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Bibliographic Abstract: This thesis describes the establishment of two plant regeneration 
systems in Alstroemeria. The first one used leaf explants as starting material, and the second 
one used stem segments. Leaf expiants were induced to form adventitious shoots via the 
organogenesis pathway, which developed into plants. The stem segments were induced to form 
calli, which developed into plants via the embryogenesis pathway. Both systems were 
developed for plant propagation as well as for genetic transformation purpose. Leaf-explant 
culture method is an alternative way of micropropagation, that can enhance the propagation 
efficiency. Callus culture system was successfully used in particle gun-mediated transformation, 
and many transgenic plants were obtained. Two plasmids were investigated, one containing a 
firefly luciferase gene, and another one containing a phosphinotricin acetyl transferase gene 
(PAT, a herbicide resistance gene) together with a ß-glucuronidase gene (GUS). Selection based 
on either the luciferase activity, or phosphinotricin resistance proved to be effective. Luciferase 
gene, PAT gene, and GUS gene were transformed into the Alstroemeria plants with high 
efficiency. 
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Propositions 

1. The leaf-explant based regeneration system is not appropriate for the development of genetic 
transformation with particle gun (this thesis). 

2. Combination of the leaf expiant regeneration system with that of the rhizome multiplication 
system, is enhancing the multiplication efficiency of Alstroemeria (this thesis). 

3. In Alstroemeria the percentage of responding leaf expiants with rhizome formation is more 
important than the amount of shoots regenerated per leaf expiant, because rhizome formation 
is the most important factor for micropropagation (this thesis). 

4. A plant regeneration system, based on granular callus with dividing cells near the surface, is a 
prerequisite for genetic transformation (this thesis). 

5. This thesis contains basic information for successful transformation of existing varieties of 
Alstroemeria. 

6. Successful plant breeding is always a mixture of art and science, and invariably based on 
genetic principles. 

7. Things are going well when they are managed leisurely (Chinese proverb). 

8. Inadequate knowledge of the Dutch language has the advantage, in that it prevents you from 
being influenced by all kinds of public media, and lets you concentrate your mind on your 
own job. The disadvantage is, you never exactly know what your colleagues were talking 
about in the canteen. 

9. The public debate about food products obtained from genetic engineering will also be an 
issue in Taiwan. 

10. Scientists are always forced to face the 'impossible' challenge. 

11. A ripe rice-plant has a bent neck (Taiwanese proverb). 

These propositions are attached to the thesis "Development of two in vitro regeneration systems 
through leaf expiant and callus culture and the application for genetic transformation in 
Alstroemeria" by Hsueh-Shih Lin, for the public defence held on Wednesday, September 9, 
1998, in Wageningen. 
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General introduction 

The Alstroemeria plant 

Alstroemeria, also known as Inca lily, Peruvian lily, or even called 'Narcissus lily' in Taiwan, is 

a South America endemic monocotyledonous plant species mainly found in Chile and Brazil 

(Aker and Healy 1990). It belongs to the family Alstroemeriaceae according to Dahlgren and 

Clifford (1982) and is commonly called by its genus name. Over the last two decades 

Alstroemeria has become a popular greenhouse-grown cut flower in The Netherlands, due to its 

low-energy requirement, long vase-life, and wide range of flower colors. 

An Alstroemeria plant consists of fleshy rhizomes, aerial shoots, and thick tuberous 

roots. Rhizome is an underground-grown organ with many stem-like nodes, and at each node 

one aerial shoot and some roots originate. The rhizome has a sympodial growth habit (Bayer 

1987; Buxbaum 1951). Morphological research demonstrated that the rhizome is actually the 

first axillary shoot of the aerial sprout (Buxbaum 1951). The aerial shoot is either a vegetative 

stem with leaves only or a generative stem with flowers in its apex. The leaf usually rotates 

180° at its base, so that the adaxial surface faces down. 

Chromosome studies reveal that the Alstroemeria species are mostly diploid with 16 

chromosomes (2n=2x=16), and the commercial cultivars are not only diploid, but also triploid 

(2n=3x=24), tetraploid (2n=2x=32), or even aneuploid (with chromosome number of 25, 31, 33 

etc.; Hang and Tsuchyia 1988; Tsuchyia et al. 1987; Tsuchyia and Hang 1987,1989). The 

spontaneous polyploidy induction observed in breeding cultivars is probably due to the 

production of unreduced gametes during meiosis (Ramanna 1991). 

Plant regeneration and in vitro propagation of Alstroemeria 

Conventionally, Alstroemeria is propagated by rhizome division, but the multiplication rate is 

rather low, so that tissue culture techniques were developed (Bond and Alderson 1993; Pierik et 

al. 1988; Van Zaayen et al. 1992; Ziv et al. 1973). However, the multiplication efficiency is still 

rather low, especially for the so called 'Butterfly type' cultivars. Therefore, Alstroemeria was 

classified as an in vitro recalcitrant plant species due to its low multiplication rate and its limited 

number of regenerable tissues. An overview of the successful plant regeneration events reveals 

that the initial plant material used in Alstroemeria is limited to the rhizome, and to the zygotic 
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embryo/ovule (Table 1). The other plant organs tested rarely gave a response or no response at 

all. Since true-to-type is the most important requirement for commercial plant propagation, the 

rhizome is still the major propagation unit. In addition, the development of alternative in vitro 

multiplication systems based on other tissues is desirable. 

The ovule culture system was developed for plant breeding purpose in order to 

overcome interspecific crossing barriers. The callus culture system, that was initiated from 

zygotic embryos, is not useful for multiplication of the existing cultivars. Moreover, the 

potential somaclonal variation should be taken into account too. Therefore those two methods, 

based on zygotic embryos, are not further useful for micropropagation purpose. However, the 

callus culture system may play an important role in genetic modification. 

Table 1. Successful in vitro plant regeneration systems in Alstroemeria. 

Initial material Type of regeneration Reference 

Rhizome Organogenesis 
meristem 

Rhizome segment Organogenesis 

Rhizome tip Organogenesis 

Zygotic embryo Embryogenesis 

Zygotic ovule Embryogenesis 

Hakkaart and Versluijs, 1988 
Van Zaayen et al., 1992 
Gabryszewska, 1995 
Gabryszewska and Hempel, 1985 
Bond and Alderson, 1993 
Bond and Alderson, 1993 
Buitendijk, 1998 
Lin and Monette, 1987 
Pieriketal., 1988 

Gonzalez-Benito and Alderson, 1992 
Hutchinson et al., 1994 
Hutchinson et al., 1997 
Van Schaik et al., 1996 

Buitendijketal., 1995 
De Jeu and Jacobsen, 1995 
Lu and Bridgen, 1996 
Ishikawa et al., 1997 

Genetic transformation in monocots 

Traditional breeding objectives of Alstroemeria were mainly focused on the improvement of 

horticultural important characteristics. The mutation breeding techniques, successfully 



General introduction 

developed in 1970-1980 (Broertjes and Van Harten 1988), gave a tremendous contribution. 

Moreover, embryo rescue techniques developed in recent years, which have overcome the 

interspecific crossing barriers (Buitendijk et al. 1995; De Jeu and Jacobsen 1995), are useful for 

the introduction of genes from wild species into cultivars. However, some diseases and post-

harvest problems could not easily be solved with these tools, because the resistance or tolerance 

factors involved were not localized yet in the wild species. Gene transformation, mediated by 

the Agrobacterium vector system or particle delivery systems developed in recent years, is 

considered to be another promising tool for plant improvement. By these techniques the 

resistance/tolerance genes from other plant species or even from animals could be introduced 

into the target plants without crossing. 

To accomplish successfully gene transformation, four important parameters are 

required: a) an efficient DNA delivery system, b) appropriate target cells competent for 

transformation and regeneration, c) adequate promoter systems for stable gene expression, and 

d) a good selection system (Christou 1995, 1997; Hiei et al. 1997. Jahne et al. 1995; Smith and 

Hood 1995). 

a. an efficient DNA delivery system 

Although monocotyledonous plants were not standing outside the host range of 

Agrobacterium tumefaciens, the transformation efficiency mediated by this vector was still low 

and many parameters should be improved before it becomes a routine used technology in 

monocots (Hiei et al. 1997; Smith and Hood 1995). On the other hand, particle bombardment 

has become a popular choice in monocots, because there is no host range limitation with this 

method and the transformation efficiency is relatively high in combination with an efficient 

selection method (Christou 1995, 1997; Jahne et al. 1995). Many successful results reported in 

recent years in monocots are listed in Table 2. 

b. The appropriate target cells competent for transformation and regeneration 

The development of a system that may provide appropriate target cells with competence 

for both transformation and regeneration is a prerequisite for transformation (Christou 1995; 
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Raemakers et al. 1997; Taylor et al 1996). Compared to dicotyledonous plants, the kind of 

tissue capable of regeneration is rarely found in monocots. Therefore, tissues of zygotic 

embryos and their derivative callus are usually used (Table 2). 

Table 2. Successful particle bombardment-mediated 
monocotyledonous crops. 

gene transformations in important 

Species 

Avena 

Asparagus 

Gladiolus 

Hordeum 

Lilium 

Oryza 

Saccharum 

Sorghum 

Triticum 

Zea 

Target tissue 

Callus, from embryo 

Suspension callus 
Callus, from seed 

Callus, from corm 

Microspore 
Embryo scutellum 

Callus, from bulblet scale 

Callus, from embryo 

Callus, from immature inflorescence 

Inflorescence 

Embryo scutellum 
Embryo 

Embryo scutellum 
Embryo 

Reference 

Torbert et al., 1998 

LiandWolyn, 1997 
Cabrera-Ponce et al., 1997 

Kamoetal., 1995 

Jähneetal., 1994 
Kopreketal., 1996 

Watadetal., 1998 

Abedinia et al. 1997 

Gallo-Meagher and Irvine, 
1996 

Casas et al. 1997 

Takumi and Shimada, 1997 
Wangetal., 1996 

Brettschneider et al., 1997 
Kemper et al., 1996 

c. an adequate promoter for gene expression 

Gene expression efficiency is closely related to the promoter. Nowadays, many 

promoters are found to be useful for transformation of monocots, including Actl 

(actin)(McElroy et al. 1991; Zhang et al. 1991) from rice, Adhl (alcohol dehydrogenase) 

(Dennis et al. 1984) from maize, CaMV 35S from cauliflower mosaic virus (Odell et al. 1985), 

and Ubil (ubiquitin) (Christensen et al. 1992) from maize. The widely used CaMV 35S 

promoter has proved to be effective in dicots, as well as in the monocot gladiolus (Kamo et al. 

1995) and onion (Eady et al. 1996). It was less effective in cereal/grass (Taylor et al. 1993), 

maize (Christensen et al. 1992), oil palm (Chowdhury et al. 1997), rice (Li et al. 1997), and 
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wheat (Ortiz et al. 1997). All of the above mentioned promoters gave rise to transformants in 

different monocots suggesting that the appropriate promoter has to coordinate with the 

appropriate plant species. 

d. a good selection system 

Wilmink and Dons (1993) concluded that the choice of a good selection system is also 

an important factor for transformation, because even the most successful transformation systems 

for monocotyledonous plants showed a low efficiency. The selection system is mainly based on 

two groups of agent: antibiotics and herbicides. The widely used antibiotic 'kanamycin' was 

considered to be less effective in monocots, because cells and tissues of monocots are relatively 

insensitive to this antibiotic (Wilmink and Dons 1993). However, some successful events did 

not agree with that, for example in asparagus (Li and Wolyn, 1997) and in Dendrobium 

(Kuehnle and Sugii 1992). Another commonly used antibiotic is 'hygromycin' successful in 

transformation of creeping bentgrass (Xiao and Ha 1997) and in rice (Abedinia et al. 1997). 

The herbicide phosphinotricin (PPT), and the tri-peptide PPT compound 'bialaphos' are 

widely used as selection agent in the transformation of monocots. PPT was successfully used in 

barley (Jahne et al. 1994), gladiolus (Kamo et al. 1995), lily (Watad et al. 1998), and 

orchardgrass (Denchev et al. 1997). Bialaphos was successfully applied in barley (Koprek et al. 

1996), maize (Brettschneider et al. 1997), sorghum (Casas et al. 1997), sugarcane (Gallo-

Meagher and Irvine 1996), and wheat (Takumi and Shimada 1997). Many more transformation 

events reported in recent years reveals that the herbicide selection method is very useful for 

monocots. 

Both antibiotics and herbicides are destructive selection agents, because in young 

developmental stages, even the resistant cells can be killed if the applied concentration is too 

high. Therefore, the choice of a nondestructive selection method can be a good help. The firefly 

(Photinus pyralis) luciferase gene is the most useful nondestructive selectable gene, which 

catalyzes the emission of luminescent light with the presence of luciferin (Ow et al. 1986). The 

luciferase activity can be checked periodically through all developmental stages without 

damaging the assayed samples. 
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In conclusion, all the modern genetic modification tools can be applied to Alstroemeria, 

but up to now there is no report about a successful Alstroemeria transformation protocol. 

Outline of the thesis 

In this thesis several investigations have been made to develop a good regeneration system 

applicable for micropropagation and for genetic transformation in Alstroemeria. There were two 

plant regeneration systems involved in this study. One based on organogenesis and the other 

one on somatic embryogenesis. The transformation studies were mainly focused on particle 

bombardment. In Chapter 2 to 4 plant regeneration based on organogenesis via leaf expiant 

culture is described, and in Chapter 5 somatic embryogenesis procedures using callus culture 

initially induced on stem segments are described. Chapter 2 reveals the development of a two-

step regeneration system by using excised leaf explants as initial plant material. The culture 

conditions, the efficiency of shoot induction from leaf expiants, and the subsequent 

development of shoots into complete plants with rhizomes are investigated. Chapter 3 reports 

the origin of the regenerating shoots on the leaf expiants by using histological methods. Also the 

regeneration capability of leaf expiants from different stem positions is compared. In Chapter 4, 

the multiplication efficiency of leaf culture and the traditional rhizome culture is compared. The 

flowering plants derived from the different propagation methods are grown in the greenhouse 

for comparison. The application of leaf culture protocol to existing cultivars is discussed. 

Chapter 5 describes the development of a plant regeneration system based on callus culture. The 

whole regeneration system from callus induction, proliferation, maintenance, somatic 

embryogenesis, and plant formation is given in this chapter. In chapter 6, the recovery of 

transgenic plants via particle bombardment is described. Two plasmids containing destructive 

and nondestructive selection genes respectively, are used, and the selection efficiency is 

discussed. Chapter 7 is a general discussion, the advantages and disadvantages of the two plant 

regeneration systems, leaf expiant culture and callus culture, are compared, and the possibilities 

and restrictions of the application of particle bombardment mediated transformation in future 

Alstroemeria breeding is discussed. 
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Abstract. A two-step protocol for the induction of shoots from Alstroemeria leaf expiants 

has been developed. Leaf expiants with stem node tissue attached were incubated on shoot 

induction medium for 10 days, and then transferred to regeneration medium. Shoots from the 

area adjacent to the region between leaf base and node tissue regenerated within three weeks 

after transfer to the regeneration medium, without a callus phase. The best induction was 

obtained with Murashige and Skoog (MS) medium containing 10 |aM thidiazuron (TDZ) and 

0.5 uM indole butyric acid (IBA). The regeneration medium contained 2.2 uM 6-

benzylaminopurine (BAP). After several subcultures of the leaf expiants with induced shoots, 

normal plantlets with rhizome were formed. In Alstroemeria the percentage of responding leaf 

expiants is more important than the number of shoots regenerated per leaf expiant, because 

rhizome formation is the most important factor for micropropagation. The effect of other 

compounds in the induction medium, including glucose, sucrose, silver nitrate, and ancymidol, 

on regeneration was also investigated. 

Key words: Alstroemeria, Regeneration, Thidiazuron(TDZ), Silver nitrate, Ancymidol 

Abbreviations: BAP -6-Benzylaminopurine, IBA -Indole butyric acid, MS Murashige and 

Skoog, TDZ Thidiazuron (N-phenyl-N'-l,2,3-thidiazol-5-yl urea) 

Introduction 

Alstroemeria, an endemic Latin American monocot cutivated for its flowers, has become 

increasingly popular in recent years. Important reasons are the diversity of colours, low energy 

requirement and long vase life, which allow competition with other greenhouse-grown cut 

flowers. Generally, Alstroemeria is propagated vegetatively by rhizome division, but the 

propagation rate is rather low. Therefore micropropagation based on rhizome cuttings or 

rhizome meristem culture has been developed to accelerate the multiplication efficiency 

(Gabryszewska and Hempel 1985, Hakkaart and Versluijs 1988, Pierik et al. 1988, Van Zaayen 

et al. 1992, Bond and Alderson 1993). Flower pedicels, subapical segments from the vegetative 
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stem, and rhizome tips of Alstroemeria were tested by Lin et al. (1987) as initial expiants for 

tissue culture, of which rhizome tips gave the best response. Recently, plant regeneration via 

somatic embryogenesis has been reported following the induction of callus from mature 

(Gonzalez-Benito and Alderson 1992, Hutchinson et al. 1994) or immature (Van Schaik et al. 

1996) zygotic embryos of Alstroemeria. Other plant tissues of Alstroemeria, however, have not 

yet been reported as initial expiants for in vitro culture. In this report, a new protocol for 

Alstroemeria micropropagation via leaf expiant culture is presented after investigation of the 

influences of thidiazuron (TDZ), sucrose, glucose, silver nitrate and ancymidol in the shoot 

induction medium. 

Material and methods 

Plant material 

Selfed seeds of the Alstroemeria genotype VV024 (a tetraploid breeding line from van 

Staaveren BV, The Netherlands), were surface sterilized in 70% ethanol (1 min), 3% sodium 

hypochlorite solution (20 min) and then rinsed three times with sterilized water (10 min each). 

The seeds were incubated in test tubes with half strength Murashige and Skoog medium (1962) 

(MS), 1% sucrose and 0.7% micro agar (0.5MS10 medium, pH 5.8). After germination, the 

seedlings were subcultured four times in 0.5MS10 medium every four weeks for the production 

of erect shoots, and finally the plants were maintained on MS medium containing 2.2 uM 6-

benzylamnopurine (BAP). Cultures were placed under 18°C, and 12 h light. 

General Protocol for leaf expiant culture 

Fully developed leaves with attached stem nodes were cut from the in vitro-grovm erect shoots 

and used as expiants. After cutting off the upper part of the leaf blade, the expiants were placed 

on culture medium with the abaxial side touching the medium. In each experiment the five top 

leaves were used. All experiments were carried out by two-step procedures. First, the leaf 



16 Direct shoot regeneration from excised leaf explants 

explants were cultured on shoot induction medium for 10 days, and then they were transferred 

to regeneration medium. Based on pilot studies the period of 10 days for induction was optimal. 

MS medium was used as basal medium in all experiments, and the pH was adjusted to 

5.8 before autoclaving. The standard shoot induction medium contained 6.9 uM TDZ, 0.5 uM 

indol butyric acid (IBA), 3% glucose, and was solidified with 0.74% Daishin agar. The standard 

regeneration medium contained 2.2 uM BAP and was solidified with 0.7% micro agar. 

Our experiments were concentrated on improving the leaf culture by testing different 

cutting methods and by varying the composition of the standard induction medium. Ten leaf 

expiants were cultured in each petri dish and five replicates were prepared for each treatment. 

The cultures were incubated at 18°C in the dark in both induction and regeneration medium. 

Cutting methods for leaf expiants 

To compare the effect of the size of the attached stem tissue, two cutting methods were tested. 

(Fig. 1; the arrows indicate the direction of cutting). The leaf expiant prepared by the CI 

method carried a larger amount of stem tissue than that prepared by the C2 method. When 

prepared according to the C2 method across the nodal portion, the lower part of the stem tissue 

was not involved. 

Fig. 1. Cutting methods for leaf expiants of Alstroemeria. 
Arrows indicate the direction and place of cutting. 
S:stem, L:leaf, N:node. 

