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General introduction 

Chapter 1 

General introduction 

Climate change 

Fossil fuel burning and large-scale deforestation result in a rise of the atmo­

spheric carbon dioxide (C02) concentration at an unprecedented rate. CÇ is 

transparent to short-wave incoming radiation from the sun, but is opaque to 

long-wave radiation which is emitted from the earth. Thus, the heat balance 

of the earth will be affected because C02 traps radiation in the lower atmo­

sphere which would otherwise escape to space. It is possible that as a result 

of the altered atmospheric composition, the climate of the earth will change. 

General Circulation Models (GCMs), which simulate the weather patterns of 

the globe, indicate that the mean annual temperature may rise by 2 to 5°C, 

accompanied with an increase in precipitation. However, much uncertainty 

remains on the exact magnitude of the change in the climate. Furthermore, it 

is clear that there will be significant regional differences. 

Focus of this study 

This study was confined to the effects of climate change on phenology and 

growth of some important European tree species. The central methodology 

was to develop models describing the mechanism by which critical processes 

are driven by climatological variables. The effects of climate change scenarios 

on phenology and growth of trees can then be elucidated using the under­

standing provided by such models. The following general questions were 

addressed: (1) how can the triggering of phenological events be described 

using climatological variables? (2) what are the consequences of climate chan­

ge on the probability of spring frost damage? (3) do trees possess plasticity in 
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leaf unfolding and leaf fall? (4) what is the importance of phenology for 

growth of monospecies stands? and (5) what is the importance of phenology 

for growth of mixed-species stands? An overview of the species considered in 

the different analyses is presented in Table 1.1. 

Table 1.1. Species ranked from early to late leaf or needle unfolding 

species: modelling spring frost plasticity growth competition 

phenology damage 

Larix decidua 

Betula pubescens 

Tilia platyphylla 

Fag us sylvatica 

Tilia cordata 

Populus canescens 

Quercus rubra 

Quercus robur 

Fraxinus excelsior 

Quercus petraea 

Picea abies 

Pinus sylvestris 

Phenology 

Phenology is the study of annually recurring phenomena in the life cycle of an 

organism. Relevant events for this study are the moment of budburst in 

spring, and leaf or needle fall in autumn. The timing of these events is known 

to be triggered by temperature, but can also be influenced by photoperiod, 

precipitation, and nutritional status of the tree. To maximise reproductive 

success, a tree needs to synchronise the seasons favourable and unfavourable 

X X X 

X X X 

X X 

X X X 

X X X 

X X 

X X 

X X X 

X X 

X X 

X X X 

X X 
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for growth, to the active and dormant period of its annual cycle. Since frost 

hardiness and growth are incompatible, a tree must minimise its risk of frost 

damage, but at the same time use maximally the available growing season. 

This mechanism leads to a close adaptation of a natural population of trees to 

their local climatological situation. Thus, a rapid climate change is likely to 

disturb this adaption: trees may either advance budburst which could make 

them more vulnerable to late spring frosts, or delay budburst thereby possibly 

not making full use of the available growing season. A differential response of 

species to climate change will alter the competitive abilities of these species 

when grown in mixture. Consequently, both the species composition of 

forests and the geographical distribution of species will change. 

The relationship between phenology and climate is discussed in more detail in 

chapters 2 to 4. In chapter 2, a review is presented on the available models 

predicting the date of leaf unfolding, depending on temperature and/or photo-

period. The parameters of these models were estimated using 57 years of 

observations on the date of leaf unfolding of Fagus sylvatica in The Nether­

lands, and subsequently tested on 40 years of observations made in Ger­

many. In chapter 3, the possible effects of climate change on the probability 

of spring frost damage are evaluated, using two phenological models and two 

climate change scenarios. Data on the date of leaf unfolding for eleven 

species observed in The Netherlands and nine species in Germany were used 

to evaluate this possibility using two models, and two different climatic 

scenarios. In chapter 4 , the plasticity is discussed that tree species may 

possess with respect to leaf unfolding and leaf fall. If individual trees are able 

to respond phenotypically to a change in their environment, then the disrup­

tion of the synchronization brought about by climate change may be nullified. 

For this analysis, the response to different temperature regimes of clones of 

seven tree species relocated over a large latitudinal transect in Europe, was 

compared to the response of genetically differing trees which are assumed to 

be adapted to their local climate, along a part of the transect. 
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Growth 

Growth is the increase in biomass of an organism. For plants, growth is deter­

mined by photosynthesis by which both carbon dioxide and water are con­

verted into sugars and oxygen under influence of light. Gross photosynthesis 

is partly used to cover respiratory costs, which are the costs required for the 

process of growth, and the maintenance of a living plant. The sugars pro­

duced by photosynthesis are allocated to the different plant organs, and con­

verted into structural biomass. This increase of structural biomass is reduced 

by losses of plants organs, such as leaves and branches. Models simulating 

growth of trees describe how the rates of photosynthesis, respiration, and 

allocation are affected by meteorological variables, such as radiation, tempera­

ture, precipitation, and wind speed. The forest growth model FORGRO, was 

applied and further developed in this study. 

The relationship between growth and climate is discussed in chapters 5 and 

6. The importance of differences in phenological characteristics between spe­

cies on the effects of climate change on growth of deciduous trees was 

evaluated by modelling comparison. In chapter 5, extensions of FORGRO with 

different level of detail on photosynthesis and allocation were used to evalu­

ate climate change impacts on growth of monospecies forests. In chapter 6, a 

modelling comparison is presented to evaluate the importance of phenology 

and the occurrence of spring frost damage on growth of mixed-species 

forests, integrating the effects of phenology on competition for light. 

Methodology 

Due to the size and longevity of trees, and the complexity of the processes in­

volved, the question of how a future climate will influence growth and 

development of trees cannot directly be answered by experiments. Models 

provide an important means to bridge the spatial and temporal scales, and to 



General introduction 

integrate the relevant processes. Future projections of growth under climatic 

situations not encountered thus far, are only possible when the relationships 

between growth processes and the climate are modelled in a mechanistic 

manner. For this purpose, experiments on these processes provide essential 

information to design the models. Mechanistic modelling of forest growth, on 

a sound experimental base, in combination with climate change scenarios is 

thus the only means to obtain an impression of future forest growth. How­

ever, the climate change scenarios are still in development, and uncertainties 

remain in the descriptions of the processes and the parameter values of the 

forest growth models. To deal wi th the uncertainty of the future climate, the 

consequences of a range of scenarios was investigated. To deal wi th the 

uncertainties in the forest growth models, critical processes determining the 

response of growth to climate change scenarios were identified by comparing 

models wi th different levels of mechanistic detail. Nevertheless, any state­

ment on consequences of climate change on phenology and growth made in 

this study should be regarded in the context of the validity of the forest 

growth models and the accuracy of the climate change scenarios, which are 

both simplifications of the real system. 
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Chapter 2 

Selecting a model to predict the onset of growth of Fagus syl-

vatica 

Introduction 

The developmental processes in the bud that release dormancy and thus trig­

ger the onset of growth of temperate zone trees are mainly regulated by 

temperature (Romberger 1963). This regulation is such that a period with 

chilling temperature (-5 to +10°C) followed by a period with forcing tempera­

ture (>0°C) induces budburst (Samish 1954; Vegis 1964; Wareing 1969; 

Nienstaedt 1974; Richardson, Seeley and Walker 1974; Lavender 1981). 

Generally, the influence of photoperiod on trees requiring chilling is that a long 

photoperiod substitutes for a lack of chilling (Vegis 1964; Flint 1974; Nien­

staedt 1974; Lavender 1981 ; Cannell and Smith 1983). However, for Fagus 

sylvatica the experimental evidence on the role of photoperiod in the timing of 

budburst is conflicting (Wareing 1953; Vegis 1964; Falusi and Calamassi 

1990). Wareing (1953) found that budburst in Fagus sylvatica is induced 

when an absolute length of the dark period is achieved, even after a pro­

longed period of chilling. On the other hand, Falusi and Calamassi (1990) 

found that chilling completely eliminates dormancy, with very slight interac­

tion between day length and chilling. 

The aim of this study was to examine models presented in the literature and 

select the model that most accurately predicts the timing of the start of the 

growing period of Fagus sylvatica. Models that incorporate photoperiod as a 

substitute for chilling were compared with models that do not. In later studies 

this model could be coupled to a model describing primary production in order 

to evaluate the impact of climate change on growth and development. 
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Material and methods 

Models 

The definitions of the different phases during dormancy, which were intro­

duced by Sarvas (1974), were adopted here. Rest is defined as the period in 

which buds remain dormant due to growth-arresting physiological conditions 

in the bud itself. The growth-arresting conditions are removed when buds are 

exposed to chilling temperature for a certain period. The subsequent stage of 

dormancy is called quiescence. Quiescence is defined as the period in which 

the buds remain dormant due to unfavourable environmental conditions. Bud-

burst takes place when the buds are exposed to forcing temperatures for a 

prolonged period. 

Taking a system-analytical approach, Hänninen (1990) formalised four models 

on dormancy release presented in the literature and introduced a competence 

function which is defined as the bud's potential to respond to forcing 

temperature. The values of the competence function range between zero and 

unity, so it indicates to what degree a bud responds to a forcing temperature 

relative to the potential response at that temperature. 

The notation used is presented in Appendix 2 . 1 , while the equations 

characterising the models are presented in Appendix 2.2. 

The four models which Hänninen (1990) described have in common that: (1) 

the competence function depends on the state of chilling, (2) the rate of chil­

ling during rest is assumed to have an optimum between minimum and maxi­

mum temperature thresholds (Equation 2 . 1 , Figure 2.1), and (3) the rate of 

forcing during quiescence is assumed to be related to temperature according 

to a logistic function (Equation 2.2, Figure 2.2). Two models with other func­

tions for the rate of chilling and forcing and with a competence function inde­

pendent of the state of chilling, were characterised using Hänninen's termi­

nology. In all models the state of chilling and the state of forcing are the sum-
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mation of the rate of chilling and forcing, respectively, using a variable time 

step with a maximum of one day (Equations 2.3 and 2.4). 

ROH Rf, 
1-

Figure 2 . 1 . Rate of chilling for the parallel, 

sequential, deepening rest and four phase 

model. 

Figure 2.2. Rate of forcing for the parallel, 

sequential, deepening rest and four phase 

model. 

Sequential model. Sarvas (1974) considered rest and quiescence as two 

strictly separate phases. On this basis, there wil l be no transition from rest to 

quiescence unless the critical state of chilling is attained (Equation 2.5). Simi­

larly, there will be no transition from quiescence to the active phase unless 

the critical state of forcing is attained. This model was called the sequential 

model, because the state of chilling and the state of forcing increase sequen­

tially in t ime (model I of Hänninen 1990). 

Parallel model. Landsberg (1974) proposed a model for the development of 

apple fruit buds. He stated that for dormancy release it is essential that, even 

when the critical state of chilling has not yet been attained, response to forc­

ing temperature must be possible. The bud's potential to respond to forcing 

temperature increases concomitantly with the time spent in chilling conditions 

(Equation 2.6, Figure 2.3). After attaining full chilling, the rate of development 

is logistically related to temperature (Equation 2.2, Figure 2.2). This model 

was called the parallel model, because the state of chilling and the state of 

forcing increase together in time (model II of Hänninen 1990). 
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Deepening rest model. Kobayashi, Fuchigami and English (1982) suggested a 

model for rest development in red-osier dogwood (Cornus sericea) based on 

the work of Fuchigami et al. (1982). During rest they discerned a phase of 

deepening rest and a phase of decreasing rest (Equation 2.7, Figure 2.4). 

After the end of rest a quiescence phase is defined (Kobayashi and Fuchigami 

1983). During quiescence, developmental rates increase logistically wi th 

temperature (Equation 2.2, Figure 2.2). This model was called the deepening 

rest model, because the other models consider decreasing rest only (model III 

of Hänninen 1990). 

Figure 2.3. Competence function for the 

parallel model. 

deephg rest decreasing rest 

Figure 2.4. Competence function of the 

deepening rest model. 

Four phase model. Vegis (1964) concluded that the range of external condi­

tions in which development is possible narrows and widens during the annual 

cycle. Based on this idea, he defined three different phases during rest (re­

phrased in Hänninen's terminology: (1) pre-rest, development is still possible 

but only at a narrower range of external conditions than at the time of full 

growth activity, (2) true rest, development has stopped and cannot be re­

sumed whatever the external conditions may be, and (3) post-rest, the range 

over which growth is possible widens again. Post-rest is followed by quies­

cence in which buds respond fully to forcing temperatures. 

Hänninen formalised this mechanism by proposing an increasing temperature 

threshold during pre-rest and a decreasing threshold during post-rest (Equation 
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2.8, Figure 2.5). During true rest buds cannot respond to forcing tempera­

tures. During pre-rest such a response is very unlikely because the tempera­

ture threshold increases while the temperature decreases. During post-rest, 

many more forcing units are accumulated per day because the temperature 

threshold decreases and the temperature possibly increases again. Transition 

from pre-rest to true rest, and from true rest to post-rest occurs when the 

state of chilling attains critical values (Equation 2.9, Figure 2.6). This model 

was called the four phase model, because the other models do not consider 

three phases during rest (model IV of Hänninen 1990). 

Œu 

«J, cu„ 

-T>T,rh 

• T aï,«, 

-al values of T 

—r 
CU. crit ScH 

Figure 2.5. Competence function for the 

four phase model. 

pre-rest true rest post-rest 

Figure 2.6. Temperature threshold for the 

four phase model. 

Thermal time model. This model has been used frequently since Reaumur in­

troduced it in 1735 (Robertson 1968). It was observed that the rate at which 

plants develop increases proportionally with temperature above a base 

temperature (Equation 2.10, Figure 2.7). Forcing units are accumulated since 

a given starting date, i.e. the onset of quiescence, so the duration of rest is 

assumed to be constant. This is equivalent to accumulating one chilling unit 

per day (Equation 2.11) from the onset of rest up to the onset of quiescence. 

The model is similar to the sequential model, wi th time equivalent to the rate 

of chilling, and the fixed onset of quiescence equivalent to the critical state of 

chilling. This model reflects the findings of Wareing (1953) that an absolute 

photoperiod is required to break rest. Since in natural situations this absolute 
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photoperiod is reached every year at the same date, the onset of quiescence 

is f ixed. This model was called the thermal time model by Cannell and Smith 

(1983). 

Alternating model. Murray, Cannell and Smith (1989) used thermal t ime 

(Equations 2.10 to 2.12) as the state of forcing and the number of chilling 

days as the state of chilling to predict budburst among other species, of 

Fagus sylvatica. Days with an average temperature below the base tempera­

ture are regarded as chilling days (Equation 2.13). Cannell and Smith (1983) 

found that the critical thermal time required for budburst is not a constant, 

but declines exponentially wi th the state of chilling (Equation 2.14, Figure 

2.8). This model differs from the other models in relating forcing to chilling. 

The rate of forcing is not increased when more chilling units are accumulated, 

but the critical state of forcing required for budburst is lowered when the 

state of chilling increases. It was called the alternating model because from 

the onset of quiescence on, either the state of chilling increases, when the 

temperature is below the base temperature, or the state of forcing is in­

creased, when above. 

Figure 2.7. Rate of forcing for the thermal 

time model. 

Figure 2.8. Critical state of forcing for the 

alternating model. 
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Photosensitivity 

The most basic model relating the timing of budburst to photoperiod, pro­

poses an absolute day length to induce budburst. This model was considered 

as the null model since it predicts budburst to occur each year at the same 

date. 

Photoperiod was included additively to the rate of chilling in the models (Equa­

tion 2.15). With this formulation, photosensitivity guarantees that the chilling 

requirement is attained even when little chilling is accumulated due to high 

winter temperatures. As the thermal time model does not consider the rate of 

chilling, photoperiod was not included in this model. 

Parameter estimation 

The minimum sum of squares of the residuals (absolute differences between 

predicted and observed date of leaf unfolding) was used as criterion to iden­

ti fy the optimal set of parameter values for each of the models. Several 

searching methods were used to inspect the parameter space. 

The parameter values of the models formalised by Hänninen (1990) were esti­

mated wi th 'SENECA', a Simulation ENvironment for ECological Applications 

(Scholten, de Hoop and Herman 1990). Here, the parameters are constrained 

within user-defined limits. This guarantees that biologically realistic values are 

obtained. Using a 'controlled random search' (Price 1979) for all parameters 

simultaneously, the parameter range was reduced. Initial values for the 

parameter ranges were derived from the literature (Hänninen 1990) or set 

subjectively, but adjusted when the method found a boundary value to be 

optimal. 

The critical state of forcing for the thermal time model was found by varying 

the starting day of accumulating thermal time from 1 November to 1 May 

using a step size of one day, and the base temperature from -5 to 10°C with 
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a step size of 0.1 °C. The parameters of Equation 2.14 of the alternating 

model were f itted with GENSTAT using the directive FITNONLINEAR, because 

the same method was applied by Murray et al. (1989). This was done repeat­

edly, by varying the onset of quiescence between 1 December and 1 February 

wi th a step size of 14 days, and the base temperature from 0 to 10°C wi th a 

step size of 1 °C. 

Data 

The models were fitted using phenological observations gathered in the time 

span 1901-1968 from many locations throughout The Netherlands. Data for 

1931-1939, 1945 and 1954 are lacking. The models were tested using data 

gathered at three phenological stations in Germany in the period 1951-1990. 

The average of the daily minimum and maximum temperature was used. The 

temperature series from De Bilt (52.06°N, 5.20°E), which is located in the 

centre of The Netherlands, was available for the Dutch observations. For the 

German observations the temperature series of Celle (52.36°N, 10.02°E) was 

used. 

Figure 2.9. Budburst of Fagus sylvatica. a: buds still closed, b and c: leaves protruding, but 

not yet unfolded, d: first leaves have emerged to leaf base, and have unfolded: leaf unfolding 

(DWD 1962). 
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The phenological stage considered is called 'leaf unfolding'. Leaf unfolding is 

defined by the Hoffman-lhne instruction for observers (Bos 1893) as follows: 

at two or three places in the tree a normal, unwrinkled, leaf surface should be 

visible, but full leaf size has not yet been attained (Figure 2.9d). The observa­

tions should be done on free-standing individuals, not standing in especially 

favoured or unfavoured sites (south side of wall, very wet or dry soils, etc.). 

Particularly early or late individuals should be excluded. The average date of 

leaf unfolding should preferably be taken from several individuals standing 

near each other. In the Dutch observations before 1930, the observer was 

allowed to make observations on different groups of Fagus sylvatica in subse­

quent years (Bos 1893). Since 1940 it has been mandatory to observe the 

same group every year (Anonymous 1950). The observers are urged to 

inspect their trees daily because in a warm spring the stages depicted in 

Figure 2.9 can occur within a week. 

The advantage of the Dutch data set is that it covers a relatively long period. 

It contains 1964 individual observations covering 57 years. Its disadvantages 

are that the provenance of the observed trees is unknown and that the sites 

of observation as well as the number of observations vary between years. 

Yearly averages were taken because only one temperature series covering the 

full t ime span of phenological observations was available. From the south to 

the north of The Netherlands the date of leaf unfolding is delayed by 2.8 days 

per degree latitude, which coincides with a difference in average yearly tem­

perature of about 1 °C (1950-1987). From east to west the delay in the day 

of leaf unfolding is 0.6 days per degree longitude. 

The four German phenological stations are all located within 0.5°N and 0.5°E 

of the meteorological station at Celle. For these stations were 160 individual 

observations available, covering 40 years. For testing the models, yearly 

averages were taken. For the German observations yearly averages were 

taken of the results from the four phenological stations. 
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Results 

Table 2.1 presents the parameter sets of each model yielding lowest sum of 

squares of the residuals, SSres, found. For the four phase model without day 

length no results are presented because, for this model, the parameter set 

wi th the best result predicted the date of leaf unfolding in only 10 of the 57 

years. In the other years the state of forcing did not reach the critical state 

required for leaf unfolding. The SSres of the thermal time model and the alter­

nating model varied very little when the onset of quiescence was varied be­

tween 1 December and 1 February, and the base temperature was adjusted 

accordingly. Therefore, for both models the onset of quiescence was fixed at 

1 January. 

It was found that the SSres for the fit of the models exceeded the S§es for the 

f it of the null model, i.e. the mean (Table 2.2). Including day length as a sub­

stitute for chilling decreased the SSres of each of the models. With the 

parameter values presented in Table 2 . 1 , the date of leaf unfolding of the Ger­

man data was predicted. Again it was found that the SSres of the predictions 

exceeded the SSres of the null model, and that including day length decreased 

the SSres of a model (Table 2.2). 

Improving the fit of the model 

Since all models performed worse than the null model, an attempt was made 

to develop a model wi th a higher accuracy of prediction than the current mo­

dels. The sequential model without day length appears the most promising 

model to improve. Therefore, this model was adapted in two ways. Firstly, 

the constraint on the parameter range was released, so the parameters were 

allowed to take biologically unrealistic values. Secondly, the temperature 

asymptote of the logistic function of forcing, a, was set at unity, reducing the 

number of parameters to estimate. This model was called the sequential-l 
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Table 2 . 1 . Parameter values yielding the lowest SSres. See Appendix 1 for an explanation of 

the parameter names. Abbreviation of the models are: s, sequential; p, parallel; dr, deepening 

rest; 4p, four phase; t t , thermal time; a, alternating, s-l, improved sequential. + L indicates a 

model including day length 

s + L p p + L dr dr + L 4p + L t t a a + L s-l 

f,al 1 Nov 1 Nov 1 Nov 1 Nov 1 Nov 1 Nov 1 Nov 1 Nov 1 Nov 1 Nov 

t2
B] 1 Jan 1 Jan 1 Jan 

Ccrl, 57.40 59.11117.18105.96 95.71 74.91170.90 117.83 

fcrll 262.53 264.44 224.30191.50166.51164.96 302.76 206.40 9.66 

T m i n -3.80 -4.58 -3.87 -4.01 -0.96 -2.65 -3.23 -17.02 

7"opt 0.41 2.38 1.47 4.95 2.57 1.67 2.58 -1.34 

7"max 12.43 12.02 10.33 13.68 8.73 10.86 8.87 92.15 

7b 0 .00b l 0 .00b l 0 .00b ' 0 .00b ' 0 .00b l 0 .00b l 0 .00b l 4.50s" 5.00a> 5 . 00 " 0 .00b l 

a 26.49 27.75 31.33 29.95 29.10 31.38 20.41 1.00bl 

b -0.19 -0.23 -0.15 -0.17 -0.17 -0.20 -0.30 -0.12 

c -17.07 -18.52 -23.34 -24.99 -19.50 -23.18 -14.08 -20.54 

5 94.21 95.59 93.22 2.12 58.51 

K m i n 0.26 0.11 0.11 0.24 

C d r 31.69 31.29 

Ctr 56.97 

Car 113.93 

7, 10.82 

T2 17.47 

a 66.00 72.83 

ß 511.00 546.58 

Y 0.017 0.016 

al fixed after initial testing, b' fixed. 
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Table 2.2. Statistics for the fit and predictions of the models. SSres, sum of squares of the 

residuals; MAXres, maximum residual; LL|vg , average date of leaf unfolding. + L indicates a 

model including day length. Npa„ number of parameters in the model 

Fit (The Netherlands, n = 57) Prediction (Germany, n = 40) 

Model 

null 

sequential 

parallel 

deepening rest 

sequential + L 

parallel + L 

deepening rest + L 

four phase + L 

thermal time 

alternating 

alternating + L 

sequential-l 

ss r e s 

1622 

1624 

2623 

3352 

3882 

4117 

13351 

5209 

4602 

2034 

5190 

488 

MAXres 

11 

11 

19 

17 

25 

24 

40 

27 

24 

18 

14 

9 

L I U 

1 May 

1 May 

3 May 

27 April 

1 May 

29 April 

16 April 

25 April 

2 May 

28 April 

29 April 

2 May 

ss r e s 

2494 

3108 

6256 

9461 

4837 

5516 

3923 

4817 

5810 

6797 

9879 

885 

MAXres 

21 

15 

25 

32 

26 

27 

24 

24 

41 

LUa„g 

1 May 

7 May 

10 May 

12 May 

9 May 

9 May 

7 May 

9 May 

24 May 

32 19 April 

47 11 April 

12 6 May 

Npar 

0 

10 

11 

12 

11 

12 

13 

15 

3 

6 

7 

9 

Data: 1 May 1 May 

model. Mathematically the sequential-l model is equivalent to the sequential 

model. However, the biological interpretation of the rate of forcing changes. 

The rate of forcing is now expressed relative to the maximal rate of forcing at 

the optimal forcing temperature. The sequential-l model was fitted using New-

tons method of a directed search in the parameter space (Gill and Murray 

1978). This was done with the subroutine E04FCF of the NAG FORTRAN 

library (Anonymous 1990). The parameter values of the sequential-l model are 

presented in Table 2 . 1 . The criterion for this method of a global minimum of 

SSres was, however, not attained. The Sßes of the f i t and predictions are 
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presented in Table 2.2. It was found that the SSres for both the f it of the 

Dutch data and the prediction of the German data were reduced considerably, 

compared both to the other models and to the null model. However, the 

sequential-l model overestimated the date of leaf unfolding systematically, 

especially for the German data. 

Discussion 

Models 

The underlying physiological mechanisms leading to dormancy release are lar­

gely unknown, but cannot be related simply to an increase of a growth-pro­

moting substance or to a decrease of a growth-inhibiting substance (e.g. Po­

well 1969; Wareing 1969). It is known that temperate-zone tree species re­

quire a certain period with chilling temperature, followed by a period with a 

higher temperature, forcing a bud to burst. Based on this very simple empirical 

model the average date of the onset of growth of Fagus sylvatica can be pre­

dicted with considerable accuracy. 

In the model wi th the lowest SSres, the sequential-l model, chilling was allow­

ed to occur at a very wide range of temperatures (Table 2.1). This means that 

the rate of chilling is virtually independent of temperature, because the curve 

in Figure 2.1 then shows a very broad plateau close to unity in the range of 

actual winter temperatures (about -10 to + 10°C). Consequently, the onset of 

quiescence varies little between years (11 March ± 5.4 days). So the 

sequential-l model nearly reduces to the thermal time model wi th a logistic 

rate of forcing instead of a linear one. However, the SSres of the sequential-l 

model was found to increase when the model was simplified by using a linear 

rate of forcing instead of the logistic function. 
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Pho tosensitivity 

The experimental evidence that photoperiod can substitute for a lack of chil­

ling (Vegis 1964; Flint 1974; Nienstaedt 1974; Lavender 1981 ; Cannell and 

Smith 1983) suggests an additive model. Photosensitivity then guarantees 

that the chilling requirement is attained when, in a warm winter, little chilling 

is accumulated. A similar formulation was used by Primault (in Robertson 

1973), and by Hänninen et al. (1990) for the joint factor model on growth 

cessation of trees. 

Multiplicative models and polynomials of the rate of chilling and photoperiod 

are also frequently used (Nuttonson 1948; Robertson 1968; Caprio 1974; 

Campbell and Sugano 1975). However, when photoperiod is multiplicatively 

coupled to the rate of chilling, photoperiod has no effect when the rate of 

chilling equals zero, i.e. due to high temperature. So this model does not 

represent photoperiod as a substitute for chilling. 

Fitting an additive model of the state of chilling and an absolute photoperiod 

was not possible. For such a model, finding both the best photoperiod and the 

best critical state of chilling entails increasing the critical state of chilling by 

an amount equal to that added to the state of chilling. Thus, there is an infi­

nite number parameter sets for this model yielding the same result. So the 

effects of photoperiod cannot be evaluated using this type of model. A similar 

reasoning holds true for a multiplicative model of the state of chilling and an 

absolute photoperiod. Therefore, it was concluded that the additive model of 

the rate of chilling and photoperiod is a simple and realistic way to incorporate 

photoperiod. Nevertheless, the result of this way of introducing photoperiod 

was that the SSres of the model increases, thus making the model more com­

plex as well as a worse predictor for the date of leaf unfolding. 
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Parameter estimation 

The models have in common that state variables must attain one or more 

thresholds for which no data are available. Finding optimal parameter values 

for such a model is particularly difficult because the same result can be ob­

tained by either lowering the threshold, or by tuning the rate parameters so 

that the threshold is attained earlier. There is little hope that, even when con­

strained parameter ranges are used, a fitting procedure will find biologically 

realistic parameter values as long as no direct measurements of the parame­

ters are available. The reason that the deepening rest and the four phase 

model perform poorly may be the introduction of additional thresholds during 

rest. Due to the correlation between these thresholds, many different thres­

holds yield the same prediction. Consequently, a poor f it not necessarily indi­

cates that the structure of the models is inappropriate. 

Conclusion 

The modified version of the sequential model performs better than the other 

models considered, including the null model. The aim of this study was to 

select the model that most accurately predicts the onset of growth of Fagus 

sylvatica. It appears that the sequential-l model could be used for further 

study of impacts of climatic warming on primary production of Fagus syl­

vatica. 
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Appendix 2 .1 . Notation 

Symbol Units 

Arbitrary units 

CU 
FU 

Variables 

" c h l 

" f r c 

Chilling units 
Forcing units 

Rate of chilling 
Rate of forcing 

CU day ' 
FU day 1 

5ch| State of chilling, integral of rate of chilling CU 
Sfrc State of forcing, integral of rate of forcing FU 
K Competence function: bud's potential to respond to forcing 

temperature [0-1] 
T Mean daily temperature °C 
L Day length h day"' 
t Time day 

Parameters 

CCIit Critical value of state of chilling for the transition form rest to quiescence CU 
Fcril Critical values of state of forcing for the transition from quiescence 

to the active period, i.e. budburst FU 
Kmin Minimum potential of unchilled bud to respond to forcing temperature 
Cdr Critical state of chilling for transition from deepening rest to decreasing rest CU 
C„ Critical value of state of chilling for transition from pre-rest to true rest. CU 
Cpr Critical value of state of chilling for transition from true rest to post-rest. CU 
7"min Minimum temperature for rate of chilling °C 
7"opt Optimal temperature for rate of chilling °C 
7"max Maximum temperature for rate of chilling °C 
7"b Base temperature °C 
7", Lower value of temperature range for which development is possible °C 
7"2 Upper value of temperature range for which development is possible °C 
7"trh Temperature threshold above which development is possible and below 

which development is impossible °C 
f, Date of onset of rest. day 
f2 Date of onset of quiescence day 
a, b, c, a, ß, y, S Constants 
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Appendix 2.2. Equations 

Rate of chilling for the parallel, sequential, deepening rest and four phase model 

0 

opt min 

7"-Tmax 

opt max 

0 

mm 

T
mm

<TiTo?t 

7 " „ p , < r < T m . x 

T * T m . i 

Rate of forcing for the parallel, sequential, deepening rest and four phase model 

7-sTK 

State of chilling (all models) 

i 
SChl = Ay Rchl 

State of forcing (all models) 

i 
Slrc = Aj Rlrc 

T>T> 

2.1 

2.2 

2.3 

2.4 

Sequential model 

K = 2.5 

Parallel model 

1 - K . 

2.6 
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Deepening rest model 

1 -Kmi„ 
A mm A 
1 Û - , 

K = < i^-KmJ(SM- Cdr) 2.7 

Four phase model 

1 

0 

0 

SM<C*.T>Tm 

Scn<c«-TiT«n 
c t r ^ Sch l<Cp r 

0 cp r^sc h l<cc r t t ,rärm 

1 c^SM<Calt,T>TM 

2.8 

7,-7, 

7 1 Ä Ä C p r " c h l < 0 c i 

2.9 

Ccrit Cpr 

Thermal time model 

0 7s 7b 

K(T-Tb) 7>7b 

2.10 

2.11 

0 t<t2 

1 f2f, 
2.12 
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Alternating model 

1 TiTb 

0 7->7\, 

FCH, = a + ße -vsc, 

Photosensitivity 

Rch! = Rch, + 5 L 

25 

2.13 

2.14 

2.15 
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Chapter 3 

A modelling analysis of the effects of climatic warming on the 

probability of spring frost damage to tree species in The 

Netherlands and Germany 

Introduction 

The timing of leaf unfolding of trees is mainly regulated by temperature (Rom-

berger 1963). Chilling and forcing temperatures are both required to induce 

leaf unfolding of temperate tree species (Vegis 1964), and climatic warming is 

likely to influence the timing of this process. However, it is not clear whether 

warmer winters will advance or delay the date of leaf unfolding: the chilling 

requirement may be attained later while the critical temperature sum for leaf 

unfolding is likely to be attained earlier. Such shifts may have consequences 

on the occurrence of frost damage. Different tree species may respond differ­

ently to climatic warming, and thus, alter their competitive ability. 

In this study, the effects of changing winter temperature on the date of leaf 

unfolding were evaluated using models presented in the literature. Kramer 

(1994a, Chapter 2) showed that the onset of the growing season of Fagus 

sylvatica in The Netherlands is described accurately by the model developed 

by Sarvas (1974) and refined by Hänninen (1990), and also by the model 

developed by Cannell and Smith (1983). 

Hänninen (1991) applied the Sarvas (1974) approach in a theoretical study to 

evaluate the effects of a doubled C02 temperature scenario (Bach 1987) on 

the probability of frost damage in northern trees, using parameter values 

which represent a generalised central Finnish tree species. He used a non-uni­

form climatic warming scenario, in which the mean temperature is expected 
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to increase most in January and least in July. He found an increased probabi­

lity of frost damage for central Finland due to a much earlier budburst. 

Murray et al. (1989) used a thermal time approach (cumulative temperature 

above 5°C, Cannell and Smith 1983) to predict how much the date of bud-

burst of fifteen tree species in Britain would be shifted after uniform climatic 

warming by one to three degrees. They concluded that the probability of frost 

damage would not increase in the British lowland sites, but might increase in 

cool upland sites for species with small chilling requirement. 

The difference in results found by Hänninen (1991) and Murray et al. (1989) 

may be caused by (1) different species characteristics, the species truly re­

sponding differently to a change in temperature because they are adapted to 

different climates, (2) because different models were used, each wi th its own 

shortcomings, or (3) because different climatic warming scenarios were used, 

since these were the methodological differences between both studies. To 

clarify this, in this study both models were f itted to data on the date of leaf 

unfolding of eleven tree species collected as part of a phenological network in 

The Netherlands and Germany. The shift in the date of leaf unfolding attribu­

table to uniformly and non-uniformly changing winter temperature was subse­

quently quantified. The impact of this shift on the occurrence of spring frost 

damage was evaluated using the shift in the relative number of years in which 

freezing temperatures occurred in the critical period around the date of leaf 

unfolding. 

Material and methods 

Models selected to predict the date of leaf unfolding of trees (Kramer 1994a, 

Chapter 2) were fitted to available observations on the date of leaf unfolding 

of Larix decidua, Betula pubescens, Tilia platyphylla, Fagus sylvatica, Tilia 

cordata, Quercus rubra, Quercus robur, Fraxinus excelsior, Quercus petraea, 

Picea abies, Pinus sylvestris, collected in Germany and The Netherlands. 
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These models were applied to predict the shift of the date of leaf unfolding 

using two temperature change scenarios: (1) the uniform temperature change 

scenario, used by Murray et al. (1989), comprised of a shift of -2 to 8°C of 

the historical temperature series, in steps of 1 °C, (2) the non-uniform 

temperature change scenario, used by Hänninen (1991), developed for Finland 

in a 2 x C0 2 climate, in which winter temperature is expected to rise more 

than summer temperature. Mean daily temperature in the months January to 

December was assumed to rise by 6.2, 5.7, 5 . 1 , 4.4, 3.3, 2 . 1 , 1.6, 2 . 1 , 3.2, 

4.3, 5.2, 5.9°C respectively (Bach 1987). 

The effect of the shift of the date of leaf unfolding on the occurrence of frost 

damage was evaluated for the period from five days before to five days after 

the predicted date of leaf unfolding. This period was arbitrarily chosen as the 

frost-susceptible period. When the lowest value of the minimum daily 

temperatures on one of the days in this period (7"") dropped below 0°C, then 

frost damage was possible. The probability of frost damage was defined as 

the fraction of years with freezing temperature in the period around the date 

of leaf unfolding: P(7"*<0). The probability of frost damage around the date 

of leaf unfolding based on the unaltered temperature series (zero-change sce­

nario) was compared with the probability of frost damage around the date of 

leaf unfolding of the other scenarios. Temperatures below zero do not neces­

sarily imply frost damage. However, few data were available on the tempera­

ture threshold below which frost damage is certain. Therefore, an empirical 

approach was adopted, using the temperature thresholds below which 10% 

(7"*o.io) a n d 25% (7*025) of the observations of T' occur. These thresholds 

were defined as: P(7 " < T '0A0) = 0 .10 and P(7" <:702*5 ) = 0 . 2 5 . Thus, when 

using T "0 1 0 as temperature threshold for frost damage for a given species, 

then by definition the probability of frost damage is 10% for this species. On 

the other hand, when using 0°C as a frost damage threshold for all species, 

the probability of frost damage has to be determined for each species. The 

observed values of P0, 7"*025 and 7"*0io are presented in Table 3 . 1 . Figure 3.1 
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shows the distribution of T', as well as the 10% and 2 5 % percentiles for the 

data of Fagus sylvatica in The Netherlands (n = 57 years). Although 7""010 may 

be a better threshold to indicate frost damage experienced by trees, the num­

ber of observations in the 10% percentile was rather small, i.e. 5 of the 57 

years of observations for Fagus sylvatica in The Netherlands (Figure 3.1). It 

was investigated whether the probability of frost damage using 0°C as thres­

hold is a good indicator of the probability of frost damage with 7""0io as thres­

hold temperature. 

- 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 
I -w* 

T',o I T (°C) r*25 

Figure 3 .1 . Distribution of lowest minimum daily temperature (7"') in an 11-day period around 

the observed day of leaf unfolding of Fagus sylvatica in The Netherlands (n = 57 years); 10% 

and 25% percentiles are indicated cross hatch and single hatch, respectively. 7"*010 and 

7"'„2S indicate temperature thresholds of the to 10% and 25% percentiles, respectively. 

To test the importance of adaptation to local climate, hypothetical provenance 

transfers were analysed. Using the parameter values estimated by Murray et 

al. (1989) for each of the 15 northern British tree species for the alternating 

model, and by Hänninen (1990) for the generalised central Finnish tree spe­

cies for the sequential model (see section 'Models'). The response of species 
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from Britain and Finland to both the uniform and non-uniform temperature 

change scenario was evaluated using the Dutch temperature series. Thus, it 

was possible to distinguish between differences caused by the models, by the 

temperature change scenarios used, and by the species responses to their 

local climate. 

Data 

The data on leaf unfolding had been collected in The Netherlands and in the 

adjacent part of Germany. Leaf unfolding is defined as the day on which a 

normal unwrinkled leaf is visible at several places in the tree, but has not fully 

expanded (Bos 1893). The same definition was used for the German observa­

tions on deciduous species (DWD 1991). Needle flush of the German observa­

tions on coniferous species is defined as the day on which the first buds burst 

and the needles have not yet spread out (DWD 1991). For convenience, the 

term 'leaf unfolding' will be used for both deciduous and coniferous tree spe­

cies in this paper. The Dutch data were obtained from the Royal Dutch Meteo­

rological Institute (KNMI), and the German data from the German Weather 

Service (DWD). Table 3.1 presents species characteristics and the periods of 

observation. The advantage of these observations is that they cover a large 

time span, and therefore, are valuable for studies of climate change. The dis­

advantages are that the provenance of the trees is unknown, and the sites of 

observations and the number of observations vary between years. The 

temperature series observed at De Bilt (5.20°E, 52.06°N) was used for the 

analysis of the Dutch data on leaf unfolding. Mean annual values of the date 

of leaf unfolding of all Dutch data per species were used, since only one tem­

perature series was available. For the analysis of the German data the obser­

vations from 11 phenological stations were divided into three groups situated 

near a meteorological station, and averaged per group. Table 3.2 shows the 

composition of these groups and the location of the meteorological stations. 
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Table 3 .1 . Statistics on the dates of leaf unfolding in The Netherlands (NI) and Germany (D): 

periods with data on leaf unfolding; average date of leaf unfolding [U] with standard devia­

tion; number of individual observations (n); probability of sub-zero temperature around the 

date of leaf unfolding (P0); and freezing temperature threshold belonging to 10% {T'0A0) and 

25% (7"'025) percentiles of frequency distribution of minimal temperature in the 11-day pe­

riod around the date of leaf unfolding 

species period missing years U ± s.d. n P0 7"026 7""010 

Larix decidua (D) 1951-1990 20 Apr ±10.3 429 0.50 -1.9 -3.1 

Betula pubescens (NI) 1901-1946 '31-'39,'45 22 Apr ± 7.7 718 0.58 -2.2 -3.7 

Betula pubescens (D) 1951-1990 23 Apr ± 9.4 489 0.43 -1.7 -3.0 

Tilia platyphylla (D) 1951-1990 29 Apr ±10.3 452 0.35 -1.3 -2.6 

Fagus sylvatica (NI) 1901-1968 '31-'39,'45,'54 1 May ± 5.4 1966 0.37 -1.0 -2.3 

Fagus sylvatica (D) 1951-1990 1 May ± 8.0 473 0.37 -0.7 -2.6 

Tilia cordata (D) 1951-1990 3 May ± 9.5 392 0.28 -0.6 -2.5 

Quercus rubra (NI) 1940-1959 '45,'54 3 May ± 7.4 509 0.17 0.1 -2.1 

Quercus robur (D) 1951-1990 4 May ± 7.3 482 0.27 -0.4 -2.1 

Quercus robur (NI) 1901-1968 ,31- '39/45, '54 6 May ± 6.7 1462 0.18 0.2 -1.1 

Fraxinus excelsior (D) 1951-1990 7 May ± 8.7 435 0.18 0.6 -1.1 

Quercus petraea (NI) 1940-1968'45, '54, '60, '61 8 May ± 6.2 287 0.12 0.1 -1.1 

Picea abies (D) 1951-1990 10 May ± 8.1 451 0.14 0.8 -0.8 

Pinus sylvestris (D) 1951-1990 13 May ± 7.0 369 0.15 1.1 -0.5 

Models 

In an earlier study of various models (Kramer 1994a) tested for Fagus syl­

vatica, two models incorporating chilling and heat requirement were found to 

predict the onset of the growing season well. They were the sequential and 

the alternating models. Sarvas (1974) proposed a two-stage model to de­

scribe the development of the plant during dormancy: (1) a rest phase which 

is defined as the period in which buds remain dormant due to growth-arresting 
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Table 3.2. German phenological and meteorological data. Mean annual values of phenological 

observations per species are taken from the three groups of stations as indicated 

phenological station 

Oldenburg 

Bremen-Oberneuland 

Mellinghausen 

Eielstaedt 

Walsrode 

Celle 

Grasdorf 

Kolenfeld 

Heldenbergen 

Gross-Umstadt 

Moersch 

lat. 

(°N) 

53.09 

53.05 

52.45 

52.19 

52.52 

52.38 

52.18 

52.24 

50.14 

49.52 

48.58 

long. 

CE) 

8.12 

8.56 

8.50 

8.22 

9.36 

10.05 

9.48 

9.27 

8.52 

8.56 

8.18 

meteorological statior 

(representing group) 

Oldenburg 

(for group 1 ) 

Celle 

(for group 2) 

Karlsruhe 

(for group 3) 

lat. 

CN) 

53.06 

52.36 

49.02 

long. 

CE) 

8.15 

10.02 

8.22 

physiological conditions in the bud itself.These conditions are removed when 

the buds are exposed to chilling temperature (-5<7"<10°C) for a certain 

period, and (2) a quiescence phase which is defined as the period in which the 

buds fail to grow owing to un-favourable environmental conditions. Budburst 

takes place when the buds are exposed to forcing temperature ( r > 0 ° C ) for a 

prolonged period. The rates at which 'chilling units' (CU) are accumulated dur­

ing rest and 'forcing units' (FU) are accumulated during quiescence, and the 

threshold values for rest completion and budburst are species-specific. Hän-

ninen's (1990) formalization of the Sarvas approach is presented in Equation 
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E*c s, = E R, 3.1 

3 . 1 . Table 3.3 presents the variable and parameter names used and their 

dimensions.The date of the onset of rest (t:) was arbitrarily set at 1 Novem­

ber for all species. Rest ends (f2) when the state of chilling exceeds its critical 

value. Similarly, quiescence ends (f3) when the state of forcing exceeds its 

critical value. The duration of the rest and quiescence phases is defined as the 

number of days between f, and r2, and f2 and t3, respectively. 

