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STELLINGEN 

1. Transversale dispersie kan wel degelijk een belangrijk effect hebben op het transport van 
een verontreiniging. (Dit proefschrift) 

2. Hoewel in de in hoofdstuk 3 gepresenteerde gemengd numeriek-analytische methode voor 
het oplossen van de transportvergelijkingen voor een kinetisch adsorberende stof geen 
fouten worden geïntroduceerd als gevolg van tijdsdiscretisatie van de adsorptie-isotherm, 
heeft een gemengde oplossing dezelfde nauwkeurigheid als een volledig numerieke 
oplossing; de dominerende fout is afkomstig van de ruimte-tijd discretisatie van de 
parabolische advectie-dispersie vergelijking (la). 
(JJA van Kooten, A method to solve the advection-dispersion equation with a kinetic adsorption 
isotherm, To appear in Advances in Water Resources, 1995). 

3. We beschouwen het advectie-dispersie model met twee mobiele fasen: 

dC, dC. d2C. 

dt dx dx2 

dC2 dC, d2C7 

— I = -v.—l + D2 1 - (k^X^C. + k.C. 
dt 2 dx 2 dx2 2 ' 

waarin 
C, = concentratie van stof in fase i [M/L% 
V; = advectiesnelheid in fase i [LIT], 
Dt = dispersiecoëfficiënt in fase i [L2/T\, 
X; = vervalcoëfficiënt in fase i [F1], 
kt = kinetische uitwisselingscoëfficiënten tussen fase 1 en 2 [T1]. 

De oplossing van bovenstaand stelsel voor een Diracpuls in fase 1 

C^xfi) = à(x) , C2(x,0) = 0 , 

luidt 

Cfat) = C(x,t)e<k'^' + (C(x,x)hn(t,x)e'k'T'^'-^dx , 
o 

t 

C2(x,t) = (C(x,x)h12(T,t)e-^'KQ'z)dx. 

met 

C(x,v) = 1 „ p l - ^ - ^ - ^ - ^ l 

en waarin hn en hl2 als gedefinieerd in hoofdstuk 3 van dit proefschrift (uitdrukking (2) 
and (3)). (recent resultaat) 



4. Evenals voor (massa)media blijkt voor simulatiemodellen te gelden dat een gekleurde 
presentatie hoger gewaardeerd wordt dan eenvoudigweg diepgang. 

5. Bij het implementeren van een algoritme in programmacode dient men ter bevordering 
van de inzichtelijkheid en betrouwbaarheid te streven naar zo'n klein mogelijk aantal 
statements. 

De smogvorming in de stratosfeer illustreert dat onze welvaart een te hoge vlucht heeft 
genomen. Vliegtuiggebruik dient daarom ontmoedigd te worden, zeker voor vakantiedoel
einden. (N.a.v. Volkskrant 18 november 1995, pag. 19) 

7. Het geven van zindelijkheidstraining voordat kinderen kunnen lopen, is dweilen met de 
kraan open. Zindelijkheid is een vorm van gedrag dat pas mag worden aangeleerd als de 
parasympathische vezels vanuit het centrale zenuwstelsel naar de blaas zijn aangelegd. 
(prof.dr. JA.R. Sanders-Wouters et al, Leerboek kinder- en jeugdpsychiatrie, 3' gewijzigde druk, 
Assen/Maastricht, 1990) 

8. Hoewel van den Beukei terecht constateert dat "natuurwetenschap (ver)wordt tot pseudo-
religie, waarvan de wetenschappers de priesters zijn", mogen wetenschap en techniek niet 
geïdentificeerd worden met de anti-christ. 
(prof.dr.ir. A. van den Beukei, "De dingen hebben hun geheim", Baarn, 1990; 2 Thess. 2). 

9. Het feit dat een wiskundig model een fysisch verschijnsel slechts kan beschrijven maar 
niet kan verklaren, zou natuurwetenschappers bescheiden moeten stemmen. 
(N.a.v. Stephen Hawking, "A brief history of time", Ned vert. "Het Heelal", A'dam, 1988). 

10. Ook non-conformisme kan een vorm van conformisme zijn. 

11. Het ontbreken van diversiteit in een kerkelijke gemeente duidt eerder op niet-wezenlijke 
betrokkenheid van de leden dan op eensgezindheid. 

12. Het is onmogelijk een goed interpreet van Bachs religieuze werken te zijn, zonder kennis 
te hebben van de Lutherse of gereformeerde theologie en de waarde hiervan aan te 
voelen. (Casper Honders, Over Bachs schouder, Groningen, 1986). 

13. Veelal geldt: Wie promoveert is niet wijs. 

J.J.A van Kooten 



Abstract 

In this thesis we describe an analytical approximation method for predicting the 
advective-dispersive transport of a contaminant towards a pumping well. The 
groundwater flow is assumed to be stationary and essentially horizontal. Due to 
dispersion contaminant transport is a stochastic process. We derive approximations 
for the arrival probability (or fraction) of particles at a well, for the mean and 
variance of the arrival time and for the arrival time distribution at a well. The 
advective flow yields first order approximations. The effect of longitudinal dispersi
on is included by expanding the first and second moment of the arrival time in 
power series of the longitudinal dispersion coefficient. Transversal dispersion only 
plays a crucial role near the separating streamlines bounding the catchment area of 
a well. Its effect is analyzed locally with boundary layer techniques. The incorpora
tion of linear equilibrium adsorption and first order decay is rather straightforward. 
The asymptotic approximations are compared with the results of random walk 
simulations. 

A self-contained part of this thesis is devoted to the transport of a kinetically 
adsorbing contaminant. We show that once the transport of a non-adsorbing 
contaminant has been computed, the effect of first order kinetics can be incorpora
ted naturally by utilizing a stochastic description of the residence time of particles 
in the free phase. 

The results of our research have been implemented in the software package 
ECOWELL. The input of ECOWELL consists of a head field generated with a 
numerical flow model. The technical documentation of ECOWELL is part of this 
thesis. The use of ECOWELL is demonstrated in a case study. 

Key words: advective-dispersive contaminant transport, arrival fraction at well, arrival 
time, asymptotic approximations, random walk, first order decay, kinetic 
adsorption. 



Ontmoeting bij een put in Samaria: 
"Jezus antwoordde en zeide tot haar: Een ieder die van dit water drinkt zal 

wederom dorsten, maar zo wie gedronken zal hebben van het water dat ik hem 
geven zal, die zal in eeuwigheid niet dorsten, maar het water dat ik hem zal geven, 
zal in hem worden een fontein van water springende tot in het eeuwige leven". 

(Johannes 4 : 13 en 14) 

Voor MARJA 
en onze kinderen 
RUBEN en ARNOUD 
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GENERAL INTRODUCTION 

Knowledge is as the waters, 
some descending from above, some springing from beneath. 

(Francis Bacon, 1561-1626) 

MODELLING GROUNDWATER FLOW AND CONTAMINANT TRANSPORT 

In many countries in the world groundwater is pumped up for consumption purposes. In 
the Netherlands 70% of the drinking water is groundwater. Despite the protecting and 
purifying character of the soil groundwater can be polluted. Biological or chemical 
pollutants (such as bacteria, viruses, nitrates, heavy metals, radioactive materials and toxic 
compounds) produced by domestic, agricultural and industrial activities may penetrate the 
soil and reach the groundwater system. Examples are the leaching of landfills, penetration 
of fertilizers by rain water, oil spills and the infiltration of industrial waste from rivers, 
streams and lakes. To control the groundwater quality engineers and decision-makers need 
models that predict water flow and contaminant transport. The growing concern about the 
environment has stimulated the research in this field. Together with the advances in 
computer technology this research has resulted in the development of a large number of 
simulation models. An extensive review of computer models is given in Mangold & Tsang 
(1991). Restricting ourselves to the saturated zone we can distinguish two types: flow 
models and solute transport models. 

