

energy balance components. 

2.1 The EFEDA-experiments 

2.1.1 Context and goal 

Since long mankind has influenced its environment. In Europe, land surfaces have 

been transformed by human agricultural activities, as well as by the development of cities, 

modern industries and traffic. These effects have gained special interest in the context of 

climate changes induced by the greenhouse effect, as predicted by GCM's. Particularly at the 

regional scale, model predictions of effects of change in global climate show large 

differences. These are partially caused by inadequate parameterizations of the interaction 

between the land surface and the atmosphere (Garratt, 1993). 

In this context the Commission of the European Communities have developed the 

European project on Climatic and Hydrological Interactions between the Vegetation, the 

Atmosphere and the Land Surface (ECHIVAL), as an important component of the European 

Programme on Climate and Natural Hazards (EPOCH). The first major activity of the 
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programme was the ECHIVAL Field Experiment in a Desertification-threatened Area (EFEDA). 

The main goal of EFEDA was to "get a better understanding of the processes, including the 

impact of mankind, that may lead to land degradation and desertification" (Bolle et al., 1993). 

More specifically, studies were carried out addressing the interaction between the 

vegetation, the soil below and the atmosphere above at regional scales, compatible with the 

grid scale of GCM's. Better parameterizations of these interactions are to be included in these 

large scale models, in order to improve their predictive power. Earlier GCM-results showed 

that the Mediterranean area is one of the most vulnerable European regions in case of a 

progressing greenhouse effect. Therefore, and for reasons of orographical simplicity, EFEDA-

activities were concentrated in the relatively flat area of Castilla-La Mancha in Spain, in the 

dry period of the growing season. Observations of the hydrological cycle, atmospheric 

processes, vegetation development and soil properties were collected in a wide range of 

spatial (from cm to 100 km) and temporal (from 0.1 s to 3 months) scales. Furthermore, 

evaluation of data supports modelling activities, ranging from one-dimensional SVAT models 

to three-dimensional mesoscale models. 

The EFEDA-programme was split into two parts. The first part (EFEDA-I) consisted of 

an intensive measurement campaign in the area of Castilla-La Mancha in June 1991, and a 

first step towards linking the surface measurements to regional scale processes using 

satellite images, airplane measurements and modelling activities. The project period was 

limited to 2Vi years. EFEDA-II was funded for 2Vi more years mainly to execute additional 

data processing and modelling. Furthermore, a few smaller experiments were carried out in 

order to survey particular instrumental differences and repeat some of the measurements 

carried out during EFEDA-I. The latter part of EFEDA-II took place in June-July 1994. 

2.1.2 EFEDA-I 

The spatial configuration of the ground-truth data collected during EFEDA consisted 

of three 'supersites', at mutual distances of about 70 km: Tomelloso, Belmonte and Barrax 

(Figure 2.1). Each of these supersites was considered representative for larger areas with 

similar landuse. Tomelloso (39°10'N, 3°1'W, 670 m) represented unirrigated vineyards, 

Belmonte (39°34'N, 2°27'W, 800 m) hilly natural and unirrigated agricultural vegetation, and 

Barrax (39°3'N, 2°6'W, 700 m) both irrigated and unirrigated farm land, respectively. At 

each of these supersites atmospheric, soil and vegetation data were collected at a number of 

sites simultaneously. Airplane measurements played a key role in linking surface 

measurements to the regional scale. Four airplanes were available, of which two carried flux 

measurement equipment, and two carried remote sensing instruments. 

About 30 scientific groups contributed to EFEDA-I. In the Tomelloso area continuous 

measurements of the energy balance components, vegetation characteristics and soil 

properties were collected at 9 sites by 7 groups, at typical mutual distances of 3-5 km. The 

Department of Meteorology of the Wageningen Agricultural University (WAUMET) 

coordinated and participated the collection of atmospheric and vegetation data in the 

Tomelloso supersite. A further description of the collection strategy is given below. 
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Figure 2.1: Geographic location of the EFEDA-area 

2.1.3 EFEDA-II 

EFEDA-II allowed some follow-up activities with respect to data processing, archiving 

and measuring. Important gaps in the dataset of EFEDA-I were the availability of soil 

moisture data in the entire rooting zone in the Tomelloso vineyard area, and a poor 

coverage of the airborne flux measurements, especially the three-dimensional distribution of 

the latent and sensible heat flux densities in the boundary layer. Apart from this, a number 

of groups felt it necessary to reconfirm some issues noticed during EFEDA-I by additional 

measurements. In this context a few participating groups decided to carry out a second 

observation session in the Tomelloso area. Again airplane flux measurements were carried 

out, together with a limited number (3) of ground stations. Also, WAUMET participated by 

contributing to a single ground flux station, in close collaboration with the Wageningen 

Winand Staring Centre (WSC) and the Copenhagen University (COP). A site close to 

Tomelloso, which had been under investigation during EFEDA-I as well, was selected. For 

EFEDA-II, data were collected during two months (June-July) in 1994. 

Unfortunately, a planned measurement scheme of horizontal, vertical and temporal 

variations of the soil moisture content was cancelled just before the experiment was 

undertaken, due to problems with customs administration. Despite of this major lack of the 

goal of EFEDA-II, the planned experiment was continued. 

Apart from the routine flux measurements, two instrumental intercomparison 

experiments were carried out in EFEDA-II. A net radiometer intercomparison was conducted 

for ten days in June 1994 at a bare soil site near Tomelloso, and 10 sets of eddy-correlation 

equipment were intercompared for ten days in May 1994 in Swifterbant, the Netherlands. 

WAUMET coordinated the latter experiment. 
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2.1.4 Correspondence of goals 
The goal and setup of the EFEDA-project fit very well in the current thesis. Similar to 

the EFEDA-goals, the importance and skill of various surface-atmosphere interaction schemes 
for predictions at larger scales is under study here. Furthermore, EFEDA provides a 
framework for the collection of data necessary for evaluation of the various surface layer 
models. As indicated before, these models were to be evaluated under dry sparse-canopy 
conditions, with limited orographic influence. 

A second aspect of the EFEDA-project which was very convenient, was that all 
participants agreed on mutual use of collected data. By this collaboration structure, data 
collected by other groups than WAUMET could be used for the present work. This 
particularly applies to the radiosoundings, collected by the Centre National de Récherche 
Météorologique (CNRM) of Toulouse, and the soil moisture data from the Dept. of Water 
Resources from the Wageningen University (WAUHBH). An overview of all surface flux data 
collected during EFEDA-I can be found in Chapter 5 of the Final EFEDA-report (Van den Hurk 
and De Bruin, 1993). 

Measurements taken by WAUMET during EFEDA-I (1991) 

2.2.1 Site description 
The site where WAUMET collected data during EFEDA-I was situated in a vineyard 

near Tomelloso (39°08'30"N, 2°55'48"W, 693 m ASL), Castilla-La Mancha, Spain (see Figure 
2.1). The prevailing wind directions were E and W. The surface type was almost 
homogeneous for a distance exceeding 1 km in both directions. Particularly in eastern 
directions the terrain slightly sloped, and height differences of about 5 m over a horizontal 
distance of a few 100 m were present. Approximately 15 km more southward the terrain 
was hilly. 

The vegetation at the site consisted of grape vine plants (Vitis Vinifera. L. cv. Airen), 
placed in a regular grid of about 2.6 x 2.6 m. The plants had an age of about 50 years, and 
consisted of low stems (± 30 cm), from which early in the measurement season only a few 
minor branches emerged. Each branch carried 10-50 leaves, which are light green and hairy 
on emergence, darker, flat and with an area of ± 70-100 cm2 in their full-grown stage, and 
dark green, stiff and irregularly shaped by damage when they are old (see also section 3.4). 
Due to night frost prior to the experimental period the vegetative development was 
somewhat delayed. During June 1991, the plants grew considerably, both in height and in 
diameter, and developed ovaries. The growing stage was not completely ended by the end 
of the campaign. This canopy type covered approximately 80% of the area within the direct 
surroundings of the measurement site. Apart from vineyards, arable crops, bare soil and a 
small fraction of irrigated maize was found. 

The soil was classified as a sandy loam soil with a fine texture. A large fraction was 
covered with stones with an average diameter of ± 3 cm. Due to a high iron oxide content 
the soil was red. At a depth of approximately 30 cm a zone consisting of hard, compact 
calcarous material was present. Investigations carried out in 1994 revealed that this layer 
extended to several meters depth, and not only a few decimeters, as was thought originally. 
A deep rooting zone enabled the vine plants to obtain water from the compact layer, which 
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has a large porosity. The upper soil layer was virtually dry during most of the period, and 
hardly any low vegetation developed. 

Once every 3-4 weeks the vineyard was cultivated, to remove bits of weed and to 
loosen the upper layer. Moreover, during the growing season shoots who did not bear 
ovaries were removed manually. The harvest of the vine grapes occurred mid October. This 
type of land use could be considered typical for an extensive area of at least 100 km2 in the 
direct surroundings. 
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Figure 2.2: site layout and urc-coordinates during EFEDA-I. Grid lines indicate a distance of 100 m. Labels are 
explained in Table 2.1 

2.2.2 General set-up of WAUMET 
The main task of WAUMET was to collect data of scalar and momentum flux densities 

between the vegetated surface and the atmosphere. In the period 2-29 June 1991 seven 
triangular masts (with diameter 0.20 m) were installed. Furthermore, soil measurements 
were carried out, together with the operation of a scintillation device, a SODAR device (both 

24 Sparse canopy parameterizations for meteorological models 



operated by the Royal Netherlands Meteorological Organisation, KNMI as subcontractor) and 

radiometric surface thermometers moved horizontally along two cables at some height 

above the surface (operated by sub-contractor Free University of Amsterdam, vu). Synoptic 

observations were carried out hourly, whereas various relevant vegetation parameters were 

collected throughout the entire month. An extensive project description is given by Michels 

and Moene (1991). Here only a summary is given. 

All automatic sensors were logged on a home-made datalogger controlled by a PDP-

11 minicomputer situated in a van at the site. Raw data were stored on magnetic tape, 

copied to optical disk and processed afterwards. Eventually a tape had to be changed every 

7-8 hours. From 7 June onwards, software adaptations allowed tapes to run for 17 hours. 

Power for the measurement and processing system was supplied by a 220V generator, 

located next to the van. The sampling frequency was 1 Hz for most sensors. The fast 

response sensors were sampled mostly at 10 Hz. At some days the sampling frequency for 

these sensors was increased to 100 Hz, since the generator was suspected to introduce a 

significant 50 Hz noise on these signals. Under these conditions, tapes lasted for only 2Vi hrs. 

Changing a tape took normally about 10 minutes, during which no data could be collected. 

Early in the period only daytime data were available. Thunderstorms frequently 

caused instrumental damage, even without any direct strike. Sensors were disconnected 

from the datalogger when thunderstorms were nearby. Later in the period these storms 

showed up less frequently, enabling more overnight measurements. Maintenance activities 

were another source of gaps in the data sequence. 

A second goal of WAUMET was to test a stand-alone flux station, which was being 

developed for use in the Hydrological Atmospheric Pilot Experiment HAPEX-Sahel 

experiment in Niger, 1992 (Goutorbe et al., 1994). Two Campbell 21X dataloggers were used 

rather than the PDP-device in the measuring van. The station included a one-dimensional 

sonic anemometer (Kaijo Denki DATllO) with a home-made thermocouple and Lyman-a fast 

response humidity sensor, and standard wind-profile, Bowen-raho and radiation devices. 

The energy was provided by solar panels. This station was operated from 9 June 1991 

onwards. Data of this station were not used for the present study, and an extensive 

description is not given. 

Table 2.1 gives an overview of all sensors being in operation during EFEDA-I, 

grouped according to the mast in which they were mounted. Figure 2.2 gives a site layout. 

In addition, Bolle et al. (1993) present a photograph of the measurement site, taken in the 

second measurement week. The following sections describe the sensors used and the 

sampling strategy operated during EFEDA-I. A presentation of correction procedures applied 

to raw data is given in Appendix II. 

All data collected during this EFEDA-I campaign by WAUMET are stored in a database 

(Krikke, 1994a). Surface flux measurements from all participants of EFEDA-I are collected in a 

database prepared by colleagues from CNRM, and were disseminated on CD-ROM 

(Anonymous, 1994). 
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Table 2.1: Instruments in operation during EFEDA-I; the indicated distance refers to the mast, the angle to the 
orientation with respect to the North 

mast 

a. 

b . 

c. 

d. 

e. 

f. 

g-

profile mast 

aT mast 

sonic mast 

13 m mast 

radiation 
mast 

VU mast 

VU eddy 
mast 

sensor 

5 psychrometers East-
side 

5 psychrometers West-
side 

wind vane 

5 thermocouples 

5 cup anemometers 

wind vane 

sonic anemometer 

Lyman-a 

thermocouple 

net radiometer (above 
plant) 

sonic anemometer 

Lyman-a 

thermocouple 

net radiometer (above 
soil) 

incoming shortwave 
pyrheliometer 

reflected shortwave 
(plant) 

reflected shortwave 
(bare soil) 

infrared thermometer 

6 C02-sampling tubes 

8 cup anemometers 
East-side 

7 cup anemometers 
West-side 

incoming shortwave 
pyrheliometer 

reflected shortwave 
(high) 

net radiometer 

wind vane 

sonic anemometer 

Lyman-a 

thermocouple 

type 

home-made 
(PT100) 

home-made 
(PTlOO) 

home-made 

home-made 
(CuCo) 

home-made 

home-made 

Kaijo Denki 
DAT310 

home-made 

home-made 
(CuCo) 

Middleton 

Kaijo Denki 
DAT310 

home-made 

home-made 
(CuCo) 

Middleton 

Kipp CM5 

Kipp CM5 

Kipp CM5 

Heimann KT14 

vu-made 

VU-made 

Kipp CM5 

Kipp CM5 

Middleton 

home-made 

Kaijo Denki 
DAT310 

vu-made 

home-made 
(CuCo) 

height/depth 
(m) 

0.71,1.42,2.93, 
4.93, 9.93 

0.69,1.50,2.98, 
5.04,9.98 

10.20 

0.67,1.47,2.95, 
4.94,9.87 

0.70,1.48,2.94, 
4.93,9.86 

10.20 

4.35 

4.42 

4.40 

1.07 

12.50 

12.50 

12.50 

1.03 

1.30 

1.07 

1.05 

4.20 

0.5,1,2,4,12,21 4 

0.5,1, 2, 4, 8,12,16, 
21 

1 ,2,4,8,12,16,21 

6 

6 

6 

21 

4 

4 

4 

distance 
(m) 

0.85 

0.90 

0 

1.35 

0.90 

0 

0 

0 

0 

1.10 

0 

0 

0 

1.15 

1.65 

1.65 

0.78 

0.30 

3 

3 

3 

3 

3 

3 

0 

0 

0 

0 

angle 

O 
70 

285 

-
155 

95 

-
0-360 * 

0-360 * 

0-360 l 

240 

0-360 * 

0-360 l 

0-360a 

170 

245 

245 

120 

195 2 

3 

3 

3 

3 

3 

3 

-
3 

3 

3 
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mast 

h. 

' • 

j -

k. 

1. 

m 

n. 

o. 

P-

q-

stand-alone 
mast 

Heimann 
mast 

Diffuse mast 

Stephenson 
screen 

soil plot 

cable high 

cable low 

SODAR 

Scintillometer 

soil plot 
(stand- alone) 

sensor 

wind vane 

1-dim. sonic 
anemometer 

Lyman-a 

thermocouple 

thermocouple 

4 cup anemometers 

net radiometer 

incoming shortwave 
pyrheliometer 

2 psychrometers 

infrared thermometer 
(plant) 

infrared thermometer 
(soil) 

diffuse shortwave 
pyrheliometer 

Assman psychrometer, 
min. and max. 
thermometer 

incoming longwave 
pyrgeometer 

5 soil thermometers 
(under plant) 

5 soil thermometers 
(under bare soil) 

3 soil heat flux plates 
(under plant) 

3 soil heat flux plates 
(under soil) 

4 Xp-needles (under 
plant) 

4 A^needles (under 
bare soil) 

moving infrared 
thermometer 

moving infrared 
thermometer 

SODAR 

Scintillometer (over 
distance of 875 m) 

soil thermometer 
(under plant) 

soil thermometer 
(under bare soil) 

type 

home-made 

Kaijo Denki 
DATllO 

home-made 

home-made 
(CuCo) 

home-made 
(CuCo) 

home-made 

Middleton 

Kipp CM5 

home-made 
(PT100) 

Heimann KT15 

Heimann KT15 

Kipp CM5 

Assman 

Eppley PIR 

home-made 
(PT100) 

home-made 
(PT100) 

TPD Delft 

TPD Delft 

home-made 

home-made 

3 

3 

KNMI 

home-made 
(PTlOO) 

home-made 
(PTlOO) 

height/depth 
(m) 

6.00 

4.13 

4.14 

4.04 

2.05 

0.90,1.50,2.96,4.94 

1.30 

1.30 

0.75,2.00 

0.97 

0.91 

2.00 

2.00 

2.00 6 

-0.03, -0.05, -0.10, 
-0.25, -0.50 

-0.03, -0.05, -0.10, 
-0.25, -0.50 

-0.05, -0.05, 

-0.05, -0.05, 

-0.03, -0.05, 
-0.20 

-0.03, -0.12, 
-0.35 

6.00 

3.00 

-
4 7 

-0.03 

-0.03 

-0.15 

-0.15 

-0.10, 

-0.22, 

distance 
(m) 

0 

0.90 

0.90 

0.90 

1.35 

0.90 

1.03 

0.85 

0.75 

0 

0 

0 

-

-

-

-

-

-

-

-

-

-
-

-

-

angle 

(°) 

-

140-220 1 

140-220 a 

140-220 1 

295 

350 

170 

205 

120 

190 5 

190 5 

-

-

-

-

-

-

-

-

-

-

-
-

-

-
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mast sensor 

soil heat flux plate 
(under plant) 

soil heat flux plate 
(under soil) 

r. measuring van and power generator 

s. wsc-tower 

t. wsc-albedo sensor 

u. wsc-albedo sensor 

V. TDR-plot 

type 

TPD Delft 

TPD Delft 

height/depth 
(m) 

-0.05 

-0.05 

distance 
(m) 

-

-

angle 
(°) 

-

-

Sonics were adjusted to the wind direction regularly 
2 the infrared thermometer had an inclination of -45° with the horizontal 
3 complete information about exact configuration is not available 
4 the upper sampling tube was used to measure the absolute concentration, the rest were measured differentially 

against this level 
5 the infrared thermometers had an inclination of -57° with the horizontal 
6 placed on top of the Stevenson screen 
7 The height of the scintillometer is not exactly defined, as the underlying surface is not entirely flat 

2.2.3 Determination of available radiative energy 

• Shortwave radiation 

Three terms of shortwave radiation (0.3 - 3 |jm) were measured during EFEDA-I: 

incoming total, incoming diffuse and reflected total. For all these components Kipp CM5 

pyrheliometers were used, consisting of a thermopile, shielded by a double dome filtering 

light outside this range. Incoming total shortwave radiation (K ) was measured at three 

places (see Table 2.1): in the radiation mast, in the VU mast, and in the stand-alone mast. The 

former two values were averaged to yield the best estimate of the incoming shortwave 

radiation. 

The diffuse radiometer was supplied with a solar shadow ring, which had to be 

adjusted once every few days as the declination between the Earth's rotation axis and the 

orbit plane changed. Early in the period the ring was not put in its proper position. 

Comparison with data collected at a neighbouring site by WSC enabled selection of time slots 

in which erroneous measurements were taken. Values in these time slots were rejected. 
T The reflected shortwave radiation, K , was measured at three places as well: over a 

parcel of bare soil, over a plant, and at 6 m height in the VU mast. The exact position of a 

downward looking sensor is of great influence for the amount of received reflected 

shortwave radiation. Apart from differences in reflection coefficient between the plants and 

the bare soil, local differences in soil humidity, iron content and plant density dictate a large 

variability in the observed albedo, a (section 3.3). 

• Longwave radiation 
From 18 June onwards an Eppley PIR longwave pyrgeometer was installed on top of 

the Stephenson screen (see Table 2.1). By an internal body temperature measurement, the 

instrument automatically corrects for the amount of longwave radiation being emitted by 

itself. Only this corrected total incoming longwave radiation, L , was registered. 
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Furthermore, the radiometric surface temperature was measured at a number of 

locations. A fixed Heimann KT14 was mounted at 4 m height on top of the radiation mast, 

looking downward at an angle of 45°. The sensor was mounted in a white PVC housing 

preventing it from heating errors, and supplied with a narrow view angle lens (4°). The 

instrument determines the radiometric surface temperature by measuring the longwave 

radiation in a band, where the emissivity of the emitting surface is high and the contribution 

of atmospheric radiation is low. Generally, surface temperature is measured in the range 

between 8 and 14 urn. Two newer Heimann KT15 with a 16° view angle objective were 

installed near the stand-alone mast: one above a parcel of bare soil, and one above an 

individual vine plant. The temperature measurements from these sensors were also used for 

the present thesis. These three sensors were calibrated in Wageningen before the 

experiment. Calibration was carried out by measuring the sensor signal given by a 

blackened cylinder (with longwave emissivity e = 1) in a water bath with known 

temperature. 

Also, at two locations a 8-14 (am radiometric surface temperature sensor was moved 

along a cable of ± 30 m long, at 6 m height and at 3 m height (Van de Griend et al., 1989). 

Both transects lead over a number of vine plants, separated by stretches of bare soil. A 

transect was run every 10 minutes, but the sensor crossed the distance in approximately 200 

s. Every 2 s a measurement was taken, which corresponds to a spatial resolution of 

approximately 30 cm. A Campbell 21X datalogger triggered the start of each transect and 

registered the measured temperatures. The strategy to obtain the average surface 

temperature is outlined in Appendix II. 

• Net radiation 

During EFEDA-I net radiation was measured with four Funk radiometers manu

factured by Middleton (CSIRO). The heart of the sensor is a copper-constantan thermopile 

between two blackened rectangular plates. On either side a thin (0.05 mm) poly-ethylene 

hemisphere, transparent in both the longwave (3 - 3000 yon) and shortwave (0.3 - 3 urn) 

range must be inflated by dry nitrogen gas, to avoid wind speed dependence of the sensor. 

The instrument gives the total net radiation rather than separate upward and downward 

components. Results from two net radiometers are used in this study, one situated 1 m over 

a parcel of bare soil, and one at 1 m overhead the surface with a vine plant underneath. The 

net radiometer at 6 m height in the vu-mast was not considered to give representative 

readings due to mast shading, whereas the one used in the stand-alone station was regularly 

used for net radiometer intercomparisons (see below). 

An independent assessment of the net radiation is obtained by considering the 

surface radiation balance, expressed as 

Qt=(l-a)Kl
+Ll-esoYlr <21> 

in which T sur is an 'effective' surface temperature, defined as a area weighted average of 

the plant and bare soil temperature (Blyth and Dolman, 1995). Incoming and reflected 

shortwave radiation was measured directly, as well as the incoming longwave radiation 

from 18 June onwards. The upward longwave radiation can be obtained from the 
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radiometric surface temperature, provided that the longwave emissivity of the emitting 

plant and soil surfaces is known. However, to compare a radiation balance obtained in this 

way with the measurement from a net radiometer introduces the difficulty in determining 

the contribution of the several different surface elements to the radiation budget at that 

particular position. Both albedo and radiometric surface temperature vary widely from 

space to space, and particularly differences between plants and bare soil are large. The net 

radiation measured at one height does agree with eq. 2.1 only when the surface emissivity 

and the effective surface temperature are well defined, and when the radiative flux is 

constant with height. The agreement is expected to be better early in the season, when the 

plants still have a limited size. For Q, as obtained using eq. 2.1, T sur was derived from the 

high cable (Appendix II), and a was taken constant, as discussed in section 3.3. 

Apart from the decision of where to place the sensor, a major difficulty with net 

radiation measurement is the accuracy of the instrument itself. Halldin and Lindroth (1992) 

investigated 6 types of net radiometers, including a Funk-type. Differences of up to 10% 

between different types of radiometers are not exceptional. This was confirmed by a brief 

intercomparison experiment carried out at a bare soil site near Tomelloso, at a number of 

days, and with a number of device configurations (Malhi and Van den Hurk, 1992). Sensors 

of identical makes gave quite satisfactory correspondence, but instruments of the Funk or 

REBS-type gave approximately 10% lower values than devices which separately measure the 

upward and downward radiative flux density, as for instance the actively ventilated 

Schülze-Däke. Particularly calibration of the longwave response is rather difficult. 

Furthermore, the cosine response of the sensor is not perfect, underestimating the received 

radiation at large zenith angles. Excess heating of the thermopile can result in a convective 

heat loss, which is larger in the top dome than in the bottom dome due to the influence of 

convection on air stability within the domes. For these reasons the accuracy of the Funk-type 

instruments applied during EFEDA-I is believed to be no better than 10%, rather than the 5% 

calibration accuracy specified by the manufacturer. 

2.2.4 Determination of scalar and momentum flux densities 

One of the key issues of the EFEDA projects is the assessment of the partition of 

available energy over latent, sensible and soil heat, and the role vegetation plays in this 

partition. The flux density of momentum is an important parameter for evaluation of the 

aerodynamic exchange of scalars, such as C0 2 , heat or water vapour. Therefore, much 

emphasis is put on the measurement of the momentum, sensible and latent heat flux 

density. 

The flux densities of scalars and momentum can be obtained using several methods. 

All the methods employed here have the following assumption in common: 

• ideally no distortion of the flow is caused by the measurement device 

• the measured fluxes, being representative for the upwind terrain, can be related to the 

locally measured available energy. This implies that the upwind terrain must be 

homogeneous at a large enough fetch to ensure that the measured fluxes can be 

considered to originate from that type of terrain only. 

During EFEDA-I four types of measurements were employed for most quantities: eddy-

correlation, variance and scintillation methods, profile and Bowen-ratio methods. 
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• The eddy-correlation measurements 

The instantaneous vertical transport of a scalar with concentration p is given by the 

product of px and the vertical wind speed w. A flux density averaged over a certain time 

interval, Fx, is obtained by averaging w px: 

r ~l~r (2 2) 
tx = Wpx = W p x + IV px ****' 

where the right-hand side of eq. 2.2 is obtained by Reynolds averaging. In eq. 2.2 overbars 

denote time averages, whereas primes denote deviations. The turbulent flux density is 

defined as the transport perpendicular to the mean wind. In that case w = 0, and Fx is given 

by w px. The flux density of sensible heat H is given by -pc w'%', where 9 is the potential 

temperature, p is the dry air density, and c the specific heat of dry air. A latent heat flux 
—7~~7 dens i ty XE is equal to -pXw q , w i th q t he specific humid i ty a nd X t he latent hea t of 

vapor iza t ion. The m o m e n t u m flux densi ty T is puw w i t h u t he horizontal w i nd speed, 

whi le a flux densi ty of scalar c (for instance, a specific concentrat ion of C 0 2 ) , Fc is -pw'c' ( in 

the following both the terms 'flux' and 'flux density' will be used simultaneously to denote 

the transport of a constituent through a horizontal plane of unit area per unit time). 

The eddy-correlation method requires measurements of w and x at a high enough 

rate to include all the fluctuations contributing to the turbulent flux density. This highest 

frequency is determined by the small-scale transition from turbulent eddy exchange to 

exchange determined by the molecular diffusivity of air. The low frequency end of the 

turbulent velocity range depends on the long term variations of the concentration and wind 

speed, usually forced by diurnal variation or instationarity caused by large scale weather 

systems. The turbulent transport takes place in the frequency range between these two 

limits, in the so-called inertial subrange (Tennekes and Lumley, 1972). In the surface layer 

this range is generally located between 10 and 0.001 Hz. Atmospheric stability and height 

affect this frequency range, giving relatively more important contributions from smaller 

time scales as height decreases or stability increases. Sensors that meet the frequency criteria 

of the method are needed. 

For wind speed, sonic anemometry is widely used. The wind speed in any direction 

is measured by observing the difference of travel time of a sound pulse travelling over a 

fixed distance in both directions parallel to the wind. The distance must be short enough to 

be able to measure at a high enough frequency rate, but large enough to ensure time 

measurement accuracy and to avoid flow distortion. The Kaijo Denki DAT310 uses an 

averaging path of 20 cm, and measures the wind speed in three directions: u and v are 

situated in the horizontal plane, and w is the vertical component. The transducers for the 

vertical wind component are outside the measuring volume for the two orthogonal 

horizontal directions. The DATllO measures the vertical component only. 

Temperature fluctuations can be measured accurately with thin fast response 

thermocouples. A thermocouple uses the temperature dependence of a potential difference 

over a junction of two different materials, usually copper and constantan. The junction must 

be fine enough to ensure a high response rate and reduce radiation heating of the wires. It 

also needs to be strong enough to withstand most environmental features (wind, rain, dust). 

The thermocouples used here are described by Van Asselt et al. (1991). 
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Sonic anemometry (Schotanus et ah, 1983) provides an alternative for fast response 

temperature measurement. The sound propagation speed Vc depends on absolute air 

temperature T and specific humidity q according to 

v] = 403 T (1+0.51 q) ( 2-3) 

The value of Vc can be measured by adding the transit times of the sound pulse travelling in 

both directions between the transducers at a known distance. A sonic temperature T is 

defined as 

T _ Vc (2.4) 
son 4 0 3 

Due to the dependence of Vc on q, Tsm (= T(l + 0.51^)) resembles but is not exactly equal to 

the virtual temperature Tv, given by T/{1 - (1 - 0.622)e/p] ~ T(l + 0.61q), in which e and p are 

the vapour and air pressure, respectively. 

Fast response humidity fluctuations are usually measured using an optical method. 

Water vapour absorbs light in certain wave frequency bands. The choice of the frequency 

band should avoid the possibility that light is absorbed by other gasses, specifically oxygen 

and ozone. The bands commonly used are Lyman-a at 121.56 nm and Krypton at 123.58 ran 

in the ultra-violet, and some bands in the near-infrared (Buck, 1976; Tillman, 1991). 

Measuring the intensity I of a monochromatic light beam passing through an open path of 

length ds enables the determination of the amount of absorbing gas pv in the volume, using 

Beer's law: 

I = I0exp(-d$pvkv/pv0) (2-5) 

Here, I0 is the beam intensity when pv = 0, kv is the absorption coefficient at standard 

pressure, and p^ the (fictitious) water vapour concentration at standard pressure (1013 mb, 

T = 0°C). A slight inconveniency is the fact that the response of I to pv is logarithmic rather 

than linear. However, when the fluctuations I' are small relative to the average I, a 

linearization of the response can be carried out, since then ln(l + I'/1)~I'/I, and pv' ~ 

-i/kvdsr/T. 
During EFEDA-I eddy-correlation measurements were carried out at 4 stations. Table 

2.2 gives an overview of the configuration of each. At the stand-alone station (system 3) a 

one-dimensional Kaijo Denki DATllO, including a home-made thermocouple and Lyman-a 

device were operated. Three 3-dimensional Kaijo Denki DAT310 devices were operational, 

also completed with home-made thermocouples and Lyman-a humidity sensors. Figure 2.3 

gives an overview of the orientation of the different configurations. The Lyman-a's in the 

lower masts (systems 1, 3 and 4) gave poor results throughout the entire measurement 

period. Results from these sensors are left unconsidered. The two devices of systems 1 and 2 

were rotated towards the mean wind regularly, to reduce flow distortion to a minimum. The 

device of system 4 was left in a fixed orientation, but its data are not included in the current 

study. 
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Table 2.2: Configuration of the 4 eddy-correlation systems as used during EFEDA-I 

Parameter 

Name of mast (Table 2.1) 

sonic dimensions 

height (m) 

frequency (Hz) 

low-pass filtering of œ-signal 
from 19 June onwards 

system 1 

eddy mast 

3 

4.35 

10/100 

yes 

system 2 

13m mast 

3 

12.50 

10/100 

yes 

system 3 

stand-alone 

1 

4.10 

10 

no 

system 4 

VU-eddy mast 

3 

4.00 

10/100 

yes 

1 sampling frequency is 100 Hz at days 19, 21, 22, 23, 25 and 26. At other days it was 10 Hz 

0 - 90 degrees 

Systomi Systems System 4 

W 90 -180 degrees W 90-180 

Figure 2.3: configuration of 3-dimensional sonic systems. The arrows indicate the preferred wind angle 

In order to reduce the effects of the 50 Hz noise invoked by the generator, all fast 

response signals should be low-pass filtered at a frequency well below the noise. Due to a 

limited availability of filters only the signals of the vertical wind speed of systems 1, 2 and 4 

were low-pass filtered at 10 Hz, using 4rd order Chebychev filters from 19 June onwards. 

Before this date no filtering was applied. 

All Lyman-a's were calibrated in a controlled humidity chamber at KNMI prior to the 

experiment. The path length of the Lyman-a of system 2 was regularly changed between 1 

and 2.5 cm to optimize signal resolution. The thermocouples were calibrated at WAUMET 

using a water bath of known temperature. The factory calibration was used for the sonic 

anemometers, although an offset was detected when placing them in a closed box in 

Wageningen after the experiment. This offset was subtracted from the measurements during 

postprocessing. 

Corrections regarding rotation of the wind field, frequency response of the 

measuring system, contribution of buoyancy to vertical velocity and light absorbtion by 

other gases are discussed in Appendix II. 

• The variance method 
In a horizontally homogeneous atmospheric surface layer, Monin-Obukhov 

similarity theory predicts a universal relationship between the variance of temperature, 

2. Data collection and processing 33 



humidity and wind speed on one hand, and a dimensionless stability parameter (z - d)/Lv 

on the other (Panofsky and Dutton, 1984): 

• / - c xl 1-C 
(z -d ) 

V / -1 /3 

x2- L „ < 0 

Lv>0 

(2.6) 

where x represents horizontal or vertical wind speed (u and w, respectively), temperature 

(6) or specific humidity (q). x, = u, for both u and w, where u, is the friction velocity. 0* and 

q» are given by -w 6 /ut and -w q /ut, respectively. In eq. 2.6, cxl, cx2 and c are universal 

constants, and the plus sign refers to x = u or » , and the minus sign to x = 6 or <j. z 

represents height, d the zero plane displacement, and the Monin-Obukhov length Lv is 

specified as 

(2.7) 
K^a7e7(i+o.6iwV) 

where K is the Karman constant (taken to be 0.4), and g the gravity acceleration. 

From eq. 2.6 the sensible heat flux is given by 

11/2 

H = pcr 

Je 
^3 

^ n s 

Kg(z - d) (l-cT2(z-d)/Lv 

~(z-d)/Lv 

(2.8) 

Assuming that the transport mechanism for heat and water vapour is similar in the surface 

layer, it can be shown (De Bruin et al., 1993) that XE is given by 

XE = Xp 
o. 

3/2 
CT1 

Kg(z - d) l-cT2(z-d)/Lv) 
1/2 

<z-d)/Lv 

(2.9) 

Temperature-, humidity- and wind-variance measurements were collected during 

EFEDA-I. Temperature variance was measured with the fast response thermocouples and 

sonic thermometers already listed above. Moreover, identical fast response thermocouples 

were mounted at 5 levels between 0.75 and 10.00 m in the so-called o ^ mast (see Table 2.1 

and Figure 2.2). For calculations of H and XE differences between oT (which were actually 

measured) and a e were ignored. Humidity variance was measured using the Lyman-a 

devices described above, and the same applies to the sonic wind parameters. au was also 

measured with 2 x 5 cup anemometers (see Table 2.1). For x = u there is evidence that eq. 2.6 

is not obeyed under unstable conditions due to boundary layer interaction (Panofsky et al., 

1977). The dependency of au/u, on both boundary layer depth z; and z/Lv was elaborated 

by Van den Hurk and De Bruin (1995), using the data implied here. 

As for ae, Monin-Obukhov similarity theory predicts that also the temperature 

structure parameter CT can be defined as a unique function of (z - d)/Lv. CT is defined by 
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2 <T(h)
2 -T(r2)

2> 
CT = i f (2.10) 

1 2/3 
r12 

where r is a space coordinate, r12 the distance between r2 and r2, and the angular brackets 

denote a spatial average. Details can be found in Hill et al. (1992). For unstable conditions 

this relationship reads (Wyngaard et al., 1971) 

C2
T(z-df/3 ( ,- -V2/3 

e! 
l - c ( 2 - r f ) (2.11) 

The sensible heat flux density H can be obtained from eq. 2.11 when the friction velocity and 

the universal coefficients c ^ j and C j ^ are known. De Bruin et al. (1993) applied eq. 2.11 

using CJJI = 4.9 and CJJ2 = 9. 

CT can be measured using scintillometry. Temperature fluctuations cause 

fluctuations of the refractive index of air. Measuring the fluctuation of the light intensity of a 

beam transmitted over a horizontal path with known length, this refractive index can be 

determined. In general, both temperature and humidity fluctuations will cause fluctuations 

of the refractive index. For operations in the visible or near-infra red range and at large 

Bowen ratios this humidity contribution can be neglected. The light intensity fluctuations 

are then directly proportional to CT (Kohsiek, 1982). 

The setup of EFEDA-I consisted of a scintillometer provided by the Dutch KNMI as 

described by Monna et al. (1994). A Campbell 21X datalogger was used to store half hour 

averages of the refractometer index. The receiver was at a distance of 875 m from the light 

source (0.94 |jm) and at approximately 3.28 m above the local surface. The terrain between 

the transmitter and the receiver was not exactly flat. The effective height (z - d) in eq. 2.11 is 

the local height over the entire light path weighted by the sensitivity function of the optical 

configuration. This function is a bell-shaped function that tapers off to zero at both ends of 

the optical path. The local terrain height could only be estimated from maps and 

photographs. For (z - d) a value of 4 ± 0.5 m was found, and this uncertainty adds an 

uncertainty of 12% to the calculated flux density. A comparison of values of H obtained 

from this device and from the eddy correlation method is given by De Bruin et al. (1995) (see 

also section 2.4.3). 

• Profile measurements 

The turbulent transport of heat, momentum, water vapour or any other scalar 

between the surface and the atmosphere aloft is often described using a turbulent diffusivity 

K, having the same meaning as a molecular diffusivity for laminar flow: 
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In eq. 2.12 c is defined as the specific C02-concentration/ equivalent to q. In the surface layer 

the values of the turbulent diffusivity depend on local height, friction velocity and stability. 

For K, Dyer and Hicks (1970) proposed 

\ l / 2 

Km = K « , 2 • 1 6 - 1 

J 

Kh=*e Kc = K U . Z 1-16 — 
L„ 

1/4 
(2.13) 

for unstable conditions, and 

Km=Kh=Ke=Kc = Ku,z 1 + 5 . 
-1 

(2.14) 

for stable conditions. Paulson (1970) derived expressions for the stability corrections in eqs. 

2.13 and 2.14 in integrated form. 

During EFEDA-I the turbulent flux densities of momentum, sensible and latent heat 

and C 0 2 were determined using eq. 2.12 and measured profiles of u, 9 and q and C0 2 . 

Five wind profiles were measured (see Table 2.1): in the stand-alone mast at four 

levels, in the o^-mast at 5, in the profile mast at 5, and in the high VU-mast at 7 and 8 levels, 

respectively. Measurements from the vu-mast were discarded due to poor calibration 

reliability of the cup anemometers. The sensors of the stand-alone mast were also left out of 

the present analysis. The two remaining profiles were measured using home-made cups 

mounted on 0.90 m long booms at approximate levels 0.75,1.5, 3, 5 and 10 m and pointing to 

approximately East (o^-mast) and West (profile mast). A selection of either of these two 

profiles was made using a wind vane placed on top of the profile mast (East profile selected 

when the wind direction < 180°). The cup anemometers were calibrated in a wind tunnel in 

Wageningen before installation in Spain. 

The sensors appeared to be very sensitive to electrical charge fields induced by 

lightning events. The long cable bridging the distance between the masts and the measuring 

van enabled generation of large voltage differences between the electric poles of the sensors, 

thereby destroying the electronic circuits. Even without any direct lightning strikes in any of 

the masts, most cup anemometers were frequently out of order, particularly early in the 

measurement period. 

Three temperature and humidity profiles were measured using home-made 

psychrometers: one in the stand-alone mast at 2 levels, and two times in the profile mast at 5 

levels (see Table 2.1). Again, the stand-alone mast data are left out of consideration. The 

psychrometers in the profile mast were mounted on booms of about 0.8 m length on both 
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East and West side of the mast at each level. The psychrometer consisted of a dry bulb and 

wet bulb temperature sensor (PTIOO) mounted in a ventilated housing with all-side radiation 

shielding. Also the thermometers themselves were encased by a single metal radiation 

shield, open at the bottom side. Air speed within the housing exceeded 6 m/s . Destilled 

water was pumped actively to the wicks around the wet bulb sensor, and water surplus 

dripped off. Dry bulb temperatures T were corrected for dry-adiabatic rise by adding 0.01 CC 

per m above surface. This is a simplified correction obtained from the definition of potential 
R/c 

temperature 6, given by T (p0/p) p, with p0 = 100000 Pa and R the molar gas constant. The 

temperature profile was obtained by averaging the two dry-bulb temperatures at each level. 

Vapour pressure e was obtained from the dry bulb T and wet bulb Tw from each 

psychrometer using 

e-es{Tw)-CjL(T-Tw) (2-15) 

es(T) is the saturated water vapour pressure at temperature T (computed using 

610.7 x io7-5TA237-3+T), T in °C), e = mv/ma = 0.622 with mv and mfl the molar weights of 

water and dry air, respectively, and air pressure p ~ 94000 Pa was derived from the synoptic 

observations (see below). 

The psychrometers suffered from quick pollution of the wet wicks, in spite of 

changing the wicks about twice a week. Moreover, the water supply was often insufficient 

to guarantee the wicks to remain constantly wet. A third source of severe error was heating 

of the instrument bottom caused by upward longwave and shortwave radiation. Since all 

these errors would obviously lead to an overestimation of Tw, the humidity profile was 

obtained by selecting the humidity measured with the psychrometer giving the lowest value 

of Tw at each level. However, this procedure could not ensure that the measured profiles 

were reliable. Later designs of the psychrometer (as applied during e.g. EFEDA-II) have 

eliminated most errors. 

u,, H and E were calculated simultaneously using the least squares technique of 

Robinson (1962) and Covey (1963). This procedure minimizes the difference between the real 

profiles of u, and T and a hypothetical one according to eq. 2.12, assuming a constant flux 

throughout the entire profile. An iteration is necessary in order to include stability effects on 

these profiles. The contribution of the water vapour flux to Lv was ignored here. Once «» and 

H are found, E can be computed from the resulting value of «. and Lv, again minimizing the 

difference between the real and a hypothetical profile of q. For computations of u», H and E 

the lowest level (0.75 m) was excluded in every case, since this level was too close to the 

individual plants to expect the flux density to be constant. 

The C0 2 profile measurements were carried out by the members of the Free 

University of Amsterdam (vu). Unfortunately, severe calibration difficulties of the C 0 2 gas 

analyzers were caused by the high air temperatures, and the profile data could not be used 

to calculate C02-fluxes. It was also decided to refrain from a detailed description of these 

measurements. 

• Bowen-ratio method 

The Bowen-ratio method is a profile method which uses the assumption that the 
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transport mechanism for heat is equal to the transport mechanism for humidity, thus 

Kh = Ke. Using this assumption the Bowen-ratio H/XE can be measured according to 

ß = ü = S _ ^ | (2.16) 
A.E A, A Ö 

Together with eq. 1.1 the individual terms H and XE can be computed when the total 

available energy Q» - G is known. 

During EFEDA-I the psychrometer measurements were also used to obtain values of 

H and XE using this technique. A regression of a scatter plot of T vs. a yielded the best 

estimate for AT/Aq (Sinclair et al., 1975), and again measurements at the lowest level were 

not included. 

2.2.5 Determination of soil heat flux density 
The soil heat flux density G is an important component of the energy balance for a 

sparse canopy site. Simultaneously, the horizontal distribution of soil heat flux may show 

considerable differences, caused by surface temperature differences, shading by plants, 

presence of stones, or variability of soil texture and moisture content. G depends on various 

soil physical properties and the temperature forcing at the surface. Verhoef et al. (1995) 

discuss various methods to measure soil conductivity, soil heat capacity and soil heat flux 

density, as applied during EFEDA-I. Here two methods used to measure the soil heat flux 

density are briefly reported: the flux plate method and the heat capacity method. 

The flux plate method uses flux plates consisting of a thermopile embedded in a heat 

conducting material with a similar thermal conductivity as the ambient medium. The 

thermopile results in a potential difference if the temperature at either side is different and a 

heat flow is present. A calibration procedure transfers the voltage difference to an actual 

heat transport. Major corrections to the heat fluxes determined using this method are 

presented in Appendix II. 

The heat capacity or caloric method measures the change of the heat content of a soil 

profile between two subsequent time slots. The heat content C at time t of a soil profile is 

given by 

q t ) = ]p'Ch(z)T5(z,t)àz (2.17) 

where p'Ch(z) is the volumetric heat capacity of the soil at depth z, and Ts(z, t) the soil 

temperature at time t at the same level. The soil heat flux density at the surface is then given 

by 

_ at+At) ~ a t - A D ( 218) 
2At 

A continuous record of temperature data at a sufficient number of levels between the 

surface and a depth where the soil heat flux density can be assumed negligible are 

necessary. The temperature at the surface is important, since the major temperature changes 
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occur near the heat source. During EFEDA-I the soil heat flux density under a parcel of bare 

soil was computed using the (corrected) radiometric surface temperature measurements 

(Appendix II). For the heat flux density under a plant the surface temperature was 

approximated using a harmonic analysis of the soil temperature at 3 cm depth (van Wijk, 

1963). The thermal diffusivity necessary for this method was obtained from measurements 

of the soil temperature at various depths using the amplitude method (Horton et al., 1983; 

see Verhoef et al., 1995). For this method the amplitude AT of the diurnal temperature cycle 

with radial frequency q>T must be detected at two levels. The thermal diffusivity k of the soil 

layer between these two levels is then estimated as 

12 

K 7 = — 
Zj-Z2 2 InliT.'T' -I / /\.rp ry 

(2.19) 

k was computed daily for the layers 0-3 cm, 3-5 cm, 5-10 cm, 10-25 cm and 25-50 cm, using 

the temperature profile of the bare soil parcel completed with the radiometric surface 

temperature, provided that the fundamental temperature cycle was measured completely, k 

was assumed not to vary horizontally, thus at any depth being equal for the bare soil and 

the soil under a plant. The temperature profiles were smoothed using a higher order spline 

function evaluated at 40 equidistant levels between z = 0 and z = 50 cm depth (Press et al, 

1986). 

The volumetric soil heat capacity p'Ch appearing in eq. 2.17 is a function of the bulk 

density of the soil, p', and the specific heat C of the various constituents in the soil, p ' is 

given by 

D = o x + o x + o x + o x (2.20) 
r rs*s rw w ran ^0 0 

where xi is the relative fraction of constituent i, and the subscript w refers to water, s to soil 

mineral, a to air and o to organic matter. xs + xw + xa + xg = 1, per definition. p'Ch is equal to 

p'cfc-E*,P,c, (2-21) 

For practical use paCfl = 0, and organic compounds are neglected. psCs = 2 MJ/m K, and 

pwCw = 4.2M]/m3K. 

During EFEDA-I six soil heat flux plates (TPD Delft) were in use: two at -5 cm under 

bare soil, two at -5 cm under a plant, one at -15 cm under bare soil and one at -15 cm under 

a plant. Furthermore, two temperature profiles of 5 PTlOO sensors between -3 and -50 cm 

were installed, one of them under a parcel of bare soil and one underneath a plant (see Table 

2.1). Soil porosity (1 - xs) and soil moisture content (xw) were measured by members of the 

Dept. of Water Resources of the Wageningen University (Droogers et al., 1993). Soil porosity 

was measured once during the campaign, and water content about once every 5 days, both 

averaged over five 10 cm intervals between 0 and -50 cm. For this, Time Domain 

Reflectometry (TDR) was used. The contribution of organic material was neglected. Detailed 

soil moisture measurements were also carried out by colleagues of the Winand Staring 
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Centre, but these data are not used for the present thesis. 

An important soil physical property is the thermal conductivity Xr = k p'Ch. During 

EFEDA-I it was determined directly, using home-made socalled X^needles (Shiozawa and 

Campbell, 1990). This instrument measures the rate of change of soil temperature nearby a 

heating probe. The rate of temperature change and the distance between the heating element 

and the temperature sensor depend on the heat conductivity of the soil surrounding the 

probe. Eight needles were installed at various depths in the soil, again under plants and 

under soil (see Table 2.1). The measurements were carried out manually using a Campbell 

21X datalogger, who also regulated the heat supply to the probe. The measurements were 

carried out approximately twice every campaign day. 

The average soil heat flux density was obtained as a weighted average of the heat 

flux density under bare soil and under a plant for each of the two methods. The fraction of 

vegetated surface (Cy, section 2.2.6) was used as the weighting factor. Numerical simulations 

showed that the influence of horizontal heat flow (induced by horizontal variations of the 

surface temperature) on the heat flux measurements is limited. 

2.2.6 Determination of vegetation parameters 

The present vegetation is characterized by its physical dimensions (height, width of 

canopy elements, leaf density), its relative evaporating surface (Leaf Area Index LAI) or 

areal occupation (fraction of plant cover, oy), a canopy resistance for evaporation (rs
c), and 

some other features. Since the vegetation showed a significant growth during the measuring 

period, most measurements have been carried out more than once. Table 2.3 lists the dates 

at which the several determinations were carried out. All vegetation data presented here 

were sampled on the right hand side of the terrain depicted in Figure 2.2. Vegetation 

surrounding masts s and t in this figure was slightly less developed than in the 

surroundings of the other masts due to a more severe frost damage which had occurred late 

in April 1991. A detailed description of the determination of the vegetation parameters 

during EFEDA-I is given by Michels and Moene (1991). 

Table 2.3: Dates at which plant parameters were determined, and total number of sampled plants during 
EFEDA-I. Date numbers are days in June 1991 

parameter 

crop height ('traditional') 

crop height (individual plants) 

drip area 

Leaf Area Index 

stem height 

stomatal resistance 

dates 

16, 20, 25 

5, 9, 11,14,17, 20, 23, 28 

16, 20, 25 

5, 9, 11, 14, 17, 20, 23, 28 

16 -20 

15, 17, 19, 21, 22, 23, 25, 27, 28 

number of plants 

-
10 

5 (16, 20), 10 (25) 

10 

10 

2 per sample 

• Canopy height and plant dimensions 
The vine plants were sitated in a regular grid, ± 2.60 m apart. The resulting plant 

density D was 0.15 plants/m2, valid for the entire field. The crop height h was measured in 

two ways. By the first 'traditional' method h is assessed by looking over the canopy, and 
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determine the average height. For a canopy consisting of widely separated plants the 

method is rather subjective. Alternatively, the height of each plant from a sample of 10 was 

measured. The crop height was defined as the 70% percentile value of this sample. A 

cumulative frequency distribution showed a rather sharp increase of the cumulative 

frequency at this percentile value (Michels and Moene, 1991). Figure 2.4 shows the resulting 

values of h. Also shown is the estimated crop height before the measurement campaign. The 

value at 5 June is suspiciously high. At this date, the sampling strategy was probably not yet 

well-established, and changed afterwards. 

Of these ten plants, also the stem height and stem diameter were measured once 

(divided over two days). 

1.2-| 
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I0'8" 

£ 0.6-
>> a. o 

« 0.4-

0.2-

o.o-

• 

(-) • 

- -
• • 
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10 15 20 
date (June 1991) 

25 30 

Figure 2.4: •: Canopy height h 
measured during EFEDA-I, where h 
is defined as a 70% percentile 
value of individual plant height 
measurements. The measurement 
taken at 5 June is suspiciously high 
and marked between brackets; 
• : the estimated canopy height 
before June 1991 

The drip area Ad is the average surface area occupied by a single plant. It was 

measured three times by assessing the horizontal diameter of 5 (first and second time) and 

10 (third time) plants. 

• Leaf Area Index and Leaf Area Distribution 

The onesided Leaf Area Index (LAT) was obtained by estimating the total leaf area, 

LA, of 10 plants. LAI, defined as the average leaf area per unit ground area, is then simply 

given by 

LAI = TAD „ (2.22) 

An alternative expression for the amount of (onesided) leaf area is the average leaf area per 

unit plant surface, LAI», equal to LAI/a* where Oris the fraction of surface covered with 

vegetation (see below). This parameter is relevant to the description of radiative extinction 

within the individual plant elements. 

The detection of LAI was carried out 8 times (see Table 2.3). LA is computed as the 

product of the number of leaves, N, and the average area A; of a selection of leaves from 

each plant. N was counted manually, and a separate record was kept for each layer of 20 cm 
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height. No distinction was made between leaves in separate age classes or light regimes. The 

average leaf area was also registered per layer, using the so-called vein method (Daughtry, 

1990). For this method the length of both the primary and secondary vein of a random 

sample of leaves is measured, and related to the true area of the leaves using a calibration 

curve. The calibration is carried out by relating the product of the two vein lengths of a leaf 

to its area, determined by counting the dots on a graph paper occupied by the leaf. This 'leaf 

tracing method' was applied to a random selection of 99 leaves once early in the 

measurement period. The measurement of LAI using this strategy took 2 to 4 days per run. 

The day numbers listed in Table 2.3 refer to the centre of each run. Figure 2.5 shows the 

resulting values of LAI. 

Figure 2.5: • : Leaf Area Index (per 
unit ground surface) measured 
during EFEDA-I. Also shown is the 
linear regression, given by 0.0382 + 
0.0127 day, where day is the day in 
June 1991 

10 15 20 
date (June 1991) 

• Fraction of vegetation cover 

The fraction of vegetation cover Oris the relative horizontal area occupied by 

vegetation. When the average drip area Ad is known, it is easily obtained as Ad D . The 

parameter plays an important role in the determination of the amount of radiation reaching 

the surface, the surface albedo and other processes. During EFEDA-I Ad was measured only 

three times, in a short time range (see Table 2.3). Due to the rapid growth of the vegetation 

Oris expected to vary strongly and alternative ways to assess it are desired. Here Or was 

obtained by a combination of measurements of LA, h and Ad, and adoption of two 

assumptions: 

• The leaf area density obtained from measurements of Ad is constant throughout the 

period, since plants are expected to increase volume instead of density as leaf area 

increases 

• The plants can be described using a perfect ellipsoid based on the ground and with 

equal radius rx = jAd I % in the two horizontal directions. This assumption is a little 

different from Hicks (1973), who states that vine plants can accurately be described 

by cylinders. 

From rx and h the average volume V of a single plant can be computed using the 
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description of an ellipsoid: 

V = tn0.5hr2
r 

3 x 
(2.23) 

The average leaf area density LAD, defined by LA/V, was found to be 6.3 m / m . From this 

o"r is found from 

. _, 2 _ 3 LAI 
a f = A, D„ = n rv D„ = 
ƒ à p x p 2 hLAD 

(2.24) 

'ƒ Figure 2.6 shows the resulting values of oy 

0.15 

o.io-

o.oo 

Figure 2.6: • Fraction of surface 
covered with vegetation, o\> 
obtained using eq. 2.24; 

0.0379 
regression of a» given by 
9 + 0.0011 day + 8.26 10"* day2 

10 15 20 
date (June 1991) 

• Fraction of sunlit leaves 
During EFEDA-I the relative fractions of sunlit or shaded leaves and of the leaves of 

the several age classes was not measured explicitly. The fraction of sunlit leaves, fs, was 

eventually estimated using a numerical model adapted from Norman and Welles (1983). 

They developed a scheme computing the path length of a beam from a specific direction 

through an ellipsoidal canopy element with specific dimensions. This scheme was used to 

compute the average sunlit area of a plant canopy as function of the spatial distribution of 

plants, their geometrical dimensions, and the direction of the solar beam. The latter 

parameter is a known function of season and time. fs is then obtained by 

fs = exp(-kbldsLAD) (2.25) 

where fcw is the extinction coefficient for black leaves, and ds the path length of a beam 

between the leaf and the edge of the canopy element. Leaf area density LAD is assumed 

constant over the canopy element volume. fcw was parameterized as 0.5/sinß (where ß is the 

solar elevation), which applies to a canopy with spherically distributed leaves (Goudriaan, 

1977). The average fraction of sunlit leaves is obtained from averaging the values of/s in a 

grid box enclosing a single plant element. Taking LAD equal to 5 m 2 /m 3 , the resulting value 
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of/s was very well approached by a fixed value of 0.5 ± 0.1 for all times and days (figure not 

shown). 

• Stomatal resistance 

Measuring stomatal resistance 

The stomatal resistance rs( relates the transport rate of gases between a stoma and the 

air directly surrounding the leaf to the concentration difference of the gas: 

r = n Ci~°s (2.26) 

Here, F is the flux density of the gas and c the gas concentration. The subscripts refer to 

inside the stoma (i) and directly outside (s), respectively (Monteith, 1973). The stomatal 

resistance is a measure for the pore width of the stomata in an individual plant leaf. 

Table 2.4: Sampling details of porometry and photosynthesis measurements during EFEDA-I 

parameter stomatal resistance photosynthesis 

total number of days 

time range per day 

measurement frequency 

number of plants per measurement 

number of leaves per layer 

leaf categories discerned: 

• leaf layer (20 cm each) 

• age 

• light condition 

• total 

number of cycles per leaf 

total number of samples 

sunrise - sunset 

once every two hours 

2 

3 -6 

sunrise - sunset 

once every two hours 

1 

5-10 

3 (young, normal, old) 3 (young, normal, old) 

3 (sunlit, 
shaded) 

54 

3 

2317 

intermediate, 3 (sunlit, intermediate 
shaded) 

54 

1 

1469 

A detailed description of the stomatal resistance measurements during EFEDA-I is 

given by Jacobs (1994) and can be found in the final EFEDA-I report (Bolle and Streckenbach, 

1993). Here only the basic elements are given. 

On nine days the stomatal resistance was measured on a random set of plants. A 

distinction was made between leaves in different layers (20 cm height each), light regime 

(sunlit and shaded) and age categories (young, normal and old). Leaf age determination was 

based on the size, thickness, colour, hairiness and regularity of the shape of the leaves. Table 

2.4 lists the sampling details. 

The stomatal resistance for water vapour transfer was measured using a dynamic 

diffusion porometer (Delta-T Mk3), which measures the rate of increase of the relative 

humidity in a cup of approximately 0.3 cm3 attached to a leaf. The relative humidity rh in 

the cup will rise due to transpiration through the stomata and the cuticula. The instrument 
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pumps dry air into the cup until a relative humidity rhs is reached, where rh$ is a start value 

approximately equal to the ambient relative humidity. Then, the transit time At necessary to 

increase rhs by a specified humidity change Arh is recorded. As soon as rh > rh$ + Arh, the 

drying cycle restarts automatically. Usually Arh is set to 5%. At each leaf position Af was 

recorded three times, after two or three drying cycles in order to achieve a stable value of At. 

A single measurement took 15 - 45 s (depending on gs), which is considered short enough to 

avoid adaptation of the leaf to the cup microclimate. 

Ideally, At/Arh depends on rst = l/(gs + gcut) in a linear way, where gs is the stomatal 

conductance and gcut the cuticular conductance of a leaf. The slope and offset of this 

regression are determined by the cup dimensions and the diffusion coefficient for water 

vapour. However, temperature differences between the cup and the leaf will affect the water 

vapour transport speed. Monteith et al. (1988) derived expressions to correct for these 

temperature differences, and these were applied (see also Jacobs, 1994). Furthermore, the 

limited time response of the humidity sensor and temperature-dependent adsorption of 

water vapour at the cup walls cause a deviation from the linear relationship between At and 

l / (g s + gcut). These features make a calibration in the field necessary. Calibration was carried 

out using a plate perforated with six sets of holes of known geometry, whose conductance 

could be determined from theory. A new calibration was carried out for each measurement, 

and a linear regression between Af and l / (g s + gcut), corrected for temperature difference, 

was used. 

Measurements of water vapour conductance on the abaxial side of the leaf (where no 

stomata are present and thus gs = 0) gave no significant increase of the cup humidity. This 

leads to the conclusion that the cuticular conductance gcut = 0, and it can be neglected 

during further analysis. 

Scaling up from leaf to crop 

For the surface layer models forming the subject of this research, a crop resistance 

against evaporation is required, rather than a stomatal resistance on a large number of leaf 

surfaces. A weighted averaging is applied to obtain the crop resistance from the individual 

leaf stomatal resistance data. The mean crop resistance rs
c per unit ground area was 

obtained following a LAJ-weighted averaging (Wallace et al, 1990) 

LAI 

i. ah' 

S^1) 

(2.27) 

Since rs( significantly differed for different age classes and light conditions, the weighting 

should reflect this as well. From the discrete number of leaf classes rf is given by 

1 

AI 

Ei 
[E/ , J 

-1 

(2.28) 

where/j represents the relative fraction of class i, and rst. is the average value of r$t of leaves 
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in class i. The averaging interval was one hour for all occasions. The discerned classes are 

the sunlit and shaded leaves (specified by fs), the leaf age and the vertical position. 

During EFEDA-I the value of fs was assumed equal to a fixed value of ± 0.5 for all 

times and days. However, the measurements taken during EFEDA-II (see below) showed a 

significant variation of fs as function of local time. Therefore the quadratic function shown in 

Figure 2.9 was taken instead for EFEDA-I data. 

The fractions of the various age classes were estimated to be distributed as 20% 

young leaves, 40% normal and 40% old. Since the average resistance of young leaves is 

generally much higher than the resistance of the normal and old leaves, a variation of 10% 

of this figure results in a variation of only 4% of the crop resistance. The small difference 

between the stomatal resistances of old leaves and normal leaves makes the exact estimation 

of these fractions of minor importance. 

The vertical leaf area distribution was measured directly during EFEDA-I. 

• Photosynthetic rate 

In the context of EFEDA-I the photosynthetic activity of the plants was also measured. 

Results from these measurements were used to calibrate a model for gs based on the 

computation of the net photosynthetic rate, An 0acobs, 1994; Jacobs et al, 1995; see also 

section 3.4). A detailed description of these measurements can be found in Jacobs (1994), 

while here only a basic description is given. 

The photosynthetic activity of a leaf can be expressed in terms of the amount of C 0 2 

being transported to the leaf. The C02-concentration cR of the air at a reference height above 

the canopy (4 m) was measured using an Infra-Red Gas Analyzer (IRGA). The air was also 

transported to a transparent cuvette clamped onto a leaf, and the C02-concentration c0 of the 

air returned from the leaf cuvette was also measured. Then the photosynthetic rate An can 

be calculated from the concentration difference (cR - c0), the air flow through the chamber 

and the leaf area in the cuvette (Ball, 1987). A correction for the dilution of C 0 2 by the 

addition of H 2 0 must be applied. 

The sampling strategy resembled the strategy employed during the stomatal 

resistance measurements (see Table 2.4). Only one instead of two plants was sampled each 

measurement, but more leaves per sample layer were monitored. 

2.2.7 Various determinations 
• SODAR 

Between 1 June, 13.40 GMT and 29 June, 14.00 GMT a 3-dimensional doppler sodar 

device was in operation at about 500 m from the WAUMET site (see Figure 2.2). The sodar 

device was provided by the KNMI (Monna et al, 1994). Profiles of horizontal and vertical 

wind speed and their standard deviations were detected at a resolution of 25 m between 50 

and 500 m height, where the upper level depends on atmospheric conditions. The 

instrument and datalogger were powered by a 220V generator at sufficient distance to avoid 

distortion of the measurements caused by the sound of the generator. Data were stored as 20 

minute averages. The system clock, however, depended on the generator frequency, and 

showed a time accuracy of less than 5 min. The SODAR data were not analysed in the context 

of this study. 
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• Synoptic observations 

During periods that the measuring van was in operation, synoptic observations were 

carried out approximately every hour, according to the SYNOP-guide of the Dutch weather 

service (KNMI, 1981) as close as possible. The parameters that were observed were: 

• air pressure, measured with a hand held altometer, converted to pressure at sea level 

using the hydrostatic pressure equation p(z) = p(0) exp(-g z/R T ), where T is the 

average of the virtual temperature at z = 670 m and a virtual temperature at sea 

level, equal to Tv - 0.01 z 

• air temperature and air humidity with a ventilated Assman psychrometer in the 

Stephenson screen (see Table 2.1) 

• relative humidity with a hygrograph in the Stephenson screen 

• maximum and minimum temperature in the Stephenson screen 

• total cloud cover, fraction of low, middle and high clouds, and estimated height of 

lowest cloud base 

• codified state of weather. 

Observations were noted in the WMO synoptic coding algorithm. Specifically, the 

observations of air pressure were actually used for several corrections related to 

thermodynamic properties of the air. 

• Radiosoundings 

During EFEDA-I the French CNRM carried out a total number of 93 radiosoundings 

about 1500 m from the measuring site of WAUMET. These soundings were launched on each 

day between 1 and 30 June 1991 at 11 GMT, and on some days every 2 hours. The balloons 

were equipped with sensors reading air temperature, air humidity and air pressure. CNRM 

made these data available to WAUMET. 

For each sounding the boundary layer height z; was estimated as the level of the 

lowest inversion of potential temperature and specific humidity. Driedonks (1982a) assumes 

that the error of estimating zi from a single sounding is approximately 100 m, owing to a 

considerable horizontal variation of the boundary layer height. Often obvious inversions 

were observed at several levels below 5 km, as a result of the remaining residual boundary 

layer from the period before. The estimated PBL-depth varied from 100 m to almost 4000 m. 

Table 2.5 lists values of z,- observed at times where clear inversions were present. These 

values were used in the analysis of oM-data by Van den Hurk and De Bruin (1995). 

Measuremen t s taken b y WAUMET dur ing EFEDA-II (1994) 

The second EFEDA-measurement campaign, taking place in June and July 1994, was a 

joint experiment of the Wageningen Staring Centre (WSC), the Copenhagen University (COP) 

and WAUMET. All three groups had participated to the EFEDA-I experiment, performing flux 

measurements in the Tomelloso supersite. 

2.3.1 General setup 

A single set of equipment was composed from contributions of each group. Roughly 
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Table 2.5: Times of observations of lowest inversion heights and number of ground observation time slots 

Day (June 1991) time (GMT) level of lowest inversion 
(m) 

number of ground 
observations (30 min 
average) 

7 

9 

9 

11 

11 

12 

21 

22 

23 

25 

25 

26 

26 

27 

28 

28 

28 

29 

29 

total 

11:30 -12:30 

13:30 - 14:00 

16:00 - 17:00 

11:30 -12:30 

13:30 -15:30 

9:30 -10:00 

13:00 -15:00 

14:00 - 15:00 

16:00 - 16:30 

9:00 - 10:00 

13:30 -14:30 

8:00 - 8:30 

12:00 - 15:00 

12:00 - 15:00 

8:00 - 10:30 

12:00 - 12:30 

14:00 - 14:30 

9:00 - 9:30 

15:00 - 17:00 

890 

2100 

2520 

1730 

2200-2230 

660 

3100 - 3700 

3450 

3200 

910 

3850 

500 

3400 - 3450 

2200 - 2450 

500 - 750 

1000 

1500 

700 

2200 - 2300 

2 

1 

2 

2 

3 

1 

2 

2 

1 

2 

2 

1 

3 

3 

5 

1 

1 

1 

2 

37 

spoken, WSC provided a complete eddy-correlation device, WAUMET the wind-, radiation-, 

temperature and soil data, and COP a soil respiration-, sapflow- and porometry device. Table 

2.6 lists the complete set of equipment. The stations of WAUMET and WSC were assembled 

and tested during the eddy-correlation intercomparison experiment carried out in 

Wageningen in May 1994. 

Again, a vine site near Tomelloso was selected to install the equipment. Each of the 

contributing groups operated the station for 3 weeks, and during a few days the take-over 

by the different teams was organized. 

Measurements were taken in the growing season of the vineplants, between 1 June 

and 30 July 1994. No rainfall occurred during the measurement period. Information from 

local landowners revealed that there had not been any rain fall for a month preceding the 

measurement period. Since October 1993, only 50 mm precipitation had fallen in the area. 