Concentrations of thidiazuron (TDZ) in combination with glucose or sucrose in induction 

medium 

Based on pilot studies, TDZ seemed to stimulate shoot induction: medium without TDZ had no 

effect, 16 uM had a toxic. Therefore, the basal medium supplemented with TDZ (2, 4, 8, 10 
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|xM), IBA(0.5 uM) in combination with glucose (3%) or sucrose (3%) was tested as an 

induction medium. Leaf expiants following the C2 cutting method were incubated on induction 

medium for 10 days and then transferred to the standard regeneration medium. 

Silver nitrate and ancymidol in the induction medium 

Silver nitrate (0,30, 60, and 120 uM) and ancymidol (0,0.1,1, and 10 uM) were supplied to the 

induction medium (MS+10 uM TDZ+0.5 uM IBA+3% sucrose) to investigate their influence 

on regeneration. The C2 method and the standard regeneration medium were used in this 

experiment. The percentage of regenerating shoots and the number of shoots per regenerating 

expiant were recorded 4 and 8 weeks after transfer to the regeneration medium. Analysis of 

variance was performed on data collected using the LSD test at the 5% level. 

Results 

Shoot formation on the leaf expiant and the influence of the cutting method 

After 10 days incubation on the shoot induction medium, the leaf expiants remained green and 

two types of response were found: (1) the leaves turned dark green without a further growth 

response and did not form shoots after subculture in regeneration medium; (2) the leaf expiants 

showed elongation of the petiole and enlargement of the nodal section, which were able to form 

shoots after subculture onto regeneration medium. 

Direct shoot formation was observed in the area adjacent to the region between leaf and 

stem, and no callus was formed. Buds accompanied by leaf primodia (Fig. 2a) were found 

inbetween leaf blade and stem node after 3 weeks of subculture in regeneration medium. Two 

weeks later the first leaf expanded and the main shoot elongated (Fig. 2b). 

The complete leaf expiants with all the newly formed shoots were subcultured in the 

standard regeneration medium for about 2 months, and the shoots developed into normal 

plantlets with rhizome tips and roots (Fig. 2c). Subculturing the shoots alone after excising them 
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from the leaf expiants was not successful; only shoots with rhizome tips were able to survive 

after separation and subculture. 

Fig. 2. Shoot induction and regeneration at the leaf expiant of Alstroemeria. a. Buds regenerated 
from adjacent area between leaf base and stem node after 3 weeks of subculture on regeneration 
medium. (Bar=l mm) b. Shoot cluster developed on a leaf expiant after 5 weeks of subculture 
on regeneration medium. (Bar=2.5 mm) c. Plantlets regenerated after two months of 
subculture. (Bar=5 mm) B:bud, LB:leaf base, P:plantlet R:root, RH:rhizome, S:stem, SH:shoot. 

Table 1 presents the effect of two cutting methods. After 4 weeks of subculture on 

regeneration medium, the leaf expiants cut by the C2 method showed 18% of shoot regenera

tion, higher than that of the Cl method (8%). There was no difference between Cl and C2 

methods in the number of shoots per expiant. 

Table 1. Effect of different cutting methods on shoot regeneration of Alstroemeria leaf expiants. 
The cutting methos is illustrated in Fig.l. 

Treatment 

Cl 

C2 

Total number of 
leaf expiants 

50 

50 

Explants with shoot 
formation 

4 (8%) 

9(18%) 

Number of shoots per 
regenerating expiant 

2.0±0.7 

1.6±0.7 
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The influence ofTDZ concentration and different kinds of sugar 

The concentration of TDZ in the shoot induction medium significantly influenced the response 

of the leaf expiants. The percentage of shoot formation progressively increased with increasing 

concentrations of TDZ from 2 uM to 10 uM; 10 uM showing the highest response (Table 2). 

TDZ at lOuM induced threefold more regeneration than 2 uM. Comparing the results of 4 

weeks with those of 8 weeks, higher concentrations of TDZ not only induced a higher 

percentage of shoot, but also resulted in earlier development of shoot formation. However, there 

was no significant difference between sucrose or glucose treatment (Table 2). For all treatments 

the mean number of shoots per regenerating expiant ranged from 1.9 to 3.9, and no prominent 

differences were found between the treatments. 

The effect of silver nitrate and ancymidol on shoot regeneration 

The addition of silver nitrate, 30-120 uM, in the induction medium did not increase the shoot 

regeneration rate. There was no significant difference between 30 pM silver nitrate and control 

treatment, while higher concentrations (60 uM and 120uM) significantly reduced the 

percentage of shoot regeneration (Table 3). The average number of shoots induced on 

regenerating expiants ranged from 2.5 to 3.7 (Table 3). There were no differences among the 

treatments. 

The effect of ancymidol in the induction medium on shoot regeneration is also presented in 

Table 3. Ancymidol had no positive effect on the percentage of shoot regeneration. However, 

the average number of shoots per expiant, was increased slightly with an increasing ancymidol 

concentration. 
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Table 2. Effect of TDZ concentration and sugar composition in the induction medium on shoot 
regeneration of Alstroemeria. Leaf expiants were incubated on shoot induction medium for 10 
days, then subcultured on regeneration medium. Each value was recorded 4 and 8 weeks after 
subculture. Values followed by different letters are significantly different at the 5% level as 
determined by LSD (NS not significalt). 

TDZ 4 week-culturesa 

(uM) Shoot 

regeneration 

(%) 

Sugar=3% sucrose 

2 4 b 

4 4 b 

8 28 a 

10 36 a 

Sugar=3% glucose 

2 8b 

4 24 a 

8 20 a 

10 36 a 

Number of shoots 

per regenerating 

expiant 

1.3±0.5 

1.0±0 

2.0±0.6 

1.8±0.8 

3.5±2.5 

3.6±2.0 

4.3±0.6 

1.9±0.7 

Factor (% of shoot regeneration) 

Sugar 

TDZ concentration 

Sugar x TDZ 

p<0.003 

8 week-cultures 

Shoot 

regeneration 

(%) 

18c 

28 be 

40 b 

56 a 

12 b 

32 a 

36 a 

40 a 

Significant level 

4 week-culture 

NS 

p<0 

NS 

002 

Number of shoots 

per regenerating 

expiant 

2.8±1.8 

2.0±1.1 

1.9±0.6 

1.8±0.7 

3.5±2.5 

3.9±1.9 

3.0±2.0 

1.9±0.8 

8 week-culture 

NS 

NS 
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Table 3. The effect of silver nitrate (AgN03) and ancymidol in induction medium on shoot 
regeneration from leaf expiants of Alstroemeria. Leaf expiants were incubated on shoot 
induction medium for 10 days, then subcultured on regeneration medium. Each value was 
recorded 4 and 8 weeks after subculture. 

Treatment" 

(UM) 

AgN03 

0 
30 
60 
120 

ancymidol 
0 
0.1 
1.0 
10.0 

4 week-cultures 

Shoot 
regeneration 

(%) 

38.0 a 
27.5 a 
12.0 b 
12.0 b 

22.0 a 
20.0 a 
30.0 a 
24.0 a 

b 

No. of shoots 
per regenerating 
expiant 

2.4±0.5 
3.0±0.9 
2.0±0.8 
2.2±1.2 

2.4±0.4 
2.0±0.4 
3.3±0.5 
3.8±1.7 

8 week-cultures 

Shoot 
regeneration 

(%) 

56.0 a 
62.5 a 
26.0 b 
30.0 b 

22.0 a 
24.0 a 
34.0 a 
28.0 a 

No. of shoots 
per regenerating 
expiant 

3.7±0.8 
3.4±0.6 
2.5±0.7 
2.9±1.0 

3.6±0.6 
2.4±0.6 
4.4±0.8 
4.8±1.8 

a AgN03 and ancymidol were supplemented to the induction medium (MS+10.0 uM 
TDZ+0.5uM IBA+3% sucrose) respectively. 
Mean separation in columns followed by different letters are significantly different at 5% level 
as determined by LSD. 

Discussion 

Alstroemeria plantlets were produced via the organogenesis procedure and for the first time leaf 

expiants were successfully used as initial material. We were able to induce shoots directly from 

excised leaf expiants with high frequency, and the shoots subsequently developed into normal 

plantlets. It was shown that leaf blades with adhering stem node tissue, which were easily cut 

from erect shoots without damaging the rhizome tips, were good initial expiants for 

micropropagation. This type of shoot regeneration is similar to that found in dicotyledonous 

flower crops such as Dianthus (Van Altvorst et al. 1994), but is unique for monocots. In 

Anthurium (Kuehnle et al. 1992), Iris (Jehan et al. 1994), Seeale (Jia & Zhang 1993), and 

Zingiber (Kackar et al. 1993), leaves without attached stem tissues were used as initial material, 

and plantlets were regenerated indirectly via embryogénie callus. In our experiments, no callus 

formation was found. So we developed a direct regeneration system through leaf culture. 
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Thidiazuron (TDZ), a cytokinin-like substance, has been effectively used in inducing 

shoot regeneration on leaf expiants of many dicots (Huetteman & Preece 1993; Dubois & de 

Vries 1995; Turk et al. 1994), but it has not been reported in monocots. In Alstroemeria, TDZ 

(0.5 uM) in combination with BAP (8 uM) was able to induce multiple shoot formation from 

embryo-induced callus ( Hutchinson et al. 1994). In the present report TDZ was an important 

factor in shoot induction medium for Alstroemeria leaf culture. The concentration of TDZ 

greatly influenced the frequency and the speed with which shoots were formed, and 10 uM of 

TDZ proved to be a suitable concentration. 

For comparing multiplication efficiency among different treatments, the percentage of 

response is more important than the number of shoots regenerated per leaf expiant. Because 

rhizome formation is very important in Alstroemeria, the separation of individual shoots 

without rhizome resulted in the death of shoots. Therefore, in an early developmental stage of 

regeneration (in 8-week-old cultures) the whole leaf expiant together with the newly formed 

shoots has to be treated as one propagation unit, and the number of shoots per leaf expiant 

cannot be regarded as a multiplication index. 

The size of stem tissue attached to the leaf expiant may affect the regeneration frequency 

and the number of shoots induced per expiant. In carnation leaf culture, leaves with a larger 

amount of adhering stem tissue showed a much higher frequency and formed more shoots (Van 

Altvorst et al. 1994). In our experiments, however, leaf expiants prepared by the C2 cutting 

method adhered to a smaller portion of stem tissue and gave rise to a higher frequency of 

regeneration than the CI method. Leaf expiants cut by CI or C2 method showed no differences 

in number of shoots per regenerating expiant. 

Excised Alstroemeria leaves were rapidly turn yellow and senesce, which could be the 

effect of ethylene. Many ethylene antagonists have been developed to prevent leaf yellowing of 

cut Alstroemeria flowers (Serek et al. 1995; Van Doorn & Van Lieburg 1993). Endogenous and 

exogenous ethylene may play an important role in the regeneration of cultured tissues, either as 

a promoter or as an inhibitor (Biddington 1992). In leaf cultures of Prunus (Escalettes & Dosba 

1993) and Rosa (Dubois & de Vries 1995), adding silver nitrate (an ethylene antagonist) in 

regeneration medium enhanced shoot regeneration. In our experiments, 30-120 uM of silver 

nitrate in the induction medium did not enhance shoot regeneration from leaf expiants of 

Alstroemeria. Perhaps the concentration range used in this experiment was too wide, because no 
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difference was found between control and 30 uM (lowest concentration) treatment, and 60 uM 

and 120 uM (higher concentrations) suppressed shoot regeneration. 

The growth retardant ancymidol has been used to promote shoot formation from nodal 

segments (Chin 1982) or shoot apices (Kohmura et al. 1994) in Asparagus. This promoting 

effect was also found in Alstroemeria leaf culture, inducing a higher number of shoots per 

explant, but it did not promote the percentage of responding expiants. 

In this report we presented a new protocol for regenerating shoots from leaf expiants of 

Alstroemeria. As the commonly used micropropagation method is based on rhizome 

multiplication, the erect shoots with leaves were cut off and discarded. It is expected that the 

propagation efficiency with Alstroemeria could be accelerated by using leaf explant as another 

micropropagation initial in combination with rhizome multiplication. 
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Abstract 

Direct shoot regeneration was induced from leaf expiants of Alstroemeria. The expiants 

contained a leaf blade and a small portion of stem node, which were taken from the erect shoots 

of in vitro multiplicated plantlets. The shoot regeneration capacity of the excised leaf expiants 

was significantly related to the position of the explant on the stem. The youngest expiant which 

located close to the shoot apex gave the highest response. A gradient response towards the shoot 

apex was observed in percentage of shoot regeneration and in the number of shoots per 

regenerating expiant. Histological studies revealed that shoots were initiated at the leaf axils. 

The origin of the adventitious bud was located at the epidermal layer of stem peripheral cells. 

Key words: age, in vitro, Inca lily, monocots, micropropagation, regeneration 

Abbreviations: BAP -6-benzylaminopurine, IBA -indol-3-butyric acid, MS medium -Murashige 

Skoog's (1962) medium, TDZ(thidiazuron) -N-phenyl-N'-l,2,3-thidiazol-5-yl urea 

Introduction 

Alstroemeria is a monocotyledonous ornamental plant. It is vegetatively propagated but with a 

low multiplication rate. To accelerate propagation, in vitro culture techniques based on 

rhizomes have been developed (Pierik et al. 1988; Bond & Alderson 1993), but the 

multiplication rate was still low. Furthermore, flower pedicels and stem segments have been 

tested but they showed a low response (Lin et al. 1987). Zygotic embryos were successfully 

used to induce embryogénie callus in high frequencies (Gonzalez-Benito & Alderson 1992; 

Hutchinson et al. 1994; Van Schaik et al. 1996), but this approach cannot be used for 

propagation of existing cultivars. We have previously reported a protocol for inducing plantlets 

from cultured leaf expiants of in vitro grown seedlings (Lin et al. 1997). In this study, we 

examine the effect of the position of leaf explant on the stem. The origin of the shoots and their 

developmental process was examined in a histological study. 
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Materials and methods 

Plant material and preparations of leaf expiant 

An Alstroemeria clone, VV2406, was selected from selfed progenies of VV024 (a tetraploid 

breeding line from Van Staaveren BV, Aalsmeer, The Netherlands) and multiplicated in vitro. 

Shoots of approximately 10 cm in length with five fully developed leaves were collected and 

shoot apices were removed. The period of shoot development from the bud stage to the five-leaf 

stage took about 6 weeks (data not shown). The first five fully developed leaves with adhering 

node tissue were cut from the stem, numbered from top to bottom as 1 till 5, and transferred to 

the medium. 

The two-step regeneration procedure described by Lin et al. (1997) was used: leaf expiants 

were incubated for 10 days on inducing medium (MS 10 u.M TDZ 0.5 uM IBA 3% sucrose), 

and then transferred to shooting medium (MS 2.2 uM BAP 3% sucrose). All cultures were 

incubated in 9-cm Petri dishes at 18°C in the dark. Ten leaf expiants were cultured in each Petri 

dish and four replicate dishes were prepared for each treatment. 

To analyze the shoot regeneration capacity, the percentage of regeneration and the mean 

number of shoots per regenerating expiant were recorded 4 and 8 weeks after subculture 

respectively. Mean separation was performed by the least significant difference (LSD) test 

(Snedecor & Cochran 1994) at 5% level. 

Histological research 

To investigate the origin of the newly formed shoots, and the timing of developmental events, 

expiants were collected after 0 (CK) and 10 days on inducing medium, and after 7, 14, and 21 

days on shooting medium. Ten expiants were collected in each stage. 

Expiants were fixed in 5% glutaraldehyde solution (in 0.1 M potassium phosphate buffer, 

pH 7.2) for 2 hours at room temperature, rinsed in buffer, dehydrated in an ethanol series and 

embedded in Technovit 7100 (Heraeus Kulzer GmbH). Serial sections of 5 mm were made by 
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using the Reichert-Jung Autocut 2055 microtome. Sections were stained with 0.25% toluidine 

blue on glass slides and were photographed under bright field with Zeiss Axiophot microscope. 

Results 

The influence of position on the stem 

The detached leaves remained green and had elongated after 10 days of culture on inducing 

medium in dark conditions. No visible differences between leaf expiants, which were taken 

from different positions of the stem, were observed. After three weeks of subculture on shooting 

medium, buds had developped from the region between stem and leaf base were observed. Leaf 

expiants without regenerating shoots turned gradually brown. 

Four weeks after subculture on shooting medium the leaf expiants with or without 

regenerating shoots could easily be distinguished, and significant differences between nodal 

positions were observed. The younger expiants, which originally located closer to the stem 

apex, showed a higher percentage of shoot regeneration than the older expiants, and this 

percentage significantly decreased with increasing positions. A similar gradient response was 

also found in the number of shoots per regenerating expiant. Younger expiants produced more 

shoots than older expiants {Table 1). 

After incubation for another four weeks, the responding expiants continuously formed new 

shoots. Some of the expiants did not produce shoots during the first four weeks but they were 

able to produce shoots after this period. However, the expiants without regenerating ability 

turned brown and died. The expiants showed their greatest regenerating potential after eight 

weeks of subculture, and expiants taken from different positions showed a similar response 

(Table 1). After eight weeks of subculture, the first (youngest) expiants produced estimatedly 

120 times more shoots than the fifth (oldest) (Table 1). 
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Table 1. The effect of the position on the stem on shoot regeneration of leaf expiants of Alstroemeria 
clone VV2406. Leaf expiants were incubated on inducing medium for 10 days, and then subcultured on 
shooting medium. Each value was recorded 4 and 8 weeks after subculture on shooting medium. 

Nodal 
position 

1 
2 
3 
4 
5 

4-week culture 

Shoot 
regeneration 
percentage 

82.5 a 3 

70.0 ab 
52.5 b 
20.0 c 
0.0 d 

Number of 
shoots per 
regenerating 
expiant 

4.5 a 
4.0 a 
2.4 b 
1.8 b 
0.0 c 

8-week culture 

Shoot 
regeneration 
percentage 

95.5 a 
85.5 ab 
67.5 b 
32.5 c 
5.0 d 

Number of 
shoots per 
regenerating 
expiant 

6.9 a 
4.7 a 
3.0 b 
2.7 b 
1.1 c 

Shoot 
regeneration 
capacity per 
100 leaves 

659 
402 
203 
88 
6 

Inducing medium is MS(1962)+10 p.M TDZ+0.5 uM IBA+ 3% sucrose, and shooting medium is 
MS+2.2 uM BAP. 
The nodal position of the leaf expiant was numbered as 1,2,3,4,5 from top to bottom, while the shoot 
apex was removed. 
Mean separation within columns by LSD test, values followed by different letters are significantly 
different from each other at the 5% level. 

4 Shoot regeneration capacity per 100 leaves = shoot regeneration percentage x number of shoots per 
regenerating explant x 100. 

Histological analysis 

Histological sections of the intact expiants showed that cells of leaf and stem tissue were similar 

in shape and size. Vascular bundles were present in the leaf tissue and scattered all over the 

stem tissue. Cells at the epidermic layer of leaf and stem tissue appeared to be smaller in size 

and more compact than the surrounding parenchyma cells. No initials of axillary buds or 

meristematic structures have ever been found at the epidermic layer of leaf, stem and 

transitional tissues {Figure 1). 

After 10 days of incubation on inducing medium the leaf and stem tissues became swollen 

and the cells enlarged. At the transition layer, however, individual epidermic cells were initiated 

to divide. The dividing cells were located at the epidermal layer of the stem part. They were 

smaller in size than the surrounding cells and contained densely stained nuclei (Figure 2). After 

several divisions the cells formed a meristem-like structure (meristemoid), which appeared in 

the leaf axils (Figure 3). 
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After subculture of the explants on shooting medium for seven days the meristemoid 

developed into a meristematic structure. The meristematic structure had a broad base and a 

protrudent apex with vigourously dividing cells, and numerous newly developing meristemoids 

were observed at the basal region as well as at the leaf epidermis (Figure 4). After 14 days on 

shooting medium the meristematic structure developed into a small bud and this bud protruded 

out of the original initiated tissues (Figure 5). After 21 days on shooting medium the bud 

developed into a shoot apex, with an apical meristem and a leaf primordium (Figure 6). 

