
füAJonoMgS^ 

Ritsert C. Jansen 

Genetic mapping of quantitative trait loci 

in plants - a novel statistical approach 

Proefschrift 

ter verkrijging van de graad van doctor 

in de landbouw- en milieuwetenschappen 

op gezag van de rector magnificus, 

dr. C.M. Karssen, 

in het openbaar te verdedigen 

op maandag 27 februari 1995, 

des namiddags te vier uur in de aula 

van de Landbouwuniversiteit te Wageningen 

lÄH:^(C^ 



CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

Jansen, R.C. 

Genetic mapping of quantitative trait loci - a novel statistical approach/ 

Ritsert C. Jansen - [S.I.: s.n.]. 

Thesis Wageningen - With summary in Dutch 

ISBN 90-73771-14-5 

Subject headings: genetic mapping, quantitative trait loci, statistics. 



Aan mijn ouders 

Aan Henny, Rianne, Ymke en Yde 



VOORWOORD 

In dit boekje zijn een aantal artikelen gebundeld, zoals die de afgelopen jaren op mijn 
beeldscherm (en daarna in wetenschappelijke tijdschriften) verschenen zijn. Het moment 
is dan ook voor mij daar om, naar goede wetenschappelijke traditie, dit werk als 'proeve 
van bekwaamheid tot het zelfstandig uitoefenen van de wetenschap' te verdedigen ten 
overstaan van de promotiecommissie. 

Hoe heeft het toch zo ver kunnen komen? Dit proefschrift gaat in hoge mate over 
toeval en genetische en omgevings-factoren, zodat een verklaring in deze hoek voor de 
hand ligt. Allereerst: met een moleculair geneticus als vader en een zoöloge als moeder 
is de kans op een individu met interesse in biologie, en genetica in het bijzonder, 
natuurlijk aanzienlijk. Wanneer zo'n individu dan ook nog in de juiste voedingsbodem 
mag opgroeien, dan kan het haast niet meer mislopen. Hoe dan ook, Gerard en Netty, 
heel veel dank voor jullie genen en ondersteuning. 

In 1981 ben ik wiskunde gaan studeren aan de Rijksuniversiteit Groningen met als 
uiteindelijk doel het toepassen van wiskundige gereedschappen in 'de groene hoek'. 
Vooral statistiek was (en is) een zeer leuk vak. Willem Schaafsma heeft mij op bijzondere 
wijze in de wereld van statistiek ingevoerd. 

Begin 1988 kwam ik op het toenmalige Instituut voor de Veredeling van 
Tuinbouwgewassen (IVT) werken. De wijze waarop Hans Jansen mij begeleidde en toch 
ergens volledig vrij liet, heb ik zeer gewaardeerd. Ten gevolge van fusies kwamen wij in 
1990 met twee kwantitatief genetici, Piet Stam en Johan van Ooijen, in de nieuwe 
afdeling 'Populatiebiologie' van het nieuwe 'Centrum voor Plantenveredelings- en 
Reproductieonderzoek' (CPRO-DLO). Al weer een (toevallig?) schot in de roos, want 
hierdoor passeerden nieuwe en uitdagende genetische problemen mijn pad en ik prijs 
mij dan ook zeer gelukkig dat ik zo met de neus in de 'QTL mapping' boter mocht 
vallen. Het is zonder meer duidelijk dat de kruisbevruchting binnen onze afdeling geleid 
heeft tot 'hybride' krachten. Ik wil na Hans ook met name Piet zeer nadrukkelijk 
bedanken: op vele momenten ben jij de aangever geweest van interessante problemen 
en hebben onze discussies bijgedragen tot de oplossing ervan. Onder jouw begeleiding 
en met jouw soms nadrukkelijke ondersteuning heb ik mij in het wetenschappelijke 
strijdgewoel rond 'QTL mapping' gestort. Het is en blijft dan ook jammer dat de eenheid 
binnen de afdeling Populatiebiologie door jouw vertrek verstoord is. Aan de andere kant 
doet het me juist veel plezier dat jij nu als mijn promotor kan optreden. Ik hoop van 
harte dat de plezierige samenwerking met jou en Johan nog verder mag groeien. 

Ook vele andere collega's, zowel binnen als buiten het CPRO-DLO, hebben 
bijgedragen tot een goede werkomgeving. Ik heb van verschillende collega's (Paul Odinot 
en Pim Lindhout, afdeling Groente en Fruit, CPRO-DLO; Peter de Boer, vakgroep 
Erfelijkheidsleer, LUW; Clare Lister en Caroline Dean, Department of Molecular Genetics, 
John Innes Centre) fraaie gegevens uit echte experimenten gekregen en, na analyse. 



verwerkt in dit boekje. Maarten Koornneef (vakgroep Erfelijkheidsleer, LUW) heeft mij 
voorzien van achtergrond-informatie over Arabidopsis. 

De leden van de promotiecommissie, Robert Curnow als tweede promotor in het 
bijzonder, wil ik bedanken voor hun bereidheid zich over mijn werk te buigen. 

Tenslotte, Henny, Rianne, Ymke en Yde: genetica is fantastisch zowel in theorie als 
ook in praktijk! 
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ABSTRACT 

Quantitative variation is a feature of many important traits such as yield, quality and 
disease resistance in crop plants and farm animals, and diseases in humans. The genetic 
mapping, understanding and manipulation of quantitative trait loci (QTLs) are therefore 
of prime importance. Only by using genetically marked chromosomes is it possible to 
detect and map these QTLs. The recent advent of complete genetic maps of molecular 
markers for many plant and animal species therefore heralds a new era for quantitative 
genetics. The "interval mapping" approach to QTL mapping is now widely used, though 
true resolution of quantitative variation into QTLs is hampered because only single-QTL 
models are used. Here we develop a novel analytical approach, " MQM mapping ", where 
MQM is an acronym for multiple-QTL models as well as for marker-QTL-marker. 
Computer simulation work and practical experiments in tomato and in the model 
organism Arabidopsis thaliana demonstrate the superiority of the new approach over the 
conventional one in genetic mapping of multiple genes underlying quantitative variation. 



OUTLINE OF THE THESIS 

In chapter I the issue of genetic mapping of quantitative trait loci (QTLs) is introduced 
and an overview of biometrical methods used is presented. 

In chapter II a novel, general and flexible biometrical framework for QTL mapping 
is developed. A very simple algorithm to obtain estimates of the parameters of the 
models is described. Our approach can be applied to various types of QTL background, 
and to many types of progeny, trait, experimental setup, etcetera. Two simulated 
backcross examples are worked out to demonstrate the models in "full action". The 
problem of simultaneously mapping multiple QTLs is also addressed. Exact models for 
multiple QTLs can be fitted to the data, at least in principle, but much computational 
work is necessary when the number of QTLs is large. An adaptive approach to the 
mapping of multiple QTLs is therefore suggested. In this approach models are exact for 
a single putative QTL at a given map location. They are however approximate for other 
putative QTLs, due to the fact that these QTLs are replaced by nearby markers (i.e. 
markers are used as "cofactors"). 

In chapter III a simple simulation study is presented with three QTLs, two of which 
are located on the same chromosome. A more realistic simulation study concerning the 
detection of eleven QTLs on a genome of ten chromosomes is also included. These 
studies illustrate the use of marker cofactors in the detection of multiple QTLs. 

