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Abstract

Beek, S, van der 1995. The use of genetic markers in poultry breeding. Doctoral thesis,
Wageningen Agricultural University, P.0O. Box 338, 6700 AH Wageningen, The Netherlands.

This thesis focuses on the design of linkage and quantitative trait locus (QTL) mapping
experiments and on the use of genetic markers in poultry breeding schemes. Criteria to
optimize the design of experiments that use outbred populations to create a linkage map were
described. Those criteria were used to evaluate designs of experiments to map codominant
and dominant genetic markers using half-sib of full-sib family structures. Omnce a linkage map
is created, QTLs can be placed on the map. Deterministic computation methods were used
to determine the power of two- and three- generation QTL mapping experiments in an
outbred population containing full-sib or half-sib families. Genetic markers that are linked to
QTL can be used for selection purposes. The effect of using genetic markers to assist
selection in an outbred poultry breeding nucleus was studied. The additional response to
selection for a sex-limited trait was computed using deterministic simulation. The general
discussion of this thesis addresses the status of the chicken linkage map, QTLs found in
poultry, and discusses the usefulness of several applications of genetic markers in pouliry
breeding.
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Stellingen

1. Om in een fokprogramma optimaal gebruik te kunnen maken van merkerinformatie
dient de structuur grondig gewijzigd te worden.
Dir proefschrift

2. Bij het beoordelen van proeven voor het localiseren van genen moet meer nadruk
gelegd worden op de verwachte nauwkeurigheid en minder op de power van de proef.
Dir proefschrift

3. Allelen die het nivo van een commerciéle populatie kunnen verbeteren, kunnen het

beste gezocht worden in een kruising tussen deze populatie en een genetisch
ongerelateerde populatie van gelijkwaardig nivo.
Dit proefschrift

4. Voor het localiseren van genen is een drie generatie full-sib offspring, half-sib
grandoffspring proefopzet optimaal.
Dit proefschrift

5. De door Gibson (1994) gevonden verlaging van lange termijn response door het
gebruik van merkerinformatie treedt alleen op bij slecht gebruik van merkerinformatie.
(JP Gibson, 1994. Proc 5th World Congr Genet Appl Livestock Prod 21:201-204.)

6. Om informatie over gelocaliseerde genen juist te integreren in fokwaardeschatting, het
schatten van genetische parameters en de evaluatie van fokprogramma's, is onderzoek
naar het vervangen van het infinitesimal model nodig.

7. Voor een duurzame bijdrage van de moleculaire genetica aan de veefokkerij is het van
belang dat effectieve technologie wordt ontwikkeld voor het opsporen van nieuwe

mutaties in populaties.

8. Het inwegen van kenmerken in het fokdoel zou gebaseerd moeten worden op gewenste
genetische vooruitgangen, en niet op economische waarden,

9. Techneuten pikken uit de duurzaamheidsdiscussie nicuwe vragen op, terwijl zij zouden
moeten leren om anders tot antwoorden te komen.

10. Het grootste gemis in academische opleidingen is het niet leren omgaan met
emotionele argumenten.

11.  Een proefschrift dat zichzelf tegenspreekt duidt op ontwikkeling van de promovendus.

12. Soaps reinigen de academische geest.

Sijne van der Beek. The use of genetic markers in poultry breeding. Wageningen, 9 februari 1996.



'Ontdekkingen doen bestaat uit zien wat iedereen heeft gezien en denken wat niemand heeft
gedacht.’
Albert Szent-Gydrgyi
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A genetic marker is a genomic locus for which the allele(s) of an individual can be
identified (see Box 1), Genetic markers can be a powerful tool in breeding and genetics.
Several applications of genetic markers have been described (Soller and Beckmann 1983;
Smith and Simpson 1986) including: parentage control, varietal identification, identification
of loci affecting quantitative traits (i.e., the mapping of Quantitative Trait Loci or QTL
mapping), and marker assisted selection during introgression, in a crossbred population or
in an outbred population.

Box 1: A genetic marker

In this thesis a genetic marker is defined as a parameter that has a direct relation with alleles at
a genomic site. Given this definition a morphological trait or a biochemical polymorphism can
be a genetic marker. For example, blood group polymorphisms have a direct relation to alleles
at a btood group gene, and can be considered as genetic markers.

With the advent of molecular genetics new classes of genetic markers have been made available.
One class of genetic markers that has been shown to be particularly useful is the class of the
microsatellites. A microsatellite is a short DNA sequence consisting of di- tri or tetra- tandem
repeats, e.g., DNA sequence TGTGTGTGTGTGTGTGTGTG or {TG),, is a microsatellite.
Microsatellites have several appealing properties:

- Microsatellites are highly polymorphic. Different alleles vary in the number of repeats.
For instance, one allele is (TG),, and a second allele is (TG),,. These differences can
be made visible in polyacrylamide gels.

- The alleles of a microsatellite marker can relatively easy be identified in a DNA sample
using PCR technology and polyacrylamide gel electrophoresis. Differences between
alleles are made visible due to the differences in length between the different alleles.

- Microsateliites have co-dominant inheritance. For heterozygous animals, both alleles can
be identified.

- Many thousands of microsatellite markers exist in the mammalian genome.
Microsatellites are distributed fairly random through the genome.

So, the microsatellites form a class of highly polymorphic, relatively easy to analyze, highly
frequent genetic markers. Locus specific microsatellites can be developed by sequencing the
DNA adjacent to the microsatellite, €.g., ACTGCCATGGAAC-TG),-CCTGATGCATGCAAG
will be a locus specific microsatellite marker. Currently, microsatellites are the predominant
class of markers developed in farm animal molecular genetic research labs.
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Most applications of genetic markers require the mapping of QTLs, i.e., the dissection
of genetic variance into components due to individual QTLs. Sax (1923) was the first to show
how genetic factors influencing quantitative traits can be identified using markers. In beans,
Sax scored morphological traits with monogenic inheritance and found the seed weight of
cerfain morphological variants to be significantly higher than the seed weight of other
variants. He concluded that a size factor, which we would now call a QTL, was linked to the
morphological marker studied. As a result of genetic linkage between the marker and the
QTL, the size factors cosegregate with the genes underlying the morphological traits.

For decades the work of Sax was not followed upon by a systematic search for QTLs.
In 1961, Neimann-Serensen and Robertson, using blood groups in dairy cattle, had shown
how associations between markers and quantitative traits can be studied in outbred
populations. They found no significant associations, which they attributed to the fact that they
had only a few markers available which gave them a low chance of having a marker close
to a QTL. For a systematic search for QTLs, many genetic markers covering the whole
genome are needed, information that was simply not available until recently. With the advent
of molecular genetic technology, however, many genetic markers have become available.
Botstein et al. (1980) realized the availability of many genetic markers facilitates QTL
mapping. The construction of a linkage map with many genetic markers covering the whole
genome allows for a systematic screening for genes or chromosomal regions influencing
important traits (Botstein er af. 1980). After a successful search for QTLs, genetic markers
can be applied in breeding programmes.

Conventiona! breeding methods have been well applied in poultry breeding leading to
a substantial rate of genetic improvement (Smith 1985). In poultry, nucleus breeding schemes
are applied in which selection is based on parental breeding values, sib performance, and,
if available, own performance. The generation interval is close to minimum but selection
accuracy is relatively low, especially for sex-limited and carcass limited traits. So, increasing
the accuracy of sclection is expected to result in an increase in the rate of genetic
improvement in poultry breeding. The use of genetic markers might increase the rate of
genetic improvement due to more accurate selection decisions. In addition, the detection of
markers linked to QTLs will improve the understanding of the genetic architecture of poultry
which will in particular be helpful for making selection decisions. For instance, undesired
effects of selection may be controlled or anticipated upon if we detect a QTL that contributes
to the unfavourable correlation between two important traits, e.g., between growth rate and
viability.
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Throughout this thesis it is assumed that the main application of genetic markers will
be marker assisted selection. For efficient marker assisted selection, genetic markers first
need to be placed on the linkage map. Subsequently, the markers will be used for QTL
mapping. Finally, the markers, for which linkage to a QTL has been identified, will be
applied in a breeding programme through marker assisted selection. Knowledge is lirnited on
efficient experimental designs for linkage mapping and QTL mapping in cutbred populations
of livestock in general and poultry in particular. Information on optimum schemes to use
genetic markers in poultry breeding is absent.

Aim
The aim of this thesis is to contribute to the efficient utilization of genetic markers in
poultry breeding, and to investigate the potential increase in genetic improvement from the
use of genetic markers.
This thesis studies the design of linkage and QTL mapping experiments, the use of marker
assisted selection in an outbred population, and discusses several applications of markers in
poultry breeding schemes.

Outline of this thesis

Construction of a linkage map is laborious, hence optimal experimental designs are
important. The design of linkage mapping experiments that involve crosses between inbred
populations is well documented. For outbred populations, however, little research has been
aimed at specifying the optimal design. Most inforrnation on linkage mapping in outbred
populations comes from human studies. The human population structure can not be
manipulated, so human studies focus on deriving optimal methods to analyze data of a given
design. In poultry, on the other hand, the reproductive capacity of the male and female
animals allow for great flexibility in the design of experiments. Therefore, this thesis studies
the design of linkage mapping experiments. Chapter 2 uses two criteria to evaluate the design
of a linkage mapping experiment and describes the effect of several parameters on the value
of those criteria. The criteria described in chapter 2 are used in chapter 3 to derive optimum
designs for reference families for livestock linkage mapping experiments.

Once constructed, a linkage map can be used in a QTL mapping experiment. The
design of QTL mapping experiments using half-sib families has been investigated by Weller
et al. (1990). Designs for QTL mapping experiments using full-sib families or a combination
of full-sib families and half-sib families have not been studied. These designs are, however,
potentially more efficient than half-sib family designs and practically feasible in poultry.
Therefore, in chapter 4 the efficiency QTL mapping experiments using outbred populations
with half-sib or full-sib families is analyzed.
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Once genetic markers have been identified that explain a significant amount of genetic
variance, these genetic markers can be used in breeding programmes. For dairy cattle
breeding schemes and schemes including crosses between inbred populations, the value of
marker assisted selection has been studied. These studies show that the structure of the
breeding population and the particular values of parameters such as heritability greatly affect
the value of marker assisted selection. Therefore, conclusions on the use of markers in
poultry breeding schemes can not be based on literature available on other species. In chapter
5, the value of genetic markers for selection for a sex-limited trait in an outbred poultry
breeding nucleus is assessed.

In the general discussion, first the status of linkage and QTL mapping in poultry is
described and uses of genetic markers are summarized. Then, at the end of the main part of
this thesis, three potentially useful applications of genetic markers in poultry breeding are
described utilizing the knowledge generated in chapter 5, and the characteristics of poultry
breeding and genetic markers.
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Abstract

Construction of a genome map of highly polymorphic markers has become possible in the
past decade. Establishing a complete marker map is an enormous task. Therefore, designs to
map molecular markers should be optimal. Designs to detect and estimate linkage between
markers from segregating populations were studied. Two measures of design quality were
used. The expectation of the maximum lod score indicates the possibility of designs to detect
linkage. The accuracy of estimating recombination rate was measured as the probability that
the true recombination rate is in a specified interval given the estimate. Accurate approximate
methods were developed for rapid evaluation of designs. Seven family types {(e.g., double
backcross) can be distinguished that describe all families in a segregating population. Family
type influences expected maximum lod score and accuracy of estimation. Frequency of
favourable family types increased with increasing marker polymorphism. At a true
recombination rate of .20, 27 observations on offspring when five alleles were segregating,
and 55 observations on offspring when two alleles were segregating, were necessary to obtain
an expected maximum lod score of 3. The probability that the true recombination rate was
between .15 and .25, given an estimate of .20, was about .85 for a design with 40 families
with ten offspring and two alleles segregating and for a design with ten families with ten
offspring and six alleles segregating. For smaller designs, accuracies were less, approximate
evaluation of accuracy was not justified and, on average, true recombination rates were much
greater than estimated, given a specified value for the estimated recombination rate.

Key words: gene mapping - design - segregating populations ~ detection - accuracy

Introduction

Construction of a genome map is in progress for several livestock species (e.g., Fries
et al. 1989; Bitgood and Somes 1990; Georges ef al. 1990; Haley ef al. 1990; Brascamp et
al. 1991). A map of marker loci, i.e., loci showing Mendelian inheritance, is of use in
further mapping and utilizing loci affecting quantitative traits of economic importance and for
introgression and isolation of genes (Soller and Beckmann 1983; Kennedy et al. 1990).
Constructing a map of marker loci is laborious, hence optimal experimental designs and
efficient statistical procedures are important.

Methods to detect and estimate linkage between loci based on completely inbred lines
of plant and animal species have been extensively described (e.g., Mather 1951; Bailey 1961;
Ritter et al. 1990). Availability of inbred lines provides a way to optimize design of
experiments to map marker loci. Inbred lines are widely used in laboratory animals and
plants. For livestock species completely inbred lines are not available. Methods using
information from segregating populations have been developed in human genetics (Morton
1955, Ott 1991). Here, the influence of the researcher on the experimental design is limited.
Therefore, emphasis has been on development of efficient estimation procedures given the
data. In livestock species, however, experimental designs can be optimized. In most species
many paternal half-sibs and full-sibs can be obtained in a short period.
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In genome mapping experiments, a certain set of families is used to map marker loci.
In a segregating population a family can be a backcross, an intercross or another type. Once
families are selected they are used irrespective of their suitability for a specific pair of
markers. Therefore, parameters are needed to measure the effectiveness for detecting and
estimating linkage of different family types. Importance of a family type will be determined
by its frequency rather than its suitability. An overview of family types, value per family
type, frequencies of family types and other aspects of importance in designing an experiment
to map loci in a segregating population, is currently unavailable.

This paper describes factors infiuencing the quality of designs to map marker loci.
Family types will be described systematically. Experimental designs will be compared with
respect to detection of linkage and accuracy of estimates in segregating populations. Accuracy
will be the probability that true recombination rate is in specified interval given an estimated
value for recombination rate. For detection of linkage an approximate algorithm is developed
and evaluated. The accuracies of estimates obtained from two approximate methods are
compared with results obtained from simulation, Optimal designs are determined by varying
the mumber and size of full-sib families for different levels of recombination rate and
polymorphism of marker loci. In addition, the importance of knowledge of the linkage phase
of marker alleles in the parents is determined.

Notation and assumptions

The linkage relationship between two loci with completely codominant inheritance is
studied. Loci are denoted as A and B with alleles {A;,A, ...} and {B,B,,...} respectively.
Genotypes are given as A A;B,B, when the linkage phase or simply phase is unknown and
as A B,/A B, when the phase is known ('/' separates the two haplotypes).

Recombination rate is denoted as 9, its maximum likelihood estimate as ® and the true
value as 8,. The probability of a certain event x is denoted as F(x).

Observations are from full-sib families with information for two generations; i.e.,
genotypes are known without error for parents and offspring. Full-sib families are assumed
to be unrelated and of equal size.
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Methods
Estimation of recombination rate, The recombination rate between two markers is estimated
by maximum likelihood. The likelihood function for designs with genotype information on
parents and offspring of unrelated full-sib families is:
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where ; is the likelihood for family f, g, is the genotype of the sire, g, is the genotype of

the dam, g, is the genotype of the p® offspring of family £, hp; is the haplotype of the sire

given phase i, hy; is the haplotype of the dam given phase j, N, is the number of full-sib
families, n{f) is the number of offspring in family f and 8 is the recombination rate.

Three components determine the likelihood function: 1) information on the phase in
parents; 2) information on the gamete a parent transmits to an offspring; 3) identification of
parental gametes in offspring. These three factors will now be examined in more detail.

1) For a given genotype two phases are possible each with a probability of .5. When the
phase for one or both parents is known, e.g., derived from genotypes of grandparents,
the likelinood function can be simplified.

2) Ananimal with genotype A;B,/A B, produces the two non-recombinant gametes A;B, and
A B, and the two recombinant gametes A.B, and A;B,. Probabilities are .3 X (1-0) for the
two non-recombinant gametes and .59 for the two recombinant gametes. When an
animal is homozygous for locus A, A;B, can not be distingnished from A;B,. The
probability of a gamete which is either AB, or AB, is .5 X(1-8)+.5%X0=.5, i.e., the
probability does not depend on 0. The type of a gamete which is either AB, or AB, is
unknown and observing such a gamete provides no information about the recombination
rate. An animal can produce 3 types of gametes that are denoted as non-recombinant
(non), recombinant (rec) and unknown (un).

3) Information on genotype of an offspring and phases in parents is not always sufficient
to decide which alleles an offspring inherited from a parent. For example, let AB,/AB,
and A;B,./A;B, be genotypes of two parents and AA BB, the genotype of an
offspring. If i=i’, j=j', k=k’ and [+l then any gamete the sire produces differs from the
gamete the dam produces which enables identification of the parental gametes in
offspring. However, if i=i', j=j', i+#j and #+u for locus A then both A, and A, could be
inherited from either parent and parental gametes cannot be identified.
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Table 1 Information on gametes inherited and Pg,,, | hy, h,0) for the possible genotypes
of the offspring of parents with genotypes AB,/A,B, X AB/AB,

Genotype offspring Type of gametes P(gs, | Rpt,0)
AABB, = AB/AB, un,non b (1-8) x %
AAB,B, = AB/AB, un,non % (1-6) X ¥
AAB.B, = AB/AB, un,rec %O XY
AABB, = AB/AB, un,rec 0 x4

AABB, = AB/AB,or AB/AB,  unun
A AB B, = AB/AB, or A;B,/AB, un,un

%
%

R

8+ % (1-0)
8+ % (1-6)

Table 2 Information on gametes inherited and P(g, | k. k. 0) for possible genotypes of
offspring of parents with genotypes A,B,/A,B, X A,B//A,B,

Genotype offspring Type of gametes Pgpoy | by, B)
AA BB, = AB/AB, non,non 14 (1-0) X % (1-0)
AABB, = A,BJ/AB, non,non 1% (1-8) X ¥ (1-8)
AABB, = ABJ/AB, rec,rec “BexX%0
AMBB, = ABJ/AB, 1ec,Iec LOxX4%O
AABB, = AB/AB, or A,B/AB, non,rec’ 2x %O x¥(1-6)
A ABB, = ABJ/AB, or A,B,/AB, non,rec 2 x40 X %10
AABB, = AB/AB; or AB,/AB, non,rec 2 x 1o x %10
AAMB B, = A,B/AB, or A,B,/A B, non,rec 2x %0 x%(1-8)
AABB, = AB/AB, or A,B,/AB, 2 now?2 rec 2 x %(1-8) X A(1-0) +
or A,\B,/A,B, or A,B//A B, 2x®BOoxue

* Both possible combinations of haplotypes, given the genotype of the offspring and linkage
phases, include a non-recombinant gamete and a recombinant gamete; the factor in front of the
probability of this class is due to the two possibilities. For matings with other parental haplotype
combinations, it is possible that only one haplotype combination including one non and one rec
can be derived from the genotype given the haplotypes (e.g., A,B,/A,B, X A,B,/A,B, gives
AABBY). Py, | hyhy,) is then %4 (1-8) X % 8.

Offspring can be classified according to the type of gametes received from their parents.
Within one class, offspring have equal probability given parental phases, P(g, | Ah45.0),
in equation(1). The following seven c¢lasses can be distinguished:

un,un two gametes of unknown type

un,non one gamete of unknown type, one gamete non-recombinant

un,rec one gamete of unknown type, one gamete recombinant
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nen,non two gametes non-recombinant

non,rec one gamete non-recombinant, one gamete recombinant
rec,rec two gametes recombinant

2nonf2rec  two gametes non-recombinant or two gametes recombinant.

The first class can result from the mating A,B,/A B, X A,B,/A,B, where recombinant
gametes cannot be distinguished from non-recombinant gametes. Such a mating provides no
information. Offspring with genotype A A;B B, from mating A,B,/A,B, X A;B,/A,B, either
inherit two non-recombinant gametes or two recombinant gametes, i.e., class Znon/2rec.
Tables 1 and 2 give offspring for two different matings that contain examples for all classes.

For given parental phases two offspring with different genotypes can be in the same
class, i.e., have equal probability P(gyy | #..R5,8) in equation (1). For other parental phases,
these two offspring either have equal or different probabilities. Offspring which have equal
probabilities independent of parental linkage phase can be grouped in likelihood calculations.
All animals within a group have the same contribution to the likelihood function but the
contribution of the group might differ between parental phases. Let w, denote the k™ group
of offspring for family f. Without loss of information, equation (1) can be written as:

RW,

N2 2 mw
LO-TI Y. 3 TT[PO%| hphyp®™ Plhy | g )Pk | ) @
F=1 =1 j=1 k=1

in which n, denotes number of offspring in group w, and aw, number of groups in family
J. Expectation of the likelihood can be calculated easier from this equation than from equation

(1).

Family types. Families can be divided in seven groups according to possible classes of
offspring (Table 3). The probability that a family from a segregating population is of certain
type depends on polymorphism of the marker. For instance, any family will be of type I
when a marker has only one allele. Assuming Hardy-Weinberg equilibrivm and linkage
equilibrium, probabilities can be calculated for different family types using the frequencies
of the marker alleles.

For most family types, the parental phase does not affect the classes to which an
offspring can be assigned. For family types IV and V, parents have the same genotypes but
differ in phase. The classes to which an offspring can be assigned differ between parental
phases for these two family types. When parental phases are unknown, family types IV and
V can not be distinguished but have equal probability. All other family types can be
distinguished without knowing parental phases.
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Table 3 Gamete type inherited by offspring for the seven possible family types

Type of gametes

Family un,un un,non  un,rec  nom, hon  non, reC rec, rec 2non or
type 2rec

I *
I
I *
v

v

VI

VII

*
#*

* % ¥ %
*

I) none of the parents is heterozygous for both loci. This family type provides no information
about linkage; I} single backcross, both parents have the same alieles for the intercrossed locus
(e.g., A,B/A,B, X A B/AB,); II) double backeross (e.g., A,;B,/A,B, X AB,/A;B,)} or single
backeross in which the parents have at least one allele not in common for the intercrossed locus
(e.g., AB//AB, X AB/AB,y); IV) intercross between parenis with the same alleles for both
loci and unequal phase (e.g., A,B,/A;B, X AB,/A,B,); V} intercross between parents with the
same alleles for both loci and equal phase (e.g., A;B/A,B, X AB/AB,), VI) intercross
between parents with the same alleles for one locus and at most one allele in common for the
other lecus (e.g., A,B,/A,B, X AB,/A,B,); VII) intercross between parents in which both loci
have at most one allele in common (e.g., AB,/A,B, X A;B//A;B;).

Detection of linkage. To determine strength of evidence in favour of linkage the lod score
(Morton 1955) is commonly used. The lod score is defined as:

Z(B) =log,,(L(B)/ L(¥%)) &)

The maximum value of Z(0) is denoted by Z(6).

A maximum lod score of 3 and larger is regarded as significant evidence for linkage. A lod
score of 3 approximately equals a .05 probability of falsely positive linkage (Morton 1955;
Ott 1991). A maximum lod score is not available at the time an experiment is planned.
However, the expected maximum lod score can be calculated. This expectation provides a
measure of the expected amount of evidence for linkage from a design. The expectation for
the maximum lod score, E[Z(0)], given parental genotypes and phases is:

ND
Bz6))=Y PD,) Z,®) @)
x=1

in which D, is the data in realization x, NI is the number of possible realizations of data,
P(D,) is the probability for D, given 6 and phases, and Z,(8) is the maximum lod score for
data set x.
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The E[Z(8)] for a design with unknown phases is the weighted average of the E[Z(0))
for all the possible phases.

The number of data sets to be considered in exact calculation of E[Z(0)] increases
rapidly with number of families and number of offspring per family. Computational
requirements soon exceed a practical level. An approximate method to calculate E[Z(0)]
based on distributional properties of the lod score, is used.

The expectation of Z(8) over all realizations of data can be written as :

E[Z(6)1=E[l L(ﬁ) L® )] [log L(é)) [I 081, (ﬁ,)] (5)

L0, L(*%) “L@) L('%2)

The term 2]n(L(é)IL(9,)) has asymptotically a ¥* distribution (Kendall and Stuart 1978) with
an expectation over all data sets of 1. Equivalence between .217 x21n(L(é)IL(B,)) and

logm(L(é)l L{Ot)) leads to an approximation of the first part of (5):

E{log,({L(8)/L(6,)))= 217 B (2In{L(8)/ L(8,))} = 217 ©)

The second part of (5) [E (logm(L(B,)l L('/z)))], is equal to the expected lod score (Ott 1991).
The expected lod score is additive over families (Ott 1991) and can be calculated as:

L(®) Y 10) | 1,0) @
E|log,,—— |=E|1 S ¥ -V E|L ’
[ngL(‘/z)] [c’glof_1 1!(1/2)] fgl [Ogm lf(‘l/z))

where I, represents the likelihood for family f as defined by (1).

The fact that families of the same type and with equal number of offspring have equal
expectation can be used for further simplification:

N 1)\ e L 6, /d0)) (s
EE[logwI,(_‘/z)"]-ZmE[ ‘°1(v2)] % ™ e log“{ ’f("“’u)]

f=1 i=1 y=1

where i denotes family type, m; number of families of type i, 4, realization y of data for all
families of type {, nd; number of possible realizations of data for a family of type i, and P(d,))
probability of realization of d,,.
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Combining (6) and (8) results in an approximate E[Z(0)], E[Z(B)w]:

7 nd; 10, |d )
E[Z(é)ap] 217 .-§=1: m y2=l P(d,) 10315{ (Ve diy)]

In segregating populations, family type of a family is unknown at the start of an

experiment and the exact value of m; is unknown. Expectation for m, is calculated as the
product of number of families and probability that a family is of type i.

Exact calculation of the E[Z(8)] involves the maximization of many (]‘[}‘i‘j nd, where
nd; is the nurber of realizations of data for family f) likelihood functions. This number is
reduced considerably with approximation (9), i.e., reduced to 22:;1 nd,.

For families of type IIIII, VI or VII, E[Z(#)] is independent of the phases. To calculate
E[Z(6)] in these cases an arbitrary phase is assigned to a family when phases are unknown.
When a family can be either type IV or V given its parental genotypes, E[Z(8)] is calculated
for both cases. The average of both possibilities is used as an approximation to E[Z(0)].

Accuracy of estimation. Accuracy of estimated recombination rate (0) is measured as the
probability that true recombination rate {8} is in a specified interval given the estimate
(0=x). This probability is calculated as:

PO=x| ¥1<6,<y,) 10)

P(J’1<B¢<yz | g=x)_ ~
P(o=x)

where
Y2

P(B=x|y,<8,<y)= [P(B=x|6)1(6)d(®) and
M

5
PB=x)-= f P =x/6) f(B)d(®) with

0
y, and y, =lower and upper limits for 0, respectively and
f(6,) = prior density function of 9,

Calculation of (10) involves the probability density of estimates given true recombination rate
to calculate the probability that an estimate is in a certain range given 0, and a prior
probability density function of 6,.

The maximum likelihood estimate is asymptotically normally distributed and has
asymptotic variance equal to the inverse of the expected information (Kendall and Stuart
1978). Information is defined as the second derivative of the likelihood function. When
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parental linkage phases are known for a family of given type, expected information is a linear
function of the number of offspring in the family. For example, a family of family type Il
with n offspring has expected information /(0 X (1-8)). The relation between number of
offspring and expected information is nonlinear when parental phases are unknown.

The probability that an estimate is in a certain range for given 6, is approximated
assuming a normal distribution with variance equal to the inverse of the expected information.
The same approximation is used for the probability that true recombination rate is in a certain
range for a given value of the estimated recombination rate.

The prior density function of recombination rate between marker loci depends on several
factors: number of chromosomes of the species, lengths of chromosomes, physical
distribution of marker loci on chromosomes, and relation of distance and recombinaticn rate
between loci.

The following is assumed: loci have a probability of 1/20th to be located on the same
chromosome, loci are uniformly distributed over chromosomes with a length of 1 morgan,
and map distance and recombination raie are related by Haldane's mapping function (Haldane
1919). Following the approach of Morton (1955) the prior density function of 6, is:

A8) =05 —2_(51m(1-20)+1)| for 056,<.432;

1-26, (11)
£6)=0 for .432<0,<.5;
0)=-95 for 6,=.5

Simulation. The average value of the maximum lod score, the distribution of maximum
likelihood estimator of 8 and the distribution of 8, for a given value of 8 were all obtained
using Monte Carlo simulation.