The eddy-correlation data were measured at a frequency of 10 Hz, and stored on a 

hard disk of a portable PC in the field. The 'background'-data collected by the equipment of 

WAUMET were logged on a Campbell 21X datalogger, and only half hour averages were 

stored. Also sapflow data were collected once every half hour, on a Campbell CRlO 

datalogger. All devices were powered with solar panels and batteries in the field. During the 

experiment, almost instantaneous data control was allowed by daily computing mean 

values and covariances of the eddy-correlation station and major corrections to all data 
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Table 2.6: Equipment in use during EFEDA-II; the indicated distance refers to the mast, the angle to the 
orientation with respect to the North 

mast 

eddy-correlation 

background 
station 

instrument 

3-dim. sonic 
anemometer 

Krypton hygrometer 

H 2 0 - and C02-gas 
analyzer 

wind vane 

4 cup anemometers 

1 psychrometer 

net radiometer 

incoming shortwave 
pyrheliometer 

reflected shortwave 
pyrheliometer 

diffuse shortwave 
pyrheliometer 

radiometric surface 
thermometer 

type 

Gill/Solent 

Campbell KH20 

LICOR6262 

home-made 

home-made 

home-made 

Schülze-Däke 

Kipp CM5 

Kipp CM5 

Kipp CM5 

Heimann KT15 

height/depth 
(m) 

6.00 

6.00 

6.00 l 

10.57 

2.96, 5.46, 7.48, 
10.23 

6.09 

7.91 

7.80 

7.80 

2.00 

7.80 

distance 
(m) 

-

0.10 

-

-

0.90 

0.50 

1.06 

0.60 

0.60 

-

0.50 

angle 

(°) 

-

360 

-

-

360 

360 

180 

250 

250 

-

250 2 

soil measurement 
plot 

rain meter 

sap flow 

8 soil heat flux plates 

4 soil temperatures 

rain gauge 

3 sap flow gauges 

csmo 

home-made 
PTlOO 

Dynagauge 

4 x 0.01, 4 x 0.05 

2 x 0.01, 2 x 0.05 

0.30 

1 whole stem 
2 single branches 

1 The height refers to the sample tube inlet 
2 the Heimann was tilted at an angle of approximately 7° 

using a software package developed in collaboration between WSC and WAUMET. 

Just like during EFEDA-I, a C0 2 flux density was measured, but this time an eddy-

correlation method was used rather than the profile method. Also sapflow- and soil 

respiration measurements were carried out. Results from these are not used for this study, 

and are described by Friborg (1995). 

Unlike EFEDA-I hardly any data collection interruptions occured. The systems proved 

to be very reliable, and only little maintenance was necessary. Moreover, no threat of 

thunderstorms was present this time. 

2.3.2 Site description 
The vinesite of EFEDA-II (39°7'19.94" N, 2°55'18.55" W) resembled the EFEDA-I site in 

most features. Again, a regular grid of plants was situated on a sandy loam soil covered 
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with stones. The plants were slightly wider separated (2.70 m), and were younger than the 

plants found at the EFEDA-I site, about 20 years. Compared to that site the terrain was 

somewhat more unevenly sloped, and the fetch was about 500 m in both East and West 

conditions. (Inspection of the EFEDA-I site in 1994 revealed that much of the vineyards had 

disappeared since 1991.) Figure 2.7 gives an overview of the terrain layout. 

500 m Main road C40 

Figure 2.7: Site layout during EFEDA-II; Left: general surroundings of measurement plots, where solid lines 
indicate (dirt) roads; Right: measurement plot details, where also shown are the locations where the plant 
parameters were sampled 

2.3.3 Determination of available energy and surface temperature 

• Shortwave radiation 

During EFEDA-II the same components of shortwave radiation were measured as the 

case for EFEDA-I, but each component only once. Both incoming and reflected shortwave 

were measured with Kipp CM5-sensors at 8 m height above the surface, to obtain an albedo 

representative for the combined surface and plants system. Calibration of all shortwave 

radiation sensors was carried out at WAUMET shortly before installation in Spain. However, 

the new calibration yielded almost identical results as the factory calibration, and the latter 

set of calibration factors was adopted. 

A diffuse radiometer was installed separately on a mast of 2 m (see Table 2.6). A 

Kipp shadowring was used and installed according to its manual. About once every 5 days 

the position of the shadowring was adjusted according to the sun's declination. 

• Longwave radiation 
Neither the incoming or outgoing longwave radiation were measured directly during 
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EFEDA-II. Rather, a two-sided allwave sensor (Schülze-Däke) mounted at 8 m height was 

used. This sensor measures the airwave radiation (short- and longwave) by two thermopiles, 

separated by a massive aluminium body. Also the body temperature is measured with a 

PTlOO thermometer. A 0.1 mm thick dome of Lupolen-H eliminates wind speed dependence 

and is self-supporting. An active wind stream over the outer side of the body housing and 

domes is caused by a fan, and reduces differences between the temperature of the sensor 

body and the surrounding air. Each of the two sensors is calibrated for the longwave and 

shortwave sensitivity separately. The longwave radiation received by either sensor, L and 

L , can be computed from a separate measurement of the shortwave radiation terms, K and 

K , and the sensor body temperature Tb: 

L U = A i . î _ K i . î + o T * (2.29) 

where A and A are the measured allwave contributions in downward and upward 

direction, respectively, and the longwave emissivity of the sensor is assumed to be unity. 

Also, the surface temperature was measured using a single Heimann KT15 mounted 

at approximately 8 m height. The view angle of the instrument was 16°, and the radius of 

the circle being seen was therefore 4.6 m, large enough to cover bare soil and some plant 

parts. The areal distribution of plants and soil in this view area is assumed to resemble the 

true areal coverage. 

Apart from the fixed sensor, at several days the surface temperature was observed 

using a handheld Chinon device. The sensor was placed in several predefined positions over 

individual plants and stretches of bare soil before reading the temperature. A total number 

of eight plants was observed this way, where the overhead temperature of all plants was 

recorded. Moreover, the temperature measured looking to four plants in Northern and 

Eastern direction was registered, together with the temperature seen looking South and 

West to the other four. The unshaded bare soil temperature was monitored at eight positions 

in between the sampling plants. Also, the temperature of soil just Northern and Eastern of 

four plants was measured, plus the soil just southern and western from the four others. 

Table 2.7 gives a brief summary of the frequency of the handheld surface temperature 

measurements. 

• Net radiation 
The net radiation could only be obtained for the level at which the radiation sensors 

were mounted, that is, 8 m. No distinction between plants and bare soil is made here. Net 

radiation was calculated as the balance of the (corrected) values of incoming and reflected 

shortwave and incoming and emitted longwave radiation. 

2.3.4 Determination of scalar and momentum flux densities 
During EFEDA-II, momentum flux density was measured using both fast-response 

eddy correlation measurements and the profile method. The results from the profile method 

are not used here. The scalar flux densities (heat, water vapour and C02) were measured 

using fast-response sensors only. 

A three-dimensional Gill/Solent sonic anemometer at 6 m height formed the heart of 
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Table 2.7: Frequency of handheld surface temperature measurements 

quantity number 

Measuring days 173, 179,182,184,194, 202, 204, 205, 208 

Measurements per day appr. every 2 hours 

(sunrise - sunset) 

plants per measurement 8 

orientation: 
- overhead plant 8 
- N, E, S, W side of plant 4 each 
- overhead bare soil 8 
- soil N, E, S, W of plant 4 each 

the eddy correlation station. Unlike the Kaijo Denki DAT310, u, v and w are measured in the 

same volume. 

No thermocouple was added to the system. A sonic temperature was obtained from 

the vertical wind signal. WSC obtained experimental evidence for a reliable application of the 

sonic temperature (corrected for humidity contributions, see Appendix II) for measuring the 

sensible heat flux density from the earlier HAPEX-Sahel experiment in Niger in 1992. The 

factory calibrations were used for all signals. The temperature signal, however, was 

recalibrated using the temperature obtained from the psychrometer at 6 m. 

Fast response humidity measurements were carried out with two devices: a 

Campbell KR20 Krypton hygrometer, and a LICOR6262 closed path gas analyser. The factory 

calibration of the Krypton appeared to be very stable, both the offset and the gain. An in situ 

correction was applied to the calibration gain using data of the psychrometer at 6 m. 

C 0 2 concentration fluctuations were measured with the LICOR6262 as well. Air is 

pumped into a sample cell, and light absorption at two frequencies in the infra-red region is 

used to detect the concentration of C0 2 and H 2 0 in the cell. A dry and C02-free reference 

gas is created by a closed second air circuit which is pumped continuously through cristals 

of magnesium perchlorate (hygroscopic) and soda lime (absorbing C02). Calibration of both 

the offset and the gain of the two signals was carried out once every 10 days in the field 

using dry nitrogen (zero), a dewpoint generator creating air with a known water vapour 

concentration, and a bottle with air containing a known C02-concentration (227 ppm). 

Appendix II lists the eddy-correlation corrections applied. 

2.3.5 Soil measurements 

• Soil heat flux density 
During EFEDA-II only the heat flux plate method was used to assess the soil heat flux 

density. A total number of eight plates (CSIRO) was used, of which four were installed at 1 

cm depth and four at 5 cm depth. The plates were placed in pairs above each other in a row 

between two plants, such that the first two and last two were temporarily shaded by the 

plants, and the others were under sunlit soil almost all day (see Figure 2.8). Sensor 8 was 

logged single-ended, due to a limited number of datalogger channels. After the experiment, 

the measured results of this sensor had to be discarded. 
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Close to each of four flux plates a PTlOO soil thermometer was installed. Two PTlOO 

sensors were buried at 1 and 5 cm under sunlit soil (near plates 3 and 4), and two at similar 

depths near plates 7 and 8 (see Figure 2.8). 

A 

N G 3 4 ® 
Figure 2.8: Layout of soil measurement plot. G = soil 
heat flux plate, T = thermometer 

• Soil physical parameters 

No further soil physical parameters were collected in the field during the 

measurement period. It was assumed that soil porosity was identical to the situation during 

EFEDA-I. The water content in the top soil layer was very low during EFEDA-I (<8%), and this 

figure was adopted here as well. 

The hard lime layer below a depth of 50 cm turned out to extend for a considerable 

depth, at least 4 m. The material was rather homogeneous and had a high porosity, 

exceeding 50%. The soil moisture content throughout the layer varied somewhat, but was 

estimated to be 12 m 3 /m 3 everywhere in the layer (Havercamp, personal communication). 

2.3.6 Determination of vegetation parameters 
• Crop height, leaf area 

In principal, during EFEDA-II identical methods were applied to assess crop height 

and leaf area. The only change compared to EFEDA-I is reflected in the sample selection. 27 

plants were now chosen to sample h and LAI. 25 of these plants were situated in a line 

approximately East - West, starting at the measurement site (see Figure 2.7). From the start 

point, every third plant was selected, thereby covering a line of approximately 250 m, which 

was considered to yield a representative sample. Furthermore, two plants involved with sap 

flow measurements were also sampled. As was evident from the statistical analysis of the 

significance of the LAi-data measured during EFEDA-I, the period between two LAI-

measurements must be long enough to detect any change at all (Michels and Moene, 1991). 

Therefore, the sampling frequency was reduced to once every 10 days. Table 2.8 specifies 

dates and the number of samples used for the vegetation-measurements. 

During EFEDA-II, the crop height h was defined as the 80% percentile of the 

individual plant lengths. The frequency distribution of h showed a very gradual increase, 

and the sharp increase at 70% observed during EFEDA-I was not present. 

Jacobs (1994) did not find a significant dependence of stomatal resistance on height, 

which made a specification of leaf area per vertical layer redundant. On the other hand, LAI 

was specified per age class (young, normal and old). The calibration values to relate the vein 

product to leaf area (section 2.2.6) were obtained from 100 leaves per age class as well. The 

calibration was carried out three times, once every three weeks. Figure 2.9 shows the 
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Table 2.8: Dates at which plant parameters were determined, and total number of sampled plants during 
EFEDA-II. Date numbers are DOY in 1994 

parameter 

crop height 

Leaf Area Index 

calibration LAI 

fraction of vegetation cover 

stem height and diameter 

fraction sunlit leaves 

stomatal resistance 

sampling days 

152, 161, 168, 177, 185, 201, 207 

152,161,169, 177, 185, 200, 2101 

152,173, 210 

152,161, 168,177, 185, 201, 207 

153 

165,188, 204 

157,159,163, 166, 170,173,179, 
182,184,188, 197, 198, 202, 205, 
208 

number of samples 

27 plants 

27 plants, 3 age categories: 
• young 
• normal 
• old 

300 leaves 

27 

27 

15 

6 each day 

1 Measurement days for LAI refer to centre of series of days to measure all plants 

development of leaf area per age class during the measurement season. A higher order 

polynomial was fitted through each of the age classes, to be used for the upscaling of 

porometry measurements to canopy averages (section 3.4). 

old • 
normal 

young 

0.25^ 

_ 0.20 
1 
f 0.15 

0.10 

0.05 

0.00 

fll 
l l • 1 

152 161 169 177 185 200 210 
daynumber 

6 9 12 15 18 21 24 
time (GMT) 

Figure 2.9: Vegetation measurement results from EFEDA-II. Left: leaf area index per age class; Right: Fraction of 
sunlit leaf area measured at three days. Also shown is the quadratic function given by fs = 0.46(1 - [(t -12)/8] ), 
where t = time 

• Fraction of sunlit leaves 
Since obviously leaf stomatal resistance depends on the light regime of the leaves, 

the fraction of sunlit leaves, fs, is an important weighting factor to obtain crop resistance. 

During EFEDA-I this was not measured explicitly, but was assumed to remain constant 

during the day (see section 2.2.6). Here, this assumption was investigated by measuring the 

fraction of sunlit leaves. 
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The method consisted of counting of the number of leaves being sunlit standing 

away from a plant, and to relate these countings to the total number of leaves of each plant, 

as determined during a LAf-measurement session. The number of sunlit leaves was counted 

on 15 plants approximately every two hours before noon, assuming a symmetric response 

over the day. A distinction was made between three age categories. The method was applied 

once every 20 days. Figure 2.9 shows the resulting values of fs. Also shown is an eye-fitted 

quadratic function of time, which was used for the upscaling of stomatal resistance 

measurements to the canopy scale. 

• Fraction of vegetation cover 

To determine the fraction of vegetation cover, Or, the plant radius of each sampling 

plant was estimated as the mean of two perpendicular cross section diameters. The cross 

sections were chosen to lie in the line of sampling plants and perpendicular to that line, over 

the plant stems. The variation between the plants was very large due to the fact that 

individual branches contributed to the cross section diameter to a large extent, in spite of 

their small contribution to the real drip area. Results are shown in Figure 2.10. 

0.20 

0.15 

! 0.10 

0.05 

0.00 

Figure 2.10: a, as measured during 
EFEDA-II. The solid curve 
represents the best-fit polynomial 
regression, given by oy = 10.33 -
0.18d»y + 9.9 lO^day2 - 1.81 lO^day3 

170 180 190 
Date (1994) 

210 

• Stomatal resistance 
Measurements 

As during EFEDA-I, the stomatal resistance of the plant leaves was measured with a 

dynamic diffusion porometer. This time, a newer version (DeltaT, Mk4) was used. The 

difference with the previous version was a higher degree of automatic data processing. 

Calibrations were carried out in the field as well, but immediately applied to the data 

measured after the calibration. A correction for temperature differences between the cup 

and the leaf (Monteith et al., 1988) was automatically employed. 

During most of the 15 sampling days (see Table 2.8) leaf stomatal resistance was 

measured from sunrise until sunset. A distinction was made between the three different leaf 

age classes and two classes of radiation regime (shaded and sunlit), yielding a total number 

of six leaf classes. Until day 173 (22 June) measurements on 18 leaves were equally 
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distributed over the six leaf classes, but later only four leaves were taken from the young 

age class (two shaded, two sunlit) and eight from the intermediate age class. Each 

measurement day, six plants were selected and sampled throughout the entire day: five 

were selected randomly from the sample line of 25 plants, and one of the plants with a sap 

flow shoe was always monitored. Measurements were taken nearly continuously during 

daytime, which yielded approximately 50 leaves per hour (or 750 samples between sunrise 

and sunset). Also the leaf temperature and the amount of incident Photosynthetic Active 

Radiation (PAR), as measured with the porometer device, were logged and stored for further 

analysis. 

09:00 12:00 
Urne (GMT) 

4i> 

40 

? 
1 | 35 

30-

doy 208 

• 
• 

a 

-

D/ 
-

a 
-

a 

12:00 
time (GMT) 

Figure 2.11: Leaf temperature as obtained from (D) the porometer (averaged for both sunlit and shaded leaves) 
and (— »—) the manual radiometric surface temperature measurements. Horizontal lines represent one standard 
deviation from the average of the radiometric temperatures; Left: DOY 173; Right: DOY 208 

Upscaling to the canopy scale 

During EFEDA-II explicit measurements of fs and leaf area per age class were 

available, while the porometry measurements were not divided into different height 

intervals. The fitted functions of fs and LAI were used to average rst to canopy scale 

resistances according to eq. 2.28. 

Also hourly averages were computed from the leaf temperature measurements and 

the amount of incident PAR, both for shaded and sunlit leaves separately. The leaf 

temperature measurements were compared with the plant temperature readings obtained 

from the manual plant surface temperature measurements (section 2.3.3). Figure 2.11 shows 

the diurnal course of the average leaf temperatures obtained from the porometer and the 

manual radiometric recordings for two days in 1994. Porometer readings were averaged 

over sunlit and shaded leaves. The sunlit leaves were on the average 0.64 °C warmer 

(t2 = 0.994). Also shown are the standard deviations of the manual measurements. The 

agreement is satisfactory for the data shown. We conclude that the porometer values are 

accurate enough to be used for calculations involving the stomatal resistance (section 3.4). 
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2.4 Derived quantities 

2.4.1 Aerodynamic roughness and displacement height 

Aerodynamic roughness is an important parameter for the estimation of momentum 

and scalar flux densities between the surface and the atmosphere. For sparse canopies the 

aerodynamic properties are a complex function of plant geometry and size, roughness of the 

bare soil, and distribution of canopy elements with height. 

For EFEDA-I the aerodynamic roughness and displacement height have been 

determined using various methods: the wind profile method, eddy-correlation 

measurements, and a geometrical method. An additional method using eddy-correlation 

measurements at various heights (Lloyd et al., 1992), was applied as well, but yielded results 

that contained a scatter too large to be significant. 

• Wind profile method 

In the wind profile method, z0m and d are determined as integration coefficients of a 

theoretical wind profile fitted to observations (Robinson, 1962). This optimalization 

technique is in fact similar the the method for obtaining sensible heat and momentum flux 

density from profile measurements (see section 2.2.4). The theoretical wind profile is found 

by simultaneously solving for the displacement height d, roughness length z0m and friction 

velocity u,. Stability corrections to this profile were included using eddy-correlation 

observations of z/Lv, and the integrated functions of Paulson (1970). Representative values 

of z0m and d are defined as the median of a sample of results. Since the vegetation grew 

rapidly, results were grouped per period of approximately 5 days. Only time slots with 

near-neutral values ofz/Lv (-0.1 <z/Lv< 0) were included, to minimize the impact of the 

stability corrections. Measurements carried out by the lowest cup (0.75 m) were discarded. 

Figure 2.12 shows the results of z0m and d for the EFEDA-I dataset, obtained by this 

method. The roughness length is shown to increase significantly as the season proceeded, 

but the displacement height derived from the profile method remained fairly constant, at a 

value of about h/3 (also shown). 

• Curve fit method using eddy-correlation measurements 

An alternative computation of the most likely value of both z0m and d is proposed by 

Jacobs and van Boxel (1988). Measurements of a sonic anemometer at a single height can be 

used to specify a relationship between z0m and d. For a neutral surface layer these quantities 

are related according to 

z-d 
= exp 

z0m 

( \ 
KM 

v"' 

(2.30) 

As before, z0m and d are also computed using a least square fitting technique. The 

resulting values usually show a considerable scatter. The optimum value is found by 

employing a linear regression through a scatter diagram of z0m and d, and seeking the 

intersection with the line obtained by the eddy-correlation measurements, eq. 2.30. In fact, 

this intersection replaces the assumption that the median of the sample determines the 

optimal values of z0m and d. Resulting values of z0m and d for EFEDA-I are also shown in 
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Figure 2.12. They correspond well to the results obtained from the profile method. 
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Figure 2.12: Measurements of roughness length (left) and displacement height (right) taken using various 
methods during EFEDA-I (see text) 

• Geometrical method 

Raupach (1992) developed a general theory about the total drag exerted by a rough 

surface. The normalized roughness length z0m/h is a function of the roughness density (or 

frontal area per unit ground area) r\ = b h/D , where b is the characteristic width of the 

roughness elements, and D the horizontal spacing. z0m/h first increases with r\ until n = 0.3, 

and decreases with a further increase of n. This picture was established by the one-

dimensional numerical second-order closure computations carried out by Shaw and Pereira 

(1982). According to Raupach's theory the drag coefficient CM(z), given by 

CMM = 
M ( 2 ) 

I In 
K 

( \ 
z-d 

0m \ P 

can be computed from the relationship 

u(h) 
•ih = (c. -nCR)-1 /2exp(cTiYA/2) (2.31) 

where C s and CR are the drag coefficients of the unobstructed substrate and an isolated 

roughness element, respectively, and c is a O(l) coefficient. Eq. 2.31 is an implicit 

relationship in \ , but can be solved fairly easy. The roughness length is then found from 

'0m h-d 
™ =^J lexpOP)exp( -Ky h ) (2.32) 

¥ is a profile influence function, accounting for the departure of the actual momentum 

diffusivity profile from the surface layer profile K «» (z - d). The displacement height d is 

defined as the centroid of the drag force profile, affected by both the roughness elements 

and the underlying substrate. Raupach derived for d the expression 
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l+ß R Tl 

( \ 
( V/2 

* . .-1 
M 

(2.33) 

) 

where cd is a constant equal to 0.6, and ßR = CR / Cs. 

Figure 2.12 shows the results for the EFEDA-I dataset. The width of the canopy 

elements, b, was derived from the expression for the plant radius (eq. 2.24). Predictions of 

both z0m and d gives values that are significantly higher than obtained from the profile 

methods. Verhoef (1995) suggested that the specification of T| from the assumed plant 

shapes and densities might result in values that are too large. 

• Discussion of roughness parameter results 

The values for z0m found using the profile methods agree very well with the results 

reported by Sene (1994) for a similar crop, who found z ^ = 0.01 m early in June, and 0.04-

0.06 m six weeks later. On the other hand, based on the review by Wieringa (1993) the ratio 

20m//î = 0.05, found here, is rather low. Kawatani and Meroney (1970) noticed that the 

values of d obtained by the regression method of Robinson (1962) and Covey (1963) show a 

large variability, and can even become negative. A possible overestimation of d is usually 

associated with an underestimation of z0m. Wieringa (1993) lists other possible errors in the 

quantification of the roughness parameters: 

• the upwind fetch might have been too short, or the terrain might not have been 

entirely flat 

• the correction for unstable conditions may have been too strong, which gives rise to a 

too steep wind profile and too low roughness length 

• the lowest sensor (± 1.5 m) might have been too close to the canopy top 

• cup anemometer overspeeding particularly occurs near the surface where turbulence 

intensity is strong. This also gives too steep wind profiles. 

In spite of these uncertainties, values for z0m and d are interpolated from the results 

obtained using the profile methods for practical calculations. z0m is given by 

day < 15 

day > 15 
0̂m 

0.01 + 0.01 ^L 
15 

0.02 + 0.04 ^ 2 1 
15 

(2.34) 

where day is the day in June, 1991. d was kept constant at 0.3 m for further calculations1. 

2.4.2 Roughness length for heat 
The aerodynamic resistance for heat transfer between the surface and a reference 

level, ra, can be specified according to 

1 De Bruin et al. (1995) assumed that d linearly increased from 0.05 m on 15 June to 0.4 m on 30 
June, based on preliminary calculations. 
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where Tsur is an (effective) surface temperature (defined below eq. 2.1), and Ta the 

temperature at reference height zR. From eq. 2.35 a so-called roughness length for heat can 

be obtained, which can be written as (Blyth and Dolman, 1995): 

zR-d 

nift 
exp(r aK«,+«P h((zR-d)/Lj) 

(2.36) 

in which *Ph is an integrated form of the stability corrections proposed by Dyer and Hicks 

(1970; eqs. 2.13 and 2.14). The ratio z0m/zoh can be used to define an additional resistance to 

heat transfer, in series with the aerodynamic resistance for momentum transfer applied in 

single layer surface models (see section 4.1.1). The quantity 1/K ln(z0m/zofc) is often referred 

to as B"1 (Garrat and Hicks, 1973; Kohsiek et al., 1993). 
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Figure 2.13: Ratio of z^/zojj as 
defined using eqs. 2.34 and 2.36. 
Data shown are derived by using 
the average (•) and bare soil (») 
temperature from the low cable. 
Data of H and u, were obtained 
from the eddy-correlation device 
mounted at 4.35 m 

0.01 
22 23 
date (June 1991) 

Figure 2.13 shows the ratio z0m/z0h for two different effective surface temperatures, 

measured during EFEDA-I: the bare soil temperature as obtained from the low cable, and an 

average surface temperature from the same sensor (Appendix II). Around noon, the 

difference between these temperatures is typically 4 degrees. Apart from a considerable 

scatter of z0m/z0h, its typical value is somewhat higher than values used in SVAT models 

presented by Braud et al. (1993), Jacobs (1994) or Viterbo and Beljaars (1995). Furthermore, a 

clear diurnal variation is present. Note that Verhoef (1995) reports a considerably lower 

value of zoh, by using the single sensor mounted at 4 m height (Table 2.1). 

Beljaars and Holtslag (1991) explain that z0m/z0/ j can vary as a result of a vertical 

change of the momentum flux to the surface, which is for instance induced by large scale 

roughness elements affecting high level wind profiles. Blyth and Dolman (1995) point out 

that additional to this aerodynamic effect, zoh for sparse canopies can vary by an order of 

magnitude by variations of the distribution of the heat source between the canopy elements 
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and the underlying soil. More on this issue is discussed in section 5.3, and by Verhoef (1995). 

2.4.3 Energy balance terms 
During the EFEDA-I campaign many methods were applied to measure the energy 

balance components. For the model studies reported in later sections a quantitative 

assessment of the fluxes of heat, moisture and radiation is of importance. 

This section presents some results of the measured fluxes, and discusses the selection 

criteria which were adopted to obtain a dataset for further use. Moene (1992) extensively 

discussed the methodological differences of various methods, in the context of the 

comparability of fluxes measured at different sites with different instrumental set-up's and 

methods. 

During EFEDA-II surface energy fluxes were determined with eddy-correlation only, 

albeit that various sensors were used for the measurement of the latent heat flux (section 

2.3.4). In the context of the current work these fluxes were used marginally only for the 

examination of the canopy resistance models (section 3.4). Therefore no attention will be 

paid to these measurements here. 

100 200 300 400 500 600 
Q* bare soil (W/m2) 

Figure 2.14: Net radiation measured above bare soil and 
above an individual plant for available half hour averages 
during EFEDA-I 

100 200 300 400 
Q* measured (W/m2) 

Figure 2.15: Radiation balance from eq. 2.1 plotted 
against measured net radiation for all available half hour 
averages during EFEDA-I 

• Net radiation 
In Figure 2.14 the results of the two sensors measuring Q, are intercompared. Shown 

are all available half hour averages for 2 -30 June 1991. The value of Q» „;fln( exceeds the bare 

soil net radiation by only 1.4% (r2 = 0.996). This difference is rather small, compared to what 

is to be expected from differences in the shortwave reflection coefficient of plants (typically 

20%) and soil (up to 30%) (Dickinson, 1983). However, the exact position of net radiometers 

low above the surface is not a trivial issue. Net radiation measured just above the (darker 

and cooler) plants are affected by the surrounding bare soil as well, and do not give a net 

radiation equal to a value measured above a homogeneous canopy of the same species. Also 

the net radiation measured in between plants will not be representative for the bare soil, 

since the large radiometer view angle enables influence of a surface far from the area just 

underneath the sensor. These significant mutual effects explain the small differences in the 
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net radiation values. A 'representative' average net radiation at the field scale was defined 

as a simple arithmetic average of the two sensor readings. 

In Figure 2.15 net radiation obtained from the radiation balance (eq. 2.1) is compared 

to the arithmetic average of the two sensors. For T s u r the average surface temperature as 

measured from the high cable and averaged as outlined in Appendix II is used. The surface 

albedo, a, was fixed at 0.29 (see section 3.3), and for the surface emissivity a value of 0.98 

was taken. The correspondence is good (r2 = 0.990), but an offset of 38 W/m 2 remains. Many 

factors may be responsible for this difference. First, sensor calibration errors may be 

significant. Also, the assumption that a = 0.29 is uncertain, due to the large variability of the 

surface colour and wetness. Finally, the net radiometers mounted at some height integrate 

over a different view angle then the radiation thermometer. 

• Soil heat flux 

The two methods to determine the soil heat flux G during EFEDA-I are compared in 

Figure 2.16. Both methods are applied by calculating different soil heat fluxes for shaded 

and sunlit plots, and applying a weighted averaging using oy (section 2.2.5). The regression 

forced through the origin yields a good correspondence (r2 = 0.933). However, the caloric 

method gives lower values for both nighttime and daytime situations. Without clear 

evidence for the superiority of either of the methods, we selected the heat fluxes measured 

by plates to serve as comparison material for future purposes. 

25a 

250 
G from plates (W/m2) 

Figure 2.16: Soil heat flux detected using heat flux plates and by means of the caloric method 

• Sensible and latent heat flux 

The sensible heat flux data collected during EFEDA-I can be compared to each other in 

many ways, due to the many detection methods. De Bruin et al. (1995) compared the values 

obtained using the scintillation method to the eddy-correlation data from the low eddy-mast 

at 2 = 4.35 m (Table 2.1). They found a fair correspondence, depending on the assumptions 

made about the terrain height and the strategy to obtain values of the friction velocity. A 

maximal correspondence was found when M» was derived from the same eddy-correlation 
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device and the displacement height was allowed to increase gradually from 5 to 40 cm 

throughout the measurement period (r2 = 0.956). That result is even slightly better than the 

correspondence between the two eddy-correlation sensible heat fluxes from the eddy mast 

and the 13 m mast (H{13 m} = 1.02 H{4.35 m}, r2 = 0.951, figure not shown). 

Due to instrumental problems, only the eddy-correlation data of the latent heat flux 

from the sensor in the 13 m mast were reliable. The remaining eddy-correlation data were 

discarded from the present study. 

100 200 300 
H from 13m-mast (WAn2) 

Figure 2.17: Scatterplot of H from the oT method and the 
eddy-correlation measurements, both from the 13m-mast 
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Figure 2.18: As Figure 2.17, but for the latent heat flux 

A comparison between the eddy-correlation sensible heat flux and H from the GT 

equation from the 13m-mast is shown in Figure 2.17. The coefficients cT1 and cT2 were 

specified as 2.9 and 28.4, respectively (De Bruin et al., 1993). The agreement for rather 

unstable conditions (Hedd > 50 W/m2) is fair, and a linear regression through the origin 

yields HoT = 0.975 Heddy (r
2 = 0.938). For Heddy < 0 the o r method gives undefined results, 

which is shown clearly in Figure 2.17. A similar plot is given in Figure 2.18 for the latent 

heat flux measured using the a equation (eq. 2.9), again using the equipment in the 13m 

mast. The agreement is much worse, and the variance method overestimates the eddy-

correlation values significantly. De Bruin et al. (1993) present a likewise low correspondence 

using identical equipment operated during the CRAU experiment. They argue that the 

method breaks down due to the fact that the correlation coefficient between T and a is 

significantly lower than 1. Similar to the large impact of eddies scaling with the boundary 

layer height z- on the variance of horizontal wind speed (Van den Hurk and De Bruin, 1995), 

the relative contribution from dry downdrafts to the variance of a near the surface may be 

rather large. The surface flux is not an appropriate scaling parameter in these cases, and the 

applicability of Monin-Obukhov similarity breaks down. 

A considerable problem was the determination of latent and sensible heat fluxes 

from the profile or Bowen-ratio method. A fair agreement between eddy-correlation and 

profile measurements was obtained for the sensible heat flux, but for the latent heat flux the 

correspondence was poor (Figure 2.19). In both cases the psychrometers at the lowest level 

were not included. Both fluxes are unadequately reproduced when the Bowen-ratio method 

is used (Figure 2.20). Again, the lowest measurement level was discarded. 
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Various combinations of psychrometers (East and West profile, exclusion of extreme 

readings) were tried, but in no case the humidity profile was adequate enough to derive 

reliable latent heat fluxes from these. 

100 200 300 
H from eddy-mast (W/m2) 

100 200 300 
H from eddy-mast (W/m2) 

0 50 100 150 
LE from 13m-mast (W/m2) 

Figure 2.19: Sensible (upper) and latent (lower) heat flux 
derived from the profile measurements, compared to the 
eddy-correlation measurements at 4.35 m (H) and at 
12.5 m (XE) 
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LE from 13m-mast (W/m2) 

Figure 2.20: As Figure 2.19, but fluxes derived from the 
Bowen-ratio method 

• Energy balance closure 

Based on the presentation of results above the final energy balance that was used for 

further intercomparison consisted of: 

• an average of the net radiometers from the two low sensors 

• the soil heat flux derived from the soil heat flux plates and weighted accordig to oy 

• the sensible heat flux obtained from eddy-correlation measurements in the eddy-

mast, at 4.35 m height 

• the latent heat flux from eddy-correlation measurements in the 13m mast, at 12.5 m 

height. 

Figure 2.21 shows the energy balance closure, defined as Q. - H - XE - G, from these 

terms for all days during EFEDA-I. The closure is good during nighttime, although a small 

64 Sparse canopy parameterizations for meteorological models 



but consistent minimum around sunset persists. This is associated to the soil heat flux 

correction, which is very large at this time of the day due to a very rapid change of the 

surface temperature. The derivation of the change of the heat content of the soil above the 

soil heat flux plates may be wrong due to an error in the estimation of the exact temperature 

profile near the surface (Appendix II). During daytime generally a surplus of radiative 

energy occurred, which peaks to approximately 100 W/m 2 at some days. The hourly 

averaged energy balance closure shows a slightly smaller radiative energy surplus (figure 

not shown). Especially the low evaporation values recorded during most of the season are 

suspected to be erroneous. Also shortcomings in the eddy-correlation method may be 

responsible for this disclosure. 

20O 

12 
time (GMT) 

Figure 2.21: energy balance closure for EFEDA-I defined as Q, - H - XE - G, where the energy balance 
components are defined as indicated in the text 

2.4.4 Soil thermal properties 

In contrast to atmospheric dispersion, transport of heat in the soil involves hardly 

any turbulence, and is generally solved using diffusion laws. The model descriptions in 

chapter 4 include a treatment of thermal diffusion (section 4.1.2), and a generalized 

description of the surface temperature based on diffusion in a homogeneous soil, the force-

restore method (section 4.1.4). These methods make use of the thermal properties of the soil, 

in particular the thermal conductivity (kj), diffusivity (fc), and volumetric heat capacity 

(P'C„). 
Verhoef et al. (1995) describe measurements of these quantities from two campaigns 

conducted in semi-arid areas: EFEDA-I and HAPEX-Sahel. They discuss the heterogeneity of 

these thermal soil properties for a semi-arid sparse canopy surface both in space and in time. 

Apart from mesoscale heterogeneity (induced by variable rainfall or crop appearances) the 

micro-scale heterogeneity (induced by the partial plant cover) may be important for sparse 

canopies, owing to shading and variation in soil moisture content. 

In their paper, Verhoef et al. (1995) describe the courses of k and XT for both sunlit 

and shaded soil from EFEDA-I, and the bulk volumetric heat capacity (a bulk-value could 
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only be derived since soil moisture measurements and bulk densities were sampled under 

the assumption of a horizontally homogeneous soil). In the current section a summary of 

their results is presented. 

2.00 

Figure 2.22: Volumetric heat 
capacity obtained from soil 
bulk density and soil 
moisture measurements 
taken in 5 different layers 
during EFEDA-I 

day (June 1991) 

Figure 2.22 shows the bulk volumetric heat capacity for 5 different soil layers using 

eq. 2.21. Values of the dry bulk density were found to be 1340 kg /m 3 for the top layer, and 

1215 ± 25 k g /m 3 for the remaining layers (Droogers et al., 1993). After the last rainfall (0.5 

mm on DOY 155; Sene, 1994) maximum values of around 1.6 MJ m"3K_1 were reached in the 

layers 0.20 - 0.30 and 0.40 - 0.50 m. The minimum value was about 1.1 MJ m"3K-1. p'Ch 

appeared to decrease in all layers as time proceeded, due to a slight reduction of the water 

content, co. Values of co ranged from 0.04 - 0.08 m 3 /m 3 for the top layer, and values up to 

0.18 m 3 /m 3 were recorded in deeper layers. 

The soil thermal conductivity, XT, was obtained directly from the A^needles and 

from its definition Xj = k p'Ch. Five methods were applied to derive an estimate of k, of 

which the results obtained by the amplitude method, as described in section 2.2.5, are 

presented here. The temperature signal from the sensors installed under individual plants 

usually showed two maxima, separated by a decreased temperature due to plant shading. 

This made the use of the amplitude method for obtaining k for shaded soil parts impossible, 

and we confine ourselves to the estimates for sunlit soil. 

Values of soil thermal conductivity Xj, derived from the solution of soil thermal 

diffusivity using the amplitude equation (eq. 2.19), exhibit a slight variation as time 

proceeds (Figure 2.23). In general, Xj increases with depth. In Figure 2.23 the XT values 

obtained from temperature readings at depths 25 and 50 cm are discarded, due to large 

uncertainties which are involved with the small signal amplitude at these depths. The high 

values before 6 June (DOY 157) are a result of the preceding rainfall. The origin of the high 

datapoint at 24 June (DOY 175) for A.^3-5 cm) is not clear. 

Measurements of XT, carried out at 3 cm depth in both sunlit and shaded soil, 

resulted in a nearly constant value of ± 0.10 (sunlit) and ± 0.14 (shaded) W/mK, 

respectively. The values at 10 cm depth showed a larger scatter, but were about 0.1 W/mK 
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higher. The difference between the sunlit and shaded patches is possibly related to a 
reduction of evaporation by shading. Yet, these measurements are rather low. Ten Berge 
(1990) shows that minimum values for dry sandy or loamy sand soils exhibit values varying 
from 0.15 to 0.30 W/mK. Values smaller than 0.10 can be reached, but only for substances 
containing a very high organic matter content, which was not the case here. A significant 
underestimation of up to 0.1 W/mK could be caused by poor contact between the probes 
and the soil, as a result of the loose character (dry conditions) of the soil and the presence of 
stones in the upper soil layer (Van Haneghem, 1981). Therefore, the suspiciously low 
measured values of Xj were discarded. 
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Figure 2.23: Thermal 
conductivity derived during 
EFEDA-I from the amplitude 
equation applied to sunlit 
soil temperatures at 3 and 5 
cm depth, in combination 
with volumetric heat capacity 
measurements shown in 
Figure 2.22 
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3 Sometimes model equations are presented that make you 

wonder whether nature knows them as well 

Aerodynamic transfer, albedo, 
and crop conductance for a 
sparse canopy surface 

3.1 Introduction 

A sparse canopy can be defined as a surface whose vegetation does not entirely 

occupy the horizontal space. With regard to surface exchange processes, the transfer of 

momentum, heat and scalars is governed by both canopy elements and the underlying bare 

soil. At a relatively small scale, a sparse canopy is very inhomogeneous. Close to the surface 

the vertical fluxes of heat, momentum or scalars will depend on the proximity of individual 

canopy elements or obstacles. Horizontal transport between various patches of plants or soil 

can be significant. A constant flux layer will not be detectable until far enough above the 

surface, where the fluxes of individual surface patches cannot be discerned anymore. 

Atmospheric modellers have paid considerable attention to the fluxes of heat, water 

vapour and momentum above sparsely vegetated surfaces. Sophisticated surface models 

have replaced the simple single layer surface description embedded in the 'big leaf' model. 

In these models the surface is treated as a composite of more than just one source, mostly 

limited to two (Deardorff, 1978). Various model components (such as aerodynamic transfer 

between the source and the atmosphere, radiative properties, and others) are treated for 

each source separately. An extensive description of some of these so-called two-layer or two-

component models is given in chapter 4. 

In this chapter three aspects which are relevant to the exchange processes for sparse 

canopy surfaces are considered: 

• aerodynamic transfer 

• surface albedo, and 

• canopy resistance. 

With respect to aerodynamic transfer, we have extended the formulations which are 

applied in existing two-layer models using Lagrangian transport theory for closed canopies. 
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We have constructed a new set of aerodynamic exchange resistances, and compared these to 

existing resistance formulations for a range of surface types, including sparse canopies. This 

theoretical survey is published before by Van den Hurk and McNaughton (1995) and 

McNaughton and Van den Hurk (1995), and will be described in section 3.2. 

Second, the surface albedo is considered. The variability in time and in space at 

various scales will be presented and discussed in section 3.3. 

In section 3.4 the canopy resistance for water vapour exchange will be discussed. 

Observations taken during EFEDA-II are compared to a canopy resistance model based on 

photosynthesis modelling (Jacobs, 1994; Jacobs et al, 1995). 

The results presented in this chapter will be summarized in section 3.5. They will 

also be included in the one-dimensional simulation study, presented in chapter 6. 

Aerodynamic transfer 

3.2.1 Concepts based on diffusion theory 

At the surface interface, the atmosphere is modified by heating or cooling, water 

vapour release or condensation, and scalar exchange. The motion of air is affected by friction 

at the surface. The degree of modification of the atmosphere depends on the quantitative 

fluxes of temperature, water vapour and momentum. 

Similar to the process of molecular diffusion, the surface flux of a constituent x can 

be expressed by a gradient of px and a turbulent diffusivity Kx, which is a measure of the 

exchange efficiency: 

F - -K 3 p * (3.1) 

Near the surface, turbulence caused by friction and density gradients is the dominant 

exchange mechanism. The exchange efficiency is therefore parameterized as a function of 

turbulent fluxes itself. 

When over a limited height range the flux doesn't vary significantly with height, eq. 

3.1 can be integrated and expressed as a resistance formulation: 

F = — (3.2) 
x r. 

where the aerodynamic resistance rx is equivalent to the integrated value of l/Kx over a 

fixed height interval, corresponding to the concentration gradient Ap r Within an 

atmospheric 'constant flux layer', which is defined as a layer where the vertical gradient of 

the flux density of heat, momentum and scalars is insignificant, a resistance formulation is 

often used to parameterize H, XE or t. Eqs. 2.13 and 2.14 give expressions for the turbulent 

diffusivities as function of the atmospheric stability in a homogeneous surface layer. 

In order to derive expressions for the aerodynamic resistances between a vegetated 

surface and the atmosphere, assumptions must be made about the concentration- or 

windspeed profile in this interval. Calculations of the aerodynamic resistances from an 

extrapolation of the logarithmic profile to the top of a canopy result in an overestimation of 
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rx, owing to extra turbulence generated in wakes behind isolated plant elements (Raupach 

and Thorn, 1981). The Simple Biosphere model of Sellers et al. (1986) assumes a logarithmic 

profile to be valid well above the canopy top, and includes alternative expressions for 

intermediate levels. Furthermore, for sparse canopies also the aerodynamic exchange 

between the bare soil surface and the top of the canopy is of importance. Also for this 

process several resistance parameterizations have been proposed, based on various 

assumptions about the variation of Kx within the canopy. For instance, Shuttleworth and 

Wallace (1985) consider an exponential decay of the turbulent diffusivity within the canopy 

layer, while Jarvis et al. (1976) adopt a constant diffusivity within a coniferous forest. 

Various expressions for resistances within the canopy are included in chapter 4. 

In the following sections attention is paid to the physical drawbacks of the concept of 

an exchange resistance for describing transfer within canopies. Also a simple procedure is 

proposed to deal with these drawbacks. 

3.2.2 Implementation of near-field dispersion in a simple two-layer surface resistance 
model1 

Many canopy models have been developed to describe the exchange of sensible and 

latent heat between plant canopies and the atmosphere. An important function of these 

models is to predict mean profiles of humidity and temperature of the air in the canopy, 

because transpiration at each level is controlled by the ambient temperature and humidity at 

that level. To calculate these profiles the models must employ some assumption about the 

turbulent transport processes in the canopy. The most common assumption has been that 

turbulence does transport scalars, such as heat and water vapour, down local concentration 

gradients by a 'turbulent diffusion' process. That is, these models have been based on K-

theory (see Waggoner and Reifsnyder, 1968; Shuttleworth and Wallace, 1985; Choudhury 

and Monteith, 1988). 

In recent years K-theory has been challenged by observations of fluxes of scalars 

moving in directions opposed to their local concentration gradients within plant canopies 

(Denmead and Bradley, 1985). New theories have been developed which explain counter-

gradient transport, and these show that the diffusivity approach is unreliable under conditi

ons where the vertical length scale of the turbulence is of the same order as the distance over 

which the curvature of the concentration profile is significant (Taylor, 1959; Corrsin, 1974; 

Raupach, 1988). These new theories have been incorporated into canopy models using a 

'higher-order-closure' approach (Wilson and Shaw, 1977; Meyers and Paw U, 1987), and a 

Lagrangian framework (Legg and Raupach, 1982; Wilson et al, 1983; Sawford, 1986; Van den 

Hurk and Baldocchi, 1990). Unfortunately, such models require detailed information on 

canopy structure and consume large amounts of computer time, making them unsuitable for 

larger scale hydrological or global climate models. Simple canopy models are more suited to 

this application. 

Two-layer models designed for sparse canopy surfaces parameterize turbulent 

transport within and above the canopy in terms of diffusion resistances. Unfortunately, 

these resistances are still derived from X-theory, so the models therefore provide a doubtful 

Adapted from Van den Hurk and McNaughton (1995) 
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framework for calculating scalar exchange within canopies. 

Lagrangian models, on the other hand, provide an alternative to JC-theory, 

computing concentration and scalar flux density profiles by repeated simulations of a large 

number of particle trajectories. Recently, Raupach (1989a) introduced an analytical represen

tation of scalar transport inside canopies based on a Lagrangian description of canopy 

transport processes. Being analytic, it requires much less computation time than the 

trajectory models. 

In Raupach's work the canopy scalar concentration profile is constructed as the sum 

of two contributions: one obtained using JC-theory and the other expressing the deviation 

from diffusive behaviour. Raupach calls these the 'far-field' and 'near-field' components of 

the canopy concentration profile, respectively. Raupach's theory can replace models based 

on JC-theory for calculating the microclimate in a multi-layer canopy model, as confirmed by 

Dolman and Wallace (1991) and Baldocchi (1992). However, because Raupach's model treats 

the canopy as a multi-level source, it still requires a layer-by-layer description of the canopy 

turbulence and source strength as input, so it remains unsuited to large-scale applications. 

In this section we develop a strategy to implement Lagrangian theory of scalar 

transport within a canopy in the practical two-layer resistance model of the canopy energy 

balance. We use Raupach's theory to develop an analytical correction to the common two-

layer model. In the next section we explore the difference between Lagrangian and JC-theory 

models with respect to the predicted canopy concentration profile. It is shown that in a two-

layer resistance model the calculation of the average concentration in the canopy source 

layer can be corrected using a 'near-field' resistance added to the usual resistance network. 

This near-field resistor is parameterized using Raupach's analytical Lagrangian theory. A 

summary of a strategy to obtain the magnitude of the resistor is given. It will be shown that 

it depends on the source distribution and turbulence patterns within the canopy, so we do 

not immediately avoid the requirement for a detailed description of the canopy. Therefore, 

to see whether individual descriptions of canopies are still necessary, we investigate 

whether an assumed 'typical' shape for the source and turbulence profiles can adequately 

represent all canopies in Raupach's model. We do this by testing the sensitivity of the 

magnitude of the near-field resistor to the shape of these profiles. Details of the Lagrangian 

theory, and the implications of including the near-field resistor for evaporation predictions 

using a two-layer model, can be found in the original paper (Van den Hurk and 

McNaughton, 1995). 

• A Lagrangian extension to a two-layer resistance model 

Resistance models are usually based on JC-theory, with the aerodynamic 'resistors' 

defined by integration of the 'eddy-diffusivity' over the various sections of the diffusion 

pathways in the canopy. Integration is possible because the diffusivity has a local value 

which expresses the ratio of the flux to the gradient at each level in the canopy. That is, the 

local concentration is influenced by the local flux and turbulence only, not by the fluxes or 

gradients at other levels in the canopy. However, experimental evidence was provided by 

Denmead and Bradley (1985) that much of the turbulent scalar transport within a canopy is 

carried out by eddy structures who have a size comparable to the canopy height. This 

transport therefore relies on both local gradient diffusion and a larger scale, non-local 
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contribution. This larger scale contribution is not accounted for by application of first order 

K-theory. Lagrangian models, by contrast, take the non-local scalar transport into account, 

and show that the concentration gradient at each level depends on the strength of the 

sources at all other levels. Lagrangian ideas are therefore incompatible with resistance 

models. There is, however, an exception, which we exploit here. 

Consider a model of a canopy that has two distinct source layers, an overstorey and 

a ground layer. These layers are far enough apart to ensure that the 'non-local' effects which 

operate within the overstorey do not influence the concentrations at the ground, and vice 

versa. In this case we can therefore describe transfer between the layers, though not within 

them, purely in terms of diffusion processes. If we extend the definition of 'resistance' to the 

ratio of concentration difference to flux, without the requirement that this ratio is well 

defined at all points along the integration path between the layers, then we can describe the 

transport between these layers in terms of a 'vertical' resistance, and the resistors can play 

the same formal role as the aerodynamic resistors in, for example, the two-layer model of 

Shuttleworth and Wallace (1985). 

This does not solve all of our problems. The 'vertical' resistances that will give the 

correct transport between the separate layers, being the ground, overstorey and reference 

height, will not give the correct concentration within the overstorey canopy. In K-theory 

models the strong local concentration gradients near sources cause rapid dispersal of the 

scalar. In Lagrangian models this is much less marked because scalar movement depends 

solely on the statistics of the turbulence and not on diffusion over the local concentration 

gradient. As a result Lagrangian models predict higher concentrations near sources than do 

jK-theory models. The origin of the difference between the predicted concentration near the 

source is the non-local transport of scalar emitted by sources in the entire source range, 

which is parameterized in Lagrangian models and not in K-theory models. Since this 

concentration rise is not predicted by diffusion theory we call it a 'non-diffusive' 

contribution to the scalar concentration. 

Figure 3.1: Resistance network 
of a two-layer surface model. 
The source and corresponding 
concentration values of only a 
single scalar source are 
considered. Flux densities are 
regulated by appropriate 
concentration gradients and 
resistances. Also, the near-field 
resistance rn is implemented in 
the pathway of the canopy 
source (for further explanation 
see text; Cb will be introduced 
in section 3.2.3) 

A possible strategy to account for this non-diffusive concentration rise within the 

overstorey is to add a 'lateral' resistor in the resistance network, which will isolate the 

canopy from the vertical diffusion components. The arguments for doing this and the 
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quantification of the magnitude of the resistor are based on the 'Localized Near-Field' 

theory of Raupach (1989a). We note that the resistance network now departs from the usual 

forms by having a virtual node where the vertical and lateral resistors join. The new 

resistance configuration is shown in Figure 3.1. 

In Figure 3.1 the total scalar flux from the surface to the atmosphere, Ft, consists of a 

contribution from the soil or ground vegetation, Fs, and a flux from the canopy layer, Fn. The 

resistances ra
c and rf describe transport from the canopy leaves to the air surrounding them, 

and represent the bulk boundary-layer and bulk stomatal resistance, respectively. Two 

resistors, ra" and ra
s, describe diffusive transport from the canopy to a reference level above 

the canopy and from the ground to the canopy. The concentration at the virtual node, Cv is 

the concentration resulting from diffusive transport through ra" and ra
s. The extra resistance, 

labelled rn, is included to allow a higher concentration, Cc, to build-up because of non-

diffusive transport near the source in the overstorey. Cc is an observable concentration 

value, whereas Cv is observable only when non-diffusive transport is absent. 

With this configuration it is possible for the flux through ra
s to be directed upwards 

even when the concentration Cc is higher than that at the ground, Cs. That is, this 

configuration allows observable counter-gradient transport within the lower canopy, even 

though the fluxes through all the resistors are well-behaved and flow down the 

concentration gradients. This situation is shown in Figure 3.2. Similarly, a counter-gradient 

transport above the canopy is allowed according to the scheme in Figure 3.2. Here the 

reference concentration CR is smaller than Cc, but a net downward transport is simulated. 

Figure 3.2: Influence of rn on average 
concentration represented by the 
scheme of Figure 3.1. Continuous lines 
indicate flows according to Figure 3.1, 
whereas dotted lines represent 
apparent concentration gradients. The 
arrows indicate a region of a simulated 
flux density against the gradient of C. 
(A) Counter-gradient transport within 
the canopy; (B) Counter-gradient 
transport above the canopy 

This new model is in a good form to accomplish our purpose since it is no more 

difficult to implement than existing two-layer resistance models. Just like traditional two-

layer models, the vertical concentration profile consists of a reference concentration, a 

concentration value at the ground surface, and an averaged value of the concentration in the 

overstorey. The model gives a physically improved value of the average overstorey 

concentration when the non-local contribution to scalar transport is parameterized by the 

resistor rn. The remaining, crucial step is to evaluate the value of rn. For this we use the 

'Localized Near-Field' (LNF) theory of Raupach (1989a). Details of this theory are given by 

Van den Hurk and McNaughton (1995). The next section gives a brief description of the 
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strategy to obtain rn. 

• Parameterization of rn using Raupach's 'Localized Near-Field' model of scalar 
transport in a plant canopy 

Raupach's LNF-theory gives an analytical description of a canopy concentration 

profile, C(z). For reasons outlined by Van den Hurk and McNaughton (1995), Raupach 

distinguishes two contributions to C(z): the near-field and far-field components. The far-field 

concentration profile obeys diffusion theory, and can thus be modelled by a multi-layer 

resistance model like that of Waggoner and Reifsnyder (1968). The origin of the near-field 

concentration, Cn(z), is non-local: it is determined by the source strength in neighbouring 

layers. Therefore, Cn(z) can not be represented in terms of a resistance model. The values of 

the resistors would have to depend on the source strength at neighbouring levels. 

However, in a larger-scale application we will not require detailed information on 

the concentration profile within the canopy. Therefore, it will be sufficient to find a 

successful expression for a representative average value of the near-field concentration, C„. 

This average near-field concentration can be related to the scalar flux density originating 

from the canopy source Fh using a resistance formulation: 

(3.3) 

h 

The near-field resistance rn expresses the average concentration rise in a source layer per unit 

canopy flux due to near-field effects. To implement rn in a common resistance model it is 

required that the scalar transport between the distinguished source layers is diffusive. In 

other words, the near-field contribution to the scalar concentration in any source layer must 

originate from that source layer only, and no overlap of near-field contributions from other 

source layers is allowed. We emphasize that for a two-layer resistance model such a 

representation is possible only when the whole overstorey is combined into a single layer, 

and the underlying ground source does not exhibit near-field transport effects. The 

resistance network then is outlined in Figure 3.1. In multi-layer resistance models the layers 

must be spaced wide enough to avoid overlap of near-field contributions. Raupach's 

original methods are appropriate for more complex models. 

Two issues must be solved before Cn and thus rn can be found. First, the definition of 

a 'representative average' Cn must be specified before it can be computed from the profile of 

Cn{z). A weighing function is used for this purpose, and this is discussed hereafter. Second, 

prediction of the near-field concentration profile requires that we provide a description of 

the vertical distribution of canopy sources, S(z), and turbulence within the canopy, 

characterized by the standard deviation of the vertical wind speed, csw(z), and a Lagrangian 

time sclae, T^z). Usually we will not have a detailed knowledge of these distributions. 

Therefore, we will investigate whether a standardized description of a typical canopy source 

distribution and turbulence profile can give a value for the average near-field concentration 

within the overstorey adequately representing all relevant canopies. 
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• Averaging the near-field concentration 

The average near-field concentration, Cn, can be calculated in several ways, 

depending on what is required. Our problem here is to predict the total evaporative flux 

from the overstorey. This leads us to focus on obtaining the correct average of the saturation 

deficit D within the overstorey, since the evaporation rate from each leaf is driven by the 

saturation deficit of the canopy air at that level, D0. At each level in the canopy the 

Penman-Monteith equation dictates that the 'effectiveness' of D0 depends on the leaf area 

density divided by (A + y)rb + yrst, where A is the change of saturated water vapour 

pressure with changing temperature, y the psychrometer constant, and rb and r$t represent 

leaf boundary layer and leaf stomatal resistance, equivalent to the resistors as given in 

Figure 3.1 (Monteith, 1973; McNaughton and Van den Hurk, 1995). For this reason it is more 

important that D0 is accurate at levels with large leaf area density and small resistances. In 

forming an effective average of D0 the values at each level should be weighted to reflect this. 

Unfortunately we cannot assume that profiles of leaf area density, stomatal resistance or leaf 

boundary-layer resistance are known, so we use the source distribution S(z) itself to 

represent the weighing function. The source distribution is already needed to obtain Cn(z) 

(see Van den Hurk and McNaughton, 1995), so this implies no new data requirement. We 

recall that eventually S(z) is to be replaced by a standardized profile, and the uncertainty 

with respect to energy balance calculations of this strategy is discussed later. 

The average near-field concentration over the depth of the overstorey, Cn, can now 

be calculated as the weighted average of the profile of Cn: 

(3.4) Cn 

/•(2)C„(z)dz h 

= ° = f<Kz)C„(2)dz 
r ° 
J4>(z)dz 
0 

Here, <t>(z) is a normalized source distribution function, defined as S(z)/Fh. <|)(z) is zero 

below and above the canopy source range and integrates to unity over the source range 

height. rn has dimensions of time/length, so multiplying it by the friction velocity «» gives a 

non-dimensional transfer resistance similar in function to the inverse of the drag coefficient 

often used in momentum calculations. We will identify this quantity, u, Cn/Fh (= u» rn), by 

the symbol 5Rn and report the results of all our calculations as values of 95n. This has the 

advantage that the reported results are independent of wind speed. To evaluate 5Rn we must 

know the profiles of ow, T; and (|). These profiles will be explored next. 

• Sensitivity analysis 

(a) The profiles ofcw(z), Tj(z) and ty(z) 

The near-field concentration profile Cn(z), and thus its weighted value 9în are 

determined by the profiles of the turbulence parameters, aw and T;. Raupach (1988) argues 

that the empirical data available justify the formulations 
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«„<*> z/h>\ 
(3.5a) 

CQ + (Cj - c0) z / / i z / /z < 1 

T ; ( Z K . K ( z - d ) . M B _ 
. = max[c 2 ,_ l_—1] (3.5b) 

where h is the canopy height, and d is the displacement height, h and u» are considered as 

the governing scaling parameters and assumed known. The coefficients are quantified as 

c0 = 0.25, c1 « 1.25 and c2 = 0.30. By eqs. 3.5 the eddy-diffusivity K = ow
2 Tt approaches the 

limit K u» (z - d) predicted by Monin-Obukhov similarity theory well above the canopy 

(Raupach, 1988). These relationships are based on both wind tunnel and field observations, 

but none of them are from very sparse canopies where a significant fraction of the total 

momentum flux to the canopy is dissipated at the ground. The exact nature of the canopy 

turbulence is only partially covered by the simplified parameterization of aw. The 

significance of this uncertainty for the average near-field concentration will be examined 

below by performing calculations with various choices of the parameter c0, the value of 

ow/u* at the ground. The Lagrangian time scale T; inside the canopy is assumed to be 

uniform with height. There is little reliable information on the variation of this quantity 

among different canopies so this assumption will not be explored here. 

The remaining profile, <|>(z), depends on both physiological and physical properties 

of the canopy, as explained above. A common procedure to estimate <|>(z) is to assume that it 

is proportional to the product of net radiation and leaf area density at level z. However, 

since we cannot assume a detailed knowledge of any of these, our strategy is to explore a 

range of <|>(z) functions, constructed so as to encompass the source distributions found in a 

wide range of canopies. To do this we utilize the Beta-distribution and the block-function. 

These functions are illustrated in Figure 3.3. The Beta-distribution (see eq. 8 in Appendix III) 

has earlier been used to represent profiles of leaf area density (e.g. Meyers and Paw U, 

1986). It resembles the well-known Poisson-distribution but integrates to unity in the range 

0 < z/h < 1. Two parameters, p and q, determine the shape of the distribution. When p > q, 

the maximum value occurs where z/h > 0.5, so this represents a source which is 

concentrated in the upper part of the canopy. For dense, horizontally homogeneous 

vegetation stands, the source profile of water vapour and heat will tend to resemble the 

absorption profile of net radiation in the canopy. For crops having leaves over the entire 

canopy depth, like most agricultural crops, the source profile is therefore represented best 

by a Beta-distribution where p > q. Measured profiles of the daytime water vapour flux 

density in bulrush millet measured by Begg et al. (1964) were rather well fitted by a Beta-

distribution with p = 4 and q = 2. Similar profiles in a maize stand described by Brown and 

Covey (1966) were well reproduced by using p = 3 and q = 2. Forest stands usually have 

leaves in a limited height range high in the canopy, and therefore generally show a source 

profile which is more concentrated near the canopy top. A Beta-distribution with p = 6 and 
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q = 2 gave a good simulation of the measured latent heat flux profile in the deciduous forest 

stand of Denmead and Bradley (1985), whereas a distribution with p = 4 and q = 2 provided 

a good fit to the latent heat flux profile measured by Droppo and Hamilton (1973) in a 

similar stand rather well. Some examples are shown in Figure 3.3a. 

The block-function spreads the source uniformly over the upper n% of the canopy, as 

shown in Figure 3.3b. Corresponding block functions representing sources near the ground 

surface are not considered, because the definition of the canopy height h becomes 

questionable when the canopy source does not extend to the top. In all cases !0
h ty(z) dz 

equals 1, as required by our definition of <|>. 
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Figure 3.3: Examples of source profiles. (A) Beta distributions with (p, q) parameters as indicated; (B) block 
function with source concentrated in relative height ranges as indicated 

(b) Sensitivity of the average near-field concentration to ty(z) and om(z) 

Values of 9în have been computed using eq. 3.3 with a representative range of source 

and turbulence profiles. The source profiles, <Kz), were generated by selecting suitable 

values of the parameters p and q for the Beta-distribution or source thicknesses for the block 

function, as described above. The turbulence profiles were generated by selecting a suitable 

range of values of the parameter c0 in eq. 3.5a. A value of 0.25 is cited by Raupach (1988) 

and others as a likely value for most canopies. Here the calculations are extended to 

0.25 ± 0.25. c0 = 1.25 is added to include the widest extreme, in which case no gradient of ow 

within the canopy is present. The parameters c1 and c2 were set to 1.25 and 0.3, respectively. 

Results from these calculations are listed in Table 3.1. 

The calculated results show that 5Rn is not very sensitive to the selected value of c0, 

and hence aw(z). The sensitivity to the form chosen for the source profile <|>(z) is somewhat 

larger. The values of 3in range from 0.26 to 0.46 for almost all plausible canopy 

representations, and from 0.32 to 0.40 for the most likely cases. Only where a very thin 

canopy layer is situated far from the ground (represented by the block function [0.8,1]) does 

9ln take a higher value. 

This conservative behaviour of 9t„ can be explained as follows. A source contributes 

to the near-field concentration mainly at levels quite near that source. About 80% of the total 

near-field effect is felt within the distance given by öwT;, which is less than 37% of the height 

of the canopy at all levels in the canopy source range, according to eq. 3.5. Therefore, Cn will 

be largest when the source is highly concentrated and smallest when it is widely distributed. 
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Table 3.1: Values of 9în = rn u. as function of various profiles of <|>(z) and aw(z). The profile of aw/u. linearly 
increases from c0 at z = 0 to c1 = 1.25 at z/h = 1. The source profile <|>(z) of type Beta-distribution is changed 
by adopting various values for the parameters p and c\. zrmx is the level where (|>(z) is maximum (see Figure 
3.3a). The source profile represented by the block function is changed by adjusting the lowest boundary of 
the source range, and keeping the highest boundary fixed at z/h = 1 (Figure 3.3b) 

Source type: Beta-distribution 

parameters (p, q) z„„r/h 

2,4 0.25 

2 , 2 0.50 

4 ,2 0.75 

6 ,2 0.83 

Source type: block function 

range {z/h) 

0.0 - 1.0 

0.2 - 1.0 

0.4 - 1.0 

0.6 - 1.0 

0.8 - 1.0 

c„=0.0 

0.43 

0.32 

0.36 

0.41 

0.26 

0.31 

0.37 

0.46 

0.63 

c„=0.25 

0.42 

0.31 

0.36 

0.41 

0.27 

0.30 

0.36 

0.45 

0.62 

c„=0.50 

0.41 

0.31 

0.35 

0.40 

0.27 

0.30 

0.35 

0.44 

0.61 

cn=1.25 

0.38 

0.30 

0.33 

0.38 

0.26 

0.28 

0.33 

0.42 

0.59 

Thus the narrowest canopy source, described by the block distribution [0.8,1] gives the 

largest resistance, and that described by the block distribution [0,1] gives the lowest value. 

Along with this effect is the tendency of turbulence to spread the near-field concentration 

from a source beyond the bounds of the canopy, and so beyond the range of integration. 

This will tend to reduce 9?n for larger values of ow. We see very little effect of increasing c0 

(which increases ow at all levels within the canopy) for well-distributed sources such as the 

block distribution [0,1], but a noticeable decrease in 5Rn with increasing ow for more 

concentrated sources. 

An average near-field concentration 9?n can be deduced from Table 3.1, concentrating 

on the likely values of p and q cited above. This results in a value of 0.36 ± 0.05 for most 

dense crops. Vegetation stands with a more open structure will distribute the net radiation 

more equally over the entire canopy depth, and the average near-field concentration will be 

somewhat lower in these cases. 

Van den Hurk and McNaughton (1995) evaluated the effect of including rn = 0.36/M» 

in the two-layer resistance model of Shuttleworth and Wallace (1985). They performed 

calculations representative for conditions of calm wind and clear sky, for various watering 

conditions, determined by the choice for the crop resistance and soil evaporation resistance. 

They concluded that for both dense crops (LAI = 4) and sparse crops (LAI = 1) including rn 

makes very little difference to the energy balance of the canopy and the ground. The largest 

effect is present when all other resistances in the model (see Figure 3.1) are low. 
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• Conclusions 

It is possible to represent non-diffusive transport in canopies in a two-layer 

resistance model, such as that of Shuttleworth and Wallace (1985), by adding a 'near-field' 

resistor, rn, in series with the bulk boundary-layer resistance in the upper layer of the model. 

Addition of this resistor has an improved prediction of the scalar concentration in the 

canopy source layer as a diagnostic, and allows the model to mimic the counter-gradient 

transport of scalars that is sometimes observed within real canopies. The procedure of 

adding a near-field resistor into the upper layer can only be applied when the near-field 

contributions from the separate source layers do not overlap. 

The value of the normalized near-field resistor can be calculated using the analytical 

Lagrangian model of canopy transport developed by Raupach (1989a). The calculated values 

of 9în = rn u, range from 0.26 to 0.63, with the likely value for most canopies described by 

0.36 ± 0.05. The higher values in this range are for canopies where the leaf area is 

concentrated in a narrow range, while the lower values are for canopies with 

well-distributed leaf areas. The values of rn are rather insensitive to how the turbulence 

(expressed in terms of ow) is described within the canopy, and moderately sensitive to the 

shape of the source profile. 

Addition of this near-field resistance into the Shuttleworth and Wallace model has 

only a small effect on the predicted evaporation rate from both the canopy and the 

underlying soil, under calm wind and clear sky conditions. This is because rn is less than 

one tenth the magnitude of either of the aerodynamic resistances included in the 

Shuttleworth and Wallace model. The overall minor influence on the surface evaporation 

justifies the crude estimation of rn given above. 

In this study the physiological response of leaves to the ambient water vapour deficit 

is not taken into account. The canopy resistance is explicitely specified and not made 

dependent on the canopy water vapour deficit. Since rn affects the average concentration 

within the overstorey a possible extra effect via rs
c might take place. Under conditions of 

strong canopy evaporation the effect of rn will be to reduce the canopy water vapour deficit, 

thereby possibly also reducing rs
c and counteracting the (slight) reduction of the canopy 

evaporation. The opposite takes place when sensible heat flux dominates the canopy 

evaporation. Further examination of a system where these feedback mechanisms are 

included requires a description of the response of rs
c to changing canopy water vapour 

deficit, and is a possible item for future research. 

