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Schutte, I.W.M., 1998. An electrophysiological investigation of the effects of 
cholecystokinin on enteric neurons. (Een electrofysiologisch onderzoek naar 
de effecten van cholecystokinine op zenuwcellen in het maagdarmkanaal.) 
Cholecystokinin (CCK) is a peptide, which is present in the gastrointestinal tract in endocrine 
cells and in the enteric nervous system (ENS). A possible function in the control of motility 
of the small intestine has been attributed to neuronal CCK. The aim of this thesis was to 
obtain a fundamental insight into the action and effects of CCK on enteric neurons. Therefore, 
intracellular recordings were made of myenteric neurons in an isolated preparation of the 
guinea-pig ileum. Two types of excitable myenteric neurons were distinguished. Neurons in 
which the action potential showed a pronounced inflexion (shoulder) on the falling phase, 
were classified as AH neurons, the others as S neurons. The effects of CCK-8 and CCK-8NS 
on both types of neurons were determined. Application of CCK evoked dissimilar excitatory 
effects in the two types of neurons, which presumably are related to the function of these 
neurons in the ENS. Application of CCK evoked excitatory effects on almost all S neurons 
(inter- or motor-neurons). The effect was mediated by both CCKA and CCKB receptor subtypes 
and was different for both receptor subtypes with respect to action in time. Some S neurons 
possessed exclusively the CCKA or the CCKB receptor subtype, but others possessed both 
subtypes. The predominant effect of CCK on AH neurons (sensory neurons) was also slow 
excitation. These AH neurons were all endowed with both CCK receptor subtypes. The CCKA 

and CCKB receptor subtypes on AH neurons had not only a different affinity for CCK, but also 
mediated the effects through different ionic channels. Results of experiments in which the 
effects of CCK antagonists on synaptic transmission were determined, showed that CCK in 
the ENS has besides a hormonal function, a function as neurotransmitter. 
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Stellingen 

Het gebruik van een eenduidige electrofysiologische indeling van enterale 
neuronen, maakt het interpreteren van literatuur gegevens een stuk 
eenvoudiger. dit proefschrift 

De electrofysiologische indeling in myenterische AH en S neuronen heeft een 
functionele betekenis. Bomstein (1994) JAuton Nerv Sys 48:1-15; dit proefschrift 

Cholecystokinine (CCK) is een neurotransmitter betrokken in de regulatie van 
de dunne darm motiliteit. dit proefschrift 

Men dient eerst meer te weten over de exacte functie van de CCK receptoren 
in het maagdarmkanaal, alvorens CCK antagonisten gericht worden toegepast 
voor behandeling van functionele darmstoornissen. 

Weitstem etat., (1994) Pharmacol Ther62:267-282; dit proefschrift 

De betrouwbaarheid van de xylose absorptie test voor het vaststellen van 
malabsorptie bij mens en dier dient sterk in twijfel te worden getrokken, omdat 
een belangrijk deel van xylose in het maagdarmkanaal wordt gemetaboliseerd. 

proefschrift J.B. Schutte (1991), Wageningen 

Het feit dat het anti-nutritionele effect van visceuze wateroplosbare niet-zetmeel 
koolhydraten bij vleeskuikens afhankelijk is van de vetbron in het rantsoen, duidt 
er op dat de viscositeit alleen niet de verklarende factor is voor het anti-
nutritionele effect. DJ. Langhoutetal., (1997) Br Poultry Sei 38(5) 

7. Onnodig gebruik van antibiotica door mensen kan wel eens een groter gevaar 
voor de volksgezondheid vormen dan het antibioticum gebruik in veevoeders. 



8. Het gebruik van homeopathische middelen wordt vaak op de foutieve 
veronderstelling "baat het niet, schaadt het niet" gebaseerd. 

9. Tegen de tijd dat een kind de aanbevolen leeftijdsgrens voor gebruik van 
speelgoed heeft bereikt, is het kind vaak niet meer geïnteresseerd in het 
betreffende speelgoed. 

10. Pas als je eigenlijk van alles zou moeten doen, kun je genieten van niets doen. 

11. Door grootouders een belangrijke bijdrage te laten leveren in de opvoeding van 
de kleinkinderen, kan het tekort in de reguliere kinderopvang vrijwel geheel 
opgeheven worden. 

12. Men hoeft geen materiedeskundige te zijn om het proefschrift van een vakidioot 
te kunnen corrigeren. Een leek 

Stellingen behorende bij het proefschrift: 
"An electrophysiological investigation of the effects of cholecystokinin on enteric 
neurons" 

Irma W.M. Schutte 
Wageningen, 21 januari 1998. 
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General introduction 

The enteric nervous system (ENS) is a local neural network within the wall of 

the gastrointestinal tract that coordinates the activity of various gastrointestinal 

functions (Wood, 1994a). In the gastrointestinal tract, complex reflex activities 

involving gastrointestinal motility, mucosal blood flow and intestinal ion transport 

occur in the absence of input from the central nervous system (CNS), implying that 

the neural circuitry for such behavior is found entirely within the ENS (Bayliss and 

Starling, 1899; Gershon, 1980). Therefore, sensory receptors, sensory neurons, 

interneurons and motorneurons are all present in the ENS. In addition, the intestine 

receives inputs from the central nervous system via sympathetic and parasympathetic 

nerves and returns sensory information via vagal and spinal afferent neurons. 
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Figure 1. Schematic drawing of the wall of the small intestine showing the arrangement of 
the enteric plexuses (from Wood, 1994a). 

Practically all the cell bodies of enteric neurons are found in small ganglia in 

two plexuses: the myenteric plexus and the submucous plexus (Fig. 1). These 

networks of neurons and their interconnections lie between the longitudinal and 

circular muscle layers and between the circular muscle and mucosa, respectively. 

The plexuses form a continuous network from the upper oesophagus to the internal 

anal sphincter. Most of the neural circuitry responsible for the control of motility lies 

within the myenteric plexus (Bornstein, 1994). The submucosal neurons are primarily 
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involved with modulation of the gastrointestinal blood flow and intestinal ion transport 
(Surprenant, 1994). Each ganglion contains from 10 up to 100 neurons and in total 
there are about 108 neurons in the ENS (Furness et al., 1990). 

The guinea-pig gastrointestinal tract has been the principal model for 
investigation of elements of the ENS. Important information on properties and 
functions of enteric neurons can be obtained by electrophysiological methods of 
recording and by histochemical techniques. Physiological and microscopic analysis 
of neural circuits is facilitated because the plexuses form flat sheets in the opened 
intestine. These plexuses can be exposed for physiological recording, while their 
connections with other neurons and effector tissues are retained. Most studies are 
performed on the myenteric plexus of the guinea-pig small intestine. The diversity of 
enteric neurons in the ENS has become apparent in functional, pharmacological, 
morphological, electrophysiological and neurochemical studies and the neurons can 
be classified accordingly. It should be noted that, although the small intestine of the 
guinea-pig has been studied to a far greater extent than any other region of any 
species bowel, it is not yet apparent how typical the guinea-pig small intestine 
actually is. 

Electrophysiologically, various classes of enteric neurons have been described 
(Wood, 1994a). The various classes are differentiated on the basis of their excitability 
level and the degree and nature of synaptic input. The two main excitable cell types 
are S neurons receiving fast synaptic input and AH neurons showing a longlasting 
after-hyperpolarization (Nishi and North, 1973; Hirst et al., 1974). A main difference 
between AH and S neurons is that Ca2+ as well as Na+ carries part of the current of 
action potentials in AH neurons, while only Na+ carries this current in S neurons (Hirst 
et al., 1985; Wood, 1994a). The Ca2+ component of the action potential in AH neurons 
is responsible for a pronounced shoulder on the falling phase of the action potential, 
which is not encountered in S neurons (Hirst etal., 1985). Between different research 
groups, there are however large differences between selection criteria to distinguish 
the cell types and these criteria do not necessarily divide neurons into identical 
classes (Bornstein et al., 1994; Wood, 1994b). Many electrophysiological features of 
the myenteric neurons of the small intestine can be generalized to other parts of the 
guinea-pig intestinal tract (Schemann and Wood, 1989; Tamura and Wood, 1989), 
and to other species (Brookes etal., 1987; Furakawa etal., 1986; Comelissen etal., 
1996; Thomsen et al., 1997). 

The use of intracellular dye injection methods has allowed the 
electrophysiological properties of neurons to be correlated with their morphology. AH 
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neurons appear to have large smooth cell bodies with two or more long processes. 
Most S neurons are smaller and have several short processes and only a single long 
process (Furness et al., 1988; Iyer er al., 1988). 

The myenteric neurons can also be classified into functional neuronal types. 
A wide variety of physiological and pharmacological evidence indicates that the 
myenteric nervous system contains sensory neurons, orally directed interneurons, 
anally directed interneurons and motor neurons supplying the circular and longitudinal 
muscle. There are both inhibitory and excitatory motor neurons (Bornstein, 1994) 
supplying gastrointestinal smooth muscle. Electrophysiological properties of myenteric 
neurons are shown to be correlated with their function. S neurons are shown to be 
inter- or motor-neurons (Bornstein et al., 1991; Brookes et al., 1992). Among S 
neurons, electrophysiological characteristics that distinguish between motor- and 
interneurons are yet to be defined. AH neurons are proposed to be sensory neurons 
(Song et al., 1991; Bornstein, 1994; Kunze étal., 1995). 

The diversity of the enteric neurons becomes however most evident when the 
neurons are classified according to their content of established or putative neuro
transmitters. More than 25 neurotransmitter candidates have been discovered in the 
gastrointestinal tract (McConalogue and Furness, 1994). Many of these substances 
are found in both the ENS and the brain. For acetylcholine, norepinephrine, 5-HT and 
substance P a neurotransmitter function has been demonstrated in the ENS (Wood, 
1994a). Putative enteric neurotransmitters include peptides, amino acids and nitric 
oxide. Enteric neurons always contain several substances that participate in 
neurotransmission and some contain four or more potential transmitters (Costa et al., 
1987; Furness er al., 1992). For many neurons one substance seems to have a major 
role in transmission, while other substances have a subsidiary or modulatory role 
(Furness et al., 1992). 

By far the largest single group of potential transmitters in the ENS is 
composed of the peptides. More than 15 different peptides are found in the ENS, 
which subserve a variety of roles. They can act as primary transmitters, but often act 
as co-transmitters in enteric neurons and have a neuromodulatory role, for example 
by influencing transmitter release or by causing long-term changes in excitability 
(Furness era/., 1992). 

The peptides localized to gastrointestinal neurons, are all found elsewhere in 
the body in neurons (notably in the brain) or in endocrine cells (Dockray, 1994). The 
physiological roles of neuropeptides are therefore often difficult to define. For 
instance, the responses evoked by exogenous application of a peptide may reflect 
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actions normally exerted in paracrine, endocrine, or neurotransmitter regulated 

systems. Also, in studies of release mechanisms it is often difficult to distinguish 

material derived from neurons and endocrine cells. A peptide that besides a hormonal 

function, might function as a neurotransmitter in the gastrointestinal tract is 

cholecystokinin. 

Cholecystokinin 

Cholecystokinin (CCK) is a member of a family of related peptides first isolated 
in the gastrointestinal tract and subsequently identified in the brain (Williams, 1982). 
This family of peptides exhibits diverse functions on target tissues. In the CNS, CCK 
is a neurotransmitter involved in memory processes, pain perception and elicitation 
of anxiety and satiety (Crawley and Corwin, 1994; Liddle, 1994). In the periphery, 
CCK is known to delay gastric emptying, stimulate pancreatic enzyme secretion, 
contract the gallbladder, and enhance intestinal motility (Walsh, 1994). There are 
several different molecular forms of CCK that vary in chain length by extension at the 
N-terminus. The major form found in central and peripheral neurons is the sulfated 
octapeptide, CCK-8, and is the minimum sequence for biological activity in the 
periphery of rodents (Walsh, 1994). The larger forms of 22, 33, 39 and 58 residues 
all terminate in CCK-8 and are the predominant forms found in gut endocrine cells 
(Crawley and Corwin, 1994). 

Two CCK receptor subtypes have been identified, and these are referred to as 
CCKA (alimentary) and CCKe (brain) receptors. Both receptors occur in the periphery 
and in the CNS, although CCKA receptors are more predominant in the periphery, 
notably in the gastrointestinal tract and CCKe receptors are more numerous in the 
brain. Several different classes of receptors antagonists have been developed for 
CCK receptors, that have excellent selectivity and high affinity for either CCKA or 
CCKe receptors (Liddle, 1994). 

In the gastrointestinal tract, CCK like peptides have been localized not only 
in endocrine cells, but also in the ENS. The highest concentrations of CCK are found 
in the mucosa of the duodenum and proximal jejunum where it is contained in a 
specific class of gut endocrine cells (Polak et al., 1975; Buffa et al., 1976). CCK is 
released from endocrine cells in response to a meal. The physiological plasma 
concentration of CCK peptides in mammals is approximately 1 pM, increasing to 
about 10 pm during maximal physiological stimulation, such as the ingestion of a 
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meal (Rehfeld, 1989; Walsh, 1994). In the ENS, CCKimmunoreactive nerve fibers are 

found in the small intestine and the colon (Larsson and Rehfeld, 1979: Schultzberg 

ef a/., 1980; Leander et al., 1984; Furness ef al., 1984). It is therefore difficult to 

distinguish between hormonal and neural effects. An example of purely hormonal 

activity is stimulation of gallbladder contraction (Mawe, 1991 ), while most of the other 

actions seem to involve a combination of hormonal and neural pathways or to be 

entirely neural. The effects of CCK may be mediated through muscularly located 

receptors as well as through receptors present on neurons. 

In the guinea pig ileum, CCK evokes contraction of the longitudinal and circular 

muscles by stimulating cholinergic (Vizi et al., 1973) and substance-P containing 

myenteric neurons (Hutchinson and Dockray, 1981; Bartho et al., 1983). These 

effects are probably responsible for the potent stimulant action of CCK-8 on the 

peristaltic reflex (Bartho ef a/., 1983), as distension of the ileum has been shown to 

evoke CCK release (Donnerer et al., 1985). Electrophysiological recordings have 

shown that CCK evokes mainly slow excitatory responses in myenteric neurons of the 

guinea pig (Nemeth et al., 1985). 

Presently, selected CCKA and CCKß antagonists are being examined in man 

for their therapeutic usefulness in mental and digestive disorders (Wettstein et al., 

1994). CCK antagonists are potentially useful for the treatment of functional bowel 

disorders, such as dyspepsia and irritable bowel syndrome. More research is however 

needed for a better understanding of CCK function in the gastrointestinal tract. The 

knowledge about the function of CCK as a neurotransmitter in the ENS is scarce and 

the precise mode of action of CCK on the neurons is not well known. Further, no 

information is available about the CCK receptor subtypes in the ENS. 

Aim and outline of the thesis 

The aim of the research is to obtain a fundamental insight in the mechanisms 

by which CCK influences the nervous system in the gastrointestinal tract. With this 

aim intracellular recordings are made of myenteric neurons in isolated preparations 

of the guinea pig distal ileum. 

To determine the direct effects of CCK on neuronal functioning, the effects of 

CCK on the two different neuron types, S and AH neurons, are studied. The CCK 

receptor subtypes involved in the CCK-induced effects are characterized and the 

resistance changes through which CCK evokes its action on the different cell types 
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and different CCK receptor subtypes are investigated. 

Also the role of CCK as neurotransmitter in the ENS is investigated. CCK is 

though to be a putative neurotransmitter involved in the generation of slow synaptic 

excitation (Wood, 1994a), based on the presence of CCK in myenteric neurons 

(Larsson and Rehfeld, 1979: Schultzberg et al., 1980; Leander et al., 1984; Furness 

et al., 1984) and its slow excitatory action on neurons (Nemeth er al., 1985). 