Discussion 

Nodal leaf expiants taken from in vitro grown seedlings were found to be good starting material 

for Alstroemeria micropropagation (Lin et al. 1997). This report demonstrated that leaf expiants 

taken from in vitro multiplicated plantlets were also able to regenerate shoots with a high 

percentage. Therefore, juvenile material (from seedlings) is not a necessary requirement, so that 

this protocol could be used for propagating existing cultivars. 

The age of cultured expiants, in some plant species such as Geranium and Brassica, is a 

crucial factor in affecting the regeneration ability (Chang et al. 1996; Choi et al. 1996). 

Silvertand et al. (1995) and Slabbert et al. (1995) have reported another type of age-related 

effect in monocots of Allium and Crinum respectively. The length of young flower stalks, which 

is related to the physiological age, influenced the percentage of adventitious bud formation. Our 

results showed that the position of explants on the stem has a great influence on the regeneration 

ability. This could be a kind of age-related response, because the position was related to the 

physiological age of the expiants, and the closer to the apex the younger the expiant. 

A gradient regenerating response towards the shoot apex was observed, and the closer 

(younger) to the apex the higher the response. This gradient response was found in carnation 

(dicots) leaf culture (Van Altvorst et al. 1995), but has not been reported in monocots. For callus 

initiation, however, a gradient response was observed in leaf culture of some monocots such as 

Hordeum (Becher et al. 1992), Miscanthus (Holme & Petersen 1996), and Avena (Chen et al. 
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1995). The physiological age effect was also found in flower stalk cultures of Allium (Silvertand 

et al. 1995) and Crinum (Slabbert et al. 1995). The relation of the younger the stalk the higher 

the response was clearly found. 

Stem nodes (with or without apical meristem) were found to be very useful expiants for 

initiating micropropagation systems in some monocots. The shoots were induced directly, 

without a callus phase, from pre-existing axillary buds (Swamy et al. 1983; Tisserat 1984), or 

from newly formed adventitious buds (Hwang et al. 1984; Duan & Yazawa 1995; Nakamura & 

Hattori 1995), or from both (Meyer & Van Staden 1991; Pandey et al. 1992). Our experiments 

in Alstroemeria showed a direct bud formation without a callus phase. It is a kind of 

adventitious bud regeneration, because there is no pre-existing axillary bud or bud-primordium 

been found. The adventitious buds were induced from individual epidermic cell of the leaf axil 

tissues, and it seems that the cells within leaf axils exibit a high potential for regeneration. The 

pattern of shoot development, from a single cell to a complete shoot, was similar to that of rice 

(Nakamura & Hattori 1995). However, the starting material was different. In rice they used 

germinating seeds in stead of excised leaf explants. On the other hand, although in both cases 

the adventitious buds were induced from the epidermal cells, the subepidermal cells were also 

involved in rice were not included in Alstroemeria. 
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Figwre 1-6. Developmental sequence of the regeneration of adventitious shoots on leaf axils of 
Alstroemeria L. The leaf expiant was incubated on inducing medium (MS+10 uM TDZ+0.5 
uM IB A) for 10 days, then subcultured on shooting medium (MS+2.2 uM BAP) for 21 days. 
(S=stem tissue; L=leaf tissue; VS=vascular bundle). Figure 1. The original status of stem and 
leaf tissues at day 0. Figure 2 & 3. After 10 days of incubation on inducing medium, in Figure 
2 the arrow indicates epidermal cell divisions, and in Figure 3 the arrow indicates a 
meristemoid structure with densely staining cells. Figure 4. After 7 days of subculture on 
shooting medium. Arrow indicates meristematic structure, and arrow head indicates more 
initiating meristemoids. Figure 5. After 14 days of subculture on shooting medium. Arrow 
indicates newly formed adventitious bud. Figure 6. After 21 days of subculture on shooting 
medium. Arrow indicates shoot apex with meristem in the center together with the newly 
formed primordial leaf (OL: original leaf, NL: the new leaf primordium.) Scale bar=25 mM for 
Figure 1, 100 mM for Figure 2,3,4,5, and 400 mM fox Figure 6. 
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Abstract 

Six tetraploid Alstroemeria selfed progenies were propagated in vitro by rhizome multiplication, 

whereby the shoots were cut off from the rhizome and discarded. In a three-weeks subculture 

interval, the average rhizome multiplication rate was 2.3. The discarded shoots could be used to 

initiate another propagation system. When using leaf expiants excised from the shoots, a cyclic 

mass propagation system was established. The first three leaves, excised from each shoot, have 

an average regeneration capacity of 87.7%, and the number of shoots per expiant was 5.3. 

Combining the rhizome multiplication with the leaf expiant culture, the multiplication 

efficiency was enhanced. The plants were grown in the greenhouse to maturity. Plants 

regenerated from leaf expiants were morphologically identical to those originated from rhizome 

multiplication. The leaf expiant culture protocol was not only suitable for in vitro grown 

explants, but also applicable to in vivo grown expiants. 

Key words: Alstroemeria, Inca lily, micropropagation, monocots, rhizome 

Introduction 

Alstroemeria is a perennial crop mainly cultured for cut flower production. It is generally 

propagated by rhizome division. Due to the low multiplication rate and seasonal restrictions, 

several in vitro propagation systems were developed, based on rhizome tip and/or rhizome 

meristem multiplication (Gabryszewska 1995; Gabryszewska and Hempel 1985; Lin and 

Monette 1987; Hakkaart and Versluijs 1988; Pierik et al. 1988; Van Zaayen et al. 1992; Bond 

and Alderson 1993). In a four- week subculture interval the rhizome multiplication rate was 

between 2.0 to 3.0, depending on culture conditions and the genotype (Pierik et al. 1988). 

Compared to other plant species this rate is rather low. Since the rhizome tip was the best 

multiplication unit in Alstroemeria (Lin & Monette 1987) and other organs were difficult to 

regenerate into plants, the shoots usually were cut off and discarded during subculture. Lin et 

al. (1997) have developed a new micropropagation protocol by using leaf explants as 

propagation units. The adventitious buds, initiated from stem epidermis at the leaf axils, 
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developed into complete plants (Lin et al. 1997, 1998). This protocol provides an additional 

choice for mass propagation, and the multiplication efficiency is expected to be enhanced. 

Another aspect is the start of the rhizome culture from an in vivo grown plant. For this purpose 

usually the underground grown rhizome tip is used, whereby the disinfection is a major 

problem, which is difficult to overcome (Pedersen and Brandt 1992; Pierik et al. 1988). This 

problem may be solved by using the aerial grown leaves as starting material, because 

disinfection of an aerial plant tissue is expected to be easier than that of an underground part. In 

the present report a cyclic regeneration system based on leaf expiant culture is presented. 

Morphological traits of flowering plants propagated by rhizome multiplication and by leaf 

expiant culture are compared. Multiplication with leaf expiants taken from in vitro and in vivo 

grown plant of an existing cultivar is also presented. 

Materials and methods 

Multiplication based on rhizome division 

Selfed seeds of VV024 (a tetraploid breeding line from van Staaveren BV, Aalsmeer, The 

Netherlands) were sterilized and incubated on semi-solid half strength MS medium with 1% 

sucrose for germination (Lin et al. 1997). After germination the seedlings were kept on full 

strength Murashige and Skoog (1962)(MS) medium with 3% sucrose for four months. 

Afterwards the plantlets were transferred to MS medium supplemented with 0.5 mg/1 BAP 

(BA0.5), and were constantly subcultured in a three-week interval for rhizome formation. 

Two months after subculture on BA0.5 medium, many rhizomes were formed on each 

plantlet that were used for the multiplication experiments. In order to trace the multiplication 

behavior of this selfed population, each individual plantlets were subdivided into many parts. 

Each part contained a main rhizome, some developed aerial shoots, and other undeveloped 

axillary buds. After cutting off the aerial shoots, the axillary buds were kept, and the expiants 

were transferred into test tubes with BA0.5 medium individually. 

Six progenies were selected and 3 plantlets (replicates) for each progeny were used in this 

experiment. The number of developed and undeveloped buds, originating of rhizome or shoot, 
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were counted both before and after three weeks of culture. To evaluate the multiplication rate, 

the increased number of newly formed shoots and rhizomes was calculated. All the in vitro 

cultures were placed at 18°C and 12 h light. 

Multiplication based on leaf expiant culture and cyclic regeneration system 

One Alstroemeria clone VV2406 was selected from the selfed progenies of VV024 for its high 

multiplication capacity. This clone was multiplicated and maintained in vitro. Shoots of 

approximately 5 cm in length with three fully developed leaves were collected and shoot apices 

were removed. The leaf expiant culture protocol described by Lin et al. (1997) was used. 

Ten leaf expiants were cultured in each Petri dish and at least 10 replicates were prepared 

for each experiment. Eight weeks after incubation on regeneration medium the leaf expiants 

together with the developing shoots were transferred to test tubes containing BA0.5 medium 

and were placed under 12 h light conditions. The subculture interval was four weeks. To 

develop a cyclic regeneration system, the newly formed shoots of about 5 cm were collected 

and the youngest three leaf expiants were excised, and cultured on shoot induction medium for 

the next culture cycle. This way, three culture cycles were performed. 

After the rhizomes, shoots, and roots were formed, 20 plants were transferred to the 

greenhouse. The morphological traits were measured and analyzed during the flowering period. 

The performance of plants derived from rhizome multiplication and leaf expiant culture was 

compared. 

Leaf expiants cut from in vitro and in vivo grown plants 

Alstroemeria 'CV118' (a tetraploid cultivar from Van Staaveren BV, Aalsmeer, The 

Netherlands) plants were subcultured in vitro on BA0.5 medium, and were used for collecting 

the shoots. The erect shoots of growth chamber grown (in vivo) 'CV118' plants were also 

collected. In order to compare the shoot regeneration ability, the leaf expiants were excised from 

in vitro and in vivo grown shoots and were cultured on media according to the same procedures 

as mentioned above. 
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Before excision of the leaf expiants, the in vivo grown shoots were sterilized by 3 % of 

sodium hypochlorite for 15 minutes and rinsed three times in sterilized water. The three fully 

developed top leaves were used in all preparations. Depending on the leaf size, either 10 leaves 

(in vitro) or 5 leaves (in vivo) were incubated in a petri dish and 5 replicates were prepared. 

Once the rhizome, shoots and roots were formed, the plants were transferred to the greenhouse. 

Results 

Rhizome multiplication 

The rhizomic expiant is a stem-like, horizontal growing, structure with 2-3 nodes and a sharp 

apex. Each node contains an upright growing shoot bud with an enlarged base. The rhizome 

apex, which appeared at one side of the former enlarged shoot base, is wrapped by a scale leaf 

and looks like a shoot bud. One week after subculture on BA0.5 medium, the rhizome apex 

elongats and becomes an upright growing bud. Two weeks later, this bud develops into a shoot 

with an enlarged base. Simultaneously, a new rhizome apex appears at one side of the shoot 

base. On the opposite site of the rhizome apex a root developed into the medium (Figure 1). The 

newly formed rhizome apex looked like an axillary bud of the first scale leaf of the upright 

growing shoot. 

At the other nodes, one bud developed into a shoot and in some cases an axillary bud was 

formed at the other side of the shoot base. The axillary bud elongated and became a lateral 

rhizome tip subsequently. After three weeks the test tubes were filled with shoots and rhizome 

tips. 

The results of shoot and rhizome multiplication in six selfed progenies of clone VV024 are 

shown in Table 1. In average, each expiant produced 4.2 new shoots and 2.1 lateral rhizomes. A 

large difference of the mean number of shoots per expiant was found among the progenies, 

ranging from 2.7 to 6.4. However, the mean number of lateral rhizomes per expiant among the 

different progenies was quite the same, ranging from 1.3 to 2.5. In average, an original rhizome 

expiant produced two times more shoots than lateral rhizomes in three weeks (Table 1.). 
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The average multiplication rate of shoots and rhizomes in the selfed population was 3.0 

and 2.3 respectively, but a variation was found between the progenies (Table 1). The 

multiplication rate of shoots did not associate with that of the rhizomes, e.g., the progeny 

VV2454 had the highest shoot multiplication rate but had the lowest rhizome multiplication 

rate. 

Table 1. The in vitro multiplication rates of six selfed progenies of VV024 using rhizomes as 
expiants. Data were collected after 3 weeks' subculture of the rhizome explants on MS (1962) 
medium supplemented with 0.5 mg/1 BAP. 

Progeny 

VV2406 
VV2410 
VV2434 
VV2435 
VV2452 
VV2454 

Average 

No. of shoots 
per expiant 

4.2±0.8 
2.7±1.1 
4.3±0.5 
6.4±1.7 
4.0±2.0 
3.8±2.1 

4.2 

No. of lateral 
rhizomes 
per expiant 

2.2±0.3 
1.3±0.6 
2.5±1.3 
2.2±0.4 
2.2±2.2 
2.0±1.0 

2.1 

Multiplication rate 

shoot 

2.5±0.5 
2.7±1.1 
3.6±0.8 
2.3±0.7 
3.2±2.2 
3.8±2.0 

3.0 

rhizome 

1.9±0.3 
2.0±1.0 
3.3±1.7 
2.1±0.9 
2.8±1.5 
1.5±0.5 

2.3 

Cyclic adventitious shoots regeneration system by using leafexlants as a propagation unit 

Adventitious buds were initiated from the region between the leaf base and stem node in four 

weeks of subculture of leaf explants on the regeneration medium. Eight weeks after subculture, 

the buds developed into shoots that were transferred to test tubes. The shoots kept growing in 

the test tubes and elongated. Two months later a rhizomic apex was initiated at the first node of 

a shoot. Once the rhizome was formed, individual shoots could be separated from the original 

leaf expiant. After subculture for another month the rhizome developed into a complete plant 

with new shoots and roots. 

From a leaf expiant to a newly formed rhizome, a regeneration cycle was completed. One 

cycle took about 5 months. Once the newly formed rhizomes started to produce new axillary 
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shoots, the old shoots gradually turned yellow and died. Before yellowing, the old shoots were 

cut off and could be used for the next regeneration cycle. The second cycle was initiated by 

culturing the leaf expiants excised from the first cycle's shoots. 

In Table 2, the results of the regeneration system of three cycles are presented. The mean 

percentage of shoot regeneration ranged from 84.0 to 90.3% and there were no significant 

differences among the three cycles. The mean number of shoots per expiant ranged from 4.9 to 

5.9 and no significant differences were found. During the three cycles in culture the leaf 

expiants always maintained a high regeneration ability. 

Table 2. Three cycles of adventitious shoot regeneration in Alstroemeria clone VV2406 by 

using leaf explants as propagation units. 

Cycle Percentage of regeneration Number of shoots/explant 

(%) 

5.9±1.4 

4.9±0.8 

5.0±1.2 

Average 87.7 5.3 

Comparison of morphological traits of plants originated from rhizome multiplication and from 

leaf-explant culture 

Plantlets of clone VV2406, which were multiplicated in vitro either by rhizome multiplication 

or by leaf expiant culture, were successfully transferred to the greenhouse. In total, there were 

19 and 15 plants survived, that were derived from rhizome multiplication system and leaf 

expiant culture system, respectively. The plantlets originating from rhizome multiplication were 

larger in size than those from leaf-explant culture, having a higher survival rate (95% to 75%) 

and more shoots per plant (Table 3., Figure 2.). The rhizome multiplicated plants started to 

flower eight months after transfer to the greenhouse, however, the leaf-explant regenerated 

plants started to flower two weeks later. A number of morphological traits were measured and 

1 

2 

3 

84.0Ü2.1 

88.9Ü0.5 

90.3±11.6 
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listed in Table 3. All the vegetative and generative traits scored showed that plants multiplicated 

by the two different methods were morphologically identical (Figure 2). 

Table 3. Comparison of morphological traits of Alstroemeria clone VV2406, which were 
propagated by two different multiplication systems: rhizome multiplication and leaf expiant 
culture. The data were collected 8 months after transfer to the greenhouse, 19 plants from 
rhizome multiplication system and 15 plants from leaf expiant culture system were measured. 

Traits Rhizome Leaf expiant 
multiplication culture 

Vegetative parts 
No. of shoots/plant 
Plant height (cm) 
Leaf length (cm) 
Leaf width (cm) 
No. of leaves/shoot 

Generative parts 
No. of flowers/shoot 
No. of peduncles/shoot 
Peduncle length (cm) 
Flower length (cm) 
Flower width (cm) 
Flower color 
No. of anthers/flower 
Anther color 
Pollen grain color 

14.2 ±2.1 
40.6 ± 5.2 
6.4 ± 0.6 
l.OiO.l 
17.0 ±1.8 

12.8 ±2.7 
5.1 ±0.5 
7.9 ±1.5 
5.1 ±0.3 
4.6 ±0.4 
pink 
6 
yellow 
yellow 

11.7±3.0 
43.5 ±3.4 
6.2 ±0.7 
1.1 ±0.1 
19.3 ±3.7 

11.4 ±2.3 
4.6 ±0.5 
7.0 ±0.8 
5.1 ±0.3 
4.4 ± 0.4 
pink 
6 
yellow 
yellow 

The application of leaf expiant culture by using in vitro or in vivo grown shoots 

The procedure of adventitious shoot formation on leaf expiants of cultivar 'CV118' was similar 

to that of VV2406. Although the size of isolated leaf expiants cut from in vivo grown plants was 

larger than that of in vitro plants, there were no significant differences between those two types 

of expiants in the percentage of shoot regeneration and the number of shoots per expiant (Table 

4). 

Leaf expiants together with the regenerating shoots were subcultured in test tubes 

containing BA0.5 medium for two months, and the rhizomes were formed at the shoot base. It 

took 5 months from starting the experiment to get complete plantlets with shoots and rhizomes. 
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Once the rhizomes were formed, the plantlets were separated from the original leaf expiants and 

subcultured on rooting medium. The whole plant including rhizome, shoots and roots was 

transferred to the greenhouse and they started flowering about six months after transfer. Visual 

comparison has been made and there were no morphological differences found between the 

plants derived from either in vitro or in vivo grown plants (Figure 3). 

Table 4. Adventitious shoot regeneration from different expiant sources of the tetraploid 

Alstroemeria cultivar 'CV118'. 

Expiant source Percentage of regeneration Number of shoots/explant 

In vitro 42.8Ü0.0 3.4±1.0 

In vivo 37.8±3.9 5.2±3.2 

In vitro mean: leaf expiants were taken from in vitro grown plants, which were originated from 

rhizome multiplication; in vivo means: leaf expiants were taken from growth-chamber grown 

plants. 

Discussion 

Results of our rhizome micropropagation experiments are comparable to previous reports on 

multiplication of rhizome tips of Alstroemeria hybrids (Pierik et al. 1988). The variation of 

shoot and rhizome multiplication rate over progenies suggests a genotypic effect, due to the 

variated genetic background of the selfed progeny. 

The rhizome is the main propagation organ in Alstroemeria. The aerial shoots grow out 

of the rhizome node and axillary rhizome buds are present at the base of each aerial shoot. Bond 

and Alderson (1993) suggested that a high apical dominance of the rhizome apex or aerial 

shoots is responsible for the suppression of the formation of lateral rhizomes. They found that 

the numbers of shoots were often not associated with the numbers of rhizomes. We also found 

this in our results, because in all tested progenies, the number of shoots per plant was not equal 

to the number of lateral rhizomes. 

The time needed from transfer to the greenhouse to flowering, was longer for the leaf 

expiant regenerated plants than for the rhizome multiplicated plants. This delay is probably not 
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due to the different propagation method, but to the different sizes of the plantlet. Pedersen et al. 