In chapter IV the problem of missing observations at marker loci is solved, a problem 
which so far hampered the use of markers as cofactors in practical experiments. The core 
of the very general method described is the completion of any missing genotypic (QTL 
and marker) observations. A practical example is described in which multiple QTLs for 
plant height in tomato are mapped in an F2 progeny. It is demonstrated how additional 
parental data can be used in QTL mapping. 

In chapter V the chance of a type I error (i.e. a QTL is indicated at a location where 
actually no QTL is present) and the chance of a type I I error (i.e. a QTL is not detected) 
are studied by computer simulation. We address problems concerning the selection of 
"important" marker cofactors, and problems concerning the fitting of models with many 
marker cofactors relative to the number of plants. Our mapping approach is refined, so 
as to make it possible to exploit the full power of complete marker linkage maps. The 
approach is thereupon called MQM mapping, where MQM is an acronym for "multiple-
QTL models" as well as for "marker-QTL-marker". 

In chapter VI a practical example is presented, in which QTLs time and QTL by 
environment interactions are detected for flowering time in recombinant inbred lines of 
Arabidopsis thaliana. 

Finally, in chapter VII it is demonstrated that our method of parameter estimation 
makes it easy to handle complex mixture models in other areas of research. A practical 
example using data on non-disjunction in the mouse is given. 



I. MAPPING OF QUANTITATIVE TRAIT LOCI BY USING GENETIC 
MARKERS: AN OVERVIEW OF BIOMETRICAL MODELS USED 

INTRODUCTION 
In crop plants quantitative variation is a feature of many important traits, such as yield, 
quality or disease resistance. Means of analyzing quantitative variation and especially of 
uncovering its potential genetic basis are therefore of prime importance for breeding 
purposes. It has been demonstrated in the early 20th century that such quantitative 
variation results from the combined action of multiple segregating genes and 
environmental factors (Johannsen 1909). An intrinsic feature of such traits is, however, 
that the individual genes contributing to quantitative variation can hardly be 
distinguished. The genetics of such complex traits is therefore studied in general terms 
(population means and variances, covariances between progenies, heritabilities and so on) 
of classical quantitative genetics (Mather and Jinks 1971), rather than in terms of 
individual gene effects. Only by the use of genetically marked chromosomes, is it possible 
to detect and locate the loci affecting quantitative traits ("quantitative trait loci" or 
"QTLs"). Linkage between QTLs and morphological markers (Sax 1923; Rasmusson 1933; 
Thoday 1961) has been reported, but accurate and systematic genetic mapping has been 
hampered by the lack of a sufficient number of genetic markers covering an entire 
genome. Recently, new tools have become available by the advent of molecular markers, 
such as restriction fragment length polymorphisms (RFLPs; Botstein et al. 1980; 
Beckmann and Soller 1983). Now, dense genetic linkage maps exist for many plant and 
animal species, which heralds a new era for quantitative genetics (Tanksley et al. 1989). 

Powerful and accurate biometrical methods are needed, so as to make possible the 
dissection of quantitative variation of complex characters into individual QTL effects. 
Mapped QTLs can be traced in breeding programmes, for instance, indirectly by selection 
for linked markers, or they can be cloned and introgressed via molecular or cell-biological 
techniques. The traditional methods for mapping of QTLs are, however, neither powerful 
nor accurate and the development of better methods is an area open to research. Not 
surprisingly, the detection and mapping of QTLs is gaining rapidly growing attention from 
biometrical geneticists. 

BIOMETRICAL MODELS 
Here, we give a short overview of the advancements in biometrical modelling of the QTL 
mapping problem. The models will be briefly described for backcross progenies, but the 
same ideas also apply to other types of progeny, in which linkage association between 
markers and QTLs is manifest. 
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Studying single markers one by one. The traditional approach to detecting and 
mapping QTLs involves studying single markers one by one (Sax 1923; Soller and Brody 
1976). Allele substitution effects at a marker locus indicate the presence of one or more 
linked QTLs. In the case of a backcross progeny, the expected difference between the 
two marker classes, say Mm and mm, is 

MMm-tJmm=Eai(1-2ri> ( 1 ) 

where the summation is over QTLs, r-, is the recombination frequency between the marker 
and the i-th QTL, and a, is the allele substitution effect of the i-th QTL. The realized value 
of 1-2fi is likely to be close to 0 for unlinked QTLs (unless the progeny size is small), and 
the effect of those QTLs is negligible. The F-test in analysis of variance is commonly used 
to test for the allele substitution effect at the marker locus. It is assumed that V=uMm+£ 
for individuals in marker class Mm, and V=umm+£ for individuals in marker class mm, 
where Y is the value of the phenotypic trait and F is a random normally distributed error. 
In short regression notation 

^Jmm+x(MMmïO+£. (2) 

where the indicator variable x takes the value 0 and 1 for the genotypes mm and Mm, 
respectively, and uMm-umm is the allele substitution effect. 

This marker-one-by-one approach has a number of shortcomings. In the case of a 
single segregating QTL, (a) tight linkage to a single QTL with a small effect cannot be 
distinguished from loose linkage to a single QTL with a large effect; (b) the position of 
a single QTL relative to the marker is not defined accurately. In the case of multiple QTLs, 
(c) the method is not powerful since QTLs are mapped one a time, ignoring the effects 
of other mapped QTLs; (d) the method cannot separate linked QTLs; (e) effects of QTLs 
with opposite sign effects cancel so that the test for the allele substitution effect at a 
marker locus is not even a proper test for QTL activity; (f) the presence of QTLs with 
effects of equal sign can lead to the false detection of a single "ghost-QTL" at an 
intermediate marker; Finally, (g) the error distribution is actually a mixture of (normal) 
distributions (due to recombinations between the marker and QTLs; see below). 

Mixture models for a single QTL with one or two flanking markers. Weiler (1986) 
emphasized that the trait should be considered to follow a mixture of (normal) 
distributions and he developed mixture models for estimating the linkage between a 
single marker and a single QTL. Suppose that F, individuals with genotype MQ/mq are 
backcrossed to the parent with genotype mq/mq. For individuals in marker class Mm the 
model is V=uQq+Fwhen no recombination between the marker and the QTL has occurred 
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(chance 1-r), and ^=uqq+£ otherwise (chance r). Similarly, for individuals in marker class 
mm, the model is V^u^+f when no recombination between the marker and the QTL has 
occurred (chance 1-r) and Y^y^+E otherwise (chance r). In short regression notation 

where uQq-uqq is the allele substitution effect at the QTL and X is a random indicator 
variable which takes values 0 and 1 for the genotypes qq and Qq, respectively, with 
probabilities r or 1 -r depending on the marker genotype. If the phenotypic values are not 
affected by a QTL, then V=u+E, i.e. uQq=uqq=u. The test for the presence of a putative 
QTL is commonly based on a comparison of the likelihood of the model with the QTL 
and that of the model without the QTL (the likelihood-ratio test). 

Weller's approach has been generalized so as to make possible the analysis of single 
QTLs enclosed by a pair of flanking markers (Simpson 1989; Lander and Botstein 1989; 
Jensen 1989; Knapp et al. 1990). This flanking marker procedure has been termed 
"interval mapping". The regression model (3) is still used, but the distribution of X now 
depends on the two flanking markers. Expressions for the (conditional) probabilities of 
the various genotypes can be derived straightforwardly. 