To answer these questions regarding the actions of CCK on enteric neurons 

the following outline is used: 

1. To distinguish enteric AH and S neurons unequivocally, the possibility of 
electrophysiologically identifying the enteric AH and S neurons "on line" by use 
of one single criterion, namely the presence of a shoulder on the action 
potential, is examined. 

2. The actions of CCK on the myenteric S and AH neurons are investigated. The 

receptor subtypes involved are characterized and the action of CCK on each 

of the receptor subtypes is investigated. Also, the resistance changes 

mediated by the CCK receptor subtypes are investigated. 

3. The action of CCK as a putative neurotransmitter is investigated, by 
determining the effects of selective CCK antagonists on electrically evoked 
slow synaptic excitation. 
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Somal size and location within the ganglia for 
electrophysiologically identified myenteric neurons 

of the guinea-pig ileum 

Irma W.M. Schutte, Alfons B.A. Kroese, and Louis M.A. Akkermans 

Abstract 
The main goal of the present study was to examine the possibility of 

electrophysiologically identifying the excitable enteric S and AH neurons by use of 

one single criterion. Intracellular recordings were made from 189 cells of 64 ganglia 

in isolated preparations of the myenteric plexus of the guinea-pig distal ileum. The 

recordings were made under visual control of the cells by using Hoffman Modulation 

Contrast optics at high magnification (600 x). From photomicrographs the soma size 

and the location within the ganglion of the individual (unstained) cells were 

determined. The cells were classified into three types according to their electrical 

excitability and the shape of the action potential. Excitable cells were classified as AH 

cells (N=84) if the action potential showed a shoulder on the falling phase, otherwise 

as S cells (N=56). Cells in which no action potential could be evoked by current 

injection were classified as non-spiking (NS) cells (N=49). The three classes of cells 

showed significant differences with respect to membrane potential, input resistance 

and fast synaptic input. The AH cells had significantly larger somata (p<0.01) than the 

S cells. The NS cells were significantly smaller than the AH and S cells (p<0.01). AH 

and S cells were found to be randomly located in the ganglia, whereas the NS cells 

clustered (P<0.008) in close proximity to the onsets of internodal strands. We 

conclude that the shoulder of the action potential can be used as a single criterion 

to distinguish 'on line' S and AH neurons unequivocally. 

Introduction 

There is abundant evidence for the existence of a heterogeneous population 

of neurons in the enteral nervous system (reviewed by Wood, 1989). Dogiel (1899) 

was the first to describe three morphological types of neurons based on methylene 



24 Chapter 2 

blue staining and proposed the shapes and functions of the cells to be related. More 

recently, it has been shown that the heterogeneity of the myenteric neuronal 

population also concerns the electrical properties of the cells (Nishi and North, 1973; 

Hirst et al., 1974), and the presence of specific neurotransmitters and 

neuromodulators (Bornstein er al., 1984; Costa er al., 1987; Furness er al., 1988; 

Sternini, 1988; Brookes étal., 1991). 

With respect to the electrical properties, three different cell types have been 

distinguished by means of intracellular recording. These types are S or Type 1 

neurons receiving fast synaptic input, AH or Type 2 neurons showing a longlasting 

after-hyperpolarization (Nishi and North, 1973; Hirst et al., 1974) and Type 3 cells 

which are inexcitable (Nishi and North, 1973). Recently, it has become evident that 

not only are there more electrical differences between the cell types, but also that 

these differences are dependent on conditions, such as the presence of neuro

transmitters or neuromodulators in the ganglion (Wood, 1989). Neurotransmitters for 

slow synaptic excitation, for instance, may augment excitability and suppress the 

after-hyperpolarization in AH neurons (reviewed by North, 1982). Further, 

electrophysiological evidence (Gräfe et al., 1979; Katayama et al., 1986; Iyer er al., 

1988) and the morphologically demonstrated presence of synapses on 

electrophysiologically characterized AH neurons (Erde et al., 1985) show clearly that 

some of the AH neurons receive synaptic input. This property has for a long time 

been thought to be exclusive to S cells (Hirst et al., 1974; Bornstein er al., 1984; 

Surprenant, 1994). Moreover, the properties of these three cell types differ in the 

several parts of the gastro-intestinal tract of the guinea-pig, such as the corpus 

(Schemann and Wood, 1989) and antrum (Tack and Wood, 1992) of the stomach, the 

colon (Frieling et al., 1991) and the rectum (Tamura and Wood, 1989). For these 

reasons, S and AH neurons cannot always unequivocally be distinguished in 

electrophysiological studies. Therefore it seems necessary to develop selective 

criteria for distinguishing the different types of neurons in the different plexus 

preparations. 

The main difference between the S and AH neurons, with respect to electrical 

properties, is the calcium contribution to the inward current during an action potential 

in AH neurons (Tatsumi et al., 1988), which is absent in S neurons (Hirst and 

Spence, 1973; North, 1973; Hirst et al., 1974; Wood and Mayer, 1978; Hirst et al., 

1985a,b; Iyer et al., 1984; Tamura and Wood, 1989). As a consequence, the action 

potentials of S neurons can be totally blocked by tetrodotoxin, whereas AH neurons 

have a tetrodotoxin resistant inward Ca2+ current during the action potential (Hirst and 
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Spence, 1973; North, 1973; Gräfe et al., 1980; Hirst etal., 1985a, Tamura and Wood, 

1989). This calcium contribution is visible in AH neurons as an inflexion on the falling 

phase of the action potential (further referred to as the shoulder (see Fig. 3)). This 

inflexion can be prolonged by tetraethylammonium or depletion of external calcium 

(Wood et al., 1979; Hirst er al., 1985a; Tamura and Wood, 1989). Thus, one would 

expect that it would be possible to use the shoulder as a single and selective criterion 

to distinguish S from AH neurons. 

The morphology of myenteric neurons has been shown to be correlated with 

their electrophysiological properties. In general, AH neurons are reported to have 

Dogiel type II morphology, i.e. they have large, smooth cell somata with many long 

processes (Erde er al., 1985; Katayama er al., 1986; Iyer et al., 1988; Bornstein et 

al., 1991). A great majority of S neurons have Dogiel type I morphology, i.e. a single 

long process and a number of short processes (Bornstein er al., 1984; Katayama er 

al., 1986). Not much quantitative information is available, however, about the soma 

size of the three electrophysiologically different cell types. Further, nothing is known 

about the location of electrophysiologically different classes of cells within a ganglion. 

Such information might give insight into the functional arrangement of neurons within 

the enteric nervous system. 

In the present study, we have investigated whether it is possible to use the 

shoulder as a single criterion to distinguish S from AH neurons. Further, the 

correlations between cell type, soma size and location within the ganglion were 

determined from unstained preparations. The results show a significant difference in 

passive electrical properties, fast synaptic input and soma size between the three cell 

types. The location of the excitable cells in a ganglion was not related to the other 

cell properties. A preliminary account of these findings has been published in abstract 

form (Schutte et al., 1992a) 

Material and methods 

Preparation 

Guinea-pigs (200 - 300 g) were stunned by a blow to the head, decapitated 

and exsanguinated. The small intestine was removed and a 2 cm segment of the 

distal ileum was slipped onto a glass rod. A small cut was made along the mesenteric 

border and both muscle layers with the myenteric plexus were stripped away with 

blunt forceps. This preparation was then placed in a dissection dish and perfused with 
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ice-cold Krebs solution. It was pinned flat under stretch to Sylgard 184 encapsulating 

resin (Dow Corning, Midland, Ml) at the bottom of the dish. The circular muscle layer 

was removed with fine forceps to expose the myenteric plexus on the longitudinal 

muscle layer. The preparation was then transferred and pinned to Sylgard resin at the 

glass bottom of a 1.5 ml recording chamber (diameter 21 mm). The chamber was 

perfused at a rate of 3 ml/min with Krebs buffer, which had the following composition 

(mM): NaC1120; KCl 6.0; MgCI21.2; NaH2P041.4; NaHC0314.4; CaCI2 2.5; glucose 

12.7; gassed with 95% 02 - 5 % CO 2 and maintained at 36 °C and pH 7.4. Nifedipine 

(1-2 //M) was added to the perfusion fluid to prevent mechanical activity of the muscle 

layer. 

Electrophysiological recording 
The tissue chamber was placed on the fixed stage of a Zeiss UEM microscope 

equipped with a Hoffman Modulation Contrast system (Hoffman, 1977). Individual 

cells in a ganglion were visualized by a 30x objective (total magnification x 600) with 

a working distance of 10 mm. The ganglion from which recordings were made was 

immobilized using L-shaped stainless steel wires pressing on the preparation (Wood 

and Mayer, 1978). 

Intracellular recordings were made using glass electrodes made of borosilicate 

glass (WPI; 1BI00F) on a Brown-Flaming micropipette puller (Sutter Instruments Co.; 

P-87). The electrodes were bent (Hudspeth and Corey, 1978) about 90 degrees at 

about 6 mm from their tips (Fig. 1), filled with 3 M KCl and had resistances of 60-80 

Mû. Under visual control selected cells were penetrated in the direction perpendicular 

to the surface of the preparation, by applying an oscillating voltage to the electrode 

tip. 

Potentials were recorded with an electrometer (WPI; Intra 767), by which 

rectangular current pulses were also injected. Voltage and current signals were 

displayed on an oscilloscope. After amplification and low pass filtering (2.6 kHz) each 

signal was digitized using a 1401 plus CED interface (Cambridge Electronic Design 

Ltd.) at a sampling rate of 5.6 kHz and displayed and stored on a PC. 

Electrical stimulation 

An etched stainless steel stimulating electrode (tip diameter 10 //m) was used 

to stimulate an internodal strand connected to the ganglion with extracellular current 

pulses of 0.15 ms duration (<0.5 Hz) produced by a stimulus isolation unit. The 

electrode was usually positioned at a distance of at least 200 jjm away from the 
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impaled neuron. 

Data analysis 
Signals were analyzed "off line" using standard CED software (Spike2). The 

input resistance of the cells was measured from the voltage response to passing 

hyperpolarizing current pulses of constant small amplitude through the cell 

membrane. The durations of action potentials in impaled neurons were measured as 

the width of the action potential at half the height (Hirst etal., 1985a); i.e. the interval 

between the point at which the action potential was half maximal on the rising phase 

and the equivalent point on the repolarization phase. The rate of decay of the action 

potential was measured from peak to end of action potential repolarization. 

Classification of cells 

Cells were classified electrophysiological^ 'on line' by using 2 criteria. Firstly, 

cells in which an action potential could not be evoked by current injection (150 ms), 

regardless of the amount of evoked depolarization (until 0 mV), were classified as 

non-spiking (NS) cells. Secondly, cells in which the action potential evoked by current 

injection showed a pronounced inflexion (shoulder) on the falling phase, were 

classified as AH cells, the others as S cells (Fig. 3). 

Morphology 

Photomicrographs were taken through the microscope optics of all recorded 

cells. The slides were projected in a photographic enlarger (9 x) and drawings of the 

ganglia and corresponding cells were made. From the drawings the soma size of 

each cell was determined by use of a computerized image analysis system after cell 

circumferences had been traced by hand. The size of the long and short axis of the 

cells was measured from the drawings as indicated in Figure 7. 

In order to compare the location of the different cell types within the ganglia, 

a ganglion with the shape and size of an average ganglion was constructed (Fig. 9). 

All drawings of ganglia were scaled to the size of the constructed ganglion and fitted 

on the ganglion by using the length axis and the internodal strands as a reference. 

All cells of each electrophysiologically defined cell type were drawn in a separate 

ganglion. 
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Statistics 
All values are given as the mean ± standard error of the mean (S.E.M.). An 

unpaired t-test was used to test electrophysiological parameters for significance of 

difference in means. A Mann-Whitney U test was used to test the morphological 

parameters of the cells, which did not show a normal distribution. The distribution of 

the location of the cells throughout the ganglion was tested by the Chi-square test. 

For this, the ganglion was divided into three equal sized parts (see Fig. 9). Probability 

<0.05 was accepted as significant. 

object ive 
30 x 
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stage 

Figure 1. Schematic drawing of the tissue chamber. Intracellular recording electrodes were 
bent about 90 degrees at approximately 6 mm from their tips. 

Results 

Clear images of the cell somata of the ganglia of the myenteric plexus were 

obtained with the Hoffmann Modulation Contrast (HMC) system at large magnification 

(600 x) (Fig. 2). Due to the visual control over the cells and over the electrode, many 

cells (up to 8) could be studied in a single ganglion (on average 3). 
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The results were obtained from 189 cells in 64 ganglia. All cells had resting 

membrane potentials more negative than - 40 mV (-63 ± 1 mV) and were stable for 

at least 15 minutes. The excitable cells showed action potentials that depolarized 

beyond zero mV membrane potential. Recordings of cells were made for up to 3 

hours. 

Figure 2. Image of a ganglion of the guinea-pig myenteric plexus observed with Hoffmann 
Modulation Contrast optics revealing neurons within the ganglion. Two neurons are indicated 
by an arrow. L=longitudinal muscle layer, C=circular muscle layer. Bar = 30 //m. 

Classification of cells 
Three different cell types, S, AH and non-spiking (NS) cells, were 

distinguished. The cells were distinguished on the basis of their ability to produce 

action potentials. All cells that were not excitable upon intrasomal current injection, 

even when strongly depolarized (until 0 mV), were classified as NS cells. The 

electrically excitable cells showed at least one action potential at the onset of a 

depolarizing current pulse. Those cells that showed an inflexion on the falling phase 

of the action potential, (shoulder; Fig. 3) were classified as AH neurons. The cells that 

did not, as S neurons. Examples of the action potential shape of the two cell types 
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are shown in Figure 3. It is important to note that, as can be seen in Figure 3 and 

which was the case for all cells, the shoulder was either absent (S neurons) or so 

prominently present (AH neurons) that visual recognition was unequivocally possible. 

In this way, 84 cells were classified as AH neurons, 56 as S neurons and 49 as NS 

cells. 

20 mV 

Figure 3. Difference in action potential shape of three S (top) and three AH (bottom) 
neurons. The action potentials of the AH neurons show a pronounced inflexion on the falling 
phase (shoulder) as indicated by the arrow, whereas the action potentials of the S neurons 
do not. 

Properties of cells 
AH neurons. AH neurons (N=84) had membrane potentials of-65 ± 1 mVand 

input impedances of 70 ± 5 MQ. The duration of the action potential was 1.9 ± 0.04 

ms (Table 1), and the amplitude was, on average, 88 ± 2 mV. The mean rate of 

decay of the action potential was 40 ± 2 V/s (Table 1). Of the AH neurons, 70 % 

(59/84) showed one action potential at the onset of the current injection. Increasing 

the strength of the depolarizing current pulses did not increase the number of action 

potentials. These cells showed a longlasting after-hyperpolarization, with durations 

of at least 4 sec (Fig. 4A). During the after-hyperpolarization, the input resistance of 

the cell was decreased, as revealed by the decreased amplitude of the voltage 

response to intrasomal injection of constant amplitude hyperpolarizing pulses (Fig. 

4A). 
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Thirty percent of the AH neurons showed multiple action potentials (up to 9 in 

150 ms) upon intrasomal stimulation (Fig. 4B). No longlasting (> 4 s) after-hyper-

polarizations were associated with the action potentials of these cells. Properties of 

AH neurons giving multiple action potentials differed from those giving a single action 

potential in that they had larger input impedances (93 vs. 56 MQ) and a lower 

threshold for spike discharge (-48 vs. -40 mV). These more excitable AH neurons 

also produced action potentials at the offset of a hyperpolarizing current pulse as S 

neurons do. After a short application of tetrodotoxin (10 nM) in the superfusion fluid, 

these more excitable AH neurons were found to have changed their behaviour into 

that of the AH neurons having one action potential followed by an after-

hyperpolarization. 