Table 3.3. Variables, parameters in the sequential and alternating models and their dimen­

sions, as well as other statistics and abbreviations used in this study 

Variables 

Sc State of chilling 

S, State of forcing 

RQ Rate of chilling 

fl, Rate of forcing 

Units 7", Minimum temperature for chilling °C 

CU 7"0 Optimal temperature for chilling °C 

FU 7", Maximum temperature for chilling °C 

CU day"1 7"b Base temperature °C 

FU day1 b, c, a, ß, r Constants 

Parameters Units 

C' Critical value of state of chilling for 

the transition from the rest phase to 

the quiescence phase CU 

F' Critical value of state of forcing for 

the transition from quiescence to 

the active phase FU 

K The bud's ability to respond to forc­

ing temperatures 

f, Date of onset of rest d 

t2 Date of onset of quiescence d 

f3 Date of leaf unfolding d 

Other statistics Units 

7" Mean daily temperature °C 

T' Lowest temperature in the frost-

susceptible period °C 

7"'01010% percentile of observations 

of T' °C 

T'o,2s 25% percentile of observations 

of T' °C 

P0 Probability of sub-zero temperature 

in frost-susceptible period 

U Date of leaf unfolding 

R Duration of rest period 

Û Duration of quiescence period 
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The rate of chilling is a triangular function of temperature, defined as: 

0 T<LT.t 

T-T, 

To-T-, 

T-T. 

T0-Ta 

3.2 

T,<TsT0 

T0<T<Ta 

T*Ta 

The rate of forcing is a truncated logistic function of temperature, defined as: 

0 TsT 

" f K 
1 

1 + e - " (T-o 
T>T 

3.3 

K = 
0 S<C 

1 S>C 
3.4 

K is a competence function (Hänninen 1990) determining whether a bud can 

respond to forcing temperatures. The base temperature was set at 0°C for all 

species to reduce the number of parameters to be estimated. In Figure 3.2 

both the rate of chilling and the rate of forcing are presented, using the 

parameter values of Hänninen (1990), scaled between zero and unity. This 

model was called the sequential model because the state of chilling and forc­

ing increase sequentially in time. 

Cannell and Smith (1983) described the effect of chilling in a different way. 

They found that the state of forcing needed at budburst declines exponentially 

w i th the current state of chilling. Using the same notation as presented above 

(Table 3.3), this model can be presented as follows: 
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0 . 5 - -

Ti T0 Te Ti°c) 
Figure 3.2. Rate of chilling (triangular) and rate of forcing (truncated logistic) scaled between 

zero and unity. Parameter values according to Hänninen (1990). 

r<rK 

r>rK 

3.5 

* f = 
r<7\. 

K (T - Tb) T±Tb 

3 .6 

K 
0 t<t2 

1 tzL 
3.7 

F* = a + ßr 3.8 

Leaf unfolding is predicted as the day on which the state of forcing exceeds 

its critical value. The critical value of state of forcing is not a constant but 

decreases monotonically with time. Following Murray et al. (1989) the state 

of chilling was accumulated from 1 November (r, = 1), the state of forcing 

was accumulated from 1 January ^2 = 61), and the base temperature was set 
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at 5°C, because these values were found to be applicable to the Dutch 

situation (Kramer 1994a, Chapter 2). Thus, implicitly a rest period of two 

months is assumed, since the state of forcing is not allowed to increase 

between 1 November and 1 January. From Equation 3.8 it can be seen that 

the critical state of forcing required for budburst equals a + ß if the state of 

chilling equals zero, and approaches a if the state of chilling becomes very 

large. Thus r determines how sensitive is the critical state of forcing required 

for budburst to the state of chilling. If r equals unity, then F' is independent 

of the state of chilling, whereas this sensitivity is inversely related to r. 

The parameter values of both models were estimated by minimizing the 

residual sum of squares. The GENSTAT directive FITNONLINEAR was used 

for the alternating model, and the E04FCF subroutine of the NAG Fortran 

library was used for the sequential model. The explained variance presented 

was calculated based on the mean square of the residuals and the total mean 

square (adjusted R2). 

Results and discussion 

Parameter values 

The estimated parameter values and the variance explained by the sequential 

model are presented in Table 3.4. It appears that the parameter values of the 

rate of chilling {Tu T0, Ta) span a much wider range than the range [-5,10] that 

would normally be considered as chilling temperature. Although a temperature 

around T0 results in the fastest rate of chilling, with these parameter values 

even low or high temperature will contribute to chilling. The parameter values 

of the sequential model cannot easily be compared between species. The 

critical values for the state of chilling and forcing, C " and F', axe mutually 

dependent and correlate with other parameters (correlation matrix not presen­

ted); therefore, locally optimal parameter values were found by the estimating 
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routine. However, using simpler versions of the sequential model increased 

the residual sum of squares and did not yield globally optimal parameter 

values. 

Table 3.4. Parameter values and percentage variance explained (R2) by the sequential model 

for The Netherlands (NI) and Germany (D), and parameter values determined by Hänninen 

(1990) in central Finland (see Table 3.3 for the explanation of the parameter names) 

species 7] T„ 7, C' 

Larix decidua (D) 

Betula pubescens (NI) 

Betula pubescens (D) 

Tilia platyphylla (D) 

Fagus sylvatica (NI) 

Fagus sylvatica (D) 

Tilia cordata (D) 

Quercus rubra (NI) 

Quercus robur (D) 

Quercus robur (NI) 

Fraxinus excelsior (D) 

Quercus petraea (NI) 

Picea a bies (D) 

Pinus sylvestris (D) 

-13.2 

-12.0 

-10.3 

-11.2 

-19.4 

-21.4 

-51.5 

-11.5 

-11.4 

-20.6 

-20.4 

-24.0 

-11.4 

-13.8 

-2.2 

-0.9 

-10.0 

-2.8 

-0.2 

-1.8 

3.2 

-1.1 

-3.8 

-0.8 

-3.5 

-0.2 

0.1 

-1.2 

101.4 

37.8 

58.3 

98.6 

77.0 

69.7 

49.9 

22.7 

39.3 

58.9 

165.8 

113.8 

16.3 

16.5 

91.4 

99.4 

84.3 

91.5 

117.6 

115.6 

106.7 

94.1 

101.7 

112.2 

140.4 

129.0 

82.5 

85.3 

0.13 

0.19 

0.13 

0.15 

0.10 

0.08 

0.11 

0.16 

0.11 

0.17 

0.09 

0.17 

0.14 

0.11 

34.3 

18.3 

38.4 

33.9 

33.1 

47.4 

39.1 

22.4 

37.8 

16.2 

53.1 

15.3 

35.9 

37.6 

1.3 

5.4 

1.0 

1.2 

3.6 

2.0 

2.0 

5.5 

1.9 

11.7 

0.7 

12.7 

1.6 

2.4 

0.73 

0.86 

0.76 

0.78 

0.68 

0.49 

0.58 

0.87 

0.55 

0.82 

0.28 

0.70 

0.41 

0.33 

(Finland) -3.4 3.5 10.4 30.00 0.185 18.431 5.29 

The estimated parameter values and the variance explained by the alternating 

model are presented in Table 3.5. For Fraxinus excelsior and Tilia platyphylla 

negative values are found for the asymptote a . This means that when the 

state of chilling is large, F ' is negative, which is impossible. However, be­

cause of the high value of r, these species are relatively insensitive to changes 
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Table 3.5. Parameter values and percentage variance explained (R2) by the alternating model 

for The Netherlands (NI) and Germany (D), and parameter values of the 5 groups defined by 

Murray et al. (1989) in northern Britain (UK) (see Table 3.3 for the explanation of the 

parameter names) 

species 

Larix decidua (D) 

Betula pubescens (NI) 

Betula pubescens (D) 

Tilia platyphylla (D) 

Fagus sylvatica (NI) 

Fagus sylvatica (D) 

Tilia cordata (D) 

Quercus rubra (NI) 

Quercus robur (D) 

Quercus robur (NI) 

Fraxinus excelsior (D) 

Quercus petraea (NI) 

Picea a bies (D) 

Pinus sylvestris (D) 

Group 1 (UK) 

Group 2 (UK) 

Group 3 (UK) 

Group 4 (UK) 

Group 5 (UK) 

0.98 

0.97 

0.98 

0.99 

0.98 

0.99 

0.99 

0.88 

0.99 

0.98 

1.00 

0.90 

0.98 

0.98 

0.99 

0.99 

0.98 

0.97 

0.95 

644 

860 

591 

619 

731 

763 

659 

1355373 

785 

704 

1208 

161083 

978 

1218 

1084 

602 

514 

468 

961 

72 

129 

89 

-58 

121 

12 

99 

264 

92 

191 

-582 

278 

162 

164 

-147 

-56 

36 

39 

46 

0.45 

0.57 

0.51 

0.51 

0.52 

0.58 

0.44 

0.49 

0.58 

0.48 

0.50 

0.45 

0.43 

0.47 

Group 1: Fagus sylvatica; group 2: Robinia pseudoacacia, Tsuga heterophylla, Picea sit-

chensis; group 3: Rubus idaeus, Sorbus aucuparia, Betula pendula, Corylus avelana; group 4: 

Sambucus nigra, Rosa rugosa, Salix viminalis, Larix decidua, Prunus avium; group 5: Populus 

trichocarpa, Crataegus monogyna. 
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in the state of chilling, and because ct + ß>0 a negative state of forcing will 

not be required. On the other hand, high values of ß were found for Quercus 

petraea and Û. rubra. This means that a large value of the state of forcing will 

be required when the state of chilling attains low values. Due to the low val­

ues of r, these species are relatively sensitive to the state of chilling. Thus, a 

low value for the state of chilling will considerably reduce the critical state of 

forcing required for budburst. The deviant behaviour of both oak species may 

be attributable to the fact that the parameters were estimated from a rela­

tively short series of observations (Table 3.1) and therefore the values found 

are not necessarily correct. Data were available from both The Netherlands 

and Germany for Betula pubescens, Fagus sylvatica and Quercus robur, and 

parameter values for each species were very similar in both countries. These 

three species differ mainly with respect to the value of a (the state of forcing 

required for budburst given sufficient chilling). The parameter values esti­

mated by Murray et al. (1989) are also presented in Table 3.5. Group 1 con­

sists of Fagus sylvatica, and group 4 contains Larix decidua. In the absence of 

chilling, the state of forcing required for leaf unfolding (a + ß) of the British 

provenance of Fagus sylvatica is of a similar magnitude to that of The Nether­

lands. The British provenance of Larix decidua appears to require a lower 

value of the state of forcing in the absence of chilling compared to the Ger­

man provenance, which is mostly due to the differences of the value of ß. 

Uniform temperature increase scenario 

Figures 3.3a and 3.3b present the results of the sequential and the alternating 

models, respectively, for the uniform climatic warming by -2 to +8 °C on 

Fagus sylvatica in The Netherlands. The error bars cover 95% of the predicted 

values attributable to variation between the years (n = 57 years). The sequen­

tial model predicts that the mean date of leaf unfolding will be advanced by 

3.6 days per degree temperature change [Figure 3.3a(i)]. This results in the 
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probability of potential frost damage decreasing by 0.08 per °C [Figure 

3.3a(v) upper line]. The change in the date of leaf unfolding is the result of a 

shorter quiescence phase [Figure 3.3a(iv)] rather than a longer rest phase 

[Figure 3.3a(iii)], since these phases change with temperature at rates of -3.8 

and 0,2 day per °C, respectively. Figure 3.3a(v) also presents the shift in the 

probability of potential frost damage when instead of 0°C, T"02s and 7""0.io 

are used as frost damage thresholds (Table 3.1). Based on Figure 3.3a(v) and 

similar figures prepared for all other species it was concluded that 0°C can be 

used as the threshold to evaluate the shift in frost damage wi th changing 

winter temperature for the sequential model. 

The alternating model predicts a greater advancement of the mean date of 

leaf unfolding than the sequential model, namely 7.7 days per °C [Figure 

3.3b(i)]. Even then, the probability of potential frost damage is found to de­

crease by 0.03 per °C [Figure 3.3b(v) upper line]. The state of chilling de­

creases by 16.9 d °C 1 w i th increasing temperature [Figure 3.3b(iii)]. Thus, an 

increasingly greater amount of state of forcing is required for leaf unfolding, 

namely 48.9 FU °C 1 more [Figure 3.3b(iv)]. This state of forcing is attained in 

fewer days, resulting in an earlier date of leaf unfolding. As the critical state 

of forcing required for leaf unfolding directly depends on the state of chilling, 

it cannot be decided whether the earlier date of leaf unfolding is caused by a 

slower accumulation of the chilling or by a faster accumulation of the forcing. 

The increase in the probability of potential frost damage for the higher 

temperature scenarios [Figure 3.3b(v)] is due to an increased variability of the 

minimal temperature around the date of leaf unfolding [Figure 3.3b(ii)]. Based 

on Figure 3b(v) and similar figures for all other species, it was concluded that, 

for the alternating model, 0°C can also be used as the threshold value to 

evaluate the effects of changing winter temperature on the probability of frost 

damage. 

When similar figures were prepared for the other species in Germany and The 

Netherlands, in virtually all cases linear relations were found between the 
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mean of the variables mentioned above and the temperature scenarios in the 

range 7-2 to T+ 4 . Therefore, linear regression was applied. The derivatives 

are presented in Tables 3.6 and 3.7 for the sequential and the alternating 

models, respectively, indicating the rate of change of the variable considered 

per degree temperature change. In Table 3.6, it can be seen that according to 

the sequential model, species differ in their response to uniform climatic 

warming. The shift in leaf unfolding ranges from about 1 to 6 days; however, 

for all species the probability of frost damage around the date of leaf unfold­

ing is found to decrease. For most species, the duration of the rest period var­

ied little wi th increasing temperature: however, exceptions are Picea ab/es and 

Pinus sylvestris, which have a relatively low R2. This is the consequence of 

the broad range at which chilling is allowed to occur. Thus, given the parame­

ter values obtained, the advancement in leaf unfolding found for all species is 

due to a shorter quiescence phase and a rather constant rest phase. 

Figure 3.3 -•. Results of temperature change of the Dutch temperature series by -2 to +8°C 

according to (a) the sequential model fitted to Dutch data on Fagus sylvatica, (b) the alter­

nating model on the same data, and (c) the sequential model using parameter values derived 

for a generalised central Finnish tree species. U, date of leaf unfolding; T, minimum tem­

perature around leaf unfolding; /?, duration of rest period; Q, duration of quiescense period; 

Sc, state of chilling at leaf unfolding; S, state of forcing at leaf unfolding; P, probability of 

frost damage around leaf unfolding, represented by: P(7"*<0) (upper line), P(7"' < T' 025) 

(middle line), and P(7""<7"0io) (lower line). 
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Table 3.6. Mean values of the date of leaf unfolding (U), probability of sub-zero temperature 

around the date of leaf unfolding (P0), duration of rest period (/?) and duration of quiescence 

period (Q) of the sequential model with the zero-change scenario, and their mean derivatives 

to temperature in the range 7-2 to T+ 4. Plus the results of the hypothetical provenance 

transfer from central Finland to The Netherlands 

species U ÖU/ÖT P0 5P0I5T H ÖP./ÖT Q ÖQ/ÖT 

Larix decidua (D) 

Betula pubescens (NI) 

Betula pubescens (D) 

Tilia platyphylla (D) 

Fagus sylvatica (NI) 

Fagus sylvatica (D) 

Tilia corda ta (D) 

Quercus rubra (NI) 

Quercus robur (D) 

Quercus robur (NI) 

Fraxinus excelsior (D) 

Quercus petraea (NI) 

Picea a bies (D) 

Pinus sylvestris (D) 

(Finland) 

16 Apr 

22 Apr 

20 Apr 

25 Apr 

1 May 

28 Apr 

1 May 

3 May 

2 May 

6 May 

7 May 

8 May 

8 May 

10 May 

22 Mar 

-5.3 

-5.0 

-4.8 

-6.0 

-3.6 

-2.9 

-4.6 

-3.4 

-3.4 

-4.6 

-2.6 

-4.3 

-1.9 

-1.1 

-5.8 

0.54 

0.53 

0.51 

0.34 

0.30 

0.35 

0.29 

0.17 

0.27 

0.12 

0.17 

0.08 

0.20 

0.15 

0.78 

-0.10 

-0.08 

-0.09 

-0.06 

-0.08 

-0.08 

-0.05 

-0.09 

-0.06 

-0.06 

-0.05 

-0.05 

-0.04 

-0.04 

-0.11 

101 

119 

105 

103 

129 

128 

116 

127 

126 

125 

149 

139 

117 

122 

57 

0.4 

1.2 

1.2 

0.5 

0.2 

0.5 

0.2 

3.5 

1.6 

0.8 

0.0 

0.0 

6.2 

7.0 

4.9 

65 

54 

64 

73 

52 

50 

66 

57 

56 

61 

39 

50 

72 

68 

86 

-4.9 

-6.2 

-6.0 

-5.2 

-3.8 

-3.4 

-4.9 

-7.0 

-4.9 

-5.4 

-2.6 

-4.1 

-8.1 

-8.1 

-10.6 

Compar ing Tables 3 .6 and 3 .7 it can be seen t ha t for all species the advance­

men t in leaf un fo ld ing is larger according t o t he a l ternat ing model t han t o t he 

sequent ia l mode l , namely about 4 t o more t han 8 days per degree. Th is sh i f t 

in date of leaf un fo ld ing is such t ha t for all the species the probabi l i ty of f ros t 

damage a round t he da te o f leaf un fo ld ing remains v i r tua l ly cons tan t . Further­

more , it can be seen t ha t t he s tate of chi l l ing and their rate of change w i t h 

chang ing tempera ture is nearly cons tant in each coun t ry . Given the zero-

change scenar io, t he number of days t o leaf unfo ld ing is 9 6 - 9 8 days and the 
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Table 3.7. Mean values of date of leaf unfolding (U), probability of sub-zero temperature 

around the date of leaf unfolding (/>„), state of chilling (Sc ) and state of forcing at leaf un­

folding (Sf) of the alternating model with the zero-change scenario, and their mean deriva­

tives to temperature in the range 7-2 to 7+4 . Plus the results of the hypothetical prove­

nance transfer of the different species groups discerned by Murray et al. (1989) from north­

ern Britain to The Netherlands 

species U ÖU/ÖT P0 ÖP0/Ö7 Sc 5SC/Ö7 S, 6S,IÖT 

Larix decidua (D) 

Betula pubescens (NI) 

Betula pubescens (D) 

Tilia platyphylla (D) 

Fagus sylvatica (NI) 

Fagus sylvatica (D) 

Tilia cordata (D) 

Quercus rubra (NI) 

Quercus robur (D) 

Quercus robur (NI) 

Fraxinus excelsior (D) 

Quercus petraea (NI) 

Picea abies (D) 

Pinus sylvestris (D) 

Group 1 (UK) 

Group 2 (UK) 

Group 3 (UK) 

Group 4 (UK) 

Group 5 (UK) 

18 Apr 

22 Apr 

21 Apr 

27 Apr 

1 May 

29 Apr 

2 May 

6 May 

3 May 

6 May 

8 May 

10 May 

10 May 

12 May 

12 May 

20 Apr 

27 Mar 

3 Mar 

14 Feb 

-7.8 

-8.5 

-8.2 

-7.6 

-7.7 

-5.8 

-7.0 

-7.0 

-5.9 

-8.7 

-6.4 

-7.1 

-6.4 

-4.2 

-4.1 

-9.6 

-10.2 

-10.3 

-6.7 

0.48 

0.42 

0.47 

0.27 

0.25 

0.25 

0.19 

0.17 

0.18 

0.14 

0.13 

0.04 

0.10 

0.10 

0.10 

0.48 

0.76 

0.84 

0.93 

-0.05 

-0.01 

-0.04 

-0.03 

-0.03 

-0.04 

-0.01 

-0.02 

-0.02 

-0.00 

-0.02 

-0.01 

-0.02 

-0.02 

-0.04 

-0.04 

-0.06 

-0.05 

-0.06 

104 

96 

104 

105 

96 

105 

105 

97 

105 

96 

105 

98 

105 

105 

96 

96 

91 

79 

68 

-15.1 

-17.4 

-15.2 

-15.1 

-16.9 

-15.1 

-15.1 

-16.4 

-15.1 

-16.9 

-15.2 

-16.1 

-15.2 

-15.2 

-16.1 

-16.2 

-16.6 

-16.3 

-14.5 

179 

197 

194 

223 

241 

233 

253 

290 

260 

241 

290 

302 

290 

321 

311 

200 

129 

102 

89 

35.1 

46.8 

33.1 

34.8 

48.9 

45.8 

38.7 

50.3 

45.4 

48.9 

42.4 

52.3 

42.4 

61.5 

76.9 

43.3 

42.1 

39.1 

44.5 

Group 1 : Fagus sylvatica; group 2: Robinia pseudoacacia, Tsuga heterophylla, Picea sit-

chensis; group 3: Rubus idaeus, Sorbus aucuparia, Betula pendula, Corylus avelana; group 4: 

Sambucus nigra, Rosa rugosa, Salix viminalis, Larix decidua, Prunus avium; group 5: Populus 

trichocarpa, Crataegus monogyna. 
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rate of change 16 d "C"1 in The Netherlands, whereas the corresponding 

numbers are 104-105 days and 15 d "C"1 in Germany. This means that 

differences in the shift in date of leaf unfolding found between species are 

due to differences in the critical state of forcing that must be attained for leaf 

unfolding to occur. 

Hypothetical provenance transfer 

Hänninen (1990) estimated values for the parameters of the rate of chilling 

and the rate of forcing based on microscopic observations performed by Sar-

vas (1972, 1974) (Table 3.4). However, the chilling rate parameters were 

observed on a different species than the forcing rate parameters and should 

be considered as provenance characteristics of a generalised tree species. Fol­

lowing Hänninen (1991), F' was varied between 50, 100, 150 and 200 FU, 

while C" varied between 30 and 50 CU, with 28.361 forcing units per day as 

asymptote for the rate of forcing. Figure 3c show the results of the combina­

tion C* = 30 and F * = 5 . 2 9 (150/28.365) since these values were used in the 

analysis by Hänninen (1991) when scaling the rate of forcing between zero 

and unity. The results obtained are presented in the lower part of Table 3.6. 

The curves of the other seven combinations differ only in level and not so 

much in rate of change with changing temperature. For all combinations, the 

results showed an advancing date of leaf unfolding, an increasing minimal 

temperature around budburst for the 7 + 1 to 7+ 4 scenarios, thus a decreas­

ing probability of frost damage, and a delay in budburst for 7 + 4 to 7 + 8 sce­

narios which was accompanied by decreasing probability of frost damage at 

budburst. Given these settings of C * and F", the date of budburst is greatly 

advanced compared to the Dutch provenances, namely 22 March [Figure 

3.3c(i)]. However, other settings of these thresholds alter this result. The de­

cline in the probability of frost damage changes with other settings of C " and 

F', but the overall pattern of a rapid decline does not. Due to the narrower 
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temperature range for chilling, the length of the rest period increases more 

strongly [4.9 d °C"\ Figure 3.3c(iii)] compared to the Dutch provenances. The 

Finnish values for the forcing rate parameters cause the duration of the quies­

cence phase to be more sensitive to changing temperature [-10.6 d ° C \ Fi­

gure 3.3c(iv)] than the Dutch settings. Nevertheless, the rate at which the 

probability of frost damage around budburst decreases is of a similar magni­

tude [0.11 °C"\ Figure 3.3c(v)] to that found for the Dutch provenances. 

Murray et al. (1989) discerned 5 groups of species on the basis of similar 

temperature dependence of the rate of development during dormancy, and 

derived group parameter values for the alternating model. In Table 3.7, it can 

be seen that these groups do indeed respond differently when using these 

parameter values in combination with the Dutch temperature series. The 

groups 2-5 are likely to experience frost damage when transferred to The 

Netherlands. On the other hand, group 1, the British provenance of Fagus syl-

vatica, showed that when transferred to The Netherlands the date of budburst 

will be later than the date of leaf unfolding of the Dutch provenance of Fagus 

sylvatica (12 May versus 1 May). Furthermore, the advancement of the date 

of budburst of the British provenance of Fagus sylvatica is less than the ad­

vancement of the date of leaf unfolding of the Dutch provenance (4.1 versus 

7.7 d °C"1)- Both of these effects are caused by the larger amount of state of 

forcing required for budburst of the British provenance for leaf unfolding than 

of the Dutch provenance, 76.9 and 48.9 FU, respectively. The state of chil­

ling at budburst and the rate this changes with increasing temperature are the 

same for both provenances. A slow decrease in the probability of frost dam­

age around budburst is found for all species groups. So according to the alter­

nating model, given the Dutch temperature regime, the British provenances 

respond similarly to the Dutch provenances to a uniform change in tempera­

ture. 

Both Murray et al. (1989) and Hänninen (1991) used the minimum daily 

temperature on the date of budburst to evaluate the probability of frost dam-
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age. When this one-day assessment was used for the Dutch and German tem­

perature series considered here, the same qualitative results were obtained as 

when the minimum temperature in the 11-day period around the date of leaf 

unfolding was used, i.e. a reduced probability of frost damage with increasing 

temperature. Quantitatively, the shift in the probability of frost damage with 

uniformly changing temperature using the one-day method was more variable 

than the 11-day period method. In order to estimate the change in the proba­

bility in frost damage with changing temperature, the method using the 11 -

day period was found to be much more stable than the one-day method. 

Non-uniform temperature increase scenario 

In Table 3.8, the impacts are presented of the non-uniform temperature sce­

nario of both the sequential and the alternating models on the day of leaf un­

folding and the probability of frost damage. To compare these results wi th the 

uniform temperature increase scenario, the equivalent uniform temperature 

increase has been calculated as the weighted temperature increase in the pe­

riod from 1 November to the predicted day of leaf unfolding according to the 

non-uniform temperature increase scenario. This equivalent uniform tempera­

ture increase is usually between 5.5 and 6.0°C, which is beyond the range 

where the uniform temperature change has a linear effect on both the date of 

leaf unfolding and the probability of frost damage: [ 7 -2 ,7+4 ] . 

Table 3.8 shows that the predicted date of leaf unfolding according to both 

models is a few days earlier wi th the uniform temperature increase compared 

to the non-uniform warming scenario. However, the probability of frost dam­

age predicted by both models with the uniform warming scenario is some­

what less compared to the non-uniform warming scenario. This is because the 

temperature increase around the date of leaf unfolding is higher for the uni­

form warming scenario, i.e. 5.5 to 6.0°C, compared to the non-uniform 

warming scenario, i.e. 5.1 °C in March and 4.4°C in April. 
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As was found with the uniform temperature increase scenarios (Tables 3.6 

and 3.7), the alternating model predicts a larger advancement of the date of 

leaf unfolding than the sequential model. Consequently, the probability of 

frost damage is greater according to the alternating model than the sequential 

model. According to the sequential model the probability of frost damage will 

be sharply reduced in the Finnish 2 x C02 scenario compared to the zero sce­

nario (Table 3.6). To a lesser extent the same is true for the alternating model 

(Tables 3.7 and 3.8). 

No results are presented for Picea abies and Pinus sylvestris w i th the sequen­

tial model, because the chilling or the forcing requirements of these species 

were frequently not met, and consequently the date of leaf unfolding could 

not be predicted. Using a 5.5°C increase in mean winter temperature and the 

linear relationship between temperature and the date of leaf unfolding as 

found wi th the uniform temperature increase scenarios, Picea abies and Pinus 

sylvestris are expected to flush their needles on 28 April and 4 May, respec­

tively, wi th a zero probability of frost damage for both species. 

Table 3.8 also presents the results of the non-uniform warming scenario and 

equivalent uniform temperature increase scenario on the British and Finnish 

provenances using the Dutch temperature series. No results have been pre­

sented for group 5 because they are very variable. The same pattern was 

found as described earlier, i.e. an earlier date of leaf unfolding, but neverthe­

less, a reduced probability of frost damage. 

Conclusions 

For uniform and non-uniform climatic warming scenarios, the sequential and 

the alternating models both predict an increasing or constant minimum tem­

perature around the date of leaf unfolding for German and Dutch provenances 

of Larix decidua, Betula pubescens, Tilia platyphylla, Fagus sylvatica, Tilia cor­

da ta, Quercus rubra, Quercus robur, Fraxinus excelsior, Quercus petraea, 
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Table 3.8. Mean values of leaf unfolding (U) and the probability of sub-zero temperature 

around the date of leaf unfolding {P0) according to the non-uniform climatic warming scenario 

of Hänninen (1991), and to the uniform warming equivalent scenario of both the sequential 

and the alternating models 

Sequential model Alternating model 

Non-uniform Uniform Non-uniform Uniform 

Species U Pn U Pn U Pn U Pn 

Larix decidua (D) 

Betula pubescens (NI) 

Betula pubescens (D) 

Tilia platyphylla (D) 

Fagus sylvatica (NI) 

Fagus sylvatica (D) 

Tilia cordata (D) 

Quercus rubra (NI) 

Quercus robur (D) 

Quercus robur (NI) 

Fraxinus excelsior (D) 

Quercus petraea (NI) 

Picea a bies (D) 

Pinus sylvestris (D) 

Group 1 (UK) 

Group 2 (UK) 

Group 3 (UK) 

Group 4 (UK) 

Group 5 (UK) 

24 Mar 

9 Apr 

2 Apr 

30 Mar 

19 Apr 

20 Apr 

15 Apr 

17 May 

26 Apr 

21 Apr 

29 Apr 

24 Apr 

0.09 

0.03 

0.03 

0.03 

0.00 

0.03 

0.05 

0.00 

0.03 

0.02 

0.04 

0.00 

22 Mar 

7 Apr 

31 Mar 

29 Mar 

16 Apr 

18 Apr 

12 Apr 

12 May 

23 Apr 

18 Apr 

27 Apr 

22 Apr 

0.06 

0.00 

0.03 

0.03 

0.00 

0.03 

0.02 

0.00 

0.02 

0.00 

0.02 

0.00 

6 Mar 

23 Mar 

4 Mar 

28 Feb 

20 Mar 

23 Mar 

21 Mar 

17 May 

31 Mar 

24 Mar 

17 Mar 

27 Apr 

17 Apr 

2 May 

9 Apr 

13 Feb 

3 Feb 

23 Jan 

0.40 

0.22 

0.36 

0.29 

0.19 

0.18 

0.17 

0.00 

0.07 

0.18 

0.14 

0.00 

0.02 

0.03 

0.00 

0.30 

0.42 

0.45 

5 Mar 

21 Mar 

3 Mar 

27 Feb 

19 Mar 

21 Mar 

19 Mar 

7 Jul 

29 Mar 

22 Mar 

16 Mar 

11 Jun 

14 Apr 

27 Apr 

8 Apr 

12 Feb 

2 Feb 

27 Jan 

0.36 

0.08 

0.36 

0.30 

0.11 

0.13 

0.13 

0.00 

0.07 

0.09 

0.13 

0.00 

0.01 

0.02 

0.00 

0.30 

0.45 

0.46 

(Finland) 21 Mar 0.06 17 Mar 0.12 
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Picea ab/es, and Pinus sylvestris. As a result, the probability of spring frost 

damage may decrease. The hypothetical provenance analysis showed that 

provenances of northern tree species respond to the Dutch temperature 

regime in a similar way to Dutch provenances. Thus, it can be concluded that 

the decreasing probability of frost damage with climatic warming holds over a 

wide range of parameter values for the sequential and the alternating models. 

Furthermore, both models agree that differences between species, in the ad­

vancement of the date of leaf unfolding with changing winter temperature, 

are attributable to differences in response to forcing temperature rather than 

to chilling temperature. 

From the analysis done in the present study, it can be seen that the results 

obtained by of Murray et al. (1989), i.e. a declining probability of frost 

damage given climatic warming, and those of Hänninen (1991), i.e. an 

increasing probability of frost damage, are mutually consistent. If the sequen­

tial model were applied to the British species it could be expected that it 

would predict a smaller advancement of the date of budburst than the 

alternating model, consequently confirming the reduced probability of frost 

damage as found by Murray et al. (1989). Conversely, if the alternating model 

were applied to the Finnish species it could be expected that the alternating 

model would predict a greater advancement of the date of budburst compared 

to the sequential model, consequently confirming the increased probability of 

frost damage as found by Hänninen (1991). Moreover, the difference in 

results between the uniform and non-uniform warming scenarios is small for 

both models. Thus, the disparity between the results found by Murray et al. 

(1989) and Hänninen (1991) can be attributed to differences in response of 

tree species to the local climatic conditions. 

This study further reveals that species differ in the frequency of freezing 

temperature around the date of leaf unfolding (Table 3.1), and in their re­

sponse to a changing winter temperature (Tables 3.6 and 3.7). Species which 

unfold their leaves during the end of April appear to respond more strongly to 
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temperature change than the species which unfold their leaves during the first 

weeks of May (Table 3.6). It can be expected that this affects competitive 

relationships between those species when grown in mixtures, because exist­

ing differences between species are enhanced by such a differential response. 
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Chapter 4 

Phenotypic plasticity of the phenology of seven European tree 

species, in relation to climatic warming 

Introduction 

Trees species have adapted closely to their local climate by evolving certain 

phenological characteristics (Chabot and Hicks 1982; Reich, Walters and Ells­

worth 1992; Kikuzawa 1989). The dormant period can be thought of as a 

strategy to avoid unfavourable circumstances (Woolhouse 1969; Levins 

1969). It is generally assumed that species of temperate and boreal zone 

trees have optimally adapted to their local environment by minimising the 

occurrence of frost damage, while maximising the duration of the growing 

season (Lockhart 1983; Lechowicz 1984). These conflicting demands and the 

fact that frost hardiness is minimum during the onset and cessation of growth 

(Parker 1963; Levitt 1969; Fuchigami et al. 1982) make trees particularly sus­

ceptible to spring and autumn frosts. Temperature has been found to be the 

most efficient environmental signal for the tree to use for the optimal t iming 

of the onset of growth (Häkkinen and Hari 1988). For the cessation of growth 

of northern trees, night length has been found to be the most efficient 

environmental signal to avoid autumn frost damage (Hänninen et al. 1990). 

However, Koski and Sievänen (1985) argued the importance of adaptation to 

variation between years, i.e. regulation by temperature, and to the long term 

average, i.e. regulation by photoperiod, with respect to the cessation of 

g rowth. The large body of literature supports the theoretical results of a 

temperature regulation for the onset of growth, and a combined regulation of 

temperature and photoperiod for the cessation of growth (Doorenbos 1953; 
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Samish 1954; Wareing 1956, 1969; Nitsch 1957a,b; Vaartaja 1959; Rom-

berger 1963; Vegis 1964; Perry 1971). 

Given the importance of temperature on the phenology of trees, climatic 

warming is likely to affect the timing of the onset and cessation of growth, 

causing tree species to be less closely adapted to their local environment. One 

effect of climatic warming may be an increased probability of frost damage 

(Cannell 1984; Cannell and Smith 1983; Murray, Cannell and Smith 1989; 

Cannell, Grace and Booth 1989; Hänninen 1991). These studies found that a 

much advanced date of leaf unfolding could lead to an increased occurrence 

of spring frost damage. Another effect of climatic warming may be an altered 

competitive balance between tree species, if species differ in their tempera­

ture response with respect to the onset and cessation of growth, and conse­

quently in the duration of the growing season. These effects may influence 

the survival and eventually the distribution of trees, because of a lack of adap­

tation to an altered environment. Little adjustment can be expected from a 

change in the genetic composition of tree species by natural selection, if the 

climate changes within the life span of individual trees (Houghton, Jenkins 

and Ephraums 1990). 

In addition to the adaptive significance of phenology as mentioned above, in­

dividual trees may posses the ability to respond phenotypically when its 

environment changes. Recently there is renewed interest in the adaptive and 

ecological significance of this phenotypic plasticity (Grime, Crick and Rincon 

1986, Sultan 1992, Scheiner 1993, Via 1993) based on the review of Brad-

shaw (1965) who provided ample evidence that the plasticity of a character is 

an independent property and is under its own specific genetic control. If trees 

are plastic in their phenology with respect to temperature, they may accom­

modate temperature rise brought about by climate change. 

To elucidate the phenotypic plasticity of tree species, research was done to 

answer the following questions: (1) can clones of tree species accommodate 

a change in their local environment? (2) what is the magnitude of the change 
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of the duration of the growing season of clones of different tree species? (3) 

can the onset and cessation of the growing season be explained by the varia­

bles temperature and photoperiod? and (4) are there differences among clones 

of different tree species in the minimum temperature which occurs during the 

onset and cessation of the growing season? 

Material and methods 

Data 

Two phenological data sets were analysed to find answers for the questions 

posed above. Firstly, the data set of the International Phenological Gardens 

(IPG). It contains observations of clones of many woody plant species that 

have been transferred over a large latitudinal and longitudinal distance (Figure 

4.1). These data were used to represent the potential response of individual 

tree species to a change in their local climate. The second data set, from Ger­

many, was from 14 phenological stations. It contains observations on local 

trees of some of the species in the IPG data set (Figure 4.1). Phenological 

differences found between these stations were used to represent the adaptive 

response of tree species to different climates. This made it possible to com­

pare the magnitude of the phenotypic response to that of the adaptive re­

sponse. 

In 1958, Schnelle and Volkert (1957, 1974) set up a network of phenological 

gardens in Europe (Figure 4.1), for the study of the relationship between cli­

mate and the phenology of woody plants. Clones were used, to ensure that 

any differences found between the stations could not be attributed to specific 

responses of different genotypes. The selection of the stations, and the 

arrangement of the trees at a station were stipulated. To minimise observer 

error, detailed descriptions and pictures were supplied per species of the ex­

act stage to be observed, and of preceding and succeeding stages. The obser-
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vations started after the trees had attained a certain size and had sufficiently 

acclimatised to the site (Schnelle and Volkert 1967). The observations have 

been presented yearly since 1958 in Arboreta Phaenologica, together with full 

details on selecting and arranging stations, and the instructions for the pheno-

logical observations. More details on instructions for the phenological observa­

tions can be found in Schnelle (1966). The provenance of these clones was 

presented in Volkert and Schnelle (1968). In the present study, only the data 

on the date of leaf unfolding and the date of leaf fall were used. For conve­

nience, the terms leaf unfolding and leaf fall were used for both deciduous 

and coniferous tree species. Each garden has three individuals of the same 

clone. Only yearly averaged values for each clone were available, therefore no 

intra-clone variation per year and per station could be estimated. The time 

span of the observations differs greatly between the species and between the 

stations, moreover, not all stations contain all species and all clones of the 

same species. Daily meteorological observations from 1955 to 1987 were 

available for 26 meteorological stations adjacent to 34 phenological stations 

(Figure 4.1) and at approximately the same altitude. 

The t ime span with observations of the 14 German stations ranges from 

1951 to 1990 for most species and stations, wi th few data lacking. Leaf un­

folding was observed using the same description as for the clones; however, 

the date of leaf colouring was observed, instead of leaf fall. The IPG data set 

showed that there is a constant number of days between leaf colouring and 

leaf fall. The average duration of this period varies between 16.4 and 17.5 

days, depending on the clone. Therefore, the leaf colouring data were con­

verted to leaf fall by adding 17 days. 

Factors influencing leaf unfolding and leaf fall 

To evaluate the combined effect of temperature and photoperiod on leaf un­

folding and leaf fall, models using temperature and day length as explanatory 
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Figure 4 . 1 . Location of the stations of the International Phenological Gardens (•) and the 

German stations ( + ) in Europe. A square around a symbol indicates that meteorological ob­

servations were available. 
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variables were tested. Both additive and multiplicative models of temperature 

and day length were used, with the aim of finding a model in which the inte­

gral over time attains a constant value at the date of leaf unfolding and leaf 

fall. The form of the temperature and photoperiod models is explained below. 

To compare the response to temperature between tree species, the shift in 

leaf unfolding per degree mean winter temperature, and the shift in leaf fall 

per degree summer temperature were calculated. The mean winter tempera­

ture was calculated from the mean daily temperature from 1 November until 

the date of leaf unfolding, while the mean summer temperature was calcu­

lated from the mean daily temperature from 1 May until the date of leaf fall, 

thus splitting the year in half. 

Once the effects of temperature on leaf unfolding and leaf fall are known, the 

effect of temperature on the duration of the growing season can be calcu­

lated. The duration of the growing season was defined as the cumulative day 

length between the date of leaf unfolding and leaf fall, and thus reflects the 

number of hours of exposure to light. The mean temperature during the grow­

ing season was calculated from the mean daily temperature from the date of 

leaf unfolding until the date of leaf fall. The day length at a given latitude and 

date was calculated according to Jones (1992). 

Photoperiod 

Other researchers have reported experimental results that indicate that an ab­

solute photoperiod may trigger the date of leaf unfolding and of leaf fall for 

some species (Wareing 1956; Nitsch 1957a,b; Vaartaja 1959). If this is the 

case, then the response of clones of this species to the latitudinal transfer 

cannot be used to represent the response of an individual tree to a change in 

its local environment brought about by climate change. Therefore, the effect 

of photoperiod was evaluated by plotting the day length on the date of leaf 

unfolding versus the date of leaf unfolding, day length on the date of leaf fall, 
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versus the date of leaf fall. If absolute day length triggers leaf unfolding or 

leaf fall, this day length will be the same at all stations. 

For the evaluation of photoperiod on leaf unfolding the day length was 

accumulated from 1 November until the date of leaf unfolding. For leaf fall, 

the day length was accumulated from 1 May until the date of leaf fall. 

Temperature 

To analyse the effect of temperature on the timing of leaf unfolding and leaf 

fall, several dynamic models describing the rate of development during dor­

mancy and the growing season were tested. For the timing of leaf unfolding, 

Sarvas (1974) considered two developmental phases during the dormant pe­

riod of a bud. 

Firstly, rest, during which the bud is susceptible to chilling temperatures (-5 to 

15°C), and secondly, quiescence, during which the bud is susceptible to forc­

ing temperatures (>0°C) . Hänninen (1990) refined this concept and used a 

triangular function with temperature for the rate at which 'chilling units' are 

accumulated, and a logistic function with temperature for the rate at which 

'forcing units' are accumulated (Figure 4.2). Forcing units are only accumu­

lated after a critical number of chilling units have been accumulated during 

rest, thus triggering the onset of quiescence. Leaf unfolding is induced when 

a critical number of forcing units have accumulated. This model was called 

the sequential model because the accumulation of chilling and forcing units 

occurs sequentially in time (Kramer 1994a,b, Chapters 2 and 3). 

The total response of the date of leaf unfolding to temperature can thus be 

broken down into a response induced by a change in the duration of the rest 

phase and the duration of the quiescence phase. The duration of the rest 

phase was defined as the number of days required to attain the critical num­

ber of chilling units, counted since 1 November, while the duration of quies­

cence was defined as the number of days from the onset of quiescence until 
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0 temperature ( C) 
Figure 4.2. Rate of accumulating chilling units during rest (triangular), and forcing units dur­

ing quiescence (truncated logistic), as a function of temperature. 

the date of leaf unfolding. Simpler models to relate leaf unfolding to tempera­

ture were tested in addition to the accumulated temperature as formulated by 

the sequential model. These were the accumulated chilling temperature 

(T<0°C) , the accumulated forcing temperature (T:>0°C), and linear combina­

tions thereof, and also temperature sum models with different base tempera­

tures and starting dates. 

In contrast to the massive literature on dormancy and leaf unfolding, relatively 

little is known on leaf senescence and leaf fall. In general, the experimental 

findings indicate that there is a strong relationship between the timing of leaf 

fall and photoperiod, and that the timing of leaf fall may be mediated by tem­

perature. In an attempt to relate temperature to the developmental processes 

leading to leaf fall, both the temperature sum and a logistic function were tes­

ted. The starting date for both temperature functions was set at 1 May. 