Flow models describe the macroscopic path lines of the water through the porous 
medium. Groundwater flow is a potential flow: Darcy's law gives a linear relationship 
between the flow velocity and the gradient of the hydraulic head. The hydraulic head can 
be solved from the law of mass conservation. For an interesting class of configurations the 
hydraulic head and the flow velocity can be expressed in an analytical formula. In the past 
decade the analytical element method of Strack (1989) has been widely used. The 
analytical element method can be applied to porous formations consisting of blocks with 
different hydraulic conductivities. To deal with irregular geometries and arbitrary boundary 
conditions finite element and finite different models have been developed. Flow models 
may be used to get an impression of the flow pattern in aquifer or to study the change in 
the hydraulic head (the drawdown) near a pumping well. 

Solute transport is governed by advection and dispersion. Advection is the 
displacement of a solute in the macroscopic flow direction. Dispersion is the spreading in 
longitudinal and transversal direction due to the complex movement of particles through 
tortuous pores with varying microscopic velocities. Almost all transport models assume 
that the dispersion can be described by a Fickian law. The resulting differential equation is 
commonly referred to as "the advection-dispersion equation" (ADE). The ADE may be 
coupled to isotherms that describe adsorption or chemical reactions. Analytical solutions of 
the ADE has been derived for various initial and boundary conditions (see e.g. van 
Genuchten & Alves, 1982, Leij et al. 1991). Almost all solutions are based on a uniform 
velocity field. More complex flow patterns can be dealt with by finite element, finite 
difference and random walk models. 
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ADVECnVE-DISPERSIVE TRANSPORT TOWARDS A PUMPING WELL 

In this thesis we mainly focus on contaminant transport towards a pumping well. Pumping 
wells are used to extract water both for human use and for remediation purposes. This 
class of problems is worth being studied in more detail than it has been done up to now. 
Currently, protection zones and remediation strategies are almost always determined with 
flow models. Flow models are easy to use and provide results quickly. However, to 
analyze contaminant transport to a well adequately also the effects of both transversal and 
longitudinal dispersion should be incorporated. Although in many application the dispersi
on terms are small compared with the advection terms, their effect may be large. Due to 
transversal dispersion contamination spilled outside the catchment area may cross a 
separating streamline and enter the well. Or in remediation context: contamination may 
escape from the catchment area, so that the groundwater remains (partially) polluted. 
Furthermore longitudinal dispersion affects the time that contamination keeps seeping into 
the well. 

Of course, the dispersive transport towards a well can be computed with currently 
existing finite element or finite difference methods. However, this is a time-consuming job 
that requires much computer capacity. Because the ADE is a parabolic differential 
equation numerical solution methods are prone to numerical dispersion, especially if the 
dispersivities are small. To reduce numerical dispersion a large grid and a small time step 
are required. 

The random walk method may provide more satisfying results. By carrying out 
many simulations of the stochastic motion of a particle, an estimate can be obtained for 
the fraction of a contaminant that eventually enters a well and for the breakthrough curve. 
A disadvantage is that the random walk method costs much computer time. Moreover, it 
provides less general information; from the simulation results no formulae can be derived 
that, for example, express the arrival fraction at the well or the breakthrough curve as 
function of the dispersivities. 

RESEARCH OBJECTIVE 

Uffink (1989) has shown the usefulness of Kolmogorov's backward equation in the study 
of dispersive contaminant transport. Given the present state of a particle the backward 
equation describes where the particle might have been coming from. One of Uffink's 
examples concerns contaminant transport in horizontal stationary flow towards a well. This 
example has been worked out further by Van Herwaarden & Grasman (1991) and Van der 
Hoek (1992). From the backward Kolmogorov equation they have derived a boundary 
value problem for the arrival fraction of a contaminant at a well. Solving this problem 
with perturbation techniques they have obtained an analytical approximation for the arrival 
fraction in which the effect of transversal dispersion is included. A first extension was 
made by van Herwaarden (1994), who presented an asymptotic approximation for the 
mean arrival time. 

The objective of the research in this thesis is to develop the asymptotic method of 
Van Herwaarden & Grasman further and to implement it in a software package. Beside 
transversal dispersion we also take into account longitudinal dispersion. Moreover we 
allow the dispersivities to vary in space. Because chemical reactions and interactions with 
the soil may highly affect the transport of a contaminant we also incorporate the effect of 
linear equilibrium adsorption, first order decay and linear kinetic adsorption. We have 
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succeeded in deriving analytical approximations for 
the arrival fraction at a well, 
the mean and variance of the arrival time 
and for the arrival time distribution at the well. 

The approximations can be applied to arbitrary (numerically or analytically computed) 
flow patterns with wells. The regional background needs not necessarily to be uniform. 
The results have been derived for a point spill of pollution. By integrating the approxima
tions in space they can also be applied to a contaminant that already has spread out over a 
certain area. 

In comparison with a finite element, a finite difference or random walk method the 
advantage of the asymptotic method is considerable. Because the effects of dispersion and 
adsorption are incorporated analytically, the approximations can be evaluated efficiently 
and free of numerical dispersion. The time that is needed to evaluate the approximations is 
of the same order as one random walk simulation. 

APPLICATION AND IMPLEMENTATION OF THE RESULTS 

The asymptotic method may be used for the following purposes: 
to delineate a protection zone near a pumping station more accurately, 
to design a remediation strategy, 
to analyze the risk of e.g. placing a factory or landfill at a certain location. 
to estimate the effective porosity or the dispersivities, by fitting theoretical and 

observed breakthrough curves in tracer tests. In this context our results may be considered 
as an extension of the work of Guvanasen & Guvanasen (1987), who describe a semi-ana
lytical method to estimate parameters from a tracer experiment in radial flow to a well. 
They neglect the effect of the regional background flow. 

In order to make the method easy applicable for engineers and decision-makers we have 
implemented it in a software package, called ECOWELL (which stands for Estimating 
Contamination Of WELLs). The package will be distributed by the International Ground 
Water Modelling Centre (IGWMQ in Colorado. The input of ECOWELL consist of a 
head field generated with a finite element or finite difference code for groundwater flow. 
The flow pattern may contain various pumping and injection wells. With ECOWELL the 
effects of dispersion, adsorption and decay on the transport of a contaminant can be 
analyzed. In chapter 5 we discuss a case study. 

For completeness it is mentioned that the method has also been implemented in a 
program that has a complex-analytical potential as starting point. This version, however, is 
not yet available for direct use. 
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OUTLINE OF THE THESIS 

This thesis is composed of three scientific papers, published in or submitted to internatio
nal journals, a technical description of the program ECOWELL and a case study. We give 
a brief overview of the contents. 

Chapter 1 deals with the transport of a linearly decaying contaminant. We start with 
summarizing some theoretical results on the validity of the advection-dispersion equation 
at field scale. Using that the mass flux of a contaminant satisfies the backward Kolmogo-
rov equation we derive boundary value problems for the arrival rate and the mean arrival 
time of a decaying contaminant at the boundary of a domain. These boundary value 
problems are solved asymptotically for flow towards a well. The advective flow pattern 
yields first order approximations. In a boundary layer near a separating streamline we have 
to compute a correction accounting for the effect of transversal dispersion. Because 
longitudinal dispersion hardly affects the arrival rate and the mean arrival time, it does not 
have to be taken into consideration. 

Without information on the spreading of the arrival time of a contaminant, the mean 
arrival time is an unreliable guideline for e.g. the clean up time of an aquifer. In particular 
one will be interested in the arrival time distribution. Therefore, in Chapter 2 we derive 
approximations for the variance of the arrival time and for the arrival time distribution. 
Now, also longitudinal dispersion has to be taken into account. We expand the moments 
of the arrival time in power series of the longitudinal dispersivity. Longitudinal dispersion 
is a one-dimensional process. Therefore, we expect that the arrival time distribution at the 
well can be parameterized by the probability distribution of a particle at the endpoint of a 
column. Near a separating streamline the effect of transversal dispersion is taken into 
account by generalizing the results of chapter 1. 