Table 1. Electrical properties of AH, S and NS cells. 

Cell type 

Number of cells 

Passive properties 

Membrane potential (mV) 

Input resistance (MQ) 

Action potential properties 

Duration (ms) 

Rate of decay (V/s) 

Synaptic properties 

fEPSPs (% of cells) 

Amplitude (mV) 

Duration (ms) 

Antidromic responses 

(% of cells) 

AH 

84 

-65 ± 1a 

70 ± 5ab 

1.9 ±0.04" 

40 ±2" 

24a 

5 ± 1 a 

20 ±3 

65a 

S 

56 

-57 ± 1 " 

80±6 a 

1.0±0.04b 

58±2 b 

95b 

12±2 b 

23 ± 2 

5b 

NS 

49 

-69 ± 1c 

39 ±5" 

44a 

8 ±2" 

22 ±3 

4b 

abc) Values (means ± S.E.M.) in the same horizontal row with different letter superscripts are 
significantly different from each other (t-test; p<0.05). 
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Figure 4. Intracellular recordings obtained from AH neurons of the myenteric plexus. A: 

Injection of a depolarizing current pulse (150 ms; 0.5 Hz; 0.2 nA) induces a single action 

potential followed by a long after-hyperpolarization (AH). Identical current pulses injected 

during the AH fail to elicit action potentials. Decreased input resistance during AH is reflected 

by decreased amplitudes of electronic potentials produced by repeated injection of 

hyperpolarizing current pulses. Resting membrane potential (rmp) is -62 mV. B: Recording 

of an AH neuron (rmp=-60 mV) which produces repetitive action potentials through-out the 

duration of a depolarizing current pulse (0.15 nA). Note the absence of the long AH. C: 

Stimulation of an internodal strand with current pulses by an extracellular electrode (0.5 Hz; 

0.15 ms) evokes antidromic responses, followed by an AH. Rmp = -70 mV. Insets show the 

shapes of the action potentials. 
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Figure 5. Intracellular recordings obtained from S neurons of the myenteric plexus. A: 

Injection of a depolarizing current pulse (150 ms; 0.5 Hz; 0.25 nA) through the recording 

electrode causes repetitive spiking. Resting membrane potential (imp) is -52 mV. B: Example 

of a neuron (rmp = -55 mV) in which depolarizing current pulses (150 ms; 0.5 Hz; 0.15 nA) 

only evoke one action potential on each current pulse. Increasing the amount of depolarization 

did not increase the number of action potentials. C: Stimulation of an internodal strand with 

current pulses by an extracellular electrode (0.5 Hz; 0.15 ms) induces a fEPSP. Recording 

shows a computerized average of 65 fEPSPs. Rmp = - 60 mV. Insets show the shapes of 

the action potentials. 
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S neurons. 56 Cells were classified as S neurons, of which 66 % (37/56) 
showed multiple action potentials (maximum 21 in 150 ms) upon intrasomal current 
injection (Fig. 5A). 34 % of the S cells showed one single action potential at the onset 
of the current pulse (Fig. 5B). S neurons had a lower resting membrane potential (-57 
± 1 mV) and a higher input impedance (80 ± 6 Mû) than the AH neurons (Table 1). 
The frequency distribution of the duration of the action potentials of the, by the 
shoulder identified, AH and S cells is given in Figure 6. It appears that these two cell 
populations can also be distinguished by the action potential duration, which was 
measured as the width of the action potential at half the height (Hirst et a/., 1985). 
The mean duration of the action potential was shorter in S cells (1.0 + 0.04 ms; Table 
1) than in AH cells (1.9 ± 0.04 ms). The mean rate of decay of the action potential 
was significantly (P<0.001) larger in S neurons (58 ± 2 V/s) than in AH neurons. The 
amplitudes of the action potentials in S neurons were found to be smaller than those 
in AH neurons (74 vs. 88 mV). This is in accordance with the difference in membrane 
potential between the cell types. 

S neurons that showed only one action potential differed from the others in 
having lower input impedances (61 vs 91 MO.) and a higher threshold value for spike 
discharge (-35 vs -43 mV). 

S neurons AH neurons 
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Figure 6. Histograms of the frequency distribution of the duration of the action potentials of 
the populations of AH and S neurons. The total number of AH and S cells was 84 and 56, 
respectively. 
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Non-spiking (NS) cells. Sometimes cells which were initially found to be 

inexcitable became excitable within the first half hour of impalement. Only cells that 

were not electrically excitable after 45 minutes of stable impalements were classified 

as NS cells. On penetration of a NS cell a steady resting membrane potential of on 

average -69 ± 1 mV was recorded and the average input impedance of these cells 

was lower (39 ± 5 MQ) than that of S and AH cells. 

Synaptic properties of the cell types 
By electrical stimulation of an internodal strand connected to the ganglion, 

antidromic responses and fast and slow synaptic responses could be evoked. 

Antidromic responses were distinguished from fast EPSPs (fEPSPs) by their shorter 

duration (< 5 ms) and by retention of a constant amplitude when the membrane 

potential was current clamped to hyper- or depolarized levels relative to the resting 

potential (cf. Wood, 1989). The rise time for the fEPSPs was on average 4.6 ± 0.1 

ms, in contrast to about 1 ms for the antidromic responses. The stimulation electrode 

was placed at one specific location for each impaled cell, so that only qualitative 

information on the cell's input was obtained. 

Almost all S cells (41/43) showed fEPSPs upon stimulation of an internodal 

strand (amplitude 12 ± 2 mV; duration 23 ± 2 ms; Table 1). Figure 5C shows an 

example of an averaged fEPSP. Of the impaled AH neurons, 24 % (14/59) responded 

to electrical stimulation with a fEPSP (amplitude 5 ± 1 mV; duration 20 ± 3 ms; Table 

1). About half of the NS cells (11/25) were found to respond to electrical stimulation 

of an internodal strand with a fEPSP (amplitude 8 ± 2 mV; duration 22 ± 3 ms; Table 

1). The fEPSPs in the NS cells never resulted in discharge of action potentials, 

whereas in AH and S cells they often did. 

More than half of the AH neurons (39/60) showed antidromic responses upon 

stimulation of an internodal strand, followed by an after-hyperpolarization. The 

shoulder was clearly visible on the action potentials that invaded the cell soma 

antidromically (Fig. 4C). Only 2 out of 43 S cells showed antidromic responses. 

Size and shape of cells 
The somata of the cells were clearly visible (Fig. 2) through the microscope. 

The cells showed a wide variation in shape, which generally varied from round to 

oval. For most cells the long axes of the soma lay in the same direction as the length 

axes of the ganglion (Fig. 7). During the course of an impalement some cells filled 

out and seemed to increase in size. This swelling was not associated with significant 
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changes in electrical and synaptic properties of the cells (cf. Gabella and North, 

1974). 

Photomicrographs were taken before and after impalements of 141 electro-

physiologically identified cells and drawings of the cell somata in the ganglia were 

made (see Methods). The soma sizes expressed as surface area, showed a wide 

variation, the smallest cell being 130 //m2 and largest being 2600 fjm2. 

Figure 7. Example of a ganglion containing five electrophysiologically identified cells made 
from a photomicrograph of an unstained preparation of the guinea-pig myenteric plexus. Note 
the differences in size and shape of the somata between the cell types (indicated by AH, S 
and NS) and also between the cells belonging to one type. How the long (Ld)and short axis 
(Sd) of the somata were measured is indicated. 

Figure 7 shows a drawing of a ganglion containing five electrophysiologically 

classified cells. How the size of the long and short axis of cells were measured is 

indicated. The correlations between long axis diameter and short axis diameter for 

the different cell types are given in Figure 8A. AH cells generally had large ovoidal 

appearances with the long axis almost twice the size of the short axis (Fig. 8A; Table 

2; cf. Bornstein er al., 1991). The mean soma size of AH cells was 1290 ± 84 //m2 

(Table 2). The S cells were smaller than AH cells, having a mean surface area of 760 

± 65 //m2 (p<0.01). S cells showed the largest variation in shape, being round, oval 

or sometimes very complicated in appearance. The NS cells appeared to be small, 

round cells, but a few larger ovoidal appearances were also found. Their mean soma 

size was smaller (430 ± 57 //m2; p<0.01) than that of the excitable cells (Table 2). 
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Table 2. Soma sizes of the three cell types. 

Cell type 

Number of cells 

Long axis (//m) 

Short axis (//m) 

Surface area (/vm2) 

AH 

66 

53±3 a 

30 ±1° 

1290±84a 

S 

47 

39 ±2 " 

23 ±7" 

760 ± 65" 

NS 

34 

27±2C 

18 ± 1c 

430 ± 57c 

abc) Values (means ± S.E.M.) in the same horizontal row with different letter superscripts are 

significantly different from each other (Mann-Whitney U test; p<0.01). 
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Figure 8. A: The cell shape distribution obtained by plotting the short axis diameter against 

the long axis diameter for the three different cell types. The line represents cells with round 

somata for reference. B: Histograms of the frequency distributions of the measured soma 

sizes of the populations of the three electrophysiological^ identified cell types. Note that, 

although the means are significantly different (Mann-Whitney U test; p<0.01), there is an 

overlap in soma sizes for the three cell types. The total number of AH, S and NS cells was 

66, 47 and 34, respectively. 
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Although mean soma sizes were significantly different for the three cell types, 

an overlap in size occurred for the different populations of cell types (Fig. 8B). No 

correlation was found between the presence of fast synaptic input on the NS cells 

and the size of these cells. However, all NS cells with a soma size above 800 //m2 

(7 cells; Fig. 8B) showed some sign of neural properties, such as, for instance, 

spiking upon impalement, fast synaptic input or antidromic responses. 

B 

Figure 9. Location of the three different cell types within the ganglion that was constructed 
using the length axis of the ganglia and the internodal strands as a reference (see Methods). 
All cells belonging to a specific cell type (AH, S and NS) are depicted in a ganglion. The bar 
indicates the three equal-sized parts in which the ganglion was divided for statistical testing 
of cell distribution. A: The AH cells can be seen to have large cell somata and to be randomly 
located throughout the ganglion. B: The S cells are smaller in size than the AH cells and are 
also located randomly throughout the ganglion. C: The NS cells are smaller in size than the 
AH and S cells and are located in close proximity to the onsets of the internodal strands (Chi-
square test; p<0.008). 
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Location of cells 

In order to compare the locations of cells within the ganglia (which were found 

to have roughly the same size) a schematic ganglion was drawn with two internodal 

strands (see Methods). All cells of one particular identified type were then drawn in 

the ganglion with regard to their position to the strands, to the length axis of the 

ganglion and to the oral/aboral direction (Fig. 9). 

AH 
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NS 

yr 

Figure 10. Highly schematized summary of the results of measurements of 

electrophysiological and morphological properties of the three cell types. Four cells are 

depicted as circles for each cell type in a separate schematic ganglion with one internodal 

strand. The equal number of cells per ganglion indicates that the number of cells encountered 

was about the same for each cell type. The differences in diameter of the circles reflect the 

measured differences in mean soma size. The measured frequency of occurrence of fast 

synaptic input on each cell type is indicated by the percentage of the four cells for which 

synaptic connections are drawn. The measured frequency of occurrence of antidromic 

responses of the cells to electrical stimulation of the internodal strands, which is assumed to 

give an indication of the amount of processes of the soma, is indicated by the percentage of 

the four cells that are connected directly to the internodal strand. 
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It appeared that the S and AH cells were randomly located through the 

ganglion. Also no special relationship was noticed in the positions of the different cell 

types with regard to each other. The NS cells, especially the smallest ones, seemed 

to cluster in the proximity of the internodal strands (Fig. 9). A Chi-square Test on all 

NS cells showed that the number of cells in close proximity to the internodal strands 

(for details see Fig. 9) was indeed significantly (p<0.008) larger than that in the other 

parts of the ganglion. 

Summary of results 
Figure 10 depicts a schematic summary of the above results with respect to 

the electrophysiological measurements of the connections of the cells and the 

morphological measurements of soma sizes for the three cell types. From the figure 

it can be seen that the AH cells have on average the largest soma size, send many 

processes into the internodal strands and receive relatively little fast synaptic input. 

The S cells are smaller in size than the AH cells, send only a limited number of 

processes into the internodal strands and receive abundant fast synaptic input. The 

NS cells are relatively small cells, which do not seem to have many processes and 

of which half of the cells receive fast synaptic input. 

Discussion 

Classification of cells 

The present results show that the neurons of the myenteric plexus of the 

guinea-pig ileum can be electrophysiologically classified in a consistent way in three 

different types by using two criteria. These criteria are the ability of the cells to 

produce action potentials, and if so, the occurrence of a shoulder on the falling phase 

of an action potential. 

The electrical properties of the three classes of cells distinguished in this way 

are in accordance with the differences in electrical properties between three 

populations of cells described previously (reviewed by Wood, 1989). For instance, our 

finding that AH neurons have more negative membrane potentials and lower input 

resistances than S neurons (Table 1) is in good agreement with previous data (Nishi 

and North, 1973; Hirst et al., 1974; Wood, 1989). Also, the observation that the non-

spiking cells have the lowest values for these parameters confirms existing data 

(Nishi and North, 1973; Wood, 1989). 
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The selection criterion used in our classification of the excitable cells is based 

on the fact that action potentials in AH neurons always show an inflexion on the 

falling phase. These inflexions are also apparent in previously published work (Hirst 

er al., 1974; Wood and Mayer, 1978) and no such shoulder occurs on the 

repolarization phase of the action potentials in S neurons (Iyer et al., 1984). The 

shoulder has shown to be prolonged by tetraethylammonium or depletion of external 

calcium (Wood et al., 1979; Hirst ef a/., 1985a) and to be tetrodotoxin-resistant (Hirst 

and Spence, 1973; North, 1973). The information available suggests that in AH 

neurons the inward currents during the rising phase of the action potential are carried 

by Na+ and Ca2+ ions (Tatsumi et al., 1988), the Ca2+ current being the cause of the 

inflexion (Hirst and Spence, 1973; Hirst et al., 1985a). The finding that action 

potentials of the AH and S cells had significant different durations (cf. Iyer et al., 

1988), with almost no overlap in the frequency distribution (see Fig. 6), puts the 

classification on a firm quantitative basis. 

The name AH cell does refer to the after-hyperpolarization which follows the 

action potential (Hirst era/., 1974). An after-hyperpolarization was seen in 70% of the 

AH cells, the other 30% of the AH cells were in a state of augmented excitability 

which resembles the behaviour of S neurons. In this excitable state the 

hyperpolarizing afterpotentials are presumably suppressed by the action of 

neurotransmitters for slow synaptic excitation (Wood, 1989). The shoulder on the 

action potential is, however, always present. The fact that tetrodotoxin changes the 

electrical behaviour of the highly excitable cells into that of the other AH cells 

supports the notion that all cells with a shoulder belong to one class of cells. 

Originally, the name S cell was used to signify the always present fast synaptic 

input, whereas AH cells supposedly did not receive such input (Hirst et al., 1974; 

Bornstein et al., 1984). According to the present classification, all S neurons and 24 

% of the AH neurons were found to receive fast synaptic input. Our data support the 

notion, based on electrophysiological evidence (Gräfe et al., 1979; Katayama era/., 

1986; Iyer et al., 1988) that some AH neurons do receive fast synaptic input. 