The average maximum lod score was calculated for all seven family types for different
values of 0 and different number of offspring per family. In each simulated data set the
number of offspring in each group w;, was simulated using the probabilities of groups. The
probability of genotype group wy, for a given family type depends on 8. Values of .05 and
.20 for 6 and number of offspring of 2, 4, 8, 16 and 32 were used. For each alternative,
1000 data sets were simulated. In each data set Z(6) was computed and averaged to obtain
E[Z(8)].

The distribution of the maximum likelihood estimator of 8 was calculated from estimated
recombination rates in different replicates. Recombination rate was estimated from data
containing information from several families. The probability that a family is of a given type
was calculated from frequencies of marker alleles assuming Hardy-Weinberg equilibrium for
individual loci and linkage equilibrium between loci. These probabilities were used to simulate
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Figore 1 Relation between simulated expected maximum lod score and approximated
expected maximum lod score based on designs with 4 to 16 unrelated full-sib families with
4 to 16 offspring where each (+) represents a design

Table 4 Probability for family types for various number of equiprobable alleles

No. %Hetero Typel Typell Type Il TypelV TypeV Type VI Type VII

alleles Zygous
2 50 .56 .25 .13 03 .03 0 0
3 67 3l .09 41 .01 .01 .09 09
4 75 .19 .04 .46 .00 .00 .09 .22
5 80 .13 .02 44 .00 .00 .07 .33
6 83 .09 .01 42 .00 .00 .06 42
7 86 07 .00 39 .00 .00 .05 49
8 88 .05 .00 36 .00 .00 04 .55
9 89 .04 .00 33 00 .00 .03 .59
10 90 .03 .00 31 00 .00 03 .63
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family types for a data set. The following values were used: for 6: .05, .20 and .50; for
number of families: 1, 2, 4, 8, 16 and 32; for number of offspring per family: 2, 4, 8, 16
and 32. For each alternative, 10 000 data sets were simulated.

The distribution of 8, for a given value of § was determined for given number of
offspring per family and number of families. Simulations to obtain the distribution were as
follows. First, two markers were randomly located on a chromosome of 1 morgan using a
uniform distribution. The recombination rate between the markers was calculated from the
distance between the markers assuming Haldane's mapping function (Haldane 1919). Family
types and information on offspring were simulated for the simulated 0, and 6 calculated from
the data. This was repeated 100000 times. Number of realizations of (8 =x, 8, =y) were
counted. Second, 100000 data sets were simulated with markers located on different
chromosomes, i.e., for 8, =.50. Maximum likelihood estimates were calculated and number
of realizations of (8 =x, 6, = .50) counted. The number of realizations of (0 =x,8, = .50)
were multiplied by 19 to take into account that the prior probability that two markers are on
separate chromosomes is 19 times the prior probability that two markers are on the same
chromosome. Obtained from counts of (§ =x, 6,=y) were: distribution of 9, given § =x;
distribution of 0 given 6,=y; Py, <8, <y,| 8 =x); average value of 8, given 6 =x and
average value of 0 given 8, =y. The following values were used in simulations: for number
of families: 10, 20 and 40; for number of offspring per family: 4, 10 and 46.

Results
Detection. Figure 1 shows the approximated expected maximum lod score, E[Z(G),p], and
the expected maximum lod score obtained by simutation, E[Z(),,,], for alternatives with 4
to 16 families and 4 to 16 ofifspring per family. The E[Z(G)ap] agree with the expectation
obtained by simulation. The E[Z(B)ap] will be used in this study and called E[Z(8)] in the
remainder of this paper.

Probabilities of family types were calculated assuming a population in Hardy-Weinberg
equilibrium. Number of alleles per marker locus influenced the distribution of families over
family types (Table 4). The probability of family type I (least favourable family type)
decreased and the probability of type VII (most favourable family type) increased when
number of alleles increased. Heterozygosity of marker loci increased with increasing number
of alleles. The marginal change per additional allele decreased with increasing number of
alleles for both heterozygosity and probabilities of family types. The results in Table 4 show
a clear relation between the distribution over family types and heterozygosity. This relation
is expected to hold when number of alleles differs per locus and when alleles have unequal
frequencies.
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Table 5§ Expected maximum lod score (E{Z(8)]} for designs with one family for
different family types and number of offspring per family, for two values of 8, and when
phase is known; E[Z(8)] for phase known minus E[Z(8)] when phase is unknown is
given between brackets

Family type
No.
8,=.05
4 46{.19} 1.02{29 .87{26) 140{.54} 140{46}  1.93 {.59
8 1.01{28 1.93{30} 1.57{30} 2.62{60} 2.62{60}  3.68 {60}
16 1.93 {30} 3.68{30} 2.88{30} 5.00{60} 5.00{60} 7.12 {60}
32 3.68{30}) 7.12{30} 5.50{30} 9.74 {60} 9.74 {.60% 13.98 {.60}
0,=.20

4 31{14} 59{22} 35{14} .65{35} .65{20} 92 {.41}
8 .57{19} .92{25} .46{17} 1.03{46} 1.03{31}  1.57 {53}
16 .92{25} 1.57{28) .68{21} 1.80{55} 1.80{43}  2.90 {.59}
32 158 {29} 2.90 {30} 1.14 {26} 3.36 {60} 3.36 {.52}  5.58 {.60}

Table 6 Additional number of observations® on offspring to compensate for smaller
expected maximem lod score due to unknown phase for an average informative®” family
from populations with 2, 5 or 10 equiprobable alleles and 8, of .05 or .20

Known - 0,
No. alleles unknown' 05 30
2 .141 1.9 5.5
5 336 1.4 3.6
10 462 1.4 3.6

* Average difference in E{Z(8)] divided by the average E[Z({)] per observation on offspring.
Average EZ[(8)] per observation calculated as (E[Z(0)] at 32 offspring - E[Z(®)] at 16
offspring) / 16.

® An informative family is not of type 1

* Average difference in E[Z(8)] = difference in E[Z(0)] for family type Il (=.3) X probability
family type i + difference in E[Z(8)] for family type 11 (=.3) X prob. family type 1 + etc.

Table 5 gives the relation between E[Z(8)] and family type, number of offspring, 6, and
knowledge of parental phases. When phases were known, E[Z(8)] of family types I, II and
VII were in the proportion of .5:1:2, independent of 6, and number of offspring. This
proportion corresponds to the number of informative gametes for these family types. The
ratio between the E[Z(8)] for family type IV and family type III was close to .8 when
recombination rate was .05. The ratio was .4 when recombination rate was .20. For family
types V and VI, ratios with family type III were 1.4 when recombination rate was .05 and
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1.15 when recombination rate was .20. For family types IV, V and VI, there was no direct
relation between proportional E[Z(0)] and number of gametes.

The difference in E[Z(8)] due to knowledge of phase approached to a constant for each
family type with increasing family size (Table 5). As an explanation, consider the function
for the lod score for one double backcross family (family type IIT):

108y ®) = logm(&;f)"'—x

) = xlogm(e) + (n_x)logm(l_e) * "10310(2)
S0 (1-0yF ~ (1-8Y0"*)
5"

lod . ..(0) = log ,0{

= log,g(5) + logo{0°(L-8Y" (L + (B/(1-8)y">)) + nlog,(2)

= log,o(:5) + log,(1 + (8/(1-6))*"%)
+ xlog, (8} + (n-x)log,,(1-0) + nlog (2)

= lod,_(8) - 3 + log,(l + (8/(1-6))"%)

where x is the number of recombinant gametes, lod,,., i5 the function for lod score when
phase is known, and lod ., is the function for iod score when phase is unknown. The

expectation for x is 7 X 6,. The term log,, (1 +(8/(1-8))""%) goes to zero when z becomes

large and 8, is not close to .5. The difference between the lod score for phase known and
phase unknown is then a constant (.3), which equals to the difference in E[Z(®)]. Similar
relations occur for families of other types. The difference in E[Z(B)] approached .3 for
family types II, III and IV and .6 for family types V, VI and VIL

The additional number of observations on offspring needed to compensate for smaller
E[Z(6)] due to lack of knowledge of phases was dependent on family type and 6. Therefore,
the additional number of observations on offspring needed for an average family depended
on polymorphism of the marker and 6, (Table 6). The maximum of 5.5 occurred when
number of alleles was two and 6, was .2. The alternative for typing additional offspring is
typing grandparents (four additional observations). Partial or complete knowledge of phases
can be obtained from grandparents.

The average number of offspring in one family needed to obtain an E[Z(8)] of 3 is given
in Table 7 for three levels of marker polymorphism and two values of 6,. The required
number of observations on offspring was 19 for 8, of .05 and 55 for 6, of .20 when number
of alleles was two, which is twice the number required with five alleles.
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Table 7 Number of cbservations® on offspring for an E[Z(8)] of 3 for an average
informative family from populations with 2, 5 or 10 alleles of equal frequency and a 6,
of .05 or .20"

8,
No.
0. alleles 05 20
2 19 55
5 10 27
10 8 22

* Excluding observations on parents

* For each family type E[Z(0)] per observation is calculated from the difference between E{Z(0)]
with 32 offspring and E[Z(8)] with 16 offspring. A weighted average E[Z(9)] per observation
is calculated using the probabilities for the family types given the number of alleles

Table 8 Expected maximum lod score dependent on number of families and total
number of observations® on offspring for designs with family types due to chance (both
marker loci have two alleles), unknown phases and 8, = .05

number of families

No.

observations 1 2 4 8 16

32 2.26 2.11 1.85 1.43 90
64 4.44 4.30 4.01 3.48 2.64

* Excluding observations on parents

A given number of observations on offspring can be obtained by analysing different
mumbers of families. E[Z(8)] decreased if number of families increased and phase was
unknown (Table 8). For each family, information is used to estimate the phase. Therefore,
required number of observations to obtain an E[Z({6)] of 3 will increase when observations
on offspring are divided over more than one family. Further, number of observations
increases with number of families because for each family two parents must be genotyped.

Accuracy. In Table 9 the mean and standard error for 8 are given for different numbers of
observations, 0, and full-sib family size. Observed standard errors were obtained from
replicated simulations. Standard errors were approximated using the second derivative of the
correct likelihood function (o,,) and the likelihood function where parental phases were
assumed known (g,,,). Estimated recombination rates were biased upward for 6, of .2. For
6, of .05 an upward bias was observed when number of animals per family was 4. Downward
bias was found for 0, of .5 which is inevitable because estimated recombination rates are
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restricted to be between 0 and .5. The bias diminished with increasing number of
observations. For a given number of observations, bias was less when number of observations
per family increased. Observed and approximated standard errors agree closely for designs
with 120 or more observations when 6, is .05 and 240 or more observations when 6, is .20.
With fewer observations both approximations underestimated standard error. Standard errors
approximated using the correct likelihood function (o,,,) were closer to observed standard
errors for 6, of .2. Expected information: calculated from the correct likelihood function is
zero for unlinked loci and as a result o, does not exist for 8, of .5.

Table 9 Average estimated recombination rate, observed standard error (o,,.), standard
error approximated using likelihood function assuming parental phases known (o,,) and
standard error approximated using correct likelihood function (e,,,) for designs varying
in number of families, family size and O; one marker has two alleles with equal
frequency and one marker locus has six alleles with equal frequency, parental phases are
unknown

4 offspring per family, 10° offspring per family,
8, No. 6 observations per family 12 observations per family
obs®
o O o Oy 6 Ops O O
.05 30 057 .083 055 057 .052 067 051 051
60 .053 045 039 040 050  .039 .035 .035
120 .051 030 028 028 051 027 025 025
240 051 021 020 020 049 018 017 018
480 050 014 014 014 050 013 .012 012
960 .050 .010 010 010 050 009 009 009
200 30 247 166 107 124 219 (136 .098 102
60 228 JA22 076 088 213 094 .064 .067
120 210 084 053 062 203 035 .048 .049
240 .203 .049 038 044 202 036 034 035
480 202 032 027 031 200 025 024 025
960 201 023 019 022 200 018 .017 017
500 30 407 140 144 ¢ 430 110 131 #
60 414 109 102 * 441 086 091 *
120 426 .093 .072 * 447 068 .064 ¥
240 436 077 051 = A59 054 .045 *
480 449 062 036  * 463 046 032 *
960 457 .052 025 * 470 038 023 *

* No. obs = number of observations on parents and offspring
® For 30 observations, three families each with eight offspring were taken
* g,., was undefined (1/0) for 0, is .5

ap2
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Figure 2 Cumulative difference between simulated and approximated probability of estimated
recombination rate given frue recombination rate of {a) .05 and (b) .20 for designs with two
equiprobable alleles and three sizes

The observed cumulative probability distribution of the estimates is compared with the
cumulative normal distribution in Figure 2. For ten families of four offspring and two alleles
for each locus, observed probabilities for estimates of 0 or .5 were larger than probabilities
calculated from the normal distribution. Differences might be expected since the normal
distribution function is approximate for large numbers because of the central limit theorem.
With increasing numbers, the deviation between the approximation and the observed
distribution became smaller and was negligible for 400 observations. Probabilities that
estimates were in a certain interval, given a true recombination rate, could be adequately
approximated using the normal distribution for larger designs.

Gene maps or parts of gene maps are often evaluated based on spacing between
considered loci. A logical assumption is that, on average, true recombination rate is equal to
a given estimated recombination rate. It is not obvious whether or not this assumption is
always correct. In Figure 3 average true recombination rates are plotted against estimated
recombination rates. For alternatives with ten families and four or ten offspring per family,
average true recombination rate deviated from given estimated recombination rate. This
deviation can be explained by the .95 prior probability that §, is .5 and the large variance of
the estimator when number of observations on offspring is small.
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Figure 3 Average true recombination rate for given estimated recombination rate.

For 100 000 replicates true recombination rate was sampled from zero to .5 and for 100 000
replicates true recombination rate was .5. Based on true recombination rate data were
simulated. Replicates were classified in fifty classes according to estimated recombination
rate. Because the prior probability that true recombination rate is .5 is 19 times the prior
probability that true recombination rate is between O and .5, replicates with a true
recombination rate of .5 were weighted by a factor 19. For each class average true
recombination rate was calculated. Simulation was done for four designs with two alleles of
equal frequency and (a) ten families with four offspring, (b) ten families with ten offspring,

(c) 40 families with ten offspring, and (d) 20 families with 46 offspring.



26 Chapter 2

0.501 r
—— 10 families with 4 offspring

0.25 | ——-10 families with 10 offspring

..... 40 families with 10 offspring

0.00

-0.25

-0.501

-0.751

Cumulative difference in probability

a

" — 1

00 01 02 03 04 0500 01 062 03 04 05

True recombination rate True recombination rate

Figure 4 Cumulative difference between simulated and approximated probability of rrue
recombination rate given estimared recombination rate of (a) .05 and (b) .20 for designs with
two equiprobable alleles and three sizes

Most of the deviation between estimated and average true recombination rate disappeared
when only replicates were considered where 8 was significantly different from .5, i.e., Z(6)
larger than 3. For the design with ten families and four offspring per family almost no
replicates had a Z(6) above 3. The latter observation is consistent with the fact that for large
designs the deviation disappeared: recombination rates can only be significant if sufficient
observations are available.

The difference between observed cumulative probability of 8, given 8 and approximated
normal probability is plotted in Figure 4. In all cases observed cumulative probability was
smaller than approximated. With ten families, four offspring per family and 6 of .05, for 6,
of .49 approximated cumulative probability was .34 larger than observed cumulative
probability. As expected, no difference was found for 6, of .5. The observed probability that
0, is .5 for 0 of .05 was underestimated by .34 using the approximate distribution function.
For that design the probability 0, is smaller than .2 for an 8 of .05 is overestimated with .42
by the approximate distribution. For larger designs this difference was negligible. For an 8
of .2 the probability of 8, is .5 was underestimated by .91 using the approximate probability
function for designs with ten families of four or ten offspring each (Figure 4). For the largest
design, the approximated cumulative distribution was in good agreement with the observed
distribution.
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Table 10 Simulated and approximated probability that true recombination rate is in a
specified interval (.15 < 6, <.25) given estimated recombination rate is .20

No. families Family size = No. alleles P(obs) Papprox1) Papprox2)
10 4 2 .0335 1029 .3507
6 3013 .6438 6359
10 2 .1456 4600 .5279
6 .8786 .8543 8487
40 10 2 .8496 .8529 .8495
6 9972 9963 9959
20 46 2 9748 9721 .9708
6 1 .9999 9999
Plobs) : Observed probability, calculated from simulation (100 000 replicates)
P(approx1): The term P |.15< 6, <.25) from equation (10) is approximated using the normal
distribution

P(approx2): P(.15< 8, <.25]8) is entirely approximated using the normal distribution

In Table 10 observed and approximated P(y, < 8, <y, | 8 =x) are given. Two approximations
were used. In both methods P{O =x) is calculated as P{x-.005 <8 <x + .005). In the first
approximation, probability on an estimate for a given value of 0, or PO =x8,=y), is
calculated assuming a normal distribution of & around 8,. Multiplying P8 =x | 6,=y) by the
prior probability of 6, integrating over 6, and applying equation (10) completes the first
approximation. In the second approximation, true recombination rate is falsely assumed to
be normally distributed around 8 and an approximation of accuracy is directly obtained from
the normal distribution. The second approximation is much more rigorous since the prior
probability function of 8, is ignored. However, Table 10 shows that both approximations
worked equally wetl for the studied alternatives. The first approximation was only better for
alternatives for which both approximations were bad. For designs larger than ten families
with ten offspring and six equiprobable alleles per locus, approximations were similar and
the deviation between observed and approximated probabilities was small.

Discussion

The expected value of maximum lod score and accuracy of an estimated recombination
rate were used to describe and study quality of experimental designs. Ott (1991) argued that
the expectation of maximum lod score is not additive over families and has no clear
probabilistic interpretation. He concluded that expectation of lod score, for a given value of
8, should be preferred because this expectation is additive over families. The approximated
expected maximum lod score, used in this study, was calculated as the sum of expected lod
score and a constant. Taking the constant into account resulted in good approximation of the
real situation where data of several families were used (Figure 1).
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The approximate methods served two purposes. First, they simplified computations.
Second, comprehension of the behaviour of estimators was enhanced.

Number of full-sib families, number of offspring per family and knowledge of phases
were shown to affect EfZ(0)] (Tables 5 and 8). E[Z(6)] was larger when phase was known.
The additional number of observations on offspring needed to compensate for lack of
knowledge of phases was within a reasonable range (< 6 for 0,<.2, Table 6). Typing
grandparents to determine the parental phase is not an alternative reducing the number of
typings to be done for that range of 6,. However, the additional number of observations on
offspring will increase for larger 8,. For 0, larger than .20, obtaining information on parental
phase might be worthwhile. The aim of most genome mapping projects is to create a map
with markers spaced by no more than 20 centimorgans. In such projects DNA of
grandparents is not reaily needed. Hetzel (1990) pointed out that typing grandparents provides
a check for consistency of segregation. However, typing many offspring also provides a
check. The possibility of typing errors emphasizes the necessity of typing many offspring per
family rather than typing grandpafents.

In this paper, designs with unrelated full-sib families were studied. Elements influencing
the quality of designs are most clearly illustrated for this class of designs. Computations are
simple. The results for these designs can be used for all other designs with information on
parents and offspring when parental phase is known. In a hierarchical half-sib structure with
equal number of offspring per dam and several dams per sire, fewer sires are used compared
to a full-sib structure with the same number of dams and offspring. When parental phases are
unknown, fewer sires means that less information will be used to infer parental phases from
the data. As a consequence E[Z(0)] will be larger for the hierarchical half-sib structure.

Results in Table & showed that E[Z(8)] can be maximized by minimizing number of
families. A minimum number of families is not necessarily optimal, however. With a
minimum number of families the variation in realized maximum lod score is maximal and,
as a consequence, the probability of having no information is maximal. The risk due to large
variation in outcome of an experiment can be summarized by the probability of no
information. Assume the probability of no information is to be less than .10. The necessary
number of families can be calculated as -1/ log (P(typeI)) where P(typel) is the probability
that a family is of type I. For a design where marker loci have two equiprobable aileles,
Ptypel) is .5625 and the probability of no information is .1 when number of families is four.
Given this number of families, the number of offspring per family resulting in E[Z(8)] = 3
can be calculated. When marker loci have two equiprobable alleles, four families each with
33 offspring are needed for E[Z(8)] = 3. When marker loci have four equiprobable alleles
the probability of no information is .04 with two families and in that case 21 offspring per
family are needed for a E[Z(8)] of 3. The number of offspring per full-sib family in these
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examples is larger than that available in most livestock species. The restriction on probability
of no information will not change the optimai design when number of offspring per family
is less than 20. There is, however, still a risk that the realized maximum lod score in an
experiment is lower than E[Z(0)]. A more general approach is to look at the power of a
design.

The relation between marker polymorphism and distribution over family types
demonstrated the advantage of highly polymorphic markers (Table 4). Research of Georges
et al. (1990) in cattle showed an average heterozygosity of 51 % for VNTR markers and 65%
for microsatellites. These heterozygosities correspond to about two or three alleles of equal
frequency (see Table 4), or more alleles of varying frequencies. Consequently, on average,
a considerable proportion of the families will provide no, or less than maximal, information
on linkage.

Bochnke (1986) described a simulation approach by which average maximum lod scores
and power can be obtained for any design. For plants, elements of the design of experiments
are described in standard text books (e.g., Mather 1951; Bailey 1961; Green 1981).
Restriction is usually made to designs with double backcrosses or intercrosses, family types
IH and V respectively, and known phases. This study described all possible family types in
a segregating population and paid attention {o families larger than those used for human
linkage studies. The derived algorithm considers marker polymorphism, all family types and
can be used for varying full-sib family sizes and number of families. The method of Boehnke
(1986} is general and further calculates power but requires simulation of many replicates for
each design to be evaluated.

Accuracy was calculated from the distribution function of 8, for a given value of 8,
Elements of the function were studied and compared with approximations. Bias in the
estimate of recombination rate, given a 0, for designs with few observations, could be
explained by the observed distribution of the estimates. Bias of estimated recombination rates
was studied in more detail by Bolling and Murphy (197%9). For designs larger than or equal
to ten families with ten offspring, use can be made of the normal distribution with
approximated standard error to calculate the probability for an estimate given a true
recombination value.

The use of the prior probability density of 6, in linkage studies has been advocated by
Smith (1959), Smith and Sturt (1976}, Silver and Buckler (1985) and Neumann (1990,1991).
This approach considers the .95 probability that loci are unlinked. The effect of prior density
of true recombination rate is shown in Figure 3. The .95 probability of no linkage resulted
in a large deviation between true and estimated recombination rate. The influence of the large
probability of unlinked loci on average estimated recombination rate could be reduced by
considering only replicates which had an estimate for 0 significantly different from .5.
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For large designs, inferences about true recombination rate can be made using the
normal distribution and the approximated standard error. For small designs, a restriction
needs to be made to significant recombination rates. Results of this study emphasize the
necessity to use significant estimates because non significant estimates are not only inaccurate
but, on average, are very different from true recombination rates.
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Abstract

The development of dense linkage maps consisting of highly polymorphic loci for livestock
species is technically feasible. However, linkage mapping experiments are expensive as they
involve many animals and marker typings per animal. To minimize costs of developing
linkage maps for livestock species, optimizing designs for mapping studies is necessary. This
study provides a general framework for evaluating the efficiency of designs for reference
famnilies consisting of two- or three- generation full-sib or half-sib families selected from a
segregating population. The influence of number of families, number of offspring per family,
family structure (either half-sib or full-sib) and marker polymorphism is determined.
Evaluation is done for two markers with a recombination rate of .20 and for a marker and
a dominant single gene with a recombination rate of .20. Two evaluation criteria are used:
expected maximum lod score for detection of linkage and accuracy of an estimated
recombination rate defined as probability that the true recombination rate is in an interval
around the estimated recombination rate. First, for scveral designs the contribution of
reference families to expected maximum lod score and accuracy is given. Second, the
required number of families in a design to obtain a certain value for the evaluation criteria
is calculated, when number of offspring per family, family structure and mmarker
polymorphism are specified. The required numbers increase when designs are optimized not
only for expected maximum lod score but also for accuracy. The required number of animals
to map a dominant single gene is very large. Therefore, a set of reference families should be
designed for strictly mapping marker loci. Examples illustrate how tabulated results can be
generalized to determine the values for a wide range of designs containing two- or three-
generation full-sib or half-sib families.

Key words: gene mapping - design - segregating population - dominant loci - codominant loci

Introduction

The development of dense linkage maps consisting of highly polymorphic marker loci
is technically feasible due to the discovery of classes of hypervariable loci and developments
in molecular technology, especially PCR technology. This has been exploited fuily for the
human and mouse resulting in dense linkage maps (Dietrich ef al. 1992; Weissenbach ef al.
1992). The number of highly polymorphic markers mapped on public domain linkage maps
in livestock is limited (poultry: Bumstead and Palyga 1992; cattle: Barendse e af. 1992;
Womack 1993; pigs: Andersson ef al. 1993), despite the many research groups working on
mapping genes. Major efforts are still needed for (1) isolating markers and (2} mapping
markers.

Mapping experiments are expensive and time consuming as they involve reference
families with many animals and many marker typings per animal. Optimizing designs for
reference families is necessary to minimize costs and maximize the efficiency of a design of
a given size.

Methods to evaluate designs for human mapping experiments have been described and
applied by Ott (1991). Polymorphism has a major influence on the efficiency of designs (e.g.,
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Ott 1991). Polymorphism determines the probability that a parent is heterozygous at two loci,
this is necessary for identification of the linkage state in the gametes transmitted by the
parent. True recombination rate between loci is a second important factor. The number of
individuals needed to significantly distinguish an estimated recombination rate from .5
increases with increasing true recombination rate. A third major factor is the ratio between
the number of typed animals and the number of observed segregations of gametes, which
depends on the number of offspring per parent. White ez al. (1985) compared a design with
several three-generation families to a design with one multigeneration family and found the
three-generation family structure to be more efficient. Using the results of human genetic
studies, general outlines for the use of reference families for mapping experiments in
livestock were given by Heizel (1991). However, no study is available that evaluates the
design of reference families taking into account the locus polymorphism in the segregating
population and the structure of the reference families. Furthermore emphasis has been on
efficiency for detection of linkage and little attention has been paid to efficiency for accurate
estimation of recombination rates.

Van der Beek and Van Arendonk (1993) determined the influence of some factors on
the efficiency of a mapping experiment using full-sib reference families selected from a
segregating population. They presented methods to calculate two criteria to evaluate the
design of reference families: expected maximum lod score and accuracy. Expected maximum
lod score assesses the efficiency of a design to detect linkage and is for example used to
evaluate designs for linkage analysis between markers and a dominant locus for a quantitative
trait (Boehnke 1990). Expected lod score, as used by Ott (1991) and Hodge (1992), and
expected maximum lod scores differ by a constant value (Van der Beek and Van Arendonk
1993). Accuracy is defined as the probability that the true recombination rate is in a specific
interval around the estimated recombination rate and can be calculated from the Fisher
information used by Ott (1991).

This study provides a framework for evaluating and optimizing the design of reference
families selected from a segregating population to estimate and detect linkage between either
two marker loci or a marker locus and a dominant single gene. The expected maximum lod
scores and Fisher information for two-generation full-sib and two-generation half-sib families
with varying nmmbers of offspring are given for different values of polymorphism at marker
loci and dominant single genes. Results for families of different sizes can be used to obtain
expected maximum lod scores and accuracies for any design containing unrelated two and/or
three generation full-sib and/or half-sib families of any size and with any degree of
polymorphism at the marker loci. In addition, it is shown how to use these results to
determine the number of families of a certain size required to obtain a specified expected
maximum Jod score or a desired accuracy. Various examples illustrate the calculations.
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Methods

Reference families from segregating populations. Reference families are selected from a
segregating population which is assumed to be in Hardy-Weinberg equilibrium and linkage
equilibrium (Falconer 1989} for marker loci and single genes. Alleles of marker loci are
assumed to be codominant. Four different types of reference families are considered:
(1)  two-generation full-sib families with sire, dam and offspring typed for marker loci and
{dominant) single genes;
(2}  two-generation half-sib families where the sires are mated to many dams and all dams
have one offspring; sires and offspring are typed, dams are not typed;
(3)  three-generation full-sib families with all grandparents, parents and offspring typed;
)] three-generation half-sib families with parents of the sire, sire and half-sib offspring
typed.
For three-generation families it is assumed that linkage phase in parents can be inferred from
the genotypes of the grandparents. Probability of a parent being double heterozygous for a
pair of loci depends on the polymorphism at both loci.
Polymorphism of a locus will be defined as the number of alleles at a locus and their
frequencies. Heterozygosity is another parameter that describes a locus but it is less specific
because for a given heterozygosity the number of marker alleles and their frequencies can

vary.