(1996) found that plant size might influence the time to flowering in Alstroemeria, and the 

larger the size, the earlier the flowering. In our experiments, the ex vitro plantlets produced by 

rhizome multiplication, were larger than those regenerated from leaf expiants, which might be 

an explanation for earlier flowering. 

The rhizome tip was previously found to be the only expiant for initiating the in vitro 

multiplication system in Alstroemeria (Gabryszewska 1995; Lin and Monette 1987). Since the 

plants were grown in the soil, disinfection of underground rhizomes became a major problem 

and the infection due to internally present micro-organism was very difficult to overcome 

(Pierik et al. 1988). Thus a method for disinfection of rhizome tips was recommended by 

Pedersen and Brandt (1992), which contained two disinfectants and three disinfection steps. Lin 

et al. (1997) reported a micropropagation system by using in vitro grown leaf expiants 

(including stem node) as initial material. In this paper we reported that this leaf culture 

technique was also useful by using in vivo (growth-chamber) grown leaf expiants. Leaf 

expiants, taken from aerial shoots, were easier to disinfect than underground rhizomes. Besides, 

some other advantages of this method were found: non-damage of the rhizomes, less 

disinfection steps, less infection problem, and the expiants were easier to collect. 

The conventional way of micropropagation for Alstroemeria is based on rhizomes. 

Therefore, the shoots are of no use and should be cut off during each subculture. This report has 

shown that both rhizomes and leaf expiants can be used for plant propagation. A rhizome 

expiant of Alstroemeria clone VV2406, for example, produced 2.2 rhizomes and 4.2 shoots for 

every 3 week (Table 1). Each shoot produced 3 leaf expiants with an average regereration 

capacity of 87.7% (Table 2). Each leaf expiant regenerated 5.3 shoots, which developed into 

plants within 5 months. Therefore, the multiplication efficiency was enhanced when combining 

both propagation systems. 
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Figure 1. Rhizome plant of Alstroemeria VV2406 propagated in vitro. FSL first scale leaf, 
NRA newly-formed rhizome apex, R root, RA rhizome apex, S shoot, Bar = 0.5 cm 

Figure 2. Flowering of Alstroemeria plant VV2406, 8 months after transfer to the 
greenhouse. A) originated from rhizome division, B) originated from leaf culture. 
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Figure 3. Leaf culture regenerated plants of Alstroemeria cultivar 'CV118' flowering in the 
greenhouse. The initial leaf expiants were taken from either in vitro (left), or in vivo grown 
plants (right). 
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Abstract 

Stem segments of one-month old seedlings from two tetraploid Alstroemeria genotypes cultured 

on media supplemented with 4 mg/1 2,4-dichlorophenoxyacetic acid and 0.5 to 1.0 mg/1 6-

benzylaminopurine initiated soft callus, which became compact after subculture on a medium 

with only 0.5 mg/1 6-benzylaminopurine. Subsequently, two different morphotypes of callus, 

friable and granular, were induced from the compact callus. The initiation, proliferation and 

maintenance of friable callus were accomplished on medium supplemented with 10 mg/1 

picloram. The granular callus was efficiently induced from compact callus if the medium 

contained 1 mg/1 2,4-dichlorophenoxyacetic acid and 0.5 mg/1 6-benzylaminopurine. In 

addition, the friable callus was able to differentiate into granular callus. The granular callus 

proved to be an intermediate between friable callus and somatic embryos. Friable and granular 

callus underwent somatic embryogenesis and plant regeneration on media supplemented with or 

without 6-benzylaminopurine. The total time needed from friable callus to a complete plantlet, 

with rhizome, shoots and roots, was approximately 6 months. This approach provides a cyclic 

system for the production of embryogénie material, which is considered to have valuable 

applications for genetic transformation in Alstroemeria. 

Key words: callus, compact, culture, embryogenesis, friable, granular, monocots, regeneration, 

rhizome 

Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; 2,4,5-T, 2,4,5-trichlorophenoxyacetic 

acid; BAP, 6-benzylaminopurine; MES, 2(N-morpholino) ethane sulfonic acid; MS, Murashige 

& Skoog (1962); NAA, cc-naphthaleneacetic acid; pCPA, p-chlorophenoxyacetic acid; 

picloram, 4-amino-3,5,6-trichloropicolinic acid 

Introduction 

Genetic transformation mediated by Agrobacterium or particle delivery system has become 

popular in modern plant breeding research. Useful genes can be introduced into plant species in 

an asexual way. Genetic modification may become an important tool for the improvement of 
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Alstroemeria, which is a monocotyledonous species. Development of an efficient plant 

regeneration system is a prerequisite for genetic modification (Taylor et al. 1996; Raemakers et 

al. 1997). In monocots, embryogénie callus has proved to be the best target for transformation 

(Smith and Hood 1995), mainly because the embryogénie callus provides mass-reproducible 

material that can increase the opportunity of transformation. In monocots, generally two types 

of embryogénie callus are found: compact and friable, and most of them are induced from 

zygotic embryos (Benmoussa et al. 1996; Bregitzer et al. 1991; Buiteveld et al.1994; Fransz and 

Schel 1991; Gendy et al. 1996; Jullien and Van 1994; Ke and Lee 1996; Oinam and Kothari 

1995; Remotti and Löffler 1995; Teixeira et al. 1993; Yam et al. 1990). In maize, the compact 

(or Type I) callus has a solid appearance with many scutellum-like structures, and the friable (or 

Type II) callus is characterized by a soft, yellow, or white, friable appearance (Fransz and Schel 

1991; Welter et al. 1995). 

In Alstroemeria, compact callus could be induced from mature or immature zygotic 

embryos (Hutchinson et al. 1994; Van Schaik et al. 1996), but the friable callus was not well 

documented. It was only shown by Hutchinson et al. (1997) that the more 'friable' callus could 

be induced by preculturing compact callus on a high NAA medium for two days, and followed 

by a liquid culture procedure. The subsequent products were cell aggregates with a diameter 

between 1 and 2 mm. Except that, there is no report referring the friable callus in Alstroemeria. 

Friable callus has proved to be a valuable source for the establishment of cell suspension 

cultures, which resulted in successful transformation in many crops (Kamo et al. 1990; Kamo et 

al. 1995; Raemakers et al. 1997; Register et al. 1994). The objectives of this study are to 

develop an efficient system for the initiation and maintenance of friable embryogénie callus 

(FEC) from stem tissues, and a system for the regeneration of plants from FEC applicable for 

further genetic modification research. 

Materials and methods 

Compact callus induction from stem segments 

Self-pollinated seeds of Alstroemeria VV024 (a tetraploid breeding line from Van Staaveren 

BV, Aalsmeer, The Netherlands) and BT207 (a tetraploid 'Butterfly' type breeding line, from 
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Wülfinghoff Freesia BV, The Netherlands) were sterilized with 70% ethanol (1 min), 3% 

sodium hypochlorite solution (20 min), then rinsed 3 times with sterilized water (10 min each). 

After surface sterilization, the seeds were placed on medium with half-strength Murashige and 

Skoog (1962) salts and vitamines, 10 g/1 sucrose, and solidified with 2.2 g/l gelrite, pH 5.8. 

Cultures were placed in 18°C, 12 h light conditions. 

Two months after incubation the seeds started to germinate, and one month later, stem 

segments (1 cm, with one node) were excised and placed on callus induction medium. The 

callus induction medium consisted of Murashige and Skoog salts and vitamines, 30 g/1 sucrose, 

7 g/1 micro agar, and 0.5-4.0 mg/1 2,4-D with or without 0.5-1.0 mg/1 BAP, pH 5.8. After 

autoclaving, the medium was poured into 9 cm Petri dishes. Fifty expiants were cultured for 

each treatment. All cultures were placed at 18°C room in darkness. 

The expiants were subcultured bi-weekly on induction medium for two months. After 

formation of a soft type of callus, the cultures were transferred to regeneration medium and 

were subcultured bi-weekly. The regeneration medium consisted of Murashige and Skoog salts, 

vitamines, 30 g/1 sucrose, 3 g/1 gelrite, and 0.5 mg/1 BAP (BA0.5). 

Subsequently, a compact type of callus was formed and was used as initial material for 

the following friable and granular callus induction experiments. 

Friable and granular callus induction from compact callus 

The compact calli were separated, without damaging, into single units (2-5 mm in 

length) by a pair of forceps, and then placed on the culture medium. Ten units were placed in a 

Petri dish and 5 replicates were prepared for each treatment. 

I. friable callus induction 

Two basal media were used in this experiment: MS and PCA. MS medium consisted of 

Murashige and Skoog salts and vitamines, 2% sucrose, and solidified with 3 g/1 gelrite, pH 5.8. 

PCA medium (Sofiari et al. 1998) has the same composition as MS but is additionally 

supplemented with the following compounds (in mg/1): 100 myo-inositol, 18200 d-mannitol, 

480 MES, 100 casein hydrolysate, 80 adeninesulphate, 0.5 d-calcium pantothenate, 0.1 choline 
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chloride, 2.0 nicotinic acid, 0.5 ascorbic acid, 1.0 pyridoxin-HCl, 10.0 thiamine-HCl, 0.5 folic 

acid, 0.05 biotin, 0.5 glycine, 0.1 L-cysteine, and 0.25 riboflavine. The basal media were 

supplemented with picloram (0, 1 and 10 mg/1) to induce friable callus. After seven weeks, the 

percentage of compact callus that had formed friable calli was calculated. 

II. Granular callus induction 

Media supplemented with different plant growth regulators were tested to induce granular 

callus. The control medium used in this experiment was BA0.5, and was supplemented with 1, 

2, 4 mg/1 2,4-D (BA0.5D1, BA0.5D2, BA0.5D4, respectively). After five weeks of culture the 

percentage of compact callus that had formed granular calli was calculated. 

Proliferation and maintenance of friable callus 

MS and PCA basal media supplemented with picloram (0, 1, and 10 mg/1) were tested for 

proliferation and maintenance of friable calli, which were induced in the previous experiment. 

Approximately 300 mg of friable calli was divided into 6 equal parts and placed on the medium 

in a 9 cm Petri dish. Four replicates were prepared for each treatment. All cultures were kept on 

the same medium without refreshing for 5 weeks. The callus weight was measured after five 

weeks, and the proliferation rate was calculated. 

All the friable calli were subcultured on the same medium for 3 weeks again. The 

appearance of all cultures was recorded, and the browning calli were collected and weighted in 

order to calculate the percentage of browning. 

In order to investigate the regenerability and friability over a long subculture period, 

well growing calli were collected and incubated on the same medium without refreshing for 

another eight week. Six callus clumps of approximately 100 mg, were cultured in one 9 cm 

Petri dish, and 6 replicates were prepared for each tested medium. After eight weeks, the 

percentage of callus clumps with either embryos, shoots, roots, granular calli, or friable calli 

were calculated. 

Somatic embryogenesis of friable callus 
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Friable calli, maintained on PCA medium with 10 mg/1 picloram for two months, were cultured 

on medium supplemented with Murashige and Skoog salts and vitamines, 30 g/1 sucrose, 3 g/1 

gelrite, and 0, 0.1, 0.5, 2.0 mg/1 BAP (BA0 as control, BA0.1, BA0.5, BA2.0, respectively). 

Each plate (9 cm Petri dish) contained 500 mg friable calli, and four replicates were prepared for 

each treatment. Cultures were refreshed by a bi-weekly subculture interval. 

After one month, the number of granular calli per plate was recorded. All of the 

granular calli formed were collected and transferred to the same fresh media. One month later, 

the number of somatic embryos was recorded. The percentage of embryo formation was 

calculated by dividing the number of embryos by the number of cultured granular calli. The 

browning level of the cultures was determined visually. 

Regeneration of plants from somatic embryos 

Somatic embryos were cultured on medium supplemented with Murashige and Skoog salts and 

vitamines, 30 g/1 sucrose, 3 g/1 gelrite, and 0.1, 0.5, 2.0 mg/1 BAP, pH 5.8, for converting into 

plantlets. The expiants were subcultured by a three-week interval. Six embryos were tested for 

each medium. 

Results 

Compact callus induction from the stem segments 

After 10 weeks of culture on callus induction medium, only a few of the stem segments of both 

BT207 and VV024 genotypes had formed callus on the nodal region (Table 1, data only shown 

for genotype VV024). The callus was yellowish, with a soft, sticky texture, and continuously 

growing for two months. 

After one month of subculture on regeneration medium (BA0.5), most of the soft calli 

became rhizogenic, and less than 1 % formed compact callus. In the case of the VV024, the 

compact callus originated from the induction medium supplemented with 4.0 mg/1 2,4-D and 
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1.0 mg/1 BAP. In the case of BT207, the compact callus originated from the induction medium 

supplemented with 4.0 mg/1 2,4-D and 0.5 mg/1 BAP. 

Compact callus is an irregular, white or yellow colored, solid type of callus, with a 

smooth surface, and is longer than 5 mm in length (Fig. 1). It was strikingly different from the 

rhizogenic callus. The compact calli were maintained on BA0.5 medium for more than 1.5 

years, by a monthly subculture interval. During this period the compact calli formed shoots and 

new compact calli, simultaneously. 

One compact callus line, induced from genotype VV024, was selected and named 

VV024C, and another one, selected from genotype BT207, was named BT207C. The 

morphology of callus line VV024C was similar to BT207C, however, because VV024C grew 

more vigorous than BT207C, the following experiments were focused on VV024C. 

Table 1. Callus induction on the stem segments of selfed progenies of Alstroemeria VV024, 
and 50 expiants were cultured per treatment. 

Medium composition (mg/1) Soft callus formation 
(%) 

2,4-D BAP 

0 0 0 

0.5 0.5 2.2 

1.0 0.5 0 

2.0 0.5 5.8 

4.0 0.5 0 

0.5 1.0 0 

1.0 1.0 0 

2.0 1.0 2.8 

4.0 1.0 3.0 

Friable callus induction from compact callus 

Compact calli, cultured for seven weeks on basal medium (MS and PCA) without picloram, 

formed only shoots and roots on their marginal region. The percentage of shoot formation on 

MS basal medium was significantly higher than that on PCA basal medium (Table 2). 
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Cultured on medium supplemented with 1 mg/1 picloram (MS IP, PC A IP), the compact 

calli produced friable calli, as well as shoots, and roots, whereas on medium supplemented with 

10 mg/1 picloram (MSI OP, PCA10P) only the formation of friable callus was stimulated (Table 

2). 

Friable callus units are smaller than 0.1 mm in diameter and show a yellow, round, tiny 

structure (Fig. 2), and is formed as an aggregate clump on the surface of compact callus. The 

friable callus clumps could be separated from the surface of compact callus, and were spreaded 

easily on the semi-solid medium surface as a thin layer. 

Table 2. Friable callus induction on VV024C compact callus. Data were collected after 7 weeks 
of culture. Means in the same column followed by the same letters are not significantly different 
at the 5% level as determined by LSD. 

Medium 

Medium 

MS 

MS1P 

MSI OP 

PCA 

PCA1P 

PCA 1 OP 

composition 

Basal 

MS 

MS 

MS 

PCA 

PCA 

PCA 

Picloram 
(mg/1) 

0 

1 

10 

0 

1 

10 

Friable callus 
formation 
(%) 

0.0 c 

45.0 b 

85.0 a 

0.0 c 

45.0 b 

95.0 a 

Shoot 
formation 
(%) 

70.0 a 

5.0 c 

0.0 c 

45.0 b 

10.0 c 

0.0 c 

Root formation 
(%) 

85.0 a 

15.0 be 

0.0 c 

60.0 ab 

30.0 bc 

0.0 c 

Granular callus induction from compact callus 

Granular callus was formed on the surface of the compact callus, that was observed on all tested 

media after five weeks of culture. The granular callus has a yellow, round structure, with units 

of approximately 1 mm in diameter, larger than the friable callus units. The granular calli 

usually appeared in aggregates, and could be easily separated in individual units (Fig. 3). Sixty-

five percent of the compact calli formed granular callus on control medium (BA0.5). The 

addition of 1 mg/1 2,4-D to BA0.5 medium increased the percentage of granular callus 
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formation, however, not significantly. Higher concentration of 2,4-D reduced the percentage 

significantly (Table 3). 

After five weeks of culture, 42.5% of the expiants turned brown on BA0.5 medium. The 

addition of 2,4-D in the culture media resulted in a more serious browning (Table 3). Although 

tissue browning was harmful and resulted in the death of the whole expiant, it did not hamper 

the formation of granular callus. The granular callus often appeared on the surface of a dying 

expiant. 

Table 3. The formation of granular callus on VV024C compact callus using BA0.5 medium 
supplemented with 0, 1,2, and 4 mg/1 2,4-D. Data were collected after five weeks of culture. 
Means in the same column followed by the same letters are not significantly different at the 5% 
level as determined by LSD. 

Medium 

BA0.5 

BA0.5D1 

BA0.5D2 

BA0.5D4 

Proliferation and maintenance of friable callus 

The friable calli, separated from the surface of the compact callus, were cultured on six media 

for five weeks. They grew vigorously on all media tested. The proliferation rate, measured as 

increase of fresh weight varied from 3.6 to 4.9; however, there were no significant differences 

(Table 4). With the naked eye no difference was observed between calli cultured on the six 

different media; they were yellowish and vigorously growing. However, a binocular 

microscopic observation revealed that some tiny granular callus units were formed on picloram 

free media (MS and PCA), but not on picloram-containing media. 

Browning of callus was not observed after 5 weeks of culture. After 8 weeks of culture, 0.9 

- 6.3% of the friable calli turned brown. MS medium showed the highest percentage of 

browning, whereas MSI OP medium showed the lowest (Table 4). 

Expiants 
callus 
(%) 

65.0 ab 

77.5 a 

54.0 be 

32.0 d 

formed granular Expiants turned brown 
(%) 

42.5 b 

75.0 a 

70.0 a 

82.0 a 
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After eight weeks of culture on both MS and PCA media (without picloram), almost all 

calli were granular and visible by naked eye. On picloram-containing medium the calli 

remained friable (Table 4). 

Incubation of the collected friable or granular callus on the same medium for eight more 

weeks (16 weeks in total), which resulted in significant differences among the six tested media. 

Considering the presence of embryo formation, the six tested media could be grouped into two 

categories: with (MS, MS1P, PCA, and PCA1P) and without (MS10P and PCA10P) 

embryogenesis. More than 50% of the granular calli developed into embryos on picloram-free 

medium (MS and PCA), whereas less than 5% of them formed embryos on the medium 

containing 1 mg/1 picloram (MS1P and PCA1P) (Table 4). 

The more organized granular callus was observed in all of the tested media, and the 

percentage ranged from 53.3% to 97.2%. Friable callus was only observed in picloram 

containing media, especially in the medium with 10 mg/1 picloram (Table 4). 

Based on the results of Table 4, PCA10P was chosen for maintenance of friable callus. The 

friability was maintained for more than one year by a three-week subculture interval, and with 

an average proliferation rate of 2.5 (data not shown). 

Table 4. Friable callus proliferation of the genotype VV024C and the maintenance of the callus 
type after 5, 8, and 16 weeks. Means in the same column followed by the same letters are not 
significantly different at the 5% level as determined by LSD. 