Morphological evidence for the presence of synapses on electrophysiologically 

identified AH neurons has been presented by Erde ef al. (1985). The extent of 

coverage by morphologically identifiable synaptic contacts did not differ between AH 

and S cells. Besides fast synaptic input, slow synaptic potentials can be recorded in 

AH cells in response to repetitive stimulation of an interganglionic fibre tract (Erde et 

al., 1985; Wood, 1989). Thus, synaptic input cannot be used to distinguish between 

S and AH neurons (cf. Erde et al., 1985). 
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Of the S neurons, 34 % were found not to discharge action potentials 

continuously throughout a depolarizing current pulse, but only at the onset. According 

to Wood's criteria (1989) they would have been classified as AH neurons. These S 

neurons have been shown to have a morphology similar to the other S neurons, in 

that they also have a single long process (Bornstein et al., 1991; Tamura, 1992). 

Some of the NS cells found in this study may have been glial cells. Surely, the 

NS cells receiving fast synaptic input and those that showed signs of neuronal 

properties were neurons. This is in accordance with the morphological demonstration 

by Erde etat. (1985), that some electrophysiologically identified NS cells are neurons. 

Further, some of the NS cells are found to become excitable upon administration of 

slow excitatory modulators (Frieling et ai, 1993; Schutte era/., 1992b). This supports 

the hypothesis that part of the silent cells are cells which are constituents of neural 

circuits that are only active during some phases of intestinal function and inactive 

during additional phases (Wood, 1989). 

We conclude that the presence of a shoulder on the action potential is a 

reliable criterion for distinguishing S and AH neurons. The advantages of the present 

classification are that it can be used 'on line' and that it is highly selective as well as 

consistent, being based on the presence of a calcium contribution to the inward action 

potential current. This calcium contribution is not affected by the presence of 

neurotransmitters or neuromodulators in the ganglion. The classification of excitable 

enteric cells in two classes does of course not implicate that only two different cell 

types are present in the myenteric plexus. Based on for instance histochemical 

properties, morphology and responses to neurotransmitters many subclasses can be 

distinguished (Costa era/., 1987; Furness era/., 1990). 

Morphology 

A second purpose of this study was to correlate cell soma size with 

electrophysiological identification of enteric neurons. The morphology of 

electrophysiologically identified neurons of the myenteric plexus has been described 

previously by means of intracellular dye injection (Bornstein et al., 1984; Hodgkiss 

and Lees, 1983; Katayama et al., 1986). In the present study, the morphology was 

studied using an optical technique (HMC), which reveals no details on cell 

morphology. The use of this technique, however, enabled us to report differences in 

soma size and shape between the three identified cell populations, as seen prior to 

visually controlled impalement with a microelectrode. That impalement of myenteric 

neurons may influence their later appearance has been shown by Gabella and North 
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(1974) using electronmicroscopy, who reported impaled cells to increase up to 2-4 

times in size during the course of impalements. 

The observation that AH neurons are larger than S neurons is in accordance 

with data obtained by correlating electrophysiological properties of neurons with their 

size by using intracellular dye injection (Bornstein er al., 1984; Hodgkiss and Lees, 

1983) and supports the usefulness of the shoulder criterion. 

Although our morphological data do not provide information on the exact 

number of the soma processes, some information about the presence of processes 

was obtained from the cell responses to electrical stimulation of the internodal 

strands. The high occurrence of antidromic responses in AH neurons (65%), for 

instance, indicates that these neurons send many processes into the internodal 

strands. This is in accordance with the demonstration by intracellular injection of the 

marker substance biocytin that AH neurons project circumferentially to nearby ganglia 

(Bornstein er al., 1991) and supports the classification by the shoulder criterion. 

Most likely, the relative number of AH, S and NS cells encountered in this 

study (84, 56 and 49 cells, respectively) does not reflect the proportion of each cell 

type present in the ganglia. Since, in general, the visibility of the cells through the 

microscope and the duration of stable recordings increase with cell size, in our 

experiments the sampling of cells probably has not been aselective, despite attempts 

to ensure this. In other studies of neurons of the enteric nervous system, where 

penetration is usually done without visualization of the cells, there is also a tendency 

to select larger cells (cf. Bornstein et al., 1984). The overlap in soma size between 

the electrophysiologically different cell types (Fig. 8B) prevents determination of cell 

type by size only. 

Location of cells 

In the present experiments the inexcitable NS cells were found to cluster in the 

proximity of the onsets of the internodal strands. Some of these NS cells, namely the 

smallest ones, may have been glial cells. This view is supported by the observation 

in the myenteric plexus of the guinea-pig small intestine of a similar clustering in 

proximity to the internodal strands of small cells that are immunoreactive to the glial 

cell marker S-100 protein (Bornstein, personal communication). 

As far as we are aware, no information is available on the location of electro

physiologically different types of neurons within the ganglia of the enteric nervous 

system. Our demonstration that the excitable AH and S neurons are randomly located 

within a ganglion suggests that there is no specific order in the location of these cells. 
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This, however, should not be taken as evidence that there is no organization at all 

with respect to location within a ganglion, since for several other types of autonomic 

ganglia there is evidence that cells with specific neurochemical properties and 

projections to the same target organ lie close together (reviewed by Elfvin et al., 

1993). 

In summary, in the myenteric plexus of the guinea-pig ileum, three electro

physiological cell types (AH, S and NS cells) can be distinguished on the basis of 

their electrical excitability and only one other criterion, i.e. the presence of a shoulder 

on the action potential. The results further show that there is a strong correlation 

between cell type and soma size and that the small NS cells, presumably glial cells, 

are located in a cluster close to the internodal strands. 
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CCKA and CCKB receptor subtypes both mediate the effects of 
CCK-8 on myenteric neurons in the guinea-pig ileum 

Irma W. M. Schutte, Louis M. A. Akkermans, and Alfons B. A. Kroese 

Abstract 

The effects of cholecystokinin (CCK-8) on myenteric S neurons were 

investigated by intracellular recording techniques, with the aim to determine the CCK 

receptor subtypes involved. CCK-8 (1-1000 nM) evoked concentration dependent 

longlasting excitatory responses in 45 of 54 neurons. CCK receptor antagonists were 

applied to 15 neurons in which CCK-8 evoked an excitatory response. In 5 of these 

neurons, application of the CCKA antagonist L-364,718 (100-500 nM) antagonized the 

action of CCK-8 and the CCKB antagonist L-365,260 (500 nM) had no effect. L-

365,260 (100-500 nM) antagonized the CCK-8 induced response in 5 neurons, on 

which L-364,718 had no effect. In the other 5 neurons each antagonist (500 nM) 

partly inhibited the CCK-8 evoked excitation and application of both antagonists (500 

nM) caused a complete blockade of the response to CCK-8. The selective CCKg 

receptor agonist CCK-8NS had similar excitatory effects as CCK-8, but only on the 

neurons in which CCK-8 evoked effects were antagonized by L-365,260. The results 

demonstrate that the excitatory effects of CCK-8 are mediated by both CCKA and 

CCKB receptor subtypes. Further, the results indicate that some neurons possess 

exclusively the CCKA or the CCKB receptor subtype, but others possess both 

subtypes. 

Introduction 

The peptide cholecystokinin (CCK) functions in the gastrointestinal tract as a 

hormone involved in the control of pancreatic secretion, gallbladder contraction and 

gut motility (Walsh, 1994). CCK is produced by endocrine mucosal cells in the 

duodenum and proximal jejunum and released into the bloodstream in response to 

a meal (Williams, 1982). Although multiple forms of CCK are present in the 

gastrointestinal tract, the biologically most active form of CCK is the sulfated C-

terminal octapeptide CCK-8 (Walsh, 1994). 
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The effects of CCK on the motility of the gastrointestinal tract are brought 

about either directly on smooth muscle cells or are mediated by neurons in the 

enteric nervous system (reviewed by Daniel et al., 1989). In the small intestine of the 

guinea-pig, CCK causes contraction of longitudinal muscles by an indirect action on 

myenteric inter- or motorneurons, presumably S type neurons (Bornstein et al., 1994), 

which release acetylcholine (Vizi era/., 1973) and substance P (Lucaites etal., 1991). 

Intracellular recordings have shown that CCK evokes mainly excitatory slow 

responses in myenteric S neurons of the guinea pig ileum (Nemeth et al., 1985). 

Two CCK receptor subtypes have been identified, namely the CCKA 

(alimentary) and the CCKB (brain) receptor (Dourish and Hill, 1987; Wank, 1995). The 

CCKA receptors have a high affinity for CCK-8 and the CCKA specific antagonist L-

364,718 (Chang and Lotti, 1986; Wank, 1995) and a relatively low affinity for the 

nonsulfated form of CCK (CCK-8NS), CCK-4 and gastrin (Huang et al., 1989; Wank, 

1995). CCKB receptors have high and nearly equal affinities for CCK-8, CCK-8NS, 

CCK-4 and gastrin (Huang et al., 1989; Wank, 1995) and for the specific CCKB 

antagonist L-365,260 (Lotti and Chang, 1989). In the CNS, the principal receptor for 

the neurotransmitter CCK is the CCKB receptor, but evidence has been provided for 

the existence of neuronal CCKA receptors (Boden and Woodruff, 1994). 

There are some indications that apart from CCKA (Chang and Lotti, 1986; 

Zelles etal., 1990) also CCKB receptors may be involved in ileum contractions evoked 

by CCK. Also, the results of an in vivo study (Rodriguez-Membrilla et al., 1995) 

suggest that CCK-mediated motor changes after a meal in rat are due to stimulation 

of peripheral CCKB receptors. The results of in vitro studies showed that CCK-4 and 

gastrin (CCKB agonists) contract the ileum through activation of neuronal CCKB 

receptors (Dal Forno etal., 1992; Gaudreau etal., 1987; Lucaites etal., 1991; Patel 

and Spraggs, 1992). This suggests that CCKB receptors may be present in the enteric 

nervous system. 

An elegant intracellular microelectrode study has revealed that in the 

gallbladder the main neuronal action of CCK-8 is a presynaptic facilitatory effect on 

fast synaptic transmission, mediated exclusively by presynaptic CCKA receptors 

(Mawe, 1991)). Intracellular studies on stomach antral (Tack et al., 1992) and 

duodenal myenteric neurons (Mutabagani et al., 1993) have suggested that CCK-8 

evoked effects in these neurons are mediated solely by CCKA receptors. Thus, 

although there is no doubt about the presence of CCKA receptors on myenteric 

neurons, conclusive evidence about the presence of CCKB receptors on myenteric 

neurons is lacking. 
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In the present study intracellular recordings were used to examine the effects 

of CCK-8 on S neurons of the myenteric plexus of the guinea pig ileum. The selective 

antagonists, L-364,718 and L-365,260 were used to characterize the receptor subtype 

involved. These antagonists are highly selective for respectively the CCKA and the 

CCKB receptor subtype and there is evidence that these antagonists do not interfere 

with other receptors (Chang and Lotti, 1986; Lotti and Chang, 1989; Wettstein er al., 

1994). 

The results show that the excitatory effects of CCK-8 on S neurons are 

mediated by CCKA as well as by CCKB receptor subtypes. 

Material and methods 

Preparation 
Guinea-pigs (200 - 300 g) were stunned by a blow to the head, decapitated 

and exsanguinated. All procedures were approved by the Wageningen University 

Committee for Experiments on Animals and were in accordance with the Dutch Law 

on experimental animals (1987). The small intestine was removed and a 2 cm 

segment of the distal ileum was slipped onto a glass rod. A small cut was made along 

the mesenteric border and both muscle layers with the myenteric plexus were 

stripped away with blunt forceps. This preparation was then placed in a dissection 

dish and perfused with ice-cold Krebs solution. It was pinned flat under stretch to 

Sylgard 184 encapsulating resin (Dow Corning, Midland, Ml) at the bottom of the dish. 

The circular muscle layer was removed with fine forceps to expose the myenteric 

plexus on the longitudinal muscle layer. The preparation was then transferred and 

pinned to Sylgard resin at the glass bottom of a 1.5 ml recording chamber (diameter 

21 mm). The chamber was perfused at a rate of 3 ml/min with Krebs buffer, which 

had the following composition (mM): NaCI 120; KCl 6.0; MgCI2 1.2; NaH2P04 1.4; 

NaHC03 14.4; CaCI2 2.5; glucose 12.7; gassed with 95% 02 - 5% C02 and 

maintained at 36 °C and pH 7.4. Nifedipine (1-2//M) was added to the perfusion fluid 

to prevent mechanical activity of the muscle layer. The preparations were left 

undisturbed in the chamber for 2 h before experiments were started, to eliminate any 

effects of neuroactive compounds released from the plexus during the dissection. 

Electrophysiological recording 
The tissue chamber was placed on the fixed stage of a Zeiss UEM microscope 
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equipped with a Hoffman Modulation Contrast system. Individual cells in an 

immobilized (Wood, 1994) ganglion were visualized by a 30x objective (total 

magnification x600) with a working distance of 10 mm. Intracellular recordings were 

made using glass electrodes made of borosilicate glass (World Precision Instruments 

Inc.; 1B100f) on a Brown-Flaming micropipette puller (Sutter Instruments Co.; P-87). 

The electrodes were bent about 90 degrees at about 6 mm from their tips, filled with 

3 M KCl and had a resistance of 60-80 MQ. Under visual control selected cells were 

penetrated in the direction perpendicular to the surface of the preparation, by applying 

an oscillating voltage to the electrode tip. 

Potentials were recorded with an electrometer (World Precision Instruments 

Inc.; Intra 767), by which rectangular current pulses were also injected. After 

amplification and low pass filtering (2.6 kHz) each signal was digitized using a 

1401plus CED interface (Cambridge Electronic Design Ltd.) at a sampling rate of 5.6 

kHz and displayed and stored on a PC. 

Electrical stimulation 
An etched stainless steel stimulating electrode (tip diameter 10 //m) was used 

to stimulate an internodal strand connected to the ganglion with extracellular current 

pulses of 0.15 ms duration (<0.5 Hz) produced by a stimulus isolation unit. The 

electrode was positioned at a distance of at least 200 jjm away from the impaled 

neuron. 

Drugs and their administration 

CCK-8 and CCK-8NS were obtained from Sigma Chemical Co. (St. Louis, MO). 

Stock solutions of CCK-8 and CCK-8NS were prepared in concentrations of 50 JJM 

in Krebs solution containing bovine serum albumin, aprotonin and bacitracin (each at 

0.1%) and stored at -20 °C. CCK-8 and CCK-8NS were applied by micro-ejection from 

fine-tipped pipettes (tip diameter 10 //m) with nitrogen pulses of controlled pressure 

and duration, or by addition to the superfusion solution in known concentrations. 

Application of CCK-8 and CCK-8NS by micro-ejection was at intervals exceeding 2 

min. Application at shorter intervals caused the responses to decline, suggesting 

desensitization to occur. CCK-8 and CCK-8NS (1 nM -1000 nM) were applied in the 

bath for 1-5 min. Between bath applications, the tissue was kept in drugs-free solution 

for at least 15 minutes to ensure reproducibility. 

The selective CCKA antagonist L-364,718 and CCKB antagonist L-365,260, 

were kindly provided by Dr. V. Lotti (Merck, Sharp & Dohme, Rahway, NJ). L-364,718 
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and L-365,260 were dissolved in DMSO (99%) and frozen at -20° C. Solutions at the 

desired concentrations were prepared just before application to the superfusion by 

thawing fresh aliquots in Krebs solution. In the experiments, DMSO never exceeded 

0.1% in the perfusion medium. Control experiments showed that 0.1% DMSO did not 

affect the electrical properties of the neurons. Antagonists (1 nM - 1000 nM) were 

usually applied for 10 min. 