Chapter 3 is a more general chapter; it is not primarily devoted to contaminant transport 
toward a well. We study the advection-dispersion model for the transport of a kinetically 
adsorbing contaminant. Kinetic interactions of a contaminant with the soil may explain the 
long tail in the breakthrough profile that is often observed in remediation projects (see also 
van den Brink, 1995). We show that once the transport of a non-adsorbing contaminant 
has been computed, the kinetic adsorption can be incorporated naturally by utilizing a 
stochastic description of the residence time of particles in the fluid phase. The method is 
demonstrated in various examples, among which the special case of transport towards a 
pumping well. 

Chapter 5 is the technical documentation of the software package ECOWELL. We 
describe how ECOWELL determines the stagnation points and separating streamlines in 
the flow, and how it evaluates the asymptotic approximations for the arrival fraction and 
arrival time of a contaminant at a well. We also give estimates for the first and last 
entering time. 

In chapter 6 we discuss a field study. We demonstrate how ECOWELL may be applied to 
delineate a protection zone near pumping station Lochern in the Achterhoek. With a finite 
element program the flow field near Lochern has been computed. With ECOWELL we 
analyze the effect of dispersion on the arrival fraction of a contaminant at the pumping 
station and on the 1, 10, 25, 100 and 250 year travelling time zones. 
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CHAPTER 1 

GROUNDWATER CONTAMINANT TRANSPORT 
INCLUDING ADSORPTION AND FIRST ORDER DECAY 

(By J J A. van Kernten, Stochastic Hydrology and Hydraulics, 8, 185-205, 1994) 

Abstract: This study deals with the transport of a contaminant in groundwater. The 
contaminant is subject to first order decay or linear adsorption. Its displacement 
can be modeled by a random walk process in which particles are killed at expo
nentially distributed times. Dirichlet problems are derived for the rate and mean 
time at which contaminated particles reach a particular part of the boundary of a 
certain domain. These Dirichlet problems are solved asymptotically for two types 
of 2D-flow patterns: flow parallel to the boundary of a domain and arbitrary flow 
towards a well in an aquifer. 

Key words : contaminant transport, adsorption, decay, random walk, killing, 
Kolmogorov equations, contamination of a well 

1. INTRODUCTION 

Groundwater confined in aquifers is an important source of water supply for domestic, 
industrial and agricultural use. In order to control the quality of the groundwater prediction 
tools are needed. In this study we present a method to predict the fraction of a pollution 
that enters a protected zone or a well where groundwater is pumped up. We also give an 
estimate of the mean travelling time of particles. If a contaminant does not interact with 
the solid or is not subject to decay these problems have already been dealt with by Van 
Herwaarden & Grasman (1991), Van Herwaarden (1994) and Van der Hoek (1992). 
However, adsorption and decay may be factors of importance; because of the large 
residence times of water in an aquifer adsorption and decay may have a non-negligible 
effect upon the rate and mean time at which contaminated particles cross a certain 
boundary or are pumped up at a well. 

Starting point of our analysis is the advection-dispersion equation containing terms 
that account for linear (non-) equilibrium adsorption and first order decay. In a dispersive 
flow a single particle makes a random walk. This random walk is modelled by a stochastic 
differential equation of which the corresponding Fokker-Planck equation equals the 
advection-dispersion equation without adsorption or decay terms (Uffink, 1990). Linear 
equilibrium adsorption only retards the spread of the contaminated particles. Linear 
irreversible adsorption and first order decay cause a fixed fraction of the contaminated 
particles to be "killed" in each time step. The spread of contaminated particles can be 
simulated by the aforementioned random walk process in which the particles have an 
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exponentially distributed life time. The Dirichlet problems formulated in section 4 are 
based on the backward Kolmogorov equation of this random walk process. The solutions 
of these problems give the rate and mean time at which particles cross a particular part of 
the boundary of a certain domain. These Dirichlet problems are applicable to various types 
of flow patterns. 

In section 6 we solve the Dirichlet problems to approximate the rate and mean time 
at which particles hit the boundary of a domain in which the flow is parallel to that 
boundary. In section 7 the Dirichlet problems are solved to predict what fraction of a 
pollutant will enter a well operating in a confined aquifer and its mean travelling time. In 
both cases the Dirichlet problems are solved with the use of singular perturbation 
techniques. Because dispersion contributes considerably less to the displacement of a 
particle than advection, the advective flow field yields a first order approximation of the 
solutions. Where necessary we introduce a boundary layer in which we compute second 
order approximations which take into account the effects of dispersion. In this way 
analytical expressions are obtained which may be used to approximate the rate and mean 
time at which particles hit a certain boundary or enter a well in arbitrary 2D-flow. In 
chapter 8 the latter case is worked out for a well in a uniform background flow. The 
accuracy of the approximations is tested by making a comparison with random walk 
simulations. 

2. THE SOLUTE TRANSPORT EQUATION 

We analyse the spread of a non-conservative contaminant by stationary groundwater flow 
in a saturated porous formation. We restrict ourselves to linearly interacting solutes. The 
transport of the contaminant may be influenced by local equilibrium adsorption (also 
called linear Freundlich sorption), which occurs in many applications. Linear equilibrium 
adsorption is a reversible process, which only makes that the solute transport is retarded 
(see, for example, Bear and Verruyt, 1987). In Valocchi (1985) criteria are presented to 
assess the validity of the local equilibrium assumption (LEA). The LEA is often used to 
describe adsorption processes in which the reaction rate with the porous matrix is much 
faster than the advective flow rate. 

In addition to local equilibrium adsorption, we allow for loss of mass due to linear 
irreversible adsorption or first order reactions/decay. These processes make that in each 
time step a certain fraction of the solute disappears. It is assumed that the 
adsorption/decay rate is a constant, which is realistic for radioactive and several reactive 
organic compounds. 

Under these assumptions it is well known that at local scale the solute concentra
tion c(y,t) (M/LN, .yERN, N = 2 or 3) satisfies the advection-dispersion equation (ADE) 

* = -JL£LC) • A ( ^ ) - he, (2.1) 
dt dy.R dyt R dy' R 

where v; is the average pore velocity (L/T) and X. is the adsorption/decay rate coefficient 
(T1). With respect to the indices in (2.1) we use the Einstein summation convention. The 
retardation factor R is related to the distribution factor Kd which characterizes the 
equilibrium adsorption, and to the porosity n and the solid's density ps: 
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R = u L l PKd . (2.2) 
n 

For an isotropic porous medium the hydrodynamic dispersion tensor is given by 

DH " arlvlô» + K- f lr) v i v / l v l ' (2-3) 
where respectively aL and aT denote the longitudinal and transversal dispersion coefficient 
(see Bear and Verruyt, 1987). 

We are especially interested in the transport of a contaminant in an aquifer, which 
is a field-scale process. At field-scale a porous formation is often heterogeneous, i.e. the 
hydraulic properties of the formation display spatial variability. Heterogeneity enhances 
the spread of a contaminant (especially in the longitudinal direction). This phenomenon is 
called "macro-dispersion". Flow and transport in a heterogeneous formation can be 
modelled by introduction of random space functions (RSF) for the velocity field v, the 
retardation factor R and the first order reaction/decay coefficient X (Dagan, 1987). The 
heterogeneity of the formation is characterized by the auto-correlations and cross-correla
tions of v, R and X. Because v, R and X are RSF the ADE (2.1) becomes a stochastic 
differential equation, and consequently the point value of the concentration becomes 
uncertain. Therefore, we are more interested in the expected value of the concentration. 
Assuming that v, R and X are stationary random fields Kabala and Sposito (1991) proved 
that the mean transport equation still is approximately an ADE of form (2.1), where v/R, 
DjJR and X/R have to be replaced by their "field-scale values". Because of the 
heterogeneity these field-scale values are functions of the auto- and cross-correlations of v, 
R and X. This results in time-dependent transport parameters. However, if the correlation 
scales are finite, it can be shown that at the long term the time dependency vanishes and 
the transport parameters tend to constants (see also Dagan, 1987, Neumann, 1991). 