The interval mapping method has several advantages over the traditional approach. 
In the case of a single segregating QTL, (a) the location and the effect of the QTL can 
be assessed more accurately; (b) the likelihood for the presence of a putative QTL can be 
plotted along the genetic map, so as to present the evidence for QTLs at the various 
positions of the genome; (c) the test for the presence of a QTL is more powerful. The 
principal shortcoming of interval mapping is that still only models for a single QTL are 
used, which is in clear contradiction with the commonly assumed oligogenic or polygenic 
nature of quantitative traits. Therefore, interval mapping has a number of shortcomings 
when two or more QTLs are segregating; see the points (c)-(f) listed in the previous 
section. This has motivated theoretical research for multiple QTL mapping methods. 

Standard multiple regression of the trait on the markers. The simple method based 
on regression of phenotype on markers one by one has been generalized to multiple 
regression methods in which the trait can be regressed on a large number of markers 
(Cowen 1989; Stam 1991; Rodolphe and Lefort 1993; Jansen 1993; Zeng 1993; Jansen 
and Stam 1994). If the marker map sufficiently covers the whole genome, the major part 
of the QTL induced variation will be absorbed by marker cofactors. The regression model 
reads 
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y=M+£x,a,rf, (4) 

where the summation is over marker loci, and Xj and a, are the indicator variable and the 
allele substitution effect for the i-th marker, respectively. Individuals with any missing 
marker observation might be eliminated from the regression, but in regression of the 
trait on many markers only a very limited set of data would then remain. Jansen and 
Stam (1994) developed the exact model, i.e. a mixture model, in which the indicator 
variable Xj is replaced by a random indicator variable Xj, the probability distribution of 
which is based on the observations at the linked marker loci (see below). Rodolphe and 
Lefort (1993) replaced the indicator variable x< by the expectation of Xx given the 
observations at linked marker loci. 

The multiple regression approach has several clear advantages: (a) the background 
"noise" is reduced (but not minimized) by taking into account the effects of QTLs by 
nearby markers; (b) by starting with a 'polygenic' model (regression on all markers) it gets 
around detection and mapping problems with interfering QTLs; (c) in regression on all 
markers, the test for QTL activity in a certain region is generally unaffected by QTLs that 
are located in other regions; (d) standard procedures for selection of important variables 
in regression can be used, so as to identify the "important" markers, hopefully those 
flanking the QTLs. Compared to interval mapping, the multiple regression approach has 
the disadvantage that (a) no precise information for the QTL location or the QTL effect 
is obtained and (b) no QTL likelihood plots are produced. Further, (c) in regression on all 
markers, the test for QTL activity is not powerful due to genetic correlation between the 
QTL and markers outside the region under study; (d) the overall significance level in QTL 
detection is unclear when standard selection methods are used. 

Multiple regression models based on the expected values of the marker class 
means. Several authors (Knapp et al. 1990; Knapp 1991; Haley and Knott 1992; 
Martinez and Curnow 1992; Moreno-Gonzalez 1992) have developed similar approximate 
interval mapping methods, which could be generalized so as to map several QTLs 
simultaneously. These models are based on the expected phenotypic values of the marker 
classes, which are non-linear functions of QTL effects and recombination frequencies. The 
interval mapping model given by expression (3) is approximated by the model 

V^^WK-u^K. (5) 

i.e. X in expression (3) is replaced by its expectation ^,(X), given the observed genotype 
at the flanking marker loci. For multiple QTLs the regression model reads 
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V ^ J + E W a ^ , (6) 

where the summation is over putative QTLs; the variables X; are the indicator variables 
for the QTLs, and the ai are the allele substitution effects of the QTLs. Knapp et al. 
(1990) and Knapp (1991) ignore double and multiple crossovers to simplify the model. 
They estimate the recombination parameters in the non-linear models by direct means. 
Like in the interval mapping method, Haley and Knott (1992) and Martinez and Curnow 
(1992) move the QTL along the chromosome, and at each map location the likelihood 
for the presence of a putative QTL is plotted. At a given map location the recombination 
frequencies are known (and with that %/X)), so that expression (5) is a standard 
regression model with unknown parameters uQq and u^. This approach can be 
generalized to a two-dimensional search for two QTLs (by moving independently two 
QTLs along the chromosomes) or to a multidimensional search for multiple QTLs (by 
moving independently multiple QTLs along the chromosomes). To simplify the models, 
Moreno-Gonzalez (1992) ignores double crossovers between flanking markers and locates 
putative QTLs at a fixed position, namely halfway between their flanking markers. This 
makes it possible to regress the trait on many QTLs in a way similar to standard multiple 
regression of the trait on markers (in which case putative QTLs are "located at marker 
positions"). The models of Moreno-Gonzalez are, however, much more complex. 

The advantages of these methods compared to interval mapping are: (a) the effects 
of linked QTLs can be unravelled more efficiently and more accurately; (b) when two 
QTLs are simultaneously searched for, the simultaneous likelihood for the presence of 
these QTLs can still be plotted in a three-dimensional graph; (c)the computer programme 
is easy and fast. There are, however, several disadvantages: (a) the complexity of the 
models increases with the number of putative QTLs in the model; (b) the computation 
involved with all these models is almost unfeasible when the number of QTLs is larger 
than two or three; (c) two or three putative QTLs can be moved simultaneously along the 
chromosomes but other (mapped or not yet mapped) QTLs will be ignored; (d) the 
random variable X for the QTL in the mixture model is replaced by its expected value, but 
this approximation is not efficient in the case of major QTLs or QTLs located in the 
middle of wide marker intervals. 

Mixture models and approximate mixture models for multiple QTLs. Jansen (1992) 
developed exact models for multiple QTLs. We number the loci (markers and putative 
QTLs) according to their map order; X; is the indicator variable for the i-th locus. The 
regression model reads 
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y=jj+£X,a,rf, (7) 

where the summation is over putative QTLs. Jansen (1992) demonstrated how the 
simultaneous likelihood of the trait (V), the QTLs (X,) and their flanking markers (XM and 
Xi+1) can be maximized; in fact it was demonstrated that the mixture model can easily be 
embedded in the framework of multiple linear regression models and even in that of 
generalized linear models. The problem can be considered as a multiple regression 
problem with missing genetic data. The core of the method is to augment and complete 
the data: in case of a single QTL all data are replicated twice; the first replication is 
completed with the QTL genotype qq, the other replication with Qq, and corresponding 
weights (conditional probabilities) can be calculated. Parameter estimation is carried out 
by iterative weighted regression of the augmented data on the QTLs, alternating 
updating of the weights and updating of the parameter estimates. If many QTLs are 
assumed, the number of possible genotypes becomes so large that computation is no 
longer feasible. Disregarding genotypes with negligible weights can be a solution, 
without substantial loss of information. 

Jansen (1992) described a "hybrid" method, combining interval mapping with 
standard multiple regression methods (see also Jansen (1993) and Zeng (1994)). The 
regression model reads 

/=Mqq+X(pQq-uq<l)+^Xjaj4£, (8) 

where X is the random indicator variable for the single QTL, and the summation is over 
markers used as cofactors. Jansen and Stam (1994) developed a very general method of 
multiple linear regression of a quantitative trait on genotype (QTLs and markers). This 
regression model is the same as that in expression (7), but now the summation is over 
loci in general, i.e. over QTLs and over those markers used as cofactors. Here, the 
method will be termed "MQM mapping", where MQM is an acronym for "multiple-QTL 
models" as well as for "marker-QTL-marker", which reflects the insertion of QTLs 
between markers on the genetic map. The basic idea is the completion of any missing 
genotypic (QTL or marker) data by augmenting and weighting the data. Marker 
observations can be fortuitously missing, but also other types of missing marker data 
occur in a natural way. For instance in an F2, when markers are dominant and the 
heterozygote cannot be distinguished from one of the homozygotes. Or in outbred 
progeny, when markers with different information are located in mixed order on the 
chromosomes (only one of the gametes gives information on recombination if a marker 
segregates according to backcross rules, whereas both gametes are informative if a 
marker segregates according to F2 rules). Jansen (1994) studied the chance of type I or 
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type I I errors in MQM mapping. 
Advantages of the models for MQM mapping are: (a) the full power of complete 

linkage maps is exploited as much as it is computationally feasible, to complete any 
missing genetic (QTL and marker) data; (b) the likelihood for the presence of a putative 
QTL can be plotted along the genome when marker cofactors are used; (c) Models, 
which are exact for major QTLs and approximate for minor QTLs, can be fitted. 