In some experiments, atropine sulphate (1 fjM) and tetrodotoxin (TTX; 10 nM) 

were added to the superfusing solution. 

Data analysis 
The data were analyzed "off line" using standard CED SPIKE2 software and 

computer programs written in the CED SCRIPT language. The membrane resistance 

of the cells was measured from the voltage response to hyperpolarizing current 

pulses through the cell membrane, by averaging at least 10 responses. The time 

course of CCK-induced slow changes in membrane resistance, membrane potential 

and action potential frequency was determined by measuring these parameters every 

few (1-10) seconds. The maximum values for these parameters reached during CCK-

8 superfusion were determined. Properties of fast synaptic potentials (fEPSPs) were 

determined by averaging at least 25 fEPSPs. 

Classification of cells 

Excitable cells were classified electrophysiological^ "on line" by using a 

criterion of which we have recently shown that this distinguishes S and AH neurons 

unequivocally (Schutte et al., 1995). Cells in which the action potential evoked by 

current injection showed a pronounced inflexion (shoulder) on the falling phase, were 

classified as AH neurons, the others as S neurons (Bornstein et al., 1994; Schutte et 

al., 1995). The classification was confirmed by "off-line" scrutinizing of the action 

potential shape in the digitized datafiles. 

Statistics 

All values are given as means ± standard error of the mean (S.E.M.). A paired 

t-test was used to test parameters for significance of difference in means. Probability 

<0.05 was accepted as significant. 
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responsiveness to CCK-8. Two of the 5 neurons responded upon CCK-8NS 

application (10-100 nM) with a concentration dependent increase in membrane 

resistance and action potential discharge, although no change in membrane potential 

occurred (Fig. 7). At a concentration of 100 nM, CCK-8NS evoked in these cells 

excitatory responses with an action potential discharge and resistance increase 

comparable to the CCK-8 (100 nM) responses of the same cell. In both neurons that 

responded to CCK-8NS application, the CCK-8 induced effects could be antagonized 

partly by L-364,718 and partly by L-365,260. The other three neurons did not show 

any response to CCK-8NS application. 

To 
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Figure 6. Time course of CCK-8 evoked change in action potential frequency. CCK-8 (100 
nM) was applied from 0-90 s. On the y-axis the instantaneous action potential frequency 
(spikes/s; mean over 10 s) is depicted. CCK-8 application causes a longlasting burst of action 
potentials (o). Superfusion of L-365,260 (500 nM;D) or L-364,718 (500 nM; A) reduced the 
action potential frequency evoked by CCK-8. Superfusion of L-365,260 together with L-
364,718 (each 500 nM) reduced the CCK-evoked action potential frequency to zero. 
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- 56 mV 

CCK-8 100 nM 

-53 mV 
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Figure 7. Comparison of the effect of CCK-8 and CCK-8NS on a S neuron. A: Application of 
CCK-8 (100 nM) evoked an increase of excitation (1.9 sp/s) accompanied by a depolarization 
(5 mV) and an increased membrane resistance to 115% of control. B: Application of CCK-
8NS (100 nM) evoked an increase of excitation (0.8 sp/s) accompanied by an increase in 
membrane resistance to 117% of control. No change in membrane potential was detected. 
Application of the drugs is indicated by the bar. On the left the membrane potential is 
indicated. 

Discussion 

The application of CCK-8 caused a concentration dependent (1-1000 nM) and 

reversible enhancement of the excitability of most S neurons. The observed 

properties of the responses confirm the results of Nemeth etal. (1986). Evidence for 

the presence of CCKA and CCKB receptor subtypes on the neurons was obtained from 

observations of selective inhibition of the CCK-8 effects by antagonists and from the 

action of the CCKB receptor agonist CCK-8NS. 
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Effects of CCK-8 on S neurons 
CCK-8 caused an enhancement of the excitability in 83% of the S neurons. 

The results show that CCK-8 acted directly on the recorded neurons and has no 

presynaptic effects. Thus, in the ileum the action of CCK-8 on the neurons is different 

from that in the gallbladder (Mawe, 1991), where CCK-8 has exclusively a presynaptic 

facilitating effect on synaptic transmission. 

The nanomolar concentration range at which the effects of CCK-8 were 

observed, is comparable to that reported for enteric neurons in the gallbladder 

(Mawe, 1991), for sympathetic neurons (Mo and Dun, 1986; Schumann and Kreulen, 

1986) and for neurons in the CNS (Boden and Woodruff, 1994). The characteristics 

of the CCK-induced enhancement of excitability in S neurons are similar to the effects 

of other peptides, such as Substance P and Calcitonin gene-related peptide on 

myenteric neurons (reviewed by Wood, 1994). This excitation resembles the slow 

synaptic excitation that can be evoked by electrical stimulation in myenteric neurons. 

The ionic mechanism of this response appears to be the closure of K+ channels 

(Surprenant, 1994; Wood, 1994). The finding that the CCK-8 induced responses in 

the neurons were accompanied by an increase in membrane resistance is also 

indicative of suppression of a K+ conductance by CCK-8. 

A function of CCK as neurotransmitter in the enteric nervous system has been 

suggested (Furness and Costa, 1989; Hollestein et al., 1995; Karaus and Niederau, 

1995; Walsh, 1994; Williams, 1982). Because of the lack of information on the 

putative neurotransmitter action of CCK in the myenteric plexus, it cannot be decided 

if the CCK-induced excitation observed in the present experiments resembles this 

action, or the endocrine action. 

CCKA and CCKB receptor subtypes 

The inhibitory effects of the selective CCKA and CCKB receptor antagonists on 

the excitatory CCK-8 responses show the presence of CCKA as well as CCKB 

receptors on S neurons in the ileum. The CCK-8 response was antagonized by L-

364,718 and L-365,260 in the nanomolar (100-500 nM) concentration range. This is 

in accordance with the effective concentrations of the antagonists reported for other 

in vitro preparations (Boden and Woodruff, 1994; Chang and Lotti, 1986; Lotti and 

Chang, 1989). No agonist activity was observed. The finding that in some neurons 

the response to CCK-8 could be blocked completely by the CCKA receptor antagonist 

L-364,718 was not unexpected (Chang and Lotti, 1986; Mawe, 1991; Mutabagani et 

al., 1993; Tack et al., 1992; Zelles et al., 1990) and confirms the presence of CCKA 
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receptors in the enteric nervous system. 

Some neurons, however, were encountered in which the response to CCK-8 

could be blocked completely by the CCKB receptor antagonist L-365,260. This 

indicates the presence of S neurons with only CCKB receptor subtypes. Also, neurons 

were found in which the CCK-8 response could be inhibited partly by the CCKB 

receptor antagonist and partly by the CCKA antagonist. Excitatory effects of CCK-

8NS, a selective agonist for the CCKB receptor (Huang ef a/., 1989), were observed 

only in these neurons, and not in neurons where the CCK-8 response could be 

blocked completely by the CCKA receptor antagonist. It was thus concluded that some 

S neurons possess both CCKA and CCKB receptor subtypes. The occurrence of both 

receptor subtypes on one neuron, as observed by us in the myenteric plexus, has 

also been reported for several brain regions (Boden and Woodruff, 1994). 

The presence of CCKB receptors on guinea pig stomach muscle (Bishop era/., 

1995) and in the small intestine (Dal Forno era/., 1992; Lucaites et ai, 1991; Patel 

and Spraggs, 1992) has been suggested previously, based on results from 

contraction studies. Both myenteric CCKA and CCKB receptors are reported to be 

involved in the regulation of ion transport in the mouse ileum (Rao et al., 1994). 

Recently, the presence of a high density of CCKB receptors in the canine duodenum 

myenteric plexus was shown by autoradiographic analysis (Mantyh et al., 1994). 

The results also show that in S neurons, presumably motor- or interneurons 

(Bornstein et al., 1994), the excitatory responses to CCK-8 mediated by the two 

receptor subtypes were different. Only in neurons in which CCK-8 acted through the 

CCKA receptor subtype, abundant spontaneous action potential activity was observed 

upon application of CCK-8. Also, the duration of the response mediated by the CCKA 

receptor was observed to be longer than that mediated by the CCKB receptor. This 

might explain the observations from contraction studies (Dal Forno et al., 1992; 

Lucaites er al., 1991) that CCK acting on CCKB receptors evokes a short contraction, 

while contractions mediated by CCKA receptors are sustained. Further study is 

necessary to determine if different sub-cellular mechanisms, which may involve cAMP 

(Wood, 1994) or other second messengers, underlie the CCK-8 induced effects on 

the enteric neurons. 

In conclusion, the present findings show that the excitatory action of CCK-8 on 

myenteric S neurons is mediated not only by CCKA but also by CCKB receptor 

subtypes. The CCK antagonists are of putative interest for the treatment of functional 

bowel disorders, such as functional dyspepsia and irritable bowel syndrome (Enck et 

al., 1994; Raybould et al., 1994). In fact, some of these antagonists are presently 
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being examined in clinical trials for their therapeutic usefulness in digestive as well 

as in mental disorders (Raybould et al., 1994; Wettstein et al., 1994). The 

demonstrated presence of CCKB receptors on enteric neurons indicates that, for a 

more complete understanding of CCK function in the gastrointestinal tract, research 

is needed that targets the role of the neural CCKB receptor subtypes (cf. Enck et al., 

1994). 
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CCKA and CCKB receptors mediate dissimilar effects of CCK on 
guinea-pig myenteric neurons 

Irma W. M. Schutte, Louis M. A. Akkermans, and Alfons B. A. Kroese 

Abstract 
Intracellular electrophysiological recording was used to study the effects of 

CCK-8 and its non-sulfated analogue CCK-8NS on 103 myenteric AH neurons of the 

guinea-pig distal ileum. CCK-8 and CCK-8NS (1-1000 nM) both had an excitatory 

effect on 48% and an inhibitory effect on 11% of the neurons. The excitatory action 

was accompanied by a more than 50% reduction (500 nM CCK) of the amplitude and 

duration of the postspike after-hyperpolarization and a change in membrane 

resistance. At low concentrations CCK induced a decrease in resistance (to 80% of 

control; EC50 7 nM; CCK-8NS) and at higher concentrations an increase (to 120% of 

control; EC50 123 nM; CCK-8NS). The decrease in resistance could be antagonized 

by the CCKB receptor antagonist L-365,260 (250 nM), whereas the increase in 

resistance was antagonized by the CCKA receptor antagonist L-364,718 (250 nM). 

The inhibitory action of CCK was accompanied by an enhancement of the after-

hyperpolarization and a decrease in membrane resistance (to 60% of control; IC50 75 

nM; CCK-8NS). This inhibition was completely antagonized by L-365,260 (250 nM), 

but not by L-364,718 (250 nM). We conclude that the excitatory effects of CCK on 

individual myenteric AH neurons are mediated by CCKA receptors, evoking an 

increase in membrane resistance, as well as by CCKB receptors, evoking a decrease 

in membrane resistance. Thus, the CCKA and CCKB receptor subtypes on myenteric 

AH neurons do not only have different affinities for CCK, but do also mediate 

excitatory effects through dissimilar ionic channels. 

introduction 

Cholecystokinin (CCK) is a small peptide involved in the regulation of several 
aspects of gastrointestinal function such as gallbladder contraction, gastric emptying 
and the motility of small intestine and colon (Walsh, 1994). CCK is located in mucosal 
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endocrine cells in the duodenum and released in response to a meal (Buffa ef a/., 

1976). Further, within the enteric nervous system, CCK released from enteric neurons 

also functions as a neurotransmitter (Schutte ef a/., 1997a). The predominant and 

biologically most active form of CCK is the octapeptide CCK-8 (Rehfeld, 1978; Walsh, 

1994). 

Two different types of CCK receptors, CCKA and CCKB, have been described 

in both the central and peripheral nervous system (Dourish and Hill, 1987; Wank, 

1995). These receptor subtypes can be distinguished by their different binding 

properties of CCK analogues (reviewed by Crawley and Corwin, 1994) and by using 

selective antagonists, such as L-364,718 (CCKA; Chang and Lotti, 1986) and L-

365,260 (CCKB; Lotti and Chang, 1989). 

CCK is reported to act both directly (Botella et al., 1992) and by neural 

intermediation on ileal motility (Vizi ef a/., 1973; Hutchinson and Dockray, 1981). 

There is indirect evidence that the neurally mediated CCK contraction of smooth 

muscle cells is mediated by CCKA as well as CCKB receptor subtypes. Activation of 

neural CCKB receptors in muscle strips produces a transient fast contraction through 

release of acetylcholine, whereas CCK acting at CCKA receptors induces an 

additional slow sustained contraction through the release of Substance P (Lucaites 

ef a/., 1991; Dal Forno et al., 1992). It is not known if the difference between the 

CCK-induced contractions is caused by a dissimilarity between the actions mediated 

by both receptor subtypes, or between the neurons involved. 

The main action of CCK on myenteric neurons in the guinea pig ileum is 

excitatory with a depolarization leading to an increase in action potential activity 

(Nemeth ef a/., 1985). We have recently shown that in myenteric S neurons, which 

are presumably motor- or inter- neurons (Bornstein et al., 1991), both the CCKA and 

the CCKB receptor subtypes are involved in this excitatory response (Schutte et al., 

19976). Further, the results of this study suggested that the neural responses 

mediated by both receptor subtypes differ with respect to their duration. For 

populations of neurons in the CNS, differences between the effects of CCK mediated 

by both receptor subtypes have been reported (Dun ef a/., 1991 ; Branchereau et al., 

1992; Boden and Woodruff, 1994). This does, however, not unequivocally 

demonstrate a difference between the effects of CCK mediated by both receptors at 

the single cell level, because these differences may result from dissimilarities in 

receptor-effector coupling mechanisms between neural populations. 

In the present study, the effects of CCK-8 on myenteric AH neurons, which 

are primary sensory neurons (Kunze et al., 1995) were investigated. The CCKB 
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receptor agonist CCK-8NS and the CCK antagonists L-364,718 and L-365,260 were 

used to characterize the neuronal receptor subtypes. We report here that in individual 

AH neurons possessing both receptor subtypes, CCK induces two different membrane 

resistance changes, each of which is mediated by a particular CCK receptor subtype. 

Material and Methods 

Preparation 
Guinea-pigs (200 - 300 g) were stunned by a blow to the head, decapitated 

and exsanguinated. All procedures were approved by the Wageningen University 

Committee for Experiments on Animals and were in accordance with the Dutch Law 

on experimental animals (1987). The methods of dissection were the same as 

described in a previous paper (Schutte ef a/., '\997b). A conventional myenteric 

plexus/longitudinal muscle preparation was pinned to Sylgard resin at the glass 

bottom of a 1.5 ml recording chamber (diameter 21 mm). The chamber was perfused 

at a rate of 3 ml/min with Krebs buffer, which had the following composition (mM): 

NaCI 120; KCl 6.0; MgCI21.2; NaH2P041.4; NaHC0314.4; CaCI2 2.5; glucose 12.7; 

gassed with 95% 02 - 5% C02 and maintained at 36 °C and pH 7.4. Nifedipine (1-2 

JJM) was added to the perfusion fluid to prevent mechanical activity of the muscle 

layer. 

Electrophysiological recording 
The tissue chamber was placed on the fixed stage of a Zeiss UEM microscope 

equipped with a Hoffman Modulation Contrast system. Individual cells in a ganglion 

were visualized by a 30x objective (total magnification x600) with a working distance 

of 10 mm. The ganglion from which recordings were made was immobilized using L-

shaped stainless steel wires pressing on the preparation. Intracellular recordings were 

made using glass electrodes made of borosilicate glass (World Precision Instruments 

Inc.; 1B100f) on a Brown-Flaming micropipette puller (Sutter Instruments Co.;P-87). 