Theoretically, rn could also be evaluated using other sophisticated theories such as 

higher-order-closure. The improved prediction of within canopy concentration profiles 

compared to first-order closure (Meyers and Paw U, 1987) makes this excercise certainly 

worthwile. An experimental evaluation of rn will encounter major difficulties in defining 

effective averages of the relevant resistances (including rn) and in measuring the canopy 

source and turbulence profiles. 

The small value of rn is somewhat surprising, given the weight of the objections 

against using X-theory for the description of canopy transport processes. Simultaneously it 

gives also rise to questioning the need to implement near-field effects in larger scale models. 

The present study shows that for a correct prediction of energy fluxes from relatively 

complex surfaces much emphasis must be laid on a correct parameterization of the other 
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aerodynamic and physiological resistances. A theoretical discussion of ra
a, ra

s and ra
c is 

presented in the next section. 

3.2.3 A 'Lagrangian' revision of the resistors in the two-layer model for calculating the 
energy budget of a plant canopy2 

In the previous sections (Van den Hurk and McNaughton, 1995) it was shown that 

Raupach's 'Linearized Near-Field' theory (Raupach, 1989a) can be used to construct a two-

layer resistance model. This new model has the same structure as earlier two-layer models, 

except that a 'near-field resistor' is placed in series with the boundary-layer resistor. The 

other resistors of the two-layer model were not discussed. McNaughton and Van den Hurk 

(1995) completed this revision of the two-layer models by re-evaluating them, again basing 

calculations on the Lagrangian LNF-model of Raupach (1989a,b). Using Raupach's concepts 

they replaced the aerodynamic resistors of e.g. Shuttleworth and Wallace (1985) with 'far-

field' resistors, and quantified them using Raupach's expression for the 'far-field' diffusivity 

(Raupach, 1988). The same was done with the boundary-layer resistance of the foliage in the 

overstorey canopy. The result is a completely-reformulated two-layer resistance model. 

In the following sections the derivation of the newly defined far-field resistors is 

summarized. Calculated values of (normalized) far-field and boundary-layer resistances are 

compared with those of Shuttleworth and Wallace (1985) and Choudhury and Monteith 

(1988). McNaughton and Van den Hurk (1995) also compared the resistors from these two-

layer models to experimental values found in the literature, expressed in terms of the 

'excess' resistance. This experimental comparison is not repeated in this thesis. 

• The Far-Field resistors 

In the previous sections Van den Hurk and McNaughton defined a near-field resistor 

as the ratio of an effective average near-field concentration, Cn, to the canopy flux (eq. 3.3). 

Cn is defined as the single value of Cn whose inclusion in the two-layer model would have 

the same effect on the energy fluxes as inclusion of the true profile, Cn(z), has in the full 

model. This average concentration was found by integrating Raupach's profile equations 

and applying a weighing function (eq. 3.4). McNaughton and Van den Hurk (1995), referred 

to as MH95 hereafter, continued to use effective concentration values to define the remaining 

resistors in their model. 

Because the far-field profile in Raupach's LNF theory is described by K-theory, 

vertical diffusion within and just above a canopy can be represented by a vertical chain of 

resistors. In a two-layer model only two layers are present, so this chain has only two 

resistors: an 'upper far-field resistor' and a 'lower far-field resistor', labelled ra" and ra
s in 

Figure 3.1. 

Their methods for evaluating the resistors from the K-profile differ from those used 

by Shuttleworth and Wallace (1985) and Choudhury and Monteith (1988). MH95 based their 

calculations on complete integrations over the far-field concentration profile, CÂz), without 

first reducing the source profile to a single source at a specified level. This avoids any ad hoc 

specification of 'the source level' and allows to discuss the effect that the shape of the source 

2 
Adapted from McNaughton and Van den Hurk (1995) 
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profile has on the calculated resistances. 

The Upper Far-Field Resistor 

Referring to Figure 3.1, the upper far-field resistor, ra", is defined by the equation 

CV-CR (3.6) 

where the concentration at the reference level, CR, and the total scalar flux upwards at the 

reference level, Ft, are observable quantities. Cv is the effective weighted average of the far-

field concentration within the overstorey, given by 

C „ - ƒ<> (çJC/ç) dç (3.7) 

where Cris the solution of the diffusion equation (see McNaughton and Van den Hurk, 

1995), ç = z/h, and <|)(ç) is the same weighing function as outlined above. This leads, with 

eq. 3.6 and a little manipulation, to an expression for the dimensionless upper far-field 

resistor: 

ƒ•<«> 
'V 

hu 

K(q) 
Vdç' dç 

(3.8) 

The expression on the right can be expanded by splitting the innermost integral into 

integrals from ç to 1 and from 1 to çR. Some further manipulation then leads to the 

dimensionless equation 

ÇR hu. hu. 
ur" = f Idç + U(q) f Ldç/dç 

(3.9) 
1 hu. ' 

•t o 

Eq. 3.9 has three terms on the right. The first, 9îj (where 91 denotes a dimensionless 

resistance, equal to r u,), represents the part of the far-field resistor above the top of the 

canopy. The second, 9lw, represents the far-field resistance up to canopy top calculated as if 

the whole canopy source were located at the bottom of the canopy, but with the 

effectiveness weighing distributed through the canopy. The third term, (f^/Ff)^/;/, is a 

correction for the true distribution of sources. The ratio Fh/Ft lies in the range 0 - 1 . This 

third term will be different for each canopy so its presence signals the impossibility of 

constructing a perfect two-layer model with resistors independent of the source distribution. 

Table 3.2 lists values of 9îj, 9l77 and 5Km for various profile shapes of ow (modified by 

ranging c0 in eq. 3.5) and <|> (parameterized as a Beta-function, as before). çR is set at 2 
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Table 3.2: Components of the dimensionless far-field resistor calculated for three values of c0 and a range of 
assumed source distributions, <Kç), described by Beta-probability distributions with the p and q values 
shown (see also Figure 3.3a). 95p 1HU and %m are the three integrals in the respective terms on the right of eq. 
3.9. 95, is computed by using çR = 2 and d/h = 0.66. The upper far-field resistor, 9!/, is calculated assuming 
Fh/Ft = 0.5, so that 91/ = 9t, + 9t„ - 0.5 9t,„. 9tw is the dimensionless resistor defined by eq. 3.12 and 3.15, 
and 9Ja

s is the dimensionless lower far-field resistor, also for F/./F, = 0.5, so that 9ta
s = 9î,v - 9t„ + 1 9ira 

<=n 

0.15 

0.25 

0.35 

P 

1.25 

1 

2 

3 

6 

1.25 

1 

2 

3 

6 

1.25 

1 

2 

3 

6 

1 

2 

1 

2 

2 

2 

2 

1 

2 

2 

2 

2 

1 

2 

2 

2 

», 
2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

S i , 

4.3 

3.4 

2.7 

1.7 

0.8 

3.4 

2.7 

2.3 

1.5 

0.7 

2.9 

2.3 

2.0 

1.4 

0.7 

*m 

1.9 

1.9 

1.2 

0.8 

0.3 

1.4 

1.4 

0.9 

0.6 

0.3 

1.0 

1.1 

0.8 

0.6 

0.3 

V 
5.5 

4.6 

4.2 

3.4 

2.8 

4.9 

4.1 

3.9 

3.3 

2.7 

4.5 

3.9 

3.8 

3.3 

2.7 

%v 

17.8 

17.8 

17.8 

17.8 

17.8 

10.7 

10.7 

10.7 

10.7 

10.7 

7.6 

7.6 

7.6 

7.6 

7.6 

V 
15.4 

16.3 

16.4 

16.9 

17.3 

8.6 

9.4 

9.3 

9.8 

10.2 

5.8 

6.4 

6.4 

6.8 

7.1 

(above this level the scalar profile should be well described by the usual Monin-Obukhov 

similarity forms, so resistance from that level up to any other level can be calculated in the 

conventional way), and d/h = 0.66 is assumed. 

The above-canopy part of the far-field resistance, 5Rj, is the same for all cases, but the 

resistances within the canopy are somewhat sensitive to the shape of the ow profile, as 

specified by c0, and very sensitive to the assumed source distribution. The values of 5RW and 

5RWj for a source concentrated near the top of the canopy are only about one fifth of those for 

a source concentrated near the bottom. The values of SRfl
fl can be roughly estimated by 

rewriting eq. 3.9 as 

K-^^n-^iu (310) 

and setting Fh/Ft to a mid value of 0.5. These values are also shown. An SRa
fl-value of 3.6 ± 

1.0 is appropriate for most canopies. This gives the dimensioned value of the upper far-field 

resistor as ra" = 3.6/u», where the value of M» is assumed known. 

The Lower Far-Field Resistor 

As with the upper far-field resistor, the lower far-field resistor was defined as to 
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preserve correctly a particular quantity: in this case the concentration at the ground, Cs. 

Referring to Figure 3.1, the lower far-field resistor, ra
s, is defined by the equation 

(3.11) 

where Cs is found by integrating down the concentration gradient, Ciz), from the reference 

height right down to the ground. Substituting for Cv using eq. 3.7 leads to the dimensionless 

equation 

9C-
«. (C 8 -CR ) 9 f o ( 3 1 2 ) 

Fs 

where (Cs - CR) is found by extrapolating the far-field concentration profile down to the 

ground at q = 0, so that 

U>{C°-CR) -1 ^Ldç.+
FJL1 ^L k w d ç <3 1 3> 

Fs l m Fsimr^' 
The first integral here may be split into integrals from 0 to 1 and from 1 to qR. The integral 

from 0 to 1 we designate 9t/v, while that from 1 to çR is already designated 5Rj. The second 

integral term in eq. 3.13 is just Fft/Fs(9tj + SRn). With these substitutions eq. 3.13 becomes 

" , ( C S - C R ) 

Substitution of eq. 3.10 into 3.14 leads to 

' F ^ 

l+lÜ 
F„ 

h 
*i^*u + *iv ( 3-1 4 ) 

F 
< = *iv-*ii + -f*m a i 5 ) 

Calculated values of 3ijV are shown in Table 3.2, using Fh/Fs = 1 as before. 

Table 3.2 shows that, for a given value of c0,5Rfl
s varies less than about 20% over the 

full range of assumed overstorey source distributions when Fh/Fs = 1.0. On the other hand, 

the table shows that SRfl
s varies by a factor of 2.5 as c0 ranges from 0.15 to 0.35. Even this 

range of c0 may not express the true uncertainty because the profile equation 3.5 becomes 

unreliable as the ground is approached. This is just where the diffusivity is smallest and 

makes the largest contribution to 91/ , so the value 9ta
s is, in fact, highly uncertain. Similar 

uncertainty exists in other two-layer models for the same reason. 

From Table 3.2 we choose 5R/ = 10 as a representative value, so that ra
s = 10/u». 

The Boundary-Layer Resistance 

MH95 defined the dimensionless boundary layer resistance, 9tb, to be the one that 

satisfies the relationship 
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9L = ' b c (3.16) 
b p 

th 

Here, Cc is the canopy airstream concentration (Figure 3.1), and (Cb - Cc) is the effective 

increment of concentration given by an equation similar to eq. 3.4. The concentration 

difference across the boundary-layer resistances at each level in the canopy is given by 

C ( ç ) - C ( ç ) . ^ î f ^ (3.17) 
b(q' c(q' MD(ç) 

where Sh is the total canopy source strength. This leads to 

*> -"• /r»(s)T35Grdç " m ̂ ( ç ) dç (3-18) 

o 
LAD(ç,) LAI • 

where an effectiveness weighing, (p(ç), was eliminated by (crudely) assuming that its profile 

resembles the profile of L4D(ç). 

The leaf boundary-layer resistance, rfc(ç), depends on leaf dimension, lw, wind speed, 

u(ç) and other factors such as leaf shape and degree of mutual sheltering of the foliage and 

the intensity and scale of turbulence. If we model the leaf as a flat plate parallel to the flow, 

then heat transfer from both sides is given by (Appendix III) 

150 ß 
lw (3.19) 

N u 

where the sheltering factor ßs was assumed to be 1. The wind speed, u, was expressed using 

an exponential decay function with attenuation coefficient au (Cionco, 1972,1978; Pereira 

and Shaw, 1980). Furthermore, MH95 assumed that, in cases where the canopy is dense 

enough that very little momentum is transferred to the ground, the ratio uh/u, = 3.2 

(Raupach, 1992). This leads to an expression for the dimensionless boundary-layer resistance 

of the overstorey canopy, written as 

F i — * 
*b = 8 4 -^ rJ" e x p - r ( 1" ç ) 4>fe)dç 

V 
-0 

/ 

(3.20) 

from which ^LAI/J^u^ can be evaluated directly using an appropriate range of au-values 

to represent a range of wind profiles, and the Beta function to represent a range of source 

profiles. The results of the calculations are shown in Table 3.3. 

In Table 3.3 the small values of au represent sparser canopies, where we might 

expect good radiation penetration and the flux sources to be spread more evenly or 

concentrated low in the canopy. Larger values of au, on the other hand, represent denser 

canopies, where flux sources would often be concentrated higher in the canopy (Cionco, 

1978; Pereira and Shaw, 1980). The p and q parameter values in Table 3.3 reflect, from left to 

right, a similar trend towards higher sources. The most representative values from Table 3.3 
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Table 3.3: Values of 9?6LA7/i/"i!1,H„ in s1/2m_1, calculated using eq. 3.20 for various values of the attenuation 
coefficient for the canopy wind profile, au, and the source distribution function (|)(ç) represented by the Beta-
function with values of the parameters p and q as shown. The devalues 1, 2, 3 and 4 correspond to leaf area 
indices of about 0.6, 2, 4 and 9, respectively, depending on canopy structure, according to calculations by Pereira 
and Shaw (1980) 

wind 
profile 

<xu = l 

«„ = 2 

<x„ = 3 

«„ = 4 

p = 1.25 
9 = 2 

115 

160 

224 

319 

p = l 
q = l 

109 

144 

195 

268 

p = 2 
q = 2 

109 

142 

188 

252 

p = 3 
q = 2 

103 

128 

160 

203 

p = 6 

1 = 2 

95 

109 

125 

145 

should therefore lie about the diagonal through the table from upper left to lower right. 
Wind profiles in most crops are described by au values between 1.3 and 2.8; higher values of 
au are observed in many forests. A representative value of 3ibLAI/Jlwut from Table 3.3 is 
about 130 s1 '2!^1 with most canopies probably within ± 30 s1'2!«"1 of this figure. Unlike SRfl

fl, 
3îfl

s and 9?n, which take fixed values, 5Rfc depends on the momentum flux to the canopy and 
on the canopy leaf area index and leaf dimension. Values of SRj, can vary over two orders of 
magnitude, depending on the values of these parameters, so some direct information about 
the canopy is needed. An estimated dimensional value of the bulk boundary-layer 
resistance, ra

c, is therefore 9tb/u» = 130/LAlJlw/ut . 

• Comparisons with resistors of other two-layer models 
MH95 compared the values of the resistors in their re-evaluated two-layer canopy 

model with formulations presented by Shuttleworth and Wallace (1985; SW85) and 
Choudhury and Monteith (1988, CM88). The CM88 model differs from the original SW85 
model in two principal ways: a better treatment of leaf boundary-layer resistances, and 
modifications which allow a continuous transition from canopies with dense overstoreys to 
canopies without overstoreys. The model of MH95 was not intended for use with very sparse 
overstoreys, so the comparison was restricted to canopies with overstoreys that are dense 
enough that very little momentum reaches the ground. 

Table 3.4: Intercomparison of dimensionless resistances; 9?„ is the near-field resistance, 91," the upper far-field (or 
aerodynamic) resistance, 9tn

s the lower far-field (or within canopy aerodynamic) resistance, and 9tj, the leaf 
boundary-layer resistance 

quantity SW85 CM88 MH95 

»/ 
95/ 

%LA1/S(lwu,) 

0 

5.5 

28 

0 

5.4 - 6.7 

15 -60 

7 5 - 9 7 

0.30 - 0.42 

2.6 - 4.6 

6 - 1 7 

100 - 160 

Table 3.4 gives a summary of the dimensionless resistors. In each case the reference 
height is set at 2h, and stability corrections are ignored. 
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Both SW85 and CM88 calculate 9?a" and 5R/ by integrating the inverse of a diffusivity 

function, equal to K(q)/uM = K(Ç - d/h) above the canopy, and K(l)exp{n(ç -1)} below ç = 1. 

n is an eddy-diffusivity extinction coefficient, set to 2. 9?fl
fl is found from an integration from 

a source level at height (z0m + d) up to the reference height. SR/ is integrated between the 

source height to a level near the ground, z0'. The value of z0 ' has almost no effect on the 

calculation. The principal difference between the models is how z0 and d are calculated. 

SW85 assumes z0m//z = 0.13 and d/h = 0.63, which values are typical of agricultural crops. 

CM88 lets züm and d depend on the leaf area index of the overstorey. For canopy drag 

coefficients ranging from 0.05 to 1.5 they calculate values of d/h ranging from 0.43 to 0.82, 

and values of z0m/h from 0.13 to 0.06 (section 4.1.5). 

The ranges for 9?a
fl do not overlap for CM88 and MH95. The range in each derives from 

variation in the location of the canopy source, but by quite different mechanisms. In CM88, 

5Ra
fl depends on the height of the momentum source, (z0m + d), which varies in a fixed way 

with LAI. In MH95, it depends on how the source is distributed, which is only partly related 

to leaf area index. The CM88 model gives values at the lower end of the range in 

intermediate canopies, with a drag coefficient of 0.2, while the MH95 values tend to be 

smaller in denser canopies. 

Also for SRfl
s the MH95 model has smaller resistance values, but this time the ranges 

overlap slightly. The spread of values in MH95 derives mainly from uncertainty in the 

diffusivity profile, while the spread in the CM88 values derives mainly from changes in 

source height with changing canopy density. The lack of a common cause for the spread of 

values predicted by each model is particularly disturbing, since each — for its own distinct 

reasons — has 5RB
S varying over a threefold range. Overall, the predicted values range from 6 

to 60. This gives some indication of the uncertainty. 

The boundary-layer resistance can't be described by simple representative values of 

9?6 because it varies widely with leaf area index, leaf dimension and wind speed. The values 

for each model are best described by formulae (Table 3.4). The SW85 model was designed for 

a particular crop so its form was not intended to be general. Again the ranges calculated 

using the CM88 and MH95 models do not overlap, though this time the difference is 

principally through the choice of the ßs value in eq. 3.19. The range of values from the MH95 

scheme would be 67-110 if they were calculated using ßs = 2 /3 , as in CM88. The remaining 

difference originates from use of different averaging schemes and different exponents for 

the canopy wind profile. The ranges of 91;, do not reflect the full uncertainties. The range of 

values from CM88 is increased to 64-116 by varying the extinction coefficient for the wind 

profile from 1.5 to 3.5. The ranges of 3ib are increased substantially in both CM88 and MH95 

models if the uncertainty in ßs is included. 

• Discussion 

Also in comparison to the resistances in the MH95 model, the near-field resistor 

introduced in section 3.2.2 is usually insignificant, and far-field theory is adequate for 

building two-layer models, provided the far-field JC-profile is known correctly. Here 

Raupach's suggested form for the far-field diffusivity profile was used, which is larger than 

those used by SW85 and CM88, implying that the calculated far-field resistors are smaller. An 

interesting question is how much difference this makes to calculated energy balances. In 
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chapter 6 the impact of this difference is investigated using the coupled surface layer-PBL 

models. Referring to the calculation of surface evaporation, McNaughton and Van den Hurk 

(1995) state that the differences are important only when the evaporation rate is large 

compared to available energy, the saturation deficit at reference height is high, and the 

surface resistance of the canopy or underlying ground low. Also Dolman and Wallace (1991) 

calculated very similar total evaporation rates from millet growing in Niger, using a 

complete Lagrangian model, the Shuttleworth and Gurney (1990) two-layer model (nearly 

similar to CM88), and the Penman-Monteith single-layer model. Saturation deficits and 

evaporation rates are not notably high in that data set. 

Another matter to comment on is the fact that MH95 have broken with the methods 

introduced by SW85 and followed by CM88 and Shuttleworth and Gurney (1990) in that no 

overstorey source is located at a fixed height. The idea that there is any necessary connection 

between the distribution of scalar sources within the canopy and the parameters of the wind 

profile were rejected. Instead, they integrated the diffusion equation directly for a 

distributed scalar source, following the kind of methods pioneered by Cowan (1968). 

Their results still rely on the quality of the far-field diffusivity profile used (eqs 3.5a 

and 3.5b). Unfortunately, none of the field data of ow/u, which Raupach (1988) used to 

construct these profiles extend down to the ground, and the two profiles from wind tunnels 

that do so have a threefold range near the floor of the tunnel. Therefore profiles of ow are 

poorly known near the ground. The T; profiles are even more uncertain. The diffusivity 

profile is therefore unreliable near the ground, and the value of 9?a
s calculated from it has 

great uncertainty. 

Of particular concern is that we don't know how to describe JC-profiles near mixed 

under-storey of bare soil and grass. This is disturbing because field results show that 

temperature differences between bare soil and grass can be very large (e.g. Garratt, 1978). 

Therefore we don't know how to construct a plausible model for transport from an 

understorey, nor how to describe the excess resistance for sparse canopies. This is a serious 

matter because excess resistance is needed to calculate heat fluxes from surface temperature 

measurements made from aircraft or satellites (Bastiaanssen, 1995). The turbulence profiles 

used here summarize profiles measured in canopies where little momentum reaches the 

ground. That is, we expect that they apply only to rather dense canopies, for which the 

profile area density exceeds 0.1 (Raupach, 1992). Fortunately, many 'sparse' canopies are 

dense enough to satisfy this condition. It is difficult to build a model for very sparse 

canopies with profile area densities < 0.1 because theory is currently inadequate and there 

are no suitable experimental data for guidance. The two-layer model developed by 

Shuttleworth and Gurney (1990) does 'extend' to very sparse canopies, but it does so simply 

by interpolation between canopies with 'dense' overstorey, as modelled by CM88, and ones 

where the overstorey vanishes. 

The albedo of a sparse vineyard canopy during the growing season 

Studies considering the energy balance of the Earth's surface involve the 

quantification of the radiative energy supply, referred to as net radiation. This net radiation 

consists of both longwave and shortwave terms. The latter contribution (0.3 - 3 pm) is to a 
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large extent determined by the reflecting properties of the surface, usually denoted as the 

shortwave albedo or reflectance. Both the seasonal variation and the diurnal change of the 

surface albedo can be of importance for describing the exchange of heat and water vapour 

between the surface and the atmosphere. The seasonal variation is essential for 

climatological studies and crop growth simulation models, whereas the diurnal variation is 

important for short term weather forecasting and simulation of boundary layer 

development. The shortwave albedo of a sparse canopy during part of its growing season is 

the subject of the following sections. 

Among the surface characteristics playing a major role for the shortwave albedo, an 

important one is the fraction of plant cover, with a closed canopy or a completely bare soil 

as the possible limits. The geometry of a closed canopy and the spectral properties of its 

components can give rise to surface albedo values ranging between 0.10 and 0.25. Surface 

roughness and content of moisture, organic materials and iron compounds in the upper soil 

layer are important parameters for the albedo of bare soil, which can vary between 0.05 and 

0.40 (Dickinson, 1983). A large part of the global surface is covered with sparse canopy. This 

surface type is heterogeneous on a scale comparable to the individual vegetation elements, 

but may well be considered homogeneous on a larger catchment scale. Due to the 

complicated geometry and contribution both from bare soil and vegetation components, the 

albedo of a sparsely vegetated surface depends on a large set of effects of the various 

relevant surface properties. 

The processes related to the surface albedo of the sparse vineyard canopy 

endeavoured during the EFEDA-I campaign (section 2.2.3) is the subject of the following. 

Albedo measurements were carried out in a period of rapid plant growth; the fraction of 

vegetation cover increased from 0.05 (primarily bare soil) to 0.15 within a period of 25 days 

(section 2.2.6). The diurnal and seasonal variation of the measured surface albedo are 

explained from available theory and models. Also, the horizontal inhomogeneity of the 

surface albedo on a scale of 200 x 200 m is discussed. For this purpose, remotely sensed data 

are used. 

3.3.1 Processes determining the albedo of a sparse vineyard canopy 
• The surface albedo 

The shortwave hemispherical reflectance of a surface, or (surface) albedo, is defined 

as the upward reflected part of shortwave (0.3 - 3 |im) radiation reaching a horizontal plane 

on the surface. An incoming light beam I of wave length X from any azimuth direction 0O 

and zenith angle Çg may partially be reflected upward in directions <|> and n = cos Ç. The 

total albedo a is then obtained by considering the amount of reflected radiation from all 

beams integrated over the hemisphere: 

3 1 2n 1 2JC (3 21') 

a = ƒ ƒ ƒ ƒ ƒ |J'-(<t>.|J^|<t)o.)1o)/(<l'0'^)d<l)dMd(l'odMod^ 
A. = 0.3MO = 0 * O = 0 1 1 = M , ' 0 

where r(§, \i, X |<|>0, \ig) is the reflection coefficient of I(§0, \i0, X) into direction (<|>, n). 
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• Shortwave reflectance of bare soil 

Generally, soil reflectance increases as the wavelength increases from 0.3 to 3 |im 

(Coulson and Reynolds, 1971). The amount of highly absorbing organic and iron 

compounds in the soil have a pronounced effect on the reflectance in the visible range of the 

spectrum. Beside this, other factors such as soil moisture content, zenith angle and the 

structure of the top layer affect the albedo of a soil. 

Dickinson (1983) discusses a model to describe the albedo of a flat soil, «s, constisting 

of large distinctive particles. The model is based on a "delta-Eddington" approximation and 

was used by Wiscombe and Warren (1980) to obtain the albedo of snow. Information is 

needed about the reflectance of individual particles and the average angle of reflection. The 

results show a clear dependence of soil albedo on zenith angle Ç. Generally more light is 

reflected when the zenith angle is large, especially for flat dry surfaces. The zenith angle 

response reduces considerably when the fraction of diffuse radiation, fd, is significant, and 

thus depends on cloud cover and atmospheric turbidity. A simpler approach was followed 

by Menenti et al. (1989), who used a semi-empirical relationship to describe the variation of 

the bare soil albedo as with Ç: 

asQ - a0{8(A,)]s^ (3-22) 

In this equation, aQ is the albedo when the sun stands in zenith, A; is the optical depth of the 

atmosphere in the direction of the solar beam, and g(A;) is a surface dependent function, 

assumed to be a linear function of A;: 

g (A,) =g0+cgA, (3.23) 

where g0 and c are regression coefficients, to be obtained from field measurements. The 

optical depth is defined by (Slater, 1980) 

A; = - I n (3.24) 

where K is the downward shortwave radiation at the surface level and the subscript e refers 

to the extraterrestrial solar radiation. K /Ke is known as the transmission factor, the relative 

amount of absorbed and reflected solar radiation by the atmosphere. Eq. 3.22 ensures that 

as -» fl0 for Ç —> 0. a0 is surface specific and depends on values of humus and iron content and 

moisture content in the top soil layer. In this simple approximation, the effect of increase of 

the fraction of diffuse radiation, fd, with increasing Ç is implicitly included. The effect of a 

change of/d due to cloud formation or changing atmospheric transmission is not 

parameterized. 

The moisture content of the upper soil layer is known to have a pronounced effect on 

the bare soil albedo (Gräser and van Bavel, 1982; Idso et al., 1975). Wet soils reflect 

shortwave radiation less than dry soils, and this difference can be as large as a factor five. 

Gräser and van Bavel (1982) found that the albedo of three different types of soil changed 

within a very small range of water potential, but remained constant when soil humidity was 
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outside this range. They conclude that the original Angstrom-theory, explaining the 

reduction of reflectivity by trapping of radiation in the soil water films caused by a total 

internal reflection, is consistent with the abrupt change of the albedo as soil moisture 

changes. The soil moisture content of the top layer of the soil often shows a clear diurnal 

cycle. Water vapour transported upward over temperature gradients and by capillary rise is 

not removed by evaporation during the night. When the upper soil layer is dry, capillary 

rise will be limited, but temperature gradients near the soil surface can be extremely large, 

particularly when no vegetation is present. This effect combined with the process of dewfall 

often results in a moisture content of the top soil layer which is higher in the morning than 

at later times. In this case, the observed soil albedo shows an asymmetric response with 

respect to solar time, being lower in the morning. The difference between morning and 

afternoon albedo can be larger than 1.5%, as was for instance observed by Menenti et al. 

(1989) above deserts. They applied an empirical correction for the lower albedo in the 

morning (time t < 12:00 solar time), using a reduction factor md obtained from field 

measurements. mä was expressed as linear function of sin Ç with coefficients md0 and cm: 

md0 - cm s i nÇ t < 1 2 : 0 0 (3.25) 

1 t > 12:00 

Surface elevation differences can result in a variation of the soil moisture at many 

scales. This effect, and the variability of the contents of iron and organic compounds, can 

cause a strong horizontal variability of the soil albedo at scales ranging from a few cm to 

hundreds of meters. 

Wetting or roughening the soil decreases both the albedo and the sensitivity to solar 

elevation. A near normal incident radiation can penetrate deeper into a coarse surface, and 

becomes trapped by multiple reflections in the soil cavities. The laboratory studies reviewed 

by Myers and Allen (1968) conclude that an increase of the soil particle diameter or 

aggregation of particles into clumps reduces the reflectance of the soil, but that these 

differences are usually overshadowed by the effect of differences in soil moisture and 

humus content. 

• Shortwave reflectance of plant canopies 

The reflectance properties of plant canopies have been studied by many authors. 

Dickinson (1983) gives a good review of most of the recognized factors affecting the albedo 

of plant canopies. 

Obviously, the reflectance and transmittance of individual leaves plays an important 

role. These properties are a function of the wave length of the light. For simple purposes, 

leaf reflectance p ; and transmittance x; are quantified as p; = x; = 0.15 for visible light (0.3 -

0.7 \im) and 0.4 for near infra-red (0.7 - 3 |jm) (Goudriaan, 1977). The leaf angle distribution 

plays a role in the zenith angle response of canopy reflectance. If all leafs are in a horizontal 

position, the reflection is independent of Ç. A canopy with e.g. spherically distributed leaves 

reflects more radiation from lower angles of incidence. Closed canopies with multiple leaf 

layers also tend to trap part of the reflected radiation, in particular at overhead sun. For low 
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solar altitude this trapping is much less pronounced, and the canopy reflectance can increase 

to 3 times its value around noon (Sellers, 1985; Goudriaan, 1977). On the other hand, 

radiation above spruce forests with widely spaced spire-shaped crowns penetrates deeper at 

large zenith angles (Dickinson, 1983). Finally, the degree of vegetation cover determines the 

influence of the underlying soil upon the canopy reflectance. 

A model for the albedo of a closed plant canopy plus its underlying ground, ac, was 

developed by Goudriaan (1977) and also applied by Jacobs and van Pul (1990). Goudriaan 

(1977) computed ac by regarding the decrease of the radiation with canopy depth as an 

exponential function. For the albedo of a canopy with horizontal leaves, ahm, this resulted in 

= a ~ ( 1 'a-asoil> -(floo-asoii>exP(-2K^1) ( 3 2 6 ) 
Ohor ~ l-a«,asoU-am(am-asoU)exp(-2krLAD 

a„, is the albedo of the canopy when LAI —» ~, aSOT-; the reflectance of the underlying soil and 

kr a semi-empirical extinction coefficient. Under the assumption that the reflectance of an 

individual leaf, p;, equals its transmissivity t ;, and by definition of a scatter coefficient 

O; = P; + T;, a^ is parameterized by 

° ' (3.27) 
2 0 + W - o , 

and kr = (l- cj)05. The scatter coefficient for visible light, ol OTS, is approximately 0.3, whereas 

the value of 0.8 is adopted for the near-infra red value, o, m>. Also the reflectance of the 

underlying soil, flS0I-;, must be specified for these bands separately. 

The shortwave reflectance of a canopy with horizontal leaves does not depend on 

zenith angle, as can be seen from eqs. 3.26 and 3.27. By contrast, for spherically distributed 

leaf angles the canopy albedo, a h, depends on Ç. Goudriaan (1977) gives a simple 

expression for a h, reading 

_2 
1 + 1.6 cos Ç V,(0="ftOr. .A...r W 

The contribution of diffuse radiation to the albedo of a closed canopy can be 

simulated using a weighted average of 3 direct beams with zenith angles 15°, 45° and 75°. 

The weighing reflects the ratio of the projected areas of three band circles of a hemisphere 

centred at these angles (Goudriaan, 1988). This yields 

% A Vif) = 0.25 asph (15°) + 0.50 asph (45°) + 0.25 asph (75°) (3-29) 

Assuming that the incoming shortwave radiation is roughly equally divided over the visible 

and near-infra red bands, the albedo of a canopy is obtained by averaging the albedos of the 

two bands a h vis and a h nir. Accounting for the fraction of diffuse radiation, ac is finally 

expressed as 
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ac "ft 

asph,vis(dif)+asph,mr(dif) 
"(!-ƒ* 

f ^ 
a
Sph,vis^+asph,nir^ (3.30) 

The reflectance of a closed canopy is generally lower than the reflectance of bare soil. 

Trapping of radiation and strong absorption in the visible range cause this difference. 

• The shortwave reflectance of a sparse canopy 

By definition, a sparse canopy consists of both vegetation and a considerable part of 

uncovered soil. Thus, the albedo of such a surface will depend on the soil moisture, texture 

and iron content, on the geometry of the plant elements, the leaf density and leaf angle 

distribution, on the position of the sun and the fraction of diffuse light. However, a few 

special effects occur above sparse canopies with widely spaced plants. 

First, a solar beam with a low angle of incidence will penetrate horizontally deep into 

widely spaced canopy elements. However, a significant part will be reflected near the top of 

the plants, where the angle of the beam to the normal of the canopy surface is large. This 

effect makes the exact position of an albedo sensor far from trivial. Only far above the 

canopy top the measured quantity can be regarded representative for the surface. Moreover, 

the reflectance measured straight above a vine plant will depend more importantly on the 

reflectance of the surrounding soil when the zenith angle is large. This makes interpretation 

of albedo measurements of individual plant elements difficult. 

Second, the shading of the soil by the plants will cause a reduction of the amount of 

radiation reflected by the soil, especially in the visible range of the spectrum where the plant 

elements absorb most radiation. This reduces the soil albedo, particularly at large zenith 

angles and with dense plant elements, when much radiation is intercepted by the plants. 

This shading effect will reduce the zenith angle response of the soil albedo. 

Third, the large amount of radiation that penetrates into canopy elements at low 

solar incidence obviously is associated with a reduction of the reflectance. The zenith angle 

response of the albedo of a sparsely vegetated surface is therefore expected to be much less 

pronounced than for a closed vegetation stand. 

These effects formally imply that the albedo of a sparse canopy surface cannot 

simply be expressed as a weighted average of the albedos of bare ground and of the 

vegetation. The effects of vegetation on the albedo of bare soil will have to be incorporated 

in parameterizations of as, and the influence of the presence of bare soil on the vegetation 

albedo must be expressed in the equations for aQ. Only when these requirements are 

satisfied, the average surface albedo can be estimated using a weighing over the fraction of 

surface covered with vegetation, a& according to 

a = Cy«c + (1 - oy)fls (3.31) 

3.3.2 Albedo measurements taken in a sparse vineyard canopy 

In this section the theoretical considerations listed above are evaluated using albedo 

measurements conducted over a sparse vineyard area. Attention is paid to the issue of 

horizontal variability, seasonal change and diurnal variation of the surface albedo. The site 
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description and instrumental layout can be found in section 2.2. A brief summary of used 

instrumentation is given first. 

• Instrumentation 

All shortwave radiation sensors were located in a single vineyard with distances of 

10 to 100 m in between. Measurements were carried out well above the surface, above 

parcels of bare soil, and above individual plants. Soil moisture measurements were taken 

every 3 - 5 days using TDR at depths 0 -50 cm with 10 cm intervals. Table 3.5 lists the set-up 

of these sensors. 

Table 3.S: Acronyms of sensors measuring reflected shortwave radiation and soil moisture (TDR). The mast 
indication refers to the layout figure in section 2.2 (Figure 2.2; Table 2.1). WSC = Winand Staring Centre, 
WAUMET = Wageningen Agricultural University, Dept. of Meteorology, WAUHBH = Wageningen Agricultural 
University, Dept. of Hydrology 

acronym 

AH4 

AH6 

ABl 

AB2 

API 

AP2 

TDR 

surface type 

overall 

overall 

bare soil 

bare soil 

plant 

plant 

mast 

s 

ƒ 

e 

t 

e 

u 

V 

height/depth (m) 

4 

6 

1.5 

0.3 

1.5 

0.3 

0.1, 

m above 

0.2, 0.3, 

plant 

0.4, 0.5 

operating team 

WSC 

WAUMET 

WAUMET 

WSC 

WAUMET 

WSC 

WAUHBH 

Furthermore, an overpass of the NASA aircraft ER-2 carrying a Thematic Mapper 

Simulator (TMS NSOOl) multispectral sensor at 29 June, 10:20 am, yielded reflectance data of 

the measurement site with a resolution of approximately 18.5 x 18.5 m. Reflected radiation 

was monitored in 7 different channels, enabling the derivation of a spectral albedo map of 

the terrain. Calibration of the TMS albedo was carried out using six ground-truth 

measurements in both the Tomelloso and the Barrax major sites. For details about the 

procedure to obtain this map we refer to Bastiaanssen et al. (1993). 

The albedo observed by the ground-truth sensors will be equal to the hemispherical 

albedo defined by eq. 3.21, when a) these sensors are mounted exactly horizontal, b) its 

cosine response is perfect, and c) the spectral response is constant within the shortwave 

spectrum range, and zero outside this range. In practice, none of these conditions will 

generally be met exactly. The albedo observed by the TMS NSOOl platform deviates stronger 

from the hemispherical albedo due to the very small opening angle of the nadir viewing 

• Spatial variability of observed albedo 
The heterogeneity of the albedo at a scale of the measurement site is clearly 

illustrated by an albedo map constructed from data of the TMS NSOOl. The relevant 

reflectance statistics of a square of 21 x 23 pixels with indicated coordinates are given in 

Table 3.6. The square covers the measurement site of Figure 2.2 completely, and is totally 

occupied by vineyard, apart from a few dirt roads. The TMS-data show that the albedo of the 
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site varies between 0.17 and 0.27 with a standard deviation of 0.017. The statistics show that 

the variability between pixels is significant. 

Three factors may explain the large heterogeneity of the effective surface albedo 

observed with the TMS NSOOl. First, the horizontal variability observed by the remote sensor 

may overestimate the variability of the hemispherical albedo (eq. 3.21). Radiation from large 

reflectance angles are not detected by the platform, but can reduce the horizontal variability 

considerably by spatial averaging. Second, the sandy loam soil had a red colour caused by 

the presence of iron compounds. This colour was not uniform over the entire field, as could 

be seen at the site. The iron content showed a clear variation, causing a variability of the 

albedo, particularly in the visible range. Third, the field was not entirely flat. Estimated 

height differences of about 0.5 m were observed on a horizontal scale of about 100 m. This 

micro-relief might have caused local differences in the water content in the top layer, and 

consequently differences in the mineralization of organic disposals. Darkness variations as a 

result of this spatial variation induce a variability of the albedo. 

Table 3.6: Statistics of TMS surface albedo map. The pixel resolution was 18.5 m; 
map size is 21 x 23 pixels 

property value 

UTM-coordinates 

Western and Eastern border 505898 - 506305 (426 m) 

Southern and Northern border 4332078 - 4332448 (389 m) 

albedo values 

minimum 0.173 

maximum 0.271 

average 0.223 

median 0.223 

standard deviation 0.017 

• Seasonal variation 

Figure 3.4 shows the course of the average albedo around noon, a0, as measured by 

AH6 between 11.30 and 12.30 GMT, for the entire measurement period. The albedo early in 

the period, applying to a very small vegetation cover, is typically 0.28. This value 

corresponds with data for dry sandy soils cited by Ten Berge (1990). Feddes (1971) reports a 

slightly lower albedo (0.24) for one case of dry sandy loam. 

Due to the rapid increase of the vegetation cover a clear reduction of the surface 

albedo was expected. This was for instance observed by Jacobs and van Pul (1990) above a 

growing maize stand. On the contrary, except for a cloudy day (7 June) a gradual increase of 

a0 is observed until day 19, followed by a sudden reduction and gradual changes after this 

date. Measurements of the soil moisture content in the top 10 cm of the soil showed a very 

gradual decrease until 21 June (from 0.055 m 3 /m 3 on 3 June to about 0.043 m 3 /m 3 on 21 

June, see Figure 3.5) (Droogers et al, 1993). In spite of the fact that these measurements 

cannot be considered representative for the moisture content near the surface, a reduction of 

• 94 Sparse canopy parameterizations for meteorological models 



the surface soil moisture may be deduced from Figure 3.5, which can possibly explain the 

increase of a0 early in the period. Inspection of the albedos around noon measured by sensor 

AH4 revealed an average difference of about -0.035 compared to AH6. This systematic 

difference can be ascribed to local differences in the soil composition. 

0.30-

0.25-

o?n-

+ 
+ _ + + + + + 

+ 
** * ** * 

plants API, AP2 

-A ••"• 

+ + + 

* 
* 

+ 
AH6 

5« 
* ä K * 

* 

• 
• 

• • • • - - - _ 
• • " 

10 15 20 
Date (June 1991) 

25 30 

Figure 3.4: +: Average albedo between 11:30 and 12:30 GMT measured at 6 m 
height above a sparse canopy, and above two individual plants (* and • ) 

Figure 3.4 also shows the albedo around noon measured above 2 individual plants. 

The albedos differ by typically 2.5%. These differences are most likely caused by a different 

albedo of the underlying soil, which significantly contributes to the measured albedo. The 

long term variability resembles the observations by sensor AH6. As long as the plants cover 

only a small part of the underlying soil the measured albedo increases, but a decline is 

observed from 17 June onwards. This decline is somewhat stronger for the highest albedo. 

Although the scatter is large and the measurements ended before complete vegetation cover 

was reached, the data suggest that the two albedos tend to approach each other towards the 

limit of a full vegetation cover. 

Figure 3.5: Soil moisture content 
of upper 10 cm, measured using 
TDR (Droogers et al, 1993) 

15 20 
Date (June 1991) 
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• The diurnal variation 

The zenith response of the albedo measured by sensor AH6 after noon changed 

somewhat as the measuring period proceeded. Figure 3.6 shows the albedo measured by 

AH6 at days 5,17 and 28 as function of zenith angle Ç, for afternoon data only. The selection 

of days represents different stages of the plant growth. The zenith response of the albedo at 

all days is very small for cos(Q > 0.5. This small response is associated with the rough 

structure of the soil. Only when the zenith angle is large a clear response is observed. 

The response increases as the vegetation covers more of the surface (day 28). This 

response is shown to be stronger for the albedo measured overhead an individual plant 

(Figure 3.6). Early in the season (day 5), when a large fraction of the measured upward 

radiation is reflected by the surrounding soil rather than by the plant, the variation is less 

pronounced. As the plants becomes denser and the surface albedo approaches the 

characteristics of a closed canopy, the zenith angle dependence becomes stronger, and 

observable at smaller zenith angles than for a bare soil. 

1.00 

Figure 3.6: The measured albedo after noon; Left: at 6 m height; Right: just overhead an individual plant for 
three different days in June 1991: day 5, day 17, day 28 

In Figure 3.7 the diurnal courses of the surface albedo observed at 4 days with sensor 

AH6 are shown. Day 5 represents fair weather conditions of a virtually bare soil. Days 20 and 

21 are chosen as to represent a medium stage in the growing canopy, but with more clouds 

on 21 June than on 20 June. At day 28 the canopy has almost reached its maximum size. 

Also shown in Figure 3.7 are regressions obtained using eqs. 3.22 - 3.31. The albedo 

for the plant area was computed by inserting the leaf area index per unit plant area, LAL, in 

eq. 3.26. The coefficients entering the equations are obtained from the field measurements 

and summarized in Table 3.7. 

In Figure 3.7 the effect of clouds on the measured surface albedos is clearly present. 

Clouds increase the fraction of diffuse radiation, which enhances the contribution of beams 

with small elevation angles. Particularly at day 21, when cloud overpass occurred during 

most of the day, the scatter around and after noon is larger than at the other days. 

As time proceeded from day 5 to day 28, the assymetric response of the observed 

surface albedo to the zenith angle gradually decreased. Possibly, the reduction of the albedo 

in the morning is smaller at later times than early in the period, by a progressively declining 
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moisture content in the top soil layer (Figure 3.5). 
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Figure 3.7: •: Diurnal courses of albedo measurements using sensor AH6 at 4 different days in June 1991; 
regressions of data using eqs. 3.22 - 3.31 and the coefficients listed in Table 3.7 

3.3.3 Conclusions 

The albedo of the sparse vineyard canopy shows a variation at different scales, both 

in time and in space. The large scale time variation includes a gradual increase of the albedo 

around noon caused by drying of the soil, and a slight decrease related to the development 

of the vegetation. These simultaneous and counteracting effects resulted in a rather 

conservative value of a0, for which 0.285 ± 0.005 is a reasonable estimate. The dependence of 

surface albedo on zenith angle and — possibly — soil moisture fluctuations are causes of a 

diurnal variation which exceeds the variability of a0. Most of this variation is observed at 

large zenith angles, and therefore has a limited impact on the net radiation balance. Also 

clouds can give rise to sudden albedo changes by a change of the fraction of diffuse 

radiation. Considerably larger is the spatial variation at the scale of a single field, caused by 

differences in soil composition and water content. Smaller scale spatial variations originated 

from different reflectance properties of the plant elements and the open bare soil spaces in 

between. 
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Table 3.7: regression coefficients applied to eqs. 3.22 - 3.31 

parameter 

bare soil albedo around noon 

offset of zenith response function 

slope of zenith response function 

offset of asymmetry function 

slope of asymmetry function 

leaf area index per unit plant area 

fraction of vegetation cover 

symbol 

a0 

So 

CS 

md0 

cm 

LAI, 

°f 

equation 

3.22 

3.23 

3.23 

3.25 

3.25 

3.26 

3.31 

value at 

5 

0.284 

0.96 

0.2 

1.06 

0.12 

3.0 

0.05 

day 

20 

0.292 

0.96 

0.2 

1.06 

0.12 

4.2 

0.09 

21 

0.292 

0.96 

0.2 

1.06 

0.12 

4.2 

0.10 

28 

0.292 

0.96 

0.2 

1.06 

0.12 

3.9 

0.13 

3.4 A photosynthesis model for the crop conductance applied to a sparse 
vineyard canopy 

To describe the exchange of water vapour between the land surface and the 

atmosphere many meteorological models use a so-called crop conductance (gc), or its 

reciprocal crop resistance (r$
c), which expresses the efficiency of water transport from the 

substomatal cavities in canopy leaves to the ambient air. This crop conductance can be 

considered as a physiological parameter, since it is mainly determined by the behaviour of 

leaf stomata. Models describing the crop conductance usually include a dependence on 

various environmental parameters, in particular light intensity, humidity of the ambient air, 

leaf temperature and soil moisture availability (see for instance Dolman and Stewart, 1987; 

Stewart, 1988; Noilhan and Planton, 1989). Very often statistical regression of stomatal 

conductance data on values of environmental parameters is used to obtain a mathematical 

prognostic model for the crop conductance (Jarvis, 1976; Stewart, 1988). Functions for each 

parameter are then simply multiplied to yield a prognostic expression for gc: 

8c - 8s,maMl • /i(*i> • /2(*2> • • - • ƒ„(*„) ( 3-3 2 ) 

In this expression gs is a maximum stomatal conductance, and^x,-) expresses some 

functional dependence of gc on environmental factor xt. 

Since water vapour evaporated from substomatal cavities is transported along an 

identical pathway as the C02-transfer associated with photosynthesis, other workers 

determine the crop conductance by parameterizing a leaf stomatal conductance gs as 

function of the photosynthetic rate. Some algorithm to scale up gs to the conductance at 

canopy level, gc, is then adopted. A stomatal conductance for C02-transfer, gs C 0 2 , is defined 

as the ratio of the net C02-transport between the ambient air and the leaf stomata, FC02, and 

a difference between the CC^-concentration within the stomatal cavities, C;, and in the air 

directly surrounding the leaf, Cs: 
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g rn = C°2 (3-33) 
°s,CU2 r - c 

s i 

An analogy is assumed between the stomatal conductances for water vapour and for C0 2 : 

is = ^Ss,COl <3.34) 

where the factor 1.6 accounts for the difference between the molecular diffusivities of both 

gases. In practice, the C02-transport is governed by the net leaf photosynthetic rate. 

Following this approach a model for gs is assessed by using a model for the leaf 

photosynthesis, An, and adopting some assumption for the concentration gradient Cs - Ct 

(see, e.g., Goudriaan and Van Laar, 1978; Wong et al., 1979; Goudriaan et al., 1985; Jacobs, 

1994). This type of model is hereafter referred to as a An-gs model. Since these models 

consider a physical and physiological mechanism for gas exchange between plants and 

ambient air, they gain significant generality compared to the statistical models. 

Field and laboratory observations reveal that the stomatal conductance shows a 

dependence on ambient humidity. Although the mechanism of this response is not 

completely resolved, a reduction of gs is usually observed as the ambient humidity deficit, 

Ds, increases (see for instance Turner, 1991; Morison and Gifford, 1983), and this effect can 

even result in a reduction of the plant evaporation, in spite of an increase of the humidity 

gradient (Choudhury and Monteith, 1986). In recent studies the dependence of gs on D$ was 

incorporated in a An-gs model by a number of parameterizations. Jacobs (1994) proposed to 

express Cs - C, as a function of Ds. Alternatively, Kim and Verma (1991a) first calculated gs 

without including humidity effects, and adopted an empirical adjustment of the 

conductance as function of Ds afterwards. This approach resembles the semi-empirical 

Jarvis-type model (eq. 3.32), and various shapes of these response functions were proposed 

(Kim and Verma, 1991a; Winkel and Rambal, 1990). 

The aim of this section is to evaluate the parameterization of the crop conductance of 

a sparse Mediterranean vineyard canopy using a photosynthesis approach. The leaf 

photosynthetic rate was calculated using the photosynthesis model of Goudriaan et al. 

(1985). Three different parameterizations of the response of gs to air humidity (Jacobs, 1994; 

Kim and Verma, 1991a; Winkel and Rambal, 1990) are explored using leaf conductance data 

collected in the context of the EFEDA research program. A simple weighing scheme is used to 

scale up modelled leaf conductances to the canopy scale, for practical applicability in large 

scale meteorological models. Leaf conductance data were aggregated to a crop conductance 

using a similar weighing procedure, and model results are compared to data at the canopy 

level. 

3.4.1 Theory 
• The An-gs model and parameterization of humidity response 

In the An-gs model, gs is calculated by adopting a model for An = FC02 in eq. 3.33, 

and using an explicit parameterization for Cs - C,. The net photosynthetic rate An is a balance 

between the gross photosynthetic rate and the losses due to photorespiration and dark 

respiration. Goudriaan et al. (1985) developed a model to describe An for a leaf as function of 

3. Aerodynamic transfer, albedo, and crop conductance 9 9 • 



the amount of absorbed PAR by the leaf, its temperature, T;, and the ambient C0 2 -

concentration, Cs. A distinction was made between the different metabolisms of C3 and C4 

plants. Details of the algorithm for An can be found in Appendix IV. 

The parameterization of Cs - C; by Jacobs (1994) is based on a strong correlation often 

found between the photosynthetic rate and the leaf conductance under a wide range of field 

circumstances. The strong correlation is related to a conservative ratio between C; and Cs, as 

observed by e.g. Goudriaan and Van Laar (1978) and Wong et al. (1979). This conservative 

behaviour is thought to reflect the plant's strategy to optimize the relation between water 

use and C02-assimilation (Cowan, 1982). Some workers found the ratio Ci/Cs to decrease 

with ambient humidity deficit (Wong et al., 1979; Morison and Gifford, 1983). Regarding eq. 

3.33, this implies that apparently An (= FC02) exhibits a smaller response to increasing 

humidity deficit than gs. Jacobs (1994) and Jacobs et al. (1995) used this result to 

parameterize humidity responses of gs. They prescribed Ci/Cs as a linear function of the 

ambient humidity deficit Ds. Accounting for the effect of photorespiration on C;, the 

following relationship was used: 

c,-r 
Cs 

D„ 

max 

(3.35) 

where T is the C02-compensation concentration, and f0 and Drmx calibration coefficients (see 

Appendix TV for details). 

In the approach of Kim and Verma (1991a,b) the ratio (C; - T)/(CS - T) was fixed at a 

constant maximum value. A maximum stomatal conductance, identified as gs , is obtained 

by inserting this value in eq. 3.33. An empirical curvilinear humidity response function was 

applied to obtain the actual value of gs, according to 

O l ,„ ~r\ 

in which bD is a calibration coefficient, remaining to be specified. The value of 

(C, - r ) / (C s - r ) is taken equal to 0.85 in the present analysis (Morison and Gifford, 1983; see 

also Appendix IV). 

Winkel and Rambal (1990) experimentally determined the stomatal conductances of 

various grapevine species, and used an exponential humidity response function for gs. Their 

expression for gs was of the form 

S s = S ° e x p ( - D , / D r ) <3-37> 

where again gs° is used to indicate the value of the stomatal conductance obtained without 

including a humidity response, and Dr is another calibration coefficient. 

• Scaling up from leaf to crop 
For use in large scale meteorological applications, a one-layer description of the crop 

conductance must be derived from a model for gs, using a weighing scheme for various 

microclimate classes of the canopy leaf population. Particularly the response of gs to 
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absorbed PAR is highly non-linear. Leaves which are not directly illuminated by the sun 

contribute relatively much to the canopy photosynthesis, due to a very efficient use of light 

(Goudriaan, 1977). Following Baldocchi et al. (1987), gs is calculated for two microclimate 

classes: the sunlit and shaded regimes. A simple weighing scheme using the sunlit and 

shaded leaf area, LAIsun and LAI$had, is applied to define an average crop conductance: 

ic = ^ S J S U + ̂  ws< w (3-38) 

where Ia is the amount of absorbed PAR, and the subscripts sun and shad denote the sunlit 

and shaded regimes, respectively. Values of leaf temperature, ambient C02-concentration 

and humidity deficit are assumed similar for shaded and sunlit leaves. 

Using the An-gs model outlined in eqs. 3.33 - 3.35, and the weighing scheme in eq. 

3.38 to determine the crop conductance gc, the environmental parameters that need to be 

specified are LAIsun and LAIshad, Ia sun and Ia shaä, and leaf temperature, ambient C0 2 -

concentration and humidity deficit. 

For the distribution of total leaf area LAI over sunlit and shaded fractions simple 

semi-empirical equations (e.g., Campbell, 1977) are succesfully applied for closed canopies. 

However, grouping of leaves in clusters — as is the practice in sparse canopies or row 

crops — makes these closed-canopy formulations invalid. In the present study the fraction of 

sunlit leaf area, ƒ = LAIsun/LAI, was derived from field measurements (Figure 2.9), and will 

be further addressed in the discussion. Also the values of T;, Cs and Ds were obtained from 

measured quantities, in a way explained in Appendix IV. 

Norman (1982) proposed simple expressions to describe the flux densities of PAR 

reaching the sunlit and shaded leaves separately, as function of incoming PAR at reference 

height, LAI and solar zenith angle Ç. Assuming a random distribution of leaves over the 

canopy without azimuthal preference, and a spherical leaf angle distribution, the amount of 

absorbed PAR (Ja) for each class is given by 

la*had = a!PARs/wd ( 3 3 9 ) 

PAR^exp(-0.5 M / 0 7 ) + 0.07 PARdl> (1.1 - 0.1 LAI) exp(-cosQ 

h^un = « /P A Rs«„ 

0.5PARdl> 

• P A R s M 

v 
cosÇ 

(3.40) 

Here, PARsfeld and PARsun are the average flux densities of PAR reaching the shaded and sunlit 

leaves, and a, is the leaf absorbtivity, taken as 0.8 (Kim and Verma, 1991a). Direct and 

diffuse PAR, denoted by the subscripts dir and dif, respectively, are assumed to be a constant 

fraction (0.47) of incoming direct and diffuse shortwave radiation (Goudriaan, 1977). 

3.4.2 Site description and measurements 

The analysis of the A -gs model and the humidity response of the crop conductance 

is carried out using Mediterranean vineyard data measured during EFEDA-II. Measurements 

of LAI,fs, gs, total evaporation (E), average C02-concentration, friction velocity u», wind 
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speed u, air temperature (Tfl) and specific humidity (qa), and incoming shortwave and 

diffuse radiation {K and Kdiß were measured as outlined in the previous chapter. Leaf 

conductance data were averaged per hour to yield values of crop conductance gc according 

to a weighing scheme similar to eq. 3.38 (see section 2.3.6). Leaf temperatures recorded by 

the diffusion porometer were arithmetically averaged per hour, separately for sunlit and 

shaded leaves. Also PAR measurements were recorded using the porometer sensor, held in 

approximately the same orientation as the leaf being monitored. Separate hourly averages of 

PAR were computed for shaded and sunlit leaves. 

All meteorological measurements were averaged to hourly values, in correspondence 

with the porometry averaging interval. Timing between the energy balance and the 

porometry measurements was accurate within 1 minute. 

3.4.3 Results 

• Calibration of the humidity functions 

The An-gs model as proposed by Jacobs (1994) and Jacobs et al. (1995) was calibrated 

during a field experiment carried out in 1991 in La Mancha, Spain, in the context of EFEDA-I. 

That site and vegetation were very similar to the location explored in the current study. For 

the calibration of the An-gs model and the humidity response function (eq. 3.35), Jacobs 

(1994) used measurements taken with a steady state gas exchange unit, measuring the total 

C02-transport to a leaf, PAR, leaf temperature and Ds. He assumed the crop to be well 

supplied with soil moisture, owing to the large rooting depth of the vine plants. Since no 

explicit description of the dependence of gs on soil moisture availability is considered, any 

possible effect of soil water depletion is implicitly included in his calibration of the model. 

The resulting calibration coefficients can be found in Appendix IV. 
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Figure 3.8: Measured values of 
gc normalized with gc plotted 
against specific humidity deficit 
Ds. Also shown are the best-fit 
functions given by eqs. 3.36 
(bD = 0.121 (g/kg)"1, - - - ) and 
3.37 (Dr = 17 g/kg, ) 

The calibration of the curvilinear (eq. 3.36) and exponential (eq. 3.37) humidity 

response functions was carried out directly at the canopy level. First, a maximum stomatal 

conductance, gs , was computed for the sunlit and shaded leaves separately, and these were 

aggregated to a maximum crop conductance, gc , using the weighing scheme of eq. 3.38. 
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Figure 3.8 shows a plot of observations of gc normalized by gc plotted against Dg. The 

optimal curvilinear fit of eq. 3.36 was found to be represented by adopting bD = 0.121 

(g/kg)"1, while the optimal value for Dr appearing in eq. 3.37 was found to be 17 g/kg. Both 

functions are also shown in Figure 3.8. The curvilinear function overestimates gc/gc° at high 

values of Ds, and underestimates this ratio at low humidity deficit. A better agreement is 

obtained when an exponential function is applied. 

• The crop conductance from the An-gg model 
Figure 3.9 shows a 1:1 plot of the measured and calculated crop conductance gc, 

using the humidity response proposed by Jacobs (1994, eq. 3.35). From a linear regression 

through the origin, the model for gc overestimates the experimental values on the average 

by 14%, and explains r2 = 58% of the variance. 
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Figure 3.9: Measured and 
calculated values of crop 
conductance gc, using the 
humidity response function of 
Jacobs (1994) (eq. 3.35) 
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A similar plot for the curvilinear function (eq. 3.36) results in a fairly low value for r2 

(30%). As expected, low values of gc (corresponding to a high specific humidity deficit) are 

significantly overestimated, and this is compensated by an underestimation at higher 

conductances. A better agreement is obtained when the empirical curvilinear function is 

replaced by the simple exponential function (eq. 3.37). Using Dr = 17 g/kg, the model 

explains r2 = 68% of the variance (figures not shown). 

Figure 3.10 shows the diurnal variation of the observations and the three model 

variations for four different days, selected as to cover a wide range of days spread over the 

measurement period. It is clearly seen that gc decreases with time, both at a diurnal and a 

seasonal time scale. The exponential fit and the expression of Jacobs (1994) show a close 

correspondence for most cases. The linear fit tends to overestimate gc in the afternoon, 

particularly at later days. 

3.4.4 Discussion and conclusions 
Values of gc, modelled using a photosynthesis approach and a response to ambient 

humidity proposed by Jacobs (1994) calibrated for a similar crop three years earlier, and by 
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adopting simple procedures to express PAR and Ds, showed a fair agreement with observed 

values of the crop conductance. Preliminary calculations showed that values of r2 are much 

better than the performances of models using a statistical regression of gc on Ds also 

calibrated in 1991. More attention to a comparison between the An-gs model and a statistical 

approach will be paid in a subsequent study. 

Particularly at small values of gc the crop conductance predicted by the An-gs model 

is somewhat overestimated. The model results are rather sensitive to the value of the 

ambient humidity Ds. The method to obtain Ds is associated with errors in measurements of 

E, qa and u„, and the assumptions concerning the turbulent exchange between the reference 

level and the leaf surface (Appendix IV). 
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Figure 3.10: Measured and calculated values of crop conductance gc, for DOY 163, 173,194 and 205; 
A observations; modelled gc using the humidity response function of Jacobs (1994) (eq. 3.35); the 
curvilinear humidity response function (eq. 3.36) with bD = 0.121 (g/kg)"1; the exponential humidity 
response function (eq. 3.37) with Dr = 17 g /kg 

Replacing modelled PAR by porometer observations did not result in a significant 

improvement of the correlation coefficient. The average overestimation of calculated values 

of gc was reduced from 14% to 12% (figures not shown), in spite of the noticed 

underestimation by the PAR equations. The difference between modelled and measured PAR 

was especially present at high radiation levels, where the sensitivity of the photosynthesis 
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model to the amount of absorbed PAR rapidly falls off (see eq. 3 in Appendix IV). This 

implies that also the sensitivity of predicted values of gc to the parameterization of 

intercepted PAR is less significant at high radiation levels. 

Also, the measured values of gc are subject to variability due to sampling errors. 

According to the porometer manufacturer the sampling error of a single porometry 

measurement is approximately 20%, owing to incorrect temperature or humidity 

registrations in the porometer sampling cell, or to improper field calibration. The error 

involved with scaling up leaf conductances to the canopy level depends on the sampled and 

true distribution of leaf conductances of a single plant, the representativity of the selected 

plants in the field, and the errors in the estimation of the leaf area index, fraction of sunlit 

leaves and the determination of leaf age. The coefficient of variance (cv - o(gs) I g~&, where 

~gs is the average leaf conductivity) of the porometry measurements within a single 

averaging interval (1 hour) can serve as an indication of the error associated with the total 

crop conductance assessment. The cv increased from 0.35 ± 0.15 in the first half of the 

measurement period to 0.50 ± 0.25 in the second half. 

Another possibly important source of error of the An-gs model is associated with the 

calibrations carried out by Jacobs (1994). He assumed his crop to be well-watered, and soil 

moisture depletion was not included in the parameterization for gc. However, a very low 

soil moisture content during long periods of time may affect the stomatal conductance 

negatively (Turner, 1991). There is accumulating evidence that stomatal response to soil 

water drought is governed by a change of the metabolic products in the xylem sap. This 

implies that soil water stress extending for a significant period will reduce the stomatal 

conductance of a crop. Soil moisture conditions may well have been different during the 

current experiment compared to the conditions reported by Jacobs (1994), and a shortage of 

soil water possibly reduced the actual crop conductance. In this situation, the model will 

overestimate the true conductance values. Unfortunately, soil moisture data necessary to test 

this hypothesis were not available. 

A simpler approach to include the response of gc to ambient humidity deficit, as 

proposed by e.g. Kim and Verma (1991a,b), required the derivation of a crop conductance 

not affected by an ambient humidity deficit. For this, a value of gc was computed using 

(Cj - r ) / (C s - T) = 0.85 (see Appendix IV). Two different humidity response functions were 

optimized, using the current dataset rather than being tested independently. An optimal 

curvilinear fit to the measured conductance data was achieved for bD = 0.121 (g/kg)"1. This 

value is rather high compared to the range reported by Kim and Verma (1991b) for three 

tallgrass species (0.01 - 0.03 (g/kg)"1). A strong humidity response of the vine species 

considered in this study is also revealed using the exponential function, which showed a 

better correspondence than the curvilinear fit. The value of the empirical coefficient D r = 17 

g /kg found from the present results also points at a strong humidity response compared to 

the results of Winkel and Rambal (1990), who report Dr <= 48 g/kg for Carignane vine. They 

suggest that the stomatal humidity response is a species dependent characteristic, which 

might be linked to its geographical origin. Carignane — originating from the Aragon region 

in Spain with a strong semi-arid climate, and well-known for its hardiness — shows a 

relatively strong humidity response when compared to a species originating from the Rhone 

valley (Shiraz, Dr = 222 g/kg). A strong humidity response is likely to be favourable under 
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dry circumstances in order to avoid excessive water loss, and increases the water use 

efficiency of a crop. The even stronger humidity response encountered in the current study 

may be related to a stronger soil moisture stress, but this assumption can not be validated 

here. 

In order to apply a photosynthesis model in large scale meteorological applications, a 

simple weighing procedure was adopted from Baldocchi et al. (1987), which requires an 

establishment of PAR absorbed by both shaded and sunlit leaves, and a factor representing 

the weight of each leaf class. In the current study the fraction of sunlit leaves, ƒ , was 

obtained from field measurements. Practical formulations for fs have been proposed for 

closed canopies (e.g., Campbell, 1977), but are invalid for sparse canopies. However, 

application of these formulations with effective leaf area indices can often result in 

reasonable descriptions. For instance, the simple equation of/s proposed by Campbell (1977) 

overestimated observed values of/s considerably when measured LAI (0.25 m 2 /m 2 ) was 

inserted. A reasonable estimate of fs was given by using a tenfold value for LAI. 

The An-gs model of Jacobs (1994) and Jacobs et al. (1995), incorporating effects of air 

humidity deficit on gc via a modified CJCs-ratio, is a relatively simple and promising 

approach for calculating the crop conductance gc of species similar to the vines studied here. 

However, the sensitivity of gc to ambient humidity varies widely between different plant 

species and even between vine cultivars. This variability imposes severe limitations on the 

use of uniform humidity response functions in any conductance model for large scale 

applications. The calibration carried out in 1991, however, seemed to be well applicable to 

the new 1994-dataset. 

Monteith (1993,1995b) and Mott and Parkhurst (1991) suggested thatgc should be a 

function of the crop evaporation rather than of the ambient humidity deficit. Monteith 

proposed to express the canopy conductance as function of the crop evaporation rate, using 

two scaling parameters, gmax and Emax: 

S E 
&c = 1 - f_ (3.41) 

max 

He hypothized that gmax is a function of the crop photosynthetic rate, and Emax is related to 

soil moisture. A possible strategy to obtain gmax is to use the An-gs model described in this 

section under conditions where Ds = 0 and so (C, - T)/(CS - T) = 0.85. Based on the measured 

crop conductances described in this section, this assumption was used to explore the 

behaviour of E1mx. However, owing to the sparse vegetation, relatively low values of the 

surface evaporation, and the lack of soil moisture measurements, the results were not fully 

conclusive. More evidence of eq. 3.41 is needed before it can be used in meteorological 

models. 

3.5 Conclusions 

In this chapter three aspects of surface exchange for a sparse canopy are discussed. 

The first aspect, the aerodynamic transfer between the surface and the atmosphere, has 

resulted in the formulation of a new set of aerodynamic resistances, based on Lagrangian 

theory. Also, these resistances are no longer parameterized by use of a fixed hypothetical 
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source at d + z0m, but include an 'effectiveness weighing', which accounts for the effect of a 

vertical source variability. These resistances are presented in normalized forms, and scale 

with «». They are developed for a two-component surface model, and as such can be used to 

describe the exchange between the atmosphere and a sparse canopy. These resistances will 

be included in the one-dimensional simulations in chapter 6, and compared to existing 

formulations in a coupled SVAT-PBL model. 

The survey of the surface albedo of the EFEDA-I measurement site has revealed a 

considerable variability, both in time (at diurnal and seasonal scale) and in space (at scales 

ranging between the diameter of individual plants and TMS-NSOOl pixel size). An empirical 

regression was carried out to account for the temporal variation. The temporal changes at a 

seasonal time scale were rather low, probably owing to the counteracting effects of 

increasing vegetation cover and decreasing soil moisture content. In the remainder of this 

study, the effect of this temporal and spatial variability on the land surface-atmosphere 

interaction is not further investigated. 