Frost thresholds 

The occurrence of frosts was evaluated using the lowest minimum daily 

temperature in a frost-susceptible period around leaf unfolding and leaf fall 
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(7"*). The frost-susceptible period around leaf unfolding was arbitrarily chosen 

as the period ranging from five days before to five days after leaf unfolding. 

Similarly, the period from five days before leaf fall until leaf fall was chosen 

for the frost susceptible period for leaf fall. When T' is less than 0°C, frost 

damage may occur. The probability of frost (P0) was defined as the fraction of 

years with freezing temperatures in the frost-susceptible period: 

P0 = P ( r < 0 ° C ) . 

The values of T" around leaf unfolding and leaf fall of the clones may indicate 

the lowest temperature at which the clone can survive. This was analysed by 

calculating the values of P0 around both leaf unfolding and leaf fall and com­

paring them between the clones and with the corresponding values for the 

genetically different trees of the same species. When the value of P0 of the 

clone exceeds the value of the genetically different tree, then obviously the 

value of T' does not represent a threshold below which the clone cannot sur­

vive. Conversely, when the value of P0 of the clone is less than or equals the 

value of the genetically different tree of the same species, this suggests that 

T' indicates a critical threshold. 

Parameter estimation and statistical analysis 

The parameter values required for the models were estimated using the Sim­

plex method and Newton's method alternately, because it was found that this 

improves the f it. The algorithms for the Simplex method were obtained from 

Press et al. (1986), and those for Newton's method from the NAG FORTRAN 

Library (Anonymous 1990). 

All statistical analyses were performed with the GENSTAT statistical package 

(Payne 1989). To evaluate the different models, the explained variance based 

on the mean sum of the square of the residuals and the total mean sum of 

squares (Readjusted) was used. Variance components were estimated using 

the REML directive (restricted maximum likelihood). The statistics presented 
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are significant at least at the 0.05 probability level. The variance components 

presented are the variance over the stations (s2
s) and the variance over the 

years, within the stations, (s2
v). In a balance design, the total variance would 

be s2
s + n s2

y. Here adjustments were made to use the correct value of n. 

For both the estimation of the parameters for the models and the statistical 

analyses of a clone, only stations with at least five years with observations 

were used. 

Results 

Genera/ characteristics 

Table 4.1 presents statistics of leaf unfolding, leaf fall and the duration of the 

growing season of the clones, ranked from an early to a late date of leaf un­

folding. An indication of the total magnitude of the response to a change in 

the environment can be obtained by comparing the lowest and highest station 

means between the clones. An analysis of variance showed that there are 

statistically significant differences between the stations (P^O.001) for all clo­

nes in terms of date of leaf unfolding, leaf fall, and the duration of the grow­

ing season. For all clones most of the variation in leaf unfolding is attributable 

to differences between the stations, while in nearly all clones most of the 

variation in leaf fall can be attributed to differences between years, within 

stations (Table 4.2). For the duration of the growing season the ratio of 

variance between stations to variance between years differs considerably 

between clones. 

The effect of photoperiod on both leaf unfolding and leaf fall of the clones 

was evaluated graphically, by plotting the day length on the date of leaf un­

folding versus the date of leaf unfolding, and the day length on the date of 

leaf fall versus the date of leaf fall, of all observations for each clone. Figures 
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Table 4 . 1 . Overall mean (mn), lowest station mean (min) and highest station mean (max) of 

leaf unfolding, leaf fall (in daynumber: d) and the duration of the growing season (in hours: 

h) of the clones. Furthermore, the number of observations (n) and the number of stations 

with observations are given in brackets 

Larix decidua 

Betula pubescens 

Tit/a corda ta 

Populus canescens 

Quercus robur (early) 

Quercus robur (late) 

Fagus sylvatica (early) 

Fagus sylvatica (middle) 

Fagus sylvatica (late) 

Picea abies (early) 

Picea abies (late) 

Picea abies (northern) 

leaf unfolding 

mn 

(d) 

109 

113 

116 

121 

121 

121 

123 

125 

127 

127 

133 

136 

min 

(d) 

89 

76 

84 

88 

91 

92 

104 

98 

98 

98 

104 

103 

max 

(d) 

130 

154 

151 

163 

150 

144 

144 

141 

141 

161 

178 

177 

n 

546 (40) 

1109 (62) 

735 (51) 

1156 (65) 

373 139) 

397 (39) 

663 (50) 

571 (45) 

494 (42) 

1207 (67) 

1175 (67) 

1126 (65) 

leaf fall 

mn 

(d) 

315 

303 

297 

297 

311 

311 

300 

306 

302 

min 

(d) 

284 

287 

272 

265 

293 

267 

253 

253 

253 

max 

(d) 

329 

342 

318 

343 

338 

337 

n 

450 (32) 

963 (58) 

596 (48) 

609 (53) 

243 (30) 

267 (30) 

324 407 (43) 

324 

325 

340 (36) 

274 (33) 

duration growing season 

mn min 

(h) (h) 

2871 2555 

2678 1972 

2534 1854 

2 5 2 6 1 9 6 8 

2668 2331 

2664 2324 

2521 1950 

2536 2296 

2461 2211 

max 

(h) 

3149 

3090 

2804 

3067 

3177 

3154 

2736 

2705 

2633 

n 

400 (21 ) 

885 (43) 

513(34) 

505 (30) 

171 (11) 

190(13) 

317 (21) 

249 (15 ) 

195 (13) 

4.3 and 4.4 present the results for Betula pubescens, one of the most variable 

clones, and the early clone of Fagus sylvatica, the least variable clone. Cleary, 

neither leaf unfolding nor leaf fall occur at a constant day length at any 

station. Similar figures were obtained for the other clones. Therefore it was 

concluded that there is no single photoperiod threshold that triggers either leaf 

unfolding or leaf fall in any of the clones. 

Response of leaf unfolding, leaf fall and duration of the growing season to 

temperature 

The relationships between the mean winter temperature versus the date of 

leaf unfolding, and between the mean summer temperature versus the date of 

leaf fall are shown in Figure 4.5 for the clone of Betula pubescens and in 
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Table 4.2. Variance components between stations (s2
s) and between years (s\ ) of leaf un­

folding, leaf fall and the duration of the growing season of the clones 

Larix decidua 

Betula pubescens 

Tilia corda ta 

Populus canescens 

Quercus robur (early) 

Quercus robur (late) 

Fagus sylvatica (early) 

Fagus sylvatica (middle) 

Fagus sylvatica (late) 

Picea abies (early) 

Picea abies (late) 

Picea abies (northern) 

leaf u 

s\ 

(d2) 

115.0 

199.3 

151.9 

226.2 

141.1 

117.7 

72.4 

71.1 

68.1 

194.4 

205.2 

202.2 

ifolding 

s2 

(d2) 

104.0 

94.4 

76.7 

93.2 

70.8 

76.6 

51.7 

40.1 

40.3 

79.1 

65.8 

76.4 

leaf fall 

s2 
ù s 

(d2) 

82.4 

55.0 

95.0 

140.0 

73.2 

90.0 

94.3 

73.9 

126.3 

s2 

(d2) 

110.8 

118.9 

129.9 

138.5 

151.2 

137.0 

137.6 

169.3 

145.6 

duration growing 

s\ 

(h2) 

19517 

35771 

36028 

49893 

45508 

41423 

29725 

10787 

17844 

season 

s2 
Ä V 

(h2) 

24383 

26849 

28967 

34303 

26653 

20941 

20807 

15789 

17250 

Figure 4.6 for the early clone of Fagus sylvatica. Table 4.3 presents the 

statistics of linear regressions through these data for all clones. It appears 

that for most species an increase in temperature advances the dates of both 

leaf unfolding and of leaf fall. 

This phenomenon has an opposite effect on the duration of the growing sea­

son: an advanced leaf unfolding increases the duration of the growing season, 

whereas an advanced leaf fall decreases it. Whether the duration of the grow­

ing season changes, depends on the magnitude of the change of leaf unfold­

ing and leaf fall wi th temperature, and on the day length. As shown in Figures 

4.3 and 4.4, more hours of light are gained when leaf unfolding occurs one 

day earlier, than are lost when leaf fall occurs one day earlier. Table 4.3 

shows that for Larix decidua and both clones of Quercus robur the response 
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Betuia pubescens Fagus sylvatica (early) 

13 

16 

£ 14 

£ 12 

•8 io 

8 

6 

4 

/ 

f 
w leaf unfolding 

/ -
V ieaf 'all 

Y 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Figure 4.3. Day length on the date of leaf 

unfolding versus the date of leaf unfold­

ing, and day length on the date of leaf fall 

versus the date of leaf fall of Betula 

pubescens. 
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Figure 4.4. Day length on the date of leaf 

unfolding versus the date of leaf unfold­

ing, and day length on the date of leaf fall 

versus the date of leaf fall of the early 

clone of Fagus sylvatica. 
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Figure 4.5. Date of leaf unfolding versus 

mean winter temperature, and date of leaf 

fall versus mean summer temperature of 

Betula pubescens (x-axis has two mean­

ings). 
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Figure 4.6. Date of leaf unfolding versus 

mean winter temperature, and date of leaf 

fall versus mean summer temperature of 

the early clone of Fagus sylvatica (x-axis 

has two meanings). 
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Table 4.3. Slopes of the linear regression of leaf unfolding on mean winter temperature 

(ötV/öTJ, leaf fall on mean summer temperature (ÖF/ÖTS) and the duration of growing season 

on mean temperature during the growing season (5G/57"g) of the clones. R2 indicates the 

variance explained by the linear model, se the standard error of the slope, and n the number 

of observations 

leaf unfolding 

0(7/5 T„ 

(d 

Larix decidua 

Betula pubescens 

Tilia corda ta 

Populus canescens 

Quercus robur (early) 

Quercus robur (late) 

Fagus sylvatica (early) 

Fagus sylvatica (middle! 

Fagus sylvatica (late) 

Picea abies (early) 

Picea abies (late) 

Picea abies (northern) 

R2 se n 

"C ' l (%) (d) 

-2.8 

-3.7 

-2.8 

-3.0 

-2.1 

-1.7 

-2.5 

-2.4 

-2.3 

-3.5 

-4.0 

-3.3 

10 0.60 181 

37 0.24 401 

24 0.29 306 

23 0.27 418 

9 0.55 134 

5 0.67 99 

39 0.21 215 

34 0.23 208 

31 0.26 179 

30 0.26 413 

35 0.27 419 

29 0.26 408 

leaf fall 

ÖF/ÖTS R2 

(d "C-1) (%) 

-8.5 40 

-3.0 17 

-1.4 3 

-3.8 13 

-7.2 36 

-5.6 19 

(ns) 

-2.6 6 

(ns) 

se n 

(d) 

0.85 151 

0.35 344 

0.52 232 

0.61 262 

1.00 91 

1.28 79 

149 

0.79 149 

123 

0 

0 

0 

duration 

5G/5Tg 

growing season 

R2 

(h "C"1) (%) 

-85 

-27 

19 

-76 

-121 

-66 

42 

-33 

18 

4 

2 

19 

35 

19 

12 

11 

ns) 

se 

(h) 

-15.5 

-7.0 

9.3 

-10.1 

-19.8 

-17.4 

9.9 

-8.3 

n 

149 

339 

225 

258 

90 

76 

148 

147 

121 

0 

0 

0 

of leaf fall to temperature is greater than the response of leaf unfolding, resul­

ting in a shorter growing season. For Betula pubescens and Populus canes­

cens the advancement of leaf unfolding is of a similar magnitude, while for 

Tilia cordata and Fagus sylvatica the date of leaf fall appears unaltered, 

whereas the date of leaf unfolding advances with increasing temperature (Ta­

ble 4.3). 

Table 4 .4 shows that the genetically different trees of Betula, Tilia, Quercus 

and Fagus advance leaf unfolding less than the clones do (Table 4.3). For 

Larix the opposite is true, while the response of Picea differs greatly between 
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Table 4.4. Slopes of the linear regression of leaf unfolding on mean winter temperature 

(5t//57"w), leaf fall on mean summer temperature (6F/5^) and the duration of growing season 

on mean temperature during the growing season (ÖG/67"g) of the genetically different trees. 

R2, variance explained by the linear model; se, standard error of the slope; n, number of 

observations 

leaf unfolding 

ÔU/5T„ R2 se 

(d "C-'l (%) (d) 

leaf fall 

n Ö/7ÖTS R2 

(d °C~1) (%) 

se 

(d) 

duration growing season 

n 6G/578 R2 se n 

(h t ' ! (%) (h) 

Larix decidua 

Betula pubescens 

Tilia cordata 

Quercus robur 

Fagus sylvatica 

Picea abies 

-3.3 11 0.45 435 

-2.6 7 0.43 471 

-1.3 2 0.44 384 

-1.4 2 0.41 466 

-2.0 7 0.34 458 

2.6 5 0.72 222 

-4.0 7 0.66 459 

0 

-4.8 13 0.57 461 

-3.7 9 0.56 446 

0 

-58 21 5.4 447 

0 

-49 19 4.8 448 

-31 9 4.5 440 

0 

the clones and the genetically different trees. The genetically different trees 

also show a larger advancement of leaf fall wi th mean summer temperature 

than leaf unfolding with mean winter temperature, as was found for the clo­

nes. The low values of the explained variances indicate that the magnitude of 

the response may not have been reliably estimated possibly because the data 

on the genetically different trees cover a smaller latitudinal range, and thus a 

smaller temperature gradient, than the data on the clones (Figure 4.1). In 

general it can be concluded that the response of the clones to temperature is 

the same magnitude or greater than, the response of the genetically different 

trees of the same species. 
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Models 

To analyse the temperature response of the date of leaf unfolding, one set of 

parameter values required for the sequential model was found for each clone. 

However, the criterion for a globally optimal parameter set was not met. Ta­

ble 4.5 presents the explained variance of leaf unfolding wi th sequential mo­

del. All simpler temperature models tested (see section Material and methods) 

had lower explained variances. Linearly additive and multiplicative combina­

tions of the sequential model and photoperiod did not increase the explained 

variance. To evaluate the impacts of climatic warming on the phenology of 

trees, the model should represent the temperature dependence accurately. To 

evaluate this, the model output was regressed against mean winter tempera­

ture. The sequential model systematically overestimates the shift in leaf 

unfolding wi th mean winter temperature (Tables 4.3 and 4.5), by 0.5 to 1.9 

days ° C \ 

This temperature response of leaf unfolding is the result of a change in the 

duration of both the rest and quiescence phases. Figures 4.7 and 4.8 show 

that these phases do not necessarily respond linearly to temperature. For the 

late clone of Fagus sylvatica an increase in mean winter temperature in the 

range 0°C to 4°C increases the rate at which chilling units are accumulated. 

Consequently, the critical amount of chilling to induce quiescence is attained 

earlier and the duration of the rest phase is shortened. The rate at which forc­

ing units are accumulated does not keep pace. Thus the critical number of 

forcing units is attained later, resulting in a longer duration of the rest phase. 

In the range from 4°C to 12°C of the mean winter temperature, the rate of 

accumulating chilling units decreases, thus lengthening the duration of the 

rest phase, whereas the rate of accumulating forcing units increases more 

sharply, thus shortening the duration of the quiescence phase. Other patterns 

of the duration of the rest and quiescence phase were also found. For exam­

ple, wi th increasing mean winter temperature the late clone of Picea ab/es 
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Table 4.5. Slope of the linear regression of leaf unfolding predicted by the sequential model 

on mean winter temperature (ÖU/ÖTJ. R2, variance explained by the linear model; se, 

standard error of the slope 

6U/5T„ 

(d 'C-' | 

leaf unfolding 

FV 

(%> 

se 

(d) 

Larix decidua 

Betula pubescens 

Tilia corda ta 

Populus canescens 

Quercus robur (early) 

Quercus robur (late) 

Fagus sylvatica (early) 

Fagus sylvatica (middle) 

Fagus sylvatica (late) 

Picea abies (early) 

Picea abies (late) 

Picea abies (northern) 

4.4 

4.5 

3.3 

3.5 

4.0 

2.6 

2.6 

2.7 

3.0 

4.1 

4.8 

3.5 

66 

56 

67 

70 

45 

41 

58 

56 

27 

63 

66 

59 

0.53 

0.20 

0.25 

0.22 

0.54 

0.49 

0.15 

0.12 

0.23 

0.17 

0.17 

0.20 

shows a virtually constant duration of the rest phase and a shorter quiescence 

phase. For some other clones a monotonous decrease was found in the dura­

tion of both the rest and quiescence phases. The sequential model thus ex­

plains a linear shift of the date of leaf unfolding with temperature in terms of 

different underlying patterns. Experiments should be done to test whether 

these patterns truly reflect the characteristics of the clones. 

For the cessation of growth, both a linear and a logistic function of the rate of 

development wi th temperature were tested. The linear model was the thermal 

t ime model. The optimal base temperature out of a range -2 to +8 °C was 

0°C for all species. This model explained 0 to 5% of the variation observed, 

depending on the species. The logistic model, also with 0°C as base tempera-
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Fagus sylvatica (late) 

mean winter temperature ( C) 

Figure 4.7. Duration of the rest period 

versus mean winter temperature of the 

late clone of Fagus sylvatica. 
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Figure 4.8. Duration of the quiescence pe­

riod versus mean winter temperature of 

the late clone of Fagus sylvatica. 

ture, performed little better, and for some clones worse. Linearly additive and 

multiplicative combination of both temperature model and photoperiod could 

not improve the results. For most clones the optimal parameter set found yiel­

ded approximately the average date of leaf unfolding, wi th very little variation 

around this date. Therefore, it was concluded that the null model, i.e. the 

mean date of leaf fall, is the best and simplest model to describe the date of 

leaf fall. Since in this case the residual mean square equals the total mean 

square, the variance explained by the null model equals zero. Furthermore, the 

null model cannot explain the shift in leaf fall that accompanies increasing 

summer temperature. 

Frost thresholds 

Table 4.6 shows that the clones differ in the lowest temperature observed in 

the frost-susceptible period around leaf unfolding and before leaf fall. The vari-
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ance components indicate that for both leaf unfolding and leaf fall most of the 

variation of this temperature can be attributed to differences between the 

years, rather than to differences between stations (Table 4.6). 

Table 4.6. Lowest daily minimum temperature in the frost susceptible period (T') around leaf 

unfolding and before leaf fall. Mean (mn), standard deviation (sd), and variance components 

between stations (s2
s) and between years (s2

y ). r indicates the rank order of leaf fall from 

early to late (see Table 4.1) 

leaf unfolding leaf fall 

mn sd s2
s s2

y mn sd s2
s s2

y 

CO CC) CC2) CC2) CO CO CC2) (°C2) 

Larix decidua 

Betula pubescens 

Til/a corda ta 

Populus canescens 

Quercus robur (early) 

Quercus robur (late) 

Fagus sylvatica (early) 

Fagus sylvatica (middle) 

Fagus sylvatica (late) 

Picea abies (early) 2.1 2.63 1.9 5.2 

Picea abies (late) 3.1 2.78 2.6 5.4 

Picea abies (northern) 3.4 2.81 2.2 5.9 

Table 4.7 shows that the probability of frost around leaf unfolding for the clo­

nes is less (Betula), or similar to that of the genetically different trees. For the 

probability of frost before leaf fall there seems to be no clear pattern in the 

difference between the clones and the genetically different trees (Table 4.7). 

Similar results were obtained when the definition of the frost-susceptible pe­

riod around leaf unfolding and before leaf fall was altered. For example when 

0.2 

0.5 

1.8 

2.1 

1.8 

1.7 

1.5 

2.5 

2.5 

2.41 

2.59 

2.66 

2.56 

2.57 

2.50 

2.55 

2.65 

2.47 

0.7 

2.6 

1.8 

1.4 

(ns) 

0.6 

1.7 

1.2 

1.0 

5.3 

4.6 

5.4 

5.3 

6.8 

5.7 

5.0 

5.8 

5.2 

-1.9 

-0.1 

1.1 

1.2 

-2.3 

-1.5 

0.8 

-0.1 

0.0 

3.67 

3.76 

4.17 

3.97 

3.59 

2.86 

4.05 

4.22 

4.02 

3.4 

7.9 

7.4 

5.6 

1.4 

0.6 

6.2 

6.7 

6.1 

11.0 

8.3 

9.2 

10.4 

11.6 

7.6 

9.8 

11.1 

9.5 

7 

4 

1 

1 

6 

6 

2 

5 
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U-B to U+25 is chosen as the frost-susceptible period around leaf unfolding 

(U), the numbers in Table 4.7 alter somewhat but the results are qualitatively 

the same. The results presented in Table 4.6 remain virtually the same. The 

same is true when the duration of the frost-susceptible period before leaf fall 

is increased. 

Table 4.7. Probability of freezing temperature during frost susceptible period around leaf 

unfolding and before leaf fall of the clones (c) and the genetically different trees (g) 

leaf fall 

c g 

0.50 

0.33 0.14 

0.23 

0.27 

0.48 0.32 

0.44 

0.20 0.33 

0.32 

Larix decidua 

Betula pubescens 

Tilia corda ta 

Populus canescens 

Quercus robur (early) 

Quercus robur (late) 

Fagus sylvatica (early) 

Fagus sylvatica (middle) 

Fagus sylvatica (late) 

Picea abies (early) 

Picea abies (late) 

Picea abies (northern) 

leaf unfold 

c 

0.47 

0.37 

0.27 

0.21 

0.27 

0.23 

0.31 

0.17 

0.17 

0.19 

0.14 

0.13 

ing 

9 

0.54 

0.51 

0.29 

0.27 

0.30 

0.27 

0.20 

Discussion 

Due to the longevity of trees and the projected rapid change of the climate 

(Houghton et al. 1990) it can be hypothesised that currently growing trees 

will not be adapted to their future environment (Botkin and Nisbet 1992). 

However, it is now being recognised that the plasticity of a character is under 

genetic control and is subject to natural selection in it self (Sultan 1992; 
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Scheiner 1993). Furthermore, plasticity plays an important ecological role in 

both the control of reproductive effort and the capture of resources from the 

environment (Grime et al. 1986). Thus both the adaptive and the ecological 

significance of phenotypic plasticity are a central aspect of the integration of 

a phenotype in its natural environment and need to be considered if its local 

environment changes due to a human induced climate change. The results of 

this study indicate that the phenotypic response of both leaf unfolding and 

leaf fall to temperature of the clones is of a similar magnitude as the adaptive 

responses of genetically different trees (Tables 4.5 and 4.6). It may be ex­

pected that when the temperature experienced by an individual tree increases, 

the tree has a certain amount of plasticity to accommodate such a change. 

This opposes the findings of Billington and Pelham (1991) who concluded that 

for Betula pubescens and B. pendula there is insufficient genetic and pheno­

typic variation to meet the selection potential as projected by Cannell and 

Smith (1986) for Scotland. Their projected advancement of budburst, 40 days 

given a 2°C increase in winter temperature is, however, large compared to 

the data presented in this study. 

In the present study it was found that for clones of Larix decidua and Quercus 

robur the magnitude of the advancement of leaf fall wi th increasing summer 

temperature may be larger than that of leaf unfolding wi th increasing winter 

temperature (Table 4.3). The overall result of a rising temperature is then a 

shorter growing season. For clones of Tilia cordata and Fagus sylvatica, the 

date of leaf unfolding advances, while the date of leaf fall stays essentially 

the same, thereby increasing the duration of the growing season. Conse­

quently, growth is expected to be differently affected by a rise in tempera­

ture, and this will affect the competitive abilities of these species when grown 

in mixture. However, to be conclusive on the differential impacts of climate 

change on growth, the possible differences between tree species in the direct 

effect of C0 2 on photosynthesis has to be taken into account as well. 
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The descriptive dynamic models showed that the main part of the variance of 

date of leaf unfolding can be accounted for by the sequential model, using 

only temperature. However, it was very difficult to account for the variance in 

the date of leaf fall wi th models containing temperature and photoperiod as 

explanatory variables. This may be because most of the variability in leaf fall 

can be attributed to variations in the local environment (Table 4.2). Thus, en­

vironmental factors other than temperature and photoperiod are likely to influ­

ence the date of leaf fall as well. 

The data analysed in this study support the hypothesis that the survival of the 

clones was curtailed by frost occurring around the date of leaf unfolding. This 

is based on the findings that: (1) the probability of frosts around leaf unfold­

ing of the clones does not exceed that of the genetically different trees of the 

same species (Table 4.7), (2) this probability of frost is relatively constant 

over a wide range of temperature regimes (Table 4.6), whereas (3) the date of 

leaf unfolding is not (Table 4.3). These results indicate that for leaf unfolding 

the survival of these clones could be determined by freezing temperatures 

below T" during the frost susceptible period. However, this could not be de­

rived from the data because no systematic reports on survival were available. 

For leaf fall the relationship with the occurrence of frost is not clear, and 

could also be due to other factors such as respiratory costs outweighing pho-

tosynthetic gains. 

Thus, by evaluating the relationship between temperature and leaf unfolding 

and leaf fall, both the direct effects of the climatic warming (frost damage), 

and indirect effects (competitive ability), are accounted for. This makes leaf 

unfolding and leaf fall, and the frost hardiness attained at these points in t ime, 

particularly sensitive characteristics for evaluating climatic warming. In other 

studies, (e.g. Sakai and Weiser 1973; George et al. 1974) the geographical 

distribution of trees was found to be closely correlated to the lowest winter 

temperature. However, more detailed information is required for the evaluation 

of the impact of climatic warming on the areas of species, for two reasons. 
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Firstly, because species in the same physiognomic class are generally resis­

tant to the same lowest winter temperature (Sakai and Larcher 1987; Wood­

ward 1987). Secondly, when the lowest winter temperature rises, a shift in 

area will be due to a shift in competitive abilities, and cannot be due to differ­

ences in frost hardiness during dormancy. Thus, the correlation between the 

area of a species and the lowest winter temperature may be less appropriate 

for evaluating the impacts of climatic warming on species areas because it 

does not represent an altered competitive balance between species. 
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Chapter 5 

Modelling comparison to evaluate the importance of pheno­

logy for the effects of climate change on growth of temperate-

zone deciduous forests 

Introduction 

As a result of natural selection, the annual biological cycle of the growth and 

dormancy of trees is synchronised to the annual climatic cycle of light, 

temperature and precipitation, thus determining growth. If the climate chan­

ges within the life span of a tree, this synchronization may be partly lost. 

Consequently, either a part of the growing period of a tree may occur when 

the climate is not favourable for growth, or the growing period may not fully 

exploit the period when the climate is favourable for growth. On the other 

hand, the species may be able to adjust by phenotypic plasticity. Earlier stu­

dies have predicted, that based on climate change scenarios, the probability 

of spring frost damage is likely to decrease in temperate zone Europe (Kramer 

1994b, Chapter 3; Murray et al. 1989). It has also been found that trees do 

possess a considerable plasticity to accommodate a change in their local 

environment phenotypically (Kramer 1995a, Chapter 4). The aim of the study 

reported in this chapter was to evaluate the importance of differences in 

phenological response to temperature for the effects of climate change on the 

growth of deciduous, temperate-zone tree species. Two models of photosyn­

thesis and two models of allocation were compared, to elucidate the conse­

quences of describing these processes with different levels of mechanistic 

detail. 

In an earlier study, three phenological patterns induced by a structural rise in 

temperature were found: (1) a similar advance of both leaf unfolding and leaf 
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fall, (2) an advance of leaf unfolding, but no change in leaf fall, and (3) a lar­

ger advance of leaf fall than leaf unfolding (Kramer 1995a, Chapter 4). These 

three phenological types correspond to Betula, Fagus, and Quercus, respec­

tively. 

Models incorporating detailed descriptions of light interception, photosynthe­

sis, respiration and allocation are required to evaluate the effects of climate 

change on growth of deciduous trees. The models compared in this study 

were: (1) FORGRO (Mohren 1987, 1994) using the descriptions of photosyn­

thesis of Goudriaan et al. (1985) and fixed keys for allocation, (2) FORGRO 

coupled to PGEN (Friend 1993), substituting the biochemical photosynthesis 

model of Farquhar and Von Caemmerer (1982) for the photosynthesis model, 

and (3) FORGRO coupled to the ITE-Edinburgh model (Thornley 1991), in 

which the allocation keys of FORGRO are replaced by the transport-resistance 

approach of partitioning. 

Two aspects of climate change and growth of deciduous trees were studied 

through model comparison: (1) the consequences of the phenological types on 

the effects of climate change scenarios on gross photosynthesis, and (2) the 

sensitivity of the scenario-induced response of gross photosynthesis to a 

change in parameter values of the models. 

Material and methods 

Phenology 

To avoid inaccuracies in the date of both leaf unfolding and leaf fall in the 

analysis of the species response to the different scenarios, historical pheno­

logical observations for a 14-year period were used. Phenological observations 

of Betula pubescens, Fagus sylvatica and Quercus robur in The Netherlands 

were available for every year from 1940 until 1953, except for 1945. For 

1945 the average value of the phenological events was used. The phenologi-
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cal events monitored were leaf unfolding, full leaf and leaf fall. The observers 

had been provided with detailed instructions for each species, including pic­

tures, of the exact event to observe, and instructions on how to select the 

trees (Anonymous 1950). The shifts of these events with either mean winter 

or summer temperature, based on an extensive data set containing phenologi-

cal observations of clones relocated over a large latitudinal throughout Europe 

(Kramer 1995a, Chapter 4), are presented in Table 5 . 1 . When the tempera­

ture was increased according to a scenario, the observed dates of leaf 

unfolding, full leaf and leaf fall were adjusted according to the known respon­

ses of Betula, Fagus and Quercus (Table 5.1). The shift in full leaf wi th winter 

temperature was assumed to be similar to leaf unfolding. 

Scenarios 

Daily meteorological measurements for the period 1940 to 1953 were avail­

able for De Bilt (52°N, 6°E), located in the centre of The Netherlands, and 

used as input to the models. In all calculations, this series was adjusted ac­

cording to a scenario. The variable evaluated was the annual rate of gross 

photosynthesis, Pga (t CH20 ha"1 yr"1), averaged over the simulation period. 

To evaluate the importance of phenology, the C0 2 concentration was set at 

700 //mol mol"1, and the temperature was increased uniformly by a maximum 

of 7°C in steps of 1 °C. The benchmark scenario (no change in temperature) 

was also examined. The response of Pga for Betula, Fagus and Quercus to 

these scenarios was calculated according to the three models. The results 

were expressed relative to the scenario with [C02] = 350/ /mol mo l 1 , without 

an increase in temperature. 

The sensitivity of the response of Pga to a change of ± 2 5 % in parameter 

value was evaluated by comparing the response to the scenario wi th 

[C02 ] = 700/ /mol mol"1 and a uniform 2°C rise in temperature with the refer­

ence scenario with [C02] = 350 //mol mol'1 and no increase in temperature. 
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These scenar ios w i l l be referred t o as C700/T2 and C 3 5 0 / 7 " 0 , respect ive ly . The 

phenology o f Betula (Table 5.1) w a s used for th is analysis. 

Table 5 .1 . Phenological characteristics of Betula, Fagus and Quercus. U, average date of leaf 

unfolding; G, date of the stage full leaf; F, date of leaf fall; 5t//57„, change in date of leaf 

unfolding with mean winter temperature (7"„, 1 November until leaf unfolding); ÖG/Ö7"„, chan­

ge in date of full leaf; 6/707",., change in date of leaf fall with mean summer temperature (%, 

1 May until leaf fall). /, average cumulative irradiance from date of leaf unfolding to date of 

leaf fall, in The Netherlands (MJ m"2 growing season1); 5IU/6T„, change in / caused by ad­

vancement of leaf unfolding (MJ 'C'1), 5/F/57"s, change in / caused by advancement of leaf 

fall (MJ "C1) 

Betula Fagus Quercus 

U 

G 

F 

I 

5U/5T„ 

5G/5rw 

ö/u/ÖT., 

ÖF/5TS 

Ô7F/ÔTS 

22 April 

2 May 

4 October 

2504 

-3 

-3 

44(1.8%) 

-3 

24 (-1.0%) 

1 May 

8 May 

16 October 

2468 

-2 

-2 

28 (1.1%) 

0 

0 (0%) 

5 May 

15 May 

20 October 

2413 

-2 

-2 

32 (1.3%) 

-5 

-28 (-1.1%) 

Models 

Three models with different levels of detail of photosynthesis and allocation 

were used, i.e. FORGRO, PGEN and the ITE-Edinburgh model. Briefly, FOR-

GRO (Mohren 1987, 1994) is a process-based model suitable for predicting 

the growth of an even-aged monoculture of coniferous tree species. The 

photosynthesis-light response curve is modelled using a negative exponential 

function. An increase in the external C0 2 concentration alters both the initial 
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light use efficiency and the C02-Iimited rate of gross photosynthesis (Gou-

driaan et al. 1985). Allocation of assimilates is modelled using fixed allocation 

keys. PGEN (Friend 1993) is a model aiming to predict the rate of photosyn­

thesis at the biochemical level (Farquhar and Von Caemmerer 1982), and the 

optimization of stomatal conductance given a set of environmental and biolo­

gical parameters. The ITE-Edinburgh model (Thornley 1991) is a transport-

resistance model of forest growth and partitioning based on counter-gradients 

of carbon and nitrogen substrate between foliage and roots. In the foregoing 

account the processes in which the models differ and those parts which were 

adjusted to calculate the growth of deciduous trees have been emphasised: 

see also Appendices 5.1 and 5.2. 

FORGRO. Figure 5.1 presents a simplified scheme of FORGRO. For photosyn­

thesis, the minimum was taken of the rate of photosynthesis limited by either 

C0 2 or the maximum value measured at light saturation (Figures 5.2 and 5.3, 

and Equations 5.1 to 5.4 in Appendix 5.2). Mesophyll resistance was calcu­

lated using: rm = {C, - \~)/Fmm (Figure 5.2), assuming a constant ratio of inter­

nal to external C0 2 concentration (Goudriaan et al. 1985). The boundary layer 

conductance was set at a constant value, and the stomatal conductance de­

pends solely on temperature. The temperature dependence of the C0 2 com­

pensation point is described using a multiplier (Equation 5.5). To relate the 

light-saturated rate of gross photosynthesis, a temperature multiplier was ob­

tained by linear interpolation of literature data, using a broad plateau of near-

unity in the range 10 to 30°C, and declining to zero outside this temperature 

range. A similar approach was taken to determine the actual mesophyll resis­

tance as a function of temperature, with values similar to the photosynthesis-

temperature relationship. Daily gross canopy photosynthesis was calculated 

by integrating hourly over both sunlit and shaded leaf layers using a Gaussian 

integration scheme (Goudriaan 1986), dividing the canopy into five shaded 

and sunlit leaf layers. Growth and maintenance respiration were calculated 

using the approach of Penning de Vries, which is based on the costs of bio-
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synthetic processes and the biochemical composition of the structural bio-

mass (Penning de Vries et al. 1974). Fixed allocation keys were used for the 

growth rates of the different organs, with the exception of the allocation to 

the foliage and the reserve pool, for which saturation curves relative to maxi­

mum values were used (Equations 5.6 and 5.7). 

The level of reserves was modelled using a minimum equal to 5% of the bio-

mass of each organ, and a maximum which is four times as high. Allocation 

of assimilates to the reserves has priority over all the other organs, once the 

full leaf stage has been reached. Daily values of the meteorological variables 

irradiance, minimum and maximum temperatures, humidity, wind speed and 

rainfall are required to run FORGRO, which uses a fixed time step of one day. 

décomposition! { 

Figure 5.1. Simplified diagram of the structure of FORGRO. Boxes: state variables; valves: 

rate variables; arrows: flows of carbon (solid lines) or information (dotted lines) (Figure re­

drawn from Mohren 1994). 
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Figure 5.2. Net C02 assimilation rate 

in relation to light absorption by the 

leaf surface. See Appendix 5.2 for an 

explanation of the symbols, with 

their units (Figure redrawn from Gou-

driaan and Van Laar 1994). 

Figure 5.3. Net C02 assimilation rate 

in relation to internal C02 concentra­

tion. See Appendix 5.2 for an expla­

nation of the symbols, with their 

units (Figure redrawn from Goudriaan 

and Van Laar 1994). 

PGEN. PGEN is a photosynthesis model which aims at predicting stomatal 

conductance and photosynthesis with a minimal use of empirical parametri-

zation. It is based on the assumption that a leaf instantaneously optimises its 

stomatal conductance as a trade-off between C0 2 gain and water loss. CQ2 

gain affects photosynthesis according to the biochemical photosynthesis 

model of Farquhar and Von Caemmerer (1982). 

The demand for C0 2 is determined either by carboxylation limitation of Rubis-

co (Equation 5.9), or by regeneration limitation of RuBP (Equation 5.10), while 

the supply of C02 depends on the difference of C02 concentration outside the 

leaf boundary layer and inside the leaf air spaces (Equation 5.11). Whether 

the C0 2 supply meets the photosynthetic demands depends on the resistance 

to C0 2 along the pathway from outside the leaf boundary layer to the meso-

phyll cells (Equation 5.17). Explicit functions for rca and Aci are presented in 

PGEN, while rcs is the resistance which is optimised numerically. Equations 

5.14 to 5.22 provide more detail on how the variables in Equations 5.9 to 

5.12 are calculated. 
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The leaf temperature is calculated from the leaf energy balance (Jones 1992). 

Temperature influences photosynthesis by altering the solubilities of C0 2 and 

0 2 , and alters the Michaelis-Menten constants of the carboxylation and oxy­

genation of Rubisco following the law of Arrhenius. The influence of tempera­

ture on dark respiration is modelled by a Q10 approach. 

PGEN was coupled to FORGRO by substituting it for the calculations of the 

gross photosynthesis (FgmaJ in the canopy module and adjusting it so that 

input to PGEN was: C0 2 and O 2 concentration in the air, relative humidity, 

wind speed, incidence of short wave irradiance, atmospheric pressure, air 

temperature and the absorbed photosynthetic active radiation at a given leaf 

layer. Incidence of short wave radiation was set at twice the photosynthetic 

active radiation available at a given leaf layer. Output of PGEN is daily gross 

photosynthesis. 

ITE-Edinburgh model. This model presents a mechanistic approach to assimi­

late partitioning based on the transport of labile carbon and nitrogen, and the 

size and activity of meristem (Figure 5.4; Equations 5.23 to 5.29). The trans­

port of C and N substrate is driven by concentration differences and resis­

tances between the organs. Counter-gradients of carbon and nitrogen sub­

strate are formed because the foliage is the only source of C substrate, the 

roots are the only source of N substrate, and the growing organs act as sinks 

of carbon and nitrogen. A functional root-shoot balance is attained because 

the acquisition of carbon depends on the level N substrate of the foliage, and 

the acquisition of N depends on the level of C substrate in the fine roots. The 

growth of each organ is determined by the activity and potential size of the 

meristem, which depends on both the C and N substrate concentrations of 

the organ. Temperature dependence of parameters was described using a 

parabolic-shaped multiplier, which equals zero at 0°C, and is maximum at 

30°C (Equation 5.30). 

The ITE-Edinburgh model was coupled to FORGRO (ITE-FORGRO) by using the 

modules of FORGRO which calculate light interception, photosynthesis and 
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stomatal conductance. A reserve pool was required to start leaf growth after 

budburst, and to allow for maintenance respiration in the leafless period. 

Therefore, a reserve pool was added for each organ. The growth rate of each 

reserve pool was set at a fixed fraction (0.05) of the growth rate of the struc­

tural biomass of the organ. Furthermore, it was assumed that the utilization of 

carbon and nitrogen and the respiration of the reserve pool are similar to the 

respiration of the structural biomass. During the build up of the canopy (the 

period from budburst until full leaf), reserves are mobilised from all organs, i.e. 

converted into labile C and N, according to a first-order process. 

Foliage 

1 
Structure. X 
Reserve, R 
Meristem, M 

C substrate 

N substrate 

* Light interception and photosynthesis 

i 

Branches 

b 
X 
R 
M 
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N 

. , Stem 

s 
X 
R 
M 
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, , Coarse 
roots 
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,, Growth respiration 
Litter CO-

Figure 5.4. Simplified diagram of the structure of ITE-FORGRO. Light interception and 

photosynthesis are described as in FORGRO (Figure redrawn from Thornley 1991) . 
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During this phase the foliage is the only organ allowed to grow. Consequent­

ly, a gradient of both C and N substrate from the fine roots to the foliage de­

velops, since the foliage acts as the only sink. The leaves start to 

photosynthesise immediately, which causes the C substrate gradient to re­

verse as soon as the carbon production exceeds carbon utilization, or when 

the full leaf stage is reached. During the leafless period, the costs of mainte­

nance respiration are directly compensated for from the reserve pool of each 

organ. The leaf area index was truncated to the same maximum value as used 

in FORGRO. 

The ITE-FORGRO model was developed using SENECA v1.5, a Simulation 

ENvironment for ECological Application (De Hoop et al. 1992). The integration 

method was Eulerian with variable time steps. Preliminary runs indicated that 

it takes approximately three years for the ITE-FORGRO model to attain stable 

gradients of labile carbon and nitrogen. Therefore, runs were started at 1937, 

using average values for the phenological events, but output of the 1940 to 

1953 period is presented. 

Results 

Phenology 

An impression of the importance of the differences between the phenological 

types can be obtained by examining the amount of light available on average 

during the growing period, and how this changes with a rise in temperature 

(Table 5.1). On average, most irradiance is available for Betula. Fagus and 

Quercus have respectively 1.4% and 3.6% less. When the temperature chan­

ges, the net result is a gain in the average available irradiance of 0.8 for Be­

tula, 1 . 1% for Fagus and 0 .2% for Quercus, per degree temperature rise, rela­

tive to the total cumulative irradiance available on average during the growing 

season for each of these phenological types. In The Netherlands, the irradi-
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ance gained on average when leaf unfolding is advanced by one day is more 

than twice what is lost when leaf fall advances one day (e.g. 1 5 MJ m"2 d"1 on 

1 May and 6 MJ m 2 d 1 on 1 5 October). 

Table 5.2 presents the results of FORGRO, FORGRO-PGEN and ITE-FORGRO 

for the C350/T0 scenario. Clearly, the differences in phenology only cause small 

differences in growth and radiation use efficiency, and are consistent wi th the 

pattern between the phenological types found in Table 5 . 1 . For this parametri-

zation of the models the /»„_, calculated by FORGRO is similar to ITE-FORGRO, 

but higher than that of FORGRO-PGEN. 

Table 5.2. Results of FORGRO, FORGRO-PGEN and ITE-FORGRO for the C350/7"0 scenario for 

the 1940-1953 situation using default parameter values. RUE, radiation use efficiency: ratio 

of annual total dry matter production and absorbed PAR (g DM MJ'). See Appendix 5.1 for 

the explanation of the other symbols and their units 

FORGRO FORGRO-PGEN ITE-FORGRO 

Betula Fagus Quercus Betula Fagus Quercus Betula Fagus Quercus 

P., 

« m 

« 9 

RUE 

35.7 

10.6 

3.8 

1.6 

34.1 

10.3 

3.6 

1.6 

32.9 

10.2 

3.5 

1.5 

23.1 

8.3 

2.3 

0.9 

22.2 

8.0 

2.2 

0.9 

22.1 

8.0 

2.2 

0.9 

33.1 

3.7 

7.5 

1.5 

31.8 

3.6 

7.2 

1.5 

31.5 

3.6 

7.1 

1.4 

For this parameterisation of ITE-FORGRO, more carbon is respired by growth 

respiration than by maintenance respiration, whereas in FORGRO the opposite 

is true. Furthermore, the growth rates of the organs differ because of the dif­

ferent mechanism of allocation (results not presented). 

The results of the three models when [C02] = 700 //mol mol"1 are that differ­

ences in the response of Pga between Betula, Fagus and Quercus increase 

with temperature (Figures 5.5 to 5.7). The difference in the response between 

Fagus and Quercus increases by approximately 4 % in the C700/T2 scenario and 
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by approximately 2 0 % in the C700/T7 scenario, for FORGRO and FORGRO-

PGEN, but the corresponding increases according to ITE-FORGRO are 4 % and 

13%, because of the different mechanism of allocation. 