The electrodes were bent about 90 degrees at about 6 mm from their tips, filled with 

3 M KCl and had a resistance of 60-80 MQ. Under visual control selected cells were 

penetrated in the direction perpendicular to the surface of the preparation, by applying 

an oscillating voltage to the electrode tip. 

Potentials were recorded with an electrometer (World Precision Instruments 

Inc.; Intra 767), by which rectangular current pulses were also injected. Voltage and 

file://'/997b
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current signals were displayed on an oscilloscope. After amplification and low pass 

filtering (2.6 kHz) each signal was digitized using a 1401 plus CED interface 

(Cambridge Electronic Design Ltd.) at a sampling rate of 5.6 kHz and displayed and 

stored on a PC. 

Drugs and their administration 
CCK-8 and CCK-8NS were obtained from Sigma Chemical Co. (St. Louis, MO). 

Stock solutions of CCK-8 and CCK-8NS were prepared in concentrations of 50 //M 

in Krebs solution containing bovine serum albumin, aprotonin and bacitracin (each at 

0.1%) and stored at -20 °C. The selective CCKA antagonist L-364,718 and CCKB 

antagonist L-365,260, were kindly provided by Dr. V. Lotti (Merck, Sharp & Dohme, 

Rahway, NJ). L-364,718 and L-365,260 were dissolved in DMSO (99%) and frozen 

at -20° C. Solutions at the desired concentrations were prepared just before 

application to the superfusion by thawing fresh aliquots in Krebs solution. In the 

experiments, DMSO never exceeded 0.1% in the perfusion medium. Control 

experiments showed that 0.1% DMSO did not affect the electrical properties of the 

neurons. 

CCK-8 and CCK-8NS were applied by micro-ejection from fine-tipped pipettes 

(tip diameter 10 //m) with nitrogen pulses of controlled pressure and duration, or by 

addition to the superfusion solution in known concentrations. Application by micro-

ejection was at intervals exceeding 2 min. CCK-8 and CCK-8NS (1 nM - 1000 nM) 

were applied in the bath for 1-5 min. Between bath applications, the tissue was kept 

in drugs-free solution for at least 15 minutes to ensure reproducibility. 

In a series of separate experiments, concentration-response curves for the 

effect of CCK-8NS on membrane resistance were made by adding increasing 

concentrations of CCK-8NS to the tissue chamber at intervals of 3 min. (see Fig. 3). 

The membrane resistance was measured during the last 30 s of each 3 min period, 

when a plateau was achieved in the cell response. Subsequently, concentration-

response curves of CCK-8NS were measured in the presence of a CCK receptor 

antagonist, starting 30 min after the antagonist application. 

Classification of cells 

Excitable cells were classified electrophysiological^ "on line" by using a 

criterion of which we have recently shown that this distinguishes S and AH neurons 

unequivocally (Schutte et al., 1995). Cells in which the action potential evoked by 

current injection showed a pronounced inflexion (shoulder) on the falling phase, were 
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classified as AH neurons, the others as S neurons (Bornstein era/., 1994; Schutte er 

al., 1995). The classification was confirmed by "off line" scrutinizing of the action 

potential shape in the digitized datafiles. 

Data analysis 
The data were analyzed "off line" using standard CED SPIKE2 software and 

computer programs written in the CED SCRIPT language. The membrane resistance 
of the cells was measured from the voltage response to hyperpolarizing current 
pulses (20 ms; 4/s) through the cell membrane, by averaging 40 responses. All 
values are given as means ± standard error of the mean (S.E.M.). 

Results 

Results were obtained from 103 AH neurons in preparations from 90 guinea-

pigs. The neurons had a membrane potential of -64 ± 0.9 mV and membrane 

resistance of 93 ± 6.3 MQ. The impalements were maintained for 30 min to three 

hours. Application of CCK (CCK-8 or CCK-8NS) had an excitatory effect on 50 of 103 

(48%) AH neurons and an inhibitory effect on 11 of 103 (11%) neurons. No 

differences were found in electrical properties between neurons that showed a 

response upon CCK administration and those that did not. The effects of CCK applied 

by micro-ejection (50 //M in pipette; 10-60 ms ejection) on the excitability of the 

neurons reached a maximum within 10 s and than gradually diminished, due to the 

decreasing CCK concentration in the bath. CCK application in the superfusion (1 nM -

1000 nM; 1-5 min) evoked longlasting changes in excitability, which were completely 

reversible. The response persisted as long as CCK was in the bath, and no signs of 

desensitation were observed. The excitatory and inhibitory effects of CCK persisted 

in the presence of TTX (10 nM; n=7), indicating a direct action on the neurons ( cf. 

Schutte er a/., 19976). 

Excitatory effects of CCK 

Effects on after-hyperpolarization 

The excitatory effect of both forms of CCK (CCK-8, n=42; CCK-8NS, n=15) 

was mainly apparent on the, for AH neurons characteristic, longlasting (> 4 s) 

postspike after-hyperpolarization. Application of CCK by micro-ejection caused a 

reversible shortening of the duration of the after-hyperpolarization (Fig. 1A), 
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Figure 1. Excitatory action of CCK-8 on myenteric AH neurons. A: Intracellular depolarizing 

current pulses (upwards deflexions; 0.5 Hz) evoked an action potential followed by a 

prolonged hyperpolarization (indicated by arrows) associated with decreased input resistance 

(downwards deflexions) and diminished excitability. After micro-ejection of CCK-8 (50 //M; 50 

ms), the neuron depolarized, the hyperpolarization was shortened and the excitability was 

augmented. Membrane potential is indicated (- 68 mV). B: Top trace, under control 

conditions injection of a depolarizing current pulse (see bottom trace; 150 ms; 0.5 Hz; 0.2 nA) 

induces a single action potential followed by an after-hyperpolarization. Middle trace, after 

application of CCK-8 (50 //M; 50 ms), the duration of the after-hyperpolarization was reduced 

and multiple spikes were evoked during each depolarizing current pulse. Membrane potential 

is indicated. Bottom trace, depolarizing current pulses. 
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accompanied by a higher frequency of action potential discharge upon depolarizing 

current pulses (Fig. 1S). In some neurons, CCK-8 induced a small depolarization (4.0 

± 6.5 mV; n=25), but in other neurons no change in membrane potential was detected 

(n=13) or even a small hyperpolarization (4.1 ±1.2 mV; n=4). When the cells were 

held at resting membrane potential by current clamp, CCK-8 (100 nM) reduced the 

amplitude of the after-hyperpolarization to 88 ± 3% and the total duration to 40 ± 5% 

of their respective control values (n=4). A higher concentration of CCK-8 (500 nM), 

reduced the amplitude to 48 ± 2% and the duration to 33 ± 7% of their respective 

control values (n=4). In contrast to S neurons (Schutte et al., 19976), the increase in 

excitability was never accompanied by spontaneous action potential discharge or 

induction of fEPSPs. Application of CCK did not affect the threshold, amplitude or 

duration of the action potentials. 
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Figure 2. Concentration-response relationship for effect of CCK-8 and CCK-8NS on 
membrane resistance in myenteric AH neurons. Resistance is expressed as % of control. 
Number of neurons for each datapoint is 7-8. Vertical bars represent S.E.M.. 

Effects on membrane resistance 

The effects on membrane resistance evoked by CCK-8 application to the 

superfusion (1 nM -1000 nM) were investigated in 24 neurons. Application of CCK-8 

induced a concentration dependent effect on membrane resistance which was 

biphasic (Fig. 2). A small decrease in membrane resistance was induced at low 

concentrations of CCK-8 (10 nM) and an increase at higher (>100 nM) 
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mainly seen as a reduction of the CCK-8 induced inhibition of the after-

hyperpolarization and of the action potential frequency in response to depolarizing 

constant current pulses. Figure 5 shows an example of a neuron with an excitatory 

response to CCK-8 and CCK-8NS, and the effects of the antagonists. Application of 

CCK-8 by micro-ejection to this neuron caused a depolarization associated with an 

increase in resistance to 106% of control (Fig. 5A), as CCK-8NS evoked a decrease 

in resistance to 89% of control (Fig. 5B). In the presence of L-365,260, CCK-8 evoked 

a small depolarization (3 mV) accompanied by an increase in resistance (to 108% of 

control; Fig. 5C), whereas in the presence of L-364,718 a decrease in resistance (to 

92% of control; Fig. 5D) was induced. Thus, application of the antagonists affected 

the CCK-8-induced resistance changes in a way comparable to that observed with 

CCK-8NS. 

The duration of the excitatory effects of CCK on the AH neurons was not 

different for the two receptor subtypes, contrary to that observed in S neurons 

(Schutte et al., 1997b). 
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Figure 4. Effects of CCK receptor antagonists on the concentration-response curve of CCK-
8NS of myenteric AH neurons. The concentration-response curve of the effect of CCK-8NS 
on membrane resistance is biphasic. L-365,260 (250 nM) antagonized the decrease in 
resistance, whereas L-364,718 (250 nM) antagonized the increase. Membrane resistance is 
depicted in % of control. Vertical bars represent S.E.M.. Number of neurons for each data 
point is 7-8. 
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Figure 5. Effects of CCK-receptor antagonists on the response to CCK-8 of an AH neuron. 

A: Application of CCK-8 by micro-ejection (50 /vM; 50 ms) suppressed the after-

hyperpolarization leading to an enhanced excitability accompanied by a depolarization (5 mV) 

and an increase in membrane resistance to 106% of control. B: Application of CCK-8NS by 

micro-ejection (50 JJM; 50 ms) evoked an excitatory response comparable to that evoked by 

CCK-8 application, accompanied by a depolarization (4 mV). The membrane resistance, 

however, decreased to 89% of control. C: In the presence of L-365,260 (500 nM, micro-

ejection of CCK-8 evoked a small depolarization (3 mV) accompanied by an increase in 

resistance to 108% of control. D: During application of L-364,718 (500 nM), micro-ejection of 

CCK-8 evoked a depolarization of 4 mV accompanied by a decrease in membrane resistance 

to 90% of control. On the left the membrane potential is indicated. 
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Figure 6. Inhibitory effect of CCK-8 on a myenteric AH neuron. A: Top trace, Application of 

CCK-8 (300 nM) evoked an inhibition of the action potential response to depolarizing current 

pulses, accompanied by a decrease in membrane resistance to 83% of control. Bottom trace, 

During superfusion of 500 nM CCK-8 the neuron did not discharge action potentials upon 

constant depolarizing current pulses (decrease in membrane resistance to 85% of control). 

Application of CCK-8 is indicated by bar. On the left the membrane potential is indicated. B: 

Concentration-response relations of the inhibitory effect of CCK. CCK-8NS (n=3) evoked a 

concentration-dependent decrease in membrane resistance. L-365,260 (250 nM) antago

nized completely the CCK-8NS induced decrease in membrane resistance, whereas L-

364,718 had no effect. Membrane resistance is depicted in % of control. Vertical bars 

represent S.E.M.. 
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Inhibitory effects of CCK 
In 11 of 103 (11 %) AH neurons, application of CCK-8 (n=8) or CCK-8NS (n=3), 

without altering the resting membrane potential, reduced the frequency of action 

potential discharge on depolarizing current pulses (Fig. 6A), and enhanced the 

duration of the after-hyperpolarization. This inhibitory action of CCK-8 was 

concentration dependent and reversible (Fig. 6A). The duration and amplitude of the 

action potentials were not changed, but the threshold for action potential discharge 

changed from -48 ± 2 mV to -40 ± 3 mV (CCK-8 500 nM). 

Associated with the inhibitory response to CCK-8 was a decrease in membrane 

resistance (micro-ejection; to 91 ± 7% of control). The resistance decreased with 

increasing concentrations of CCK-8 in the bath until 83% of control at 300 nM CCK-8 

(IC50 20 nM). Similarly, in the three neurons to which CCK-8NS was applied, a 

concentration dependent decrease in membrane resistance to 62% of control (1000 

nM) was observed. Data pooled from these neurons are depicted in figure 66 (IC50 

75 nM; CCK-8NS). The response was completely antagonized by L-365,260 (250 nM) 

as L-364,718 (250 nM) had no effect, showing that the decrease in membrane 

resistance involved in the inhibitory effects of CCK is mediated by CCKB receptors. 

Discussion 

The predominant response of the myenteric AH neurons to CCK was a slow 

excitation mediated in each neuron by postsynaptic CCKA and CCKB receptor 

subtypes. In a small portion of the neurons an inhibitory response to CCK was 

encountered, which was mediated through the CCKB receptor subtype. 

Excitatory response to CCK 

Several findings in this study demonstrate that in all CCK responsive myenteric 

AH neurons, different resistance changes are mediated by CCK interacting with the 

two receptor subtypes. 

First, the concentration-response curves for the effects of CCK-8 and CCK-

8NS on the resistance show that the direction of the resistance change is 

concentration dependent. This concentration-dependency relates to the about 10,000 

times higher affinity of CCK-8NS for the CCKB than for the CCKA receptor (Lucaites 

et al., 1991). So, CCK-8NS in low concentrations most likely activates CCKg 

receptors, inducing a decrease in resistance, as CCK-8NS in high concentrations also 



97 

Evidence for a role of cholecystokinin as neurotransmitter in the 
guinea-pig enteric nervous system 

Irma W. M. Schutte, Louis M. A. Akkermans, and Alfons B. A. Kroese 

Abstract 

Intracellular recordings were made of neurons in the myenteric plexus of the 

guinea-pig distal ileum. Slow excitatory postsynaptic potentials (sEPSPs) were evoked 

by electrical stimulation of an interganglionic fibre tract. The effect of cholecystokinin 

(CCK) receptor antagonists on the sEPSPs was investigated in 11 neurons. 

Application of the CCK receptor antagonists L-364,718 and L-365,260 (each 250 nM) 

markedly attenuated the sEPSPs in fiveof 11 neurons. The amplitude of the sEPSP 

reduced from 15 ± 3 mV to 7 ± 2 mV and the change in membrane resistance during 

the sEPSP was reduced from 28 ± 9 MQ to 11 ± 8 MQ. In six of 11 neurons the CCK 

antagonists had no effect on the sEPSPs. The results provide evidence that neurally 

released CCK is involved in the mediation of sEPSPs in some enteric neurons. 

Introduction 

Cholecystokinin (CCK) is a neuropeptide with a widespread distribution 

throughout the central nervous system (Crawley and Corwin, 1994) and the 

gastrointestinal tract (Walsh, 1994). The gut hormone CCK is released after a meal 

from endocrine cells in the duodenum (Buffa er al., 1976). The release of CCK 

induces a variety of effects on gastrointestinal motility and secretion, which are partly 

nerve mediated (Walsh, 1994). Application of CCK evokes slow, mainly excitatory, 

responses in myenteric neurons of the guinea pig ileum (Nemeth era/., 1985; Schutte 

er a/., 1996, 1997), which are mediated by both CCKA and CCKg receptor subtypes 

(Schutte era/., 1996, 1997) 

In the central nervous system, CCK functions as a neurotransmitter or 

neuromodulator (Crawley and Corwin, 1994; Wettstein et al., 1994). CCK is 

considered a putative neurotransmitter in autonomie ganglia (Schumann and Kreulen, 

1986) and in the enteric nervous system of the gut (Crawley and Corwin, 1994; 
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Dockray, 1994; McConalogue and Furness, 1994; Walsh, 1994; Wood, 1994). This 

is based on the immunohistochemical evidence for the localization of CCK in enteric 

neurons and nerve fibers (Furness et al., 1984, 1995; Larsson and Rehfeld, 1979; 

Schultzberg er al., 1980). CCK is thought to be involved as a neurotransmitter in 

peristalsis (Walsh, 1994) and recently a role of CCK as a neurotransmitter in the 

regulation of canine colonic motility has been suggested (Karaus and Niederau, 

1995). A neurotransmitter function of CCK would be in accordance with the fact that 

application of CCK to enteric neurons causes responses which mimic the slow 

excitatory postsynaptic potentials (sEPSPs) evoked by presynaptic electrical 

stimulation (Wood, 1994). 

