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Stellingen 

1 Partiële complementatie van een diploïde amylose-vrije aardappelmu­
tant kan veroorzaakt worden door co-suppressie. 

(dit proefschrift) 

"High-amylose" aardappelgenotypen kunnen met behoud van de 
huidige zetmeelkorrel structuur niet worden verkregen. 

(dit proefschrift) 
(Kram AM, (1995) PhD thesis) 

(Jane J et al., Cereal Chem (1992) 69: 405-409) 

De verschillende aspecten van "transgene-inactivation", beschreven in 
een grote variatie aan studies, maken het onderling vergelijken en 
zoeken naar een gemeenschappelijk oorzaak van dit fenomeen zeer 
moeilijk. 

De amylose-vrije aardappelmutant biedt als uitgangsmateriaal voor 
fundamenteel onderzoek veel voordelen. 

(dit proefschrift) 
Pereira A, et al. (1991) Maydica 36: 323-327 

Jacobsen E, et al. (1992) Theor Appl Genet 85: 1 59-164 
Jacobsen E, et al. (1993) Euphytica 69: 191-201 

Jacobsen E, et al. (1995) Heredity 74: 250-257 

Genetische modificatie vergroot de genetische variatie ten behoeve 
van de plantenveredeling. 

Financiering van een vaste oever verbinding tussen Zuid-Beveland en 
Zeeuwsch-Vlaanderen is voor de zeeuwen een tunnel te ver. 



Het feit dat in vele documentaires en fi lms over geestelijk gehandicap­
ten hun prestatieniveau en mogelijkheden worden gerelateerd aan 
reguliere maatstaven toont aan dat het met hun acceptatie in de maat­
schappij nog steeds slecht gesteld is. 

In tegenstelling tot f ietsen, wandelen en hardlopen, waarbij het aantal 
kilometers wordt vermeld verdient het aanbeveling de trainingsarbeid 
voor een rugzaktrektocht weer te geven in kilouren ( = aantal kilo's 
bepakking x aantal wandeluren) met als toevoeging "bij stevig wandel­
tempo" . 

Het is de kunst van het fotograferen, kunst te scheppen. 

10 Een toename van het door bedrijven gefinancierd biotechnologisch 
onderzoek bevordert de vrije toepassing van de verworvenheden 
hiervan door de kleine boer in ontwikkelingslanden onvoldoende. 

(maandblad Mininsterie van Ontwikkelingssamenwerking, april 1995) 

11 De door John Hatt ontworpen proef om de invloed van vitamine B1 
inname op de resistentie tegen aanvallen van muskieten te bestuderen 
getuigt van een zwak statistisch inzicht. 

(O'Hanlon R, (1986) Into the heart of Borneo) 

Stellingen behorende bij het proefschrift "The amylose-free potato mutant as a 
model plant to study gene expression and gene silencing" door Elise Flipse, in 
het openbaar te verdedigen op dinsdag 14 november 1995, te Wageningen. 



Abstract 

Flipse E (1995) The amy/ose-free potato mutant as a model plant to study 
gene expression and gene silencing. Thesis, Wageningen, Agricultural 
University (... pp, with English and Dutch summaries). Department of Plant 
Breeding, P.O. Box 386 , 6700 AJ Wageningen, The Netherlands. 

Key words: amylose-free mutant, Branching Enzyme, gene-expression, gene 
silencing, starch, transgenic inheritance. 

In this thesis, gene-expression and gene silencing were examined for Granule 
Bound Starch Synthase (GBSS) which catalyses the formation of amylose 
and Branching Enzyme (BE) which catalyses the formation of amylopectin. 
The GBSS deficient, wi th iodine, red staining amylose-free (amf) potato 
mutant was used in order to facilitate the experiments; GBSS-gene express­
ion and BE-gene silencing resulted in blue staining starch. 
A dosage effect of the wild-type GBSS-allele on GBSS-activity and amylose 
content was found in a tetraploid dosage population. The presence of 
amylose had a distinct influence on the physico-chemical properties of the 
starch. 
Insertion of the wild-type GBSS-gene in the amf-mutanX resulted in fully and 
partially complemented plants. The minimum number of independently 
segregating active GBSS-inserts was estimated by genetic analysis after 
microspore staining. The complemented phenotype was normally transmitted 
to the F1 for the fully complemented, but not for the partially complemented 
plants. For one plant the partial complementation was correlated wi th the 
presence of a block of f ive inserts. This block was also capable of inhibiting 
the endogenous GBSS-gene in a wi ld-type. This indicates that partial com­
plementation can be caused by co-suppression, besides low transgene 
expression. Co-suppression was also obtained when the full size GBSS 
sequence or GBSS cDNA were introduced in a wild-type potato. 
Introduction of the distal 1.5 kb cDNA coding for BE in both sense and 
antisense orientation resulted in several transgenic plants w i th a small blue 
core in these starch granules. This could indicate the presence of loosely 
branched amylopectin in the core of the starch granules. The expression of 
the endogenous BE-gene was largely or fully inhibited as judged by the 
absence of BE mRNA and protein. This did not result in a measurable effect 
on the branching degree, but resulted in altered physico-chemical properties 
of the starch compared to amf-starch. 
It is concluded that this study shows that the a/nf-mutant is successfully 
used as a model plant to examine different aspects of gene expression. 
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Chapter 1 

General introduction 

Use of starch in food and non-food applications 

Starch is the most important carbohydrate storage product in higher plants. 

Two types of starch can be distinguished according to their role in plant 

metabolism. Transitory starch is synthesized in chloroplasts as a short time 

storage of photosynthetic products. For long time storage, so called reserve 

starch is accumulated in amyloplasts of tubers, roots and seeds (Shannon 

and Garwood, 1984). As such, starch is, besides cellulose, one of the main 

carbohydrates present in food. Isolated starch can, depending on the source 

(potato, maize, wheat, cassava) and modification technique (Kraak, 1993), 

be used for many specific purposes. Approximately two thirds of the starch 

production in Western Europe is used in food and beverage industries (Koch 

and Röper, 1988) as thickener, or after enzymic hydrolysis as sweetener or 

confectionary. The other one third is used in a wide range of non-food 

products i.e. paper, packaging, textile, chemical industry, cosmetics, phar­

maceuticals. More recently starch is also used in biodegradable plastics or as 

a fat replacer. 

Isolated starch forms the basis of a large variety of industrial applications. A 

lot of effort has been made to unravel the structure and formation of starch, 

in order to understand the specific properties of starch and to apply more 

specific modifications. 

Starch composition and starch structure 

Starch is organized in granules that vary in size and shape, depending on the 

source and the developmental stage of the plant (French, 1984). The 

granules consist predominantly of carbohydrates but also contain proteins, 

lipids and phosphorus (Swinkels, 1985). The molecular structure of starch is 

simple, being a polymer built solely of glucose units, linked by no more than 

two different types of bonds. In normal starch granules two polymers are 

present: amylose and amylopectin. In potato 18 to 23 % of the tuber starch 
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consists of amylose (Shannon and Garwood, 1984). Amylose is an essen­

tially linear polymer of 100-10,000 glucose units linked by a(1.4)-linkages. 

The few branch points present are the result of o(1.6)-linkages. Amylopectin 

is built of short linear a(1.4)-linked chains, with an average length of 25 

glucose residues and connected by o(1.6)-linkages. In amylopectin three 

types of linear chains are distinguished (Fig. 1; Hizukuri, 1986; Manners, 

1989). 

A 1 A -
B r1—I B -
A 1 | A -

1 B" 
B 1 1 A -
A 1 A -

O 

Q = reducing group 

Fig. 1. The molecular structure of amylopectin. The branch points are located in an 
amorphous zone. The linear parts of the chains form crystalline domains. Both the 
amorphous and crystalline phase are approximately 5 nm. (according to Hizukuri, 
1986). 

A and B-chains are both linked to the molecule by their reducing group. The 

B-chains carry one or more A-chains. The C-chains carry the sole reducing 

group of the molecule and are further comparable to B-chains. The chain 

length composition and distribution of different chain types are characteristic 

for amylopectin of a given botanical source. Due to the difference in structu­

re, amylose and amylopectin have distinctive characteristics. So can the long 

chain of amylose form an inclusion complex with iodine resulting in a blue 

colour, whereas the short chains of amylopectin stain red. This provides us 

with a simple and good screening method for the presence or absence of 

amylose. 

Although the molecular structure is simple, more complex is the 

ultrastructure and the starch granule organization. In starch granules, 

concentric growth rings can be observed under the light or electron micro­

scope. They represent semi-crystalline and amorphous layers (French, 1984). 

The semi-crystalline layers originate from the organization of amylopectin 

10 



General introduction 

molecules (Oostergetel and van Bruggen, 1989). In a cluster model, pro­

posed for amylopectin of potato and maize, the crystalline lamellae represent 

the linear chains that are organized in double helices (Oostergetel and van 

Bruggen, 1993). The starch molecules are radially oriented in the granule 

with the growing non-reducing ends pointing towards the surface of the 

granule. Amylose and the branching regions of amylopectin form the amor­

phous regions of the starchgranule. It can be said that amylopectin forms the 

framework of the starch granule, whereas amylose fils the 'empty' spaces. 

Cross-linking experiments with maize and potato starches have demonstra­

ted that the amylose molecules are interspersed among the radially arranged 

amylopectin (Jane et al., 1992). Chemical gelatinization of potato starch 

granules and subsequent separation and analysis of the gelatinized periphery 

and the remaining core of the granules showed that amylose was more 

concentrated at the periphery than at the core of the granule (Jane and 

Shen, 1993). 

Not much is known with respect to the initiation of starch granule formation. 

The first step is thought to be the accumulation of amorphous starch 

followed by crystallization giving the centre or hilum of the starch granule 

(French, 1984). The hilum is usually less organized than the rest of the 

granule and contains an amylose-lipid complex. A starch granule grows by 

apposition (Badenhuizen and Dutton, 1956). Chains, already incorporated in 

the structure of the starch granule are elongated (French, 1 984; Smith and 

Martin, 1993). 

Physico-chemical properties of starch 

When suspended in water at room temperature, starch granules can revers-

ibly take up a small amount of water, resulting in a minor swelling while the 

original shape and birefringence stays intact. When the suspension is heated, 

starch undergoes a series of processes known as gelatinization. The drastic 

swelling, which occurs in all directions, is not reversible and takes place 

nearly simultaneously with a melting of the crystalline structure and is 

accompanied with a partly leaching out of amylose from the granules 

(Keetels, 1995). The leaching out of amylose is due to amylose and amylo­

pectin being incompatible in a concentrated solution and the higher mobility 

11 
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of amylose compared to amylopectin. The amount of amylose that leaches 

out depends on the starch concentration in the suspension. When the starch 

concentration is more than 4 %, the swollen granules fill almost the whole 

volume, which reduces leaching out of amylose. Within the granules, separ­

ation of amylose and amylopectin takes place. This results in amylose-rich 

and amylopectin-rich domains. After all crystallites are melted, the swelling 

of the granules and the leaching of amylose continues. These processes 

occur over a temperature range which is characteristic for the type of starch. 

The structural changes that occur during gelatinization, like swelling of 

granules and melting of crystallites, result in changes in the rheological 

properties. The dynamic rheological properties can be determined by applying 

a small oscillation shear deformation by using for example a Bohlin Vor 

Rheometer. The storage modulus G' (Fig. 2) is a measure for the elastic 

response. 

The increase in G' indicating an increased stiffness of the starch-water 

system, is the result of swelling and melting. A further melting of the 

crystalline structure results in a decrease of G ' (Fig. 2). The energy (tem­

perature) necessary for melting, can be determined using Differential Scan­

ning Calorimetry. 

G'(Nm"2) 
250 -i 

Temperature (°C) 
- 100 

200 -

150 H 

100 J 

50 H 

Time (min) 

Fig. 2. Changes in the storage modulus (GO of a wild-type starch suspension 
during heating and cooling. The dashed line indicates the temperature against 
t ime. 
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During cooling and storage of concentrated starch suspensions the starch 

molecules rearrange which increases the stiffness of the suspension. Short 

term crystallization is caused by crystallization of amylose. Reordering of 

amylopectin occurs at a much lower rate than of amylose. 

Starch synthesis 

Several enzymes play a role in starch biosynthesis. ADPglucose pyrophos-

phorylase (AGPase), Granule Bound Starch Synthase (GBSS), Soluble Starch 

Synthases (SSS) and Branching Enzyme (BE) are the last in the pathway and 

therefore, directly involved in the formation of amylose and amylopectin (Fig. 

3). 

C C C C C 

• N _ V V V _ A > / V - ) V V _ A A _ ^ A O H 

Amylose 

AGPase 
G-1-P + ATP *• ADP-glucose 

c c Amylopectin 

.V_AoA_A> 
I 

c c c c c 

Fig. 3. The structure of amylose and amylopectin and the enzymes involved in 
their biosynthetic pathway. 
AGPase, ADP-glucose phyrophosphorylase; BE, Branching Enzyme; G-1-P, 
glucose-1-phophate; GBSS, Granule Bound Starch Synthase; SSS, Soluble Starch 
Synthase (Kuipers, 1994). 
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ADPglucose pyrophosphorylase 

Inside the amyloplast, ADPglucose pyrophosphorylase (AGPase, E.C. 

2.7.7.27) catalysis the formation of ADPglucose from glucose-1-phosphate. 

ADPglucose is preferred as substrate for starch formation in vivo. The 

AGPase catalysed formation of ADPglucose is the regulatory step in starch 

synthesis (Preiss, 1991). The enzyme activity in most plants is increased by 

3-P-glyceraldehyde (present during a high rate of photosynthesis) and 

decreased by inorganic phosphate (present during a low rate of photosyn­

thesis). The central role of AGPase in the biosynthesis of potato starch has 

been demonstrated by Stark et al. (1992) and Müller-Röber et al. (1992). 

Antisense inhibition of expression of the gene encoding subunit B of AGPase 

resulted in a decreased starch content and an increase in soluble sugars 

(Müller-Röber et al., 1992). Plant AGPases isolated so far consist of two 

small and two large subunits that are encoded by different genes. Both 

subunits are needed for full activity (Müller-Röber et al., 1992). 

Granule Bound Starch Synthase 

Starch synthase (E.C. 2.4.1.21) catalysis the formation of linear chains by 

the addition of ADPglucose to the non-reducing end of the glucan chain. 

Two types of starch synthase can be distinguished: Granule Bound Starch 

Synthase (GBSS) and Soluble Starch Synthase (SSS). Although both 

enzymes catalyse the same reaction, they play distinct roles in starch syn­

thesis. GBSS is, unlike SSS, tightly bound to the starch granule. Because it 

was shown that GBSS and SSS were immunologically different in potato it 

could be concluded that GBSS is not just a SSS which is tightly bound to the 

granule (Ponstein, 1990). 

GBSS is responsible for the production of amylose. This is demonstrated by 

the absence of amylose in waxy mutants, which lack the GBSS-protein and 

GBSS-activity. A waxy mutant is obtained in potato, were it was called 

amylose-free (amf) (Hovenkamp-Hermelink et al., 1987), in maize (Tsai, 

1974; Echt and Schwartz, 1981), rice (Sano, 1984), amaranth (Konishi et 

al., 1985) and sorghum (Hseih, 1988). 

A combination of several studies led to the evidence that the waxy locus of 

maize is the structural gene encoding GBSS (Echt and Schwartz, 1981; 

Nelson et al., 1978). In pea the identity between the GBSS-activity and 

14 
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waxy (or GBSS) protein has been proven by immunoblott ing (Sivak et al., 

1993). 

Several f indings support the idea that GBSS is responsible for the production 

of amylose in potato. The GBSS-activity is reduced in the a/nf-mutant 

(Hovenkamp-Hermelink et al., 1987) and this is correlated wi th a loss of the 

60 kDa GBSS protein in the starch granules and the formation of amylose-

free starch in tubers, stomatal guard cells, columella cells and microspores 

(Hovenkamp-Hermelink et al., 1987; Jacobsen et al., 1989). The amf-

mutation has been identified by sequence analysis as caused by a point 

deletion in the region encoding the GBSS transit peptide (van der Leij et al., 

1991b). This transit peptide plays a role in the transport of GBSS into the 

plastids. The amZ-mutation could be complemented by the introduction of 

the wild-type GBSS-gene via transformation wi th Agrobacterium rhizogenes, 

resulting in a complete restoration of GBSS-activity and formation of 

amylose in all starch synthesizing tissues (van der Leij et al., 1991a). 

Antisense RNA mediated inhibition of GBSS-gene expression resulted in a 

reduced expression of GBSS-activity in starch, reduced amounts of 60 kDa 

GBSS protein and a reduced amount of amylose in starch synthesizing 

tissues (Visser et al., 1991). 

The presence of a second Granule Bound Starch Synthase (GBSS II; the 

waxy protein is called GBSS I) was reported for pea, potato (Dry et al., 

1992) and maize (McDonald and Preiss, 1985). GBSS II is expressed early in 

the granule development in pea and potato. It is not likely to have much 

influence on amylose synthesis (Dry et ai, 1992; Edwards et al., 1995). The 

influence of the waxy mutation on amylose synthesis indicates that GBSS I 

is crucial for amylose synthesis. The role of GBSS II in amylose biosynthesis 

is still unknown. 

Soluble Starch Synthase 

In contrast w i th the Granule Bound Starch Synthase, Soluble Starch 

Synthase is mainly involved in the synthesis of amylopectin. In different 

plant species SSS occurs in two isoforms wi th a different specificity for 

primer molecules. Both isoforms were also found in potato (Ponstein, 1990). 

Their native molecular weight is 220 kD. They are built of 78 kD and 85 kD 

subunits (Ponstein, 1990). Baba er al. (1990) partly purified SSS II f rom 
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potato tubers and estimated a native weight of 70 kD. Only recently (Abel et 

al., 1995) two different SSS were isolated named SSS I and SSS III which 

were quite distinct both immunologically and based upon sequence data. 

From the same study the suggestion is coming that GBSS II and SSS II might 

be identical enzymes. At present the relation between the different isolated 

potato SSS's is unclear. Knowledge of the SSS is trailing behind that of 

GBSS. 

Branching Enzyme 

Branching Enzyme (BE; E.C. 2.4.1.18) catalyses the formation of branch 

points in the linear o(1.4) chains formed by SSS. The branches are created 

by hydrolysing an a(1.4)-bond and ligating the severed chain to another 

chain by an o(1.6)-bond (Smith and Martin, 1993). Multiple isoforms have 

been found in several plant species. In maize BE I, BE Ma and BE Mb are 

described (Boyer and Preiss, 1978; 1981). Differential branching activity has 

been reported for maize BE I and BE II (Guan and Preiss, 1993). BE I has the 

highest activity in branching linear starch chains leading to a slightly 

branched structure. Further branching is catalysed by BE II. In developing 

pea embryo's two isoforms were found (Matters and Boyer, 1981; Smith, 

1988): BE I and BE II. With respect to immunological and sequence similar­

ities two groups of BE's can be identified. BE I of maize resembles mostly BE 

II of pea (called type I), whereas BE II of maize is more related to BE I of pea 

(Called type II). In potato tubers so far only one BE isoform could be ident­

ified (Drummond et al., 1972, Borovsky et al., 1975, Vos-Scheperkeuter et 

al., 1989, Kossmann et al., 1991). This potato BE was cloned (Kossmann et 

al., 1991). At the amino acid level it has 67 % homology with maize BE I 

(Poulsen and Kreiberg, 1993) and is therefore called a type I BE. 

A few mutants with increased amylose content due to a mutation in a gene 

encoding BE have been found in pea and in maize. In the wrinkled pea 

mutant BE I is absent (Matters and Boyer, 1982; Edwards et al., 1988). In 

maize the amylose extender and dull mutants are known. They are both 

mutated in a gene encoding one of the type II BE isoforms. In amylose 

extender BE Mb and in dull BE IIa are absent (Hedman and Boyer, 1982). 

Both mutants have a decreased starch and dry weight production and an 

increased sugar content compared to the wild-type. The starch has a blue 

16 
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colour when stained wi th iodine. In maize a double mutant was created by 

crossing the waxy (wx) and the amylose-extender fae) mutant. It resulted in 

the double mutant aewx. The starch of this mutant consists of amylose-free 

loosely branched amylopectin, which stains blue w i th iodine. No potato 

mutant w i th reduced BE-activity is known. 

Inhibition of gene expression 

Inhibition of gene expression can be useful to determine its funct ion as a 

single gene or its influence in a metabolic pathway. Several strategies for 

gene inhibition are at hand. Endogenous gene expression can be decreased 

by introducing antisense sequences of the target gene. The application of 

the antisense technique in potato was demonstrated by Visser et al. (1991), 

Müller-Röber er al. (1992), Zrenner et al. (1993) and Kuipers (1994). An 

inhibition in expression level up to 100 % is possible, although it generally 

varies among and within transgenic clones (Kuipers, 1994). Antisense genes 

can be based on the full length cDNA or on the 5' or 3 ' part of the cDNA 

(Smith et al., 1988; Kuipers et al., 1995b). Results w i th antisense genomic, 

intron-containing, sequences are also described. Both the 35S CaMV 

promoter, the promoter of the target gene or tissue specific promoters can 

be successfully used (Kuipers et al., 1995b). 

Besides by using antisense genes, inhibition of gene expression can also be 

obtained by insertion of additional copies of the target gene in sense orienta­

t ion. This phenomenon is called co-suppression and has been described in 

different plant species (petunia, tobacco and tomato) for genes encoding 

different enzymes (chalcone synthase, polygalacturonase) (van der Krol et 

al., 1990, Napoli et al., 1990, Smith et al., 1990). The exact mechanism of 

antisense and sense inhibition is not fully understood (reviewed by Jorgen-

sen, 1990; Matzke and Matzke, 1993; Matzke et al., 1994; Mol et al., 

1994). In the case of double transformation of t w o different T-DNAs in 

tobacco, inhibition was correlated wi th increased methylation of the trans-

genes (Matzke et al., 1989). Not all gene silencing caused by sense trans-

genes is correlated wi th an increased methylation. Inhibition of chalcone 

synthase activity by sense genes seems to be a post-transcriptional process 

(Mol et al., 1994). 
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Transgene expression and inheritance. 

The production of transgenic plants is becoming a routine procedure for a 

number of species. Transgenic crops will only have economical value when 

the new phenotype is stably expressed and transmitted to the next gener­

ation. The level of transgene expression is unpredictable and varies between 

transformants. This variability is usually thought to be caused by the number 

of transgenes inserted (Stockhaus et al., 1987; Hobbs et al., 1990) or the 

place of insertion (Jones et al., 1985; Eckes et al., 1985; Nagy et al., 1985; 

Pröls and Meyer, 1992) and can be correlated with methylation of the 

transgene (reviewed by Finnegan and McElroy, 1994). Up to now expression 

studies have mainly been focused on non-plant transgenes like the NPT II 

gene coding for kanamycin-resistance (Matzke et al., 1989) or heterologous 

genes like the A1 gene of maize coding for one of the enzymes involved in 

flower pigmentation which was inserted into petunia (Meyer et al., 1987; 

Linn et al., 1990; Meyer et al., 1992). 

The problem of variability can be overcome by regenerating a sufficient 

amount of independent transformants to select for those with the appro­

priate expression level, supposing a good screening procedure is available. Of 

more concern for their commercial prospects is the fact that instability of the 

expression of the transgene can be observed after a sexual cycle (Meyer et 

al., 1992). Inheritance of expression of trangenes has mostly been studied 

for antibiotic resistance markers in plant species like tomato (Sukhapinda et 

al., 1987), petunia (Deroles and Gardner, 1988 a,b), arabidopsis (Feldmann, 

1991; Kilby et al., 1992, Scheid et al., 1991), tobacco (Matzke and Matzke, 

1991; Matzke et al., 1993), pea (Puonti-Kaerlas et al., 1992), maize (Walters 

et al., 1992) and rice (Schuh et al., 1993). The transgenics had either a 

normal or abnormal segregation pattern in the sexual offspring. The trans­

mission of traits complementing recessive mutations have been poorly 

investigated. Only Vaucheret et at. (1990) described the complementation of 

a nitrate reductase deficient mutant of Nicotiana plumbagonifolia and the 

level of complementation in the offspring of a few partly complemented 

transgenics. 
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Outline of this thesis. 