Medium 

Medium 

MS 
MS IP 
MSI OP 
PCA 
PCA IP 
PCA 1 OP 

imposition 

Picloram 

0 
1 
10 
0 
1 
10 

5 weeks ' 

Proliferation 
rate 

4.1a 
4.4 a 
4.6 a 
4.9 a 
3.6 a 
4.3 a 

8 weeks ' 

Browning 
callus 

(%) 

6.3 a 
4.7 ab 
0.9 b 
2.6 ab 
2.0 ab 
1.8 b 

Callus 
appearance 

granular 
friable 
friable 
granular 
friable 
friable 

16 weeks 2 

Callus 
clumps with 
embryos 
(%) 

66.7 a 
2.8 c 
0.0 c 

55.6 b 
2.8 c 
0.0 c 

Callus 
clumps with 
friable 
callus 
(%) 

0b 
100 a 
100 a 

0b 
100 a 
100 a 

Callus 
clumps with 
granular 
callus (%) 

66.7 b 
97.2 a 
86.1 ab 
53.3 b 
91.7 a 
91.7 a 

Four replicates per treatment, each replicates contained approximately 300 mg of friable calli 
in the beginning. 
Six replicates per treatment, each replicate contained 6 callus clumps. 
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Somatic embryogenesis from friable callus 

Media without picloram stimulated the formation of somatic embryos in a 16 week's culture 

(Table 4). However, the period of 16 weeks was very long. To test whether cytokinin is 

necessary for better stimulation, friable calli were cultured on medium supplemented with 0 to 2 

mg/1 BAP. During the first three weeks, the friable calli kept growing and became aggregates on 

all tested media, and their appearance looked similar; still yellowish and friable. After two more 

weeks of culture, granular calli appeared in all tested media. The number of granular callus units 

per plate ranged from 134.5 to 184.8; however, no significant difference was found between the 

tested media. A large variation was found between the plates in one treatment (Table 5; the 

standard deviation varied from 36.2 to 65.4). 

Accompanied by growth, the callus produced phenolic compounds that resulted in 

browning and, subsequently, dying of the callus. This exudate had also negative effects on the 

surrounding calli. Starting from a small brown/black spot in a yellowish callus clump, the 

brown/black color extended gradually to the whole clump, and finally to the whole Petri dish. 

However, by frequently refreshing the culture medium and removing the brownish calli, healthy 

calli could be rescued. Higher concentration of BAP (2.0 mg/1) stimulated browning of the 

callus (Table 5). 

All the granular calli, formed in the same plate, were collected and transferred to new 

medium for further growth. Somatic embryos (Fig. 4) were formed one month later. On a BAP 

free medium (BAO), 6.3% of the granular calli differentiated into embryos. On BA0.1, BA0.5, 

and BA2.0 medium, respectively, 6.2%, 9.3%, and 33.0%) of the granular calli differentiated 

into embryos (Table 5). Subsequently, all the other granular calli differentiated into hard 

compact calli. 
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Table 5. The induction of embryogenesis in friable callus using 0-2 mg/1 BAP in the medium. 

Medium 

BAO 

BA0.1 

BA0.5 

BA2.0 

Number of granular callus 
units per plate 
(meaniS.D.) 

134.5±57.7 

183.0±65.4 

135.8±36.2 

184.8±55.4 

Percentage of granular 
calli differentiated into 
embryos 
(mean±S.D.) 

6.3±4.6 

6.2±1.3 

9.3±4.8 

33.0±13.5 

Browning 
level 

+ 

+ 

+ 

++ 

Data were collected one month after incubation: each plate contains 500 mg of friable calli, 
and 4 plates were prepared per treated medium. 
Data were collected two months after incubation. 

The development of somatic embryos 

To investigate the conversion procedure of somatic embryos and the subsequent regeneration to 

plantlets, the somatic embryos were collected from the previous experiments and cultured on 

medium containing 0, 0.1, 0.5 and 2.0 mg/1 BAP for eight weeks. During this period, most of 

the somatic embryos formed granular calli on their basal parts, which developed into somatic 

embryos, subsequently. At the start, there were six somatic embryos cultured, and this number 

had increased in all media tested at the end of the experiment. The highest number of newly 

formed somatic embryos was obtained on BA0.1 medium (Table 6). 

The somatic embryos possessed a cotyledon, a shoot apex, and a root primordium. With 

normal development, the shoot apex developed into a shoot and, subsequently, formed a 

complete plantlet with shoots and roots (Fig. 5). However, in most cases the cotyledon part 

became swollen and turned into non-regenerable green callus (Fig. 6). Sometimes the root 

primordium also developed into non-regenerable callus, but with a white color. This type of 

callus usually enlarged (one unit might be more than 10 g), and turned gradually brown and 

died. In some cases secondary somatic embryos were formed on the surface of the primary 

embryo, resulting in a multiple cotyledonous structure (Fig. 7). 

The embryos formed shoots only on BAP-containing media, not on the BAP free medium, 

and BAO.5 and BA2.0 media stimulated shoot formation. Roots were observed on all media 

except BA2.0. Both, the formations of non-regenerable callus and of secondary embryos, were 
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frequently found on BA0.5 and BA2.0 medium (Table 6). The shoots, formed on MS30, BA0.1, 

BA0.5 medium, were normal. However, they showed abnormal growth on BA2.0 medium, with 

curled and dark-green leaves, multiple shoots, and fasciated stems. 

Afterwards, based on the results of Table 6, plantlets with normal shoots were transferred 

to BA0.5 medium continulusly, with a three-week subculture interval. Two months after 

subculture, complete plants with rhizome, shoots, and roots were formed, which were suitable 

for transferring into the soil. 

Table 6. Effect of 6-benzylaminopurine on the conversion of somatic embryos into plantlets. 

Medium 

BAO 

BA0.1 

BA0.5 

BA2.0 

Number of 
somatic 

embryos 
cultured 

6 

6 

6 

6 

Number of embryos 

in total 

35 

66 

22 

14 

with 
shoots 

0 
n 
j 

8 

5 

(after 8 weeks of culture) 

with 
roots 

8 

6 

3 

0 

with non-
regenerable 
callus 

7 

12 

10 

8 

with secondary 
somatic 
embryos 

5 

7 

11 

8 

Discussion 

The induction and formation of different types of callus 

Zygotic embryos are capable of callus induction in many monocots, including 

Alstroemeria (Gonzalez-Benito and Alderson 1990; Hutchinson et al. 1994; Van Schaik et al. 

1996). In only a few monocotyledonous species, full grown plant organs could be used to 

initiate somatic embryos. For example, in sorghum, roots and epicotyl segments have been used 

(Gendy et al. 1996), in asparagus spear sections (Benmoussa et al. 1996), in taro axillary buds 

(Yam et al. 1990), in gladiolus corms (Kamo et al. 1990) and in wheat inflorescences (Redway 

et al. 1990). We report here for the first time the induction of callus from the stem segments of 
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two tetraploid Alstroemeria genotypes, and subsequently, the somatic embryo formation out of 

this callus. 

In general, callus studied in monocots has either a friable or a compact morphotype. In 

several monocots, the composition of plant growth regulators in the culture medium directed 

the formation of the callus morphotype. In sorghum, medium supplemented with only 2,4-D 

induced friable callus formation, whereas 2,4-D together with dicamba induced compact callus 

formation (Gendy et al. 1996). In asparagus, pCPA together with BAP induced friable callus, 

and 2,4-D together with kinetin induced compact callus formation (Benmoussa et al. 1996). In 

taro, NAA together with BA induced friable and 2,4,5-T alone induced compact callus 

formation (Yam et al. 1990). In gladiolus, NAA induced compact and 2,4-D induced friable 

callus formation (Kamo et al. 1990). In Alstroemeria, NAA together with kinetin and 2,4-D 

together with BAP induced compact callus formation from mature (Hutchinson et al. 1997) and 

immature zygotic embryos (Van Schaik et al. 1996), respectively. All these studies revealed that 

auxin was crucial for callus induction, and the addition of cytokinin was either enhancing the 

response or changing the direction of the response. Our results showed that 2,4-D together with 

BAP were necessary for the induction of callus from stem segments, and the formation of 

compact callus, subsequently, was accomplished on a medium supplemented with only BAP. 

This compact callus could be maintained for more than 1.5 years on BAP-containing medium 

without loosing their regeneration capability. 

Subculturing the compact callus on medium supplemented with BAP, whether in 

combination with 2,4-D or not, induced granular callus formation (Table 3). The granular callus 

was able to regenerate into compact callus or into somatic embryos. On the other hand, 

subculture of the compact callus on picloram-containing media resulted in the formation of 

friable callus (Table 2). The induction and description of this friable type of callus have never 

been reported in Alstroemeria before. 

The process of somatic embryogenesis and the plantlet regeneration 

The process of somatic embryogenesis and regeneration in Alstroemeria can be summarized as 

shown in Fig. 8. 
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Fig. 8. Schematic representation of somatic embryogenesis in Alstroemeria. The arrow indicates the 
regeneration direction and the number represents the regeneration pathway. 

Friable callus can be induced either from compact callus (pathway 1), or from granular 

callus (pathway 2). Proliferation and maintenance of the friable callus were achieved by using 

PCA medium supplemented with 10 mg/1 picloram. 

Granular callus is an organized tissue, which was either regenerated from friable callus 

(pathway 2) or from compact callus (pathway 5). Granular callus can have two different 

developmental pathways, either becoming an embryo (pathway 3) or becoming a compact 

callus (pathway 5). It was estimated that, on the commonly used regeneration medium (BA0.5), 

more than 90% of the granular callus became compact (pathway 5), and less than 10% 

developed into somatic embryos and plantlets (pathway 3 and 4). 

The normal embryogenesis process is following the pathway 2-3-4, from friable callus 

via granular callus to somatic embryos. The formation of non-regenerable callus from cotyledon 

or from root primordia of the somatic embryos was named as pathway 6. The time needed from 

friable to granular callus was approximately 1 month; from granular callus to embryos was 

approximately 1 month; from embryo to a complete plant with shoots, roots, and rhizomes was 

approximately 4 months. So, the total time needed from friable callus to the formation of a 

complete plant was approximately 6 months. 
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The somatic embryogenesis process in Alstroemeria, from friable callus to embryo, 

was similar to that of other monocots such as Augustinegrass (Kuo et al. 1993), leek (Buiteveld 

et al. 1994), maize (Fransz and Schel 1991), and sorghum (Gendy et al. 1996). 

In previous reports on Alstroemeria, suspension callus with higher friability was 

difficult to get and was only achieved by pre-culturing the compact callus on a high NAA 

concentration medium for two days (Hutchinson et al. 1997). In this report, we have shown that 

the compact calli were able to produce friable callus, with a high frequency, on the semi-solid 

picloram-containing media. 

We have shown the induction, proliferation, and regeneration of friable callus in 

Alstroemeria. The friable callus can be maintained and proliferated on a single medium over a 

long period without loosing its embryogenesis ability. The granular callus can be produced 

efficiently from friable callus, and vice versa. The cyclic system of somatic embryogenesis 

shown in Fig. 8 provides two types of embryogénie callus, friable and granular, both can be 

applied in genetic modification studies. 

Acknowledgements 

The Alstroemeria stock plants, BT207 and VV024, were kindly supplied by Wülfinghoff 

Freesia BV (The Netherlands), and Van Staaveren BV (The Netherlands), respectively. This 

research was financed by the National Science Council, Taiwan, R.O.C. 

References 

Benmoussa, M., S. Mukhopadhyay, and Y. Desjardins. 1996. Optimization of callus culture and 

shoot multiplication of Asparagus densiflorus. Plant Cell Tissue Organ Cult. 47: 91-94. 

Bregitzer, P., W.R. Bushneil, H.W. Rines, and D.A. Somers. 1991. Callus formation and plant 

regeneration from somatic embryos of oat {Avena saliva L.). Plant Cell Rep. 10: 243-246. 



Chapter 5 65 

Buiteveld, J., P.F. Fransz, and J. Creemers-Molenaar. 1994. Induction and characterization of 

embryogénie callus types for the initiation of suspension cultures of leek (Allium 

ampeloprasum L.). Plant Sei. 100:195-202. 

Fransz, P.F. and J.H.N. Schel. 1991. Cytodifferentiation during the development of friable 

embryogénie callus of maize (Zea mays). Can. J. Bot. 69:26-33. 

Gendy, C, M. Sene, B.V. Le, J. Vidal, and K.T.T. Van. 1996. Somatic embryogenesis and 

plant regeneration in Sorghum bicolor (L.) Moench. Plant Cell Rep. 15:900-904. 

Gonzalez-Benito, E. and P.G. Alderson. 1990. Regeneration from Alstroemeria callus. Acta 

Hort. 280:135-138. 

Hutchinson, M.J., J.M. Tsujita, and P.K. Saxena. 1994. Callus induction and plant regeneration 

from mature zygotic embryos of a tetraploid Alstroemeria (A. pelegrina x A. psittacina). 

Plant Cell Rep. 14:184-187. 

Hutchinson, M.J., T. Senaratna, J.M. Tsujita, and P.K. Saxena. 1997. Somatic embryogenesis in 

liquid cultures of a tetraploid Alstroemeria. Plant Cell Tissue Organ Cult. 47:293-297. 

Jullien, F., K.T.T. Van. 1994. Micropropagation and embryoid formation from young leaves of 

Bambusa glaucescens 'Golden goddess'. Plant Sei. 98:199-207. 

Kamo, K., J. Chen, and R. Lawson. 1990. The establishment of cell suspension cultures of 

Gladiolus that regenerate plants. In Vitro Cellular & Developmental Biology 26:425-430. 

Kamo, K., A. Blowers, F. Smith, J. Van Eck, and R. Lawson. 1995. Stable transformation of 

Gladiolus using suspension cells and callus. J. Amer. Soc. Hort. Sei. 120:347-352. 

Ke, S. and C.W. Lee. 1996. Plant regeneration in Kentucky bluegrass (Poa pratensis L.) via 

coleoptile tissue cultures. Plant Cell Rep. 15:882-887. 

Kuo, Y.J. and M.A.L. Smith. 1993. Plant regeneration from St. Augustinegrass immature 

embryo-derived callus. Crop Sei. 33:1394-1396. 

Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with 

tobacco tissue culture. Physiol. Plant. 15:473-497. 

Oinam, G.S. and S.L. Kothari. 1995. Totipotency of coleoptile tissue in indica rice (Oryza 

sativa L. cv. CH 1039). Plant Cell Rep. 14:245-248. 

Raemakers, C.J.J.M., E. Sofiari, E. Jacobsen, and R.G.F. Visser. 1997. Regeneration and 

transformation of cassava. Euphytica 96:153-161. 



66 Development of a callus regeneration system applicable for genetic transformation 

Redway, F.A., V. Vasil, D. Lu, and I.K. Vasil. 1990. Identification of callus types for long-term 

maintenance and regeneration from commercial cultivars of wheat {Triticum aestivum L.). 

Theor. Appl. Genet. 79:609-617. 

Register III, J.C., D.J. Peterson, P.J. Bell, W.P. Bullock, I.J. Evans, B. Frame, A.J. Greenland, 

N.S. Higgs, I. Jepson, S. Jiao, C.J. Lewnau, J.M. Sillick, and H.M. Wilson. 1994. Structure 

and function of selectable and non-selectable transgenes in maize after introduction by 

particle bombardment. Plant Mol. Biol. 25:951-961. 

Remotti, P.C. and H.J.M. Löffler. 1995. Callus induction and plant regeneration from gladiolus. 

Plant Cell Tissue Organ Cult. 42:171-178. 

Smith, R.H. and E.E. Hood. 1995. Agrobacterium tumefaciens transformation of 

monocotyledons. Crop Sei. 35:301-309. 

Sofiari, E., C.J.J.M. Raemakers, J.E.M. Bergervoet, E.Jacobsen, and R.G.F. Visser. 1998. Plant 

regeneration from protoplasts isolated from friable embryogénie callus of cassava. Plant 

Cell Rep. (in press) 

Taylor, N.J., M. Edwards, R.J. Kiernan, C.D.M. Davey, and D. Blakesley, and G.G. Henshaw. 

1996. Development of friable embryogénie callus and embryogénie suspension culture 

systems in cassava (Manihot esculenta Crantz). Nature Biotechnology 14:726-730. 

Teixeira, J.B., M.R. Sondahl, and E.G. Kirby. 1993. Somatic embryogenesis from immature 

zygotic embryos of oil palm. Plant Cell Tissue Organ Cult. 34:227-233. 

Welter, M.E., D.S. Clayton, M.A. Miller, and J.F. Petolino. 1995. Morphotypes of friable 

embryogénie maize callus. Plant Cell Rep. 14:725-729. 

Van Schaik, CE., A. Posthuma, M.J. De Jeu, and E. Jacobsen. 1996. Plant regeneration through 

somatic embryogenesis from callus induced on immature embryos of Alstroemeria spp. L. 

Plant Cell Rep. 15:377-380. 

Yam, T.W., J.L.P. Young, K.P.L FAN, and J. Arditti. 1990. Induction of callus from axillary 

buds of taro (Colocasia esculenta var. esculenta, Araceae) and subsequent plantlet 

regeneration. Plant Cell Rep. 9:459-462. 



Chapter 5 67 

Fig. 1-7. Callus morphotypic differentiation and somatic embryogenesis in the tetraploid 

Alstroemeria genotype VV024C: 1) compact callus; 2) friable callus; 3) granular callus (arrows) 

formed on the surface of a compact callus; 4) somatic embryos; 5) plantlet regenerated from 

somatic embryo; 6) non-regenerable callus formed from the cotyledonous tissue of a somatic 

embryo; 7) secondary somatic embryos formed on the surface of a primary somatic embryo, 

arrow indicates the cotyledons. (bar= 0.5 mm for Fig. 2, 3, 6,7, 2.0 mm for Fig. 1, 4, and 10.0 

mm for Fig. 5. Cm compact callus, Co cotyledon, Em embryo, Nc non-regenerable callus, R 

root, S shoot) 



A • "*% 



Chapter 6 

Genetic transformation of Alstroemeria using particle 

bombardment 

Hsueh-Shih Lin 

Caroline van der Toorn 

Krit J.J.M. Raemakers 

Richard G.F. Visser 

Marjo J. De Jeu 

Evert Jacobsen 



70 Genetic transformation using particle bombardment 

Abstract 

Transgenic plants were obtained after particle bombardment of embryogénie callus derived 

from stem segments of two tetraploid Alstroemeria genotypes. Two plasmids containing 

different selection and reporter genes were used. Firstly, a plasmid containing a firefly luciferase 

reporter gene driven by the maize ubiquitin promoter {Ubil), was bombarded into both granular 

and friable calli. Transient and stable expression of luciferase were detected by the luminometer 

after spraying the samples with luciferin solution. Visual selection assisted by the luminometer 

was effective. This selection is a nondestructive method, and the luciferase activity can be 

assayed over the whole developmental process after bombardment from callus to embryo and 

plantlet. Two callus morphotypes, granular and friable, tested in the experiments revealed that 

granular type was better than friable type for the particle bombardment mediated transformation 

when using luciferase as a selection marker. The second plasmid containing a selectable bar 

gene coding for phosphinotricin acetyltransferase (PAT) together with an uidh reporter gene 

coding for ß-glucuronidase (GUS). Both genes driven by the Ubil promoter, were bombarded 

into granular callus. The transgenic calli were effectively selected from the callus clumps four 

months after bombardment on a medium containing 5 mg/L phosphinotricin (PPT). Selection 

by PPT was efficient and labor-saving. Stable expression of GUS was confirmed by the 

histochemical staining assay. 

Key words: Alstroemeria, bar, GUS, PAT, luciferase, regeneration, transformation, ubiquitin 

promoter 

Introduction 

Alstroemeria is an important monocotyledonous ornamental in The Netherlands. The traditional 

breeding objectives were mainly focused on improving horticultural important characteristics in 

commercial cultivars. Interspecific crossing barriers were overcome by the use of embryo 

rescue techniques (Buitendijk et al. 1995; De Jeu and Jacobsen 1995); this allowing the 

introduction of useful genes from wild species. However, for some traits, for example virus 
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resistance (Bouwen and Van Der Vlugt 1996) and delayed post-harvest leaf-yellowing (Van 

Doorn and Woltering 1991), the necessary genes are not detected in the Alstroemeria gene pool 

yet. In this case, gene transformation mediated by Agrobacterium or particle delivery system is 

considered to be more promising, because target genes from other unrelated species can be used 

(Christou 1995; Jahne et al. 1995; Smith and Hood 1995; Wilmink et al. 1992). 

Although some monocotyledonous plants have been transformed by Agrobacterium 

tumefaciens, the efficiency was very low and many parameters have to be improved before it 

becomes a routinely used technology in monocots (for review see Smith and Hood 1995). 