The An-g$ model of Jacobs (1994), describing the leaf stomatal conductance, was 

upscaled to the canopy level. The formulation of the canopy resistance from this work will 

be included in the sensitivity analysis in chapter 6. 
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4 A model is a mathematical interpretation 

of a physical process, 

rather than a second reality 

Selected surface layer and 
boundary layer models 

This chapter briefly describes the models used for the 'zero-dimensional' SVAT-

intercomparison in chapter 5, and the sensitivity analysis with coupled SVAT-PBL models in 

chapter 6. As was outlined in the introduction of this thesis, components of various existing 

SVAT's will be combined in that sensitivity chapter. In spite of this, the existing surface 

models will be discussed here in their most original form, although a few modifications to 

authentic papers were employed. This particularly holds for the suggestions proposed by 

Van den Hurk and Beljaars (1995) to improve the new ECMWF surface scheme developed by 

Viterbo and Beljaars (1995). A separate section is dedicated to these suggestions. 

After the discussion of the surface models in section 4.1, two models for the PBL are 

briefly outlined in section 4.2. A list of model limitations is discussed in section 4.3. 

All models were extensively described in the original literature. In the following 

sections only the essentials will be presented. 

4.1 Surface layer models for sparse canopies 

Various parameterizations are currently in use in large scale GCM's or numerical 

weather prediction models. The degree of complexity varies from simple one-layer schemes 

inspired by the 'big-leaf' model (Monteith, 1965), to sophisticated multiple-source models 

(for instance, Sellers et al., 1986; Dolman, 1993). Detailed multiple-level canopy models 

(Waggoner and Reifsnyder, 1968; Goudriaan, 1977; Raupach, 1989a, 1989b; El-Kilani et al, 

1994) are usually too complex to be used in large scale applications, owing to a large 

demand of input information and computer time. These models are not addressed here. 

In the following sections the selected models are briefly described: a form of the big-

leaf model, the ECMWF-surface scheme and its modifications, and the two-layer models of 

Deardorff (1978), Shuttleworth and Wallace (1985) and Choudhury and Monteith (1988). 

Some of these models do not include a specific description of the canopy resistance, rs
c, but 
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rely on the parameterizations for rs
c developed independently. The rs

c-parameterizations of 

Viterbo and Beljaars (1995) and Choudhury and Monteith (1988) are discussed in the 

sections covering their surface models. The scheme proposed by Noilhan and Planton (1989) 

is treated in section 4.1.4, containing the model of Deardorff (1978). The parameterization of 

rs
c along the lines of the photosynthesis-^ model of Jacobs (1994) is presented previously in 

section 3.4. Also the implementation of Lagrangian diffusion theory (McNaughton and Van 

den Hurk, 1995) was discussed before (section 3.2), and this will not be repeated here. 

4.1.1 The modified big-leaf model 

The well-known one-layer 'big leaf' model (Monteith, 1965) simply describes 

evaporation and sensible heat exchange between a single surface and a reference level at 

height zR close above. Strictly speaking, it is not applicable to sparse canopy surfaces, since it 

does not include a separate treatment of the various components of a sparsely vegetated 

surface. However, because of its simplicity it is present in various GCM's and NWP-models. 

For that reason it is included in the comparison study in chapter 6. 

The original 'big leaf' model does not include a description of soil heat flux. For 

many sparse canopies this is a major term in the surface energy balance. In the formulation 

presented below, the soil heat flux is parameterized using a slightly modified so-called 

force-restore method. 

The big-leaf model considers the energy balance of a surface (eq. 1.1), rewritten as 

A = Qt-G = H + XE (4.1) 

where A is the available energy. Application of eq. 4.1 to a canopy assumes that no energy is 

stored or released within the canopy (either in the biomass or in the air within the canopy 

layer). Also, energy used for photosynthesis or respiration processes is ignored. 

The turbulent fluxes of heat and water vapour are commonly expressed as ratios of a 

gradient of the scalar (temperature or water vapour density) and some resistance for 

turbulent exchange between the surface and zR, denoted by ra, according to 

H = p c „ ! f ^ l ! l (4.2) 

and 

1 r ~-i 1s<tiS*sur> 4'a .„ „. 
Kb = pA. (4.3) 

where Tsur (or Qsur) is an effective surface (potential) temperature (section 2.4.2), and 0fl and 

qa are the potential temperature and specific humidity at the reference level zR. Latent heat is 

supposed to be released from the surface through numerous stomatal pores present in 

canopy leaves. It is assumed that the specific humidity within these stomatal cavities is at 

surface temperature saturation, and in eq. 4.3 an additional resistance is included for the 

water vapour transport, being the 'surface resistance' rs
c. This resistance allows for stomatal 

control of evaporation by plant canopies (Monteith, 1965), and must be explicitly 

4. Selected models 109 • 



parameterized. 

The aerodynamic resistance for heat and water vapour, rfl, consists of two parts: 

a h 
ra = ra+ra 

(4.4) 

The first, r", is a (stability dependent) exchange resistance between the reference level and 

the momentum roughness length, z0m. For neutral conditions, the resistance is equal to the 

exchange resistance for momentum transfer. For stable and unstable conditions rfl" is given 

by 

r„ = 
« . K 

In 
*0m 

- ¥» • ¥ . 
'0m (4.5) 

where ^¥n is a stability correction as function of the Monin-Obukhov length L (Beljaars and 

Holtslag, 1991). 

The second part, rfl , is a (semi-empirical) excess resistance to account for the absence 

of bluff-body forces for scalar exchange (Garratt and Hicks, 1973). This latter resistance is 

equivalent to adopting a roughness length for scalars, zoh, which is smaller than z0m. The 

excess resistance is given by 

KM 
In 

z0m 

K0hP 

(4.6) 

where stability effects are ignored. Other parameterizations of ra are based on the concept 

of a so-called leaf boundary layer resistance (Gates, 1980). More on this issue will be 

discussed below. At the outset we take rfl equal for heat and moisture exchange. 

Net radiation is a (weak) function of the absolute surface temperature, Tsur, 

according to 

Q, =(l-a)Kl+Ll-eaT4
sur 

(4.7) 

Incoming longwave and shortwave radiation, as well as the surface albedo and emissivity 

must be explicitly provided. 

When a realistic description of the entire energy balance is needed, an expression for 

the soil heat flux G must be carried also. In this study the big-leaf model is extended by an 

equation for G, derived from the so-called 'force-restore' method (see section 4.1.4). G can be 

found from the rate of change of the surface temperature, T$ur, and a deep soil temperature, 

?2-

G = 
P'Chdi 

i^a 

9T„ 27t T . r2) 
dt "1 

(4.8) 

where p'Ch is the volumetric heat of the soil, d1 is the e-folding depth of a diurnal 
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temperature wave, and i j is the length of a single wave (see below). By rewriting the force-

restore equation in this form, the surface energy balance equation can easily be solved by 

solving for Tsur For small timesteps, only a small numerical difference exists with the 

original force-restore method, in which Tsur from the previous timestep is taken to solve the 

surface energy balance (see Appendix V). 

For a given r$
c and forcings at reference height, eqs. 4.1 - 4.8 can be solved iteratively 

for the surface temperature Tsur using the Newton-Raphson scheme (Jacobs and Brown, 

1973; Appendix V). The stability correction in eq. 4.5 should be accounted for in another 

iteration loop, or computed by taking Lv from the previous time step. 

This description of the big-leaf model is just one of the possible forms which are 

found in literature. Possible variations can be applied to the parameterization of soil heat 

flux (e.g., De Bruin, 1982), excess resistance (Kustas et al., 1989), parameterization of 

incoming longwave radiation (Brutsaert, 1982), or stability corrections to aerodynamic 

resistance (Inclân and Forkel, 1995). Other workers included extensive schemes for surface 

albedo, canopy resistance, heat storage within the canopy and other issues. The formulation 

presented here serves the compatibility with other surface models, in order to be able to 

compare surface model components adequately (chapter 6). 

4.1.2 The ECMWF surface scheme 

• Model description 
The recently updated ECMWF surface scheme (Viterbo and Beljaars, 1995, replaced by 

VB95 hereafter) contains a rigorous treatment of the transport of heat and moisture within 

the soil. Like in the big-leaf model a single isothermal surface layer is defined, but with 

respect to evaporation a distinction is made between various surface fractions: open water, 

vegetation, bare soil and snow1 (see Figure 4.1). This approach resembles the surface model 

of Noilhan and Planton (1989). 

The heat transport in the soil is parameterized by means of a diffusion scheme: 

f \ 
ic dT _ d , 8T (4.9) 

P h dt 

where T is the soil temperature and XT the soil thermal conductivity. This equation is solved 

using a fully implicit solution scheme and discretization of the soil volume in four layers, of 

depth 0.07, 0.21, 0.72 and 1.89 m, respectively. The soil heat flux G is solved from the surface 

energy balance (see below) and provides the upper boundary condition. At the bottom of 

the simulation volume no heat flux is assumed to occur. Both p'Ch and XT are allowed to 

vary with depth. p'Ch is formulated according to eq. 2.21, while Xr in layer i is paramete

rized according to Clapp and Homberger (1978) as function of the soil water content in that 

layer, co,: 

a 
3z 

f \ 

r3zJ 

Since snow was not included in the data sets we use, it is not considered here 
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hj =3-8 lv*tl 
-1/lnlO 

rm yb/inio 
sat 

CO; 

(4.10) 

co ĵ, is the saturation moisture content, i p ^ is the saturated marrie potential and b the Clapp 

and Homberger parameter. For very dry soils a minimum value is adopted for Xr. The 

values of V|/Sflt, coSflt and b depend on the soil type, and are classified in 11 categories (Clapp 

and Hornberger, 1978). As suggested by Mahrt and Pan (1984), the heat flux at layer 

interfaces are computed with the "upstream" values for XT, that is, the highest conductivity 

in either of the two adjacent layers, to minimize truncation errors associated with the profile 

discretization. 

skin layer 

Figure 4.1: Schematic 
representation of the model of 
Viterbo and Beljaars (1995). For 
explanation, see text 
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t » ^ T . ' * * * M 
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Soil moisture transport is parameterized with a similar scheme, but here two 

additional processes cause a change of the moisture content in a certain layer: free drainage 

due to gravity, and root extraction by vegetation. The rate equation for soil moisture is given 

by 
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3co 

IF 
a 

'dz 

, 3co 
Y 

P A 
(4.11) 

In this equation, pw is the density of liquid water, XH is the hydraulic diffusivity, yH the 

hydraulic conductivity and Sœ the root extraction of water. In each layer, XH and yH are also 

a function of water content, according to 

yH = Y sat 
CO 

CO sat 

2b+3 
(4.12) 

and 

*Y«tlV, saflfsatl 
C0„ 

CO 

"sat 

b+2 
(4.13) 

Again, a minimum value is adopted for both yH and XH, corresponding to the permanent 

wilting point of the soil, co • The boundary conditions are provided by the infiltration of 

rain minus the bare soil evaporation at the top, and a free drainage at the bottom (taking 

3co/3z = 0). 

The soil component of the model is coupled to the atmosphere by way of a so-called 

skin layer, which has no heat capacity of its own. This skin layer represents the heat transfer 

through the vegetation layer and loose organic material formed by litter or soil organisms. 

The skin layer has a uniform temperature, Tsk. The soil heat flux is parameterized 

empirically using an effective "conductivity", A: 

G-AÇr^-TJ (4.14) 

in which T3 is the temperature of the top soil layer. Tsk is solved similar to the big-leaf model 

by considering the energy balance of the surface, which can be written as 

(1 - a ) J T + (1 - E ) L 4 T 4 

eaTsk = pc 
%k-% 

P%<?sat(^)-%) + A ^ - T l ) ( 4-1 5 ) 

where xs and xl are resistance coefficients governed by the relative evaporation fractions of 

the surface, and their corresponding water transfer resistances (in the original scheme of 

VB95 the potential temperature at zR was approximated as Ta + g/c zR). The fraction of 

vegetation cover, oy, is a surface dependent parameter. The fraction of the surface covered 

with the skin reservoir, C;, depends on the amount of intercepted dew and precipitation by 

the canopy leaves and soil surface. When snow may be ignored, the three evaporation 

fractions are the open water skin reservoir (C;), the vegetation ((1 - C;) oy) and bare soil 

((1 - C;) (1 - Or)). The resistance coefficients are simple weighted averages of the separate 

resistances according to 
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C, ( l - C , ) o , ( l - C , ) ( l - 0 / ) 
(4.16) 

C, ( l -C ; ) oy a ( l - C ; ) ( l - o y ) 
(4.17) 

where rs
c is the canopy resistance, and a the relative humidity at the soil surface. The total 

surface evaporation, E, is a weighted function of the evaporation rates from the skin 

reservoir (E;), the canopy (£c) and the bare soil (Es): 

(4.18) E = CIEl + (l-Cl)(afEc + (l-af)Es 

In this formulation soil evaporation is treated using a so-called oc-type resistance 

model (Kondo et al, 1990). Rather than regulating soil evaporation by use of an extra soil 

evaporation resistance over the humidity gradient between the surface and the reference 

level (ß-type resistance model), the relative humidity at the bare soil surface, a, is 

parameterized. In VB95, a is a semi-empirical function of the soil content in the upper soil 

layer: 

a = i 
0.5 

1 

1 -cos a>! < /cco/c 

<»l>lc<ùfc 

(4.19) 

in which ac is a critical moisture content (in practice taken equal to the field capacity of the 

soil, C0rc), and the factor lc (set to 1.6) accounts for the difference between the average 

moisture content in the top soil layer and the moisture content near the surface. To avoid 

excessive dewfall for dry soils during daytime, the humidity gradient aqsat(Tsk) - qa is 

removed when 9saf(Ts)t) > qa and otqSflf(Tsjt) < qa (Blondin, 1991). 

The fraction of the surface covered with the skin reservoir, C;, is determined by the 

depth of the skin reservoir, wdew, given by 

1,-
dew 

W„ 
(4.20) 

where wmax depends on the leaf area index LAI» according to 

H 'max= [<V M / . + ( 1 - ^ ] W iVMX 
(4.21) 

Here, LAL refers to the leaf area per unit surface covered by vegetation, equal to LAI/<3c. 

^MAX ' s t n e maximum amount of water that can be retained on a leaf surface. The rate-

equation for wdew is governed by the rate of evaporation from the skin reservoir (C;E;) and 
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the interception, I, according to 

dwdew I + ClEl ClEl I (4.22) 
dt Pw Pw Pw 

The dew reservoir can evaporate very fast into the atmosphere, giving numerical difficulties. 

A careful solution was proposed by VB95 in which the linear dependence of C; on wdew (eq. 

4.20) is used. The interception of rain in the dew reservoir is calculated according to a simple 

bucket scheme, taking the unfilled space of the dew reservoir and convecrive or large-scale 

precipitation of rate P into account: 

I = min r\ TE — J « m a x dew 
025afT;p™—s— 

(4.23) 

The factor 0.25 accounts for the efficiency of interception of precipitation, and k is a 

precipitation heterogeneity coefficient, equal to 0.5 for convecrive precipitation and 1 for 

large scale precipitation. The remaining precipitation forms the throughfall rate, T, and is 

available for infiltration into the soil, Is: 

Is = T - £ s = P - 1 - Es (4.24) 

where a reduction of soil infiltration due to soil evaporation is accounted for. Infiltration 

rates exceeding the maximum uptake capacity of the top soil layer is added to run-off. 

The aerodynamic exchange between the surface and the reference level is similar for 

all surface fractions. VB95 assume an equal exchange for scalars and momentum between z0m 

and zR, but allow for a lower surface roughness zoh for heat and scalars. The total 

aerodynamic resistance, ra, appearing in eq. 4.15, is therefore given by eq. 4.4. ra can also be 

expressed using the bulk transfer coefficient for heat, CH, according to 

r; = - J - (4.25) 
CHua 

where ua is the wind speed at reference height. CH was solved using the stability functions 

*¥h of Beljaars and Holtslag (1991). 

Finally, in VB95 the canopy resistance, rs
c, is parameterized using a Jarvis-type model 

(Jarvis, 1976) according to 

r ^ ^ F j (PAR) F2(üJ) (4.26) 

where rs m i n is a minimum stomatal resistance. The definition of LAL is equivalent to setting 

r/(VB95) = oyrs
c(big leaf) (see previous section). A dependence of rf on air humidity or air 

temperature is not included. Dickinson et al. (1991) noted that there is no agreement among 

modellers for the water stress dependence, and the available empirical evidence does not 

allow for a general formulation. The functional dependence of rf on PAR is expressed as 
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Fj(PAR) = 1 -fljln 
a2 + PAR 

a3+PAR 
(4.27) 

where av a2 and a3 are coefficients which may be related to canopy properties. PAR is 

estimated by taking 0.55 K (1 - a). The dependence on soil humidity is similar to the 

formulation proposed by Noilhan and Planton (1989), reading 

F,(S) 

CO - c o pwp 

COr - CO 
fc pwp 

CO < CO 
pwp 

° V P < <° < °>fc 
(4.28) 

"/c 

In eq. 4.28 co is defined as 

co = Rj C0j + R2 co2 + R3 co3 (4.29) 

where R, is the relative root extraction in layer i. co~ and Sœ (eq. 4.11) are parameterized by 

setting Rj = R2 = R3 = 1/3, thereby defining an effective rooting depth of 1 m. 

Eq. 4.15 is solved by linearizing T^ using a Taylor expansion and qsat(Tsk) using a 

value of dqmt/dT at the value of Tsk of the previous timestep. The ECMWF-scheme uses CH 

from the previous time step explicitly, and an implicit solver for the temperature at the new 

time level (Beljaars, 1992). 

4.1.3 Impact of some simplifying assumptions in the new ECMWF-surface scheme2 

Embedded in a global model, the new surface scheme presented by VB95 is designed 

to describe the surface fluxes over a wide range of possible vegetation covers and time 

scales. In order to avoid excessive data and computatial requirements, it is sometimes 

necessary to simplify the parameterization of the transfer of scalars and momentum to and 

from the surface. 

One of the simplifications included in their scheme was the representation of the 

surface by a single layer with uniform temperature. This layer is referred to as a 'skin layer'. 

Four different grid box fractions with respect to evaporation are accounted for: bare soil, dry 

vegetation, an open water skin reservoir filled with dew and intercepted water, and snow 

(not treated here). The evaporation rate of each of these fractions is computed using a 

humidity gradient between a reference level and the appropriate surface component (see 

above). 

In practice, the temperature of a non-uniformly vegetated surface can exhibit large 

differences between e.g. the vegetation and the bare soil component of the surface. In 

conditions of a well-irrigated vegetation stand only partially covering the surface and high 

Adapted from Van den Hurk and Beljaars (1995) 
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sensible heat release by the bare ground, adopting a single surface temperature for both the 

vegetation and the bare ground can lead to a significant overestimation of the canopy 

evaporation rate. Also, the predicted soil evaporation rate is often strongly overestimated for 

a few hours after a period with rain, when canopy is also present. The temperature of the 

canopy component rapidly increases once the intercepted water is evaporated, and this 

temperature increase unrealistically enhances the simulated evaporation rate of the bare 

ground. 

A second simplification employed by VB95 is the use of an effective conductivity for 

heat transfer through the skin layer. This skin conductivity, A (units W/m2K), defines the 

temperature difference between the top soil layer and the skin layer, and accounts for the 

heat flow into the soil component. A uniform value of 7 W / m K was chosen as to realize a 

reasonable amplitude of the diurnal cycle of the ground heat flux, following Beljaars and 

Betts (1992). 

This section explores the consequence of these two simplifications for the sensible 

and latent heat fluxes over partially vegetated regions. First, the original scheme is 

compared to a slightly modified form, in which the temperatures are defined separately for 

the relevant surface components. The performance and practical consequences of this 

modification are evaluated using data collected during FIFE-1987 (Sellers et al., 1988) and 

EFEDA-1991 (Bolle et al, 1993). Second, a suggestion for a physical interpretation for A is 

made, and its value is evaluated experimentally. For this purpose, again EFEDA-1991 data are 

considered. 

• The skin layer temperature 
In order to avoid the unrealistic coupling between different surface fractions (e.g., 

bare soil and vegetation) through a single skin temperature, it is necessary to allow this skin 

temperature to be different for the bare soil, the vegetation and wet surface fractions. Once 

the vegetation temperature is allowed to differ from the bare ground temperature, excessive 

canopy evaporation under dry conditions is readily avoided. In practice, vegetation can 

remain much cooler than bare ground, because it can sustain evaporation by accessing water 

from deeper soil layers. Multiple source models, as presented for instance by Dolman (1993), 

allow for these temperature differences by using the Penman-Monteith concept (Monteith, 

1981) separately for the canopy elements and the underlying soil. 

The scheme of VB95 solves the skin temperature Tsk implicitly by considering the 

energy balance of the surface (eq. 4.15), in which the soil heat flux G is given by eq. 4.14. The 

total sensible and latent heat fluxes H and XE can be deduced from eq. 4.15 and are specified 

according to 

H--PCHua{cpTsk-cpTa-gzR) (4.30) 

and 

XE=Xp(Xsc,sat(Tsk)-xfla) ( « I ) 

where the original formulation is used for the potential temperature at zR. 
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Obviously, the values for T$k found from eqs. 4.15,4.30 and 4.31 will depend on the 

relative surface fractions covering the grid box. When the crop resistance differs from 0 and 

the relative humidity at the soil surface < 1, Tsk will depend on C; and oy. For instance, with 

C; = 1 the entire grid box has a wet skin reservoir, and the skin temperature will adjust to a 

potential evaporation rate (rf -» 0, a -> 1). In cases where C; = 0 and oy = 1 (vegetation only) 

the skin temperature will be lower than when oy = 0 (bare ground only), owing to the larger 

evaporation capacity of vegetation. 

A straightforward strategy to compute the temperatures of the different surface 

fractions is to solve eq. 4.15 separately for each component, by choosing appropriate values 

for %i and xs. The final grid box averaged energy flux is then computed from the energy 

fluxes and temperatures from each component according to the same weighting scheme as 

presented in eq. 4.18. A similar strategy is adopted in the "tile"-approach by Koster and 

Suarez (1992), albeit that in their model the energy balance in each tile is solved by using a 

simplified form of the two-component model SlB (Sellers et ah, 1986). 

For practical applications two issues need further attention: the stability dependence 

of CH, and the solution of the surface temperature from the linearization around the 

previous timestep. 

An important issue is the treatment of the aerodynamic resistance between the 

surface and the lowest atmospheric grid point, rfl = l/CHua. Since the value of CH depends 

on atmospheric stability — and therefore on the sensible heat flux — its value is expected to 

be different for the separate surface fractions when local energy balances differ. In the VB95 

model the transfer from the different surface fractions is computed independently, using a 

uniform value of CH for all fractions. The independent treatment of surface fractions is 

reasonable if the surface fractions are large enough to have internal boundary layers that do 

not merge below the lowest model level. For patchy surfaces with small horizontal scales, it 

would be necessary to introduce an extra node in the resistance network somewhere 

between the surface and the lowest model level (Blyth, 1995), but such a concept is difficult 

to handle in a global model without appropriate data sets. 

In line with VB95 it would be appropriate to parameterize the transfer coefficient CH 

separately for each surface fraction. In that context, the stability correction in CH for each 

fraction is dependent on its exchange of sensible heat with the reference level. If additional 

storage of parameters between subsequent time steps should be avoided, the value of CH 

can no longer be estimated from the previous time step, and for each fraction the energy 

balance should be solved iteratively in order to determine CH. However, in general the 

stability functions in CH are relatively unimportant in the parameterization of sensible and 

latent heat exchange between the surface and the atmosphere, and therefore a first 

approximation may be sufficient. The dependence of CH on atmospheric stability can be 

expressed using an average sensible heat flux, which is obtained from the separate energy 

balance solutions and a weighting scheme defined by eq. 4.18. A major practical advantage 

is, that we can proceed deriving CH from the previous time step and avoid iterations for 

determination of the surface temperature and the surface energy balance for each surface 

component. 

When the temperatures of the individual surface components show significant 

differences (as can be the case for a sparsely vegetated surface with evaporation from 

• 118 Sparse canopy parameterizations for meteorological models 



plants), the linearization of dqml/dT at a (weighed) average value of Tsk from the previous 

timestep can introduce significant errors. Obviously, similar errors are introduced if a 

linearization around the reference temperature is carried out and the surface temperature 

differs significantly from this value (McArthur, 1990). The error can be minimized by storing 

all three surface temperatures separately rather than a weighed average between two 

subsequent time steps. Alternatively, for each component the surface temperature can be 

initialized with the weighed average from the previous time step, and a (small) number of 

iterations is needed in order to update dq^/dT and to find the actual value of the surface 

humidity. The number of iterations will depend on the actual temperature differences, but 

generally can be limited to 2 or 3. 

In the following we will demonstrate the implication of solving separate surface 

temperatures by adopting two iterations to solve the surface energy balance and find its 

temperature. The calculations are initialized using the average sensible heat flux and surface 

temperature from the previous time step, as is currently applied in the ECMWF surface 

scheme. In a subsequent section this numerical strategy will be compared to a fully iterative 

approach for solving the surface energy balance. 

• Case studies for the temperature differentiation 
Two case studies demonstrate the effect of discerning between the different grid box 

fraction temperatures: a case regarding a drying surface after rain (measurements from FIFE), 

and the simulation of a series of diurnal courses of the evaporation of a sparse vineyard 

canopy surface (measurements taken during EFEDA). 

Table 4.1: Surface parameters for the FIFE-1987 test case 

parameter symbol value 

roughness length for momentum 

roughness length for heat 

surface fraction covered with vegetation 

surface albedo 

longwave emissivity 

initial soil temperature 

initial soil humidity 

z0m 

z0h 

°l 
a 

£ 

T 

CO 

0.3 m 

0.03 m 

0.85 

0.168 

0.996 

291.4 K 

field capacity 

A drying surface after rain 

The original model of VB95 was validated with several data sets, including the data 

collected during the FIFE-1987 experiment (Sellers et ah, 1988). During this experiment 

micrometeorological parameters were measured during 168 days, from May until October 

1987. Data were collected above a tallgrass prairie in rolling terrain. Half hourly averages of 

temperature, wind speed and air humidity at reference height, as well as incoming 

longwave and shortwave radiation are available. During four intensive field campaigns 

(iFC's) eddy correlation data of sensible and latent heat flux density were collected, together 

with net radiation and soil heat flux density. The observations from all available stations 
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were averaged to obtain a single time series by Betts and Ball (1992). 

Both the original and the modified scheme were used to simulate the surface fluxes 

for the entire experimental period. All model settings (including soil type and root profile) 

were taken as in the original paper. Values of some surface specific parameters can be found 

in Table 4.1. The soil moisture profile was initialized at field capacity, and a vertically 

uniform temperature profile was taken as initial profile. 

For comparison with measured fluxes, a situation is selected in which the surface is 

drying after a period of rain. For the present study the simulations for days 176 and 177 are 

chosen. Unlike the intercomparisons in VB95, we focus on diurnal variations of measured 

and predicted surface fluxes. 

Figure 4.2: (Lower panel:) 
Observed (•) and simulated 
(heavy lines) total evaporation for 
FIFE-1987, days 176 and 177. 
Simulations are carried out with 
both the original VB95 model (••••) 
and the new version with different 
temperatures for different surface 
fractions ( ). Also shown are 
the simulated evaporation from the 
skin reservoir, Cj A.E( (thin lines) 
and observed precipitation (upper t 

700 

176.5 177 
day in 1987 

177.5 178 

Figure 4.2 shows the simulated and observed total evaporation for the selected days. 

Also precipitation is shown, and the calculated evaporation from the skin-reservoir, A.E;. The 

new scheme reduces the overestimation of A.E by approximately 50%, especially for day 176. 

Also the pronounced peaks caused by the skin evaporation are reduced, although not 

entirely removed. As was discussed by VB95, the skin reservoir is very shallow (< 0.7 mm), 

and can fill up and evaporate within a single time step. However, in their scheme the value 

of C; is computed from the skin reservoir content in the previous time step. The result is that 

skin evaporation does not take place during the first time step of filling the reservoir by 

interception. Too large time steps can result in simulation of a excessive peak transpiration. 

The choice of the fairly large timestep used here (1800 s; equivalent to the time step in the 
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ECMWF model) causes the remaining part of the overestimation of the evaporation, visible in 

Figure 4.2. 

The new solution for the surface temperature has a pronounced effect on the 

partitioning of the evaporation over the ground surface and the canopy. Figure 4.3 shows 

the simulated bare soil and canopy evaporation rates, given by (1 - C;) (1 - oy) XES and 

(1 - C;) Or XEC, respectively. Since the soil is wet just after a rainy period, the bare soil 

evaporates at a nearly potential rate, which has a strong feedback to the surface 

temperature. The old scheme simulates a maximum weighted soil evaporation of about 300 

W/m 2 . For the bare ground fraction (equal to 15% when C; = 0), this is equivalent to 2000 

W/m2! The reason is that the dominating vegetated part enforces its higher surface 

equilibrium temperature on the bare soil fraction. Allowing for different temperatures of the 

soil and the canopy component causes a reduction of 50% of the soil evaporation, whereas 

the canopy evaporation is enhanced by approximately 10% around noon. 

500 

176.5 177 177.5 
day in 1987 

Figure 4.3: Simulation of the canopy evaporation, (1 - C,) oy XEC (thick lines) and soil 
evaporation, (1 - c() (1 - oy) A,£s (thin lines) for the original model ( ) and new 

version ( ) 

A sparsely vegetated vineyard 

The model of VB95 was also run for a sparsely vegetated Mediterranean vineyard 

area for five consecutive days in June 1991. Data were collected in the Tomelloso area during 

the EFEDA-I intensive measurement campaign (Bolle et al, 1993). The fraction of area covered 

by vegetation was about 12% in the considered period, and the Leaf Area Index did not 

exceed 0.3 m 2 /m 2 . Since dew and precipitation were absent in this period, the fraction of 

area covered by the skin reservoir (C;) was zero all time. The soil consisted of sandy loam 

material and the top layer was covered with stones and very dry. The plants extracted water 

from deeper soil layers (> 1 m), and canopy evaporation could be sustained in spite of the 

very dry top soil. 

Energy balance measurements were obtained as indicated in section 2.4.3. Surface 

temperatures were obtained from an infrared sensor moving along the cable at 3 m height 
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(section 2.2.3). The crop resistance rf was inferred from measured values of total 

evaporation and canopy temperature. Evaporation from the underlying soil was assumed 

zero, and aerodynamic resistances in the pathway between the canopy and the reference 

height were parameterized according to Choudhury and Monteith (1988). Sene (1994) 

showed that the final value of rf is not sensitive to the exact values of these aerodynamic 

resistances. More details about the experimental setup can be found in section 2.2. 

For the settings of most model parameters the suggestions made by VB95 were 

followed. The original treatment of the crop resistance (eqs. 4.26 - 4.28) was replaced by the 

formulation of Choudhury and Monteith (1988), calibrated to match the current data (see 

Figure 4.4). The physical soil parameters were quantified according to the sandy loam soil 

type cited by Noilhan and Planton (1989). Surface albedo was taken 0.29 at all times, 

obtained from field observations. The apparent conductivity of the skin layer (A) was taken 

7 W/m2K, and the drag coefficient CH was computed using z0m/zoh = 200, following Van 

den Hurk et al. (1995). These adaptations were necessary to predict a reasonable value of the 

surface temperature and the soil heat flux. 

10000: 

I 1000: 

173 174 
doy(1991) 

Figure 4.4: Values of the crop 
resistance for 5 days during EFEDA-
91; »: data inferred from measured 
total evaporation; predictions 
using a calibrated model of 
Choudhury and Monteith (1988) 

Figure 4.5 shows observations and simulations with the original scheme of bare soil 

temperature (4.5A), plant temperature (4.5B) and total latent heat flux (4.5C). Simulations 

with both the original and the modified scheme are shown. For the original model, the 

simulated temperatures of the canopy and the bare soil are represented by the average skin 

temperature. 

The total soil heat flux and average surface temperature are hardly affected by the 

new parameterization (figures not shown). The surface temperature is dominated by the 

bare ground component, since the area fraction of vegetation was very limited (Figure 4.5A). 

However, the impact of the new temperature scheme on the total evaporation rate (4.5C) is 

significant, and a reduction of almost 50% is caused by adopting the new scheme. The 

reduction of the evaporation is balanced by a slight increase of the sensible heat flux, 

consistent with a closed surface energy balance. 
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340-

Figure 4.5: (A) Bare soil temperature, (B) 
canopy temperature and (C) total latent 
heat flux for the EFEDA-91 case. Shown are 
observations (») and model simulations 
with the original (•••••) and new ( ) 
formulation 
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E/fecf of the numerical scheme on the energy balance solution 

During the second (EFEDA) case, occasions with high sensible heat fluxes and surface 

temperatures often occurred. Therefore this is a good case to demonstrate the effect of 
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numerical approximations of CH, as outlined previously. We confined ourselves to the 

modified scheme, in which the surface temperatures are solved separately for each 

surfacefraction. Three strategies are compared: 

(1) as applied above, that is, computing CH by use of an average sensible heat flux from 

the previous time step, and solve the energy balance of each surface fraction by 

means of 2 iteration rounds 

(2) same procedure, but with only a single iteration round, and 

(3) same procedure, with iterations until convergence. 

A: Total evaporation B: Total sensible heat 

40 60 80 
iterative scheme 
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C: Aerodynamic resistance for heat D: Skin temperature 
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Figure 4.6: EFEDA-1991 simulations of (A) total evaporation, (B) total sensible heat flux, (C) aerodynamic 
resistance and (D) average skin temperature, computed by means of a fully iterative scheme for each surface 
fraction (x-axis), and an explicit correction of ra for stability effect using sensible heat fluxes from the previous 
time step, with 1 (») and 2 (°) iterations (y-axis) 

Figure 4.6 shows the results in terms of simulated total evaporation (4.6A), total 

sensible heat (4.6B), aerodynamic resistance ra (4.6C) and bare soil temperature (4.6D). A 

clear difference is present between procedures (1) and (2) for especially the simulated latent 

heat flux. Ignoring the error involved with the linearization of dqsat/dT (procedure (2)) 

results in serious deviations compared to the fully iterative scheme (3). The deviations are 

particularly large for relatively low values of XE, which occur just after sunrise and before 

sunset when the rate of change of the surface temperature is large. Smaller deviations are 
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present for the sensible heat and bare soil temperature. 

It is also evident from Figure 4.6 that a significant reduction of the deviation between 

an iterative and an explicit formulation is obtained by allowing for an extra iteration round 

(procedure (1)). The total evaporation, sensible heat and bare soil temperature agree now 

very well with the iterative approach. The aerodynamic resistance computed using CH from 

the previous time step differs from the iterative solution for only a small number of high 

values of ra, which occur under stably stratified conditions with small sensible heat fluxes. 

The large deviations shown in Figure 4.6C (on a logarithmic scale) are not found in the plots 

for sensible heat and bare soil temperature. The parameterization of the turbulent fluxes 

appears to be rather insensitive to the way stability effects are incorporated in CH. 

• The numerical value of the skin conductivity 
In the model of VB95, the apparent skin conductivity, A, is defined as the heat flux 

through the vegetation layer per degree temperature difference between the skin layer and 

the upper soil layer (see eq. 4.14). For calculations on the global scale, VB95 treat A as a fixed 

coefficient, with a value of 7 W/m2K (Beljaars and Betts, 1992). However, considerably 

different values may be expected for different types of surfaces. 

For densely vegetated canopies, the value of A includes the heat conductivity of the 

canopy elements, the air within the canopy layer, and the top soil layer. Complicated 

processes like aerodynamic transport within the canopy layer and heat conduction through 

the stems inhibit an easy quantitative assessment of A. However, since the presence of the 

vegetation will insulate the soil thermally from the atmosphere, A may be expected to be 

small. 

On the other hand, when vegetation is sparse or absent, the skin temperature is 

dominated by the (underlying) soil. In that case, the temperature difference appearing in eq. 

4.14 is proportional to the soil temperature gradient immediately below the surface, which 

may be significant, especially for dry soils. Eq. 4.14 can be compared to an ordinary 

conductivity equation for soil heat flow, of the form 

AT ö . 3T 

"Äz Tlz 
-A AT = -(A Az) 4 - - -34.4- ( 4 3 2 ) 

where AT is equal to T2 - Tsk. From this equation, the apparent heat conductivity A can be 

interpreted as a physical conductivity by multiplication with a reference depth. The 

temperature difference defined by eq. 4.14 can be treated as a real gradient through division 

by the same depth. Thus, for bare soils A Az is proportional to the soil thermal conductivity 

XT, which depends on type and moisture content of the top soil. 

A similar approach was followed by Mahrt and Pan (1984), who chose Az to be the 

centre of the model top soil layer, that is, Zj/2. In cases of steep non-linear temperature 

gradients near the surface, significant truncation errors are introduced when Zj is chosen too 

large. Therefore, a better choice for Az would be the depth where the real temperature 

profile equals the temperature of the model top soil layer, Tj. In principal this will not be a 

constant depth. At times where the soil heat flux density is large, steep temperature profiles 

with an exponential shape are present, and Az is expected to be closer to the surface than 

Zl/2. 
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The EFEDA-dataset, described above, provides a useful test-case to determine a value 

for A for a typical Mediterranean sparse canopy surface. Simulations of soil heat flux density 

were carried out using VB95, in which soil physical and aerodynamic parameters were 

selected as before. In order to examine the effects of the choice for A in the present ECMWF-

scheme, sensitivity experiments were carried out with three different values of A, namely 7, 

14 and 20 W/m2K. 

Figure 4.7 shows the simulated and measured soil heat flux G for the 5 consecutive 

days in June 1991. Clearly, the default value of 7 W/m2K yields an underestimation of G of 

approximately 60% at all times. A = 20 W/m2K gives an optimal simulation. The 

intermediate value of 14 W/m2K results in only a slight underestimation of G (<20%, on the 

average). As a consequence of the surface energy balance equation the sensible and latent 

heat fluxes are reduced by several tens of W/m 2 at most when A is increased from 7 to 20 

W/m 2 . 

250 

173 174 
day (1991) 

176 

Figure 4.7: Measured (») and 
simulated (lines) values of the soil 
heat flux for the EFEDA-1991 case. 
Simulations include A = 7 (—••), 14 
(- - - ) and 20 ( ) W/m 2 K 

Also shown are the simulated temperatures of the skin layer and the first soil layer 

obtained using A = 7 and 20 W/m2K (Figures 4.8A and 4.8B, respectively). Observations of 

the temperature of the upper soil layer were derived by an arithmetic average of the 

temperatures at z = 0.03 and z = 0.05 m. The effect of A on the skin temperature is only 

moderate. The skin temperature is a key parameter in the entire energy balance solution (eq. 

4.15), and is only to a small extent determined by the heat flow into the soil. The prediction 

of the temperature of the first soil layer, however, is much improved when A = 20 W/m2K is 

used. 

• Discussion and conclusions 

This section considers two types of simplifications applied in the new ECMWF surface 

scheme: a uniform skin layer temperature, and a constant value of the skin layer 

conductivity for all surface types. 

A simple scheme is presented to allow the different surface fractions (bare soil, dry 

vegetation and a skin reservoir of intercepted water) to adopt temperatures that are in 

126 Sparse canopy parameterizations for meteorological models 



equilibrium with their state of evaporation, as in the Penman-Monteith concept (Monteith, 

1965). The three surface temperatures are solved according to the original scheme by first 

regarding each of the fractions as if fully covering the grid box, and then average the 

resulting fluxes and surface temperatures using a similar weighting as used for the 

evaporation (eq. 4.18). By initializing each surface fraction energy balance solution using the 

average skin temperature from the previous time step, and employing a second iteration to 

minimize the error involved with linearization of dq^/dT, no additional information needs 

to be stored between subsequent time steps. This numerical scheme is shown to have 

virtually identical results as a full iteration for each surface fraction energy balance. 
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Figure 4.8: Observed (*) and simulated (lines) values of (A) the skin temperature, and (B) temperature of the top 
soil layer. Simulations include A = 7 ( ) and 20 ( ) W/m2K 

This procedure is somewhat different from the dual source models presented by e.g. 

Deardorff (1978), Shuttleworth and Wallace (1985) or Choudhury and Monteith (1988). In 

their models, an interaction between the bare soil and vegetation takes place directly by 

computing a temperature and humidity deficit within the canopy layer, and computing 

fluxes from either of these components through this canopy layer node. Blyth (1995) 

presented a more general concept by placing this node at some level between the surface 

and the lowest model layer, which serves as a reference height for the surface forcings. 

A major disadvantage of this concept for large scale meteorological models is the 

data requirement. The values of the resistances between this node and the various surface 

fractions need to be parameterized, and cannot be expected to be of similar magnitude for 

all vegetation types or degrees of coverage (McNaughton and Van den Hurk, 1995). In the 

current ECMWF-scheme the aerodynamic transfer between the surface and the reference level 

allows no direct interaction between various surface fractions, since the fluxes from each 

component are treated as purely additive. However, in a surface layer model coupled to a 

model for the rest of the atmosphere, the surface fluxes will affect the meteorological 

forcings at the reference height via boundary layer interaction. This feedback serves as an 

indirect interaction mechanism between the surface fractions. 

In the original scheme, the computation of the surface evaporation (eq. 4.18) is 
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conceptually almost3 similar to defining a single surface resistance for evaporation, 

weighted by the various grid box fractions (see eqs. 4.16 and 4.17). Based on numerical 

simulations over heterogeneous terrain, Blyth et al. (1993) argue that an average resistance 

defined in this way will underestimate an effective surface resistance, which is defined by the 

ratio of the humidity gradient to the average flux in the grid box. This effective resistance 

should be obtained by weighting the surface resistances in a grid box by the various fluxes 

rather than by the grid box fractions. In the new scheme, however, the effective resistance is 

no longer solely determined by the grid box fractions, but takes differences between 

humidity gradients of the various fractions also into account. By definition, a single surface 

resistance yielding the same average flux is now equal to the effective resistance, weighted 

by the fluxes from the various grid box fractions. Obviously, this is only applicable to the 

fractions which are actually considered in the surface model: the influence of a variability of 

different crop resistances for patches of different vegetation types within a grid box (Koster 

and Suarez, 1992) is only implicitly included in the parameterization of /•ƒ present in VB95. 

In a case study where the behaviour of a drying vegetated surface wetted by rain 

was simulated, the new scheme considerably altered the partitioning of latent heat flux over 

the vegetation and the soil. In the original scheme maximum soil evaporation was of the 

same order as the canopy evaporation, in spite of the fact that only 15% of the surface was 

not vegetated. The new scheme reduced the soil evaporation by 50%, and enhanced the 

canopy evaporation slightly. 

A case study carried out using a dataset collected over a sparsely vegetated dry 

vineyard with negligible soil evaporation showed a significant reduction of the canopy 

evaporation. The simulations of total evaporation carried out with the new scheme matched 

observations rather well, while the original scheme caused an overestimation of 

approximately 100%. Obviously, a similar change of the simulated canopy evaporation 

could also be forced by changing the value of the surface resistance, rf. However, it merely 

is the purpose of this demonstration to show the effect of the assumption of the uniform 

surface temperature used by VB95, rather than to verify all components of their model. The 

present case shows this assumption to have a significant impact on the canopy evaporation 

rate. 

In general, solution of the surface temperature for separate surface components 

reduces evaporation of those components which are cooler than their surroundings. In the 

FlFE-dataset, the soil evaporation was significantly reduced, whereas evaporation by the 

vegetation was reduced for the Spanish simulation. 

Also the parameterization of the soil heat flux by use of a skin conductivity A, 

assumed constant for all vegetation types, was evaluated using data collected during EFEDA-

1991. It was shown that for the limit of a bare soil surface, A is proportional to the soil 

thermal conductivity XT. The coefficient of proportionality is a reference depth Az. Mahrt 

and Pan (1984) proposed to choose Az as the centre of the top soil layer, but for steep non

linear temperature gradients this depth may be chosen closer to the surface. 

For the dry Mediterranean vineyard, soil temperature and soil heat flux data showed 

A deviation from this concept is caused by treating the evaporation from the bare soil component using 
the relative humidity a, rather than defining a soil evaporation resistance 
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that A = 20 W / m K is a better estimate than the presumed value of 7 W / m K . For this case, 

the thermal conductivity of the upper soil levels was estimated at 0.3 W/mK (Verhoef et al, 

1995). Using A = 20 W/m2K, Az would be approximately 1.5 cm. 

The value of A = 7 W / m K was obtained from soil heat flux densities observed at a 

meadow grass land site near Cabauw, The Netherlands (Beljaars and Berts, 1992). The 

difference with the value found from the EFEDA-1991 data is presumably associated with the 

different insulation properties of the vegetation types at both sites. Whilst the sparse 

vineyard canopy had a low degree of vegetation cover (-12%) hardly providing a barrier for 

heat transfer between the soil and the atmosphere, the grass vegetation near Cabauw more 

effectively insulated the underlying soil. These two values found for A possibly mark the 

likely range of values for most surface types. Including experimental evidence for tall 

vegetations (forests) or completely bare surfaces (deserts) might further extend this range. 

However, in order to limit the global input requirement, a simple differentiation between 

the two values of A — preferably based on grid box vegetation cover — would provide a 

significant improvement of current parameterizations. 

For surface flux predictions at seasonal or even annual time scales, the exact 

determination of the soil heat flux is not too crucial. The diurnal average soil heat flux is 

generally small compared to the total net radiative energy supply. However, the diurnal 

course of G affects the predicted diurnal latent and sensible heat flux patterns. For various 

applications these diurnal patterns have a considerable impact (e.g., prediction of 

temperature at screen height, timing of development of convective clouds, studies of 

atmosphere-surface feedback processes etc.), and a correct estimate of G may be significant. 

4.1.4 The two-layer model of Deardorff 

Unlike the surface schemes discussed above, the surface model of Deardorff (1978, 

referred to as D78) treats sensible and latent heat fluxes separately for the vegetation 

elements and the underlying soil. It was one of the first two-layer models, presented in a 

paper actually comparing various parameterizations of surface temperature related to soil 

heat flux density. Deardorff's model is the base of the Biosphere-Atmosphere Transfer 

Scheme (BATS), developed by Dickinson et al. (1986,1993) for application in GCM's. In the 

version included here a few minor parameterizations were replaced as recommended by 

Dickinson et al. (1986). A schematic lay-out of Deardorff's model is shown in Figure 4.9. 

The basic concept of D78 consists of a solution of the energy balance of the canopy 

elements and the soil surface separately. Ignoring heat storage in the vegetation and energy 

consumption by photosynthesis, the canopy energy balance is given by 

*!-lt+li-LÏ-He.*Ee <4.33) 

At the soil surface the energy balance is 

Kt-Kl+Lt-L:=HS+XES+G (4.34) 

In eqs. 4.33 and 4.34 the subscripts c and s denote canopy and soil fluxes, respectively. 

The partitioning of net radiation over the canopy and the soil surface is specified by 
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use of a vegetation coverage factor oy. Unlike the later two-component models (see next 

section), D78 does not entirely rely on a solution of the Penman-Monteith equation, but on a 

direct solution of the surface flux equations by using prognostic equations for the surface 

temperature and humidity. This prognostic equation is derived from the force-restore 

method for the temperature and humidity of the soil surface. 

Canopy 

Figure 4.9: Schematic layout of the 
model of Deardorff (1978). For 
explanation of symbols: see text 

Soil surface 

root zone . 
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Incoming shortwave radiation is distributed over the canopy and soil proportional to 

oy, according to 

I 1 
Kc = ofK

l 

Kl
s = (l-of)K

l 
(4.35) 

The canopy is not transparent to shortwave radiation. The reflected shortwave radiation is 

calculated using a separate canopy and ground albedo, ac and as: 

T i 

K -*cKc 
Î 1 

Ks = «sKs 

(4.36) 

Net longwave radiation of each component is determined by the atmospheric emission 

(distributed similarly as for shortwave radiation) and longwave exchange between the 

canopy and soil. The canopy emits longwave radiation upwards and downwards, and 

absorbs radiation emitted by the atmosphere and the ground: 

T 1 C S 
E L + OT: 

e + 2 E . ee„ 

e +£ - 2 E E c 
(4.37) 

in which the same subscript conventions apply as before. The longwave radiation 

components at the ground surface are given by 
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7 7 e„ + e - e„ e„ 
(4.38) 

Ls
T = (i-cy) 

.4 ,„ „ „,4 

e^rSd-e , )^ + o, 
e,org+(l-es)ecorc (439) 

7" 

These relatively complicated equations simulate the longwave radiation exchange between 

two parallel plates, representing the canopy and the soil surface. 

The transfer of heat and water vapour from each of the two surface components 

takes place via a common node in the resistance network (see Figure 4.9), representing the 

temperature and specific humidity of the air within the canopy layer, 0O and q0 respectively. 

Here, a potential rather than an actual temperature is used. Since 60 and q0 are affected by 

fluxes from both the soil surface and the canopy, a direct interaction between these two 

sources is allowed. The aerodynamic exchange of heat between the canopy elements and the 

canopy air is parameterized as 

e c - e 0 

ra 

where Tb is a factor accounting for sensible heat exchange from non-evaporating parts. The 

sensible heat exchange from the soil surface is given by 

Hs=pcp^-1 (4.41) 
r„ 

Here, the transfer coefficient formulations in D78 are expressed as a resistance formulation, 

comparable to the resistances in the other two-layer models. An equivalent formulation is 

used for the exchange of water vapour from the soil surface, written as 

Es - p ! l ^ l (4.42) 

The specific humidity at the soil surface, qs, is treated similarly to VB95, that is, by expressing 

a surface relative humidity as a function of the soil moisture content of the top soil layer. In 

D78 the factor / appearing in eq. 4.19 to account for humidity gradients in the top soil layer, 

is set to unity. 

The water vapour flux from the canopy is formulated somewhat differently, since it 

accounts for the evaporation from both intercepted water and from the canopy leaves. 

Analogous to eq. 4.42, a potential evaporation, Efot, is first defined as 

4. Selected models 131 



-.pot 
= p 

1c-% 
(4.43) 

where qc = q^ÇT^. The actual canopy evaporation, Ec, is a fraction Ç of Ef'. 't, depends on 

the stomatal resistance rst, the leaf boundary layer resistance rb and the relative amount of 

intercepted water, wdew/wmax, given by 

% = 1 - 5 
w. dew 

2/3 
(4.44) 

where 6 = 0 when condensation is occuring (q0 > qc) and unity otherwise. Unlike in VB95, a 

power function is used to express a higher dew evaporation rate when the dew reservoir 

gets empty, which in practice correponds to the formation of droplets on leaves with a large 

surface area. Combination of eqs. 4.43 and 4.44 yields the total canopy evaporation, Ec: 

\K 
pot (4.45) 

Only the transpiration by the leaves, Et, is extracted from the soil water reservoir (see 

below), and is specified as 

Et = 5 
-.pot 

rst + h 
l - dew 

2/3 

w 
v m a xv 

(4.46) 

The canopy sensible and latent heat exchange are determined by an iterative solution 

of the canopy temperature, 6C. A Newton-Raphson iteration scheme is used to solve Tc and 

6C from eqs. 4.37 - 4.45, for specified values of 90, q0, Ts and radiative input. 

The temperature at the soil surface, 9S, is calculated by use of the force-restore 

method (Bhumralkar, 1975). The absolute surface temperature, T, is determined by a forcing 

heat supply from the surface (G) and a restoring thermal diffusion from below, depending 

on the temperature of the lowest slab, T2: 

*Ts _ 2ftG 2n(Ts-T2) 

dt K4 
(4.47) 

t j is the length of the diurnal wave (24 hrs). d1 is equal to the depth of the diurnal 

temperature wave, and depends on the thermal diffusivity and volumetric heat content of 

the soil. Gradients of these thermal properties may be induced by a variation of soil 

moisture content with depth. Following Deardorff (1978), these gradients are accounted for 

by application of an empirical weighting over the two soil layers: 
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P'Ch<*l)s - ' • f (p / c j 1 ^7 l + (l -r'%'ci)jk^[ (4.48) 

where r' is a coefficient equal to 0.30 + O.OSCÛJ/O^, and kt is the thermal diffusivity (equal to 

XT/p'Ch) in layer i. T2 can be estimated using the e-folding depth of the annual temperature 

wave, d2: 

dT2 

IF 
?'Cl± 

(4.49) 

with d2 given by J ^ - ^ an<^ T2 = ^65 t j . 
The force-restore method is based on the solution of the surface temperature for a 

periodic surface forcing, assuming that the thermal properties of the soil are constant with 

depth. Dickinson (1988) derived slightly modified force-restore expressions for a surface 

forcing which consists of higher harmonics (induced by for instance shading by clouds or 

surface elements). However, as he pointed out, the impact of the higher harmonics on the 

surface temperature is quickly damped, and can be ignored in most cases. He also 

considered non-homogeneous soils, of which soils covered with layers of snow or litter are 

extreme examples. Although the implications of this heterogeneity for a proper solution for 

Ts may be significant, these modifications are not considered here. 

The soil moisture content of the top soil layer is also described using a force-restore 

parameterization, calibrated for various soil types by Noilhan and Planton (1989). The 

surface forcing is formed by the balance between the surface precipitation rate, Ps (given by 

(1 - oy)P), soil evaporation, Es, and a fraction R3 of the total canopy transpiration, Et. The rate 

of change of the soil moisture content in the top layer is given by 

dco-, C, 
i = — P • 

dt p z, \ s 
•Wt) 

C2((o1 %») (4.50) 

The depth of the upper slab, z1 w, is an arbitrary normalization depth, set to 0.1 m. Deardorff 

(1978) chose R2 = 0.1, but we follow Noilhan and Planton (1989), ignoring transpiration 

extraction from the top layer. Cj and C2 are soil type specific coefficients depending on soil 

moisture content, porosity and isothermal water vapour transport. The coefficient Cj is 

specified as 

2z, "l,œ 

nc„ 
Mffli) 

K^aj) (4.51a) 

while C2 is expressed using a calibration coefficient C2rer depending on soil type as 
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C2 " C2ref 
CO., 

(4.51b) 

in which cw is the hydraulic capacity (equal to 9o)/3v|/)/ KT the isothermal water vapour 

diffusivity and CO; a small numerical value to limit C2 at saturation. KT is estimated as 

Dv8esat(Ts) 
/Vj- — xp 

P-esatWs) (RvTf 
CO, OJj) (4.52) 

with Dv the molecular diffusivity of water vapour, x = 0.66 a tortuosity factor, and Rv the 

gas constant for water vapour (Braud et al., 1993). The value of C-, is limited to the value at 

CÛS = co^. Noilhan and Planton (1989) give a simplified equation for Cv in which isothermal 

water vapour diffusion is not included. In the current study, eq. 4.51a is used for Cj instead. 

An equilibrium lower soil moisture content, co , replaces co2 in eq. 4.50, to account 

for gravity effects, co is defined as 

( N I 

CO 
eau 

CO, - C O 
sal eau 

CO, 

Cûc 

( 
1 -

C0o y*p, 

co„ 

equ (4.53) 

In eq. 4.53 a and p are calibration coefficients, determined for various soil categories by 

Noilhan and Planton (1989). 

The time dependent equation for the soil water content in the lowest soil layer is 

written as 

3co2 i 
i = : IF 

Pwz: w^l.w 
• E < ) 

(4.54) 

z2 w is the depth of the bulk soil moisture reservoir, and must be specified explicitly. 

The depth of the dew reservoir, wiew, is determined as function of the intercepted 

precipitation, the collection of dew and the evaporation from the dew reservoir. Interception 

J is assumed to be equal to the precipitation falling on the part of the surface covered by 

canopy elements. wdew thus changes according to 

dw 
dew 

dt 
afP •{Ec-Et) 0 < Wj < w 

dew max 

(4.55) 

where wmax remains to be specified. Dew water collection exceeding the maximum reservoir 

depth is added to the soil precipitation rate, Ps-

Originally, D78 obtained G0 as a weighted average of the temperatures at the 

reference level, 0fl, of the canopy, 9C and of the bare soil surface, 6S. The weighting factors 

were assumed to be fixed. A value of q0 was obtained similarly. Dickinson et al. (1986) 

replaced this formulation by a weighting over the resistances connected by the node within 

the canopy: 
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iAa" + tyr; + i/r; 

e = , ' « t e ' « s' a ( 4 - 5 6 ) 

The aerodynamic resistance above the canopy, rfl
a, is expressed using the bulk 

transfer functions of Louis (1979). By choosing the roughness length for momentum, z0m, to 

coincide with the within-canopy resistance node, the solution of ra" is similar to eq. 4.5. The 

excess resistance in the one-layer models formally corresponds to a combination of the extra 

resistances ra
c and ra

s in the two-layer models (see figure 4.9). D78 describes the bulk 

boundary layer resistance, ra
c, equivalent to a leaf boundary resistance according to 

LAI LAI omfjfu 

(4.57) 

where lw is a characteristic leaf dimension. Eq. 4.57 is derived from Nusselt number scaling 

arguments, accounting for the difference between momentum and heat transfer. The value 

of the numerical coefficient (0.01 m/s 0 5 ) accounts for a development of an internal 

boundary layer on both sides of a flat leaf (Gates, 1980; see Appendix III). 

In D78 the aerodynamic resistance between the bare ground and the canopy layer, 

ra
s, is specified according to 

s 1 
CH[afu0+(l-af)ua] 

(4.58) 

where u0 is a characteristic wind speed within the canopy. The original parameterization for 

u0 of D78 was replaced by taking «0 = u», as in the BATS-scheme. In the original D78 and BATS 

schemes, the bulk drag coefficient CM was taken instead of CH, assumed equal for 

momentum and heat. 

The formulation of ra
s shows an inconsistency, due to the empirical nature of its 

definition. A consequence of eq. 4.58 is that for oy < 1, ra
s depends on the choice of the 

reference height zR via its dependence on ua, rather than solely on the aerodynamic transfer 

within the canopy layer. Unreported comparisons between ra
s parameterized by D78 and by 

Choudhury and Monteith (1988, see next section) show that both values approximate each 

other in the EFEDA vineyard case for zR = 25 m, but that the D78 parameterization gives a 

value approximately half as high as the Choudhury and Monteith value for 2 8 = 3 m (Van 

den Hurk et al., 1995; section 5.2.2). Dickinson et al. (1986) chose a reference height of 1.3 m 

above grass land. In a newer version of BATS (Dickinson et al., 1993), the dependence of ra
s 

on zR was avoided by taking [0.004 u»]"1, where the numerical coefficient is a fixed value of 

the transfer coefficient between the soil surface and the inside canopy air layer. 

The leaf stomatal resistance in D78 depends on intercepted shortwave radiation and 

soil moisture content only. In the current study, it was replaced by the parameterization 

present in BATS and proposed by Noilhan and Planton (1989). rst depends also on vapour 

pressure deficit and leaf temperature, and is given by a Jarvis-type model according to 
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(4.59) 

in which 

1 
_ w 

r 
r s,min 

/ + 

r 
s,max 

(4.60) 

with ƒ = 0.55 K /LAI Kref, and K, a reference value, 

h^-SD^c-%) ( 4-6 1 ) 

with gD a species-dependent coefficient, 

F4 = 1 - 0.0016 (298 - Tcf <4-62> 

and F2 given by eq. 4.28 with (0 = a>2. 

4.1.5 The two-layer models of Shuttleworth & Wallace and Choudhury & Monteith 
• Model description 

Shuttleworth and Wallace (1985, denoted as SW85) proposed a two-layer model 

similar to D78, but based on a solution of the Penman-Monteith equation for both the canopy 

and the underlying soil. The Penman-Monteith equation implicitly solves for the surface 

temperature by linearizing dqsat/dT and combining the equations for H, XE and the total 

amount of available energy. This strategy allows a direct computation of the surface fluxes, 

without the need to define a surface temperature. 

A resistance network sketched in Figure 4.10 is designed, and just like for D78 the 

within-canopy temperature and vapour pressure are affected by the fluxes of each 

component. 

SW85 considered the partition of available energy, A (eq. 4.1), into sensible and latent 

heat, by using the concept of surface resistance for both the canopy and the soil evaporation. 

Unlike in D78, A is assumed known. The energy budgets for the canopy and soil are given as 

Ac = Q.,c=Hc^Ec ( 4 - 6 3 ) 

and 

A = Q - G = H+1EC (4.64) 

The partitioning of net radiation over the canopy and the soil components is 

parameterized by applying Beer's extinction using an extinction coefficient ßr: 

Q , # s =Q.exp( -ß r LAJ) (4.65) 

Implicitly it is assumed that the radiation absorbing material (the canopy leaves) are 
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homogeneously distributed over the canopy layer, both horizontally and vertically. Dolman 

(1993) adapted this simple partitioning by allowing for an exponential extinction in only a 

part of the grid box, equivalent to defining a fraction of vegetation cover. Furthermore, he 

allowed the presence of an understorey of vegetation, which was assumed to have the same 

temperature as the underlying soil, for simplicity. These modifications were not included in 

the current study. 

Figure 4.10: Schematic layout of 
the models of Shuttleworth and 
Wallace (1985) and Choudhury and 
Monteith (1988). The components 
enclosed by the dashed box apply 
to the Choudhury and Monteith 
formalism only. For explanation of 
symbols: see text 
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SW85 elaborated the expressions for the canopy- and soil evaporation drawing up 

separate PM-equations for each component, and eliminating the within-canopy water vapour 

pressure deficit, D0. The total evaporation is given by 

XE = Cc PMC + Cs PMS (4.66) 

in which the coefficients PMS and PMC are given by 

pcvD-Arc
aAs 

AA + . 

PM„ 

a c r +r 

A + y 1 + . 

AA + 

PM„ = 

pcpD-AraAc 

a s 

A + y 

(4.67) 

rs
s is the soil resistance for evaporation, equivalent to rf. The coefficients Cc and Cs in eq. 

4.66 are functions of the resistances in the network of Figure 4.10, written as 

4. Selected models 137 



1+ . 
RcK 

W + R
f l ) 

-i R*R„ 
s a 

RAK + K) 
(4.68) 

where 

Rc = (A + y ) rc
a + Y rc

s 

(4.69) 

The resistances are parameterized somewhat differently than in D78. The 

aerodynamic resistance above the canopy, rf, includes a stability correction of the form 

proposed by Choudhury et al. (1986): 

K V 
-In 

'zv-dV 

'-Om 

l+5g(zR-d)(T0-Ta)/(Tya) (4.70) 

with x = 2 for stable and 0.75 for unstable conditions, respectively. The resistance to the soil, 

ra
s, is obtained by integration of a (hypothetical) exponential profile of the eddy diffusivity 

within a dense canopy (LAI > 4) between the surface and the level z0m + d, indicated by the 

node in the resistance network. The final value of ra
s was found by a linear interpolation 

between a full canopy cover and a bare soil. Alternatively, Choudhury and Monteith (1988, 

denoted as CM88) parameterized ra
s by defining the effective source level, z0m + d dependent 

on the canopy density and crop height, using the numerical simulations of Shaw and Pereira 

(1982). Their final formulation of ra
s is written as 

h exp(n) 

nK(h) 
exp - exp 

- " ( < * + z 0 m ) (4.71) 

where z0 ' is the roughness length of the underlying soil, n an eddy-diffusivity extinction 

coefficient, and K(h) the eddy-diffusivity at crop height h, given as K U» (h - d). The roughness 

length and displacement height of a canopy with leaf area index LAI is fitted on the 

simulations of Shaw and Pereira (1982) by the expressions 

'0m 
0.3 h 

3hyß 
f \ 

i + ! 
h 

\ J 

0 < X < 0.2 

0.2 < X < 1.5 

(4.72a) 

and 
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1.1 h lul ( l + X 1 / 4 ) (4.72b) 

with X given by Cd LAI, where Cd is the leaf drag coefficient. Shuttleworth and Gurney 

(1990) showed that this formulation did not differ significantly from the parameterization of 

sw85. 

CM88 also use a vertical integration of the canopy wind profile to parameterize the 

bulk boundary layer resistance, ra
c. Considering an exponential wind profile described by 

use of an attenuation coefficient au (Cionco, 1972), the bulk boundary layer resistance is 

given by 

-1 

r„ = LAI 
0.02 

V ) \ 

u(h) 

L 

r / vi 

1 -exp _«« 
2 

v P. 

(4.73) 

No equivalent resistance is present in the pathway between the canopy air and the soil 

surface. In the limit of a completely bare soil, the absence of an extra resistance for scalars 

implies that momentum and scalars are exchanged at the same rate, and so z ^ = z0ft. 

Unlike SW85, CM88 also specify the canopy resistance. It is assumed to be a function 

of LAI and shortwave radiation only, according to 

gctttLAI+glK\l-exp(-!irLAr)\ 
(4.74) 

in which gj is a coefficient expressing the sensitivity of rs
c to sunlight. 

Apart from a different parameterization of some of the resistances in SW85, CM88 

conceptually differs by including explicit expressions for the soil heat flux and soil 

evaporation resistance. In their model, two soil layers are discerned: an unsaturated zone 

close to the surface, and a saturated soil layer at a depth below the surface (see Figure 4.10). 

Evaporation of soil water takes place at the intersection between the two soil layers. The 

energy balance at the bare soil surface is therefore given by 

^ * , s Hs
 + G0 (4.75) 

where G0 is the soil heat transport downward from the surface. At the evaporation front the 

energy balance equation reads 

^ £ s - G o ~ G (4.76) 

Both G0 and G are parameterized using a resistance formulation and a temperature gradient: 

T _ T 
_f I (4.77) Go = PC

P-

and 
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T1 ~T2 
pc J l (4.78) 

" r. 

where pcp appears in eqs. 4.77 and 4.78 for numerical simplicity, and T1 is the temperature 

at the layer interface, rather than the temperature of the upper slab. The upper and lower 

exchange resistances are functions of the thermal properties of the soil and the 

corresponding layer depth, according to 

r = pc 2 l (4.79) 

r, = pc„ 

' PM»J 
(4.80) 

sat> 

where Xj is treated as function of the soil moisture content (at saturation in the lowest soil 

layer). The introduction of these resistances enabled CM88 to develop and additional PM-

equation for the soil evaporation, by writing 

es«t(T i)- eo 
XES 

Pc» (4.81) 
s s 

and linearizing esat between T0 and Tv rf is a resistance for water vapour transport through 

the upper (dry) soil layer, equivalent to SW85. An expression of rf, proposed by CM88, 

includes a dependence on Dv and a tortuosity v. 

rS = I fL (4.82) 

Various (semi-)empirical expressions for rs
s exist (for instance, Camillo and Gurney, 

1986; Dolman, 1993). Often this so-called ß-type evaporation scheme (Kondo et al, 1990) is 

used in combination with a relative humidity in the soil pores, a , rather than assuming the 

air in the pores to be saturated (Van de Griend and Owe, 1994). a is a function of the ma trie 

potential \\f according to (Philip, 1957): 

ap = exp^y /R^T) (4.83) 

In CM88, a is assumed to be unity. 

The depth of the upper soil layer, zv increases as soil evaporation proceeds. For a 

constant value of <Dsa( in the saturated zone, the depth of the upper soil layer progresses 

according to 
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F . co , ^ f i (4.84) 
s sat d t 

The entire set of equations describing the energy balance at both the soil and the 

canopy surface is rather complicated and not repeated here. 

A major physical drawback of the resistance parameterization of the soil heat flux is 

that heat storage in the upper soil layer is ignored. A resistance equation as eq. 4.78 requires 

that the heat flow is constant over the resistance pathway. In atmospheric heat transport this 

requirement is roughly met, due to the low specific heat capacity of air. However, the 

specific heat capacity of soil cannot be regarded to be negligible, and a constant flux is 

hardly present, especially in soil layers close to the surface. A second point of criticism is the 

assumption of a saturated zone near the surface. This situation may often occur in 

agricultural farmland, where the soil water table is controlled to optimize crop production. 

However, Mediterranean sparse canopies are usually characterized by a significant water 

stress, and a saturated water table will seldom be found close to the surface in these areas. 

These issues will be further adressed in section 5.3. 

• Numerical stability of PM-type two-component models 

Studies with coupled surface-PBL models carried out with surface models based on 

the PM-equation consistently revealed problems with numerical stability. Three aspects 

related to surface temperature are responsible for this problem: net radiation, stability 

correction of rf and soil heat flux. 