In this thesis the amylose-free mutant of potato is used as a model plant to 

examine gene-expression and gene-silencing. The recessive mutation in the 

GBSS gene leads to amylose-free (amf) starch which can easily be scored in 

tubers and microspores by staining with iodine. A gene-dosage population 

for the wild-type GBSS-allele has been created by making use of genetic 

analysis of staining of microspores with iodine (Chapter 2). The dosage 

effect and the effect of different wild-type GBSS-alleles on GBSS-activity 

and amylose content is described. In the Chapters 3, 4 and 5 expression of 

wild-type GBSS transgenes introduced in the amf-mutant (Chapters 3 and 5) 

and in a wild-type (Chapter 5) are investigated. The variation in complemen­

tation level of the transgenics is determined (Chapter 3). The minimum 

number of independently segregating T-DNA inserts is estimated using 

microspore staining and Southern hybridisation. Several transgenics are 

crossed with either the amf-mutant (Chapter 4) or a wild-type (Chapter 5) to 

examine the transgene expression in the F1 offspring. In order to create a 

situation as in the double mutant aewx of maize, the expression of the gene 

encoding Branching Enzyme is inhibited by introducing sense and antisense 

cDNA for the potato BE in the amf-mutant (Chapter 6). The influence of the 

inhibition of the BE gene expression on the starch colour and several starch 

characteristics like branching degree and physico-chemical properties of the 

starch is described. A general discussion is given in Chapter 7. 
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The dosage effect of the wild-type GBSS-allele is linear for 

the GBSS-activity but not for the amylose content: absence 

of amylose has a distinct influence on the physico-chemical 

properties of starch. 

Flipse E, Keetels CJAM, Jacobsen E, Visser RGF. 

Accepted for publication in Theoretical and Applied Genetics 

Reprinted with permission of Springer-Verlag 

Abstract 
A gene-dosage population was obtained by crossing t w o genotypes that were duplex 

for the GBSS-allele. Nulliplex, simplex, duplex or triplex/quadruplex plants could be 

identified by monitoring the segregation of red and blue microspores after staining w i th 

iodine. The GBSS-activity was significantly different for all groups and showed an 

almost linear dosage effect for the wild-type GBSS gene. A dosage effect was found 

for the amylose content, which was not linear. The amylose content was similar for 

both the duplex and triplex/quadruplex group. Within the simplex group, differences in 

the amylose content were found, which might be due to a different genetic back­

ground. There was no linear correlation between the GBSS-activity and amylose 

content. A certain level of GBSS-activity already led to a maximum amount of amylose. 

A further increase of GBSS-activity did not lead to a higher amylose content. 

The presence of one or more wild-type GBSS allele(s) and therefore the presence of 

amylose in the starch granules had a great influence on the physico-chemical properties 

of the starch suspensions. 
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Introduction 

Starch is present in many plant species as a storage product and consists of 

t w o components: amylose (approximately 20 %) and amylopectin (approxi­

mately 80 %) . These components are packed in a specific order in starch 

granules. When starch is used industrially either as a thickening agent, 

f lavour carrier or binder in food systems, its effectiveness depends upon the 

ratio of amylose to amylopectin, as well as their organization wi thin the 

starch granule (Zobel, 1984). The swelling of granules in a heated aqueous 

starch suspension is influenced by the presence of amylose (Zobel, 1984). 

Amylose is an essentially linear glucose polymer w i th a-1.4 glucosidic 

linkages. Its production is catalysed by the enzyme Granule Bound Starch 

Synthase (GBSS) (Shannon and Garwood, 1984). Amylose is unstable in 

water (Zobel, 1984) and depending on its concentration, it precipitates or 

forms a gel during cooling and ageing (Miles et al., 1985 ; Gidley, 1989). 

Amylopectin is a branched glucose polymer wi th a-1.4 and a-1.6 glucosidic 

linkages, the last being responsible for the branched structure of amylopec­

t in . The production of amylopectin is catalysed by Soluble Starch Synthase 

(SSS) and the Branching Enzyme (BE). The BE produces the a-1.6-branches 

by cleaving a fragment f rom the linear chain, which formation is catalysed by 

the SSS, and transferring it to the number six position of a glucose residue 

(Shannon and Garwood, 1984). Gelation of amylopectin occurs at a much 

lower rate than that of amylose (Zobel, 1984). 

In many plant species, variation in the composition of starch is found due to 

a mutation in one of the genes involved in starch biosynthesis. An amylose-

free (amf) potato mutant was isolated by irradiating a monohaploid w i th X-

rays. It is a monogenic and recessive mutation (Jacobsen eta/., 1989). The 

mutant lacks GBSS-activity and protein in its starch granules (Hovenkamp-

Hermelink et al., 1987). The mutant phenotype of the amfAocus results f rom 

a point mutation in which a single base pair is deleted f rom the structural 

gene encoding the GBSS transit peptide (van der Leij et al., 1991b). 

Al though, the amf-locus still produces mRNA equivalent to that of the wi ld-

type level no protein is present t ightly linked to the starch granule (Hoven-

kamp-Hermelink et al., 1987). The difference in starch composition can 

easily be monitored by staining the starch wi th an iodine-potassium-iodine 

solution. The amf-muXanX has red staining starch, whereas wild-type starch 

stains blue. 
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We describe here the development of a GBSS gene-dosage population of 

potato (Solanum tuberosum L ) and the dosage effect of wi ld-type 

GBSS-alleles on the amylose content, GBSS-activity and physico-chemical 

properties of the resulting starch. 

Materials and methods 

Plant material 

The chromosome number of the original monohaploid amf-mutant 86.040 of 

Solanum tuberosum L. was doubled by tissue culture. The sexually obtained 

fertile amf diploid was doubled by tissue culture again, resulting in 4x amf-

plants. Since the original 4x-amf genotypes were partly sterile and lacked the 

ability to tuberise, these plants were crossed with wild-types to improve their 

vigour, fertility and tuberization (Jacobsen et al., 1989). This resulted in two 

tetraploid potato plants, S90-1101-3 and S90-1102-7, wi th a duplex genotype 

for the wild-type GBSS allele (wild-type GBSS allele = Amf = A; mutant GBSS 

allele = amf = a), which were crossed to create the gene-dosage population 

J90-6031. Seeds of J90-6031 were sown and seedlings were transferred to 

pots in the greenhouse where they were grown under standard conditions. 

A field trial was set up with greenhouse grown tubers. Six tubers per clone 

were placed in a row with two replications. In the field, the plant distances 

within a row was 40 cm and between rows 75 cm. The plot was surrounded 

with cv Cleopatra, a non-flowering, red-tuberising cultivar. Tubers were har­

vested and bulked per clone and replication. 

Staining for starch composition 

The cut surfaces of harvested tubers were stained according to Kuipers et al. 

(1991). The colour of the individual starch granules and the microspores were 

stained as described by Flipse et al. (1994). Three flowers per genotype and 

two stamen per flower were stained. The segregation ratio of red and blue 

microspores was statistically determined by using the \2 test wi th a 5 % 

confidence limit. 
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Isolation of starch and determination of amylose content and GBSS-activity 

Several tubers, originating from one field row were taken randomly and starch 

was isolated according to Kuipers et al. (1991). The amylose content was 

determined spectrophotometrically as described by Hovenkamp-Hermelink et al. 

(1988b). This method is easy and fast, but has the disadvantage that a certain 

background level of approximately 3 % is calculated, even in the amylose-free 

genotypes. The determination of GBSS-activity was as described by Vos-

Scheperkeuter et al. (1986). For measuring the amylose content, three samples, 

and for measuring the GBSS-activity, six samples of 2 mg of isolated starch 

were used. A variance analysis test with 5 % confidence limit was used for 

statistically analyzing the dosage effect on the amylose content and GBSS-

activity. For a pairwise analysis of the group differences, a LSD test wi th 5 % 

confidence level was used. 

Protein electrophoresis and immunoblotting 

Protein samples were prepared by boiling 20 mg of starch for 1 min in 120 p\ 

sample buffer (20 mM Tris.HCl pH 8.0, 2 mM EDTA, 20% glycerol, 2% SDS, 

0 .002% bromophenolblue, 10% ß-mercaptoethanol). After boiling, the samples 

were kept on ice and 15 //I was used for analyzing on 10% Polyacrylamide gels 

(Laemmli, 1970). Immunoblotting was carried out as described by Hovenkamp-

Hermelink et al. (1987) by using antiserum raised against potato GBSS (Vos-

Scheperkeuter et al., 1986). Alkaline phosphatase was used as a second 

antibody and the antigens were detected by incubating the filters in the dark in 

100 ml AF-buffer (100 mM Tris.HCl pH 9.5, 100 mM NaCI and 5 mM MgCI2) 

with 200 jt/l NBT (75 mg/ml 4-nitro blue tetrazolium chloride in dimethylforma-

mide) and 200 //I BCIP (50 mg/ml 5-bromo-4-chloro-3-indolyl-phosphate in H20). 

The reaction was stopped by incubating in AF-buffer. 

Fractionation of amylose and amylopectin 

For fractionation of amylose and amylopectin with the size exclusion chro­

matography procedure, 200 to 400 mg of pure native starch was solubilised in 

1.5 ml of 0.1 N NaOH at 100°C for 15 min. The sample was diluted to 0.01 N 

NaOH and applied to a Sepharose CL2B column (2.6 by 200cm, Pharmacia). 

Fractions of 6 to 8 ml were collected after adding 0.01 N NaOH containing 

0.001 % sodium azide to the column at a f low rate of 25 m l - h 1 . The optical 
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density of 200 //I of each fraction was measured after complexation with an 

iodine solution (1 Lugol: 4 water) by performing a wavelenght scan from 450 to 

700 nm. The wavelenght showing the maximum optical density was taken as a 

point for the graphs. After the run was completed, the column was washed 

with 700-800 ml before the next sample was applied. 

Small deformation tests 

Dynamic rheological properties of the 5 w t . % starch suspensions at small 

deformations were determined by applying a small oscillating shear deformation 

using a Bohlin VOR Rheometer as described by Keetels and van Vliet (1994). 

The Bohlin VOR Rheometer was equipped with concentric cylinders made of 

stainless steel. The radius of the inner cylinder was 14.00 mm and that of the 

outer cylinder 15.25 mm. The torque bar used for amylose-free starch was 0.17 

mN-m'1 and for amylose containing starch 0.38 mN-m"1. 

The 5 w t .% starch suspensions were heated to approximately 65°C under 

gentle stirring until the viscosity slightly increased. After transferring them to 

the measuring body of the rheometer, which had a temperature of 50°C, the 

starch suspensions were heated to 90°C, kept at this temperature for 15 min 

and cooled to 20°C at which temperature it was kept for 15 min. Heating and 

cooling were performed at a rate of 1 °C-m in 1 . Measurements were done every 

60 sec. Oscillations were performed at a frequency of 0.1 Hz and a strain 

amplitude of 0 . 0 1 . 

Differential scanning calorimetry 

Differential scanning calorimetry (DSC) was performed using a Perkin Elmer DSC 

2. Approximately 14 mg of starch and 56 mg of demineralized water were 

weighed into stainless steel cups. The suspensions were heated from 30 to 

110°C at a scanning rate of 5 K-min'1 and immediately after heating they were 

cooled to 30°C at a rate of 40 K-min1 . An empty stainless steel cup was used 

as a reference. 
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Results 

Development of a GBSS gene-dosage population 

Based on iodine staining of microspores, genotypes corresponding to 

nulliplex (no wild-type GBSS-allele), simplex, duplex and triplex/quadruplex 

for the wild-type GBSS allele were selected. This selection was according to 

the expected segregation presented in Table 1. 

Table 1 . The expected and obtained offspring when duplex plants (AAaa x AAaa) 
are crossed. These genotypes can be distinguished after iodine staining by their 
segregation of blue and red microspores; triplex (AAAa) and quadruplex (AAAA) 
plants where taken in one group. Genotypes wi th enough tubers to perform a field 
trial were selected. 

plant 
genotype 

aaaa 
Aaaa 
AAaa 
AAAa 
AAAA 

chance 

1/36 
8/36 

18/36 
8/36 
1/36 

microspore 
segregation 

bluerred 

0:1 
1:1 
5:1 
1:0 
1:0 

number of 
genotypes 

found* 

3 
20 
33 
19 

number of 
genotypes 

selected 

2 
10 
11 

6 

a-' X2ii:8:i8:9) = 1-62 < 7.82 which indicates that the offspring is not deviating 
from the expected 1:8:18:9 segregation of the gene-dosage genotypes for the 
wild-type GBSS-allele. 

Starch granules of the duplex and triplex/quadruplex genotypes were 

completely blue. In some of the simplex genotypes however, a small outer 

layer was red in a small percentage of the starch granules. A number of 

tuberising plants belonging to each gene-dosage group was selected for 

further research in a field trial (Table 1). 

Amylose content and GBSS-activity 

A distinction between amy/ose-free and amylose containing starch was made 

by size exclusion chromatography with starch, isolated from field grown 

tubers of all different genotypes. This test is the most frequently used separ-
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ation technique for the characterization of polymer mixtures. In this tech­

nique, the polymer's physical size determines its separation profile. Larger 

molecules like amylopectin, which have a ten to hundred times higher weight 

than amylose molecules, elute first as they spend less time in the column's 

pores. It is clear from Fig. 1 that the starch of all groups contained amylo­

pectin (first peak). The starch of all groups of plants possessing at least one 

wild-type GBSS allele contained, besides amylopectin, amylose (second 

peak) whereas the group with no wild-type GBSS allele was amylose-free. 

The Amax for the amylopectin fraction was lower than that for the amylose 

fraction and a slight increase in Amax was observed in the amylopectin frac­

tion of simplex, duplex and triplex/quadruplex genotypes compared to the 

nulliplex genotypes. This might indicate the presence of amylopectin mol­

ecules with longer, more amylose-like chains in the amylopectin fraction. 

200 300 <HHI 500 «10 700 fiOO 900 1000 1100 m l 
700 300 <10O 500 f.00 700 RDO 100 1000 1100 m l 

Fig. 1. Size exclusion chromatography results, indicating the Amm (D-D) and 
extinction ( • - • ) of fractions eluting from the CL2B sepharose column. 
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The GBSS-activity was determined for all different clones (Fig. 2A) and was 

shown to be significantly different for the gene-dosage groups after a 

statistical evaluation with an analysis of variance. Looking at the differences 

in more detail using the LSD test it is evident that all pairs of gene-dosage 

groups are significantly different (Table 2). 

The amylose content was estimated for all different clones (Fig. 2A) and 

replications in the field trial. The used method to determine the amylose 

content always shows a low background of amylose even in the amf-

genotypes which show an amylose content of less than 0.1 % when 

amperometric titration was used (Kuipers, 1994). The statistical evaluation 

with an analysis of variance showed a significant difference in amylose 

content between the gene-dosage groups. Using the LSD test differences 

between groups were tested. There was a significant difference in amylose 

content between the nulliplex (amf) genotypes and the simplex, duplex and 

triplex/quadruplex genotypes. Also the group of simplex genotypes had an 

amylose content significantly lower than that of the duplex and triplex-

/quadruplex genotypes. The duplex and triplex/quadruplex groups had an 

equivalent amylose content. 

Table 2. Differences in GBSS-activity and amylose content between gene-dosage 
groups tested w i th Least Significant Difference test (LSD) w i th a 5 % confidence 
level. 

GBSS-activity amylose content 

aaaa Aaaa AAaa AAA. aaaa Aaaa AAaa AAA. 

aaaa * * * » * * 
Aaaa * * * * 
AAaa * NS 
AAA. 

* marks statistical differences between groups 
NS indicates that no statistical differences could be found 

The correlation between the GBSS-activity and amylose content is visualised 

in Fig. 2A. It is clear that a maximum amylose content was attained at a 

certain level of GBSS-activity after which an increased activity did not lead 

to a higher amylose content. 
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Fig. 2. 
A. The correlation between the GBSS-activity and amylose percentage for the 
different gene-dosage groups consisting of 2 nulliplex (aaaa • ), 9 simplex 
(Aaaa A ) , 6 duplex (AAaa • ) and 4 triplex/quadruplex (AAA. + ) plants. 

B. The group means for GBSS-activity ( — 
against the number of wild-type GBSS alleles. 

and amylose content ( 

Studying the amylose content of the individual genotypes in the simplex 

group in more detail, it was obvious that the amylose content was not the 

same for all genotypes in this group. Three sub-groups with a significant 

difference in amylose content were found. It is furthermore clear that, when 
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looking at the mean GBSS-activities of the different gene-dosage groups, 

there is a linear relation between the number of wild-type alles and GBSS-

activity. This was not observed for the amylose content (Fig. 2B). 

Four different sequences are known for the GBSS-promoter (Rhode et al., 

1988; van der Leij et al., 1991b; Hofvander et al., 1992). All four sequences 

can be differentiated by the presence or absence of specific regions in the 

promoters. Assuming that different promoters could be of different strength, 

their presence might account for the observed differences in amylose 

content between the simplex plants. Using the PCR technique with specific 

primers, that discriminate between the four different GBSS-promoter 

sequences, we investigated the nature of the GBSS-promoter in the simplex 

genotypes. However, no sequence differences were found for the GBSS-

promoters in the simplex plants (data not shown). 

GBSS-protein content 

The amount of GBSS-protein in the starch granule fraction of different 

genotypes was analyzed. Fig. 3 clearly shows that the amylose-free plants 

had no GBSS in the starch granules, however no difference could be 

observed in the GBSS-protein level of the other groups indicating that no 

dosage effect existed at the protein level. 

No differences in starch granule size and starch and sucrose content of the 

tubers were found (data no shown). 

«S 
m « 
< 

m 
m « 
< 

m 
m 9$ 
< 

m 0 
m m 

Fig. 3. Western blot of the starch granule fraction of plants w i th none to four wi ld-
type GBSS-alleles by using the antibody against GBSS as a probe. 

Physico-chemical properties of starch-water systems 

When starch granules are suspended in water and heated a series of pro­

cesses known as gelatinization occurs. It includes a drastic, irreversible 
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swelling and a melting of the crystallites and is accompanied with a (partial) 

leaching of amylose from the granules. These processes occur over a tempe­

rature range which is characteristic for the type of starch and result in 

changes in rheological properties. 

Dynamic rheological properties were determined by applying a small oscillat­

ing shear deformation using a Bohlin VOR Rheometer. Estimated is the 

storage modulus (O which is a measure of the engergy stored and released 

per cycle of deformation and per unit of volume. 

400-. 

0 50 100 
Time (min) 

Fig. 4. Changes in the storage moduli (GO of 5 wt.% potato starch suspensions 
during heating and cooling with indicating the temperature against time 
( aaaa: 2.50 % amylose; Aaaa: 16.94 % amylose; AAaa: 18.96 % 
amylose; - _ AAA.: 20.32 % amylose). 

Fig. 4 shows the changes in the storage moduli (O of 5 w t . % starch 

suspensions, measured during heating and cooling. It is clear that the 

changes in G' were highly different for amylose containing and amylose-free 

starches. Hardly any differences were found between plants containing 

different numbers of wild-type GBSS-alleles. The storage moduli of amylose 

containing starches started to increase strongly at a temperature of about 63 

°C, whereas the storage modulus of amylose-free starch started to increase 

strongly at 69 °C. The increase in moduli coincides w i th the f irst stages of 

crystallite melting (see TJ as determined wi th DSC (Table 3). 
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Table 3. Differential scanning calorimetry (DSC) data for 20 wt.% potato starch 
suspensions originating from plants with different dosages of the wild-type GBSS-
allele. Starch samples were used from similar plants as in Fig 4. Starch suspen­
sions were heated with a rate of 5 K/min. T0: onset temperature; 7"p: peak tem­
perature; Tm: melting or termination temperature; AH: melting enthalphy. 

starch 

aaaa 
Aaaa 
AAaa 
AAA. 

r0(C) 

68 
65 
61 
63 

7-p(C) 

71 
68 
64 
66 

TJC) 

69 
66 
62 
64 

AHU.g-1) 

18.2 
18.1 
17.2 
17.9 

Moreover, it was shown that the peak moduli were higher for amylose con­

taining starches and that their moduli decreased less before the temperature 

of 90 °C was reached and during the time the starch system was at this 

temperature. During cooling the moduli of the amylose containing starch 

systems increased, whereas the moduli of amylose-free starch remained 

constant. 

Discussion 

In this study the development of a GBSS gene-dosage population by crossing 

two different duplex potato genotypes is described. By staining microspores 

with an iodine solution it was possible to distinguish different classes in the 

progeny such as nulliplex, simplex, duplex and triplex/quadruplex genotypes 

(Table 1). It was already known from previous research that GBSS is respon­

sible for the production of amylose (Shannon and Garwood, 1984; van der 

Leij et al., 1991a,b), one of the two components of starch. We could 

confirm the absence of amylose in the amf-mutant (nulliplex) and the 

presence in all other gene-dosage groups by using size exclusion chromatog­

raphy (Fig. 1). Using the analysis of variance test a gene-dosage effect of 

the GBSS-alleles on both the GBSS-activity and amylose content was found. 

A LSD test estimated that only one or two GBSS-alleles had a dosage effect 

on the amylose content and that the presence of three or more GBSS-alleles 

did not count for a further increase in amylose content (Table 2). For the 
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amount of amylose the gene-dosage effect was small and far f rom linear as 

it was for the GBSS-activity (Fig. 2B). A gene-dosage effect of the GBSS-

allele for the amylose content was earlier found in the endosperm of rice 

(Okuno, 1978; Sano, 1984) and maize (Boyer et al., 1976) . In crosses w i th 

rice plants containing low-amylose and high-amylose genes different dosage 

effects were found. For some alleles, only a single and in other cases three 

doses of the gene were necessary for a wild-type level of amylose (Sano, 

1984). However these results were all based upon qualitative data. The 

dosage effect on amylose content in the triploid endosperm of maize was 

not linear (Boyer et al., 1976). No difference could be found when t w o or 

three wild-type alleles were present. 

Although the SAJiZ-mutant did not contain GBSS protein in the starch granules 

(Hovenkamp-Hermelink et al., 1987), no dosage effect could be found for 

the other groups, because simplex plants were capable of producing wi ld-

type levels of GBSS protein (Fig. 3). The differences in GBSS-activity and 

amylose content seemed not to be caused by distinct differences in GBSS-

protein level. In rice endosperm a linear dosage effect of the GBSS-allele was 

found in the GBSS-protein level (Sano, 1984). Also in maize, Tsai (1974) 

found that the amount of GBSS-protein increases linear w i th the GBSS gene-

dosage. A dosage effect on the GBSS-activity in maize and rice endosperm 

was not investigated. 

The starch granules of all the potato plants were totally blue except for a 

few simplex plants in which a small percentage of starch granules had a 

small red outer layer, indicating that the granules were not completely filled 

wi th amylose. This phenomenon was found before by Kuipers et al. (1994) 

after inhibiting the GBSS-gene expression using antisense constructs and by 

Flipse et al. (1994) after incomplete complementation of the amf-mutant 

wi th the potato GBSS-gene. Kuipers et al. (1994) suggested that reduced 

GBSS-gene expression results in amylose formation in a restricted zone of 

the granules, in which wild-type levels of amylose are present. However, in 

general we can conclude from the results of this investigation that the whole 

granules are filled w i th amylose when only 87 % of the wild-type level of 

amylose is present. By looking at the correlation between the GBSS-activity 

and amylose content, it was clear that a maximum amylose content was 

caused by a certain level of GBSS-activity after which an increased activity 

did not lead to a higher amylose content (Fig. 2). This would confirm the 
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idea that the starch granule is formed due to a crystalline organization of the 

amylopectin molecules (Oostergetel and van Bruggen, 1989) and that the 

empty places, with a restricted volume between these radially arranged 

amylopectin molecules, are filled with amylose with a maximal volume (Jane 

eta/., 1992). 

Sano (1984) has not only found in rice that the amylose content was 

affected by the number of wild-type GBSS-alleles, but could also detect at 

least two different wild-type GBSS-alleles which determine the level of gene 

product as well as amylose content. Within the constructed simplex group, 

differences in amylose content were found suggesting that different wild-

type alleles with distinct expression levels were present, or that a difference 

in genetic background is of influence. Using the PCR-amplification method no 

sequence differences were found indicating the the differences in expression 

level observed here were due to the different genetic background for the 

simplex genotypes. 