Particle bombardment, on the other hand, has been used in many more monocotyledonous 

species and in some of them it is now a routine technology (for review see Christou 1995; Jahne 

et al. 1995). In cereal crops, it was found that the choice of appropriate target tissue was of 

major importance (Jahne et al. 1995). Therefore, a system that provides appropriate target cells 

with competence for both transformation and regeneration is a prerequiste for the development 

of a transformation procedure (Christou 1995). Recently, a callus culture system in 

Alstroemeria was developed, producing regenerable granular and friable calli with high 

efficiency, that was considered to be applicable for genetic transformation (Lin et al, Chapter 

5). 

We report here the recovery of transgenic plants, in two tetraploid genotypes of 

Alstroemeria, after particle bombardment of granular and friable callus, using either the firefly 

luciferase reporter gene or the herbicide (phosphinotricin) resistance gene as a selection marker. 

Material and methods 

Plant material 

Friable and granular calli from two tetraploid genotypes, VV024C and BT207C, were used in 

the following experiments. The production of friable and granular callus was described earlier 

(Chapter 5). Friable callus is a tiny, round shaped, aggregate, yellowish callus, of which 

individual units are smaller than 0.1 mm in diameter. Granular callus is a round shaped and 

more organized callus, in which one unit has a diameter of approximately 1.0 mm. 
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The friable calli were proliferated and maintained on a PCA medium (Sofiari et al. 

1998) supplemented with 10 mg/1 picloram (PCA10P, Chapter 5) by a three-week subculture 

interval. In order to induce granular callus, the friable calli were precultured on a regeneration 

medium, BA0.5, for eight weeks. The BA0.5 medium contained Murashige and Skoog (1962) 

salts and vitamines, 30 g/1 sucrose, 3 g/l gelrite, and 0.5 mg/1 6-benzylaminopurine (BAP), 

pH5.8. Afterwards, the granular calli were collected and used for particle bombardment 

experiments. All the cultures were incubated in the 9 cm Petri dishes, and the Petri dishes were 

placed in a culture room at 18 °C and 12 h light. 

Plasmid constructs 

Two plasmids pAHC18 and pAHC25 (Christensen and Quail 1996), kindly provided by P. H. 

Quail, were used in the experiments. The plasmid pAHC18 contains the luciferase (lue) reporter 

gene (Ow et al. 1986). The plasmid pAHC25 contains the uidA reporter gene encoding ß-

glucuronidase (GUS) and the selectable bar gene encoding phosphinotricin acetyl transferase 

(PAT). The lue, uidA and bar genes are all driven by the maize ubiquitin (Ubil) promoter 

(Christensen et al. 1992, Christensen and Quail 1996). 

DNA precipitation and particle bombardment protocol 

Plasmid DNA was isolated and purified by using the Promega Wizard™ Megaprep DNA 

purification system. The final DNA concentration was 2 ug/ml in sterilized water. DNA-coating 

was performed by using the following procedures: 20 io.g of plasmid DNA was mixed with 10 

mg of gold particles (size 1.0 um) and, subsequently, 30 ul 5M NaCl, 5 ul 2 M Tris HCl pH 

8.0, 965 ni H20, 100 ul 0.1 M spermidine, 100 ni 25% PEG 1550, and 100 u.1 2.5 M CaCl2 

were added. After a brief sonication (5 sec, 50 cycle/sec) and centrifugation (2 sec, 13,000 

RPM), the pellet was resuspended in 10 ml 100% ethanol. For each bombardment, 160 ul of the 

suspended DNA-coated gold particles were pipetted and spreaded on the surface of a 

macrocarrier (diameter 2.5 cm, BioRad). 

In order to obtain an utmost effect of bombardment, both friable and granular calli were 

treated in the following procedure: One week before bombardment, the most vigorously 



Chapter 6 73 

growing calli were selected from culture medium and then transferred to a 9 cm Petri dish with 

fresh medium. Each Petri dish (plate) contained approximately 1.0 g of calli. One day before 

bombardment, all the calli were moved to the Petri dish center in a circular area of 2.5 cm in 

diameter. One day after bombardment, the calli were separated and spreaded again on the whole 

Petri dish for further growth. 

The calli were bombarded with a PDS-1000/He Biolistic Particle Delivery System 

(BioRad, California, USA). The optimal parameters for particle bombardment, determined by 

pilot studies, were: 900 PSI (for granular callus) or 1100 PSI (for friable callus) gas pressure, 25 

inch Hg partial vacuum, and the plant material were placed 5.5 cm below the stopping 

assembly. 

Luciferase gene activity assays for pAHC'18 transformation 

Granular and friable calli from two different genotypes BT207C and VV024C were used in this 

experiment. Five Petri dishes of each were bombarded. The PCA10P medium was used for 

friable callus, and the BA0.5 medium was used for granular callus. The luciferase gene 

expression was assayed 1, 14, 28, and 42 days after bombardment of the granular callus, and 2, 

9, 16, and 45 days after bombardment of the friable callus. 

For assaying, the plant material was sprayed with 0.15 mg/1 of luciferin aqueous 

solution, placed in a dark room and then measured by the luminometer immediately. The 

luminometer consists of an intensified CCD camera from Hamamatsu (Japan), with a Nikon 35 

mm lens, connected to a personal computer. There are two kinds of data recorded 

simultaneously by this system. Qualitatively, the live plant material image and the luminescent 

image were taken separately by the camera and were saved as digital image files by a computer 

program (Argus50, Hamamatsu, Japan). Superimposition of the live image with the 

luminescent image revealed the responding calli with luciferase activity. Quantitatively, the 

amount of photons emitted by the plant material was detected, calculated, and recorded 

automatically by the system. After each measurement all the calli were transferred to fresh 

media for further growth. 

GUS histochemical assays for pAHC25 transformation 
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GUS activity was assayed by incubating the samples in a 5-bromo-4-chloro-3-indoyl-D-

glucuronic acid (X-Gluc) solution for 24 hr at 37°C as described by McCabe et al. (1988). 

Samples for GUS-assay were taken from one day after bombardment up till the regenerated 

plantlets. 

Selection criteria and the regeneration of transgenic plants by using luciferase activity as a 

selection marker 

Granular and friable calli from two genotypes BT207C and VV024C were used in these 

experiments. Five Petri dishes with granular callus, and 30 Petri dishes with friable callus, were 

transferred to fresh BA0.5 medium before bombardment. After bombardment, the calli were 

subcultured on BA0.5 medium continuously. 

Ten days after bombardment the calli were assayed for luciferase activity and the 

selection procedure was started. Each luciferase positive callus clump was selected and 

transferred to fresh BA0.5 medium for further culture. This selection procedure was repeated on 

10, 24, 58, and 72 days after bombardment. The number of positive responding callus clumps 

was recorded in each selection. The selection ratio (%) was determined by dividing the number 

of luciferase positive callus clumps with the total number of cultured clumps. Luciferase 

positive callus clumps, isolated 72 days after bombardment, were subcultured as individual 

lines. All luciferase positive callus lines were subcultured on BA0.5 medium bi-weekly in order 

to regenerate plants (as described in Chapter 5). 

Selection criteria and the regeneration of transgenic plants by using PPT resistance as a 

selection marker 

Granular calli of VV024C were incubated on BA0.5 medium supplemented with 0-5 mg/1 

phosphinotricin (PPT) to determine the optimal concentration of PPT for callus selection. Ten 

callus clumps per Petri dish and three Petri dishes per treatment were prepared. After four weeks 

of culture, the number of surviving callus clumps was recorded. 
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To do transformation, 10 Petri dishes with granular callus from BT207C and VV024C 

were refreshed onto BA0.5 medium and then bombarded with pAHC25. After bombardment, 

four dishes with BT207C and three dishes with VV024C callus were assayed to detect the GUS 

activity. Two weeks after bombardment the remaining calli were transferred to the selection 

medium for further culture. Afterwards, the cultures were constantly cultured on the selection 

medium for four months by a one-month subculture interval. In each subculture, the vigorously 

growing, white colored friable callus clumps were selected from the brown, black, and dying 

callus clumps with a surgical blade, and then transferred to fresh selection medium. Each callus 

clump was cultured individually. This selection procedure was repeated every month until all of 

the non-resistant calli died. Thereafter, each surviving callus clump was subcultured as an 

individual line. 

Results 

I. Transformation based on luciferase selection 

Transient expression of luciferase in friable and granular callus 

One or two days after bombardment, transient expression of the luciferase gene in bombarded 

calli was detected with the luminometer. The color range from blue, green, yellow, to red 

reflects the different levels of luciferase activity in the responding calli (Figure 1-A,1-B). 

Quantitative analysis showed that, both granular and friable calli of genotype VV024C, emitted 

a higher number of photons than the responding calli of BT207C. Independent of the genotype, 

the friable callus has a higher luciferase activity than the granular callus one or two days after 

bombardment (Figure 2). 

Regardless of the genotype or the callus type, the amount of emitted photons declined 

drastically in about two weeks and then gradually decreased to the lowest level in about six 

weeks after bombardment. After 42 days, the luciferase activity in granular callus has reduced in 

VV024C and BT207C, respectively, to 21.7% and 28.9% of the level measured on one day after 

bombardment. On the other hand, 45 days after bombardment, the luciferase activity in friable 
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callus has reduced in VV024C and BT207C, respectively, to 0.7% and 8% of the level 

measured on two days after bombardment (Figure 2). 

Selection and regeneration of transgenic plant expressing luciferase from bombarded granular 

callus 

Five Petri dishes containing granular calli of both B A207C and VV024C genotypes were used 

for the selection of transformants. After bombardment, the granular calli were placed on the 

BA0.5 medium without refreshing for 10 days. During this recovering period, some brown 

spots were observed on the surface of the granular calli, and a brownish exudate appeared 

simultaneously. This exudate seemed to be toxic for the neighboring calli. Afterwards, the 

cultures were transferred to fresh BA0.5 medium bi-weekly. 

Ten days after bombardment, 26.4% and 34.6% of the initially bombarded granular 

callus clumps, for genotype BT207C and VV024C respectively, were luciferase positive. These 

positive callus clumps were selected and subcultured on fresh media again. The second and 

third selection were conducted 24 and 58 days after bombardment. The percentage of luciferase 

positive clumps in these three selections was less than 33%. After 72 days of bombardment, the 

percentage was increased to 50% and 45% in BT207C and VV024C, respectively (Figure 3). 

Thereafter, each luciferase positive callus clump was subcultured on Petri dish as individual 

callus line. There were eight and 20 callus lines selected from BT207C and VV024C, 

respectively, and the subsequent measurement showed that all these callus clumps were 

luciferase positive (Table 1). On average 1.6 and 4.0 transgenic lines per bombarded Petri dish 

were obtained in BT207 and VV024C, respectively (Table 1). These individual calli were 

multiplicated on BA0.5 medium for 5 months, and the luciferase activity was stable expressed 

(Figure 1-C). 

Granular calli, cultured on BA0.5 medium, differentiated into either somatic embryos 

or compact callus, or produced friable calli on their surface. Subsequently, the friable callus 

developed into granular callus and vice versa. 

Eight months after bombardment, the calli differentiated into pro-embryos and 100% of 

them were luciferase positive (Figure 1-D). Somatic embryos with a bipolar structure were 

formed one month later, which were also completely luciferase positive (Figure 1-E,1-F). 
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Eleven months after bombardment, the first completely transgenic plantlet with shoot, root, and 

rhizome was formed from genotype VV024C (Figure 1-G, 1-H). In addition, completely 

transgenic plantlets were also formed from genotype BT207C (Figure 1-1,1-J). 

In total, there are two transgenic lines from BT207C and 10 from VV024C yielded 

transgenic plants (Table 1). One year after bombardment, each transgenic line produced 5 to 20 

complete plantlets, and there were more than 100 transgenic plantlets of VV024C obtained. On 

the other hand, only two transgenic lines of BT207C yielded plants in the same period. 

Table 1. Number of luciferase positive callus lines and their derivative plantlets after particle 
bombardment of granular callus with pAHCl 8 in the two genotypes BT207C and VV024C. 

Callus Number of Number of luciferase Number of luciferase 
li: 
2 

genotype bombarded Petri positive callus lines positive lines yielding 
dishes plantlets ' 

BT207C 5 8 2 

VV024C 5 20 10 

After 72 days of bombardment, luciferase expression was stable. 
After 11 months of bombardment, plantlets with roots, shoots, and rhizomes. 

Selection and regeneration of transgenic plant expressing luciferase from bombarded friable 

callus 

The selection of luciferase positive callus in friable callus was similar to that of granular callus. 

Two weeks after bombardment, individual callus units with luciferase activity were selected 

from the initial bombarded material, and then transferred to fresh media. This selection 

procedure was repeated every two week. Nine weeks after bombardment, luciferase expression 

stayed stable in all selected callus clumps. Thereafter, each positive callus clump was cultured 

individually as a trangenic callus line. In total, there were two and nine transgenic callus lines 

from BT207C and VV024C, respectively, were obtained (Table 2). On average 0.06 and 0.3 

transgenic lines per bombarded Petri dish were obtained in the genotye BT207C and VV024C, 

respectively. 
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The friable calli cultured on BA0.5 medium, gradually turned into a granular type, and 

subsequently, into somatic embryos. Four to six months after bombardment, solid somatic 

embryos with luciferase activity were formed. Complete transgenic plants were obtained after 

two to four more months later. In total, there was one transgenic line from BT207C and five 

from VV024C yielded plantlets (Table 2). 

Table 2. Summary of luciferase gene transformation by particle bombardment of friable callus 
in two genotypes. 

Callus Number of Number of luciferase 
genotype bombarded Petri positive callus lines ' 

dishes 

Number of luciferase 
positive lines yielding 
plantlets 

BT207C 

VV024C 

30 

30 

1 

After 9 weeks of bombardment, luciferase expression was stable. 
After 8 months of bombardment, plantlets with shoots. 

II. Transformation based on PPT selection 

Optimal selective concentration of PPT 

After four weeks of culture, all the tested granular calli survived on the control medium 

(without PPT), whereas, only 23.3% of the calli survived on the medium supplemented with 1 

mg/1 PPT. All of the calli was dead when cultured on the 5 mg/1 PPT medium (Table 3). 

Therefore, BA0.5 medium supplemented with 5 mg/1 PPT was used in the future experiments. 

Dying calli on a PPT-containing medium showed a deep brown or black color (Figure 4-A). 

Table 3. Lethal dosage test of phosphinotricin (PPT) in culture medium for VV024C granular 
callus. 

Concentration of PPT 
(mg/1) 

Percentage of survived 
callus clumps (%) 

Appearance of the 
callus 

100.0 

23.3 

0.0 

yellow, vigorous 

brown, stunted 

deep brown, dying 
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PPT selection and the regeneration of transformant with bar anduidA gene 

One day after bombardment, 30% of the assayed granular calli contained blue spots (Figure 4-

B). The number of spots per granular callus unit varied from 1 to 5. 

After subculture on selection medium (BA0.5 supplemented with 5 mg/1 PPT), the 

callus growth stopped and the callus color gradually changed to brown. The callus browning 

symptom caused by PPT looked different from that caused by the phenolic compounds, and the 

dying calli did not produce browning exudate. Two months after bombardment, almost all calli 

turned brown, black and were dying, however, some small white friable type of callus clumps 

were observed on the dying callus clumps (Figure 4-C). A GUS assay revealed that these white 

friable calli, which survived on the PPT-containing medium, were blue colored (Figure 4-D). 

From then on, each white friable callus clump was subcultured individually as a single callus 

line on the selection medium. 

Three months after bombardment, 82 and 186 callus lines from BT207C and VV0224C, 

respectively, were selected. Those callus lines were subcultured on selection medium again. 

One month later, only 17 and 20 vigorously growing callus lines from BT207C and VV024C, 

respectively, were obtained (Table 4). All those callus lines differentiated into the proembryo 

stage, and the first embryo with a bipolar structure was formed (Figure 4-E). GUS assays 

revealed that the proembryogenic calli and the root tip of the first found embryo, were blue 

colored (Figure 4-F,G). Subsequently, all those lines grew on the selection medium vigorously. 

Later on, histochemical examination showed that GUS activity was only detected in 11 lines of 

BT207C and in 7 lines of VV024C (Table 4). 

Seven months after bombardment, seven lines gave rise to plantlets in genotype 

VV024C (Table 4). Histochemical staining revealed that the plantlets were completely 

transgenic, with blue color in the whole plant tissues (Figure 4-H,I,J). On the other hand, only 

two transgenic lines in BT207C yielded plantlets 12 months after bombardment (Table 4). 
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Table 4. Summary of PAT and GUS genes transformation by particle bombardment. 

Callus 
genotype 

Number of 
bombarded 
Petri dishes 

Total number 
of selected 
callus lines 
(PAT+) ' 

Number of 
callus lines 
with blue 
staining 
(GUS+) ' 

Number of 
transgenic lines 
yielding plants 

(with both PAT+ and 
GUS+) 

BT207C 

VV024C 

17 

20 

11 

Four months after bombardment, the callus was selected by medium supplemented with 5 
mg/1 phosphinotricin. 

2 Seven months and 12 months after bombardment for VV024C and BT207C, respectively. 

Discussion 

Most monocotyledonous plants are recalcitrant to Agrobacterium mediated transformation (for 

review see Jahne et al. 1995; Smith and Hood 1995). In recent years, many monocotyledonous 

species have been transformed by particle bombardment (Cao et al. 1992; Cabrera-Ponce et al. 

1997; Christou 1997; Denchev et al. 1997; Jahne et al. 1994; Kamo et al. 1995; Kuehnle and 

Sugii 1992; Somers et al. 1992; Torbert et al. 1998; Vain et al. 1993; Vasil 1992; Watad et al. 

1998; Wilmink et al. 1992; Xiao and Ha 1997). This paper shows that gene transformation 

mediated by particle bombardment is also applicable for Alstroemeria, a previously recalcitrant 

monocotyledonous species. 

The most important aspect in transformation is the choice of a suitable initial expiant. 

Primary expiants, such as scutellar tissue of zygotic embryos, immature inflorescences, and 

microspores, have many advantages in cereal crops (Jahne et al. 1995). The main reason is that 

those tissues have a high regeneration capacity. Unfortunately, in most of the monocots, these 

kinds of tissues do not have the capacity to regenerate. Leaves, with regeneration ability, are 

also used as initial material for transformation. However, it often results in chimeric 

transformants (Denchev et al. 1997). Also in Alstroemeria the leaf expiants have been 

bombarded, but this only resulted in transient expression without further plant regeneration (Lin 

et al. unpublished results). Therefore, embryogénie calli or suspension cells are frequently used 

as target expiants for genetic modification in monocots. The embryogénie calli generally used in 
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bombardment experiments were initially induced from seeds (Cabrera-Ponce et al. 1997; Xiao 

and Ha 1997), immature embryos (Torbert et al. 1998), or mature plant tissues of existing 

cultivars (Kamo et al. 1995; Watad et al. 1998). In this report, transgenic plantlets were obtained 

by particle bombardment using granular or friable callus as target material. The plant 

regeneration process went through the somatic embryogenesis pathway, and the régénérants 

were all complete transgenic. From both genotypes, BT207C and VV024C, the embryogénie 

calli were initially induced from stem segments (Lin et al. Chapter S), which suggests the 

potential application of genetic transformation in existing cultivars. 

Although, at the beginning, the transient luciferase activity of friable callus was much 

higher than that of granular callus, at the end the number of transgenic lines recovered (per Petri 

dish) from friable callus, was less than that of granular callus. This is probably due to the nature 

of the callus. Friable callus consists of relatively small units and, therefore, the tolerance to high 

pressure bombardment and the recovery of injured cells might be poor. This might also be an 

explanation for the observations that the luciferase activity dropped so quickly within two 

weeks after bombardment. Plant tissue injury caused by particle bombardment has also 

described in other plant species like maize (Kemper et al. 1996; Vain et al. 1993). 