In this study we assume that the scale of heterogeneity is small compared to the 
geometry of the aquifer, so that we may take as starting point of our analysis the equation 

*L = - ± (vf c) + ± ÇD/-21) -tic , (2.4) 
dt dv. dyt dy. 

where respectively v/, Dj and Xf denote the field-scale values of \JR, DJR and X/R at the 
long term. The field-scale dispersion is still assumed to be proportional to the velocity, so 
that the dispersion tensor is given by Eq.(2.3), where the pore-scale dispersivities aT and 
aL have to be replaced by their asymptotic field-scale values a / and a/. For small values 
of variance of the logconductivity Dagan derived approximations for this dispersivities 
(Dagan, 1987, p. 308-326, see also Gelhar and Axness, 1983). These approximation show 
that a/ » aL, whereas (at the long term) a/ - aT. The transversal dipersivity a/ turns out 
to play a crucial role in this study. 

It is noted that it is not always realistic to assume that the transport parameters 
tend to their asymptotic values rapidly. Sposito and Barry (1990) applied the Dagan model 
of solute transport to a tracer experiment at the Borden site. It turned out that at the 
Borden site the transversal dispersivities do not reach their asymptotic values on any 
realistic time scale. Roberts et al. (1986) found that for the Borden aquifer the scale of 
time dependency of the field-scale retardation factor is more than two years. 
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In this study we answer the question at what rate and mean time a contaminant, the 
expected concentration of which satisfies Eq.(2.4), will enter a protected domain. For that 
purpose the concentration function c(y,t) is interpreted as the space-time probability 
density function for a contaminated particle as it makes a random walk through the 
groundwater. (In the remainder of this study the superscripts ƒ in (2.4) will be omitted.) 

Remark. The LEA or the assumption that a solute undergoes first order decay do not 
always accurately describe the physical, chemical or biological processes in an aquifer 
(Valocchi, 1985, Cameron and Klute, 1977). In such cases kinetic non-equilibrium models 
are needed to describe the mass transfers. A random walk method for simulating the 
spread of a kinetic adsorbing solute is described by Andricevic and Foufoula-Georgiou 
(1991). 

3 COMPARISON WITH A DIFFUSION PROCESS WITH KILLING 

For the subsequent analysis of the transport of a contaminant, it is more convenient to 
rewrite Eq. (2.4) in the following form: 

Ol = Mkc (3.1a) 

with 

and 

dt 

Mx = ~4- W ) + i^TT- <¥>>)•) - * (3-lb) 
dy. 2 dyfy 

a. = v. + J- D.. , lb.. = D.. . (3.led) 

Setting c = c0 e'u we find that c0 has to satisfy the ADE without adsorption or decay 
terms: 

- ^ = MQc0 . (3.2) 

If no adsorption or decay takes place it is known that the dispersive spread of a contami
nant in groundwater can be simulated by a random walk process. Contaminated particles 
are released at some point x E RN and their motion consists of a deterministic part, the 
drift, and a stochastic part that accounts for the dispersion: the position of the particles at 
time t is only known with some probability. The probability density function p<fy,t \ x) for 
particles released in x G RN has to satisfy the same equation as c0(y,t), so that 

- J = A^ 0 , p0(y,0\x) = ttx-y) . (3.3) 
at 

Eq. (3.3) is the Fokker-Planck equation or forward Kolmogorov equation that corresponds 
with the diffusion process described by the Ito stochastic differential equation 
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dyl = afy)dt + F.dW. , (3.4a) 

where Wj are independent Wiener processes and Ftj is a tensor so that 

V * = *,- . (3.4b) 

see Gardiner (1983) and Uffink (1990). 
Linear non-equilibrium adsorption or first order decay cause contaminated particles 

to be "killed". This killing process has an exponential distribution; the probability that a 
particle has not been killed before time t equals e~u. With this killing process, the 
probability density function for finding a particle in y G RN at time t is 

p(y,t\x) = pjyj\x) e-» . (3.5) 

It is noticed that p is a defective, or deficient, probability density function. The defect is 
\-e~u, being the probability that a particle has been killed before time f. The probability 
density function^? satisfies the ADE (3.1). So we can simulate the spread of a contaminant 
that is subject to adsorption or first order decay by a random walk process with killing. 

Eq. (3.3) describes where a particle that was released in the point x, might be some time 
later. We may also reverse the situation. Given that a particle is found in y at time t, we 
may ask where the particle's initial position might have been. Beside the forward 
Kolmogorov equation (3.3) p<J(y,t\x) satisfies the backward Kolmogorov equation that 
refers to the particle's position in the past: 

_ i = V 0 , (3.6a) 
dt 

where 

The backward equation plays an important role in finding expressions for the probability 
and mean time of entering or leaving a given domain in RN. 

Remark. In the above approach of the spread of pollution in a porous medium where 
adsorption or a first order decay takes place, it is essential that X is space independent. If 
the killing is space dependent the probability of finding a particle at a certain place at a 
certain time depends on the path followed by that particle. In that case the diffusion 
process and the killing process are not any longer independent. 

4. PROBABILITY AND MEAN TIME OF EXIT THROUGH A CERTAIN 
BOUNDARY 

Let us consider a domain Q G RN (N = 2 or 3) with boundary dQ. We assume that dQ is 
an absorbing boundary; a particle is removed when it reaches dQ, i.e. p(y,t \ x)=Q if ySdÇi. 
Let dQo and dQ1 be parts of dQ, i.e. dC^Dd^ = <)> and ôQ0UâQ! = dQ (fig. 1). 
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Figure 1 Example of the region Q considered in section 4. 

We want to know the probability that a particle that was released in x £ Q, exits through 
dQv In a diffusion process without killing the (defective) probability density function for 
leaving Q through dQt at time t is 

f nJfyjtWSy , (4.1) 
Jdfi, 

where n is the outward normal vector on dQ, and J is the so-called probability current: 

Jfy,t\x) = a O - K C r l x ) - ! ^ - ^ ) ^ ^ ' ! ^ (4-2) 
I ay j 

see Gardiner (1983), Sec. 5.2 and 5.4. It follows that the probability density function for 
exit through dQj at time t for a diffusion process with exponentially distributed killing is 

q(x,t) = (jxinJi(y,t\x)dSy)e^ . (4.3) 

A particle starting at dQ is absorbed immediately, so that a particle starting at dQ0 cannot 
exit through dß; anymore. So, at the boundary we have 

q(x,t) = 0 ifxGdQo» 
q(x,t) = à(t) iixEdQv (4.4) 

Let u(x) be the probability that a particle starting i n x G f i exits through dQt. By partial 
integration we find 

u(x) = [q(x,t)dt 

^ (4.5) 

•^v^)^i."}"^j4(jL,v^)^* 
The term between braces cancels because J(y,0) | x) = 0 at dQj. Because /?0 satisfies the 
backward Kolmogorov equation, / satisfies this equation too. Making use of this fact we 
conclude that 
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*» • T$L,M»ipTt Li / » ) - ! - / , ) JSy)e-"d, 
OX.OX. 

= lLx)JLu(x) + iA/x)_Ç_«(x) 
A. dx. 2 ' dxdx. 