CONCLUDING REMARKS 
We have sketched the recent developments of QTL mapping methods from the 
traditional marker-one-by-one approach, via the "single QTL" interval mapping approach 
to more advanced methods based on exact or approximate models for multiple QTLs. 
Presently the traditional marker-one-by-one approach and the interval mapping method 
are still widely used (cf. Paterson et al. 1991 ; Stuber et al. 1992; De Vicente and Tanksley 
1993). But it is now generally recognized that simultaneous mapping of multiple QTLs 
is more efficient and more accurate. Therefore, the methods based on simultaneous 
mapping of multiple QTLs should provide the method of choice for the analysis of QTL 
mapping data. These methods date, however, from the past two years and their 
properties are still being studied analytically or by simulation. 
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II. A GENERAL MIXTURE MODEL FOR MAPPING 
QUANTITATIVE TRAIT LOCI BY USING MOLECULAR MARKERS 

ABSTRACT 
In a segregating population a quantitative trait may be considered to follow a mixture 
of (normal) distributions, the mixing proportions being based on Mendelian segregation 
rules. A general and flexible mixture model is proposed for mapping quantitative trait loci 
(QTLs) by using molecular markers. A method is described to fit the model to data. The 
model makes it possible to (1) analyse non-normally distributed traits such as lifetimes, 
counts or percentages in addition to normally distributed traits, (2) reduce environmental 
variation by taking into account the effects of experimental design factors and interaction 
between genotype and environment, (3) reduce genotypic variation by taking into 
account the effects of two or more QTLs simultaneously, (4) carry out a (combined) 
analysis of different population types, (5) estimate recombination frequencies between 
markers or use known marker distances, (6) cope with missing marker observations, (7) 
use markers as covariables in detection and mapping of QTLs, and finally to (8) 
implement the mapping in standard statistical packages. 

INTRODUCTION 
The advent of complete linkage maps of molecular markers has recently stimulated 
interest in studying the genetics underlying quantitative traits (cf. PATERSON et al 1988; 
SOLLER and Beckmann 1983). Several methods have been proposed for mapping 
quantitative trait loci (QTLs). Methods proposed by WELLER (1986) and Luo and KEARSEY 

(1989) are based on estimation of linkage between a single putative QTL and a single 
marker. JENSEN (1989), LANDER AND BOTSTEIN (1989) and KNAPP et al. (1990) used a model 
involving flanking markers for detection and mapping of a single QTL. In this case linkage 
between a putative QTL and two markers is estimated. LANDER and BOTSTEIN (1989) 
developed a software package (MAPMAKER-QTL) for backcross (BC) populations and F2 

populations. KNAPP et al. (1990) mentioned that they were also developing a software 
package (GENEMAP) for BC and F2 populations. WELLER (1986) emphasized that in a BC 
or F2 population a quantitative trait may be considered to follow a mixture of (normal) 
distributions. The mapping algorithm in both MAPMAKER-QTL and GENEMAP uses 
maximum likelihood methods based on the EM-algorithm to estimate parameters of the 
mixture model of normal distributions. LANDER AND BOTSTEIN (1989), KNAPP et al. (1990) 
and KNAPP (1991) mentioned the need for accurate and efficient methods which can 
handle multiple QTLs. Methods are also required that can cope adequately with 
non-normally distributed traits, such as lifetimes, percentages or counts. Similarly, 
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methods are required which can cope with designed experiments, in which populations 
are tested at a number of locations and in various years to study interactions between 
genotype and environment, or in which randomised blocks or other designs are used to 
control variation in experiments. LANDER and BOTSTEIN (1989) stated that standard 
computer programs for linear regression cannot be used. KNAPP et al. (1990) and KNAPP 

(1991 ) developed linear models for multiple unlinked QTLs and non-linear models for two 
and three linked QTLs, and for interactions between QTLs and environment. However, 
these models are no mixture models. 

In the present paper a mixture model is developed to overcome some of the 
shortcomings of the methods mentioned previously. Extensions of mixture models and 
parameter estimation methods based on the EM-algorithm, as proposed by LANDER and 
BOTSTEIN (1989) and KNAPP et al. (1990), are described. In this paper the emphasis is on 
genetical and statistical modelling of the mapping problem, not on the detection 
problem. Two simulated examples are included. The first example illustrates modelling 
for a non-normally distributed trait and some problems concerning the robustness of the 
traditional approaches for deviations from normality. The second example illustrates 
modelling for multiple QTLs and some problems concerning detection of QTLs. 

GENETICAL AND STATISTICAL MODELS 
In the QTL-mapping problem the phenotype of the quantitative trait and the allelic 
constitution at the marker loci are observed, whereas the allelic constitution at the QTLs 
remains unobserved. However, for each individual weights may be specified, which 
quantify the (conditional) probability for each possible allelic constitution at the QTLs 
(KNAPP et al. 1990). In the present paper it is demonstrated that this enables one to 
reduce the QTL-mapping problem to two classical problems, one concerned with genetic 
linkage and the other with regression of phenotype on genotype. Genetic linkage models 
and models for regression of phenotype on genotype will be recapitulated in the next 
two sections. In these two sections it is assumed that the allelic constitution at the QTL 
is known. Then, in a third section it is supposed that the allelic constitution at the QTLs 
is unknown and the method for mapping QTLs will be developed. Consequences of a 
single QTL and two QTLs are considered in the cases of seifing F, individuals 
(M^M^m^mj and MlQ,M2Q2M3/mlq1m2q2m3, respectively) to obtain an F2 population, 
and back crossing F, individuals to one of the parents (say m1qm2/m,qm2 and 
m1q1m2q2m3/m1q1m2q2m3, respectively) to obtain a BC-population. Extension to any other 
number of QTLs and to other population types is straightforward. 

Genetic Linkage. A general model for estimation of genetic linkage between markers 
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and QTLs will be described. The model makes it possible to (1) take into account a single 
QTL, or two or more QTLs simultaneously, (2) analyse BC populations, F2 populations and 
many other populations, (3) estimate recombination parameters between markers, or use 
known marker distances, and (4) implement the parameter estimation in standard 
statistical packages. 

The classical theory of genetic linkage has been described by BAILEY (1961). In this 
section the problem of estimation of genetic linkage parameters will be treated 
differently, namely by using log-linear models. Moreover, it will be assumed that the 
complete allelic constitution of chromosomes is observed, which implies that repulsion 
and coupling phases can be distinguished and that recombination events can be counted. 
The adaptive approach enables one to implement the mapping of QTLs readily in 
statistical packages, as will be made clear in one of the following sections. 