Expected maximum lod score. The lod score (Morton 1955) is commonly used to test
significance of linkage. The lod score expresses the likelihood of observed data given the
estimated recombination rate relative to the likelihood of observed data given a recombination
rate of .5. Linkage is significant at a level of p< .05 when the lod score is larger than 3
(Morton 1955).

To determine the efficiency of a design for detecting linkage, the expected value of
the maximum lod score is used. Expected maximum lod score is calculated according to Van
der Beek and Van Arendonk (1993). Expected maximum lod score depends on the true
recombination rate. Results in this study are given for a true recombination rate of .20
between either two marker loci or a marker locus and a dominant single gene. This
recombination rate corresponds with the suggested recombination rate for marker loci
(Botstein et al. 1980).
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For two-generation designs the expected maximum lod score (E[Z(8)]) is equal to a
constant (.217) plus the sum of the contributions of NF families (Van der Beek and Van
Arendonk (1993)):

# families
E[Z(®)] = 217 + Y contribution of family i
‘
The constant of .217 is equal to the difference between expected lod score and expected
maximum lod score.

The contribution of a family depends on the number of offspring in the family and is,
for a given size, calculated as the weighted sum over all possible parental genotype
combinations. The probabilities for parental genotype combinations are calculated from the
polymorphism at the loci.

The contributions of families to E[Z(6)] are calculated for two-generation full-sib and
two-generation half-sib families in which the recombination rates between two markers are
estimated and in which the recombination rates between a marker and a dominant single gene
are estimated. The number of offspring per family was varied to include families
representative of different livestock species and to provide situations which allowed for the
calculation of the contribution of an additional offspring in an average family.

The contribution of a family to E[Z()] can be used to calculate the E[Z(8)] of a
design and to calculate the number of families needed to obtain a desired level of E[Z(8)].
When desired E[Z(8)] is 3, the summed contribution over all families has to be 3 minus the
constant .217. When the contribution of a family under the conditions of the design (family
size, family structure and marker polymorphism) is Y, then the required mumber of families
is (3-217)/ Y.

Accuracy. Estimates which are significantly different from .5 but which are inaccurate have
limited value. Accuracy is estimated by the probability that the true recombination rate is in
a specified interval around an estimated recombination rate which is significantly different
from .5 (Van der Beck and Van Arendonk 1993). Accuracy can be approximated using
Fisher information (Van der Beek and Van Arendonk 1993). Fisher information is a measure
of the amount of information in a design for estimnating a parameter {in this study the
recombination rate) and is approximately equal to one over the variance of the estimated
parameter (Kendall and Stuart 1978). Fisher information is calculated from the second
derivative of the likelihood function which is used to estimate the recombination rate (Kendall
and Stuart 1978). The approximate method assumes the true recombination rate to have a
normal distribution with a mean equal to the estimated recombination rate and a variance of
one over the Fisher information (Van der Beek and Van Arendonk 1993). For estimated
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recombination rates which are not significantly different from .5, the assumption of a
normally distributed true recombination rate is not justified (Van der Beek and Van Arendonk
1993). In the present study, the approximate method is used to calculate the accuracy of
estimates which are significantly different from .5. When Fisher information for a design is
known accuracy can be obtained from tables of the standard normal distribution.

In the remainder of this paper accuracy is defined in a more strict sense as the
probability that the true recombination rate is between .15 and .25 when the estimated
recombination rate is .20. The contribution of a family to Fisher information depends on
family structure, the number of offspring in the family, marker polymorphism and
recombination rate but does not depend on the other families. For more details on the
methods used see Van der Beek and Van Arendonk (1993).

Results

Expected maximum lod score for linkage between two marker loci. Table 1 gives
contributions to expected maximum lod score for two-generation full-sib families with
different numbers of offspring per family and levels of marker polymorphism. For marker
loci with two equiprobable alleles, the contribution of a family with 4 full-sib offspring was
.029, while with 20 full-sib offspring the contribution was .365, i.e., contribution increased
12 times for a five fold increase in the number of offspring. The contribution to E[Z(8)] per
additional offspring was constant when the family had more than 20 offspring. The linear
increase (dEZ) is given in the last column of Table 1 and can be used to calculate the
contribution of full-sib families with 20 or more offspring.

Marker polymorphism (defined as the number of alleles and their frequencies) had a
clear effect on the contribution to E[Z(0)} of a full-sib family. Increasing the number of
equiprobable alleles from 2 to 10 gave a five fold increase in the contribution to E[Z(8)] of
a full-sib family. The effect of marker polymorphism is caused by an increase in
heterozygosity and in the number of marker alleles. The effect of number of alleles was
largest for a heterozygosity of 50% (Table 1). The centribution te E[Z(8)] almost doubled
when the number of alleles increased from two to four. For a heterozygosity of 90%
increasing the number of alleles from 10 to 20 had a marginal effect. The influence of the
number of alleles at a constant level of heterozygosity can be explained as follows. If two
parents have the same heterozygous genotype, then the alleles which they transmit to
heterozygous offspring can not be identified. As a consequence these offspring contribute
littie or nothing 1o the estimate of the recombination rate. With an increasing number of
alleles and a given level of heterozygosity, the probability of both parents having the same
heterozygous genotypes decreases. The effect of the number of alleles on contribution to
E[Z(8)] for a given level of heterozygosity also applies when half-sib families are used to
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estimate recombination between two markers and when recombination between a marker and
a dominant single gene are estimated for full- or half-sib families. In the following tables
results are given for one number of alleles per level of heterozygosity.

Half-sib family contributions to E[Z(6)] for estimates of linkage between two marker
loci are given in Table 2. For two equiprobable alleles, the contribution to E[Z(8)] was .003
for 4 offspring and .050 for 20 offspring, i.e. a 16 fold increase in E[Z(0)] for a five fold
increase in the number of offspring. For 10 equiprobable alleles and 20 offspring the
contribution was .858. Increasing the number of alleles from 2 to 10 caused a 16 fold
increase in the contribution to E[Z(8)] which was larger than the seven fold increase caused
by the same increase in the number of alleles for a full-sib family (Table 1). For equal
marker polymorphism and an equal number of offspring, the contribution of a half-sib family
was always less than half that of a full-sib family (Table 1).

Tables 1 and 2 can be used to obtain the E[Z(6)] of any design given a true
recombination rate of .20. This is illustrated in example 1.

Table 1 Contributions to E[Z(8)] of two-generation full-sib families with 4 o 40
offspring and contributions per additional offspring (dEZ) for two marker loci with a
true recombination rate of .20 and varying polymorphism

Number of offspring
No. Hetero-

alleles* zygosity 4 6 10 20 40 dEZ
2e 50 029 .060 137 .365 .B55 .025
3 56 051 .101 219 547 1.23 034
4 50 056 111 .240 .598 1.36 .038
3 60 073 144 31 7176 1.74 .048
4 60 .081 159 344 .855 1.91 .053
3e 67 093 181 .387 .964 2.16 .060
4 70 112 220 473 1.17 2.61 .072
5 70 116 229 492 1.22 271 075
4e 75 .131 257 551 1.36 KNL .084
e 80 155 306 658 1.63 3.62 100
10 80 158 318 .688 1.70 3.77 104
20 80 160 322 697 1.72 3.82 05
10e 90 204 408 .884 2.18 4.85 34
20 90 204 411 .891 2.20 4.88 34

* Marker polymorphism is determined by number of alleles and level of heterozygosity. An 'e’
is added to number of alleles when alleles are equiprobable; otherwise all but one alleles are
equiprobable.
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Table 2 Contributions to E[Z(0)] for two-generation half-sib families with 4 to 40
offspring and contribution per additional offspring (dEZ) for two marker loci with a true
recombination rate of .20 and 2 to 10 equiprobable alleles

Number of offspring

No. Hetero-
alleles Zygosity 4 6 10 20 40 dEZ
2 50 .003 .006 015 .050 .140 005
3 67 .013 029 072 .210 .529 016
4 75 026 056 133 .370 891 026
5 80 .037 .079 .185 .500 1.18 .034
10 90 071 147 332 .858 1.95 .055

Table 3 Contributions to E[Z(8)] of two-generation full-sib families with 4 to 40
offspring and contributions per additional offspring (dEZ) when estimating recombination
between a marker locus and a dominant single gene. The marker locus has 2 to 10
equiprobable marker aileles (No. alleles) and the dominant gene varying frequencies of
the dominant allele (f,,). The true recombination rate between the marker and the
dominant gene is .20

Number of offspring

Ne. faom

alleles 4 6 10 20 40 dEZ
2 2 017 037 .085 223 519 015
5 012 028 066 181 438 013

.8 002 005 013 037 .095 003

3 2 030 064 144 368 837 .023
.5 022 049 113 303 705 .020

.8 004 .009 .022 .063 152 004

4 2 .036 077 172 439 .999 028
5 027 057 133 355 841 024

.8 .005 010 025 072 .181 005

5 2 041 .086 .192 486 1.09 030
5 .030 .066 152 402 922 026

8 006 012 030 084 .198 006

10 2 047 099 221 562 1.27 035
5 034 074 171 455 1.07 .031

.8 006 013 032 .092 232 007

Example 1 Design: both marker loci have six equiprobable alleles and three two generation full-sib
families each with 22 offspring are used. The contribution to E[Z(8)] of a family with 22 full-sib
offspring is not given directly in Tabie 1. It can be obtained from Table 1 as follows. The contribution
to E{Z(B)] of a family with 20 offspring is 1.63 for five equiprobable alleles. The contribution per
additional offspring (dEZ) is .10. Therefore, the contribution of a full-sib family with 22 offspring
Jor five equiprobable alleles is 1.63 + (2 x .100) = 1.83. Likewise, the contribution of a full-sib
Jamily with 22 offspring for 10 equiprobable alleles is 2.18 + (2 x.134) = 2.45. A linear
relationship between heterozygosity and E[Z (B)] is assumed in the determination of the E[Z (0] for
6 alleles from the E[Z (O)] for 5 and 10 aileles. For 5, 6 and 10 equiprobable alleles, heterozygosities
are .80, .8333, and .90, respectively. The contribution of a full-sib family with 22 offspring and 6
equiprobable alleles is 1.83 + [(.8333-.80)/(.90-.80)] % (2.45-1.83) = 2.04. Thus E{Z(D)] for the
recombination between two markers with a true recombination rate of .20 for this design is .217 +
(3 x 2.04) = 6.34
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Table 4 Contributions to E[Z(6)] of two-generation half-sib families with 4 to 40
offspring and contributions per additional offspring (dEZ) when estimating recombination
between a marker locus and a dominant single gene. The marker locus has 2 to 10
equiprobable alleles (No. alleles) and the dominant gene varying frequencies of the
dominant allele (f,, ). The true recombination rate between the marker and the dominant
gene is .20

Number of offspring

No. fiom
alleles 4 6 10 20 40 dEZ
2 2 002 .006 012 .049 129 .0041
5 001 .003 007 .025 .077 0028
.8 000 .000 000 .002 .008 L0003
3 2 006 .014 1033 .099 249 0077
5 003 .006 .016 .054 .155 0054
8 000 .000 001 005 018 0007
4 2 008 .019 046 131 324 0097
5 004 .009 023 073 206 0067
.8 000 001 002 .007 025 L0009
5 2 .010 023 054 153 373 0111
.5 004 010 027 .086 240 0080
.8 000 .000 002 .008 029 L0011
10 2 015 .031 074 202 483 0141
.5 .006 .014 037 117 317 0100
.8 000 .001 003 012 .040 L0014

Expected maximum lod score for linkage between a marker locus and a dominant single
gene. In Tables 3 and 4 the coniributions of families to E[Z(8)] for estimating the
recombination rate between a marker and a dominant single gene are given.

Table 3 gives full-sib family contributions to E[Z(®)]. For a dominant single gene,
which had alleles D and d, different frequencies of the dominant allele were studied. For two
marker alleles and a frequency of D of .5 the contribution to E[Z()] was .012 for 4
offspring and .181 for 20 offspring, i.e., increasing number of offspring five times caused
a 15 fold increase in E[Z(8)]. Full-sib family contributions to E[Z(B)] for estimating
recombination between a marker and a dominant single gene were smaller than contributions
for estimating the recombination rate between two markers (Table 1). The reasons for this
are that heterozygosity of a dominant gene is limited and that heterozygous Dd offspring can
not be distinguished from homozygous DD offspring. A family is uninformative if either of
the parents is homozygous DD. The probability that a parent is homozygous DI} increases
with the population frequency of D. Table 3 shows the effect of the frequency of the
dominant allele on the contribution on E[Z(8)]. For two equiprobable marker alleles and four
full-sib offspring, contributions to E[Z(6)] were .017, .012 and .002 for frequencies of D of
2, .5 and .8, respectively.
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Table 4 gives contributions to E[Z(8)] for half-sib families. The contributions were
low compared to full-sib family contributions. Full-sib family and half-sib family
contributions are most easily compared by looking at the contribution per additional offspring
(dEZ). For two marker alleles and a frequency of D of .2, dEZ was .0041 for a half-sib
family (Table 4) and .015 for a full-sib family (Table 3). For two marker alleles and a
frequency of D of .8, dEZ was .0003 for a half-sib family compared to a dEZ of .003 for
a full-sib family (Table 3). For a half-sib family the effect of increasing the frequency of D
was larger than for a full-sib family.

The use of Tables 3 and 4 to obtain E[Z(8)} is illustrated in example 2.

Example 2 Design: a marker has four equiprobable marker alleles and the frequency of the dominant
allele D is .5. Four half-sib families with 37 offspring and three half-sib families with 61 offspring
are used for estimating linkage between a marker and o dominant single gene. (Given the marker
polymorphism and the frequency of the single gene, a half-sib family with 37 offspring has a
comribution of .073 (= contribution of 20 offspring) + (17 X .0067) = .187. A half-sib family with
61 offspring has a contribution of .206 (=contribution of 40 offspring) + (21 X .0067) =.347. Thus,
for this design, E{Z(B)] is .217 + (3 % .347) + (4 x .187) = 2.006.

Required number of reference families for a specified expected maximum lod score. The
number of families required for a specific E[Z(8)] given marker polymorphism, frequency
of D and number of offspring per family, can be calculated using Tables 1 - 4. Similarly, the
required number of offspring per family for a specific E[Z(8)] given marker polymorphism
and frequency of the dominant allele and number of families can be calculated. This is
illustrated in example 3.

Example 3 Let desired EfZ(®)] be 3. Full-sib families have 10 offspring. Marker loci have three
equiprobable alleles. A family with 10 offspring contributes .387 to E{Z (D)] when marker loci have
three equiprobable alleles (Table 1). To obtain an E[fZ(8)] of 3, (3-.217)/.387 = 7 families are
necessary. This means 7 times 10 offspring and 2 parents or 84 animals are needed. Using haif-sib
Jamilies with 10 offspring, the number of families needed equals (3-.217)/.072 = 39 and the required
number of animals is 429,

Table 5 shows the required number of animals for an E[Z(8)] of 3 in different
situations. Marker polymorphism, frequency of the dominant allele, number of offspring per
family and family structure were varied. For number of offspring, values of 10 and 100
offspring were used because for many species a full-sib family with 10 offspring or a half-sib
family with 100 offspring are realistic. Values for four offspring were calculated to illustrate
the effect of using small families. When families with four offspring were used the required
number of animals was twice the number of animals required for families with 10 offspring.
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Table 5 Required number of animals (parents + offspring) for E[Z(8)] = 3.
Heterozygosity of marker loci, maximum number of offspring (No. offspring per family)
per two-generation family and family structure are varied for (1) two marker loci with
equal polymorphism, (2} a marker locus and a single gene with a dominant allele with
a frequency of .2 and (3) a marker locus and a single gene with a dominant allele with
a frequency of .8

Heterozygosity'  No. offspring per full-sib structure half-sib structure
family®
(1) two marker loci
50 (2) 4 576 4640
10 240 2046
100 126 {61} 651 {92}
75 (4) 4 126 535
10 60 231
100 39 {37} 120 {59}
90 (10) 4 84 195
10 36 99
100 27 {25} 56 {55}
(2) one marker locus and one gene with a dominant allele with frequency .2
50 (2) 10 396 2552
100 202 752 {93}
75 (4) 10 192 660
100 102 303
90 (10) 10 156 418
100 85 {83} 202
(3) one marker locus and one gene with a dominant allele with frequency .8
50 (2) 10 2568 > 30000
100 1020 10807
75 (4) 10 1332 15301
100 612 1535
90 (10) 10 1044 10197
100 408 2222

* Loci with equiprobable alleles; between parenthesis the number of equiprobable alleles which
leads to specified heterozygosity
® Maximum number of offspring per family; when E[Z(0)] is smaller than 3 for x families with
the maximum number of offspring each but E[Z(®)] is considerably larger than 3 for x+1
families with the maximum number of offspring, then x+1 families with each less than the
maximum number of offspring are required for an E{Z(6)] of 3. The number of offspring pet
family is given between braces afier the required number of animals when it is less than the
maximum number allowed.
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The required number of animals varied widely, e.g., one full-sib family with 25 offspring
was sufficient when two marker loci with 10 equiprobable alleles each were considered. For
full-sib families with 10 offspring, a marker with two equiprobable alleles and a single gene
with a dominant allele with frequency of .8, 2568 animals were needed. To compare a full-
sib and a half-sib structure consider full-sib families with 10 and half-sib families with 100
offspring. Required number of animals was always lower with a full-sib structure (Table 5).

Contribution of families to Fisher information. Contributions to Fisher information of full-
sib families or half-sib families for estimates of the recombination rate between two marker
loci are shown in Tables 6 and 7. The full-sib family contribution to Fisher information was
6 for two alleles and four offspring, and 41 for two alleles and 20 offspring, i.e. Fisher
information increased seven times for a five fold increase in the number of offspring. Values
of 6 and 41 for Fisher information correspond to approximated standard errors on the
estimated recombination rate of 1/v/6 = .408 and 1/v41 = .156. These standard errors show
that precision is low when Fisher information is 6 or 41. This is even more so if we take into
account that this approximation underestimates the standard error for small values of Fisher
information (Van der Beek and Van Arendonk 1993). Half-sib families with 4 or 20 offspring
contributed .5 and 7 to Fisher information, i.e., Fisher information increased 14 times for
a 5 fold increase in the number of offspring. Marker polymorphism had a distinct effect on
Fisher information, e.g., the contribution to Fisher information per additional full-sib
offspring was 2.1 for 2 marker alleles and 10.0 for 10 marker alleles; the contribution to
Fisher information per additional half-sib offspring was .4 for 2 marker alleles and 4.1 for
10 marker alleles.

For estimates of recombination between a marker locus and a dominant single gene,
full-sib and half-sib family contributions to Fisher information are given in Tables 8 and 5.
For a frequency of the dominant allele D of .2, contributions per additional full-sib offspring
were .7, 1.4 and 2.2 and contributions per additional half-sib offspring were .32, .70 and
.99, for 2, 4 and 10 marker alleles, respectively. The contribution of a half-sib family was
half the contribution of a full-sib family and the contribution for 2 alleles was one third of
the contribution for 10 alleles. Frequency of D had a large effect, e.g., for two marker
alleles, contributions per additional full-sib offspring were .7, .7 and .2 and contributions per
additional half-sib offspring were .32, .26 and .05 for frequencies of D of .2, .5 and .8,
respectively. The relative decrease in Fisher information resulting from an increase in the
frequency of D from .5 to .8 was larger for a half-sib design than for a full-sib design. The
effects of marker polymorphism, frequency of D and number of ofispring on Fisher
information were similar to the effects of these parameters on E[Z(0)].
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Table 6 Contributions to Fisher information of two-generation full-sib families with 4
to 40 offspring and Fisher information per additional offspring (dFI) for two marker loci
with a true recombination rate of .20 and 2 to 10 equiprobable alleles (No. alleles)

Number of offspring

No. Hetero-

alleles  zygosity 10 20 40 dFl
2 50 6 10 19 41 84 2.1
3 67 14 25 46 96 192 4.8
4 75 20 34 63 130 261 6.5
5 80 24 11 74 152 306 7.7
10 90 32 54 98 200 401 10.0

Table 7 Contributions to Fisher information of two-generation half-sib families with 4
1o 40 offspring and Fisher information per additional offspring (dFI) for two marker loci
with a true recombination rate of .20 and 2 to 10 equiprobable alleles (No. alleles)

Number of offspring

No. Hetero-
alleles Zygosity 4 6 10 20 40 dFl
2 50 .5 1 3 7 15 4
3 67 2.5 5 10 24 49 13
4 75 5 9 18 39 79 2.0
5 80 7 12 23 51 102 2.5
10 90 12 21 39 82 164 4.1

Table 8 Contributions to Fisher information of two-generation full-sib families with 4
to 40 offspring and Fisher information per additional offspring (dFI) when estimating
recombination between a marker locus and a dominant single gene. The marker has 2
to 10 equiprobable alleles (No. alleles) and the dominant gene varyving frequencies of the
dominant allele (f,,,). The true recombination rate between the marker and the dominant

gene is .20
Number of offspring
No. oo
alleles 4 10 20 40 dFl

2 2 1 2 5 12 25 7

5 1 2 5 12 26 .7

.8 2 5 1 3 7 .2

4 2 3 5 11 25 53 1.4

5 2 5 11 29 64 1.8

.8 5 1 3 8 19 .6

10 2 3 7 15 33 70 2.2

5 3 7 16 39 87 2.3

8 .7 2 4 11 27 .8
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Accuracy. The probability that the true recombination rate is between .15 and .25 given an
estimated recombination rate of .20 was calculated for different values of Fisher information
(Table 10). The relationship between Fisher information and probability is non-linear. This
is not surprising since Fisher information has a non-linear relationship with the variance of
the estimate. As a consequence, improving accuracy from .60 to .70 required a smaller
increase in the number of animals than improving accuracy from .70 to .80.

Table 9 Contributions to Fisher information of two-generation half-sib families with 4
to 40 offspring and Fisher information per additional offspring (dFI) when estimating
recombination between a marker and a dominant single gene. The marker has 2 to 10
equiprobable marker alleles (No. alleles) and the dominant gene has varying frequencies
of the dominant allele (f,,,,). The true recombination rate between the marker and the
dominant gene is .20

Number of offspring

No. f
alleles . 4 6 10 20 40 dFI
2 2 .5 1.1 2.3 5.6 11.9 32
5 2 5 1.3 36 8.8 .26
& 0 0 1 4 1.4 .05
4 2 1.5 29 5.9 13.2 27.1 .70
5 .8 1.6 36 9.3 214 .61
8 .1 A 4 1.3 3.7 2
10 2 2.5 4.6 8.9 19.3 39.1 .99
5 1.2 2.5 5.6 14.0 30.5 .83
8 1 2 .6 2.1 5.6 I8

Table 10 Accuracy [P(.15<6,< .25 | § = 0.20, Z(6) > 3)] and standard error (o)
for different values of Fisher information

Fisher information g P15<8<.25]|8=20200>3
50 141 27
100 100 .38
182 074 .50
200 071 52
282 .059 .60
400 .050 .68
430 048 .70
657 039 .80
800 .035 .84

1082 .030 .90

1600 025 .95
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Example 4 illustrates the use of Tables 6 - 10 to calculate the accuracy of a design.

Example 4 Design: marker loci have 10 equiprobable alleles and three half-sib families with 100
offspring each are used. For this design the accuracy of an estimated recombination rate between two
marker loci has to be obtained. To determine accuracy, first Fisher information is calculated. The
contribution of one half-sib famity with 100 offspring is 164 + (60 4.1) = 410 (Table 7). Fisher
information for the design is 3 X 410 = 1230, The variance of an estimated recombination rate of
.20 is, therefore, expected to be 1/1230 and the standard error on the estimated recombination rate
is V{1/1230) = .028. Table 10 indicates that when Fisher information is 1230, accuracy is between
.90 and .95.

Number of animals required for a certain accuracy. The Fisher information required for
a certain accuracy can be derived from Table 10. After that Tables 6-9 can be used to
determine the required number and size of reference families. For a number of designs, Table
11 gives the number of animals required such that 80% of the significant estimated
recombination rates of .20 will correspond to a true recombination rate with a value between
.15 and .25. For two markers and a full-sib structure with 10 offspring (or a half-sib structure
with 100 offspring), the required number of animals for an accuracy of .80 decreased from
420 (1717) for a heterozygosity of 50% to 84 (202) for a heterozygosity of 90%. For a full-
sib structure with 10 offspring per family (or a half-sib structure with 100 offspring per
family), the required number of animals for an E[Z(®)] of 3 were 240 (651) for a
heterozygosity of 50% and 27 (56) for a heterozygosity of 90%. The required number of
animals were respectively 1.8, 2.6, 3.1 and 3.6 times higher for an accuracy of .80 than for
an E[Z(0)] of 3. The influence of family structure, marker polymorphism and frequency of
the dominant allele on required number of animals for an accuracy of .80 was similar to the
influence of these variables on required number of animals for an E[Z(6)] of 3. However,
as described above and as can be seen from Tables 5 and 11, two to four times more animals
were required for an accuracy of .80 than for an E[Z(8)] of 3.

Expected maximum lod score and Fisher information for three generation designs. In
three-generation designs linkage phase in parents can be inferred from grandparental
genotypes. When linkage phase in parents is known, increases in E[Z(8)] and Fisher
information per offspring are no longer dependent on the number of offspring in a family.
As a consequence E[Z(0)] and Fisher information can be derived from the dEZ and dFI
values which have been tabulated (Van der Beek and Van Arendonk 1993). Example 5
illustrates the use of dEZ and dFI for a three-generation design.
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Example 5 Design: four three-generation full-sib families each with four grandparents, two parents
and 25 offspring; marker loci with three equiprobable alleles. For marker loci with 3 equiprobable
dlleles, dEZ js .060 (Table 1) and dFI is 4.8 (Table 6). The number of offspring in the experiment
is 100. E{Z(8)] is .217 + 100 X .06 = 6.217 and Fisher information is 100 X 4.8 =480. Accuracy
= 725 (Table 10).

Table 11 Required number of animals for P(.15< 6 <.25 {8 = .20, Z(®) > 3) = .80
for two-generation full-sib families with 10 offspring and two-generation half-sib families
with 100 offspring, for (1) two markers with 2 to 10 equiprobable alleles, (2) a marker
with two to 10 equiprobable alleles and a single gens with a dominant allele with a
frequency of .2 and (3) 2 marker and a single gene with a dominant allele with a
frequency of .8

Heterozygosity Full-sib structure Half-sib structure
(1) two markers

50 (2) 420 1717
75 (4) 132 404
90 (10) 84 202
(2) one marker and one gene with a dominant allele with frequency .2
50 (2) 1572 2121
75 4) 720 1010
90 (10) 528 707
(3) one marker and one gene with a dominant allele with frequency .8
50 (2) 7884 15049
75 (4) 2628 6060
90 (10) 1968 4040
Discussion

Animal requirements for linkage studies can be evaluated on the basis of the results
of this smdy. This is not only useful for designing new experiments but also for fast
evaluation of currently used reference families. Evaluations were done for a true
recombination rate of .20. To compare different designs, evaluation for one value of true
recombination rate is sufficient because rankings are not influenced by true recombination
rate. However, accuracy and E[Z(8)] decrease when there is an increase in the true
recombination rate. When a design is based on a true recombination rate of .20, the
efficiency of the design for estimating and detecting linkage will be sufficient for true
recombination rates of .20 and smaller. In order to be able to compare results, a true
recombination rate of .20 between a dominant single gene and a marker was used. When a
dominant single gene is mapped on a 20 centimorgan map, true recombination rate between
the dominant single gene and most proximal marker will be smaller then .20. For a smaller
true recombination rate, E[Z(8)] and accuracy for a design will be larger, e.g., for a true
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recombination rate of .10, contribution of a family to both E[Z(8)] and Fisher information
is about twice the contribution of the same family for a true recombination rate of .20 (Van
der Beek, unpublished results).