(4.6) 

Thus, the probability that a particle starting in x E Q exits through d ^ satisfies the 
homogeneous Dirichlet problem 

L^u = 0 in Q 

with the boundary conditions immediately following from (4.4): 
u = 1 at dQj, 
u = 0 at dQ0. 

(4.7a) 

(4.7b) 

Let Tx(x) be the mean exit time of a particle starting in x E £2, under the condition that the 
particle exits Q through dQx 

where 

(4.8a) 

T r(x)= r^x,o*- (4.8b) 

Partial integration of T gives 

Again, because / satisfies the backward Kolmogorov equation, it follows that 

T(x) = —u(x) + — a(x)—T + lb..(x) d T 
'K ' dx. 2 'A ' dxM. 

(4.9) 

(4.10) 

From (4.4) we obtain as boundary condition: T = 0 at dQ. Thus, T(x) is the solution of the 
nonhomogeneous Dirichlet problem 

L^Qc) = -u(x) in Q 
T = 0 at dQ . 

(4.11) 

We mention that in the same way as we derived the Dirichlet problem (4.11) related to the 
first moment 7\ of the conditional exit time we can derive the Dirichlet problem related to 
the /nth moment T™ of the conditional exit time. We do not work this out, because we do 
not use these higher order moments in this study. 
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In section 6 and 7 the Dirichlet problems (4.7) and (4.11) will be solved approximately for 
two special 2D cases. Using singular perturbation techniques we derive approximations for 
the rate and mean time at which particles reach a given boundary. We test the accuracy of 
the asymptotic approximations by comparing them with the outcomes of random walk 
simulations. 

5. RANDOM WALK SIMULATION WITH KILLING 

In two dimensions the stochastic differential equation (3.2) reads 

** = (V* + if" + if») dt + V^M^i^ + \ß^\^dWT . (5.1a) 

^ = (V> + if" + l!f») dt + ^ > l " ^ | ^ - f ^ ^ f r • (5.1b) 

Because the Wiener processes WL and WT are independent, their increments dWL and dWT 

are also independent. The increment of a Wiener process has variance dt: 

(dWl) = (dwf) = dt, (5.2) 

see Gardiner (1983), sec 4.2. Let z; be a uniformly distributed variable with mean zero and 

N 

variance o. Then, according to the central limit theorem, the variable z = Y.zi , with N 

sufficiently large, has approximately a normal distribution with mean zero and variance 

JNO . So we can simulate the motion of a particle in a specified domain Q C R2 on the 

computer by 

AX = v + 
Tx 

AY = |v + - I D + _ 1 D 
' dx v dy " 

+ ±D\ At + y ^ M ^ J à T + fi^M^ßT (5.3a) 

,j At * ^Jvl-J-z.v/ÄT + ^ /2a r |v | i rV /Är (5.3b) 

where zL and zT are uniformly distributed variables with mean zero and variance one (see 
also Kinzelbach, 1988). The time step At is taken sufficiently small. Furthermore, the 
particles are killed at exponentially distributed times. Therefore, before we start simulating 
the motion of a particle by (5.3), we choose a random variable x which is uniformly 
distributed at [0,1]. Then t = - log(t)A. is exponentially distributed; we call / the killing 
time of this particular particle. We stop simulating the motion of a particle if it exits the 
domain Q, or if its simulated travelling time exceeds the killing time t. By counting the 
particles that exit Q across a particular part dQ1 of the boundary dQ an estimate is 
obtained of the probability of exit through dQ^ By taking the mean of the exit time of 
these particles we obtain an estimate of the conditional mean exit time Tv 
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Now the question arises how small the time step At and how large the number of 
simulations has to be taken to obtain accurate estimates from the random walk simula
tions. The first part of the question must be answered empirically: we take At sufficiently 
small, such that the result is independent of the chosen step size. The second part of the 
question can be answered with the use of a theoretical argument. 

Let Hi be the outcome of the i'th random walk; \i, = 1 if the particle exits through 
dQj, |Xj = 0 if not. Let Xj be the exit time of the j 'th particle that exits through dQv The 
mean of nt is u and the mean of Xj is Tv The sample means are 

N a. » x. 
jT = E ^ and x = E ^ , (5.4) 

where N is the number of simulations and M s N the number of particles that exit Q 
through dQv Let ou

2 and a,-2 be the variances of ^ an xj; respectively. From statistics it is 
known that the random variables 

JNQLÏI and tfT^R, (5.5) 

have a limiting normal distribution with zero mean and unit variance. This fact can be 
used to construct confidence domains for u and Ty For that purpose estimates for 0„2 and 
c^2 are needed. Unbiased estimators for them are respectively 

S- = L, y , 3 n d ST = E -Tf-T • (5-6) 
i-i N-i jwl M-I 

It is easy to verify that 95% confidence intervals for u and Tx are approximately: 

»-du < u < £ + du, (5.7a) 

x - dT < Jj < x + d r (5.7b) 

1.96 S 1.96 ST 
with du = 1 and dT = I . (5.7c) 

6. UNIFORM PARALLEL FLOW 

As a first example we consider a uniform 2D flow through the domain 

a = {(jyO|x < 0, y > 0} (6.1a) 

with boundaries 

dQ0 = {(x,y)|jc = 0, y > 0} and dQ, = {(*,>>) |x < 0, y = o} . (6.1b) 

The uniform advective flow is in the x-direction. Due to dispersion a particle released 
somewhere in fi may hit the boundary dß,. While moving through Q particles may be 
absorbed or may undergo first order decay. We use the Dirichlet problem (4.7) to compute 



16 CHAPTER 1 

ôQo 

Q 

Figure 2. Uniform flow parallel to the boundary dQ^ 

an approximation of the probability u(x,y) that a particle released in (x,y) EQ hits the 
boundary dQv Neglecting the probability that a particle starting at dQ0 may hit dQ1( we 
find that u(x,y) is the solution of the problem 

du djl 
/ + 

dx 
u(x,0) 
<0,y) 

aLv. 

= 1 
= 0 

+ 
dx2 

for 
for 

öj? 

x 
y 

V 

dy 
< 0 
> 0 

- KU 0 in Q 
(6.2) 

Due to the advective flow in the x-direction, which dominates the dispersion, particles 
released far away from dQ, have probability zero of reaching dQ,. One may expect that 
only near d£2x the probability of reaching dQj differs significantly from zero. Therefore, a 
boundary layer around dQj may occur in which the qualitative behaviour of u changes. 
We expect that in this layer the transversal dispersion is important, because it allows 
particles to cross streamlines. The layer is stretched by introducing the boundary layer 
coordinate 

r\ = ylja^. 

Substitution in (6.2) yields for aL, aT -* 0 

du d2ü 
v _ _ + v - Xu = 0 in Q 

dx ÖT12 

with 

«(0,TI) = 0, u(x,0) = 1 

and with matching condition 

lim ü(x,r\) = 0 . 

(6.3) 

(6.4a) 

(6.4b) 

(6.4c) 

Using a Laplace transform in the ^-direction we find that the solution of (6.4) reads 

. (6.5) u(x,r\) = — exp{v\jkjv} Erfc 
ITI+V' -VV 
2 ' 

fx~ 
+ —exp{ -r\^k/v} Erfc 

1 T ! - / ^ V V " 

/ T 
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X 

-0.5 
-1.0 
-1.5 
-2.0 
-2.5 
-3.0 
-3.5 
-4.0 

y = 0.04 

wasymp 

55.2 
65.4 
69.7 
72.0 
73.5 
74.5 
75.2 
75.7 

Mamu1 

53.7 
64.0 
68.9 
71.9 
73.0 
74.2 
74.6 
76.1 

4, 
1.382 
1.331 
1.283 
1.246 
1.231 
1.213 
1.207 
1.182 

y = 0.08 

Masymp 

24.4 
38.7 
45.8 
49.9 
52.5 
54.3 
55.6 
56.6 

U«mul 

23.5 
38.1 
45.5 
50.0 
52.3 
53.9 
56.7 
56.6 

4, 
1.175 
1.346 
1.380 
1.386 
1.385 
1.382 
1.374 
1.374 

y = 0.12 

Myinp 

8.4 
20.5 
28.1 
33.0 
36.3 
38.6 
40.3 
41.6 

"amiil 

7.9 
19.4 
26.9 
31.9 
36.0 
37.8 
40.1 
41.0 

d. 