The effect of the presence of amylose in the starch granule on the mech­

anical properties at small deformations was studied. The results of the Bohlin 

test in Fig. 4 showed that the gelation properties of amylose-free starch 

differed from those of amylose containing starches. 

The relation between structure and mechanical properties of starch systems 

during heating and cooling is discussed below. The increase in modulus is 

ascribed to swelling of the starch granules, which is a result of melting of 

the crystalline regions in the granules (Keetels, 1995). Presumably, the 

presence of amylose indirectly lowered the melting of the crystalline regions, 

which would explain the lower temperature at which the moduli of amylose 

containing starches started to increase and this was confirmed with the DSC 

thermogram of the starch suspensions (Table 3). 

Besides melting of the crystalline regions and swelling of the granules, two 

other processes occur during heating a starch-water system. Beside that 

amylose separates from amylopectin and (partly) leaches out of the granules, 

the amylopectin matrix within the swollen granules partly breaks down 

(Keetels and van Vliet, 1994). Especially the further melting of the remaining 

crystallites and the breakdown of the amylopectin matrix would be involved 

in the decrease in G' at high temperatures. 

It was described by Keetels (1995) that 30 % starch gels consist of tightly-

packed, only slightly swollen granules with a very thin amylose layer in 
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between. In 5 wt. % starch systems, which were studied here, the granules 

had to swell to a greater extent before they filled the whole system. Prob­

ably, more amylose leached out of the granules. The volume fraction of the 

swollen granules was therefore somewhat lower than in a concentrated 

starch system, but still so high that the system may not be considered as an 

amylose gel with dispersed, non interacting, granules. Assuming that the 

swollen granules filled almost or completely the whole available volume, the 

differences in the storage moduli at 90 °C between amylose-free and 

amylose containing starches would be partly a result of the lower stiffness of 

the swollen granules in the amylose-free starch. The increase in G' of the 

amylose containing starches during cooling would be explained by the fact 

that the leached out amylose molecules rearrange, forming a thin amylose 

gel layer between the swollen granules. 

This research showed that the wild-type GBSS-allele has a dosage effect on 

the GBSS-activity and amylose content in potato tubers, although the latter 

seems to reach a maximum. This optimum was also found for certain GBSS-

alleles in rice and for those in maize. Although there was a dosage effect 

found on the GBSS-protein level in rice and maize endosperm this was not 

found for potato. The presence of amylose has a large influence on the 

physico-chemical properties of starch suspensions. 
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Expression of a wild-type GBSS-gene introduced into an 

amylose-free potato mutant by Agrobacterium tumefaciens 

and the inheritance of the inserts on microsporic level 

Flipse E, Huisman JG, de Vries BJ, Bergervoet JEM, Jacobsen 

E and Visser RGF. 

Theor Appl Genet (1994) 88: 369-375. 

Reprinted with permission of Springer-Verlag 

Abstract 

Granule Bound Starch Synthase (GBSS) catalyses the synthesis of amylose in starch 

granules. Transformation of a diploid amylose-free (amf) potato mutant w i th the gene 

encoding GBSS, leads to the restoration of amylose synthesis. Transformants were 

obtained which had wild-type levels of GBSS-activity and amylose content. It proved to 

be difficult to increase the amylose content above that of the wild-type potato by the 

introduction of additional copies of the wild-type GBSS-gene. Staining of starch w i th 

iodine was suitable for investigating the degree of expression of the inserted GBSS-

gene in transgenic amf-p\ants. Of the nineteen investigated transformants, four had 

only red staining starch in tubers indicating that no complementation of the amf-

mutation had occurred. Fifteen complemented transformants had only blue staining 

starch in tubers or tubers of different staining categories (blue, mixed and red), caused 

either by full or partial expression of the inserted gene. Complementation was also 

found in the microspores. The segregation of blue and red staining microspores was 

used to analyze the inheritance of the introduced GBSS-genes. Comparing the results 

from microspore staining and Southern hybridisation indicated that in three tetraploid 

transgenics, the gene was probably inserted before (duplex) and in all others after 

chromosome doubling (simplex). The partial complementation was not due to 

methylation of the HPA WIMSP I site in the promoter region. Partial complemented 

plants had low levels of mRNA as was found when the GBSS expression levels were 

inhibited by the antisense technology. 
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Introduction 

Starch is the major storage carbohydrate in plants. In potato tubers it 

consists of about 20 % amylose, an unbranched glucose-polymer and of 80 

% amylopectin, a branched glucose-polymer (Shannon and Garwood, 1984). 

Amylopectin stains red with iodine-potassium iodine, whereas pure amylose 

stains blue. The monogenic recessive amylose-free potato mutant (amf) lacks 

Granule Bound Starch Synthase (GBSS) activity and GBSS-protein and the 

starch stains red with iodine (Hovenkamp-Hermelink et al., 1987). The amf-

mutant is similar to the waxy-mutant of maize but the phenotypic expression 

of the former has different tissue specificity. The waxy-mutation in maize is 

expressed in microspores, endosperm and embryosac (Echt and Schwartz, 

1981), whereas the amZ-mutation in potato is expressed in all tissues 

containing transitory and reserve starch, like tubers, stomatal guard cells of 

leaves, columella cells of root tips and microspores (Jacobsen et al., 1989). 

For several plant species it was shown that the waxy-mutation, resulting in 

loss of GBSS-activity, was due to an alteration in the gene encoding GBSS 

(Wessler and Varagona, 1985; Okagaki and Wessler, 1988; Okagaki et al., 

1991). In potato, van der Leij et al. (1991a) were able to complement the 

amf-mutant with the cloned wild-type GBSS-gene by using Agrobacterium 

rhizogenes. Transformants with a blue starch colour in the roottips indicated 

restored amylose synthesis. Sequence analysis of both the mutated and 

wild-type allele of GBSS showed a single basepair deletion in the transitpep-

tide region of the gene coding for this protein (van der Leij et al., 1991b). 

Stable expression of an introduced gene is of considerable importance for 

the application of the gene transfer technique in plant breeding. Because the 

expression of the wild-type GBSS-gene is easily monitored in an amylose-free 

background by staining with an iodine solution, this system can be used as a 

model to examine the stability of expression of an inserted gene. The 

inheritance of the inserted gene can be examined directly by iodine staining 

of the starch in microspores. Furthermore, the consequences of chromosome 

doubling either before or after the insertion of T-DNA into the genome can be 

critically monitored through the detection of either simplex or duplex segre­

gation at the microspore level. The expression of the, by Agrobacterium 

tumefaciens, inserted gene in greenhouse and field grown tubers and the 

inheritance of the inserted gene according to the segregation pattern of red 

and blue staining microspores is presented. 
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Materials and methods 

Plant material 

Stem segments were obtained from a diploid (2n = 2x = 24) homozygous 3mA 

genotype 87.1029-31 of Solanum tuberosum L. This mutant, called genotype B 

hereafter, was the result of a crossing program between the original amf-mutant 

86.040 and two different diploid wildtypes. Crosses were made with the aim to 

improve the fertility and tuber production of the original transformant (Jacobsen 

et al., 1989). Several wild-types which were genetically related to 87.1029-31 

were used as the wild-type control. Plants were grown in jars containing MS 

medium (Murashige and Skoog, 1962) with 30 g/l sucrose (MS 30) and 8 % 

agar, at 22°C and 16 h light. Transgenic shoots were grown and multiplied on 

MS 30 medium supplemented with 100 mg/l kanamycin. Microtubers were 

obtained by transferring stem segments with one or more nodal buds to MS 

medium with 60 g/l sucrose and 1.5 mg/l BAP. A transformant wi th T-DNA con­

taining the GUS and NPT-II gene was called BAM and transformants obtained 

after transformation with the construct pWAM 100 containing the complete 

genomic GBSS sequence were called B followed by the clone number. Ploidy 

levels were determined by counting the number of chloroplasts in stomatal 

guard cells (x: 7-9, 2x: 11-14, 4x: 16-22, Frandsen, 1968). 

In April 1991 the in vitro plants were planted in pots in the greenhouse, where 

they were grown under standard conditions. In May, twenty plants per 

genotype were transferred to the field. In the field the plant distance within a 

row was 40 cm. and between rows 75 cm. The plot was surrounded with cv 

Cleopatra a red tuberising, non flowering potato cultivar. The field experiment 

was set up according to the rules of the government (Anonymous, 1990). 

Flower buds were removed every 1-3 days. Two plants per genotype remained 

in pots in the greenhouse in order to evaluate starch composition, amylose 

content and GBSS-activity in the tubers, the segregation pattern of blue and red 

staining starch in the microspores and the number of inserted GBSS-genes. 

Vectors and transformation procedure 

The vector pWAM 100 was used in this experiment. This construct possesses 

the genomic GBSS sequence driven by its own promoter in opposite orientation 

in relation to the gene coding for kanamycin resistance in the plant (van der Leij 
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et al., 1991a). pWAM 100 was transferred to A. tumefaciens LBA 4404 using 

the direct transformation procedure described by Höfgen and Willmitzer (1988). 

To test the integration of the mobilized plasmid into A. tumefaciens, plasmid 

DNA, isolated from A. tumefaciens was analyzed (Holmes and Quigly, 1981). 

For the control experiment A. tumefaciens strain AM 8706 was used harbouring 

a binary plasmid, which contains the gene encoding ß-glucuronidase and the 

gene encoding kanamycin resistance (Visser et al., 1989b). Transformation was 

performed essentially as described by Visser (1991), but two or three days after 

inoculation, expiants were transferred to MS 20 medium with 1 mg/l zeatin, 

100 mg/l kanamycin, 200 mg/l cefotaxime and 200 mg/l vancomycin and 

transferred to fresh medium every 3 weeks. On this medium shoot outgrowth 

took place after 3 to 4 months. Shoots were isolated and placed on MS 30 

medium with 75 mg/l kanamycin. Only transgenic shoots were able to root on 

kanamycin containing medium. 

Staining for starch composition in different tissues 

Tubers were stained according to Kuipers et al. (1991). The colour of the 

individual starch granules was determined by spreading a small sample of starch 

on a microscopic slide, staining it with a water/Lugol's solution (1:1) and 

screening it under a microscope. Microspores were stained wi th the same 

solution to determine the segregation ratio. Two flowers per genotype and three 

stamen per flower were stained in each case. 

Starch isolation, determination of amylose content and GBSS-activity 

Starch from greenhouse and field grown tubers was isolated according to the 

method described by Kuipers et al. (1991). Amylose content was determined as 

described by Hovenkamp-Hermelink et al. (1988b) and GBSS-activity as 

described by Vos-Scheperkeuter et al. (1986). For measuring amylose content, 

3 samples and for measuring GBSS-activity, 6 samples of about 2 mg isolated 

starch were used. A two-sided t-test with 5 % confidence level was used for 

the statistical analysis. 

Molecular analysis of the transformants 

DNA was extracted from leaves of greenhouse grown plants according to 
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Dellaporta et al. (1983). By digesting the DNA with the restriction enzyme EcoRI 

and using the 32P random prime labelled, distal 1.3 kb cDNA of the GBSS cDNA 

as a probe the minimum number of integrated T-DNA copies could be found by 

scoring the number of additional bands in a Southern blot (van der Leij et al., 

1991a). DNA and RNA of red and blue staining tubers were extracted according 

to Salehuzzaman et al. (1992). To check whether the inserted GBSS-gene was 

methylated the DNA was digested with HPAÏÏ or MSP\ and the proximal part of 

the GBSS gene which includes the promoter was 32P labelled and used as a 

probe. Equal amounts of RNA (checked by hybridisation with potato 28s rDNA 

as a probe) were loaded to allow a comparison between different transformants 

and between different tuber parts of one transformant. The RNA was hybridised 

with a 2.4 kb GBSS cDNA. DNA and RNA blot hybridisation and labelling were 

performed as described previously (Visser et al., 1989a,b). RNA transcript levels 

were densitometrically quantified using the Cybertech CS-1 Processing system. 

Results 

The starch phenotype of in vitro transformants 

After inoculation of stem expiants w i th Agrobacterium tumefaciens, 36 

regenerated shoots were harvested from the expiants and rooted on MS-

medium wi th kanamycin. From each expiant only one shoot was isolated to 

ensure that all transgenic shoots resulted f rom independent transformation 

events. Sixteen transformants (44 %) were diploid like the original genotype 

and twenty (56 %) were tetraploid. Microtubers appeared on induction 

medium after t w o to three weeks. Analysis of cut surfaces after staining 

wi th iodine showed that twenty nine transformants (81 %) had blue staining 

starch in the microtubers similar to the wild-type potatoes (complemented 

type). Seven transformants (19 %) had microtubers w i th red staining starch 

like the transformed a/rcf-control (BAM) and the untransformed amf-mutant 

(B) (Table 1). Nineteen transformants and controls were selected for further 

analysis. 
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Characterisation of greenhouse grown tubers 

The t w o classes of non-complemented and complemented transformants 

above described were also found in greenhouse grown tubers when analyzed 

by Lugol staining. However, the class of complemented transformants could 

be divided into a partially and a fully complemented subclass (Table 1). The 

transformants B 1 , B6, B10, B15 and B17 belong to the group of visually 

partially complemented transformants. For the transformants B 1 , B6 and 

B15 this was shown by the variation in starch colour of greenhouse grown 

tubers. The blue and red colour in the mixed tubers was not separated into 

clear sectors. The red colour was mostly found in the middle of the tuber, 

but the presence of blue staining starch was not absent f rom these regions. 

Their starch granules had a red coloured outer layer, showing up as a red 

coloured outer ring around a blue core of varying size. The size of the core 

was related to the macroscopically observed tuber colour. All greenhouse 

grown tubers of B10 stained red, but their starch granules contained a very 

small blue core indicating partial complementation. All greenhouse grown 

tubers of B17 stained blue, but starch granules were found which contained 

red outer rings. 

The amylose contents and GBSS-activities of the untransformed control B 

and the transformed control BAM were similar (Table 1 ), indicating that the 

transformation event itself had no direct influence on starch composit ion and 

GBSS-activity. The amylose contents and GBSS-activities of the non-comple­

mented transformants were like those of the amZ-mutant. For each of the 

partially complemented transformants the amylose content and GBSS-

activity was variable throughout the tuber depending on the size of the blue 

core in the starch granules (data not shown). The amylose contents and 

GBSS-activities of the fully complemented transformants were in the range 

of that of the wild-type controls. The GBSS-activities were highly variable as 

was also seen for the wild-type controls (Table 1). A significant (p < 0.05) 

correlation was found between the amylose content and the GBSS-activity 

using the Spearman rank correlation test. 

Characterisation of field grown tubers 

The staining results of the field grown tubers (Table 2) resembled those of 

the greenhouse grown tubers. Only B17 had more red staining tuber parts 

and some tubers of B10 had blue staining parts. The blue and red colour in 
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the mixed tubers was in contrast to greenhouse grown ones more clearly 

concentrated in separated parts and different staining patterns could be 

observed. 

Table 2. The number and percentage of tubers for the different staining 
categories after staining with Lugol. 

red 
clones number % 

controls 
B 325 
BAM 11 6 
wi ldtype 
transformants 
non-complemented 
B5 151 
B11 125 
B18 232 
B19 157 
partially complemented 
B1 29 
B6 24 
B10 141 
B15 102 
B17 
fully complemented 
B2 
B3 
B4 
B7 
B8 
B9 
B12 
B13 
B14 
B16 

(100) 
(100) 

-

(100) 
(100) 
(100) 
(100) 

( 17) 
( 2 0 ) 
( 8 0 ) 
( 70) 

-

-
-
-
-
-
-
-
-
-
-

colour 
field tuber 

mixed 
number % 

60 
48 
28 
40 

3 

-
-
-

-
-
-
-

( 3 6 ) 
( 4 0 ) 
( 16) 
( 2 8 ) 
( 2) 

-
-
-
-
-
-
-
-
-
-

blue 
number % 

372 

80 
48 

7 
3 

163 

227 
77 

125 
151 
140 
229 
130 
167 
143 
259 

-
-

(100) 

-
-
-
-

( 4 7 ) 
( 4 0 
( 4) 
( 2) 

( 9 8 ) 

(100) 
(100) 
(100) 
(100) 
(100) 
(100) 
(100) 
(100) 
(100) 
(100) 

Molecular analysis 

No difference in restriction pattern could be found when restricting the DNA 

wi th MSP I or HPA II fo l lowed by hybridi-sation analysis, which indicates 

that methylation in the promoter region of the GBSS-gene was not found 

(data not shown). However, this is not a proof that methylation outside the 

promoter region does not interfere wi th the expression of the inserted GBSS-

gene. RNA was extracted from tubers of different transformants and North-
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em blots were made. Almost all transformants showed a band of the correct 

size (Fig. 1A), among the different transformants no correlation was found 

between the amount of GBSS mRNA and the starch colour. However, when 

RNA was extracted from blue and red staining tuber parts of a partially 

complemented transformant, there seemed to be a relation between the 

degree of complementation and the amount of mRNA found. A clear GBSS 

mRNA signal was found in blue staining parts, a weak signal in red staining 

parts and an intermediate signal in the mixed staining parts (Fig. 1B). 

Quantification of the signals showed that there could be three times more 

transcript present in a blue staining part of a tuber than in a red staining part 

of the same tuber. 

^ O i~ CM P5 -tf 

a>mcoa>ma ima> (Of f i a i (&eQ(aa>a> s 

B 

at 

Q 
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K 
T -

UJ 
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X 

I «J 

m D 
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Fig. 1 Northern hybridisations of different transformants and controls with a 2.4 
kb GBSS cDNA. 
A) Expression of GBSS mRNA in greenhouse grown tubers. 
B) GBSS mRNA expression in red, mixed and blue staining tubers parts of the 
partially complemented transformants B1 and B6; the values given below were 
determined by densitometrical scanning of the autoradiograph and the values are 
in comparison with the red staining tuber part: 1 red = 1,1 blue = 2.5, 6 red = 
1, 6 mixed = 1.6 and 6 blue = 3.0. 

Genetica/ analysis and determinatation of copy number 

In Table 3 the transformants that flowered were classified according to their 

segregation of blue and red staining microspores. The transformants B5 and 
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B11 without GBSS expression in their micro-, greenhouse and soil grown 

tubers also lacked expression in their microspores which stained red with 

iodine like the controls. Southern hybridisation (Fig. 2) of the non-comple­

mented clone B11 indicated that one inactive GBSS-gene was present in the 

genome. For B5 no inserts could be detected. A segregation according to 

one active insertion was found in the diploid transformants B7 and B9 

(GBSS -) and in the tetraploid B12 and B14 (GBSS ; simplex). According 

to the Southern hybridisation one or two inserted genes appeared to be 

present. Because of this monogenic inheritance the second gene in B7, B9 

and B14 is expected to be inactive or closely linked to the first one. A 

segregation of 3 :1 , indicating that two genes are segregating independently, 

was found for the diploid B2 (GBSST -, GBSS2 -) and the tetraploid B8 

(GBSS, , GBSS2 ) and confirmed by Southern analysis (Fig. 2). B8 

contained a truncated GBSS-gene as well. The tetraploid transformants B1, 

B4 and B6 had a segregation of 5:1 indicating a duplex situation (GBSS 

GBSS - -). One band was found by Southern hybridisation (Fig. 2) for B1 and 

B6 supporting this duplex situation. For B4 three bands were found. 

BAH Bl 82 B3 B4 B5 B6 B7 BS B9 Bil B12 B14 

^^tfÉ $8â0 f H | ^^^m Ijg^^jja M^^& mm&m*. gä^fiETVMHrjEttfltt ' | ^^ t t j j ^ ^ ^ l jjj&^^K 

Fig. 2 Southern hybridisation of total DNA from transformants with the distal part 
of the GBSS cDNA as a probe. The plant DNA was cut with fcoRI, which gives an 
endogenous band of 4.3 kb with this probe. The band of 2.9 kb in lane B8 
indicates the insertion of a truncated GBSS-gene 
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Table 3. The ploidy level, microspore segregation after staining with Lugol, the 
number of inserts found by Southern hybridisation and colour of field grown tubers 
of different transgenic potato clones. 

clone 

B 
BAM 
B5 
B11 

ploidy 
level 

2 X 
2 X 
4 X 
4 X 

segregation ratio 

blue : red 

Class I: No alleles; 
- - o r (0:1) 

0 : 825 
0 : 1000 
0 : 1324 
0 : 987 

T-DNA' 
copies 

0 
0 
0 
1 

starch colour 
field tubers 

red 
red 
red 
red 

Class II: One allele, simplex; 
GBSS- or GBSS - - - (1:1) 

B7 
B9 
B12 
B14 

2 X 
2 X 
4 X 
4 X 

445 : 413<x 2 = 0.08) 
250 : 235 (x2 = 0.35) 
234 : 210 (x2 = 1.30) 
337 : 333 (x2 = 0.02) 

2 
2 
1 
2 

blue 
blue 
blue 
blue 

Class III: Two alleles independently 
segregating, double simplex; 
GBSS, 
GBSS, 

GBSS, or 
GBSS2 (3:1) 

B2 
B8 

2 X 
4 X 

583 : 218 (x2 = 2.10) 
500 : 139 (x2 = 3.59) 

blue 
blue 

B1 
B4 
B6 

4 X 
4 X 
4 X 

Class IV: One allele in duplex; 
GBSS, GBSS, - - (5:1) 

188 : 30 <x2 = 1.32) 
347 : 80 (x2 = 1-30) 
887 : 181 (x2 = 0.06) 

mixed 
blue 
mixed 

*: The number of additional inserts according to the Southern hybridisation. 

The duplex segregation suggests that two of them are inactive, or placed on 

the same chromosome as the gene in duplex. 

Discussion 

Using the Agrobacterium tumefaciens system, the introduction of the GBSS-

gene into the amf-mutant lacking GBSS-activity leads to a restoration of 
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GBSS-activity and amylose synthesis (Table 1). This is in agreement with the 

observations of van der Leij et al., (1991a) after using Agrobacterium rhizo-

genes as a vector. With respect to starch colour in subterranean tubers three 

different groups of transformants were found: non-complemented, fully 

complemented and partial complemented. Transformants of the latter class 

contained starch granules which had a blue core of varying size and a red 

outer ring. This had also been observed after transforming a wild-type potato 

with an antisense GBSS-gene (Kuipers et al., 1994). The amylose contents 

and GBSS-activities of these transformants varied depending on the size of 

the blue core in the starch granules. 

The GBSS-gene was also expressed in microspores. According to the 

segregation of red and blue staining microspores up to two independently 

segregating active inserts were present. Comparison of the results of the 

microspore segregation and the Southern hybridisation indicated that 

sometimes more than one insert could be present closely linked on one 

chromosome or that not all inserts were active (Table 3). The tetraploid 

transformants B1 and B6, with unstable expression of the inserted gene 

probably were duplex (Table 3). This means that here insertion had taken 

place before the chromosome doubling, leading to a duplex situation. The 

active inserts in the fully complemented tetraploid plants were either situated 

on two non-homologous chromosomes or on homologous chromosomes on 

different positions. 

The amount of GBSS-mRNA varied between the different transformants and 

was not correlated with the expression of the inserted GBSS-gene (Fig. 1A). 

This could be expected because Visser et al. (1989b) reported the presence 

of normally sized GBSS-mRNA in the amf-mutant. However, within a single 

transformant, a relation between the degree of expression and amount of 

mRNA could be found based on a densitometric quantification of the bands. 

A small amount of mRNA was found in the amylose-free red staining parts of 

the tubers and this amount did raise with the increase in amylose content 

(Fig. 1B). 

Unstable expression of an inserted gene has been described earlier and, 

amongst others, methylation or sense inhibition are mentioned as possible 

reasons. Unstable gene expression was found in a petunia mutant trans­

formed with the A1 cDNA of maize (Meyer et al., 1987) and was due to 

methylation of the promoter, which was positively correlated with the 

number of integrated genes and also influenced by the chromosomal position 
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of the inserted genes (Linn et al., 1990). Similar results were reported by 

Matzke et al. (1989), who found methylation and inactivation of a first 

inserted T-DNA after the integration of a second T-DNA gene and therefore 

presumed that the methylation was the result of an interaction of 

homologous sequences. In this research however, no indication was found 

for methylation of the GBSS-gene in the red sectors of the mixed staining 

tubers. 