In a PM-type two component model both the canopy and bare soil temperature are 

implicitly obtained by linearizing dqsat/dT. The models are diagnostic rather than 

prognostic, and don't include time derivatives of for instance the canopy and bare soil 

temperatures. Thus, with respect to the solution of the canopy and soil temperature, PM-

models are fully implicit, and therefore numerically very stable. However, when for instance 

a dependence of net radiation on surface temperature is to be carried out, the equations 

describing Q» and its partitioning should be incorporated in an implicit mode as well, in 

order to gain advantage of the fully implicit character of the PM-model. Unfortunately, the 

two layer models carry a large number of equations to solve for the surface temperatures 

and fluxes, even with prescribed values of Q,, G and ra". Including implicit dependences of 

these parameters on surface temperature is therefore a cumbersome job. Particularly under 

stable conditions, when aerodynamic resistances are large, these surface temperatures are 

very sensitive to the exact values of the sensible heat fluxes from the canopy layer to the 

canopy and soil component. As these sensible heat fluxes are to a large extent determined by 

net radiation, an unstable set of equations is readily obtained when an explicit formulation 

is used for Q». Similar arguments are valid for including a stability correction in ra", or 

describing soil heat flux, for instance by use of a force-restore method (as in the modified 

big-leaf model, section 4.1.1). 

Although Dolman (1993) claims his PM-type surface model to be designed for 

application in GCM's, he tested it using measured values of Q» and G. Similar tests were 

carried out by SW85 and CM88. However, to serve as surface description scheme in GCM's a 

surface model should include a parameterization of these quantities. Dolman and Ashby 
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(personal communication) are currently developing a numerical surface scheme in which the 

multiple source surface model of Dolman (1993) is coupled to an implicit diffusion scheme 

to describe heat and water fluxes in the soil. The implicit soil scheme describes a 

temperature profile at time step n + 1 using adjacent temperatures in the same time step. 

Dolman and Ashby are extending the numerical solution matrix for the soil temperatures 

with two extra layers, situated at the canopy layer and the reference level above. The matrix 

coefficients for the exchange between these two above-surface layers include the exchange 

resistances for aerodynamic transport and available energy. The air temperatures are solved 

at the implicit time step (n + 1), and can numerically be attached to the soil scheme. By the 

time of finalizing this thesis a complete version of this algorithm was not yet available. 

4.2 Treatment of the planetary boundary layer 

In this study the development of the planetary boundary layer is described in 

relation to the diffusion of heat, moisture and momentum in the lowest layers of the 

atmosphere. Two turbulence regimes are considered: a fully convective regime during 

daytime (the mixed layer), and a stable nocturnal PBL. Other stability regimes (Holtslag and 

Nieuwstadt, 1986) are not considered in this study. For each regime profiles of the turbulent 

diffusivity are constructed, based on appropriate scaling parameters. 

The diffusion problem is solved by taking the surface fluxes as the lower boundary 

condition. During daytime, entrainment processes at the top of the PBL are also incorporated. 

The boundary layer depth, z(-, is explicitly evaluated from the simulated virtual temperature 

profiles. The numerical diffusion scheme proposed by Troen and Mahrt (1986) is used to 

solve the diffusion equations. The full model is described by Jacobs (1994), and below only a 

brief summary is given. For the convective PBL a simple slab model is also used in chapter 6, 

and this model is described briefly in section 4.2.2. 

4.2.1 A numerical diffusion scheme for the planetary boundary layer 

Fluxes of momentum and scalars in the PBL are parameterized using a simple local 

first order closure scheme: 

f \ 
K ds .. (4.85) 
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In this equation s denotes a constituent (s = m for momentum, h for heat and q for humidity), 

Ks an eddy-diffusivity and ys a countergradient correction term, introduced by Deardorff 

(1972). ys accounts for transport contributions from large turbulent structures, and its impact 

is shown to be considerable for particularly highly convective conditions (Holtslag et ai, 

1995). 

For the daytime PBL, the eddy-diffusivities and countergradient corrections proposed 

by Holtslag and Moeng (1991) are used. Ks is a function of the free convection velocity scale 

if», the boundary layer height z(, and the entrainment ratio Rs, which represents the ratio of 

the flux at the PBL-top to the surface flux of constituent s. w» is defined by 
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(4.86) 

Ys is a function of w», the surface heat flux and the profile of w1 , which was described 

using an expression proposed by Lenschow et ah (1980). 

Both Ks and ys were fitted on LES simulations carried out by Moeng and Wyngaard 

(1984,1989). These simulations indicated that the pressure covariance term and the 

turbulent transport term in the scalar flux equation differed by a constant value. This 

indication was used to parameterize ys. Holtslag and Moeng (1991) suggested that the 

parameterization of Ks and ys could be applied to both the heat and scalar flux equations. 

However, strictly spoken the parameterization is valid in only a limited PBL-height range, 

approximately between 0.1 and 0.8 z,. Jacobs (1994) argued that the difference between the 

pressure covariance term and the turbulent transport term in the scalar flux equation may 

well be constant in the centre of the PBL, but that this breaks down near the top, where the 

entrainment of humidity is generally positive. This causes the pressure covariance term in 

the scalar flux equation (- q Qv) to be positive rather than negative (Stull, 1988). He 

therefore evaluated y at z/z(- = 0.4, and kept this countergradient term constant throughout 

the entire PBL. 

The LES simulations of Moeng and Wyngaard (1984) were carried out for two 

classical situations: a positive scalar flux at the surface combined with a negative flux at the 

top of the PBL (typical for temperature transport), and a positive scalar flux at both the 

bottom and the top of the PBL (representative for humidity transport). A distinction between 

bottom-up and top-down processes was carried out by simulating a situation with a 

negative scalar flux at the PBL-top only. The difference between this transport and the typical 

temperature transport enabled the definition of the bottom-up transport term for tempera

ture. A similar set-up for discerning between top-down and bottom-up processes for 

moisture would consist of a LES simulation with a positive flux at the PBL-top only. This 

simulation was not carried out by Moeng and Wyngaard (1984). An improvement of the 

parameterization of y. could possibly be achieved by performing these additional LES 

exercises (Michels and Holtslag, priv. communication). However, this aspect is beyond the 

scope of this study, and we adopt the recommendations of Jacobs (1994) for further 

calculations. 

For the description of Ks in the nocturnal PBL we followed the original suggestions of 

Troen and Mahrt (1986). Ks is expressed using a different velocity scale, ws, given by 

Z 
(4.87) 

in which §m is a stability function (Holtslag et ah, 1990). A smooth interpolation between 

nocturnal and daytime diffusivity profiles is carried out by using w,/u, as indicator. 

During each timestep the boundary layer height z, is diagnosed using a bulk-
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Richardson approach: 

z _ * 'A|V(Z , ) | 2 (4.88) 
' g(ep(z,-)-eg) 

In this equation, Ric is a critical Richardson number, which is a measure for the largest 

stability where turbulence can still exist. Ric is taken to be 0.25. Furthermore, V is the 

horizontal wind speed, and 9S a measure of the temperature excess of the thermals, 

parameterized using the surface buoyancy flux and the temperature at the z - zR. In all cases 

a minimum value of 0.175 K «»/ƒ is taken for z;-, which is a suggested value of the near-

neutral PBL-height scale, including the effects of geostrophic wind shear (Koracin and 

Berkowicz, 1988). ƒ is the Coriolis parameter, equal to 2i2sin4>. 

The entrainment ratio Rs is evaluated from the calculated flux profile in past time 

steps. Rh is defined as the ratio of the minimum heat flux to the surface flux. Generally, the 

level where the heat flux is minimum (zmin) is found slightly below z •. As pointed out by 

Jacobs (1994), the entrainment ratio for humidity is prone to numerical fluctuations when 

evaluated at the same level as Rh. Therefore, Rq was specified as w q (z =0.8 zmin) / w q 0. 

Both Rh and Rq are set to zero for stable conditions. In order to increase numerical stability 

new values for Rh and R are evaluated only every ten minutes of simulation. 

During every time step the wind profile is adjusted by a geostrophic forcing, 

determined by the geostrophic wind speed V . Numerical experiments have shown that this 

geostrophic forcing can yield strong oscillations of the wind field with a frequency ~f and 

amplitude ~V . For these reasons the geostrophic acceleration was only applied at levels 

within the PBL. Also, the wind, temperature and humidity profiles above the PBL were 

unchanged in the simulations. 

4.2.2 Slab-model for the convective PBL 
Tennekes (1973) and Driedonks (1981,1982a) discuss the treatment of the convective 

boundary layer by use of a so-called slab model. The model treats the boundary layer as a 

box heated from both below and above. Air within that box is instantaneously mixed, and 

its average temperature 6m is a function of the net heat supplied both from below and from 

above, and of the height of the box. Driedonks (1981) derived analytical expressions for the 

sensitivity of z- and 0m to the total amount of sensible heat released by the surface, and to 

the initial profile of 9. A simple heat entrainment closure was adopted. McNaughton and 

Spriggs (1986) applied the approach of Driedonks to describe evaporation into a convective 

boundary layer. 

The slab model elaborated by Driedonks (1981) describes the growth of the PBL as 

dz,- w Qve (4.89) 

df Afi, 

where AQV is the inversion strength at the top of the boundary layer, and w %v is an 

entrainment buoyancy flux at the top of the PBL. 
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A simple closure of w'dv is not easy to give, since sensible and latent heat transport 

both contribute to this term. However, for a dry convective boundary layer, w/Qv ~ urfr . 

A simple closure consists of relating w 9 e to the surface heat flux, w 9 0 , according to 

w®e = Rh^0 <4-9°> 

Tennekes (1973) also considered the contribution of mechanical turbulence to the 

entrainment flux, but this is ignored here. By definition of the integrated surface heat flux as 

t 

KOsJVeV^dt' W-W 
o 

Driedonks (1981) expressed the development of zi as 

z2 ( l+2R„)(j-50
e) ( 4 9 2 ) 

0.5 Ye 

where 80
e is the initial heat content, given by zl0A90 - 0.5yezl0

2, and y e is the temperature 

slope above the PBL. This expression predicts that for a constant value of y e and Rh the PBL 
1 l'y 

height increases as function oil . 

Similarly, the value of the mixed layer temperature, 9m, can be expressed as function 

of z-, for a given value of y e and Rh: 

e m ( 0 = e 0 0 + Y e ^ ~ - z , . ( t ) W.93) 

where 900 is the value of 9 when Ye is extrapolated to z = 0. The rate equation for the 

temperature jump A9 is given by 

A9=Y f l — z , (4-94) 
9 1 + 2 R , ' 

The dependence of the specific humidity of the PBL on the total integrated surface 

latent heat flux ƒ, defined as 

t 

7?.(AM' (4-95) J(t) = j H ^ f / j d t ' 

is a more complex function. The rate of change of the mixed layer specific humidity, qm, is 

written as (Driedonks, 1981; McNaughton and Spriggs, 1986) 
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dt 

(4.96) 

The second term between brackets in eq. 4.96 indicates the transport of moisture at 

the top of the PBL. A rfetrainment is simulated if the specific humidity jump Aq is negative. 

The entrainment rate dz(/df is given by eq. 4.89, while Aq is equal to 

^ M O O + z i V ? m ( 4-9 7 ) 

where q00 and y have the same meaning as 600 and y e . Aq also changes as time proceeds, 

and an analytical expression for dqm/dt is not easy to give. In chapter 6, eq. 4.96 will be 

solved numerically by taking Aq, calculated from eq. 4.97, from the previous time step. 

4.3 Limitations to the coupled 1-dimensional atmospheric model 

The study reported in this thesis is designed to evaluate the sensitivity of the 

predicted PBL-development to the parameterization of the underlying (sparsely vegetated) 

surface. Later in this study computer simulations will be compared to field measurements 

(chapters 5 and 6). However, the conclusions to be drawn are confined to the processes that 

are included in the simulations. It is therefore of interest to pay some attention to the 

physical processes which were not included in the models described above. These may play 

a role in the complex surface-atmosphere interaction which is the subject of this study. 

First of all, the coupled SL-PBL model is essentially one-dimensional. Computations 

are carried out and compared to data under the assumption that the forcings apply to a 

homogeneous fetch of unlimited horizontal dimension. In practice, advection of warm dry 

air has modified the measured profiles considerably for many days (see section 6.5.1). The 

radiosoundings also revealed the existence of a clear and persistent sea wind as far as the 

Tomelloso area (Bessemoulin, priv. communication). 

A second limitation of the model is that processes associated with clouds are not 

included. Especially the radiative properties may be of importance for the net radiation at 

the surface or the temperature profiles in higher air layers. 

Third, longwave radiative cooling was not regarded. This process in practice results 

in a decrease of the temperature of the air near the surface of 1 - 2 K per 24 hrs (Garratt, 

1992). Stronger cooling takes place near the surface than at higher altitude, which causes the 

development of a slightly stable stratification in the residual layer during nighttime, when 

vertical mixing is absent. This stable lapse rate limits the growth speed of the convective PBL, 

and ignoring this process may lead to an overestimation of this growth speed. However, the 

exact rate of the cooling in each layer depends on the distribution of greenhouse gases in the 

air masses above and below the particular layer, of which water vapour and C 0 2 are present 

in the highest concentrations. 

Also, large scale processes like subsidence were not included. This process is caused 

by descending air motions in the centre of high pressure areas, and reduces the boundary 

layer height. 
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The entrainment equations in both the numerical and the slab model regard buoyant 
turbulence only. Turbulence induced by for instance wind shear near the top of the PBL is 

not included. 

Furthermore, sensitivity analyses in chapters 5 and 6 were confined to simulation 

periods of five days at most. This is a rather short time scale for considering 

parameterization effects on for instance soil moisture content. Shao et al. (1994) compared 

various soil moisture parameterizations of land surface schemes, and suggest that datasets 

of at least one year are required for an adequate model evaluation. 

Finally, the one-dimensional origin of the model simulations does not allow to 

include pressure effects on wind flow or the influence of baroclinicity (thermal winds). 
For instance, the Coriolis force can result in a very strong oscillation of the wind speed 

within the PBL (see above). In the real world, these oscillations will probably be damped due 

to the building up of high pressure areas, which will change the geostrophic wind direction. 

This damping effect was not accounted for, and the simulated wind profiles appeared to be 

rather unrealistic in some occasions. However, note that one-dimensional simulations are 

essentially inadequate for investigations of the wind profile and its changes in time, since 

the horizontal morion of air is a two-dimensional problem. We therefore pay only little 

attention to simulated wind profiles. 
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5 If you think about a problem during the night, and think 

about it again the next morning, you get different answers 

An intercomparison of three 
soil/vegetation models for a 
sparse vineyard canopy1 

For GCM's the lower boundary condition is often provided by a Soil-Vegetation-

Atmosphere-Transfer (SVAT) model. As pointed out in the introduction section of this study, 

the description of the exchange processes between the surface and the atmosphere is of great 

influence on the long term predictions of these larger scale models. 

Obviously, a SVAT intended to provide the lower boundary condition in GCM's needs 

to be able to describe a wide range of surface types, varying from completely vegetated to 

sparsely vegetated or completely bare surfaces. Sparse canopy surfaces exhibit rather 

demanding features with respect to the exchange of momentum, scalars and heat between 

the surface and the atmosphere. Here, we focus on three aspects: aerodynamic exchange, 

soil heat flux and surface evaporation. 

For the aerodynamic exchange, a difference is made between the exchange of 

momentum and of scalars as heat, water vapour, C0 2 or trace gases. Surface roughness 

elements acting as a momentum sink are usually parameterized by extrapolation of the 

wind profile to a hypothetical sink level at height d + z0m. Both parameters depend on the 

presence of roughness elements, characterized by the surface fraction being covered, and the 

spacing and height of the elements. Measurements and theoretical considerations reveal a 

difference between the exchange rates of scalars and momentum. The transport of water 

vapour, heat or trace gasses is considered less efficient than momentum transport in most 

cases, owing to the absence of bluff-body forces for scalar exchange (Thorn, 1972; Beljaars 

and Holtslag, 1991). Models treating the surface as a single homogeneous layer impose an 

'excess' resistance for scalars to account for this effect, equivalent to adopting a different 

roughness length for scalars, zoh (section 2.4.2). Experimental quantification of this 

roughness length has been carried out for many surface types, particularly using radiometric 

1 Adapted from Van den Hurk et ai (1995) 
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surface temperature measurements (Garratt, 1978; Huband and Monteith, 1986; Kustas et ah, 

1989). 

For sparse canopies the interpretation of z0h is far from straightforward. The heat 

exchange takes place at various levels, and the source distribution is determined by various 

environmental parameters, such as radiation, canopy evaporation, or forced convection. 

Two-layer models avoid the definition of a single source level by parameterizing the 

sensible and latent heat exchange at two separate levels: the canopy and the underlying 

substrate. The absence of bluff-body forces for scalar exchange is accounted for by 

additional resistances within the canopy layer. The turbulent exchange of sensible and latent 

heat between the canopy, the substrate and the air above are treated separately. 

Parameterization of these resistances is carried out by adopting assumptions about the 

turbulent exchange within the canopy layer and the effective sink level. This level can either 

be a fixed function of the canopy height (Shuttleworth and Wallace, 1985), a more complex 

function of leaf area index (Choudhury and Monteith, 1988), or crop density (Raupach, 

1992). However, turbulence characteristics within the canopy layer are rather complex and 

not easily defined using simple parameters (McNaughton and Van den Hurk, 1995). 

Blyth and Dolman (1995) used a two-layer model to explore the value of z0m/z0il for 

a sparse canopy. The apparent aerodynamic resistance for heat transfer, ra, was deduced 

from the simulated total sensible heat flux density H, the air temperature Tfl, and a mean 

surface temperature T sur, according to (see also eq. 2.35) 

T sur " Ta (5.1) 
r - pc v 

T sur was obtained from a linear interpolation of the model predictions of canopy 

temperature Tc and ground temperature T$: 

Tsur = ofTc + (l-cf)Ts (5-2) 

The value of zoh is then obtained from eq. 2.36. The resulting roughness length for heat 

appeared to be no function of the surface itself (as is the case for z0m), but it showed a clear 

variation with radiation, wind and even vapour pressure deficit. Apparently, the variation 

of the distribution of the heat sources causes the variation of zoh. Similar results were 

obtained experimentally by Kustas et al. (1989), Verhoef (1995), and in section 2.4.2. 

The second issue of interest for sparse canopy surfaces is the treatment of the soil 

heat flux density. Under conditions where a significant part of the radiant energy reaches 

the bare soil, a relatively large part of this energy is associated with heating and cooling of 

the upper soil layers. An accurate description of long term thermal dynamics of such a 

sparse canopy surface requires a proper description of the heat transfer into the soil. Since 

for strongly irradiated, dry soils large temperature gradients can be present near the surface, 

the description of the soil heat flux is likely to depend on the selected number and thickness 

of the soil layers, and the parameterization of the thermal conductivity of the soil. 

The third issue involves evaporation from a sparse canopy surface and dewfall onto 

it. The water vapour transport from a sparse canopy surface into the atmosphere is a 
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mixture of transpiration from the canopy elements and evaporation from the bare soil 

component or from intercepted water. During the process of dew formation, water vapour is 

transported downward from the atmosphere (dewfall), or it condensates immediately after 

being released by the underlying soil (dewrise). 

This section is dedicated to a comparison of various SVAT schemes using a common 

dataset collected over a sparse vineyard canopy surface for five consecutive days, with 

particular attention to the issues addressed above. The SVAT schemes include a one layer 

model currently in use in the ECMWF global weather prediction model (Viterbo and Beljaars, 

1995, VB95) and two dual-source models, published by Choudhury and Monteith (1988, 

CM88) and Deardorff (1978, D78). In each of these models the algorithms to describe soil heat 

flux density and aerodynamic transfer are based on different physical concepts (see chapter 

4 for a description of these models). 

The intercomparison serves two purposes. First, a qualitative and quantitative 

evaluation of these different process treatments is of interest as these algorithms are often 

applied in large scale atmospheric models. Second, the results will be used to construct a 

reference SVAT, to be used in the coupled PBL-SVAT simulations in the next chapter. 

Both in nature and in the model simulations the governing parameters show many 

complex feedbacks, and individual processes can not easily be investigated in an isolated 

way. Model errors related to one process of the transfer between surface and atmosphere 

can cause significant discrepancies for the description of other processes. Despite this 

feature, the comparison between the models and the observations will be separated into 

three process categories: soil heat flux density, aerodynamic exchange of heat, and 

evaporation and soil water balance. 

L Description of data, model settings and used forcings 

5.1.1 Collected data 
Data were collected during the regional scale EFEDA experiment (Bolle et al., 1993) in 

a dry, semi-arid sparsely vegetated vineyard near Tomelloso, La Mancha, Spain. A detailed 

description of the site and vegetation is given in section 2.2. 

Measurements consisted of both forcings and flux densities to validate model results. 

Atmospheric forcings were measured at a reference level of 2.95 m height, and consisted of 

air temperature, air humidity, horizontal wind speed, incoming and reflected shortwave 

radiation and net radiation. Longwave downward radiation L was parameterized by 

closing the surface radiation balance, eq. 2.1. In this equation, the values of global radiation 

(K ) and net radiation (Q.) were measured, the albedo (a) and longwave emissivity (es) were 

taken as in the simulations (see below), and an effective surface temperature ( T sur) was 

taken from measurements using an infrared sensor mounted at 3 m above the soil surface on 

a cable and moved along a transect of 35 m. The transect included both canopy elements 

and bare soil. Individual canopy and bare soil temperatures were extracted from the record 

of temperatures. Soil temperatures were measured at five levels between 0.03 and 0.50 m 

depth. Energy fluxes were selected from the available data as outlined in section 2.4.3. 

Corrections to these fluxes are discussed in Appendix II. 

Aerodynamic roughness z0m and zero plane displacement d were determined from 
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wind profile measurements at four levels between 1.5 and 10.0 m. These quantities changed 

considerably due to the vegetation growth (see section 2.4.1). 

Soil moisture measurements were carried out at a few days before and during the 

comparison period by the Dept. of Water Resources of the Wageningen University, using 

TDR at 0.10 m intervals to 0.50 m depth (Droogers et al., 1993). Leaf resistance to water 

vapour transport was measured from sunrise until sunset once every two days by use of a 

dynamic diffusion porometer. After extensive quality control on data and calibration 

(Jacobs, 1994), a crop resistance was obtained by averaging the measurements using a 

weighing based on leaf age and light exposure (section 2.2.7). Measurements of leaf area 

index, LAI, and fraction of vegetation cover, oy, were taken as described before. 

5.1.2 Forcings and specific model settings 

The simulations were carried out using observations taken between 19 June (DOY 

170) 20:00 GMT, and 24 June (DOY 175) 24:00 GMT. For each model the simulation time step 

was 600 s, and observations averaged to half hour intervals were interpolated to match the 

time discretization. 

All three models use measured values of temperature, wind speed and humidity at a 

reference height above the canopy, and initial soil temperature and soil moisture profiles. 

Observations of total net radiation were used as input for CM88, and shortwave and 

longwave incoming radiation for VB95 and D78. However, during the nocturnal periods 

following DOY 173 and 174 some data are missing due to failure of the measurement system. 

Linear interpolation was used to estimate missing data. Initial soil moisture and temperature 

profiles can be found in Table 5.1, for each of the models. Temperatures and moisture 

contents in soil layers deeper than measured were assumed to be identical to the values at 

0.50 m depth at the starting time of the simulation. Figure 5.1 displays the atmospheric 

forcings. 

To make the comparison of the models as straightforward as possible, most model 

settings were adjusted to give similar surface and vegetation specifications. However, since 

all models treat several parameters differently, some choices had to be made. A summary of 

all model settings can be found in Table 5.2. 

• VB95 

In the original paper of VB95 universal functions describing the physical properties of 

the soil are used for each soil type. However, we adjusted these parameters according to the 

suggestions made by Noilhan and Planton (1989) for a sandy loam soil type (see Table 5.2). 

The surface albedo was fixed at the measured value 0.29 for both the vegetation and soil 

components, and for the longwave emissivity a value of 0.98 was taken (Bolle and 

Streckenbach, 1993). In the operational ECMWF version of VB95, the aerodynamic roughness 

length is a specified quantity for each grid box. Here, calculated aerodynamic roughness and 

zero plane displacement were taken. The value of z ^ increased from 0.035 m at DOY 171 to 

0.043 m at DOY 175, whereas d was kept constant at 0.35 m in this limited time range. Note 

that these values are relatively small, regarding the observed canopy height exceeding 0.80 

m at all times (Wieringa, 1993). A different aerodynamic roughness for heat was calculated, 

using zOm/z0h = 200. Note that this value is an order of magnitude larger than the value 
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suggested by Braud et al. (1993), who simulated the energy balance of a similar sparsely 

vegetated vineyard using the scheme of Noilhan and Planton (1989). Since the sensible heat 

flux is the dominant term of the surface energy budget for a dry sparse canopy surface, the 

choice for z0m/zoh will reflect the difference between the mean level of the momentum sink 

(the canopy elements) and the heat source (the underlying bare soil). The apparent 

conductivity of the skin layer was kept at the suggested value of 7 W/m2K. Since exact 

information about the root distribution was not available, the rooting depth of the 

vegetation was defined according to the original suggestion (1 m, with water extracted 

equally from the top three layers). The response of the canopy resistance to light and soil 

moisture was parameterized according to VB95. In the simulation period LAI increased from 

0.29 m 2 /m 2 on DOY 171 to 0.35 m 2 /m 2 on DOY 175, whereas oy increased from 0.10 to 0.12 in 

the same period. 

Table 5.1: Initial values of soil moisture and soil temperature for each model 

Parameter Depth (m) D78 CM88 VB95 

SoU temperature (K) 0 293.09 293.09 293.09 

0.07 302.96 

0.10 303.21 

0.28 298.66 

0.50 296.09 296.09 

1.00 296.09 

2.89 296.09 

Soil moisture content (m3 /m3) 0.07 0.07 

0.10 0.07 

0.28 0.08 

0.50 0.15 

1.00 0.15 

2JÎ9 015 

• CM88 

CM88 uses principally net radiation, wind speed, humidity and air temperature as 

forcing functions. For this comparison, the deep soil temperature was taken from 

measurements at 0.50 m depth, rather than taking it as constant. The absence of a saturated 

zone near the surface made a formal justification for choosing the value of the depth of the 

top soil layer, z2 impossible. Zj was taken to be 0.40 m, to get a high soil evaporation 

resistance corresponding to a small soil evaporation expected from a dry soil surface. For the 

thermal conductivity in the top layer a value of 0.3 W/mK was adopted, and in the bottom 

layer 0.5 W/mK, following Verhoef et al. (1995). Directly measured values of LAI and crop 

height, h, were adopted. Roughness length and displacement were computed as function of 

LAI and h, assuming a leaf drag coefficient of 0.2 (Choudhury and Monteith, 1988). 

Characteristic leaf size, necessary for computing the crop boundary resistance rfl
c, was 

0.05 m. Since explicit calibration coefficients of the response function for stomata to radiation 
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are not given by CM88, the function was calibrated using porometry measurements taken at 

several days in the measurement period (see Table 5.2). 

Figure 5.1: Meteorological forcings of the simulations: (upper 
left panel:) air temperature ( ) and absolute humidity (•—•); 
(upper right panel:) horizontal wind speed, and (low panel:) 
incoming shortwave ( ), incoming longwave ( ) and 
net (•••••) radiation 

• D78 

For D78, z0m and d were computed using the same formulation as CM88. The 

thickness of the top soil layer was fixed at 0.1 m, and the deep soil temperature varied with 

a seasonal cycle as suggested in the original paper. The crop resistance was parameterized 

as function of radiation, air temperature, atmospheric humidity and soil moisture, following 

the general suggestions made by Noilhan and Planton (1989). 

Similar soil physical quantities were taken as for VB95, that is, the sandy loam soil 

type (see Table 5.2). The surface albedo was fixed at the observed value (0.29), and the 

surface longwave emissivity was taken the same as in VB95 (0.98 for both plants and soil). 

5.2 Simulations with the SVAT-schemes 

The sparse canopy surface for which the simulation was carried out has some 

pronounced properties with respect to the partition of energy over the various components. 

First, unlike in case of densely vegetated surfaces, the soil heat flux density is an important 

component of the surface energy balance for the current data set. Due to the small relative 

area covered by the plants (maximum 12%), approximately 30% of the total daytime net 
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radiation was used to heat the soil. The daily averaged soil heat flux density was 

approximately 20 W/m 2 , indicating a temperature increase in deeper soil layers at this time 

of the year. 

Second, the surface net radiation is hardly used for evaporation (< 10% of net 

radiation, generally), but a clear distinction between the canopy and the underlying soil is 

present in terms of latent and sensible heat exchange and surface temperature. Sensible heat 

(about 60% of net radiation) was released mainly by the warm substrate, whereas the 

evaporation, which was dominated by the canopy, caused the vegetation to be significantly 

cooler than the surrounding bare soil. 

Third, the large rooting depth enabled the vegetation to transpire in spite of a very 

dry top soil. Stomatal responses to the moisture content in the top soil layer are expected to 

be small. 

The models faced the challenge of simulating these features. The simulations will be 

compared with attention focused on three aspects: soil heat flux density, sensible heat 

transfer between the surface and the atmosphere, and evaporation in combination with soil 

moisture budget. 

Table 5.2: Model parameter values 

Parameter 

General configuration 
time step (s) 

depth of soil layers (m) 

Vegetation dimensions 
crop height (m) 

Leaf Area Index 

fraction vegetation cover 

characteristic leaf size 

Aerodynamics 
roughness length (m) 

displacement height (m) 

soil roughness length (m) 

roughness length for heat (m) 

leaf drag coefficient 

reference height (m) 

non-evaporating parts factor 

extinction coefficient for wind 
speed 

extinction coefficient for eddy 
diffusivity 

symbol 

f 

zi 
z2 
z3 
z4 

h 

LAI 

af 

L 

z0m 

à 

zo' 
z0h 

cd 
ZR 

n 
au 

n 

eq(s). 

_ 

4.71 - 4.72 

multiple 

multiple 

4.57,4.73 

4.5,4.70, 
4.71 

4.5, 4.70, 
4.71 

4.71 

4.6 

4.72 

4.5, 4.70 

4.40,4.56 

4.73 

4.71 

D78 

600 

0.10 
0.50 

1 

0.29-

0.10-

0.05 

((LAI 

0.35 

0.12 

h,Cd) 

({LAI, h, Cd) 

0.01 

-
0.2 

2.95 

1.1 

-

-

CM88 

600 

0.40 (start) 
0.50 

1 

0.29 - 0.35 

0.10-0.12 

0.05 

i(LAl,h,Cd) 

i(LAI,h,Cd) 

0.01 

-
0.2 

2.95 

-
3 

2.5 

VB95 

600 

0.07 
0.28 
1.00 
2.89 

-

0.29 - 0.35 

0.10 - 0.12 

-

0.035 - 0.043 

0.35 

-
W200 

-
2.95 

-
-

-
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Parameter symbol eq(s). D78 CM88 VB95 

Radiation 
soil albedo 

canopy albedo 

surface emissivity 

extinction coefficient for net 
radiation 

Canopy resistance 
minimum crop resistance (s/m) 

maximum crop resistance 

cuticular conductance (m/s) 

change of conductance per unit 
shortwave radiation (m/s / 
W/m 2 ) 

as 

ac 

Es 

ß, 

r s,nun 

rs,max 

Scut 

Si 

4.15, 4.36 

4.15,4.36 

4.15, 
4.37 - 4.39 

4.65,4.74 

4.26, 4.59 

4.60 

4.74 

4.74 

0.29 

0.29 

0.98 

-

125 

5000 

-
-

coefficients for PAR-response 

coefficient for force-restore 
humidity transport 

4.27 

reference shortwave radiation 
(W/m2) 

humidity response coefficient 
(Pa"1) 

maximum dew reservoir depth 
(mm) 

Soil parameters 
skin conductivity (W/m2K) 

averaging coefficient for soil 
surface relative humidity 

thermal conductivity top soil layer 
(W/mK) 

thermal conductivity other soil 
layers, i (W/mK) 

Retention curve coefficient 

saturated soil moisture (m 3 /m ) 

field capacity (m3 /m3) 

wilting point (m3 /m3) 

tortuosity 

saturated hydraulic pressure (m) 

saturated hydraulic conductivity 
(m/s) 

coefficients for o) 

Kref 

So 

wmax 

A 

'c 

XT1 

A.T, 

b 

«>sat 

% 
«w 
T 

Vsal 

Y»t 

requ 

4.60 

4.61 

4.20, 4.23, 
4.44,4.46 

4.14 

4.19 

4.9, 4.48, 
4.79 

4.9, 4.49, 
4.80 

4.10,4.12, 
4.13 

4.10, 4.12, 
4.13, 4.51, 
4.53, 4.84 

4.19, 4.28 

4.28 

4.52,4.82 

4.10,4.13 

4.12 

4.53 

100 

0.00025 

0.8 

-

1 

f(0),) 

f((0,) 

4.90 

0.472 

0.354 

0.075 

0.66 

-0.25 

3.41 10"5 

0.219 
4 

-Irej 4.51 1.8 

0.7 

0.0005 

4 10"* 

0.3 

0.5 

0.472 

0.29 

0.29 

0.98 

240 

0.19 
1128 
30.8 

0.8 ((LAI, oy) 

7 

1.6 

f(COj) 

f(CÛ;) 

4.90 

0.472 

0.354 

0.075 

-0.25 

3.41 10"5 
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5.2.1 Soil heat flux density 

Figure 5.2 gives the measured and simulated soil heat flux density for DOY 171 -175. 

As can be seen, the differences between the model predictions are very large. D78, using a 

force-restore method to compute the soil heat flux density, gives a very good agreement 

with observations. A small underestimation is present early in the comparison period. The 

relatively slow response of the deep soil temperature to surface forcings results in a clear 

phase shift of the soil heat flux density compared to net radiation (detailed in Figure 5.3), 

which is well simulated by D78. 

Also VB95 simulates a maximum soil heat flux density somewhat before local noon, 

albeit less pronounced than D78. The soil heat flux density is on average about 30% too small 

compared to the observations. This underestimation is not caused by a discrepancy between 

the observed substrate temperature and the simulated skin layer temperature (Figure 5.7). 

Obviously, the chosen value of the skin conductivity, A, plays a significant role in this 

aspect. 

173 174 
date 

176 

Figure 5.2: Soil heat flux density for all comparison days. * observations; D78; 
VB95; CM88 

The soil heat flux density predicted by CM88 is much too small compared to the 

observations, in spite of using measured values of the thermal conductivity in the two soil 

layers (see Table 5.2). The underestimation is almost a factor 10, and is too large to be related 

to the choice of the initial dry soil layer depth (zj). Taking z2 0.01 m rather than 0.40 m at the 

first time step increases the soil heat flux only by a few percent (figures not shown). Also, a 

phase shift with respect to the local noon is not simulated by CM88 (see Figure 5.3). Only by 

increasing the thermal conductivity to unlikely high values (exceeding 5 W/mK for the top 

soil layer) can the maximum of the simulated soil heat flux be matched to the maximum of 

the observed values, but not at the right time with respect to the local noon. The reason for 

the discrepancy between model and data is the absence of a heat capacity in the upper soil 

layer. The use of a resistance to regulate the heat flux in CM88 implies that no heat loss 

occurs in this layer. Hence, the soil heat flux will always respond immediately to the forcing 
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at the surface, and a phase shift will not be present in the calculations. 

As a result of the underestimation of the predicted soil heat flux density by CM88, a 

large part of the net radiation is available for XE and H, and causes a clear overestimation of 

these two terms. This overestimation is reflected in the plot of the simulated substrate 

temperature, shown in Figure 5.4, which is high compared to the radiometric observations 

of the bare soil temperature. 

Figure 5.3: Measured and simulated soil 
heat flux density for DOY 171; 
» observations; D78; VB95; 

CM88 

350 

176 

Figure 5.4: Measured (») and 
simulated (••••-) bare soil 
temperature. Only simulations by 
CM88 with computed soil heat flux 
densities are shown 

date 

The overestimation of the prediction of H and XE makes a comparison of the 

parameterization of e.g. the aerodynamic exchange by CM88 with other models impossible. 

With respect to this aerodynamic exchange a fair comparison between CM88 and D78 is 

particularly useful, since these models use different formulations for aerodynamic 

resistances in a similar resistance network (Figures 4.9 and 4.10). Therefore, in the following 

the computed soil heat flux computation in CM88 is replaced by values of G as computed by 

D78 which are very close to the observations (Figure 5.2). A comparison of H and A.E from 

CM88 and VB95 is somewhat biased by the difference of G computed by D78 and VB95, and 
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must be carried out with caution. The soil evaporation in CM88 is treated as before, using a 

resistance for water vapour transfer at the soil surface interface which increases as soil 

evaporation progresses. A model of this form is essentially comparable to the model 

presented by Shuttleworth and Gurney (1990), who adapted the original two-layer model of 

Shuttleworth and Wallace (1985) with the parameterization of the aerodynamic parameters 

according to CM88. 

5.2.2 Sensible heat exchange and surface temperature 

For the surface considered the aerodynamic exchange of heat between the surface 

and the reference level is dominated by the contribution of the bare soil component. This 

exchange can be separated in two segments for each model: a transfer above the canopy 

equivalent to momentum transfer, and an extra resistance to account for the difference 

between heat and momentum transport. In VB95 this difference is accounted for by taking 
z0m/z0h > 1' w hi l e in CM88 and D78 this extra resistance consists of ra

c and ra
s (see Figures 4.9 

and 4.10). 

Figure 5.5: Aerodynamic resistance 
within canopy for D78 and CM88, 
and excess resistance for VB95, as 
function of measured wind speed 
at reference level. Only simulation 
points are shown for which H > 0; 
• D78; O VB95; * CM88 

Ujfm/s) 

The aerodynamic resistance above the canopy, ra
a, is a function of the reference wind 

speed, the roughness length z0m and a stability correction. The estimation of z0m from LAI 

and h as applied in CM88 and D78 resulted in a value of 0.082 cm at DOY 171, slowly 

increasing to 0.095 cm at DOY 175, exceeding the observed roughness length by a factor two. 

The measured friction velocity, u», was overestimated by CM88 and D78, and reproduced 

very well by VB95 (figure not shown). The latter was to be expected from the adoption of 

measured values of z0m. The slightly different stability corrections in CM88 and D78 hardly 

resulted in different values of u, and rfl
fl. 

Figure 5.5 shows the values of the aerodynamic resistance between the soil and the 

canopy layer (ra
s, for D78 and CM88) and the excess resistance applicable for z0m/zoft = 200 

for VB95, for unstable conditions. A clear difference between CM88 and D78 is present in the 

values adopted for ra
s, CM88 giving a value roughly twice as high as D78. The CM88 

parameterization corresponds closely to the excess resistance adopted by VB95 for daytime 
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situations. The implications of the parameterization of ra
s and the excess resistance are 

demonstrated well by the relationship between the bare soil temperature and the total 

sensible heat flux density, since the sensible heat released by the canopy is only a small part 

of the total sensible heat exchange. CM88 and VB95 succeed very well in predicting both the 

total sensible heat flux density (Figure 5.6) and the bare soil temperature (Figure 5.7). D78 

underestimates the bare soil temperature by at most 7 K around noon, and overestimates the 

sensible heat flux density by up to 100 W/m 2 . A small part of this overestimation is 

associated with an enhanced net radiation due to lower surface temperatures. 

500 

Figure 5.6: Measured and 
simulated total sensible heat 
flux density; 
» observations; D78; 

VB95; CM88 

173 174 
date 

176 

The performance of VB95 is very good for both sensible heat flux and surface 

temperature, since values of z0m and zQh were obtained from field measurements. A small 

overestimation of the sensible heat flux density is present for the first simulation day. 

Obviously, the choice for the value of z0m/z0?J is an important parameter for a proper 

description of the sensible heat transfer between the surface and the atmosphere. An 

evaluation of z0m/zoh using measured soil and canopy temperatures reveals a clear variation 

as time proceeds, both diurnally and for the five consecutive days (Figure 2.13). A similar 

figure appeared by using the model of CM88 as outlined in eqs. 5.1 - 5.2 and 2.36. A clear 

increase during the day can be seen, which can be interpreted as a reduction of the effective 

level of the sensible heat source as the bare ground gets warmer. Taking z0m /zoh = 200 for 

the whole period appears a good estimate for all days except the first. 
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Figure 5.7: Measured and 
simulated bare soil temperature for 
CM88 and D78, and skin 
temperature for VB95; 
* observations; D78; 

VB95; CM88 
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5.2.3 Evaporation and soil water budget 

VB95 and D78 underestimate the total evaporation during the entire comparison 

period, while CM88 gives a small but consistent overestimation (Figure 5.8). The evaporated 

water originates almost entirely from the canopy in CM88, since soil evaporation is limited to 

low values by selecting a large top soil layer depth (Figure 5.9). Unlike CM88 and VB95, D78 

computes a significant soil evaporation in the early hours after sunrise. The strong diurnal 

variation of the moisture content in the top soil layer, C0j (Figure 5.10) causes the humidity at 

the soil surface to reach values which are higher than the humidity in the canopy layer, 

giving rise to pronounced soil evaporation. Once the top soil layer has lost enough water to 

for the relative humidity at the soil surface to drop below the canopy specific humidity, q0, 

soil evaporation suddenly ends. 

Due to the different vertical resolution of the numerical schemes used to describe the 

soil moisture content adopted by VB95 and D78, the dynamics of the top soil moisture 

content, (0j, differs significantly for both models. In D78 C0j is much lower than the moisture 

content in the bulk soil layer, while this difference is small in VB95 (Figure 5.10). As a result, 

diurnal variations of C0j are strongly damped in VB95. The calculated soil moisture content in 

the root zone decreases much stronger in VB95 than in D78, in spite of a similar canopy 

evaporation rate (see below). The stronger decrease in VB95 is a direct result of the 

simulation of water drainage to lower soil layers, not accounted for in D78. For longer term 

predictions these different approaches can lead to significant differences in predicted soil 

moisture content in the root zone. Unfortunately, the measurements of co were taken only 

once during the comparison period, and these values were used to initialize the model runs. 

Therefore, a detailed comparison between model runs and observations is not possible. 

The canopy evaporation rate is predicted rather differently by the various models. 

Since the crop resistance is usually approximately an order of magnitude larger than the 

other resistances in the pathway between the canopy and the reference level, the 

parameterization of rs
c is of critical importance for the prediction of the canopy evaporation. 

Figure 5.11 shows values of computed crop resistances, combined with porometry data. 
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Also shown are values of rs
c obtained from measured evaporation rates and leaf 

temperatures, by assuming zero soil evaporation and adopting parameterizations for ra
c and 

ra" according to CM88. The values of rs
c predicted by CM88, which are a function of incoming 

radiation only and calibrated using measurements, obviously agree best with both directly 

measured and inferred values. The formulations for soil moisture stress and response to air 

humidity adopted by VB95 and D78 result in higher values for rs
c. The crop resistance in 

VB95 is higher than in D78, partially owing to the different choices for the minimum crop 

resistance (Table 5.2). In spite of this difference, the canopy evaporation rates of the two 

models are similar (Figure 5.8). In VB95 the surface humidity is considerably higher than the 

humidity at the canopy surface in D78 during daytime, due to the uniform high skin layer 

temperature. 

Figure 5.8: Measured and 
simulated total latent heat flux 
density; * observations; D78; 

VB95; CM88 

176 
date 

Figure 5.9: Simulated soil 
evaporation; » observations; 

D78; - - - VB95; CM88 

173 174 
date 

176 

Another reason for the difference in canopy evaporation between D78 and CM88 is 

the difference in parameterization of net radiation absorbed by the vegetation (Figure 5.12). 
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The exponential extinction formulation adopted by CM88 gives higher values for the energy 

available to the canopy than the explicit solution of the separate soil and canopy energy 

balances as modelled by D78. Hence, a higher canopy evaporation rate will be predicted by 

CM88 when all other variables remain unchanged. 

0.16 

0.14 

Figure 5.10: Simulated soil 
moisture content by D78 ( ) 
and VB95 (•••••) at levels as indicated Ç °-1 2 
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Figure 5.11: Simulated and 
observed values of the canopy 
resistance, rs

c; Observations are 
carried out using porometry (») 
and inferred from measured total 
latent heat flux density (D); 

D78; = VB95; CM88 

173 174 
date 

176 

5.3 Discussion and conclusions 

A comparison of three schemes for describing the exchange of momentum, heat and 

water vapour at the atmosphere-surface interface for a sparse canopy surface shows a wide 

range of predicted results. In particular predicted values of soil heat flux density and surface 

evaporation vary widely. 
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Figure 5.12: Amount of net radiation absorbed by 
canopy layer parameterized by D78 and CM88; 

D78; CM88 

With respect to the soil heat flux density, the parameterization of D78 gives the best 

results compared with data. The simple resistance approach of CM88 underestimates the soil 

heat flux density by almost an order of magnitude, due to neglecting dynamic heat storage 

in the upper soil layer. A dynamic heat storage, AG, can be implemented in the model of 

CM88, while solving the temperatures at the surface and at the interface between the two soil 

layers, at depth Zj. The heat necessary to change the temperature of the upper soil layer 

could be considered simply by assuming that the temperature of the top soil layer changes 

uniformly with depth during the simulation time step. This approach is similar to the 

computation of the heat storage in a well-mixed water reservoir (see Keijman, 1974). 

However, the effect of AG on the total soil heat flux density strongly depends on the choice 

for Zj, since the well-mixed criterion is used. In a real soil this criterion is never met, and a 

good estimate of G will only be achieved by a smart choice for Zj, without the possibility for 

providing a universal solution. 

VB95 also underestimates soil heat flux density, by approximately 30%. Much of this 

underestimation is due to the choice of the value for the apparent heat conductivity of the 

skin layer, A. For a dense canopy, the presence of the vegetation will thermally isolate the 

soil from the atmosphere, and A may be expected to be small. For a sparse canopy, however, 

this temperature difference can be regarded as proportional to the soil temperature gradient 

immediately below the surface. Obviously, a value of A could be chosen corresponding to 

the soil type under investigation which would give a better prediction of G. A value of 17 

rather than 7 W/m2K would be a more appropriate estimate for A in the current situation 

(section 4.1.3). 

In all tested models the surface temperature plays a key role, since it regulates 

important processes such as soil heat flux, sensible and latent heat flux, and net radiation. 

CM88 predicts high sensible heat fluxes in the original form, since surface temperatures are 

strongly overestimated when too little heat is transported into the soil. However, when the 

soil heat flux density was forced to values simulated by D78, their parameterization of the 

aerodynamic exchange within the canopy (using the resistance labelled ra
s) appeared to give 

better results of the surface temperature than the formulation used by D78. In CM88, the total 

exchange resistance for heat between the bare soil and the reference level resembles the 

value included in VB95, which was based on field measurements of roughness length, 

surface temperature and sensible heat flux. D78 prescribes a value of ra
s which is about half 
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as high as CM88, and consequently underestimates the bare soil temperature. Note that r s as 

parameterized according to eq. 4.58 depends on the choice of zR, taken 2.95 m here. 

The parameterization of aerodynamic transfer of heat is especially important for a 

sparse canopy like the vineyard under investigation, where during daytime high sensible 

heat fluxes from the bare ground component occurred. The heat transfer is dominated by 

the soil component, but it is governed by many meteorological parameters in the 

partitioning of available energy between the soil and the vegetation. From the current 

exercise it can be seen that when the aerodynamic transfer between the atmosphere and a 

sparsely vegetated surface is treated as an excess resistance for heat, its value cannot be 

expected to be constant, as was discussed earlier by Kustas et al. (1989), Verhoef (1995) and 

Blyth and Dolman (1995). However, for the limited simulation period investigated in this 

study a constant value of z0m/zoh = 200 as applied in VB95 yields satisfactory results with 

respect to both surface temperature and sensible heat flux density. 

The crop resistance for evaporation is best described by CM88, where a calibrated 

function of incoming radiation was used to describe rs
c. The dependence of rf on soil 

moisture content cannot be expected to be realistically described by either D78 or VB95, 

which assume a much smaller root zone than found in our field. Also the response of 

stomatal aperture to ambient humidity deficit is not fully resolved, and is an issue of 

discussion. Under dry and warm conditions several plant species seem to develop a specific 

survival mechanism, and respond differently to air humidity than plants from which the 

expression of Noilhan and Planton (1989) was obtained (Monteith, 1995b). 

The partition of radiant energy over the vegetation and the underlying substrate is 

solved differently by CM88 (adopting radiant extinction) and D78 (solving separate energy 

balances for the two surface components). The extinction parameterization was originally 

developed for closed canopies, and is expected to deviate significantly from real radiative 

interception for a vegetation stand with widely separated plants. On the other hand, 

drawing up separate radiation balances does not take all edge effects into account. Which of 

the parameterizations is to be preferred can only be supported by detailed measurements 

and modelling efforts, and will most likely be different for each type of vegetation. 

For large scale applications a land surface scheme necessarily needs to describe 

accurately a wide range of land surface types, covering the full transition from densely 

vegetated to completely bare. From the current study, a general conclusion can be made that 

for a rather sparsely vegetated surface none of the three models compared can be regarded 

to be the 'ideal' land surface scheme. Each of the schemes involved in this test has some 

superior qualities compared to the others, but also shows significant deficiencies when 

applied to a very sparse canopy. For the surface for which this comparison was run, a 

combination of parts from each of the models will likely give optimal results. Following the 

conclusions above such a combined model would consist of a soil heat flux parameterization 

using the force restore method, an aerodynamic exchange process simulated using the 

resistance formulation of CM88, and a canopy resistance parameterization that realistically 

accounts for stomatal responses to soil moisture content and air humidity. Such a model will 

be used as a reference in the next chapter, and will be outlined in more detail. 
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6 Nature is alzvays numerically stable 

Sensitivity of the planetary 
boundary layer to surface 
description 

This chapter describes the influence of the description of the surface on the planetary 

boundary layer. The issue of atmospheric sensitivity to the description of land surface 

processes is not new (see, e.g., Garratt, 1993). Detailed studies were carried out previously 

addressing PBL-sensitivity to surface albedo, roughness, crop resistance or soil moisture 

content (Troen and Mahrt, 1986; McNaughton and Spriggs, 1986; Jacobs and de Bruin, 1992). 

In these studies the value of one or more of the surface parameters was varied, and the 

resulting range of predicted atmospheric variables was evaluated. Similar exercises were 

carried out with land-surface parameterization schemes providing the lower boundary 

conditions in GCM's (a list of these is included in the introduction section of this thesis). 

By coupling land-surface models to larger scale atmospheric models, these studies 

included the effect of atmospheric feedback, as outlined in chapter 1. Their focus was to 

evaluate the sensitivity of the atmosphere to land-surface characteristics. They did so by 

adopting rather extreme ranges of surface parameters, considered to describe the largest 

possible atmospheric sensitivity to surface parameterization. For instance, the sensitivity 

study of Charney et al. (1977) investigates the effect of changing the albedo for some areas 

from 0.14 to 0.35. Jacobs and De Bruin (1992) and Sato et al. (1989) investigated the effect of 

describing the surface evaporation by means of a (simple) biophysical model, instead of 

using a simple bucket scheme. 

The current study focuses on the response of the PBL to the physical parameterization 

of the fluxes between the atmosphere and a specified surface, a sparse Mediterranean 

canopy. The parameterization of surface fluxes from such a surface type has made 

significant progress in the recent past. The main question that arises is the degree of 

sophistication that needs to be included in the surface schemes, in order to obtain a realistic 

description of the PBL dynamics. An optimum choice must be made between numerical 

simplicity on one hand, and physical correctness on the other. 
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The current study focuses on the manner of describing the surface processes 

themselves, rather than changing values of specific surface parameters. The PBL-sensitivity 

to different physical parameterizations of various surface processes is investigated, rather 

than the effect of varying the surface coefficients. All included physical parameterizations 

are designed to give a description of the surface exchange processes as realistic as possible, 

using known characteristics of a specified surface. The parameterizations differ in 

complexity or in theoretical foundation. 

The strategy adopted here makes use of a coupled one-dimensional surface-PBL 

model. Using the zero-dimensional comparison study, reported in the previous chapter, a 

reference SVAT scheme is chosen. Next, the description of various components of this 

reference SVAT are replaced with alternative parameterizations, and the effect of this 

replacement on the computed state of the overlying PBL is the subject of analysis. 

This strategy differs in two aspects from the zero-dimensional comparison study 

presented in the previous section: 

(1) instead of using atmospheric forcings measured at reference height, a coupled SVAT-PBL 

model is used here. This allows description of the atmosphere-surface feedbacks, 

which will affect the PBL-sensitivity to the surface description 

(2) a reference model is defined, and components of this model are exchanged. In the 

previous section complete models were compared which differed from each other in 

many aspects. By changing single surface model components only, an attempt is 

made to disentangle the complex coupled processes simulated simultaneously in a 

full surface scheme. 

Obviously, the results of this approach will partly depend on the choice of reference 

model, on the simulated surface, and on the calibration of the various SVAT components. The 

coupling between various surface processes (for instance, the effect of soil heat flux on 

surface temperature and consequently on soil evaporation) will be different for different 

types of surfaces or different ways of representing surface processes. However, the 

complexity of the process interactions makes a reduction of the total number of degrees of 

freedom inevitable, and emphasis is put on a single sparse canopy surface. In order to 

maintain a certain degree of generality of the sensitivity study, a number of the prescribed 

surface parameters were varied in some cases. 

The sensitivity study is carried out for two sets of forcings and initializations: a 

synthetic set and a measured set. The synthetic dataset includes two initial PBL-profiles, 

chosen to represent climate zones in which sparse canopies are often found: a dry Tropical 

profile (DRY) and a more humid Mid Latitude Summer profile (MLS). DRY is considered to 

represent Mediterranean conditions in the dry growing season. MLS is included to represent 

conditions which may be considered typical for agricultural crops with incomplete 

vegetation cover, early in the summer. 

The measured set of initial profiles and forcings is obtained from measurements 

taken during the EFEDA-I campaign in June 1991. This set of model calculations is included 

in order to evaluate the ability of the coupled SVAT-PBL model to describe actually measured 

data, and to evaluate the sensitivity of this description to the surface parameterization. It 

also adds to the sensitivity study by adopting initial profiles showing a pronounced 
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presence of a residual layer, which often occured during EFEDA. The initial profiles are 

obtained from a radiosounding carried out by CNRM, and the geostrophic and radiative 

forcing are taken from measured quantities. A control run with measured surface fluxes is 

included to provide insight in the skill of the uncoupled PBL-scheme for the present case. 

An 'honest' intercomparison of parameterizations can only be carried out when the 

various schemes are calibrated to describe a similar surface. Due to the different theoretical 

backgrounds of the included schemes, this is not always straightforward. In all cases the 

surface schemes were calibrated using data described in earlier sections. 

First a summary of the reference model and variations thereupon will be presented 

in section 6.1. Also the calibration of the model components is outlined. Then the setup of 

the sensitivity analysis using the artificial input is discussed (section 6.2). The results of this 

analysis are presented separately for daytime (convective) conditions (section 6.3) and 

nighttime (stable) conditions (section 6.4). The results-sections are followed by a model 

comparison applied using measured data. For this last analysis a selection of an adequate 

comparison period had to be made. This selection and the data used are presented in section 

6.5. Section 6.6 concludes this sensitivity chapter. 

Model specification 

The scientific backgrounds of the surface model components were discussed before 

(section 4.1). Here, a brief summary is given. In most cases the calibration of the models is 

similar as in the previous chapter (Table 5.2). Where appropriate, additional commentary is 

given. The numerical schemes used to solve the coupled models are discussed in 

Appendix V. 

6.1.1 The reference model 

The sensitivity of the PBL to the surface paramaterization is basically a sensitivity to 

simulated surface flux densities. Therefore, an appropriate selection criterion for a 

parameterized lower boundary condition is to select a SVAT describing the observed fluxes 

optimally. In the conclusions of the previous chapter it was suggested that, using measured 

forcings, the surface fluxes were optimally simulated by the Deardorff model, where 

aerodynamic resistances were parameterized according to Choudhury and Monteith (1988), 

and a realistic crop resistance was included. Verhoef (1995) tested a SVAT of this kind for a 

Sahelian savanna and tigerbush surface. The reference model consists of the following parts 

(see Table 6.1 for a summary): 

• surface components: two surface components are distinguished: the canopy elements 

and the underlying soil. A relative fraction of surface covered with vegetation is used 

for calculating energy fluxes of each of these components. Each component is 

allowed to obtain its own temperature and surface humidity. 

• soil temperature: the force-restore method (eq. 4.47) is used to describe the soil surface 

temperature Ts. Basic parameters determining the temperature change of the top soil 

layer are the specific heat of the soil, the temperature of the lowest layer (assumed to 

vary according to an annual wave) and the soil heat flux density. 

• net radiation: shortwave and longwave incoming radiation are specified. Net- i 
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radiation for each surface component is obtained by using its temperature to specify 

emitted longwave radiation. Albedo and longwave emissivity are specified 

coefficients. In contrast to the simulations in chapter 5, the longwave emissivity of 

the plants was taken to be 0.90 rather than 0.98. 

• surface fluxes: canopy evaporation is calculated by defining a fraction of the potential 

evaporation using the ratio of leaf stomatal and leaf boundary layer resistances. Soil 

evaporation is parameterized by specifying a relative humidity of the soil surface, as 

function of the soil moisture content of the top soil layer. Soil heat flux is the 

remainder of the energy balance at the soil. 

• aerodynamic exchange: the aerodynamic resistances are calculated following 

Choudhury and Monteith (1988). The resistance above the canopy is similar for 

momentum and heat. Bulk boundary layer and within-canopy aerodynamic 

resistance are functions of leaf area index, roughness length of the soil, and surface 

roughness and displacement height. Measured values of z ^ and d were used instead 

of the canopy roughness characteristics calculated by Shaw and Pereira (1982). 

• soil moisture: as for temperature, a two layer force-restore method is used. Soil 

hydraulic properties are described as proposed by Clapp and Homberger (1978). 

• canopy resistance: a simple scheme proposed by Choudhury and Monteith (1988) is 

used, which describes rs
c as function of LAI and total shortwave radiation only. The 

response of rs
c to shortwave radiation is calibrated using field data. 

6.1.2 Model variations 
• The case 'big-leaf' 

In the case 'big-leaf' the two-component surface source is replaced by a single 'big-

leaf' approach, in which the surface consists of a single source with uniform temperature. 

The energy balance of the surface is solved with the incoming radiation terms specified. As 

in the reference case the force restore-method is used to describe G, but this time the soil 

heat flux is evaluated from a known value of the surface temperature, rather than the other 

way round (eq. 4.8). The same lower boundary conditions in the soil apply as in the 

reference case. An excess resistance for scalars is used, by taking z0m /zoh = 200. The surface 

longwave emissivity was fixed at 0.98. 

• The case 'isotherm' 

In the case 'isotherm' the surface source consists of a single layer with a uniform 

temperature, as in the big-leaf approach. However, various fractions are discerned with 

respect to the evaporation rate: a skin reservoir with open water (filled with dew and 

intercepted water), an evaporating plant canopy and an evaporating bare soil. The surface 

description in this case resembles the treatment employed in the ECMWF-surface scheme 

(Viterbo and Beljaars, 1995) and the model of Noilhan and Planton (1989). Net radiation, 

sensible and soil heat flux density, and an excess resistance used to discern between 

momentum and scalar transfer, are treated as in the case 'big leaf'. 

• The case '3 fracs' 
The case '3 fracs' was included as to evaluate the effect of the temperature 
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Table 6.1: Variations of the surface model 

Variation 
code 

reference 

big leaf 

isotherm 

3 fracs 

aero D78 

aero MH95 

r c C 0 2 

rc VB95 

rc fix 

rc big C 0 2 

soil VB95 

soil r* 

soil CM88 

sources at 
surface 

canopy and 
soil 

big-leaf 

VB95 

VB95 (non 
isothermal) 

big-leaf 

CM88 

partition of 
radiation 

D78 

-

-

-

SW85 
(modified 
ext.coeff.) 

aerodynamic 
exchange 

CM88 

excess 
resistance 

excess 
resistance 

excess 
resistance 

D78 

MH95 

Louis (1979) 

crop 
resistance 

CM88 
(calibrated) 

assimilation 

VB95 

fixed 

assimilation 

soil heat 
and water 
fluxes 

force-restore 

VB95 

XES using 

CM88 

remarks 

d(û/dt and 
dT/dt from 
force-restore 

Q. from 
reference, no 
iteration for 
r.' 

differentiation in the VB95 model in a coupled mode (see section 4.1.3). The surface energy 

balance is computed separately for each surface fraction (open water, canopy and bare 

ground), and the final fluxes of XE, H, Q» and G as well as the temperature of the upper soil 

layer and the aerodynamic resistances are computed by averaging the resulting quantities 

weighted by the appropriate surface fractions (eq. 4.18). 

• The case 'aero D78' 
The aerodynamic resistance within the canopy, computed assuming an exponential 

decay of the eddy-diffusivity, is replaced by a simple drag partition scheme proposed by 

Deardorff (1978) in the case 'aero D78'. An effective canopy wind is obtained by 

interpolation between the reference wind and «», and an iterative stability correction is 

applied. For consistency with results reported in section 5.2.2, in the coupled surface layer-

PBL models ra
s is evaluated using eq. 4.58, in which ua and CH are evaluated at a height of 2 

m above the canopy top (that is, at 3 m for the EFEDA sparse vineyard canopy). Also the leaf 

boundary resistance is treated simpler than in the reference model, by not taking wind 

speed gradients within the canopy into account. 
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• The case 'aero MH95' 

In the case 'aero MH95' the aerodynamic resistances both within and above the 

canopy defined by Choudhury and Monteith are replaced by the resistances proposed by 

McNaughton and Van den Hurk (1995), which are based on Lagrangian principles (see 

section 3.2.3). The values are chosen to represent a uniform source profile (Beta-distribution 

with p = q = 1), the value of cw/ut at z = 0 equal to 0.15, and the wind profile extinction 

coefficient au equal to 3 (see Tables 3.2 and 3.3). For the normalized near-field resistor 5Rn the 

suggested value of 0.36 was applied. Note that the value of the normalized aerodynamic 

resistance above the canopy corresponds to a reference height of 2h. The resistance was 

extrapolated to the reference level zR according to 

^(zR) ^%l(2h)+ I In 
\ J 

(6.1) 

Actual resistances were obtained by dividing the normalized values by u,. Values of u, were 

obtained from ua by using the Dyer-Hicks stability corrections for the pathway between zR 

and 2h (see Appendix V). 

• The case 'rc C 0 2 ' 

The case 'rc C 0 2 ' replaces the parameterization of the crop resistance by the 

assimilation routine of Jacobs (1994), scaled up to the canopy level (section 3.4). 

• The case 'rc VB95' 

In the case 'rc VB95' the crop resistance is described by the multiregression model of 

Viterbo and Beljaars (1995). In this model, the crop resistance is only affected by the 

shortwave radiation and soil moisture (see eqs. 4.26 - 4.28). No dependence on ambient 

humidity deficit is included. The calibration is carried out according to the suggestions 

made by VB95. For öä the value of K>2
 ls used. 

• The case 'rc fix' 

In the case 'r fix' the crop resistance is replaced by a fixed value, independent of any 

meteorological condition. This value is obtained using a weighted average of a diurnal cycle 

of values of /•ƒ simulated in the reference model. 

• The case 'rc big C0 2 ' 

As in the case 'rc C0 2 ' the assimilation routine of Jacobs (1994) and discussed in 

section 3.4 is used to describe the surface resistance, but this time the surface model is 

replaced by the big-leaf scheme (case "big-leaf). This case is included to demonstrate the 

effect of a surface resistance with a strong response to environmental conditions. 

• The case 'soil VB95' 

The 'soil VB95' case is dedicated to the exploration of the effect of replacing the force-

restore method in the reference case by the 4-layer soil model as used in the ECMWF-surface 

model (VB95). In this approach the variation of the soil temperature and soil moisture 
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content are solved for four layers, using a numerical solution of a set of diffusion equations. 

Thermal and hydraulic conductivity depend on soil type and moisture content, and are 

parameterized with similar relations as in the reference model. The soil heat flux and soil 

evaporation forcing the temperature and moisture changes are treated as in the reference 

model. A zero heat flux and free water drainage are imposed as lower boundary conditions, 

and the total simulation depth is taken equal to the original ECMWF land surface scheme, 

that is, 2.89 m (see Table 6.7). In the VB95 model, the surface temperature forcing of the soil 

volume is situated in a skin layer without heat capacity (section 4.1.2). For large soil heat 

fluxes, a considerable temperature difference may occur between this skin layer and the 

centre of the upper slab, at depth 3.5 cm. In order to employ a proper coupling between the 

surface energy balance and the soil heat flux here, a very thin slab (1 mm) is added on top of 

the diffusion scheme. The temperature of this slab is considered to be equal to the skin 

temperature, from which net radiation and sensible heat flux are calculated. The soil 

moisture transport is simulated with the original 4-layer diffusion scheme, and the thermal 

soil properties of the upper thin layer are evaluated using the soil moisture content of the 

upper slab of 7 cm depth. Water extracted by vegetation is taken from the upper three layers 

only. As in the reference model, soil surface relative humidity is calculated by using eq. 4.19 

but with the layer coefficient lc set to 1.6, as suggested by VB95. 

• The case 'soil rs
s' 

The case 'soil rs
s' represents an alternative description of soil evaporation. The 

relative humidity at the soil surface is calculated according to the formulation of Philip 

(1957, eq. 4.83). The marrie potential \|/ is obtained from the soil moisture content in the top 

layer, using the Clapp and Hornberger (1978) parameterization, given by 

¥ j = V, sat a>MJ 

(6.2) 

A soil evaporation resistance, rs
s, is included in the pathway of water vapour from the 

surface to the canopy airstream. We used a fixed value of 2000 s/m, as suggested by 

Shuttleworth and Wallace (1985) for dry soils. This value is close to the high-end of the 

range span by the clear diurnal course reported by Van de Griend and Owe (1994), who 

measured r$
s of the EFEDA test site using a respiration chamber. Soil moisture transport is 

treated similarly as in the reference case, that is, using a force-restore method. 

• The case 'soil CM88' 

In the case 'soil CM88' the soil heat flux is computed using the scheme of Choudhury 

and Monteith (1988), that is, using a heat exchange resistance and a temperature difference 

between the surface and an intermediate level under the surface. Also soil evaporation is 

treated using a resistance formulation, as by CM88. The change of the deep soil temperature 

is calculated as in the reference model. Also the soil moisture content of the two layers are 

computed using the force-restore algorithm, in spite of the CM88-assumption that the lowest 

soil layer is water-saturated. The depth of the upper soil layer is initialized at 0.1 m, and 

changes as soil evaporation proceeds. 
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In CM88, the computation of the soil heat flux density and soil evaporation are 

imbedded in a rather complicated set of equations. These equations solve the temperature 

and humidity at the bare soil surface, the canopy surface, the airstream within the canopy 

and at the layer intersection within the soil, as well as the fluxes of water vapour and heat in 

between these levels (see section 4.1.5). For the 'soil CM88' case the entire CM88 algorithm 

replaces the D78 surface model. As discussed before (section 4.1.5), the two-layer canopy 

models based on the Penman-Monteith concept suffer from numerical instability when 

stability corrections are incorporated or when net radiation and soil heat flux are 

parameterized as function of the canopy or soil temperature. Therefore, net radiation is 

taken from the reference simulations. Its partition over soil and canopy is computed by 

using the exponential extinction (eq. 4.65), with an extinction coeffient ßr set to 0.45. This 

value results in a partition nearly similar to the reference model. The parameterization of the 

aerodynamic resistance above the surface is carried out using the non-iterative scheme of 

Louis (1979), in order to minimize numerical stability problems. In this way a steady state 

solution of the surface energy balance is obtained, which is a consequence of replacing the 

force-restore method by the CM88 strategy. The flux densities above the ground are affected 

by the alternative prediction of the surface temperature, but their computation follows 

practically the same physical treatment as in the reference model. 