Tabulated results can be used to evaluate various designs using linear interpolation and
extrapolation. The contribution of a family to E[Z(8)] and Fisher information can be
calculated by linear extrapolation because of the linear increase in contribution to E[Z{(0)] and
Fisher information for families with more than 20 offspring. E[Z(0)] and Fisher information
were given for several family sizes smaller than 20 which can be used to obtain the required
E[Z(0)] and Fisher information in the area where the increase per additional offspring is not
yet linear. A linear relation between heterozygosity and contribution of a family was assumed
to obtain the contribution of a family selected from a population with a marker polymorphism
unequal to the tabulated levels of marker polymorphism. The various values for the
contribution to E[Z(8)] for one value of heterozygosity (Table 1) show that in reality the
relation between heterozygosity and the contribution of a family is not completely linear.
However, the error introduced by the assumgption of lingarity was small. This can be checked
in the various tables. For instance, the contribution to E[Z(8)] of two-generation half-sib
families with 20 offspring is .370 for four equiprobable alleles (Table 2). This contribution
can also be approximated from the contributions for 3 equiprobable alleles (which is .210)
and the contribution for 5 equiprobable alleles (which is .500): approximated contribution for
4 alleles is .210 + (.75-.67)/(.80-.67) X (.500-.210) =.388.

Results are presented for two-point linkage analysis. However, the presented results
can be used to make inferences about multi-point linkage analysis. First, a multi-point linkage
analysis often starts with two-point linkage analysis. Second, variables which influence the
efficiency of two-point linkage analysis (true recombination rate, family structure, number
of offspring per parent, marker polymorphism), are expected to have the same influence on
multi-point linkage analysis.

The number of animals required in an efficiently designed study for mapping
codominant marker loci is reasonable. However, many more animals are needed for mapping
a dominant single gene. Reference families are used to map many marker loci and genes.
They are not selected because the parents are heterozygous for a particular locus. Therefore,
reference families have a high probability of being uninformative for a dominant single gene
and their use for mapping dominant single genes is therefore limited. Alternatively, a
backeross of fully inbred lines can be used. When this backcross is used to map any dominant
single gene, then the backcross can not be optimized for a specific dominant single gene.
When the F1 animals are heterozygous Dd for a particular dominant single gene and the pure
line animals crossed with the F1 are homozygous dd, then about 30 backcross animals are
needed for a E[Z(8)] of 3. However, a backcross provides no information at all when the F1
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animals are homozygous for the single gene or when the pure line animals crossed to the F1
animals are homozygous DD. There is no way to assure that this will not be the case. Thus,
for a single backcross some dominant single genes can be mapped efficiently but probably
the majority of them can not be mapped at all.

In conclusion, we suggest a set of reference families should be designed for strictly
mapping marker loci. For mapping dominant single genes the reference families and
additional families from the segregating population should be screened for families
informative for the single gene. The procedure described by Van Arendonk et al. (1989) can
be used for screening a population for animals being heterozygous for the single gene.
Informative families should be typed for the single gene and a selected set of equidistant
highly polymorphic marker loci.

Designing a mapping experiment is a decision process in which the designer has to:
(1) specify the population(s) reference animals can be selected from, (2) specify (expected}
marker polymorphism which is determined by the type of marker loci and the criteria used
to select individual markers before mapping, (3) define desired values for evaluation criteria,
and (4) evaluate the possible designs. Tt is important to realize that decisions about
populations to be used, expected polymorphism and evaluation criteria will influence the
design eventually chosen. This study showed that a fast evaluation of designs, taking into
account major factors influencing the efficiency of a design, is possible.
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Abstract

QTL mapping experiments involve many animals to be genotyped and performance tested.
Consequently experimental designs need to be optimized to minimize costs of data collection
and genotyping. This study analyzed the power and efficiency of experiments with two- or
three- generation family structures containing full-sib families, half-sib families or both,
Focus was on data from one outbred population because the main interest is to locate genes
that can be used for within line selection. For a two-generation experiment more animals had
to be typed for marker loci to obtain a certain power than for a three-generation experiment.
Fewer trait values, however, had to be obtained for a two-generation experiment than for a
three-generation experiment. A two- or three- generation family structure with full-sib
offspring was more efficient than a two- or three- generation family structure with half-sib
offspring. A family structure with full-sib grandoffspring, however, was less efficient than
a family structure with half-sib grandoffspring. For the most efficient family structure each
pair of parents had full-sib offspring that were genotyped for the marker. For the most
efficient family structure each full-sib offspring had half-sib grandoffspring for which trait
values were obtained. For a heritability of .1 and 100 grandoffspring per full-sib offspring,
for equal power 30 times less marker typings were required for this most efficient family
structure than for a two-generation half-sib structure in which marker genotypes and trait
values were obtained for half-sib offspring. The effect of heritability and type of analysis
{single marker or interval analysis) on the efficiency of a family structure was described. The
results of this study help to design QTL mapping experiments in an outbred population.

Key words: QTL mapping - experimental design - statistical power - outbred population

Introduction

Dense linkage maps consisting of highly polymorphic marker loci are available for
most livestock species {(Andersson ef al. 1993; Barendse ef al. 1994; Bishop et al. 1994;
Crawford er al. 1994; Rohrer ef al. 1994) and can be a powerful tool for mapping
quantitative trait loci (QTL) (e.g. Patterson ef al. 1988; Stuber ef al. 1992; Andersson ef al.
1994; Georges e al. 1995). QTL mapping experiments involve many animals to be genotyped
and performance tested (Soller and Genizi 1978; Weller et al. 1990). Consequently,
experimental designs need to be optimized to minimize costs of data collection and
genotyping. In livestock, QTL mapping experiments can involve data from one outbred
population or from a cross between populations (Soller 1991). An experiment involving a
cross between populations, will reveal genes that explain the variance between populations,
whereas an experiment within one population will reveal genes that explain the variance
within a population. Within an outbred population, genetic markers and putative QTLs are
expected to be in linkage equilibrium; therefore analysis has to be done within- families.
Weller et al. (1990) computed powers of experiments for balanced two- and three- generation
half-sib designs for outbred populations. They quantified the influence on power of size of
QTL effect, heritability, family size and number of half-sib families. They focused on dairy
cattle breeding in which the half-sib family structure is predominant. In pouliry and pigs,
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however, full-sib family structures are feasible. For the mapping of markers, fewer animals
are needed in an experiment with a full-sib family structure than in an experiment with a half-
sib family structure. We expect that for QTIL. mapping a full-sib family structure has a higher
efficiency than a half-sib family structure. The power of an experiment with a two-generation
full-sib family structure or a three-generation fuli-sib family structure is unknown. This study
analyzes power and efficiency of experiments with two- or three- generation family structures
with full-sib families, half-sib families or both. We focus on data from one outbred population
because the main interest is to locate genes that can be used for within line selection.

Methods

Outbred population. Consider an outbred population in genotypic equilibrium for individual
loci and genetic equilibrium for any pair of loci. Genetic variance in the population is
comprised of the variance due to one quantitative trait locus (QTL) with two codominant
alleles, having frequencies p and I-p, and the variance due to polygenic effects. The QTL
genotype effects are @, 0 and -a. Flanking markers are at .1 M (10 cM) from the QTL. Map
distance between the two flanking markers is denoted d. The QTL is at the midpoint between
two markers so map distance between marker and QTL is .54. Recombination rate between
two marker loci is denoted y and recombination rate between marker and QTL is denoted ~.
Map distance and recombination rate are related by the Haldane mapping function:
¥=.51-¢*)and r=.5(1-e%).

Phenotypic expression of a trait is due to the effect of the QTL, a random normal polygenic
effect and a random normal residual effect. We denote polygenic variance with o2 and
residual variance with o?. Further, o} = o + o and heritability is 2= a/0?. Note that QTL
genotype effects are not included in og or h2.

Family structures. In this paper, a parent is a first generation animal, an offspring is a

second generation animal, and a grandoffspring is a third generation animal.

Five family structures are considered that differ in number of generations and relations

between animals. For each family structure a single pedigree will be described. An

experiment can involve one or several pedigrees,

HS2: Two-generation half-sib family structure. A sire has several unrelated mates and each
mate has one offspring. Marker genotypes are obtained for the sire and the half-sib
offspring but not for the mates. Trait values for half-sib offspring are obtained. Weller
et al. (1990) named a design with this family structure the 'daughter design'.

FS2; Two-generation full-sib family structure. A pair of parents has several full-sib offspring.
Each parent, male or female, has one mate. Marker genotypes are obtained for all
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animals. Trait values for full-sib offspring are obtained.

HS3: Three-generation half-sib family structure. A sire has several half-sib offspring. Each
half-sib offspring is mated to several unrelated animals to produce one half-sib
grandoffspring per mate per half-sib offspring. Marker genotypes are obtained for the
sire and the half-sib offspring, but not for the mates of the sire, the mates of the half-
sib offspring and the half-sib grandoffspring. Trait values for the half-sib
grandoffspring are obtained. Weller er al. (1990) named a design with this family
structure the 'grand-daughter' design.

FS3: Three-generation full-sib family structure. A pair of parents has several full-sib
offspring. Each full-sib offspring is mated to one unrelated animal to produce several
full-sib grandoffspring per full-sib offspring. Marker genotypes are obtained for the
parents and the full-sib offspring but not for the mates of the full-sib offspring and the
full-sib grandoffspring. Trait values for the fuil-sib grandoffspring are obtained.

FSHS: Three-generation full-sib offspring, half-sib grandoffspring family structure. A pair
of parents has several full-sib offspring. Each full-sib offspring is mated to several
unrelated animals to produce one half-sib grandoffspring per mate per full-sib offspring.
Marker genotypes are obtained for the parents and the full-sib offspring but not for the
mates of the full-sib offspring and the half-sib grandoffspring, Trait values for the half-
sib grandoffspring are obtained.

We consider balanced designs. All parents are heterozygous (Mm) for marker loci and 50%
of the offspring inherit marker allele M and 50% of the offspring inherit marker allele m.
Each family has the same number of offspring. In a three generation design each offspring
has the same number of grandoffspring. Offspring are divided into two groups. In one group
are the offspring that inherit marker allele M, and in the other group are the offspring that
inherit marker allele m. Grandoffspring are also divided into two groups. In one group are
the grandoffspring that descend from offspring that inherit marker allele M from the parent.
In the other group are the grandoffspring that descend from offspring that inherit marker
allele m from the parent.

Computation of power: single marker analysis. We assume that the QTL mapping
experiment is analyzed with a linear model. In the model, the effect of the marker is nested
within parent. The model for a design with a HS2 family structure is given as an example:

Yp=8stmtey )]

where y;;, is the trait value for the k-th offspring inheriting marker ailele j of sire i, s, is the
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effect sire i, my is the effect of marker allele j of sire i and ¢, is the residual effect of
offspring k. For a sire with marker genotype Mm, m;, is the effect of allele M and m,, the
effect of allele m.

Let (m;;- m;;) be the marker contrast (MC) for sire i. Inferences about the presence of
a QTL linked to the marker are based on the marker contrast. The marker contrast is
expected to be zero if no QTL is linked to the marker or if a parent is homozygous for the
linked QTL. The marker contrast is expected to be nonzero if a QTL is linked to the marker
and the sire is heterozygous for the linked QTL. Thus, the presence of a linked QTL. can be
found by testing for significantly nonzero marker contrasts. The square of the marker contrast
divided by the square of the standard error (SE) of the marker contrast is used to compute
a test-statistic with value (Weller et al. 1990):

ZP) MC}/SE] @)
=1

where n, is the number of parents for which a marker contrast is computed (for an
experiment with a HS2 family structure, n, is equal to the number of sires), MC, is the
marker contrast for the i-th parent, SE, is the standard error of MC,, If the standard error can
be computed from a priori known phenotypic variance then this test statistic is a x” statistic
(Geldermann 1975). We assume that phenotypic variance is known and use the x* statistic.
Under the null hypothesis of no linked QTL the statistic has a central x* distribution. The null
hypothesis is rejected when the statistic is larger than threshold T. Threshold T is the (1-«)
percentile of the central x* distribution where & is the type I error. The power of a QTL
mapping experiment is equal to the probability that the null hypothesis is rejected, i.e. the
probability that the x* statistic exceeds threshold T. Under the alternative hypothesis of a
linked QTL, the x* statistic has a noncentral x* distribution. The noncentrality of this
distribution depends on the expectation for the marker contrast, the standard error of the
marker contrast and the number of parents that are heterozygous for the linked QTL..

Given the definitions and assumptions described above, power of an experiment is
computed as (Weller er al. 1990):

power = 3" PG) x PIXNC@n)>T] @)
x=0

where x is the number of parents that are heterozygous for the QTL., n, is the number of
parents for which a marker contrast is computed, P(x) is the binomial probability that x out
of n, parents are heterozygous for the QTL, xz(NC(x),nF) is a noncentral %* variable with n,
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degrees of freedom and with noncentrality parameter NC(x), NC(x) is the noncentrality
parameter for the distribution under the alternative hypothesis given that x parents are
heterozygous for the QTL, and P[xz(NC(x),np)>T] is the probability that the noncentral x*
variable exceeds threshold T. The noncentrality parameter is computed as:

NC(x) = x EXMC)/ SE*(MC) @)

where E*(MC) is the square of the expectation of a marker contrast for a parent that is
heterozygous for the QTL and SE*MC) is the square of the standard error of this marker
contrast. EXMC) and SEX(MC) depend on the design of an experiment as will be shown
below,

If a parent is homozygous at the linked QTL then the marker contrast is expected to
be zero. If a parent is heterozygous at the linked QTL then for a two-generation family
structure (HS2, FS2) (Soller 1991):

EXMC-2) = a?(1-2r)? 5)

where E*(MC-2) is the square of the expected marker contrast for a parent of a two-
generation family that is heterozygous for the linked QTL, and g and r are as described
earlier.

For a three-generation family structure (HS3, FS3 or FSHS) the marker contrast is the
difference between the two groups of grandoffspring. The marker allele of the parent for
which the marker contrast is computed is transmitted to 50% of the grandoffspring so the
marker contrast of a three-generation design is expected to be half the marker contrast of a
two-generation design (Weller er al. 1990). If a parent is heterozygous at the QTL then for
a three-generation family structure:

E*MC-3)=1/4 &*(1-2n? )

where E*(MC-3) is the square of the expected marker contrast for a parent of a three-
generation family that is heterozygous for the linked QTL. Note that EZ(MC) denoted the
square of the expected marker contrast in general, where EX(MC-2) and E*(MC-3) are specific
notations for two- and three- generation family structures.
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Table 1 Squared standard error of the marker contrast (SE?) for five family structures

Family Structure SE?

HS2 @-# )in,

FS2 @-2/)/n,

HS3 (TSH +{4-K)In,, ) in,
FS3 (125K + (4-209) In ) i,
FSHS (25K + @41 /n, }in,

k is heritability; n, is number of offspring; #,, is number of grandoffspring per offspring

SEX(MC), the other parameter necessary to compute the noncentrality parameter,
depends on heritability, family structure and number of animals. For a HS2 family structure:

n12 n,[2
SE[-zlSZ = Vi Zl)’,gk ;yﬁ] = 4- h2 (7)

where n, is the number of offspring per parent. A full derivation of SE, is in appendix 1.
Table 1 gives the SE? of the marker contrast for the five family structures.

Computation of power: interval analysis. Instead of performing single marker analysis,
markers can be analyzed in pairs to detect a QTL in the interval between two markers
(Lander and Botstein 1989). We assume that a QTL is located at the midpoint of the interval
between marker loci M and N. Let a parent be heterozygous for marker loci M and N; the
ordered genotype of the parent ts MN/mn. Offspring can inherit four marker haplotypes
(MN,Mn,mN or mn), two of which are non-recombinant (MN, mn) and two recombinant
(Mn, mN), with respect to the two markers. Offspring inheriting a recombinant haplotype
provide no information to detect a QTL if that QTL is at the midpoint of the interval (Lander
and Botstein 1989). Therefore, information on offspring inheriting non-recombinant
haplotypes is used only. This information is analyzed with a linear model. The model for a
HS2 family structure is given as an example:

where y,; iy the trait vaiue of the [-th offspring inheriting non-recombinant haplotype j of sire
i, 5; is the effect of sire i, h; is the effect of the j-th non-recombinant haplotype of sire i, and
e, is the residual effect of offspring {. Let (&, -A,;,) be the haplotype contrast (HC) for sire
i. The presence of a linked QTL is tested by testing for significantly nonzero haplotype
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contrasts using the square of the haplotype contrast divided by the square of the standard
error of the haplotype contrast. The power of this test is computed using equation (3). For
interval analysis, the noncentrality parameter is:

NC(x) = x EX(HC)/SE*HC) )

where E*(HC) is the square of the expected haplotype contrast for a parent that is
heterozygous for the QTL and SE(HC) is the square of the standard error of this haplotype
contrast.

If a parent is homozygous at the linked QTL then the haplotype contrast is expected
to be zero. If a parent is heterozygous at the linked QTL then for a two-generation family
structure (see appendix 2):

EX(HC-2) =a2(1-202/(1-y)? (10
where a,r and v are described earlier. Using equation (5):

EXHC-2) = EXMC-2)/(1-y)? (11)
If a parent is heterozygous at the QTL then for a three-generation family structure:

EXHC-3) = 1/4a2(1-2r2/(1-¥)? (12)
and using equation (6):

EX(HC-3) = EX(MC-3)/(1-y)? (13)
The portion (1- y) of the offspring that inherits a non-recombinant marker haplotype are used
to compute the haplotype contrast. All offspring are used to compute the marker contrast. In
general, the squared standard error of a mean is inversely proportional to the number of
observations used to compute the mean. The standard error of the haplotype contrast of a
parent is therefore larger than the standard error of the marker contrast of that same parent.

In particular:

SEYHC) = SEMC)/(1-v) (14)
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Table 2 Relative Efficiency (RE) between family structures HS2, FS2, HS3, FS3 and
FSHS

RE(FS2/HS2) 2+ I2-R)

RE{HS3/HS2) (1-25K2) 1 (75 1 + (412 )in,,)
RE(FS3/H52) (2-.5/%) 1 (1.25 I* + (42K Yin,, )
RE(FSHS/HS2) (2-5K) [ (25 B + (4-1* )in,, )
RE(FS3/HS3) 2 - (K-20In, )/ (1251 + (42 Yin,,)
RE(FSHS/HS3) 2+ W25 + (4R )in,)
RE(FSHS/FS3) 1 + (B -HKin, ) (25K + (41" )in,, )

# is heritability; n,, is number of grandoffspring per offspring

Relative efficiency (RE) and relative effect of doubling (RED). Power is determined by
n,, P(x), NC(x}and T (equation (3)). Parameter n, is defined by the design of an experiment,
P(x) depends on n, and the heterozygosity at the QTL, and T is directly related to e. Each
other variable that determines the design of an experiment influences the power of an
experiment via the influence it has on NC(x). To measure the relative effect on power of a
variable, we define two parameters: Relative Efficiency (RE) and Relative Effect of
Doubling (RED). RE is used to compare family structures, to compare interval analysis with
single marker analysis or to determine the effect of changing the value of one variable. RE
is defined only if designs A and B have equal number of offspring per family and is:

RE(A/B) = (NCA(1) X #C* ) / (NCB(1) x #CP) (15)

where RE(A/B) is the efficiency of an experiment with design A relative to the efficiency of
an experiment with design B, NCY(1} is the noncentrality per marker or haplotype contrast
for an experiment with design Y, #CY is the number of marker or haplotype contrasts per
family for an experiment with design Y. The use of RE can be illustrated by a simple
example. If RE(A/B) is 2 and for experiments A and B the same number of marker contrasts
are computed, then experiments A and B have equal power if the number of offspring per
experiment is 2 times larger for experiment B than for experiment A,

First, the RE to compare family structures is described. To compare FS2 with HS2:

REESZHS2) - [ A2 o) (62027 1) _ 5, 4k 5, 4 (16)
(4-2h%)n, (4-h)n, 4-2h% 2-h?
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Table 3 Efficiency of heritability at y relative to efficiency of heritability at z
{RE(H =y/H*=2)} for five family structures

Family Structure RE

HS2 @G-/@-y

FS2 2-2)/Q2-y

HS3 (752 + @2/n, )/ (755 + @y)n, )
Fs3 (1.25z + (422)/n,, ) / (1.25 y+ (4-2y)im,, )
FSHS (252 + (42¥n, )/ (25y + (4y¥n, )

n,, is number of grandoffspring per offspring

In Table 2 are RE among family structures HS2, FS2, HS3, FS3 and FSHS.
A second use of RE is to compare interval analysis (I} with single marker analysis (S). Using
equations (4) and (9):

EXHC) ; EXMC) a7

RE(/S) = NC'(1)/NC¥(1) -
SEXHC)/ SE*(MC)

Using equations (11}, (13) and (14):

EHC) ; EXMC) _ E'MO)(1-y) j EXMC)

1
- (18)
SEXHC)/ SE*MC) SEMC)/(1-v)/ SE*MC) 1-¥

Third, RE is used to evaluate the effect of changing the value of a variable. We use RE to
evaluate the effect of changing heritability and the effect of changing the map distance
between two marker loci. For heritability, RE for a HS2 family structure is:

(19}

RE(h2=ylh2=Z) = EZ(MC) EZ(MC) =4_z
@-yin, )/ | (4-2)[n,| 4-y

Table 3 gives RE(#* =y /h? =z) for the five family structures.
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RE for map distance between two marker loci depends on the type of statistical
analysis. If the QTL is at the midpoint between two marker then for single marker analysis:
RE(d=y/d=2) = ((1-2r,Y’a’jSE?)/((1-2r Y'a’SE?)=(1-2r Y’}(1-2r ) =e Pfe = (20

where r, is the recombination rate between marker and QTL if y is the map distance between
two marker loci. Recombination rate r, is computed from map distance y using the Haldane
mapping function. For interval anatysis:

RE(d=y/d=2) = ((1-2r(1-1))/(A-2rFI(1-1)) = (e Ve 2)x{(1+e H)(1+e ) 1)

Relative Effect of Doubling (RED) is a second measure to compare efficiency of
designs. It is defined as:

RED(y.2) = {NC(1)|2y,2}/ {NC(1) |y, 22} @2)

where RED(y,z) is the change in NC due to doubling the value of variable y, relative to the
change in NC due to doubling the value of variable z, {NC(1)|2y,z} is the value of NC(1)
for the design of a certain experiment if the value of y is doubled and {NC(1}|y,2z} is the
value of NC(1) for the design of the same experiment if the value of z is doubled. Two
forms, RED(<%,n,) and RED{(n,, n,.). will be described. For a HS2 family structure:

a® (1-2° x no]/(az (1-27? x 2na) 1 @3)

2 —
RED(@) - ( 4-h? 4-h?
Similarly, it can be shown that RED(c,n,) is 1 for all five family structures. For all family
structures, doubling &2, and thus doubling the variance due to the QTL, has the same effect
on the noncentrality parameter, and thus power, as doubling the number of offspring per
family. The second form, RED(n,,n,,) is defined for designs with a three generation family
structure. For a HS3 family structure:

E*MC-3) x 2 E*(MC-3 2
RED(n, 7, = — o 2 2" / VD Xty T5h @4

T5h%+(@-h)n, [ T5h*+ (4 -R%)2n,) ) A5k%+ (4 -h*)n,,

In Table 4 are the RED{(n,,n,,) for HS3, FS3 and FSHS family structures.
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Table 4 Effect of doubling the number of offspring (n,) relative to effect of doubling
number of grandoffspring per offspring (m,) {RED(n,n, )} for family structures
HS3,FS3 and FSHS

Family Structure RED

HS3 1L+ 75K [ (15K + (4- H)n,)
FS3 1+1258/ (125K + 4 -2 1 )in, )
FSHS L+ 251 (25K + (4- B )in,)

K is heritability

Results

Power of an experiment with a two-generation family structure. Power of experiments
with a HS2 or a FS2 family structure for a QTL that explains 1 % of the phenotypic variance
and that has a heterozygosity of 50%, for various number of families, various number of
offspring per family and for two heritabilities (¢ = .1 and »? = .4) of the observed trait are
in Table 5. First, Table 5 is used to compare HS2 and FS2 family structures. An experiment
with a FS2 family structure and » families had about the same power as an experiment with
a HS2 family structure and 2n families for all values of n. For a heritability of .1, an
experiment with 5 full-sib families and 800 offspring per family had a power of .59 and an
experiment with 10 half-sib families and 800 offspring per family had a power of .57. This
example shows that an experiment with a FS2 family structure and # families had the same
power as an experiment with a HS2 family structure and 2z families. RE(FS2/HS2) reflects
this. RE(FS2/HS2) was close to 2: 2.06 for A°=.1 and 2.25 for K2 = 4

Power of an experiment with a two-generation family structure increased with
increasing number of families and with increasing number of offspring per family (Table 5).
Increasing the number of offspring per family was more efficient than increasing the number
of families, e.g. for a #* of .1, an experiment with 10 full-sib families and 200 offspring per
family had a power of .43 whereas an experiment with 20 full-sib families and 100 offspring
per family had a power of .27. The noncentrality parameter doubled by doubling the number
of families and also doubled by doubling the number of offspring per family. Doubling the
number of families, however, doubled the degrees of freedom, whereas doubling the number
of offspring per family did not influence the degrees of freedom.

Power of an experiment with a two-generation family structure increased with
increasing heritability if the effect of the QTL, expressed in phenotypic standard deviation
units, remained constant (Table 5). For an experiment with 5 half-sib families and 00
offspring per family, power was .34 for #° =1, and power was .38 for #* = .4. The effect
of #* could be explained from RE(#* = .4/h° = .1). RE(A* = .4/h* = 1) was 1.08 for a HS2
family structure and 1.19 for a FS2 family structure.
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Table-5 Power of experiments® with a two-generation half-sib (HS2) or two-generation
full-sib (FS2) family structure for a QTL that explains 1% of the phenotypic variance
and that has a heterozygosity of 50%, for various number of families (2,), various
number of offspring per family (1,) and two heritabilities (#°=_.1 and #’=.4)

hi=1 hi=4
ne n,
HS2 FS2 HS2 Fs2
5 50 02 .02 02 02
100 03 .04 03 04
200 05 09 .06 A1
400 13 .24 .15 31
800 .34 .59 .38 .69
10 50 02 .03 02 03
100 .04 05 .04 07
200 .08 15 09 19
400 23 43 .26 .54
800 57 .86 62 7]
20 50 03 03 .03 04
100 05 .09 06 11
200 .14 27 16 .36
400 42 72 47 83
800 .85 .99 .88 .99
40 50 0 .05 0 06
100 .08 15 .09 21
200 26 51 .30 64
400 71 .95 .76 .99
800 99 .99 .99 .99

* For all experiments power is for interval analysis assuming that markers have a heterozygosity
of 1.

Power of an experiment with a three-generation family structure. Power of experiments
with a three-generation family structure (HS3, FS3 or FSHS) for a QTL that explains 1 %
of the phenotypic variance and that has a heterozygosity of 50%, for various number of
families, for various number of offspring per family, for various number of grandoffspring
per offspring, and for two heritabilities (#* =.1 and #°=.4) ate in Table 6.

The power of an experiment with a HS3 family structure was similar to the power of
an experiment with a FS3 family structure if n; , #, and n,, were equal for the two family
structures (Table 6). For a heritability of .1, the power for a FS3 family structure was 1 to
1.2 times the power for a HS3 family structure whereas for a heritability of .4 power of a
FS3 family structure was 0.85 to 1 times the power for a HS3 family structure. The power
of an experiment with a FSHS family structure was higher than the power of an experiment
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with either a HS3 or a FS3 family structure. For a heritability of .1, the power of an
experiment with a FSHS family structure was 1 to 4 times the power of an experiment with
a HS3 or 2 FS3 family structure and for a heritability of .4 power of an experiment with a
FSHS family structure was 1 to 6 times the power of an experiment with a HS3 or a F§3
family structure. For example, for a heritability of .1, an experiment with 10 families, 50
offspring per family and 100 grandoffspring per offspring had a power of .82 for a FSHS
family structure, a power of .26 for a HS3 family structure and a power of .27 for a FS3
family structure.