FORGRO 

Figure 5.5. Response of Pga to 2 x 

[CO 2] with increasing temperature, 

relative to the current climate (Q), 

according to FORGRO. Annual ave­

rage over 1940-1953. 

2 3 4 

<JT C O 

Betula - • - Fagus - * -

5 6 

Quercus 

FORGRO-PGEN 

Figure 5.6. Response of Pga to 2 x 

[CO 2l with increasing temperature, 

relative to the current climate (Q), 

according to FORGRO-PGEN. Annual 

average over 1940-1953. 

-»- Betula -•- Fagus -*- Quercus 

ITE - FORGRO 

Figure 5.7. Response of Pa_, to 2 x 

[CO 2] with increasing temperature, 

relative to the current climate (Q), 

according to ITE-FORGRO. Annual 

average over 1940-1953. 
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This is consistent wi th the differences between the phenological types based 

on the change in average available irradiance with temperature (Table 5.1). 

Figures 5.5 to 5.7 further show that the response of Pga to a doubled [C02] is 

greatest according to FORGRO-PGEN, and least in ITE-FORGRO, and that the 

response increases with temperature according to FORGRO-PGEN (Figure 

5.6), but decreases with temperature according to both FORGRO and ITE-

FORGRO (Figures 5.5 and 5.7). 

The differences in annual gross photosynthesis between FORGRO and FOR­

GRO-PGEN are the results of the response of the daily gross photosynthesis 

(Pg, kg CH20 ha"1 d"1) to the external CO^ concentration (Figures 5.8 and 5.9). 

S. 
o' 

Figure 5.8. Response of Pg to CO 2 at 

different temperature and light levels, 

according to FORGRO. 
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Figure 5.9. Response of Pg to CO 2 at 

different temperature and light levels, 

according to FORGRO-PGEN. 
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For the current parameterisation of FORGRO and FORGRO-PGEN it can be 

seen that: (1) FORGRO yields a higher Pg than FORGRO-PGEN for any C02 , 

temperature and light combination, (2) the sensitivity of Pg to C02 at a 

constant light level increases with temperature according to FORGRO-PGEN, 

but decreases slightly according to FORGRO, (3) the sensitivity of Pg to COt, 

at 10°C increases with irradiance similarly in FORGRO and FORGRO-PGEN, 

and (4) there is a temperature and light interaction for the sensitivity of Pg to 

C0 2 according to FORGRO-PGEN, but not according to FORGRO. The conse­

quence of these differences between FORGRO and FORGRO-PGEN are that in 

FORGRO and thus ITE-FORGRO, the increase in respiration wi th temperature 

is not compensated for by an increase in photosynthesis (Figures 5.5 and 

5.7), whereas this is the case in FORGRO-PGEN (Figure 5.6). 

Sensitivity analysis 

A sensitivity analysis was performed to evaluate which parameters are most 

important in determining the response of the annual gross photosynthesis, 

Pga, to an increase of both C0 2 and temperature. 

The response of Pga to the C 70o/7~2 scenario relative to the C 35o/7~ 0 scenario 

was used to compare the sensitivities of the parameters. The general trend 

which can be seen for FORGRO is that when a parameter is set so that Pga is 

lower than the default parameter value, then the response to the C700/T2 

scenario is greater (Figure 5.10). For example, a high ratio between internal 

and external C0 2 concentration, CJCa, reduces the Pga relative to a low ratio, 

consequently Pg is increased more by the C700/T2 scenario compared wi th the 

low ratio (24% versus 18%). High values of CJCa, the C0 2 compensation 

point, and stomatal resistance, and low values of the initial light use effi­

ciency, the light extinction coefficient and specific leaf area reduce Pga, and 

thus show the large response to C700/T2. However, for Pmax the opposite is 

true: the largest response to C700/T2 is at the high value of Pmax, which clearly 
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gives high values of Pga. This was caused by the fact that at low Pmax , this 

asymptote was met more frequently than at high Pmaxl thus the sensitivity to 

the scenarios is less. In general it can be concluded that response of Pga in 

FORGRO to the C700/T2 scenario is similar over a wide range of values of the 

main parameters which determine light interception and photosynthesis. 

A clear effect of the PGEN formulation is that the response of Pg a to the sce­

narios increases or decreases, depending on the value assigned to a parame­

ter. This is especially true for the parameters describing the temperature re­

sponse of a parameter (AS, m, n, Ea, Ed). The reason for this can be seen from 

Equations 5.20 to 5.22: a change of one unit in a parameter in the exponent 

is equivalent to leaf temperature changing by approximately 0.03°C, because 

the temperature is presented in Kelvin. Thus, these parameters need to be 

estimated accurately, although a change of 25% in the values of these 

parameters may exceed the range which is found experimentally. 

For the ITE-FORGRO model, the most pronounced effect was found for the 

total leaf nitrogen [NlAots) and the fraction nitrogen in meristem and structural 

biomass of all organs [fNiM and fNiX). However, the magnitude of the response 

of Pg a to the scenario is only slightly affected by a large change in the values 

of these parameters. The absolute response of the other parameters of the 

ITE-FORGRO model tested in this manner was much less than that of the ni­

trogen parameters, whilst only the coefficient determining the potential meri­

stem size showed a Pg_a response which differed more than 2% between the 

scenarios. 

Discussion and conclusions 

Both FORGRO and FORGRO-PGEN showed that the difference in the response 

of gross photosynthesis to a doubled C0 2 concentration between the pheno-

logical types ranges from 4 to 20% if the corresponding temperature rises by 

2 to 7°C, respectively. However, these models diverge in the degree of the 
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Figure 5.10. Difference (D) between the responses of Pga to the C700/7"2 scenario relative to 

the benchmark scenario at high ( + 25%) and low (-25%) value of the parameter indicated. 

response of Pg,a to doubled CQ scenarios: in FORGRO this response ranges 

on average from + 2 0 % when there is no temperature rise to -16% when the 

rise is 7°C, while the corresponding range according to FORGRO-PGEN is 

+ 2 2 % to + 3 6 % . These differences can be attributed to differences in the 

response of Pga to [C02 ] . In FORGRO-PGEN this response enhances when 

temperature and irradiance increase, whilst in FORGRO this interaction is 

weaker (Figures 5.8 and 5.9). Consequently, in FORGRO-PGEN the increase in 

photosynthesis exceeds the increase in respiration, whereas in FORGRO and 

ITE-FORGRO the break-even point lies at or above a temperature increase of 

5°C. The C0 2 x temperature interaction is frequently reported in the literature, 

and is stressed as an important aspect for the study of climate change effects 

(e.g. Kirschbaum 1994, Idso and Idso 1994). However, the absence of a re­

sponse or a decline of the relative stimulation of biomass of perennial plants 

at high C0 2 as temperature increases has also been reported (Ziska and Bunce 

1994, and literature therein). 
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According to the transport-resistance mechanism of allocation (Thornley 

1991) the response of Pga to the scenarios with doubled [CQ ] is less com­

pared wi th FORGRO and FORGRO-PGEN: relative to the C350/7"0 scenario it is 

+ 13% for no temperature rise and - 6 % for a rise of 7°C. Callaway et al. 

(1994) presented experimental evidence for a reduced response of growth to 

enhanced C0 2 because of an altered allocation pattern. They found that the 

initial stimulating effect of C0 2 on the growth of Pinus ponderosa seedlings, 

and its enhancement by increased temperature, disappeared after 2 months 

because of an increased allocation of biomass to the roots and other non-

photosynthesizing tissues. Furthermore, the differences in the response of Pg3 

to a 2 x [C02] scenario between the phenological types are less than FORGRO 

and FORGRO-PGEN: 4 % if the corresponding temperature rises by 2 °C and 

13% if it rises by 7°C (Figure 5.6). These features of the transport-resistance 

model make it worthwhile validating this model for a number of tree species. 

Figures 5.5 to 5.7 can be used to evaluate the temperature increase predicted 

by general circulation models (GCMs). Four well-known GCMs are OSU, GISS, 

GFDL and UMKO, which predict that mean annual temperature will increase 

by 3.0, 4 .0, 5.3 and 6.5°C, respectively (Leemans 1992). However, these 

models use C0 2 equivalents to calculate the increase in radiative forcing due 

to an increase in greenhouse gasses. Approximately half of these greenhouse 

gasses is carbon dioxide, the other half consists of methane, CFCs etc. 

(Houghton et al. 1990). Furthermore, according to the GCM scenarios the 

temperature increases more during winter than during summer, rather than 

uniformly over the year (Leemans 1992). Consequently, the GCM scenarios 

affect the timing of leaf unfolding more than the timing of leaf fall, and respi­

ration during the growing season is less for the GCM scenarios than for the 

uniform temperature scenarios. Thus, the equivalent uniform temperature sce­

nario involves a somewhat higher increase in temperature than the annual 

mean temperature increase of the GCM scenario. 
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The sensitivity analysis of the parameters of the models affecting photosyn­

thesis showed that for FORGRO and FORGRO-ITE there is generally little inter­

action between the value of a parameter and the degree of the response of 

growth to the C100IT2 climate change scenario, although many parameters 

strongly affect the response in absolute terms (Figure 5.10). Typically, this 

sensitivity over a broad range of parameter values is similar in magnitude to 

the difference between the phenological types in the C700/T2 scenario (Figures 

5.5 and 5.7). For FORGRO-PGEN, however, the degree of the response of Pga 

to the C700/T2 scenario depends on the value of a parameter (Figure 5.10). 

This was especially the case for the parameters describing the Michaelis-Men-

ten kinetics of Rubisco, and the effect of temperature on these parameters. 

Also the effect of nitrogen is such that at low values of the nitrogen parame­

ters the response of Pga to the C,00/7^ scenario is greater than at high values 

of these parameters (Figure 5.10). For these parameters, this sensitivity is 

greater than the difference between the phenological types in the C700/T2 sce­

nario (Figure 5.6). The sensitivity of the response to a variation in the parame­

ter values in FORGRO-PGEN indicates that these parameters must be deter­

mined accurately in order to evaluate the effects of C0 2 and temperature on 

growth. Currently, they are available for only a few species. Furthermore, 

some of the parameters of the PGEN formulation vary considerably both be­

tween and within species (Wullschleger 1993). 

An analysis of uncertainty propagation in FORGRO showed that variation in 

^.max' ûio< eo a n d SLA within 95% of their uncertainty limits, yielded uncer­

tainties of 19, 9, 9 and 2%, respectively, of the relative standard deviation of 

the annual growth rate (Van der Voet and Mohren 1994). In a sensitivity ana­

lysis of PGEN it was found that the sensitivity indices (ratio of the relative 

change in a parameter to the relative change in net photosynthesis) of kc, Kc, 

N, K0, /nrub, k0, f NiChl and ymax were 0.7, 0.6, 0.6, 0.4, 0.4, 0.3, 0.2 and 0.2, 

respectively (Friend 1995). Thus, the uncertainty or sensitivity of these out­

put variables to a small variation in a parameter is not directly applicable for 
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inferring the importance of this parameter on the effects of a climate change 

scenario on the output variable. 

In this study, only the direct effect of temperature on phenology was taken 

into account. However, nutrients and C0 2 are known to interact wi th 

temperature. Murray et al. (1994) showed that for some Picea sitchensis clo­

nes, an increased C0 2 yields a delayed budburst and an advanced bud set 

under low nutrient supply. This could shorten the growing season by three 

weeks. Under high nutrient supply this effect was much less. Increasing tem­

perature counteracted the C0 2 effect, resulting in an advanced budburst, 

which was less compared to the situation where only temperature was in­

creased. Such complex interacting effects, which are clone specific, greatly 

complicate the evaluation of the effects of climate change on the growth of 

trees. 
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Appendix 5.1. Symbols of variables and parameters with their dimensions. The value indi­

cates the default value for the parameter 

Symbol Definition Units Value 

Variables 

gross photosynthesis t CH20 ha"1 yr ' 

gross photosynthesis kg CH20 ha"1 d"1 

maintenance respiration t CH20 ha"1 yr"1 

growth respiration t CH20 ha"1 yr"1 

growth, l = l, leaves; l = b, branches; l = s, 

stem; l =c , coarse roots; l = f, fine roots t DM ha"1 yr1 

P., 

Ps 

Am 

SLA 

1 20 

CJCB 

*d i f 

" d 2 0 

Qio 

Parameters 

specific leaf area 

maximum leaf area index 

maximum rate of net photosynthesis 

C02 compensation point at 20°C 

initial light use efficiency 

ratio internal to external [C02] 

light extinction coefficient of canopy 

dark respiration at 20°C 

increase of respiration rate given 10°C 

temperature increase 

m2 kg -1 

m2(leaf) m"2 (groi 

mg C02 m"2 s"1 

/jmo\ mol'1 

kg C02 J
 1 

mg C02 m"2 s"1 

nd) 

20 

6 

0.56 

50 

0.45 

0.7 

0.65 

0.028 

2.0 
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Appendix 5.2. Equations 

FORGRO 

Leaf photosynthesis 

Fn = F8.ma»d-e —)-Rt 
5.1 a 

Allocation 

R - R„ 
5.6 

F9.ma« = MIN(Fnc.F„.m„)+Rd 

C. - r 

C + 1.6r.+ 1.4r„ 

e = e„ C. + 2T 

5.2 

5.3 

5.4 

i- - L„ 

a.t = 1 - («I + ab) 

5.7 

5.8 

r = r,„ e°-°7(7'-20> 5.5 

a„, au a,,, %, allocation of assimilates to the R, flmax reserve pool, and maximum level of 

reserve pool, leaves, branches and reserve pool kg CH20 ha'1 

stem fld dark respiration rate mg C02 m"2 s"1 

Ca ambient C02 concentration /ymol mol1 rm, rs, rb mesophyll, stomatal and boundary 

Fg,max max. gross photosynthesis 

mg C02 m
2 s"1 

F„ net rate of photosynthesis 

mg C02 m
2 s 1 

Fnc C02 limited net photosynthesis 

mg C02 m 2 s"1 

fnmB< maximum net photosynthesis at high 

C02 and light levels mg C02 m"2 s"1 E, e20 initial light use efficiency, and initial 

Fmm maximum endogenous rate of gross light use efficiency at 20°C 

photosynthesis at high C02 and light fjg C02 J"1 

levels mg C02 m"2 s-1 

J m'2 s'1 

layer resistance s m"1 

T temperature °C 

L, Z.ma„ leaf area index, and maximum leaf 

area index m2 (leaf) m'2 (ground) 

T, r20 CO 2 compensation point, and C02 

compensation point at 20°C 

//mol mol"1 
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PGEN 

Leaf photosynthesis 
K| Chi D 

5.19 

^c,m.» (c, - r.) 
,. g Temperature functions 

J (e, - r.) 
4.5 C, +10.5 r. 

- R-

c . ~ c i C . + C i ERT 

r 2 P 

5.10 

5.11 

x - ae ', < : ( [ , / ( , ( ( „ , ( ? , c ' o ' c .chl' dT 

J. 
KT, 

'max 

1 + e 

5.20 

5.21 

r = 0 5 y«.-» *° °' 5.12 

_ m P . 
S, = , i: c,o 1 -n p 

^ ° 
e ' 

5.22 

J = 5.13 

V,„.. = /f, E„ i: c, o 
I,max i t' ' 

5.14 

0.056 
5.15 

5.16 

5.17 

5.18 
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A„.c,A„„A„s carboxylat ion-l imited, RuBP 

regeneration-l imited, and stomatal 

resistance-l imited rate of net 

photosynthesis mol C 0 2 m'2 s'1 

e,, Ca [C0 2 ] in leaf air spaces, and in air out­

side the leaf boundary layer 

mol m'3 

D concentrat ion of air in leaf internal air 

spaces mol m'3 

E t ranspirat ion mol H 2 0 m"2 s'1 

Ea act ivat ion energy J mol"1 

£d deact ivat ion energy J mot1 

f , leaf Rubisco catalyt ic site content in 

leaf 

mol m"2 

^g.rub' 'n.chi f ract ion nitrogen in Rubisco, and 

chlorophyl l 

A/abs absorbed PAR mol quanta m"2 s ' 

J potential electron transport rate 

mol e' m"2 s"' 

/max PAR-saturated potential electron 

t ransport rate ( temperature depend­

ent) 

mol e" mol chl"1 s"1 

>/i>ax PAR-saturated electron transport rate 

mol e m"2 s"1 

kc, k0 Rubisco carboxylat ion, and oxygena­

t ion turnover number mol mol site'1 s"1 

Kt, K0 M-M constant for carboxylat ion, and 

oxygenat ion of Rubisco (air space 

equivalents) mol m"3 

^cchi' 'Ç.chi M-M constant for carboxylat ion, 

and oxygenat ion of Rubisco (tempera­

ture dependent) mol m"3 

N leaf nitrogen content kg m'2 

O, 0 2 concentrat ion in leaf air spaces 

mol 0 2 nrr3 

P, P0 atmospheric pressure, and standard 

atmospheric pressure Pa 

R gas constant J K'1 mol '1 

/•<. resistance to COj f rom air outside the 

leaf boundary layer to the mesophyl l 

surface s m 1 

/ • „ resistance to C Q transfer across leaf 

boundary layer s m"1 

rcj resistance to C 0 2 f rom inside leaf sur­

face to mesophyll surface s m"1 

rc s resistance to C 0 2 across leaf surface 

s m"' 

/?d mitochondrial respiration 

mol C 0 2 m
 2 s 1 

/?dT mi tochondrial respiration, temperature 

dependent) mol C 0 2 kg N"1 s"1 

Sc, S0 solubil ity of C 0 2 , and 0 2 in water 

mol m'3 

T, T, average of leaf and air temperature, 

and leaf temperature K 

^cmax/ K,,max maximum rate of carboxylat ion, 

and oxygenat ion of Rubisco 

mol C 0 2 m
 2 s'1 

T. photosynthesis compensat ion [CO,] in 

leaf air spaces in absence of mi to­

chondrial respiration mol C 0 2 m"3 

AS entropy parameter J K'1 mol"1 

a, m, n empirical constants 
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ITE-Edinburgh model 

Differential equations 

"Mix 

df 

dM l c 

leaves (I) : 

dM„ 

df 

5.23 
df 

dM IR = 

j . ~ ''MIR '-MIRIil ™M« 5 .24 
df 

^ M I X '-MiXIII + '•MIMait 5 . 25 

_., ' c ( M ) l i 'Ci l ( l - l ) °iXm "CK3 + ™CiR 5 .26 
df 

dM IN 

.. ~ 'N(M) t l ~ 'Nil(l»1) "* ^NiG + ""NcR 5 .27 
df 

- PC - r c i l b " RIXm " L'ciG + MCIR 5 .28 

f ine roots (f) : 

- i f = u» - rN..= - UN«3 + MNfR 5.29 
df 

Temperature function 

_ (T-TJ gT.T.-T) 
C"r-7"i)(2 7 - a - r r r r ) 
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G growth rate meristem kg dm ha i d i 
miM 

GMiR growth rate reserves kg dm ha"1 d'1 

GMix growth rate structure kg dm ha ' d"1 

'•MiMdif loss in meristem to intrinsic differen­

tiation kg dm ha"1 d"1 

Z.MIRii, loss reserves to litter kg dm ha1 d1 

^Mixiii loss structure to litter kg dm ha"1 d"1 

MaR mobilization of carbon from reserves 

kg C ha 1 d 1 

MNm mobilization of nitrogen from reserves 

kg N ha"1 d"1 

Pc canopy gross photosynthesis rate 

kg C ha 1 d"1 

/?iXm maintenance respiration kg dm ha"1 d'1 

Tcilj carbon transport flux kg C ha"1 d"1 

7"Niti nitrogen transport flux kg C ha'1 

T.T^T^T, temperature, minimum, maxi­

mum and reference temperature °C 

UaG utilization C for growth kg C ha'1 d"1 

UN[G utilization N for growth kg N ha"1 d"1 

C/N uptake N from soil kg N ha"1 d'1 
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Chapter 6 

Modelling comparison to evaluate the importance of pheno­

logy and spring frost damage for the effects of climate change 

on growth of mixed temperate-zone deciduous forests 

Introduction 

Phenology of trees is the study of the timing of annually recurring events such 

as leaf unfolding and leaf fall, related to climatic and other environmental fac­

tors (Leith 1974). It can be assumed that this timing is such that the growing 

period is optimally synchronised with the period favourable for growth, by 

either natural selection or management. If a significant climate change oc­

curred within the life span of a tree, then this synchronization may be dis­

rupted. In earlier studies, the effects of temperature increase on phenology 

and the occurrence of spring frost damage, (Kramer 1994b, Chapter 3), and 

its consequences on growth of monospecies stands were evaluated (Kramer 

1995b, Chapter 5). Species were found to respond differently to the imposed 

climate change scenarios. Consequently, the competitive relationships 

between these species, when grown in mixture, will alter due to climate 

change. The term competition is used as the reduction in growth of a target 

species, caused by the presence of another species, requiring the same 

limiting resource. Only differences affecting competition for light were 

considered. 

With respect to phenology and spring frost damage, species differed: (1) in 

the advancement of the date of leaf unfolding with increasing winter tempera­

ture, and (2) in the frequency of freezing temperature around this date. 

Species that unfold their leaves during the end of April appear to respond 

more strongly to temperature change than species that unfold their leaves 
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during the first weeks of May (Kramer 1994b, Chapter 3). Such a differential 

response enhances existing differences between species if temperature 

increases. This is important to assess climate change impacts on the geo­

graphical distribution of a species. Usually the correlation between the 

distribution of a species and the absolute minimum winter temperature is used 

(Sakai and Larcher 1987, Woodward 1992). This may only be valid if the 

vegetation is in equilibrium with its local climate. If the absolute minimum 

winter temperature rises, and trees attain the same level of frost hardiness 

during dormancy, then any shift of the boundaries of the distribution must be 

determined by other competitive factors. Thus by evaluating the relationship 

between temperature and both leaf unfolding and leaf fall, and the progression 

of frost hardiness, both the direct effects of the climatic warming (on frost 

damage), and indirect effects (on competitive ability), are accounted for. The 

available phenological models are, however, not very accurate (Kramer 

1995a, Chapter 4). Therefore, in this study both a regression approach and a 

modelling approach were taken, enabling evaluation of the inaccuracy of the 

models for growth in a mixed-species stand. 

With respect to growth of a monospecies stand, the difference in the res­

ponse of gross photosynthesis between phenological types, to temperature 

scenarios given a doubled C02 concentration, ranged from 4 to 2 0 % if the 

corresponding temperature rose by 2 to 7°C, respectively (Kramer 1995b, 

Chapter 5). These differences may be enhanced when grown in mixture, es­

pecially in combination with an altered occurrence of spring frost damage. 

The aims of this study were: (1) to evaluate the effects of differences be­

tween species in both phenological response and occurrence of spring frost 

damage, on growth in mixed-species deciduous forest stands, in relation to in­

creased temperature and atmospheric C0 2 concentration, and (2) to evaluate 

the importance of inaccuracy of the phenological and frost hardiness models 

on this evaluation. 
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This was done by comparison of the annual net primary productivity predicted 

by the models FORGRO and HYBRID, based on a range of climate change 

scenarios. Both FORGRO and HYBRID are mechanistic models describing eco-

physiological processes in detail. FORGRO (Mohren 1987, 1994) aims to pre­

dict forest productivity of managed stands based on information of the spe­

cies, site and management regime considered. HYBRID (Friend 1993, Friend 

et al. submitted) aims to predict vegetation types on climate and ecophy-

siological features of General Plant Types. The species dynamics is described 

by establishment of seedlings and subsequent growth of individual trees in a 

gap, which occurs when a large tree dies. The rationale of such a model 

comparison is that, if models emphasizing different aspects of forest growth 

yield similar results, then more confidence is gained in these results. If not, 

then the differences may be explained by further analysis of the processes in 

which the models differ. 

Material and methods 

Phenology and frost hardiness 

Two approaches were used to describe the timing of both leaf unfolding and 

the level of frost hardiness: (1) a regression approach, by which mean dates 

were taken for both leaf unfolding. A fixed threshold was taken for the level 

of frost hardiness, assuming that frost hardiness is at its lowest level from the 

date of leaf unfolding onwards, and (2) a modelling approach, using models to 

predict the date of both leaf unfolding and the progression of frost hardiness. 

Frost damage occurs in both approaches when the daily minimum temperature 

is less than the level of frost hardiness. For the date of leaf fall, only the 

regression approach was used. 

Regression approach. Three types of phenological responses to temperature 

increase were discerned based on the analysis of an extensive data set 
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containing phenological observations on clones relocated over a large latitudi­

nal range throughout Europe: (1) a similar advance of both leaf unfolding and 

leaf fall; (2) an advance of leaf unfolding, but no change in leaf fall; and (3) a 

larger advance of leaf fall than of leaf unfolding (Kramer 1995a, Chapter 4). 

These three phenological types correspond to Betula, Fagus, and Quercus, 

respectively. Table 6.1 presents the characteristics of these phenological 

types. The dates of both leaf unfolding and leaf fall are kept constant during 

the entire simulation period. If the temperature was increased according to a 

scenario, then the mean dates of both leaf unfolding and leaf fall were 

adjusted according to the responses of Betula, Fagus, and Quercus (Table 

6.1). The level of frost hardiness was assumed to be constant throughout the 

year, and was set at a value of -2.3°C (Friend et al. submitted) 

Modelling approach. Sarvas (1974) discerned two phases during dormancy of 

woody plants: (1) rest, in which growth-arresting conditions in the bud itself 

prevent the bud to burst, even when brought in conditions that are normally 

favourable for development and growth. The growth-arresting factors can be 

removed by exposing the buds to chilling temperatures for a prolonged period, 

and (2) quiescence, in which only unfavourable external conditions prevent 

the buds to burst. When brought in favourable temperature conditions, the 

buds are readily forced to burst. Hänninen (1990) formalised this approach by 

defining a state of chilling, Sc, determining how far rest has progressed, and 

the state of forcing, S„ determining how far quiescence has progressed. 

Sarvas (1974) postulated that these phases occur sequentially in t ime, thus 

the state of forcing increases only when the chilling requirements are met, i.e. 

when the state of chilling attains the critical state of chilling, Sc ". Budburst is 

predicted to occur when S, attains the critical state of forcing, S, ". For the 

rate of chilling, Rc, a triangular function with temperature is assumed, and for 

the rate of forcing, R„ a logistic function with temperature. The values of the 

parameters of these functions estimated by Kramer (1995a, Chapter 4) were 

used. Table 6.1 presents the phenological features of the sequential model. 
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For the timing of leaf fall, no model could be found that explained the variance 

of this date better than the mean (Kramer 1995a, Chapter 4). Therefore, the 

regression approach was used for the date of leaf fall. 

Table 6 . 1 . Phenological characteristics of Betula, Fagus, and Quercus. U, average date of 

leaf unfolding, according to either the regression or the modelling approach for leaf unfolding 

(Kramer 1994b, Tables 3 .1 , 3.4 and 3.6); F, date of leaf fall; P0, probability of sub-zero 

temperature in a symmetric 11-day period around the date of leaf unfolding. 6U/ÖT„, change 

in date of leaf unfolding with mean winter temperature (d °C"\ Tw, 1 November until leaf 

unfolding); 6F/6TS, change in date of leaf fall with mean summer temperature (d °C~1. 7"s, 1 

May until leaf fall); R2, percentage of the variance explained of the date of leaf unfolding by 

the sequential model 

Betula Fagus Quercus 

Regression approach 

U 

F 

Po 

ÖU/5T„ 

5F/ÔTS 

22 April 

4 October 

0.58 

-3 

-3 

1 May 

16 October 

0.37 

-2 

0 

6 May 

20 October 

0.18 

-2 

-5 

Modelling approach 

U 

Po 

5U/5T„ 

R2 

22 April 

0.53 

-5 

86 

1 May 

0.30 

-4 

68 

6 May 

0.12 

-5 

82 

Frost hardiness is t he f reezing temperature a p lant can susta in w i t h o u t being 

damaged . To descr ibe the progression of f ros t hardiness, t he model developed 

by Le inonen et a l . ( 1995) for Pinus sylvestris in Finland w a s used. Empir ical 
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results indicate that plants kept in a constant environment attain a stationary 

level of frost hardiness. If the environment changes, then the actual level of 

frost hardiness gradually adjusts to the new situation, at a rate that is propor­

tional to the difference between the stationary and the actual level of frost 

hardiness. However, the competence to adjust to a changed environment is 

not constant throughout the year but depends on the plant's state of develop­

ment. The main environmental factors driving the change in the stationary 

level of frost hardiness are temperature and photoperiod, which appear to op­

erate additively. 

Leinonen et al. (1995) formalised these empirical findings by defining a 

stationary level of frost hardiness, s„ (°C), which may change either due to a 

change in temperature, Ash(T), or due to a change in photoperiod, Ash(P), or 

both, starting from a minimum level of frost hardiness, shmln, when the plant 

is completely dehardened: 

Sh(t) = Shmin + ASh(T) + ASh(P) 6.1 

The rate of change of the actual level of frost hardiness, /?h, can be described 

as: 

*h = C*(S<) • 1 • (Sh - Sh) 6.2 

With: Ch(Sf), the plant's hardening competence as a function of the state of 

forcing which is determined by the sequential model; T, a time coefficient de­

termining how fast the actual level of frost hardiness adjusts to the stationary 

level when the environment changes; and Sh, the actual state of frost hardi­

ness. The explicit functions and parameter values for Ash(T), Ash(P), and Ch 

presented by Leinonen et al. (1995) were used. 
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Forest growth models 

F0RGRO (Mohren 1987, 1994; Kramer 1995b) is a process-based primary 

production model aiming to predict growth of managed stands, using species, 

site and climatological information. It uses thinning regimes commonly applied 

in managed forests. FORGRO contains detailed descriptions for light intercep­

tion, photosynthesis and respiration. To describe light interception in a canopy 

wi th a mixture of species, the leaf areas, weighted by the extinction coeffi­

cients, are summed over the species (Kropff and Van Laar 1993): 

ƒ„ = ( 1 -p ) l0e " " ' ^ 6.3 

Wi th: /h, the net flux of radiation at height h (J m 2 ground s"1); l0, the net flux 

of radiation at the top of the canopy (J m"2 ground s1 ); p, reflection coeffi­

cient (-); kj, extinction coefficient of species/; Z.hj, cumulative leaf area index 

of species j above height h (m2 leaf m 2 ground). Canopy photosynthesis is 

calculated by integration over five shaded and sunlit leaf layers, assuming a 

rectangular distribution of the leaf area over the canopy height. The 

photosynthesis-light response curve is modelled using a negative exponential 

curve. C0 2 affects both the initial light-use efficiency and the asymptote of 

the light response curve. The temperature dependence of the rate of photo­

synthesis is based on linear interpolation of experimental data, whereas an 

exponential function is used for the temperature dependence of the C0 2 

compensation point. More details of this approach can be found in Goudriaan 

and Unsworth (1990), and Goudriaan and Van Laar (1994). Respiration of 

living biomass depends on its biochemical composition (Penning de Vries et al. 

1974), and depends on temperature according to an exponential function 

(Q10 = 2.1). Allocation of assimilates to the different organs is done daily, 

based on empirical allocation keys, and saturation curves for allocation to the 

foliage and the reserve pool (Kramer 1995b, Chapter 5). To focus on light 
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interception and competition for light between species, this version of 

FORGRO does not take into account the effects of nitrogen and water, thus 

calculating potential growth (Goudriaan and Van Laar 1994). 

HYBRID (Friend 1993, Friend et al. submitted) is an individual-based gap 

model aiming to predict ecosystem structure and population dynamics based 

on the cycling of carbon, nitrogen and water, and the exchange of heat fluxes 

between vegetation and the atmosphere, driven by climate and atmospheric 

concentrations of C0 2 and Q. It captures establishment of seedling, growth, 

mortality, litter production and feedbacks through soil processes to predict 

transient responses of structure, population dynamics and replacement of 

vegetation types to a changing climate. The intercepted light is distributed 

over the crowns of the individual trees that form the canopy, weighted by the 

leaf area of each individual per leaf layer and the extinction coefficient. To 

calculate total canopy photosynthesis, it is assumed that the photosynthetic 

capacity is distributed optimally with respect to radiation over the crown. 

Thus, the physiological properties of the foliage such as nitrogen and Rubisco 

content take the same profile over the crown as the attenuation of photosyn­

thetic active radiation (PAR). The rate of net photosynthesis of the crown is 

then linearly related to that of the uppermost leaf layer (Sellers et al. 1992, 

Friend et al. submitted). The rate of net photosynthesis is calculated based on 

the biochemical model of Farquhar and Von Caemmerer (1982), using a 

simplified version of the model PGEN (Friend et al. 1993, 1995). In this 

model, the demand for C0 2 is determined either by carboxylation limitation of 

Rubisco, or by regeneration limitation of RuBP, which is a substrate of 

Rubisco. Whether the C0 2 supply meets the photosynthetic demands depends 

on the resistance to C0 2 along the pathway from outside the leaf boundary 

layer to the mesophyll cells. Explicit functions for the boundary layer and 

mesophyll resistance were used. For the stomatal conductance an empirical 

function was used instead of the original optimization approach (Friend 1995, 

Friend et al. submitted). 
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Table 6.2. Outline of the features of FORGRO and HYBRID. 

Process FORGRO HYBRID 

light interception 

& photosynthesis 

allows for diurnal course over sun­

lit and shaded foliage layers 

stomatal conduct, 

respiration 

allocation 

competition 

population 

dynamics 

height / diameter 

nutrients 

water 

soil 

frost damage 

neg.-exponential light response 

empirical 

fixed biochemical composition, 

Q10 function for temperature 

daily, fixed keys, saturation 

curves for allocation to leaves and 

reserves 

stand level model, species compete 

for light, homogeneous canopy, 

photosynthesis weighted per 

layer for each species 

thinning by management 

empirical function 

(not used) 

(not used) 

(not used) 

complete defoliation 

daily integration over crown, opti­

mal distribution of foliage physio­

logical properties, crown photosyn­

thesis scales linearly with photo­

synthesis of uppermost leaf layer 

Farquhar biochemistry (PGEN) 

Jarvis' equation 

depends on [N] of organs (dynami­

cal), exponential temperature 

function 

annual, optimization of amount of 

foliage, sapwood and heartwood 

area based on allometry (pipe 

model) 

gap model, individuals compete for 

light, vertically explicit, horizontally 

homogeneous 

annual establishment of all General 

Plant Types, death if annual carbon 

gain is insufficient for formation of 

leaf area 

allometric relationship 

demand / supply hypothesis 

single layer bucket 

Century model, 1 layer, 4 litter 

pools 

reduction of photosynthetic 

capacity during growing season 
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For respiration an empirical approach is used too, using an exponential 

temperature function equivalent to a Q10 of 2 . 1 . Allocation is done annually 

based on: (1) allometric relationships between diameter at breast height, tree 

height and total tree biomass, (2) a fixed ratio between living sapwood area 

and foliage area, and (3) a fixed ratio between foliage biomass and fine root 

biomass. Based on these constraints, an iterative procedure is used to 

distribute the annual net photosynthesis giving priority to: (1) foliage, (2) 

storage, (3) sapwood, after a fixed amount has been allocated to the sap-

wood. Table 6.2 outlines the main features of both FORGRO and HYBRID. 

The impact of frost damage on growth is described in FORGRO by complete 

defoliation if the daily minimum temperature is less than the state of frost 

hardiness. From that point onwards, the tree has to rebuild its canopy from 

the pool of reserves. This method is not possible in HYBRID because of the 

annual allocation method used. Therefore in HYBRID, the photosynthetic ca­

pacity is reduced by 50% each time frost damage occurs. This reduction 

affects photosynthesis during the entire growing season (Friend et al, submit­

ted). 

Scenarios and initialization 

Both FORGRO and HYBRID require daily input of the meteorological variables: 

minimum and maximum temperature, radiation, precipitation, vapour pressure, 

and wind speed. The variable evaluated was the annual net primary produc­

t ion, NPP (t C ha"1 yr"1) per species, averaged over the simulation period. To 

evaluate the importance of phenology with respect to climate change, the 

atmospheric C0 2 concentration was set at 700 //mol mol"1, and the observed 

temperature series was increased uniformly by a maximum of 7°C in steps of 

1 °C (C700/T0 7). The benchmark scenario (Q50 / ^ ), i.e. ambient CQ concen­

tration without a change in temperature, was also examined. 
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For FORGRO, observations of the period 1940 to 1990 for De Bilt (52°N, 

6°E), located in the centre of The Netherlands, were used as input. FORGRO 

was initialised for a 30-year old stand similar to Kramer (1995b, Chapter 5). 

HYBRID was initialised with seedlings of a cold-deciduous General Plant Type 

(Friend et al. submitted). Thus the simulation period is from 1910 to 1990 in 

HYBRID. The initialization of the biomass and number of trees of a species in 

a mixed-species stand was one-third of that of the monospecies stand, for 

both FORGRO and HYBRID. 

Results 

Phenology and spring frost damage 

The differences in the mean date of leaf unfolding, and in the response to an 

increase in temperature between the phenological types (Table 6.1) affects 

the duration of the growing season. This results in differences in available 

radiation during the growing season with increasing temperature (Figure 6.1). 

Both the regression and the modelling approach show that during the growing 

season of Quercus, less radiation is available than during the growing season 

of both Fagus and Betula. Furthermore, for Fagus the available radiation 

exceeds that of Betula if the temperature increases by more than about 3 °C. 

However, the increase of the available radiation with temperature is larger 

according to the modelling approach than based on the regression approach, 

because the sequential model predicts a larger advancement of leaf unfolding 

with temperature than observed (Table 6.1). 

The differences in the mean date of leaf unfolding, and in the response to an 

increase in temperature between the phenological types (Table 6.1) result 

furthermore in differences in the occurrence of frost around the date of leaf 

unfolding when they unfold their leaves (Figure 6.2). The earlier a species 

unfolds its leaves, the higher the probability of being damaged by spring frost. 
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Thus for the phenological types considered, Betula has the highest probability 

of frost damage and Quercus the lowest one, whereas Fagus takes an 

intermediate position. With increasing temperature this probability quickly 

decreases for these phenological types (Figure 6.2). 

2900 

2 3 4 5 6 7 
bT(°C) 

:agus -»-Betula -*- Quercus 

Figure 6 .1 . Global radiation available 

during the growing season (I). Mean 

of 1940-1990 in The Netherlands. 

Solid lines and closed symbols, 

regression approach; dotted lines and 

open symbols, modelling approach. 

Figure 6.2. Probability of sub-zero 

temperature in a symmetrical 11-day 

interval around the date of leaf un­

folding (Pa) according to the sequen­

tial model. 

0 1 2 3 4 5 6 7 
6 7 ( t ) 

- ^ Fagus -»-Betula -*-Quercus 

57, temperature scenario imposed on the observed values for the period 1940-1990 in The 

Netherlands. 

Growth 

Both available radiation and frost damage influence photosynthesis and conse­

quently growth. In the following, the results of both the regression and the 
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modelling approach for phenology and frost hardiness are presented, using the 

models FORGRO and HYBRID. 

FORGRO. Based on the regression approach, without the impacts of frost 

damage, the pattern of gross primary production (GPP), net primary produc­

tion (NPP), and respiration is similar to that of the amount of radiation avail­

able during the growing season (Figures 6.1 and 6.3). Thus, GPP, NPP and 

respiration of Fagus exceeds that of Betula if the increase in temperature is 

larger than about 3°C, whereas these values for Quercus are consistently 

lower than for both Fagus and Betula. 

Figure 6.3. Gross primary production 

(GPP), net primary production (NPP), 

and respiration of a monospecies 

stand according to FORGRO, using 

the regression approach. No effect of 

frost damage. Open symbols, results 

of benchmark scenario. 

2 3 4 
57(°C) 

<- Fagus -«-Betiia 

5 6 7 

-Quercus 

57", temperature scenario imposed on the observed values for the period 1940-1990 in The 

Netherlands. 

The effect of frost damage on the results of the C700/7"0 scenario, using the 

fixed frost damage threshold, is a reduction of the NPP of Betula in the mono-

species stands with 4 % , but virtually no change of the NPP of Fagus and 

Quercus (Figure 6.4). In mixed-species stands, however, the effect of the 

same level of frost damage results in much larger differences between the 

phenological types (Figure 6.4). The reduction of the NPP of Betula, compared 

wi th the non-damaged situation, leads to an increase of the NPP of Fagus and 

Quercus. Frost damage affects the NPP if the temperature increase is less 
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than 3 °C , although the probability of sub-zero temperature is then still 

approximately 10% for each of the phenological types (Figure 6.2). 

Both the regression and the modelling approach yield similar responses of NPP 

wi th increasing temperature (Figures 6.4 and 6.5). The differences between 

the approaches are: (1) the NPP of the phenological types diverges more in 

case of the modelling approach, because of the larger divergence of the 

amount of available radiation during the growing season (Figure 6.1), and (2) 

the impact of frost damage on NPP of the mixed-species stands is less in case 

of the modelling approach for frost hardiness. 

Figure 6.4. Net primary production of 

a mono- and mixed-species stand 

according to FORGRO, using the re­

gression approach. 

F̂agus -»-Betda -»-Quercus 

3 4 
ôr(°c) 

- Fagus -»• Betula -*- Quercus 

Figure 6.5. Net primary production of 

a mono- and mixed-species stand 

according to FORGRO, using the 

modelling approach. 

Solid lines, no effect of frost dama­

ge; dotted lines, effect of frost dam­

age. Open symbols, results of bench­

mark scenario without frost damage. 

OF, temperature scenario imposed on the observed values for the period 1940-1990 in The 

Netherlands. 
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The reason that the modelling approach for frost hardiness affects NPP less 

than the constant hardiness threshold is depicted in Figure 6.6: the occur­

rence of frost damage is larger based on the constant threshold than accord­

ing to the modelling approach. Based on the parametrization of Leinonen et al. 

(1995) of the frost hardiness model, the minimum level of frost hardiness is 

attained after the moment of leaf unfolding. Furthermore, the period between 

the date of leaf unfolding and the date that the minimum level of frost hardi­

ness is attained, increases with rising temperature, thus reducing the fre­

quency of frost damage. 
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Figure 6.6. Effect of a rise in temperature by 2, 4, and 6°C on frost damage of Betula. Frost 

damage occurs when the minimum daily temperature is less than the level of frost hardiness. 

Tmn, lowest daily minimum temperature in the period 1940-1990; Sh , mean of the actual 

state of frost hardiness during the same period; horizontal dotted line at -2.3°C: constant 

level of frost hardiness; triangles, mean date of leaf unfolding, according to the modelling 

approach. 

HYBRID. If population dynamics are taken into account also to assess the im­

portance of phenology with respect to intercepted radiation and frost damage, 

then a complex picture emerges (Figure 6.7). The progression of the leaf area 

index in a monospecies stand of Betula differs considerably between the 

scenarios, because of the mortality of trees, and the establishment of new 
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seedlings. For example, the C700/7"0 scenario results in one big tree in the gap 

(of 400 m2) after about 30 years. When this tree dies, the build up of the 

stand starts again. The same pattern is found if the temperature rises by 1 °C 

(not shown), but not within the selected simulation period if the temperature 

rises more. Frost damage, using the modelling approach, affects the dynamics 

of Betula if the temperature increase is less than 3°C, but especially reduces 

the formation of leaf area on seedlings in the C350/70 and Q00 /% scenarios. 

Characteristically, the annual net primary production is highest during the 

build up phase. The average NPP depends therefore, on the period over which 

this average is calculated, because in some cases the simulation period covers 

two cycles of forest succession, and in other cases less than one cycle (Fi­

gure 6.7). This makes it difficult to choose a period over which the NPP can 

be averaged best. Averaging the NPP over the entire 80-year simulation pe­

riod, Quercus yields the lowest NPP, Fagus the highest NPP when the 

temperature rise exceeds 2°C, and Betula is affected most by frost damage 

(Figures 6.8 and 6.9). 

-C350m) 

40 
time (yr) 

-C700/TO - * — C700/T2 -C700/T4 -C700/T6 

Figure 6.7. Progression of the leaf area index (LAI) of a monospecies stand of Betula accord­

ing to HYBRID, using the modelling approach for phenology and frost hardiness. Solid lines 

and closed symbols, no effects of frost damage; dotted lines and open symbols, effect of 

frost damage, using a constant frost hardiness threshold (-2.3°C). 
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Ô7-(°C) 

-•-Fagus -»-Betula -»-Quercus 

Figure 6.8. Net primary production of 

a monospecies stand according to 

HYBRID, using the modelling ap­

proach. 