Table 6.2: Configuration of comparison groups. Also given are code letters and numbers for the surface models 
and surface types, respectively, for later reference 

group surface models model surface types surface 
code code 

surface reference a sparse vineyard canopy 1 
representation case 'big-leaf' b sparse vineyard canopy oy = 0.4 2 

case 'isotherm' c sparse vineyard canopy Cy = 0.7 3 
case '3 fracs' d sparse vineyard canopy o, = 1.0 4 

soil heat and water reference a sparse vineyard canopy on sandy loam 1 
flux case 'soil VB95' 1 sparse vineyard canopy on sandy clay 5 

case 'soil CM88' m 
case 'soil r s n 

aerodynamic reference a sparse vineyard canopy 1 
exchange case 'aero D78' e tigerbush 6 

case 'aero MH95' g forest 7 

canopy resistance reference a sparse vineyard canopy 1 
case 'r C02 ' h 
case 'rc VB95' i 
case 'r fix' j 
case 'rr big CQ2' k 

6.2 Set-up of the sensitivity analysis 

6.2.1 Basic strategy 

Many of the surface processes show complex interactions. An investigation of all 

possible combinations of selected model variations, initializations and surface land types 

may seem appropriate since it will include all these interactions, but in practice is not useful 

due to the large amount of quantities that must then be evaluated. Therefore, a set of four 
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relevant groups of parameterizations were defined, and separately discussed: a source 

representation group, a soil heat and water flux group, an aerodynamic exchange group, and a 

canopy resistance group. Each of these groups contains a number of model combinations and 

land surface types. A 36 hour run with a coupled surface-PBL model is carried out for each of 

the relevant surface types using a prescribed radiative forcing. Two different initial PBL-

profiles are taken for each of the runs. First the four different groups containing the model 

combinations and land surface types will be briefly discussed. Table 6.2 summarizes the 

layout of the various groups. The next sections pay attention to the definition of the 

evaluated SL- and PBL-parameters, and to the forcing and initial profiles adopted in the 

simulation runs. 

The source representation group is designed to evaluate the importance of recognizing 

separate sources of heat and water vapour in case of a sparse canopy surface. For that 

purpose, four different surface model combinations are included: the reference model, and 

the cases 'big-leaf', 'isotherm' and '3 fracs'. The surface is parameterized as a sparse 

vineyard canopy as encountered during the EFEDA experiment. Parameter values for this 

default surface are found in Table 6.3. Furthermore, a range of degrees of vegetation 

coverage is allowed, ranging from 0.11 (the default value) to 1.0. 

Table 6.3: Default parameter values for sparse vineyard canopy. Only listed are the parameters which are changed 
in the sensitivity analysis. Remaining surface parameter values can be found in Table 5.2. 

parameter 

Leaf Area Index per unit plant surface 

roughness length momentum 

roughness length scalars (for one-layer 

cases) 

displacement height 

crop height 

fraction vegetation cover 

soil type 

reference 

symbol 

LAI, 

z0m 

z0h 

d 

h 

°f 

vineyard 

3 m2/m2 

0.04 m 

2om/200 m 

0.45 m 

l m 

0.11 

this study 

value 

tigerbush 

3 m2/m2 

0.44 m 

W 2 0 0 

2.00 m 

4 m 

0.33 

forest 

3 m2/m2 

0.40 m 

W 2 0 0 

5.10 m 

8m 

0.25 

sandy loam (see Table 6.4) 

Dolman et al., 
1992 

Garratt, 1978 

The soi'/ heat and water flux group pays attention to the effect of various parameteri

zations of soil heat flux and soil evaporation. Again four different model combinations are 

included: the reference model and the cases 'soil VB95', 'soil CM88' and 'soil rs
s'. The inter-

comparison is carried out for a sparse vineyard canopy on two different types of soil: the 

default sandy loam, and a denser sandy clay soil. Parameter values of these soil types can be 

found in Table 6.4. 

The aerodynamic exchange group investigates the different parameterizations of the 

aerodynamic resistances in the two-component model. Three different cases are compared 

here: the reference model, and the cases 'aero D78' and 'aero MH95'. The sensitivity analysis 

is carried out for three different vegetation types: the default sparse vineyard canopy, a 
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Table 6.4: Soil parameters for different soil 

soil type 

sandy loam 

sandy clay 

Vsat 
(m) 

-0.25 

-0.15 

b a 

4.9 0.219 

10.4 0.139 

P 

4 

8 

types 

C2ref 

1.8 

0.3 

"•sat 
(m/s) 

3.41 10'5 

2.15 10'6 

°>sat 
(nrVm3) 

0.472 

0.426 

(m3 /m3) 

0.075 

0.075 

ay, ( - a>c) 
(m3 /m3) 

0.354 

0.320 

sparse tigerbush vegetation in semi-arid areas (Dolman et al., 1992) and a moderately dense 

forest canopy (Garratt, 1978). Aerodynamic parameter values for these surface types can be 

found in Table 6.3. 

The canopy resistance group explores different canopy resistance models with varying 

complexity. In this group five different canopy resistance parameterizations are included. 

The reference model includes a dependence of rs
c on LAI and shortwave radiation only (the 

calibrated simple formulation of CM88). The case 'rc VB95' adopts also a dependence on soil 

moisture content. 'rc C 0 2 ' and 'rc big C0 2 ' are treated using the photosynthesis model, and 

include dependences on ambient humidity deficit, radiation and leaf temperature. The last 

case, 'rc fix' excludes any dependence by treating rf as a fixed parameter. The practical 

formulation of the canopy resistance is usually carried out by using an extensive species 

specific calibration. Many species could be investigated and included in the surface 

description. However, to serve simplicity and comparability with other parts of this study 

the work is confined to the default sparse vineyard canopy. For the two photosynthesis 

models (cases 'r C 0 2 ' and 'r big C02 ' ) the calibration coefficients as found by Jacobs (1994) 

were adopted (see section 3.4). Table 6.5 lists the relevant coefficient values for the resistance 

models. 

6.2.2 Specification of considered SL- and PBL-parameters 
The coupled SVAT-PBL model used for this study was designed to describe diurnal 

variations of energy and momentum fluxes. As a result, the PBL-temperature, humidity 

content and height vary with time. 

In order to quantify the PBL-sensitivity to the surface parameterization a set of 

relevant parameters must be specified which allows an objective intercomparison of the 

various model components. Furthermore, we are interested in differences between the 

effects of various model components on these parameters, compared to a specified reference 

set of model components. Therefore, a sensitivity of parameter x to the surface 

parameterization is defined as 

_*K)-*K) (63) 
x x(mr) 

where x(m^ is the PBL-parameter computed with model variation m(-, and mr is the reference 

model variation. For the parameters indicating a temperature or specific humidity a 

sensitivity as expressed by eq. 6.3 is not very meaningful, and these are expressed as an 

absolute difference with the value computed by the reference model. For an evaluation of 

absolute values of x(m^, Appendix VI lists the values of x calculated with the reference model. 
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Table 6.5: Coefficient values for the various canopy resistance models 

model 

reference (CM88) 

photosynthesis 

(cases 'rc C02 ' 
\ big C02') 

'rc VB95' 

'rr fix' 

model 

and 

coefficient 

cuticular conductance 

change of conductance per unit 
shortwave radiation 

radiation extinction coefficient 

maximum humidity deficit 

slope of Cj/Cs with changing humidity 
deficit 

maximum Ct/Cs 

plant type 

minimum stomatal resistance 

maximum stomatal resistance 

shortwave radiation coefficients 

fixed value of stomatal resistance 

symbol 

Scut 

Si 

ßr 

max 

So 

ƒ 

C3 

s,min 

r s,max 

"2 

"3 

'« 

value 

0.0005 m/s 

4 10'6 m/s / W/m2 

0.7 

58.2 g/kg 

0.916 

0.85 

240 s/m 

5000 s/m 

0.19 
1128 W/m2 

30.8 W/m2 

500 s/m 

Values of physiological parameters for C3 plants can be found in section 3.4 and Appendix IV 

The choice of the relevant parameters must reflect the basic physical characteristics of 

the surface-PBL system. For daytime conditions the selected parameters are the surface 

energy balance components (Q», H, XE and G) and amounts of entrained sensible and latent 

heat during daytime, the mixed layer temperature, -specific humidity, -wind speed and 

-height, and the change of the total soil moisture content in the soil simulation volume. In 

order to avoid a tedious and unorganized intercomparison some data reduction is desirable. 

Energy balance parameters as well as entrained heat fluxes are averaged to daytime (6 -18 

GMT) and nighttime (18 - 6 GMT) values. Parameters describing the state of the PBL and the 

change of the bulk soil moisture content are evaluated at fixed simulation time intervals. 

Since the fluxes of sensible and latent heat were very small during the nighttime 

simulations, a relative difference of these quantities is not very meaningful. Instead, for 

discussion of the nighttime simulations we selected the minimum temperature at reference 

height as a characteristic parameter, which is strongly associated with the nighttime cooling 

due to forced convection and the initial temperature profile when the night begins. The 

associated parameters that are presented are the specific humidity at the same reference 

level, and the PBL-height, all at the same time where the minimum reference temperature 

was recorded (around sunrise). Table 6.6 summarizes the chosen parameters. 

6.2.3 Radiative forcings and initial profiles 
The simulations all started at 4 GMT for a hypothetical DOY 174, and were executed 

for 36 hours with a time step At of 3 minutes. The shortwave radiative forcing was expressed 

as a function of zenith angle Ç using the semi-empirical turbidity formulation (Holtslag and 

Van Ulden, 1983) 
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K* = 1041 cosÇ - 69 (6.4) 

The incoming longwave radiation is parameterized using the formulation of Brutsaert 

(1982): 

ll = *a°t - !'24 
(P V/7 

J", \ J 

o f (6.5) 

with ea expressed in hPa and Ta in Kelvin. In these synthetic cases the radiative forcing (both 

shortwave and longwave) were parameterized assuming the absence of clouds. 

Table 6.6: Basic PBL-surface parameters included in the sensitivity analysis 

Parameter 

daytime net radiation 

daytime sensible heat flux 

daytime latent heat flux 

daytime soil heat flux 

daytime entrained sensible 
heat flux 

daytime entrained latent 
heat flux 

boundary layer height at 6 
hours intervals 

symbol 

Q.D 

HD 

XED 

GD 

HP 

XEt
D 

V 

defined as 

average Q, between t = 6 GMT and t = 18 GMT (day 174) 

asQ.D 

asQ,D 

asQ.D 

asQ.D 

asQ,D 

z, at f = 12, 18 GMT (day 174) and ( = 6 GMT (day 175) 

soil moisture change 
compared to 6 GMT, day 174 

PBL-potential virtual 
temperature at 6 hours 
intervals 

PBL-specific humidity at 6 
hours intervals 

minimum nighttime 
reference temperature 

minimum nighttime 
reference specific humidity 

D [ I cOjfO - 1 (0,(0)] for t = 18 GMT (day 174 and 175) * 

average 6„(t, z) between 0.1 zi and 0.9 z,, for t = 18 GMT (day 174) 

a s e B ' 

minimum value of 80(zR) between t = 0 and 6 GMT, day 175 

q(zR) at the same time as 8„mm 

D is the depth of the lowest soil moisture layer in the model's soil simulation volume 

The first of the two artificial initial PBL profiles, labeled Mid Latitude Summer (MLS), 

was taken from Ellingson et al. (1991), both for Qv and q. They used and listed standard 

atmospheric profiles derived by McClatchey et al. (1971) to intercompare longwave radiation 

codes in climate models. The second profile, labeled DRY, was inspired on the EFEDA-I 

radiosoundings of CNRM. The 60-profiles measured early in the season very much resembled 

the so-called Tropical profile presented by Ellingson et al. (1991), shown in Figure 6.1. 

However, as an example of (^-profiles observed later during the campaign, the profile of 23 

June (DOY 174) 1991, 4:10 GMT is also shown in Figure 6.1. A clear residual layer is present in 
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the profile of Qv. The exact shape of this profile was shown to have many appearances in the 

later EFEDA-season. For reasons of representativeness, the Tropical G^-profile was chosen for 

the DRY profile. However, the associated humidity profile, shown by the dashed curve in the 

right panel of Figure 6.1, was very humid compared to the conditions encountered during 

EFEDA. Therefore, for the DRY humidity profile a 'representative' artificial humidity profile, 

based on several observed humidity profiles taken during the entire EFEDA season, was 

drawn by eye. The typical shape of this artificial profile is clearly present in the observations 

of 23 June, shown also. 

For the calculations, only profile levels below z = 5 km were considered, and the 

vertical resolution of the model was nearly corresponding to the resolution of the 

observations taken during EFEDA. A small number of data points were omitted, and a total 

number of 82 model levels was left, the lowest being at zR = 25 m. The grid box size 

increased further from 25 m in the lowest part of the model to 85 m near the top. 

In all cases the air pressure at the surface was kept at standard pressure (1013.5 hPa). 

The geostrophic forcing was provided by assuming a constant geostrophic wind of 5 m / s . 

The horizontal wind speed was kept at a constant (geostrophic) value for z > 1000 m, and 

was extrapolated to the surface according to a neutral logarithmic profile. Also an initial 

profile of the C 0 2 concentration was specified, affected by the cases where an active source 

or sink of C 0 2 was modelled, that is, in the cases 'rc C0 2 ' and 'rc big C0 2 ' . An initial value 

of 340 ppm at all levels was specified. 
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Figure 6.1: Initial profiles of 6^ (left) and a (right); : MLS, taken from Ellingson et al. (1991) for both 8„ and 
a, and ——: DRY, taken from the Tropical profile of Ellingson et al. (1991) for 8,, and drawn by eye for a. Also 
shown are the measured profiles of 23 June 1991, 4:10 GMT (••••) and the Tropical humidity profile presented by 
Ellingson et al. (1991) (- - - ) 

An initial soil temperature and moisture profile were obtained from EFEDA-I field 

measurements, taken at DOY 174,4:00 GMT. These values were used for all initializations, and 

can be found in Table 6.7. 

Results of the sensitivity analysis for daytime conditions 

Only the simulation results for the first daytime period (6:00 - 18:00 GMT) are 

presented here. A separate subsection (6.3.5) summarizes the sensitivity results for 
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Table 6.7: Initial soil moisture and temperature profiles 

depth (m) 

all models except case 

0 - 0.10 * 

0 - 0.60 * 

soil model case 

0 - 0.001 " 

0.001 - 0.07 

0.07 - 0.28 

0.28 -1.00 

1.00 - 2.89 

'soil VB95' 

'soil VB95' 

temperature (°C) 

15.8 

24.0 

15.8 

21.3 

26.1 

24.0 

24.0 

moisture content (m 3 /m 3) 

0.07 

0.15 

0.07 

0.08 

0.15 

0.15 

these soil depths apply to the moisture budget only; the depths for the thermal force-restore method are equal 
to the depth of the diurnal and annual temperature wave, respectively (section 4.1.4) 
the upper soil layer only applies to the temperature diffusion; soil moisture in that layer is equal to the soil 
moisture in the second soil layer, and not computed separately 

convective conditions, by comparison of all model simulations with a simple slab-model, 

which is partly analytical. 

6.3.1 The surface representation group 
The surface representation group contains runs from the cases 'reference', 'big leaf', 

'isotherm' and '3 fracs', simulating vineyard canopies with oy equal to 0.11, 0.4, 0.7 and 1.0, 

and initialized with DRY and MLS profiles (see Table 6.2). 

100-

0.1 0.4 0.7 1.0 0.1 0.4 0.7 1.0 
vegetation coverage 

Figure 6.2: Differences in predicted 
daytime evaporation, WP, for the 
cases 'big leaf', 'isotherm' and 
'3 fracs' relative to the reference 
model. The fraction of vegetation 
cover oy varied between 0.1 and 1.0 

• Surface parameters 
The most pronounced effect of treating the surface as a single isothermal source of 

heat and water vapour is the prediction of the average daytime evaporation, XE (Figure 
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6.2). The case 'big leaf' clearly results in a significant increase of XE , and this effect is most 

pronounced when when oy is small. For larger amounts of vegetation cover the difference 

between the two-component model and the big-leaf approach decreases, and the average 

surface temperature driving the surface evaporation in the case 'big leaf' converges towards 

the canopy temperature in the reference model. For oy = 1, almost no difference between the 

two cases remains. Minor differences persist due to the different parameterization of the 

aerodynamic resistances in the two models. 

The initialization has a clear impact of the sensitivity of XE to the model choice: the 

differences between case 'big leaf' and the reference are much larger for MLS than for DRY. 

The same holds for the case 'isotherm'. However, from Figure 6.2 it is also obvious that the 

latter case resembles the reference two-component model much more than the Tjig leaf' case. 

The division of the surface into separate fractions with respect to evaporation reduces the 

effect of the uniform surface temperature, which is approximately identical in both cases. 

The reduction is caused by an artificial enhancement of the aerodynamic resistance in the 

'isotherm' case. The surface evaporation for the case Trig leaf' is given by 

£ = p (6.6) 

while E in the case 'isotherm' (assuming a negligible evaporation from the skin reservoir) is 

equal to 

E = CyP + (1 - Cy) p (6.7) 

°frs + Ta r" 

For a zero soil evaporation (which applies to very dry top soil and can be obtained by taking 
a = <?fl/<7s«t(Ts))' e 1 - 6 7 r e d u c e s t 0 

rs + rJ°f 
(6.8) 

For small values of ra the cases 'isotherm' and 'big leaf' are nearly similar, and the total 

evaporation is mainly regulated by the canopy resistance. However, owing to the relatively 

large excess resistance included in ra, the cases differ significantly by the enhancement of ra 

by a factor 1/oy. 

When different temperatures for the different surface fractions are allowed (case '3 

fracs'), the surface scheme simulates a lower evaporation than the reference model in all 

cases. This reduction is less when cy increases. 

The sensitivity of the total daytime sensible heat flux, H , to the surface 

representation is shown in Figure 6.3. In all cases, the cooler surface temperature results in a 

decrease of HD. The sensitivities are limited to 35% for the MLS initialization, and 25% for 

DRY. The largest response of HD is generally not found in cases of almost bare soil or 

complete vegetation cover, but occurs in between these limits. In spite of the large relative 

difference of XED for cy = 0.1, the relative sensitivity of HD is small for all cases, due to the 
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low absolute value of XE , and the consequently small redistribution of available energy 
towards H. For large values of oy the difference between the formulation of an average 
surface temperature by a single- or dual source model vanishes, and the impact of the 
surface representation on H° is consequently also small. The relatively high response of HD 

for intermediate values of oy is the result of a balance of these two effects. The differences 
between the cases '3 fracs' and the reference model are mainly caused by a small phase shift 
of the simulated sensible heat flux, rather than different maximum values. 
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Figure 6.3: As Figure 6.2, for 
daytime sensible heat flux, HD 
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Figure 6.4: As Figure 6.2, for the 
total daytime soil heat flux, G 
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The response of the daytime soil heat flux GD, shown in Figure 6.4, is somewhat 
different. The difference between the one-layer surface models and the reference are 
relatively small for oy < 1, but are generally higher for oy= 1. Common to all models that 
regard the surface as a single layer is the absence of simulating a sensible heat flux between 
the soil and the canopy. This tends to increase the soil heat flux. However, it must be noted 
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that the absolute values of G calculated by the reference model are rather small: 42 and 49 

W /m 2 for the MLS and DRY initializations, respectively (Appendix VI). 
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Figure 6.5: Boundary layer height 
at 18:00 GMT, 1st simulation day, 
for the cases explained in Figure 6.2 

• Boundary layer parameters 
The effect of the surface representation on the boundary layer height at 18:00 GMT, 

shown in Figure 6.5, follows roughly the pattern exhibited by the sensible heat flux response 

(Figure 6.3). The PBL-height simulated by the reference model reaches approximately 1630 ± 

60 m for MLS and 1520 ± 130 m for DRY. The close match between z,18 and HD is a direct 

result of the small entrainment of heat (see below). The results of z™ at the next day show a 

similar response (figures not shown), although the simulated PBL-heights are some 600 m or 

so higher. A rapid PBL-growth is simulated in a near-neutral residual layer for the second 

simulation day. 

The entrainment of heat is fairly low in all cases. Both initializations result in a 

daytime average heat entrainment of -5 W /m on the average. Due to the low absolute 

values of Ht
D, relative differences are rather meaningless and not shown. Moisture is in all 

cases transported out of the PBL rather than entrained into it, and the rate of this so-called 

detrainment is strongly related to Cy. The different surface representations don't give rise to 

large moisture detrainment differences for the MLS initialization, but a significantly higher 

detrainment is simulated by the case 'big leaf' for an initial DRY-profile (Figure 6.6). The 

strong surface evaporation results in a large moisture gradient across the top of the PBL (see 

Figure 6.7), and this enhances the moisture flux. Owing to the steep humidity gradient 

above the PBL (Figure 6.1), the compensating effect of a slightly lower PBL height is small. 

This is not the case for the large humidity gradient in the MLS initialization. In spite of a 

significant increase of PBL humidity (Figure 6.8), the entrainment is low. Here the small 

reduction of z, resulted in a stronger reduction of the humidity gradient across the PBL-top, 

as illustrated in Figure 6.7. 

Apart from the cases where the surface evaporation is low (oy = 0.1), the response of 

q18 (Figure 6.8) resembles the pattern of XED (Figure 6.2). The largest differences occur for 

the case 'big leaf', where an increase of up to 1.2 g/kg is simulated. 
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Finally, the impact of the surface representation on the mixed layer temperature at 18 

GMT is very well explained from the differences in surface sensible heat flux, shown before. 

The small entrainment of heat causes a fairly strict response of dv
18 to HD (figure not 

shown). 
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Figure 6.6: Differences in total 
daytime moisture entrainment, 
XEt

D, for the cases as shown in 
Figure 6.2 
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Figure 6.7: Profiles of specific humidity simulated for oy = 0.1 by the reference case (solid lines) and the case 'big 
leaf' (dashed lines) for times 12:00 GMT (normal) and 18:00 GMT (thick); Left: MLS initialization; Right: DRY 
initialization. The dashed vertical lines in the left panel indicate the change of the humidity gradient across the 
PBL-top due to the change of zjß at 18:00 GMT. A similar change is not shown for the DRY simulation, since it very small 

6.3.2 The soil heat and water vapour flux group 
In the soil heat and water vapour flux group four model variations are compared for 

two soil types: sandy loam and sandy clay. The model variations include the cases 

'reference', 'soil VB95', 'soil rf' and 'soil CM88'. 
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Figure 6.8: Absolute differences in 
mixed layer specific humidity at 
18:00 GMT, <j™, for the surface and 
model variations as in Figure 6.2 

• Surface parameters 

The partition of net radiation over sensible, latent and soil heat is simulated rather 

differently by the various model variations. Large differences are present for the simulation 

of daytime soil heat flux (Figure 6.9). For both initializations the values of G predicted by 

the case 'soil VB95' are approximately 40% lower than the reference case for sandy loam soil, 

and 20% lower for sandy clay soil. Both the reference model and the case 'soil VB95' derive G 

as a residual of the surface energy balance. They also adopted a similar lowest boundary 

condition (no soil heat flux below the simulation volume), and equal physical expressions 

for XT. In spite of this, the bare soil temperature is generally higher for 'soil VB95' than in the 

reference case. This causes the sensible heat flux to be higher than for the reference model, 

which has a negative feedback on the soil heat flux. 
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Figure 6.9: Differences in predicted 
total daytime soil heat flux, G , 
relative to the reference model, for 
the model cases 'soil VB95', 'soil rs

s' 
and 'soil CM88', for sandy loam 
and sandy clay soil types 
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A major difference between the cases 'soil VB95' and 'reference' is also depicted in 

Figure 6.10, where the total daytime surface evaporation is shown. For the sandy loam soil 

type the two cases result in nearly identical amounts of evaporation, but for sandy clay the 

reference model simulates 20% - 60% more evaporation than 'soil VB95'. One of the reasons 

for this difference is the layer coefficient lc (eq. 4.19), equal to 1.0 for the reference model and 

1.6 for the case 'soil VB95'. The coefficient efficiently reduces the surface relative humidity to 

below the minimum level q0, for which soil evaporation is allowed. In the reference case this 

reduction is not included, and a significant part of the total evaporation originates from the 

bare soil component. 

Figure 6.10: As Figure 6.9, for the 
daytime evaporation X.E 

soil type 

120-

Figure 6.11: As Figure 6.9, for the 
daytime sensible heat flux H 

Also the cases 'soil rf' and 'soil CM88' simulate a lower surface evaporation for 

sandy clay, the largest deviation of ± 60% present for 'soil rs
s'. For sandy loam, 'soil rs

s' 

predicts an evaporation rate which is ± 60% higher than the reference model. The difference 

184 Sparse canopy parameterizations for meteorological models 



is entirely caused by an enhanced soil evaporation of 'soil rs
s'. In this model, two factors 

regulate the soil evaporation: the soil resistance rs
s, and the relative humidity in the soil 

pores close to the surface, given by eq. 4.83. This relative humidity is evaluated from the soil 

moisture content in the top soil layer, which has a depth of 10 cm in the current simulations. 

However, the soil moisture content shows a significant gradient close to the ground, and is 

considerably lower in the top 1 cm than averaged over 10 cm. Van de Griend and Owe 

(1994) report œ values of typically 0.02 m 3 /m 3 of the top 1 cm of the soil, measured at the 

EFEDA-I test site. This is small compared to the initial value of 0.07 m 3 /m 3 , as adopted for 

the simulations (Table 6.7). Furthermore, Kondo et al. (1992) point out that eq. 4.83 is invalid 

close to the surface. An equilibrium situation, as assumed by Philips (1957) equation, is 

violated near the surface due to evaporation. This also leads to an overestimation of the 

surface relative humidity by case 'soil rf'. 

The soil heat flux is nearly similar for both the reference model and the case 'soil r$
s' 

(Figure 6.9). The resistance formulation merely affects the surface evaporation, which is only 

a minor part of the surface energy balance here. Similar arguments can be put forward for 

the total daytime sensible heat flux (Figure 6.11). 

The extremely low value of G as simulated by the case 'soil CM88' was noticed 

before already (section 5.2.1). The effects of this low soil heat flux on the sensible heat flux 

(Figure 6.11) is evidently large. Up to 100% more sensible heat (DRY-initialization, sandy 

clay) is released into the atmosphere compared to the reference model. 

• Boundary layer parameters 

The high sensible heat fluxes simulated by the case 'soil CM88' have a major effect on 

the PBL-height. Also the mixed layer temperature is significantly enhanced (Figure 6.12). For 

the cases 'soil VB95' and 'soil rj" the increase of Qv
18 is limited to ± 0.8 K, but 'soil CM88' 

results in an increase of 1.5 - 2.5 K in all cases. As before, the coupling between differences in 

Qv
18 and z; to differences in H is strong, due to the low amounts of entrained heat. 

Figure 6.12: (left:) Relative differences in predictions of PBL-height; (right:) Absolute differences in predictions of 
mixed layer temperature at 18:00 GMT for the soil types and model cases as in Figure 6.9 

The effects of the strong evaporation rate for sandy loam in the case 'soil rf', and the 

weak evaporation in all cases for sandy clay, are shown in Figure 6.13, where the mixed 

layer specific humidity is plotted. The dry simulations for sandy clay are shown evidently in 
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this figure. More striking is the strong reduction of q18 for the case 'soil CM88' for both soil 

types, where for sandy loam a slight increase of surface evaporation was predicted (Figure 

6.10). The large boundary layer height, combined with an increase of the moisture 

detrainment by 40 - 50% (Figure 6.13, MLS), together are responsible for this feature. 
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soilvb95 
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Figure 6.13: (left:) Mixed layer specific humidity, qls; (right:) Daytime moisture entrainment, XE,D 

6.3.3 The aerodynamic exchange group 
The aerodynamic exchange group contains simulations over the reference vineyard 

surface, a tigerbush and a forest. Simulations are carried out with the reference model and 

by means of the variations 'aero D78' and 'aero MH95'. 
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Figure 6.14: Different predictions 
of daytime sensible heat flux, HD, 
compared to the reference model 
for the cases 'aero D78' and 'aero 
MH95', for various surface types 

• Surface parameters 
The different parameterizations of the aerodynamic resistances particularly affect the 

simulated total daytime sensible heat flux (Figure 6.14). The differences from the reference 

model are different for both model variations, and generally increase as the canopy becomes 

rougher and taller. For the case 'aero D78' a gradual increase of \ „ D is a result of the effect 

of particularly à on the aerodynamic resistance within the canopy in the reference model, 
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expressed by eq. 4.71. The zero-plane displacement has only a limited effect on the value of 

ra
s in the case 'aero D78' (by way of the quantification of u,), and this resistance is much 

smaller than in the reference model (typically 75% for the forest vegetation type). Also the 

case 'aero MH95' simulates smaller aerodynamic resistances, but these are parameterized 

independent on the surface roughness parameters. The difference between this case and the 

reference model are therefore again dominated by the effect of z ^ and d on ra
s in the 

reference model. Unlike the gradual increase of Z,HD from vineyard to forest using 'aero 

D78', the case 'aero MH95' shows a minimum value of ^HD for the intermediately rough 

tigerbush surface. 

The differences in H are fully compensated by opposite differences in the daytime 

soil heat flux (figures not shown): in all cases net radiation and evaporation were simulated 

nearly similarly. 
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Figure 6.15: Boundary layer height at 18:00 GMT for the same simulations as 
shown in Figure 6.14 

• Boundary layer parameters 

The different predictions of daytime sensible heat flux lead to a remarkable 

difference in boundary layer height at 18:00 GMT (Figure 6.15). The behaviour of z(- is very 

similar to the change in surface heat flux for the case 'aero D78'. However, for the case 'aero 

MH95' Z- shows a much stronger response to variations in H . A similar picture is 

presented in Figure 6.16, where the PBL temperature at 18:00 GMT is shown. The reason for 

the discrepancy between HD and z, is the increased entrainment of heat, simulated by the 

case 'aero MH95'. In the reference model the heat entrainment flux is typically -5 W / m , but 

for the case 'aero MH95' it is up to five times as large, approximately -25 W/m 2 . This is 

caused by a complex interaction of parameterizations in the coupled models. The low 

aerodynamic resistances in 'aero MH95', and the absence of stability corrections in the range 

below 2h, are associated with relatively large friction velocities near the surface (figures not 

shown). An increase of a» results in an increase of the variance of the vertical velocity, w . 

This reduces the countergradient correction \ , which increases the modified temperature 

gradient used to calculate the vertical heat flux in eq. 4.85. Since during daytime u» is not a 
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scaling parameter in the PBL eddy diffusivity, the vertical heat flux is increased at heights 

where \ plays a significant role, that is, near the top of the PBL. As a result, the boundary 

layer grows faster, particularly at early times after sunrise, and its temperature becomes 

higher. 
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Figure 6.16: As Figure 6.14, for 8,,18 
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6.3.4 The canopy resistance group 

In the canopy resistance group five different parameterizations are intercompared for 

a 'standard' vineyard surface: the reference model (calibrated version of CM88), and the 

cases 'rc C0 2 ' , 'rc VB95', 'rc fix' and 'r big C0 2 ' . 

• Surface parameters 

The parameter that is primarily affected by the parameterization of the canopy 

resistance is the total daytime evaporation, shown in Figure 6.17. The case 'r C 0 2 ' yields a 

total evaporation which is 80% higher than is computed by the reference model for the 

relatively cool and moist MLS initialization. For DRY the difference is 40%. This behaviour in 

fact shows the response of rf, as computed by the photosynthesis model, to ambient 

humidity deficit: the MLS initialization puts a smaller constraint on the crop conductance 

than a warmer and dry initial profile (DRY). The parameterizations embedded in the cases 'rc 

VB95' and 'rc fix' give values of XE which are approximately 50% and 10% lower than the 

reference, respectively. The close correspondence between case 'rc fix' and the reference 

model is mainly due to the choice of the fixed value of rs
c, being equal to the daily average 

of the parameterization in the reference model. For the case 'rc VB95' a strong soil moisture 

response is included in the parameterization of rs
c, which results in relatively high values 

owing to the low soil moisture content in the simulations. 

The large reduction of the predicted daytime evaporation by case 'rc big C0 2 ' is 

somewhat surprising, given the increases of XE by both cases 'big leaf' (Figure 6.2) and 'rc 

C0 2 ' . The reason for the strong reduction of XE is the pronounced response to the ambient 

humidity deficit, present in the photosynthesis model for rf. The high leaf temperature 

— which is a consequence of the isothermal source description in a big leaf model — enforces 
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a high ambient humidity deficit. This imposes a strong limitation to the canopy 

conductance, thereby reducing the evaporation rate. The case 'r big C0 2 ' produces 

relatively high evaporation rates just after sunrise and just before sunset, but the 

evaporation rate during midday reduces to low values (figures not shown). 

re big co2 

Figure 6.17: Differences in 
predicted total daytime 
evaporation, XED, compared to the 
reference model, for the case 'rc 

C02 ', 'rc VB95', rc fix' and 
'r big C02 ', for the reference 
vineyard surface 

vine vine 
surface type 

surface type 

Figure 6.18: (Left:) Daytime soil heat flux, GD; (Right:) Daytime sensible heat flux, HD, for cases as in Figure 6.17 

The impact of the cases in the canopy resistance group on the other energy budget 

terms is smaller: the soil heat flux changes by less than 5% in all cases. Changes in the 

sensible heat flux are limited to 15% (for the case 'rc C 0 2 ' with the DRY initialization), and 

tend to compensate most of the effects of r$
c on XE (Figure 6.18). 

• Boundary layer parameters 

The effect of the choice for the computation algorithm for rf on the PBL height at 

18:00 GMT follows closely the response of the daytime sensible heat. It is inversely 

proportional to the computed latent heat totals. The effect of these two processes on the 
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average specific humidity in the mixed layer is shown in Figure 6.19. As expected, a slight 

increase is present for the 'rc C 0 2 ' cases. 

Figure 6.19: As Figure 6.17, for the 
differences in PBL specific 
humidity, qls 

A somewhat more unexpected picture is shown in Figure 6.20, where the differences 

of the predicted total moisture entrainment compared to the reference are plotted. A 40% 

increase of moisture detrainment is simulated by the case 'rc C0 2 ' , for DRY only. The 

background of this increase is related to the timing of the simulated surface evaporation. 

The case 'rc C 0 2 ' calculates the peak evaporation well before noon, which results in an early 

rise of the specific humidity of the PBL. A larger difference between q and the specific 

humidity of the free atmosphere above is present for this case than for the reference model. 

This gradient enhances the simulated transport of moisture out of the PBL. The absolute 

effect of this extra detrainment on q is relatively small. 
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6.3.5 PBL-sensitivity and an analytical approach 

The different surface parameterizations described above cover a considerable range 

of predicted sensible and latent heat totals. Assuming that the collection of these surface 

schemes represents the current state of the art of the parameterization of sparse canopy 

surfaces, this range of surface energy totals can be regarded to span a likely range of PBL 

predictions. A summary of the PBL-sensitivity can thus be obtained by plotting the most 

relevant PBL-parameters as function of the surface energy budgets as computed by the 

various surface models. 

A similar sensitivity analysis was carried out by Driedonks (1981,1982b), using the 

simple slab model of Tennekes (1973) (section 4.2.2). For the sensitivity of z; and 6m to the 

integrated surface heat flux I, analytical expressions were developed. For the sensitivity of 

qm to the integrated surface evaporation ƒ, no analytical expressions were derived, and the 

value of cjm at 18:00 GMT was computed numerically with the slab model. Here we compare 

the values of zi , 9m and qm as function of J and ƒ calculated with this simple slab model, 

to the results of similar sensitivities as computed by the series of coupled SVAT-PBL models 

described above. For comparison with the analytical model for the dynamics of the PBL-

temperature, the mixed layer temperature Q18 rather than the virtual temperature Qv
18 is 

obtained from the numerical simulations. The values of ö^,, q00, y e and y were obtained 

for each of the initial profiles (Figure 6.1), and are listed in Table 6.8. In all cases Sp' and 80
e 

were taken zero, as the simulations started at the time where A9, Aq and zi0 were small. 

Table 6.8: Values of QQQ, qm ye and y for the initial profiles labeled MLS and DRY 

quantity 

«oo (°Q 

loo (g/kg) 

Ye ("Cm"1) 

y, (g/kg m1) 

height range for determination y (m) 

19.80 

11.70 

5.33 10"3 

-2.85 IO"3 

200 - 2000 

25.66 

4.34 

4.08 10° 

-2.10 10"4 

200 - 2000 

• PBL-height as function of surface heat flux 

Figure 6.21 shows the values of zç plotted against the integrated daytime surface 

virtual heat flux I, calculated as 12 x 3600 x H /pc , for all coupled SVAT-PBL simulations. 

Also shown is the analytical expression (eq. 4.92), with entrainment coefficient values of 0.2 

and 0.0. The datapoint labels refer to the model runs specified in Table 6.2 on page 172. 

For both initializations the results from the coupled models show a consistent 

increase of z,- with increasing I. At low values of I, z, reaches relatively high values, 

compared to the predictions of the slab model. This is partly caused by an absence of the 

effect of the virtual component on the entrainment flux, which is not included in the simple 

slab model. Adopting an entrainment ratio of Rh = 0.2 results in a correspondence with the 

numerical simulations at low values of I. For higher values of I, the analytical model 

describes the coupled model runs slightly better for Rh = 0.0 than for Rh = 0.2. The simulated 

daily averaged entrainment coefficients were in most cases equal to approximately 0.1, 

which is consistent with the analytical expression. However, the entrainment ratios found 

6. PBL-sensitivity to surface parameterization 191 



here are rather low, and this will be discussed in section 6.6. 

A few outliers are present. For the MLS profile gl, g6 and g7 (model case 'aero MH95') 

show a higher PBL-height at 18 GMT than model combinations with comparable values of I. 

The reason for this - higher values of friction velocity combined with enhanced heat 

entrainment - was discussed above already, and causes a resemblance with the analytical 

solution using Rh = 0.2 (figure not shown). For the DRY-inihalization only the datapoint 

labelled gl shows a similar behaviour. 

For the MLS initialization, dz{
18/dl = 0.12 K"1 (estimated from Figure 6.21), while for 

DRY this sensitivity is approximately equal to 0.15 K"1. 
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Figure 6.21: PBL-height at 18:00 GMT 
plotted against integrated surface heat 
flux J for the 2 initializations MLS and DRY: 
G model cases; » analytical solution with 
Rh = 0.2; - analytical solution with 
Rh = 0.0. Labels refer to model cases and 
surface types explained in Table 6.2 on 
page 172 

2000 5000 6000 
I (Km) 

• PBL-temperature as function of surface heat flux 
The relationship between Q18 and I, plotted in Figure 6.22, shows up as a nearly 

straight line. The analytical expressions are particularly insensitive to the value of Rh. The 

analytical solutions and the numerical model runs result in a nearly similar dependence of 

Q18 on I, although the numerical models tend to be slightly less sensitive to I. Overall, the 

sensitivity d&18/dl = 5.9 10"4 m"1 for MLS and 6.7 10"4 m"1 for DRY. Again, these sensitivities 

were derived by eye from Figure 6.22. 
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As for the sensitivity of zç to I, the model runs gl - g7 lie out of the range. The 

enhanced entrainment due to the large mechanical contribution causes heating of the PBL, 

which exceeds the heating rate expected from the surface contribution solely. 

• PBL-humidity and surface water vapour flux 

The numerical prediction for q using the slab model as function of the integrated 

surface moisture flux, ƒ = 12 x 3600 x XE A p , is shown in Figure 6.23, together with the 

simulations from the coupled models. The scatter for both models is larger than for the 

former two relationships. In the slab model, the expression for q includes an independent 

variable dz;/df, which is a function of I. This independent variable is not present in the 

thermal relationships. Furthermore, the relative contribution of water vapour transport near 

the top of the PBL is significant and of the same order as the surface evaporation. 

Figure 6.22: As Figure 6.21, for the 
relationship between 918 and I 

2000 3000 4000 5000 6000 7000 8000 9000 
I (Km) 

Clearly, q generally increases as ƒ increases, and the two models result in a similar 
28/ response. A linear regression for all datapoints yields a sensitivity dq /dj equal to 8.12 10 

m"1 for MLS, and 8.27 10"4 m"1 for DRY. 
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Figure 6.23: As Figure 6.21, for the 
relationship between q and ƒ. The 
dashed lines show the linear regressions 
of q predicted by the combined models 
as function of ƒ 

3500 

6.4 Results of the sensitivity analysis for nighttime conditions 

For nighttime conditions only a limited parameters is evaluated (see Table 6.2): the 

minimum temperature at reference height (Qv
mm), and the specific humidity at reference 

height (qmln) and the boundary-layer height (z™™) at the same time. 

6.4.1 The surface representation group 
For all simulations in the surface representation group, the minimum temperature at 

reference height occurs just before sunrise (after ± 24 hours of simulation). For all 

parameterizations in the surface representation group, Qv
mm is considerably higher than for 

the reference model (Figure 6.24). The reason for this difference is the parameterization of 

the temperature at z ^ , which affects the stability correction in the aerodynamic resistance 

between the surface and the reference level. Accounting for two separate surface sources, as 

adopted in the reference model, generally yields lower values for 90 during nighttime. The 

differences are particularly evident for a surface having an intermediate vegetation cover, 

and temperature differences of up to 3.5 °C may be the result, as shown in Figure 6.24. 

A large difference is also present for the specific humidity at reference level, just 
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before sunrise (Figure 6.25). Here a pronounced influence of Oris present. The origin of the 

different values of qmm differs from the origin for the temperature variability. Here, the 

single layer models sustain a small evaporation during the night. This evaporated moisture 

quickly becomes trapped in the very shallow boundary layer. 

Figure 6.24: Differences of 
minimum nighttime temperature at 
reference level, 8v

mm for the model 
cases "big leaf', 'isotherm' and '3 
fracs' compared to the reference 
model, for values of oy ranging 
between 0.1 and 1.0 

0.1 0.4 0.7 1.0 0.1 0.4 0.7 1.0 
vegetation coverage 

Figure 6.25: As Figure 6.24, for the 
minimum reference specific 
humidity, tfin 

0.1 0.4 0.7 1.0 0.1 0.4 0.7 1.0 
vegetation coverage 

The differences in aerodynamic resistances, noticed above, also have an impact on 

the simulated friction velocity. This shows up in the simulations as a variation of the PBL-

height just before sunrise (Figure 6.26). However, since the absolute values of zi are rather 

low (± 50 m), and the number of simulation layers within the nightime PBL is limited to 4 or 

5, these relative figures are not very significant. The DRY simulations give rise to smaller 

differences than MLS. 

6.4.2 The soil heat and water vapour flux group 

In the case 'soil rs
s' the bare soil temperature reaches a lower value than in the 
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reference model for a clay soil. The result is a significantly lower air temperature just before 

sunrise (Figure 6.27). For 'soil VB95' this is the case for the sandy clay soil type. In this figure 

the results for case 'soil CM88' are omitted, since some meaningless values were simulated 

here due to a lack of numerical stability. 

Figure 6.26: As Figure 6.24, for the 
PBL-height at 6:00 GMT, zf 

0.1 0.4 0.7 1.0 0.1 0.4 0.7 1.0 
vegetation coverage 

2- 0-

E -1 
2 
<D 

MLS DRY 

r n 

loam clay 

soil vb95 

soilrss 

loam 
soil type 

clay 

Figure 6.27: Difference of 
minimum temperature at reference 
height, e„mm, for model cases 'soil 
VB95' and 'soil rs

s', compared to 
the reference model 

6.4.3 The aerodynamic exchange group 

The observed temperature differences found above are less pronounced in the 

aerodynamic exchange group (Figure 6.28). A cool reference temperature, simulated by case 

'aero MH95', is evident for the DRY-initialization. The absence of a stability correction on the 

aerodynamic resistances below z = zR plays a major role here. A significant reduction of the 

wind speed gradient between z = zR and z = z0m is simulated by the case 'aero MH95', since 

r a is hardly increased by a stability correction. 
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Figure 6.28: Differences of the 
minimum reference temperature, 
Qjnm j o r jjjg mo<jei cases 'aero 
D78' and 'aero MH95' compared to 
the reference model, for various 
surface types 

vine bush forest vine bush forest 
surface type 

6.4.4 The canopy resistance group 

The issue of the increased reference humidity shown in the surface representation 

group is obviously also related to the parameterization of the canopy resistance: imposing a 

nighttime value of r ' > will effectively remove all nighttime evaporation, and the 

difference between the various surface models is likely to vanish. A significant difference 

with the reference model is only present for the case 'rc fix', which adopts a lower canopy 

resistance than any of the other cases (Figure 6.29). 
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Figure 6.29: Differences in 
predicted early morning specific 
humidity, qmm, for the cases 'rc 

C0 2 ' , 'rc VB95', rc fix' and 
'rc big C0 2 ' , compared to the 
reference model 

Simulations using EFEDA-observations 

The sensitivity analysis described above was carried out using rather idealized 

radiative and geostrophic forcings and initial PBL-profiles. However, the measurements 

carried out during the EFEDA-I experiment allow an evaluation of the performance of the 
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various coupled models to simulate observed atmospheric quantities. Therefore, an 

additional set of model runs was carried out which used the forcings and initializations 

obtained from field measurements. Data for initialization of the PBL-model, for the 

atmospheric forcings and for comparison of simulations are collected during EFEDA-I, in the 

Tomelloso vineyard area in June 1991 (section 2.2). 

Rather than expressing model results in terms of deviations from a reference model, 

the simulations were compared to a PBL-run using actually measured surface fluxes as lower 

boundary condition. The surface fluxes were synthesized from a number of stations in the 

Tomelloso area. This dataset was prepared by colleagues from CNRM using the EFEDA-I 

database. 

This section starts with the selection of a simulation period. As was discussed in 

section 4.3 a one-dimensional atmospheric model encounters severe limitations for the 

description of the state of an atmospheric column, when horizontal advection importantly 

determines the state of that column. Analysis of the data collected during the EFEDA 

campaign revealed a strong advection on many days. A very strong sea-wind effect caused a 

sharp rotation of the wind direction near Barrax, some 100 km from the Tomelloso location. 

Also the radiosonde profiles near Tomelloso showed that advection played an important 

role. Obviously, interpretation of PBL-simulations is particularly difficult when the data are 

affected by mechanisms not included in the model. A selection of data modified as little as 

possible by non-simulated advection effects is therefore useful. 

Based upon this selection, the initial profiles and atmospheric forcings are presented. 

A control run is carried out (section 6.5.3), which consists of the PBL-model using the 

measured surface fluxes. In section 6.5.4 simulations are carried out in which the various 

surface model combinations provide the lower boundary conditions. Mutual differences are 

expressed relative to the control run, and discussed. 

6.5.1 Selection of the simulation period 

In order to get a first impression of the influence of advection, it was tested whether 

the measured atmospheric profiles obeyed conservation of heat. For this purpose the simple 

slab model for the PBL (Driedonks, 1981) was used for a selection of a simulation period. A 

sufficient correspondence between observed mixed layer temperature and 9m-predictions 

from this simple model using observed values of w 9 0 indicates that the PBL-temperature 

profile is well adapted to the heat released from the local surface and entrained from the 

atmosphere above. Obviously, a model of this form only gives an indication of the 

importance of advection, since subsidence and radiative heating are not included, and the 

entrainment closure assumption in eq. 4.90 cannot be expected to be universal. 

For all days where radiosonde measurements were available, the slab model was 

used to estimate the mixed layer temperature. The mixed layer temperature is rather 

insensitive to the specification of the heat entrainment ratio Rh, and therefore serves as a 

better indicator than z,-, whose prediction is strongly dependent on the choice for Rh 

(Driedonks, 1982b). Surface heat flux was taken from the CNRM database (see below), and zi 

was estimated from the soundings as the level of the lowest temperature inversion and 

specific humidity jump (see section 2.2.7). Observed values of 6m were simply obtained by 

averaging the temperature profile below z = z;. From the entire set, observations taken at 
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day 174 showed the best correspondence with the model, and this day was selected to serve 

as test case. 

Figure 6.30 shows a comparison between observed and parameterized mixed layer 

temperatures for this day. Note that the observed PBL-temperatures are still approximately 

2 °C warmer than predicted, which was noticed also by Jacobs (1994). This must be kept in 

mind during the interpretation of simulations in the following. 

Figure 6.30: Observed (») and simulated ( ) mixed layer temperature (left axis) 
for DOY 174,1991. Simulations are carried out using the slab model with Rh = 0.2 
and the measured surface heat flux ( , right axis) 

6.5.2 Initialization and forcing 
As before, a 36 hour simulation was carried out using At = 3 minutes. The initial PBL-

profile was taken from the radiosonde measurements collected at day 174,4:10 GMT (Figure 

6.1). The vertical resolution was also taken similar as before. 

The geostrophic wind U was taken from the radiosonde observations. The wind 

profile showed considerable vertical gradients over the entire depth of the simulation at all 

times, presumably due to thermal winds (baroclinicity). A definition of U as a simple 

average in a specified height range was considered to be rather unrepresentative for the 

general forcing. Rather, a visual inspection of all available wind profiles was carried out to 

estimate the geostrophic wind speed. In each wind profile a level between 1 and 4 km was 

selected where the wind speed could be regarded to represent the average wind speed in a 

layer above the PBL. The geostrophic wind was linearly interpolated between the times of 

the radiosonde measurements. The resulting geostrophic wind decreased gradually from 6 

m / s on 23 June, 0:00 GMT to 2 m / s on 25 June, 0:00 GMT. 

The observed surface fluxes for the control run with the PBL-model were compiled by 

CNRM. Area averaged surface fluxes were obtained by averaging measurements carried out 

by various scientific groups in the Tomelloso area, after a carefull quality inspection. A 

similar averaging procedure was followed to obtain area averaged temperature, absolute 

humidity and wind speed at 2 m above the surface. Due to the poor performance of most 
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sensors measuring evaporation, XE was obtained by closing the energy balance using the 

area averaged net radiation, soil heat flux and sensible heat flux density. Measurements of 

WAUMET were included in all quantities. Figure 6.31 shows the resulting energy balance 

components for days 174 and 175. The measured shortwave and longwave incoming 

radiation were used as energy forcings for the coupled models. 

60O 

174 174.5 175 
doy 

175.5 176 

Figure 6.31: Mean energy balance components assembled from measurements at DOY 
174 and 175 from various groups operating in the Tomelloso area 

The surface momentum flux, u w 0, was not taken from this assembled data base, 

since a rather poor numerical resolution (1 significant number) was used. Instead, the 

measurements taken by WAUMET using the sonic anemometer at 4.35 m height (Table 2.1) 

were used. The total momentum flux was divided over u'w' and v w assuming that the 

angle between geostrophic wind and surface stress was 40° at all times. The results of the 

one-dimensional simulations reported below are unsensitive to this rotation angle. 

6.5.3 Control run 
A control run of the PBL-model was carried out using the area-averaged surface 

fluxes as lower boundary conditions, over the period between day 174, 4:00 GMT and day 

175,16:00 GMT. 

Figure 6.32 shows the measured and simulated boundary layer height, z;. The 

measured values were obtained using the same formulation as in the model, to avoid 

methodological differences. The correspondence for the first day is very well. During the 

night no observations were available, but the results seem quite reasonable. The sudden 

increase and decrease around 4:30 GMT at day 175 is associated with a peak in the surface 

momentum stress (figure not shown), which has an unknown origin so far. 

200 Sparse canopy parameterizations for meteorological models 



4000 

3500 

3000 

2500-

Ê 20001 

1500 

100O 

500 

0 

/ m 

l 

J K.J ^ 
175 
doy 

Figure 6.32: Simulated ( ) and observed (•) PBL-
height 

Figure 6.33: Simulated ( ) and observed (•) 
mixed layer potential virtual temperature, dv' 

Also the mixed layer temperature (Figure 6.33) shows a good correspondence 

between data and simulations. Bv' closely corresponds to simulations with the slab model 

(Figure 6.30), since a similar surface forcing was used. The entrainment ratio for heat, Rh 

(Figure 6.34) shows a large diurnal variation. On the average the value is somewhat smaller 

than -0.2, as adopted in the slab model, during both days. The small value for the second 

day is well explained by the small temperature gradient in the entrainment layer, which is 

entirely a residual from the previous day, without modification by radiative cooling. 

I -0.2-

Figure 6.34: Simulated heat entrainment ratio, Rj, Figure 6.35: Simulated ( ) and observed (•) 
mixed layer specific humidity, q' 

The mixed layer specific humidity (Figure 6.35) is slightly overestimated during the 

first day. Most likely, the difference between model and data has the same origin as the 

difference between modelled and simulated mixed layer temperature, where the data show 

a higher value than the model runs. Advection of dry warm air has influenced the radio

sonde data. 

The simulated wind profiles show a strong deviation from the observations (Figure 

6.36). A clear geostrophic maximum is present at a height of about 2.5 km in the initial 

profile, and this air stream is rather well mixed into the PBL at the end of the first day. This 

6. PBL-sensitivity to surface parameterization 201 



mixing, together with the geostrophic forcing, causes a marked overestimation of the wind 

speed in the entire PBL, already a few hours after the simulation starts. The poor vertical 

mixing occurring during nighttime caused a significant decrease of the wind speed near the 

surface, where friction reduces the wind speed. 

5000 

4000-

3000-

2000 

1000 

18 GMT Figure 6.36: Observed (») 
and simulated ( ) 
horizontal wind profiles for 
f = 12 GMT and f = 18 GMT 

In general, the PBL-model is quite well capable to simulate the main characteristics of 

the observed boundary layer dynamics, apart from the horizontal wind speed profile. 

During daytime, the PBL warms up, by heating both from below and from above. A rapid 

growth takes place around noon, stopping at about 14:00 GMT. However, the large gap in the 

radiosonde measurement sequence around noon leaves the PBL-growth rate unresolved. 

Similar measurements carried out in the Belmonte area, some 100 km from Tomelloso, give 

rise to suspect the actual growth rate to be somewhat less rapid than suggested by the 

model simulation. Michels and Jochum (1995) report a PBL-depth of approximately 2000 m at 

14:00 GMT, DOY 174. Moreover, aircraft measurements taken around 13:00 GMT above 

Tomelloso at a height of 2500 m show turbulence patterns which are typical for a residual 

layer, rather than for a fully developed convective layer. Large scale advection or subsidence 

may have reduced the PBL-growth speed. Both observations and simulations indicate the 

development of a nocturnal boundary layer from about 18:00 GMT onwards. The height of 

this nocturnal PBL changed only slightly as the night proceeded, and was affected mainly by 

the momentum flux. The predictions for the second day are more suggestive, since only one 

measured PBL-profile is available around noon. An overestimation of the PBL-depth is likely 

to be caused by the absence of radiative cooling in the residual layer. 

6.5.4 Results of the sensitivity analysis 

As before, a difference is made between the surface parameters (surface energy 

balance and soil moisture) and PBL-parameters (height, mixed layer state variables and 

entrainment fluxes). 
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• Surface parameters 

The various parameterizations of a sparse vineyard canopy on a sandy loam soil 

resulted in considerable differences of predicted surface energy balance partitioning. In the 

following figures the measured quantities serve as reference. 
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Figure 6.37: Relative differences in predicted daytime net 
radiation and soil heat flux, compared to the reference run using 
observed fluxes. Simulations are carried out for a standard 
vineyard surface using measured initialization and forcings. 
Model variation codes are as explained in Table 6.2 on page 172 

The dominance of the common incoming radiative forcing on the total daytime net 

radiation, Q»D, causes the relative differences between the various model variations to be 

limited to 5% at most (Figure 6.37). Most models compute a slightly higher net radiation 

than measured. An exception is the model case / ('soil VB95'), which predicts a lower net 

radiation as a result of a higher surface temperature. 

The daytime soil heat flux shows a much larger variability, in particular for the cases 

/ = 'soil VB95' and n = 'soil CM88' (Figure 6.37). The large underestimation of the CM88 

resistance parameterization (n) was already noticed. Compared to the measured soil heat 

fluxes the reference model (a) predicts G values which are ± 20% too high, while the case 

'soil VB95' gives too low values. The latter feature is probably caused by an underestimation 

of the thermal conductivity, XT, near the surface. For the current soil moisture content, Xj 

approached its minimum value of 0.171 W/mK. Verhoef et al. (1995, section 2.4.4) found 

values about twice this figure for DOY 174 using the amplitude method. The empirical 

weighting of XT over both soil layers in the reference force-restore model (eq. 4.48) 

apparently compensated this underestimation. The impact of increasing Xj was not 

investigated. 

The consequence of the soil heat flux parameterization for the daytime sensible heat 

flux is evident from Figure 6.38. A significant increase of H is simulated by the n = 'soil 

CM88' case, whereas all other parameterizations confine the differences to approximately 

20%. Also the correspondence between measured HD and simulated with the reference 

model (a) is good, albeit that the reference model overestimates H by 5%. Quite more 

pronounced are the differences in simulated daytime latent heat flux. As expected, the 
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isothermal big-leaf approach (b = 'big-leaf') results in a significantly larger evaporation than 

the reference. This overestimation is not present in the c = 'isotherm' case, where the canopy 

evaporation originates from a small part of the grid box only. A very low evaporation rate is 

calculated by the case i = 'rc VB95', in which a dependence of rs
c on soil moisture and 

radiation is adopted. The underestimation of XE is approximately 60%, apparently owing 

to an overestimation of the crop resistance. A comparison of modelled values of rf with 

EFEDA-II porometry data showed this overestimation to be particularly present at high 

radiation levels, thus in cases where the restriction function for co plays a significant role. 

However, a field calibration using soil moisture measurements in order to evaluate the rs
c-

expression of VB95 was not possible. The cumulative evaporation computed with the 

reference model is 20% lower than the observed fluxes. The quality of the measurements 

may be disputed, regarding the energy balance closure method used to obtain the data. 
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Figure 6.38: As Figure 6.37, for the daytime simulations of 
sensible and latent heat 

The change of the soil moisture volume follows the evaporation pattern closely 

(Figure 6.39). By the end of the first simulation day a larger soil water depletion occurs 

when surface evaporation is higher. A similar behaviour is present for the second simulation 

day. The cases b = 'big-leaf' and m = 'soil rs
s' both show an enhanced soil moisture depletion 

compared to the reference, owing to a larger cumulative evaporation. 

• Boundary layer parameters 
The different predictions in boundary layer height are shown in Figure 6.40. Here, 

values of zi at two times on day 174 are shown. A striking feature is that the differences are 

particularly present for the mid-day (12 GMT) values of z,. The final PBL-height by the end of 

the afternoon (18 GMT) is similar for all model variations. The surface parameterization has a 

significant effect on the time at which the PBL shows the fastest growth. The value of z, at 

t = 12 GMT roughly marks two different groups of simulations: one group with an early PBL 

growth, which are the model variations with relatively high sensible heat flux values (Figure 

6.38), and one group of model variations by which rapid PBL-growth is postponed by a few 

hours. The case n = 'soil CM88' shows a relatively early start of PBL-growth, governed by the 
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very high sensible heat flux simulated by this model variation. Both groups eventually reach 

approximately the same PBL-height, which is presumably strongly determined by the sharp 

inversion at z = 3 km (Figure 6.1). 
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Figure 6.39: Change of the total soil moisture content after 12 
and 36 hours of simulation, for the model variations indicated in 
Figure 6.37. In this figure the simulated soil moisture depletion 
is plotted rather than a relative depletion compared to the 
reference run. 
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Figure 6.40: Differences in 
predicted PBL-height at 12:00 
and 18:00 GMT for the model 
variations shown in Figure 
6.37, compared to the 
reference model 

The predicted values of the PBL-height during the next day hardly show the timing 

differences demonstrated above. The near-neutral residual temperature profile allows a very 

rapid PBL-growth well before noon. The final value of zi reaches approximately 3400 m in 

most cases. Again, the final value of z,- is only partially determined by the exact value of the 

sensible heat flux, that shows similar differences as on day 174 (figures not shown). 

The mixed layer potential virtual temperature is more closely related to the predicted 

sensible heat flux from the surface (Figure 6.41). The model variations causing a rapid PBL-
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growth result in a higher mixed layer temperature by the end of the day. The boundary 

layer temperature simulated by case n = 'soil CM88', in which 50% more sensible heat is 

transported towards the PBL during daytime, ends up being 1.1 K warmer than the situation 

using observed surface fluxes. The value of z,- in this same case is only 4% higher. Also the 

case g = 'aero MH95' , results in a PBL which is approximately 0.5 K warmer, but here the total 

daytime surface sensible heat was only 9% higher than for the reference case. The additional 

source of heat is provided by an enhanced entrainment of heat (Figure 6.42). The small value 

of the average heat entrainment in the reference case (-16 W/m 2 between 6 and 18 GMT) 

makes the relative difference for the sensible heat entrainment of case g = 'aero MH95' (± -40 

W/m2) rather large. 
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The specific humidity of the mixed layer around sunset (q ) shows a relatively small 

variation (Figure 6.43). Obviously, the big-leaf case (b) results in a pronounced increase of 

q compared to the reference case, while the case n = 'soil CM88' results in a significant 

reduction (> 0.2 g/kg), in spite of the only moderate reduction of XE and increase of the 

entrainment water vapour flux. 

6.6 Discussion and conclusions 

We recall that the investigation of the sensitivity of the PBL to the surface parameteri

zation is carried out by comparing the results of various surface models, coupled to a PBL-

model. The experiments focused on the implication of the choices for physical 

parameterizations of separate model components. This was carried out by construction of a 

reference model, and replacing its components by alternative parameterizations. The PBL-

sensitivity was expressed in terms of a change of simulated quantities compared to the 

reference model. This strategy leads to an investigation of the sensitivity of the PBL to the 

selection of surface models, rather than to the selection of surface types or parameter values. 

A second aim of the study was to describe Mediterranean sparse canopy conditions. To 

include a certain generality, some variations were employed in the initial temperature- and 

air humidity profiles, in the vegetation (cover and type), and in soil type. 

Despite these restrictions, a large number of degrees of freedom remained. Many 

physical processes interact, and the results will often not be transferrable to other conditions. 

Also, the range of available land surface models is much larger than covered by this 

investigation. Different conclusions could possibly be drawn when alternative 

parameterizations would have been included. 

First we will summarize the main features of the results shown in this chapter. In a 

separate section the practical implications for application of SVAT's in meteorological models 

well be discussed. A final section contains considerations with respect to future research. 

6. PBL-sensitivity to surface parameterization 207 i 



6.6.1 Differences of model parts 

We have compared various model components divided into four categories: surface 

representation, aerodynamic exchange, soil heat and moisture transfer, and canopy 

resistance. 

In the surface representation group it is found that the 'big leaf' case gives a much 

higher evaporation than any of the other schemes included. The total daytime evaporation 

was also considerably higher than the observed latent heat flux. A significant overestimation 

of XE by 'big leaf' is to be expected in cases of partial vegetation cover. Adopting a single 

surface source results in a surface temperature weighted to relatively high values of the 

warm bare soil component. This high surface temperature leads to an overestimation of the 

surface specific humidity of the evaporating surface. 

Two solutions to this problem were included here. The first, proposed by Noilhan 

and Planton (1989), is to discern between a vegetated and a bare surface fraction, identified 

by oy. This was embedded in the case 'isotherm'. For a zero soil evaporation, the surface 

evaporation formulations in Trig leaf' and 'isotherm' are equal except for and artificial 

enhancement of the aerodynamic resistance ra in 'isotherm' (eq. 6.8). When ra is not 

insignificant compared to r$
c, this leads to a reduction of XED. For the present simulations, 

the aerodynamic resistance included a relatively large excess resistance, and this caused the 

desired reduction of XE . A more fundamental solution is to solve the energy balance of 

each surface fraction separately, as was first proposed by Deardorff (1978). This leads to a 

much more realistic lower surface temperature for the vegetation component. This solution 

was adopted in the reference case and in the case '3 fracs'. As expected, the A.£D-differences 

between a big-leaf model, the surface fraction models and the two-component scheme 

vanish for oy —> 1. 

Within the boundary layer the overestimation of XE leads to an enhanced 

detrainment of moisture. This detrainment is strongly linked to the shape of the specific 

humidity profile and to the PBL growth. In the DRY simulations, the 'big leaf' case reduces 

PBL growth, giving rise to higher humidity concentrations within the PBL and stronger 

humidity gradients at the top of it. This finally leads to an increase of the moisture 

detrainment by up to 25% compared to the reference model. 

The various parameterizations in the soil heat and water vapour flux group give rise to 

considerable differences in simulated soil heat flux and evaporation. The largest effect is the 

underestimation of G by the case 'soil CM88'. The soil model in CM88 ignores heat storage in 

the upper soil layer, and predicts values of G which are up to 80% lower than the reference 

force-restore model. The associated energy surplus is used to heat the air in the atmosphere, 

and this has a clear impact on both PBL height and -temperature. 

Compared to the reference model, the four-layer diffusion scheme employed in the 

case 'soil VB95' predicts a generally higher soil temperature during daytime, which results in 

a larger sensible heat and lower soil heat flux. The difference in predicted G compared to 

the reference model is 30 - 40%. In the zero-dimensional intercomparison between the 

models of D78 and VB95 carried out in chapter 5, the different surface temperature 

predictions was explained from a difference in aerodynamic resistance above the surface. 

The intercomparison reported in this chapter was executed with similar aerodynamic 
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resistances for both models, and the same difference (albeit somewhat smaller) appears. We 

must conclude that the different solutions for the surface temperature are mainly caused by 

the difference in soil heat flux parameterization. 

The force-restore method, embedded in the reference model, gives an exact solution 

of the thermal diffusion equation for a homogeneous soil with a single harmonic surface 

forcing (Dickinson, 1988). In the reference model a difference in thermal properties of the 

top and the lower soil layer is accounted for by an empirical weighing as depicted in eq. 

4.48, but a gradient of these parameters is not included. The four-layer diffusion scheme 

allows for both inhomogeneous soil and multiple wave lengths in the surface forcing. The 

initial soil moisture profile imposed in the current analysis leads to a pronounced thermal 

conductivity gradient in case of sandy loam soil. This feature may explain the different G -

predictions by the cases 'soil VB95' and the reference model. Indeed, the difference between 

these two cases is much smaller in case of sandy clay. In that case, the adopted initial soil 

moisture profile leads to a similar value of the thermal conductivity for both models (equal 

to the minimum value of 0.171 W/mK) throughout the entire soil volume. A comparison of 

model simulations with EFEDA data suggest a clear underestimation of 'soil VB95', which is 

probably related to a too low value of the soil thermal conductivity. 

Also, with respect to evaporation the models in this group show a considerable 

variability. This variability is mainly caused by the differences in predicted soil evaporation. 

The differences between the included models are not consistent, but depend strongly on the 

soil type. For sandy loam, the case 'soil rs
s' gives a high soil evaporation compared to all 

other schemes. Referring to the very dry top soil as encountered during the EFEDA campaign, 

the large soil evaporation simulated by 'soil rs
s' is unlikely. Under conditions of high surface 

temperature, the simulated soil evaporation is rather sensitive to the surface relative 

humidity, a. The formulation of Philip (1957), used for case 'soil rs
s', probably gives too high 

values near the surface (Kondo et ai, 1992). Furthermore, the soil moisture content in the top 

layer from which y and a are derived must be regarded as an average of the co-profile in the 

entire layer. Choosing a too deep layer ensures large truncation errors, and this probably 

also plays a role in the overestimation of the soil evaporation by case 'soil r$
s'. However, it 

should be noted that the absolute values of X.E are small. 

The picture is entirely different for a sandy clay soil. In this case the reference model 

appears to predict a significant soil evaporation, exceeding the canopy evaporation during 

daytime. In contrast to the sandy loam soil type, a large difference between the reference 

and the case 'soil VB95' now occurs. Both models treat soil evaporation similarly by defining 

a surface relative humidity from the top layer soil moisture content, except for the value of a 

layer averaging coefficient lc in eq. 4.19. Increasing lc from 1 (reference case) to 1.6 (case 'soil 

VB95') results in a clear reduction of the soil evaporation. Given the dry initialization of the 

soil, we feel that this reduction results in more realistic simulations. The choice to take 

lc = 1.6 applies to an upper soil layer of 7 cm depth, and is compatible with numerical 

simulation results carried out by Mahrt and Pan (1984). However, VB95 rightly point at the 

empirical nature of the coefficient lc. More on this issue is discussed below. 

The different behaviour of soil evaporation simulated by the reference force-restore 

model for the two soil types was also noted by Kondo et al. (1992). They simulated a drying 

bare soil with both a multi-layer diffusion scheme and a force-restore scheme. The latter 
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showed a sudden decrease of the surface soil water content after 10 days of simulation. As 

they explained, the water transport capacity of the lower soil layer is a steep function of the 

soil moisture content. When co drops below a critical value, the upward water transport is 

severely limited and the upper layer dries out. In the simulations of the current study, the 

sandy loam profile of the relative soil moisture content, co/co^j, is lower than for the sandy 

clay, and shows a similar low surface soil moisture content. 