Table 6 Power of experiments® with three-generation family structures (HS3, FS3 or
FSHS) for a QTL that explains 1% of the phenotypic variance and that has a
heterozygosity of 50%, for various number of families {n), for various number of
offspring per family (#,), for various munber of grandoffspring per offspring (»,,) and
for two heritabilities (#°=.1 and #=.4)

b= h2= 4
Yy 7, oy
HS3 FS3 FSHS HS3 FS$3 FSHS
5 25 10 02 02 02 02 02 02
50 04 04 11 .02 02 .05
100 06 .06 22 .02 .02 07
50 10 03 .03 .04 02 .02 .04
50 .10 1 30 03 .03 .14
100 .15 15 .55 .04 .03 .14
100 10 .06 08 At 04 .04 .09
50 .26 31 .67 .08 .07 .38
100 .37 41 .88 09 07 51
10 25 10 02 .02 .03 02 02 .03
50 .06 .07 18 .02 02 08
100 .09 .09 .39 .03 02 12
50 10 .04 .05 .06 .03 .03 .06
50 17 .19 53 A5 .04 25
100 .26 .27 .82 .05 .05 .36
100 10 .09 .13 .18 .06 .06 .15
30 45 .54 91 12 1 .65
100 62 .68 99 .14 12 .79

* For all experiments power is for interval analysis assuming that markers have a heterozygosity
of 1.
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Table 7 Relative Efficiency (RE) among experiments with three-generation family
structures (HS3, FS3 or FSHS) for heritability (% } of 0, .1 or .4 and number of
grandoffspring per offspring (n,, ) of 10, 50 or =

s Moy RE(FS3/HS3) RE(FSHS/HS3) RE(FSHS/FS3)
0 10 2 2 1
50 2 2 1
0 2 2 1
1 10 1.84 2.24 1.22
50 1.54 2.96 1.95
oo 1.2 6 5
4 10 1.6 2.86 1.78
50 1.32 4.32 3.27
o 1.2 6 5

Table 8 Efficiency of heritability at .4 relative to efficiency of heritability at .1
{RE(#= .4/K*= 1)} for experiments with three-generation family structures (HS3, FS3
or FSHS) with number of grandoffspring per offspring {n,.) of 10, 50 or 100

g HS3 FS3 FSHS
10 70 62 90
50 A4l 36 60
100 34 31 47

Table 9 Effect of doubling the number of offspring (n,) relative to effect of doubling
number of grandoffspring per offspring (n,,) {RED(n,,#,,)} for three-generation family
structures with number of grandoffspring per offspring of 10, 50 or 100 and with
heritability (A ) of .1 or .4

h2= ¥ hz =4
os HS3 FS3 FSHS HS3 FS83 FSHS
10 1.16 1.25 1.06 1.43 1.65 1.22
50 1.49 1.62 1.24 1.79 1.90 1.58
100 1.66 1.77 1.39 1.89 1.95 1.74

RE for the HS3, FS3 and FSHS family structures depended on 4 and n,, as is shown
in Table 7 that gives the RE among HS3, FS3 and FSHS family structures for 4% of 0, .1
or .4 and r,, of 10, 50 or «. RE(FS§3/HS3), RE(FSHS/HS3) and RE(FSHS/FS3) were larger
than 1 for all combinations of values of #* and n,. RE(FS3/HS3) decreased and
RE(FSHS/HS3) and RE(FSHS/FS3) increased with increasing 4’ and with increasing Hop
Maximum values were 2 for RE(FS3/HS3), 5 for RE(FSHS/FS3) and 6 for RE(FSHS/HS3).

Power of an experiment with a three-generation family structure increased with
increasing number of families and with increasing number of offspring per family (Table 6).
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Similar to two-generation experiments, power increased more by doubling the number of
offspring per family than by doubling the number of families.

Power of an experiment with a three-generation family structure decreased with
increasing heritability. If n- was 10, n, was 50 and n,, was 100, then for a FSHS family
structure power of the experiment was .82 for #°=.1 and .36 for #° = .4. The effect of ¥’
could be explained from RE(R = 4/h’ = .1). Table 8 gives RE(W = .4/K = 1) for
experiments with three-generation family structures with 10, 50 or 100 grandoffspring per
offspring. All RE(k*= 4/’ = 1) in Table 8 were smaller than 1, i.e. power was lower for
K = .4 than for #* =.1 for all combinations of three-generation family structure and number
of grandoffspring per family. RE(#* = .4/k% = .1) was lowest for a FS3 family structure and
highest for a FSHS family structure. RE(h* = .4/° = .1) was lowest for n,,= 100 and highest
for n,, = 10.

Power of an experiment with a three-generation family structure increased more by
doubling the number of offspring than by doubling the number of grandoffspring per
offspring (Tables 6 and 9). Table 9 gives values for RED(n,, n,, ) for three-generation family
structures with 7,, = 10, 50 or 100 and with #*=.1 or .4. Table 8 shows that RED(n,,n,,)
increased with increasing heritability and with increasing n,,. RED(n,n,.) was lowest for a
FSHS family structure and highest for a FS3 family structure.

Comparing experiments with two- and three- generation family structures. In Table 5 are
powers of experiments with two-generation family structures and in Table 6 are powers of
experiments with three-generation family structures. For a given number of families, more
offspring per family are needed to obtain a certain power for experiments with two
generations than for experiments with three generations. For example, if #° =1 then an
experiment with 10 two-generation full-sib families with 800 offspring per family had a
power of .86, whereas an experiment with 10 families with a FSHS family structure, with
100 full-sib offspring per family and 50 half-sib grandoffspring per full-sib offspring had a
power of .91.

Besides directly comparing power, experiments were also compared by Relative
Efficiency (RE). In Figure 1 are the efficiencies of five family structures relative to the
efficiency of a HS2 family structure for #*=.1 and #*= .4, for values of n,, ranging from
0 to 100. RE showed that three-generation experimenis were more efficient than two-
generation experiments, especially for traits with low heritability and if many grandoffspring
per offspring are available, RE(FSHS/HS2) was 30 for #°=.1 and n,, = 100.
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Figure 1 Efficiency of five family structures relative to the efficiency of a HS2 family
structure for two heritabilities (7= .1 and A*= .4)

Discussion

In this paper we used power and relative efficiency to compare the efficiency of designs of
QTL-mapping experiments. Although power determines the value of a design, it has its
limitations to compare designs because the relation between power and the size of an
experiment is non-linear. Tables 5 and 6 showed that the effect on power of increasing the
size of an experiment depended on the initial power. Relative efficiency is independent from
initial power and size of an experiment. Relative efficiency can directly be translated to the
relative number of marker genotypes that have to be determined in experiments whereas
power cannot be used for this purpose.

We showed that family structure is an important factor in designing QTI. mapping
experiments. For a two-generation experiment, more offspring were required for a certain
power than for a three-generation experiment. Consequently, more animals had to be typed
for marker loci for a two generation experiment than for a three-generation experiment.
Fewer offspring per two-generation experiment, however, were required than grandoffspring
per three-generation experiment. Thus, fewer trait values had to be obtained for a two-
generation experiment than for a three-generation experiment. In deciding on a design, the
costs of typing a marker and the costs of obtaining a trait value have to be considered as well
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as the time required to coilect all information. The costs of obtaining a trait value are low if
a trait is routinely collected for management or breeding purposes, such as milk production
in dairy cattle. Furthermore, the family structure of the commercial dairy cattle population
enables experiments with a three-generation half-sib family structure. The three-generation
half-sib family structure is used in QTL mapping experiments in dairy cattle (Da ef al. 1994;
Georges et al. 1995). A trait like meat quality measured on carcasses, however, is expensive
to measure and usually not collected routinely. In such a case cost of measuring meat quality
should be balanced against costs of typing markers.

Relative Efficiency and comparison of power showed that a two- or three- generation
family structure with full-sib offspring was more efficient than a two- or three- generation
family structure with half-sib offspring. With full-sib offspring, two marker contrasts can be
computed per family while with half-sib offspring only one marker contrast can be computed.
A family structure with full-sib grandoffspring, however, was less efficient than a family
structure with half-sib grandoffspring. The standard error of a marker contrast was larger
when full-sib grandoffspring were used than when half-sib grandoffspring were used.

Power of three-generation experiments decreased with increasing heritability if the
effect of the QTL, expressed in phenotypic units, was constant. In a three-generation
experiment, information comes from the average trait value on grandoffspring. This average
represents the breeding value of the offspring, plus a residual. The part of the breeding value
that is due to the QTL of interest decreases with increasing heritability if the QTL effect is
constant in phenotypic units, as we used. So, those grandoffspring averages become less
informative with increasing heritahility and power decreases. In our statistical method only
one QTL is considered. Recently, multi-marker methods have been developed that allow for
several QTLs simultaneously (Zeng 1993; Jansen and Stam 1994), In theses methods a larger
part of the breeding values of offspring is accounted for which results in a reduction of the
residual genetic variance in grandoffspring averages and consequently in a higher power. Our
results can be used to infer the effect of multi-marker methods on power of three-generation
experiments. The effect of reduction of residual genetic variance is similar to that of
reduction in heritability in a single QTL method. If markers explain, say, half the genetic
variance then we could simply take the power for a situation where the heritability is halved.

For two-generation experiments the effect of heritability was small. For the range of
heritabilities we studied, standard errors on marker contrasts in the two-generation designs
are almost entirely determined by environmental errors. This suggests that for two-generation
experiments multi-marker experiments are less beneficial,

So far, we compared full-sib families and half-sib famnilies for a given family size. Due
to limitations in female reproductive capacity, family size is more limited with full-sib than
with half-sib families. This is particularly true in cows and pigs, but less in poultry and fish.
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It would be fair to compare an experiment with a few large half-sib families to an experiment
with many smaller full-sib families. Table 5 showed that an experiment with 5 half-sib
families and 800 offspring per family had a higher power than an experiment with 40 full-sib
families and 100 offspring per family. This iliustrates that practical limitations have to be
considered in designing an experiment.

Power of experiments were given for various family structures and also family sizes
and heritability of the trait were varied. Other parameters that also determine power, like
marker heterozygosity, were held constant. The effect on power of some other parameters
will be discussed now.

The RE({/S) in this study is for a linear model but was equal to the efficiency of
interval mapping relative to the efficiency of single marker mapping for a likelihood model
as given by Lander and Botstein (1989). The RE(I/S) was 1/(1-¥). This means that an
experiment with x offspring per family that is analyzed by interval analysis, has the same
power as an experiment with x /(1-y) offspring per family that is analyzed by single marker
analysis, assuming that only the number of offspring per family and the type of analysis differ
between the experiments. For example, a FS2 experiment with 5 families with 800 offspring
per family had a power of .59 for #°=.1 and interval analysis. For single marker analysis,
a FS2 experiment with 5 families with 800/(1-v) = 800/(1-.165) =958 offspring per family
would have had a power of .59 for #2=.1. The RE(V/S) was computed for a QTL at the
midpoint of the interval between two markers. The difference between single marker analysis
and interval analysis decreases if the QTL is closer to the bounds of the interval (Darvasi et
al. 1993; Mackinnon et al. 1995).

Not only location of the QTL but also variance explained by the QTL is important. The
variance depends on o and heterozygosity of the QTL. The equation for RED{(, n,) showed
that doubling o had the same effect on power as doubling n,. Because the effect of doubling
n, is given in tables 5 and 6, also the effect of doubling & can be derived from those tables.
Heterozygosity at the QTL was .5 in this study. For a QTL with two alleles this is the
maximum heterozygosity in a population that is in genetic equilibrium. For lower
heterozygosity at the QTL, more families will be needed for equal power. The relation
between heterozygosity at the QTL and required number of families is about linear (Weller
et al. 1990).

We showed that map distance between the markers that flank the QTL determines the
efficiency of interval analysis relative to the efficiency of single marker amalysis. Map
distance also has a direct influence on efficiency. The efficiency of a design with d= .2
relative to a design with d= .1 (RE(d =.2/d=.1)) was .89. Thus, an experiment with =
.2 and n, offspring per family has the same power as an experiment with d=.1 and .89 X
n, offspring per family.
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Figure 2 Effect of heterozygosity of the marker on power of an experiment with a two-
generation half-sib family structure with 20 families and 800 offspring per family for a QTL
that explains 1% of the phenotypic variance and that has a heterozygosity of .5, for a
heritability of .1. Power is computed for single marker analysis as the weighted average of
powers of experiments with 0 to 20 heterozygous parents. Heterozygosity of the marker is
varied by the number of equiprobable marker alleles.

Heterozygosity at the marker was 1 in this study because due to the abundance of
highly polymorphic microsatellite loci it is expected that a set of alinost perfect markers will
become available. A recent study in chicken (Groen ef al. 1994), however, showed that the
average heterozygosity of microsatellite markers was .28 in commercial layer populations and
.55 in commercial broiler populations. At such a level of heterozygosity power of an
experiment is lower than for a heterozygosity at the marker of 1. Figure 2 illustrates this for
one design of an experiment. Power is decreased because a marker or haplotype contrast can
only be computed for a heterozygous animal and further at lower marker polymorphism it
will less often be possible to determine which marker allele is transferred from a parent to
an offspring (Soller 1991}). The latter problem will be larger in a half-sib family in which one
parent is untyped than in a full-sib family in which both parents are typed for the marker
(Soller 1991). If heterozygosity of the marker loci is not close to 1 then an alternative to
analysing markers one by one or in pairs, is to simultanecusly use many linked markers
which increases the power of an experiment (Haley er al. 1994).
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Power was computed for an experiment with a balanced design. The power of an
experiment with a balanced design is, however, a good indicator for the power of an
experiment with a design that is unbalanced with respect to the number of offspring per
family, the number of grandoffspring per offspring or the number of offspring per marker
allele per parent (Wang et al. 1995). The y? method to compute power is approximate because
error variance and heritability have to be known whereas in a real experiment these
parameters have to be estimated from the data. Values computed with the x> method are,
however, close to exact values (Wang e /. 1995). For the situation studied by Wang et al.
(1995) the maximmum difference between the approximate and the exact value was .034.

We studied experiments within one cutbred population. The efficiency of an experiment
with a cross between populations is higher (Soller 1991). Genes of large effects are expected
to segregate at higher frequencies in a cross than within an outbred population and also a high
level of heterozygosity of the marker is more likely if a cross between populations is used.
If in a cross a marker is found that explains between popuiation variance, then possibly this
marker also explains within population variance. Whether this is true or not remains uncertain
until within population studies are performed. If the goal is to understand and exploit the
variation within commercial populations, then QTL mapping experiments within the
populations are necessary. This study will help to design such experiments.
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Appendix 1 Standard error of marker contrast
The linear model for an experiment with a HS2 family structure is:

Y= & T my + ey

(A1)
where y;, is the trait value for the k-th offspring inheriting marker allele j of sire £, s, is the effect
sire { with o2 = 25 o2 , m;; is the effect of marker allele j of sire / and ey, is the resndual effect of
offsprmgkwntho-—a-o Let olbelthene? = 25 and 02 = 1- 25 ¥

For a sire with marker genotype Mm, m,, is the effect of allele M and m,, the efiect of allele
m. Let the expected value of the marker contrast be (m,; - m,,) and the realized value:

"2
2

MC, = "—E Yie ~ Zy:zk (A2)
pk=1 p k=1

where MC, is the marker contrast for sire i, #, is the number of offspring per sire and n,/2 is the
number of offspring per marker allele.
The squared standard error of the marker contrast is:

SEgyc - EMC-EQMC))?

Rewriting A2 using Al gives:

2 nf2 n,lz
MC, = ‘;E (s;tmy rey) - —E (s;+myen)
= L =t
= (s +mu+—2 e - Gym; +—E )
R L=
+_Z (€€
Rok=1

We can derive that:

E(Mci_E(MCi))z = E((m;;-m;,* E(e:lk €)) ~ (m:'z_mfz))2

pkl

4 4
=E(-< E(euk e, = —22 207 = 7?1005 =

M, k=1 (n) =1 (n n,
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Appendix 2 Expected haplotype contrast

Let M and N denote two markers and Q a QTL. The recombination rate between M and Q is r,,
between @ and N is 7, and between M and N is y. Let the ordered genotype of a parent be
MQN/mqn. The haplotype contrast is defined as the average trait value of offspring that inherit
nonrecombinant haplotype MN from the parent, minus the average trait value of offspring that inherit
nonrecombinant marker haplotype mn from the parent. The expected haplotype contrast is the expected
trait value of offspring that inherit nonrecombinant haplotype MN minus the expected value of
offspring that inberit nonrecombinant haplotype mn from the parent.

Offspring that inherited MN, inherited marker-QTL haplopye MQN from the parent with
probability (1-r;) X(1-rp)/(1-y) and will have inherited marker-QTL haplotype MgN form the parent
with probability r, Xry/(1-¥). The expected trait value of offspring that inherited MN is (1-r,) X(1-
Y (1-yy X a2 + rXrf(l-y) X a2 = (1-rF-r)/(1-y) X a/2. Offspring that inherited mn have
inherited marker-QTL haplotype mQn from the parent with probability r, X r,/(1-v} and have inherited
marker-QTL haplotype MgN from the parent with probability (1-r;) X(1-r,)/(1-v). The expected trait
value of offspring that inherited mn is r,Xr/(1-y) X @2 + (1-rpX(1-r)/(1-y) * -a/2 = {r,+r, -
1)/(1-y) X a/2. Thus, the expected haplotype contrast is (1-r,-r)/(1-y} X @/2 - (r,+r-1)/(1-y) X a/2
= {1-#,-r)/{(1-¥)} % a. For r;=r,=r the expected haplotype contrast is (1-2r)/(1-y) X a.
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Abstract

The value of using a marker for a Quantitative Trait Locus (QTL) affecting a sex limited trait
in an outbred poultry breeding nuclens was studied. Marker and QTL were in linkage
equilibrium in the base population. The recombination rate between marker and QTL was
.05. A closed nucleus with 9000 chickens per generation was deterministically simulated. The
genetic model contained polygenes and a QTI. linked to a marker. Genetic effects explained
30% of the phenotypic variance before selection. Under selection, polygenic variance reached
an equilibrinm and QTL variance decreased continuously over time. Cocks were selected in
two steps. First the best cocks of each full-sib family were selected (within family selection)
while final selection took place after information on full-sibs was available. Hens were
selected after they had completed production. The effect of using marker information in
estimating breeding values was studied in an ongoing breeding programme. Transmission of
marker alleles was always traceable. Cumulative response over five generations increased 6
to 13 % if a marker linked to a QTL that explained 20% of the genetic variance was used.
Cumulative response increased up to 28% if the QTL explained 80% of the genetic variance.
Additional response due to the use of a marker increased with increasing intensity of within
family selection of cocks, increased with increasing variance explained by the QTL, and was
higher if within family selection of cocks was carried out after rather than before their sibs
had complete records.

Keywords: Marker assisted selection - poultry - selection response - genetic model

Introduction

In most livestock breeding schemes breeding values for quantitative traits are estimated
using phenotypic information and additive genetic relationships among animals. The genetic
model underlying the breeding value estimation assumes that an infinite number of genes each
with an infinitely small effect influence the quantitative trait. An increasing number of genes
or chromosome segments that explain a significant part of the variation in quantitative traits,
however, are being identified. Use of this knowledge can improve current breeding value
estimation procedures (Soller 1994). Once a gene is located and the alleles of the gene
identified, the effects of those alleles can be incorporated in breeding value estimation (Smith
1967). If a marker is available that is linked to a locus explaining variation in a quantitative
trait (i.e. a Quantitative Trait Locus: QTL) marker assisted breeding value estimation may
be applied. Procedures for combining marker information and phenotypic information in
selection index (Soller 1978) or best linear unbiased prediction (Fernando and Grossman
1989) have been described.

The use of markers can improve the selection response in a breeding programme
(Soller 1978; Soller and Beckmann 1983; Smith and Simpson 1986; Stam 1986; Kashi ef
al. 1990; Dentine 1992; Meuwissen and Van Arendonk 1992). Factors that influence the
additional selection response include: (1) amount of variance explained by identified QTL(s);
(2) distance between a marker and a QTL; (3) marker polymorphism; (4) the structure of the
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breeding programme; and (5) type of breeding goal trait (sex limited or not). Dairy cattle
breeding was the subject of the studies mentioned above. The structure of a poultry breeding
population differs from the structure of a dairy cattle breeding populiation and therefore we
cannot predict from those dairy cattle breeding studies the value of marker assisted selection
(MAS) in poultry breeding. Most studies computed additional selection response for one
round of selection starting from an unselected base generation. Meuwissen and Van Arendonk
(1992) computed equilibrium response assuming the variance accounted for by markers
remained constant over generations. The latter assumnption is unrealistic if a marker is linked
to one or a few QTLs of large effect.

We study the value of using a marker for a QTL in a poultry breeding nucleus. We
use a genetic model in which each round of selection reduces the variance explained by a
QTL. The genetic model is used in deterministic simulations to quantify the additional
response due to MAS and the change of this additional response over time.

Methods

Breeding programme. A poultry breeding nucleus with non-overlapping generations is
simulated. In a hierarchical mating scheme each sire is mated to several dams and several
offspring are produced by each dam. Selection is for egg production, a sex limited trait. Egg
production is measured on all hens hatched. Each hen can be selected without a restriction
on the number of full-sibs selected. Hens are selected after they have completed their first
record. Selection of cocks differs among alternative breeding schemes. If no marker
information is available then only the max-c first hatched cocks are candidates for selection,
where max-c is the maximum number of cocks that may be selected from a full-sib family.
This is random selection. With markers, this marker information is used to select max-c
cocks from all available cocks in a full-sib family. This is called within family selection.
Marker assisted within family selection is either immediately after hatching (juvenile within
family selection) or after female sibs have complete records (adult within family selection),
In both cases all cocks are kept until the time of selection.

Deterministic simunlation. Response per generation is computed as:
R=(R,+R +R)2 4y

where R is the response per generation, R, is the response to within family selection of
cocks, R, is the response to final selection of cocks, and R, is the response to selection of
hens.
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The deterministic simulation starts in generation zero, the base generation of unrelated
animals. Each sire in the base generation has an estimated breeding value of zero. Breeding
values for dams in the base generation are estimated using own performance. After five
generations of selection, a marker is introduced. Introduction is not in generation zero to
study the effect of intreducing a marker in an ongoing breeding programme. One marker is
introduced. Each animal in generation five and its parents are typed for this marker. Each
parent is assumed to be heterozygous for the marker. Transmission of marker alleles can be
traced without error. Let MIM2 be the marker genotype of a sire and M3M4 the marker
genotype of a dam. The full-sib offspring are divided in four groups of equal size based on
their marker genotype: M1M3, M1M4, M2M3 or M2M4.

Selection indices accounting for marker information are derived for cocks and hens.
The selection index depends on the marker genotype of the candidate for selection. For each
of the four possible marker genotype a selection index is derived. The mean and variance of
each index are computed. Equation (2) gives the response per generation allowing for the
different selection indices :

4
R = {E f“jx(mwé—ﬁwﬁwxa(ﬁw)) +
=
4
LSy e rigody)) + @
i
4 — a
1};1 fwx(mmj—mhﬁwxa(Aw)) }fz

where R, is the response in generation ¢, f,, is the fraction selected of cocks with within
family selection index j in generation 7, m,,,; is the mean genetic value before within family
selection of cocks with within family selection index f in generation z, m,, is the mean of all
cocks before within family selection in generation ¢, i, is the selection intensity within the
group of cocks with within family selection index j in generation 7, and o(4 ;) is the standard
deviation of within family selection index j in generation ¢. The appendix illustrates the use
of (2) to compute within family selection response.

Effect of selection on genetic (co)variances and (co)variances between information
sources is accounted for after each selection step (Cochran 1951). For hens there is one
selection step in each generation. For cocks, {co)variances are corrected both after within
family selection and after final selection. Before each selection step, genetic effects are
assumed to follow a multivariate normal distribution.
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The effect of inbreeding on (co)variances is ignored. Derivation of selection index and
computation of selection intensities will be described in later sections.

Genetic model. Genetic variance is due to additive gene action at one QTL and polygenes
unlinked to the QTL. The breeding value of an animal is the effect of the paternal allele at
the QTL plus the effect of the maternal allele at the QTL plus the effect of the polygenes.
The model for the breeding value of animal { is:

a =v] +v" +u &)

where g, is the breeding value of animal i, v/ is the effect of the paternal QTL allele, v7 is
the effect of the maternal QTL allele, and &; is the polygenic effect. Genetic effects are
random and multivariate normally distributed. In the base generation before selection, the
variance of a QTL allele is o*(v"), polygenic variance is ¢*("), genetic variance is o’(d") =
20°(v") + 0*(u"), and covariance between the effect of a QTL allele and the polygenic effect
is zero.

A marker linked to the QTL is available. The relation between the allelic effects at
the QTL of animal i and the allelic effects of the parents depends on marker information
(Fernando and Grossman 1989):

vl = (1-g vl +qy] +ev)) @

V= (g vf g i et ©)

where 5 denotes the sire, d the dam, and e(v¥) is the part of v} not explained by the
regression on the parental allelic effects. The term (1-¢,) is the probability that the sire
transmits its paternal QTL allele and g, is the probability that the sire transmits its maternal
QTL allele. Let r be the recombination rate between the marker and the QTL. The value of
q, is r if animal { inherits the paternal marker allele of the sire and ¢, is {1-7) if animal {
inherits the maternal marker allele of the sire.

For polygenic effects the following relation holds:

w, = 05u, + 05u, + eu) (6}

where e(u;) is the part of «; not explained by the regression on the parental polygenic effects.
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Equations (4), (5) and (6) are used to compute the covariance between genetic effects
of different animals. The covariance between the effect of a QTL allele in animal § and the
effect of the paternal QTL allele in animal ¢ is computed using the covariance between the
QTL allele of animal j and the effects of the QTL alleles of the sire of animal { (Fernando
and Grossman 1989) :

oW = (1-q)ot/wD)+a, oFw™ o

where o(v/, ,vj”) is the covariance between the paternal QTL allele of animal i and the paternal

QTL allele of animal j. Equations similar to (7) were derived for the covariance between
maternal QTL alleles or between a paternal and a maternal QTL allele. Fernando and
Grossman (1989) describe a tabular method with repeated use of (6) to compute the
covariance between any pair of QTL alleles. The covariance between the polygenic effect of
animal j and the effect of the paternal QTL allele of animal i is:

o(uv)) = (1-g)o@w))+q, o, (8)

In the base generation before selection the covariance between polygenic effects and QTL
allelic effects is zero. Selection will introduce a non-zero covariance between polygenic
effects and allelic effects at the QTL in later generations.

Each generation the variance before selection of allelic effects at the QTL is
computed. We assumne that the expectations and variances of the QTL allelic effects in the
selected group of sires and dams completely determine the variance of QTL alleles in the next
generation, In the next generation the variance of a paternal allelic effect at the QTL is:

o’ = (1-q) o°0)) + q, 0°) + (1-¢) ¢, {E6T-v) ©)

where o?(vF) is the variance of the paternal QTL allele of animal i, 02(v*) is the variance after
selection of the paternal QTL allele of the sire, 6?(v7) is the variance after selection of the
maternal QTL allele of the sire, E(v%) is the expectation after selection of the paternal QTL
allele of the sire, and E(v7) is the expectation after selection of the maternal QTL allele of
the sire.

The variance of polygenic effects before selection is:

o%(u) = 025 o®(w) + 025 o’(u) + 0.5 o*(u) (10)
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Selection index. Selection is for an index including observations on full-sibs, half-sibs, own
performance for hens, and estimated breeding values of parents. Estimated breeding values
of parents are based on sibs of the parents and information from earlier generations but not
on information from offspring. The selection index is computed by regression on groups of
observations. The groups are defined such that some groups are absent in the conventional
index without marker information and present in the marker assisted selection index. For
conventional selection (CS) the index is:

Anc = bcl(ﬁ_ﬁ) + chS—P + bﬂ(A‘sﬂid) (n
for cocks and

A, = b, (DP-SP) + b,,SP + b (A +A) +
bMXh

(12)

for hens, where ¢ denotes cock, # denotes hen, A is estimated breeding value, DP is the
mean performance of all progeny of the dam, SP is the mean performance of all progeny of
the sire, X, is hen own performance, and b's are the regression coefficients.