Ô7-(°C) 
-•-Fagus -»-Betitó -*-Quercus 

Figure 6.9. Net primary production of 

a mixed-species stand according to 

HYBRID, using the modelling ap­

proach. 

Solid lines and closed symbols, no 

effect of frost damage; dotted lines 

and open symbols, effect of frost 

damage, using a constant frost hardi­

ness threshold (-2.3 °C). Single clo­

sed symbols, results of benchmark 

scenario without frost damage. 

57, temperature scenario imposed on the observed values for the period 1940-1990 in The 

Netherlands. 

For a more detailed analysis, however, also the pattern of forest dynamics is 

required. Then it can be seen why including frost damage in some cases 

causes an increase of the NPP of a phenological type: this can be either 

because of competition, or because of the selected simulation period. An 

example of the first mechanism is shown in Figure 6.10. Betula is affected 

most by frost damage. Thus, a reduction of the NPP of Betula results in an 

increase of the NPP of both Fagus and Quercus. An example of the second 

mechanism is shown in Figure 6 .11 . The advancement of the death of a tree 



120 Chapter 6 

8-

*~ fi-E 6 

CM 

f" 
2-

0-

r i 

i f • *p—. A f — i — 
^ 

20 40 60 
time (yr) 

-•-Fagus -»-Betula -*-Quercus 

80 

Figure 6.10. Progression of the leaf 

area index (LAI) of a mixed-species 

stand based of the C700/T0 scenario 

according to HYBRID, using the mo­

delling approach for phenology and 

frost hardiness. 
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Figure 6.11. Progression of the leaf 

area index (LAI) of a mixed-species 

stand based of the C10OIT2 scenario 

according to HYBRID, using the 

modelling approach for phenology 

and frost hardiness. 

Solid lines and closed symbols, no 

effect of frost damage; dotted lines 

and open symbols, effect of frost 

damage. 

due to frost damage causes a reduction in biomass and thus in the costs for 

respiration which exceeds the loss in photosynthesis because of a reduction in 

LAI. Since the LAI is still rather high for a deciduous species (Figure 6.11), the 

NPP of the last 15 years simulated including frost damage, exceeds the NPP 

without the effects of frost damage (Figure 6.9). 

The sensitivity of the NPP on the simulation period can be circumvented by 

averaging over several plots that are in a different stage of succession, and 
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using a longer simulation period. Friend et al. (submitted) advises to use ten 

plots, then a quasi-equilibrium is attained after 250 years, based on synthetic 

weather series. This is not done here because the focus is on the importance 

of phenology and spring frost damage on short-term forest dynamics, to eva­

luate transient responses of forests to climate change. 

Discussion and conclusions 

This study addressed the consequences of differences between species in 

phenology on growth of mixed deciduous tree stands, with respect to both 

the amount of radiation intercepted during the growing season and the 

occurrence of spring frost damage, in the context of climate change. The 

direct effect of an increase of the atmospheric C0 2 concentration that can be 

expected, is an increased rate of photosynthesis. This effect could be coun­

teracted by an increased respiration, if the temperature rose due to the 

increased atmospheric C0 2 concentration. Temperature further influences 

growth by its effect on the date of both leaf unfolding and leaf fall, and thus 

on the duration of the growing season and on the occurrence of frost dam­

age. The consequences of these combined effects on growth in mixed species 

stands were analysed with the models FORGRO, which highlights potential 

growth in managed forests, and HYBRID, which highlights feedbacks of 

carbon, water and nitrogen cycles on soil-vegetation-atmosphere dynamics. 

With respect to the effects of differences between species in both phenologi-

cal response and spring frost damage on growth in mixed species deciduous 

forests, in relation to an increased temperature and atmospheric C0 2 concen­

tration, both FORGRO and HYBRID show: (1) that the differences in NPP of 

the three phenological types considered are enhanced when grown in mixed-

species stands compared to monospecies stands. These differences increase 

wi th rising temperature, because the differences in the duration of the grow­

ing season between the phenological types increase with temperature. (2) 
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that the consequences of frost damage on growth is more prominent in 

mixed-species stands than in monospecies stands, because in the latter, a 

reduction in leaf area due to frost damage is quickly obviated by a rebuilding 

of the canopy, whereas in a mixed-species stand the rebuilding of the canopy 

is hampered by the presence of foliage of the trees which were less affected 

by the frost damage. The NPP is higher according to FORGRO, because of the 

dynamics of the number of trees simulated by HYBRID. NPP is low during the 

seedling phase, with a low leaf area index, and when there is one mature tree 

only, and is highest during the build-up phase. In FORGRO, the NPP is more 

constant during the entire simulation period. 

Considering the accuracy of the modelling approach compared to the regres­

sion approach for the timing of leaf unfolding, both approaches show similar 

values and responses of NPP to the scenarios, for the monospecies and the 

mixed-species stand according to FORGRO (Figures 6.4 and 6.5). Although 

more light is available during the growing season according to the modelling 

appraoch, photosynthesis still can not compensate for the increase in respira­

t ion, if the temperature increases more than 3°C. The differences between 

the phenological types in NPP are, however, enhanced according to the 

modelling approach because the differences in the increase of the duration of 

the growing season, compared to the regression approach. 

Considering the accuracy of the modelling approach compared to the regres­

sion approach for frost hardiness, the regression approach shows a greater 

frequency of frost damage, because according to the model the minimum 

level of frost hardiness is attained after the date of leaf unfolding, thus 

reducing this frequency (Figure 6.6). According FORGRO, NPP is reduced 

more in case of the regression approach, especially in mixed-species stands 

(Figures 6.4 and 6.5) However, both approaches do not qualitatively affect 

the outcome of competition. The impact of frost damage on growth is less 

according to in FORGRO than according to HYBRID. In FORGRO the canopy is 

quickly rebuilt, if there are sufficient reserves. In HYBRID, especially the 
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seedling stage is affected by frost damage, and delays the moment when the 

build-up phase starts (Figure 6.7). This delay reduces consequently the mean 

NPP of the simulation period (Figure 6.8). Thus, it is important to assess the 

degree of injury brought about by frost to evaluate climate change impacts on 

the transient dynamics of temperate-zone deciduous forests. This is, however, 

not constant but depends on the freezing rate, phenological stage, tissue hy­

dration, solute in sap, and external wetness (Santibanez 1994). Furthermore, 

the dehardening of Pinus sylvestris not only depends on temperature, but was 

found to be hastened with elevated C02 (Repo et al. in press). 

The results of this study can be used to evaluate the transient responses of 

the geographical distribution of species to climate change. Usually close corre­

lations are found between the geographical distribution of a species and cli­

matic variables such as absolute minimum temperature, precipitation, mean 

annual temperature is used (Sakai and Larcher 1987, Woodward 1992). 

These correlations can, however, not be used to predict the responses of the 

species to climate change scenarios, because these correlations may not indi­

cate the cause of the distributions (Woodward and McKee 1991). They state 

further that the absolute minimum temperature, perse, does not limit the 

distribution of boreal trees, because these trees can endure temperture below 

-90 °C, but the length and temperature of the growing season is an important 

limit. Consequently, competition limits the expansion of vegetation types in 

equatorial direction (Woodward 1992). This study confirms that differences in 

the duration of the growing season, in combination with spring frost damage, 

has profound impacts on competition between tree species. 
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Chapter 7 

General discussion 

Phenology and scale 

Phenology links the functioning of a tree to the climate of its environment. In 

seasonal climates, selective pressure synchronises growth to the period 

favourable for growth. Therefore, phenology influences both capacity adapta­

tion, the ability to metabolise, grow and develop in a specific environment, 

and survival adaptation, the ability to survive the physical extremes which the 

environment imposes on trees. Both aspects determine the competitive ability 

of a species. Here the term competition is used to mean the reduction in 

growth of a species caused by the presence of another species that requires 

the same limiting resource. In the research described in this thesis, only 

species differences affecting competition for light were considered, by 

evaluating the growth of homogeneous, even-aged forest stands under condi­

tions of non-limiting water and nutrient supply. This competitive ability has 

direct consequences both for the species composition of forests and for the 

geographical distribution of a species if climatological conditions change. 

Phenology further links vegetation to the atmosphere by influencing the 

exchange of water, carbon dioxide, and energy. The timing and rate of the 

'green wave' in spring and the 'brown wave' in autumn modify the surface 

energy and moisture balances of the lower atmosphere (Schwartz 1994). 

Thus, phenology affects vegetation-atmosphere interactions that must be 

accounted for in General Circulation Models, to predict climate and its impacts 

on vegetation. 

The scientific challenge lies in analysing the relationship between climate and 

tree phenology at the individual, ecosystem, regional and global scales, and in 

assessing the consequences for forest management. This study focused on 
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the analysis at the scale of individual trees and ecosystems. The relevance of 

phenology to capacity adaptation was evaluated by several forest growth 

models, while its relevance for survival adaptation was assessed by evaluating 

the impacts of frost damage. 

Phenology: models and data 

To answer the questions posed in this study, I relied on phenological models 

developed, and data collected by other researchers, and assumed that the 

information compiled elsewhere and integrated in recent decades can be used 

to assess climate change impacts on phenology and growth of forests. The 

models and data both have merits and limitations, as outlined below. 

Models 

In population genetics, two general types of model are discerned to evaluate 

the consequences of selection pressure caused by a changing environment. 

Firstly, there are character state models, which describe the causes that lead 

to the value attained by a character of a genotype in a specific environment. 

Secondly, there are reaction norm models, which describe the functional res­

ponse of such a character to different environments (De Jong 1995). (A 

functional response is the meaningful change in physiology and/or morphology 

caused by different environmental conditions: Bradshaw 1965). Reaction 

norms thus represent the phenotypic plasticity of a character of a genotype 

for an environmental factor. The character state model I selected for the date 

of leaf unfolding is the sequential model. As the reaction norm model I 

selected the linear regression through the dates of leaf unfolding of the clones 

as function of the mean winter temperature. I assumed that the reaction norm 

represents the response of the species to a future climate. This enabled the 

response of the sequential model to temperature scenarios to be tested 



General discussion 127 

against the reaction norm of the data. The results showed that the response 

of the sequential model to a rising mean winter temperature, using uniform 

climate change scenarios, exceeds the reaction norm of the clones to the 

mean winter temperatures. This is the consequence of the way the sequential 

model describes the rate of development during dormancy. This rate can only 

be measured indirectly as the reciprocal of the period between leaf fall and 

leaf unfolding, since a generally applicable mechanism is not known. How­

ever, experimental evidence has shown that dormancy consists of two phases 

that cannot be distinguished by eye: rest, affected by chilling temperatures, 

and quiescence, affected by forcing temperatures (Sarvas 1974). Conse­

quently, the parameter values estimated numerically for the rate of chilling 

during rest correlate with the rate of forcing during quiescence, based on the 

dormant period. This implies that several combinations of parameter values 

exist, all predicting the same date of leaf unfolding. The estimation procedure 

yielded parameter values that give little variation in the duration of rest. Thus, 

most variation in the dates of leaf unfolding results from variation in the 

quiescent period. This was accounted for by a logistic function, mapping the 

variation of the temperature series to the variation of the date of leaf unfold­

ing. Based on these functions and parameter values, independent observa­

tions were predicted accurately. However, when I used the sequential model 

for extrapolation in climate change studies, the advancement of leaf unfolding 

with temperature exceeded the reaction norm of the clones. The importance 

of this inaccuracy for growth of mixed-species forests was evaluated by the 

forest growth models. The results showed that this inaccuracy yields values 

for the annual net primary production, that arre higher than those attained 

wi th the reaction norm model. However, the competitive balance between the 

phenological types considered did not change. 

Experiments have shown that temperature as well as photoperiod may affect 

the t iming of phenological events (Vegis 1964). A rapid climate change could 

thus disturb the coordinated response to the photoperiodic signal, which 
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remains unaltered, and the temperature signal (Reich 1995). The general 

pattern found is that photoperiod may be a substitute for chilling, whereas a 

threshold value of photoperiod may trigger leaf fall. Incorporating photoperiod 

additively to the rate of chilling increases the number of correlated parameters 

of the sequential model, and this made the model more difficult to calibrate. 

Thus, the impact of photoperiod on leaf unfolding could not be verified from 

the observations of the clones relocated over Europe. The results of the 

clones relocated over Europe show for both leaf unfolding and leaf fall, that 

there is no photoperiodic threshold that triggers these events. 

Data 

The phenological observations of the clones from the International Phenologi-

cal Gardens proved very valuable for the evaluation the phenological model, 

and for studying the possible impacts of increased temperature on the 

duration of the growing season. The principal shortcoming of this data set is 

that it consists of annual means, and therefore no within-clone variance could 

be calculated and the data could not be rigorously statistically evaluated. The 

other shortcomings of the data were the non-adjacency of the temperature 

and phenological observations, and the variation in the number of phenological 

observations per location and year. Only one sufficiently long temperature 

series was available for The Netherlands, and the phenological observations 

were obtained from locations throughout the country. In addition, the varying 

number of observations per year resulted in an unequal distribution over the 

country. Hence, the differences between years were affected by site and 

genotypic differences too. Nevertheless, approximately 8 0 % of the variation 

in leaf unfolding in the phenological types discerned in this study could be 

explained by temperature only. 
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Forest growth models and climate change scenarios 

Whether an increase in atmospheric carbon dioxide and in temperature leads 

directly to increased forest growth, depends on the impacts on photosynthe­

sis and respiration, assuming the absence of acclimation of photosynthesis to 

increased C0 2 by down-regulation of the amount and/or activity of Rubisco 

(Ceulemans and Moussau 1995), and provided that nutrients and water are 

available in non-limiting amounts. The photosynthesis models consistently 

showed an increase in annual gross photosynthesis of approximately 2 0 % if 

the C0 2 concentration doubles. Thus, the sensitivity of photosynthesis and 

respiration to temperature is crucial to assess climate change impacts on 

growth. At a certain break-even temperature, the increased gains by photo­

synthesis are counteracted by the increased cost of respiration, because 

photosynthesis depends on temperature according to an optimum curve, 

whereas respiration increases exponentially wi th temperature (Goudriaan and 

Van Laar 1994). The Farquhar approach to photosynthesis uses Arrhenius 

equations to describe the effect of temperature on photosynthesis (Farquhar 

and Von Caemmerer 1982). Since these are exponential equations, they are 

very sensitive to errors in the measurement of the exponents. The empirical 

approach to photosynthesis involves using a temperature multiplier based on 

linear interpolation of experimental data, which is less sensitive to measure­

ments errors. However, the empirical approach ignores the interaction 

between C0 2 and temperature, whereas the Farquhar approach takes account 

of it in accordance with experimental evidence (Kirschbaum 1994). Conse­

quently, the Farquhar approach to photosynthesis yields a higher value for the 

break-even temperature than the empirical approach. 

However, the break-even temperature depends on the climate change scena­

rios and the forest growth models used. Both have their merits and limita­

tions, as outlined below. 
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Scenarios 

Two aspects of the scenarios may result in a lower break-even temperature: 

(1) The 'doubling of C02 ' used in General Circulation Models, in fact refers to 

all greenhouse gases, expressed in the equivalent radiative power of an 

atmospheric C0 2 concentration of 700/ymol mol"1. However, CO 2 constitutes 

only half of the greenhouse gases. Nevertheless, in physiological experiments, 

plant growth at a C0 2 concentration of 700 //mol mol'1 is usually compared to 

that at 350/vmol mol"1. So, the response of gross photosynthesis to the GCM 

scenarios may in fact be half of the measured response. In the present study, 

the photosynthesis response to 700 /ymol mol"1 was used, enabling compari­

sons to to be made with experimental results. 

(2) The GCMs predict that temperature will increase mainly in winter, and 

observations indicate that the temperature increase in summer is mainly due 

to an increase in nocturnal temperature (Houghton et al. 1990). As a conse­

quence of these points, photosynthesis may be overestimated and respiration 

underestimated, thus reducing the break-even temperature. 

However, because the atmospheric C02 concentration rises gradually, instead 

of doubling instantaneously, it is likely to affect the climate gradually. Assum­

ing a transient climate change scenario, in which the C0 2 concentration rises 

linearly to 700 /ymol mol"1, and the temperature increases linearly over a 100-

year period, then the break-even temperature increases by approximately 1 °C, 

because the impact of temperature on respiration is delayed compared to the 

effect of C0 2 on photosynthesis. 

Another assumption was that the incidence of extreme events would remain 

unchanged. If, however, the incidence of hurricanes and periods of drought 

were to increase, this would affect forest growth more dramatically than the 

direct impacts of increased C0 2 and temperature. 
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Models 

The forest growth models used in this study had various limitations. The 

version of FORGRO used, did not take nutrients or water into account. In the 

ITE-FORGRO and HYBRID models the species did not differ in nutrient and 

water use. Despite these limitations, the models consistently showed that 

differences in phenology result in significant differences in capacity adapta­

tion. 

The relevance of phenology for survival adaptation was considered by 

introducing a model describing the progression of frost hardiness, and by 

evaluating the possible effects of frost damage on photosynthesis. It was 

found that frost damage affects the competitive ability of a species, and thus 

the growth and dynamics of mixed-species forest. 

In summary, it could be concluded that the differences between the phenolo-

gical types in both capacity adaptation (characterised by the forest growth 

models) and survival adaptation (characterised by the frost hardiness model) 

significantly affect competition between these types. 

Forest management 

If the climate changes, then the growth of forests may be affected. This 

study indicates that the growth of monospecies forests in Europe will be 

boosted by 1 5 to 30%, if the C02 concentration doubles and the temperature 

increases by 2°C, providing that nutrients and water are available in non-

limiting amounts. Furthermore, the different responses of species affect their 

competitive ability. Forest dynamics will therefore change, and possibly so 

will species composition. This implies that climate change may affect both the 

forest type that a forest manager is aiming at, and the silvicultural treatment 

required to achieve the management goals. This poses practical problems for 

forest management that cannot be solved from historical experience. In this 
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study, a mechanistic approach for analysing future forest growth was used 

instead of empirical estimates of growth and yield. Using this approach, 

appropriate future forest types can be derived from models such as HYBRID 

which consider environmental influences on the competition and dynamics of 

natural forests, such as the model HYBRID. The appropriate silvicultural treat­

ment can be derived using models such as FORGRO, which explicitly account 

for silvicultural options and for changed competitive relations between tree 

species 

Forestry research has a long history of analysing and optimizing phenological 

characters of plantation species through selection programmes and prove­

nance trials. The results reported in this study indicate that species may be 

phenotypically capable of a significant plastic response to an altered environ­

ment. Traditionally, such a response was considered to counteract selection 

pressure (Thomson 1991). The current idea, however, is that phenotypic 

plasticity is itself an adaptive character, which is genetically controlled (Sultan 

1992). As a result, selection on characters that show a plastic response to an 

environmental factor will only succeed if there is genetic variation for the 

reaction norm. For selection on phenological characters this implies that for 

those species or genotypes for which these characters are strictly photo-

periodically controlled have no reaction norms to temperature. Selection must 

therefore be directed to adjusting the mean of the character. If the phenologi­

cal characters are mainly driven by temperature, then it should be confirmed 

that genetic variation for the reaction norm exists. 
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Summary 

Research topics 

The relationships between climate and both phenology and growth of some 

important European tree species were studied to evaluate the potential im­

pacts of climate change on trees and forests in Europe. In order to make such 

assessments, insight is required on the mechanisms how climatic variables 

interact wi th plant processes. The topics addressed in this study were: (1) the 

modelling of phenology, (2) the consequences of climate change on spring 

frost damage, (3) the importance of phenotypic plasticity, (4) the importance 

of phenology on the effects of climate change on growth of monospecies 

deciduous forests, and (5) the importance of phenology on the effects of 

climate change on growth of mixed-species deciduous forests. 

Modelling phenology 

To evaluate the impacts of climate change on growth of temperate deciduous 

tree species, the onset and cessation of the growth must be accurately de­

scribed. A review is presented on eight models predicting the date of leaf un­

folding depending on temperature. These models were f itted using 57 years 

of observations on the date of leaf unfolding of Fagus sylvatica in The Nether­

lands, and used to predict 40 years of similar observations collected in Ger­

many. As conflicting experimental evidence exist on the role of photoperiod 

on leaf unfolding of Fagus sylvatica, photoperiod was incorporated into each 

of these models. 

The timing of leaf unfolding could best be described by a model in which the 

effects of chilling temperatures (-5 to +10°C) and forcing temperatures 

(>0°C) operate sequentially in time, according to a triangular and logistic 
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function, respectively. Including photoperiod reduced the predicting power of 

this model. 

Spring frost damage 

Two studies presented in literature evaluate the effect of increasing winter 

temperature on the probability of spring frost damage to trees. However, one 

study predicted an increase, while the other predicted a decrease in the proba­

bility of spring frost damage. It is unclear whether the disparity is because: (1) 

different models were used, (2) different climatic warming scenarios used, or 

(3) the tree species at the different locations respond differently to warmer 

winters. To evaluate the effects of climatic warming to Larix decidua, Betula 

pubescens, Tilia platyphylla, Fagus sylvatica, Tilia cordata, Quercus rubra, 

Quercus robur, Fraxinus excelcior, Quercus petraea, Picea abies and Pinus 

sylvestris in The Netherlands and in Germany, both models were fitted to long 

series of observations on the date of leaf unfolding of these tree species. The 

impact of the two scenarios (uniformly and non-uniformly changing winter 

temperature) on the date of leaf unfolding and on the probability of freezing 

temperature around that date was evaluated. To test the importance of adap­

tation to local climate, hypothetical provenance transfers were analysed. 

For tree species in The Netherlands and Germany the probability of spring 

frost damage will decrease, provided the variability in temperature does not 

change. The contradictory results found in literature could be ascribed to 

differences among provenances adapted to their local climate, rather than to 

differences between either the models or the climatic warming scenarios used 

in these studies. 
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Plasticity 

To evaluate the potential response of individual trees to climatic warming, 

phenological observations of clones of Larix decidua, Betula pubescens, Tilia 

cordata, Populus canescens, Quercus robur, Fagus sylvatica, and Picea abies 

transferred over a large latitudinal range in Europe were analysed. The magni­

tude of the clone's response was compared to that of genetically different 

trees of the same species along a part of the latitudinal range, which were 

assumed to have adapted to their local climate. 

The responses of the date of leaf unfolding and leaf fall of the clones to 

temperature are similar in magnitude to those of the genetically different 

trees. This demonstrates that trees possess a considerable plasticity and are 

able to respond phenotypically to a major change in their local climate. For the 

clones of Larix decidua and Quercus robur the growing season may shorten 

wi th increasing temperature, because leaf fall is advanced more than leaf 

unfolding. In Betula pubescens and Populus canescens, leaf unfolding and leaf 

fall are advanced equally, whereas in Tilia cordata and Fagus sylvatica the 

date of leaf fall seems to be unaltered but leaf unfolding advances wi th 

increasing temperature. These differences in the duration of the growing 

season in response to increasing temperature may alter the competitive ba­

lance between the species in mixed stands. 

Descriptive dynamic models showed that most of the variance of the date of 

leaf unfolding can be accounted for by temperature. However, a generally ap­

plicable model of leaf fall based on temperature and/or photoperiod could not 

improve the null model, i.e. the mean date of leaf fall, because of variability in 

other environmental factors. 

The lowest temperature around the date of leaf unfolding and leaf fall differed 

among the clones. The hypothesis that the survival of the clones is curtailed 

by spring frosts was supported. Thus, these lowest temperatures around leaf 

unfolding may represent thresholds below which the species cannot survive. 
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It is argued that these thresholds may be a particularly sensitive means to 

evaluate the impacts of climatic warming on the geographical distribution of 

tree species. 

Growth of monospecies forests 

The importance of three phenological types of deciduous tree for the effects 

of climate change on growth of monospecies forests was evaluated using the 

model FORGRO. The climate change scenarios used were a doubling of the 

C0 2 concentration (700 /vmol mol'1) and an increase in temperature ranging 

from 0 to 7°C. To elucidate the relative importance of photosynthesis and 

allocation for this evaluation, models with different levels of mechanistic 

detail of photosynthesis and allocation were used. The photosynthesis 

approach of FORGRO was compared to the Farquhar and Von Caemmerer 

approach as formulated in PGEN (FORGRO-PGEN). Similarly, the allocation 

approach of FORGRO was compared to the transport-resistance approach, as 

formulated in the ITE-Edinburgh model (ITE-FORGRO). A sensitivity analysis 

was performed to ascertain whether the response of gross photosynthesis to 

a climate change scenario depends on the value assigned to parameters in 

these models, and to compare this sensitivity with the differences found 

between the phenological types. The differences in the response of annual 

gross photosynthesis (Pga) to the climate change scenarios between the 

phenological types were smaller according to ITE-FORGRO as compared to 

FORGRO. These differences are of a similar magnitude when comparing the 

two photosynthesis models. Furthermore, FORGRO-PGEN showed that the 

response of Pg a to a 2 x [CO ] increases with rising temperature, thus 

compensating for the increase in respiration. For both FORGRO and ITE-

FORGRO, this C0 2 and temperature interaction was not found. Consequently, 

in these models the increase in respiration exceeded the increase in gross 

photosynthesis at the higher range of temperature rise. The sensitivity 
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analysis showed that the models differ in the sensitivity of the response of 

Pga to a 2 x [QO ] scenario combined wi th a temperature rise of 2°C 

(C700 /r2), when parameter values change by ± 2 5 % . In FORGRO-PGEN, the 

magnitude of the response of Pg a depended on the values of some of its para­

meters, especially those determining the Michaelis-Menten kinetics of Ru-

bisco, which for these parameters exceeded the differences between the phe-

nological types in this scenario. In both FORGRO and ITE-FORGRO, this sensi­

tivity is similar to or less than the difference between the phenological types 

in the C700/T2 scenario. 

Growth of mixed-species forests 

Using the same three phenological types and climate change scenarios, the 

effects of differences in phenology and spring frost damage on growth in 

mixed-species stands were evaluated using the models FORGRO and HYBRID. 

FORGRO highlights potential growth in managed forests, whereas HYBRID 

highlights feedbacks of carbon, water and nitrogen cycles in General Vegeta­

tion Types, based on gap model theory. Furthermore, the importance of inac­

curacy of the phenological model for growth in mixed-species stands was 

evaluated by comparing the modelling approach with a regression approach. 

The results of the climate change scenarios indicate for both FORGRO and 

HYBRID that: (1) the differences in NPP of the three phenological types 

considered are enhanced when grown in a mixed-species stand compared to a 

monospecies stand; and (2) the consequences of frost damage on growth is 

more prominent in mixed-species stands than in monospecies stands. 

Considering the accuracy of the modelling approach compared to the regres­

sion approach for the timing of leaf unfolding and spring frost damage, the se­

quential model of leaf unfolding shows a similar response of the NPP as the 

regression approach, both for the monospecies and the mixed-species situa­

tion. The modelling approach yields, however, larger differences in the NPP 
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between the phenological types because the model predicts a greater 

advancement of leaf unfolding than the regression model. Comparing the 

regression approach to the modelling approach for frost hardiness, the 

regression approach shows a greater frequency of frost damage, because 

according to the model, the minimum level of frost hardiness is attained after 

the date of leaf unfolding, thus reducing this frequency. 

The differences in phenological response to temperature can be used to evalu­

ate the consequences of climate change on the geographical distributions of 

species. 
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Samenvatting 

Klimaatverandering 

Verbranding van fossiele brandstoffen en grootschalige ontbossing heeft een 

snelle toename van de koolstofdioxideconcentratie in de atmosfeer tot gevolg. 

Atmosferisch C0 2 laat de kortgolvige straling door die van de zon komt, maar 

absorbeert de langgolvige straling die de aarde uitzendt. C0 2 zendt vervolgens 

deze geabsorbeerde straling weer uit, dus ook richting de aarde. Dit heeft tot 

gevolg dat de warmtebalans van de aarde verandert. Het is dus mogelijk dat 

als gevolg van de gewijzigde atmosferische samenstelling het klimaat op aarde 

verandert. Algemene circulatiemodellen die de weerpatronen op aarde simu­

leren, geven een toename aan van de gemiddelde temperatuur met 2 tot 5 °C, 

en een verandering in neerslag bij een verdubbeling van de C02-concentratie in 

de atmosfeer. Er bestaat echter nog veel onzekerheid over de mate van deze 

verandering omdat het klimaat uiteindelijk door zeer veel factoren wordt 

bepaald. Wel is duidelijk dat er grote regionale verschillen in klimaatveran­

dering bestaan. 

Methodologie 

Experimenten kunnen niet direct uitsluitsel geven hoe een toekomstig klimaat 

de groei en ontwikkeling van bomen en bossen zal beïnvloeden, vanwege de 

grootte en levensduur van bomen, en door de complexiteit van de betrokken 

processen. Numerieke simulatiemodellen bieden de mogelijkheid om de 

ruimtelijke en temporele schaal te overbruggen door de relevante processen te 

integreren. Toekomstprojecties van groei in een klimaat dat tot dusverre nog 

niet is voorgekomen, zijn alleen dan mogelijk indien de relaties tussen de pro­

cessen die groei en ontwikkeling bepalen en het klimaat, op een mechanis­

tische manier worden beschreven. Experimenten die deze relaties verhelderen. 
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bieden de essentiële informatie hoe de modellen ontworpen dienen te worden. 

Dus de mechanistische modellering van de groei van het bos, op een solide 

experimentele basis, in combinatie met realistische klimaatveranderings­

scenario's, is de enige mogelijkheid om een indruk te krijgen van de toe­

komstige groei van het bos. 

Wegens onvoldoende kennis omtrent het functioneren van het klimaat is het 

echter moeilijk in te schatten of klimaatveranderingsscenario's realistisch zijn. 

Bovendien bestaan er veel onzekerheden over de modellering van de relevante 

processen. Om met onzekerheden in het toekomstige klimaat om te gaan is 

ervoor gekozen om historische meetreeksen te gewijzigen volgens een bepaald 

scenario. Dit met de gedachte dat voor locale studies de toekomstige weer­

patronen zoals die door de algemene circulatiemodellen worden voorspeld 

waarschijnlijk minder betrouwbaar zijn dan een -aangepaste- continuering van 

vroegere weerpatronen. Verder zijn steeds de effecten van een reeks scena­

rio's onderzocht. Om met onzekerheden over de modellering van de relevante 

processen om te gaan, zijn steeds modellen vergeleken die verschillen in de 

mate van detail waarin ze kritieke groeibepalende processen beschrijven. Als 

er een consistent resultaat wordt gevonden, geeft deze benadering meer ver­

trouwen in dit resultaat. Is dit niet het geval, dan biedt nadere analyse van de 

modellen de mogelijkheid om de verschillen te verklaren, ledere uitspraak die 

in deze studie gedaan wordt over de gevolgen van klimaatverandering op 

fenologie en groei van bomen en bossen moet daarom met enige voorzichtig­

heid gehanteerd geworden, gezien de onzekerheid in zowel de klimaat­

veranderingsscenario's en sommige aspecten van de modellen. 

Fenologie en groei 

Deze studie behandelt de effecten van klimaatverandering op fenologie en 

groei van enkele belangrijke Europese boomsoorten. Fenologie van bomen is 

de studie hoe jaarlijks terugkerende gebeurtenissen zoals bladontplooiing, 
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bloei, vruchtzetting en bladval, beïnvloed worden door klimaat- en andere om­

gevingsfactoren. Een nauwkeurige synchronisatie tussen de periode waarin 

een boom groeit en de periode die klimatologisch gunstig is om te groeien is 

van belang om niet verdrongen te worden door soorten die beter gesyn­

chroniseerd zijn. Als hij te vroeg uitloopt, bestaat de kans dat door late 

nachtvorst het blad beschadigd wordt. Als hij te laat uitloopt, wordt de 

periode die gunstig is voor groei, niet optimaal benut. Temperatuur is hierbij 

het belangrijkste omgevingsignaal om deze synchronisatie te bewerkstelligen. 

Om niet uit te lopen gedurende een warme periode in de winter, hebben 

bomen in gematigde en boreale gebieden eerst een periode met koele tempera­

tuur nodig, voordat zij gevoelig zijn voor de warme voorjaarstemperatuur die 

tot het uitlopen van het blad leidt. Als het klimaat zou veranderen gedurende 

het leven van een boom, kan de synchronisatie verstoord worden. Daar staat 

tegenover dat individuele bomen mogelijk de plasticiteit bezitten om feno-

typisch de synchronisatie te herstellen, m.a.w. om de timing van fenologische 

gebeurtenissen aan te passen aan een wijziging in hun omgeving. Als soorten 

verschillend reageren op een klimaatverandering, veranderen de concurrentie 

verhoudingen tussen deze soorten wanneer zij gezamelijk voorkomen. Op de 

lange termijn verandert daardoor de samenstelling van een natuurlijk bos. 

Deze gedachtengang heeft geleid tot de volgende vragen die in deze studie 

aan de orde zijn gekomen: (1) hoe is de relatie tussen klimaatfactoren en de 

t iming van fenologische gebeurtenissen zoals bladontplooiing en bladval te 

modelleren? (2) wat zijn de gevolgen van een klimaatverandering voor de kans 

op voorjaarsvorstschade? (3) bezitten bomen plasticiteit wat betreft bladont­

plooiing en bladval om zich fenotypisch aan een wijziging van het klimaat in 

hun omgeving aan te passen? (4) wat is het belang van fenologie voor de 

groei van ongemengde bossen? en (5) wat is het belang van fenologie en 

voorjaarsvorstschade voor groei van gemengde bossen? 
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Modellering van fenologie 

Een overzicht is gepresenteerd van acht modellen die de datum van bladont­

plooiing voorspellen op grond van temperatuur. De parameterwaarden van 

deze modellen zijn geschat op grond van waarnemingen van de datum van 

bladontplooiing van beuk in Nederland gedurende de periode 1901 tot en met 

1968 (/7 = 57). Deze modellen zijn getoetst met gelijksoortige waarnemingen 

in Duitsland gedurende de periode 1951 tot en met 1990 (/7 = 40). Omdat ex­

perimenten elkaar tegenspreken wat betreft de invloed van fotoperiode op 

bladontplooiing van beuk, is in elk van deze modellen eveneens het mogelijke 

effect van fotoperiode betrokken. 

Het bleek dat de datum van bladontplooiing van beuk het best beschreven kan 

worden met een model waarin een periode met koele temperatuur gevolgd 

wordt door een periode met warme temperatuur, volgens respectievelijk een 

driehoeks- en een logistische functie. Toevoeging van fotoperiode verslechter­

de het voorspellend vermogen van dit model. 

Voorjaarsvorstschade 

In de literatuur zijn twee studies gepresenteerd die het effect van een toe­

name in wintertemperatuur op de kans op voorjaarsvorstschade onderzoeken. 

De ene studie voorspelde echter een toename van deze kans, en de andere 

een afname. Het was onduidelijk of dit tegengestelde resultaat het gevolg was 

van het feit dat verschillende modellen waren gebruikt, of dat verschillende 

klimaatveranderingsscenario's waren gebruikt, of dat de boomsoorten op de 

lokaties verschillend reageren op warme winters. De parameterwaarden van 

beide modellen zijn geschat op grond van langjarige waarnemingen van blad­

ontplooiing aan Europese lariks, zachte berk, zomerlinde, beuk, winterlinde, 

Amerikaanse eik, zomereik, es, wintereik, fijnspar en grove den in Nederland 

en Duitsland. Vervolgens is het effect onderzocht van beide klimaat-
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veranderingsscenario's (een uniforme en een niet-uniforme temperatuur­

stijging) op de datum van bladontplooiing en op de kans op vorst rondom die 

datum. Om het belang van aanpassing aan het lokale klimaat te onderzoeken 

zijn hypothetische herkomstproeven geëvalueerd door middel van simulatie. 

De conclusie was dat voor deze soorten de kans op voorjaarsvorstschade zal 

afnemen zowel in Nederland als in Duitsland. De tegengestelde resultaten uit 

de literatuur konden toegeschreven worden aan verschillen tussen de her­

komsten. Zij zijn niet het gevolg van het feit dat verschillende modellen en 

klimaatveranderingsscenario's waren gebruikt. 

Plasticiteit 

Om de fenologische reactie te onderzoeken van individuele bomen op een kli­

maatverandering zijn bladontplooiing en bladval geanalyseerd van klonen die 

over een groot bereik van breedtegraden binnen Europa zijn aangeplant. Het 

betrof klonen van Europese lariks, zachte berk, winterlinde, grauwe abeel, 

zomereik, beuk en fijnspar. De mate waarin deze klonen reageren op ver­

schillen tussen en binnen deze locaties werd vergeleken met dezelfde ge­

gevens van genetisch ongelijke bomen van dezelfde soorten langs een deel 

van dit bereik. Van de genetisch ongelijke bomen werd verondersteld dat ze 

aangepast zijn aan het klimaat waar ze voorkomen. Dit is niet het geval voor 

de klonen omdat die van enkele locaties binnen Europa afkomstig zijn. 

Wat betreft de datum van bladontplooiing bleek dat de respons op tem­

peratuur van de klonen van dezelfde orde van grootte is als die van de 

genetisch ongelijke bomen. Opvallend was dat de kans op vorst rondom deze 

datum zowel bij de klonen als bij de genetisch verschillende bomen vrijwel 

gelijk is, en ook dat deze kans tamelijk constant is tussen de locaties, ondanks 

grote verschillen in temperatuur. Daarmee ondersteunen deze resultaten de 

veronderstelling dat de soorten een aanzienlijke plasticiteit bezitten wat 

betreft de datum van bladontplooiing, en dat de mate van verschuiving 
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begrensd wordt door vorst rondom genoemde datum. Toepassing van het 

eerder geselecteerde model maakte duidelijk dat de meeste variatie in de 

datum van bladontplooiing verklaard kan worden door de invloed van tempera­

tuur. Het model overschat echter de respons van de datum van bladontplooïng 

op temperatuur. Bovendien is het model te flexibel aangezien de uiteindelijke 

respons het gevolg kan zijn van geheel verschillende reacties van de perioden 

waarin de boom gevoelig is voor koele en warme temperatuur. 

Wat betreft de datum van bladval bleek de respons met temperatuur en de 

kans op vorst rondom deze datum veel minder duidelijk te zijn. Er werd geen 

duidelijk verband gevonden tussen de klonen en de genetisch ongelijke bomen. 

Bovendien kon er geen model gevonden worden dat de datum van bladval 

goed beschrijft, hoewel de datum van bladval van sommige soorten wel ver­

vroegd wordt door een temperatuurstijging. 

De gedachte dat sommige soorten uitlopen ofwel hun blad laten vallen als de 

daglengte een bepaalde duur bereikt, was voor de onderzochte klonen met 

zekerheid niet juist. 

Voorts lijken er drie typen van fenologische reactie te zijn op een stijging in 

temperatuur: (1) de vervroeging van de datum in bladval is groter dan de ver­

vroeging in bladontplooiing, dit is gevonden voor Europese lariks en zomereik, 

(2) de vervroeging van de datum van bladval en bladontplooiing is ongeveer 

even groot, dit is gevonden voor zachte berk en grauwe abeel, en (3) de ver­

vroeging van de datum van bladontplooiing is groter dan die van de datum van 

bladval, zoals gevonden voor beuk en winterlinde. Op grond van dergelijke 

verschillen kunnen de groei en de concurrentieverhouding tussen soorten 

veranderen als gevolg van klimaatverandering. 

Groei van ongemengde bossen 

Het belang van de deze verschillende fenologische typen voor het effect van 

klimaatverandering op groei van ongemengde bossen is onderzocht met 
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behulp van het bosgroeimodel FORGRO. De gebruikte klimaatveranderings­

scenario's waren een verdubbeling van de atmosferische C02-concentratie in 

combinatie met een temperatuurstijging van 0 tot 7°C. Om het belang van 

fotosynthese en allocatie van assimilaten in deze analyse te verhelderen, zijn 

versies van FORGRO met elkaar vergeleken waarin deze processen met een 

verschillende mate van detail beschreven werden. De fotosynthesebenadering 

van FORGRO werd vergeleken van die van Farquhar en Von Caemmerer zoals 

beschreven in PGEN (FORGRO-PGEN). Op dezelfde manier werd de allocatie­

benadering van FORGRO vergeleken met die van het transport-weerstand­

model zoals beschreven in het ITE-Edinburgh model (ITE-FORGRO). Een ge­

voeligheidsanalyse was uitgevoerd om vast te stellen of de respons van de 

jaarlijkse brutofotosynthese (Pga) op een klimaatveranderingsscenario afhangt 

van de waarde van de parameters van deze modellen, en om deze gevoelig­

heid te vergelijken met de verschillen die veroorzaakt worden door de feno-

logische typen. 

Het bleek dat de verschillen in de respons van Pga op de klimaatveranderings­

scenario's tussen de fenologische typen van ITE-FORGRO kleiner waren dan 

die van FORGRO. Deze verschillen zijn van eenzelfde orde van grootte volgens 

de twee fotosynthesemodellen. Volgens FORGRO-PGEN neemt de respons 

van Pg a op de 2 x [C02] scenario's toe met stijgende temperatuur, en compen­

seert daarmee de toename in ademhalingskosten. FORGRO en ITE-FORGRO 

vertoonden deze interactie tussen C02 en temperatuur niet. Dit had tot gevolg 

dat volgens deze modellen de respiratie hoger was dan de fotosynthese bij 

een temperatuurstijging van meer dan ongeveer 4°C. 

De gevoeligheidsanalyse toonde aan dat de modellen eveneens verschillen in 

de gevoeligheid van de respons van Pg a op de 2 x [C02 ] scenario's in combi­

natie met een stijging van de temperatuur met 2°C (C700/7"2), als de waarde 

van een parameter met plus en minus 25% gevarieerd werd. In FORGRO-

PGEN was de respons van Pg a met name afhankelijk van die parameters die de 

Michaelis-Menten-kinetiek van Rubisco beschrijven. De verschillen in Pga 
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waren groter door deze parameters over dit bereik te variëren, dan door de fe-

nologische typen. Voor zowel FORGRO als ITE-FORGRO was deze gevoelig­

heid gelijk of kleiner dan de verschillen tussen de fenologische typen voor het 

C700/T2 scenario. 

Groei van gemengde bossen 

Het belang van verschillen in zowel fenologie als het optreden van voorjaars­

nachtschade voor de groei van gemengde bossen is onderzocht op grond van 

dezelfde fenologische typen en klimaatveranderingsscenario's. Verder is 

onderzocht wat de gevolgen zijn van de onnauwkeurigheid van het feno­

logische model, aangezien het de respons van de datum van bladontplooïng 

op temperatuur overschat. Dit is gedaan met behulp van de bosgroeimodellen 

FORGRO en HYBRID. FORGRO is voor deze studie aangepast om groei in ge­

mengde opstanden te simuleren, met name van beheerde bossen waarin regel­

matig dunningen worden uitgevoerd. HYBRID benadrukt groei van natuurlijke 

bossen, waarin zich zaailingen vestigen en verder ontwikkelen in een 'gap' die 

ontstaat als er een volwassen bomen sterft. 

Beide modellen voorspellen dat de verschillen in zowel fenologie als het op­

treden van voorjaarsvorstschade, tot grotere verschillen in groei tussen de 

fenologische typen leiden, als ze in een gemengde opstand groeien, ten op­

zichte van een opstand die uit één soort bestaat. 