The firefly luciferase gene appeared to be a powerful reporter gene in Agrobacterium 

mediated transformation of carrot and tobacco (Ow et al. 1986), and also in particle 

bombardment mediated transformation of cassava (Raemakers et al. 1997) and of Dendrobium 

(Chia et al. 1994). We report here, for the first time, the recovery of complete transgenic plants 

in Alstroemeria by particle bombardment using the luciferase activity for selection. The most 

important advantage of luciferase selection is the nondestructive nature of the assay (Ow et al. 

1986). This approach was also demonstrated to be useful in Alstroemeria. The luciferase 

activity can be checked periodically through the whole developmental process, from callus to 

embryos into plantlets, without damaging the cultures. 

An efficient selection system is very important for monocots transformation (Wilmink 

and Dons 1993). Luciferase selection has many advantages. However, the method is labor 

intensive and the equipments used are expensive. Furthermore, it was shown that the selection 

efficiency was not high enough in the beginning (Figure 3). 

Selection systems based on kanamycin resistance are not generally applicable for 

monocots (Wilmink and Dons 1993) and therefore, the herbicide PPT was chosen in our 
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experiments. The plasmid pAHC25 contains the selectable bar gene encoding the 

phosphinotricin acetyl transferase (PAT), which can inactivate the herbicide PPT (Thompson et 

al. 1987). Taylor et al. (1993) reported transient expression of pAHC25 in six Poaceae species 

early after this plasmid construct was made. Recently, orchardgrass and barley were 

transformed with pAHC25 (Denchev et al. 1997; Koprek et al. 1996). In all those cases the 

herbicide bialaphos, a tripeptide form of PPT, was used as a selection agent. Our results also 

showed that the Alstroemeria can be transformed with pAHC25, and that the PPT was an 

efficient selection agent. The non-resistant calli could survive on selection medium for a few 

weeks, and thereafter they turned gradually brown and black. This reflects the nature of PPT 

selection. PPT inhibits the glutamine synthesis pathway causing the accumulation of ammonia 

in the cells, resulting in cell death (Tachibana et al. 1986a,b). 

In our experiments, the PPT selection proved to be efficient and labor-saving compared 

to the luciferase selection. The non-resistant calli were killed by PPT and did not produce toxic 

fluid influencing the development of the resistant calli. Therefore, the cultures could be 

maintained on the selection medium for a long time without the need for subculturing. 

Afterwards the selection became easy because the resistant calli were white colored and the 

non-resistant ones were brown/black. 

The confirmation of successful transformants with the PAT gene was difficult. 

However, the plasmid pAHC25 contained another reporter gene GUS, and the confirmation of 

this gene was easier. The disadvantage of this method is that PPT is an invasive agent, and that 

the GUS-assay represents a destructive nature. 

Some transgenic lines were resistant to PPT, but were not have GUS activity. This is 

probable due to gene silencing (Assaad et al. 1993; Hobbs et al. 1993; Watad et al. 1998). This 

has to be investigated in the near future. 

The two plasmid constructs used in this study contained either luciferase or PAT 

together with GUS gene, and all these genes were driven by the maize ubiquitin promotor 

([/è«7)(Christensen and Quail 1996). Ubil promoter was found to be more effective than other 

promoters in transformations of some monocots such as in Poaceae plants (Taylor et al. 1993), 

in maize (Christensen et al. 1992), in oil palm (Chowdhury et al. 1997), in orchard grass 

(Denchev et al. 1997), and in rice (Li. et al. 1997). Also in Alstroemeria, the Ubil promoter was 

shown to be more effective than the other promoters (Van Schaik 1998). In our results the 
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activity of luciferase and GUS genes could be examined in all tested transgenic plant organs, 

such as roots, rhizomes, shoots, and leaves. This shows the usefulness of Ubil as a promoter in 

Alstroemeria transformation. 
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Figure 1. Luciferase activity in Alstroemeria callus, the derived embryos, and plantlets after 

particle bombardment with pAHC18 and selection: A) transient expression in granular callus 1 

day after bombardment; B) transient expression in friable callus 2 days after bombardment; C) 

stable expression in selected callus clumps 5 months after bombardment; D) luminescent image 

of 100% transgenic pro-embryos, 8 months after bombardment (bar= 10 mm for A-D); E) live 

image, F) luminescent image of a transgenic somatic embryo, 9 months after bombardment 

(embryo length= 8.5 mm); G,I) live image, H,J) luminescent image of a transgenic plantlet, 11 

months after bombardment (bar= 5 mm for G-J, A to H genotype VV024C, I and J genotype 

BT207C) 
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Figure 2. Transient expression of the introduced luciferase gene in two callus 
morphotypes of the Alstroemeria genotypes BT207C and W024C after 
bombardment with pAHC18: A) granular callus; B) friable callus. The cultures 
were sprayed with luciferin solution then assayed by light emmision with the 
luminometer. The data were calculated on an average of 5 plates of each 
genotype and morphotype. 



90 Genetic transformation using particle bombardment 

^^, 
0 s 

O 
* — » 
CO 
1— 

c 
o 
o 
CD 
0) 

w 

70 

60 

50 

40 

30 

20 

Callus genotype 
• BT207C 
• W024C 

Days after bombardment 

Figure 3. Selection of luciferase positive responding callus units from the 

VV024C granular callus clumps after bombardment with pAHC18. 

Figure 4. Callus regeneration after bombardment with pAHC25. Two weeks after 

bombardment, the bombarded calli were cultured on phosphinotricin (PPT)-containing medium 

constantly. A) Non-bombarded calli dying on a medium supplemented with 5 mg/1 PPT within 

4 weeks (control); B) transient GUS activity in calli one day after bombardment; C) live image, 

D) GUS activity of white calli surviving on a PPT selection medium two months after 

bombardment, ; E) live image, F&G) GUS activity of embryo (root) and proembryogenic calli 4 

months after bombardment; H,I,J) GUS activity in shoots, leaves and roots of several individual 

transgenic plants. (bar=0.5 mm for A, D, 1.0 mm for B, F, G, 5.0 mm for H, I, J, and 10.0 mm 

for C, E) 
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Regeneration of Alstroemeria 

In this study, two different plant regeneration systems have been developed: direct 

organogenesis via leaf expiant culture and indirect somatic embryogenesis via callus culture. 

Development of the leaf expiant culture system is unique in Alstroemeria (Chapter 2). In fact, 

the leaf expiant consists of a leaf blade and a stem node, and the new shoots regenerated directly 

from the leaf axils (Chapter 3). This type of regeneration pattern is generally found in dicots, 

because axillary buds are usually present in the leaf axils of dicots and they are able to grow. In 

Alstroemeria aerial shoots, however, no visible axillary buds were ever found in the leaf axils 

except at the base of the shoot near the rhizome (Buitendijk 1998). This was also confirmed by 

our histological observations presented in Chapter 3. The fact that shoots were initiated from 

epidermal cells in the leaf axil suggests an adventitious nature. 

Alstroemeria was considered to be a recalcitrant species for in vitro culture due to its 

low multiplication rate, particularly in some important cultivars (Buitendijk 1998; Pierik et al. 

1988). The propagation unit usually used for micropropagation is the rhizome. It was 

demonstrated in Chapter 4 that the leaf expiant culture system is comparable to the rhizome 

culture system, because the plantlets derived from both systems developed into true-to-type 

flowering plants in the greenhouse. Besides, the leaf culture system is not only applicable for in 

vitro grown plants, but also for in vivo (growth chamber) grown plants and even in a 

commercial variety (Chapter 4). Although it took two to three months more than the 

conventional methods to develop a complete rhizomic plant, the disinfection of leaf material 

appeared to be easier and more efficient than of rhizomes. Disinfection of the underground 

grown rhizome tips happened to be a time-consuming work giving contamination problems that 

are difficult to overcome (Hakkaart and Versluijs 1988; Lin and Monette 1987; Pierik et al. 

1988). In addition, the number of useful propagation units (leaves) is higher than the number of 

rhizomes, with a general regeneration capacity of 80% for the first three leaves. 

Thidiazuron (TDZ) is a cytokinin-like substance, which is widely used to induce 

adventitious shoot regeneration from leaves, especially in dicotyledonous woody species 

(Dubois and de Vries 1995; Escalettes and Dosba 1993; Fiola et al. 1990; Huetteman and 

Preece 1993; Marcotrigiano et al. 1996; Turk et al. 1994). The results in this study revealed that 

TDZ also plays an important role in the induction of adventitious shoots in Alstroemeria 
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(Chapter 2 and 3). This substance is expected to be applicable in the conventional 

micropagation system as well in order to promote the multiplication rate. 

Callus induction on young stem segments of two genotypes of Alstroemeria was 

described in Chapter 5. This result is comparable to other monocots such as asparagus (Li and 

Wolyn 1995), barley (Vitanova et al. 1995), Kentucky bluegrass (Ke and Lee 1996), 

Echinochloa (Samantaray et al. 1995), oat (Chen et al. 1995), rice (Oinam and Kothari 1995), 

and rye (Jia and Zhang 1993). In monocots, zygotic embryos are commonly used for callus 

induction, and other differentiated tissues are considered to be more difficult. In all of the above 

mentioned cases the calli were induced from young seedling tissues. However, there is one 

particular report referring that callus could be induced from bud clusters of asparagus. These 

bud clusters were previously induced from an excised shoot apex of mature field grown plants 

(Kohmura et al. 1994). In Alstroemeria the leaf expiants were able to produce bud clusters as 

well (Chapter 2 and 3), which might be applicable for callus induction. More research has to be 

done in this field in the future. 

The induction of the two callus morphotypes, friable and granular (Chapter 5), was an 

important progress in Alstroemeria research. The friable calli could be proliferated and 

maintained on a single solid picloram-containing medium. A liquid cell suspension culture was 

developed for the same purpose in Alstroemeria by another group (Hutchinson et al. 1997). We 

have also tried the liquid culture method (data not shown), but the liquid culture appeared not to 

be advantageous in our material; it showed to be a labor-consuming and inconvenient system, 

because an intensive subculture was necessary in order to prevent browning of the callus. More 

tools and equipments were required for the whole system, and incidental contamination 

happened frequently. 

Granular callus is a more organized callus structure derived from friable callus on 

cytokinin (6-benzylaminopurine) containing medium, and it plays an intermediate role between 

the friable callus, compact callus, and the somatic embryo. In fact, it forms the central position 

of the whole regeneration system. Three different regeneration pathways can be initiated based 

on this type of callus. Probably this is the reason why the transformation efficiency of granular 

callus was higher than that of friable callus (Chapter 6). 
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Although the callus regeneration system has a higher multiplication efficiency than the 

rhizome culture system, and the true-to-type requirement may be fulfilled, the disadvantage of 

somaclonal variation has to be tested before it can become a routine regeneration system. 

Transformation of Alstroemeria 

The development of an efficient regeneration system is the most important factor for 

transformation of monocotyledonous plants. This is based on the fact that even in the most 

successful events, the transformation rate is still very low, and a high regeneration capability 

may provide more opportunities. Therefore, primary tissues with high regeneration capacity 

were considered to be more suitable for transformation (Jahne et al. 1995). Successful examples 

were shown in zygotic embryo scutellar tissues of cereal crops (Brettschneider et al. 1997; 

Koprek et al. 1996; Jahne et al. 1995; Takumi and Shimada 1997), leaves of orchardgrass 

(Denchev et al. 1997), inflorescences of sorghum (Casas et al. 1997), microspores of barley 

(Jahne et al. 1994), and pollen grains of maize (Horikawa et al. 1997). However, compared to 

dicots, the type of tissues described is very limited and may not be applicable in most of the 

monocots. 

The leaf expiant culture system provides an easy to handle plant material with high 

regeneration capacity (Chapter 2 and 3), which was considered to be applicable for 

transformation approach. We tried the particle bombardment method to deliver DNA into the 

regenerating leaf expiants. The bombarded leaf expiants were at the stage of bud primordia 

development: that was one week after subculture on shooting medium. Part of the leaf blade 

was removed before treatment in order to let the primordia tissues receive the DNA-coated 

particles as much as possible. Two plasmids, pAHC18 and pAHC25 (Christensen and Quail. 

1996), both driven by the maize ubiguitin (Ubil) promoter (Christensen et al. 1992), were used 

in this experiment. The pAHC18 contains a luciferase gene, and pAHC25 contains a selectable 

Basta resistance gene together with a GUS reporter gene. Transient luciferase and GUS activity 

were examined five days and four weeks after bombardment, respectively (Figure 1 and 2). The 

expression was observed mainly on the newly formed leaf tissues. Two months after 

bombardment the expression disappeared and was absent. 
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The transient activities expressed on the leaf tissues indicated that perhaps most of the 

bombarded particles only reached the L-l layer cells of the bud primordia which differentiated 

into leaves subsequently. These pilot studies gave us the important information that the used 

DNA constructs were transferred and transiently expressed in Alstroemeria cells, but that 

selection and maintenance of transiently expressed tissue was a problem. 

In the study presented, the callus shows to be superior to the leaf expiant concerning the 

transformation efficiency. This is probably due to the fact that cells with totipotency, which 

could develop into a whole plant via embryogenesis, are not present in the leaves. All our 

successful transformants originated from somatic embryogenesis (Chapter 6), and this is in 

agreement with our hypothesis. The compact callus is a differentiated callus structure derived 

from granular callus (Chapter 5). We tried the particle bombardment method to deliver DNA 

into the compact callus, but we only obtained transformed chimeric structures (Figure 3 and 4). 

These results are comparable to those gained from the leaf expiants, because the particles were 

mainly shot into cells without regeneration ability. It was shown that only the epidermal cells at 

the leaf axil region were able to regenerate into plants (Chapter 3). The compact callus is able to 

produce friable or granular callus, depending on the culture medium (Chapter 5). If the 

bombarded compact calli were cultured on a culture medium supplemented with 2,4-

dichlorophenoxyacetic acid together with 6-benzylaminopurine, or on a medium supplemented 

with picloram, then it might be possible to get complete transgenic callus lines. However, it is 

still a problem to select small units from a large tissue, so that the compact callus seems not to 

be a good initial material for particle bombardment mediated transformation. Both granular and 

friable calli are capable of regeneration into plants, but the granular callus has a higher 

transformation efficiency than friable callus (Chapter 6). 

Independent of the tested material and the DNA construct, the transient gene activity 

was always strong directly after bombardment, and it decreased drastically later on. This result 

suggests that in only a few cells, the plasmid DNA was really incorporated into the nuclear plant 

DNA and which could be maintained in the subsequent cell divisions. Therefore, an efficient 

selection method for transgenic cells seems to be very important. Either light emission or PPT 

selection has both advantages and disadvantages (Chapter 6), so that the production of a new 

DNA contruct with both luciferase and PAT genes would be helpful. The maize Ubil promoter 
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(Christensen et al. 1992), successfully used in this study, indicates the good applicability of this 

promoter in the monocotyledonous genus Alstroemeria. 

Direct plant regeneration from cultured leaves has proven to be a great potential for 

Agrobacterium-mediaXed transformation in many dicots such as apple (De Bondt et al. 1996), 

carnation (Van Altvorst et al. 1995), Fragarict (El Mansouri et al. 1996), and raspberry 

(Mathews et al. 1995). This is mainly because the expiant is relatively easy to handle, and the 

abundant target cells in each infection may increase the probability. The single cells abundantly 

involved in adventitious shoot formation of the Alstroemeria leaf expiant culture system 

(Chapter 3) may have the same applicability for Agrobacterium-mediated transformation in the 

future. 

Alstroemeria has become a newly bred ornamental in the world in the last 20 years, 

thanks to the incorporation of modern breeding techniques, such as mutation breeding, in vitro 

culture, and embryo rescue. The conventional breeding efficiency based on sexual crossings and 

artificial mutagenesis to broaden the genetic diversity will be limited. Genetic transformation is 

expected to be the powerful tool for the transfer of useful genes in a more direct and efficient 

way. The successful events presented in this thesis will push the breeding activities in 

Alstroemeria forward into a luminous future. 
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Figure 1 and 2. Transient expression of the luciferase and GUS genes in leaf tissues of 

Alstroemeria by using the leaf expiants (containing a stem node) as initial bombardment targets. 

The leaf expiants were cultured on shoot inducing medium for 10 days before bombardment in 

order to stimulate the cell division. Figure 1. The transient luciferase activity was detected 5 

days after bombardment, and a newly formed leaf with luciferase activity is shown. The new 

elongated leaf is a part of an adventitious bud that was formed from the original leaf expiant. 

(bar=1.0 cm) Figure 2. Transient expression of GUS gene was determined 4 weeks after 

bombardment, and the newly formed leaves showed GUS blue staining. (bar=0.2 cm) 

Figure 3 and 4: Chimeric expression of luciferase and GUS genes in plant tissues of 

Alstroemeria by using the compact calli as initial bombardment targets. Figure 3. The 

luciferase activity was detected 8 months after bombardment, and it was only observed on a part 

of the plant tissues. A close up picture, presented at the upright corner, shows a detailed 

chimeric leaf. (bar=0.5 cm) Figure 4, the GUS activity was determined 5 months after 

bombardment, and only parts of the tissue showed the GUS blue staining. (bar=l .0 cm) 

(Bd bud, Ca compact callus, Nd nodal region on the original leaf explant, NL newly formed leaf 

on adventitious buds, OL original leaf base, S stem, Sh shoot) 
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H.S. Lin. 1998. Development of two in vitro regeneration systems through leaf expiant and callus culture and 
the application for genetic transformation in Alstroemeria. 

Summary 

Alstroemeria is a popular ornamental crop cultivated for its flowers. Taxonomically, it 

belongs to a monocotyledonous family, the Alstroemeriaceae, and is commonly called by its 

genus name. An Alstroemeria plant consists of underground grown rhizomes, roots, and 

aerial shoots. The plant is grown perennially. Due to the good incorporation of plant breeding 

techniques combined with the modern greenhouse cultivation technologies of the last two 

decades, Alstroemeria has become a competitive greenhouse-grown cut flower in the 

Netherlands. Generally, the Alstroemeria plant is vegetatively propagated by rhizome 

division, but the multiplication rate is rather low. Therefore, the increasing demand for 

plantlets stimulated the development of in vitro propagation techniques. However, since the 

multiplication unit used in the in vitro method is limited to rhizome tips, the propagation rate 

is still rather low in comparison with other crops and the other plant organs seem to be of no 

use during subculture. In addition, a callus culture system has been developed in the last few 

years for plant propagation purpose. The multiplication efficiency of this system is expected 

to be higher than that of the rhizome culture system, but the commercial true-to-type 

requirement cannot be fulfilled, because the callus was initiated from zygotic embryos. 

Therefore, the development of an additional in vitro multiplication system based on other 

plant organs is considered to be desirable (Chapter 1). 

Plant regeneration of cultured expiants has in general two pathways, either via 

organogenesis (the development of shoots directly on an expiant) or via embryogenesis (the 

development of differentiated somatic embryos on an explant). A large part of this thesis 

research deals with the development of two plant regeneration systems, one based on 

organogenesis and the other based on embryogenesis. In Chapter 2, a two-step protocol for the 

induction of shoot formation from in vitro grown Alstroemeria leaf expiants is described. Leaf 

expiants were cut from seedlings still containing a leaf blade and a stem node. After 10 days of 

culture on an induction medium, the leaf expiants were transferred to a shooting medium for 

eight weeks. New shoots were formed directly from the area adjacent to the region between leaf 
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base and node tissue within three weeks on shooting medium. It was histologically 

demonstrated that these shoots were initiated from the epidermal cells at leaf axils (Chapter 3). 

There were no pre-existing axillary buds ever found on the aerial leaf axils, so that this kind of 

organogenesis suggests an adventitious nature. The leaf expiants together with newly formed 

shoots were subcultured several times and many normal plantlets with rhizomes were formed, 

which then were suitable for transferring to the soil (Chapter 2, Chapter 4). 