The selection index is expanded to accommodate marker information. Regression on the
difference in mean performance between groups of offspring that inherit alternative marker
alleles from the parent is included as well as regression on estimated parental QTL effects:

A; - BDBSP) + b3S + biA] Ay + )

b(DP-DPTy + b(SP-SP™) + b32-6M + b3

for cocks and

A = b (DP-5P) + by, 5P + bd, + 4)) + by X, + (14)

BiADP5-DP}) + bigSPZ-SP}) + byOl-01) + budf -9

for hens, where A is the estimated breeding value if marker information is used, D P is the
average performance of progeny of the dam that inherit the paternal marker allele from the
dam, D P is the average performance of progeny of the dam that inherit the maternal marker
allele from the dam, S is the average performance of progeny of the sire that inherit the
paternal marker allele from the sire, TP is the average performance of progeny of the sire
that inherit the maternal marker allele from the sire, v is the estimated effect of a QTL allele.
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A within family selection index is defined that estimates the deviation of the breeding vaiue
of the selection candidate from the full-sib family mean. The juvenile within family selection
index is:

WF-ju = ﬂ(ﬁf—ﬁ;")+ ﬂ(ﬁj’—\“’;‘) (15)

and the adult within family selection index is

WF-ad = b, (DP’-DP™)+ b_(SP’-SP™)+
b (57 -0™+ b (L -9

(16)

The selection indices do not allow for grandparental origin of parental marker alleles, i.e.,
animal A with a sire that inherited a paternal marker allele from the grandsire, is not
distinguished from animal B with a sire that inherited a maternal marker allele from the
grandsire. Therefore, for sire and dam effects (co)variances like o2(3f) are used that are
independent from marker information. To compute unconditional (co)variances the general
formula (Biswas 1991): cov(X,Y) = E(cov(X,Y | Z)} + cow(E(X | Z),E(Y | Z)) is used.

Computation of selection intensities. For each selection step we consider four indices, one
for each marker genotype. Each index has an expectation and a variance. Due to differences
in expectations and variances of indices, the proportions selected per index differ. For the
final male selection step and the female selection step, the algorithm described by Ducrocq
and Quaas (1988) has been used to compute the selection fractions and selection intensities
for the four indices. These selection intensities are then corrected for finite population size
(Burrows 1972).

For within family selection of cocks each index has only one realisation within a
family, No deterministic method is available to compute selection intensities for this case.
Therefore, a simple stochastic simulation was used. For each index one random realisation
was simulated using the expectation and variance of the index. This realisation was assigned
to a quarter of the cocks in the family. Then, the cocks with the best index were assumed to
be selected. The marker genotype of the selected cocks and the index value were recorded.
Each generation this was repeated 10 000 times. The proportion selected per index, the
selection intensity per index, and the reduction of variance per index were computed from
simulation results.
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Table 1 QTL-, polygenic- and total- response per generation for standard breeding
scheme with Conventional Selection (CS) or Marker Assisted Selection (MAS)

QTL response Polygenic response Total response

o Cs MAS" Ccs MAS CS MAS
0 155 - 621 - 776 -

4 110 - 460 - 570 -

5 .108 178 (.034) .461 443 .569 622
10 100 166  (.042) 464 450 .564 616
15 .093 141 (.038) 467 458 .560 .600
20 .087 122 (.034) 469 465 .556 .587

®1 is the generation. " Between brackets is the QTL response to within family selection of cocks.

Table 2 QTL variance (a%(g)"), polygenic variance {o%()) and genetic variance (o%(a))
before selection of different genetic effects for standard breeding scheme with
Conventional Selection (CS) or Marker Assisted Selection (MAS)

a%q) o’ (k) a’(a)
o CS MAS cS MAS CS MAS
0 .060 - 240 - 300 -
4 055 - 198 - 232 -
5 054 054 .198 .198 231 231
10 050 046 197 .200 228 223
15 046 038 197 .199 225 217
20 043 033 196 198 223 213

® t is generation. ® o%(q) is the variance of quantitative trait focus i.e. o*(vF+v™).
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Figure 1 QTL response to conventional selection ( O ), polygenic response to conventional
selection ( O ), QTL response to marker assisted selection ( @ ), and polygenic response to
marker assisted selection { M ) in generations 0 to 20 for standard breeding scheme. All
responses are relative to corresponding response in generation zero
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Simulated schemes. In the standard scheme 50 sires were used per generation. Each sire was
mated to six dams and each dam produced 30 offspring, 15 cocks and 15 hens. Max-¢ was
6. In the unselected and unreiated base generation, heritability was .3 and the proportion of
the genetic variance due to the QTL was .2. The recombination rate between marker and
QTL was .05. Population structure varied leaving genetic parameters constant. Number of
sires (V,) and number of offspring per sire (180) were constant. For number of dams per sire
(N the values 3, 6 and 9 were used. Number of offspring per dam (N,) was 180/N,. For
max-c the values 3, 6 and 9 were used. Schemes representing all nine combinations of N, and
max-¢ were simulated. In other alternative schemes, genetic parameters varied leaving
population structure constant. For proportion of genetic variance due to the QTL the values
0, .1, 2, 4, .6, and .8 were used and for heritabilities the values .1, .3 and .5. Schemes
representing all 18 combinations of proportion of genetic variance due to the QTL and
heritability were simulated.

Results

Standard breeding scheme. Table 1 gives the responses to within family selection and total
response per generation for the standard breeding scheme. The response per generation was
highest in generation zero. After generation zero response decreased due to reduced genetic
variances {Table 2). Response did not reach an equilibrium because QTL variance decreased
continucusly (Table 2). Response increased after introduction of a marker in generation 5.
QTL response increased from .110 in generation 4 to .178 in generation 5 while polygenic
response decreased from .460 in generation 4 to .445 in generation 5. The within family
response in generation 5 was .034 which is .19 times the QTL response. After generation 5
within family response first increased and then gradually decreased, whereas QTL response
due to final male selection and female selection constantly decreased. In generation 20 the
within family response was .28 times the QTL response. Polygenic response increased after
generation 5 both for conventional selection (CS) and for marker assisted selection (MAS).
Over generations polygenic response increased more for MAS than for CS. QTL variance
reduced more when MAS was applied. So, the proportion of genetic variance due to
polygenes increased more for MAS than for CS. In absolute values polygenic variance hardly
differed between MAS and CS.

Figure 1 gives the QTL response per generation relative to the QTL response in
generation zero. Further, the polygenic response per generation relative to polygenic response
in generation zero is given. Polygenic response was fairly constant after two generations with
a slight decrease after the introduction of marker information. QTL response to conventional
selection decreased constantly. QTL response increased sharply after introduction of a marker
in generation 5. After generation 5 the QTL response to MAS decreased at a higher rate than
for conventional selection. As a result, the difference in QTL response between MAS and
conventional selection slightly decreased over generations.
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Figure 2 Standardized QTL response to conventional selection ( O ), standardized polygenic
response to conventional selection ( O ), standardized QTL response to marker assisted
selection ( @ ), and standardized polygenic response to marker assisted selection ( l ) in

generations 0 to 20

for standard breeding scheme. All standardized responses are relative to

standardized response in generation zero

Table 3 Response per generation and cumulative response for conventional selection for
various breeding schemes®

N, N, max-c Generation 5 Generation 9 Cumulative over
generations 5 to 9
3 60 3 553 548 2.751
6 .589 584 2.935
9 610 .604 3.034
6 30 3 536 531 2.668
6 .569 .565 2.836
o .588 584 2.928
9 20 3 .523 .520 2.608
6 .555 553 2.769
9 573 571 2.859

TVaried are _number of dams peT sire (V,}, humber of Tull-sib OIiSpIing per dam (v,) and the

maximum number of cocks selected per full-sib family (rmax-c)
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Figure 2 gives the standardized QTL response and standardized polygenic response.
In each generation, QTL response is divided by the covariance between QTL and breeding
value (o(v}+v7,a)) before selection in that generation. Polygenic response is divided by the
covariance between polygenic effect and breeding value (o(x;,a)). Standardization was used
to correct for the effect of variance reduction. Standardized polygenic response to MAS,
standardized polygenic response to conventional selection, and standardized QTL response
to conventional selection can hardly be distinguished. Standardized QTL response to MAS
differed clearly from the other three. Standardized QTL response increased sharply after
introduction of marker information in generation 5. After generation 5 standardized QTL.
response to MAS increased further while the other standardized responses remained constant.
The results for CS in Figure 2 show that reduced variance influenced polygenic response and
QTL response similarly although selection influences polygenic variance differently than QTL
variance. Figure 2 further shows that standardized QTL response was constant without
markers, but increased over generations when a marker was used. The decrease in absolute
QTL response over generations (Figure 1) shows that reduced QTL variance had a larger
effect than increased standardized QTL response.

Alternative schemes. Table 3 gives the response in generations 5 and 9, and cumulative
response over generations 5 to 9 to conventional selection for various breeding schemes.
Number of dams per sire (¥ ), number of offspring per dam (N,} and max-c varied between
schemes. Number of sires (¥,) and number of offspring per sire (N,XN,) were constant.
Response per generation increased with increasing meax-c and with decreasing N,. The reason
for this is that male final selection intensity increased with increasing max-c and female
selection intensity increased with decreasing N,

Table 4 gives the additional response due to markers in percent of response to CS.
Cumulative additional response was 6 to 13% of the cumulative conventional response.
Additional response was higher for schemes with adult within family selection than for
schemes with juvenile within family selection. This was especially true in generation 5 where
additional response varied from 4.6 to 5.0% for juvenile schemes and from 5.7 to 12.2% for
adult schemes. In generation 5 within family response is zero for juvenile schernes because
there is no information to estimate within family deviations. For adult schemes in generation
5, sib information is available to estimate within family deviations. Cumulative over
generations 5 to 9, additional response in juvenile schemes varied from 6.0% for N, at 20
and max-c at 9 to 9.7% for N, at 20 and max-c at 3. Cumulative additional response in adult
schemes varied from 6.2% for N, at 20 and max-c at 9 to 12.7% for N, at 20 and max-c at
3. Additional response increased with decreasing max-c. With decreasing max-c, the within
family selection intensity increased and therefore response to within family selection
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increased. Additional response also increased with decreasing N, at a given proportion of
male offspring selected from within a family, i.e., additional response is higher with N, at
6 and 3 out of 30 selected, than with N, at 3 and 6 out of 60 selected. With increasing N,
the differences in precision of the effects of paternally and maternally derived QTL alleles
increased. Differences between mean values of paternal and maternal alleles after selection
increased with increasing N,. Different expectations for maternal and paternal QTL alleles
result in different expectations for the four selection indices. These differences can be
exploited in selection.

Table 4 Additional response due to MAS as a percentage of conventional response for
various breeding schemes

N, N, max-c i, Generation 5 Generation 9 Cumulative over
5109

Ju ad ju ad ju ad

3 60 3 1.036 4.7 12.2 9.1 10.1 8.2 1.1
6 1.039 4.9 11.6 9.2 10.1 8.1 10.8

9 916 5.0 10.6 84 9.1 7.5 9.8

6 3 3 1.048 4.6 11.6 11.1 12.6 92 12.4
6 774 4.8 9.3 9.1 9.6 7.8 9.7

9 518 49 7.6 7.3 73 6.6 7.5

9 20 3 936 4.7 10.8 12.1 134 9.7 12.7
6 .523 4.9 7.7 8.7 8.7 7.5 8.5

9 121 5.0 5.7 6.5 6.5 6.0 6.2

Varied are number of dams per sire (¥,), number of full-sib offspring per dam (¥N,) and the
maximum number of cocks selected per full-sib family (max-c)

iy is the realized within family selection, computed as the within family response divided
by the standard deviation of the within family index, averaged over generations 5 to 9.
The given values are for adult within family selection. Realized intensity of juvenile
within family selection, computed over generations 6 to 9 because juvenile within family
selection response is zero in generation 5, was between .1% and 1.8% higher than
realized intensity of adult within family selection

ju is the additional response in % of conventional response for schemes with juvenile within
family selection

ad is the additional response in % of conventional response for schemes with adult within
family selection
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Figure 3 Effect of proportion of genetic variance due to QTL on additional response for
heritabilities at .1 (W), 3 (® ), and .5(+)

Figure 3 shows how the proportion of genetic variance due to the QTL and heritability
affect additional response. If the proportion of the genetic variance due to the QTL was .10
then additional response was highest for a heritability of .5 and Jowest for a heritability of
.1. If the proportion of the genetic variance due to the QTL was .20 then additional response
hardly changed by changing heritability. For proportions due to QTL higher than .20,
additional response was highest for a heritability of .1 and lowest for a heritability of .5. For
a proportion due to the QTL of .20, as in the standard scheme, additional response was 9.5%
for a heritability of .1, 9.7% for a heritability of .3, and 9.5% for a heritability of .5. For
a proportion due to the QTL of .80, additional response was 27.8% for a heritability of .1,
22.9% for a heritability of .3, and 20.6% for a heritability of .5.
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Discussion

Use of a marker linked to a QTL that explained a proportion of .2 of the genetic variance of
a sex limited trait increased response with 6 to 12.7%. Increasing the proportion of the
genetic variance explained by the QTL to .8 resulted in increases in response up to 27.8%.
In other studies MAS resulted in 20 to 30% (Kashi et al. 1990), 10 to 25% (Meuwissen and
van Arendonk 1992) and 40% (Stam 1986) increases in response. Stam (1986) studied sib
selection of young bulls in a dairy cattle breeding scheme. The 40% increase was realized
assuming that the true breeding value of a bull's sire was known with using markers and all
genetic variance was due to one locus for which segregation could be observed. Kashi ef al.
(1990) and Meuwissen and Van Arendonk (1992} looked at the situation that the whole
genome was covered with markers that were used to find associations in large groups of
offspring of elite sires. Kashi er al. (1990) selected young bulls before entering the progeny
test based on the marker alleles they inherited from their grandsires. In Meuwissen and Van
Arendonk (1992) there was only one selection step. Marker associations found in grandsires
were used to estimate within family deviations either in a progeny testing scheme or in a
nucleus breeding scheme,

There are important differences between our study and the two last studies mentioned
above. The within family selection of cocks in our study is simnilar to marker assisted
selection of young bulls in Kashi er al. (1990). The final selection steps of cocks and hens
in our study are similar to the use of markers in a nucleus herd as in Meuwissen and Van
Arendonk (1992). So, we combined two means of getting additional response but our
additional responses are lower than in either Kashi e al. (1990) or Meuwissen and Van
Arendonk (1992). The reasons for this are: (1) we compute cumulative response over 5
generations using a model in which QTL variance and consequently QTL response declines
over generations, where Kashi er al. (1990) compute response for one generation and
Meuwissen and Van Arendonk (1992) compute equilibrium response assuming no decline in
QTL response; 2) we consider one QTL explaining only part of the genetic variance and not
the whole genome; 3} in dairy cattie breeding programmes more information is available to
estimate marker allelic effects. In a poultry breeding programme only information from
within the nucleus can be used for breeding value estimation, whereas in the dairy cattle
breeding schemes marker allelic effects in elite sires are estimated using many offspring from
outside the nucleus, Of course, the structure of a poultry breeding programme can be changed
to estimate marker allelic effects more accurately. Because of such a change the polygenic
part of the breeding value will, however, be estimated more accurately too. Consequently,
additional response will not increase proportionally.

Additional response increased with increasing QTL variance. For proportions of
genetic variance due to the QTL of above .20, additional response increased with decreasing
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heritability. For proportions of genetic variance due to the QTI_: under .20, additional
response decreased with decreasing heritability. This observed interaction is not fully
understood.

We assumed that the transmission of all marker alleles is always traceable. For
microsatellite markers, a highly polymorphic class of markers, on average a heterozygosity
of .28 was observed in commercial layer lines (Groen ef al. 1994). Allele frequencies were
estimated for several microsatellite markers and heterozygosity was estimated assuming Hardy
Weinberg equilibrivm (Groen er al. 1994). Given this level of polymorphism, marker
transmission will often be untraceable which will have a negative influence on the benefits
of MAS (Kashi er al. 1990). The use of several closely linked markers largely solves the
problem of untraceable marker transmission (Kashi e ¢l. 1990). This, however, will generate
additional costs of typing.

Inbreeding was ignored in this study. Without selection we can predict from the

number of sires and dams used per generation that inbreeding would increase with a rate of
.3% per generation. At this rate, inbreeding will hardly affect response. With selection,
however, inbreeding will increase more rapidly since sibs will be co-selected, especially
males. This will especially lower the level of response of schemes with a high max-c and
high N,. The exact impact of inbreeding on QTL response is hard to predict.
Responses were given per generation, The effect of generation interval was not included. For
all schemes, either with or without the use of markers, final selection of males and females
was after the females in a generation had completed their first record. The use of markers
did not alter the generation interval and therefore additional response expressed in percentage
of response to conventional selection was independent of generation interval. Comparisons
over schemes were based on additional response. So, although generation interval might
differ between schemes, comparisons were not affected by generation interval.

The genetic model in this study assumed a QTL with allelic effects that follow a
normal distribution. Selection reduced the variance of the allelic effects. Recombination
during the forming of new gametes did not counterbalance the reduction of QTL. variance.
In each round of selection, therefore, QTL variance was further reduced whereas for
polygenic variance, recombination and selection reached an equilibrium. The proportion of
the genetic variance due to the QTL, therefore, decreased over generations and consequently
also the additional response due to MAS. Polygenic response, after an initial decrease due
to a build up of linkage disequilibrium after selection in generation zero, gradually increased
over time. This can be explained as follows: QTL variance decreases and therefore also
negative covariance between polygenic and QTL effects. Therefore, the covariance between
additive genetic effects and polygenic effects increases and also the polygenic response.
Polygenic response was lower with MAS than with CS. This is due to the negative covariance



94 Chapter 5

between QTL efiects and polygenic effects. QTL response is higher with MAS than with CS
and consequently also the correlated negative effect on polygenic response is higher with
MAS than with CS.

We believe our genetic model is more realistic than a model that assumes a constant
QTL response over generations. Cur model, however, sets no limit to the cumulative QTL
response. This is unrealistic for a single locus with a finite number of allelic effects in the
base generation. A solution could be the introduction of a "best allele model" in which the
population mean for the QTL cannot increase above the value of an animal homozygous for
the best QTL allele in the base generation. A heuristic approach might be to let the QTL
variance after selection depend on the cumulative QTL response. Alternatively the single
locus model can be interpreted as a model for a cluster of many closely linked toci. For a
given QTL variance in the base generation long term response will increase with increasing
number of underlying genes and our model will become more realistic. The same argument
applies for a situation with several independent marked QTLs.

We studied the additional response due to MAS for a poultry breeding nucleus
assuming favourable conditions like a sex limited trait, a restriction on the number of cocks
selected per full-sib family, and traceable marker alleles. For a commercial breeder increased
response should lead to an improved market share or a higher price for its products. The
costs are in collecting blood, isolating DNA and typing for marker loci. With the ongoing
development of marker technology it is hard to quantify future costs of MAS. Predicting
effects of additional response on market share is harder and will depend on the current
position and strategies used by competitors. Given its position, the commercial poultry
breeder can compare the costs and benefits of marker assisted selection. Results of this study
can help in this decision process and in implementing the new technology efficiently.
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Appendix

In this appendix we will show how to compute the within family selection response in generation 10 of the
standard scheme.

From equation (2), the contribution to selection response of within family selection is:

4
S5 Efw.x(mw RLCWR U(A"W))
1

. . (Al)
=.5 Lz:fwx(mw X o(AAW.)) =3 .25xm,,
=1 J=1

where f,,, is the fraction selected of cocks with within family selection index j in generation ¢, m,,, is the mean
genetic value before within family selection of cocks with within family selection index j in generation #, m,,
is the mean of all cocks before within family selection in generation ¢, i,,, is the selection intensity within the
group of cocks with within family selection index j in generation £, and o(A,,} is the standard deviation of within
family selection index j in generation ¢. The group of offspring that inherit two paternal marker alleles have
index 1, the group that inherit a paternal allele from the sire and a maternal from the dam have index 2, the
group that inherit a maternal allele from the sire and a paternal from the dam have index 3, and offspring that
inherit two maternal marker atleles have index 4. Before within family selection the four groups are of equal
size.

The components required to compute within family selection response are given in Table Al, Before selection,
offspring inheriting a paternal marker allele from the sire are on average better than offspring inheriting a
maternal marker allele from the sire. For a given sire allele, animals inheriting a paternal allele from the dam
are better than animals inheriting a maternal one. As a result, after selection animals with two paternal alleles
are most frequent, and animals with two maternal alleles are least frequent. This means that groups with lowest
mean were most intensely selected. Equation {Al) shows that the within family selection response can be
computed from group means and fractions before and after selection as: .5 X (.397 X 6.303 + .262 < 6.278 +
221 X 6.278 4+ .120 X 6.264-.25 X (6.262 + 6.211 + 6.194 + 6.142)) = .042, which is the within family response
as also given in Table 1 for generation 10.

Table Al Elements required to compute the within family selection response to marker assisted selection
in the standard scheme

Index Fraction Mean Standard Selection Fraction Mean
before before deviation of  intensity after after
selection selection index selection selection

1 .250 6.261 096 438 397 6.303

2 .250 6.211 .098 705 .262 6.278

3 250 6.194 102 .810 221 6.278

4 .250 6.143 .104 1.135 120 6.264




Chapter 6

General discussion
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Research on and application of genetic markers in a poultry breeding programme
involves several activities. In this chapter I discuss aspects of these activities. The chapter is
divided into six sections: (I) the chicken linkage map, (I} identified QTLs in chicken, (III)
the design of QTL mapping experiments, (IV) possible applications of genetic markers (V)
three specific applications of genetic markers in a poultry breeding programme, and (VI)
summary.

I The chicken linkage map

More than 460 genetic markers are placed on the chicken linkage map (Burt et af.
1995). The chicken linkage map is the composite of two maps; one based on female meioses
in the Compton reference population (Bumstead and Palyga 1992) and one based on male
meioses in the East Lansing reference population {Crittenden ef al. 1993). The estimated
length of the chicken linkage map based on meioses is 2500 to 3000 cM (Levin et al. 1994).
The male and female linkage map do not seem to differ in length (Crittenden pers. com.).
Based on chiasmata counts in oocytes a length of 2900 to 3200 cM (Rodionov et al. 1992)
was estimated, corresponding well to the meioses based estimate. In this cytogenetic study
of Rodicnov er al. (1992), the male and female linkage maps were of equal length as well.
Preliminary data from a study using markers covering only 400 cM of the chicken genome,
but using many more informative meioses than available in either reference family, however,
suggest that (parts of) the male map is larger than the female map (Groenen pers. com.).
The chicken genome consists of 39 chromosome pairs that show large variation in size. The
five macrochromosomes cover 40% of the linkage map (1200 ¢cM), but represent 70% of the
genomic DNA (Rodionov et al. 1992). The chicken genome contains many very small
chromosomes, the microchromosomes. Compared to their physical length, microchromosomes
account for a large part of the linkage map. A chromosome has a minimum recombination
length of 50 cM irrespective of the physical chromosome length because in meiosis at least
one crossover takes place on each chromosome (Rahn and Solari 1986; Burt and Bell 1987,
Rodionov er al. 1992). This explains why the recombination length of the chicken genome
is comparable to the genome length of other domesticated species while the physical length
of the chicken genome is considerably smaller. The macrochromosomal crossing over rate
is, however, similar to that of the female human genome (Rodionov er al. 1992).

From the linkage map markers are selected to be used for QTL mapping experiments.
I will call this set of markers the reference map. Markers on the reference map have to meet
three criteria. First, they have to be polymorphic in the population used for the QTL mapping
experiment. This tmplies that each experiment requires a specific reference map. Second,
markers should fit in groups for simultaneous typing. Third, the markers ought to cover the
complete genome and for efficiency should be more or less equally spaced. A 20 cM distance
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between adjacent polymorphic markers in the reference set is often used as a standard
(Botstein er al. 1980). At this spacing 1200 ¢cM / 20 cM = 60 markers are required to cover
the macrochromosomes. At least one marker per microchromosome is also required, although
two markers per microchromosome may be, however, required if microchromosomes contain
recombination hot spots (Rodionov et @, 1992} that virtually divide the microchromosome
in two independently segregating chromosome segments. So, a reference map with 20 cM
spacing includes between 60 + 35 = 95 and 60 + 2x35 = 130 polymorphic markers. More
markers are needed for experiments with populations in which the polymorphism of markers
is moderate. This may be the case in chicken. In commercial outbred layer and broiler
populations, microsatellites show a 30 to 60% heterozygosity (Groen et al. 1994).
Currently, most mapped chicken genetic markers are RFLP and RAPD type markers
(Bumstead and Palyga 1992; Levin e al. 1994). The number of microsatellite markers placed
on the linkage map is, however, rapidly increasing (Cheng and Crittenden 1994; Crooijmans
et al. 1994a; Crooijmans et al. 1994b; Khatib et al. 1993; Crooijmans et al. 19953).
Microsatellite markers are moderately to highly polymorphic, a property required for efficient
linkage mapping or QTL mapping. Around 150 microsatellites are at the linkage map and
more than 200 unmapped microsatellite markers are available (Crooijmans pers. com.).
It is unknown how well the linkage map covers the genome. Currently, linkage groups are
assigned to only three microchromosomes (Burt et al. 1995). To enable QTL. mapping
experiments in which potentially all segregating QTLs can be detected, a linkage map
covering all microchromosomes is required. For coverage of microchromosomes, it is not
necessary to know which linkage group belongs to which microchromosome. It is sufficient
to know that a specific linkage group belongs to a different chromosome than the other
linkage groups. The number of independent linkage groups will then equal the number of
chromosomes covered. Currently, markers are assigned to different linkage groups if they
are not significantly linked. For optimal use of the linkage map, determining that markers are
significantly urlinked is equally important. Einkage groups are independent if for all possible
pairs of a marker from one linkage group and a marker from another linkage group, the
markers are significantly unlinked.

II Identified QTLs in chicken
Few genes of economic importance have been identified in chicken (Merat 1990).
Among these genes, the dwarf genes, the naked neck gene, and sex-linked genes used for
sexing of chicks are of commercial interest. For the many biochemical polymotphisms
studied, Merat (1990) concluded that estimated effects differed markedly over stdies and
were hardly ever significant. The same is true for blood group polymorphisms except for the
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B locus (the chicken MHC) which has a well documented effect on susceptibility for Marek's
Disease. Another, well studied, class of genes comprises the endogenous viral genes or ev-
genes. Ev-genes are DNA sequences in the chicken genome that have a high degree of
homology to exogenous avian leukosis viruses (Gavora et al. 1991). Two ev-genes from
which complete endogenous viruses are transcribed, reduced annual egg production rate by
9% (Gavora et al. 1991}, Another completely transcribed ev-gene is at the sex-linked slow
feathering locus used for sexing chickens.

Recently, associations between anonymous marker loci and quantitative traits have
been studied. A DNA fingerprint band with an effect of 0.9 standard deviations (not specified
which standard deviation) on abdominal fat (Plotsky et al. 1993), and a DNA fingerprint band
having an effect of more than two residual standard deviations on shank length and body
weight (Dunnington et al. 1992} were found. Lakshmaman et al. (1994) identified 101 DNA
fingerprint bands associated with 8 different traits. The practical use of these results is limited
because the DNA fingerprint bands are not mapped on the linkage map. In another study,
significant associations between morphological markers and age at first egg and body weight
were found (Shoffher ef al. 1993). From their tables I approximate that allelic effects were
of the order of 0.2 residual standard deviations. The morphological markers used in the study
of Shoffner and coworkers are placed on the linkage map. Khatib (1994) studied the
association of 28 microsatellite markers, that covered over 50% of the chicken genome, with
juvenile growth rate in a cross between White Leghorn layer females and a single White
Rock broiler male. Eleven markers were significantly associated with growth rate, but sizes
of effects were not given.

Khatib's study (1994} is the first step towards a whole genome QTL mapping
experiment. A whole genome QTL mapping experiment uses markers covering the whole,
or most of the, genome. From now on, the term 'QTL mapping experiment' will be used to
refer to an experiment using a linkage map covering the whole genome.

Powerful QTL mapping experiments are required to answer questions such as: how
many genes are responsible for genetic variation in the expression of economic traits, how
are these genes spread over the genome, and what is the distribution of allelic effects.
Information from experiments in poultry is currently limited but some inferences can be based
on experiments in other species.