Het fenologische model voorspelt een sterkere vervroeging van bladontplooi­

ing met stijgende temperatuur dan de waargenomen respons. Dit leidt tot een 

sterkere toename van de groei, door de snellere toename van de duur van het 

groeiseizoen volgens het model. Deze onnauwkeurigheid van het model 

beïnvloedt echter de concurrentieverhoudingen tussen de fenologische typen 

in gemengde opstanden niet. 
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Listing of FORGRO 3.5 

* FORGRO 3.5 * 

* * 
* Based on: * 
* Mohren G.M.J, 1987. * 
* Simulation of forest growth applied to Douglas Fir stands in The * 
* Netherlands, thesis, 184 pp. * 
* Simulation model for forest growth of mixed species stands, based on * 
* Mohren, G.M.J., I.T.M Jorritsma, J.P.G.G.M. Florax, H.H. Bartelink * 
* J.R. van der Veen & K. Kramer (in prep.) * 
* FORGRO 3.0: A basic forest growth model. Model documentation and * 
* listing. * 
* Kropff, M.J. & Van Laar H.H, 1993. * 
* Modelling crop-weed interactions, IRRI, CAB International, 274 pp.* 

* * 
* The model is programmed, using the FORTRAN Simulation Environment * 
* for Crop Growth Models (FSE), developed by D.W.G. van Kraalingen * 
* Simulation Report CABO-TT, no 23, July 1991, 77 pp. * 
* Department of Theoretical Production Ecology and * 
* Centre for Agrobiological Research, wageningen. The Netherlands * 

* * 
* External files needed: TIMER.DAT * 
* SPEC<nr>.DAT * 
* SITE.DAT * 
* weather files * 
* RERUNS.DAT (only when reruns are needed) * 

* * 

PROGRAM MAIN 

INCLUDE 'FORGRO.CMN' 

* Common blocks for PGEN (Friend, 1993): 
INCLUDE 'inits.cmn1 

INCLUDE 'env.cmn' 
INCLUDE 'biol.cmn' 
INCLUDE 'outs.cmn' 
INCLUDE 'nits.cmn' 

* UTRMES flags any messages from the weather system and the filenames 
DATA WTRMES /.FALSE./ 

* Open output file, read number of rerun sets 
CALL FOPEN (IUNITO, FILEO, 'NEW', 'DEL') 
CALL COPFIL (IUNITT, FILET, IUNITO) 
CALL RDSETS (IUNITR, IUNITO, FILER, INSETS) 
IF (INSETS.GT.O) CALL COPFIL (IUNITR+1, FILER, IUNITO) 

Main loop and reruns begins here 

DO 10 11=0,INSETS 

IRUN = 11+1 
IYR = 1 
WRITE (*,'(A)') • ' 

Select data set 
CALL RDFROM (11, .TRUE.) 
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Initialization section 

I TASK = 1 

TERMNL = .FALSE. 

- Read variables from TIMER.DAT file 
CALL RDINIT (IUNITT , IUNITO, FILET) 
CALL RDSCHA ('WTRDIR', WTRDIR) 
CALL RDSCHA ('CNTR' , CNTR) 
CALL RDSREA ('STTIME', STTIME) 
CALL RDSREA ('FINTIM', FINTIM) 
CALL RDSREA ('PRDEL' , PRDEL) 
CALL RDSINT ('IYEAR' , IYEAR) 
CALL RDSINT ('ISTN1 , ISTN) 
CALL RDSINT CITABLE1, ITABLE) 
CALL RDSINT ('IDTMP' , IDTMP) 
CALL RDSREA C'FRGR' , FRGR) 
CALL RDSREA ('PGN' , PGN) 
CLOSE (IUNITT, STATUS='DELETE') 

NYRS = (FINTIM - STTIME + 1) / 365 

- Initialise TIMER and OUTDAT routines 
CALL TIMER (ITASK, STTIME, DELT, PRDEL, FINTIM, 

& IYEAR, TIME, DAY, I DAY, TERMNL, OUTPUT) 
CALL OUTDAT (ITASK, IUNITO, 'TIME', TIME) 

- Open weather file and read station information and return 
- weather data for start day of simulation 

CALL STINFO (1101 , WTRDIR, ' ', CNTR, ISTN, IYEAR, 
& ISTAT1, LONG , LAT, ELV, A1, B D 

CALL UEATHR (IDAY , ISTAT2, DRAD, TMN, TMX, VAPOUR, WIND, RAIN) 

CALL METEO 

WTRMES = UTRMES .OR. (ISTAT1.NE.O) .OR. (ISTAT2.NE.0) 

WTROK = (ISTAT1.EQ.0).AND.((ISTAT2.GE.0).OR.(ISTAT2.LT.-111111)) 
TERMNL = TERMNL.OR..NOT.WTROK 

CALL PLANT 

Read input data required for PGEN 
IF (PGN.EQ.1.) CALL INIPGN 

Dynamic simulation section 

20 IF (.NOT.TERMNL) THEN 

PRINT '(' ' + ",A,I3,A,I5,A,F7.2)', 
& ' Run:1, IRUN,1, Year:1, IYEAR 
& ,', Day:1, DAY 

Integration of rates section 

IF (ITASK.NE.1) THEN 
ITASK = 3 

CALL PLANT 

END IF 
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I TASK = 2 

Calculation of driving variables section 

- Open weather file 
CALL STINFO (1101 , WTRDIR, ' ', CNTR, ISTN, IYEAR, 

& ISTAT1, LONG , LAT, ELV, Al, BI) 

CALL WEATHR (IDAY , ISTAT2, DRAD, TMN, TMX, VAPOUR, WIND, RAIN) 

IF (OUTPUT.OR.TERMNL) THEN 
CALL OUTDAT (ITASK, IUNITO, 'TIME1, TIME) 
CALL OUTDAT (ITASK, IUNITO, 'DAY' , DAY) 

END IF 

CALL METEO 

WTRMES = WTRMES .OR. (ISTAT1.NE.O) .OR. (ISTAT2.NE.0) 
UTROK = (ISTAT1.EO.0).AND.((ISTAT2.GE.0).OR. 

& (ISTAT2.LT.-111111)) 
TERMNL = TERMNL.OR..NOT.WTROK 

Calculation of rates section 

CALL PLANT 

- Time update, check for FINTIM and OUTPUT 
CALL TIMER (ITASK, STTIME, DELT, PRDEL, FINTIM, 

& IYEAR, TIME, DAY, IDAY, TERMNL, OUTPUT) 

IF (IDAY.EQ.365) IYR = IYR + 1 

GOTO 20 
END IF 

Terminal section 

ITASK = 4 

Generate output file dependent on option from timer file 
IF (ITABLE.GE.4) CALL OUTDAT (ITABLE, 20, • ',0.) 

Delete temporary output file dependent on switch from timer file 
IF (IDTMP.EQ.1) CALL OUTDAT (99, 0, ' ', 0.) 

loop over number of reruns 
CONTINUE 

- Delete temporary rerun file if reruns were carried out 
IF (INSETS.GT.0) CLOSE (IUNITR, STATUS='DELETE') 
IF (WTRMES) THEN 

WRITE (*,'(A,/,A)') 
& ' There have been errors and/or warnings from', 
& ' the weather system, check file WEATHER.LOG' 

WRITE (IUNITO,"(A,/,A)') 
& ' There have been errors and/or warnings from', 
& ' the weather system, check file WEATHER.LOG' 

WRITE (*,'(A)') ' Press <RETURN>' 
READ (*,'(A)') DUMMY 

END IF 
STOP 
END 
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SUBROUTINE PLANT 

Purpose: This subroutine simulates potential growth of competing 
spec ies 

FORMAL PARAMETERS: (I=input, O=output, 
name type description 

Ocontrol. IN=init, T=time) 
units class 

14 

IUNITT 
IUNITP 
IUNITO 
FILET 
FILEP 
OUTPUT 

14 
14 
14 
C* 
C* 
L4 

* TERMNL L4 

C,I 
C,I 

C,I,0 

determines action of the subroutine, 
^initialization, 2=rate calculation, 
3=integration, 4=terminal 
unit number of timer data file 
unit number of plant data file 
unit number of output file 
file name for time variables 
file name for plant variables 
flag that indicates if output to file is 
required 
flag that indicates if simulation should 
terminate 
daynumber since 1 January d T 
integer variable for DAY d T 
time interval of integration d T 
latitude of weather station degrees I 
daily incoming total global radiation J/m2/d I 
daily minimum temperature degrees Celsius I 
daily maximum temperature degrees Celsius I 
average vapour pressure mbar I 
daily average wind speed m/s I 

FATAL ERROR CHECKS (execution terminated, message) 
DELT < 1.0 
Certain sequences of ITASK, see subroutine CHKTSK 

SUBROUTINES and FUNCTIONS called: CHKTSK, 0UTC0M, ERROR, RDINIT, 
RDAREA, RDSREA, COPFIL, ASTRO, TOTASS, TOTRAN, OUTARR, OUTDAT 
OUTPLT, LINT, INTGRL, RES 

FILE usage: - time variables file IUNITT, FILET 
- plant data file with unit IUNITP, FILEP 
- output file with unit IUNITO for output and warnings 

DAY 
I DAY 
DELT 
LAT 
AVRAD 
TMN 
TMX 
VAPOUR 
WIND 

R4 
14 
R4 
R4 
R4 
R4 
R4 
R4 
R4 

SUBROUTINE PLANT 

INCLUDE 'FORGRO.CMN' 

SAVE 

DATA ITOLD /4/.INITP /.FALSE./ 

CALL CHKTSK ('PLANT1, IUNITO, ITOLD, ITASK) 

Initialization 

IF (ITASK.EQ.1) THEN 

— Send title to output file 
CALL OUTCOM ('FORGRO: Competition model for trees') 

CALL RDINIT (IUNITT, IUNITO, FILET) 

— Initialization of run characteristics 
CALL RDSINT ('IRUNLA', IRUNLA) 
CALL RDSREA ('C02E' , C02E ) 
CALL RDSREA ('TMPSCN', TMPSCN) 
CALL RDAINT ('IPSPEC', IPSPEC, IMNS, INS ) 
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CALL RDAINT ('IPLTYP', IPLTYP, IMNS, INS2) 

IF (INS.NE.INS2) CALL ERROR('PLANT', 
& 'Inconsistent initialization in TIMER.DAT') 

LAITOT = 0. 

CALL ASTRO 

CALL PHENO 

CALL PHOTO 

CALL STAND 

DO 30 IS=1,INS 

FILEP = 'SPEC'//CHAR(IPSPEC(IS)+48)//'.DAT' 
CALL OUTCOH ('Spec (V/CHAR(IPSPEC(IS)+48)//')') 

IF (.NOT.INITP) THEN 
CALL COPFIL (IUNITP, FILEP, IUNITO) 
INITP = .TRUE. 

END IF 
CALL RDINIT (IUNITP, IUNITO, FILEP) 

31 

32 

', SPNAME(IS)) 

,WFLI 
,UBRI 
.USUI 
,WHWI 
,WCRI 
,UFRI 
,WLTI 

.IMNFLC 

) 
,IMNSUC 

) 
) 
) 
) 

IFLCL(IS)) 

ISUCL(IS)) 

Reading species-file: 
CALL RDSCHA ('SPNAME' 
State variables 
CALL RDAREACWFLI' 
CALL RDSREACUBRI' 
CALL RDAREACWSWI' 
CALL RDSREACWHWI' 
CALL RDSREACWCRI' 
CALL RDSREACUFRI' 
CALL RDSREACWLTI' 
Model parameters 

< SEE EXAMPLE OF SPEC < NR >.DAT FILE > 
Photosynthesis and respiration 
Light interception 
Death rates 
Reserve level 
Mineral content 
AFGEN functions 

CLOSE (IUNITP, STATUS='DELETE') 

Initializing states 
WFLT(IS) = 0. 
DO 31 I=1,IFLCL(IS) 

WFL(IS.I) = WFLKI) 
WFLT(IS) = WFLT(IS) 

CONTINUE 
WSWT(IS) = 0. 
DO 32 I=1,ISWCL(IS) 

uswus.n = wsui(i) 
USWT(IS) = WSWT(IS) 

CONTINUE 
WBR (IS) = UBRI 
WHU (IS) = UHUI 
WCR (IS) - UCRI 
WFR (IS) = WFRI 
WST (IS) = UHU (IS) + 
WSH (IS) = WFLT(IS) + 
WRT (IS) = WCR (IS) + 
WTT (IS) = USH (IS) + 
WLT (IS) = WLTI 

* NTR(IS)/NTRT 
+ WFL(IS.I) 

* NTR(IS)/NTRT 
+ WSWdS.I) 

* NTR(IS)/NTRT 
* NTR(IS)/NTRT 
* NTR(IS)/NTRT 
* NTR(IS)/NTRT 
WSWT(IS) 
UBR (IS) + WST(IS) 
UFR (IS) 
WRT (IS) + WRS(IS) 

WRSMN (IS) = CRSFL(IS)*WFLT (IS)+CRSBR(IS)*WBR(IS)+ 
CRSSW(IS)*WSWT (IS)+CRSHU(IS)*UHU(1S)+ 
CRSCR(IS)*WCR (IS)+CRSFR(IS)*WFR(IS) 

WRSMX (IS) = CRSNX(IS)*WRSMN(IS) 
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URS I = (WRSMN(IS) + URSMX(IS)) / 2. 
URS (IS) = WRSI 

* Initializing array parameters 
DO 35 1=1.IFLCLCIS) 

CDFLUS.I) = CDFL2U) 
35 CONTINUE 

30 CONTINUE 

CALL ANNTOT 

Rate calculation section 

ELSE IF (ITASK.EQ.2) THEN 

CALL ASTRO 

CALL PHENO 

CALL PHOTO 

CALL STAND 

CALL TOTASS 

RESET = 0. 

IF (IDAY.EQ.365) RESET = 1. 

DO 50 IS=1,INS 

IF (WRS(IS).LT.I.) GO TO 57 

- Maintenance respiration 

effective air and soil temperature 
TEFFA = Q10(IS)**((DATMP-REFTMP(IS))/10.) 
TEFFS = Q10(IS)**((TSOIL-REFTMP(IS))/10.) 

reduction on maintenance respiration when reserve level is belou minimum value 
RESRED = AMIN1 (1., AMAX1 (0., URS(IS)/URSMN(IS))) 

coefficients for maintenance respiration 
CMRFL (IS) = 0.25*NFL(IS) + 

& 0.08*(PFL(IS)+KFL(!S)+CFL(IS)+MFL(IS)) 
CMRBR (IS) = 0.25*NBR(IS) + 

& 0.08*(PBR(IS)+KBR(IS)+CBR(IS)+MBR(IS>) 
CMRSW (IS) = 0.25*(NSU(IS)+NHW(IS))/2. + 

& 0.08*(PSW(IS)+KSW(IS)+CSW(IS)+MSW(IS) + 
& PHW(IS)+KHW(IS)+CHW(IS)+HHW(IS))/2. 

CMRHW (IS) = 0. 
CMRCR (IS) = 0.25*NCR(IS) + 

& 0.08*(PCR(IS)+KCR(IS)+CCR(IS)+MCR(IS)) 
CMRFR (IS) = 0.25*NFR(IS) + 

& 0.08*(PFR(IS)+KFR(IS)+CFR(IS)+MFR(IS)) 

MRFL (IS) = TEFFA*CMRFL(IS)*UFLT(IS)*(2*.-DAYL)/24. 
MRBR (IS) = TEFFA*CMRBR(IS)*UBR (IS) 
MRSW (IS) = TEFFA*CMRSW(IS)*WSWT(IS) 
MRHW (IS) = TEFFA*CMRHW(IS)*WHW (IS) 
MRCR (IS) = TEFFS*CMRCR(IS)*WCR (IS) 
MRFR (IS) = TEFFS*CMRFR(IS)*WFR (IS) 

MRT (IS) = RESRED * 
& (MRFL(IS)+MRBR(IS)+MRSW(IS)+MRHW(IS>+MRCR(IS)+MRFR(IS))+ 
& 0.1 * GPHOT(IS) 

dark respiration: 
IF (LAIT(IS) .GT. 0.01) THEN 

DRESP (IS) = (44./30.)*RESRED*CMRFL(IS)+0.025*GPHOT(IS)) / 
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& (24.*LAIT( IS)) 
ELSE 

DRESP ( IS ) = 0. 
END IF 

Allocation 

FRT (IS) = LINT (FRTTB (1,IS),ILFRT (IS), DVS(IS)) 
FSH (IS) = 1. - FRT (IS) 
alocation to foliage dependent on maximal LAI for deciduous trees 
IF (IPLTYP(IS).Eu.l.) THEN 

FFL (IS) = AMINU1., 
AMAX1(0.,(LAIMAX(IS) - LAIT(IS)) / LAIHAX(IS))) 

allocation to foliage according to LINT-function for coniferous trees 
ELSE 

FFL (IS) = LINT (FFLTB (1,IS),ILFFL (IS), DVS(IS)) 
ENDIF 
FBR (IS) = LINT (FBRTB (1,IS),ILFBR (IS), DVS(IS)) 
FST (IS) = 1. - (FFL (IS) + FBR (IS)) 
FFR (IS) = LINT (FFRTB (1,IS),ILFFR (IS), DVS(IS)) 
FCR (IS) = 1. - FFR (IS) 
allocation to reserves dependent on maximal reserve pool for deciduous trees 
IF (IPLTYP(IS).EQ.I.) THEN 

FRS (IS) = AMINK1., 
AMAX1(0.,(URSMX(IS) - WRS(IS)) / WRSMX(IS))) 

ELSE 
allocation to reserves according to LINT-function for coniferous trees 

FRS (IS) = LINT (FRSTB (1,IS),ILFRS (IS), DVS(IS)) 
ENDIF 

Growth: rate of increase 

Energy for leaf flush from reserves 

PFLUSH = 0. 
IF ((WRS(IS).GT.0.).AND.(DVS(IS).GE.1.).AND.(DVS(IS).LE.1.25)) THEN 

PFLUSH = FFL(IS) * CFLUSH(IS) * WRS(IS) 
ENDIF 

If Net Supply of Assimilates (NSA) is negative: supply from reserves 
PMAINT = 0. 
NSA = GPHOT(IS) - MRT(IS) 
IF ((WRS(IS).GT.0.).AND.(NSA.LT.0.)> PMAINT = -NSA 

Gross Total Dry Matter 
GTDM (IS) = AMAXKO., (GPHOT(IS)-MRT(IS)+PMAINT) / ASRQ(IS)) 

Reserve level considered as dry matter 
GRS (IS) = FRS (IS) * GTDM(IS) -

(PFLUSH + PMAINT) / ASRQ(IS) 

GTDM (IS) = O.-FRS(IS)) * GTDM(IS) 
GSH (IS) = FSH (IS) * GTDM(IS) 
GFL (IS) = FFL (IS) * GSH (IS) + PFLUSH / ASRQ(IS) 
GBR (IS) = FBR (IS) * GSH (IS) 
GST (IS) = FST (IS) * GSH (IS) 
GSW (IS) = GST (IS) 
GHW (IS) = CLSW(IS) * WSW (IS,ISWCL(IS)) / 365. 
GRT (IS) = FRT (IS) * GTDM(IS) 
GCR (IS) = FCR (IS) * GRT (IS) 
GFR (IS) = FFR (IS) * GRT (IS) 

GLT (IS) = DSH (IS) + DRT (IS) + DRS(IS) + 
RESET*WFL(IS,IFLCL(IS)) 

Death: rate of decrease (Decomposition in case of litter) 

Coefficient of Leaf Fall in case of deciduous trees 
CLF = 0. 
IF ((IPLTYP(IS).EQ.1).AND.(DVS(IS).GE.2.)) CLF = CLFFL(IS) 
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DFLT(IS) = 0. 
DO 51 I = 1, IFLCLUS) 

DFLdS.I) = (CLF + CDFL(IS,I>) * WFL(IS,I) / 365. 
DFLT(IS) = DFLT(IS) + DFUIS.I) 

51 CONTINUE 
DSWT(IS) = 0. 
DO 52 I = 1, ISWCL(IS) 

DSUdS.I) = CDSW(IS) * WSWdS.I) / 365. 
DSUT(IS) = DSUT(IS) + DSU(IS,I) 

52 CONTINUE 

DBR (IS) = CDBR (IS) 
DHU (IS) = CDHW (IS) 
OCR (IS) = CDCR (IS) 
DFR (IS) = CDFR (IS) 
DST (IS) = DSWT (IS) 
DSH (IS) = DFLT (IS) 
DRT (IS) = DFR (IS) 
DLT (IS) = CDLT (IS) 
DRS (IS) = CRSFL(IS) 

5 CRSSW(IS) 
6 CRSCR(IS) 

* Thinning: fraction removed by management, 
TFLT(IS) = 0. 
DO 53 I = 1 , IFLCLUS) 

TFLdS.I) = FTHIN(IS) * WFL(IS,I) 
TFLT(IS) = TFLT(IS) + TFLdS.I) 

53 CONTINUE 

TSWT(IS) = 0. 
DO 54 I = 1,ISWCL(IS) 

TSWdS.I) = FTHIN(IS) * WSWdS.I) 
TSWT(IS) = TSWT(IS) + TSWdS.I) 

54 CONTINUE 

WBR (IS) / 365. 
WHW (IS) / 365. 
WCR (IS) / 365. 
WFR (IS) / 365. 
DHU (IS) 
DBR (IS) + DSTdS) 
DCR (IS) 
WLT (IS) 
DFLT(IS) + CRSBR(IS) 
DSWT(IS) + CRSHU(IS) 
DCR (IS) + CRSFR(IS) 

* DBR(IS) 
* DHW(IS) 
* DFR(IS) 

& 

TBR 
THU 
TCR 
TFR 
TRS 
TLT 

(IS) = FTHIN(IS) 
(IS) = FTHIN(IS) 
(IS) = FTHIN(IS) 
(IS) = FTHIN(IS) 
(IS) = FTHIN(IS) 
(IS) = TFLT(IS) 

TCR (IS) 

• WBR(IS) 
* UHU(IS) 
* UCR(IS) 
* WFR(IS) 
* WRS(IS) 
+ TBR(IS) 
+ TFR(IS) 

TSWT(IS) + THU(IS) + 
TRS (IS) 

change: differential equations 
* foliage 

IF (IPLTYP(IS).EQ.2) THEN ! Coniferous 
RWFLdS.1) = GFL(IS) - DFLdS.D 

& - RESET*WFL(IS,1) - TFLdS.1) 
DO 55 I=2,IFLCL(IS) 

RWFL ( I S , I ) = -DFLdS. I ) 
& + RESET*(WFL(IS,I-1)-WFL(IS,I)) - TFL( IS, I ) 

55 CONTINUE 
ELSE 

RUFL(IS,1) = GFL(IS) - DFL(IS,1) - TFL(IS,1) ! Deciduous 
END IF 

* sapuood: first, intermediate and last sapuoodclass 
RWSWdS.1) = GSU(IS) - DSW(IS,1) - RESET*WSW(IS, 1 ) - TSW(IS,1) 
DO 56 I=2,ISUCL(IS)-1 

RUSU(IS,I) = - DSW(IS,I) 
& + RESET*(WSW(IS,I-1)-(WSW(IS,D) - TSW(IS,I) 

56 CONTINUE 
RUSU(IS,ISUCL(IS)) = - DSU(IS,ISUCL(IS)) - GHU(IS) 

& + RESET*WSW(IS,ISWCL(IS)-D- TSWdS, ISUCLdS) 

* Differential equations 
RUHU (IS) = GHU(IS) - DHU(IS) - THU(IS) 
RUBR (IS) = GBR(IS) - DBR(IS) - TBR(IS) 
RWCR (IS) = GCR(IS) - DCR(IS) - TCR(IS) 
RWFR (IS) = GFR(IS) - DFR(IS) - TFRdS) 
RWRS (IS) = GRS(IS) - DRS(IS) - TRS(IS) 
RWLT (IS) = GLT(IS) - DLT(IS) + TLTdS) 
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* Set rates of change at zero if reserve pool approaches zero 
57 IF (WRS(IS).LT.I.) THEN 
* foliage 

DO 58 I=1,IFLCL(IS) 
RWFL (IS,I) = 0. 

58 CONTINUE 
* sapwood 

DO 59 I=1,ISWCL(IS> 
RWSW(IS,I) = 0. 

59 CONTINUE 
RUHU (IS) = 0. 
RUBR (IS) = 0. 
RUCR (IS) = D. 
RWFR (IS) = 0. 
RWRS (IS) = 0. 
RWLT (IS) = 0. 

END IF 

50 CONTINUE 

CALL ANNTOT 

* Output of states and rates only if it is required 

IF (OUTPUT .OR. TERMNL) THEN 

< OUTPUT POSSIBLE OF ALL VARIABLES, E.G.: > 
* photosynthesis 

CALL OUTARRCGPHOT' ,GPHOT ,1, INS) 
CALL OUTDAT(2,0,'LAITOT', LAITOT) 

* maintenance 
* biomass 
* growth rates 
* death rates 
* thinning 
* allocation 
* phenology 
* light 
* meteo 
* stand characteristics 
* annual totals 

* Integration section 

ELSE IF (ITASK.EQ.3) THEN 

CALL ASTRO 

CALL PHENO 

CALL STAND 

LAITOT = 0. 
DO 60 IS=1,INS 

WFLT(IS) = 0. 
DO 61 1=1,IFLCLCIS) 

WFLdS.l) = INTGRL(UFL(IS,I), RWFLdS, I ),DELT) 
IF (TMN.LE.SHRD(IS)) THEN 

WFL(IS,I) = 0. 
END I F 
WFLT(IS) = WFLT(IS) + WFLdS.l) 

61 CONTINUE 
WSWT(IS) = 0. 
DO 62 I=1,ISWCL(IS) 

WSWUS.I) = INTGRL(WSH(IS,I), RUSUdS.I), DELT) 
WSUT(IS) = WSWT(IS) + WSWdS.I) 

62 CONTINUE 



WBR 
UHU 
WCR 
UFR 
URS 
ULT 

(IS) 
(IS) 
(IS) 
(IS) 
(IS) 
(IS) 
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INTGRUUBR (IS), RUBR (IS),DELT> 
INTGRLCUHW (IS), RUHU (IS).DELT) 
INTGRLCUCR (IS), RUCR (IS),DELT) 
INTGRUUFR (IS), RUFR (IS).DELT) 
INTGRL(URS (IS), RURS (IS),DELT) 

(IS) = INTGRUULT (IS), RULT (IS),DELT) 

UST (IS) = UHU (IS)+USUT(IS) 
USH (IS) = UFLT(IS)+UBR (IS)+UST (IS) 
URT (IS) = UCR (IS)+UFR (IS) 
UTT (IS) = USH (IS)+URT (IS)+WRS (IS) 

URSMN (IS) = CRSFL(IS)*UFLT(IS)+CRSBR(IS)*UBR(IS)+ 
& CRSSU(IS)*WSUT(IS)+CRSHU(IS)*UHU(IS)+ 
& CRSCR(IS)*UCR (IS)+CRSFR(IS)*UFR(IS) 

WRSMX (IS) - CRSNX(IS)*URSMN(IS) 

LAIT(IS) = 0. 
DO 63 I=1,IFLCL(IS) 

LAI(IS,I> = SLA (IS) * UFL(IS,I) / 10000. 
LAIT(IS) = LAIT(IS) + LAKIS.I) 

63 CONTINUE 
LAIT(IS) = LAIT(IS) / CANCLO(IS) 
LAITOT = LAITOT + LAIT(IS) 

60 CONTINUE 

CALL ANNTOT 

* Terminal section 

*=======±======================================================== 

ELSE IF (ITASK.EQ.4) THEN 

CALL ANNTOT 

DO 70 IS = 1,INS 

URITE (IUNITO, '(AIO.ZFS.O.SFIS^)1) 
& SPNAME(IS),C02E,TMPSCN,AAGPCN(IS),AAMRT(IS),NPP 

URITE (* .'(AlO.ZFS.O.SFIS.Z)1) 
& SPNAME(IS),C02E,TMPSCN,AAGPCN(IS),AAMRT(IS),NPP 

70 CONTINUE 

END IF 

I TOLD = I TASK 

CLOSE (IUNITD, STATUS='DELETE') 

RETURN 
END 
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* * 
* Subroutine ANNTOT * 

* * 
* Purpose : this subroutine calculates annual totals * 

* * 

SUBROUTINE ANNTOT 

INCLUDE 'FORGRO.CMN' 

SAVE 

IF (ITASK.EQ.1) THEN 

DO 10 IS = 1, 
AGPHOT(IS) 
AMRT (IS) 
AGTDM (IS) 
AARCN (IS) 
AAGPCN(IS) 
AAMRT (IS) 
AAGTDM(IS) 
AAARCN(IS) 

CONTINUE 

INS 
= 0. 
= 0. 
= 0. 
= 0. 
= 0. 
= 0. 
= 0. 
= 0. 

10 

ELSE IF (ITASK.EO.2) THEN 

* reset or update annual variables 
IF (IDAY .EO. 365) THEN 

DO 20 IS = 1, INS 
AAGPCN(IS) = AAGPCN(IS) + AGPHOT(IS) 
AAMRT (IS) = AAMRT (IS) + AMRT (IS) 
AAGTDM(IS) = AAGTDM(IS) + AGTDM (IS) 
AAARCN(IS) = AAARCN(IS) + AARCN (IS) 

AGPHOT(IS) = 0. 
AMRT (IS) = 0. 
AGTDM (IS) = 0. 
AARCN (IS) = 0. 

20 CONTINUE 

ELSE IF (ITASK.EQ.3) THEN 

DO 30 IS = 1, INS 
* Photosynthesis and canopy assimilation: 

AGPHOT(IS) = INTGRL(AGPHOTUS), GPHOT (IS)/1000., DELT) 
AMRT (IS) = INTGRL(AMRT (IS), MRT (IS)/1000., DELT) 
AGTDM (IS) = INTGRLUGTDM (IS), GTDM (ISJ/1000., DELT) 
AARCN (IS) = INTGRL(AARCN (IS), DARCN (IS)/1.E+6, DELT) 

30 CONTINUE 

ELSE IF (ITASK.EQ.4) THEN 

DO 40 IS = 1,INS 
AAGPCN(IS) = AAGPCN(IS) / REAL(NYRS) 
AAMRT (IS) = AAMRT (IS) / REAL(NYRS) 
AAGTDM(IS) = AAGTDM(IS) / REAL(NYRS) 
AAARCN(IS) = AAARCN(IS) / REAL(NYRS) 

40 CONTINUE 

RETURN 
END 
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* SUBROUTINE ASSIM 
* 
* Purpose: This subroutine (for two or more species in competition) 
* performs a Gaussian integration over the canopy 
* for each species, and computes the leaf area index for each 
* layer (LAIC), and the leaf area density (LD) and local 
* assimilation rate at each layer. The integrated variables 
* are FGRCN and ARCN. 
* 
* FORMAL PARAMETERS: <I=inputf O=outputf C=control, IN=init, T=time) 
* name type description units class 

KD F 
HGHT 
CNBASE 
LAI 
SINB 
RADDIR 
RADDIF 
FGRCN 
ARCN 

RA 
RA 
RA 
R4 
RA 
RA 
R4 
RA 
R4 

-
m 
m 

ha/ha 
m2/m2 
J/m/s 
J/m/s 
kg/ha/h 
J/m2/s 

I 
I 
I 
I 
I 
I 
I 
0 
0 

INS 14 number of species - I 
AMAX R4 actual maximum C02-assimilation rate kg/ha/h I 

for individual leaves 
EFF R4 initial light use efficiency for kg/ha/h/J m2 s IN 

I eaves 
extinction coefficient for leaves 
total height of a species in the canopy 
crown base of a species in the canopy 
leaf area index 
sine of solar elevation 
incoming global direct radiation 
incoming global diffuse radiation 
canopy gross assimilation rate 
absorbed radiation by canopy of a species 

* 
* FATAL ERROR CHECKS (execution terminated, message): none 

* 
* SUBROUTINES and FUNCTIONS called: LEAFPA or LEAFRE 

* 
* FILE usage: none 

SUBROUTINE ASSIM 

INCLUDE 'FORGRO.CMN' 

Common blocks for PGEN (Friend, 1993): 

INCLUDE 'inits.cmn' 
INCLUDE 'env.cmn' 
INCLUDE 'biol.cmn1 

INCLUDE 'outs.cmn' 
INCLUDE 'nits.cmn' 

SAVE 

DATA XGAUS /O.1127, 0.5000, 0.8873/ 
DATA UGAUS /0.2778, 0.4444, 0.2778/ 
DATA XGAUS1 /0.0469101, 0.2307534, 0.5000000, 0.7692465, 0.9530899/ 
DATA WGAUS1 /0.1184635, 0.2393144, 0.2844444, 0.2393144, 0.1184635/ 

C02 in the air (mol m - 3 ) , required for PGEN 
CCAIR = C02E*PATM*1.E-6 / (8.3144*(DATMP+273.15)) 

DO 10 IS = 1,INS 

Reflection coefficients of canopy for horizontal (REFH) and 
spherical (REFS) leaves 

REFH = (1.-SQRT(1.-SCV(IS)))/(1.+SQRT(1.-SCV(IS))) 
REFS = REFH*2./(1. + 1.6*SINB) 
KDRDR (IS) = (0.5/SINB)*KDF(IS)/(0.8*SQRT(1.-SCV(IS))) 
KDRT (IS) = KDRDR(IS)*SQRT(1.-SCV(IS)) 
FGRCN (IS) = 0. 
ARCN (IS) = 0. 

CONTINUE 
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* Height within canopy is selected (H, m), leaf area density at height H (LD, m2/m3). 
Exponents for: diffuse radiation (EXDF), direct component of direct radiation (EXDRDR), and 
total direct radiation (EXDRT), are calculated in subroutine LEAFPA or LEAFRE 
DO 100 IS = 1,INS 

IF <LAIT(IS).LT.0.01) GOTO 100 

Gaussian integration 
DO 50 IG1 = 1.INGP1 

H = XGAUS1(IG1)*(HGHT(IS)-CNBASE(IS)) + CNBASE(IS) 

rectangular (LEAFRE) or parabolic (LEAFPA) leaf area distribution over the canopy 
CALL LEAFRE 

Absorbed radiation (J/m2 leaf/s) per species at specified 
height in the canopy: diffuse (ARDF), total direct (ARDRT, 
direct component of direct radiation (ARDRDR) 
ARDF (IS) = (1.-REFH) * PARDIF*KDF (IS) * EXP(-EXDF) 
ARDRT (IS) = (1.-REFS) * PARDIR*KDRT (IS) * EXP(-EXDRT) 
ARDRDR(IS) = O.-SCV(IS)) * PARDIR*KDRDR(IS) * EXP(-EXDRDR) 

Rate of gross photosynthesis by shaded leaves (kg C02/ha leaf/h) 
ARSHD (IS) = ARDF(IS)+ARDRT(IS)-ARDRDR(IS) 

IF (FRGR.EQ.1.) THEN 
IF (AMAX(IS).GT.O.) THEN 

FGRSHD(IS) = AMAX(IS)*(1.-EXP(-ARSHD(IS)*EFF(IS)/AMAX(IS))) 
ELSE 

FGRSHD(IS) = 0. 
ENDIF 

ENDIF 
IF (PGN.EQ.1.) THEN 

IF (ARSHD(IS).GT.2.) THEN 
CALL PGEN(CCAIR,COAIR,RELHUM,WIND,PARDIF*2.,PATM, 

; DATMP+273.15,PSIFOL,ARSHD,ACHL) 
conversion /unol C02 m-2 s-1 to kg C02 ha-1 h-1 

FGRSHD(IS) = AMAXK0., ACHL * 1.584) 
ELSE 

FGRSHD(IS) = 0. 
ENDIF 

ENDIF 

Rate of gross photosynthesis by sunlit leaves (kg C02/ha leaf/h) 
Direct radiation absorbed by sunlit leaves perpendicular to the 
direct beam (ARPP); instantaneous assimilation of sunlit 
leaf area (FGRSUN) integrated over the sine of incidence of 
direct light, assuming a spherical leaf angle distribution 
ARPP = (1.-SCV(IS))*PARDIR/SINB 
FGRSUN(IS) = 0. 
ARSUN (IS) = 0. 
VISSUN = 0. 

DO 30 IG = 1.INGP 
VISSUN = ARSHD (IS) + ARPP * XGAUS(IG) 

IF (FRGR.EQ.1.) THEN 
IF (AMAX(IS).GT.O.) THEN 

FGRS = AMAX(IS)*(1.-EXP(-VISSUN*EFF(IS)/AMAX(IS))) 
ELSE 

FGRS = 0. 
ENDIF 

ENDIF 
IF (PGN.EQ.1.) THEN 

IF (VISSUN.GT.2.) THEN 
CALL PGEN(CCAIR,COAIR,RELHUM,WIND,PARDIF*2.,PATM, 

DATMP+273.15,PSIFOL,VISSUN,ACHL) 
conversion iwnl C02 m-2 s-1 to kg C02 ha-1 h-1 
FGRS = AMAXK0., ACHL * 1.584) 

ELSE 
FGRS = 0. 

ENDIF 
ENDIF 
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FGRSUN(IS) = FGRSUN(IS) + FGRS * WGAUS(IG) 
ARSUN (IS) = ARSUN (IS) + VISSUN * WGAUS(IG) 

30 CONTINUE 

* Fraction sunlit leaf area CFSLLA) 
* gross assimilation rate of current layer (FGRL, kg C02/ha leaf/h) 
* total gross canopy assimilation rate (FGRCN, kg C02/ha leaf/h) 

FSLLA = EXP(-EXDF) 
FGRL (IS) = (FSLLA*FGRSUN(IS)+(1.-FSLLA)*FGRSHD(IS))*LD(IS) 

C Gaussian integration 
FGRCN (IS) = FGRCN(IS) + FGRL(IS) * WGAUSKIG1) * (HGHT(IS)-CNBASE(IS)) 

* absorbed radiation of current layer (ARL, J/m2 leaf/s), 
* total absorbed radiation by crown (ARCN, J/m2 leaf/s) 

ARL (IS) = (FSLLA*ARSUN(IS)+(1.-FSLLA)*ARSHD(IS))*LD(IS) 
C Gaussian integration 

ARCN (IS) = ARCN(IS) + ARL(IS) * WGAUSKIG1) * (HGHT(IS)-CNBASE(IS)) 

50 

100 

CONTINUE 

CONTINUE 

RETURN 
END 
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* * 
* SUBROUTINE ASTRO * 

* * 
* Purpose: This subroutine computes daylength (DAYL) * 

* * 
* FORMAL PARAMETERS: (I=input, O=output, C=control, IN=init, T=time> * 
* name type description units class * 
* DAY R4 daynumber since 1 January - T,I 
* LAT R4 latitude of weather station degrees I 
* DAYL R4 daylength h/d T,0 
* DAYLP R4 photoperiodic daylength h/d T,0 
* SINLD R4 intermediate variable in calculating - I 
* daylength 
* COSLD R4 intermediate variable in calculating - I 
* daylength 
* 
* FATAL ERROR CHECKS (execution terminated, message): none 

* 
* SUBROUTINES and FUNCTIONS called: none 

* 
* FILE usage: none 

SUBROUTINE ASTRO 

INCLUDE 'FORGRO.CMN' 

SAVE 

Declination of the sun as function of daynumber (DAY) 
DEC = -ASIN(SIN(23.45*RAD)*COS(2.*PI*(DAY+10.)/365.)) 

SINLD, COSLD and AOB are intermediate variables 
SINLD = SIN(RAD*LAT)*SIN(DEC) 
COSLD = COS(RAD*LAT)*COS(DEC) 
AOB = SINLD/COSLD 

Daylength (DAYL) 
DAYL = 12.0*(1.+2.*ASIN(AOB)/PI) 

RETURN 
END 
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SUBROUTINE LEAFPA 

Purpose: This subroutine assumes a parabolic leaf area 
distribution; height (HGHT), a point H and total leaf area 
index CLAIT) are input 
the leaf area density (LD) at point H and 
exponents for diffuse, direct component of direct radiation 
and total direct radiation are calculated 

FORMAL PARAMETERS: (I=input, 0=output, Ocontrol, IN=init, T=time) 
name type description units class 

0 

* INS 14 number of species - I 
* H R4 selected height m I 
* HGHT R4 total height of a species in the canopy m I 
* CNBASE R4 crown base of a species in the canopy m I 
* LAIT R4 total leaf area index ha/ha I 
* KDF R4 extinction coefficient for diffuse 
* radiation - I 
* KDRDR R4 extinction coefficient for direct 
* component of direct radiation - I 
* KDRT R4 extinction coefficient for total 
* direct radiation - I 
* LD R4 leaf area density at point H m2/m3 0 
* EXDF R4 exponent for diffuse radiation - 0 
* EXDRDR R4 exponent for direct component of direct 
* radiation - 0 
* EXDRT R4 exponent for total direct radiation 

* FILE usage: none 

* 

SUBROUTINE LEAFPA 

INCLUDE 'FORGRO.CMN' 

SAVE 

INTEGER !S2 

EXDF = 0. 
EXDRDR = 0. 
EXDRT = 0. 

DO 20 IS2=1,INS 
IF CH.LE.HGHTCIS2)) THEN 

IF (H.GE.CNBASEUS2)) THEN 
LAICUS2) = LAITOS2) - ((LAITOS2) / HGHT(IS2)**3) 

& H**2 * (3*HGHT(IS2) - 2*H)) 
LD (IS2) = (6.*LAIT(IS2)/HGHT(IS2)**3) * H * 

& (HGHTUS2) - H) 
ELSE 

LAICUS2) = LAITUS2) 
LD (IS2) = 0. 

END I F 
ELSE 

LAIC (IS2) = 0. 
LD (IS2) = 0. 

END IF 

* Weighted exponents for light distribution functions 
EXDF = EXDF + KDF (IS2) * LAIC (IS2) 
EXDRDR = EXDRDR + KDRDR (IS2) * LAIC (IS2) 
EXDRT = EXDRT + KDRT (IS2) * LAIC (IS2) 

20 CONTINUE 

RETURN 
END 
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* SUBROUTINE LEAFRE * 

* * 
* Purpose: This subroutine assumes a rectangular leaf area * 
* distribution; height (HGHT), a point H and total leaf area * 
* index (LAIT) are input * 
* the leaf area density (LD) at point H and * 
* exponents for diffuse, direct component of direct radiation * 
* and total direct radiation are calculated * 

FORMAL PARAMETERS: (I=input, 
name type description 

O=output, C=control, IN=init, T=ti 
units 

INS 
H 
HGHT 
CNBASE 
LAIT 
KD F 

14 
R4 
R4 
R4 
R4 
R4 

* KDRDR R4 

R4 

LD 
EXDF 
EXDRDR 

R4 
R4 
R4 

number of species 
selected height 
total height of a species in the canopy 
crown base of a species in the canopy 
total leaf area index 
extinction coefficient for diffuse 
radiation 
extinction coefficient for direct 
component of direct radiation 
extinction coefficient for total 
direct radiation 
leaf area density at point H 
exponent for diffuse radiation 
exponent for direct component of direct 
radiation 
exponent for total direct radiation 

m 
ha/ha 

m2/m3 

me) * 
class * 

* 
I * 
I * 
I * 
I * 
I * 

FILE usage: none 

SUBROUTINE LEAFRE 

INCLUDE 'FORGRO.CMN' 

SAVE 

INTEGER IS2 

EXDF = 0. 
EXDRDR = 0. 
EXDRT = 0. 

DO 20 IS2=1,INS 

IF (H.LE.HGHTUS2)) THEN 
IF (H.GE.CNBASEUS2)) THEN 

LAIC (IS2) = LAITCIS2) * 
LD (IS2) = LAITUS2) / 

ELSE 
LAIC (IS2) = LAITCIS2) 

(HGHT(IS2)-H) / (HGHT(IS2)-CNBASE(IS2)) 
(HGHT(IS2)-CNBASE(IS2)) 

LD 
END I F 

ELSE 
LAIC 
LD 

END I F 

(IS2) 

(IS2) = 
(IS2) = 

= 0. 

0. 
0. 

Weighted exponents for light distribution functions 
EXDF = EXDF + KDF (IS2) * LAIC (IS2) 
EXDRDR = EXDRDR + KDRDR (IS2) * LAIC (IS2) 
EXDRT = EXDRT + KDRT (IS2) * LAIC (IS2) 

20 CONTINUE 

RETURN 
END 
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Subroutine METEO 

Purpose : calculates meteorological conditions 

SUBROUTINE METEO 

INCLUDE 'FORGRO.CMN' 

SAVE 

Total daily radiation from kJ/m2/d to J/m2/d 
AVRAD = DRAD * 1000. 