1.605 
1.096 
1.229 
1.292 
1.331 
1.344 
1.359 
1.363 

TABLE I. Probabilities of hitting dQl (in %) calculated from the asymptotic approximation 
(6.5), compared with the probabilities from N = 5000 simulations at different 
points (v = \,aL = 1/32, aT = 1/200, X = 0.2, At = 0.0005). 

We have simulated the spread of particles by the random walk method with killing as 
described in section 5. In table I the rate at which particles hit the boundary 5QX as 
calculated from (6.5) and as obtained from simulations are compared. Because the rate 
obtained from the simulations is also an approximation of the real rate u, table I contains 
the coefficient da calculated from (5.7c). The probability that u differ less then du from 
"simui i s 0-95. One may notice that in almost all cases | ^„,^-u^^ \ s 0.95. From the table 
we may conclude that formula (6.5) gives a good approximation of the rate at which 
particles hit dQ{. We emphasize that in this formula aL does not occur. So the Brownian 
motion in the x-direction plays a minor role in answering the question at what rate 
particles hit dQv 

From the Dirichlet problem (4.11) we may find an approximation for the conditional mean 
of the first time that a particle hits dQv However, we may also try to derive an approxi
mation in a different way. Ignoring the Brownian motion in the x-direction there only 
remains a stochastic motion in the v-direction, which is described by 

dr\ = y/2v~dWT . 

For a particle released in (x,r\) 
T) = 0 at time t equals 

(6.6) 

Q the probability density function for reaching the axis 

KW 
2\[ï™ l 

_JT_e-t|
2/4v< (6.7) 

see Karlin (1960). Starting at (X,Ï]) G Q the boundary dQ can only be reached if t < -JC/V, 
otherwise the boundary dQ0 has been passed. Furthermore, the probability that a particle 
has not been killed at time t is e"^. So the conditional mean first hitting time of dQ1 

equals 

T.frri) 
2/jtv~ i 

(jy-(n2ito<)-Kdt/n(x,r\) (6.8) 
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Table II contains the mean first hitting time obtained from random walk simulations and 
calculated from (6.8). A comparison shows that Tt(x,T]) is a good approximation for the 
real mean first hitting time Tv To support our confidence in T̂mui table II also contains dj 
calculated from (5.7d); the probability that 7\ differs less then dj from Tamû is 0.95 (see 
§5). We notice that in almost all cases | 7 ^ - 7 ^ | s 0.95. 

X 

-0.5 
-1.0 
-1.5 
-2.0 
-2.5 
-3.0 
-3.5 
-4.0 

y = 0.04 

T 

0.173 
0.256 
0.316 
0.362 
0.400 
0.431 
0.457 
0.479 

T 
-'•mut 

0.179 
0.260 
0.321 
0.364 
0.406 
0.452 
0.474 
0.491 

dr 

5.22.10"3 

8.32.10"3 

1.10.10"2 

1.34.10"2 

1.57.10"2 

1.82.10"2 

1.99.10"2 

2.14.10"2 

y = 0.08 

T 
'asymp 

0.280 
0.442 
0.562 
0.658 
0.737 
0.804 
0.861 
0.909 

T 
ijtxuil 

0.301 
0.442 
0.571 
0.672 
0.753 
0.829 
0.866 
0.910 

dr 

8.86.10"3 

1.17.10-3 

1.58.10"2 

1.95.10"2 

2.27.10"2 

2.58.10"2 

2.82.10"2 

3.12.10"2 

y = 0.12 

T 
* asymp 

0.347 
0.575 
0.752 
0.897 
1.019 
1.123 
1.213 
1.292 

T 
smul 

0.395 
0.592 
0.759 
0.906 
1.026 
1.140 
1.231 
1.305 

dr 

7.49.10"3 

1.66.10"2 

2.08.10"2 

2.47.10"2 

2.88.10"2 

3.33.10"2 

3.68.10"2 

4.01.10"2 

TABLE II. Mean time of hitting ôQ, computed by the asymptotic approximation (6.8), 
compared with the mean time obtained from N = 5000 simulations at different 
points (v = 1, aL = 1/32, aT = 1/200, \= 0.2, M = 0.0005). 

7. EXIT PROBLEM IN A DOMAIN WITH SEPARATING STREAMLINE 

The Dirichlet problems (4.7) and (4.11) play a crucial role in answering the question at 
what rate and mean time a certain pollution will enter a drinking water well. Drinking 
water is often pumped up from layers from confined aquifers. The thickness of the aquifer 
is assumed to be small relative to its horizontal dimensions, so that the groundwater flow 
we consider is essentially 2D. Domains containing a well have the important characteristic 

Fig.3. Example of a flow field in a domain containing a well. The catchment area of the well is 
bounded by two separating streamlines ending in the stagnation point S. Due to dispersion 
a particle released outside the catchment area may enter the well. 
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that the flow field contains separating streamlines ending in a stagnation point. These 
separating streamlines bound the region of advective flow towards the well, called the 
catchment area. Therefore we now analyse the exit problem in a domain Q C R2 with 
arbitrary flow containing separating streamlines ending in a stagnation point. To force that 
the flow is divergence free we assume that Q is free of sources or sinks; we simply 
exclude them as in figure 3 (dQj may consist of the well only). 

7.1 Away from a separating streamline 

The solution u(x,y) of the Dirichlet problem (4.7) gives the probability that a contaminated 
particle released in (x,y) E Q exits Q through dQi (e.g. enters a well). We will solve this 
problem asymptotically. Since dispersion contributes considerably less to the displacement 
of a particle than advection, we take as a first order approximation for the probability of 
exit, the solution of the advective part of problem (4.7) 

W £ + v2(*,v)^ - ̂  - 0 , (? 1} 

"adv = 1 a» aOi . 

where vfay) and v2(x,)>) denote the velocity of the flow in (x,y) in respectively the x- and 
y-direction. Notice that outside the catchment area no streamline is ending at dQlt so that 
outside the catchment area 

« * = « • (7-2) 

Inside the catchment area all streamlines are ending at dQ^ Putting u^ = exp (-XT) we 
find that T satisfies 

vi(*>>0— + Vj(jy)-r- - -1 in O 
dx dy (7.3) 

T = 0 at dQj . 
The solution of (7.3) is the advective travelling time T^ to dSiv So inside the catchment 
area we have 

"adv = exp(-X7'adv) , (7.4) 

i.e. u^ is the probability that a particle has not been killed at t = T^. 

7.2 Near a separating streamline 

We expect that near a separating streamline u^ will need a correction. Due to transversal 
dispersion a particle released outside the catchment area and not too far away from a 
separating streamline may cross the separating streamline and enter the well. Or in the 
opposite way: a particle released inside the catchment area and not too far away from a 
separating streamline may cross the separating streamline, which would reduce the 
particles probability of reaching the well. Furthermore, the advective travelling time 
towards the well along a streamline, that ends into the well and that is close to a separat
ing streamline, is very large, because this streamline passes the stagnation point very 
closely. Due to the killing a particle moving along this streamline has a very small 
probability of reaching the well. Transversal dispersion, however, may bring a particle into 
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a streamline further away from a separating streamline, which shortens the travelling time 
towards the well and, thus, enlarges the probability of reaching the well. So, near a 
separating streamline we may not neglect the influence of transversal dispersion; a 
boundary layer around such streamline is to be expected. Before we analyse the exit 
probability u in this boundary layer we carry out some preliminary coordinate transforma
tions. 