QTL mapping experiments in plants and Drosophila suggest that genetic variation is
due to few genes with large effects and many genes with small effects (Shrimpton and
Robertson 1988; Edwards e ai. 1987; Paterson et al. 1988,1991; Stuber et al. 1992;
deVicente and Tanksley 1993). The effects of spontaneous mutations in Drosophila show a
similar distribution (Keightley 1994). Some QTLs have already been identified in chicken
(Khatib 1994). QTL mapping experiments (plants: e.g., Edwards et af. 1987, Paterson et al.
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1988,1991; Stuber et al. 1992, deVicente and Tanksley 1993; pigs: Andersson et al. 1994;
dairy cattle: Georges et al. 1995) show that QTLs can be detected in many species.

The size of the effects of segregating QTL alleles depends on the population under
study. Within a selected population alleles of large effect will quickly move to fixation. As
a result, the largest effect of the remaining segregating QTL alleles will probably be smaller
than the largest effect of the QTL alleles that segregate in an F2 between unrelated
populations that differ widely for the studied trait. This expectation is unproven since only
one QTL mapping experiment within a single selected population has been reported to date
(Georges et al. 1995). Georges et al. (1995) identified QTLs explaining variance within dairy
cattle elite sire families. In some families, the QTLs they identified explained 10 to 50% of
the within family variance. Although this, as they point out, is an overestimate of the true
values, it shows that QTL alleles of large effect segregate in a highly selected population.
Additional within population experiments are needed to compare the effects of QTL alleles
found within populations to effects of QTL alleles found in crosses.

Plant QTL mapping experiments identified QTLs in crosses between two commercial
populations, between a commercial population and a wild type population, and between
divergently selected populations. All studies that will be mentioned here, found QTLs for
each trait examined. Identified QTLs together often explained more than 50% of the
phenotypic variance in a cross. Individual QTLs could explain as much as 40% of the
phenotypic variance. The type and direction of gene action depended on the studied trait and
the population used in the cross. Stuber ef al. (1992) crossed two elite maize inbred lines that
produce superior hybrid performance. They observed overdominant gene action for all QTLs
identified which agrees with the high heterosis observed. However, Cockerham and Zeng
(1995) re-analyzed the data of Stuber ef al. (1992) and concluded that overdominance is not
necessary to explain the results of Stuber ef al. (1992). Beavis et al. (1994), using a cross
between the same populations, identified QTLs in other chromosomal regions than Stuber ef
al. (1992). Most QTLs showed dominant gene action and only few showed overdominant
gene action (Beavis er al. 1994). Perhaps, the results differ because the studies were designed
differently. Stuber e al. (1992) used a backcross whereas Beavis er al. (1994) used an F4;
this could mean that genetic background influences gene action of QTLs (Beavis ef al. 1994).
The low power of the experiments is another plausible reason for differences in results of the
experiments (Beavis ef al. 1994). Paterson ef al. (1988,1991) crossed a wild type tomato with
a domesticated tomato. Gene action was additive or partially dominant. For two traits parental
population means differed more than 10 phenotypic standard deviations. For all QTLs
identified for those two traits the direction of the allelic effects agreed with the difference in
parentai means, i.e., the QTL allele with the higher effect always came from the population
with the higher population mean. For a third trait, parental means hardly differed and
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direction of QTL allelic effects was either positive or negative. Edwards et af. (1987, 1992)
crossed two maize populations differing substantially for the traits measured in their
experiments. The direction of QTL allelic effect was consistent with the difference in parental
means. For gene action a continuum between additive and overdominant effects was found.
Schén (1993) crossed two elite maize lines and identified QTLs of which the positive allele
came from either parental line. Goldman et al. (1994) crossed divergently selected maize lines
and for some identified QTLs, the direction of allelic effects was opposite to the difference
between the parental means (Goldman pers. com.). DeVicente and Tanksley (1993) analyzed
traits showing transgressive segregation in a tomato cross. They defined transgression as "the
appearance of individuals in segregating populations that fall beyond their parental
phenotypes". Seventy four QTLs were found for eleven traits. Thirty six percent of the QTLs
had an effect opposite to the direction expected from the difference in parental means. The
proportion of QTLs with opposite eifect was significantly negatively related with the
difference between parental means.

From these plant QTI. mapping experiments I conclude:
- Few QTLs explain most of the phenotypic variance in a cross between relatively
unrelated populations with largely different trait means.
- The proportion of QTLs with an effect opposite to the difference between parental
means is negatively correlated to the size of this difference.

With respect to the interpretation of results of QTL mapping experiments it should be
noted that resolution of QTL mapping experiments is often not sufficient to decide whether
or not a single gene or several closely linked genes underlie an identified QTL. For example,
one gene with overdominant gene action cannot be discriminated from iwo closely linked
dominant genes as was shown by Cockerham and Zeng (1995) who re-analyzed the data of
Stuber et al. (1992) and concluded that overdominance is not necessary to explain the results
of Stuber er af. (1992). In tomato, isogenic lines were used for fine mapping of QTLs (Eshed
and Zamir 1995). A first experiment identified QTLs (Eshed and Zamir 1994) that were
further studied in a subsequent experiment. One QTL identified in the first experiment, could
be resolved into three linked QTLs in the second experiment (Eshed and Zamir 1995).

QTL mapping experiments are interesting for poultry breeders, especially when QTL
alleles can be identified that can improve the level of the populations used in the commercial
breeding programme. T will call such QTL alleles 'favourable QTL alleles’. Even in a cross
between lines with largely different trait means, within the low population QTL alleles of
positive effect can be found that are not at fixation within the high population, as Khatib
{1994) showed. Within a layer population he identified QTL alleles with a higher effect on
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growth than the alleles of a single broiler male. The probability of finding favourable QTL
alleles will be larger if a commercial population is crossed to an unrelated population with
an equal trait mean. To enlarge the probability of finding favourable QTL. alleles, crosses can
first be screened based on the variance they show in an F2. Also, the heterosis level might
be a predictor for the presence of favourable QTL alleles in case heterosis is due to dominant
alleles that are in repulsion.

T The design of QTL mapping experiments

A QTL mapping experiment should be carefully designed. First, a QTL mapping
experiment can only identify QTLs segregating in the population used for the experiment. So,
the experimenter should decide which populations can provide useful answers to his
questions. Second, a QTL mapping experiment is expensive and thus the gains of optimizing
the design may be high.

Many factors influence the efficiency of a QTL mapping experiment, including the
structure of the experimental population, the size of the experiment, the reference map
density, and the ratio of the number of trait observations over the number of marker typings
as discussed in Van der Beek et al. (1995). The optimization depends on several parameters
including the desired type I and type II (power) errors for the experiment, the potential
number of offspring per hen and per cock, the heritability of the trait(s) studied, the density
of the available linkage map, the polymorphism of the available markers, the relative costs
of marker typing and gathering phenotypic information, the practical setting of the
experiment, and the available marker technology. Chapter 4 of this thesis covers several
aspects of the design of QTL mapping experiments. Here, I shall first address the influence
of the population used for QTL mapping on the QTLs likely to be identified. After that I will
describe selective DNA pooling, a QTL mapping technique that can change the way QTLs
are mapped and linked markers are used in breeding.

The properties of identified QTLs will depend on the populations used to identify
themn. I distinguish three QTL classes:

QTLs with alleles that explain the difference befween two populations not used in the same
breeding programme, e.g., a broiler population and a layer population. This
difference can be studied in a cross between the two populations.

QTLs that explain the difference between two populations used in the same breeding
programme, e.g., a broiler sire population and a broiler dam population. This
difference can be studied in a cross between those populations.

QTLs that explain the differences within a population, i.e., between families or between
animals. These differences can be studied in a within population experiment.
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Eventually an experiment using animals from the population of interest is required to
identify the QTLs accounting for the genetic variance in that population. However, first a
cross between populations differing extremely for the trait of interest could be studied. In
such a cross QTL alleles will segregate that have an effect that is larger than the alleles that
segregate within the population of commercial interest. These larger QTL alleles can
relatively easily be detected. Possibly, the QTLs with the alleles accounting for the
differences between extremely different populations, alse have alleles accounting for the
differences between less divergent populations or the differences within populations (Edwards
et al. 1992). This, however, is speculative and remains to be documented.

Starting with a cross between extremely different populations might not be efficient,
even if the QTLs identified in such a cross also explain the differences between two
comparable populations or the differences within a population. The QTLs identified in a cross
between extremely different populations have to be confirmed in a subsequent experiment.
This subsequent experiment has only value if QTLs are not only confirmed but if also QTL
allelic effects are estimated accurately. For accurate estimates large experiments are required,
as large as required for direct detection of QTLs. When only markers are typed for regions
to which QTLs have been assigned in previous experiments, indeed less marker typings are
required than for a whole genome mapping experiment. It is, however, hard to imagine that
for a well designed large experiment, using a previously unstudied genetic resource, only part
of the genome will be considered.

QTL mapping using selective DNA pooling. Selective DNA pooling combines selective
genotyping with DNA pooling (Darvasi and Soller 1994). DNA is isolated from two blood
pools: one pool includes blood from animals from the high tail of a phenotypic distribution
and the other pool includes blood from animals from the low tail of a phenotypic distribution.
As with normal selective genotyping (Lebowitz er ai. 1987; Lander and Botstein 1989;
Darvasi and Soller 1992), selection is from a group of animals expected to be in linkage
disequilibrium. In an outbred population two pools are formed for each full-sib or half-sib
family. In a crossbred F2 population two pools are formed for the whole population. The
DNA pools are analyzed for markers; not only qualitatively to determine which marker alleles
are in the DNA pool, but also quantitatively to estimate the relative marker allelic
frequencies. The association between a marker and a quantitative trait can be inferred from
differences in the frequencies of a marker allele in the low pool and in the high pool (Darvasi
and Soller 1994).
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The power of selective DNA pooling, compared with the power of selective individual
genotyping, mainly depends on the technical error of estimating the marker allelic frequencies
in the DNA pools (Darvasi and Soller 1994). Power of selective DNA pooling is only slightly
lower than power of selective individual genotyping if there is no technical error, but
decreases considerably with increasing technical error. Replicating the allelic frequency
measurements reduces the error (Darvasi and Soller 1994). The reduction in technical error
will be largest if the whole procedure starting from blood mixing is replicated.

Selective DNA pooling can considerably reduce the number of marker typings in a
QTL mapping experiment. In an intercross between inbred lines only two pools have to be
formed whereas for an outbred population with several families, more pools have to be
formed that all have to be typed. The efficiency of DNA pooling further depends on the
techniques used for individual and pooled typing, and the technical error on the allele
frequency estimates. In particular, a multicolour fluorescent automatic sequencer can
simultaneously type more markers for each individual sample than for each DNA pool. DNA
fragments of the same size but labelled with different dyes, have a small influence on the
signal of each other (read-through). For single sample typing this is not a problem, but for
interpreting the results of pooled typing it is, because a signal due to read-through cannot be
distinguished from a signal due to an allele of low frequency. Therefore, for pooled typing
the regions to which alleles of different dyes migrate in a gel should not overlap, whereas for
individual typing overlap is allowed. This effectively makes the maximum efficiency of
pooled typing equal to the maximum efficiency of single colour typing. In addition,
measuring allele frequencies from the output of the automatic sequences is much more labour
intensive than scoring alleles. Replicating the measurements to decrease the error on the
frequency estimates also reduces the advantage of selective DNA pooling. The advantage of
selective DNA pooling further depends on the number of traits in the QTL mapping
experiment. For each trait separate DNA pools have to be formed. So the advantage
decreases with increasing number of traits in the experiment.

Selective DNA pooling is an efficient tool if the number of pools to be typed is many
fold lower than the number of individual typings. The advantages are highest for experiments
with crossbred populations and for experiments with two-generation half-sib family structures
with very large half-sib families. With the availability of the technique, the optimal design
of QTL mapping experiments might change. Several three generation QTI. mapping
experiments (see chapter 4 for a description of three generation experiments) are planned. In
these experiments many more phenotypes than genotypes have to be scored. Perhaps, a two-
generation experiment with large half-sib families can replace such a three-generation
experiment if selective DNA pooling can be used and there are few quantitative traits to be
scored.
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IV Possible applications of genetic markers
In this section I describe how markers can be used to improve a poultry breeding
programme. I address parentage control, varietal identification and marker assisted selection.

Parentage control. Markers can be used for parentage control. Parentage control requires
typing the individual and the potential parents for as many markers as necessary to exclude
all potential parents but one. A potential parent is excluded if the individual has inherited an
allele not present in the potential parent, e.g. the individual has genotype AA and the
potential parent has genotype BB. The number of markers needed for effective parentage
control depends on four factors (Soller and Beckmann 1983): (1) whether both or one parent
is unknown (often, the individuals' dam is known, but not the sire), (2) the degree of
polymorphism at the marker, (3) the number of potential parents, and (4) the required
probability of excluding all but one parent.

Assume the individuals' dam is known, that there are 10 potential sires, and that we
require an 0.99 probability of excluding all but one sire. If markers have on average two
equiprobable alleles, i.e., a 50% chance of heterozygosity, then 33 markers are needed. If
markers have on average three equiprobable alleles, i.¢., an expected heterozygosity of 67%,
then only 14 markers are needed. For commercial layers a heterozygosity of around 50% and
for broilers a heterozygosity of around 70% for a selected group of microsatellite markers
is realistic (Groen et al. 1994).

Varietal identification. Varietal identification can be qualitative, i.e., using markers to
decide if a population differs from another population, or quantitative when markers are used
to estimate the genetic distance between populations. Efficient estimation of genetic distance
is possible when DNA pooling and semi-automated microsateltite typing are used (Crooijmans
et al. 1995b). Genetic distance estimates can be used to maximize the genetic variety in the
gene pool for a given number of animals that form the pool. Genetic distance can also be
used to predict heterosis. Groen and Crooijmans (1995) observed correlations between genetic
distance and heterosis for economic traits ranging from 0.2 to 0.9 in layers. These
correlations are such that heterosis prediction is indicative. A crossing experiment should
verify the heterosis before introducing a cross in the breeding programme.

Marker assisted selection. In a recent review, Visscher and Haley (1995) distinguish marker
assisted introgression, marker assisted selection in an intercross and marker assisted selection
within an outbred population. I will describe these three applications.
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Marker assisted selection during introgression

Following Groen and Smith (1995) I shall use donor population for the population containing
a QTL allele to be introgressed, and recipient population for the population in which the QTL
allele is to be introgressed. During introgression markers can be used to (1) select for the
favourable QTL allele and (2) improve selection against the donor line background genome.
If the QTL alleles can be identified, then selecting for the favourable QTL allele is
straightforward. More likely, however, a QTL mapping experiment will reveal markers
linked to a QTL, not the QTL itself. To efficiently introgress a QTL, bracketing polymorphic
markers as close to the QTL as possible should be used. A dense linkage map and an
accurate estimate of the QTL location are favourable. Because the QTL location is estimated
with some error, use of only the markers closest to the estimated QTL location is not
necessarily best; as closer the bracketing markers are to the estimated location, the more
likely the true QTL location is outside the selected bracket. This risk is reduced when more
distant markers are used. Within a wider bracket double crossovers are more probable than
within a small bracket. Because a double crossover also can lead to losing the favourable
QTL allele, several markers should be used that cover the whole region in which the QTL
is likely located. Anirnals with no observable recombination in the whole region should be
selected. (Enlarging the region in which no recombination is allowed leads to more stringent
selection. It might be that the size of the experiments has to be adapted upwards). If the QTL
location is inaccurate, the strategy to minimize the risk of losing the favourable QTL allele
results in introgressing a large part of the donor genome into the recipient line. Introgressing
unfavourable donor polygenes then lowers the benefits of introgressing the favourable QTL
allele. An alternative strategy would be to maximize the value of the introgressed part of the
donor genome, taking into account that the donor genome carries both the favourable QTL
allele and unfavourable alleles of polygenes. The value of a location can be computed as the
probability that the QTL is at that location times the value of the favourable QTL allele plus
the polygenic value of that location in the donor genome minus the polygenic value of that
location in the recipient genome. An estimate of the polygenic value of a location would be
the population mean corrected for the QTL effect times the fraction of the genome at that
location.

The use of markers to select against the donor population background genome can
reduce the number of backeross generations needed for full recovery of the recipient genome
by two generations (Hospital ef . 1992; Visscher e al. 1995). For recovery of the recipient
genome, animals with fewest marker alleles originating from the donor population are
selected.
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Groen and Smith (1995) showed that full recovery of the recipient genome is not
efficient when both the donor and the recipient line contain favourable alleles. For such a
situation, selection for animals with the desired phenotype was superior to selection for
animals with the highest proportion of recipient marker alleles (Groen and Smith 1995).

In an introgression programme, selection is within a cross. Marker assisted selection
can exploit the linkage disequilibrium between markers and QTL alleles in a cross, resulting
in genetic progress higher than by phenotypic selection (Lande and Thompson 1990; Zhang
and Smith 1992,1993; Gimelfarb and Lande 1994a,b). So, selection should not be for the
marker alleles coming from one population but for the marker alleles associated with highest
phenotypic trait values. However, backcrossing is usually applied if the recipient population
level is much higher than the donor population level. Then, for most markers the allele
coming from the recipient population will be favourable.

Even if marker alleles from the donor population are associated with an increase in
the traits that are measured, the breeder might prefer to select for the recipient genome to
prevent introgression of donor alleles that have a negative influence on traits that are not
observed in the introgression programme,

Marker assisted selection in a crossbred population

In a crossbred population, marker assisted selection can increase genetic gain up to 400%
{Lande and Thompson 1990}). A 400% increases was obtained under unrealistic assumptions,
but iltustrates the potential. Many factors influence the efficiency of marker assisted selection
in a cross. I shall not address all these factors but try to outline optimal conditions for marker
assisted selection in a crossbred population.

Marker assisted selection is beneficial if markers explain otherwise unexplained
genetic differences among the candidates for selection. This is true both for selection within
a crossbred population and for selection in an cutbred population. To explain diffefences, a
marker should be close to a QTL that accounts for a large genetic difference. The marker
allelic effects have to be estimated. The more accurate these estimates of the marker allelic
effects are compared with the accuracy of polygenic estimates, the more otherwise
unexplained variance will be accounted for.

In an intercross, marker allelic effects can be estimated on a population basis because
markers and QTLs are in linkage disequilibrium on a population basis. Consequently, many
observations can be used to estimate the marker allelic effects. The number of observations
used to estimate the allelic effects had the largest effect on the extra genetic gain (Gimelfarb
and Lande 1994a; Zhang and Smith 1993). Increasing population size from 1000 to 3000
animals still greatly affected the accuracy of marker allelic effect estimates (Gimelfarb and
Lande 1994a).
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The work of Gimelfarb and Lande (1994a), and Zhang and Smith (1993) showed two
aspects of the breeding value estimation procedure are very important: the model used in
breeding value estimation, and whether or not maker allelic effects are re-estimated. Both
studies simulated an F2 based on two inbred lines. Marker assisted selection in the F2 and
later generations exploited the linkage disequilibrium between markers and QTLs in the F2.
Gimelfarb and Lande (1994a) estimated marker allelic effects by standard mwltiple linear
regression treating allelic effects as fixed. Zhang and Smith (1992,1993) used a mixed model
with random marker allelic effects that was suggested by Goddard (1992). The random
regression approach gave higher response than fixed regression (Zhang and Smith 1993). In
an example, response using random regression was three times the response using fixed
regression. Random regression is superior because it considers the differences in accuracy
of marker haplotype effects (Goddard et al. 1995).

Zhang and Smith (1992,1993) estimated marker allelic effects once, in the F2
generation, and used these estimates to select in the F2 and all subsequent generations.
Gimelfarb and Lande (1994a) showed response was higher if marker allelic effects were re-
estimated each generation. Gimelfarb and Lande (1994a) based re-estimates on information
from the latest generation and discarded information from earlier generations. So, both Zhang
and Smith, and Gimelfarb and Lande show the amount of information to estimate marker
allelic effects is crucial, but both do not use all information to estimate the effects. I suggest
information from all generations should be used to obtain mixed model estimates of the
marker allelic effects. The mixed model should allow for changing marker allelic effects over
generations and differences over families.

For a cross between inbred populations using the model of Fernando and Grossman
(1989), treating all F2-animals as offspring resulting from selfing one non-inbred animal,
would be appropriate. This model links the gametic effect of all F2-animals to the same two
parental gametes in the F1. Goddard (1992) derived an elegamt simplified model appropriate
for analysing F2 data, but not for data including several generations.

For a cross between outbred populations the approach suggested for a cross between
inbred populations will not work. Within the F1 between outbred populations are many
different gametes that can be divided into two groups of gametes, one for each outbred
population. The model should allow for individual gametes and for grouping of gametes. This
can be achieved for the model of Fernando and Grossman (1989) by including a random
population effect for each QTL allele into the model similar to including random genetic
group effects in a standard BLUP analysis (Goddard 1992). The effect of an individual QTL
allele is modelled as the average of the QTL alleles in the group plus a deviation of the
individual QTL allele from the group average.



General Discussion 111

Marker assisted selection in an outbred population

An outbred population is a collection of families whereas a crossbred population resembles
one full-sib family. Linkage disequilibrium between markers and QTLs differs over families,
i.e., the outbred population is expected to be in linkage equilibrium. So, marker allelic effects
have to be estimated for each family separately.

For two reasons, estimated marker allelic effects in an cutbred population explain less
variance and therefore contribute less to genetic gain than estimated marker allelic effects in
a crossbred population. First, a single family in an outbred population is generally smaller
than an entire crossbred population. Therefore,- the marker allelic effect estimates are
regressed more towards zero in an outbred population. More speculatively, in an outbred
population under selection, segregating large QTLs may be less likely than in a crossbred
population.

The use of a cross is beneficial if two populations contain complementary QTL alleles.
If two such populations are not available, genetic markers can only be applied for marker
assisted selection within an outbred population. In chapter 5 we quantified the additional
response due to marker assisted selection for a sex-limited trait in an outbred poultry breeding
nucleus. Although population wide linkage disequilibrium could not be exploited, the use of
genetic markers still increased the response in an outbred poultry population by 10% if a
marker for a QTL explaining 20% of the genetic variance was available and by 20% if a
QTL explaining 80% of the genctic variance was available (Van der Beek and Van Arendonk
1995). Van der Beek and Van Arendonk (1995) simulated a breeding programme in which
the number of full-sib cocks selected was restricted to limit inbreeding. Additional response
was mainly due to the marker based selection of cocks within a full-sib family; without
markers these cocks all had the same estimated breeding value and selection was not possible.
Additional response increased if fewer cocks were selected from each full-sib family.

Meuwissen and Van Arendonk (1992) studied marker assisted selection for a sex-
linited trait in a dairy cattle breeding nucleus. They also found additional responses of 10 to
20% but in their study the number of male full-sibs selected was not restricted. In their study,
however, information from outside the nucleus was used to estimate marker allelic effects,
and the amount of information from outside the nucleus greatly affected additional response.
If, similarly, for a poultry breeding programme, information from outside the breeding
nuclens can be used to estimate marker allelic effects, then additional response in poultry
breeding can be greater than the 10 to 20% we found.
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V Three specific applications of genetic markers in a poultry breeding
program

The density of the chicken linkage map allows powerful QTL mapping experiments.
A QTL mapping experiment should be large and should concern the population used in the
breeding programme to result in useful application of the acquired information. As long as
QTL mapping does not lead to identified specific genes, information on QTLs has to be
exploited via genetic markers. The benefits of using genetic markers depend on the traits
considered and the breeding programme in which the genetic markers are used. Application
of genetic markers is most promising for traits that are difficult or expensive to measure,
expressed late in life, and traits for which mapped segregating QTLs explain much of the
genetic variance. Application of genetic markers is most efficient in an intercross or in a
backcross during introgression.

The conditions under which the use of markers is most beneficial can be inferred from
the description in the previous section on the potential uses of markers. Current breeding
practise does not necessarily meet those conditions. New breeding programmes or breeding
strategies may need to be developed to fully exploit the potential of genetic markers. In this
section I will try to describe breeding strategies that optimally exploit markers. T will describe
three scenarios. In the first scenario, the emphasis is on difficult traits and on the use of
introgression and selection in a cross. The second scenario describes a strategy to reduce the
typing costs without affecting the benefits of marker assisted selection. In the third scenario
markers are used primarily to restructure the breeding programme rather than for marker
assisted selection directly.

Replacing a line. The final-product of a poultry breeding programme is a crossbred animal.
All parental lines used in the cross are improved simultancously. From time to time a
parental line is replaced by a new line that either adds new characteristics to the final
product, e.g. resistance against a specific disease, or simply is better for a trait such as
growth rate.

The new characteristics of the line can involve traits that were previously not under
selection. For unselected traits, QTLs explaining much variance are likely present. A logical
approach is to first map QTLs for the unselected traits, and subsequently select for those
QTLs via marker assisted selection.

The new characteristic of the line can be a specific gene. An example is a sex-linked
slow feathering gene, or a dwarf gene. During the development of the new line often
introgression or crossing is applied. Introgression will be used if a specific favourable allele
is identified in a further inferior population. Markers will be used to introgress this
favourable allele into the line that will be used to form the new line.
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Crossing can be applied to combine the good gualities of two (or more) lines. Either
two lines have a high level for different traits, e.g., one line excels in growth rate and a
second line has good meat quality, or two lings are comparable for a certain trait, but
different alleles account for the level of the two lines. Crossing two lines of comparable level
but with different alleles will result in new variance availabie for selection, i.e., the crossbred
line has more favourable alleles than either original line. Within the crossbred population
linkage disequilibrium between markers and QTLs will exist which can be exploited via
marker assisted selection.

Some observations indicate the existence of lines that exhibit complementary QTLs.
For DNA fingerprints, Dunnington ef al. (1994) observed much variation among lines of
various commercial breeders. These commercial lines are expected to be of comparable level
for commercial traits. In the section on design of QTI. mapping experiments 1 pointed out
that complementary QTLs are possible for unrelated lines of comparable level. A commercial
breeder will therefore try to acquire genetic material unrelated to his own stocks. But also,
the lines available within the breeding programme should be analyzed carefully. Some of
these lines show good combining ability. Good combining ability is currently a reason for
keeping lines separate to preserve the heterotic effect. However, the heterotic effect might
not due to overdominance, but due to partial dominance. Kearsey and Pooni (1992) concluded
in plants partial dominance usually accounts for heterosis. With partial dominance, crossing
the lines and selecting within the cross will eventually result in a line with a higher level. To
illustrate this, consider a trait determined by two dominant loci. Locus A has genotypes
AlAl, A1A2 and A2A2 with levels +10, +7, and -10, Locus B has genotypes B1B1, B1B2
and B2B2 with levels +10, +38, and -10. Let line X be homozygous for Al and B2, and line
Y be homozygous for A2 and Bl. The level of X is 10-10=0, the level of Y is -10+10=0.
The F1 of X and Y is heterozygous A1A2 and heterozygous B1B2. The level the F1 is
+8+7=15, i.e., higher than either parental line. Selection in the F1 would eventually lead
10 a line homozygous A1A1 and homozygous B1B1, i.e., with a level of +10+10=20, a

higher level than a cross between X and Y would ever attain.

Breeding value estimation using selective DNA pooling. Marker assisted selection is enly
possible if candidates for selection are typed for the markers. The resulting marker typing
costs will be high. For example, in the breeding programme described in chapter 5, each
generation 9000 selection candidates had to be typed for markers. Although reducing the
number of typings may be easy, this reduction can lead to reduced genetic response.

In some strategies using selective DNA pooling, however, fewer animals or fewer
markers per animal might have to be typed without reducing the selection response. Selective
DNA pooling can be applied if phenotypic trait values are measured for many individuals per
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crossbred population or for many sibs per family in an outbred population. Marker allelic
effects are computed using selective DNA pooling and used to select between selection
candidates. Selection candidates have to be individually typed. Therefore, selective DNA
pooling can only reduce the number of marker typings if either there are considerably fewer
selection candidates than animals used for selective DNA pooling, or selection candidates are
typed for only a few markers whereas selective DNA pooling is used to compute the effects
for many more markers. In the latter case selective DNA pooling can be used to estimate
allelic effects for many markers and selection candidates are only typed for those markers that
explain most variance,

The (number of) selection candidates can differ from the animals used for selective
DNA pooling:

- During multi-stage selection a phenotypic trait is measured in an early stage with
many animals. In a later stage with few selection candidates this phenotypic trait is
selected for using markers.