First, the case of a single QTL with flanking markers is considered, which 
corresponds to the classical 'three point' linkage analysis. Let r, and r2 denote the 
recombination frequency between the QTL and its flanking markers, respectively. Table 
1 shows the gametes produced by F, individuals (f^QM/ir^qm^, classified by the 
recombination events in a 2 x 2 table. Table 1 also shows the expected frequencies of 
the four categories in the absence of interference. Let p^, p0„ p,0 and p,, denote the 
frequencies of the four categories of gametes in Table 1. The recombination events 
follow a multinomial distribution with parameters p^, p01, p,0 and p„, while the eight 
gamete types follow a multinomial distribution with parameters Vip^ (i,j = 0,1). The usual 
log-linear model holds for the eight gamete types: 

log(Vip00) = k, if the gamete is M,QM2 or m,qm2, 
log(V2p10) = k + v, if the gamete is m,QM2 or M,qm2, 
logO/iPo,) = k + C if the gamete is M,Qm2 or m,qM2, and 
log(1/2p,,) = k + v + £, if the gamete is M,qM2 or m,Qm2, 

Table 1. Gametes produced by F, individuals and expected frequencies of the four categories of gametes 

Recombination between Recombination between QTL and second marker3 

QTL and first marker3 

1 

M,QM2, m,qm2 M,Qm2, m,qM2 

(1-/-,)(1-r2) (1-r,)r2 

m,QM2, M,qm2 M,qM2,m1Qm2 

/•,(1-r2) r,r2 

0, No recombination; 1, recombination 
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Table 2. Coefficients of the genetic linkage parameters and the parameters for regression of phenotype 
on genotype in the progeney obtained by backcrossing F, individuals M, QMj/m, qm2 to the parent m, 
qtr i j /m, qm 2 

Observed 
incomplete allelic 
constitution 

Iv^m, M2m2 

Mjm, m2m2 

rr^m, M2m2 

n^m, m2m2 

Unobserved complete 
allelic constitution 

M,QM2/m1qm2 

M ^ M / m ^ m j 

Iv^Qm/rT^qmj 

M1qm2/m,qm2 

m,QM2/m1qm2 

m ^ M / m ^ m j 

m ^ m j / m ^ m j 

rr^qmj/rrijqmj 

Genetic linkage3 

X 

1 

1 

1 

1 

1 

1 

1 

1 

V 

0 

1 

0 

1 

1 

0 

1 

0 

{ 

0 

1 

1 

0 

0 

1 

1 

0 

Regression of 
phenotype on 
genotype6 

m a 

1 0 

1 -1 

1 0 

1 -1 

1 0 

1 -1 

1 0 

1 -1 

d 

1 

0 

1 

0 

1 

0 

1 

0 

Example: For M1 qm2/m1 qm2 individuals the coefficients of the genetic linkage parameters are 1 -X, 1 -v 
and 0<, since log[,/2r,(1-r2)]=log[1/2(1-r1)(1-r2)]+log[/',/(1-rl)]=1-X+1 v+0<; for M,qm2/m]qm2 individuals 
the coefficients of the parameters for regression of phenotype on genotype are 1 -m, -1 -a and 0-d, since 
the genotypic value satisfies G=m-a 

a A., v and C denote the parameters for the linear genetic linkage model: A.=log(,/2<1 -r,)(1 -r2)); v=log(r,)-
logO-r,); £=log(r2)-log(1-r2), with r, and r2 denoting the recombination frequencies between the QTL and 
its flanking markers 
b m,a, and d denote the parameters for linear regression of phenotype on genotype: m is the mean of the 
expected phenotypes of individuals with QQ and qq at the QTL, respectively; a is the additive effect; d is 
the dominance effect 

where v=log(r1)-log(1-rl) and ç>log(/"2)-log(1-r2). The parameters are subject to the 
constraint p ,̂ +p01 +p,0 +pn=1. In BC data only the chromosome originating from the 
F, parent provides information on the recombination parameters r, and r2. Table 2 shows 
coefficients of the genetic linkage parameters for each of the eight possible allelic 
constitutions. For example MjQlvyrï^qnr^ has coefficients 1-X, 0-v and 0Ç, since 
log^PooM-x+O-v+O-C 

In F2 data both homologous chromosomes originate from F, parents and therefore 
both homologous chromosomes are informative. When calculating probabilities it is 
useful to distinguish chromosomes of maternal and paternal origin. Let MjQIvyiv^qlv^ 
denote the genotype of an individual with chromosome IVI1Q(V12 of maternal origin and 
chromosome M,qM2 of paternal origin. Other genotypes are defined similarly. Maternal 
and paternal chromosomes are independent, so that pairs of chromosomes occur in 
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Table 3. Coefficients of the genetic linkage parameters and the parameters for regression of phenotype 
on genotype in the F2 progeny of selfed fv^QM/rr^qrr^ individuals 

Observed 
incomplete 
allelic 
constitution 

M,M, M2M2 

M,M, M2m2 

Iv^M, m2m2 

M,mt M2M2 

Iv^m, M2m2 

Iv^m, m2m2 

nr^m, M2M2 

m,m, M2m2 

Unobserved complete allelic 
constitution 

U^QUJUyQUj, 

M ^ M ^ M ^ M j , l̂ /l1qM2/M1QIS/l2 

M1qM2/M1qM2 

Iv^QMj/lv^Qm* M,Qm2/M,QM2 

M^Mj/Mjqmj , M1qm2/M,QM2 

M ^ m ^ M ^ M j , M ^ M ^ M ^ m j 

M^Mj/M^rr i j , M,qm2/M1qM2 

M,Qm2/M1Qm2 

M)Qm2/M,qm2, M1qmj/M1Qm2 

M1qm2/Mtqm2 

MigM/it i iQM;, m,QM2/M,QM2 

Iv^QMj/rr^qMj, m,qM2/M,Qlvl2 

M1qM2/m1QM2, m,QM2/M,qM2 

M,qM2/m1qM2, m,qM2/M1qM2 

M ^ M j / m ^ m ^ M1Qm2/m,QM2, 
m,QM2/M1Qm2, m1Qm2/M1QM2 

M,QM2/m1qm2, m1qm2/M,QM2 

Iv^Qm/rT^qM^ m,qM2/M,QM2 

m,QM2/M1qm2, M1qm2/m,QM2 

m ^ m / M ^ M ^ M,qM2/m1Qm2 

M1qM2/m,qm2, M1qm2/m1qM2> 

n^qMj/M^m^ m^m j /M^M j 

MfQmj/m^mj, m1Qm2/m1Qm2 

M1Qm2/m1qm2, mlqm2/m1Qm2 

M ^ m ^ m ^ m ^ n^Qm/rT^qmj 

M1qm2/m1qm2, mtqm2/m,qm2 

m,QM2/m,QM2 

mjQMj/m^Mj, rr^qM^rr^Qlvl; 

m ^ M / m ^ M j 

m,QM2/m,Qm2, m,Qm2/m]QM2 

Genetic 

A. 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

V 

0 

1 

2 

0 

1 

1 

2 

0 

1 

1 

1 

0 

2 

1 

1 

0 

0 

2 

2 

1 

1 

. 0 

2 

1 

2 

1 

0 

2 

linkage3 

C 

0 

2 

1 

1 

0 

2 

1 

2 

1 

0 

0 

1 

1 

2 

1 

0 

2 

0 

2 

1 

2 

1 

1 

0 

0 

1 

2 

1 

Offset 

0 

logG) 