Another possible explanation for the unstable gene expression is sense or co-

suppression. Co-suppression is the phenomenon that the mutant phenotype 

can be obtained after introduction of one or more copies of the wild-type 

gene into wild-type plants. Grierson et al. (1991) suggested that the anti-

sense RNA was formed because of a simple read through of the kanamycin 

resistance gene which was placed in opposite orientation. The GBSS gene 

expression in wild-type potato has been inhibited in previous research by 

using antisense RNA (Visser et al., 1991) or by introducing an extra GBSS 

gene (van der Leij et al., 1990; van der Leij, 1992). In the present research 

the construct pWAM 100 was used which possesses the gene for kana­

mycin resistance in opposite orientation towards the GBSS-gene, so the 

kanamycin resistance gene could have read through. Another explanation 

could be that a strong promoter in the plant DNA near the place of T-DNA 

insertion did cause the formation of anti-sense RNA. However, the main 

difference with the above mentioned previous research on antisense genes is 

that we introduced wild-type genes in a mutant background. Although the 

observations in this investigation were similar to those obtained after 

inhibiting the GBSS-activity in wild-type potato with antisense GBSS RNA, 

we were not able to detect antisense RNA in the transformants (data not 

shown). The fact that the partially complemented plants showed a decrease 

in GBSS mRNA upon the increase of red staining starch in tubers might 

indicate that co-suppression plays a role in these plants. 

This research shows that a wild-type gene inserted into the mutant lacking 

the activity of this particular gene is not always fully expressed. For the 

application of gene manipulation in plant breeding, stable expression of an 

inserted gene is important. Selection of plants with stable gene expression 

should be performed before using them in plant breeding. 
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Expression of wild-type GBSS transgenes in the offspring of 

partially and fully complemented amylose-free transformants 

of potato. 

Flipse E, Schippers MGM, Janssen EM, Jacobsen E 

and Visser RGF 

Submitted 

Abstract 

The amylose-free (amf) potato mutant can easily be complemented by introduction of 

the wild-type gene coding for Granule Bound Starch Synthase (GBSS). After iodine 

staining the starch of the amf-mutant is red whereas that of the wild-type and the 

complemented amf-mutar\t is blue. The level of complementation of selected transfor­

mants and their sexual offspring after backcrossing wi th amf, was investigated using 

sporophytic tuber cells and gametophytic microspore cells. Two diploid and t w o 

tetraploid transformants w i th normal complementation showed the expected segrega­

tion patterns of 1:1 (one active insert) or 3:1 ( two independently segregating active 

inserts) in the microspores and in the F1 offspring based on staining of tubers. All 

expected genotypes in the F1 generation were found, based on microspore segregation 

patterns of the individual F1 plants. Two transformants w i th partial complementation 

(mixed phenotypes) were investigated. One of them, B 1 , was tetraploid and duplex for 

the GBSS-insert, which had originated through mitotic doubling of transformed diploid 

cells. In the F1 generation three phenotypic classes were found: amf, fully comple­

mented and partially complemented. The latter t w o exist independently of a simplex or 

duplex situation. The second transformant w i th partial complementation, B10, appeared 

to have a complex molecular composition. One cluster of f ive transgenes caused the 

partial complementation. Fully and partially complemented phenotypic classes were 

found after crossing B10 wi th the a/rtf-mutant. Partial complementation was found 

after transformation of diploid and not of tetraploid amf-genotypes. Beside that the 

level of complementation was higher in less polyploidised t issue. 
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Introduction 

The introduction of foreign DNA into plants in order to create new desirable 

phenotypes has become a routine procedure in a number of plant species. In 

potato, selected transgenics can sometimes directly be used as a new 

variety and/or as a parent. Therefore, it is important to know more about 

the expression of the introduced character in sexual offspring. After trans­

formation of diploid potato, diploid and tetraploid transgenics can be 

obtained. These tetraploids can be the result of mitotic doubling ocurring 

before or after the transformation event, resulting in transgenic plants 

carrying the introduced transgenes in simplex or duplex (Flipse et al., 1994). 

Inheritance of expression of trangenes has mostly been studied for antibiotic 

resistance markers in plant species like tomato (Sukhapinda et al., 1987), 

petunia (Demies and Gardner, 1988 a,b), arabidopsis (Feldmann, 1991; Kilby 

et al., 1992, Scheid et al.. 1991), tobacco (Matzke and Matzke, 1991; 

Matzke et al., 1993), pea (Puonti-Kaerlas et al., 1992), maize (Walters et 

al., 1992) and rice (Schuh et al., 1993). The transgenics had either a normal 

or abnormal segregation pattern in the sexual offspring. In certain cases 

these abnormalities could be explained. The transmission of traits comple­

menting recessive mutations have been poorly investigated in plants. 

Vaucheret et al. (1990) described the complementation of a nitrate 

reductase deficient mutant of Nicotiana plumbagonifolia and the presence of 

this character in the offspring of a few partially complemented plants. Van 

der Leij et al. (1991a) after transformation with A. rhizogenes and Flipse et 

al. (1994) after transformation with A. tumefaciens described partial and full 

complementation of an earlier described amylose-free (amf) potato mutant 

(Hovenkamp-Hermelink et al., 1987) by one or more transgenes of the wild-

type GBSS-gene. In these transgenic plants, the level of complementation 

could be investigated in the sporophytic phase in tubers as well as in the 

gametophytic phase in microspores after staining starch granules with 

iodine. Amylose-free starch stains red and wild-type starch stains blue with 

iodine. It means that expression of wild-type GBSS-transgenes can easily be 

investigated in different phases of development, not only in the original 

transformant, but also in offspring plants. Here, the level of complementation 

is evaluated in tubers and microspores of offspring plants. The segregation 

of genotypes is compared with the segregation in the microspores of the 

original transformant. A phenomenon described in literature is trans-
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inactivation. It can be found when t w o or more inserts are present on 

homologous or non-homologous chromosomes (Matzke and Matzke, 1992). 

In the present study a similar phenomenon was examined by diluting the 

number of inserts of transformants in the sexual offspring. In addit ion, it was 

investigated whether partial complementation, mainly observed in f ield 

tubers of diploid or tetraploidised transformants could be caused by the 

phenomenon of trans-inactivation on homologous chromosomes after mitotic 

doubling. 

Materials and methods. 

Transgenic plant material 

The (partially) complemented diploids (2n = 2x = 24) B2, B7, and B10 and 

tetraploids (2n = 4x = 48) B1, B8 and B14 were described previously (Flipse et 

al., 1994) and were obtained by transforming the diploid am/-genotype 87-

1029-31 (Jacobsen et al., 1989) with the vector pWAM 100. This vector 

possesses the wild-type GBSS (wildtype GBSS = Amf = A; mutant GBSS = 

ami = a) sequence driven by its own promoter in opposite orientation in relation 

to the NPT II gene coding for kanamycin resistance in the plant (van der Leij et 

al., 1991a). The plants were screened for the expression of the inserted GBSS-

gene by staining the starch in tubers and microspores with Lugol (an iodine-

potassium-iodine solution). The segregation of red and blue microspores gave an 

impression of the inheritance of the inserted GBSS-genes (Flipse et al., 1994). 

The ploidy level was determined by counting the number of chloroplasts in 

stomatal guard cells (Frandsen, 1968). A summary of these results is given in 

Table 1 , whereas the basic information for B10 is new. 

More transgenics obtained after transforming the diploid amf-mutant 87-1029-

31 and the tetraploid amf-mutant 90-6009-8 with the vector pWAM 100 were 

screened for the expression of the inserted GBSS gene by staining micro- and 

greenhouse grown tubers. 

Crossings 
Transgenic plants were grown in a biosafety greenhouse in which flowering of 

transgenic potato plants was allowed. Flower buds were emasculated and polli-
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nated with an amf-phenotype 1-3 days later. The diploid amf Hb 92-7007-7 

was used for fertilizing the diploid transgenic potato plants. This plant resulted 

from a crossing between 880004-3 (Jacobsen et al., 1991) and 87-1031-9 

(Jacobsen et al., 1989). As a tetraploid amf clone J90-6016-11 was used 

(Jacobsen et al., 1989). 

Embryo rescue 

Three weeks after pollination embryos were collected and placed on embryo 

growth medium (Neal and Topolewski, 1983; 1985). They were transferred to 

fresh medium every fortnight, until outgrowth of the embryos occurred. The 

seedlings were transferred to MS medium (Murashige and Skoog, 1962) with 

30 g/l of sucrose (MS 30) and 8 % agar, without using kanamycin as a selec­

tive antibiotic. In vitro culture was done at 22 °C and 16 h light. After two to 

three months plants were transferred to the greenhouse for f lowering and 

tuberisation. 

Staining for starch phenotype in different tissues 

Cut surfaces of tubers were stained with iodine according to Kuipers et al. 

(1991) showing red, blue (full complementation) and mixed (partial complemen­

tation) phenotypes. Individual starch granules and microspores were stained 

according to Flipse et al. (1994). Based on observation of individual starch 

granules plants with partial complementation were detected by the variable size 

of the blue core. Some transformants with a red staining cut surface showed 

partial complementation at the individual starch granule level. 

Molecular analysis 

DNA was extracted from the leaves of greenhouse-grown plants according 

Dellaporta et al. (1983). By digesting the DNA with the restriction enzyme 

£coR1 and using the 32P-random-prime-labelled, distal 1.3 kb GBSS cDNA and 

NPT II gene as a probe, the minimum number of T-DNA inserts was determined 

by scoring the number of additional bands in a Southern blot (van der Leij et al., 

1991a). 
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Results 

The level of complementation in the sexual offspring of several fully comple­

mented genotypes 

Four transformants with full complementation, B2, B7, B8 and B14 were 

investigated. These were respectively two diploids, B2 and B7 and two 

tetraploids B8 and B14. 

Of these, the diploid transformant B2 contained two inserts. A 3:1 segrega­

tion of blue and red microspores was found, indicating that the GBSS-genes 

were inserted in the genome allowing independent segregation. Based on 

this view, it was expected that complementation in the microspores was 

caused by one or both active inserts. After staining tubers of the F1 off­

spring a 3:1 segregation of plants with blue or red staining starch granules in 

their tubers was found (Table 1). Most of the F1 plants produced flowers 

and the starch colour in their microspores indicated that the blue staining 

plants, as expected, had a microspore segregation of 1:1 or 3:1 (Table 2). 

This clearly shows that both transgenes either separately or together are 

capable of complementing the mutant in both tubers and microspores. 

Table 1. Some characteristics of the original transformants and the segregation of the 
GBSS-trangenes in the offspring when the original transformants were crossed with an 
amf-genotype. 

microspore number of 
Clone Ploidy segregation ratio inserts Starch colour 

level in tuber 
blue:red 

Tubers of F1 plants 

micro field 
blue:mixed:red 

B2 
B7 
B10 

2x 
2x 
2x 

3 : 1 ( * 2 = 2.10> 
1 : 1 0(2=0.08) 

1:0" 

2 blue blue 1 6 : 0 
2 blue blue 1 5 : 0 
7 blue mixed 12 : 7 

5 0(2 3:1=0.02) 
1 3 &2 1:1=0.14) 

0 0(2 1:1 = 1.32) 

B1 
B8 
B14 

4x 
4x 
4x 

5:1 
3:1 

U2=1.32) 

1x2=3.59) 
1 : 1 (»2=0. (x2=0.02) 

1 blue mixed 25 : 11 
2 blue blue 27 : 0 
2 blue blue 1 3 : 0 

D 0(2 5:1=0.2) 

11 
1x2 3:1=0.35) 
0(2 1:1=0.17) 

*: in several anthers a small percentage of red staining microspores was found during the 
end of the growing season. 
• X 5:i w a s calculated for the classes blue and mixed combined, 

classes is 2.79. 
for all three 
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Table 2. The microspore segregation in the flowering F1 
plants and the starch composition by staining the cut sur­
faces with iodine. 

Clone 

B2 

B7 

B10 

B1 

B8 

B14 

F1 segregation 

3:1 
1:1 
0:1 

1:1 
0:1 

3 : 1 " 
3 : 1 " 
1 :1" 
1:1° 
variable8 

variable0 

5:1 
1:1 
1:1 
0:1 

3:1 
1:1 
0:1 

1:1 
0:1 

number of plants 

3 
10 

5 

7 
6 

1 
1 
2 
1 
2 
2 

1 
5 
1 
2 

2 
5 
1 

7 
4 

colour 

blue 
blue 
red 

blue 
red 

mix 
blue 
blue 
blue 
mix 
blue 

blue 
blue 
mixed 
red 

blue 
blue 
red 

blue 
red 

a: The block of five and 2 inserts (b and f) are present. 
b: Number of inserts is unknown. 
c: One insert (b or f) is present. 

B7 is a diploid transformant (Table 1 ) with two GBSS-inserts but despite this 

observation a 1:1 segregation of red and blue microspores was found. In the 

F1 offspring also a 1:1 segregation was found for plants with blue (full com­

plementation) or red (mutant phenotype) staining starch granules in the 

tubers. As expected, plants with red staining starch granules had only red 

staining microspores, whereas the blue ones had a 1:1 segregation (Table 2). 

This proves that at least one inserted GBSS-gene is well expressed in both 

the tubers and microspores of the F1 plants, or that both are active but 

closely linked. 

Transformant B8, a tetraploidised plant with two GBSS-inserts gave a 

segregation of 3 blue : 1 red microspores indicating that both transgenes 

were expressed and segregated independently. The tubers of the sexual 
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offspring showed a segregation of 3:1 with either blue or red starch gran­

ules. These fully complemented F1 plants had a segregation of 1:1 or 3:1 in 

the microspores. It can, therefore, be concluded that in the original transfor­

mant both inserts were expressed in tubers as well as in microspores. Their 

expression was sufficient to complement the mutation when they were 

present separately as well as together. Introduction of both inserts into the 

genome occurred after chromosome doubling. 

The tetraploidised transformant B14 contained two inserts but in the micro­

spores a 1:1 segregation of blue and red was found. As expected, the F1 

offspring had also a 1:1 segregation for plants with complemented or non-

complemented starch in the tubers (Table 1). All flowering F1 plants with 

blue staining starch granules had a 1:1 segregation (Table 2). This indicates 

that only one of the inserted GBSS-genes is active in both tubers and 

microspores as was already found in the original transformant or that both 

transgenes are closely linked. This means that the cells of this transformant 

were already doubled before transformation occurred. 

The level of complementation in the sexual offspring of partially comple­

mented genotypes 

Two transformants with a normal complementation in microtubers and a 

partial complementation in greenhouse grown tubers were used for more 

detailed analysis. They were selected for their segregation pattern of com­

plementation in the microspores and their ploidy level. The tetraploidised 

transformant B1, which had produced red, mixed and blue staining tubers 

under both field and greenhouse conditions, was thought to have the 

chromosome number doubled after one GBSS-gene was inserted (Table 1). 

The results of Southern hybridisation (1 insert) and microspore staining (5 

blue:1 red) indicated a duplex segregation. This means that two inserts were 

present at the same position on two homologous chromosomes. Table 1 

shows the segregation in the sexual offspring derived from crossing B1 with 

an amf-genotype. Three types of plants with blue, mixed or only red staining 

starch granules in the tubers were found with a segregation of 5:1 after 

combining blue and mixed plants in one class. The three phenotypic classes, 

blue, mixed and red, fit the segregation ratio 4:1:1 assuming that two T-

DNA inserts (duplex condition) did cause trans-inactivation of the full 
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complementation and one insert did not. In order to investigate whether the 

F1 offspring plants contained one or two inserts, microspores were stained. 

Due to environmental conditions in the greenhouse only a few plants were 

flowering. The results presented in Table 2 showed that microspores of F1 

plants with a normal complementation had a 1:1 or 5:1 segregation indicat­

ing that these plants were either simplex or duplex. Only one of the offspring 

plants with a decreased complementation flowered and showed a segrega­

tion ratio of 1:1. This plant appeared to be simplex with one active GBSS-

transgene. These results suggest that in this case trans-inactivation is not 

dependent on duplex constitution and that the earlier proposed 4:1:1 

segregation is not supported. This means that in the F1 offspring unstable 

complementation is also found in plants with only one T-DNA insert. The 

fact that a high frequency of fully complemented F1 plants was found 

indicate that alteration of the genetic background can allow a better ex­

pression of transgenes in field grown tubers of both simplex and duplex 

plants. 

The diploid transgenic plant B10 showed such a low degree of complemen­

tation in tuber starch that no tubers with a blue staining cut surface were 

formed under both field and greenhouse conditions. This was in contrast 

with the staining results from microtubers of this plant, where only blue 

staining cut surfaces were found. Staining of individual starch granules of 

greenhouse grown tubers showed a small blue core and a large red outer 

layer. However, all microspores stained blue, indicating presence and 

expression of transgenes in all starch containing microspores. Only during 

late season flowering, a low percentage of microspores with red staining 

starch was found indicating some instability of expression of one or more 

transgenes in these cells. Southern hybridisation showed a complex situation 

(Figure 1). At least seven inserts were observed. In order to investigate the 

sexual transmission of this transgenic phenotype, B10 was crossed with a 

diploid amf-genotype. Nineteen F1 plants produced tubers (Table 1). These 

tubers were stained with iodine and a segregation of 12 blue : 7 mixed was 

found. Southern hybridisation results of several of these F1 plants are shown 

in Fig. 1. Band a was the endogenous amf-a\\e\e which was capable of 

hybridising with the probe as well. Bands c, d, e, g and h were closely 

linked, as they were all either present or absent. 
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pamM0,s F l - p l a n t s 

r * 
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m b m b b b 
8 19 20 22 23 25 

Fig 1. Southern analysis of the partially complemented amf-mutant B10, an amf-
genotype and their progeny after crossing. The DNA was digested w i th restriction 
enzyme EcoR\. The distal 1.3 kb GBSS cDNA was used as a probe. The bands b 
and f are independently segregating and can cause full complementation of the 
amf-motar\t. No partially complemented plants were found wi thout the inserts b 
and/or f. By using the NPT II as a probe the same bands were found. 
' : The partially complemented amf-mutartt B10 has red staining tubers. The starch 
granules are red w i th a small blue core. 
2: The tubers of several F1 plants have a mixed staining pattern. The starch 
granules of these mixed F1 plants have a blue core of varying size. No plants w i th 
red staining tubers as the original B10 transformant were found among the segre­
gating population. 

Bands b and f were segregating independently. The unstable complemen­

tation was correlated with the presence of the block of inserts representing 

bands c, d, e, g and h. This observation and the fact that blue or mixed F1 

plants were found to be not deviating from a 1:1 segregation ratio, suggests 

that this block of transgenes behaves like a single locus suppressing the 

expression of the loci of the other inserts in tuber tissue. The class of F1 

plants with blue staining starch in the tubers appeared to be connected with 

band(s) b or f in the absence of block c,d,e,g,h. Nine flowering F1 plants 

were investigated for the segregation of microspores. Indications were found 

for normal 1:1 and 3:1 segregations, suggesting the presence of one or two 

independently segregating active inserts. A number of F1 plants showed 
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large variation in segregation between different samples of different anthers, 

suggesting that environmental factors are influencing expression of GBSS-

transgenes within these cells as well and that these negative environmentally 

caused effects are less frequently compensated by well expressed inserts. 

The level of complementation in a tetraploid amf-mutant 

In total, 36 transformants of the diploid amf clone 87-1029-31 were investi­

gated (Table 3). Seven of them gave at microtuber level red staining starch 

and were not complemented. The microtubers of the others stained blue. 

However, seven of these blue staining clones showed mixed staining green­

house grown tubers, indicating only partial complementation. 

Table 3. Number of transformants in different staining categories after 
transforming the diploid amf-mutant 88-1029-31 and tetraploid amf-
mutant 90-6009-8 with the construct pWAM 100. 

red 
mixed 
blue 

diploid amf 

microtubers 

6 
0 

37 

greenhouse 
grown tubers 

6 
7 

30 

tetraploid amf 

microtubers 

2 
0 

25 

greenhouse 
grown tubers 

2 
0 

25 

Transformants with mixed starch comprised of five normal diploids besides 

two, which were mitotically doubled. The doubled plants were duplex 

because integration took place before doubling occurred. A comparison was 

made between complementation of a diploid and a tetraploid amf-c\one. 

Twenty-seven transgenics whose tubers were obtained after transforming 

the 4x amZ-clone J90-6009-8 with the wildtype GBSS-gene. Two of them 

showed absence of complementation whereas the other 25 were fully 

complemented, not only in microtubers but also in greenhouse grown tubers. 

This observation clearly shows a difference in frequency of partial comple­

mentation between the diploid amf 87-1029-31 (24%) and the tetraploid 

amf-c\one (<4%). 
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Discussion 

In this study the phenomenon of expression of transgenes in the 

gametophytic and sporophytic phase of potato development was investi­

gated. Several possibilities involved in the unstable expression of an inserted 

gene like methylation, sense inhibition, trans-inactivation, read-through of 

the kanamycin resistance gene or a strong promoter in the plant DNA which 

is depending on the site of insertion have been discussed earlier by Flipse et 

al. (1994). 

The genetic interpretation of all four transformants with normal segregation 

patterns in the microspores, could be checked in tubers and microspores of 

F1 plants. All predicted classes for these diploids: --; GBSS-; GBSS,- GBSS2-; 

and tetraploids: —-; GBSS—; GBSSGBSS-- or GBSS,— GBSS2— were found 

based on segregating microspores of F1 plants. 

A percentage of F1 offspring plants originating from B1, with mixed starch in 

tubers of the parental plants, showed a blue starch colour. The genetic 

analysis on microspores of a number of these plants showed no indication 

for the phenomenon of inactivation correlated with tetraploidisation before 

insertion (duplex situation). It must therefore be suggested that expression of 

the insert in highly polyploidised cells of fieldgrown tubers of the original 

transformant B1 is not-optimal. This expression could probably be improved 

easily after crossing as was evident in several sexual F1 offspring plants. 

The partly complemented transformant, B10 had F1 in its progeny with 

microspores segregating into 1:1 or 3:1 ratios which is expected when one 

or two active inserts are present. The decreased expression in tubers of the 

F1 offspring derived from B10 was correlated with the presence of a block 

of five inserts. This block was trans-inactivating the other inserts with 

normal expression (co-suppression) as could be seen in complemented F1 

plants which lacked this block. Only in transformant B10 indications for 

unstable complementation in microspores were found. Some red staining 

starch granules were only found in anthers of late season flower buds. In the 

F1 offspring the variability of segregation was not restricted to late season 

flower buds. In literature, examples are described in which environmental 

and developmental factors influence the expression of transgenes (Walter et 

al., 1992). 

It is known that the ploidy level of cells in microtubers is comparable with 

that of other sporophytic cells (Hovenkamp-Hermelink et al., 1988a). 
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However, in tubers of glasshouse or field grown plants, where the GBSS 

promoter is also very active, almost all cells are highly polyploidised up to 16 

x, 32 x and 64 x. This situation is found in tubers of diploids as well as 

tetraploids (Hovenkamp-Hermelink et al., 1988a). 

It is expected that expression of transgenes can be different in normal and 

highly polyploidised cells. A strong indication has been found in the trans­

formant B10. This plant showed almost always normal expression of the 

wild-type GBSS-transgenes in microspores and microtubers, whereas in field 

grown tubers with highly polyploidised cells a high degree of inactivation 

was found. This could be due to or determined by the high sucrose content 

in microtuber induction medium which stimulates the GBSS promoter 

activity. The second indication comes from the comparison of the 

phenotypes found after transformation of diploid and tetraploid amZ-mutants. 

The mixed class is only found among diploid and tetraploid trangenics, 

doubled after the transformation event of the 2x amf parental plant and not 

in transgenics originating from a 4x amf-mutant. This could mean that 

sufficient expression of transgenes in 4x cells is a reliable prediction for 

expression in tuber cells with a much higher degree of polyploidisation. 

The sexual offspring clearly showed that all fully complemented transfor­

mants only segregated into two classes i.e. complemented and non-comple­

mented and the partially complemented ones into one class more i.e. mixed. 