Fig. 4 The coordinates p and u are taken along and perpendicular to a separating streamline 
leading towards the stagnation point. The coordinates 6 and |x are taken along and 
perpendicular to the separating streamline leading away from the stagnation point. 

Around a separating streamline we introduce some new (local) coordinates p and v. p > 0 
is a coordinate along the separating streamline and v a coordinate perpendicular to it, see 
figure 4. The stagnation point is in (p,v) = (0,0). The velocity near the separating 
streamline in this new coordinates is given by 

(KP,V), H<P,V)) . (7.5) 

Furthermore, we allow the dispersion coefficients to vary in space. We decompose the 
transversal dispersion coefficient in the following form: 

aj(p,i>) = aT a(p,i>) . (7.6) 

where âT is a (spatial) average of aT and a(p,v) accounts for the spatial variability. (In a 
homogeneous medium âT = aT and a(p,"u) = 1). At the end of this paragraph we will see 
that it is not important how the average âT is taken. We only have to introduce it for 

computational reasons. A boundary layer of width 0(JäT ) is expected near a separat

ing streamline. We therefore introduce the boundary layer coordinate 

v/yöjT (7.7) 
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Letting aL, âT -» 0 we obtain that inside the boundary layer u approximately satisfies 

v ( p , a Ä = L + w^Ofr!^ - a ( P ) 0 ) v ( p , 0 ) i ^ l - Xu^ = 0 (7.8a) 
dp dr\ dry 

with Mtx̂nd to be matched with the outer solution u^: 

K ^ C P , ! ! ) = 0 for Ti -* oo , (7.8b) 

« ^ ( p j l ) = exp(->.radv(p,Ti)) for TI « -1 . (7.8c) 

In order to find the solution u^^^^ we have to know T^ just outside the boundary layer. 
For that purpose we again introduce new local coordinates. 

Let 8 > 0 be a coordinate along the streamline leading away from the stagnation 
point and \i a coordinate perpendicular to 8, see figure 4. The stagnation point is in (0,8) 
and the streamline leading away from the stagnation point intersects dQt in (8^0). The 
velocity near this streamline in these coordinates is given by 

(r(8,n), s(8,n)) (7.9) 

We need these coordinates in an expression for T^ just outside the boundary layer. Van 
Herwaarden (1994) proved that for -1 « v < 8 

T^(P,v) - — l n ( ~V "fo0* ) + Ä(p) (7.10a) 
- ^ ' vp(8,o) \fmp% 

with 

o e„ 
h(p) = f(—!— 1 )dp + f(—!— 1 )dQ . (7.18b) 

J'v<p,e) vp(e,o)p Wm r6(Q,o)e' 
We call the right-hand side of (7.18a) 7 ^ . Let 

«»*, = « P C - ^ J • (7-n) 
We put 

f 1 
"bound = e x P( x ——<*p}" , (7.12) 

Jv(p,8) 
where y is an integration constant. It follows that ü satisfies 

. dÜ , n . dÜ , n\ r r>\ Ô2W v(p,8)^l + w„(p,0>i-^l - o(p)e)v(p,0)J 
ôp " dr\ drf 

"(P»1!) = 0 for T] -» », 

*(P>*l) = « m , c „ -e*P{-4 -=^P} = exp{-M(Y)}("V a ; n^ , 0 ) )"^ ( 0 0 ) for n « - l . 
i v(p,o) v^e.e^e^ 

(7.13) 
We introduce the new coordinates 
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p 

T = fv(p,0)2<fp and % = -riv(p,0) (7.14) 
o 

and write Û(T,Ç) = a(p,v) . Using the fact that the flow is divergence free, which implies 

that vp(p,0) = -wv(p,0), we obtain the following initial value problem for ü: 

i £ = a(x,0)^£ (7.15a) 

with 

û(0,Ç) = 0 for Ç>0 , (7.15b) 

«-(0,Ç) = exp{-M(Y)} 

/ \-Wvf(0,0) 

for £<0 . (7.15c) 
(vp(0,0)Y8vJ 

The solution of this initial value problem reads 

, /ST JT> vp(o ;o)Ye, 

where (7.16a) 

X 

q(x) = {2 fa(r,0)rft}-1/2 . (7.16b) 
o 

Bringing this solution in (p.v)-coordinates and using (7.6) and (7.12) we find the boundary 
layer solution for the rate of pollution that exits Q through dQ^ 

J^ vp(o,o)Pe„ J 
"«(p) 

where 

q(p) = {2|a7(p,0)v(p)0)2^/v(p,0)2}-1'2 . (7.17b) 
o 

Note that in this boundary layer solution only the velocity field and the transversal 
dispersion coefficient upon a separating streamline are used. 

73 A composite approximation 

Note that uboaad is an approximation for the exit rate u that is only valid in the boundary 
layer around a separating streamline. Outside the boundary layer we have the approximati
on u - u^. Because u^ = 0 outside the catchment area of the well, we may use (7.17) as 
an approximation for u in the whole domain outside the catchment area. We are able to 
construct an approximation uœnip that is valid in the entire catchment area, inside and 
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outside the boundary layer, as follows 

"comp = "adv + «bound - "match ( 7 - 1 8 ) 

Outside the boundary layer umaich cancels «bound. Inside the boundary layer umtdtl cancels 

"adv-

7.4 Mean time of exit 

If a particle released in Q exits through dQu then its mean time of exit is 7\ = T/u, where 
T has to satisfy the nonhomogeneous Dirichlet problem (4.11). We solve problem (4.11) 
asymptotically. Again we start with neglecting the dispersion terms outside the boundary 
layer around a separating streamline. A first order approximation for T satisfies 

v,(x>y)— + V7(JC,V)— - XT' = -u . in Q , 
lV <te 2V " dy * (7.19) 

T = 0 at dQj . 

Outside the catchment area (7.19) yields the approximation T = 0. 
Inside the catchment area we find the approximation 

T = T^ . Madv) (7.20) 
which yields as an approximation for the conditional mean exit time 

r , = T^. (7.21) 

Inside the boundary layer around a separating streamline T satisfies asymptotically 

)E + wJ[p,0)nE - a(p,0)v(p,0)Ülr 

dp ft] dr) 

with T to be matched as follows 

v(p,0)£i + vv/p.O^fi - a(p,0)v(p,0)41 - \T = -u^ , (7.22a) 

r(p,Ti) = 0 for Ti — oo , (7.22b) 

TTM) = ^ c h - " ^ for TI«-1 . (7.22c) 

A particular solution of (7.22a) is 

(o , \ 
r'(p'T,) = " f -F^ "^ (7-23) 

with y a certain integration constant. Setting 

7/(p,Ti) = r (p,T|) + T„(p,r\) (7.24a) 
and 

f 1 r4(p,tl) = exp{X|_i_iip>rA(p,ii) (7.24b) 

Jv(p,0) 

one can easily check that Tk is the solution of the homogeneous problem 
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v ( p , 0 ) ^ + vv,(p,0)n-^* - a(p,0)v(p,0)lZ* = 0, 
dp dr\ drf 

T„(p,r]) = 0 if Tl -* », (7.25) 

*> , r i ) = ( ^ c + f-^-^^Pi-HT^* f^-^P)} for r,« -1 
J vfo.O) J vfo.O) v<P,0) i v(p,0) 

Solving this problem in the same way as problem (7.13) and using (7.23) and (7.24) we 
find a boundary layer solution for T and thus for the conditional mean exit time Tbami: 

u, 
J _ l n ( *P-°> ) • Ä(p) + 

bound vp(0,0) v p (0 ,0 )pO, / 

1 7 ln(-u+^(p)X-v+^(p))-Wv '(0,0)
e-'

2* 

vo(0,0) - f -1,0) J 
(7.26) 

ƒ (-'"+^(P)) -Wv/o,o) 
e>''dt 

««(p) 

b̂ound is a n approximation for the conditional mean time of exit through dQj for a particle 
released inside the boundary layer. For a particle released outside the boundary layer and 
inside the catchment area of the well we have the approximation (7.21). In the same way 
as we constructed uçomf, we can construct an approximation for the conditional mean exit 
time ^.„p which is valid in the whole catchment area, both inside and outside the 
boundary layer. 