The sEPSP consists of a longlasting membrane depolarization which is 

associated with an increase or decrease in membrane resistance, to which several 

types of ionic channels may contribute (Schutte et al., 1996; Surprenant, 1994; Wood, 

1994) and a discharge of action potentials. Many different neurotransmitters are 

involved in the generation of sEPSPs (McConalogue and Furness, 1994; Surprenant, 

1994; Wood, 1994). For acetylcholine, 5-HT and substance P an excitatory 

neurotransmitter function has been demonstrated unequivocally (Wood, 1994). The 

evidence for a role of CCK as neurotransmitter in the enteric nervous system is, 

however, not very strong and incomplete (Dockray, 1994; McConalogue and Furness, 

1994; Walsh, 1994). The aim of the present study is to determine if neuronally 

released CCK is involved in the electrically evoked sEPSP, by investigating the 

effects of CCK receptor antagonists on the sEPSPs. 

Material and Methods 

Intracellular recordings were made from neurons in isolated preparations of the 

myenteric plexus of the guinea-pig distal ileum (200-300 g). Standard techniques, 

previously described in detail (Schutte er al., 1995, 1997), were used for dissection 

of the tissue and recording. All procedures were approved by the Wageningen 

University Committee for Experiments on Animals. The preparations were maintained 

in a low volume chamber that was perfused at a rate of 3 ml/min with Krebs solution 

at 37° C and gassed with 95% 02-5% C02. Nifedipine (1-2 //M) was added to the 

perfusion fluid to prevent mechanical activity of the muscle layer. Intracellular 

recordings were made using glass electrodes (3 M KCl; 60-80 MQ). A stainless steel 

electrode (tip diameter 10 //m) was used to stimulate an interganglionic fibre tract 
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connected to the ganglion. The distance between the electrode and the ganglion was 

at least 200 jjm. Slow EPSPs were evoked by extracellular current pulses of 0.15 ms 

duration (20 Hz, 1 s) produced by a stimulus isolation unit. Stimuli were applied only 

when the membrane potential had returned to the original membrane potential after 

a preceding stimulation. Neurons in which the action potential evoked by current 

injection showed a pronounced inflexion (shoulder) on the falling phase, were 

classified as AH neurons, the others as S neurons (Bornstein er al., 1994; Schutte et 

al., 1995). 

All recorded signals were digitized and were analysed using standard CED 

(Cambridge Electronic Design Ltd) software and computer programs written in the 

CED SCRIPT language. The membrane resistance of the neurons was measured 

from the voltage response to hyperpolarizing current pulses through the cell 

membrane, by averaging at least 10 responses. The time course and maximum of 

changes in membrane potential and membrane resistance during the sEPSP were 

determined by measuring these parameters every few (1-10) seconds. For each 

neuron, the mean of the maximum values of these parameters was obtained from -on 

average- three sEPSPs per experimental condition. The selective CCKA antagonist 

L-364,718 (Chang and Lotti, 1986) and CCKg antagonist L-365,260 (Lotti and Chang, 

1989) were dissolved in DMSO (99%) and frozen at -20° C. Solutions of the 

antagonists were prepared at a concentration of 250 nM just before application to the 

superfusion by thawing fresh aliquots in Krebs solution. DMSO (bath concentration 

always < 0.1%) had no effect on the electrical properties and excitability of the 

neurons. The antagonists were used simultaneously, because CCK-responsive 

myenteric neurons do possess either the CCKA or the CCKe, or both receptor 

subtypes (Schutte et al., 1996; 1997). 

Results 

The results are based on intracellular recordings from 11 neurons (seven AH 

and four S) in 10 preparations. The neurons had a membrane potential of 60 ± 2 mV 

(mean ± S.E.M.) and a membrane resistance of 72 ± 14 MfX All neurons showed a 

constant membrane potential and resistance throughout the experiment and showed 

reproducible sEPSPs. The amplitude of the evoked sEPSPs varied considerably 

among individual neurons; ranging from 8 to 25 mV, with a mean of 14 ± 2 mV. The 

time course of the depolarization was longlasting, ranging from 20 s to 5 min, with a 
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Figure 1. Antagonism of the sEPSP by CCK receptor antagonists. A: Under control conditions 
electrical stimulation (bar; 20 Hz, 1 s) induces a sEPSP with a few action potentials 
(truncated). The amplitude of the sEPSP is 11 mV (imp -54 mV; indicated) and the membrane 
resistance (vertical deflections; see text) decreases from 63 MQ to 45 MO. B: In presence of 
the CCK receptor antagonists (L-364,718 and L-365,260; 250 nM each) the amplitude of the 
sEPSP is reduced to 5 mV without any change in membrane resistance (66 MQ). C: 
Recovery of the sEPSP after washout of the antagonists. The amplitude is 13 mV and the 
membrane resistance decreases from 69 MQ to 49 MQ. 

mean of 157 ± 40 s. The maximal depolarization was found at 24 ± 7 s after 

stimulation. In nine (five AH, four S) neurons, the depolarization was accompanied 

by an increase in membrane resistance, due to closure of potassium channels 

(Surprenant, 1994). In two AH neurons a decrease in resistance occurred, 

presumably due to opening of nonselective cation channels (cf. Surprenant, 1994; 
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Schutte et al., 1996).The average change in membrane resistance, for the increases 

and decreases together, was 31 ± 6 MQ, which is about 43 % of the resting 

membrane resistance of the neurons. Dose-response studies have shown that the 

antagonists at 250 nM inhibit the action of CCK on myenteric neurons (Schutte ef a/., 

1996, 1997). Superfusion of the antagonists induced no changes in the resting 

membrane potential (61 ± 2 mV re control 60 ± 2 mV) or the membrane resistance 

(67 ± 10 MQ re control 72 ± 14 MQ) of the neurons. 

Table 1. Effect of CCK antagonists on sEPSP properties of 11 neurons. 

control CCK antagonists 

attenuation of sEPSP (n=5): 
depolarization (mV): 

resistance change (MQ): 

no effect on sEPSP (n=6): 

depolarization (mV): 

resistance change (MQ): 

15±3 

28 ±9 

13±4 

34 ±8 

7 ± 2 

11 ±8 

14±4 

35 ± 6 

Within a row, * indicates values (mean ± S.E.M) that are significant different from control 
(Wilcoxon; P < 0.05). The control values for depolarization and resistance change of the two 
groups were not significantly different (Mann-Whitney; P > 0.05). 

Superfusion of the preparations with the antagonists was found to inhibit 

markedly the sEPSPs in five (four AH, one S) of 11 neurons. In these neurons, the 

antagonists significantly reduced (Table 1 ) the amplitude of the sEPSP as well as the 

change in membrane resistance. An example is given in Figure 1. In the five neurons, 

the amplitude of the sEPSP was reduced from 15 ± 3 mV to 7 ± 2 mV and the 

change in resistance from 28 ± 9 MQ to 11 + 8 MQ (Table 1 ). The sEPSPs recovered 

after washout of the antagonists (Fig. 1 ). 

In six (three AH, three S) of 11 neurons, application of the antagonists had no 

effect on the sEPSPs (see Table 1 ). For the 11 individual neurons, the effects of the 
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antagonists on the amplitude and resistance change of the sEPSP are shown in 

Figure 2, expressed as percentage of control values. Statistical analysis confirmed 

the presence of two populations of neurons, in one of which the sEPSP was inhibited 

by the antagonists (see legend Fig. 2). 
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Figure 2. Effect of CCK receptor antagonists on sEPSP amplitude and resistance change of 

11 neurons, expressed as percentage of control (X). The median values for amplitude and 

resistance of the 11 neurons are indicated along the axis. The symbols are unequally 

distributed over the 4 quadrants determined by the 2 medians (Chi-square test; Fisher two-

tailed P = 0.002). This leads to the conclusion that there are 2 populations of neurons, which 

responded differently to the antagonists. In 5 neurons (•) the antagonists inhibited the sEPSP 

and in 6 neurons (•) the sEPSP was not affected. This is in accordance with the results of the 

analyses based on the mean values (Table 1). Of the 2 AH neurons in which the sEPSP was 

accompanied by an decrease in resistance, one was affected by the antagonists. * labels the 

neuron shown in Fig.1. The values for amplitude and resistance showed a high correlation 

(coefficient 0.79 with two-tailed P < 0.05). 
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Discussion 

The antagonists L-364,718 and L-365,260 are highly selective for respectively 

the CCKA and CCKg receptor subtype and there is evidence that these antagonists 

do not interfere with other receptors (Chang and Lotti, 1986; Lotti and Chang, 1989). 

Thus, the observed suppression of the sEPSP can be considered to result from a 

blockade of CCK receptors in the pathway between electrical stimulus and recorded 

sEPSP. Even if not only mono-synaptic but also multi-synaptic pathways are involved 

in the induction of the sEPSP, the results do indicate that one of the released 

neurotransmitters in the pathway is CCK. Paracrine release of CCK by the stimulation 

seems excluded, because the mucosa in which the endocrine CCK cells are located 

(Buffa et al., 1976) is not part of the isolated preparation. This suggests that the 

presynaptic electrical stimulation of the nerve fibers causes neural release of CCK, 

which mediates the sEPSP. 

Most likely, each sEPSP results from the simultaneous release of many 

neurotransmitters, because the electrical stimulation of the interganglionic fibre tract 

will evoke action potential activity in the hundreds of nerve fibers it contains. Further, 

plurichemical transmission is quite common in the enteric nervous system and two 

or more transmitter substances are usually colocalized within single neurons 

(Dockray, 1994; Furness et al., 1995; McConalogue and Furness, 1994). Such a 

simultaneous release of many neurotransmitters in response to the electrical stimulus 

might explain the finding that the sEPSPs were only partly reduced by the CCK 

antagonists. 

The lack of effect of the antagonists on sEPSPs of particular neurons could 

result from such a massive release of other neurotransmitters upon stimulation or it 

may be that not all neurons receive innervation from CCK neurons. This would be in 

accordance with the immunohistochemical data, which indicate that CCK is localized 

in a relatively small population (about 5%) of myenteric neurons (Furness et al., 1984; 

Schultzberg et al., 1980). Moreover, receptors for CCK seem to be localized in a 

subpopulation of neurons, since application of CCK to myenteric neurons evokes 

excitatory responses in 85% of S neurons and 50% of AH neurons (Nemeth et al., 

1986; Schutte et al., 1997). 

The conclusion that CCK can be released from myenteric neurons suggests 

a neurotransmitter function for CCK. For CCK in the enteric nervous system, the main 

criteria for a function of a peptide as a neurotransmitter (Dockray, 1994) are now 
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fulfilled: (1) there is evidence for presence of CCK in enteric neuronal cell bodies 

(Furness et ai, 1984,1995; Larsson and Rehfeld, 1979; Schultzberg era/., 1980); (2) 

CCK application evokes sEPSP responses in the neurons (Nemeth et al., 1986; 

Schutte et al., 1996, 1997), which indicates the presence of functional receptors; (3) 

CCK appears to be released from neurons upon nerve stimulation (present 

experiments). More detailed studies are necessary to determine the function of the 

neurotransmitter CCK in the myenteric plexus and the functions of the neurons 

involved. 
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It was concluded that the shoulder of the action potential can be used as a 

single criterion to distinguish "on line" S and AH neurons unequivocally. The 

advantages of this classification above other existing classification schemes are that 

the excitable cells can be distinguished "on line", using only one criterion and that it 

is highly selective and consistent. 

In Chapter 3, the actions of CCK-8 on S neurons were determined. S neurons 

are thought to function as inter- or motor-neurons (Bornstein, 1994). Application of 

CCK-8 caused longlasting increases in excitability of almost all S neurons, apparent 

as spontaneous action potential discharge or an increase in action potential discharge 

during depolarizing current pulses. The increase in excitation was accompanied by 

a depolarization and an increase in membrane resistance, which were concentration-

dependent (1-1000 nM CCK-8). CCK-8 was found to have a direct action on the 

recorded neurons and no presynaptic effects were encountered. 

The CCK receptor subtypes involved in the excitatory action of CCK were 

characterized using selective receptor antagonists. Application of the selective CCKA 

antagonist L-364,718 (100-500 nM), antagonized the CCK-8 induced response in part 

of the neurons, as the CCKB antagonist L-365,260 (500 nM) had no effect, indicating 

that these neurons possessed exclusively the CCKA receptor. In other neurons, the 

CCK-8 induced responses were antagonized by L-365,260 (100-500 nM), as L-

364,718 (500 nM) had no effect on these neurons, indicating that these neurons 

possessed exclusively the CCKB receptor. In a third group of neurons, each 

antagonist partly inhibited the CCK-8 evoked application, and application of both 

antagonists (500 nM) caused a complete blockade of the response, indicating that 

these neurons possessed both receptor subtypes. The presence of CCKB receptors 

in the enteral nervous system had been suggested based on in vitro contraction 

studies (Lucaites et ai, 1991; Dal Forno et ai, 1992) using longitudinal muscle strips, 

but this is the first evidence that some enteric neurons actually possess the CCKB 

receptor subtype. The occurrence of both CCK-8 receptor subtypes on individual 

neurons had till now only been reported for several brain regions (Boden and 

Woodruff, 1994). 

Activation of these different receptor subtypes was always associated with an 

increase in membrane resistance, indicating that the underlying ionic mechanism was 

similar for both receptor subtypes. The excitatory responses to CCK-8 mediated by 

the two receptor subtypes were however different. Only in neurons in which CCK-8 

acted through the CCKA receptor subtype, abundant spontaneous action potential 
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activity was observed upon application of CCK-8. Also the duration of the response 

mediated by the CCKA receptor was longer than that mediated by the CCKB receptor. 

This might explain the observations from in vitro contraction studies that CCK acting 

on CCKe receptors evoked a short contraction as contractions mediated by CCKA 

receptors were sustained (Lucaites et al., 1991; Dal Forno ef al., 1992). 

It was concluded that the excitatory action of CCK-8 on myenteric S neurons 

is mediated not only by CCKA, but also by CCKB receptor subtypes, and was different 

for both receptor subtypes with respect to action in time. Some neurons possessed 

exclusively the CCKA or the CCKB receptor subtype, but others possessed both 

subtypes. 

In Chapter 4, the actions of CCK-8 and its non-sulfated analogue CCK-8NS 

(a CCKB agonist) on myenteric AH neurons were investigated. Only part of the AH 

neurons showed an effect upon CCK-8 or CCK-8NS application, indicating that only 

a subpopulation of these neurons possessed CCK receptors. About half of the AH 

neurons showed a slow excitatory action upon CCK application, as 11% showed a 

longlasting inhibitory response. 

The excitatory response was seen as a suppression of the post-spike after-

hyperpolarization, a small depolarization and a change in membrane resistance. No 

spontaneous action potential discharge was observed after CCK application in AH 

neurons in contrary to the excitatory response observed in some S neurons. 