More research is required to understand the mechanism underlying the partial 

complementation. The potential use of transgenes in agriculturally important 

crops, like potato is highly dependent on a predictable transmission of gene 

expression to the offspring, to enable the use of transgenes in normal 

plantbreeding programmes. 
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GBSS T-DNA inserts giving partial complementation of the 

amylose-free mutant can also cause co-suppression of the 

endogenous GBSS-gene in a wild-type background. 

Flipse E, Straatman-Engelen I, Kuipers GJ, Jacobsen 

E and Visser RGF 

Submitted 

Abstract 

The wild-type gene encoding Granule Bound Starch Synthase (GBSS) is capable of both 

complementing the amylose-free iamf) potato mutant and inhibiting the endogenous 

GBSS-gene expression in wild-type potato. Co-suppression of the endogenous GBSS-

gene, easily visualised by staining the starch w i th iodine, occurred when the full size 

GBSS sequence (genomic) or GBSS cDNA were introduced into the wild-type potato. 

Even the mutant amf-a\\e\e, which yields a protein that cannot be transported over the 

amyloplast membrane, caused co-suppression, though in a lower frequency. The GBSS 

promoter alone did not cause co-suppression. The orientation of the GBSS-gene 

towards the kanamycin resistance gene did not influence the frequency of plants w i th 

inhibited expression, as was also the case for the presence of an enhancer in front of 

the GBSS-promoter. After crossing a partially complemented amf-mutant w i th a 

homozygous wild-type plant, the F1 offspring segregated into plant phenotypes w i th 

normal and decreased expression of the GBSS-gene. Using Southern hybridisation the 

decreased expression was found to be correlated wi th the presence of a block of f ive 

inserts which was previously shown to be correlated w i th partial complementation of 

the amf-mutant. This crossing experiment indicates that co-suppression can cause 

inhibition of gene expression of both inserted and endogenous wild-type GBSS-genes. 

The frequency of partially complemented a/nf-plants was equal to the frequency of co-

suppressed wild-types, when the construct pWAM 101E, w i th an enhancer in front of 

the GBSS-promoter, was used. This suggests that partial complementation of the amf-

genotype caused by unstable expression of the transgene can be overcome by inserting 

an enhancer in front of the GBSS-promoter. 
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Introduction 

Starch accumulates as a storage carbohydrate in amyloplasts of cells of 

potato tubers. Its main components are amylose, a linear glucose polymer 

with 0(1.4) bonds and amylopectin, a branched glucose polymer containing 

o(1.4) and a(1.6) bonds. Formation of amylose is catalysed by Granule 

Bound Starch Synthase (GBSS) whereas amylopectin is catalysed by Soluble 

Starch Synthase (SSS) and Branching Enzyme (BE). The latter is responsible 

for the presence of branching points (Shannon and Garwood, 1984). Stained 

with an iodine solution, amylose has a blue colour which is dominant over 

the red colour of amylopectin in wild-type starch. For the starch industry the 

quality of starches depends on the amylose and amylopectin content. 

A decreased amylose content in potato starch can be obtained by mutation 

induction of the GBSS-gene as in the amf-mutant (Hovenkamp-Hermelink et 

al., 1987) or by antisense genes coding for GBSS as described by Visser et 

al. (1991). Indications for a third possibility were found during complementa­

tion studies of the amZ-mutant with a wild-type GBSS-gene of potato (van 

der Leij et al., 1991a; Flipse et al., 1994). When complementing the potato 

amf-mutant, transformants were found with normal and partial comple­

mentation. The sexual progeny of partially complemented plants, in which T-

DNA inserts with different effects could be seperated, consisted of partially 

and fully complemented plants. Clear indications for an interaction between 

different T-DNA inserts were found. So was the expression of certain 

inserts, showing the ability to fully complement in the presence of other 

GBSS-inserts, decreased (This thesis; Chapter 4). 

The phenomenon of inhibition caused by T-DNA inserts containing sense 

genes is called co-suppression and has been described in many other 

examples in wild-types but not in complemented mutants. In the present 

study, a partially complemented amf-mutant was crossed with a wild-type 

potato, in order to investigate the effect of co-suppression on com­

plementation in the presence of an endogenous wild-type GBSS-allele. Simul­

taneously with the complementation experiments (Flipse et al., 1994), the 

cloned wild-type GBSS-gene was introduced in a wild-type potato genotype. 

The characteristics of these transgenic plants and those resulting from 

transformation with other GBSS-sequences containing constructs will be 

outlined. 
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Material and methods. 

Plant material 

For transformation experiments stem segments were used from the diploid 

(2n = 2x = 24) homozygous amfamf genotype 87.1029-31 and the diploid wild-

type AmfAmf genotype R5 of Solanum tuberosum L. The mutant 87.1029-31 

derived from crossing the original amZ-mutant 86.040 and two different diploid 

wild-types. Crosses were made in order to improve the fertility and tuber 

production of the original mutant (Jacobsen et al., 1989). Plants were grown in 

jars containing MS medium (Murashige and Skoog, 1962) with 30 g/l sucrose 

(MS 30) and 8 % agar, at 22 °C and 16 h light. Trangenic shoots were grown 

and rooted on MS 30 medium containing 100 mg/l kanamycin. Ploidy level was 

determined by counting the number of chloroplasts in stomatal guard cells 

(Frandsen, 1968). 

Vectors and transformation procedure 

The constructs pWAM 100, pWAM 101, pWAM 101E, pGB 60, pAMF 110 and 

pGB 121s were used in the experiments (Fig. 1). The constructs pWAM 100, 

pWAM 101 and pWAM 101E possessed the genomic wild-type GBSS sequence 

driven by its own promoter. For pWAM 100 the GBSS gene was placed in 

opposite orientation to the NPT II gene coding for kanamycin resistance in 

plants (van der Leij et al., 1991a). For pWAM 101 (van der Leij et al., 1991a) 

and pWAM 101E the GBSS-gene was placed in the same orientation as the NPT 

II gene. The construct pWAM 101E was formed by ligating the 0.7 kb enhancer 

fragment of the CaMV-promoter in the Xbal - Sail restriction site in front of the 

GBSS-promoter. The construct pGB60 contained the GBSS cDNA driven by the 

CaMV-promoter (Visser et al., 1991). The construct pAMF 110 contained the 

amf-allele (mutant GBSS) driven by its own promoter (van der Leij et al., 

1991b), whereas pGB 121s contained solely the GBSS promoter. 

The constructs were transferred to A. tumefaciens LBA 4404 using the direct 

transformation procedure described by Höfgen and Willmitzer (1988). To test 

the integration procedure of the mobilized plasmid into A. tumefaciens, plasmid 

DNA, isolated from A. tumefaciens was analyzed (Holmes and Quigly, 1981). 
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Fig. 1 . The constructs pWAM 100, pWAM 101 and pWAM 101E possess the 
genomic wild-type GBSS sequence driven by its own promoter. For pWAM 100 
the GBSS gene was placed in opposite orientation to the NPT II gene coding for 
kanamycin resistance in plants (van der Leij et al., 1991a). For pWAM 101 (van 
der Leij et al., 1991a) and pWAM 101E the GBSS-gene (6.5 kb) was placed in the 
same orientation as the NPT II gene. The construct pWAM 101E was formed by 
ligating the 0.7 kb enhancer fragment of the CaMV-promoter in the Xbal - Sail 
restriction site in front of the GBSS-promoter. The construct pGB 60 contains the 
GBSS-cDNA (2.3 kb) driven by the CaMV-promoter (Visser et al., 1991). The con­
struct pAMF 110 contains the amf allele (mutant GBSS) driven by its own promo­
ter (van der Leij et al. 1991b), whereas pPGB 121s contains solely the GBSS-
promoter. amf = amf-a\\e\e; B = BamH\; Bg = Bgl\\; E = EcoHV, GB = GBSS-
promoter; GBSS = genomic GBSS-sequence; LB = left border; NPT II = 
neomycin phosphotransferase; RB = right border; S = Sst\; T = GBSS-termin-
ator; Tnos = nopalinesynthase terminator; 35S = 35s CaMV promoter 
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For the control experiments A. tumefaciens strain AM 8706 was used harbour­

ing a binary plasmid containing the gene encoding ß-glucuronidase and the gene 

encoding kanamycin resistance (Visser et al., 1989a). Transformation was per­

formed as described by Flipse et al. (1994). 

Determination of the starch composition and GBSS-activity 

The cut surfaces of harvested tubers were stained and starch was isolated from 

several tubers according to Kuipers et al. (1991). The colour of the individual 

starch granules was investigated as described by Flipse et al. (1994). The 

amylose content was determined spectrophotometrically as described by 

Hovenkamp-Hermelink et al. (1988b) and the determination of GBSS-activity 

was as described by Vos-Scheperkeuter et al. (1986). For measuring the 

amylose content, three samples, and for measuring the GBSS-activity, six 

samples were analyzed and a t-test with a 5 % confidence limit was used for 

statistical analysis. 

Crossings 

The partially complemented genotype B10 originated from the diploid amf-

mutant 87.1029-31 after transformation with the construct pWAM 100 (Flipse 

et al., 1994; This thesis; Chapter 4). Although the cut surfaces of greenhouse 

grown tubers were red when stained with iodine, a small blue core was 

observed in the starch granules indicating partial complementation. In order to 

get f lowers, B10 was grown in a biosafety greenhouse in which flowering of 

transgenic potato plants was allowed in containers. Flower buds were emascu­

lated and pollinated with the wildtype diploid SHU3711 1-3 days later. 

Embryo rescue 

Three weeks after pollination embryos were collected and placed on embryo 

growth medium (Neal and Topolewski, 1983; 1985). They were transferred to 

fresh medium every fortnight, until outgrowth of the embryos occurred. The 

seedlings were transferred to MS 30 medium. After two to three months plants 

were transferred to the greenhouse for flowering and tuberisation. 
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Molecular analysis of the transformants 

DNA was extracted from the leaves of greenhouse-grown plants transformed 

with the construct pWAM 100 according to Dellaporta er al. (1983). The DNA 

was digested with the restriction enzyme EcoRI. Using the 32P-random-prime-

labelled distal 1.3 kb of the GBSS cDNA and NPT II gene as a probe, the 

minimum number of integrated T-DNA copies were estimated by scoring the 

number of additional bands in a Southern blot (van der Leij et al., 1991a). 

RNA was extracted from tubers according to Salehuzzaman et al. (1992). Equal 

amounts of RNA (checked by hybridisation with potato 28srDNA as a probe) 

were loaded to allow a comparison between different transformants. The RNA 

was hybridised with a 2.4 kb GBSS cDNA. DNA and RNA blot-hybridisation and 

labelling were performed as described previously (Visser et al., 1989 a,b). 

Results 

Phenotypical and biochemical observations on starch 

After transforming the diploid wild-type R5 wi th the construct p W A M 100, 

thirty kanamycin resistant shoots were isolated on selective medium, 

multiplied and transferred to the greenhouse. Starch was isolated f rom 

harvested tubers of each of the transgenics and analyzed for GBSS-activity 

and amylose content. The GBSS-activity of most of these transformants was 

similar or increased as compared to the untransformed and transformed 

controls. This increase in GBSS-activity could, however, not account for an 

increased amylose content, which was still similar to that of the controls 

(Fig. 2A,B). 

For the three transgenics, A4 , A21 and A40 , the GBSS-activity was highly 

decreased compared to the controls (Fig. 2A). This was in t w o cases clearly 

correlated wi th a reduction in amylose content to 5 -7% (Fig. 2B). 

As expected, in the case of clearly reduced GBSS-activity and amylose 

content, the colour of cut tuber surfaces and of individual starch granules 

after staining wi th iodine was altered. The transformants w i th normal 

amylose content had, as expected, blue staining starch in the tubers. 
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A3 A4* A5 A6 A7 A13 A14 A21* A25 A31 A40* A41 

transformants 

s 1 

1. 

§ä 

il 

i i 
I II 

I ^ 
A3 A4* A5 A6 A7 A13 A14 A21 * A25 A31 A40* A41 A AC 

t ransformants 

Fig. 2. The GBSS-activity (a) and amylose content (b) of the untransformed wild-

type R5 (here named A), the transformed control AC and several transformants 

after introduction of the construct pWAM 100, containing the GBSS-gene, in the 

wild-type R5. The * marked genotypes have mixed or red staining tubers and 

starch granules with a blue core and red outer layer and are therefore considered 

co-suppressed. 

The three transgenics had a starch colour of the tuber which was dependent 

on the level of reduction in amylose content of that specific tuber sector. 

The stained cut surfaces were red for A40, red to mixed for A21 and mixed 

to blue for A4. The presence of red and blue staining sectors causing the 

mixed pattern was related to the staining pattern of individual starch gran-
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presence of a small blue core surrounded by a large red outer layer whereas 

in blue staining tuber sectors the size of the blue core was increased up to 

granules w i th only a small red outer layer. 

Although we can state that a reduction in amylose content was found in the 

tubers of these transformants no indication of such a reduced amylose 

content, based on iodine staining was found in the stomatal guard cells and 

roottips. This result was comparable w i th the observations on transformants 

containing the antisense oriented GBSS-gene. 

A reduced amylose content is correlated with a reduced GBSS-gene expres­

sion 

Steady state mRNA was isolated from tubers, blotted and hybridised wi th a 

2.4 kb GBSS-cDNA. Transgenic wild-type plants wi th a decrease in GBSS-

activity and amylose content showed a reduced amount of steady state 

GBSS mRNA as compared to either the control or the transgenic plants 

wi thout inhibition (Fig. 3). The reduced amylose content was also correlated 

wi th a reduced amount of GBSS-protein in the starch fraction (data not 

shown). 

control transformants 

AC A3 A4 A5 A7 A21 Ä40 A41 

Fig 3. The steady state GBSS mRNA level of the control R5 (here named A), the 
transformed control (AC) and a selection of the with pWAM 100 transformed R5 
plants. The RNA was hybridised with a 2.4 kb GBSS cDNA as a probe. 

The introduction of additional copies of the GBSS-gene infrequently inhibited 

the expression of the endogenous GBSS-gene causing a reduced mRNA 

content finally resulting in a lower amylose content. The average number of 

additional inserts for plants wi th a reduced amylose content was higher (3.7) 

than it was for plants wi thout inhibition (1.6) (data not shown). 
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Co-suppression in transgenic potato plants using different constructs 

Several constructs containing either the full length GBSS (genomic) 

sequence, the amf-sequence, the GBSS-cDNA, or only the GBSS-promoter 

(Fig 1 ) were analyzed for their capacity to inhibit the expression of the 

endogenous GBSS-gene in a wild-type potato clone and partly for their 

capacity to complement an amf-mutant. Per construct-genotype combination 

at least 22 kanamycin resistant shoots were selected, multiplied and trans­

ferred to the greenhouse. All transgenic clones were screened for the 

expression of the inserted GBSS-genes by staining the cut surfaces of tubers 

wi th iodine. Based on the colour of the tuber and the individual starch 

granules, the transgenic amf and wild-type clones were classified into red 

(total red staining starch granules), red* (red staining tuber w i th red staining 

starch granules containing a small blue core), mixed (mixed staining pattern 

of the tubers w i th red starch granules containing a blue core of varying size) 

and blue (total blue starch granules) (Table 1 A, B). 

All three constructs w i th full length genomic GBSS-sequence were capable 

of complementing the amf-muXar\X (Table 1A). In pWAM 100 the GBSS-gene 

is located opposite towards the kanamycin resistance (Kan') gene. This 

creates the possibility that the reading through of Kanr leads to the formation 

of antisense GBSS RNA. However, this does not seem to be important for 

the partial complementation, because unexpectedly, the construct pWAM 

101 results in even a higher frequency of plants (48 % instead of 16 %) 

w i th partial complementation. The lower frequency of plants w i th no or a 

reduced expression, using pWAM 101E is expected to be caused by the 

enhancer which is placed in f ront of the GBSS-promoter. 

Introduction of the four constructs containing either the full length GBSS-

gene wi th its own promoter or the GBSS-cDNA wi th CaMV promoter in a 

wild-type plant (Table 1B) resulted sometimes in transgenics w i th mixed 

staining tubers. This reduced amount of amylose content was found in 10 % 

of the transgenics. The position of the GBSS-gene towards the Kan'-gene 

and the presence of an enhancer in pWAM 101 E had no influence on the fre­

quency of such transgenic plants. Forty-five transgenics were selected after 

transformation wi th the construct pAMF 110. Although this mutant amf-

allele is not able of catalysing the formation of amylose in the amyloplasts, 

mRNA can be formed leading to the synthesis of GBSS-protein in the soluble 

f ract ion, which cannot be transported into the amyloplasts. 
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co-suppression and complementation 

Iodine staining of tubers showed one transgenic with reduced amylose con 

tent. When only the GBSS-promoter (pGB 121s) was inserted none of the 47 

plants had an inhibited GBSS-gene expression. This indicates that the coding 

part of the GBSS-gene is needed for co-suppression. It was found for all 

constructs except for pAMF 110 that plants showing co-suppression 

contained multiple inserts (data not shown). 

Inhibition of an endogenous GBSS-gene by transgenes involved in partial 

complementation of the amf-mutant 

The diploid transformant B10 was partially complemented for the amf-

mutation (Flipse et al., 1994). It contained at least seven GBSS-inserts. This 

plant was crossed with the diploid wild-type SUH3711. Embryo's were 

isolated, grown on embryo outgrowth medium and transferred to the green­

house. Finally, tubers of fifty-three F1 offspring plants were screened for 

their starch composition by staining with iodine (Table 2). 

Tatole 2. The segregation in mixed and blue staining Phänotypes in the Fi progeny of 
the partially complemented am?-mutant BIO after crossing with the wild-type SUH3711, 
The OHA was restricted with the restriction enzyme £coRI. The distal 1.3 kb OBSS cDNA 
was used as a probe. Khen the NPT II gene was used as a probe the same bands were 
found. Band a is the endogenous band of 4.3 kb. The sizes of the other bands are: 
b: 6.2 kb, c; 6.7 kb, d; 7.5 kb, a: 9.2 kb, f: 11.2 kb, g: 13.6 kb and ht ca. 17 kb 

Control 

BIO SHU3711 

Fi-progeny of BIO 

nuraber of plants 

starch colour 

28 

mixed3 

25 

blue 

I 
': The partially complemented ajaf~»ut«mt BIO has red staining tubers. The starch 
granules are red with a small blue core. 
~i The tubers of the Fl-progeny have a raixed staining pattern. Ho plants with red 
staining starch as the original BIO transformant were found among the Fl segregating 
population. The starch granules are red with a blue core of varying size, in all 
cases the blue core is larger than in the starch granules of the original BIO 
transformant. 
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Normally, after crossing a non-transgenic amf-mutant with a wild-type, all F1 

plants contain blue staining starch, because the wild-type allele is dominant. 

In the crossing with B10, twenty-five F1 plants had tubers with the expected 

blue staining cut surface. However, twenty-eight F1 -plants had mixed 

staining tubers. The starch colour of the F1-plants differ from the original 

transformant B10 which had red staining tubers. The partial complemen­

tation in the F1-offspring after crossing B10 with an amf-mutant (This thesis; 

Chapter 4) was correlated with the presence of a block of five inserts. In 

order to estimate the number of inserts here we isolated DNA from leaves. 

Southern hybridisation results of several of these F1 plants are shown in 

Table 2. 

Band a was the endogenous a/nrVwild-type GBSS-allele. Bands c, d, e, g and 

h were closely linked, as they were all present or absent. Bands b, and f 

were segregating independently. Table 2 clearly shows that also in this case 

the inhibition of the endogenous wild-type GBSS-gene was correlated with 

the presence of the block of five inserts, which probably acts as a single 

locus. 

Discussion 

Increased GBSS-activity gives only wild-type levels of amylose 

Introduction of additional copies of the GBSS-gene into a wild-type potato 

did not increase the amylose content. Although, it is clear that the presence 

of amylose was correlated with the GBSS-activity, an increase in GBSS-

activity above a certain level could not account for more amylose. The posi­

tive correlation between GBSS-activity and amylose content was not linear 

but led to a maximum amount of amylose as was already obtained in wild-

type plants. This phenomenon was observed and described in earlier situ­

ations with complemented amf-plants (Flipse et al., 1994) and in a GBSS 

gene-dosage population (This thesis; Chapter 2). Carbohydrate synthesis is a 

complex process, in which different enzymes are involved in the formation of 

several products. It is likely to assume that one of these enzymes or inter­

mediate products are becoming limited for amylose production instead of the 

GBSS enzyme. Kuipers et al. (1994) found that the amylose content of the 
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blue cores of starch granules from antisense GBSS-plants was similar to that 

of wild-type starch and so the amylose content of starch granules was 

correlated with the size of the blue core in the starch granules. This strongly 

suggests that only a restricted amount of amylose can be stored in the 

starch granules. This assumption is supported by the findings of Jane et al. 

(1992) that the amylose molecules are interspersed among the radially 

arranged amylopectin molecules. We suggest that an increase in amylose 

content above wild-type levels is only possible when more amylose can be 

stored in the granules due to a change in the crystalline structure of the 

amylopectin molecules or when the granule size increases. 

Co-suppression of the endogenous GBSS-allele 

An inhibition of the endogenous GBSS-allele was found in several transgenic 

plants containing additional GBSS sequences. The inhibition, resulting in a 

changed starch composition, could easily be visualised and was correlated 

with a loss in GBSS-activity and a lower level of steady state GBSS mRNA 

and GBSS protein present in the starch granules. It is, therefore, conceivable 

that the transcription of the endogenous GBSS-allele was affected. In several 

reports the phenomenon of co-suppression of plant genes has been 

described (Napoli et ai, 1990; van der Krol et ai, 1990; Smith et al., 1990) 

and possible mechanisms causing co-suppression have been put forward 

(reviewed by Jorgensen, 1990; Matzke eta/., 1994; Mol et al., 1994), like: 

inactivation of genes by DNA methylation introduced by the presence of 

homologous DNA sequences (Matzke et al., 1989; Hobbs et al., 1990; Linn 

et al., 1990) and allelic interactions which change the gene expression. It 

has been suggested that co-suppression is caused by antisense RNA, 

transcribed from the introduced gene (Grierson et al., 1991). This antisense 

RNA can be formed when the T-DNA is integrated close to a plant promoter, 

or alternatively the promoter of the sense gene converges with the promoter 

of the antibiotic resistance gene in the T-DNA. A duplex formation between 

sense and antisense RNA should explain the gene inhibition. 

In case of co-suppression of the GBSS-allele the position of the sense gene 

towards the Kanr gene appeared not to influence the frequency of co-

suppression. The fact that the amf-a\\e\e (pAMF 110) is capable of inhibiting 

the GBSS-gene expression suggests that the presence of GBSS mRNA and 
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perhaps GBSS protein in the soluble fraction is sufficient for the gene 

inhibition. The observation that the frequency of plants w i th co-suppression 

is lower when the amf-a\\e\e than when wild-type GBSS sequences are used 

might suggest that co-suppression is not caused by one mechanism, in 

which the GBSS mRNA plays a role, but that also an interaction w i th GBSS 

protein in the starch granules can be involved. The fact that no co-suppres­

sion was found when solely the GBSS promoter is inserted might support the 

idea that for co-suppression at least a part of the transcriptional sequence 

must be present. 

Inserts giving partial complementation of the amf-mutant can also cause co-

suppression of the endogenous wild-type GBSS-gene 

The crossing experiment of the partially complemented transformant B10 

wi th an amf and a wild-type respectively showed that the block of f ive 

inserts is capable of inhibiting the expression of introduced wild-type GBSS-

inserts (This thesis, Chapter 4) as well as the endogenous wild-type GBSS-

alleles (Table 2). One can therefore propose that co-suppression is in part 

responsible for partial complementation, something which has not been 

described before. 

The constructs pWAM 100, pWAM 101 and pWAM 101 E caused co-sup­

pression in 10 % of the wild-types. This frequency is equal to the 10 % of 

the partially complemented amf-genotypes using the construct pWAM 101E. 

This suggests that the partial complementation w i th pWAM 101E is mainly 

due to a co-suppression like phenomenon whereas the partial complemen­

tation after introducing pWAM 100 and pWAM 101 (which is the case in 

more than 10 % of the transgenics) is due to co-suppression or a low 

expression of the transgenes. The latter can be overcome by using an 

enhancer in f ront of the promoter. 