Daily temperature and daytime temperature (Celsius): 
TMX = TMX + TMPSCN 
TMN = TMN + TMPSCN 
DATMP = (TMX + TMN) / 2.0 
DDTMP = TMX - 0.29 * (TMX - TMN) 

Soil temperature, as long-term running average of average 
air temperature: 
TSOIL = TSUM/60. 
DTSUM = DATMP - TSOIL 
TSUM = INTGRL (TSUM ,DTSUM ,DELT) 

Vapour pressure from kPa to mbar: 
VAPOUR = VAPOUR * 10. 

Deficit during the day (mbar): 
SVP = 6.11 * EXP(17.4*DDTMP/(DDTMP+239.)) 
VPD = AMAX1(0.,SVP - VAPOUR) 
RELHUM = AMINK1., AMAXK0., VAPOUR / SVP)) 

RETURN 
END 
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* SUBROUTINE PHENO * 

* * 
* Purpose: This subroutine calculates the development stage of * 
* coniferous and deciduous tree species. * 

* * 
* FORMAL PARAMETERS: (l=input, O=output, C=control, IN=init, T=time) * 
* name type description units class * 

IUNITT 
IUNITP 
IUNITO 
FILET 
FILEP 
OUTPUT 

14 
14 
14 
C* 
C* 
L4 

ITASK 14 determines action of the subroutine, 
1=initialization, 2=rate calculation, 
3=integration, 4=terminal 
unit number of timer data file 
unit number of plant data file 
unit number of output file 
file name for time variables 
file name for plant variables 
flag that indicates if output to file is 

* required 
* TERMNL L4 flag that indicates if simulation should 
* terminate 

daynumber since 1 January 
time interval of integration 
average day temperature 
daylength 
development stage 
state of frost hardiness 

SUBROUTINES and FUNCTIONS called: 

FILE usage: - time variables file IUNITT, FILET 
- plant data file with unit IUNITP, FILEP 
- output file with unit IUNITO for output and warnings 

SUBROUTINE PHENO 

INCLUDE 'FORGRO.CMN' 

SAVE 

CALL CHKTSK ('PHENO1, IUNITO, ITOLD, ITASK) 

I DAY 
DELT 
DATMP 
DAYL 
DVS 
SHRD 

14 
R4 
R4 
R4 
R4 
R4 

-
-
-
-
-
-
-

d 

-
°c 
h/d 

-
°C 

c,i 
C,I 
c,i 
C,I 
c,i 
c,i 

c,i. 

T 
T,l 
I 
I 
0 
0 

Initialization 

IF (ITASK.EQ.1) THEN 

--- Initialization of run characteristics 
CALL RDINIT (IUNITT, IUNITO, FILET) 
CALL RDAINT ('IPSPEC', IPSPEC, IMNS, INS) 
CALL RDAINT ('IPLTYP', IPLTYP, IMNS, INS) 
CLOSE (IUNITT, STATUS='DELETE') 

DAYLMX = 0. 

— Initialization of species characeristics 
DO 30 IS=1,INS 

FILEP = ,SPECl//CHAR(IPSPEC(IS)+48)//'.DATl 

CALL 0UTC0M ('Spec (V/CHAR(IPSPEC(IS)+48)//')') 

IF (.NOT.INITP) THEN 
CALL COPFIL (IUNITP, FILEP, IUNITO) 
INITP = .TRUE. 

END IF 
CALL RDINIT (IUNITP, IUNITO, FILEP) 
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* States 
CALL RDSREACSCHLI' ,SCHLI) 
CALL RDSREACSFRCI ' ,SFRCI) 
CALL RDSREA('TMPSMI',TMPSMI) 
CALL RDSREACSHRDI' ,SHRDI) 

* Parameters 

< SEE EXAMPLE OF SPEC<NR>.DAT FILE > 
* Phenology 
* Frost hardiness 

* AFGEN functions 
CALL RDAREACDVSTB' ,DVSTB (1, IS), IMNP, ILDVS (IS)) 

CLOSE (IUNITP, STATUS='DELETE') 

* Initializing states 
SCHL (IS) = SCHLI 
SFRC (IS) = SFRCI 
TMPSUM(IS) = TMPSMI 
SFRC (IS) = SFRCI 
SHRD (IS) = SHRDI 
DVS (IS) = 0. 

* Initializing 
DO 25 I=1,INOBS(IS) 

BDBRSTUS.I) = BDBST2U) 
FORGRNUS.I) = FRGRN2U) 
FOLFLL(IS,I) = FOLFL2(I> 

25 CONTINUE 

30 CONTINUE 

Rate calculation section 

ELSE IF (ITASK.EQ.2) THEN 

Reset state of forcing and chilling 
RSTFRC = 0. 
IF (IDAY.E0.365) RSTFRC = 1. 
RSTCHL = 0. 
IF (IDAY.EQ.304) RSTCHL = 1. 

NL = 24. - DAYL 

DO 40 IS=1,INS 

IF (SCHL(IS) .LE. SCHLBB(IS)) THEN 
RFRC(IS) = 0. - RSTFRC * SFRC(IS) 
chilling 
IF ((DATMP.GT.TMINCH(IS)).AND.(DATMP.LT.TMAXCH(IS))) THEN 

IF (DATMP.LT.TOPTCH(IS)) THEN 
RCHL(IS) = ((DATMP-TMINCH(IS)) / 

& (TOPTCH(IS)-TMINCH(IS))) - RSTCHL*SCHL(IS) 
ELSE 

RCHL(IS) = ((DATMP-TMAXCH(IS)) / 
& (TOPTCH(IS)-TMAXCH(IS))) - RSTCHL*SCHL(IS) 

END I F 
ELSE 

RCHL(IS) = 0. - RSTCHL*SCHL(IS) 
END IF 

ELSE 
RCHL(IS) = 0. - RSTCHL * SCHL(IS) 
forcing 
IF (DATMP .LE. 0.) THEN 

RFRC(IS) = 0. - RSTFRC*SFRC(IS) 
ELSE 

RFRC(IS) = CIFRC(IS) / 
& (1.+EXP(C2FRC(IS)*(DATMP+C3FRC(IS)))) 
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& - RSTFRC*SFRC(IS) 
END IF 

END I F 

* temperature sum 
RTMPSM(IS) = INSW(DATMP-BATMPUS), 0., DATMP-BATMP(IS)) 

& - RSTFRCMMPSUM(IS) 

* hardening 
RHRD (IS) = (SSHRD(IS) - SHRD(IS)) / TAU(IS) 

DHRODT (IS) = AT(IS)*DATMP + BT(IS) 
IF (DATMP.GT.TKIS)) DHRDDT(IS) = RTMIN(IS) 
IF (DATHP.LT.T2(IS)) DHRDDT(IS) = RTMAX(IS) 

DHRDDP (IS) = AP(IS)*NL + BP(IS) 
IF (NL.LT.PI(IS)) DHRDDP(IS) = RPMIN(IS) 
IF (NL.GT.P2(IS)) DHRDDP(IS) = RPHAX(IS) 

CR (IS) = 0. 
IF (SCHL(IS) .LE. SCHLBB(IS)) CR(IS) = 1. 
IF (SFRC(IS) .LE. SFRCBB(IS)) CR(IS) = 1. - 0.00294*SFRC(IS) 

40 CONTINUE 

* Integration section * 

ELSE IF (ITASK.EQ.3) THEN 

DO 60 IS=1,INS 

* chilling, forcing, temperature sum and hardening 
SCHL (IS) = INTGRL(SCHL (IS), RCHL (IS).DELT) 
SFRC (IS) = INTGRL(SFRC (IS), RFRC (IS),DELT) 
TMPSUM(IS) = INTGRLdMPSUM (IS), RTMPSM(IS),DELT) 
SHRD (IS) = INTGRL(SHRD (IS), RHRD (IS).DELT) 

SSHRD (IS) = RMIN(IS) + CR(IS)*(DHRDDT(IS)+DHRDDP(IS)) 

IF (IDAY.EQ.172) DAYLMX = DAYL 

* joint factor model: NOT USED 

C IF (IPLTYP(IS).EQ.D THEN ! deciduous trees 
C IF (IDAY .GE. 172) THEN 
C JF (IS) = SFRC(IS) + (DAYLMX - DAYL) / 
C & (DAYLMX - DAYLLF(IS)) * DAYLLF(IS) 
C IF ((IDAY.EQ.365).OR.(IDAY.EQ.366)) JF(IS) = 0. 
C DVS (IS) = LINT (DVSTB(1,IS), ILDVS(IS), JF(IS)) 
C ELSE 
C DVS (IS) = LINT (DVSTB(1,IS), ILDVS(IS), SFRC(IS)) 
C ENDIF 
C ELSE ! coniferous trees 
C DVS (IS) = LINT (DVSTB(1,IS), ILDVS(IS), TMPSUM(IS)) 
C END IF 

* sequential model during for development during winter, 
* temperature sum for developmental stage (DVS) during growing season 

IF (IPLTYP(IS).EQ.I) THEN ! deciduous trees 
IF (DVS(IS).LE.L) THEN 

DVS (IS) = LINT (DVSTB(1,IS), ILDVS(IS), SFRC(IS)) 
ELSE 

DVS (IS) = LINT (DVST8(1,IS), ILDVS(IS), TMPSUM(IS)) ! coniferous trees 
ENDIF 

ENDIF 

60 CONTINUE 

179 



180 

Terminal section 

ELSE IF (ITASK.EQ.4) THEN 

END IF 

RETURN 
END 
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SUBROUTINE PHOTO 

Purpose: This subroutine calculates the maximal rate of 
photosynthesis, initial light use efficiency and 
dark respiration 

FORMAL PARAMETERS: (I=input, O=output, C=control, 
name type description 

IN=init, T=t 
units 

IUNITT 
IUNITP 
IUNITO 
FILET 
FI LEP 
OUTPUT 

14 
14 
14 
C* 
C* 
L4 

14 determines action of the subroutine, 
1=initialization, 2=rate calculation, 
3=integration, 4=terminal 
unit number of timer data file 
unit number of plant data file 
unit number of output file 
file name for time variables 
file name for plant variables 
flag that indicates if output to file is 

* required 
* TERMNL L4 flag that indicates if simulation should 
* terminate 

daynumber since 1 January d 
average day time temperature "C 
external C02 concentration ppm 
development stage 
number of foliage classes 
total weight of foliage kg DM ha-1 
weight of foliage for each age class kg DM ha-1 
maximum rate of photosynthesis kg C02 ha-1 h-
initial light use efficiency 

* kg C02 ha-1 h-1 (J m-2 s-1>-
* DRESP R4 dark respiration kg C02 ha-1 h-
* 
* SUBROUTINES and FUNCTIONS called: 

ime) 
class 

C,I 
C,I 
C,I 
C,I 
C,I 

c,i 

I DAY 
DDTMP 
C02E 
DVS 
IFLCL 
UFLT 
UFL 
AMAX 
EFF 

14 
R4 
R4 
R4 
K 
R4 
R4 
R4 
R4 

1 0 
1 0 

FILE usage: - time variables file IUNITT, FILET 
- plant data file with unit IUNITP, FILEP 
- output file with unit IUNITO for output and warm' 

SUBROUTINE PHOTO 

INCLUDE 'FORGRO.CMN' 

* Local variables 

REAL FWFL (IMNFLC) 

SAVE 

CALL CHKTSK ('PHOTO', IUNITO, ITOLD, ITASK) 

Initialization 

IF (ITASK.EQ.1) THEN 

— Initialization of run characteristics 
CALL RDINIT (IUNITT, IUNITO, FILET) 
CALL RDAINT ('IPSPEC', IPSPEC, IMNS, INS) 
CALL RDAINT ('IPLTYP', IPLTYP, IMNS, INS) 
CLOSE (IUNITT, STATUS='DELETE') 

— Initialization of species characeristics 
DO 30 IS=1,INS 

FILEP = 'SPEC'//CHAR(IPSPEC(IS)+48)//'.DAT' 
CALL OUTCOM ('Spec (V/CHAR(IPSPEC(IS)+48)//')') 
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IF (.NOT.INITP) THEN 
CALL COPFIL (IUNITP, FILEP, IUNITO) 
INITP = .TRUE. 

END IF 
CALL RDINIT (IUNITP, IUNITO, FILEP) 

States 

Parameters 
CALL RDSREACAMAXM' 
CALL RDSREACEFF20' 
CALL RDSREACGAMM20' 
CALL RDSREACIEC02' 
CALL RDSREACDRSP20' 
CALL RDSREAPRSMIN1 

CALL RDSREAC'RB' 
CALL RDSREACRC' 

,AMAXM (IS)) 
,EFF20 (IS)) 
,GAMM20(IS)) 
,IEC02 (IS)) 
,DRSP20(IS)) 
,RSMIN (IS)) 
,RB (IS)) 
,RC (IS)) 

AFGEN functions 
CALL RDAREA('AHDVST',AMDVST(1,IS),IMNP,ILADVS(IS)) 
CALL RDAREA('AMTMPT'.AMTMPT(1,IS),IMNP,ILATHP(IS)) 
CALL RDAREA('AMAGET',AMAGET(1,IS),IMNP,ILAAGE(IS)) 
CALL RDAREACGMTMPT'.GMTMPTd.ISJ.IMNP.ILGTMPdS)) 
CALL RDAREACGSVPDT'.GSVPDTd.ISj.lMNP.ILGVPDdS)) 

CLOSE (IUNITP, STATUS='DELETE') 

CONTINUE 

Rate calculation section 

ELSE IF (ITASK.EQ.2) THEN 

DO 40 IS=1,INS 

increase in C02 compensation point and dark respiration with temperature: 
TEFF = EXP(0.07 * (DDTMP-20.)) 
GAMMA = GAMM20(IS) * TEFF 
DRESP (IS) = DRESP (IS) * TEFF 

conversion external C02 concentration (C02E) and C02 compensation point (GAMMA) 
from (imol mol-1 to mg m-3 
CONV = PATM * 1.E-6/(GASCON*(DDTMP+273.15))*44.E+3 
C02 = C02E * CONV 
C02CMP = GAMMA * CONV 

reduction of light use efficiency due to photorespiration 
EFF (IS) = EFF20(IS) * (C02E-GAMMA) / (C02E+2.»GAMMA) 

conversion from kg C02 ha-1 leaf h-1 to mg C02 m-2 leaf s-1 
AMXO = AMAXM(IS) / (3600 * 10000 * 1.E-6) 

correction factor mesophyl conductance reduction for temperature (0-1) 
GMTMP (IS) = LINT (GMTMPTd,IS), ILGTMP(IS), DDTMP) 

calculation mesophyl resistance at the given temperature 
RM (IS) = GMTMP(IS) * (IEC02(IS)*C02 - C02CMP) / AMXO 

stomatal resistance dependent on vapour pressure deficit 
GSVPD (IS) = LINT(GSVPDT, ILGVPD(IS), VPD) 
RS (IS) = AMAXKRSMIN(IS), 1000./GSVPD(IS)) 

maximum photosynthesis rate determined by C02 diffusion: 
GASLAW = (44./24.) * (293. / (273. + DDTMP)) 
AMX1 = (C02E-GAMMA) * GASLAW / 

(RM(IS) + 1.6 * RS(IS) + 1.4 * RB(IS)) 

effect of temperature on maximum photosynthetic rate ("capacity") 
AMTMP (IS) = LINT (AMTMPT,ILATMP(IS), DDTMP) 
AMX2 = AMTMP(IS) * AMXO 
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* calculation weighting factor <FUFL) and correction factor for AMAX for foliage-age (FAMT) 
* dependent of foliage age (FLAGE) and DVS 

FAMT = 0. 
IF (WFLT(IS).GT.O.) THEN 

AMDVS (IS) = LINT (AMDVST,ILADVS.DVS) 
DO 41 I = 1,IFLCL(IS) 

FWFL(I) = WFLUS.I) / UFLT(IS) 
FLAGE = IDAY + (1-1) * 365. 
AMAGE (IS) = LINTCAMAGET, ILAAGE, FLAGE) 
FAMT = FAMT + FWFL(I) * AMAGE(IS) * AMDVS(IS) 

41 CONTINUE 
END IF 

* assume similar relationship between dark respiration with DVS 
* as with AMAX 

DRESP (IS) = DRESP(IS) * AMDVS(IS) 

* maximum rate of photosynthesis is limited by either AMX1 or AMX2 
* and conversion from mg C02 m-2 s-1 to kg C02 ha-1 h-1 

AMAX (IS) = FAMT * (AMINKAMX1, AMX2))*3600*10000*1 .E-6 
& + DRESP(IS) 

40 CONTINUE 

* Output of states and rates only if it is required 

IF (OUTPUT .OR. TERMNL) THEN 

END IF 

* Integration section * 

ELSE IF (ITASK.EQ.3) THEN 

* Terminal section * 

ELSE IF (ITASK.EQ.4) THEN 

END IF 

RETURN 
END 
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SUBROUTINE RADIAT 

Purpose: This subroutine computes diffuse and direct amount of 
photosynthetically active radiation from average global 
radiation (AVRAD), day of the year and hour of the day. 

FORMAL PARAMETERS: (I=input, O=output, C=control, IN=init, T=ti 
name type description units 

R4 selected hour at which C02 assimilation 
is calculated 
daynumber since 1 January 
daylength 
intermediate variable 
intermediate variable 
daily incoming total global radiation 
atmospheric transmission coefficient 
sine of solar elevation 
instantaneous flux of direct PAR 
instantaneous flux of diffuse PAR 

FATAL ERROR CHECKS (execution terminated, message): none 

SUBROUTINES and FUNCTIONS called: none 

DAY 
DAYL 
SINLD 
COSLD 
AVRAD 
ATMTR 
SINB 
PARDIR 
PARDIF 

R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 

d 
h/d 

J/m2/d 

J/m2/s 
J/m2/s 

me) * 
class * 

T,I 
T,I 

I 
I 
I 
I 
I 
0 
0 

FILE usage: none 

SUBROUTINE RADIAT 

INCLUDE 'FORGRO.CMN' 
SAVE 

-- Sine of solar elevation (SINB), integral of SINB (DSINB) 
and integral of SINB with correction for lower atmospheric 
transmission at low solar elevations (DSINBE) 
AOB = SINLD/COSLD 
SINB = AMAX1(0.,SINLD+COSLD*COS(2.*PI*(HOUR+12.)/24.)) 
DSINB = 3600.*(DAYL*SINLD+24.*COSLD*SQRT(1.-AOB*AOB)/PI) 
DSINBE= 3600.*(DAYL*(SINLD+0.4* 

& (SINID*SINLD+COSLD*COSLD*0.5))+12.0*COSLD* 
& (2.0+3.0*0.4*SINLD)*SQRT(1.-AOB*AOB)/PI) 

-- Solar constant ( S O and daily extraterrestrial 
radiation (ANGOT) 
SC = 1370.*(1.+0.033*COS(2.*PI*DAY/365.)) 
ANGOT = SC * DSINB 

-- Diffuse light fraction (FRDIF) from atmospheric 
transmission (ATMTR) 
ATMTR = AVRAD/ANGOT 
IF (ATMTR.GT.0.75) FRDIF = 0.23 
IF (ATMTR.LE.0.75.AND.ATMTR.GT.0.35) 

& FRDIF = 1.33-1.46*ATMTR 
IF (ATMTR.LE.0.35.AND.ATMTR.GT.0.07) 

& FRDIF = 1.-2.3*(ATMTR-0.07)**2 
IF (ATMTR.LE.0.07) FRDIF = 1. 

-- Diffuse PAR (PARDIF) and direct PAR (PARDIR) 
PAR = 0.5*AVRAD*SINB*(1.+0.4*SINB)/DSINBE 
PARDIF = AMIN1(PAR,SINB*FRDIF*ATMTR*0.5*SC) 
PARDIR = PAR-PARDIF 
RADDIF = 2. * PARDIF 
RADDIR = 2. * PARDIR 

RETURN 
END 
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* * 
* SUBROUTINE STAND * 

* * 
* Purpose: This subroutine calculates stand characteristics. * 

* * 
* * 
* FORMAL PARAMETERS: <I=input, 0=output, C=control, IN=init, T=time) * 
* name type description units class * 

IUNITT 
IUNITP 
IUNITO 
FILET 
FILEP 
OUTPUT 

14 
14 
14 
C* 
C* 
L4 

I DAY 
DELT 
DVS 
FTHIN 
HGHT 
CANCLO 

14 
R4 
R4 
R4 
R4 
R4 

* ITASK 14 determines action of the subroutine, - C,I 
* 1=initialization, 2=rate calculation, 
* 3=integration, 4=terminal 

unit number of timer data file - C,I 
unit number of plant data file - C,I 
unit number of output file - C,I 
file name for time variables - C,I 
file name for plant variables - C,I 
flag that indicates if output to file is - C,I 

* requi red 
* TERMNL L4 flag that indicates if simulation should - C,I,0 
* terminate 

daynumber since 1 January d T 
time interval of integration d T 
developmental stage - I 
fraction thinned - 0 
height m 0 
canopy closure - 0 

* 
* FATAL ERROR CHECKS (execution terminated, message) 
* DELT < 1.0 
* Certain sequences of ITASK, see subroutine CHKTSK 
* 
* SUBROUTINES and FUNCTIONS called: 

* 
* FILE usage: - time variables file IUNITT, FILET 
* - plant data file with unit IUNITP, FILEP 
* - output file with unit IUNITO for output and warnings 

SUBROUTINE STAND 

INCLUDE 'FORGRO.CMN1 

SAVE 
CALL CHKTSK ('STAND1, IUNITO, ITOLD, ITASK) 

Initialization 

IF (ITASK.EQ.1) THEN 

--- Send title to output file 
CALL RDINIT (IUNITT, IUNITO, FILET) 

— Initialization of run characteristics 
CALL RDAINT ('IPSPEC', IPSPEC, IMNS, INS) 
CALL RDAINT ('IPLTYP', IPLTYP, IMNS, INS2) 

NTRT = 0. 
DBHT = 0. 

Initialization of species characeristics 
DO 30 IS=1,INS 

FILEP = 'SPECl//CHAR(IPSPEC(IS)+48)//l.DATl 

CALL OUTCOM ('Spec ('//CHAR(IPSPEC(IS)+48)//')') 

IF (.NOT.INITP) THEN 
CALL COPFIL (IUNITP, FILEP, IUNITO) 
INITP = .TRUE. 

END IF 
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CALL RDINIT (IUNITP, IUNITO, FILEP) 

* States 
CALL RDSREACNTRI ' ,NTRI ) 
CALL RDSREACSTAGEI ' ,STAGED 
CALL RDSREAC HGHTI ' ,HGHTI ) 
CALL RDSREAC CNRADI'.CNRAD I ) 

* Parameters 
< SEE EXAMPLE OF SPEC<NR>.DAT FILE 

* Stand characteristics 
CLOSE (IUNITP, STATUS='DELETE') 

* Initializing states 
NTR (IS) = NTRI / INS 
DBH (IS) = DBH(IS) / INS 
STAGE (IS) = STAGE I 
HGHT (IS) = HGHTI 
CNRAD (IS) = CNRADI 

* Initial values of auxilary variables 
CP (IS) = AMIN1(1.,0.0001*NTR(IS)*PI*CNRAD(IS)**2) 
CNLENG(IS) - HGNT(IS) - CNBASE(IS) 
CANCLO(IS) = AMAX1(0.,AMIN1(1.,CP(IS)** 

& (1./(CNLENG(IS)/CNRAD(IS>)))> 

STVOL (IS) = 0.001*NTR(IS)*CSH1(IS)*(DBH(IS)**CSH2(IS))* 
& (HGHT(IS)"CSH3(IS)) 

BAREA (IS) = NTR(IS)*PI*(D8H(IS)/200.)**2. 
LAIMAX(IS) = DBH(IS) / DBHLAI(IS) 

CSH1R (IS) = CSH1(IS)**(-1./CSH2(IS)) 
CSH2R (IS) = 1./CSH2(IS) 
CSH3R (IS) = -CSH3(IS)/CSH2(IS) 

NTRT = NTRT + NTR (IS) 
DBHT = DBHT + DBH (IS) 

* Initializing array parameters 
DO 31 I=1,INTH(IS) 

THAGE (IS, I) = THAGE2U) 
FTHVOL(IS.I) = FTHVL2(I) 
FTHTRE(IS.I) = FTHTR2(I) 

31 CONTINUE 

30 CONTINUE 

Rate calculation section 

ELSE IF (ITASK.EQ.2) THEN 

RESET = 0. 
IF (IDAY.EQ.365) RESET = 1. 

DO 50 IS=1,INS 

* THINNING: fraction of number of trees or volume removed by management 
* thinning occurs at day 365 of year with thinning 

FTHT = 0. 
FTHV = 0. 
DO 51 I = 1, INTH(IS) 

IF (INT(THAGE(IS,I)).EQ.INT(STAGE(IS))) THEN 
FTHT = RESET * FTHTREUS.I) 

* FTHV = RESET * FTHVOL(IS.I) 
GOTO 52 

END IF 
51 CONTINUE 
52 CONTINUE 

FTHIN (IS) = FTHT 
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number of trees 
RNTRUS) = -FTHIN(IS) * NTR(IS) 

stand age 
RSTAGE(IS) = 1./365. 

height 
IF (DVS(IS) .GT. 1.) THEN 

RHGHT (IS) = 
-0.9*HGHMAX(IS)*((1.-EXP(C1HGHT(IS)*STAGE(IS)))** 
(C2HGHT(IS)-1.))*C1HGHT(IS)*C2HGHT(IS)*EXP(C1HGHT(IS>* 
STAGE(IS))/100. 

ELSE 
RHGHT CIS) = 0. 

END IF 

horizontal crown expansion: 
IF (CP(IS) .LT. 0.9) THEN 

RCNRAD(IS) = (RHGHT(IS)/(0.9*HGHMAX(IS))> * MCNRAD(IS) 
ELSE 

RCNRAD(IS) = 0. 
ENDIF 

50 CONTINUE 

Integration section 

ELSE IF (ITASK.EQ.3) THEN 

NTRT = 0. 
DBHT = 0. 
DO 60 IS=1,INS 

NTR (IS) = 
STAGE (IS) = 
HGHT (IS) = 
CNRAD CIS) = 
STVOL (IS) = 
TRVOL (IS) = 
OBH (IS) = 

BAREA (IS) -
LAIMAX(IS) = 
CNBASE(IS) = 

CNLENG(IS) = 
CP (IS) = 
CANCLO(IS) = 

NTRT 
DBHT 

INTGRL(NTR (IS), RNTR (IS),DELT) 
INTGRL(STAGE (IS), RSTAGE (IS),DELT) 
INTGRL(HGHT (IS), RHGHT (IS).DELT) 
INTGRL(CNRAD (IS), RCNRAD (IS),DELT) 
WST(IS) / BADEN(IS) 
1000. * STVOL(IS) / NTR(IS) 
CSH1R(IS)*(TRV0L(IS)**CSH2R(IS))* 
(HGHT(IS)**CSH3R(IS)) 
NTR(IS)*PI*(DBH(IS)/200.)**2. 
DBH(IS) / DBHLAI(IS) 
AMAX1(0..AMIN1(0.65,1.-15./STAGE(IS))) 
* HGHT(IS) 
HGHT(IS) - CNBASE(IS) 
AMIN1(1.,0.0001*NTR(IS)*PI*CNRAD(IS)**2) 
AMAX1(0.,AMIN1(1.,CP(IS)** 
(1./(CNLENG(IS)/CNRAD(IS>)))) 
NTRT + NTR (IS) 
DBHT + DBH (IS) 

60 

Terminal section 

ELSE IF (ITASK.EQ.4) THEN 

END IF 

RETURN 
END 
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SUBROUTINE TOTASS 

Purpose: This subroutine calculates daily total gross assimilation 
(DTGA) by performing a Gaussian integration over time. At 
three different times of the day, radiation is computed and 
used to determine assimilation whereafter integration 
takes place. 

FORMAL PARAMETERS: (I=input, O=output, C=control, IN=init, T=time) 
name type description units class 

DAY 
DAYL 
INS 
AMAX 

RA 
RA 
14 
RA 

KD F 
HGHT 
CNBASE 
LAIT 
AVRAD 
SINLD 

RA 
RA 
RA 
R4 
R4 
RA 

daynumber since 1 January d T#I 
daylength h/d T,I 
number of species - I 
actual maximum C02-assimilation rate for kg/ha/h I 
individual leaves 

EFF RA initial light use efficiency for kg/ha/h/J m2 s IN 
leaves 
extinction coefficient for leaves - I 
total height of a species in the canopy m I 
crown base of a species in the canopy m I 
total leaf area index ha/ha I 
daily incoming total global radiation J/m2/d I 
intermediate variable in calculating - I 
daylength 

COSLD RA intermediate variable in calculating - I 
daylength 

ATMTR RA atmospheric transmission coefficient - I 
FARCN RA fraction absorbed incoming global radiation - I 
FRD RA fraction global radiation used for drying - I 

power in penman evaporation 
DTGA RA daily total gross C02-assimilation kg/ha/h 0 
DARCN RA daily absorbed radiation per species J/m2 ground/d 0 

FATAL ERROR CHECKS (execution terminated, message): none 

SUBROUTINES and FUNCTIONS called: RADIAT, ASS IM 

FILE usage: none 

SUBROUTINE TOTASS 

INCLUDE 'FORGRO.CMN' 
SAVE 
DATA XGAUS /0.1127, 0.5000, 0.8873/ 
DATA WGAUS /0.2778, 0.AAA4, 0.2778/ 

Assimilation set to zero and three different times of the day (HOUR) 
DO 10 IS=1,INS 

DTGA (IS) = 0. 
DARCN (IS) - 0. 

CONTINUE 

DO 30 IG = 1.INGP 
HOUR = 12.0 + DAYL * 0.5 * XGAUS(IG) 

* At the specified HOUR, radiation is computed and used to compute assimilation 
CALL RADIAT 
CALL ASSIM 

* Integration of assimilation rate to a daily total (DTGA) 
* Daily absorbed radiation by the crown (DARCN) and 

DO 20 IS=1,INS 
DTGA (IS) = DTGA (IS) + FGRCN (IS) * UGAUS(IG) 
DARCN (IS) = DARCN (IS) + ARCN (IS) * WGAUS(IG) 

20 CONTINUE 

30 CONTINUE 
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LAITOT = 0. 
DARCNT = 0. 
DO 40 IS = 1,INS 

DTGA (IS) = DTGA (IS) * OAYL 
GPHOT (IS) = DTGA (IS) * 30./44. 

DARCN (IS) = DARCN (IS) * DAYL * 3600. 
DARCNT = DARCNT + DARCN(IS) 
LAITOT = LAITOT + LAIT(IS) 

40 CONTINUE 

DO 45 IS = 1,INS 
IF (DARCNT.GT.O.) THEN 

FARCN (IS) = (DARCN (ISJ/DARCNT) * (1.-EXP(-0.5*LAITOT)) 
ELSE 

FARCN (IS) = 0. 
END IF 

45 CONTINUE 

RETURN 
END 
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Common blocks used in FORGRO 3.5 

Control variables 

IMPLICIT REAL (A-Z) 

INTEGER I TASK , ITOLD , INSETS, I RUN , IRUNLA, 11 
INTEGER ISTAT1, ISTAT2, ISTN 
INTEGER ITA8LE, IDTMP 
LOGICAL OUTPUT, TERMNL, INITP , UTRMES, WTROK 
CHARACTER*80 WTRDIR 
CHARACTER*7 CNTR 
CHARACTER*1 DUMMY 

Unit numbers for rerun (R), timer (T), output (0), 
plant data (P), site data (S) and debug information (D) files. 

INTEGER IUNITR, IUNITT, IUNITO, IUNITP, IUNITS 
CHARACTER*80 FILER , FILET , FILEO , FILEP , FILES 

PARAMETER ( IUNITR=20, IUNITT=30, IUNITO=40, IUNITP=50, IUNITS=60) 

PARAMETER (FILER ='RERUNS.DAT1,FILET='TIMER.DAT1,FILEO='RES.DAT1.FILES ='SOIL.DAT') 

- Time variables 

INTEGER IDAY , IYEAR , IYR , NYRS 
REAL HOUR , TIME , DAY 
REAL STTIME, FINTIM, DELT , PRDEL 
REAL FRGR , PGN 
Time step of integration 
PARAMETER (DELT = 1.) 

COMMON /CONTRL/ 
& ITASK , ITOLD , INSETS, IRUN , IRUNLA, 11 
& I STAT 1, ISTAT2, ISTN , I TABLE, IDTMP , OUTPUT, 
& TERMNL, INITP , WTRMES, WTROK , WTRDIR, CNTR , DUMMY , 
& IDAY , IYEAR , IYR , NYRS , HOUR , 
& TIME , DAY , STTIME, FINTIM, PRDEL , 
& FRGR , PGN 

Mathematical constants, 
(micro-) meteorological and other abiotic variables 

Gaussian integration 
INTEGER IG , IG1 , INGP , INGP1 
PARAMETER (INGP=3, INGP1=5) 
REAL XGAUS (INGP) , UGAUS (INGP), XGAUS1UGP1 ) , WGAUSKIGP1) 

soil water potential (MPa) and 02 concentration in the air (mol m - 3 ) , required in PGEN 
REAL PSIFOL, COAIR 
PARAMETER (PSIFOL=0., C0AIR=8.471) 

Pi, and conversion factor from degrees to radians 
REAL PI , RAD 
PARAMETER (PI = 3.141592654, RAD = 0.017453292) 

(Micro-) meteorological and other abiotic variables 
REAL DAYL , DAYLP , SINLD , COSLD , SINB 
REAL LONG , LAT , ELV 
REAL DRAD , TMN , TMX , VAPOUR, WIND , RAIN 
REAL AVRAD , ATMTR , RADDIR, RADDIF, PARDIR, PARDIF 
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REAL 
REAL 

DATMP , DOTMP , TSOIL , C02E , TMPSCN 
SVP , VPD , RELHUM 

atmospheric pressure and gas constant, used in PHOTO 
REAL PATM , GASCON 
PARAMETER (PATM = 101325., GASCON = 8.3144) 

COMMON /MICMET/ 
& DAYL 
& LONG 
& DRAD 
& AVRAD 
& DATMP 
& SVP 

DAYLP , SINLD , COSLD , SINB , 
LAT , ELV 
TMN , TMX , VAPOUR, WIND , RAIN , 
ATMTR , RAODIR, RADDIF, PARDIR, PARDIF, 
DDTMP , TMTMX , TSOIL , C02E , TMPSCN, 
VPD , RELHUM 
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Plant variables 

INTEGER I 
REAL H 

, 12 INS2 , IS 

Maximum number of species, parameters, foliage classes, sapwood classes, 
foliate layers, times thinning 

INTEGER IMNS , IMNP , IMNFLC, IMNSWC, IMNL , IMNTH 
PARAMETER (IMNS=3 , IMNP=30, IMNFLC=5, IMNSUC=10, IMNL=50,IMNTH=20> 
PARAMETER (IMN0BS=14) 
INTEGER IPSPEC(IMNS), IPLTYP(IMNS), IFLCL (IMNS), ISUCL (IMNS) 
INTEGER INTH (IMNS), I NOBS (IMNS) 
CHARACTER'S SPNAME(IMNS) 

Declaration of varables. Syntax: 
FL-foliage, BR-branches, SU-sapwood, HU-heartwood, ST-stem 
CR-coarse roots, FR-fine roots, RS-reserves, LT-litter, CR-crown 
U..-weight, G..-growth rate, D..- death rate. T..-change of weight 
due to thinning, R..-rate of change, C..-coefficient 
..I-initial value, ..T-total, 
State variables , initial values, rate variables 
weights 
REAL WFL 
REAL WSU 
REAL WBR 
REAL UHU 
REAL UCR 
REAL UFR 
REAL URS 
REAL ULT 

(IMNS,IMNFLC), 
(IMNS,IMNSWC), 
(IMNS), 
(IMNS), 
(IMNS), 
(IMNS), 
(IMNS), 
(IMNS), 

stand characteristics 
REAL NTR 
REAL STAGE 
REAL HGHT 
REAL CNRAD 
phenology 
REAL SCHL 
REAL SFRC 
REAL SHRD 

(IMNS), 
(IMNS), 
(IMNS), 
(IMNS), 

(IMNS), 
(IMNS), 
(IMNS), 

REAL TMPSUM(IMNS), 

UFLI(IMNFLC), 
USUKIMNSUC), 
UBRI 
UHUI 
UCR I 
UFRI 
URS I 
WLTI 

NTRI 
STAGE I 
HGHTI 
CNRADI 

SCHLI 
SFRCI 
SHRD I 
TMPSMI 

RUFL 
RUSU 
RUBR 
RUHU 
RUCR 
RUFR 
RURS 
RULT 

RNTR 

(IMNS,IMNFLC) 
(IMNS,IMNSWC) 
(IMNS) 
(IMNS) 
(IMNS) 
(IMNS) 
(IMNS) 
(IMNS) 

(IMNS) 
RSTAGE(IMNS) 
RHGHT (IMNS) 
RCNRAD(IMNS) 

RCHL 
RFRC 
RHRD 

(IMNS) 
(IMNS) 
(IMNS) 

RTMPSM(IMNS) 

Auxilary variables 

weights 
REAL UTT (IMNS), USH 
REAL WSWT (IMNS), UST 
photosynthesis 
REAL AMAX (IMNS), EFF 
REAL RM (IMNS), RS 
REAL GTDM (IMNS), DTGA 
REAL GPHOT (IMNS), GPHOTT 
REAL FGRSHD(IMNS), FGRSUN 
light interception 
REAL KDRDR (IMNS), KDRT 
REAL EXDF , EXDRDR 
REAL ARDF (IMNS), ARDRDR 
REAL ARSHD (IMNS), ARSUN 
REAL DARCN (IMNS), FARCN 
REAL LAIT (IMNS), LAI 
REAL LD (IMNS) 
maintenance 
REAL MRT (IMNS), MRFL 
REAL MRHU (IMNS), MRFR 
allocation fractions 
REAL FSH (IMNS), FST 
growth rates 
REAL GFL (IMNS), GBR 

URT (IMNS), UFLT (IMNS) 
URSMN (IMNS), URSMX (IMNS) 

DRESP (IMNS) 

(IMNS), 
(IMNS), 

(IMNS), 
(IMNS) 
(IMNS) 

(IMNS), FGRL (IMNS), FGRCN (IMNS) 

(IMNS) 
EXDRT 

(IMNS), 
(IMNS), 
(IMNS) 
(IMNS , 

(IMNS), 
(IMNS), 

(IMNS), 

(IMNS), 

ARDRT (IMNS) 
ARCN (IMNS), 

IMNFLC) 

MRBR (IMNS), 
MRCR (IMNS) 

FCR (IMNS) 

GSU (IMNS), 

ARL 

LAIC 

MR SU 

GHU 

(IMNS) 

(IMNS) 

(IMNS) 

(IMNS) 
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REAL GSH 
REAL GRT 

(IMNS), GCR (IMNS), GFR (IMNS), GST (IMNS) 
(IMNS), GRS (IMNS), GLT (IMNS) 

death rates 
REAL DFLT (IMNS) 
REAL DFL 

DSWT (IMNS) 
(IMNS , IMNFLC), DSU (IMNS, 
(IMNS), DHU (IMNS), DCR REAL DBR 

REAL DFR (IMNS), DRS 
REAL DRT (IMNS), DLT 
thinning 

REAL FTHIN (IMNS), TFLT 
REAL TFL (IMNS 
REAL TBR (IMNS) 

(IMNS) 

(IMNS), 
(IMNS) 

DST 

IMNSUC) 
(IMNS) 
(IMNS), DSH (IMNS) 

(IMNS), TSUT 

REAL TFR 
phenology 
REAL DVS 

(IMNS) 
IMNFLC), TSU (IMNS, IMNSUC) 
THU (IMNS), TCR (IMNS) 
TRS (IMNS), TLT (IMNS) 

(IMNS), JF (IMNS) 

stationairy state of frost hardiness, SSHRD, and 
change of SSHRD with temperature and photoperiod 
REAL SSHRD (IMNS), DHRDDT(IMNS), DHRDDP(IMNS) 
stand characteristics 
REAL STVOL (IMNS), TRVOL (IMNS), DBH (IMNS) 
REAL CANCLO(IMNS), CP (IMNS), CNLENG(IMNS) 
REAL NTRT , DBHT 
annual totals: A... 
REAL AGPHOT(IMNS), AMRT (IMNS), AGTDM (IMNS) 
REAL AARCN (IMNS) 
average of annual totals: AA... 
REAL AAGPCN(IMNS), AAMRT (IMNS), AAGTDM(IMNS) 
REAL AAARCN(IMNS) 

Model parameters 

photosynthesis 
REAL AMAXM (IMNS), EFF20 (IMNS), GAMM20 (IMNS), IEC02 
REAL DRSP20UMNS), RSMIN (IMNS), RB (IMNS), RC 
light interception 
REAL KDF (IMNS), SCV (IMNS), SLA 
maintenance, and mineral content (N, P, 
REAL ASRQ (IMNS), REFTMP(IMNS), Q10 
REAL CMRFL (IMNS), CMRBR (IMNS), CMRSU 
REAL CMRFR (IMNS), CMRCR (IMNS) 
mineral content of organs 
REAL NFL(IMNS),NBR( IMNS),NSU(IMNS),NHU( 
REAL PFL(IMNS),PBR(IMNS),PSU(IMNS),PHU( 
REAL KFL( IMNS),KBR(IMNS),KSU( IMNS),KHW( 
REAL CFL(IMNS),CBR(IMNS),CSU(IMNS),CHU( 
REAL MFL(IMNS),MBR(IMNS),MSW(IMNS),MHW( 
coefficients for reserves 
REAL CRSFL (IMNS), CRSBR (IMNS), CRSSU 
REAL CRSCR (IMNS), CRSFR (IMNS), CRSNX 
coefficients for death rates 
REAL CDFL (IMNS , IMNFLC) , CDFL2 
REAL CDSU (IMNS), CDHU (IMNS), CDCR 
REAL CDLT (IMNS) 
REAL CFLUSH(IMNS), CLFFL (IMNS), CLSU (IMNS) 
phenology 

SFRCBB(IMNS), SFRCLF 
TOPTCH(IMNS), TMAXCH 
C2FRC (IMNS), C3FRC 
BATMP (IMNS) 

BAREA (IMNS) 
CNBASE(IMNS) 

(IMNS) 
(IMNS) 

(IMNS), LAIMAX(IMNS) 
K, Ca, Mg, S) 

(IMNS) 
(IMNS), CMRHU (I (IMNS) 

IMNS).NCR(IMNS) 
IMNS),PCR(IMNS) 
IMNS),KCR(IMNS) 
IMNS).CCR(IMNS) 
IMNS),MCR(IMNS) 

(IMNS), CRSHU ( 
(IMNS) 

(IMNFLC),CDBR ( 
(IMNS), CDFR ( 

(IMNS) 
(IMNS) 
(IMNS) 

,NFR(IMNS) 
PFR(IMNS) 

,KFR(IMNS) 
CFR(IMNS) 
MFR(IMNS) 

IMNS) 

IMNS) 
IMNS) 

REAL SCHLBB(IMNS), 
REAL TMINCH(IMNS), 
REAL C1FRC (IMNS), 
REAL DAYLLF(IMNS), 
REAL RPMIN (IMNS), RPMAX (IMNS), RTMIN 
REAL PI (IMNS), P2 (IMNS), AP 
REAL T1 (IMNS), T2 (IMNS), AT 
REAL NLCF (IMNS), NLCH (IMNS), TAU 
REAL CR (IMNS) 
REAL MNBB (IMNS), MNLF (IMNS), DBBDT 
INTEGER BDBRST(IMNS,IMNOBS),FORGRN(IMNS 
INTEGER FOLFLLUMNS.IMNOBS) 
INTEGER BDBST2(IMNOBS), FRGRN2UMNOBS), FOLFL2( IMNOBS) 

(IMNS), RTMAX ( 
(IMNS), BP ( 
(IMNS), BT ( 
(IMNS), RMIN ( 

IMNS) 
IMNS) 
IMNS) 
IMNS) 