All AH neurons that responded upon CCK application with an excitatory action 

were endowed with both CCKA and CCKB receptor subtypes. Excitatory responses 

were associated with either decreases or increases in membrane resistance, which 

were concentration-dependent and linked to the receptor subtypes. Low 

concentrations of CCK evoked a decrease in membrane resistance (to 80% of 

control; EC50 7nM; CCK-8NS), as higher concentrations evoked an increase in 

resistance (to 120% of control; EC50123 nM; CCK-8NS). The decrease in resistance 

could be antagonized by L-365,260 (250 nM), but not by L-364,718 (250 nM), 

indicating that the decrease was caused by CCK acting at CCKB receptors. Using the 

antagonists, the increase was shown to be mediated by CCK acting at CCKA 

receptors. These differences in resistance changes linked to the receptor subtypes 

are probably caused by different underlying ionic mechanisms. 

The inhibitory response to CCK was seen as a prolongation of the after-

hyperpolarization accompanied by a decrease in resistance to 60% of control (IC50 

75 nM; CCK-8NS). This response was shown to be mediated by the CCKB antagonist. 
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So, CCK acting at CCKB receptors evoked both inhibitory and excitatory responses, 

in both of which the underlying mechanism was a decrease in membrane resistance. 

It was concluded that the predominant effect of CCK on myenteric AH neurons 

was a slow excitation mediated by both CCKA and CCKB receptor subtypes. These 

AH neurons were all endowed with both CCK receptor subtypes, showing a different 

affinity for CCK and mediating the excitatory effects of CCK in a dissimilar way. In low 

concentrations, excitatory effects of CCK were mediated by the CCKB receptor 

resulting in a decrease in membrane resistance. Higher concentrations showed an 

additional response of CCK via the CCKA receptor, resulting in an increase in 

resistance. In a small population of neurons, CCK acting through the CCKB receptor 

evoked an inhibitory response. 

In Chapter 5, the possible role of CCK as a neurotransmitter involved in the 

mediation of slow synaptic excitation (sEPSP) was investigated. Therefore the effects 

of the CCK antagonists on electrically evoked sEPSPs were investigated. Slow 

EPSPs were evoked by electrical stimulation of an interganglionic fibre tract. The 

sEPSPs consisted of a longlasting membrane depolarization associated with a 

change in membrane resistance. Application of L-364,718 and L-365,260 (each 250 

nM) markedly attenuated the sEPSPs in part of the tested neurons, indicating that 

CCK was involved in mediation of these sEPSPs. Both the amplitude and the change 

in membrane resistance were suppressed. 

The finding that the sEPSPs were only partly reduced, and not completely 

suppressed by the CCK antagonists can be explained by simultaneous release of 

many neurotransmitters, because electrical stimulation of interganglionic fibre tracts 

will stimulate many nerve fibers. In the enteral nervous system, two or more 

transmitters are usually colocalized within one neuron and co-released (McConalogue 

and Furness, 1994). The lack of effect of the antagonists on part of the sEPSPs can 

be explained by the fact that CCK is only localized in a small population (5%) of 

myenteric neurons (Furness et al., 1984), and that receptors for CCK are located in 

a subpopulation of neurons (see chapters 3 and 4). 

It was concluded that neurally released CCK is involved in the mediation of 

sEPSPs in some enteric neurons. The main criteria for a function of CCK as a 

neurotransmitter are now fulfilled: (a) CCK is present in neurons (Furness et al., 

1984); (b) application of CCK mimics the sEPSP (this thesis, Nemeth ef a/., 1985); 

(c) CCK is released from neurons upon nerve stimulation (this thesis). 
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Conclusions 

In summary, the conclusions of the investigations were: 

1. The two main types of excitable myenteric neurons, AH and S, could be classified 

"on line" based on the difference in shape of their action potentials. This classification 

appeared to be highly selective as well as consistent. 

2. The effects of CCK on S and AH neurons were different and can be summarized 

as follows: 

* CCK had only excitatory effects on S neurons, whereas both excitatory and 

inhibitory effects were encountered in AH neurons. 

* Almost all S neurons responded upon CCK application, as only a 

subpopulation of AH neurons did. 

* S neurons possessed either CCKA, CCKB or both receptor subtypes, while all 

AH neurons that responded with an excitatory action upon CCK application 

were endowed with both CCK receptor subtypes. 

* In S neurons, the excitatory response mediated by either CCK receptor 

subtype was always associated with an increase in resistance, but was 

different in appearance and action in time. CCK acting at CCKA receptors 

evoked a longer lasting response than CCK acting at CCKB receptors. Thus, 

the actual response of the S neurons was dependent on which receptor 

subtype the cell possessed. 

* In AH neurons, the excitatory effects mediated by both CCK receptor subtypes 

were mediated in a dissimilar way. In low concentrations, CCK acting at CCKB 

receptors evoked a decrease in membrane resistance, whereas higher 

concentrations showed an additional response of CCK acting at CCKA 

receptors resulting in an increase in resistance. Thus, the actual response of 

AH neurons was dependent on the local concentration of CCK. 

3. Neurally released CCK is involved in the mediation of electrically evoked sEPSPs 

in some enteric neurons. The main criteria for CCK as a neurotransmitter involved in 

the mediation of sEPSPs in the enteral nervous system are now fulfilled. 
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elektrische en synaptische eigenschappen van cellen gemeten worden die informatie 

geven over het functioneren van de cellen. De effecten van CCK op de S en AH 

neuronen alsmede de betrokken receptoren werden gekarakteriseerd. Tevens werd 

een mogelijke rol van CCK als neurotransmitter, betrokken in de generatie van 

langzame synaptische signalen (sEPSPs), onderzocht. 

Overzicht van de studies 

Het voornaamste doel van het in hoofdstuk 2 beschreven onderzoek was om 

te onderzoeken of het mogelijk is om de AH en S neuronen op grond van één enkel 

criterium, namelijk het al of niet voorkomen van een schouder op de actiepotentiaal, 

electrofysiologisch te karakteriseren. Intracellulaire afleidingen van cellen werden 

gemaakt onder visuele controle. Elektrisch exciteerbare cellen waarvan de 

actiepotentiaal een schouder vertoonde ten gevolge van calcium instroom (AH cellen) 

werden onderscheiden van cellen waar dat niet het geval was (S cellen). Een derde 

klasse werd gevormd door niet-exciteerbare cellen (NS-cellen). De elektrische en 

synaptische eigenschappen van de verschillende celtypen, zoals membraan 

potentiaal en membraan weerstand, bleken significant te verschillen. 

De naam AH neuron refereert aan de na-hyperpolarisatie (after-

hyperpolarization) na een actiepotentiaal. Gedurende de na-hyperpolarisatie zijn de 

AH neuronen relatief inexciteerbaar. S neuronen vertonen zo'n na-hyperpolarisatie 

niet en kunnen continue actiepotentialen afgeven. Tijdens de experimenten bleek in 

een deel van de AH neuronen de na-hyperpolarisatie onderdrukt te zijn, en vertoonde 

het gedrag van de AH neuronen een grote gelijkenis met dat van de S neuronen. De 

onderdrukking van de na-hyperpolarisatie was waarschijnlijk het gevolg van afgifte 

van neurotransmitters die een langzame synaptische response veroorzaken in de 

cellen. De schouder op de actiepotentiaal was echter altijd zichtbaar en bleek een 

betrouwbaar criterium om AH van S cellen te onderscheiden. 

In dit hoofdstuk werd tevens onderzocht of er een verband bestond tussen 

electrofysiologisch gedefinieerde celtypen enerzijds en de lokatie binnen het ganglion 

van de cellen en de grootte van het celsoma anderzijds. Via foto's van de cellen in 

de ganglia werden van alle electrofysiologisch gekarakteriseerde cellen de grootte 

van het soma en de lokatie in het ganglion bepaald. De resultaten toonden aan dat 

de somagrootte van de drie typen cellen significant verschillend was. De AH cellen 

waren het grootst (1290 //m2) en hadden een ovaal gevormd celsoma. De S cellen 
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vertoonden een grote variatie in vorm en waren kleiner (760 //m2) in vergelijking met 

de AH cellen. De NS cellen bleken kleine ronde cellen (430 //m2) te zijn. De lokatie 

van de AH en S neuronen binnen de ganglia bleek willekeurig te zijn. De NS-cellen 

lagen vaak in de buurt van een uitloper van een ganglia. 

Op basis van de resultaten van het onderzoek beschreven in hoofdstuk 2 werd 

geconcludeerd dat het al of niet voorkomen van een schouder op de actiepotentiaal 

gebruikt kan worden om AH en S neuronen eenduidig te classificeren. De voordelen 

van deze wijze van classificeren, boven de bestaande classificatie schema's, zijn dat 

de cellen "on line" gekarakteriseerd kunnen worden en dat de indeling eenduidig is 

bij gebruik van slecht één criterium. 

In hoofdstuk 3 worden de effecten van CCK op de S neuronen beschreven, 

alsmede de betrokken CCK receptoren gekarakteriseerd. Toediening van CCK-8 aan 

deze neuronen veroorzaakte een langdurig verhoogde exciteerbaarheid van de 

meeste S neuronen via een direct effect op de neuronen. Deze verhoogde 

exciteerbaarheid was zichtbaar als de afgifte van spontane actiepotentialen of een 

verhoogde afgifte van actiepotentialen op depolariserende stroompulsen. De 

verhoogde excitatie was geassocieerd met een concentratie-afhankelijke (1-1000 nM 

CCK-8) depolarisatie en een toename in weerstand van de celmembraan. 

Om na te gaan welke type receptor betrokken was bij de exciterende effecten 

van CCK op de S neuronen zijn selectieve antagonisten gebruikt voor de twee 

bekende typen CCK receptoren; de CCKA en CCKB receptor. Tot voor kort werd 

verondersteld dat CCKA (alimentary) receptoren alleen perifeer voorkomen en de 

CCKB (brain) receptoren alleen in het centraal zenuwstelsel. De laatste tijd komen er 

echter steeds meer aanwijzingen voor de aanwezigheid van CCKA receptoren in het 

centrale zenuwstelsel en CCKB receptoren in de periferie. Op grond hiervan zou 

verwacht mogen worden dat de CCKA receptoren betrokken zijn bij de effecten van 

CCK op de cellen. 

Experimenten met de selectieve CCK antagonisten L-364,718 (CCKA receptor 

antagonist) en L-365,260 (CCKB receptor antagonist) toonden aan dat beide CCK 

receptoren betrokken waren bij de neurale response op CCK-8. Drie groepen S 

neuronen konden onderscheiden worden, gebaseerd op de aanwezigheid van type 

CCK receptor. De neuronen bezaten ofwel de CCKA receptor, ofwel de CCKB 

receptor, ofwel beide typen receptoren. Deze resultaten toonden voor de eerste keer 

aan dat in het EZS behalve CCKA ook CCKB receptoren voorkomen. Het voorkomen 

van beide typen receptoren op individuele neuronen was tot nu toe alleen nog 
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aangetoond in het centrale zenuwstelsel. 

Activatie van de verschillende CCK receptoren was altijd geassocieerd met een 

verhoging van de membraan weerstand. De effecten van CCK-8 geïnduceerd via de 

verschillende receptoren bleken echter verschillend te zijn. CCK effecten gemedieerd 

via de CCKA receptor waren langduriger en gingen gepaard met afgifte van spontane 

actiepotentialen, in tegenstelling tot de effecten gemedieerd via de CCKB receptor. 

Samenvattend werd uit de resultaten geconcludeerd dat CCK een exciterend 

effect heeft op de meeste S neuronen gemedieerd door zowel CCKA als CCKB 

receptoren. Verder kwam uit het onderzoek naar voren dat een deel van de cellen of 

alleen de CCKA receptor of alleen de CCKB receptor bezat, terwijl een ander deel van 

de cellen beide receptoren bezat. 

In hoofdstuk 4 worden de effecten van CCK op de AH neuronen beschreven. 

Toediening van CCK-8 aan deze cellen veroorzaakte zowel exciterende als 

inhiberende effecten op deze cellen. In ongeveer de helft van de AH neuronen 

veroorzaakte toediening van CCK-8 een langdurige excitatie, geassocieerd met een 

onderdrukking van de na-hyperpolarisatie. In tegenstelling tot de effecten op de S 

neuronen, ging de door CCK-geïnduceerde excitatie nooit gepaard met de afgifte van 

spontane actiepotentialen. Toediening van niet-gesulfateerd CCK, CCK-8NS (een 

CCKB agonist), aan deze cellen veroorzaakte een vergelijkbaar effect als CCK-8. De 

effecten van CCK-8 (1-1000 nM) en CCK-8NS (1-1000 nM) bleken concentratie-

afhankelijk. Lage concentraties (<30 nM) veroorzaakten een excitatie gekenmerkt 

door een afname in weerstand. Onderzoek met selectieve receptor antagonisten (L-

364,718 (250 nM), CCKA; L-365,260 (250 nM), CCKB) toonden aan dat deze afname 

gemedieerd werd door CCKB receptoren. Hogere concentraties CCK-8 en CCK-8NS 

induceerden een additionele toename in membraan weerstand welke tot stand kwam 

via een effect op de CCKA receptoren. De verschillende weerstand veranderingen 

geïnduceerd door CCK bleken dus receptor gebonden, en waren waarschijnlijk het 

gevolg van verschillen in betrokken ionkanalen. 

In een klein deel van de AH cellen (11%) veroorzaakte toediening van CCK 

een inhibitie van de cel, gekenmerkt door een vergroting van de na-hyperpolarisatie. 

De inhiberende response ging gepaard met een afname in de membraan weerstand. 

Onderzoek met voornoemde CCK receptor antagonisten en CCK-8NS toonden aan 

dat deze response tot stand kwam via een effect van CCK op de CCKB receptoren. 

Dit houdt in dat CCK, via een werking op de CCKB receptoren, zowel een exciterend 

als een inhiberend effect tot gevolg kan hebben in AH neuronen. Het onderliggende 
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mechanisme is in beide gevallen een verlaging in membraan weerstand. 
Samenvattend werd uit de resultaten van dit onderzoek geconcludeerd dat 

CCK overwegend een exciterend effect heeft op de AH neuronen gemedieerd door 

zowel de CCKA als de CCKB receptor. Tevens kon geconcludeerd worden dat de twee 

typen receptoren niet alleen een verschil in affiniteit voor CCK vertonen, maar dat de 

beide receptoren via verschillende ionkanalen het exciterend effect medieren. 

Doel van het onderzoek beschreven in hoofdstuk 5 was om te onderzoeken 

of CCK als neurotransmitter betrokken is bij langzaam synaptische responsen 

(sEPSPs). Hiertoe werden de effecten van gelijktijdige toediening van selectieve 

CCKA en CCKB receptor antagonisten op via elektrische stimulatie opgewekte sEPSPs 

onderzocht. Deze sEPSPs werden opgewekt door elektrische stimulatie van een 

uitloper van een ganglion. De sEPSPs werden gezien als een langdurige verhoogde 

excitatie van de neuronen, gepaard gaande met een depolarisatie van de cel en een 

weerstand verandering. Gelijktijdige toediening van de CCK receptor antagonisten L-

364, 718 en L-365,260 (elk 250 nM) veroorzaakte een significante onderdrukking van 

de sEPSPs in een deel van de neuronen. Zowel de depolarisatie als de 

weerstandsverandering werden onderdrukt. 

Op basis van de resultaten van dit onderzoek werd geconcludeerd dat 

neuronaal afgegeven CCK een rol speelt in de totstandkoming van langzame 

synaptische responsen in een deel van de neuronen. CCK voldoet nu aan de 

belangrijkste criteria voor een functie als neurotransmitter in het EZS: (1) CCK is 

aanwezig in neuronen; (2) CCK heeft een effect op de neuronen (dit proefschrift); (3) 

CCK komt vrij uit de neuronen na elektrische stimulatie van de zenuwvezels (dit 

proefschrift). 
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