A comparison between co-suppression, antisense inhibition and com­

plementation 

The fact that co-suppression only occurred in 10 % of the transgenics and 

that this percentage was equal for all four constructs w i th GBSS sequences 

makes co-suppression an interesting phenomenon. The reason for variation 

76 



co-suppression and complementation 

in inhibition of the gene expression between tubers and tuber sectors is 

unclear but was also observed in flowers of petunia (van der Krol et al., 

1990). The phenotype of co-suppressed plants was very similar to the 

phenotype of transgenics resulting from antisense GBSS inhibition experim­

ents using wild-type genotypes (Visser et al., 1991; Kuipers et al., 1994) 

and experiments in which amf-muXanXs were partly complemented (van der 

Leij et al., 1991a; Flipse et al., 1994). The inhibited GBSS gene-expression in 

the transgenic wild-type led to the production of mixed staining starch in 

greenhouse grown tubers. The starch granules possessed a blue core and red 

outer layer as in antisense inhibited and in partially complemented plants. 

The steady state GBSS mRNA level was reduced in plants with an inhibited 

amylose production caused by either sense (this research) or antisense (Kui­

pers et al., 1991 ) constructs and was also observed in the red staining tuber 

parts of a partially complemented amf-plant (Flipse et al., 1994). 

The frequency of wild-type plants showing sense inhibition using the full 

lenght GBSS-DNA and GBSS-promoter was lower (10 %) compared to anti-

sense inhibition (52 %; Kuipers et al., 1995b). The frequency of plants with 

a complete inhibition was similar (3 %) as was its positive correlation with 

the number of T-DNA inserts. The stability of inhibition and the inheritance 

should be investigated in field trials and crossing studies to determine 

whether sense or antisense inhibition of the GBSS-gene in potato is the most 

promising approach for commercial purposes. 
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Introduction of sense and antisense cDNA for Branching 

Enzyme in the amylose-free potato mutant leads to phy­

sico-chemical changes in the starch. 
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Abstract 

One isoform of the Branching Enzyme (BE; EC 2.4.1.18) of potato (Solanum tuberosum 

L.) is known and catalyses the formation of a-1.6 bonds in a glucan chain, resulting in 

the branched starch component amylopectin. Constructs, containing the antisense and 

sense orientated distal 1.5 kb part of a cDNA for potato BE, were used to transform 

the, w i th iodine, red staining amf-mulanl. The expression of the endogenous BE-gene 

was inhibited either largely or fully as judged by the decrease or absence of the BE 

mRNA and protein. This resulted in a low percentage of starch granules w i th a small 

blue core and large red outer layer. There was no effect on the amylose content, bran­

ching degree and Am„ of the starch. However, when the physico-chemical properties of 

the different starch suspensions were assessed, small differences were observed. 

Though small, these differences indicated that starch in the transformants was different 

from that of the awf-mutant. 
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Introduction 

Starch is the major form of carbohydrates stored in plants and consists for 

20-25 % of amylose and 75-80 % of amylopectin. Amylose is an essentially 

linear polymer, consisting of a(1.4)-linked a-D-glucopyranosyl units. Amylo­

pectin is a branched polymer of a-D-glucopyranosyl units linked by a(1.4) 

bonds with branches resulting from o(1.6)-linkages (Shannon and Garwood, 

1984). 

Mutants with an altered starch composition are known. They lack the 

activity of at least one of the several enzymes involved in starch synthesis. 

These mutants are very important for understanding the role of these 

enzymes. For instance the waxy maize (Echt and Schwartz, 1981) and 

amylose-free (amf) potato mutant (Hovenkamp-Hermelink et al., 1987) have 

starch granules with almost 100 % amylopectin and lack Granule Bound 

Starch Synthase (GBSS) activity. Amf-sXardn can be easily distinguished 

from wild-type starch by the red colour when starch is stained with an iod­

ine-potassium-iodine solution (Shannon and Garwood, 1984). 

Amylopectin is produced by the interaction of two enzymes; Soluble Starch 

Synthase (SSS) and Branching Enzyme (BE). The latter is capable of 

hydrolysing an o(1.4)-bond of a glucan chain and linking the separated chain 

segment to an acceptor chain via an o(1.6)-bond. Although multiple forms of 

(BE) have been found in maize (BE I, BE Ha and BE Mb; Boyer and Preiss, 

1978) and pea (BE I and BE II; Smith, 1988), only one subunit could be 

identified in potato (Drummond et al., 1972; Borovsky et al., 1975; Vos-

Scheperkeuter et al., 1989), despite intensive research. This potato enzyme 

is closely related to the BE I of maize and the BE II of pea (Salehuzzaman et 

al., 1992). 

Several mutants like the amylose-extender (BE Mb) and dull (BE Ma) of maize 

and the wrinkled pea (BE I) have an increased amylose content (Hedman and 

Boyer, 1982; Edwards et al., 1988), due to the lack of one of the multiple 

forms of the branching enzyme (Boyer and Preiss, 1981; Smith, 1988). 

These mutants have a decreased starch and dry weight production and an 

increased sugar content compared to wildtype seeds. This starch has, as 

expected, a blue colour, when stained with an iodine solution. No mutants 

are known for the other isoforms of the BE in maize and pea. Crossing the 

red colouring waxy (wx) maize mutant with the blue colouring amylose-

extender (ae) resulted in a double mutant aewx plant with blueish staining 
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starch. This aewx starch consists solely of loosely branched amylopectin 

wi th long external chains (Boyer et al., 1976). 

In potato no mutation for BE is known and the influence of this enzyme on 

the starch composition in potato is, therefore, unknown. The fact that BE is 

probably present in only one isoform and that the cDNA coding for this BE 

has been cloned (Kossmann et al., 1991) makes the antisense RNA tech­

nique very attractive for effectively decreasing or inhibiting the BE express­

ion and to determine its role in starch biosynthesis. This antisense procedure 

has been used succesfully for other genes (van der Krol et al., 1988; Smith 

et al., 1988; Visser et al., 1991). Other studies have shown that also intro­

duced "sense" genes can interact wi th the homologous genes in the plant, 

leading to a decreased expression of both genes (Napoli et al., 1 990 ; van der 

Krol et al., 1990 ; Smith et al., 1990). This phenomenon is called co-sup­

pression. 

In this paper, experiments are described to create transformants w i th a 

decreased expression of the gene for BE in order to study its funct ion in 

carbohydrate synthesis. In an attempt to create a situation comparable w i th 

that of the aewx maize mutant, an a/nf-potato genotype was transformed 

wi th Agrobacterium tumefaciens containing the distal 2.8 or 1.5 kb cDNA of 

BE in sense and antisense orientation. A decreased expression of the BE-

gene in an amf-background of potato should be expected to produce loosely 

branched amylopectin, staining blue w i th iodine. To test this hypothesis, the 

starch of transformants was stained wi th iodine and analysed for its physico-

chemical properties. 

Materials and methods 

Construction of binary plasmids 

A partial potato BE clone of 1.5 kb and 2.8 kb cDNA isolated by screening a 

phage lambda ZAP II potato tuber cDNA library (Kossmann et al., 1991) was 

used to clone in the binary vector pROK-1 (Baulcombe et al., 1986). The cDNA 

was digested with EcoRI and cloned into the EcoRI site of pMTL 25 (Chambers 

et al., 1988), digested out of the plasmid pMTL 25 by BamH\ and cloned into 
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the BamH\ site of pVU 1012, resulting in the recombinant Plasmids pCVE 1.5 A 

(antisense) and pCVE 1.5 B (sense) with the CaMV promoter in front of the 

cDNA (Fig. 1). The pCVE 1.5 and 2.8 plasmids were transformed into Agrobac-

terium rhizogenes LBA 1333 by the direct transformation procedure as des­

cribed by Höfgen and Willmitzer (1988). The A. rhizogenes strain AM 8703 

containing pBI 121 was used as a control strain (Visser et al., 1989b). Mobiliz­

ation of the pCVE 1.5 and 2.8 plasmids to A. tumefaciens LBA 4404 was done 

with the helper plasmid pRK 2013 (Ditta et al., 1980). Here the A. tumefaciens 

strain AM 8706 was used as a control. To test the integration of the mobilized 

plasmids into the Agrobacterium strains, isolated plasmid DNA was analyzed 

(Holmes and Quigley, 1981). 

NPT II 
pCVE 2.8 A [RB] > 

PCVE2.8B & 

NPT II 

35s ^ > 

35s ^ > 

BE cDNA 
.*',.. V 

B E E 
I I 

BE cDNA 

T 

B 

T 

> 

p C V E 1 . 5 A [ RBV 
NPT II 

NPT II 

p C V E 1 . 5 B [RB] > 

M E > BE cDNAl T 

35s BE cDNA T —[LB] 

Fig. 1. Constructions of antisense and sense genes based on the 3.1 kb full lenght 
BE cDNA. pCVE 1.5 A = antisense 1.5 kb cDNA; pCVE 1.5 B = sense 1.5 kb 
cDNA; pCVE 2.8 A = antisense 2.8 kb cDNA; pCVE 2.8 B = sense 2.8 kb cDNA; 
B = BamHi; E = £coRI = l; LB = left border; NPT II = neomycin phosphotrans­
ferase; RB = right border; T = nopalinesynthase terminator; 35S = 35S CaMV 
promoter. 
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Plant material 

Stem segments, without axillary buds, of a diploid (2n = 2x = 24) homozygous 

amf-mutant genotype 87.1029-31 of Solanum tuberosum L. were used for 

transformation experiments. This mutant was the result of a crossing program 

between the original amf-mutant 86.040 and two different diploid wildtypes 

(Jacobsen et al., 1989). Plant growth, transformation with A. tumefaciens and 

microtuber induction was as described by Flipse et al. (1994), transformation 

with A. rhizogenes as described by Visser er al. (1989c). 

Determination of starch characteristics 

Screening of hairy roots for the presence of amylose was performed by staining 

the root tips with a freshly prepared mixture of chloralhydrate (2 mg in 2 ml 

water) and Lugol's solution (iodine-potassium-iodine) in a ratio of 1:3 (v/v). 

Starch granules were stained as described by Flipse et al. (1994). The cut 

tubers were stained and starch was isolated according to the method described 

by Kuipers et al. (1991). Amylose content was determined as described by 

Hovenkamp-Hermelink et al. (1988b). The Luff-Schoorl method was used to 

measure the branching degree of the starch (Schoorl, 1925). For this purpose 

100 mg of starch was diluted in water and cooked until a clear solution was 

obtained. This soluble starch was debranched by adding 2 drops of 0.1 N HCl 

and 10 mg isoamylase and incubated at 40°C for 2 h. To determine the amount 

of reduced ends 8.3 ml Luff-Schoorl solution (50 g «I"1 citric acid; 25 g-l"1 cupric 

sulphate; 143.8 g«!"1 CaC03) was added, the mixture was boiled for exactly 10 

min and quickly cooled. To the solution 3.3 ml Kl, 6.7 ml 5 N H2S04 and 1.7 ml 

starch solution (0.5 g hydrolysed starch in 10 ml water plus 40 ml boiled water) 

was added and the mixture was titrated with 0.05 N thiosulphate until a pink 

colour appeared. The used amount of thiosulphate was a measure for the 

amount of reducing ends. The branching degree of the starch was determined 

by searching for the correct values in the Luff-Schoorl table. 

Starch and sugar content were determined as described by Kuipers et al. 

(1995a). 

Western analysis 

Western analysis was done using the PhastSystem procedure. To examine the 

presence of BE protein in the soluble fraction, tubers were pressed and 50 //I of 
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supernatant was diluted with 50 p\ sample-buffer with a final concentration of 

20 mM Tris-HCl pH 8.0, 2 mM EDTA, 20 % glycerol, 2 % SDS, 0 .002 % 

bromophenolblue and 10 % ß-mercaptoethanol and boiled for 2 min. Denyer et 

al. (1993) have proven, in a study with developing pea embryos that both BE 

isoforms are not only present in the soluble fraction, but also tightly bound to 

the starch granules. To examine the presence of BE protein in the starch 

fraction, a starch suspension of 50 mg-ml"1 sample-buffer was boiled for 2 min 

and centrifuged (for 5 min at 10.000 rpm in an eppendorf centrifuge. The 

supernatant was 10 times concentrated by placing in vacuum inside an exicator. 

From each sample of the soluble or granule fraction, 4 p\ was analyzed on 12 % 

Polyacrylamide gels which were provided with the system. Blotting on 

nitrocellulose was done in the PhastSystem for 15 min by 20 V using transfer 

buffer (25 mM Tris, 0.2 M glycine, 200 ml methanol in 1 I). After blocking for 

at least 1 h with 3 % gelatine in TBS (20 mM Tris-HCl; pH 7, 0.5 M NaCI in 

2.5 I) the blots were washed twice for 5 min in TTBS (TBS with 0.05 % 

Tween). After hybridising the blots with an antiserum raised against a denatured 

preparation of potato BE (Vos-Scheperkeuter et al., 1989) the blots were 

washed again in TTBS. Alkaline phosphatase was used as a second antibody 

and the antigens were detected by incubating the blots for 30 min in the dark in 

100 ml buffer (0.1 M NaHC03 and 1 mM MgCI2, pH 9.8) with 200 p\ NBT (4-

nitro blue tetrazolium chloride; 30 mg-ml"1 solution of 7 demethylformamide: 3 

H20) and 200 //I BCIP (5-bromo-4-chloro-3-indolyl-phosphate; 15 mg-ml"1 in 

demethylformamide). The reaction was stopped with water. 

Molecular analysis 

The RNA was extracted from tubers as described by Salehuzzaman et al. 

(1992). Equal amounts of RNA were loaded to allow a comparison between 

different transformants. The RNA was hybridised with the full length cDNA of 

the branching enzyme. RNA blot hybridisation and labelling were performed as 

described by Visser et al. (1989a,b). 

Starch granule size determination 

Starch granule size distribution was determined of a starch-water solution, using 

a Coulter Laser LS 130 particle size analyzer. The determination with the 

Coulter Laser is based on analyses of the forward light scattering by the 
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particles. The patterns were converted into particle size distributions by use of 

Fraunhofer theory. 

Small deformation tests 

Dynamic rheological properties of the 5 w t % starch suspensions at small 

deformations were determined by applying a small oscillating shear deformation 

using a Bohlin VOR Rheometer as described by Keetels and van Vliet (1994). 

The Bohlin VOR Rheometer was equipped with concentric cylinders made of 

stainless steel. The radius of the inner cylinder was 14.00 mm and that of the 

outer cylinder 15.25 mm. A torque bar of 0.17 m N - m 1 was used. The 5 w t .% 

starch suspensions were heated to approximately 65 °C under gentle stirring 

until the viscosity slightly increased. After transferring them to the measuring 

body of the rheometer, which had a temperature of 50°C, the starch suspen­

sions were heated to 90°C, at which temperature they were kept for 15 min 

and cooled to 20°C. They were allowed to stay at this temperature for several 

hours. Heating and cooling were performed at a rate of 2 K-min"1. Measure­

ments were made every 60 s. Oscillations were performed at a frequency of 0.1 

Hz and a strain amplitude of 0 . 01 . 

Differential scanning calorimetry 

Differential scanning calorimetry was performed using a Perkin Elmer DSC 2. 

Approximately 14 mg of starch and 56 mg of demineralized water were 

weighed into stainless steel cups. The suspensions were heated from 30 to 

110°C at a scanning rate of 5 K-min"1 and immediately after heating they were 

cooled to 30°C at a scanning rate of 40 K-min'1. An empty stainless steel cup 

was used as a reference. 

Resul ts. 

Testing of the constructs in an Agrobacterium rhizogenes system by making 

use of the amf-mutant 

Four different binary plasmids were constructed containing a 2.8 or 1.5 kb 

85 



Chapter 6 

part of the BE cDNA in sense (pCVE 2.8 B; pCVE 1.5 B) or antisense (pCVE 

2.8 A; pCVE 1.5 A) orientation (Fig. 1). The effect of these plasmids, when 

inserted in potato was quickly screened by examining the starch colour in 

hairy roots after iodine staining. 

A red starch colour, as for the control, was always found in the hairy roots 

resulting f rom the transformation events w i th the plasmids containing the 

2.8 kb cDNA in sense or antisense orientation (Table 1). A low frequency of 

hairy roots w i th blue starch was obtained when the antisense 1.5 kb cDNA 

part of the branching enzyme was used. Also a low frequency of hairy roots 

wi th blue colouring starch was found wi th the sense 1.5 kb cDNA part. 

Since none of the hairy roots with the control plasmid had this blue colouring 

starch in the roottips, the inserted 1.5 kb cDNA was thought to be respon­

sible for the change in starch colour. 

Table 1. The number of hairy roots obtained after Agrobacterium rhizogen-
es transformation, classified according to the inserted plasmid and the 
starch colour in their columella cells, after staining with iodine 

Construct* 

pCVE 1.5 A 
pCVE 1.5 B 
pCVE 2.8 A 
pCVE 2.8 B 

control 
8703 

red 

135 
287 
138 
110 

152 

Colour 

blue 

4 
4 
0 
0 

0 

total 

139 
291 
138 
110 

152 

pCVE 1.5 A: 1.5 kb cDNA for BE in antisense orientation; 
pCVE 1.5 B: 1.5 kb cDNA for BE in sense orientation; 
pCVE 2.8 A: 2.8 kb cDNA for BE is antisense orientation; 
pCVE 2.8 B: 2.8 kb cDNA for BE in sense orientation; 
8703: control plasmid 

Selection of A. tumefaciens transformants with differently colouring starch 

after iodine staining 

Because a test of the constructions wi th A. rhizogenes showed that intro­

duction of the distal part of the 1.5 kb cDNA in both sense and antisense 
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orientation had influence on the starch composition of hairy roots, transform­

ation with A. tumefaciens was performed using the constructs containing 

1.5 kb cDNA. Shoots were multiplied and transferred to microtuber induction 

medium and finally to the greenhouse. The tubers of all the individual 

transformants had red coloured cut surfaces, when stained with iodine. For a 

more detailed view of the starch colour, starch granules were isolated, 

stained with iodine and screened under a microscope. 

Of the 46 regenerated transformants with the pCVE 1.5 A, 12 had a blue 

core in the small starch granules of both, the micro and greenhouse grown 

tubers (Table 2). 

Table 2. The number of transgenic plants regenerated after Agrobacterium 
tumefaciens transformation, classified according to the inserted plasmid and the 
colour of te starch granules 

Construct8 

pCVE 1.5 A 
pCVE 1.5 B 

red 

34 
16 

Colour 

blue 

12 
7 

no starch 

0 
0 

total 

46 
23 

pCVE 1.5 A: 1.5 kb cDNA in antisense orientation; 
pCVE 1.5 B: 1.5 kb cDNA in sense orientation 

Hardly ever a blue core was found in large starch granules. A variation in 

starch granule colour was found between and within tubers. The change to 

blue colouring starch was not observed in the stomatal guard cells of the 

leaves. In two transformants, BV 2057 and BV 2060 the most prominent 

effect in starch colour change was found (Fig. 2). Not only more small starch 

granules had a blue core but also the average size of the starch granules 

with a blue core were larger than those of the other transformants (Table 3). 

These two transformants had a different starch granule size distribution as 

compared to the controls. Both transformants were used for further analysis. 

Of the 23 transformants with the pCVE 1.5 B construct, seven had a small 

blue core in the small starch granule fraction (Table 2). The pattern of starch 

colour throughout the tuber was comparable with that of the antisense 

cDNA transformants. 
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Fig. 2 A.B. Iodine staining of tuber starch granules. 
A: Starch granules of clone BV 2057 some of them with a blue staining core and 
red staining outer layer 
B: Starch granule of clone BV 2057 stained with a minimum amount of iodine. 

Both, the size of the blue core and the number of small granules having a 
blue core, were low and comparable with that of the antisense BE transfor­
mants with small effect. No sense transformant with an effect as in BV 
2057 or BV 2060 was found (Table 3). Two of the seven transformants with 
small blue cores in the starch granules were therefore selected for further 
analysis. 
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Table 3. The average granule size of the controls and the several antisense and 
sense transformants. The number of starch granules with a blue core (per thou­
sand starch granules) and the size of the largest starch granule with a blue core 
found in antisense and sense transformants (ND = not determined; - no starch 
granules with a blue core present) 

average granule 
plant clone 

Control 
1029-31 
BC 222 

size in / /ma 

32.0 
ND 

Antisense transformants 
BV 2011 
BV 2014 
BV 2057 
BV 2060 

Sense transformants 
BV 2120 
BV 2124 
BV 2134 
BV 2136 

ND 
ND 

40.6 
37.8 

ND 
ND 
ND 

40.0 

starch granules w i th a 

number 
per 1000b 

0 
0 

0 
92 

305 
237 

186 
0 

50 
199 

blue core 

maximum 
sizec 

-
-

-
-

32 
21 

15 
-

9 
13 

8 The average starch granule diameter in fjm; 
b The number of starch granules with a blue core per 1000 starch granules 

present; 
c The diameter in //m of the largest starch granule with a blue core observed 

Expression of the gene encoding branching enzyme in transgenic potato 

plants 

To determine the steady state level of mRNA for BE, total RNA was 

extracted from greenhouse grown tubers, blotted and hybridized wi th 32P 

labelled full length cDNA for BE. In Fig. 3, the results are shown for the 

selected sense and antisense transformants and controls. Less mRNA for BE 

was detected in the selected transformants than in the transformed and 

untransformed controls. The best performing transformants BV 2057 and BV 

2060 showed a very weak signal (Fig. 3) or sometimes even no detectable 

signal could be found (data not shown). The RNA transcribed from the 

inserted cDNA should have a size of 1.5 kb. Neither in the transformants 

wi th the sense, nor in those wi th the antisense construct, a signal was seen 

of 1.5 kb. This did not mean that the inserted cDNA wasn' t transcribed, it 
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merely indicated that no detectable levels of RNA of 1.5 kb were present. 

The amount of BE protein present in the.soluble and granule fraction was 

studied. It can clearly be seen from Fig. 3 that the sense (lane 5 and 6) and 

antisense (lane 1 and 2) transformants with a blue core in the small starch 

granules had no signal compared to the transformed and untransformed 

control with a clear signal (lane 3 and 4). The starch fraction was also 

screened for its BE content. Both controls (lane 3 and 4) showed a clear 

signal indicating that BE protein was present in the starch fraction of potato 

tubers. Most of the transformants, all of which have a small blue core in the 

small starch granules had a signal as well, indicating the presence of some 

BE in the starch fraction. The two antisense transformants BV 2057 and BV 

2060 (lane 1 and 2) with the most prominent effect in starch colour gave no 

signal. Because the maximum amount of protein was loaded on the gel, we 

can conclude that no signal could be detected for the transformants BV 

2057 and BV 2060. This indicates that the amount of BE was undetectably 

low, or that no BE was present in the granule fraction. 

PLANT 

antisense control sense 

t> o 
m u> 
o o 
N M 

>• > 
ta » 

1 
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*4 
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RNA 

soluble 
protein 

granule 

Bf ffpfl IflJ 
4fi**+ 

4 

l *_ 
i ^ 

Fig. 3. The level of BE-mRNA and BE-protein in the soluble and granule fraction, in 
tubers of some transformants and their controls. BV 2057 and BV 2060: anti-
sense 1.5 kb cDNA; 1029-31 : 
untransformed control; BC 222: control plasmid 8706; BV 2120 and BV 2136: 
sense 1.5 kb cDNA 
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Table 4 . The branching degree, starch and sugar content of the amf-contro\ 1 029 -31 , 
transformed control BC 222 and four transformants w i th either the antisense or sense 
1.5 kb cDNA inserted. 