The best induction was obtained on a Murashige and Skoog's (1962) medium 

supplemented with 10 uM thidiazuron (TDZ) and 0.5 uM indole butyric acid (IBA) (Chapter 

2). The shooting medium contained MS medium with 2.2 uM 6-benzylaminopurine (BAP). The 

shoot regeneration capacity of the excised leaf expiants was related to the position of the leaf on 

the stem. The youngest expiant which was located the nearest to the shoot apex, gave the 

highest response. A lower gradient response was found in the leaf expiants derived from leaves 

cut off at a further distance from the apex. This was measured in percentage of shoot 

regeneration per leaf expiant and in the number of shoots per regenerating expiant (Chapter 3). 

A demonstration experiment was carried out in the greenhouse in order to investigate 

the similarity of plant growth morphology in between plants, which were obtained from either 

rhizome multiplication or leaf expiant culture system. The plants were grown in the greenhouse 

to flowering, and the results indicated that plants obtained from both systems were 

morphologically identical (Chapter 4). This implicates that the leaf culture system seems to be a 

reliable in vitro propagation technique for the genotype we have investigated. 

Another advantage of the leaf expiant culture system is that the leaf expiants directly can 

be excised from in vivo full grown shoots, and that the disinfection of aerial shoots is easier than 

that of underground grown rhizomes (Chapter 4). Therefore, this technique is suitable for the 

initiation of;'« vitro propagation of existing cultivars. 

In the conventional micropropagation system, only the rhizome tips are multiplied and 

therefore, the aerial shoots are always discarded during subculture. In this thesis research, it is 

concluded that not only the rhizome tips can be used as propagation units, but also the discarded 

shoots can be used for the initiation of the other propagation system. The first three leaves 

excised from each shoot have an average regeneration capacity of 87.7%, and the average 

number of newly formed shoots per expiant was 5.3 (Chapter 4). On the other hand, the 
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rhizomes can be multiplied simultaneously. Therefore, combining the rhizome multiplication 

system with the leaf expiant culture system, the multiplication efficiency will be enhanced. 

In Chapter 5, a somatic embryogénie callus regeneration system is described. A soft and 

sticky type of callus was induced initially from the stem segments of one month old seedlings of 

two tetraploid Alstroemeria genotypes. The soft calli turned into compact type after subculture 

on a medium (MS with 30 g/1 sucrose) containing 6-benzylaminopurine. Subsequently, two 

other different morphotypes of callus, friable and granular, were obtained by subculturing the 

compact callus on different culture media. The friable callus can be maintained on a single 

medium (PCA) containing 10 mg/1 picloram for a long period without loosing its friability. 

Subculturing the friable callus on plant growth regulator free media or on 6-benzylaminopurine 

containing media stimulated the granular callus formation, and the subsequent somatic 

embryogenesis. The somatic embryos were able to develop into complete plants. 

The granular callus proved to be an intermediate between friable callus, somatic 

embryo, and compact callus. The friable callus could also be induced from granular callus, and 

vice versa. Therefore, a cyclic reproduction system was established in this research. This system 

provides two types of callus with a high embryogénie capability, which were initially derived 

from the stem segments. Thus, this system is considered to be applicable for the in vitro 

propagation of Alstroemeria. 

In addition to the purpose of plant propagation, the development of a plant regeneration 

system is also considered to have the potential for genetic modification in Alstroemeria. Some 

characteristics, for example virus resistances, are very important in the continuously 

greenhouse-grown cultivars. However, virus resistance genes are not generally present in the 

Alstroemeria gene pool yet, so that the traditional breeding techniques are not sufficient for this 

purpose. Genetic transformation of Alstroemeria is considered to be useful for breeding in the 

future (Chapter 1). For genetic transformation, four important factors should be taken into 

account: a) an efficient DNA delivery system, b) the appropriate target cells competent for both 

transformation and regeneration, c) an adequate promoter, and d) a good selection system 

(Chapter 1). 

In this research, the particle bombardment delivery system was chosen for the monocot 

Alstroemeria, because of its expectedly higher transformation efficiency than the 

Agrobacterium vector system (Chapter 1). The leaf expiant regeneration system was tested for 
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gene transformation by using the particle bombardment. Although the gene expression could be 

detected after particle bombardment, the gene activities were only transiently expressed on leaf 

tissues, and they disappeared within two months (Chapter 7). On the other hand, the somatic 

embryogénie callus regeneration system was successfully used for particle bombardment 

mediated gene transformation. Two tetraploid Alstroemeria genotypes were transformed, and 

many transgenic plants were obtained (Chapter 6). 

Both granular and friable calli were used as bombardment targets, and the subsequent 

somatic embryogenesis resulted in the formation of complete transgenic plantlets. Two 

plasmids containing different selection and reporter genes were used. Firstly, a plasmid 

containing a firefly luciferase reporter gene, driven by the maize ubiquitin promoter (Ubil), was 

bombarded into both granular and friable calli. The luciferase activity was measured by a 

luminometer after spraying the bombarded plant material with a luciferin solution. Visual 

selection of the luciferase positive calli, assisted by the luminometer, was effective. This kind of 

selection has a nondestructive nature, without injuring the plant material, and the luciferase 

activity can be assayed periodically over the whole developmental process from callus to 

embryo and plantlet. It was shown that the granular callus is more suitable for particle 

bombardment mediated transformation using luciferase activity as selection marker than the 

friable callus (Chapter 6). 

Secondly, another plasmid containing the selectable Basta (herbicide) resistance gene 

(bar) encoding phosphinotricin acetyltransferase (PAT) together with an uidA reporter gene 

encoding ß-glucuronidase (GUS) was used. Both genes were driven by the Ubil promoter. The 

granular calli were bombarded in this experiment. Selection of the phosphinotricin (PPT) 

resistant calli was accomplished by culturing the bombarded calli on a medium containing 5 

mg/1 PPT. The PPT resistant calli were the friable type of calli which were already regenerated 

from the granular calli, and they developed into somatic embryos, and subsequently into the 

plantlets. Stable expression of the GUS gene was confirmed by histochemical staining. The blue 

color was detectable in all tissues of the transgenic plants tested by the GUS assay. The PPT 

selection proved to be a more efficient and labor-saving method compared to the luciferase 

selection (Chapter 6). 

The results described in this thesis are beneficial for both the in vitro propagation and 

the genetic modification of Alstroemeria. The use of leaf explants as in vitro propagation units 
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is rather unique in Alstroemeria, which opens an alternative way for enhancing the plant 

propagation efficiency. The embryogénie callus regeneration system described in this thesis is 

not only applicable for plant propagation, but also for genetic transformation. The establishment 

of particle bombardment mediated transformation techniques will push the molecular breeding 

in Alstroemeria forward into a luminous future. 
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voor genetische transformatie in Alstroemeria. 

Samenvatting 

Alstroemeria is een populair siergewas dat geteeld wordt voor de productie van snijbloemen. 

Het gewas wordt taxonomisch ingedeeld bij de monocotyle Alstroemeriaceae en de snijbloem 

wordt genoemd naar de geslachtsnaam. Een Alstroemeria plant bestaat uit ondergronds 

groeiende rhizomen, wortels en bovengrondse scheuten. De plant is meerjarig. Dankzij de 

toepassing van plantenveredelingstechnieken, gecombineerd met de meest moderne 

teeltmethoden onder glas van de laatste twee decennia, is Alstroemeria uitgegroeid tot één 

van de belangrijkste snijbloemen onder glas in Nederland. In het algemeen wordt de plant 

vegetatief vermeerderd door scheuren van het rhizoom; de vermeerderingsfactor bij deze 

vermeerderingswij ze is echter laag. De immer groeiende vraag naar planten heeft de 

ontwikkeling van "in vitro vermeerderingstechnieken" gestimuleerd. Aangezien de "in vitro 

vermeerderingstechniek" beperkt is tot de vermeerdering van rhizomen, blijft de 

vermeerderingsfactor relatief laag vergeleken met die van andere gewassen. Andere 

plantendelen blijken niet geschikt voor de vermeerdering. Met het oog op vermeerdering is de 

laatste jaren een calluscultuur ontwikkeld, waarvan wordt verwacht dat de 

vermeerderingsfactor hoger is dan die van de rhizoomtechniek. De op deze wijze 

geregenereerde plantjes zijn echter niet identiek aan de oorspronkelijk moederplant, 

aangezien uitgegaan is van bevruchte embryo's bij de ontwikkeling van het callus. De 

ontwikkeling van een "in vitro vermeerderingssysteem"gebaseerd op vegetatieve 

plantorganen wordt beschouwd als een belangrijke stap in de verbetering van de 

vermeerderingsmethode (Hoofdstuk 1). 

De regeneratie van planten geschiedt in het algemeen via twee processen: via 

Organogenese (directe ontwikkeling van scheuten op een explantaat) of via embryogenese (de 

ontwikkeling van gedifferentieerde somatische embryo's op een explantaat). Een groot 

gedeelte van dit proefschrift handelt over de ontwikkeling van twee vermeerderingssystemen 

in Alstroemeria, de één gebaseerd op Organogenese en de ander op embryogenese. In 

Hoofdstuk 2 wordt een twee-stappen protocol beschreven voor de ontwikkeling van scheutjes 

uit in vitro gegroeide bladexplantaten. De bladexplantaten, compleet met bladschijf, bladvoet 
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en stengelknoop, werden gesneden van in vitro gekiemde zaailingen. Na tien dagen opkweek 

op een inductiemedium werden de explantaten overgebracht op een 

scheutontwikkelingsmedium voor een verdere opkweekperiode van acht weken. De nieuwe 

scheuten werden binnen drie weken op het scheutontwikkelingsmedium gevormd, direct op 

het weefsel tussen bladbasis en stengelknoop. Op grond van een histologische studie van dit 

ontwikkelingsproces kwam aan het licht dat deze scheuten ontstaan waren uit de 

epidermiscellen in de bladoksels (Hoofdstuk 3). Er zijn geen rudimentaire okselknoppen in 

de bladoksels van opgaande scheuten aangetroffen tijdens deze studie. Derhalve moet deze 

vorm van Organogenese als bijkomende knopvorming worden beschouwd. De 

bladexplantaten werden tegelijk met de nieuw gevormde scheuten enkele malen overgezet op 

een vers scheutontwikkelingsmedium. Daarna werden normale planten met rhizomen 

gevormd, die geschikt waren voor verdere opkweek in de grond (Hoofdstuk 2, Hoofdstuk 4). 

Het beste scheutinductiemedium bleek het MS medium (met 30 g/l sucrose) te zijn 

waaraan 10 uM thidiazuron (TDZ) en 0.5 uM indole butyric zuur (IBA) was toegevoegd. Het 

scheutontwikkelingsmedium was MS medium met 2.2 uM 6-benzylaminopurine 

(BAP,Hoofdstuk 2). Het scheutregenererend vermogen van de afgesneden bladexplantaten 

bleek gerelateerd te zijn aan de positie van het blad op de scheut. Het jongste bladexplantaat, 

dat het dichtst bij het scheutmeristeem was gelegen, gaf het hoogste percentage 

scheutontwikkeling. Het scheutregenererend vermogen nam gradueel af in de oudere 

bladexplantaten die verder van het topmeristeem gesneden waren. Dit regenererend vermogen 

werd uitgedrukt in het percentage scheutregeneratie per blad en in het aantal scheuten per 

regenererend bladexplantaat (Hoofdstuk 3). 

In de kas is een demonstratieproject uitgevoerd om te onderzoeken of de 

plantmorfologie van planten die via rhizome vermeerdering waren vermeerderd gelijk was 

aan die van planten die via bladexplantaten waren vermeerderd. De planten in de kas zijn tot 

bloei opgekweekt. Uit de gegevens over de planthabitus en de bloemmorfologie bleek dat de 

planten uit beide vermeerderingssystemen morfologisch identiek waren (Hoofdstuk 4). 

Hieruit mag worden geconcludeerd dat de vermeerderingswijze via de bladexplantaten een 

betrouwbare in vitro vermeerderingswijze is voor de in dit onderzoek geteste genotypes. 

Een ander voordeel van de vermeerdering via bladexplantaten is, dat bladexplantaten 

direct van scheuten van volwassen planten in vivo gesneden kunnen worden. Het 
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desinfecteren van bovengrondse scheuten is daarbij gemakkelijker dan dat van ondergrondse 

rhizomen (Hoofdstuk 4). Deze methode lijkt dan ook zeer geschikt voor het opstarten van in 

vitro vermeerdering van bestaande cultivars. 

In de gangbare vermeerderingsmethode worden alleen rhizomen vermeerderd door 

versnijden waarbij de opgaande scheuten steeds afgesneden en weggegooid worden tijdens 

de vermeerderings-stappen. Uit dit onderzoek is gebleken dat niet alleen de rhizomen kunnen 

worden gebruikt voor de vermeerdering van Alstroemeria, maar dat ook de afgesneden 

scheuten kunnen worden gebruikt voor de opstart van een ander type vermeerdering. De 

eerste drie bladexplantaten van elke scheut hebben een gemiddeld 

scheutontwikkelingsvermogen van 87.7 % en het gemiddeld aantal nieuw gevormde 

scheuten per explantaat is 5.3 (Hoofdstuk 4). Tegelijkertijd kunnen de rhizomen 

vermeerderd worden zodat in combinatie met de bladexplantaatmethode de 

vermeerderingsfactor kan worden vergroot. 

In Hoofdstuk 5 wordt een callus-systeem beschreven waarbij plantjes via somatische 

embryogenese worden geregenereerd. Een zacht en kleverig type callus was geïnduceerd uit 

stengelstukjes van zaailingen van twee tetraploide Alstroemeria genotypen. Dit zachte callus 

veranderde in een compact type callus na herhaalde opkweek op een MS medium (met 30 g/l 

sucrose), verrijkt met 2.2 uM 6-benzylaminopurine. Vervolgens werden twee andere typen 

callus, het 'losse' en het 'korrelige' type, verkregen door herhaalde opkweek van het compacte 

callus op verschillende kweekmedia. Het 'losse' type callus kan voor een langere tijd 

gekweekt worden op een PCA medium met 10 mg/l picloram zonder dat het de 'losse' 

structuur verliest. Herhaaldelijk kweken van dit 'losse' type callus op media zonder 

plantengroeihormonen of op media met 6-benzylaminopurine, stimuleerde de vorming van 

het 'korrelige' type callus dat vervolgens somatische embryo's ging vormen. Deze somatische 

embryo's ontwikkelden zich verder tot complete plantjes. 

Het 'korrelige' type callus bleek een overgangsvorm te zijn tussen (1) het 'losse' type 

callus, (2) callus dat somatische embryo's vormde en (3) het compacte type callus. Het 'losse' 

type kon ook ontwikkeld worden uit het 'korrelige' type en vice versa. Op deze wijze is een 

cyclisch reproductiesysteem ontwikkeld, waarin oorspronkelijk twee typen callus uit 

stengelstukjes zijn ontwikkeld, die beide een goed embryovormend vermogen hebben. Hieruit 

kunnen we concluderen dat dit systeem geschikt is voor de in vitro vermeerdering van 
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Alstroemeria. 

Het ontwikkelen van een plantenreproductiesysteem wordt naast het belang voor 

vermeerdering ook gezien als een belangrijke voorwaarde voor de ontwikkeling van een 

genetische modificatiemethode in Alstroemeria. Sommige eigenschappen zoals bijvoorbeeld 

virusresistentie zijn zeer belangrijk in de meerjarige teelt van cultivars onder glas. De 

aanwezige virusresistentiegenen zijn echter nog niet getraceerd in de Alstroemeria species 

zodat de klassieke wijze van veredeling nog niet kan worden toegepast voor dit doel. De 

ontwikkeling van een transformatiemethode wordt dan ook gezien als een goede investering 

voor de toekomstige veredeling (Hoofdstuk 1). 

Er zijn vier belangrijke factoren noodzakelijk voor de ontwikkeling van een 

succesvolle transformatiemethode: 

a) een efficiënt gen-DNA overdracht systeem 

b) de juiste cellen die geraakt moeten worden en die zowel kunnen transformeren als kunnen 

regenereren 

c) een geschikte promoter 

d) een goed selectiesysteem (Hoofdstuk 1). 

In dit onderzoek is gekozen voor het schieten met kleine kogeltjes gecoat met DNA, 

omdat verwacht werd, dat dit een betere transformatie efficiëntie zou opleveren in het 

monocotyle gewas Alstroemeria dan het Agrobacterium-vectorsysteem (Hoofdstuk 1). Het 

bladexplantaat-regeneratiesysteem is getest in de transformatie methode via beschieten met 

DNA-gecoate kogeltjes. Hoewel genexpressie na beschieting is gevonden, bleek dit alleen 

van voorbijgaande aard te zijn en beperkt tot plekken in het bladweefsel. Het was na twee 

maanden verdwenen (Hoofdstuk 7). Het somatische embryogene callus-systeem is eveneens 

getest via beschieten met DNA gecoate kogeltjes. Dit bleek succes te hebben. Twee 

tetraploïde Alstroemeria genotypen zijn op de volgende wijze getransformeerd. Met deze 

methode zijn veel transgene planten verkregen (Hoofdstuk 6). 

Zowel het 'korrelige' als het 'losse' type callus werden beschoten en vervolgens 

geregenereerd via embryovorming tot volledig transgene planten. Voor de transformatie zijn 

twee plasmiden gebruikt die verschillende selectie- en reportergenen bevatten. In een eerste 

experiment werden kogeltjes gecoat met een plasmide, dat het luciferasegen, afkomstig uit 

het vuurvliegje, aangedreven door de ubiquitine promoter uit mais {Ubil) bevatte, geschoten 
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in zowel 'korrelig' als het 'losse' type callus. De luciferase-activiteit is gemeten met behulp 

van een luminometer nadat het beschoten plantmateriaal was bespoten met een luciferine 

oplossing. Selectie op het oog van de lichtgevende calli, ondersteund door de luminometer, 

bleek effectief te zijn. Deze vorm van selectie is niet destructief en kan zonder beschadiging 

van plantmateriaal worden toegepast tijdens het gehele ontwikkelingsproces van callus via 

embryo tot plant. Het 'korrelige' type callus bleek een beter uitgangsmateriaal voor 

transformatie met het luciferasegen te zijn dan het 'losse' type callus (Hoofdstuk 6). 

In het tweede experiment werd een plasmide met het Basta (herbicide) resistentiegen 

dat codeert voor phosphinotricin acetyltransferase (PAT) en het uidA reportergen coderend 

voor het ß-gluceronidase (GUS), gebruikt. Beide genen werden aangedreven door de Ubil 

promoter. Dit plasmide werd gebruikt bij de beschieting van alleen het 'korrelige' type callus. 

De selectie van phosphinotricin (PPT) resistente calli werd uitgevoerd door de beschoten 

callusklompjes te kweken op medium met 5 mg/l PPT. De PPT resistente calli bleken te 

bestaan uit het 'losse' type callus dat ontstaan was bovenop het 'korrelige' type callus. Deze 

resistente calli ontwikkelden zich via embryo's tot plantjes. In deze plantjes werd de stabiele 

expressie van het GUS-gen aangetroffen na chemische kleuring van het weefsel. Het was 

aantoonbaar in de vorm van blauwkleuring van alle weefsels van de transgene in vitro 

planten. De PPT selectie bleek een efficiëntere en minder arbeidsintensieve methode te zijn, 

vergeleken met de visuele selectie via het luciferasegen (Hoofdstuk 6). 

De resultaten van de experimenten in dit proefschrift zijn veelbelovend zowel voor de 

"in vitro vermeerderingswij ze" als voor de genetische modificatie van Alstroemeria. Het 

gebruik van bladexplantaten voor de "in vitro vermeerderingswijze" is uniek voor 

Alstroemeria en biedt perspectief voor de verbetering van de vermeerderingsfactor. Het 

somatische embryogene callus-systeem bleek niet alleen toepasbaar voor vermeerdering maar 

ook voor genetische transformatie. Het feit dat nu een efficiënte transformatiemethode 

beschikbaar is, zal het pad van de moleculaire veredeling in Alstroemeria verlichten tot ver in 

de 21 steeeuw. 
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