The differences found here are considerably higher than reported by Mahfouf and 

Noilhan (1991), who compared both a-type and ß-type soil evaporation schemes. Their 

comparison was carried out for a silty clay loam soil with a higher initial moisture content 

than in this study. The soil thermal and hydraulic properties are extremely strong functions 

of the soil moisture content under dry conditions, and this makes a comparison very 

sensitive to the specification of the initial soil moisture profile. The current study focussed 

on these dry semi-arid conditions, but could be extended by including a somewhat wider 

range of moisture and soil type conditions. 

The aerodynamic exchange group considers the PBL-sensitivity to the parameterization 

of the inside-canopy aerodynamic resistance, ra
s. The establishment of a proper balance 

between the bare soil temperature and the total sensible heat flux is greatly determined by 

the parameterization of ra
s, or its equivalent in terms of the specification of a roughness 

length for heat (section 2.4.2). The reference model, using the parameterization of CM88, 

gives the highest value of ra
s and correspondingly the lowest sensible heat flux. The 

resistance formulation based on Lagrangian principles, case 'aero MH95', gives a very low ra
s 

and high H, which seems related to the poor knowledge of the true diffusivity profiles right 

down near the surface. The semi-empirical BATS-formulation in 'aero D78' is situated in 

between these two. The differences were particularly obvious for the rougher and denser 

canopies. Based on the EFEDA-measurements, the reference model gives an optimal balance 

between surface temperature and sensible heat flux, and is superior to both alternative 

parameterizations. 

As a consequence of the low value of ra
s by case 'aero MH95', also the momentum 

transfer between the surface and the atmosphere was increased compared to the reference 

model, appearing as an increased friction velocity, u». The relatively large mechanical 

turbulence contributed much to the growth of the PBL. This effect augmented the difference 

in PBL-height between the case 'aero MH95' on one hand, and the other parameterizations on 

the other. During nighttime, the momentum transfer in 'aero MH95' is extra enhanced 

compared to the other cases owing to the absence of a stability correction between z = z0m 

and z = zR. In particular the 'aero MH95' simulations of the tall forest vegetation type reveal 

a strong increase of the nighttime PBL-height. 

An increased momentum flux between a vineyard canopy and the atmosphere is also 

to be expected if the observed roughness length, implemented in all coupled models, is 

replaced by the formulation proposed by CM88. This formulation is based on the numerical 

experiments of Shaw and Pereira (1982), and gives an apparent overestimation of z0m of 

nearly a factor two compared to wind profile measurements (section 2.4.1). The observed 

roughness length was rather low: z0m/h was -0.05. Similar values were reported by Sene 

(1994) for a vineyard in the same area, and by Garratt (1978) for a sparse forest canopy type. 
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The intercomparisons carried out in the canopy resistance group give rise to a large 

range in predicted surface evaporation. In absolute sense the impact of choosing a canopy 

resistance model is limited owing to the low value of oy adopted here. For more complete 

vegetation covers the differences are more significant. 

A common feature to canopy resistance parameterizations is that they need 

independent calibration. Data collected during EFEDA-I were used to calibrate the reference 

formulation, proposed by CM88, and the photosynthesis-rc models in 'rc C 0 2 ' and 'rc big 

C0 2 ' . The value of rf in 'rc fix' was obtained from the reference model, and thus indirectly 

also calibrated with the same dataset. Only the parameterization in 'r VB95' was not 

calibrated using the collected observations, and these expressions resulted in a too low 

evaporation rate compared to the observations and the reference model simulations. 

However, a significant difference between model variations is also caused by 

differences in included environmental responses in the various models. In the reference case 

rf only depends on incoming shortwave radiation. Comparing the predicted daytime 

evaporation to the observed quantities (section 6.5) reveals an underestimation of 

approximately 20%. But, as noticed before, the quality of the XE-data leaves the possibility 

that measured evaporation rates are too high. The correspondence between the reference 

model and the observations taken at the WAUMET site is better (section 5.2). 

The daytime evaporation predicted by the photosynthesis-rc model proposed by 

Jacobs (1994) and Jacobs et al. (1995), present in the case h = 'rc C0 2 ' , is significantly larger 

than the reference model, especially for the cool and moist MLS initialization. The model was 

calibrated under conditions corresponding to the DRY profile, and a rather strong response 

to ambient humidity deficit is included. This humidity response causes a strong reduction of 

rs
c under MLS conditions and gives rise to higher values of XE . The humidity response is so 

strong, that the overestimating effect of adopting a single surface temperature as in the case 

'big leaf' is greatly compensated by the associated rise in ambient humidity deficit (case 

'r big C02 ' ) . Furthermore, the case 'rc C0 2 ' simulates an evaporation peak at about 10 GMT. 

This causes a considerable increase in the total daytime moisture flux at the top of the PBL. 

Before noon the PBL is still low, and the moisture accumulation below the inversion gives a 

strong humidity gradient across the PBL top. 

The average ratio of the entrainment virtual heat flux to the surface flux, Rh, is 

approximately 0.1 for the EFEDA simulations of DOY 174. The simulations using artificial 

initial profiles show a similar figure. The value of Rh found here is not necessarily a physical 

quantity, as it is derived from the numerical simulation of a turbulent diffusion process, 

according to Troen and Mahrt (1986) and Holtslag and Moeng (1991). Since Rh follows from 

the development of the turbulent fluxes in the past, and also enters the formulation of the 

turbulent diffusivity, a negative feedback in the model may result in a reduction of Rh. Also, 

the present PBL-model does not include the contribution of wind shear above the PBL to the 

growth of the turbulent layer. However, the dependence of Kh on Rh is not very strong, and 

the model also succeeds in a reasonable simulation of observed PBL-temperatures under 

conditions of poor advection. This indicates that the estimates of Rh contain some realism, 

and allow an intercomparison with other studies. Driedonks (1981) and Tennekes (1973) 

suggest Rh = 0.2 for most cases. Betts and Ball (1994) found Rh = 0.44 for the FIFE 

radiosoundings. In this dataset, larger values (0.55) where found from an analysis of the 0„-
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budget of the PBL, while lower values (0.32) resulted from an analysis of observed 8j,-jumps 

and PBL-growth. As they comment, the former method is rather sensitive to advection, while 

the latter method suffers from the exclusion of the influence of subsidence on PBL-growth. 

However, the sensitivity analysis of Driedonks (1982b) clearly demonstrates a limited 

sensitivity of mixed layer temperature to the value of Rh, and this might partially explain the 

high value found by Betts and Ball (1994), using the 80-budget. Also Culf (1992) found 

Rh = 0.5 by comparing PBL height observations with the slab model of Tennekes (1973) using 

data collected over the Sahel. He argues that again advection might have played an 

unknown role in his data. The average value of 0.1 found here seems rather low compared 

to these studies. A final statement about the significance of this result is hard to give, since 

simulations and data on only a single day have been used to obtain the value of Rh. A more 

careful analysis of the other soundings and an averaging over the entire period should be 

carried out to evaluate the value of Rh. 

The initial temperature profile of DOY 174 clearly showed the presence of a residual 

layer reaching a height of approximately 3 km. A strong temperature inversion at this height 

prevented the PBL from a significant growth beyond this level for the given surface heat flux. 

This strongly developed residual layer yielded a limited heat entrainment ratio in the 

simulations. The entrainment ratio for moisture is much larger, but shows a great variability 

due to the small surface flux of moisture. 

6.6.2 Practical considerations for SVAT's 

An important question arising from the comparison study is what practical 

consequences can be extracted from it. 

From the surface representation group we concluded that a sparse canopy must be 

described by use of at least two separate components, a vegetation and a bare soil 

component. The surface energy balance is quite well reproduced by either the reference two-

component model or the case '3 fracs' (section 4.2.1), which both allow a separate 

temperature for the bare soil and the vegetation component of the surface. Soil heat flux is 

still too high for both these model variations, compared to area-averaged measurements 

from the CNRM database. 

The soil heat and water vapour flux group is less conclusive. The overestimation of G 

by the reference model is accompanied by a clear underestimation in the case 'soil VB95', but 

which of them should be preferred is not clear. As outlined by Dickinson (1988), the force-

restore method is efficient but shows shortcomings in case of inhomogeneous soils and 

irregular surface forcing. Based on these physical aspects, a multilayer diffusion scheme to 

simulate soil heat fluxes should be preferred in semi-arid areas, where strong soil moisture 

gradients are very common. The four-layer scheme present in the latest ECMWF surface 

model (Viterbo and Beljaars, 1995) probably provides a good optimum between numerical 

efficiency and physical accuracy. Warrilow et al. (1986) pointed out that the choice of four 

soil layers with an exponentially increasing layer depth ensures a proper coupling between 

the diurnal and the seasonal variations. However, the parameterization of the soil heat flux 

as proposed by Viterbo and Beljaars (1995) may be improved by allowing a range of 

effective conductivity values, A (section 4.1.3). 

For soil evaporation it is more difficult to come to a conclusion from a shortrange 
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intercomparison as employed here. The schemes included show a wide range of surface 

evaporation rates. For the sandy loam soil, as encountered during EFEDA, the reference 

model or the soil resistance model (case 'soil rs
s') yield total evaporation rates close to the 

observed values. However, the observations are probably too high, and the correspondence 

between the two model types is far from ideal for an other soil, i.e. sandy clay. The soil 

surface relative humidity as described by eq. 4.19 using lc = 1.6 reduces the soil evaporation 

to nearly zero, as would be expected from the dry top soil layer encountered during EFEDA. 

The adjustment of the expression for a using this coefficient is yet rather empirical, as 

suggested by VB95, and needs further analysis. The albedo-observations (section 3.3) suggest 

some diurnal variation of the soil moisture content in the top soil layer, being highest 

around sunrise. Some evaporation should be expected at these times, but none of the models 

simulated these details. The skill of the models highly depends on the accuracy of the initial 

soil moisture profile, which may have been too poor, particularly for the soil moisture 

content in the very top soil layer. 

The aerodynamic exchange from the underlying bare soil to the free atmosphere is a 

particularly relevant parameter for sparse canopy, where a large portion of the sensible heat 

originates from the bare soil component. The aerodynamic transfer has a clear impact on the 

surface temperature, which in turn affects radiative, physiological and aerodynamic 

processes. From this study we found that the parameterization of CM88 gives optimal results 

for the EFEDA vineyard. A disadvantage in CM88 is the need for information about the 

canopy height, which is often not available in global applications. The concept of a fixed 

excess resistance, or roughness length for heat, is simpler to apply. However, observations 

of the soil temperature show a clear diurnal pattern of this excess resistance. They also show 

that for the present surface type the ratio of z0m and zoh should be chosen significantly 

higher than 10, as employed by for instance VB95, or even 20, as proposed by Braud et al. 

(1993). 

The canopy resistance models compared in the current study have only a minor effect 

on the total surface energy balance, owing to the low degree of vegetation cover. The 

photosynthesis model in case 'rc C0 2 ' has a very strong humidity response, but, as 

discussed in section 3.4, does not contain a dependence on soil moisture content. The 

parameterization in 'rc VB95', on the other hand, includes a soil moisture effect which results 

in a relatively high crop resistance. Again, the choice for the optimal model for the canopy 

resistance is not univocally obvious from the present study. The physical origin of the 

photosynthesis model, and its skill to describe field data rather well, makes it a very 

attractive alternative to the traditional statistical models. However, attention must be paid to 

the response of rf to soil moisture, which for long term simulations is probably more 

important for the total crop evaporation than a response to air humidity (Monteith, personal 

comm.). 

6.6.3 Guidance for future research 

From this study it is clear that many physical viewpoints have been proposed in 

order to assess the lower boundary condition for atmospheric models. It is also clear that 

different models give rather different predictions. Until now, no general consensus exists 

about which SVAT provides the 'best' surface flux predictions for global applications. 
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In that context a very important research program currently running is the Program 
for Intercomparison of Land-surface Parameterization Schemes (PILPS; Henderson-Sellers et 
al, 1993,1995). This program aims to 'improve the understanding of current and future 
land-surface parameterization schemes used to represent regional to continental scale, by 
documentation of current models, acquisition of appropriate data sets for model 
intercomparison, identification of model inadequacies and propose solutions to these' 
(Henderson-Sellers and Brown, 1992). The PILPS program is scheduled to last 7 years, and is 
separated into various phases: (0) model documentation, (1) stand-alone tests with synthetic 
forcings, (2) stand-alone tests with observed data, (3) coupled intercomparisons with a 
selected 3-D model, and (4) coupled intercomparison with a range of 3-D models. The 
research program is unique in its completeness of both existing SVAT schemes and 
considered topics, and greatly will contribute to the quantification of surface model 
variability. 

The required quality of a SVAT depends on the application foreseen. For large scale 
applications in GCM's or NWP models the SVAT must cover a great range of surface types and 
time scales. An important feature is a realistic description of moisture transport on a diurnal 
and seasonal (annual) timescale, and the parameterization of soil evaporation is a major 
issue for semi-arid conditions. Similarly, the quality of the global fields of surface 
characteristics (albedo, roughness, soil type, vegetation cover) determines the skill of the 
SVAT's to a large extent, and this needs attention as well. 
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Appendix I: List of symbols and 
acronymns 

acronymns 
BATS Biosphere-Atmosphere Transfer Scheme 

CM88 Choudhury and Monteith (1988) 
CNRM Centre National de Récherches Météorologiques, Toulouse 

COP Copenhagen University 
D78 Deardorff (1978) 
DOY Day Of Year 

ECHTVAL European project on Climatic and Hydrological Interactions between the Vegetation, 
the Atmosphere and the Land Surface 

ECMWF European Centre for Medium-range Weather Forecasting 
EFEDA ECHIVAL Field Experiment in Desertification-threatened Area 
EPOCH European Programme on Climate and Natural Hazards 

FIFE First ISLSCP Field Experiment 
GCM General Circulation Model 
GMT Greenwich Mean Time 

HAPEX Hydrological Atmospheric Pilot Experiment 
HIRLAM High Resolution Limited Area Model 

ISLSCP First International Satellite Land Surface Climatology Project 
KNMI Royal Netherlands Meteorological Institute 

LNF Localized Near-Field theory 
MH95 McNaughton and Van den Hurk (1995) 

MLS Mid-Latitude Summer (initial PBL-profile) 
NP89 Noilhan and Planton (1989) 
NWP Numerical Weather Prediction 
PAR Photosynthetic Active Radiation 
PBL Planetary Boundary Layer 

PILPS Project for Intercomparison of Land surface Parameterization Schemes 
PM Penman-Monteith (equation) 
SIB S imple B iosphere m o d e l 

SL Surface Layer 

SVAT Soi l -Vegeta t ion-Atmosphere Transfer 

SW85 Shu t t l ewor th a n d Wallace (1985) 

TDR T ime Doma i n Reflectometry 

VB95 Vi terbo a n d Beljaars (1995) 

vu Free University of Amsterdam 
WAUHBH Wageningen Agricultural University, Dept. of Hydrology 
WAUMET Wageningen Agricultural University, Dept. of Meteorology 

WMO World Meteorological Organization 
WSC W i n a n d S tar ing Cen t re 

• Symbols 
A available energy (W/m7) 

4.T A 
Ac 

Ad 

Am 

allwave radiation (W/m ) 
available energy for canopy (W/m ) 
drip area (m2) 
average leaf area single leaf (m ) 
asymptotic value of An (kg/m2s) 

l a x maximum value of Am ( k g /ms ) 

photosynthetic rate (kg/m2s) 
areal surface of soil heat flux plate (m2) 
available energy for soil (W/m2) 
amplitude temperature wave (K) 

Ax, Amx spectra functions 
a surface albedo; coefficient in PBL-model; 

coefficient for longwave emittance (W/m2K4) 

Symbols and acronymns 215 



flco canopy albedo for LAI —> °° 
80 albedo at noon 
H^l^î coefficients in rs

c model of VB95 
ac canopy albedo 
a calibration coefficient for co 
a^ . albedo for canopy with horizontal leaves 
flj effective area for Tsur (m

2) 
as bare soil albedo 
a h albedo for canopy with spherically 

distributed leaves 
B-1 l /K ln Z o m / z 0 „ 
Bx, Bwx spectra functions 
b characteristic plant width (m); Clapp and 

Homberger coefficient; coefficient in PBL-
model; coefficient for longwave emittance 

bfrbj coefficients in PBL-model 
bD coefficient for humidity dependence of gs 

(g/kg)"1 

C soil heat content (J/m2) 
C scalar concentration (kg/m3); cloud cover (-) 
Ci,C2,C2ref coefficients for soil moisture transport 

in force-restore scheme 
Ca specific heat air (J/kgK) 
Cb average concentration near leaf (kg/m3) 
Cc average concentration within canopy layer 

(kg/m3); coefficient in SW85 
Cd leaf drag coefficient 
Cr far-field concentration (kg/m3) 
CH transfer coefficient for heat and scalars 
Ch specific heat of soil (J/kgK) 
C; internal C02-concentration (kg/m3) 
Cj fraction of surface covered with skin 

reservoir 
CM bulk drag coefficient for momentum 
Cn near-field concentration (kg/m3) 
C0 specific heat organic material (J/kgK); 

relative oxygen concentration (%) 
CR drag coefficient roughness element; reference 

concentration (kg/m3) 
C s substrate drag coeficient 
Cs specific heat of mineral (J/kgK); 

concentration at ground surface (kg/m3); 
external C02-concentration (kg/m3); 
coefficient in SW85 

CT temperature structure parameter (K2m"2'3) 
Cv average far-field concentration (kg/m3) 
Cw specific heat water (J/kgK); spectra function 
c coefficient for d; specific scalar concentration 

(kg/kg) 
cQlCyC2 coefficients in description for aw and T; 

cd coefficient for d 
c coefficient for g 
ct internal specific concentration (kg/kg) 
cm regression coefficient for md 

c specific heat for dry air at constant pressure 
(J/kgK) 

c$ external specific concentration (kg/kg) 
cm hydraulic capacity (m"1) 
cxV cx2' csx coefficient for similarity method (x = T, 

c^ correction factor for A, 
D characteristic plant spacing (m); vapour 

pressure deficit at reference height (Pa); 
molecular diffusion coefficient (m2 /s) 

D0 canopy water vapour deficit (Pa) 
Da humidity deficit at reference height (kg/kg) 
Dmax reference humidity deficit for humidity 

response in An-gs model (kg/kg) 
Dp plant density (m"2) 
Dr calibration coefficient in humidity response 

o f S s ( g / kg ) 
Ds ambient humidity deficit (kg/kg) 
Dv molecular diffusivity for water vapour 

(m2 /s) 
d displacement height (m) 
d3/d2 depth of soil layer i (m) 
d31 crosstalk coefficient 
d33 attenuation coefficient 
d„ diameter of soil heat flux plate (m) 
ds beam path length (m) 
E evaporation rate (kg/m2s) 
Ec canopy evaporation (kg/m2s) 
E?0' potential canopy evaporation (kg/m2s) 
E daytime average of surface evaporation 

(kg/m2s) 
E; leaf evaporation rate (kg/m2s); evaporation 

from skin reservoir (kg/m2s) 
Emax maximum evaporation rate (kg/m2s) 
Es soil evaporation (kg/m2s) 
Et leaf transpiration (kg/m2s) 
Ej daytime average moisture entrainment 

(kg/m2s) 
e water vapour pressure (Pa) 
£Q water vapour pressure in canopy air (Pa) 
ea water vapour pressure at reference level (Pa) 
e , saturated water vapour pressure (Pa) 
F moisture flux in soil (kg/m2s) 
Fc canopy flux density profile (kg/m2s) 
FCQ2 C02-flux density (kg/m2s) 
Fh average canopy flux density (kg/m2s) 
F$ ground flux density (kg/m s) 
F, total flux density (kg/m2s) 
Fx flux density of x (kg/m2s) 
ƒ Coriolis parameter (s"1); normalized 

frequency (s-1); humidity function of Ci/Cs 

f0 ratio of Ct/Cs at Ds = 0 
fd fraction of diffuse radiation 
fs fraction of sunlit leaves 
G soil heat flux density (W/m 2) 
G0 soil heat flux density at surface in CM88 

(W/m2) 
G daytime average soil heat flux density 

(W/m2) 
Ci t, G, b soil heat flux density at top and bottom of 

layer i (W/m2) 
g gravity acceleration (m/s2); function for a$ 

g0 regression coefficient for g 
gj calibration coefficient in crop resistance 

according to CM88 (m/s / W/m 2 ) 
gb dimensionless concentration in PBL-model 
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gc crop conductance (m/s) 
g° g c a t D s = 0 (m / s ) 
gcut cuticular conductance (m/s) 
gD humidity response of rs

c in NP89 
gm mesophyll conductance (m/s) 
Smax maximum crop conductance (m/s) 
gs stomatal conductance (m/s) 
Ss C02 stomatal conductance for C02-exchange 

(m/s) 

S s ^ m a x i m u m 2 s ( m / S ) 
& 2S at Ds = 0 (m/s) 
gt dimensionless concentration in PBL-model 
H sensible heat flux density (W/m2) 
H canopy sensible heat flux (W/m2) 
H daytime average sensible heat flux density 

(W/m2) 
Hs soil sensible heat flux (W/m2) 
Hf daytime average heat entrainment (W/m2) 
h canopy height (m) 
J interception (kg/m2s); integrated surface 

buoyancy flux (K m); beam intensity; 
absorbed PAR (W/m2) 

IQ reference beam intensity 
Is infiltration ( k g /ms ) 
ƒ integrated surface latent heat flux (g/kg m) 
K, Kx eddy-diffusivity (m2/s) (x = h for heat, m for 

momentum, e for water vapour, c or s for 
scalars) 

K incoming, reflected shortwave radiation 
(W/m2) 

Kb bottom-up diffusivity (m2/s) 
Kc incoming, reflected shortwave radiation for 

canopy (W/m2) 
Kdir diffuse radiation (W/m2) 
Ke extraterrestrial shortwave radiation (W/m ) 
Krfrf coefficient in rf model (W/m2) 
Ks incoming, reflected shortwave radiation for 

soil (W/m2) 
KT isothermal water vapour diffusivity ( m / s ) 
Kt top-down diffusivity ( m / s ) 
k soil thermal diffusivity (m2/s) 

K 
K 

extinction coefficient for black leaves 
absorption coefficient for gas i 
near-field kernel function 

k precipitation coefficient 
kr extinction coefficient 
k water vapour absorbtion coefficient 
L incoming/outgoing longwave radiation 

(W/m2) 
Lg_14 incoming longwave in 8-14 (jm band 

4.Î 
(W/m z) 

Lc incoming/outgoing longwave radiation for 
canopy (W/m2) 

Ls incoming/outgoing longwave radiation for 
soil (W/m2) 

Lu cup-anemometer response length (m) 
Lv Monin-Obukhov length (m) 
LA Leaf Area (m2) 
LAD Leaf Area Density (m2 /m3) 
LAI Leaf Area Index (m2 /m2) 

LAI, LAI/af 

I tube length (m) 
lc layer-averaging coefficient for a 
lw characteristic leaf dimension (m) 
M^ longwave emittance (W/m2) 
ma molecular weight of dry air 
md assymetry function for a$ 

md0 regression coefficient for md 

m0 molecular weight of oxygen 
mv molecular weight of water 
N number of leaves 
Nu Nusselt number (ratio lm/S) 
n eddy-diffusivity extinction coefficient; 

number of samples; frequency (s"1) 
n0 cut-off frequency (s"1) 
ns sampling frequency (s"1) 
P total precipitation rate ( k g / m s ) 
Pr Prandtl number (ratio dynamic viscosity and 

thermal diffusivity of air) 
Ps surface precipitation rate (kg/m2s) 
p air pressure (Pa); parameter in ß-

distribution; sensor averaging length (m) 
p0 standard air pressure (Pa) 
p calibration coefficient for a> 
Qw reference value in dimensionless response 

function 
Q, net radiation (W/m2) 
Q» daytime average net radiation (W/m ) 
Q» c canopy net radiation (W/m2) 
Q. s soil net radiation (W/m2) 
q specific humidity (kg/kg); parameter in ß-

distribution 
q* characteristic humidity scale in convective 

PBL (kg/kg) 
q0 within canopy specific humidity (kg/kg) 
q00 humidity profile extrapolated to z = 0 

(kg/kg) 
qa reference specific humidity (kg/kg) 
qc canopy surface specific humidity (kg/kg) 
qm average q in PBL (kg/kg) 
qmm average q in PBL just before sunrise (kg/kg) 
qs soil surface specific humidity (kg/kg) 
q„t saturated specific humidity (kg/kg) 

average PBL specific humidity at time t 
(kg/kg) 

R molar gas constant (m 2 / s 2 K) 
Rj,R2,.. root extraction fraction 
Ra coefficient in SW85 
Rc coefficient in SW85 
Rd dark respiration ( k g /ms ) 
Rh heat entrainment ratio 
R moisture entrainment ratio 
Rs coefficient in SW85; scalar entrainment ra 
Rv gas constant for water vapour ( m / s K) 
9? dimensionless resistance 
Re Reynolds number 
Rec critical Reynolds number 
Ric critical Richardson number 
r reflection coefficient; mixing ratio 
r2 2 space coordinate (m) 

Symbols and acronymns 217 i 



ra aerodynamic resistance (s/m) 
r" aerodynamic resistance for scalars between 

z0m and ZR ( s / m ) 
ra excess resistance (s/m) 
ra

c bulk boimdary layer resistance (s/m) 
rfl

s aerodynamic resistance in two-layer model 
between soil surface and within canopy node 
(s/m) 

rb leaf boundary resistance (s/m) 
rt lower soil resistance in CM88 (s/m) 
rn near-field resistance (s/m) 
rs

c canopy or crop (stomatal) resistance (s/m) 
rs

s soil resistance for evaporation (s/m) 
rsf leaf stomatal resistance (s/m) 
rs,min> rs,max coefficients in rf model 

'( 
tube radius (m) 

ru upper soil resistance in CM88 (s/m) 
rx plant radius (m) 
rh porometer relative humidity 
S source strength (kg/m3s) 
s dq^f/dT; sensor separation (m) 
SM root extraction (kg/m s) 
Sh canopy source strength (kg/m3s) 
S (co-)spectral distribution function 
T0 temperature in canopy layer (K) 
TlrT2,~ soil temperature in layer i (K); reference 

temperatures in QJ0-response function (°C) 
Ta reference air temperature (K); analog-to-

digital transfer function 
Tb sensor body temperature (K) 
Tc canopy temperature (K) 
Td first-order digital high-pass filter transfer 

function 
T; Lagrangian time scale (s); leaf temperature 

(K) 
Tn data-acquisition net transfer function 
T sensor line averaging transfer function 
Tr sensor dynamic response transfer function 
Ts soil temperature (K) 
T$k skin layer temperature (K) 
Tsm sonic temperature (K) 
Tsur effective surface temperature (K) 
T( tube damping transfer function 
Tu horizontal averaging vector transfer function 
Tv virtual temperature (K); low-pass filter 

transfer function 
Tw wet-bulb temperature (K); vertical averaging 

vector transfer function 
T (co-)spectral transfer function for x'y' 
t time (s) 
u horizontal wind speed (m/s) 
u. friction velocity (m/s) 
u0 within canopy wind speed (m/s) 
ua reference wind speed (m/s) 
u geostrophic wind component (m/s) 
ut tube air speed (m/s) 
V volume of plant (m ); Voltage (V) 
Vc speed of sound (m/s) 
v horizontal wind speed (m/s) 
v geostrophic wind component (m/s) 

WMAX coefficient for wmàx (mm) 
w vertical wind speed (m/s) 
w, convective velocity scale (m/s) 
wdew amount of intercepted water (mm or kg/m 2) 
tfmax maximum amount of intercepted water 

(mm) 
ws characteristic velocity scale in PBL-model 

(m/s) 
X CdLAI 
x constituent 
xa volume fraction of air 
xl resistance coefficient in VB95 (m/s); sensor 

longwave gain (V per W/m 2 ) 
x0 volume fraction of organic material 
xs volume fraction of soil; resistance coefficient 

in VB95 (m/s); shortwave gain (V per W/m 2 ) 
xw volume fraction of water 
zR reference height for canopy models, or 

lowest model level for PBL-model (m) 
z height (m) 
z0m roughness length for momentum (m) 
zoh roughness length for heat and salars (m) 
z0' roughness length of soil (m) 
zX,wz2,w s c"l l a y e r depth for water transport (m) 
zj boundary layer height (at time t) (m) 
zs particle release height (m) 

• Greek letters 
a surface relative humidity; horizontal angle 
ad time coefficient in first-order filter 
a ; leaf absorbtivity 
OL shape factor for soil heat flux plates 
au wind speed extinction coefficient 
ß solar elevation; rotation angle 
PR CR/CS 
ß r radiation extinction coefficient 
ßs sheltering factor for rh 

T compensation concentration (kg/m3) 
rh coefficient for non-evaporating parts in D78 
y psychrometer constant (Pa/K) 
yb bottom-up countergradient correction (m"1) 
yH hydraulic conductivity (m/s) 
yh u(h)/u. 
y humidity gradient above PBL (m"1) 
ys scalar countergradient correction (m*1) 
y s a t saturated hydraulic conductivity (m/s) 
yt top-down countergradient correction (nT1) 

y a temperature gradient above PBL (K/m) 
V 

5 step function; thickness of leaf boundary 
layer (m) 

A de$at/dT 
A; optical depth 
e rnv/ma; emissivity 
e0 maximum quantum use efficiency (kg/J PAR) 
en longwave emissivity of air 
Eb sensor body emissivity 
ec,es canopy or surface longwave emissivity 
e, initial quantum use efficiency (kg/J PAR) 
tj sensor setting for E 
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Ç zenith angle; spectra function 
T| roughness density 
0 potential temperature (K); vertical wind 

angle (rad) 
8, temperature scale (K) 
6,ML mixed layer temperature scale (K) 

A 

K 
\ 
n 
V 

\ 

P(a) 
P' 

within canopy potential temperature (K) 
reference potential temperature (K) 
canopy surface temperature (K) 
average PBL-temperature (K) 
soil surface potential temperature (K); 
temperature excess of convective thermal (K) 
potential skin layer temperature (K) 
average surface potential temperature (K) 
average PBL potential virtual temperature at 
time t (K) 

m average PBL potential virtual temperature 
just before sunrise (K) 
temperature profile extrapolated to z = 0 (K) 

skin conductivity ( W / m K ) 
latent heat of water vapour (J/kg); wave 
length (m) 
Karman constant (0.4) 
hydraulic diffusivity (m2/s) 
soil thermal conductivity ( m / s ) 
thermal conductivity of air (W/mK) 
condictivity of soil heat flux plate (W/mK) 
cos Ç 
kinematic molar diffusivity ( m / s ) 
fraction of potential canopy evaporation; 
spectra function 
sensitivity parameter for x 
density of dry air (kg/m3) 
soil bulk density (kg/m3) 

Pi 
Po 
Ps 
Pv 
Pw 
Px 

a 
°f 
ax 
T 
X 

reflectance of leaves 
density of dry matter (kg/m3) 
density of soil (kg/m3) 
water vapour density (kg/m ) 
density of liquid water (kg/m3) 
scalar concentration (kg/m3) 
Stefan-Bolzmann coefficient 
fractional vegetation cover 
standard deviation of x 
throughfall (kg/m2s) 
momentum flux density (kg/m s2); tortuosity 
parameter; return-to-isotropy time scale (s) 

Xj diurnal time scale (24 hrs) 
T2 annual time scale (365.25 days) 
xc sensor time constant (s) 
xrf digital filter time scale (s) 
X; leaf transmittance 
<|> dimensionless source profile; azimuth 
<|>ft integrated stability correction for heat and 

scalars 
(|>m integrated stability correction for momentum 
(p effectiveness weighting for rb 
xVh stability correction; profile influence function 
y soil matric potential (m) 
y , ^ saturated soil matric potential (m) 
coc critical soil moisture content for a (m3 /m3) 
a); soil moisture content in layer i (m3 /m3) 
a* implicit form of co, (m3 /m3) 
(s>„„„ equilibrium soil moisture content (m /m 3) 
ù wilting point soil moisture content (m / m ) 
ùf field capacity soil moisture content (m 3 /m ) 
Q)sfl( saturated soil moisture content (m / n r ) 
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Appendix II: Instrumental 
aspects and data processing 

Sensing the atmosphere or the soil is almost inevitably associated with introduction of errors. 
The errors can be associated with flow distortion, sensing in a limited frequency or spatial domain, 
sensor calibration affected by environmental conditions and some other factors. The corrections 
applied to the eddy-correlation measurements, soil heat flux, surface temperature and radiation are 
discussed in this section. 

Low-pass filtering (detrending) 

The covariances measured by the eddy-correlation technique are often affected by trends in the 
signal which don't have a turbulent origin. Diurnal variations of air temperature and humidity, wind 
velocity changes due to a change of the wind direction, or the influence of sudden cloud cover 
changes on the average air temperature are examples of non-turbulent contributions to the eddy-
correlation covariances. The same applies to fast-response variance measurements, used for instance 
to determine fluxes from the variance method (section 2.2.4). Therefore, some kind of detrending 
must be applied to filter out the low-frequency part of the measured spectrum of the constituents of 
interest. The frequency below which fluctuations have to be removed (the high-pass cut-off 
frequency) strongly depends on the mechanism causing the non-turbulent contribution to the 
quantity fluctuations. Different opinions are circulating about the preferred choice of the cut-off 
frequency and the detrending algorithm. However, these choices sometimes play a non-trivial role in 
the determination of the final detrended covariances from raw time series. 

Van den Hurk (1995) explored the effect of various detrending algorithms on the computed 
variances and covariances of simultaneously measured series of the horizontal and vertical wind 
speed, u and w, respectively. He used a dataset collected during the EFEDA-II eddy-correlation 
intercomparison. Various artificial trends were added to an original trendless time series. The 
variances and covariances were computed using various averaging algorithms currently applied by 
different experimentalists. The artificial trends were selected as to cover a range of likely trends 
occurring in the real world. 

The results often showed a large impact of the choice of the detrending algorithm, depending 
on the combination of added artificial trend and algorithm employed. The differences were 

particularly significant for corrections on o"H
2, and less significant for u w and W'T'. 

This section discusses various detrending algorithms, and describes the algorithms employed 
during the EFEDA-I and EFEDA-II measuring campaigns. 

• Description of detrending methods 
The linear detrend defines the mean of a constituent as the linear regression of the variable 

against time. The fluctuation part of the quantity x is equal to the value of x minus the value of the 
regression line at the same time. The time scale of the fluctuations that must be removed is 
proportional to the length of the averaging interval over which the regression is computed. A linearly 
detrended variance of x is assessed by subtracting the signal-time covariance from the raw variance: 

/ -\ 

c.det • i t = a. 
2 -Y.xt-l'Lx-'Lt (IM) 

where n is the number of samples, and the subscript del indicates detrended variance. 
The first-order digital filter approaches a running mean by defining the average of x as 

xi = aixi_x*(l-ai)xi (H.2) 
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in which aä is given by exp(-l/(Td ns)), and ld is a time constant. The fluctuating part of the quantity 
x is obtained by subtracting the mean from the total quantity, which yields from eq. II.2 

..' .. -r .. ,.. .. x .. J (II.3) xi~xi = ad(xi-xi-d+adxi-\ 

i is the timescale of the fluctuations which must be removed from the signal. In operational systems 
as the Hydra (Shuttleworth et ah, 1988) i = 200 s. However, longer time scales must be included to 

describe the low-frequency contributions to u u , originating from eddies of the scale of the boundary 
layer height (Panofsky et ah, 1977). Some experimentalists use x = 600 s. Moore (1986) derived 
correction factors to account for the effect of high pass-filtering on the (undesired) removal of 
turbulent fluctuations. These correction factors are discussed below. 

Simpler approaches describe the trend in a signal by computing separate means for short intervals, 
shorter than the averaging time of 30 minutes. Fluctuations of the quantity x in a specific sub-interval 
are then defined as the deviation from the mean in that sub-interval. The (co)variance applicable to 
the entire interval is given by the arithmetic average of the covariances obtained in the various sub-
intervals. 

The centred running mean with averaging time t computes the average of constituent x at time t 
from an interval extending from t - x/2 to t + 1 / 2 . A circular buffer containg all data in this interval 
must be retained and updated for each new time step. 

A very time-consuming but well defined filtering technique uses a Fourier transformation to 
transform samples within a specified averaging interval to the frequency space. Specified transfer 
functions are used to remove undesired frequencies, and afterwards an inverse Fourier transform 
converts the series back into a time series. This method must be applied for each (co)variance 
separately. The Fourier method was not included in the comparison study of Van den Hurk (1995). 

Which averaging method is best depends on the nature of the trend in the average signals. 
Diurnal trends can be removed effectively with both the linear and 1st order detrend. Sudden signal 
changes due to, for instance, cloud overpass are followed better by the recursive filter, although the 
filtered signal lags behind. By application of a higher order filter (Krikke, 1994b) or the running mean 
removal, this lagging is avoided. Application of higher order filters introduces concern about the high 
degree of non-natural information in the 'cleaned' signal. Linear detrends are favourable when the 
signal shows large variations with only a small average trend. Recursive filtering will remove too 
much of the true variation in that case, especially when the time constant for the recursive filtering is 
chosen too small. 

• Detrending methods employed 
During EFEDA-I all fast-response signals were linearly detrended over an half-hour interval. The 

slow-response signals were first linearly detrended within 10 minute intervals. These 10 minute 
averages were arithmetically averaged to 30 minute intervals. 

The eddy-correlation software used during EFEDA-II originally executed a digital 1st order filter. 
This algorithm was later replaced by a linear detrend over a fixed 30 minute interval. The slow-
response measurements were not detrended at all. 

Eddy-correlation corrections 

Eddy correlation corrections can be divided into three categories. Rotation corrections consider 
tilted streamlines due to terrain or mast tilt and flow distortion by the sensor. Frequency response 
corrections assess the problem of the limited frequency range actually being sensed, which is 
generally smaller than the inertial subrange. The third group of corrections consider various aspects 
of the fast response sensing system: vector averaging by cup anemometers, Webb-correction, virtual 
temperature and light-absorption by non-relevant gases. 

• Rotation corrections 
Ideally the wind flows parallel to the Earth's surface from a steady direction. Moreover, the 

transport of momentum in the lateral direction (v w ) can be ignored. Deviations from this ideal 
behaviour are caused by tilted sensors, sloping terrain in upwind direction, and flow distortion by 
the array. Wyngaard (1988) points out that the rotation corrections usually carried out are not 
sufficient to account for flow distortion errors. It is not difficult to show that a flow distortion caused 
by a sensor can actually add motion to the free wind stream, whereas rotation only redistributes the 
motions over the three components. Wyngaard (1988) defines an attenuation or amplification 
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coefficient of wind in the vertical direction (^33), and a crosstalk coefficient of horizontal wind 

components into the vertical direction {d31). The undisturbed covariance wx can be computed from 

wmxm / «>X = l+d. 33 T "31 
ux 
wx 

(II.4) 

where the subscript m refers to the measured vertical flux density. Both coefficients must be specified 
using an undisturbed free wind stream. For a vertically symmetric array d33 is rather insignificant 
compared to d31. Since carefull attention is paid to twisting the sonic arrays into the mean wind, 
vertical symmetry of the array, and data selection as function of relative wind direction, the rotations 
discussed next are considered to serve as a proper correction to flow distortion as well. 

The coordinate rotation applied here is the one proposed by McMillen (1988). The algorithm 
consists of 3 rotations: 

• a horizontal rotation to align the u-component with the mean horizontal wind U, thus rotating 

v to zero 

• a vertical rotation to align the mean wind perpendicular to the streamline, thus forcing w to be 
zero 

• a rotation along the «-axis to force the lateral momentum flux v w to zero. This rotation defines 
the vertical flux densities normal to the streamline rather than to the geopotential, which is of 
importance when the streamline inclines with respect to the local surface due to upwind terrain 
slopes. This rotation must be applied with care, since it is not always well defined, particularly 
under low wind speed conditions. 

The rotation algorithm consists of a set of matrix multiplications. The first two rotations can be 

solved explicitly. Let a be the angle between ïï and U, and 8 be the vertical tilt, defined by 

w 
6 = arctan 

\ju + v +1 

The rotation matrix for the first two rotation, Mj 2, now becomes 

cosctcosG sinasinG sin0 

1,2 -sinG cosa 0 

-cosasinG -sinasinG cosG 

(H.5) 

This matrix can be applied to both the mean wind values and the fluctuating parts: 

= M-1,2 

"2 

/ 
v2 

1 
w2 

• A * u 

M 
v' 

w'\ 
\ J 

These rotations could be carried out with both the raw samples before calculating the covariances, 
and to averaged raw covariances. Let us consider rotation over a only, and define a = cosa and b = 

since. Then the rotation of a covariance x y over a is given by 

~x1yr = (ax' *by')(-bx' + ay') = -abx11 *(a2 -b2)x'y' *abyu 
(II.6) 

-abx77* (a2 - b^xY + aby77 

where the subscript r denotes the rotated covariance. However, when additional non-linear 

transformations on r ' or y ' are carried out (such as detrending using a first- or higher order digital 
filter), the execution of these matrix transformations before or after computation of the covariances 
leads to different results (Krikke, 1994b). In that case it is recommended that the rotation operation is 
carried out on the raw data, rather than on the computed covariances. 

The third rotation is carried out along the (rotated) u2-axis. The matrix M3 is given by 
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M, 

1 0 0 

0 cosß sinß 

0 -sinß cosß 

(II.7) 

The angle ß over which the rotation must be carried out is found iteratively by specifying v3w3 from 
eq. II.7 and forcing it to zero: 

v3w3 = -sinßcosßüjüj+sinßcosßa;2^2+(1 " 2 s ' n 2 ß ) t ' 2 a ; 2 

= \v2
v2 ~ w2wy -sinpcosp +. 

(1 -2sin $)v2w2 

—r-r 
v2v2 - w2w2 

(II.8) 

This leaves the need to find ß for which the term between square brackets is zero. This is made 
possible by introduction of a factor K, defined as 

K u2w2 

v2v2 - w2w2 

Now eq. II.8 can be solved iteratively for ß, using 

sß • / - /cos2ß + 8K2 

sinß = (II.9) 
4K 

and cos ß + sin ß = 1. Usually three or four iterations are necessary to find ß. 

• Frequency response corrections 
The turbulent flux density can be measured using eddy-correlation, provided that fluctuations 

in the frequency range in which turbulent transport takes place are all sensed. In practice, this 
condition is hardly met due to a limited frequency response of the sensors and the data acquisition 
system, averaging over a path rather than taking a point value, separation between sensors for 
different quantities, and filtering applied. For each of these effects a theoretical co-spectral transfer 
function can be computed, which is unity for all frequencies for an ideal system. Convolution of this 
loss factor with the actual turbulent spectrum of the considered quantity gives a fraction of the true 
covariance that is actually sensed. Application of this method to really measured spectra will not be 
of much significance, since these spectra show the shortcomings of the sensor configuration we were 
looking to correct for. Therefore, theoretical spectra are used. The flux loss Af is then defined by 

AF 

F 
= 1 

j"V n )VM ) d n 

0 

JV»)dn 

(11.10) 

where n is the frequency, T the net co-spectral transfer function, and S the theoretical co-spectral 
xy 

distribution function. In the present analysis integration is carried out over a range of 0.001 < n < 100 
Hz. 

Moore (1986) worked out most of the frequency response correction for a Hydra flux 
measurement station (Shuttleworth et al, 1988). His work provided the basis for the correction 
algorithm developed here. The special corrections applicable to closed path sensors as the LICOR6262 
have been obtained from Leuning and Moncreiff (1990). An overview of these corrections is also 
given by Moncreiff et al. (1995). 

Digital sampling at limited frequency 
An analogue to digital sampling acquisition method causes aliasing of spectral contributions 

exceeding the Nyquist frequency. The effective transfer function for an analog-to-digital sampling 
system, Ta(n), is given by 
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T.<») 1 + 

v " ' - " , 
« < nil (11.11) 

with ns the sampling frequency. For eq. 11.11 it is assumed that aliasing is reduced by prefiltering the 
raw signal at n = njl, causing negligible co-spectral power above the Nyquist frequency. In spite of 
the limited application of low-pass filtering, eq. 11.11 was adopted (see Figure II.l for an example). 

Figure II.1: Examples of the low-pass filtering transfer 
function Tv ( ) and the analog-to-digital transfer functioi 
Ta (•••••) for ns = 10 Hz 

Low-pass filtering 
Low-pass filtering is applied to prevent aliasing, or folding frequencies higher than the Nyquist 

frequency njl into lower frequencies (Stull, 1988). Electronic filtering using a 4rd order Chebychev 
filter was only applied to w-signals during EFEDA-I, from day 19 onwards, and not at all during 
EFEDA-II. The transfer function TJn) is given by 

- l 

Tv(n) 
(11.12) 

where n0 is the cut-off frequency (at n s/2). The time constant of the filter is given by 1/2JC«0. 
Obviously, when no low-pass filtering is applied Tv = 1. An example of Tv is shown in Figure II.l. 

Figure II.2: Example of the high-pass filtering transfer 
function Jd for ns = 10 Hz; shown are 
zd = 200 s ( ) and 600 s (•••••) 

by 

High-pass filtering (detrending) 
The transfer function Td(n) for a first order digital filter is to a very good approximation given 

w 
(27! n t / 

l + (2T[nx/ /a r f 

n < n/2 (11.13) 

An example is shown in Figure II.2 for xd = 200 and 600 s. 
For linear detrending the choice of the interval length is very similar to choosing a time constant 
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zd for a running mean interval. However, for the linear detrending algorithms employed during both 
EFEDA campaigns no frequency response correction was applied. 

Sensor response and tube damping 
The dynamic response of many sensors can be described by a simple first-order gain function: 

Tr(n,vc) = [1+(2JCM)2X (11.14) 

where lc is the time constant of the instrument. For most instruments this correction was neglected. 
Only the home-made thermocouples, the cup anemometers and the UCOR6262 were considered to 
have a low enough time constant to affect the measured frequency spectrum. The thermocouple time 
constants were estimated to be 0.5 s (as concluded from inspection of measured energy spectra, but 
higher than 0.1 s as cited by Van Asselt et ai, 1991). For the LICOR6262 0.2 s was taken. The time 
constant of the cup anemometers was given by Lu/u, where Lu was the response length (estimated as 
1.2 m; Jacobs, personal comm.) and u the horizontal wind speed. An example is depicted in Figure 
II.3. 

A special case of damping of fluctuations is caused by the tube transporting the air from the 
sonic anemometer volume to the LICOR6262 gas analyzer. Leuning and King (1992) present a transfer 
function T( given by 

T,(") = 
Jexp(x / 6Dut) 

2nnr, 
<10 

D 

elsewhere 

(11.15) 

where x is given by -(n n r()
2 /, r( the tube radius, I the tube length, D the diffusivity of the gas being 

analyzed and ut the air speed in the tube. Eq. 11.15 is strictly valid in cases where the flow within the 
tube may be considered to be laminar, and density fluctuations at all frequencies travel down the 
tube with the same velocity, uv Based on expressions presented by Philip (1963), Leuning and King 
(1992) state that this applies to frequencies for which 2itnrt /D < 10. For turbulent flow they propose 
the following transfer function 

Tt(n) exp(-160Re"1/8r,n2; / uf) Re > Rec 
(11.16) 

where Rec is a critical Reynolds number, equal to ± 2300, and Re is given by 2«(r(/v. Figure II.4 shows 
an example for both equations. For the corrections applied during EFEDA-II the laminar expression 
(eq. 11.15) was used, where rt was 0.0015 m, / = 4 m and ut approximately 5 m/s. 

Figure II.3: Example of the sensor response transfer 
function Tr for ns = 10 Hz; shown are Tc = 0.1 s 
( ) and 0.5 s ( ) 

Figure II.4: Example of the tube damping transfer 
function Tf; shown are eq. 11.15 for laminar flow 
( ) and eq. 11.16 for turbulent flow (•••••). In both 
cases «s = 10 Hz, / = 4 m, r, = 0.0015 m, «, = 5 m/s and 
D = D„ = 2.56 10-* m2 /s 
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Sensor line averaging 
In most cases a scalar quantity is measured over a (finite) path length rather than at a single 

point. The effect of the spatial averaging involved can be described very well by 

TP(P) 
1 

2*7 
"o i i r\ A 1 - exp ( -2n ƒ) 
3 + exp( -2 7t ƒ ) - 4 ±1.^—iL 

2nj 

(11.17) 

where ƒ is the normalized frequency n plu, p being the averaging distance. Spatial averaging is 
relevant for all sensors. However, the effect on the temperature measured using a thermocouple is 
considered small enough to ignore a correction for this. The averaging path for the sonic temperature 
is equal to that of the vertical wind, and will be discussed hereafter. For the closed-path analyzer the 
averaging path is determined by the length of the gas chamber (0.15 m). 

For the development of eq. 11.17 it is assumed that the averaging path is perpendicular to the 
average mean wind, which is true for each wind direction when the averaging path is oriented 
vertically. This applied to the configuration of the Lyman-a and thermocouple sensors during EFEDA-
I. The Krypton in operation during EFEDA-II, however, was mounted horizontally. Graphical 
examination of the full formulation of eq. 11.17 given by Moore (1986) did not give rise to correct for 
this (see Figure II.5). 

Figure II.5: Example of the transfer function for sensor 
line averaging for scalars, T„, for p = 0.025 m and w = 5 m/s 

The effect of spatial averaging on measurements of vector quantities is different to that for 
scalar quantities. Moore (1986) gives a simplified transfer function for the vertical wind component, 
based on findings of Kaimal et al. (1968). The transfer function Tw for averaging the vertical velocity 
over a path with distance p reads 

T,„ = _ 1 + 
exp(-27t/) 3 ( l - exp ( -27 t / ) ) 

4nf 
(11.18) 

For the horizontal wind components a general function as eq. 11.18 is not possible to give, since 
it depends on sensor geometry and wind direction. Two different generalizations were carried out for 
the two experiments. For EFEDA-II eq. 11.18 was adopted for both the scalar and the horizontal wind 
quantities. The data of EFEDA-I were corrected using the original equations of Kaimal et al. (1968) and 
some assumptions about the instrumental configuration elaborated by Verhoef (priv. 
communication). For a symmetrical orthogonal set of transducers (as for the Kaijo Denki DAT310 
device), the transfer functions were computed for a horizontal wind from a direction of 45° compared 
to each component. Then the sensor averaging transfer function can be reduced to a single function 
T : » 

V 
sin;:/ 

*ƒ 
(11.19) 

No attempt was made to investigate the assumptions leading to this formulation. For the DAT310 
devices p = 0.20 m for all wind components, while p = 0.10 m for the Gill sonic anemometer. Figure 
II.6 provides an example of Tw and Tu. 
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n(Hz) 

0.0001 0.001 0.01 0.1 
n(Hz) 

Figure II.6: Example of the transfer function for sensor 
line averaging for vectors: = T^ = Tu. In both 
cases p = 0.20 m and u = 5 m/s 

Figure II.7: Example for the sensor separation transfer 
function T for s = 0.20 m and u = 5 m/s 

Sensor separation 
Ideally, eddy correlation covariances are computed from measurements taken at exactly the 

same point. In practice, usually a separation between different sensors is necessary. The loss of 
covariance due to sensor separation is a function of the distance between the sensors and the angle of 
the wind direction relative to the separation path. For practical purposes Moore (1986) developed a 
scheme which can be used to correct for both longitudinal and lateral separation, provided that the 
sensor separation s is small and open to the atmosphere: 

T$(f) - exp(-9.9/15) <"-20> 

where ƒ is the normalized frequency, given by n s/u (see Figure II.7). 

Net transfer functions 
The net transfer functions for the several covariances can be found by multiplying the relevant 

gain functions given above. A net transfer function for the data acquisition system, Tn, can be 
specified, which applies to all sensors. It is defined by 

r„ = T„ Wv (11.21) 

The net transfer functions for the separate variances and covariances depend further on sensor time 
constant xx, averaging path px, diffusion coefficient Dx and separation from the w-sensor s^.. The 
subscript x refers to vertical wind when x = w, horizontal wind in both directions for x = u, 
thermocouple temperature for x = T, sonic temperature for x = s, humidity measured by Lyman-a 
and Krypton for x = a, and humidity and C02-concentration measured by the closed path UCOR6262 
device for x = h and c, respectively. Then the net transfer functions for the separate variances are 
given by: 

T uu 
T 

WW 

T 
T 
m 

Tu,vK) 
TJPv) 

TxÂVw) 
Tp(pq) 

rfr„) 

(11.22) 

Thh - T„ Tp(ph) I f o ) Tt(Dh) 

Tec - Tn W r f o ) UDc) 

while the covariance transfer functions read: 
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ws ~ n vrPw' 
(11.23) 

Twq = Tn TsK} fipfPj Tw<.Pw> 
Twk = Tn TsKh> W PW T«,<PJ TéPh) 
T«,c = Tn Ts(swc) Tr(xc) jTp(pc) Tw(pJ Tt(Dc) 

Model spectra 
For the description of the atmospheric spectra and cospectra the formulations of Kaimal et al. 

(1972) have been used. The formulations provide a description of spectral energy S as function of 
(normalized) frequency ƒ = n z/u and stability z/Lv, z being the measuring height. The spectra are 
derived for the variance of the three wind components and temperature, plus their mutual 
covariances. Moore (1986) concluded that spectra of the other scalars (humidity and C02) resembled 
the temperature spectra very well, and thus 

Sqq = Shh = Scc = S 7T (TT.24) 

$wq ' Swh = Swc = SwT 

Furthermore, the spectra for both horizontal wind components are considered equal as well. 
The general function of Sxx under stable conditions (z/Lv > 0) can be represented by 

"S**(») = ^-573 (11-25) 
Ax + Bxf

5'3 

where Ax and Bx are functions of the atmospheric stability. Also the cospectra are well reproduced 
under stable conditions using a general equation: 

tó«r(») " TT ( I L 2 6 ) 

A +B r 1 

wx wxJ 

Table II.l gives the formulations of Ax, Bx, Awx and Bwx. 

Table II.l: Formulations of A^ Bx, Awx and Bwx for stable (co)variance spectra 

Variance spectra Ax Bx 

x = w Aw = 0.838 + 1.172 (z/L„) 
x = u Au = 0.2 A^ Bx = 3.124 Ax

1/3 

x = T 

Covariance spectra 

X = M 

x = T 

AT = 0.0961 + 0.644 (z/L,,)06 

Am 

0.124 (1 + 7.9 z/Lvf
75 

0.284 (1 + 6.4 z/Lvf
75 

Bwx 

2.34 Am 

Unfortunately, the unstable spectra are not easily defined, due to a dependence on the boundary 
layer height ẑ . Hojstrup (1981) developed suitable expressions for the horizontal and vertical wind 
velocity: 

» ^ ( n ) - ƒ . WS 
1 + 5 .3/ 5 / 3 (1 + 17/)5/3 

C"1 (11.27) 
*—Til 

and 
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"S„„(") = 
210/ f\ 

(1 + 33 / ) 5 / 3 Ç + 2.2/ 5/3 
(11.28) 

where 

Cw = 0.7285 +1.4115 Ç C„ = 9.546 + 1.235Ê, Ç -2/5 

/ W 3 
2 

2 
V V 

2/3 

-L„ 

Since 2, was not known for most time intervals, a fixed value of 1000 m was chosen, as to represent a 
typical condition. 

No suitable models for atmospheric temperature spectra for unstable conditions are cited in 
literature. However, Moore (1986) argued that for most conditions the spectra given by Kaimal et al. 
(1972) could be used. For the temperature variance is given 

nSj^n) = 

while the temperature cospectra read 

5/3 

14.94/ 

(1*24/) 

6.827/ 
5/3 

[ (1 +12.5/) 

4.378/ 
nSu,-M) = 

1(1+3.8 / ) ' 

The spectrum of momentum transfer is described by 

12.92/ 
1375 (1+26.7/) 

"S„» 

20.78/ 

(1+31/) 

12.66/ 

[ (1+9 .6 / ) 2 

1.575 

ƒ < 0.15 

ƒ > 0.15 

ƒ < 0.54 

ƒ > 0.54 

ƒ < 0.24 

ƒ > 0.24 

(11.29) 

(11.30) 

(11.31) 

During daytime the correction as computed by eq. 11.10 was limited to a few percent for all the 
fast response eddy-correlation sensors. For wind speed measured with cup anemometers the 
corrections could be as large as 10%, as indicated by McBean (1972). The corrections were 
considerably larger under stable conditions, as the contribution of high frequencies to the turbulent 
exchange becomes more significant. However, since the fluxes are then generally small, the absolute 
significance of the assumptions specified above is not too large. 

Based on these theoretical spectra and the transfer functions described above, Figure II.8 gives 

an example of the net frequency response corrections applied to au and to w T , for a specified 
height and wind speed. 

• Various aspects related to fast response measurements 
Apart from the rotation and frequency response corrections some other aspects play a role for 

the interpretation of the measurements by fast response sensors. We discuss here the quantity 
actually measured by a cup anemometer, sonic thermometry, and open- and closed path humidity 
sensors. 

Vector averaging of cup anemometers 
Since a cup anemometer cannot discern between various wind directions it measures the 

average vector wind speed U, rather than the total wind speed in the direction of the average wind, 
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u. Bernstein (1967) elaborated a relationship between u and IF, which is a function of the standard 
deviation of the horizontal angle a: 

ïï = TTexp(-0.5o-2) <"-32> 

Van den Hurk and de Bruin (1995) derived expressions for the relationship beteen au and au: 

(11.33) 

A 
-TT' exp (wj-

In theory, a must be measured at the same height as the cup anemometer. In practice, however, it is 
only determined at a single level and assumed to be constant with height over the entire wind profile. 
Here, aa is measured by the sonic anemometer at 4.35 m height during EFEDA-I, and by the wind 
vane at 10.2 m during EFEDA-II. 

Figure II.8: Example of frequency response corrections 
as function of z/L: -AF„, •AF„, 
Configuration parameters are as follows: z = 10 m, 
« = 5 m/s, pu = pw = 0.20 m, swT = 0.25 m, zc = 0.5 s 
(thermocouple) and ns = 10 Hz 

Sonic temperature 
The temperature obtained by the sonic anemometer (eq. 2.4) needs to be converted to a physical 

air temperature using the specific humidity. Schotanus et al. (1983) have demonstrated that the 
variance of the sonic temperature and the vertical flux density can be written as 

4 T W 

1.02 TT'? 

ATüu'T' 

- 0.512 T rj2 • 

•2.04 
T uuq 

(11.34) 

and 

son w'T' = iw'TL.-0.51 T r ö y 
T uu w (11.35) 

respectively. 
During EFEDA-I and EFEDA-II measurements of the open path hygrometer (Lyman-a and 

Krypton) mounted near the sonic anemometer were used to obtain q. In particular for the systems 1, 3 
and 4 in use during EFEDA-I this value is doubtfull and likely too low. During EFEDA-II, comparisons 
between psychrometer and Krypton results showed that the Krypton gave very reliable values of q. 
Furthermore, the correction to the variance of the sonic temperature was limited to the first three 
terms on the right-hand side of eq. 11.34. 

Webb-correction 

As pointed out by Webb et al. (1980), the average vertical velocity w is unequal to zero when 
there is a sensible heat flux between the surface and the atmosphere. The vertical flux density of dry 
air can be written as 
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"Pa = w Pn+W'pa = ° 
(11.36) 

Since according to the Boussinesq approximation 
/ 

P. . 

Ta 
(IÏ.37) 

the average vertical velocity can be obtained from eq. 11.36 and is given by w'T' I T. 
This mean vertical wind affects the turbulent flux density Fc of any scalar density pc, given by 

Fc = wpc+w'pc = -l.w'T' + w'pc 
(11.38) 

This so-called Webb-correction applies to any scalar whose density rather than its mixing ratio 

r = p c /p n is measured. It can be shown that p~a
w r is approximately equal to Fc, in which case the 

Webb-correction disappears. 
The situation is a little more complicated for air mixtures, as moist air. Considering the air as a 

mixture of dry air and water vapour with density pv, the mean vertical wind velocity is given by 

_ mawPv 
w = 

mv Va 
i+fz£!i w'T' (11.39) 

which implies for Fc 

wp +w p 
ma wPv — 

—Pc + 
wT 7~T 
— - p c + w p c 

T 

(11.40) 

For water vapour pc = pD, and eq. 11.40 can be rewritten as 

F„ = 
+ mvVa 

\ J 

w pv + -—wT 
T 

(H.41) 

The Webb-correction applicable to open path sensors can be as large as several tens of percents, 
depending on the sensible heat flux density. Leuning and Moncreiff (1990) show that the Webb-
correction for a closed- path system as the LICOR6262 is limited to a few percent by bringing the 
sampled air to a common temperature. By this procedure a major part of the correction associated 

with the sensible heat flux density (equal to ( l / T ) p c t u T ) vanishes. This gives 

ma ™Pv — 
^ P c 

Plmv 

wT T1 
——pc+wpc 

T 

(11.42) 

and 

1 + ™ a P ç 

K* mvP~a 
w'pv 

(11.43) 

for the LICOR6262 C 0 2 and water vapour flux, respectively. However, an extra correction accounting 
for the different temperature and air pressure in the chamber compared to outside conditions has to 
be introduced. This correction is automatically carried out by the LICOR device. 

LICOR signal delay 
The closed path LICOR6262 sensor detects gas concentrations in air, after a transport through a 
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sampling tube. This transport takes some time (in the order of 2 s for 4 m tube). For the EFEDA-II data 
the delayed signals of pv and pc measured by the UCOR626 device were shifted in time. The time 

interval was defined as the time delay for which the covariances pvTson and p e r were maximal 
(McMillen, 1988). 

Oxygen absorption by Lyman-a and Krypton 
The instrument response of the Lyman-a and Krypton humidiometers, given by eq. 2.5, is based 

on the assumption that water vapour is the only gas absorbing light at the monochromatic 
wavelength being detected. However, in practice some other gases (in particular oxygen and ozone) 
are not entirely transparent at the Lyman-a and Krypton wavelengths. Particularly the contribution 
of oxygen is of interest, as it is present in much higher concentrations than water vapour. For the 
present analysis we ignore other gases than oxygen. 

A more general formulation of eq. 2.5 includes the contribution of other gases to light 
absorption: 

1 = IOeXP-dsE-T-
PiO 

(11.44) 

where ^ is an absorption coefficient of gas i at standard pressure, and the received light is assumed to 
be monochromatic. The humidity fluctuations pv' measured by a Lyman-a or Krypton can be 
expressed as function of the signal fluctuations linearized around the mean signal (see section 2.2.4). 
Then it can be shown that 

''"iTr-T'' (IL45) 

dkvI
 kv 

where the subscript o refers to the oxygen concentration and absorption coefficient. Referring to eq. 
11.37, the oxygen concentration fluctuations can be approximated by 

r0 o 

where C0 is the relative concentration of oxygen (21%) and m0 its molecular weight. This yields for 
the latent heat flux density an expression where the oxygen contamination is represented by a 
sensible heat flux density: 

-TT ITT ComoVK-rp m 4 - , 
W p „ = - + wT (11.47) 

" dkj RT2 K 
For a Krypton KH20 hygrometer kv = 0.143 and k0 = 0.0085. The absorption coefficients at 

Lyman-a are a little more favourable for the detection of water vapour: kv = 0.481 and k0 = 0.00049. 
All these coefficients are slightly temperature dependent. Only the value of k0 for the Krypton 
wavelength gives rise to carry out a correction according to eq. 11.47. 

Surface temperature and radiometer corrections 

• Surface temperature 
The radiometric surface temperature is obtained from the measurement of longwave radiation 

in the range 8 -14 urn emitted by a surface. The relationship between body temperature and 
measured radiation depends on the radiation frequency range and surface emissivity. The total 
radiation emitted by a black body of temperature T is given by oT% where a = 5.67 10"8 is the Stefan-
Bolzman constant. However, the radiation emitted in a limited frequency range deviates from this 
law, and can be approximated by a'r. Around X = 12 am 6 = 4, but for the range 8 -14 urn 
a = 1.25 10"9 and b = 4.5. 

In the longwave frequency range many surfaces don't behave as a black body. This implies that 
the total amount of emitted radiation is less than &F, and this is usually expressed using an effective 
emissivity e, defined as 
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Je(X) MxdX (11.48) 

rT4 

where M^ is the emittance of the body at wave length X. Most radiative temperature sensors include a 
correction for an emissivity < 1. However, downward radiation reaching a surface is partially 
reflected when e * 1, and observed by the radiation sensor. An expression for the correct surface 
temperature Ts as function of the measured value Ts m, and the surface emissivity assumed by the 
sensor £T is given by 

\l/b 

£TaTs
b
m-(l-t)Ltu (11.49) 

T. = 

where L%_14 is the downward radiation in the wave length length range 8 -14 \xm. For EFEDA-I we 
assumed e = 0.993 for the plants, 0.973 for the bare soil and 0.98 for the surface seen by the high 
sensor (Bolle and Streckenbach, 1992). The sensor emissivity was kept at unity for all sensors. L8.14 is 
usually not measured directly. Here, we used the semi-empirical expression developed by Idso 
(1981), reading 

^8-14 0.24 + 2.9810" 
i 2 
eflexp 

3000 a r : + 60 C (11.50) 

where ea is the vapour pressure at reference height, specified in mb, Ta the air temperature, and C the 
cloud cover. In practice, L 8.14 as given by eq. 11.50 is about 40% of the total incoming longwave 
radiation. 

• Obtaining temperature of separate surface components from cable temperature 
The temperature measured by the sensors running over the two horizontal cables were 

corrected for emissivity and reflection as indicated above. Moreover, some strategy was developed to 
derive the bare soil temperature, the plant temperature and a weighted average of these from their 
results. 

15 20 
distance (m) 

10 20 » 40 50 
frequency (%) 

70 80 90 100 

Figure II.9: Time series of surface temperature measurement from the low cable, DOY 163,14:10 GMT. Shown left is the 
observed temperature series, and right the cumulative frequency distribution. 

A common temperature signal measured by the low cable during daytime is shown in Figure 
II.9. The difference between the cool plants and warm soil is clearly seen. The cumulative frequency 
distribution is shown as well. For each time slot the average bare soil temperature was defined as the 
95% percentile value of this cumulative distribution. A percentile value < 100% was chosen, in order 
to ignore incidental high extremes. The exact choice of the percentile value is rather insignificant for 
the bare soil temperature, as can be seen from Figure II.9. The cool end of the distribution shows a 
much steeper slope, caused by the partial transparency of the plants. A quite arbitrary 5% percentile 
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value was chosen as to define the plant temperature of the sample. 
A weighted average of the surface temperature was found by relating each temperature reading 

from Figure n.9 to an effective area. From a set of figures equivalent to Figure n.9 an estimation was 
made of the position and radius of the plants underneath the cable. These dimensions were found 
around day 20, and plant growth was not taken into account. The effective area at of each 
measurement position within the radius of a plant was considered to be equal to half an arc with 
width equal to the distance between two measurements (see Figure n.10). Temperatures outside the 
radius of the plant were regarded to be representative for the bare soil area between the plants and 
equally weighted. The average surface temperature Tsur was thus defined by 

EV T = 
sur E«, 

(11.51) 

sensor 
line 

Figure n.10: Schematic representation of representative area per surface temperature sample, indicated by the heavy 
dots on the sensor line. The shaded plant area represents the area a, representative for the measurement point 
indicated by the arrow. The lowest panel shows a schematic record of the measured surface temperature 

• Shading of incoming shortwave and diffuse radiometer 
The incoming radiation sensor applied in EFEDA-II was shaded by the mast early in the morning. 

Data in the time slots where this occured were replaced by linear interpolations of the neighbouring 
time slots. Due to the virtual absence of clouds at all days this procedure could be applied safely, and 
was estimated to give an error of less than 5%, valid for low values of K . The sensor detecting 
reflected shortwave radiation in this experiment received a considerable amount of radiation 
reflected by the mast at about 15 GMT each day. This was corrected for by reducing K at this time by 
a fixed percentage, which was also obtained from the interpolation of neighbouring time slots, 
measured at several cloud-free days spread over the whole period. 

The diffuse radiation was increased by 12% to account for the hemispherical radiation blocked 
by the shadow ring, following the instructions in the shadowring manual. 

• Difference between longwave and shortwave sensitivity of net radiometers 
The longwave radiation measured by the allwave Schülze-Däke sensor applied in EFEDA-II can 

be corrected for the difference of sensor sensitivity to short- and longwave radiation. When the 
incident shortwave radiation is known (measured separately) the corrected longwave radiation is 
given by 

xtV-
*•! 1 4 (11.52) 

where V is the voltage measured, xl and xs the gains for longwave and shortwave radiation 
respectively, and zb the body emissivity, which is assumed to be unity here. 
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4 Soil heat flux density corrections 

The soil heat flux density measured using soil heat flux plates is subject to three major sources 
of error: a non-ideal heat transfer to and through the plate, heat storage in the soil layer above the 
plate, and ignoring energy transported across the heat flux plate as latent heat. 