0 

log(2) 

logO 

logO 

logO 

0 

logO 

0 

logO 

logO 

logO 

logO 

log(4) 

logO 

logO 

logO 

logO 

log(4) 

logO 

logO 

logO 

logO 

0 

logO 

0 

logO 

Regression of 
phenotype on 
genotype6 

m a 

1 1 

1 0 

1 -1 

1 1 

1 0 

1 0 

1 -1 

1 1 

1 0 

1 -1 

1 1 

1 0 

1 0 

1 -1 

1 1 

1 0 

1 0 

1 0 

1 0 

1 -1 

1 1 

1 0 

1 0 

1 -1 

1 1 

1 0 

1 -1 

1 1 

d 

0 

1 

0 

0 

1 

1 

0 

0 

1 

0 

0 

1 

1 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

0 

0 
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m,m, m2m2 

m ^ M j / m ^ n i j , rr^qiryrr^Qlvlj 

m^Mj/m^nf i j , m^rri j /mjqMj 

rr^qMj/rr^qmj, m^nri j /m^Mj 

m^mj/mjQrti j 

m^r r i j /m^mj , rr^qnrymjQrr^ 

m^mj /m^mj 

2 

2 

2 

2 

2 

2 

1 

1 

0 

2 

1 

0 

0 

2 

1 

2 

1 

0 

log(2) 

logO 

logO 

0 

logO 

0 

1 

1 

1 

1 

1 

1 

0 

0 

-1 

1 

0 

-1 

1 

1 

0 

0 

1 

0 

Example: For M,QM2/M,qM2 individuals the coefficients of the genetic linkage parameters are 2X, 1 v 
and 1-C, since log[l/2(1-rl)(1-r2)-

1/2r1r2]=2log[y2(1-r1X1-/'2)]+log[/-1/(1-r2)]=2-A+1 v + K ; For M1QM2/M1qM2 

individuals the coefficients of the parameters for regression of phenotype on genotype are "\-rri, 0-a and 
1-d, since its genotypic value satisfies G=m+d. MiQM^tA^qM1 and M^Mj/lv^QMj have the same 
coefficients and are grouped together. An extra offset of log (2) appears, since log[2'/2(1-r1)(1-
r2)%r,r2]=log[ %(1 -r,X1 -r2)Y>r,r2}+\ogO.) 

" \, v and c denote the parameters for the genetic linkage model: X=log(%(1-0(1-r2)); v=log(/-,)-log(1-/-,); 
£=log(r2)-log(1 -r2), where r, and r2 are the recombination frequencies between the QTL and its flanking 
markers 
b m, a and d are the parameters for the linear regression of phenotype on genotype: m is the mean of the 
expected phenotypes of individuals with QQ and qq at the QTL, respectively; a is the additive effect; d is 
the dominance effect 

expected frequencies Viphi • V2pjk (h,i,j,k = 0,1). Since log(16phi •
 1/>pjk) = log(1/2phi) + 

log(1/2pjk), it follows that the linear model is the sum of the linear models for the separate 
chromosomes. Table 3 shows coefficients of the genetic linkage parameters for each of 
the 64 allelic constitutions. For example M,Qlvyiv1,qM2 has coefficients 2k, 1 v and 1 •£, 
since logO^Poo-Vip,,) = logOfcpJ+logO'ip,,) = 1-A,+(1-X+1-v+1-0 = 2-A.+1-v+1< 
Genotypes M1QM2/MlqM2 and M1qlv12/M1QM2 have the same coefficients (and the same 
phenotype, see the next section) and may be grouped together. The probability that a 
genotype is either M^fvyiv^qMj or Iv^qrvyiv^QMj equals Z-Vip«,-Vip,,. Therefore, in the 
log-linear model an extra offset of log(2) appears, since logö-Vip^-Vip,,) = 2-k + l-v + 
1-C+log(2). 

Next, the case of an F, (MiQ,M2Q2M3/m,q,m2q2m3) with two QTLs in adjacent 
intervals is considered. Let /-,, and r,2 denote the recombination frequencies between the 
first QTL and its flanking markers. Similarly, let r2, and r22 denote the recombination 
frequencies between the second QTL and its flanking markers. In the absence of 
interference the recombination events in the first interval are independent of those in the 
second interval. The expected proportions of gametes of F, individuals are the products 
of the expected proportions in the first (p,hi) and second interval (p2jk). Since 
log(V2p,hj •

 1/2p2jk) = log(V2p,N) + log(V?p2jk), it follows that the linear model is the sum of 
the linear models for the separate QTLs (h,i,j,k=0,1). 

file:///-rri
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Maximum likelihood estimates for the parameters of the log-linear model (a 
so-called generalized linear model for multinomial data") may be obtained easily 
(MCCULLAGH and NELDER 1989): computations may be carried out by statistical packages 
having facilities for generalized linear models. It will be shown in one of the following 
sections that in solving the QTL mapping problem the genetic linkage analysis is carried 
out by fitting the log-linear model to weights which quantify the probability for each 
possible allelic constitution at the QTLs and marker loci. For example, suppose that the 
actual allelic constitution of a BC individual is M,QM2/m1qm2. In the QTL mapping 
problem only the allelic constitution I v^ l vym^ can be observed. Two probabilities may 
be calculated, namely the. probability that the complete allelic constitution is 
IV^QIvyiT^qmj, and the probability that it is M^Mj/rr^qirv Probabilities which are 
calculated, are conditional probabilities given the observed phenotypic value and given 
the observed marker genotype. 

For each observation coefficients of the genetic linkage parameters are specified and 
stored into a design matrix or into explanatory variables to be analysed. If applicable, 
offsets are stored into an offset variable. Estimation is often carried out by the 
Newton-Raphson method or by the method of scoring. Note that since the log-linear 
models for BC-populations, F2 populations and many other populations are specified in 
the same parameters, the corresponding data can be easily analysed by the same 
computer program. It is also possible to carry out a combined analysis of data of 
different population types. 

If the map distance between markers is unknown or based on insufficient 
information, the multinomial proportions are free of further constraints. However, once 
a proper map of the markers is available, one may add additional constraints. For 
example in the case of a single QTL, the extra constraint becomes p10 + p01 = t, where 
t is the known recombination frequency between the two markers. Finally, it is remarked 
that models may also be extended to include interference constraints, e.g. t=r,+r2-2C/yr2 

with C=1. .Estimation may be carried out again by applying the Newton-Raphson method 
or by the method of scoring. 

Regression of phenotype on genotype. A general model for regression of phenotype 
on genotype will be described. The model makes it possible to (a) analyse non-normally 
distributed traits such as lifetimes, counts or percentages in addition to normally 
distributed traits, (b) reduce environmental variation by taking into account the effects 
of experimental design factors and interaction between genotype and environment, (c) 
reduce genotypic variation by taking into account the effects of two or more QTLs 
simultaneously, and (d) implement the parameter estimation in standard statistical 
packages. 
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LANDER and BOTSTEIN (1989), KNAPP et al. (1990) and KNAPP (1991) discuss the 
traditional approach of regression of phenotype on genotype. We use the notation of 
BULMER (1985) and denote the phenotypic value by V, the genotypic value by G, and the 
environmental variation by E. In this section it is assumed again that the allelic 
constitution at the QTLs is known. The simplest model is Y = G + E. The genotypic 
contribution is often decomposed into additive (A) and dominance (D) components. The 
following linear model for the genotypic values at a single diallelic locus is formulated by 
Bulmer (1985) in short notation as G=m+A+D , or written out 

G=m+a, if an individual's genotype is QQ, 
G-m+d, if its genotype is Qq, and 
G=m-a, if its genotype is qq, 

where m is the mean of the expected values of the genotypes QQ and qq, the additive 
component A takes values +a, 0 or -a and the dominance component D takes values 0 
or cf. 