- Selection is for a sex-limited trait. For example, hens are used for selective DNA
pooling to estimate marker allelic effects on egg production. Estimated marker allelic
effects are used to select among the male sibs. For those males the use of markers has
a much higher effect on selection response than for hens with own performance
recorded (Chapter 5).

- A specific test population is formed in which selective DNA pooling is applied. The
test population can consist of sibs of the selection candidates or sibs of the parents of
the selection candidates.

The use of a test population has several advantages. The test population can be kept
under specific conditions, e.g., a broiler breeding population can be kept under restricted
feeding and the broiler fest population under ad-lib feeding in a commercial or stressful
environment. Another example is to challenge the test population with a parasite. A further
example is Lo measure a trait like breast meat in the test population, such that no breeding
animals have to be sacrificed. In this system crossbred test animnals also could be used, so that
crossbred performance is estimated.

The use of a test population is not restricted to a scheme with marker assisted
selection. Without markers, however, selection based on information on sibs or grandparents
is inaccurate, With markers, the relation between grandparents and grandoffspring or between
sibs can be determined much more accurately resulting in more accurate breeding value

estimation.
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Combining the use of markers for selection and parentage contrel. The current poultry
breeding programme has a structure that is optimized given current constraints. A major
constraint is that hens are mated to one cock only (i.e., a hierarchical mating design is used)
because if the hen would be mated to more cocks the sire of resulting offspring would be
unknown. A hierarchical mating design results in less selection response than a (partly)
factorial mating design (Woolliams 1989; Ruane 1991; De Boer and Van Arendonk 1994).
Consequences of a hierarchical design are: (1) much emphasis is, especially for sex-limited
traits, on full-sib family information, as a result of which related animals will be selected.
Either inbreeding will be high or measures are taken to limit inbreeding, like restricting the
number of male offspring selected per dam in a layer programme, which reduces selection
intensity; (2) estimated breeding values for selection candidates are correlated, especially for
sex-limited traits which reduces selection intensity; (3) the male generation interval is not
minimized. Theoretically, a male could produce all his offspring in one week. But as a hen
is mated to one cock, a cock is used during the whole breeding period of the hen.

The constraint of one cock per hen can be lifted if markers are used for parentage
testing of pullets. Then, each week the breeding hens can be inseminated by sperm of a
different cock, or by a mixture of sperm of several cocks. In case of mixed sperm, the
relative fertility of the sires will determine the proportion of offspring of one sire (Martin and
Dziuk 1977). So, if large differences in male fertility are expected this should be taken into
account before deciding for the use of mixed sperm. A cock would be used one week only,
during which he is mated to many hens. Hens are used for several weeks during which they
are mated to many cocks. The result would be that (1) either inbreeding decreases or
restrictions are no longer necessary resulting in higher selection intensity, (2) correlations
between estimated breeding values are reduced, (3) if each week new young cocks are
available then generation interval shortens, and (4) a reduction in pedigree errors.

The markers used for parentage control can also be used for marker assisted selection,
leading to a further increase in genetic response.

For lines with little or no emphasis on reproduction traits, one could even consider
keeping hens in groups. This would result in a significant cost reduction, which might balance
the high costs of the scheme suggested.
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VI Summary

At the end of 1995 the chicken linkage map will probably be sufficient to be used in
whole genome QTL mapping experiments. Currently, there are few QTLs mapped. From
QTL mapping experiments in plants and other livestock species it can be learned that usually
a few QTLs explain a large part (>50%) of the genetic variance. The size of QTL allelic
effects will depend on the magnitude of the genetic variance in the population used in the
QTL mapping experiment.

Applications of genetic markers that were described include: parentage control,
varietal identification, marker assisted inirogression, marker assisted selection in a crossbred
population, marker assisted selection in an outbred population. Three specific applications
were described: marker assisted selection during the generation of a new line, marker assisted
breeding value estimation when using selective DNA pooling, and the simultaneous use of
markers for parentage control to allow a factorial mating design and for marker assisted
selection. In these specific applications genetic markers are used under optimal conditions,
the costs of use of genetic markers are reduced, or potential benefits of genetic markers are
combined. These three applications further show that under optimal conditions, the use of
genetic markers can improve poultry breeding schemes.
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This thesis focuses on the detection and use of genetic markers linked to quantitative trait loci
(QTL) in poultry breeding.

A genetic marker is a genomic locus for which the allele(s) can be identified. Genetic
markers have become abundantly available due to the rapid development of molecular genetic
technology and the identification of new classes of polymorphic genomic sites. A genetic
marker can be used for parentage control and varietal identification. Genetic markers can also
be used to identify QTLs affecting traits, and to select for favourable QTL alleles. The latter
applications of genetic markers rely on the cosegregation between a genetic marker and the
chromosomal segment surrounding the genetic marker.

Several steps have to be taken to exploit genetic markers to increase genetic
improvement. Studies on three steps are reported in this thesis: the design of linkage mapping
experiments, the design of QTL. mapping experiments, and the use of markers linked to QTLs
in selection.

To efficiently use genetic markers, their location at the genome has to be identified,
i.e., a linkage map has to be constructed. Genotyping animals is laborious and consequently
asks for optimization of the design to construct a linkage map. The information available to
optimize linkage mapping experiments in poultry was inadequate; therefore chapters 2 and
3 deal with designing linkage mapping experiments that use an outbred population.,

Chapter 2 reports on a study of designs to detect and estimate linkage between
markers for outbred populations. Two parameters to measure design quality were used:
expected maximum lod score and accuracy. The expected maximum lod score indicates the
power of a design to detect linkage between markers. The accuracy was measured as the
probability that the true recombination rate between markers falls in a specified interval. For
expected maximum lod score the desired value was set to 3. For accuracy, the desired
probability that a true recombination was between 0.15 and 0.25 for an estimated value of
0.20 was set to 0.85. Exact methods were described and wsed to evaluate approximate
methods. These approximate methods were developed for rapid evaluation of designs. The
approximation of expected maximum lod score was precise under all situations studied. The
approximation of accuracy was only precise for experiments large enough to have an
accuracy equal to or higher than the desired accuracy. For smaller experiments, the method
for approximating accuracy was not valid. For those smaller experiments, true recombination
rates were on average much higher than estimated recombination rates.

Chapter 3 provides a general framework for evaluating expected maximum lod score
and accuracy of designs for reference families consisting of full-sib or half-sib families
selected from an outbred population, Evaluation was both for two markers with a
recombination rate of 0.20 and for a marker and a dominant single gene with a recombination
rate of 0.20. The influence of number of families, number of offspring per family, family
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structure (either half-sib or full-sib) and marker polymorphism was quantified. For mapping
markers with a heterozygosity of 0.75 in a reference population contzining full-sib families,
at least 40 animals were required for an expected maximum lod score of 3, and at least 100
animals for an accuracy of 0.8, i.e., accuracy was a more stringent criterium than expected
maximum lod score. The number of animals required for reference populations containing
half-sib famnilies was at least twice the number of animals required for reference families
containing full-sib families. The number of animals required to map a dominant single gene
was 3 to more than 10 times the number of animals required for mapping markers.
Chapter 3 showed how results can be generalized to determine the values for a wide
range of designs containing two- or three- generations with full-sib or half-sib families.

After markers are located at the linkage map, a selected set of markers covering the
whole genome can be used in QTL mapping experiments. QTL mapping experiments need
to be optimized to minimize costs of data collection and genotyping. Chapter 4 analyzed the
power and efficiency of experiments with two- or three- generation family structures
containing full-sib families, half-sib families or a combination of both. Focus was on data
from one outbred population. For a specified power, a two-generation experiment required
more animals to be typed for marker loci than a three-generation experiment. Fewer trait
values, however, had to be obtained for a two-generation experiment than for a three-
generation experiment. A two- or three- generation family structure with full-sib offspring
was more efficient than a two- or three- generation family structure with half-sib offspring.
A three-generation family structure with full-sib grandoffspring, however, was less efficient
than a family structure with half-sib grandofispring. The most efficient family structure had
full-sib offspring and half-sib grandoffspring. In that case marker genotypes were obtained
for the animals in the first and second generation while trait values were obtained for the
third generation animals. For a heritability of 0.1 and 100 grandoffspring per full-sib
offspring, the most efficient family structure required 30 times less marker typings for a
given power than a two-generation half-sib structure in which trait values were obtained for
half-sib offspring. The effect of heritability on power differed between two- and three-
generation designs. When the effect of the QTL was expressed in phenotypic standard
deviation units, power increased with increasing heritability for a two-generation design and
power decreased with increasing heritability for a three-generation design. The results
described in chapter 4 can be used to design efficient QTL mapping experiments in an
outbred population.

In chapter 5, the effect on selection response of using a marker for a QTL affecting
a sex limited trait in an outbred poultry breeding nucleus was studied. A closed nucleus with
9000 chickens per generation was deterministically simulated. The genetic model contained
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polygenes and a QTL linked to a marker. Marker and QTL were in linkage equilibrium in
the base generation before selection. Genetic efiects explained 30% of the phenotypic
variance in the base generation before selection. Cocks were selected in two steps. First the
best cocks of each full-sib family were selected (within family selection) while final selection
took place after information on full-sibs was available. Hens were selected after they had
completed production. The effect of using marker information in estimating breeding values
was studied in an ongoing breeding programme. Cumulative response over five generations
increased 6 to 13 % if a marker linked to a QTL that explained 20% of the genetic variance
was used. Cumulative response increased up to 28% if the QTL explained 80% of the genetic
variance. Additional response due to the use of a marker increased with increasing intensity
of within family selection of cocks, increasing number of dams per sire, increasing variance
explained by the QTL, and was higher if within family selection of cocks was after their sibs
had complete records than if within family selection was before their sibs had complete
records.

In the general discussion literature on linkage and QTL mapping in chickens is
reviewed first. More than 460 genetic markers are currently at the chicken linkage map. Only
few QTLs, however, are currently mapped on the chicken linkage map. Much effort in QTL
mapping is required in the coming years. The population used for QTL mapping experiments
may be a cross between inbred populations, a cross between outbred populations that differ
much in population level for traits of interest, a cross between populations that are genetically
distant but differ little for the traits of interest, or an outbred population. Advantages and
disadvantages of populations to be vsed for QTL mapping experiments were described.
Several general applications of markers in poultry breeding were discussed including:
parentage control, varietal identification, marker assisted selection during introgression,
marker assisted selection in a crossbred population, and marker assisted selection in an
outbred population. Three specific potentially useful applications were described utilizing the
knowledge generated in chapter 5 and the characteristics of pouliry breeding and genetic
markers. In the first application, genetic markers were used during the development of a new
line to be used in a crossbreeding program, This application is promising for two reasons.
First, markers are used in a situation where there is linkage disequilibrium between markers
and QTLs. This linkage disequilibrium can be exploited during either introgression or
advanced intercrossing. Second, during the development of a new line, markers for QTLs
explaining a major part of the genetic variance in a certain trait are more likely to be found
than for selection in an ongoing breeding programme.

The second application is the use of selective DNA pooling for marker assisted
breeding value estimation. With selective DNA pooling, marker typing costs can be reduced
significantly without affecting additional response to marker assisted selection.
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In the third application markers are used for parentage control and marker assisted
selection, In this application the restriction that a hen is mated to one cock only is lified. With
multiple sires mated to one hen, the sire of the offspring of the hen is initialiy unknown.
Markers can, however, be used for parentage control. This facilitates a factorial mating
design which results in higher genetic gains than a hierarchical mating design. In addition,
the same markers used for parentage control can be used for marker assisted selection
resulting in an increase in genetic gain that comes on top of the increase due to a change in
mating design.

These three applications showed that under optimal conditions, the use of genetic
markers can improve poultry breeding schemes.
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In dit hoofdstuk zal een algemene schets gegeven worden van de achtergrond, het doel, en
de uitkomsten van het onderzoek dat beschreven is in dit proefschrift. Dit hogfdstuk is geen
samenvaiting van de resultaten; deze kan gevonden worden in 'Summary '

Fokkerij beoogt het genetisch niveau van een populatie te verbeteren door de genetisch
beste dieren uit een populatie te selecteren als ouders van een volgende generatie. De dieren
met de beste genen worden indirect geidentificeerd. Er wordt gebruik gemaakt van het feit
dat die dieren die 'uiterlijk’ het beste scoren voor een bepaald kenmerk (bijvoorbeeld door
de meeste eieren te leggen) waarschijnlijk ook de beste genen hebben, met name als verwante
dieren ook hoog scoren. In de loop van de jaren zijn efficiénte methoden ontwikkeld om op
basis van een waarneming aan een dier en waarnemingen aan verwante dieren een
zogenoemde fokwaarde te schatten. Op basis van deze fokwaarde worden dieren geselecteerd.

Fokkerij kan succesvol zijn zonder dat de genen waar het allemaal om draait direct
waargenomen kunnen worden. Dit wil niet zeggen dat de fokkerij niet gebaat zou zijn bij
directere informatie over de genen die verantwoordelijk zijn voor de verschillen die tussen
dieren waargenomen worden voor economisch belangrijke kenmerken. De fokkerijwereld is
dan ook ingesprongen op de snelle ontwikkeling van de moleculaire genetica. Deze
ontwikkeling maakt het in theorie mogelijk om de genen te identificeren die verantwoordelijk
zijn voor verschillen tussen dieren voor belangrijke kenmerken. Een gereedschap van de
moleculaire genetica dat geschikt lijjkt om meer informatie boven tafel te krijgen over
belangrijke genen is de genetische merker.

Een genetische merker representeert een stukje erfelijk materiaal, ofwel een stukje
DNA. DNA is gerangschikt op de zogenaamde chromosomen, waarvan de kip er 39
verschillende heeft. Alle chromosomen samen noemen we het genoom. Een voorbeeld van
een genetische merker is veerkleur bij pluimvee. Door te kijken naar de kleur weten we iets
over die specifiecke plaats op het gencom waar het gen ligt dat verantwoordelijk is voor
veerkleur. De waargenomen veerkleur geefi geen perfecte informatie over het veerkleurgen;
veerkleur vererft dominant, waarbij wit dominant is over bruin. Een bruin dier heeft op beide
chromosomen de bruine variant {(de genetische term voor variant is allel) van het veerkleur
gen. Een wit dier heeft in ieder geval één kopie van het witte allel, het andere allel kan wit
of bruin zijn. Het veerkleurgen is derhalve een dominante merker. Het is dimorf: er komen
twee allelen van voor.

'Moderne' klassen van genetische merkers zijn gestoeld op moleculair genetische
technologie. De belangrijkste kiasse van genetische merkers is de microsatelliet merker.
Microsatelliet merkers hebben de volgende aantrekkelijke eigenschappen:

- de microsatelliet is vaak polymorf. In een populatie komen vele verschillende allelen
voor. De merkers zijn daarom geschikt om verschillen tussen dieren aan te tonen en
de overerving van alielen te volgen.



128

- de microsatelliet is codominant. Als een dier twee verschillende allelen bezit dan zijn
altijd beide alfelen zichtbaar. Dit in tegenstelling tot het veerkleurgen waarbij een
witte kip, zonder dat we het zien, een bruin allel kan herbergen.

- microsatellieten komen overal in het genoom voor. Naar schatting zijn vele duizenden
verschillende microsatellieten in het gencom aanwezig.

Waarem zijn genetische merkers nu interessant? De belangrijkste reden is dat genen
die in de buurt van elkaar voorkomen op het gencom, gekoppeld overerven (zie intermezzo).
Om te illustreren hoe een genetische merker gebruikt kan worden om genen op te sporen,
wordt weer het veerkleurgen gebruikt. We nemen een witte haan waarvan bekent is dat hij
een bruin allel heeft aangezien hij naast witte nakomelingen ook bruine nakomelingen heeft.
We paren deze haan met Iouter bruine hennen. De helft van de nakemelingen zal wit zijn,
en de andere helft bruin. De hennetjes laten we onder zo gelijk mogelijke omstandigheden
eieren leggen. Vervolgens kunnen we onderzoeken of de witte dochters gemiddeld meer of
minder eieren leggen dan de bruine dochters. Als de witte dochters significant meer of
significant minder eieren leggen dan de bruine dochters, dan is een associatie tussen het
veerkleurgen, de merker, en het kenmerk eiproduktie gevonden. Het veerkleurgen kan zeif
de associatie veroorzaken. Anderzijds kunnen in de buurt van het veerkleurgen andere genen
liggen die een rol spelen bij eiproduktie. Deze genen worden dan door hun ligging dichtbij
het veerkleurgen gekoppeld overgeerfd. Wat mu het meest waarschijnlijk is kunnen we
onderzoeken door de proef te herhalen voor andere witte hanen met een bruin allel. Als voor
alle hanen witte dochters meer eieren leggen dan bruine dochters, dan is waarschijnlijk het
kleurgen zelf of een zeer nauw gekoppeld gen verantwoordelijk voor het waargenomen
verschil in eiproduktie. Echter, het kan ook zijn dat voor de ene haan wit samengaat met
meer eieren en voor de andere haan bruin. In dat geval mogen we aannemen dat niet het
veerkleurgen zelf maar een in de buurt gelegen gen invlioed heeft op eiproduktie, waarbij de
afstand tussen het veerkleurgen en het gen dat invioed heeft op etproduktie dusdanig is dat
overkruising plaatsvindt.

De literatuur beschrijft verschillende toepassingen van genetische merkers. Genetische
merkers kunnen gebruikt worden voor cuderschapscontrole en voor het globaal bepalen van
genetische verschillen tussen populaties. Genetische merkers kunnen gebruikt worden om
genen op te sporen die genetische verschillen tussen dieren of populaties verklaren.
Genetische merkers waarvan aangetoond is dat ze genetische verschillen verklaren, kunnen
gebruikt worden tijdens selectieprocedures.

Voor alle toepassingen is het van belang dat eerst de positie van een genetische merker
in het genoom wordt bepaald. De geschatte posities van genetische merkers in het genoom
worden vastgelegd in een koppelingskaart. Deze koppelingskaart kan vervolgens gebruikt
worden in proeven die tot doel hebben om genen op te sporen. Als we weten waar genetische
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merkers in het gencom liggen, kunnen we vervolgens associaties tussen merkers en
economisch belangrijke kenmerken als produktie en vitaliteit vaststellen. Hiermee kan geschat
worden waar in het genoom de genen liggen die genetische verschillen in deze kenmerken
bepalen.

Voor het opstellen van een koppelingskaart en het lokaliseren op deze kaart van genen
die belangrijke kenmerken bepalen, zijn proeven nodig. Deze proeven kosten veel geld en
moeten daarom zo efficiént mogelijk opgezet worden. Bij aanvang van dit onderzoek was het
niet duidelijk hoe gegeven de mogelijkheden van een pluimveefokprogramma deze proeven
optimaal opgezet zouden moeten worden.

Na vaststelling van de ligging van genen op het genoom, kan deze informatie gebruikt
worden tijdens het selecteren van dieren en bij het bepaler van de opzet van een
fokprogramma. Voor metkvee is de optimale toepassing van merkers onderzocht. De optimale
toepassing van merkers in een pliimveefokprogramma is echter onbekend.

Intermezzo:
Chromosoompaar (Chromosomen I en 2) van een ouder

Chromeosoompaar in ouder:
en de chromosomen die deze ouder doorgeeft aan

l chromosoom 1

nakomelingen. Met pijlen is op de chromosomen de
chromoscom 2 plaats van drie merkers aagegeven. Tijdens de vorming

van ei- of sperma-cellen treden overkruisingen tussen de

1 ' ' twee ouderlifke chromosomen op. Een overkruising
merker A metker B merker C heeft tot gevolg dat een nakomeling een chromosoom
krijgt dat samengesteld is wit stukken chromosoom 1 en

Chromosomen gevormd tijdens meiose: stukken chromosoom 2. De kans dat tussen twee

metkersllel  plaaisen op een chromosoom overkruising optreedt,

comblnatie  poyior af van de afstand tussen de plaassen. Hoe groter
AIBLCI

de afstand, hoe groter de kans op overkruising. Een
AZBIC2  gverkruising kan resulteren in recombingtie tussen twee
merkers: dat bijvoorbeeld op een chromosoom Al

AZB2C1 o
samen voorkomt mel B2 terwiil in de ouder Al

AlBICz Samenging met Bil. Voor de situgtie in dit intermezzo

blijkr dar tussen merker A en merker B minder
AlB2C2  recombinaties voorkomen dan tusser de verder van

elkaar gfgelegen merker A en merker C.

Aan de relatie tussen afstand en recombingiie ontleent

A2BIC2

Il

een merker zijn nut. Stel dmt naast een merker een
belangrijk polymorf gen ligt. Een ouder heeft op het ene chromosoom voor de mevker het aliel I en een + allel
voor het belangrifke gen en op het andere chromosoom het merker allel 2 en een - allel voor het belangrijke
gen. Nakomelingen van deze ouder die het merker ailel 1 verkregen hebben, prefereren we boven nakomelingen
die het merker ailel 2 verkregen hebben omdat het waarschijnlifk is dat nakomelingen die merker allel 1
verkregen hebben ook ket + allel verkregen hebben.
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Doel

Het doel van dit onderzoek is om bij te dragen aan het efficiént gebruiken van merkers
in de pluimveefokkerij, en om te bepalen in welke mate merkers de genetische vooruitgang
van een pluimveefokprogramma kunnen verhogen.
Om het doel te bereiken wordt onderzocht: de optimale opzet van proeven voor het maken
van een koppelingskaart, de optimale opzet van proeven voor het plaatsen van belangrijke
genen op de koppelingskaart, en de extra genetische vooruitgang die het gebruik van merkers
bij het selecteren binnen een zuivere lijn van het pluimveefokprogramma met zich meebrengt.

Bij de opzet van proeven voor het maken van een koppelingskaart en het lokaliseren
van genen, blijkt met name de familiestructuur van de populatie die in de proef gebruikt
wordt van belang. Het aantal nakomelingen per ouder moet zo groot mogelijk zijn; hierbij
kan optimaal gebruik worden gemaakt van de reproduktie-eigenschappen van de kip. Voor
proeven om genen te lokaliseren is verder van belang welke informatic over de te
onderzoeken kenmerken verzameld wordt. Gekozen kan worden voor een opzet zoals
beschreven voor het bepalen van de associatie tussen veerkleur en eiproduktie. Hierbij wordt
het kenmerk (in dat geval ciproduktie} gemeten aan dezelfde dieren als waarvoor de
genetische merker (veerkleur) getypeerd is. Behalve genen, waarvan je er één hoopt op te
sporen, bepalen ook omgevingsfactoren, zoals huisvesting en voeding, het kenmerk. Deze
omgevingsfactoren hebben een storende invioed op de waarnemingen. Zonder
omgevingsfactoren is het makkelijker om een verschil tussen groepen aan te tonen. De storing
door omgevingsfactoren is minder als een kenmerk niet aan het dier zelf gemeten wordt,
maar aan een groep nakomelingen van het dier. Het nakomelingengemiddelde kan gebruike
worden als waarneming voor het kenmerk. Hierdoor daalt het aantal benodigde
merkertyperingen aanzienlijk ten koste van het aantal dieren waaraan het kenmerk gemeten
moet worden. De optimale verhouding tussen het aantal merkertyperingen en het aantal
kenmerk metingen hangt af van de kosten van merker typeren ten opzichte van de kosten van
het meten van het kenmerk.

Bij het onderzoek naar het gebruik van een merker voor selectie binnen een zuivere
lijn is gekeken naar een geslachtsgebonden kenmerk. Met name bij een geslachtsgebonden
of karkasgebonden kenmerk is winst te verwachten omdat zo'n kenmerk niet aan alle
selectiekandidaten gemeten kan worden. Voor eiproduktie bijvoorbeeld, hebben we voor alle
volle broeitjes dezelfde informatie, namelijk de prestaties aan half-zusjes en de geschatte
fokwaarden van de ouders. Op basis van deze informatie kunnen we niet tussen deze volle
broertjes selecteren. Een genetische merker voor eiproduktie zou hier uitkomst bieden. We
hebben daarom een fokprogramma gesimuleerd voor een kenmerk dat alleen bij hennen tot
expressie komt. Om inteelt te voorkomen wordt maar een beperkt deel van de volle broertjes
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die vitkomen ook opgezet. Haantjes worden dus voorgeselecteerd. Als geen merkers gebruikt
worden dan heeft deze voorselectie echter geen genetische vooruitgang tot gevolg. Er is maar
één merker beschikbaar. Het effect van de merker op het kenmerk wordt gevarieerd. Het
gebruik van de merker levert met name winst op tijdens voorselectie, waar een selectie op
basis van de merker een willekeurige selectie vervangt. De winst die het gebruik van de
merker oplevert, hangt met name af van de grootte van het effect van de merker, het aantal
hennen waarmee een haan gepaard wordt en de scherpte van voorselectie (hoe scherper de
voorselectie, hoe meer winst hier te boeken valt door het gebruik van de merker).

In de algemene discussie van het proefschrift is getracht het hele vakgebied op een
rijtje te zetten. De status van de kippen-koppelingskaart, de genen die al gelokaliseerd zijn,
de opzet van proeven en de verschillende gebruiksmogelijkheden van merkers worden
besproken. Drie specifieke toepassingen worden extra toegelicht. De eerste toepassing is het
gebruik van merkers tijdens de vorming van een nieuwe lijn voor ¢en fokprogramma. Tijdens
deze vorming van een nieuwe lijn worden vaak goede eigenschappen van verschillende kippen
populaties bijeengebracht. Merkers kunnen gebruikt worden om de genen te volgen die
verantwoordelijk zijn voor de goede eigenschappen zodat de nieuwe lijn ook inderdaad het
goede verenigt. De tweede toepassing richt zich op een reductie van het aantal
merkertyperingen. Van alle nakomelingen van een ouder wordt bloed getapt waarna bloed
van goede nakomelingen gemengd wordt en bloed van slechte nakomelingen gemengd wordt.
In de mengmonsters worden de frequenties van merkerallelen gemeten. Vervolgens wordt
bekeken of bepaalde allelen in het goede mengmonster significant meer voorkomen dan in
het slechte mengmonsier. Het interessante van deze methode is nu dat op basis van een
beperkt aantal merkertyperingen (2 per merker per ouder) associaties bepaald kunnen worden.
De derde toepassing is het gecombineerde gebruik van merkers voor ouderschapscontrole en
merker ondersteunde selectie. Als een hen met meerdere hanen wordt gepaard, is niet bekend
wie de vader is van nakomelingen van de hen. Daarom wordt in het huidige fokprogramma
een hen maar met één haan gepaard. Als we echter merkers gebruiken om ouderschap te
controleren, dan kan een hen wel met meerdere hanen gepaard worden. Een fokprogramma
waarin elke hen met meerdere hanen gepaard wordt, kan aanzienljjk efficiénter zijn dan een
huidig programma. Het programma wordi extra interessant als de merkers die gebruikt
worden voor ouderschapscontrole ook gebruikt worden voor het selecteren van dieren.

De drie bovenbeschreven specifieke toepassingen van genetische merkers geven aan
dat onder optimale omstandigheden, het gebruik van genetische merkers een
pluimveefokprogramma kan verbeteren. Genetische merkers worden nu al gebruikt voor
ouderschapscontrole en het globaal bepalen van verschillen tussen populaties. Het hangt af
van de associaties die men vindt tussen genetische merkers en economisch belangrijke
kenmerken, of genetische merkers ook gebruikt gaan worden in selectieprocedures.
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Levensloop

In 1985 verliet ik, Sijne van der Beek, het eiland Texel, alwaar ik op 15 juni 1967 geboren
ben en mijn lagere en middelbare school opleiding genoten heb, om me te melden bij de
Landbouw Hogeschool te Wageningen. In 1991 voltooide ik mijn opleiding Zodtechniek,
specialisatie veefokkerij, middels afstudeervakken veefokkerij en agrarische bedrijfseconomie.
Bij de vakgroep veefokkerij van de nu Lanbouwuniversiteit startte ik mijn promotie-
onderzoek, waarvan u het resultaat in handen heeft. De laatste helft van 1995 was ik als post-
doc werkzaam bij het Roslin Institute in Edinburgh, Schotland. Momenteel heb ik een
hondenbaan: ik doe onderzoek naar de erfelijke achtergrond van ziekten bij honden.
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