Plant 
clone 

Control 
1029-31 
BC 222 

Branching 
degree* 

3.78 ± 0.45 
4.11 ± 0.22 

Antisense transformants 
BV 2057 
BV 2060 

4 .24 ± 0.28 
4 .65 ± 0 .32 

Starch 
content" 

125 ± 30 
140 ± 35 

118 ± 28 
135 ± 27 

Sucrose 
content1" 

3.1 ± 0.5 
2.9 ± 0.6 

2.8 ± 0.6 
3.3 ± 0.5 

Glucose 
content" 

1.0 ± 0.2 
0.8 ± 0.1 

1.1 ± 0.3 
0.9 ± 0.2 

Fructose 
content" 

0.8 ± 0.3 
0.9 ± 0 .2 

0.7 ± 0 .2 
1.1 ± 0.1 

Sense transformants 
BV 2120 3.91 ± 0.35 152 ± 2 0 3.4 ± 0.7 0.7 ± 0.2 1.0 ± 0 . 4 
B V 2 1 3 6 3.84 ± 0.27 196 ± 4 0 2.5 ± 0.8 1.1 ± 0 . 3 0.6 ± 0.2 

8 the branching degree is given in DE; 
" the starch and sugar conent is in mg/g fresh weight 

Amylopectin characteristics of plants with an altered starch colour 

The presence of a blue core in the starch granules suggests that amylose-like 

starch was present. The iodine binding ability of starch molecules depends 

on its branching degree. A change in iodine binding ability could be 

visualised by a shift in the Amax. However, no significant difference in Amax 

could be observed for the antisense transformants BV 2057 and BV 2060 

(no data shown). Also no change in the branching degree could be found 

using the Luff-Schoorl procedure (Table 4). A reduced branching of the 

starch molecules is expected to result in larger starch chains. The chain 

length distribution was measured, but no changes compared to the controls 

were found (data not shown). This indicated that the lack of BE in the 

soluble fraction and/or granule fraction had no measurable influence on the 

branching degree of the starch. The branching degree of the glucose poly­

mers in the soluble fraction (glucans) was also analyzed by scanning of the 

soluble fraction for its Amax. The Amax was variable for both the controls and 

the transformants, which made it difficult to visualize the effect of the 

introduced constructs. No differences in starch and sugar content were 

found (Table 4). 
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Physico-chemical properties of starch-water systems 

Although no significant differences in the branching degree of starch was 

measured, other tests were made to determine whether a change in starch 

properties had occurred or not. It was known from other studies with starch 

from both potato and maize, that the rheological behaviour was influenced 

by the presence of amylose. 

300 r- 100 

£ 
z 
CD 

2 0 0 -

1 0 0 -

40 60 

Time (min) 

Fig. 4 . Changes in the storage moduli of 5 w t . % potato starch suspensions during 
heating and cooling. Temperature against time ( • * - - ) ; amylose-free control ( — —); 
wild-type control ( ); BV 2057 ( ); BV 2060 ( - - - ) 

Changes in the storage moduli (Gl of heated 5 wt.% starch suspensions, 

measured during heating and cooling are shown in Fig. 4. It can be seen that 

the G' starts to increase strongly at approximately 70°C for both the amf-

mutant and the antisense transformants, whereas the increase in G' starts at 

a lower temperature. This increase in moduli coincides with the first stages 

of crystallite melting, as determined with DSC (Fig. 5). At high temperatures 

the moduli decrease, and during cooling they remain at a constant level, for 
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both the amZ-mutant and the antisense transformants. For the amylose con­

taining starch the peak modulus was higher and decreased less during the 

time the starch system was at 90°C. During cooling the modulus increased. 

The moduli of the antisense transformants were higher than that of the amf-

control, although the level of the wildtype wasn't reached. 

WILDTYPE 

40 45 50 55 60 65 70 75 80 85 90 

Temperature (°C) 

Fig. 5. Differential Scanning Calorimetry (DSC) thermograms of 20 w t . % starch 
suspensions of the antisense transformants BV 2057 and BV 2060 , the amf-
control 1029-31 and a wild-type 
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Discussion 

The influence of introduced sense and antisense constructs of the cDNA for 

potato branching enzyme on the starch composition of the amf-mutant, 

could quickly be screened by using the A. rhizogenes transformation system. 

A few hairy roots regenerated after transformation with the antisense and 

sense orientated 1.5 kb cDNA had blue colouring starch in the columella 

cells of their roottips. The use of the A. rhizogenes transformation system 

as a first screening for the biological effects of the constructs was also 

applied by Kuipers et al. (1994). 

The 1.5 kb antisense and sense BE cDNA constructs can inhibit the express­

ion of the BE-gene 

The starch granules in the tubers of some A. tumefaciens régénérants were 

partly blue. This blue colour was also found in the double mutant aewx of 

maize (Boyer et al., 1976). This indicates that the amf-mutation is not 

epistatic over the reduced expression of the BE-gene as is the case in the 

double duwx mutant of maize, that lacks the BE IIa isoform and has a red 

starch colour when stained with iodine (Shannon and Garwood, 1984). Exa­

mination of the mRNA and protein level confirmed that this blue colour was 

formed due to suppression of the endogenous, only known potato BE gene. 

Plants with a blue core in the starch granules had less BE mRNA in the 

tubers as compared to the amf-mutant and no BE protein was detected in 

the soluble protein fraction of the tubers. It can therefore be concluded that 

the 1.5 kb antisense and sense cDNA of the BE are capable of suppressing 

the expression of its endogenous homologous sequence to a very large, 

maybe full, extent. Expression of other genes coding for chalcone synthase 

in petunia (van der Krol et al., 1988), polygalacturonase in tomato (Smith et 

al., 1988b) and Granule Bound Starch Synthase in potato (Visser et al., 

1991) have been reduced by introducing a part of the gene in antisense 

orientation. Suppressing the endogenous gene expression by introducing 

homologous sense genes has also been found for chalcone synthase in 

petunia (Napoli et al., 1990; van der Krol et al., 1990) and polygalacturoni-

dase in tomato (Smith eta/., 1990). 

The here presented research proved that the presence of BE protein is not 

only restricted to the soluble fraction of potato tubers. BE protein was also 

94 



inhibition of the BE-gene expression 

found in the granule fraction of the amf-mutant, the transformed control and 

some of the transformants as it was found in the granule fraction of pea 

embryos (Denyer et al., 1993). In the soluble fraction different bands are 

found within one lane. These bands indicate that different sizes of the BE 

protein are present. These different sizes of BE protein are always found in 

potato and are thought to be the result of protein processing (Blennow and 

Johansson, 1991). BE of only one size was found in the granule f ract ion, 

indicating that the protein is bound to the starch granule in a stable form. 

The two antisense transformants wi th the largest amount of starch granules 

with a blue core, had no detectable amounts of BE protein linked to the 

starch granules. It seems that the reduction in BE protein is f irst noticeable in 

the soluble f ract ion. When the BE protein is more reduced no detectable 

amounts are found in both the soluble and starch fractions. 

The reason why the 2.8 kb cDNA in sense or antisense orientation is 

incapable of suppressing the BE-gene expression is not known. This is 

especially so, because the 1.5 kb cDNA fragment is part of the 2.8 kb. Nei­

ther is the relationship clear between the reduced expression of the BE-gene 

and an increased size of the starch granules. 

A reduction in the BE-gene expression has influence on the physicochemical 

properties of starch-water systems 

Despite the change in starch colour, no differences could be found in the 

Amax, branching degree and chain length of starch molecules. No differences 

in starch and sugar content were found as was reported for the BE mutants 

of maize and pea (Boyer et al., 1976; Shannon and Garwood, 1984). 

However, when we looked at the mechanical properties at small deforma­

tions of 5 w t . % starch suspensions made from the transformants BV 2057 

and BV 2060 and the amf-control we could observe a small difference (Fig. 

4). 

The increase in moduli was ascribed to swelling of the starch granules, 

which coincides wi th the first stages of crystalline melting in the granules 

(Keetels, 1995). The fact that the melting behaviour was similar for the 

antisense transformants and the a/nf-control (Fig. 4 and Fig. 5) would indi­

cate that the stabilities of crystalline regions in the starch granules were not 

affected by the introduction of antisense cDNA for BE. The decrease in 
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modulus at high temperature might be caused by melting of the remaining 

crystallites and a s low breakdown of the amylopectin matrix (Keetels and 

van Vliet, 1994). 

On the assumption that at high temperatures the systems were closely 

packed wi th swollen granules, the differences in moduli between the anti-

sense transformants and the amf-contro\ could be explained by differences in 

the stiffness of the swollen granules. The differences in stiffness might be 

induced by the transformation. 

Starch colour 

The location of the blue core in the starch granules suggests that amylose-

like chains were only located in the centre of the starch granules. Al though a 

blue colour was observed, no difference in branching degree of the starch 

was found. Starch granules wi th a small blue core and red outer layer were 

also observed by Kuipers et al. (1994) after inhibiting the expression of the 

GBSS-gene. They even found a small blue core in the starch granules of 

transformants in which the GBSS gene was inhibited, resulting in no measur­

able presence of amylose. This indicates that the staining technique wi th 

iodine was more sensitive for detecting starch chains w i th an altered 

branching degree than other techniques. 

The g rowth of starch granules occurs via apposition, w i th the core being the 

starting point of g rowth (Badenhuizen and Dutton, 1956). 

The fact that the blue starch was only present in the core, suggested that 

probably a second, but not yet known Branching Enzyme or another enzyme 

in the carbohydrate synthesis is responsible for catalysing the formation of 

branches in the later development of the starch granules. Kram (1995) 

showed that BE is present in the amyloplast stroma at the periphery of the 

starch granule. Therefore, it can also be inferred that the antisense RNA 

production is too low. When the surface of the starch granule is still very 

small, enough antisense RNA can be generated to capture the RNA produced 

by the endogenous gene for BE. When the starch granule has g rown, not 

enough antisense RNA is produced to capture all the endogenous RNA, 

giving starch with more branching points that stains red w i th iodine. This 

does not explain why predominantly small starch granules have this blue 

core. We suggest that the formed loosely branched amylopectin is diffused 
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from the core into the rest of the starch granule during the further granule 

development resulting in a starch granule in which the amylose like chains 

are undetectale after staining with Lugol. 

Even though the branching degree of the amylopectin molecules is not 

measurably decreased, this research shows that the only known BE isoform 

has influence on the starch properties in potato tubers. More investigations 

are necessary in order to understand the role of this BE isoform and the 

influence of other enzymes, if any, in the carbohydrate synthesis in potato. 
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General discussion 

Abstract 

The amf-mutant as a model plant 

In this study gene expression and gene silencing was examined of the t w o 

genes involved in starch biosynthesis. Both genes code for the last step 

enzymes in the pathway of amylose (Granule Bound Starch Synthase; GBSS) 

and amylopectin (Branching Enzyme; BE). Changes in expression of one or 

both genes were expected to influence the starch composition in transgenic 

plants. Much benefit was therefore obtained by using an amy/ose-free (amf) 

mutant of potato (Hovenkamp-Hermelink et al., 1987) as a model plant. This 

monogenic and recessive amAmutant lacks GBSS-activity and GBSS-protein 

in the starch granules due to a point deletion in the transit-peptide region of 

the gene coding for GBSS (van der Leij et al., 1991b). The great advantage 

of this mutant was the easy procedure to distinguish the altered starch f rom 

wild-type starch. Amylose-free starch has a red colour when stained wi th 

iodine, whereas amylose containing starch has a blue colour (Hovenkamp-

Hermelink et al., 1987). This difference in iodine affinity is dependent on the 

length of the starch chains. The long chains of amylose can form an inclu­

sion complex w i th iodine giving the blue colour. Screening by iodine staining 

was an easy and quick procedure and even a variation in gene-expression 

could be observed within tubers (Visser et al., 1 9 9 1 ; Kuipers et al., 1991) as 

a mixed staining pattern. The staining of individual starch granules gave 

more detailed information about the level of GBSS gene expression (Kuipers 

et al., 1994). Tubers wi th a relatively small decrease in GBSS gene-express-
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ion had starch granules with a large blue core surrounded by a small red 

outer layer. With a further decrease in GBSS gene-expression the size of the 

blue core decreased until starch granules were formed with a very small blue 

core as frequently found in antisense GBSS plants with no measurable 

amylose content (Kuipers et al., 1994). The mutant starch was not only 

present in tubers, but could also be found in the stomatal guard cells, the 

columella cells of roottips and in the microspores (Jacobsen et al., 1989). 

This made examination of gene-expression throughout the plant possible. 

Segregation analysis after staining of microspores provided us with infor­

mation about the number of wild-type GBSS-alleles in the plants of a gene-

dosage population (Chapter 2). Microspore segregation analysis in combina­

tion with Southern hybridisation gave information about the minimum 

number of independently segregating active GBSS-inserts in the comple­

mented amZ-plants (Chapter 3). 

There are gene-dosage and multi-allelic effects of the GBSS-gene on 

the GBSS-activity and amylose content 

A gene-dosage population was obtained by crossing two genotypes that 

were duplex for the wild-type GBSS-allele; AmfAmfamfamf (Chapter 2). 

Nulliplex, simplex, duplex, triplex and quadruplex plants could be identified 

by monitoring the segregation of red and blue microspores. Triplex plants did 

not have solely blue staining microspores like quadruplex plants, but a small 

percentage of the microspores stained red due to double reduction (data not 

shown). In this case double reduction, as a result of quadrivalent formation 

during meiotic pairing, was expected because the GBSS-locus is positioned 

at the distal part of chromosome 8 (Gebhardt et al., 1989; 1991). Triplex 

and quadruplex plants were placed in one group. A dosage effect of the 

wild-type GBSS-allele on both the GBSS-activity and amylose content was 

found. The dosage effect was linear for the GBSS-activity. This did, how­

ever, not account for a linear increase in the level of GBSS-protein in the 

starch granules as was the case in rice (Sano, 1984) and maize (Tsai, 1974). 

Already in simplex potato plants, wild-type levels of GBSS-protein could be 

found. Despite that, a dosage effect on amylose content was found although 

the effect was not linear. The presence of three or more GBSS-alleles did not 
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account for a further increase in amylose content compared to potato plants 

with two wild-type GBSS-alleles. The dosage effect on amylose content in 

the triploid endosperm of maize was also not linear (Boyer et al., 1976). 

There was no difference between the presence of two and three wild-type 

alleles. In the endosperm of rice the dosage effect varied between crossings 

(Sano, 1984) when different wild-type alleles were present. For potato, 

plants within the simplex group appeared to have different amylose contents 

(Chapter 2). This indicates that different wild-type alleles are present in the 

simplex plants. In pilot studies, using PCR technique no different wild-type 

GBSS-alleles were detected at the molecular level (Chapter 2). Whether 

these differences in amylose content were mainly caused by variation in 

expression because of small differences between wild-type alleles (multi-

allelism) or by differences in the genetic background or both remains unclear. 

The linear increase in GBSS-activity was not accompanied with a linear 

increase in GBSS protein. This indicates that less non-active GBSS protein is 

present in multiplex plants than in simplex plants. Despite the fact that there 

is not a detectable different amount of GBSS protein between simplex and 

duplex plants a significant difference in amylose content was measured. 

The amf-mutation can be fully complemented with the wild-type GBSS-

allele 

A diploid a/r?r"-mutant was transformed with the GBSS-gene (Chapter 3). This 

led to diploid and tetraploid (mitotically doubled) transgenic plants with wild-

type levels of GBSS-activity and amylose content and blue staining starch. A 

comparison of the results from microspore staining and Southern 

hybridisation indicated that in tetraploid plants the transgene was inserted 

after chromosome doubling. The complementation was much better than 

that of the nitrate reductase deficient mutant of Nicotiana plumbagonifolia 

where up to 6 % of the nitrate reductase (NR) activity of the wild-type was 

found in transgenic plants containing the NR transgenes (Vaucheret et al., 

1990). The minimum number of independently segregating active GBSS-

inserts was estimated by genetic analysis after microspore staining. The fully 

complemented plants were back-crossed with the amf-mutant (Chapter 4). 

The level of complementation was investigated in sporophytic tuber cells and 
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the genetic constitut ion was determined by segregation analysis of 

gametophytic microspores of the sexual offspring. The expected segregation 

patterns (based on microspore staining wi th iodine of the original transfor­

mant) in the F1 offspring were confirmed by iodine staining of tuber starch. 

All expected genotypes in the F1 offspring w i th one or t w o inserts were 

observed by microspore segregation patterns of the individual F1 plants. 

Microspore staining of fully complemented plants provided reliable infor­

mation about the inheritance of the inserts avoiding t ime consuming crossing 

experiments. 

Partial complementation of the amf-mutant is caused by co-suppression 

or unreliable expression of the transgenes 

Not only fully complemented, but also transgenic plants w i th no or partial 

complementation were obtained (Chapters 3 and 5). Plants w i th no com­

plementation had totally red staining starch granules after iodine staining. 

The partially complemented plants had blue, mixed and/or red staining tuber 

surfaces. The red and blue tubers of partially complemented plants could be 

distinguished from non, or fully complemented plants by staining the individ­

ual starch granules wi th iodine. They had no uniform colour, but had a blue 

staining core and a red outer layer. The size of the blue core depended on 

the level of restored GBSS-gene expression. The frequency of partial comple­

mentation was dependent on the ploidy level of the original plants. Partial 

complementation was more frequently found after transformation of diploid 

than of tetraploid a/nf-genotypes (Chapter 4). Beside that , the level of 

complementation was higher in microtubers of a partially complemented 

plant than in greenhouse or field grown tubers of the same transgenic plant. 

This is probably related to the difference in ploidy level between microtuber 

cells (2x or 4x) and greenhouse and field tuber cells (16 - 64x) . 

The position of the kanamycin resistance gene in relation to the GBSS-gene 

had no influence on the expression of the GBSS-transgene (Chapter 5) as 

was mentioned as a possible explanation by Grierson et al. (1991) . The 

presence of an enhancer upstream the GBSS-gene lowered the number of 

transgenic amf plants wi th both partial or no complementation. This indi­

cates that partial complementation is partly due to insufficient transgene 
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expression (Chapter 5). 

Two transformants with partial complementation were investigated in more 

detail (Chapters 3 and 4). One of them (B1) was tetraploid with a duplex 

genotype for the GBSS-insert which had originated through mitotic doubling 

of transformed diploid cells. In the F1-offspring, after crossing with the amf 

potato, three phenotypic classes were found: amf, partially complemented 

and fully complemented. The latter two were not specifically related to a 

simplex or duplex situation. This indicates that in this case partial com­

plementation was not dependent on the duplex situation. The level of 

transgene expression was thought to be influenced by the genetic back­

ground (Chapter 4). Another partially complemented plant (B10) was diploid 

and contained at least seven inserts. In the F1 offspring, after crossing with 

the amf-potato, the partly complemented phenotype was correlated with the 

presence of a block of five inserts. These five inserts were capable of 

inhibiting the expression (trans-inactivating) of the other inserts which were 

normally expressed. This could be observed in complemented F1 plants 

lacking this block of inserts (Chapter 4). Crossing this partially comple­

mented plant with a wild-type showed that the block of transgenes was also 

capable of inhibiting the endogenous GBSS-genes. This leads to the assump­

tion that partial complementation can also be caused by co-suppression 

besides the already mentioned phenomenon of reliable expression. 

A reduced BE gene expression in an amf background. 

The double mutant aewx of maize is defective for the GBSS enzyme and for 

one of the branching enzymes. It contains loosely branched amylopectin with 

long internal chains giving a blueish colour when stained with iodine (Boyer 

et al., 1976). To obtain the same result in potato, the amf-mutant was 

transformed with sense and antisense cDNA's encoding Branching enzyme 

(BE) of potato (Chapter 6). The expression of the endogenous BE-gene was 

largely or fully inhibited as judged by the absence of both mRNA and protein 

of BE. The starch granules of some of such transgenic plants had a small 

blue core with a large red outer layer. This is one of the observations 

indicating that loosely branched amylopectin was formed in the core. The 

second observation is, that the physico-chemical properties of the starch 
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were changed in plants with reduced BE-gene expression. Here a higher peak 

viscosity was obtained in contrast to Kortstee et af. (1995) who found a 

lowered peak viscosity in an amf-mutant with increased branching degree 

due to introduction of the gene for BE of E. coli. Both observations indicate 

that the only presently known BE of potato catalyses branching in starch 

granules. It was not clear in this case whether the presence of a small blue 

core indicated that the inhibition was optimal during initiation of granule 

formation or not. The linear amylose in partially complemented plants, or 

plants with inhibited GBSS-gene expression - due to sense or antisense 

inhibition - was always present in the core of the starch granules. This might 

indicate that the empty space between the amylopectin molecules was filled, 

starting at the core of the starch granules. The fact that no measurable 

change in branching degree was found indicates that the gene expression is 

not sufficiently reduced or that other branching enzymes play a role. The BE 

investigated here is related to the BE I of maize. Guan and Preiss (1993) 

proposed that BE I forms a slightly branched molecule that is further 

branched by BE II. This suggests that a total reduction in potato BE-gene 

expression would only have a small influence on the branching degree, 

which was indeed observed. Furthermore, it supports the idea that another 

BE-gene, or gene which encodes for an enzyme with branching activity, 

must be present and active. The gene coding for this second BE can possibly 

be found by the application of mutagenesis in the amf"-background. The fact 

that a blue core was formed in the starch granules, suggests that BE I is the 

only BE active in the granule core. Assuming that the activity of BE I is 

totally reduced throughout the granules suggests that BE II is also capable of 

branching linear chains and that an initial branching by BE I is not necessary. 

An increase in amylose GBSS-activity does not lead to a higher level of 

amylose content than the wild-type 

In the gene-dosage population a linear increase in GBSS-activity did not lead 

to a linear increase in amylose content (Chapter 2). The level of amylose 

reached a plateau. The introduction of additional sense genes coding for 

GBSS in the amZ-mutant (Chapter 3) or in the wild-type potato (Chapter 5) 

which did account for an increased GBSS-activity above wild-type level did 
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also not lead to an increased amylose content above that of wild-types. This 

assumes that a maximum level of amylose is formed in wild-type starch 

granules. Above certain levels of amylose, the GBSS-activity is not the 

limiting factor for amylose formation. Probably the activity of other enzymes 

or the presence of intermediate products impose limitations for the produc­

tion of amylose. It is questionable whether starch granules can possess more 

amylose or not. The starch granules in the duplex and triplex/quadruplex 

dosage groups were totally blue except for a few simplex plants in which a 

low percentage of the starch granules had a small red outer layer, indicating 

that the granules were not totally filled with amylose. According to Kuipers 

er al., (1994), wild-type levels of amylose are present in the blue core of 

antisense inhibited wild-types with reduced amylose synthesis. The starch 

granule is formed due to a crystalline organization of the amylopectin 

molecules (Oostergetel and van Bruggen, 1989) and the empty spaces, with 

a restricted volume between these radially arranged amylopectin molecules, 

are filled with amylose to a maximum level (Jane et al., 1992). This could 

mean that only a higher amylose content can be obtained in the starch 

granules when more space between the amylopectin molecules is available. 

Rothacker and Effmert (1968) estimated a variability in amylose content in 

different potato cultivars. They found an amylose content up to 33% and a 

positive correlation between the parents and their progeny when the high 

level amylose plant was used in crossing programs. The GBSS-activity of 

those plants was not determined. We assume that the high amylose content 

was not correlated with a higher GBSS-activity but with an altered crystalline 

structure or size of the individual starch granules. 

In this research the amAmutant was successfully used for examining gene 

expression and gene silencing. It was possible to examine the expression of 

endogenous and introduced GBSS-genes by staining the starch with iodine. 

Variability in gene expression within and between tubers could be made 

visible by the easy and reliable iodine staining procedure. The starch compo­

sition could even be screened in the microspores. This made it possible to 

create a gene-dosage population for the GBSS-gene by simply staining the 

microspores with iodine and estimating the microspore segregation. Beside 

that the minimum number of independently segregating GBSS inserts in the 

amZ-mutant could be estimated. The amAmutant was further used to 
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examine inhibition of the BE-gene expression of potato. The blue core in 

starch granules lacking the BE indicates that loosely branched starch is 

present in the centre of the altered starch granules. 
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Gene-expression and gene-silencing were examined for Granule Bound 

Starch Synthase (GBSS) which catalyses the formation of amylose and Bran­

ching Enzyme (BE) which catalyses the formation of amylopectin. Changes in 

expression of both genes influenced the starch composit ion. To be able to 

monitor the effects and facilitate experiments an amylose-free (amf) potato 

mutant was used as a model plant. This plant is GBSS deficient. The great 

advantage of this mutant (amf = gbss = a) is the simple procedure to dis­

tinguish the altered starch phenotype f rom wild-type (Amf = GBSS = A) 

starch. Amylose-free starch has a red colour when stained w i th iodine, 

whereas amylose containing starch has a blue colour. Screening by iodine 

staining is an easy and quick procedure which can visualize the variation in 

gene expression in tubers. The staining of individual starch granules gives 

detailed information about GBSS gene expression. Furthermore, the express­

ion of GBSS in the starch of microspores can be examined by staining w i th 

iodine enabling genetic analysis. The advantages of the amf-mutant were 

used in several types of investigation: 

I) Dosage effect. 