Non-ideal heat transfer is associated with a poor contact between the soil plate and the 
surrounding medium, and a difference between the heat conductivity of the plate and that of the soil. 
A correction factor c^ for the conductivity difference is given by (Philip, 1961) 

= 1 -OL 
V 

1 V M , 
1- — (11.53) 

where cc is a factor depending on the shape of the heat flux plate (equal to 0.57t(8/37t) = 1.70 for 
circular plates), à the thickness of the plate (= 4 mm) and A the areal surface (177 cm2). The soil heat 
conductivity XT was estimated as discussed in section 2.2.5. The conductivity of the plates X was 
given by the manufacturer. No correction was carried out to account for the poor contact between the 
sensor and the soil. 

The heat storage above the plates was computed similar to the determination of the soil heat 
flux density by the caloric method (eq. 2.18), where obviously only the change of heat content in the 
layer between the surface and the installation depth of the sensors is considered. This correction can 
modify the measured fluxes by more than 100 W/m 2 . 

For the soil heat flux density computed from the caloric method the temperature rise at the 
deepest level gives rise to uncertainties in the calculated fluxes. The temperature at 50 cm showed a 
significant rise during the measurement campaign, and the zero-flux condition at the lower boundary 
is thus not met. Since no direct measurement of the soil heat flux density at a depth of 50 cm were 
carried out, no correction could be applied for this. 

For each layer and each measuring day p'Ch was computed using eq. 2.21. For practical 
purposes the value of p'Ch linearly increased with depth from 10 cm onwards. Also, a linear 
regression was carried out to account for the temporal change at all levels (see section 2.4.4 for 
details). 

Upward latent heat transfer across the plate may lead to an overestimation of G. This transfer 
may take place when evaporation occurs below the heat flux plate (Mayocchi and Bristow, 1995). This 
effect was ignored in the present study. 
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Appendix III: The bulk leaf 
boundary-layer resistance 

The leaf boundary-layer resistance rb is the resistance encountered by a scalar when it is 
transported from the leaf to the ambient air, or the other way round. The resistance describes the 
transport through a thin laminar sublayer immediately surrounding the leaf. This layer is an internal 
boundary layer, caused by the wind blowing over the leaf. The thickness of this layer therefore 
depends on the drag forces exerted on the leaf (wind speed) and on the typical size of the leaf. For 
small leaves, the laminar boundary layer has no chance to develop when the leaf is exposed to wind, 
and the leaf boundary resistance will therefore be smaller. In general the leaf boundary resistance is 
given by the semi-empirical expression 

lw III.l 
ru=a 

N "(z) 

The coefficient a is not dimensionless, and holds for lw expressed in m and u in m / s . 
The coefficient is obtained by analysis of dimensionless quantities governing the flow through 

the laminar sublayer surrounding the leaf. It is valid under the following assumptions: 
• the flow in a small layer just over the leaf is laminar. Then the Nusselt number Nu, which 

defines the ratio of the thickness of the laminar sublayer 8 to the characteristic size of the leaf lm, 
is a function of the square root of the Reynolds number Re, defined by u lw/v, with v the 
kinematic molecular viscosity 

• the temperature is uniformly distributed over the leaf. In this case, Nu can be expressed 
according to 

Nu = !l= 0.66 Pr033 Re05 «"-2) 
5 

where Pr is the Prandtl number, defined by the ratio of the viscosity and thermal diffusivity of 
dry air (equal to ± 0.71) 

• the exchange of heat occurs at two sides of a leaf 
• an excess conductance is caused by buoyancy effects and extra generation of turbulence at the 

curled edge of the leaf, causing an increase of the coefficient in eq. III.2 to ± 1.08. 
• no additional corrections are applied to account for mutual sheltering by leaves (see section 

3.2.3) 

Under these assumptions eq. III.l can be obtained by solving the equation 

H _ Pcp _ K 
AT " r , L 

f \ 

!i 
5 

V / 

(III.3) 

where Xa is the thermal conductivity of air. 
The total resistance of a layer of leaves is inversely proportional to the total leaf area in that 

layer dL, expressed by 

rAdl) - 1 . <I"-4> 
bK ' dL 

The leaf boundary resistance will generally be a function of height, due to the dependence on dL and 
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M(Z). Therefore, in cases where a vertical canopy has to be condensed to a virtual source at a single 
level, a proper vertical average value for rb must be obtained. This averaging procedure is quite 
straightforward for cases where profiles of u(z) and dL are known. In that case the total boundary 
resistance valid for a canopy is obtained by an inversed addition of all resistances in each layer, when 
these resistances may be thought to be connected in parallel. For infinitly thin layers, the bulk leaf 
boundary-layer layer resistance ra

c is given by 

(III.5) 

LAI 

where LAD(z) is the leaf area density at height z. The integral is taken over height z rather than over 
total leaf area LAI, to express the functional dependence of rfc on u(z). 

For larger scale approximations the detailed information about LAD(z) and w(z) is generally not 
available. Therefore, some approximation to eq. III.5 is required. Here, the integrated resistance is 
computed for a large range of canopy structures and wind profiles. The computed resistances are 
then expressed in terms of the parameters which are assumed available, i.e. the friction velocity u„ 
the characteristic leaf size lw, and the total leaf area LAI. 

The within canopy wind profile is assumed to obey an exponential decay: 

u(z) = u(h)exp z 
-«„ — 

"h 

(III.6) 

where u(h) is the wind speed at canopy height h, and au is an extinction coefficient, depending on the 
canopy structure, plant spacing etc. A value of 2.5 - 3 is often taken for agricultural crops. The wind 
speed at z = h is evaluated using the adiabatic logarithmic wind profile: 

u(h) = In 
K 

h-d 

'Om 

(III.7) 

In order to give a general expression for eq. III.5, d and z0m are assumed to be a fixed portion of the 
canopy height, i.e., d/h = 0.63, and z^/h = 0.13. 

The distribution of leaves with height was simulated using a Beta-distribution, given by 

ß(x) '"T" '-X? n ~ l V ' <p*q-l)\jf-1(l-xf (III.8) 
(p -!)!(<?-!)! 

in which two integer parameters p and q determine the shape and the value of x where ß(x) is 
maximum. The Beta-distribution resembles the Poisson distribution, but its integrated value in the 
range [0 -1 ] is always unity. 

Eq. III.5 was evaluated with a great range of parameters. The friction velocity u, varied from 
0.05 to 0.8 m / s , LAI from 0.1 to 3.5, lw from 0.01 to 0.2 m, and a„ from 1.5 to 3.5. The Beta-distribution 
was varied using p = 2,4 and 6, and keeping q constant at 2. p = 2 corresponds to an almost 
hemispherical distribution with the maximum leaf area at z/h = 0.5, whereas p = 6 shows a maximum 
LAI at z/h = 0.83. A total of 432 cases was surveyed. 

The best fit of this sample on eq. III.l was obtained by adopting 

97 
•\J u* 

(IH.9) 

LAI 

For the set of variables used here the correlation coefficient was 0.95. 
The formulation corresponds best with p = 4 and au = 2.5. For p = 2 eq. III.9 underestimates the 

analytical integration by ± 12%, whereas for p = 6 it is overestimated by this amount. For the latter 
case the integrated resistance is reduced by the convolution of high leaf area densities and high wind 
speeds near the top of the canopy. When the different leaf area distributions are distinguished, and 
the factor preceding eq. III.9 is changed accordingly, the correlation coefficient is as large as 0.999 for 
all cases. 
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Appendix IV: The 
photosynthesis model at the 
leaf scale and calculation of 
ambient conditions 

Using eq. 3.33 the leaf stomatal conductance for water vapour transfer, gs, can be defined as the 
ratio of net assimilation rate A„ and concentration difference C„ - C,: 

i< A" (IV.l) 
C -C 

provided that the cuticular conductance can be ignored, as was assumed here. Additional models for 
An and Ct/Cs are necessary to complete eq. IV.l. 

At low radiation levels the net assimilation rate An can be regarded as a linear function of the 
light intensity: 

\-*ih-*i (IV-2) 

where la is the intensity of the intercepted PAR, Rd the dark respiration and e, the initial quantum use 
efficiency. At high light intensities An approaches an asymptotic value, Am. In these conditions, the 
C02-concentration is the limiting factor for photosynthesis. An empirical asymptotic exponential 
function, as proposed by Goudriaan et al. (1985), is used to describe An at both low and high light 
intensities, thereby including the limiting effect of both light and C0 2 : 

An^Am+Rd) P - e x P 
f -e,I. Ï 
A„+R, 

R ( I V - 3 ) 

Rd 

The initial quantum use efficiency e; is affected by photorespiration, and may be calculated as 
(Goudriaan et al., 1985) 

C - r 
e, = e 0 _ ! (IV.4) 
' ° c + 2 r 

where e0 is a maximum efficiency (= 0.017 mg/J PAR for C3 plants), and T is the C 0 2 compensation 
concentration, being the equilibrium C02-concentration which is achieved when an illuminated leaf 
is placed in a closed chamber. The gross assimilation is then balanced by the respiration processes, 
and net photosynthetic rate An will be zéro. T is mainly affected by the photorespiration and 
approaches 0 for C4 plants. For C3 plants under the current 02-concentration it depends mainly on 
leaf temperature T;. This dependence can be described using a Q10-response function, according to 
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T ( I V - 5 ) 

where T(25) is the value of T at T, = 25°C, equal to 45 umol/mol for C3 plants. Q10 is taken 1.5 for T. 
At low values of Cir Am is linearly related to the C02-concentration according to 

where gm is the mesophyll conductance. At higher values of Ct, Am is asymptotically bounded by a 
maximum rate, Am m a x , related to the ability of plants to allocate the products of the photosynthesis 
process. Am is taken as 

Am "Awn« H - « ? 
(-*»«:,-nï 
V 

A 

m,max 

(IV.7) 

An expression for Am m a x as function of leaf temperature applicable to Vitis Vinifera was 
expressed following Collatz et ah (1992), reading 

'T, -25 

A 

m,max 
j l + exp ( 0.3 (Tj - T,))} j l + exp ( 0.3(1, - T2))} 

where Am max{?5) = 2.2 mg/m 2s , Q1 0 = 2, and T3 and T2 are reference temperatures, taken in this 
study as 15 and 42°C, respectively (Jacobs, 1994). Rd is estimated as Am/9 (Van Heemst, 1986). 

The mesophyll conductance gm can be derived from the light saturated rate of photosynthesis. 
gm can be expressed using a function equivalent to eq. IV.8, with gm(25) = 2 mm/s , Q10 = 2, T3 = 0°C 
and T2 = 42°C, respectively (Jacobs, 1994). 

Goudriaan et ah (1985) observed a fairly conservative ratio of Ct/Cs. A slightly modified ratio,/, 
is used to compute Cs - Cf. 

C - r 
_ ! = f (IV.9) 
C-T J 

Note that using eq. IV.9 Ci/Cs -> 1 as An -> 0. ƒ may be fairly conservative, with a value of 0.7 for C3 
plants (Goudriaan et ah, 1985). 

Jacobs (1994) incorporated an effect of air humidity on gs by assuming t ha t / i s a linear function 
of the ambient humidity deficit, Ds: 

/ = /o 1 - ^ i (IV.10) 

where a minimum assimilation rate, corresponding to a situation where stomata are fully closed but 
C 0 2 is supplied through cuticular conductance, is ignored. For the present species, Jacobs (1994) 
found Dmax = 58.2 g /kg and f0 = 0.916. In this study the value o f /was not allowed to exceed a 
maximum value of 0.85, taking the average of the range 0.8 - 0.9 reported by Morison and Gifford 
(1983). The modification caused a typical maximum value of gs (full sunshine, leaf temperature 
below 35°C) to be about 20 m m / s rather than 30 mm/ s without constraint. This latter value is rather 
high compared to values reported by for instance Choudhury and Monteith (1986), which justifies 
this modification. The values of the calibration coefficients in eqs. 3.36 and 3.37 partially depend on 
the maximum value for ƒ 

According to eqs. IV.9 and IV.10, C, will never exceed Cs. This implies that application of eq. 
IV.10 together with eq. IV.l can yield negative conductance values, because An becomes negative as 
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Ia -* O due to dark respiration (see eq. IV.3). In practice the correlation between An and gs is difficult to 
establish under conditions of low assimilation rates, since the C02 concentration gradient will likely 
be very small. In this study gs was simply assumed to be zero when An < 0. 

The value of the specific humidity deficit at the leaf scale, D$, was obtained by extrapolating the 
deficit profile to a hypothetical source level at z ^ + d. A specific humidity at leaf level, qc, is obtained 
according to 

*£ = 9 .*f ('«•':) ( i v n ) 

where E is the measured evaporation rate above the canopy, ra given by ua/u,2, and ra
c parameterized 

according to eq. HL9. A humidity deficit was calculated separately for shaded and sunlit leaves, by 
taking the measured average leaf temperature in each light category to specify qsat. 

The amount of absorbed PAR, Ia, was calculated according to eqs. 3.39 and 3.40 for shaded and 
sunlit leaves, respectively. 
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Appendix V: Numerical aspects 
of the SVAT-models 

The computer program in which the coupled SVAT-PBL models were coded consisted of two 
modules: the PBL- and the SVAT-module. The coupling was carried out at the level zR, which united 
the lowest PBL-gridpoint and the reference height of the SVAT's. During each time step first the SVAT-
module computed the surface fluxes, followed by a calculation of the PBL-profiles and -height by the 
PBL-module, generating a new reference temperature, specific humidity and wind speed at zR. 

The SVAT-module contains various parameterizations, as outlined in section 4.1. This appendix 
describes the program flow of the SVAT-module, for each of the cases described in chapter 6. 

• The reference model 
The sequence of steps to solve the surface energy balance in the reference model closely follows 

the suggestions made by Deardorff (1978), and is as follows: 
1 specify the crop resistance, using environmental variables at canopy height of the previous 

timestep 
2 compute aerodynamic resistance above canopy (ra

a) and u. iteratively from ua and 6a - QQ, with 
6fl from the previous time- or iteration step. Calculate the aerodynamic resistance to the soil 
surface (rfl

s) and to the canopy surface (rfl
c) 

3 calculate qs 

4 compute new value of 80 and q0 

5 calculate leaf temperature 8„ specific humidity qc, and canopy evaporation fraction \ from 
radiative input and 90 and q 

6 update q0 and repeat step 5 until convergence of 6C 

7 calculate canopy and soil fluxes, and repeat from step 2 onwards until convergence of rj" 
8 compute a new value of w^ew 

9 calculate surface and deep soil temperature from G using the force-restore scheme 
10 calculate surface and deep soil moisture content from Ä£s and XEC using the force-restore 

scheme 

• The case 'big leaf' 
For the case Trig leaf' the program flow is slightly different than the reference model: 

1 as in the reference model 
2 calculate r" as in the reference model, but with 80 equal to the temperature extrapolated to z0m 

3 open Newton-Raphson iteration for Tsur according to 

Q , - G - p X — + Pcp ; 

T = Ty - —— (V.l) 
sur sur - N

 v ' 
-4eaT s

3„ r -2Cv^ 1 2JC . s (P/Pof286 

• P*- + pCp 

where T^ur = T$ur from the previous timestep, and C = p'C^dj. rQ, Q», G and C are given by eqs. 

4.4,4.7, 4.8 and 4.48, respectively. Use is made of the linearization of Tsur to 

4 ( 0 3 (Tsur - Tlur). estimating qsat(Tsur) by qJJ^ * s(Tsur - T^), and discretizing dTsur/dt 

a s ( T ( I 0 . - T f j / A i . 
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4 repeat steps 2 and 3 until convergence of ra° 
5 compute surface fluxes from final values of Tsur and r° 
6 calculate surface and deep soil temperature from G using the force-restore scheme 
7 calculate surface and deep soil moisture content from XE using the force-restore scheme, taking 

• The case 'isotherm' 
The numerical scheme in the case 'isotherm' resembles the 'big leaf' case, in that they both solve 

the energy balance equation for the surface temperature. The numerical scheme reads: 
1 as in the reference model 
2 specify the fraction of surface covered by the skin reservoir, C; 
3 calculate ra" as in the case T)ig leaf' 
4 solve for T$k by rewriting a modified version of eq. 4.15 in terms of Tsk, and linearizing Tsk*, 

dTsk/dt and s using Tsk from the previous time- or iteration step. The modification consists of 
replacing the expression for the soil heat flux (eq. 4.14) by the force-restore expressions, as 
applied in the case 'big leaf' (eq. 4.8). 

5 repeat steps 3 and 4 until convergence of H 
6 compute surface fluxes from final value of Ts)c and ra

a, using the explicit values of C; and oy 
7 calculate surface and deep soil temperature from G using the force-restore scheme 
8 calculate surface and deep soil moisture content from XES and XEC, using the force-restore 

scheme 

• The case '3 fracs' 
The case '3 fracs' is similar to the previous case, except that the skin temperature is established 

for each surface fraction separately. The final scheme is given by: 
1-2 as in the case 'isotherm' 
3-6 as in the case 'isotherm' by taking C( = 0 and oy = 0 (soil only) 
7 as 3-6 by taking C; = 0 and oy = 1 (vegetation only) 
8 as 3-6 by taking C; = 1 (skin reservoir only) 
9 compute the average surface fluxes Q,, H, XE and G by weighing the fluxes from steps 3-8 as in 

eq. 4.18 
10 calculate an average skin temperature and friction velocity according to the same procedure 
11 calculate surface and deep soil temperature from G using the force-restore scheme 
12 calculate surface and deep soil moisture content from XES and XEC, using the force-restore 

scheme 

• The case 'aero D78' 
The case 'aero D78' is almost equal to the reference case. The only difference is the formulation 

of ra
s and ra

c in step 2. 

• The case 'aero MH95' 
The numerical scheme in 'aero MH95' also resembles the reference model: 

1 as in the reference model 
2 compute u» from ua and a dimensionless far-field resistor, 9?n

fl. Since 9?a" corresponds to a 
reference height of 2h, it is not equal to the total resistance between z ^ and zR. An extra 
resistance including a stability correction "P^ is applied for the range between 2/J and zR: 

K 
In 

2h 
v / 

2h 

L. 
v 'J v ' /J 

(V.2) 

with Lv from the previous time step. This implies a stability correction between 2/i and zR, but 
not below 2h. Calculate the aerodynamic resistances ra", ra

c, ra
s and rn from a, and the 

dimensionless resistance coefficients. The resistances are equal for heat and moisture transfer, 
and ra

a and ra
s are computed using the flux partitioning of sensible heat. rn is incorporated by 

adding its value to ra
c 

3-10 as in the reference model 
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• The cases 'rc C 0 2 ' , 'rc VB95' and 'rc fix' 
The numerical sequence of the cases 'rc C0 2 ' , 'rc VB95' and 'rc fix' are equal to the reference 

model. The ambient conditions used to parameterize the crop resistances are taken from the previous 
times tep. 

• The case 'rc big C0 2 ' 
The case 'rc big C 0 2 ' is similar to the case 'big leaf'. The humidity deficit is evaluated using the 

specific humidity at z0m and the average surface temperature. 

• The case 'soil VB95' 
The case 'soil VB95' utilizes a similar numerical scheme as the reference model, except that the 

steps 9 and 10 are replaced by a solution of the diffusion equations for temperature and soil moisture: 
1-8 as in the reference model 
9 calculate a new soil temperature profile using a locally implicit scheme (Viterbo and Beljaars, 

1995). The diffusion equation (eq. 4.9) is discretized as 

n*\ n 

n / r ' ' °u>~0;,f (v.3) 
p C " — I t — - - — ; — 

in which i indicates the spatial coordinate and n the time level. G, ( and Gi b are the heat fluxes at 
the top and bottom of soil layer i, respectively, discretized as 

(V.4) 

(V.5) 

G u -
',b 

G , -
'/' 

*T,i+l/2 

"*T,!-l/2 

0 . 5 ( Z / + z M ) 

T"*1 -Tn 

DC Cr. . 4-r.l 

For XT the 'upstream' values are used (see section 4.1.2) 
10 calculate C; 

11 specify the root extraction and surface infiltration rate 
12 calculate the new soil moisture profile from eq. 4.11 using a global semi-implicit scheme 

(Viterbo and Beljaars, 1995): 

n+l n _* » 
^i ~Wi _ ti*\/2-ti-l/2 n e (V.6) 

" ; + Pjo!'<a,i At 

where the moisture fluxes F are given by 

i"i+l/2 = 'P^H,M/2a5 (2 j+Z j t i )-VH,Hl/2 
(V.7) 

and the moisture content is made implicit by 

CO; = 1.5(0,- + ( 1 - 1 . 5 ) 0 ) , l v - ° ' 

• The case 'soil rs
s' 

The program flow in the case 'soil rs
s' is similar to the reference model. The relative humidity at 

the soil surface is specified by eq. 4.83, and the specification of q0 (equivalent to eq. 4.56) is carried out 
be replacing ra

s by ra
s + rs

s. 
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• The case 'soil CM88' 
In the case 'soil CM88' the entire surface flux partitioning is calculated using the scheme of 

Choudhury and Monteith (1988). No iterations are included: 
1 as in the reference case 
2 calculate the soil evaporation resistance rs

s according to eq. 4.82 
3 calculate ra" and u. according to Louis (1979), and ra

s and ra
c as in the reference model 

4 specify Q,^ and Q.c using the exponential decay (eq. 4.65) 
5 solve the temperature and humidity at the soil surface, canopy surface and canopy air layer 

with the forcings at reference height, and the specified resistance and net radiation values 
6 calculate surface energy balance components and update iuiem 

7 calculate new deep soil temperature 
8 compute soil moisture content in top layer and bottom layer using force-restore 
9 calculate new depth of upper soil layer 
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Appendix VI: Values of surface 
and boundary layer parameters, 
calculated with the reference 
SVAT coupled to the PBL-model 

This appendix includes the absolute values of the quantities calculated by the reference runs 
that were analysed in chapter 6, and listed in Table 6.6. For the seven surface types listed in Table 6.2, 
the daytime surface and entrainment fluxes, and the PBL-height, temperature and specific humidity at 
specific times are listed in Table VI.l for the MLS initialization, and in Table VI.2 for DRY. 

Table VI.3 lists the reference values in case of the simulation of EFEDA-observations, for which 
the measured surface fluxes were taken as reference. Also shown are the values calculated using the 
reference SVAT coupled to the PBL-model. 

Table VI.l: Values of analyzed parameters calculated using the reference SVAT coupled to the PBL-model for the MLS 
initialization 

quantity 

Q.D(dayl74) 

HD (day 174) 

XED (day 174) 

GD (day 174) 

H,D (day 174) 

XEt
D (day 174) 

z,12 (day 174) 

z-18 (day 174) 

z,6 (day 175) 

W 8 (day 174) 

8„IS (day 174) 

B/"" (day 175) 

q18 (day 174) 

Hmin (day 175) 

units 

W/m2 

W/m2 

W/m2 

W/m2 

W/m2 

W/m2 

m 

m 

m 

mm 

°C 

°C 

g/kg 

g/kg 

vineyard 

319 

185 

37 

97 

-4 

154 

1268 

1796 

50 

-0.66 

29.9 

18.6 

9.5 

10.3 

vineyard 
o> = 0.4 

349 

166 

104 

78 

A 

166 

1262 

1712 

50 

-1.86 

19.6 

17.7 

10.2 

10.7 

vineyard 
oy=0.7 

366 

158 

148 

60 

-3 

182 

1268 

1691 

50 

-2.58 

29.5 

17.2 

10.7 

10.7 

vineyard 
a, = 1.0 

370 

151 

178 

42 

-5 

193 

1278 

1672 

50 

-3.12 

29.4 

17.2 

10.9 

10.8 

vineyard 
on clay 

315 

196 

55 

64 

•4 

173 

1365 

1873 

52 

-0.96 

30.1 

16.5 

9.5 

9.5 

tigerbush 

355 

200 

81 

73 

-4 

183 

1369 

1874 

52 

-1.44 

30.2 

17.0 

9.7 

10.4 

forest 

338 

187 

64 

87 

-3 

166 

1255 

1781 

50 

-1.14 

29.9 

16.5 

9.7 

10.2 
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Table VI.2: As Table VI.l, for the DRY initialization 

quantity 

Q.D (day 174) 

HD (day 174) 

\ED (day 174) 

GD (day 174) 

HP (day 174) 

XE,D (day 174) 

z,]2 (day 174) 

z,18 (day 174) 

z,6 (day 175) 

AoM (day 174) 

e,1« (day 174) 

8/11'" (day 175) 

cfe (day 174) 

cf'n (day 175) 

units 

W/m2 

W/m2 

W/m2 

W/m2 

W/m2 

W/m2 

m 

m 

m 

mm 

°C 

°C 

g/kg 

g/kg 

vineyard 

291 

129 

57 

105 

-4 

43 

1195 

1651 

50 

-1.02 

32.5 

17.5 

4.7 

6.6 

vineyard 
af=0.4 

325 

99 

139 

87 

-5 

82 

1122 

1495 

50 

-2.46 

31.9 

17.2 

5.6 

8.8 

vineyard 
a, = 0.7 

346 

84 

194 

68 

-6 

108 

1107 

1434 

50 

-3.42 

31.6 

17.2 

6.2 

9.6 

vineyard 
of =1.0 

352 

74 

230 

49 

-7 

128 

1095 

1380 

50 

-4.08 

31.5 

17.3 

6.7 

10.1 

vineyard 
on clay 

302 

112 

128 

62 

-3 

59 

1215 

1572 

50 

-2.28 

32.2 

15.3 

5.4 

6.8 

tigerbush 

326 

123 

118 

85 

-5 

79 

1218 

1639 

50 

-2.10 

32.4 

15.8 

5.2 

8.4 

forest 

310 

117 

97 

96 

-4 

63 

1125 

1559 

50 

-1.74 

32.2 

15.3 

5.1 

8.1 

Table VI.3: Values of analyzed parameters from the observations and 
calculated using the reference SVAT for the data simulation run 

quantity 

Q,D(dayl74) 

HD (day 174) 

XED (day 174) 

GD (day 174) 

HP (day 174) 

XEt
D (day 174) 

z,12 (day 174) 

z,M (day 174) 

z,6 (day 175) 

Am18 (day 174) 

e„]s (day 174) 

8„""" (day 175) 

qW (day 174) 

ami" (day 175) 

units 

W/m2 

W/m2 

W/m2 

W/m2 

W/m2 

W/m2 

m 

m 

m 

mm 

°C 

°c 

g/kg 

g/kg 

from 
observations 

325 

170 

75 

86 

-16 

126 

2782 

3185 

72 

-
37.4 

21.9 

5.1 

3.3 

from 
reference SVAT 

347 

186 

58 

104 

-11 

139 

2498 

3187 

55 

-1.02 

37.4 

20.7 

5.0 

7.4 
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Samenvatting 

Modellen voor niet-gesloten vegetaties voor meteorologische toepassingen 

• Probleemstelling en afbakening 

Voor de voorspelling van het weer in de nabije toekomst, en het aardse klimaat in de 

verdere toekomst, zijn grootschalige meteorologische modellen ontwikkeld. Deze 

beschrijven voor de hele atmosfeer de huishouding van warmte, vocht, straling en andere 

grootheden. Verschillende studies met weer- en klimaatmodellen hebben aangetoond dat de 

resultaten gevoelig zijn voor de beschrijving van de uitwisseling van warmte, waterdamp en 

impuls tussen de atmosfeer en het landoppervlak. Een verandering van bijvoorbeeld de 

albedo, het bodemvochtgehalte, de aerodynamische ruwheid of de aanwezige vegetatie 

levert grote veranderingen op in klimaatvoorspellingen. De toepassing van verschillende 

landoppervlak-modellen is één van de redenen dat klimaatvoorspellingen onderling sterk 

van elkaar kunnen verschillen. Het is duidelijk dat een realistische beschrijving van 

landoppervlak-processen van belang is. 

Minder duidelijk is hoe realistisch landoppervlak-modellen moeten zijn, en welke 

mate van detail ze moeten bevatten. Erg gedetailleerde modellen geven wellicht 

nauwkeuriger voorspellingen, maar zijn in de praktijk moeilijk toepasbaar vanwege de grote 

hoeveelheid benodigde rekentijd en invoerinformatie. Er moet een keuze worden gemaakt 

die een optimum biedt tussen complexiteit en nauwkeurigheid enerzijds, en eenvoud en 

onnauwkeurigheid anderzijds. 

Er zijn een groot aantal landoppervlak-modellen in omloop, ontwikkeld voor diverse 

toepassingen, en met verschillende onderliggende fysische uitgangspunten. Voor gebruik 

van een landoppervlak-model in grootschalige meteorologische toepassingen moet het een 

groot aantal verschillende typen oppervlak kunnen beschrijven. Aanvankelijke waren alleen 

modellen beschikbaar voor een relatief eenvoudig, homogeen oppervlak, maar in de loop 

der jaren zijn verschillende modellen ontwikkeld die ook complexere typen oppervlak aan 

kunnen. Tot zo'n type oppervlak behoort een vegetatie die de grond slechts gedeeltelijk 

bedekt, een zogenaamd niet-gesloten gewas. Dit type vegetatie komt met name voor in semi-

aride, droge streken, waar water een beperkende factor is voor plantengroei. Modellen voor 

niet-gesloten gewassen maken onderscheid tussen de planten en de onderliggende kale 

grond. Voor elk van deze componenten wordt apart uitgerekend hoeveel warmte of 

waterdamp wordt uitgewisseld met de atmosfeer. 

Landoppervlak-modellen — en zeker die voor niet-gesloten vegetaties — beschrijven 

een groot aantal processen. Ze beschouwen de hoeveelheid energie die het oppervlak 

ontvangt in de vorm van straling, en berekenen de opwarming van de bodem en de lucht, 

verdamping door planten en door de bodem, en de verandering van de vochttoestand van 

de bodem. Al deze processen hangen met elkaar samen, en veranderingen aan een enkel 

onderdeel van een model kunnen gevolgen hebben voor andere componenten. Doordat de 
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verschillende modellen gebaseerd zijn op verschillende uitgangspunten zijn de voorspel

lingen verre van eenduidig. De vraag doet zich voor welke processen en grootheden het 

warmte- en watertransport boven land het sterkst bepalen, en dus de meeste invloed hebben 

op de toestand van de atmosfeer. 

Bepalend voor deze keuze is de mate waarin de atmosfeer reageert op de 

beschrijving van het landoppervlak. De onderste, turbulente laag van de atmosfeer (de 

planetaire of atmosferische grenslaag, met een totale dikte van 0.5 à 3 km) heeft de 

eigenschap om snel te reageren op veranderingen van het oppervlak. Tegelijkertijd worden 

de transport-processen aan het oppervlak mede bepaald door de toestand van de atmosfeer. 

Hierdoor ontstaat een terugkoppeling, die veranderingen kan versterken (positieve 

terugkoppeling) of verzwakken (negatieve terugkoppeling). Hoe de atmosfeer reageert op 

het landoppervlak wordt dus mede bepaald door deze terugkoppeling. 

In dit proefschrift wordt een studie uitgevoerd waarin verschillende landoppervlak-

modellen met elkaar worden vergeleken, en gekeken wordt naar de veranderingen die de 

atmosferische grenslaag ondervindt als gevolg van een verandering van de beschrijving van 

het landoppervlak. Hierbij zijn een aantal accenten gelegd: 

(1) Een eerste nadruk ligt op een beschouwing van uitwisselingsprocessen boven een niet-

gesloten vegetatie. Zo'n oppervlak heeft relatief uitgesproken eigenschappen op het 

gebied van stralingshuishouding, aërodynamica en transport van warmte en 

waterdamp. Op het moment dat deze studie begon was met name over de 

modellering van niet-gesloten gewassen relatief weinig bekend. Dit type oppervlak 

komt echter op grote schaal voor op aarde, en dit vormde een extra aanleiding om 

ons met dit type oppervlak bezig te houden. 

(2) De tweede nadruk ligt op de fysische benadering van uitwisselingsprocessen door de 

diverse modellen. Er wordt gekeken naar de mate waarin de grenslaag reageert op 

verschillende modellen die één enkel type oppervlak beschrijven, en niet op 

verschillende oppervlakken die met één enkel model worden gesimuleerd. 

(3) Nadruk nummer drie is de validatie van modellen door waarnemingen, die bij een niet-

gesloten gewas zijn verricht. Deze waarnemingen worden verder ook gebruikt om 

modellen te ijken, en om als begintoestand en randvoorwaarde te dienen bij de 

modelsimulaties. 

(4) Tenslotte beschouwt deze studie alleen vertikale uitwisselingsprocessen. Simulaties worden 

uitgevoerd met behulp van één-dimensionale modellen. 

• De metingen 

In twee zomers in 1991 en 1994 zijn metingen uitgevoerd bij een niet-gesloten 

wijngaard in La Mancha, Spanje. De metingen vonden plaats in het kader van een groot 

internationaal, deels door de EG gefinancierd project, genaamd EFEDA. 

In Juni 1991 verrichtte de vakgroep Meteorologie van de Landbouwuniversiteit 

Wageningen micrometeorologische waarnemingen in een uitgestrekte wijngaard nabij 

Tomelloso, circa 100 km ten zuid-oosten van Madrid. Dit betrof metingen van straling, 

luchttemperatuur en -vochtigheid, windsnelheid, en het transport van warmte en 

waterdamp, zowel in de grond als in de lucht. Tegelijkertijd werd de aanwezige vegetatie 

gedetailleerd in kaart gebracht: afmetingen, hoeveelheid bladoppervlak en met vegetatie 
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bedekte grond, en het verdampingsgedrag van de planten zijn uitvoerig vastgelegd. Tijdens 

de meetperiode werd het weer gekenmerkt door een vrijwel continue afwezigheid van 

regen. De temperatuur van de (droge) lucht liep gemiddeld op tot circa 35 °C. Verder 

groeide de vegetatie sterk. Hierdoor werd het terrein ruwer, en nam de verdamping 

enigszins toe. De planten wortelden diep genoeg om water uit diepe grondlagen te 

onttrekken. De bodem droogde langzaam maar zeker uit. Op het verdampingsgedrag van 

de planten, en op de stralingseigenschappen van het oppervlak wordt later teruggekomen. 

Gedurende deze campagne werden door collega's van het Franse Centre National de 

Récherche Météorologique (CNRM) uit Toulouse metingen gedaan aan de toestand van de 

atmosferische grenslaag, door middel van een temperatuur- en vochtsensor die aan een 

stijgende ballon waren bevestigd. De gegevens van deze ballon-oplatingen zijn in dit 

proefschrift gebruikt. 

Tijdens de tweede meetcampagne werden metingen verricht over een langere 

periode, Juni en Juli 1994. Deze meetcampagne was het resultaat van een intensieve 

samenwerking met het Staring Centrum in Wageningen, en de Universiteit van 

Kopenhagen. De vegetatiemetingen werden sterk geïntensiveerd, en ook is het transport van 

C 0 2 gemeten. De waarnemingen werden op een soortgelijk veld gedaan als in 1991, maar de 

planten waren wat jonger en hadden een kleinere hoeveelheid bladoppervlak. Het was nog 

wat warmer en droger dan in 1991, en behalve de afwezigheid van regen werden er ook 

nauwelijks wolken gesignaleerd gedurende de meeste dagen. Vooral de vegetatiemetingen 

die in 1994 zijn verricht zijn voor deze studie gebruikt. 

• Nadere beschouwing van een aantal uitwisselingsprocessen voor niet-gesloten 

vegetaties 
Een aantal aspecten van de uitwisseling van warmte en waterdamp bij een niet-

gesloten gewas zijn nader bekeken, aan de hand van zowel theoretische analyse als van 

metingen: aerodynamische uitwisseling, reflectie van kortgolvige straling, en de 

zogenaamde gewasweerstand. 

In eenvoudige meteorologische modellen wordt transport doorgaans beschreven aan 

de hand van transportweerstanden. Deze zijn een maat voor de efficiëntie waarmee een 

grootheid (bijvoorbeeld warmte) wordt getransporteerd over een gradient van die grootheid 

(temperatuur). Meestal wordt verondersteld dat de fluxdichtheid (hoeveelheid getranspor

teerde grootheid per eenheid oppervlak per eenheid tijd) recht evenredig is met de lokale 

gradient en een uitwisselingscoefficient. Deze theorie wordt aangeduid als K-theorie. In 

sommige gevallen (zoals binnen gewassen) geldt de .K-theorie niet, en moeten meer 

geavanceerde modellen worden gebruikt om de fluxdichtheid te beschrijven, zoals 

bijvoorbeeld zogenaamde Lagrangiaanse modellen. Deze modellen berekenen het transport 

van een grootheid door de trajectoriën van een groot aantal deeltjes te volgen, en nemen 

derhalve veel rekentijd in beslag. In deze studie is een vereenvoudiging van een 

Lagrangiaans model ontwikkeld voor toepassing in een twee-component landoppervlak

model, waaronder een model voor niet-gesloten gewassen. Een extra weerstand, een 

zogenaamde near-field weerstand, is geïntroduceerd. Een gevoeligheidsanalyse toont aan, dat 

onder de meeste omstandigheden het gebruik van K-theorie nauwelijks afwijkende 

resultaten geeft ten opzichte van deze (vereenvoudigde) Lagrangiaanse theorie. 
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Verder is de Lagrangiaanse theorie gebruikt om nieuwe transportweerstanden in een 

twee-componenten-model te definieren, zonder — in tegenstelling tot de huidige praktijk — 

aannames te doen over een effectieve bronhoogte. Met name voor niet-gesloten gewassen is 

de aanname, dat de bron voor warmte en waterdamp zich op één enkele effectieve hoogte 

bevindt, dubieus: waterdamp wordt vooral geëmitteerd door de aanwezige planten, terwijl 

de bron voor warmte zich bevindt aan het oppervlak van de kale grond. In deze studie 

wordt een wegingsprocedure voorgesteld die de transportweerstanden definieert als functie 

van de vertikale verdeling van de bronnen. Opnieuw zijn gevoeligheidsstudies gedaan, en 

zijn de nieuw verkregen weerstanden vergeleken met de waardes van traditionele modellen, 

verkregen met JC-theorie. De voornaamste conclusies die hieruit voortkwamen zijn, dat de 

'Lagrangiaanse' weerstanden over het algemeen kleiner zijn dan de traditionele weer

standen, en dat de verschillen met de K-theorie modellen aanzienlijk zijn. Dit laatste wordt 

met name veroorzaakt door gebrek aan kennis over turbulentie vlak bij de grond. 

De stralingswaarnemingen uit 1991 zijn gebruikt om de reflectie-eigenschappen van een 

niet-gesloten gewas te beschrijven. Via een literatuur-onderzoek zijn de voornaamste aspecten 

die de reflectie van kortgolvige straling (kortweg: albedo) bepalen op een rij gezet. Voor kale 

grond wordt de albedo bepaald door de hoeveelheid bodemvocht in de bovenste laag, de 

ruwheid van het oppervlak, het gehalte aan organisch materiaal en ijzer, en de stand van de 

zon. Voor gesloten gewassen spelen met name de bladhoekverdeling, de hoeveelheid 

bladoppervlak per eenheid grond-oppervlak (de Leaf Aera Index of LAI), de zonshoogte en 

de reflectie-eigenschappen van de bladeren en de onderliggende grond een rol. Voor niet-

gesloten gewassen wordt de albedo door beide componenten bepaald, maar spelen ook 

afstand tussen en afmetingen van de planten, en beschaduwing van de grond mee. Met 

behulp van een aantal empirische vergelijkingen zijn de waarnemingen gefit. De dagelijkse 

gang van de albedo vertoonde voornamelijk veranderingen bij lage zonshoogten. De 

veranderingen over de hele maand werden veroorzaakt door twee tegenwerkende aspecten: 

een verhoging van de albedo door uitdrogende grond, en een verlaging door toenemende 

vegetatie. Hierdoor bleef voor een bepaalde positie de albedo redelijk gelijkmatig. 

Bovendien zijn multi-spectrale satelliet-gegevens gebruikt om de horizontale spreiding van 

de albedo in kaart te brengen. Het bleek dat deze horizontale spreiding veel groter was dan 

de verandering in de tijd, zowel op een tijdschaal van een dag als die van de hele maand. 

Een ander aspect dat in detail is bekeken is de zogenaamde gewasweerstand, een maat 

voor de openingstoestand van de huidmondjes van planten. Een hoge weerstand correspon

deert met gesloten huidmondjes, en een lage evapotranspiratie. Met behulp van gegevens 

uit 1991 heeft Jacobs (1994) een model voor de huidmondjesweerstand ontwikkeld dat 

gebaseerd is op de modellering van de fotosynthese van planten. De fotosynthese 

veroorzaakt een transport van C0 2 via diezelfde huidmondjes. Door dit transport te 

beschrijven met een fotosynthese-model kan de huidmondjesweerstand afgeleid worden. In 

dit proefschrift is dit model opgeschaald naar gewasniveau, en getest met behulp van 1994-

data. Het bleek dat de waarnemingen, opgeschaald naar gewasniveau, redelijk goed werden 

beschreven met het door Jacobs (1994) ontwikkelde model, en ook dat de ijking die in 1991 

was uitgevoerd goed bruikbaar was voor het nieuwe gewas. De prestaties van het model 

lijken zelfs beter dan die van een veel toegepast model, dat gebaseerd is op een statistische 

correlatie van de gewasweerstand met omgevingsfactoren. Vergelijking met soortgelijke 
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waarnemingen uit de literatuur lieten zien dat de Spaanse wijnplanten een sterke 

gevoeligheid voor de atmosferisch vochtigheid vertoonden, die waarschijnlijk gunstig is 

onder droge omstandigheden. 

• Modelsimulaties 

De rest van dit proefschrift is gewijd aan modelsimulaties. Allereerst wordt een 

beschrijving gegeven van de bestaande landoppervlak-modellen die in de vergelijkingen 

zijn opgenomen. De eerste is het zogenaamde 'big leaf' model (Monteith, 1965), dat het land

oppervlak beschouwt als één enkel groot blad met een uniforme temperatuur en gewas

weerstand. Het tweede model is een variatie daarop, en beschouwt het landoppervlak als 

een isotherme laag met daarin verschillende componenten: een fractie gevormd door kale 

grond, een fractie vegetatie, en een fractie open water voor de beschrijving van dauw en 

neerslag-interceptie (Viterbo en Beljaars, 1995; afgekort als VB95). Het derde model is een 

nieuw ontwikkelde variant op het model van VB95. Het verschil met de oorspronkelijke 

versie is dat voor elke fractie een aparte energiebalans wordt opgelost, waardoor de fracties 

verschillende oppervlakte-temperaturen kunnen hebben. Deze variant is afzonderlijk getest 

voor twee niet-gesloten gewassen waarin de temperaturen van het gewas en de kale grond 

aanzienlijk kunnen verschillen. In de oude situatie werd de verdamping van de in 

werkelijkheid koelste component sterk overschat door een te hoge temperatuur. In de 

nieuwe situatie trad deze overschatting niet meer op. Het vierde model is het twee

component model van Deardorff (1978; hierna D78), waarin straling, aerodynamisch 

transport en temperatuur van de kale grond en de vegetatie apart wordt beschouwd. Het 

vijfde model is een variant op D78, maar heeft een meer geavanceerde beschrijving van de 

aerodynamische uitwisseling binnen het gewas (Choudhury and Monteith, 1988; CM88). 

Het gebruikte grenslaagmodel is dat van Troen en Mahrt (1986), waarin vertikaal 

transport wordt beschreven met behulp van een numeriek diffusieschema. Voor convectieve 

gevallen (overdag) zijn de diffusie-coefficienten ontleend aan Holtslag en Moeng (1991). Het 

model geeft een redelijke beschrijving van de groei en opwarming van de grenslaag 

overdag, het warmte- en vochttransport aan de top van de grenslaag, en de ontwikkeling 

van een nachtelijke stabiele grenslaag. 

• Modelsimulaties zonder grenslaageffecten 
Een eerste serie modelvergelijkingen werd uitgevoerd om het effect van de 

verschillende fysische uitgangspunten in de diverse modellen op de gesimuleerde flux-

dichtheden van warmte en waterdamp te testen, en aan te geven welk model de observaties 

van 1991 het beste beschreef. Hierbij werden alleen de twee component-modellen (VB95, D78 

en CM88) betrokken, en grenslaageffecten werden nog niet meegenomen. Waarnemingen op 

kleine hoogte (3 m) werden gebruikt als randvoorwaarde. Berekende fluxdichtheden van de 

drie modellen werden vergeleken met waarnemingen. Uit deze vergelijking konden een 

aantal duidelijke conclusies worden getrokken. 

Ten eerste blijkt de simulatie van de bodemwarmtestroom niet goed te worden 

uitgevoerd met een model dat de opslag van warmte in de bovenste bodemlaag negeert 

(CM88). Een model dat de bodemwarmtestroom simuleert door de oplossing van een 

diffusievergelijking (VB95) is vrij gevoelig voor de thermische eigenschappen die worden 
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opgelegd. Een derde 'force-restore' variant, een vereenvoudiging van het diffusie-model (in 

D78), bleek de beste resultaten op te leveren. 

Een tweede belangrijke conclusie is dat de kwaliteit van de voorspellingen sterk 

samenhangt met de beschrijving van de aerodynamische weerstand tussen waarnemings

hoogte en de kale grond-component van het oppervlak. Deze weerstand heeft een grote 

invloed op de temperatuur van de kale grond, en die is weer maatgevend voor processen als 

bodemverdamping, bodemwarmtestroom, opwarming van de lucht, en de temperatuur ter 

hoogte van het gewas. De weerstanden zoals gemodelleerd in CM88 gaven de beste 

resultaten, terwijl die in D78 veel te laag waren. 

Vervolgens bleken de verschillende beschrijvingen van de gewasweerstand tot grote 

verschillen in gesimuleerde verdamping te leiden. In zowel D78 als VB95 is die weerstand 

sterk afhankelijk van de hoeveelheid bodemvocht, en deze afhankelijkheid leidde tot té 

grote weerstanden en té lage verdampingen. 

Opgemerkt moet worden dat het vaak moeilijk is om een 'eerlijke' vergelijking uit te 

voeren. De modellen verschillen niet alleen in onderliggende theorie, maar ook in benodigde 

invoer. Deze invoer moet uit veldwaarnemingen worden gehaald. 

Uit deze vergelijking is een landoppervlakmodel geconstrueerd dat voor de huidige 

dataset vermoedelijk de beste resultaten geeft. Het is een combinatie van de force-restore 

methode ter beschrijving van de bodemwarmtestroom, en de aerodynamische weerstanden 

en de gewasweerstand van CM88. Dit model dient als referentiemodel in de modelstudies 

hieronder. 

• Modelsimulaties met grenslaageffecten 

Het laatste hoofdstuk van dit proefschrift beschrijft de modelsimulaties met behulp 

van een groot aantal variaties van een landoppervlak-model, gekoppeld aan een model voor 

de grenslaag. Het doel van deze simulaties was om na te gaan hoe de berekende toestand 

van de grenslaag verandert ten gevolge van een wijziging van de modellering van de 

landoppervlak-processen. Steeds werd voor een bepaalde simulatie eerst een modelrun 

gedaan met behulp van het hierboven beschreven referentiemodel, de controlerun. 

Vervolgens werden componenten van dit model vervangen door alternatieve componenten, 

de simulatie opnieuw verricht, en werden de resultaten uitgedrukt in een relatieve 

verandering ten opzichte van de controlerun. Dit uitwisselen van componenten werd 

gedaan om de invloed van elke component apart te kunnen bekijken. Het vervangen van 

complete modellen heeft als resultaat dat meerdere onderdelen in die modellen 

verschillende (en mogelijk tegenstrijdige) gevolgen zouden kunnen hebben, en daardoor 

interpretatie van de berekeningen zou bemoeilijken. De componenten die werden 

uitgewisseld zijn ondergebracht in vier verschillende groepen: 

(1) oppervlakte-representatie: hierin werd het twee-component model vergeleken met een 'big 

leaf' aanpak, en met een al dan niet isotherme enkelvoudige oppervlaktelaag 

(2) bodemwarmtestroom en bodemverdamping: hierin werd de force-restore methode vergeleken 

met een diffusieschema, een weerstandsmodel, en een alternatieve beschrijving van 

de bodemverdamping 

(3) aerodynamische uitwisseling: hierin werden de weerstanden van CM88 vergeleken met die 

in D78, en de weerstanden uit de Lagrangiaanse analyse 
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(4) gewasweerstand: hierin werden verschillende modellen, waaronder het fotosynthese-

model, vergeleken. 

De simulaties zijn uitgevoerd voor drie verschillende initialisaties: twee kunstmatige 

profielen, en één situatie die in 1991 is gemeten. De kunstmatige profielen benaderen 

zomerse omstandigheden in respectievelijk gematigde en Mediterrane streken. In alle 

simulaties diende de Spaanse EFEDA-wijngaard als referentie-oppervlak. In een aantal 

gevallen werden hierop (kleine) variaties aangebracht. 

De computersimulaties zijn geëvalueerd aan de hand van daggemiddelde flux-

dichtheden van warmte, waterdamp en bodemwarmtestroom, fluxdichtheden van warmte 

en waterdamp aan de top van de grenslaag, en de hoogte, temperatuur en vochtgehalte van 

de grenslaag aan het eind van de middag en aan het eind van de daarop volgende nacht. 

De volgende conclusies konden uit deze berekeningen worden getrokken: 

(1) Voor de beschrijving van het warmte- en waterdamptransport boven een niet-gesloten 

vegetatie is een twee-componenten model beter geschikt dan een 'big leaf' model, die 

met name een forse overschatting van de verdamping veroorzaakt. Ook het onder

scheiden van verschillende fracties in een éénlagig model levert aanzienlijk betere 

resultaten op. 

(2) De beschrijving van de bodemwarmtestroom met een weerstandsschema zoals dat in 

CM88 levert een forse onderschatting van deze grootheid, en daarmee een sterke 

overschatting van het warmtetransport naar de atmosfeer. De force-restore methode 

en het diffusiemodel leverden onderlinge verschillen van 30-40% in de 

bodemwarmtestroom, en circa 20% in atmosferische warmte-fluxdichtheid. Deze 

verschillen werden voornamelijk veroorzaakt door het verschil in thermische 

geleiding, veroorzaakt door een verschil in berekend bodemvochtgehalte. 

(3) De verschillende methoden om bodemverdamping te berekenen leidden tot aanzienlijke 

verschillen in de totale verdamping. Deze verschillen waren sterk afhankelijk van het 

bodemtype. De kwaliteit van alle gebruikte modellen berust sterk op empirische 

grootheden, en is moeilijk objectief vast te stellen. Voor de droge bodem waarvoor de 

simulaties zijn uitgevoerd lopen de modellen verder uiteen dan in vergelijkbare 

studies onder minder extreme omstandigheden in de literatuur. Aan de andere kant 

is onder droge omstandigheden de totale verdamping van geringe invloed op de 

ontwikkeling van de grenslaag. 

(4) De aërodynamische weerstanden zoals gesimuleerd in CM88 geven de beste beschrijving 

van de oppervlaktetemperatuur en warmtefluxdichtheid. 

(5) De in deze studie gesimuleerde warmtefluxdichtheid aan de top van de grenslaag (de 

zogenaamde entrainment) is aanzienlijk lager dan uit diverse studies in de literatuur 

bleek. Het feit dat de entrainment niet direkt is waargenomen maar uit de 

computersimulaties is gehaald kan een reden voor dit verschil zijn. Vooral het feit 

dat het effect van windschering op de entrainment in het gebruikte model niet is 

meegenomen kan van belang zijn. Anderzijds kan de systematische aanwezigheid 

van een duidelijke residulaag met een inversie op 3 km hoogte, de grenslaaggroei en 

daarmee de entrainment in de huidige situatie hebben beperkt. 

Samenvatting 253 • 



Summary 

Sparse canopy parameterizations for meteorological models 

• Definition of the problem 

For short-range weather prediction, and for predictions of the future global climate, 

large-scale meteorological models have been developed. These models describe the budgets 

of heat, moisture, radiation and other quantities for the entire atmosphere. Various studies 

with weather- and climate models have shown that their results are sensitive to the 

description of the exchange of heat, moisture and momentum between the land surface and 

the atmosphere. Changes of for instance the surface albedo, the soil moisture content, the 

aerodynamic roughness or the present vegetation can lead to major changes in climate 

predictions. The application of different land surface models is one of the reasons for the 

discrepancy between various climate predictions. It is clear that a realistic description of 

land surface processes is of importance. 

It is less obvious how realistic land surface models need to be, and what degree of 

detail they must contain. Very detailed models may provide more accurate predictions, but 

are hardly applicable in practice owing to the large demand of input information and 

computer time. A choice must be made between complexity and accuracy on one hand, and 

simplicity and inaccuracy on the other. 

A large number of land surface models, developed for various applications and 

containing different physical approaches, exists. For application in large scale meteorological 

applications a large number of surface types must be described by the land surface scheme. 

Early versions of these land surface models treated the surface as a relatively simple, 

horizontally homogeneous surface, but in the past decades various models have been 

developed that can also describe more complex surface types. Such a surface type is a 

vegation only partially covering the ground, a so-called sparse canopy. This surface type is 

typical for semi-arid, dry areas, where water is a limiting factor for vegetation growth. 

Sparse canopy models distinguish between plants and the underlying bare ground. For each 

of these components the exchange of heat and moisture with the atmosphere is calculated 

separately. 

Land surface models — and certainly those for sparse canopies — describe a large 

number of processes. They consider the amount of energy received by the surface as 

radiation, and compute the heating of the soil and the air near the surface, evaporation by 

plants and soil, and the change of the soil moisture content. These processes are strongly 

interrelated, and changes to a particular part of a model can result in major changes of other 

components. Because of the different underlying physical concepts of the different models, 

their results are far from uniform. The question arises, which processes and quantities most 

strongly affect the transport of heat and moisture above the surface and the state of the 

atmosphere. 
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The response of the atmosphere to the description of the land surface is crucial for 

this choice. The lowest, turbulent atmospheric layer (the planetary or atmospheric boundary 

layer, 0.5 to 3 km deep), shows a quick response to changes of the land surface. Simul

taneously, transport processes near the surface are partially determined by the state of the 

atmosphere. A feedback loop is formed, which can either increase (positive feedback) or 

reduce (negative feedback) the effect of a land surface change. This feedback partially 

determines the response of the atmosphere to the land surface description. 

In this thesis a study is carried out in which various land surface schemes are 

compared. The change of the atmospheric boundary layer as a result of a change of the 

description of land surface processes is considered. Emphasis is put on the following issues: 

(1) A first emphasis is that exchange processes for a sparse canopy vegetation type are 

considered. This surface type has relatively extreme radiative and aerodynamic 

properties, and the transport of heat and moisture takes place from various sources. 

At the time this study was started, knowledge about sparse canopy models was 

rather limited, in spite of the fact that sparse canopies are a very common global 

surface type. This provided an additional reason to consider this surface type. 

(2) The second emphasis is the physical approach of exchange processes in different land 

surface models. The response of the planetary boundary layer to various models 

describing a single surface type is investigated, rather than simulating different 

surface types with a single model. 

(3) Third, a model validation using observations taken at a sparsely vegetated site is carried out. 

These observations were also used to calibrate models, and to serve as initial or 

boundary conditions for the conducted model simulations. 

(4) Finally, the study only considers vertical exchange processes. Simulations are carried out 

with one-dimensional models. 

• The measurements 

In two summers in 1991 and 1994, measurements were carried out at a sparse canopy 

vineyard site in La Mancha, Spain. The measurement campaigns took place in the context of 

a large international project, partially sponsored by the EC, entitled EFEDA. 

In June 1991 the Department of Meteorology of the Wageningen Agricultural 

University carried out micrometeorological observations in a large vineyard near Tomelloso, 

approximately 100 km south-east of Madrid. Measurements of radiation, air temperature 

and -humidity, wind speed and transport of heat and moisture in both the ground and the 

air were taken. Simultaneously the characteristic dimensions, leaf area and the surface 

coverage of the present vegetation was monitored at various times during the period. Also 

the vegetation evaporation properties were analysed. During the measurement campaign 

the weather was characterized by an almost continuous absence of rain. The temperature of 

the (dry) air typically reached values of 35 °C. Moreover, the vegetation showed a 

significant growth. This caused an increase of the terrain roughness, and a small increase of 

the evaporation. The plants had a sufficiently large rooting depth to extract water from deep 

soil layers. The soil moisture content gradually decreased. In the following more attention is 

paid to the radiation properties of the surface and the evaporation properties of the plants. 

During the 1991 campaign colleagues of the Centre National de Récherche 
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Météorologique (CNRM) in Toulouse carried out radiosonde measurements, to monitor the 

temperature, humidity and wind speed of the planetary boundary layer. The data from this 

radiosoundings are used in the current study. 

During the second held campaign in 1994, measurements were carried out over a 

longer time span, June and July 1994. This measuring campaign was the result of an 

intensive collaboration with the Wageningen Staring Centre and the university of 

Copenhagen. The vegetation measurements were intensified, and also the vertical transport 

of C 0 2 was measured. The observations were taken at a similar site as investigated in 1991, 

but the plants were somewhat younger and had a smaller leaf area. The weather was 

warmer than in 1991, and except for the absence of rain hardly any clouds were detected 

during most days. Particularly the vegetation measurements were used for this study. 

• A number of considered exchange processes 

A number of aspects of the exchange of heat and moisture for a sparse canopy are 

considered in more detail, using both theoretical analysis and measurements: aerodynamic 

exchange, reflection of shortwave radiation, and the so-called crop resistance. 

In applied meteorological models transport is usually described using exchange 

resistances. These resistances are a measure of the efficieny of the transport of the quantity 

(say, heat) over a gradient of a constituent (temperature). In most cases it is assumed that 

the flux density (the amount of transported quantity per unit area per unit time) is propor

tional to the local gradient and an exchange coefficient. This theory is called K-theory. In 

some cases (for instance, within canopies), K-theory is invalid, and sophisticated models 

must be used to describe the flux density. One of this sophisticated theories is Lagrangian 

theory, which describes the transport of a quantity by considering the trajectories of a large 

number of released particles. This type of modelling is computationally very expensive. In 

this study a simplification of a Lagrangian model has been developed for application in a 

two-component land surface model, including a model for sparse canopies. A new 

resistance, labeled a near-field resistance, is introduced. A sensitivity analysis shows that 

under most circumstances the use of K-theory gives hardly different results compared to this 

(simplified) Lagrangian theory. 

This Lagrangian theory is also used to define new exchange resistances in a two-

component model, without — contrary to current practice — adopting assumptions about an 

effective source height. Particularly for sparse canopies the assumption that sources of heat 

and water vapour are situated at a similar effective height is doubtful: water vapour is 

mainly released by the plants, while the heat source is mainly situated at the bare ground 

surface. In the present study a weighing procedure, defining the exchange resistances as 

function of the vertical distribution of sources, is proposed. Again sensitivity analyses are 

carried out, and the newly obtained resistances are compared to the values of traditional 

models obtained by JC-theory. The main conclusions are that the 'Lagrangian' resistances are 

smaller than the traditional resistances, and that the differences with K-theory are 

considerable. This feature is mainly caused by a lack of knowledge about the turbulence 

close to the ground. 

The 1991 radiation observations have been used to describe the reflection properties of 

a sparse canopy. The most important aspects determining the reflection of shortwave 
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radiation (albedo) were summarized from a literature survey. For bare soil the albedo is 

determined by the soil moisture content in the very top soil layer, the surface roughness, the 

content of organic material and iron, and the position of the sun. For closed canopies the leaf 

angle distribution, the Leaf Area Index, the solar geometry and the reflection properties of 

the individual leaves and underlying soil play a role. For sparse canopies the albedo is 

determined by both components, but also by the distance between and dimensions of the 

individual plants, and by shading of the soil. The observations were fitted using a set of 

empirical relationships. The diurnal course of the albedo showed mainly changes at rather 

low solar elevation. Changes over the entire month were caused by two counteracting 

effects: an increase of the albedo by the drying of the soil, and a reduction by an increase of 

the vegetation coverage. For a particular position the albedo was fairly constant. Also 

multispectral satellite observations were used to detect the horizontal variability of the 

surface albedo, which appeared to be much stronger than the changes in time, both on a 

diurnal and a monthly time scale. 

Another aspect that was considered in more detail is the so-called crop resistance, a 

measure of the aperture of the leaf stomata. A high resistance corresponds to closed stomata 

and low evaporation rates. Using the 1991 dataset, Jacobs (1994) developed a model for the 

stomatal resistance based on leaf photosynthesis modelling. Photosynthesis results in a C0 2 -

transport through the same stomata. By describing this transport using a photosynthesis 

model the stomatal resistance can be deduced. In the current thesis this model is scaled up 

to the canopy level, and tested using the 1994 data. It appeared that the 1994 observations, 

scaled up to the canopy level, were described fairly well by the model of Jacobs (1994), and 

also that the calibration conducted in 1991 was still usable for the current dataset. The skill 

of the model even seems to be better than the results of an often applied model, that is based 

on a statistical correlation between the canopy conductance with environmental factors. 

Comparisons with similar observations published in literature showed a strong sensitivity of 

the Spanish vineplants to atmospheric humidity deficit. An enhanced humidity deficit is 

likely to be favourable under very dry conditions. 

• Model simulations 

The remainder of the thesis is dedicated to model simulations. First a description is 

given of the existing land surface models that are used in the intercomparison studies. The 

first is a so-called 'big leaf' model (Monteith, 1965), that treats the surface as a single big leaf 

with uniform temperature and canopy resistance. The second model is a variation upon this 

scheme, and considers the land surface as a single isothermal layer with different 

components: a fraction bare soil, a fraction vegetation, and a fraction open water 

representing the dew and interception of precipitation (Viterbo and Beljaars, 1995; 

abbreviated as VB95). The third model is a new variation on VB95, and solves the energy 

balance for each surface fraction separately. This allows the different fractions to have 

different surface temperatures. This variation is tested independently for two sparse canopy 

surface types, in which the temperatures of the canopy and the underlying bare soil can be 

very different. In the old situation the evaporation of the coolest component was 

significantly overestimated by a too high surface temperature. In the new situation this 

overestimation did not occur. The fourth model is the two-component scheme of Deardorff 
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(1978; hereafter referred to as D78), in which radiation, aerodynamic transfer and 

temperature of the bare soil and the canopy elements are considered separately. The fifth 

model is a variation of D78, but contains a more advanced description of the aerodynamic 

exchange within the canopy layer (Choudhury and Monteith, 1988; CM88). 

The model for the planetary boundary layer that was used is published by Troen and 

Mahrt (1986). In that model the vertical transport is described using a numerical diffusion 

scheme. For (daytime) convective cases the diffusion coefficients are taken from Holtslag 

and Moeng (1991). The model gives a fair description of the growth and heating of the 

planetary boundary layer during daytime, the heat and moisture transport near the top, and 

the development of a nocturnal stable boundary layer. 

• Model simulations without boundary layer effects 

A first series of model comparisons was executed to test the effect of the different 

physical approaches adopted in the various models upon the simulated flux densities of 

heat and water vapour. It was also meant to indicate which model gave an optimal 

description of the 1991 data. Only the two-component models (VB95, D78 and CM88) were 

involved in this comparison, and boundary layer effects were not yet included. Observations 

at a reference height of 3 m were used as boundary condition. Calculated flux densities were 

compared to observations. A number of clear conclusions could be drawn from this 

comparison study. 

First, the simulation of the soil heat flux density was not carried out accurately with 

a model ignoring the storage of heat in the upper soil layer (CM88). A model simulating the 

soil heat flux density by solving a diffusion equation (VB95) appears to be rather sensitive for 

the adopted soil thermal properties. A third 'force restore' variation, a simplification of the 

diffusion model (in D78), yielded the best results. 

A second conclusion is that the prediction quality is associated with the formulation 

of the aerodynamic resistance between the reference height and the bare soil surface. This 

resistance affects the the bare soil temperature, which has an impact on processes as soil 

evaporation, soil heat flux density, sensible heat flux and the temperature within the canopy 

air layer. The resistances as modelled in CM88 yielded optimal results, while those in D78 

were too low. 

The different descriptions of the canopy resistance lead to large relative differences 

in predicted evaporation rate. In both D78 and VB95 this resistance is strongly determined by 

the soil moisture content, and this dependence gave rise to too high resistances and too low 

evaporation rates. 

It must be noticed that it is often very difficult to perform an 'honest' model 

comparison. The models differ in the underlying theory, and in required input data. This 

input must be extracted from field observations. 

The intercomparison was used to construct a land surface scheme that apparently 

gives optimal predictions for the present dataset. It is a combination of the force-restore 

method to describe the soil heat flux density, and the aerodynamic and canopy resistance 

formulation in CM88. This model was used as a reference model for the model studies 

described below. 
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• Model simulations including boundary layer effects 

The last chapter of this thesis describes model simulations using a large number of 

variations to a land surface model, coupled to a model for the atmospheric boundary layer. 

The purpose of these simulations is to investigate the sensitivity of the boundary layer to the 

parameterization of land surface processes. For each case, first a model run was conducted 

using the reference model described above, the control run. Then, components of this 

reference model were changed by alternative components, and the simulations were 

executed again. The results were expressed as relative differences compared to the control 

run. Changing components rather than complete models was employed to be able to 

describe the influence of each component separately. Changing complete land surface 

schemes gives results which are difficult to interpret, since observed changes may have been 

the result of multiple (and possibly counteracting) effects. The components that have been 

exchanged are divided into four categories: 

(1) surface representation: in this category the reference two-component model is compared to 

a 'big leaf' approach, and to the isothermal and differentiated single layer surface 

representations 

(2) soil heat flux and soil evaporation: here the force-restore method is compared to a diffusion 

scheme, a resistance model, and an alternative description of soil evaporation 

(3) aerodynamic exchange: in this group the CM88 resistances were compared to the resistance 

in D78, and to the resistances from the Lagrangian analysis 

(4) canopy resistance: here different canopy resistance models, including the photosynthesis 

approach, were compared. 

The simulations have been executed for three different initializations: two artificial 

profiles, and one situation measured in 1991. The artificial profiles resemble typical 

summertime conditions in temperate and Mediterranean areas, respectively. In all 

simulations the Spanish EFEDA vineyard served as reference surface. In a number of cases 

small variations upon this surface were carried out. 

The computer simulations have been evaluated by means of daily averaged flux 

densities of sensible heat, water vapour and soil heat, sensible and latent heat flux densities 

at the top of the boundary layer, and the boundary layer height, temperature and moisture 

content near sunset and sunrise. 

The following conclusions could be drawn from these calculations: 

(1) For the description of the heat and moisture transport for a sparse canopy surface a two 

component model is more suitable than a 'big leaf' approach, which particularly 

computes a large overestimation of the surface evaporation. The differentiation 

between various fractions of the single layer surface yields significantly better 

results. 

(2) The description of the soil heat flux density with a resistance scheme as in CM88 gives 

rise to a pronounced underestimation of this quantity, associated with a strong 

overestimation of the sensible heat transport into the atmosphere. The force restore 

method and the diffusion scheme gave mutual differences of approximately 30 - 40% 

in soil heat flux density, and 20% in sensible heat flux. These differences were mainly 
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caused by differences in thermal conductivity, resulting from differences in 

calculated soil moisture content. 

(3) The different methods to compute soil evaporation yielded considerable differences in 

predicted total surface evaporation. These differences were strongly dependent on 

the soil type. The quality of the models used relies on empirical quantities, and is 

difficult to assess objectively. For the dry soil for which the simulations were carried 

out, the models differed more than in comparable studies under less extreme 

conditions reported in literature. On the other hand, the contribution of surface 

evaporation to the atmospheric state is rather limited under the dry conditions 

explored here. 

(4) The aerodynamic resistance as simulated in CM88 resulted in an optimal description of 

the surface temperature and sensible heat flux density. 

(5) The sensible heat flux density at the top of the boundary layer simulated in this study 

(the so-called heat entrainment) is very low compared to various experimental 

studies in literature. In this study, entrainment was not observed but calculated, 

which is one reason for this difference. Particularly the lack of simulating the 

contribution of wind shear to entrainment may be of importance. Alternatively, the 

systematic presence of a strong residual layer with an inversion at 3 km height has 

confined the boundary layer growth, and thus the entrainment. 
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