In Table 2 coefficients of the regression parameters are presented for each of the 
8 genotypes of a BC population. For example M,QM2/m1qm2 has coefficients 1 • m, 0-
a and 1 • d. In a BC population additive and dominance components are aliased (Table 
2). Therefore, the parameters uQq and uqq will be used below to denote the expected 
values of individuals with allelic constitution Qq and qq at the QTL, respectively. In Table 
3 coefficients of the regression parameters are presented for each of the 64 genotypes 
of an F2 population. For example, IV^QIvyrr^Qrr^ has coefficients 1 • m, 1 • a and 0- d, 
MtQMj/m^mj has coefficients 1 • m, 0- a and 1 • d, and M1qM2/m,qm2 has coefficients 
1-m, -1-a and 0-d. 

The model is readily extended to take into account two or more QTLs 
simultaneously. For example, the two loci linear model is G=m+A,+A2+D,+D2+AAn+ADu 

+/AD2,+DD12 (BULMER, 1985). 
Experimental design factors, such as blocks, have to be incorporated into the model 

to provide a certain degree of control over environmental variation. But also interactions 
between genotype and environment, such as year x genotype or location x genotype 
interactions, are of particular interest. The model is also readily extended to take such 
explanatory variables into account. For example, the single QTL model may be extended 
to G=m+A+D+X'&, where X'ß relates the genotypic value to the explanatory variables 
(ß is a vector of regression parameters and X is a vector of coefficients of regression 
parameters). 

Usually, the environmental variation E is assumed to be normally distributed with 
mean 0 and variance a2. However, it may actually have some other continuous 
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distribution, such as the log-normal or exponential distribution. It may even be discrete 
rather than continuous, such as is the case when percentages, counts or ordinal data are 
recorded. Generalized linear models provide an extension of classical linear models for 
normally distributed data to binomial data (percentages), Poisson data (counts), ordinal 
data (severity scores) and other types of data. Maximum likelihood methods for normally 
distributed data can be found in many statistical text books. Generalized linear models, 
and how to fit them to data, are extensively discussed by MCCULLAGH and NELDER (1989). 

It will be shown in the next section that in solving the QTL mapping problem a 
weighted regression analysis is carried out, in which the weights quantify the conditional 
probability for each possible allelic constitution at the QTLs and marker loci. 

Mapping quantitative trait loci. A general mixture model for mapping QTLs will be 
described now. The model makes it possible to (a) transfer to the QTL-mapping problem 
all facilities developed above for the two classical problems, one concerned with genetic 
linkage and the other with regression of phenotype on genotype (facilities such as 
analysis of non-normally distributed traits, or analysis of designed experiments), (b) cope 
with missing QTL data and missing marker data, and (c) implement the mapping in 
standard statistical packages. 

In the QTL-mapping problem the phenotype of the quantitative trait and the allelic 
constitution at the marker loci are observed, whereas the allelic constitution at the QTLs 
remains unobserved. However, for each individual weights may be specified, which 
quantify the conditional probability for each possible allelic constitution at the QTLs 
(KNAPP et al. 1990). Note that the information on the allelic constitution at the marker 
loci is in general also incomplete, since the phases (coupling or repulsion) remain 
unobserved. The information on the marker genotype may also be incomplete due to 
dominance, or to problems in classification. A special case of missing marker data is 
so-called selective genotyping, in which case marker data are collected only for the 
extreme phenotypic values (LANDER and BOTSTEIN 1989). An adaptive approach is to 
specify weights, which quantify the conditional probability for each possible allelic 
constitution at the QTLs and the marker loci simultaneously. It will be shown below that 
this enables one to implement the mapping of QTLs readily in statistical packages. 

The EM-algorithm, proposed by DEMSTER et al. (1977), may be used to specify and 
update weights iteratively. It will be demonstrated here that application of the 
EM-algorithm enables one to reduce the QTL-mapping problem to two classical 
problems, one concerned with genetic linkage and the other with regression of 
phenotype on genotype. 

Each iteration of the EM-algorithm consists of two steps: 
Step 1: specify or update weights, and 
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Step 2: update the parameter estimates by 

(1) a genetic linkage analysis based on the weights, and 

(2) a weighted regression of phenotype on genotype. 

In step 1 the weights are updated by calculating the conditional probabilities given the 

current parameter estimates according to the Bayes theorem (KNAPP et al. 1990; 

MCLACHLAN and BASFORD 1988; TITTERINGTON et al. 1985). In step 2 the classical problems 

are solved by using the weights. In the preceding sections the solutions of the 

corresponding classical problems have been discussed. 

Let us suppose again that in the BC population the phenotype y and the marker 

genotype M,m, M2m2 were observed. Coefficients of the parameters for the two possible 

complete genotypes MjQfvymlqnr^ and Iv^qlvyrr^qmj are stored into a design matrix 

or into explanatory variables to be analysed (Table 2). The corresponding weights are 

stored into an extra variable. 

Let us suppose next that in the F2 population the phenotype y and the marker 

genotype M,M, M2m2 were observed. Since the complete genotype has one of the 

following eight allelic constitutions M ^ M / M ^ m ^ MtQnyiv^QM^ Iv^Qlvyiv^qm^ 

Iv^qnVIV^QM^ M,qM2/M,Qm2, M ^ m / M ^ M ^ Iv^qivyiv^qmj or M ^ m / M ^ M j , the 

phenotype may be assumed to follow a mixture of eight distributions (Table 3). However, 

genotypes having the same coefficients of the regression parameters can be grouped 

together, so that the complete genotype is in one of the following four groups: 

{M,QM2/M,Qm2 or Iv^QrrVlv^QIvy, {Iv^Qlvyiv^qmj or M ^ m / M ^ M j } , {M,qM2/M,Qm2 

or Iv^Qm/lv^qlvy and {Iv^qlvyiV^qmj or M ^ m j / M ^ M J . Therefore, the number of 

components in the mixture can be reduced, so that the phenotype y can be assumed to 

follow a mixture of four distributions. As a consequence, an offset of log(2) appears in 

the log-linear model for genetic linkage. It can be derived analogously that the 

phenotype y follows a mixture of three distributions when an individual is homozygous 

at both marker loci, of four distributions when it is homozygous at only one of the 

marker loci, and finally of six distributions when it is heterozygous at both loci (Table 3). 

Therefore, individuals are replicated three, four or six times in the design matrix or 

explanatory variables, depending on their observed marker genotype. The weights of the 

corresponding allelic constitutions are stored again into an extra variable. 

The two steps of the algorithm are alternated until convergence. The algorithm is 

conveniently started by (arbitrary) thresholding of the data, giving initial weights equal 

to 0 or 1. Alternatively, the algorithm can be started by setting the parameters to (well 

choosen) initial values. The analyses can be carried out by statistical packages which have 

facilities for generalized linear models. 