Plants, nulliplex (aaaa), simplex (Aaaa), duplex (AAaa), triplex (AAAa) 

and quadruplex (AAAA) for the wild-type 

GBSS-allele could be identified by the segregation ratios of the micro­

spores. Within the triplex plants a low frequency of microspores wi th 

red staining starch were formed as the result of double reduction during 

meiosis. In tubers, a dosage effect of the GBSS-allele on both GBSS-

activity and amylose content was found. The dosage effect for the 

GBSS-activity was linear, but this did not account for a linear increase 

in GBSS-protein and amylose content. The presence of three or more 

GBSS-alleles did not lead to a further increase in amylose content 

compared to that in duplex plants. Within the simplex group of plants 

variation in amylose content was found indicating the existence of 

different wild-type alleles (multi-allelism). 

II) Complementation and co-suppression. 

A diploid a m f-mutant was transformed wi th the genomic GBSS-gene. 

This led to diploid and tetraploid (mitotically doubled) transgenic plants 
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with wild-type levels of GBSS-activity and amylose content. The 

minimum number of independently segregating active GBSS-inserts was 

estimated by genetic analysis after microspore staining. The fully 

complemented plants were back-crossed wi th the amf-mutant of 

potato. The expected segregation ratios of complemented and amf F1 

plants were found. 

Not only ful ly, but also partially complemented primary transgenics 

were obtained. This partial complementation was more frequently found 

after transformation of diploid than of tetraploid amf genotypes. Besides 

that, the level of complementation was higher in microtubers than in 

greenhouse or field grown tubers of the same transgenic plants. This is 

probably due to the difference in ploidy level between cells in micro-

tubers (2x - 4x) and greenhouse or field grown tubers (16x - 64x) . The 

presence of an enhancer in f ront of the GBSS-gene lowered the number 

of plants w i th partial or no complementation. This indicates that partial 

complementation can be caused by an insufficient transgene expres­

sion. 

In the offspring after back-crossing wi th amf of the partially comple­

mented a/7?/-plants B1 (tetraploid) and B10 (diploid), fully and partially 

complemented F1-plants were obtained. B1 was duplex for the GBSS 

transgene as a result of doubling of the genome after T-DNA insertion. 

The partial complementation in the F1 offspring was not correlated wi th 

the duplex situation. In the case of B10 the partial complementation 

was correlated wi th the presence of a block of 5 inserts. These 5 

inserts were capable of inhibiting the expression of the other inserts 

w i th normal expression. Crossing of the partially complemented B10 

w i th a wild-type showed that the block of transgenes was also capable 

of inhibiting the endogenous GBSS-gene. This indicates that partial 

complementation can also be caused by co-suppression besides the 

already mentioned low transgene expression. 

Co-suppression was further obtained when the full size GBSS sequence 

or GBSS cDNA were introduced in the wild-type potato. Even the 

cloned amf-a\\e\e caused co-suppression. The orientation of the GBSS-

gene towards the kanamycin resistance gene did not influence the 

frequency of transgenic wild-type plants w i th inhibited expression. The 

frequency of diploid wild-type plants showing sense inhibition (10 %) 
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was lower compared to the frequency using antisense inhibition (52 %) 

in earlier research. The frequency of plants with a complete inhibition 

was similar (3 %). This comparison is not made for tetraploid wild-

types. 

Inhibition of branching enzyme gene expression. 

The amf-mutant was used to examine the inhibition of the branching 

enzyme (BE) of potato by sense and antisense cDNA sequences. A 

situation was created as in the amy/ose-extender/waxy (aewx) double 

mutant of maize. A mutation in both the GBSS-gene and one of the 

genes encoding BE led to the formation of loosely branched starch 

chains which stains blue instead of the red staining waxy starch. 

Introduction of the distal 1.5 kb cDNA for BE resulted in a few sense 

and antisense transgenic plants with a small blue core in the starch 

granules. This could indicate the presence of loosely branched amylo-

pectin in the core of the starch granules. The expression of the endoge­

nous BE-gene was largely or fully inhibited as judged by the absence of 

BE mRNA and protein. No differences in branching degree, amylose, 

starch and sucre content were found. However, the physico-chemical 

properties of this starch was altered compared to am/-starch. 

In this study it is shown that the amf-mutant is successfully used as a 

modelplant to examine different aspects of gene expression. Insertion of the 

wild-type GBSS-gene in either an amf or wild-type showed that an increase 

in GBSS-activity higher than wild-type levels could be obtained, but that this 

did not account for a higher amylose content. This showed that the maxi­

mum level of amylose is already formed in these specific wild-type plants. 

Above a certain level of amylose formation, the GBSS-activity is not the 

determining factor. An explanation could be that the starch granules are 

totally filled with amylose and that no more amylose can be stored without 

altering the crystalline structure of the starch granules or the granule size. 
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In dit proefschrift wordt de expressie bestudeerd van het gen voor Korrel 

Gebonden Zetmeelsynthase (KGZ) dat de vorming van amylose katalyseert 

en van het gen voor het vertakkingsenzym (VE) dat de vorming van amylo-

pectine katalyseert. Een veranderde expressie van één of beide genen heeft 

direct invloed op de zetmeelsamenstelling. Om de effecten goed waar te 

kunnen nemen en de experimenten te vergemakkelijken werd als model plant 

de amylose vrije (amf) aardappelmutant gebruikt. Deze mutant (amf = kgz = 

a) bevat geen KGZ-eiwit in de zetmeelkorrels, waardoor daar geen amylose 

wordt gevormd. De a/nf-mutant heeft als 'voordeel dat het veranderde 

zetmeel met behulp van een simpele methode van dat van het wi ldtype (Amf 

= KGZ = A) zetmeel te onderscheiden is. Amylose vrij zetmeel heeft een 

rode kleur wanneer het met jodium gekleurd is, terwij l amylose bevattend 

zetmeel een blauwe kleur geeft. Ook de effecten van variatie in gen expres­

sie kunnen hiermee zichtbaar gemaakt worden. Het kleuren van individuele 

zetmeelkorrels geeft gedetailleerde informatie over de verschillen in expressie 

niveaus van het KGZ-gen binnen de korrel. Verder kan de expressie van het 

KGZ-gen door middel van jodium kleuring in pollenkorrels worden bestu­

deerd, gevolgd door een genetische analyse. Van de genoemde voordelen 

van de amf-mutant werd in dit proefschrift gebruik gemaakt bij het onder­

zoek naar: 

I) Dosis effecten. 

Planten, die nulliplex (aaaa), simplex (Aaaa), duplex (AAaa), triplex 

(AAAa) en quadruplex (AAAA) voor het wi ldtype KGZ-allel zijn, konden 

aan de hand van de uitsplitsing van de pollenkorrels worden geïdentifi­

ceerd. De triplex planten bezaten een klein percentage rood kleurende 

pollenkorrels die ontstaan waren door dubbele reductie tijdens de méi­

ose. In de knollen werd een dosis effect gevonden voor zowel de KGZ-

activiteit als het amylose gehalte. Het dosis effect voor de KGZ-activi-

teit was lineair, maar dit resulteerde niet in een lineaire toename van de 

hoeveelheden KGZ-eiwit en amylose. De aanwezigheid van drie of meer 

wi ldtype KGZ-allelen leidde niet tot een toename in het amylose gehalte 

ten opzichte van de duplex planten. Binnen de groep van simplex 

planten werden duidelijke verschillen in amylose gehalte waargenomen. 

Dit impliceert het bestaan van meerdere wi ldtype allelen met een 

verschillende mate van effect (multi-allelie). 
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Complementatie en co-suppressie. 

Een diploïde amf-mutant werd getransformeerd met een wi ldtype KGZ-

gen. Dit leidde tot de vorming van diploïde en tetraploïde (mitotisch 

verdubbeld) transgene planten met een herstelde KGZ-activiteit en met 

een amylose gehalte gelijk aan dat van een wi ldtype. Het minimum 

aantal, onafhankelijk overervende en actieve KGZ-inserten werd door 

middel van een genetische analyse na het kleuren van de pollenkorrels 

met jodium bepaald. De volledig gecomplementeerde planten werden 

teruggekruisd met de amf-mutant. De verwachtte uitsplitsing van ge­

complementeerde en amf-planten werd in de F1 generatie waargeno­

men. 

Niet alleen volledig, maar ook partieel gecomplementeerde primaire 

transgenen werden verkregen. Deze partiële complementatie werd vaker 

gevonden na het transformeren van diploïde dan van tetraploïde amf-

genotypen. Behalve dat, was het niveau van complementatie hoger in 

microknollen dan in knollen uit de kas of van het veld. Dit wordt moge­

lijk veroorzaakt door het verschil in ploïdie niveau van de cellen in de 

microknollen (2x-4x) en de cellen in de kas- of veldknollen (16x-64x). 

Expressie van ingebrachte genen zoals het KGZ-gen wordt na transfor­

matie in diploïden schijnbaar vaker negatief beïnvloed in polyploïde 

knolcellen dan na transformatie in tetraploïden. De aanwezigheid van 

een enhancer voor het KGZ-gen verminderde het aantal planten met 

partiële of geen complementatie. Dit suggereert dat partiële com­

plementatie het gevolg kan zijn van onvolledige gen expressie. 

In de nakomelingschap van zowel de partieel gecomplementeerden B1 

als B10, na kruising met een amf-genotype, werden volledig en partieel 

gecomplementeerde planten gevonden. De tetraploïde B1 was duplex 

voor het KGZ insert als gevolg van genoom verdubbeling na T-DNA 

insertie. De partiële complementatie in de nakomelingschap was niet 

gecorreleerd met het in duplex aanwezig zijn van de inserten. In het 

geval van B10 was de partiële complementatie gecorreleerd met de 

aanwezigheid van een blok van vijf inserten. Deze vijf inserten waren in 

staat de expressie van de andere twee inserten te verminderen. Na het 

kruisen van deze diploïde B10 met een wildtype plant bleek het blok van 

vijf inserten ook in staat te zijn de expressie van het endogene KGZ-gen 

te verminderen. Dit suggereert dat partiële complementatie veroorzaakt 
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kan worden door co-suppressie, naast de al eerder genoemde onvolledi­

ge gen expressie. 

Co-suppressie werd verder verkregen door zowel het volledige KGZ-gen 

als het KGZ-cDNA in wi ldtype aardappel in te brengen. Zelfs het geklo­

neerde amf-a\\e\ veroorzaakte in een lage frequentie co-suppressie. De 

oriëntatie van het KGZ-gen ten opzichte van het gen voor kanamycine 

resistentie had geen invloed op het percentage transgene wi ldtype 

planten met een verminderde KGZ-gen expressie. Het percentage 

planten met sense inhibitie (10 %) was lager dan het percentage plan­

ten met antisense inhibitie (52 %) dat in een eerdere studie was gevon­

den. Het percentage planten waarbij de afname in gen expressie volledig 

was, was echter gelijk (3 %). Niet onderzocht is de vraag of deze 

vergelijking ook geldt na transformatie van tetraploïde wi ldtypen. 

Ill) Verlaging van de expressie van het vertakkingsenzym gen. 

De amf-mutant werd ook gebruikt om een verlaging van de gen expres­

sie voor het vertakkingsenzym (VE) door sense en antisense sequenties 

te bestuderen. Er werd op deze manier getracht een situatie te creëren 

die vergelijkbaar is met die in de dubbele mutant amylose-

extender/waxy (aewx) van mais. Een mutatie in zowel het KGZ-gen als 

in het gen dat codeert voor één van de vertakkingsenzymen leidde to t 

de vorming van minder vertakte zetmeelketens die met jodium blauw 

kleurden. De introductie van het distale 1.5 kb cDNA voor het VE 

resulteerde in de vorming van enkele sense en antisense transformanten 

met een kleine blauwe kern in de zetmeelkorrel. Op basis van de afwe­

zigheid van VE mRNA en VE eiwit werd geconcludeerd dat de expressie 

van het VE-gen in de knol grotendeels of volledig geremd was. Ondanks 

deze remming werden geen veranderingen gevonden in de vertakkings­

graad van het zetmeel en in het amylose-, zetmeel- en suikergehalte. De 

fysisch-chemische eigenschappen van dit zetmeel waren wél ten 

opzichte van het amZ-zetmeel veranderd. 

Dit promotie onderzoek laat zien dat de amf-mutant succesvol als model 

plant gebruikt kan worden om de expressie van het KGZ-gen en VE-gen te 

bestuderen. Door het wi ldtype KGZ-gen in een amf of wi ldtype achtergrond 

in te brengen kon een KGZ-activiteit worden verkregen die hoger was dan die 

113 



Samenvatting 

van het wildtype. Deze verhoogde activiteit leidde echter niet tot de vorming 

van meer amylose. Het maximum gehalte aan amylose is al aanwezig in de 

hier gebruikte wildtype planten. Dit betekent dat bij een bepaald amylose 

gehalte, de KGZ-activiteit niet meer de beperkende factor is. Een verklaring 

hiervoor zou kunnen zijn dat de zetmeelkorrels dan volledig met amylose zijn 

gevuld en dat geen extra amylose kan worden opgeslagen zonder de struc­

tuur of de grootte van de zetmeelkorrels te veranderen. 
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Elise Flipse werd op 16 februari 1965 in Middelburg geboren. In 1983 

behaalde ze haar diploma ongedeeld VWO aan de Christelijke Scholenge­

meenschap Walcheren te Middelburg. In datzelfde jaar ging ze Plantenver­

edeling studeren aan de Landbouwuniversiteit te Wageningen. Afstudeer­

vakken deed ze in de plantenfysiology (knolinductie van aardappel) en de 

plantenveredeling (transformatie en regeneratie van aardappel). Het laatste 

afstudeervak werd op het voormalige instituut ITAL (nu CPRO) gedaan. In 

1988 studeerde zij af waarna zij ging werken bij de vakgroep Plantenver­

edeling aan cytoplasmatische mannelijke steriliteit van Petunia. In 1990 

stapte zij over naar het onderzoek aan aardappelzetmeel, waarvan de 

resultaten staan beschreven in dit proefschrift. Vanaf 3 oktober is Elise 

werkzaam bij het Scottish Crop Research Institute in Dundee, Schotland, 

waar zij onderzoek doet naar de expressie en vererving van verschillende 

ingebrachte genen in aardappel, en het effect van de inserten op de voeding­

swaarde van de aardappel knollen. 
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"Hè, hè, da was nie een bitje vé wark" , maar zie hier het proefschrift is af en 

mijn koffers zijn gepakt. Echt een goed ti jdstip dus om terug te blikken. 

Hoewel ik hier als student al was geweest, zette ik mijn eerste "werk-

nemersstap" in mei 1988. Nu, vele stappen later is het proefschrift klaar. 

Gelukkig heb ik veel van deze stappen niet alleen hoeven zetten. 

Mijn promotor en co-promotor, Evert en Richard, wi l ik bedanken voor het 

plekje dat ze voor mij hebben ingeruimd in de zetmeelgroep. Ik heb het 

onderzoek met erg veel plezier gedaan. Jullie begeleiding en enthousiasme 

hebben aan dat plezier bijgedragen. Tegen het tempo waarin jullie concept 

artikelen lezen en van kritiek voorzien is niet op te schrijven. 

De leden van de begeleidingscommissie, Prof. Feenstra, Peter Bruinenberg, 

Jacob Eising, Paul Heeres en Jan van Loon bedank ik voor hun interesse in 

het verloop van het onderzoek. De manier waarop tijdens de halfjaar-verga­

deringen naar een oplossing werd gezocht om een verminderde vertakkings-

enzymactiviteit duidelijk zichtbaar te krijgen, inspireerde. 

Veel mensen op de vakgroep hebben een steentje bijgedragen aan het 

onderzoek. De planten werden in de kas vertroeteld door Jan Rijksen en Teus 

van den Brink. Herman Masselink, Frans Bakker en Bartho Stoffers hadden 

een aandeel in de uitvoering van de veldproeven. Marjan Bergervoet en Marja 

Schippers namen wat transformaties voor hun rekening, terwijl Marja ook de 

kruisingen heeft gedaan. Luuk Suurs maakte voor mij eiwitblots en Elly 

Janssen verlichtte mijn laatste loodjes door de Southern analyse van de 

kruisingsproducten voor haar rekening te nemen. Hoewel de bijdrage van 

zowel Dirk-Jan Huigen als Irma Straatman dusdanig door het hele onderzoek 

verweven is dat ik moeilijk alles op kan noemen, was deze niet minder 

belangrijk. Beja's aandeel verdiende een apart stukje zoals u verderop kunt 

zien. Bij Mr. Ramanna kon ik de artikelen altijd ter correctie afgeven. Annie 

Schouten behoedde me voor te laat ingeleverde boeken. Han Dorenstouter 

voorzag mij van de nodige stads- en fotobonnen. En gelukkig kon ik dit 

proefschrift uitdraaien bij Annie Marchai en Letty Dijker. 

Jacqueline Joosten, Nanda Huisman, José Kok, Frank van der Werff, Rob 
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Henselmans en Henk Brueren werkten in het onderzoek mee in het kader van 

hun studie. 

Naast de hierboven genoemde vakgroepmedewerkers, die ik hartelijk wil 

bedanken voor hun hulp, ben ik ook dank verschuldigd aan mensen buiten de 

vakgroep. Christel Keetels voerde de reologische bepalingen uit op het lab 

van de vakgroep levensmiddelentechnologie. Zowel het research lab van de 

AVEBE als ook NIKO-TNO en met name Dr. Steeneken bedank ik voor het 

analyseren van de zetmeelmonsters. Jan Kooter en met name Maike Stam 

van de VU in Amsterdam bedank ik voor de geboden mogelijkheid de "Run 

On" techniek te leren. 

Het plezier waarmee ik op de vakgroep heb gewerkt was mede te danken 

aan de collega's, van "boven", "beneden" en de "overkant". Ik kan het 

echter niet laten er een paar met name te noemen: 

Anja: als de eerste twee starch sisters mochten we twee keer samen op 

stap. Tenminste, de eerste keer naar St. Andrews hadden we nog twee 

begeleiders bij ons, Evert en Herman (of waren wij de begeleiders ?). De 

tweede keer naar Santa Cruz durfden ze het aan ons alleen te laten gaan. 

Onze belevenissen en de aanvulling van ons vocabulair op deze trips zullen 

ons wel bijblijven, maar het lijkt me beter ze hier niet te vermelden. Ik 

vermeld alleen dat we alle lezingen netjes en serieus hebben gevolgd. Als 

starch pionier op de vakgroep zette jij dingen op waar ik gebruik van kon 

maken. Ook met betrekking tot de promotie en het proefschrift heb ik je heel 

wat kunnen vragen, bedankt. 

Beja: als rood harige stagiaire met f ietskuiten kwam je op een zekere dag de 

vakgroep binnen stappen (Hallo, ik ben Beja) en je bent gelukkig lang geble­

ven (tjonge wat is het eigenlijk saai zonder je). De belevenissen op het 

moleculaire lab waarvan jij vaak de aanstichter of anders toch in ieder geval 

de katalysator was zullen de meeste wel kennen. Daarnaast was je de 

serieuze analist in het vertakkingsenzym project waarvoor je veel werk 

verzette, je iedere keer weer opladend als een bepaling niet helemaal goed 

ging of als er veel monsters lagen. 

Anne: toen je op sollicitatiegesprek was geweest vroegen ze mij of ik wel 

met die Mej. Kortstee dacht te kunnen samenwerken, aangezien het een 

gezamenlijk project betrof en o.a. de analytische hulp moest worden ver-

130 



Nawoord 

deeld. Ik dacht toen dat het wel zou gaan. Volgens mij heb ik gelijk gekre­

gen. Ik heb het in ieder geval leuk gevonden om samen met jou, maar toch 

apart binnen één project werkzaam te zijn. Je verhalen over salsa, de wodka­

jus club en de kledingruil beurs zal ik missen, maar misschien mail je nog 

eens? 

Zonder enig vertier en afleiding was deze periode wel erg saai geweest. In de 

vrije uurtjes hebben velen op de één of andere manier een steentje hieraan 

bijgedragen; enkele personen wil ik daarvan met name noemen: 

Marisca en Catrien: de "oudste vr ienden", maar al het langste van elkaar 

gescheiden. Gelukkig weegt het eerste zwaarder. Irene en Eddy: Irene, onze 

wandeltochten waren uniek. We gaan nog een keer hè? Eddy: soms vergeet 

ik wel eens dat ik Irene al veel langer ken dan jou, het was een vriend erbij 

toen jij er met Irene vandoor ging. Henk: samen zijn we voor mij op computer 

strooptocht geweest. En je adviezen waren goed, proefschrift schrijven zou 

heel wat minder comfortabel zijn geweest. Vergeet niet dat je beloofde in 

Schotland te komen logeren. Martha en Peter: jullie hebben me al naar twee 

uithoeken van Nederland laten rijden om jullie op te zoeken. Weekends met 

een lekker wijntje, biertje, eten en veel gepraat. Ik pak jullie terug, ik zet de 

whisky in Schotland on the rocks. 

En het thuisfront: het was mijn moeder die opperde of de Landbouw (toen 

nog) hogeschool niets voor mij was, ik hield namelijk wel van met laarzen 

door de modder lopen, en was al van kinds af aan van plan een rijke boeren­

zoon te t rouwen. Van het eerste is het gekomen (zij het mondjesmaat), van 

het laatste niet echt. Mijn periode op de LUW, zowel tijdens de studie als het 

onderzoek is door mijn vader en moeder met interesse gevolgd. Zij weten 

meer over genen, aardappels en zetmeel dan de gemiddelde Nederlander, 

maar mijn kennis over viaducten, duikers en brugoverspanningen is ook niet 

te onderschatten. Sommigen van jullie zullen mijn kreet: " O, kijk eens wat 

een mooie overspanning" wel eens gehoord hebben. Het feit dat jullie (pappa 

en mamma) de flat hebben gekocht zodat ik hier in Wageningen een eigen 

plekje kreeg was geweldig. Ik heb er al die jaren van genoten en het spijt me 

hier te moeten vertrekken. De afstand in kilometers wordt groter, maar dat 

moet voor ons niet veel uitmaken. Jullie weten dat ik op zoek ben naar een 

appartement met een logeerkamer. 

Gerald: voor jou zijn aardappels gewoon wat ze zijn: "lekker e ten" . Niks geen 
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gezeur over zetmeel, genen, onderzoek, artikelen, proefschrift, carrière, druk 

hebben Doe maar gewoon: gezellig koffie drinken, lekker eten, mooie 

muziek, de juiste gezellige mensen om je heen, even smoezen voor het naar 

bed gaan, een glimlach van oor tot oor; wat is er nou belangrijker? 

In de periode dat ik dit proefschrift schreef overleed mijn opa. Hij werd 90 

jaar. 

Ik was 9 toen opa en oma bij ons in de straat kwamen wonen. Ik liep dan 

ook vaak even bij hen binnen, om de laatste nieuwtjes van school te vertel­

len. Verhalen die door hen met grote aandacht werden gevolgd. Zoals vaak 

het geval is met een opa en oma werd ik (voornamelijk door oma) volgestopt 

met limonade en koekjes. Toen ik naar Wageningen verhuisde, bleef een 

bezoekje aan opa en oma een vast ritueel van een weekendje thuis, ook toen 

ze in het bejaardenhuis gingen wonen. De band met opa werd door de ziekte 

en het overlijden van oma alleen maar sterker. Ondanks zijn hoge leeftijd 

maakte hij zich druk over de Nederlandse maatschappij, het feit dat jonge 

mensen zo slecht aan het werk komen, de AOW maar ook de toestand in 

Rusland. Met veel aandacht bleef hij tot het eind mijn onderzoek volgen, hij 

was benieuwd of de lezing in Engeland goed was gegaan en of mijn compu­

ter het toch wel goed deed. Hij wilde weten waar ik naartoe ging op vakan­

tie. 

Op een bewonderingswaardige manier nam hij afscheid, toen hij wist dat hij 

niet meer beter zou worden. 

Hij was een geweldige opa. 

Çj\'& 
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