T = T + T - T 
comp adv bound match 

= T -
vD(0,0) 

_ln(-u) + _ L _ f 
',0) v(0,0) J (0,0) . 

\n{-v +t/q(pj) {-v Hlqjpf^^e ^'dt 
(7.27) 

«KM 

We may use T^^ as an approximation for the conditional mean exit time that is valid in 
the whole domain outside the catchment area. 

8. A WELL IN A UNIFORM BACKGROUND FLOW 

As an example we apply the expressions derived in the previous section to calculate the 
exit rate and mean exit time to a well in a uniform background flow. We assume that the 
background flow is parallel to the x-axis and that the well is situated in the origin (0,0). 
The corresponding velocity field is described by 

vi(*.>0 = i -
x2 + y2 

v2(*o0 -y 
(8.1) 

x2 + y2 
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-6 -5 - 4 - 3 - 2 - 1 0 1 2 3 

Figure 5 Stream pattern for a well in a uniform background flow. 

We want to predict the rate and mean time at which a pollution, released somewhere in 
the xy-plane, reaches the well. Let £2 be the jy-plane with (0,0) excluded. So, dQl consists 
of the well in (0,0) only. The stagnation point is in (1,0) and the separating streamline is 
given by 

x = y/tan(y) . 

The (p,u)-coordinates of a point (x,y) near the separating streamline are given by 

(8.2) 

y, 

p = (<x>(y)dy , v = ((x-xf + (y-y)2)™ (8.3ab) 

with 

1 cor» = J K - A y - f , r • ( 8 - 3 c ) 

" tanv sin2)» 
and where (x^ vs) is a point on the separating streamline so that (x-xs, y-y^)T is perpendicu
lar to the separating streamline (see fig. 5). The velocity v(p,0) along the separating 
streamline is 

v(p,0) i • ( -L-1) 2 
u 

smyt 
(8.4) 

The advective travelling time to the well from a point inside the catchment area of the 
well is 

^sinvj 
- lnl 

tany 
x - x , (8.5) 

see van der Hoek (1992). From (7.10) we obtain for the advective travelling time near the 
separating streamline 
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T~JP.V) = -ln(-v) - ha Ui-h-lf 
\ 

(8.6) 

Assuming that the transversal dispersion coefficient is a constant and making use of (7.17) 
we find 

oo 

. / ^T tany. y. J . v/2JT 
dt 

v*P) 

with 

(8.7a) 

<?(p) = {2ar|v
2(p(y),0)(o(y)<fy/v2(p,0)}- 1/2 (8.7b) 

For pollution released inside the boundary layer or outside the catchment area of the well, 
uboani is an approximation for the fraction of the pollution that will reach the well. The 
corresponding approximation for the mean arrival time is obtained from (7.26): 

n-tft») - 41" t a iy, y. 

\ 
- X ƒ 

" * > ) 

\n{-v+t/q(p))(-v+t/q(p)) e'^dt 
oo 

ƒ {-VHlqipfe-^dt 

(8.8) 

"«(p) 

From (7.18) we obtain an approximation for the rate of pollution that will reach the well, 
if the pollution is released in an arbitrary point inside the catchment area 

e -*- + e^-(l+(-J—-i^-L \{-vHlq(pte-Vdt-{-v)\ 

**y. y. ^ J p ) 

(8.9) 

An approximation for the mean arrival time of this pollution is 

f ln(-v + t/q(p)) {-v + t/q(p)fe'',2dt 
T».'M W - ƒ. 

f {-v + tlqifife-^dt 

" * > ) 

(8.10) 

We tested the accuracy of the asymptotic approximations by comparing them with results 
of random walk simulations. On the separating streamline we took the point C with 
coordinates (p,v) = (2.958,0) corresponding with (x,y) = (-0.915, 2.0). Carrying out some 
preliminary simulations, we obtained A/ = 0.001 as an appropriate time step to simulate 
the random walk motion of the particles in an accurate way. Next we carried out from C 
simulations consisting of respectively N = 100, 1000 and 15000 random walks, doing each 
simulation 10 times. In fig. 6 the rates and mean times at which particles reached the well 
are plotted. The figures visualise that the deviation in the random walk results is linear in 
respectively 1/VN and l/VN^ see also section 5. If N -* °° the estimates for the probabil
ity and mean time of arrival obtained from random walk simulations will converge to their 
real values. Fig. 6 shows that these real values only slightly differ from the values 
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calculated from the asymptotic approximations. This implies that the asymptotic approxi
mations for the probability and mean time of arrival are very good for this example. 

0.32 

03 

S 0.28 
'S 
£•' 
Ü0.24 

PROBABILITY OF REACHING THE WELL MEAN TIME OF REACHING THE WELL 

'0.26 

J20.22 
I 02 
I S 0.18 

0.16 

0.14, 

(a) 

:N=100 
:N=1000 
: N=15000 

0.02 0.04 0.06 0.08 0.1 
1/ N , N = Number of Random Walks 

).12 0 0.05 0.1 0.15 0.2 0.25 0.3 
(b) 1/ Nw,Nw = Number of particles that entered the well 

Fig. 6. Probability and mean time of arrival at a well in a uniform background flow for particles 
released in the point C (p,v) = (2.958,0) as estimated from random walk simulations with 
N = 100, 1000 and 15000 respectively, and with aL = 0.01, aT = 0.001, X. = 0.2 and Ar = 
0.001. The dashed lines denote asymptotic approximations for the probability and mean 
time of arrival as calculated form (8.7) and (8.8). 

To enhance our confidence in the accuracy of the asymptotic approximations we carried 
out some additional simulations. On a line perpendicular to the separating streamline 
through C we took a number of points from which we carried out N = 15.000 random 
walk simulations. In fig. 7a the fraction of the particles that entered the well is compared 
with the asymptotic approximations (8.7) and (8.9) for the probability of arrival. In fig. 7b 
the mean arrival time of the particles that reached the well is compared with the 
asymptotic approximations (8.8) and (8.10) for the mean arrival time. If v increases the 
number of particles that enter the well decreases. Therefore the mean arrival time as 
estimated from the simulations is subjected to increasing uncertainty. From the figures we 
may conclude that the approximations take into account the boundary layer behaviour of 
the probability and mean time of arrival in a surprisingly accurate way. The figures 
confirm that, although 04- is much smaller than aL, the transversal dispersion plays a 
dominant role in predicting what fraction of a contaminant will enter a well. 
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PROBABILITY OF REACHING THE WELL 

(a) 
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MEAN TIME OF REACHING THE WELL 
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Fig. 7. Simulation results for particles released on a line perpendicular to the separating streamline 
through the point C obtained with N = 15.000, aL = 0.01, aT = 0.001, X. = 0.2 and Af = 
0.001. In fig. 7a the fraction of the particles that reached the well is compared with the 
asymptotic approximation for the probability of arrival calculated from (8.9) for v < 0 and 
from (8.7) for v a 0. For all simulations the 95% confidence domains for the real probabi
lity of arrival have a radius of less then 0.008. In fig. 7b the mean arrival time of the 
particles is compared with the asymptotic approximation calculated from (8.10) for v < 0 
and from (8.8) for v a 0. For v a -0.03 the 95% confidence domains for the real mean 
arrival time are indicated. For v < 0.03 these domains are so narrow that they are not 
indicated. 