(IMNS), DLFDT (IMNS) 
.IMNOBS) 

stand characteristics 
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REAL BADEN (IMNS), MCNRAD(IMNS) 
Richard-Chapman coefficients for height growth 
REAL HGHMAXUMNS), C1HGHTUMNS), C2HGHT(IMNS) 
ratio DBH to LA I MAX 
REAL DBHLAI(IMNS) 
Shumacher-Hall coefficients for volume increment, and their reverse 
REAL CSH1 (IMNS), CSH2 (IMNS), CSH3 (IMNS) 
REAL CSH1R (IMNS), CSH2R (IMNS), CSH3R (IMNS) 
Thinning 
REAL THAGE (IMNS,IMNTH), FTHVOLUMNS,IMNTH), FTHTRE(IMNS,IMNTH) 
REAL THAGE2(IMNTH), FTHVL2(IMNTH), FTHTR2(IMNTH) 

AFGEN FUNCTIONS 
photosynthesis 
INTEGER ILADVS(IMNS), ILATMPCIMNS), ILAAGE(IMNS) 
INTEGER ILGTMP(IMNS), ILGVPD(IMNS) 
REAL AMDVS (IMNS), AMDVST(IMNP,IMNS) 
REAL AMTMP (IMNS), AMTMPT(IMNP,IMNS) 
REAL AMAGE (IMNS), AMAGEUIMNP,IMNS) 
REAL GMTMP (IMNS), GMTMPT(IMNP,IMNS) 
REAL GSVPD (IMNS), GSVPDT(IMNP,IMNS) 
allocation 
INTEGER ILFFL (IMNS), ILFBR (IMNS), ILFRT(IMNS), ILFFR(IMNS) 
INTEGER ILFRS (IMNS) 
REAL FFL (IMNS), FFLTB (IMNP,IMNS) 
REAL FBR (IMNS), FBRTB (IMNP,IMNS) 

(IMNS), FRTTB (IMNP,IMNS) 
(IMNS), FFRTB (IMNP,IMNS) 
(IMNS), FRSTB (IMNP,IMNS) 

REAL FRT 
REAL FFR 
REAL FRS 
phenology 
INTEGER 
REAL 

ILDVS (IMNS) 
DVSTB (IMNP,IMNS) 

COMMON /PLANT / 
& INS 
& SPNAME 
& UFL 
& UBR 
& WCR 
& URS 
& NTR 
& HGHT 
& SCHL 
& TMPSUM 
& HTT 
& URSMN 
& AMAX 

GTDM 
FGRSHD 
KDRDR 
EXDF 
ARSHD 
LAIT 
MRT 
FSH 
GFL 
GFR 
DFLT 
DFR 
FTHIN 
TCR 
DVS 
SSHRD 
H 
CANCLO, 
NTRT 
AGPHOT 
AAGPCN 
AMAXM 
RB 
KD F 
ASRQ 

, IPSPEC 

, WFLI 
, UBR I 
, UCRI 
, URS I 
, NTRI 
, HGHTI 
, RCHL 
, RTMPSM 
, USH 
, URSMX 
, EFF 
, DTGA 
, FGRSUN 
, KDRT 
, EXDRDR 
, ARSUN 
, LAI 
, MRFL 
, FST 
, GBR 
, GST 
, DSUT 
, DRS 
, TFLT 
, TFR 
, JF 
, DHRDDT 
, STVOL 
, CP 
, DBHT 
, AMRT 
, AAMRT 
, EFF20 
, RC 
, SCV 
, REFTMP 

IPLTYP 

RUFL 
RWBR 
RUCR 
RURS 
RNTR 
RHGHT 
SFRC 

URT 

DRESP 
GPHOT 
FGRL 

EXDRT 
ARCN 
LAIC 
MRBR 
FCR 
GSU 
GRT 
DFL 
DST 
TSWT 
TRS 

DHRDDP 
TRVOL 
CNLENG 

AGTDM 
AAGTDM 
GAMM20 

SLA 
Q10 

IFLCL , 

USU 
UHU , 
UFR 
ULT 
STAGE , 
CNRAD , 
RFRC , 

UFLT , 

RM 
GPHOTT, 
FGRCN , 

ARD F , 
ARL 
LD 
MRSU , 

GHU , 
GRS 
DSU 
DSH 
TFL 
TLT 

DBH 
CNBASE, 

AARCN , 
AAARCN, 
IEC02 , 

LA I MAX, 

ISUCL , INTH , INOBS 

USUI , RUSU , 
UHUI , RUHU , 
UFRI , RUFR , 
ULTI , RULT , 
STAGE I, RSTAGE, 
CNRADI, RCNRAD, 
SHRD , RHRD , 

USUT , WST 

RS 

ARDRDR, ARDRT , 
DARCN , FARCN , 

MRHU MRFR 

GCR 

MRCR 

GSH 
GLT 
DBR , DHU 
DRT , DLT 
TSU , TBR , THU 

DCR 

DRSP20, RSMIN 
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CHRFL 
NFL 
PFL 
KFL 
CFL 
MFL 
CRSFL 
CDFL 
CDLT 
SCHLBB 
C1FRC 
RPMIN 
P1 
T1 
NLCF 
CR 
BDBRST 
BADEN 
CSH1 
THAGE 
ILADVS 
AMDVS 
GHTMP 
ILFFL 
FFL 
FFR 
ILDVS 

CMRBR 
NBR 
PBR 
KBR 
CBR 
MBR 
CRSBR 
CDFL2 
CFLUSH 
SFRCBB 
C2FRC 
RPMAX 
P2 
T2 
NLCH 
MNBB 
FORGRN 
MCNRAD 
CSH2 
FTHVOL 
ILATMP 
AMDVST 
GMTMPT 
ILFBR 
FFLTB 
FFRTB 
DVSTB 

CMRSW 
NSW 
PSW 
KSW 
CSU 
MSW 
CRSSW 
CDBR 
CLFFL 
SFRCLF 
C3FRC 
RTMIN 
AP 
AT 
TAU 
MNLF 
FOLFLL 
HGHMAX 
CSH3 
FTHTRE 
ILAAGE 
AMTMP 
GSVPD 
ILFRT 
FBR 
FRS 

CMRHW , 
NHW , 
PHW 
KHW 
CNW 
MHW 
CRSHU , 
CDSW , 
CLSW , 
TMINCH, 
DAYLLF, 
RTMAX , 
BP 
BT 
RMIN , 
DBBDT , 
BDBST2, 
C1HGHT, 
CSH1R , 
THAGE2, 
ILGTMP, 
AMTMPT, 
GSVPDT, 
ILFFR , 
FBRTB , 
FRSTB , 

CMRFR , CMRCR , 
NCR , NFR, 
PCR , PFR, 
KCR , KFR, 
CCR , CFR, 
MCR , MFR, 
CRSCR , CRSFR , CRSNX 
CDHW , CDCR , CDFR 

TOPTCH, TMAXCH, 
BATMP , 

DLFDT , 
FRGRN2, 
C2HGHT, 
CSH2R , 
FTHVL2, 
ILGVPD, 
AMAGE , 

ILFRS , 
FRT 

FOLFL2 
DBHLAI 
CSH3R 
FTHTR2 

AMAGET 

FRTTB 
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Acronyms used in FORGRO 3.5 
AAARCN 
AAGPCN 
AAGTDM 
AAMRT 
AARCN 
AGPHOT 
AGTDM 
AMAGE 
AMAGET 

AMAX 

AMDVS 
AMDVST 

AMRT 
AMTMP 
AMTHPT 

AN GOT 
AOB 
AP 
ARCN 
ARD F 
ARDRDR 

ARDRT 
ARL 
ARPP 

ARSHD 
ARSUN 
ASRQ 
AT 
ATMTR 
AVRAD 
BADEN 
BAREA 
BATMP 
BDBRST 
BDBST2 
BP 
BT 
C1FRC 
C1HGHT 
C2FRC 
C2HGHT 
C3FRC 
CANCLO 
CBR 
CCR 
CD BR 
CD CR 
CDFL 
CDFL2 
CDFR 
CDHW 
CDLT 
CDSW 
CFL 
CFLUSH 
CFR 
CHU 
CLFFL 
CLSW 
CMRBR 
CMRCR 

annually averaged absorbed radiation by the crown 
annually averaged gross photosynthesis by the crown 
annually averaged gross total dry matter 
annually averaged total maintenance requirements 
annually averaged absorbed radiation by the crown 
annual gross photosynthesis 
annual averaged gross total dry matter 
reduction factor accounting for effect of foliage age on AMAXM 
table of AMAXM reduction factor accounting for effect of foliage age 
on AMAXM 
actual maximum CO, assimilation rate at light saturation for 
individual leaves 
potential maximum CO, assimilation rate at light saturation for 
individual leaves 
reduction factor accounting for effect of development stage on AMAXM 
table of AMAXM reduction factor accounting for effect of development 
stage on AMAXM 
annual total maintenance respiration 
reduction factor accounting for effect of temperature stage on AMAXM 
table of AMAXM reduction factor accounting for effect of temperature 
stage on AMAXM 
daily extra-terrestrial radiation 
intermediate variable in calculating daylength and solar sine 
constant for effect of photoperiod on hardening 
absorbed radiation by the crown 
absorbed radiation (PAR) at the selected canopy height, diffuse flux 
absorbed radiation (PAR) at the selected canopy height, direct component 
of direct flux 
absorbed radiation (PAR) at the selected canopy height, total direct flux 
absorbed radiation (PAR) by a foliage layer at the selected canopy height 
absorbed radiation (PAR) by sunlit foliage area perpendicular to the 
direct beam 
absorbed radiation (PAR) by shaded foliage area 
absorbed radiation (PAR) by sunlit foliage area 
assimilate requirements for plant dry matter production kg CH 
constant for effect of temperature on hardening 
atmospheric transmission coefficient 
daily incoming total global radiation 
basic density of wood 
basal area 
base temperature for temperature sum 
date of budburst 
help variable to read BDBRST 
constant for effect of photoperiod on hardening 
constant for effect of temperature on hardening 
coefficient for rate of forcing 
coefficient for Chapman-Richards equation for height growth 
coefficient for rate of forcing 
coefficient for Chapman-Richards equation for height growth 
coefficient for rate of forcing 
canopy closure 
Calcium concentrations in branches 
Calcium concentrations in coarse roots 
coefficient for death rate of branches 
coefficient for death rate of coarse roots 
coefficient for death rate of foliage 
help variable to read CDFL 
coefficient for death rate of fine roots 
coefficient for death rate of heartwood 
coefficient for decomposition of litter 
coefficient for death rate of sapwood 
Calcium concentrations in foliage 
coefficient for leaf flush in spring 
Calcium concentrations in fine roots 
Calcium concentrations in branches 
coefficient for leaf fall in autumn 
coeficient for longevity of last sapwood ring 
coefficient for maintenance respiration of branches 
coefficient for maintenance respiration of coarse roots 

MJ m ground yr 
t CH20 ha"1 yr 

t DM ha"1 yr 
t CHjO ha"1 yr 

MJ m"2 ground yr 
t CH20 ha' yr 

t DM ha"1 yr 

kg C02 ha ' leaf h ' 

kg C02 ha1 leaf h"1 

t CH20 ha"1 yr"1 

J m 2 ground d"1 

J m"2 ground s x 

J m"2 leaf s"1 

J m"2 leaf s"1 

J m"2 leaf s' 
J m 2 ground s"1 

J m 2 leaf s"1 

J m 2 leaf s"1 

J m"2 leaf s"1 

0 (kg living DM) • 

J m"2 ground d"1 

kg m-3 
m2 ha' 

°C 
daynumber 
daynumber 

kg kg 
kg kg 

yr 
yr 
yr 
yr 
yr 
yr 
yr 
yr 

kg kg 
d 

kg kg 
kg kg 

d 
yr 

kg CH,0 (kg DM) 
kg CH20 (kg DM) 
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CMRFL coefficient for maintenance respiration of foliage 
CMRFR coefficient for maintenance respiration of fine roots 
CMRHU coefficient for maintenance respiration of heartuood 
CMRSU coefficient for maintenance respiration of sapwood 
CNBASE height of crown base 
CNLENG crown Length 
CNRAD crown radius 
CNRADI initial crown radius 
CNTR county name for weather data 
C02E external C02 concentration 
COSLD intermediate variable in calculation of daylength 
CP projected crown area 
CR competence for hardening 
CRSBR coefficient for reserves in branches 
CRSCR coefficient for reserves in branches 
CRSFL coefficient for reserves in foliage 
CRSFR coefficient for reserves in fine roots 
CRSHU coefficient for reserves in heartwood 
CRSNX ratio max to miN of reserve level 
CRSSU coefficient for reserves in sapwood 
CSH1 coefficient of Shumacher-Hall equation for volume increment 
CSH1R coefficient of reversed Shumacher-Hall equation for volume increment 
CSH2 coefficient of Shumacher-Hall equation for volume increment 
CSH2R coefficient of reversed Shumacher-Hall equation for volume increment 
CSH3 coefficient of Shumacher-Hall equation for volume increment 
CSH3R coefficient of reversed Shumacher-Hall equation for volume increment 
CSW Calcium concentrations in sapwood 
DARCN daily absorbed radiation (PAR) by the crown 
DATMP daily temperature, average of minimum and maximum temperature 
DAY daynumber since 1 Januari 
DAYL daylength 
DAYLLF day length at average date of leaf fall 
DBBDT shift of budburst with temperature 
DBH mean diameter at breast height 
DBHLAI ratio DBH to maximal LAI 
DBHT total DBH, over all species 
DBR death rate of branches 
DCR death rate of coarse roots 
DDTMP daily daytime temperature 
DEC declination of the sun 
DELT time interval of integration 
DFL death rate of each foliage class 
DFLT death rate of total foliage 
DFR death rate of fine roots 
DHRDDP change of stationary state of frost hardiness as function of photoperiod 
DHRDDT change of stationary state of frost hardiness as function of temperature 
DHW death rate of heartwood 
DLFDT shift of leaf fall with temperature 
DLT decomposition rate of litter 
DRAD daily incoming total radiation 
DRESP rate of dark respiration 
DRS death rate of reserves 
DRSP20 rate of dark respiration at 20°C kg C0; 

DRT death rate of roots (fine + coarse roots) 
DSINB integral if SINB over the day 
DSINBE as DSINB, but with correction for lower atmospheric transmission at 

low solar elevations 
DSH death rate of shoot (foliage + branches + stem) 
DST death rate of stem (sapwood + heartuood) 
DSU death rate of for each sapwood class 
DSWT death rate of total sapwood 
DTGA daily total gross C02 assimilation rate 
DUMMY variable to continue the program after a warning 
DVS development state 
DVSTB table DVS as function of state of forcing of temperature sum 
DVSTB temperature sum vs. development state coniferous trees 
EFF initial light use efficiency for individual leaves kg C0; 

EFF20 value of EFF at 20°C kg C0; 

ELV elevation above sealevel of meteorological station 
EXDF exponent for light intensity calculation (PAR), diffuse flux 
EXDRDR exponent for light intensity calculation (PAR), direct component of direct flux 
EXDRT exponent for light intensity calculation (PAR), total direct flux 

kg CH20 (kg DM) ' 
kg CHjO (kg DM) ' 
kg CH20 (kg DM) ' 
kg CH20 (kg DM) ' 

/unol mol'1 

m' ha ' 

kg C02 

kg kg 
J m z ground d l 

°C 

h d-1 

h d ' 
d °C' 

cm tree 

cm tree x 

kg 
kg 

kg 
kg 
kg 

kg 

kg 

DM 
DM 

rad 

DM 
DM 
DM 

DM 
d 

DM 

yr' 
yr1 

°c 
ans 

d 
yr'1 

yr' 
yr'1 

°c 
°c 

yr 
"C 
yr 

J m ground d 
kg CH20 

kg 
02 ha ' 

kg 

kg 
kg 
kg 
kg 

ha 
DM 

d 
yr 

eaf h 
DM 

DM 
DM 
DM 
DM 

yr 
d 

d 
yr 
yr 
yr 
yr 

ha ground d 

ha1 

ha'1 

leaf h'1 

leaf h'1 
(J m' 
(J m 

leaf s ' V 
leaf s'1)'1 
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FARCN fraction absorbed radiation by the crown 
FBR allocation to branches 
FBRTB table of allocation to branches as function of DVS 
FCR allocation to coarse roots 
FFL allocation to foliage 
FFLTB table of allocation to foliage as function of DVS 
FFR allocation to fine roots 
FFRTB table of allocation to fine roots as function of DVS 
FGRCN assimilation rate of the crown 
FGRL assimilation rate of leaf layer at selected canopy height 
FGRSHD assimilation rate of shaded foliage 
FGRSUN assimilation rate of sunlit foliage 
FILEO file name for output variables 
FILEP file name for plant variables 
FILER file name for rerun variables 
FILES file name for soil variables 
FILET file name for time variables 
FINTIM period of simulation 
F0LFL2 help variable to read FOLFLL 
FOLFLL observed date of fall of foliage 
FORGRN observed date for stage 'forest green' 
FRGR switch to use photosynthesis model of FORGRO 
FRGRN2 help variable to read FOLGRN 
FRS allocation to reserves 
FRSTB table of allocation to reserves as function of DVS 
FRT allocation to roots 
FRTTB table of allocation to roots as function of DVS 
FSH allocation to shoot (foliage + branches + stem) 
FST allocation to stem 
FTHIN fraction of either volume or number of trees removed by thinning 
FTHTR2 help variable to read FTHTRE 
FTHTRE fraction of number of trees removed by thinning 
FTHVL2 help variable to read FTHTRE 
FTHVOL fraction of stemvolume removed by thinning 
GAMMA C02 compensation point 
GAMM20 value of GAMMA at 20°C 
GASCON gas constant 
GBR growth rate of branches 
GCR growth rate of coarse roots 
GFL growth rate of foliage 
GFR growth rate of fine roots 
GHW growth rate of heartwood 
GLT rate of litter accumulation 
GMTMP temperature factor for mesophyl conductance 
GMTMPT table of tempeerature factor for mesophyl conductance 
GPHOT daily total gross CH20 assimilation rate 
GPHOTT total value of GPHOT over all species 
GRS growth rate of reserves 
GRT growth rate of roots (fine + coarse roots) 
GSH growth rate of shoot (foliage + branches + stem) 
GST growth rate of stem 
GSVPD stomatal conductance as function of vapour pressure deficit 
GSVPDT table of stomatal conductance as function of vapour pressure deficit 
GSW growth rate of sapwood 
GTDM daily total dry matter production 
H height in integration loop 
HGHMAX maximal height at this site 
HGHT height of the top of the canopy 
HGHTI initial value of HGHT 
HOUR selected hour during the day at which instantaneous CO? assimilation 

rate is calculated 
I counter 
II counter for reruns 
12 counter for length of a string 
IDAY integer variable for daynumber since 1 Januari 
IDTMP switch for temporary output file 
IEC02 ratio internal to external C02 concentration 
IFLCL counter for number of foliage classes 
IG counter for 3-point Gaussian integration 
IG1 counter for 5-point Gaussian integration 
IL counter for number of foliage layers 
ILAAGE length of AMAGET 

kg CO; ha ' ground h'1 

kg C02 ha"1 leaf h ' 
kg C02 ha ! leaf h 1 

kg C02 ha ! leaf h ' 

kg CH20 ha 
kg CH20 ha 

kg DM ha 

/tmol mol' l 

pmol mol l 

J mol"1 K 4 

kg DM d"1 

kg DM d"1 

kg DM d"1 

kg DM d-1 

kg DM d"1 

kg DM d"1 

ground d'1 

ground d'1 

kg DM d"1 

kg DM d"1 

kg DM d"1 

kg DM d"1 

m s"1 

m s'1 

kg DM d"1 

ground d : 
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ILADVS Length of AMDVST 
ILATMP length of AMTMPT 
ILDVS Length of AMDVST 
ILFBR Length of FBRT 
ILFFL length of FFLT 
ILFFR length of FFRT 
ILFRS Length of FRST 
ILFRT length of FRTT 
ILGTMP length of GMTMPT 
ILGVPD length of GSVPOT 
IMNFLC maximum number of foliage classes 
IMNL maximum number of foliage Layers 
IMNOBS maximum number of observations 
IMNP maximum number of parameters 
IMNS maximum number of species 
IMNSUC maximum number of sapwood classes 
IMNTH maximum number of thinnings 
INGP number of points of 3-point Gaussian integration 
INGP1 number of points of 5-point Gaussian integration 
INITP control variable for FILEP 
I NOBS actual number of observations 
INS actual number of species 
INS2 check for number of species 
INSETS actual number of rerun sets 
I NTH actual number of thinnings 
IPLTYP plant type (1 = deciduous, 2 = coniferous) 
IPSPEC species number 
I RUN actual number of reruns 
IRUNLA switch for using measured (1) of simulated (2) LAI 
IS counter for actual species number 
I STAT1 help variable 
ISTAT2 help variable 
ISTN reference number of meteorological station 
ISUCL actual number of sapwood classes 
ITABLE format for output file 
ITASK control variable for which task a subroutine should do (1=ini 

3=integrationf4=terminal calculations) 
ITOLD last value of I TASK 
IUNIT0 unit number of output file 
IUNITP unit number of plant file 
IUNITR unit number of rerun file 
IUNITS unit number of soil file 
IUNITT unit number of timer file 
IYEAR year for which weather data are requested 
IYR counter for actual year 
JF joint factor (temperature + photoperiod) for determining date 
KBR Potassium concentration in branches 
KCR Potassium concentration in coarse roots 
KDF extinction coefficient for diffuse light 
KDROR extinction coefficient for direct component of direct light 
KDRT extinction coefficient for total direct light 
KFL Potassium concentration in foliage 
KFR Potassium concentration in fine roots 
KHW Potassium concentration in heartwood 
KSW Potassium concentration in sapwood 
LAI Leaf area index 
LAIC leaf area index above seleved height in the canopy 
LAIMAX maximum leaf area index 
LAIT total LAI of a species 
LAITOT total LAI over all species 
LAT latitude of the meteorological station 
LD leaf density at selected height in the canopy 
LONG longitude of the meteorological station 
MBR Magnesium concentrations in foliage 
MCNRAD maximum crown radius 
MCR Magnesium concentrations in coarse roots 
MFL Magnesium concentrations in foliage 
MFR Magnesium concentrations in fine roots 
MHW Magnesium concentrations in heartwood 
MNBB mean date of budburst 
MNLF mean data of leaf fall 
MRBR maintenance respiration by branches 

alization, 2=rate calculation. 

of leaf fall 

ha 
ha 
ha 
ha 
ha 

m2 

-
kg kg ' 
kg kg'1 

kg kg"1 

kg kg'1 

kg kg'1 

kg kg -1 

leaf ha ' ground 
leaf h a 1 ground 
leaf ha' l ground 
leaf ha^ ground 
leaf ha' l ground 

degrees 
leaf m-3 canopy 

degrees 
kg kg"1 

m 
kg kg"1 

kg kg-1 

kg kg"1 

kg kg"1 

daynumber 
daynumber 

kg CH;0 ha'1 d"1 
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MRCR maintenance respiration by coarse roots 
MRFL maintenance respiration by foliage 
MRFR maintenance respiration by fine roots 
MRHW maintenance respiration by heartuood 
MRSU maintenance respiration by sapwood 
MRT total maintenance respiration 
MSU Magnesium concentrations in sapwood 
NBR Nitrogen content in branches 
NCR Nitrogen content in coarse roots 
NFL Nitrogen content in foliage 
NFR Nitrogen content in fine roots 
NHW Nitrogen content in heartuood 
NLCF critical nightlength to start forcing for hardiness model 
NLCH critical nightlength for full hardening 
NSW Nitrogen content in sapwood 
NTR number of trees 
NTRl initial number of trees 
NTRT total number of trees over all species 
NYRS number of years for simulation 
OUTPUT logical for call to OUTDAT subroutine 
P1 lower limit of effective range of photoperiod to change frost hardiness 
P2 upper limit of effective range of photoperiod to change frost hardiness 
PAR instantaneous flux of photosynthetic active radiation 
PARDIF instantaneous flux of diffuse PAR 
PARDIR instantaneous flux of direct PAR 
PATM atmospheric pressure 
PBR Phosphorus content in branches 
PCR Phosphorus content in foliage 
PFL Phosphorus content in foliage 
PFR Phosphorus content in fine roots 
PGN switch to use photosynthesis model of PGEN 
PHW Phosphorus content in heartwood 
PI ratio of circumference to diameter of a circle 
PRDEL time of interval for output 
PSW Phosphorus content in sapwood 
Q10 factor accounting for increase of maintenance respiration with a 10°C 

rise in temperature 
RAD factor to convert degrees to radians 
RADDIF incoming global diffuse radiation 
RADDIR incoming global direct radiation 
RAIN water input through rainfall 
RB leaf boundary layer resistance 
RC cuticulair resistance 
RCHL rate of chilling 
RCNRAD rate of expansion crown radius 
REFTMP reference temperature for maintenance respiration 
RELHUM relative humidity 
RFRC rate of forcing FU 
RHGHT rate of heigth increase 
RHRD rate of hardening 
RM mesophyll resistance 
RMIN minimum level of frost hardiness 
RNTR rate of change in number of trees 
RPMAX maximal change of SSHRD with photoperiod 
RPMIN minimal change of SSHRD with photoperiod 
RS stomatal resistance 
RSMIN min. stomatal resistance at light saturation 
RSTAGE rate of change of stand age 
RTMAX maximal change of SSHRD with temperature 
RTMIN minimal change of SSHRD with temperature 
RTMPSM rate of change of temperature sum 
RWBR rate of change of weight of branches 
RWCR rate of change of weight of coarse roots 
RWFL rate of change of weight of foliage 
RWFR rate of change of weight of fine roots 
RWHW rate of change of weight of heartwood 
RWLT rate of change of weight of litter 
RWRS rate of change of weight of reserves 
RWSW rate of change of weight of sapwood 
SC solar constant 
SCHL state of chilling 
SCHLBB state of chilling required for budburst 

kg CH20 
kg CHz0 
kg CH20 
kg CH,0 
kg CH,0 
kg CH;0 

ha"1 d ' 
ha"1 d ' 
ha -1 d"1 

h a ' d 1 

h a 1 d ' 
h a 1 d'1 

kg kg ' 
kg kg • 
kg kg • 
kg kg • 
kg kg • 
kg kg'1 

h d'1 

h d 1 

kg k g 4 

ha1 

ha1 

ha'1 

h d 1 

h d -1 

J m ground s 
J m'2 ground s 1 

J m 2 ground s ' 
Pa 

kg kg'1 

kg kg'1 

kg kg"1 

kg k g 1 

kg kg 4 

d 
kg kg4 

J m'2 ground s 1 

J m 2 ground s ' 

kg DM 
kg DM 
kg DM 
kg DM 
kg DM 
kg DM 
kg DM 
kg DM 

mm d" 
s m4 

s m'1 

CU d"1 

m d"1 

°C 

d"1 

m d"1 

°C d"1 

s nf1 

°C 
d1 

°c 
°c 

s m'1 

s m 1 

yr1 

°c 
°c 

°Cd d"1 

ha"1 d1 

ha'1 d1 

ha1 d"1 

ha"1 d"1 

ha -1 d1 

ha1 d -1 

ha"1 d"1 

ha'1 d"1 

m 1 d1 

eu 
eu 
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SCHLI initial state of chilling 
SCV scattering coefficient 
SFRC initial state of forcing 
SFRCBB state of forcing required for budburst 
SFRCI initial state of forcing 
SFRCLF state of forcing required for leaf fall 
SHRD state of frost hardiness 
SHRDI initial state of frost hardiness 
SINB sine of solar elevation 
SINLD intermediate varaible for calculating daylength 
SLA specific leaf area 
SPNAME species name 
SSHRD stationary state of frost hardiness 
STAGE stand age 
STAGE I initial stand age 
STTIME start time of simulation 
STVOL stem volume 
SVP saturated vapour pressure of the air 
T1 lower limit of effective range of temperature to change frost hardiness 
T2 upper limit of effective range of temperature to change frost hardiness 
TAU time constant for hardening 
TBR biomass of branches removed by thinning 
TCR biomass of coarse roots removed by thinning 
TERMNL logical indicating whether the simulation should stop 
TFL biomass of each foliage class removed by thinning 
TFLT total biomass of foliage removed by thinning 
TFR biomass of branches removed by thinning 
THAGE age at which thinning occurs 
THAGE2 help variable to read THAGE 
THW biomass of heartwood removed by thinning 
TIME day since start of simulation 
TLT change in litter because of thinning 
TMAXCH maximum temperature for chilling 
TMINCH minimum temperature for chilling 
TMN daily minimum air temperature 
TMPSCN temperature scenario 
TMPSMI initial value of temperature sum 
TMPSUM temperature sum 
TMX daily maximum air temperature 
TOPTCH optimum temperature for chilling 
TRS biomass of reserves removed by thinning 
TRVOL tree volume 
TSOIL soil temperature 
TSW biomass of each sapwood class removed by thinning 
TSUT total biomass sapwood removed by thinning 
VAPOUR vapour pressure of the air 
VPD vapour pressure deficit of the air 
WBR weight of branches 
WBRI initial weight of branches 
WCR weight of coarse roots 
WCRI initial weight of coarse roots 
WFL weight of each foliage class 
WFLI initial weight of each foliage class 
WFLT total weight of foliage 
UFR weight of fine roots 
WFRI initial weight of fine roots 
WGAUS weights of point for 3-point Gaussian integration 
WGAUS1 weights of point for 5-piont Gaussian integration 
WHW weight of heartwood 
WHWI initial weight of heart wood 
WIND windspeed 
WLT weight of litter 
WLTI initial weight of litter 
WRS weight of reserves 
WRSI initial weight of reserves 
WRSMN minimum weight of reserves 
WRSMX maximum weight of reserves 
WRT weight of roots (fine + coarse roots) 
WSH weight of shoot (foliage + branches + stem) 
WST weight of stem 
WSW weight of each sapwood class 
WSWI initial weight of each sapwood class 

CU 
FU 
FU 
FU 
ÛC 
DC 

m2 leaf kg"1 Leaf DM 

kg 
kg 

kg 
kg 
kg 

kg 

kg 

kg 

kg 
kg 

DM 
DM 

DM 
DM 
DM 

DM 

DM 

DM 

° C 
yr 
yr 

m3 ha ' 
mbar 

°C 
°C 
d1 

ha"1 d"1 

ha"1 d ' 

h a 1 d ' 
ha"1 d"1 

ha'1 d 1 

yr 
yr 

ha [ d'1 

d 
ha"1 d ' 

°c 
°c 
°c 
°c 

°C d 
°C d 

°c 
°c 

ha"1 d -1 

m3 tree 

DM 
DM 

kg 
kg 
kg 
kg 
kg 
kg 
kg 
kg 
kg 

kg 
kg 

kg 
kg 
kg 
kg 
kg 
kg 
kg 
kg 

°c 
ha"1 d -1 

ha'1 d ' 
mbar 
mbar 

DM ha'' 
DM ha-' 
DM ha-1 

DM ha • 
DM ha_1 

DM ha"1 

DM h a 1 

DM h a 1 

DM ha ] 

DM ha 
DM ha 

m s 
DM ha 
DM ha 
DM ha 
DM ha 
DM ha 
DM ha 
DM ha 
DM ha 

kg DM ha 
kg 
kg 

DM ha 
DM ha 

l 

i 
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WSWT total weight of sapwood kg DM ha ' 
WTRDIR directory and path of weather files 
WTRMES flag for messages from the weather system 
WTROK help variable 
WTT total tree weight kg DM ha ' 
XGAUS points for 3-point Gaussian integration 
XGAUS1 points for 5-point Gaussian integration 
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Example of TIMER.DAT 

*********************************************************************** 
* Defining the simulation run * 
*********************************************************************** 
* 
* Ueather control variables 

UTRDIR = 'C:\METEO\NLV 
CNTR = 'NL' 
ISTN = 12 
I YEAR = 1940 

Country code 
Station code 
Year 

* Time variables and output file options 

STTIME = 1. 
FINTIM = 18263. 
PRDEL = 365. 
I TABLE = 4 

IDTMP = 0 

IRUNLA = 0 

Start day of simulation 
Finish time of simulation 
Time between consecutive outputs to file 
Format of output file 
(0 = no output table, 4 = normal table, 
5 = Tab-delimited (for Excel), 6=TTPL0T format) 

Switch variable what should be done with the 
temporary output files (0 = do not delete, 
1 = delete) 
1 = LAI measured, 0 = LAI simulated 

* Method of photosynthesis 

FRGR 
PGN 

1. 
0. 

! FORGRO 
! PGEN 

* Environmental control 

C02E 
TMPSCN 

350. 
0. 

! External C02 concentration 
! temperature scenario 

* Definition competing species: 

IPSPEC = 1,3,4 
IPLTYP = 1,1,1 

! 1=Beech, 2=Douglas Fir, 3=Oak, 4=Birch, 5=P.pinaster, 6=P. sylvestris 
! 1=deciduous, 2=coniferous 

file://'C:/METEO/NLV
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Example of SPEC<nr>.DAT 
************************************************************************ 
* Plant data set for Fagus sylvatica * 

************************************************************************ 
SPNAME = 'Fagus' 

* Initial states 

WFLI = 0. ! foliage classes (age) 
UBRI = 7500. ! branches 
WSWI = 2705., 2705., 2705.,2705., 2705.! sapwood classes (rings) 
WHUI = 156444. ! heart wood 
WCRI = 7500. ! coarse roots 
WFRI = 750. ! fine roots 
WLTI = 50000. ! litter 
SCHLI = 72.51 ! chilling 
SFRCI = 0. ! forcing 
SHRDI = -23. ! frost hardiness 
TMPSMI = 0. ! temperature sum 
NTRI =1000. ! number of trees 
STAGEI = 4 0 . ! stand age 
HGHTI = 20.0 ! height 
CNRADI =1.9 ! crown radius 

[kg 
[kg 
[kg 
[kg 
[kg 
[kg 
[kg 
[cu: 
[FU] 
[°C] 
[°C 
[ha-
[yr] 
[m] 
[m] 

DM 
DM 
DM 
DM 
DM 
DM 
DM 

d] 
1] 

ha 
ha 
ha 
ha 
ha 
ha 
ha 

1] 
1] 
1] 
1] 
1] 
1] 
1] 

* Parameters 

* Phenology 

SCHLBB 
SFRCBB 
SFRCLF 
TMINCH 
TOPTCH 
TMAXCH 
C1FRC 
C2FRC 
C3FRC 
DAYLLF 
CFLUSH 
CLFFL 
BATMP 
MNBB 
MNLF 
DBBDT 
DLFDT 

BDBST2 
FRGRN2 
F0LFL2 

= 117.6191 
= 3.5824 
= 68.59 
= -19.4188 
= -0.2442 
= 76.9514 
= 1. 
= -0.1017 
= -33.0535 
= 10.40 
= 0.5 
= 50. 
= 4.4 
= 121. 
= 288. 
= -2. 
= 0. 

Observed dates 
1940 1941 1942 

= 121, 130, 121, 
= 129, 141, 133, 
= 282, 284, 281, 

state of chilling required for budburst [CU] 
state of forcing required for budburst [FU] 
state of forcing required for leaf fall [FU] 
minimum temperature for chilling [°C] 
optimum temperature for chilling PC] 
maximum temperature for chilling PC] 
coefficients for rate of forcing 

daylength at date of leaf fall [h d-1] 
coefficient for leaf flush in spring [d-1] 
coefficient for leaf fall in autumn [d-1] 
base temperature for temperature sum PC] 
mean date of budburst for regression model 
mean data of leaf fall for regression model 
shift of budburst with temperature for regression model 
shift of leaf fall with temperature for regression model 

of budburst, 'forest green' and foliage fall, in The Netherlands 
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953: 

115, 119, 120, 113, 123, 114, 114, 125, 123, 118, 115 
123, 132, 128, 122, 128, 120, 123, 131, 128, 126, 124 
289, 293, 289, 282, 286, 290, 298, 294, 299, 283, 287 

* Frost hardiness 

RPMIN 

RPMAX 
RTMIN 
RTMAX 
PI 
P2 
AP 
BP 
T1 
T2 
AT 
BT 
NLCF 

NLCH 
TAU 
RMIN 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

0. 
-18.5 
0. 
-47. 
8 . 
16. 
-2.31 
18.5 
10. 
-16. 
1.81 
-18.1 
14.08 
8. 
12. 
-2 .3 

minimal change of SSHRD with photoperiod 
maximal change of SSHRD with photoperiod 
minimal change of SSHRD with temperature 
maximal change of SSHRD with temperature 
lower and upper limit of effective range [h d-1] 
of photoperiod to change frost hardiness 
constants, to describe to effect of night-
length on frost hardiness 
lower and upper limit of effective range 
of temperature to change frost hardiness 
constants, to describe to effect of tempe­
rature on frost hardiness 
critical nightlength to start forcing 
critical nightlength for full hardening 
time constant 
minimum level of frost hardiness [°C] 
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* Photosynthesis and respiration 

AHAXM 
EFF20 

GAMM20 
IEC02 
DRSP20 
RSMIN 
RB 
RC 
ASRQ 
Q10 
REFTMP 

= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 

20. 
0.45 

50. 
0.70 
1.4 
250. 
30. 
5000 
1.5 
2.0 
25. 

maximal value of AMAX 
photosynthetic light use efficiency 

[kg C02 ha-1 leaf h-1] 
[kg C02 ha-1 leaf h-1 
(J m-2 leaf s-1)-1] 

C02 compensation point [/unol mol-1] 
ratio internal to external C02 concentration [-] 
dark respiration [kg C02 ha-1 leaf h-1] 
min. stomatal resistance at light saturation [s m-1] 
leaf boundary layer resistance [s m-1] 
cuticulair resistance [s m-1] 
assimilate requirements [kg CH20 kg-1 DM] 
temperature effect on respiration [-] 
reference temperature [°C] 

* Light interception 

KDF = 0.65 
SLA = 20. 
LAIMAX = 6.0 
SCV = 0.20 

! extinction coefficient for diffuse light 
! specific leaf area 
! maximum leaf area index 
! scattering coefficient 

[-] 
[m2 leaf kg-1 leaf DM] 

* Death rates 

CDFL2 
CDBR 
CDSU 
CDHU 
CDCR 
CDFR 
CDLT 

= 0.0 
= 0.03 
= 0.0 
= 0.0 
= 0.03 
= 1.0 
= 0.01 

coeficient for longevity of Last sapwood ring [yr-1] 
coeficients for death rates: Eyr-1] 
0.0, 0.1, 0.5, 5.0, 10.0: for foliage classes of coniferous trees 

* Reserve level 

CRSFL 
CRSBR 
CRSSW 
CRSHW 
CRSCR 
CRSFR 
CRSNX 

= 0.05 
= 0.05 
= 0.03 
= 0.00 
= 0.03 
= 0.05 
= 4. 

coefficients for reserve level 

ratio maX to miN of reserve level 

[-] 

* Stand characteristics 

CNBASE = 
DBH 
DBHLAI = 
BADEN = 
HGHMAX = 
C1HGHT = 
C2HGHT = 
MCNRAD = 
CSH1 
CSH2 
CSH3 
THAGE2 = 

0 
45 
70 

FTHVL2 = 
0. 
0. 
0. 

FTHTR2 = 

0. 
0. 
0. 

4 
2C 
3 

0 

. 
33 

550. 
4C 
-C 
1 
3 
0 
1 
0 

18 
10 
05 

30 
16 
07 

.0 

.0337 
4214 
3 
087905 
9005 
8073 

0. , 
50. , 
75. , 

0.17, 
0.08, 
0.04, 

0.27, 
0.14, 
0.06, 

0. 
55. 
80. 

0.15 
0.07 
0.04 

0.24 
0.12 
0.05 

[m] 
[cm t ree -1 ] 

[kg m-3] 
[m] 

height of crown base 
mean diameter at breast height 
ration DBH to maximal LAI 
basic density 
maximal height at this site 
coefficients for Chapman-Richards eq. for 
height growth 
maximum crown radius 
coefficients of Shumacher-Hall equation for 
volume increment 

age at which thinning occurs 
0. , 0., 

60. , 65., 
85. , 90. 
! fraction of stemvolume removed by thinning 
0.13, 0.11, 
0.06, 0.05, 
0.03, 0.03 
! fraction of total number of trees or real number of 
! trees removed by thinning 
0.21, 0.18, 
0.10, 0.09, 
0.04, 0.03 
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* Mineral content 

NFL 
NBR 
NSW 
NHW 
NCR 
NFR 
PFL 
PBR 
PSU 
PHU 
PCR 
PFR 
KFL 
KBR 
KSU 
KHU 
KCR 
KFR 
CFL 
CBR 
CSU 
CHU 
CCR 
CFR 
MFL 
MBR 
MSW 
MHU 
MCR 
MFR 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

0.0180 
0.0035 
0.0030 
0.0005 
0.0030 
0.0100 
0.0011 
0.0004 
0.0003 
0.0001 
0.0003 
0.0010 
0.0060 
0.0008 
0.0008 
0.00015 
0.0008 
0.0040 
0.0024 
0.0007 
0.0005 
0.0006 
0.0008 
0.0020 
0.0010 
0.0002 
0.0001 
0.00005 
0.0001 
0.0005 

! Nitrogen content in biomass components [kg kg-1] 

! Phosphorus content in biomass components [kg kg-1] 

! Potassium concentrations in biomass components [kg kg-1] 

! Calcium concentrations in biomass components [kg kg-1] 

Magnesium concentrations in biomass components [kg kg-1] 

* AFGEN functions 

AMDVST = 
0. 
1. 
2. 
3. 

AMTMPT = 
-30.0 

-5.0 
0.0 

13.0 
25.0 
35.0 
50.0 

AMAGET = 
0. 

100. 
366. 
730. 

1095. 
1460. 
1825., 
3650., 
5475. 
9999. 

GMTMPT = 
-50.0, 

5.0, 
10.0, 
25.0, 
30.0, 
35.0, 
50.0, 

GSVP0T = 
O.C 
5.C 

10.C 
15.C 

0., 
1-, 
1-1 
0. 

0.0, 
0.0, 
0.1, 
1.0, 
1.0, 
0.1, 
0.0 

1.00 
1.00 
0.90 
0.75 
0.65 
0.55 
0.45 
0.33 
0.10 
0.10 

0.0, 
0.0, 
1.0, 
1.0, 
1.0, 
0.0, 
0.0 

, 5.0 
, 3.5 
, 2.6 
, 1.9 

! development state vs. AMAX 

temperature vs. AMAX 

! age vs. AMAX 

temperature vs. mesophyL conductance 

! vapour pressure deficit vs. stomatal conductance 
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20.0, 1.3, 
25.0, 0.7, 
30.0, 0.5, 

100.0, 0.01 
DvSTB = 

0. 
3.5824 

2000. 
5000. 

FFLTB = 
0.00 
0.95 
1.00 
1.25 
1.50 
1.75 
2.00 
3.00 

FBRTB = 
0.00 
0.95 
1.00 
1.25 
1.50 
1.75 
2.00 
3.00 

FRTTB = 
0.00 
0.95 
1.00 
1.25 
1.50 
1.75 
2.00 
3.00 

FFRTB = 
0.00 
0.95 
1.00 
1.25 
1.50 
1.75 
2.00 
3.00 

FRSTB = 
0.00 
0.95 
1.00 
1.25 
1.50 
1.75 
2.00 
3.00 

0., 
1-, 
2.. 
3. 

1.00, 
1.00, 
1.00, 
1.00, 
1.00, 
1.00, 
1.00, 
1.00 

0.20, 
0.20, 
0.20, 
0.20, 
0.20, 
0.20, 
0.20, 
0.20 

0.20, 
0.20, 
0.20, 
0.20, 
0.20, 
0.20, 
0.20, 
0.20 

0.80, 
0.80, 
0.80, 
0.80, 
0.80, 
0.80, 
0.80, 
0.80 

1.00, 
1.00, 
1.00, 
1.00, 
1.00, 
1.00, 
1.00, 
1.00 

! forcing vs. development state upto DVS=1 (leaf unfolding 
! temperature sum for the rest of the growing season 

allocation to foliage 
table only used for coniferous trees 

! allocation to branches 

! allocation to roots 

! allocation to fine roots 

! allocation to reserves 
! table only used for coniferous trees 