Formal justification. Continuous phenotypic data, such as observed when the trait is 
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Notation: 
y phenotype 
h genotype (incomplete information) 
g genotype (complete information) 
p(/)) expected proportion of h 
pig) expected proportion of g 
p(g\h) expected proportion of g given h 
P^gty.h) expected proportion of g given h and y 
1(y\h) probability density function given h 
f(/|fif) probability density function given g 

normally distributed, will be considered here. Expressions for discrete phenotypic data, 
such as counts or percentages, can be obtained by substituting probabilities for densities. 
The likelihood ä of observations (y1,h1),(y2,h2),...,(y,,h|) is 

&M,).(K2AÎ-O^IIftoA)=IIP(h) -Umh). 
i«i 1=1 i=i 

Parameter estimation will be carried out by maximum likelihood. The likelihood equations 
are 

0=Alogçe=5: ±\ogp(h)4: J ; 1 ^ Ih) 
do j=i ob i=i oU 

^i,09M^nm^mhm9) 

i.1 OD i,1 g 

( p(g\h)-mg)a 
mh) ae 

logipiglh^lg)) 

E îogp(A)+E E p(g |y,^iog(Pö I hm \ g» 
i=1 OÖ i=1 g OX) 

=Ê ̂ l o g p ^ i E Pta I /i^^iogpfef I ty+E E PO I y^iogffo I g) 
i=1 ÖÖ |=1 g OÖ j=1 g OTJ 

=É E P(9 I xA) |iogp(g)+É E PO I y^^iogf^ | g). 
i=1 g OÖ i.1 g OÖ 

The problem can be considered as a missing data problem. The likelihood equation can 
be solved by applying the EM algorithm, proposed by DEMPSTER et al. (1977). Each 
iteration consists of two steps. First, in the so-called E-step, the conditional probability 
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p(g|friM(Klg) 
p(g\y,h)= 

%il^) 

is evaluated for all possible allelic constitutions g, given the current parameter estimates 
and given the observed incomplete information h, on the genotype. Next, in the so-called 
M-step, the likelihood equation is solved by fixing the weights p(g | y„h) whereby updated 
parameter estimates are obtained. Note that p(gr) is a function of recombination 
parameters only, whereas f(y|ç») is a function of parameters for the regression of 
phenotype on genotype. Therefore, the likelihood equation can be split into two terms: 
the first term refers to the genetic linkage problem, the second term to the problem of 
regression of phenotype on genotype. Thus, the one M-step for the mixture problem is 
split into two M-steps for the two classical non-mixture problems. 

EXAMPLES 
Two simulated backcross examples will be worked out here: (1) the case of mapping a 
single QTL affecting lifetime (assumed to be exponentially distributed), and (2) the case 
of two QTLs in adjacent intervals with genes in repulsion phase and the QTLs affecting 
a normally distributed trait. These cases show the general mixture model in 'full action'. 
The first example serves to illustrate the modelling for non-normally distributed traits and 
to discuss the robustness of the traditional approach in which normality is assumed. The 
second example serves to illustrate modelling for multiple QTLs and to discuss some 
problems concerning detection of QTLs. In both examples data were simulated for 200 
individuals. Genotypes were generated assuming absence of interference. The markers 
were set at a distance of 20 cM apart, which gives a recombination frequency of 
approximately 0.16 according to Haldane's mapping function (HALDANE 1919). The QTLs 
were located halfway between their flanking markers, which gives recombination 
frequencies of approximately 0.09. 

Example 1. A simulated backcross example will be elaborated for the case of a single 
QTL with an exponentially distributed trait and F, individuals M ^ l v y m ^ r r v The 
exponential distribution is of considerable importance and has a widespread use in the 
analysis of data in which the response variable is a lifetime (MCCULLAGH and NELDER 
1989). The probability density function of the exponential distribution is f(y)=u"1exp(-y/u), 
where yaO. The mean of the exponential distribution is u; its variance is u2. The mean 
values of the genotypes qq and Qq were set to uqq=10 and uQq=15, respectively. 

Table 4 shows log-likelihoods and parameter estimates for various models. A 
comparison of the log-likelihoods shows that the models under the correct distributional 
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Table 4. Example 1: a simulated backcross of F, individuals M1QM2 /m1qm2 to the parent m ^ m / m ^ m j 
wi th an exponentially distributed trait; log-likelihood and parameter estimates for various models are 
presented 

QTL fitted 
(yes/no) 

n 

y 

n 

y 

Exponential or 
normal 
distribution 
assumed (e/n) 

n 

n 

e 

e 

Log-likelihood 

-794.8 

-792.1 

-685.3 

-681.7 

Genetic 

A 

'1 

-

0.02 

-

0.04 

linkage3 

A 

-

0.17 

-

0.16 

Regression of 
phenotype on 
genotype6 

Mqq MQq 

-

11.2 16.7 

-

11.0 16.9 

The parameter values used to simulate the data were r,=r2=0.09, uqq=10, uQq=15 and n=200 individuals. 

a r, and r2 denotethe recombination frequencies between the QTL and its flanking markers 
b uQq and uq q denote the mean value of individuals wi th Qq and qq at the QTL, respectively 

assumption fit much better than the models under the false distributional assumption do. 
Parameter estimates under both the correct and the false assumption are still much the 
same. Detection of a single QTL is usually based on the LOD-score ,0logs£1-

,0logs£0, or on 
the deviance 2(logs£, -logsfo), where s£, and ̂  are the likelihoods of the models with and 
without a QTL, respectively (KNAPP et al. 1990). However, distributional properties of the 
test statistic are not completely known due to failure of the regularity conditions (cf. 
MCLACHLAN and BASFORD 1988; TITTERINGTON et al. 1985). In our example the values of 
the test statistic 2(logs£,-logä!0) are 5.4 and 7.2 under the assumptions that the 
distribution is normal and exponential, respectively. Using the threshold JC2,O.95=5.99 as 
a rule of thumb (KNAPP et al. 1990), the QTL will be detected only under the correct 
distributional assumption. 

Example 2. A simulated backcross example will be elaborated now for the case of two 
QTLs in adjacent intervals with three markers and F, genotypes 
M^MzqjMj/m^mjQji îv Note that the genes at the QTLs are in repulsion phase. Let 
A.,, v, and Ci denote the genetic linkage parameters for the first QTL, and similarly A.2, 
v2 and Ç2 those for the second QTL. The environmental contribution was normally 
distributed with unit variance (<r2=1). The effects of the genes at the QTLs were additive 
(G=m+/4,+/42) and set to one unit (a,=a2=1). As an example, coefficients of the 
parameters are presented in Table 5 for an individual with observed marker genotype 
M ^ , M2m2 m3m3. Coefficients for individuals with other allelic constitutions at the 
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Table 5. Example 2: a simulated backcross of F, individuals M1QlM2q2M3/m1q1m2Q2m3 to the parent 
mlqlm2q2m3/m,q1m2q2m3 with a normally distributed trait. 

Coefficients of the genetic linkage parameters and the parameters for regression of phenotype on 
genotype for an individual with observed marker genotype M1m1M2m2M3m3 

Unobserved 
allelic consti 
the QTL 

0 , 0 ^ 2 

Q,q2
/qiq2 

qi<Vq,q2 

q ^ q ^ 

complete 
ution at 

Genetic linkage3 

* i 

1 

1 

1 

1 

Vt 

0 

0 

1 

1 

c, 
0 

0 

1 

1 

* 2 

1 

1 

0 

1 

v 2 

0 

1 

0 

1 

<2 

0 

1 

0 

1 

Regression of phenotope 
on genotype6 

m 

1 

1 

1 

1 

a, a2 

0 0 

0 -1 

-1 0 

-1 -1 

Log-likelihood and parameters estimates for various models 

QTL fitted 
(yes/no) 

Log- Genetic linkage3 

likelihood 
Regression of phenotype 
on genotype6 

1 2 

n n 

n y 

y n 

y y 

-477.2 

-476.1 

-473.9 

-467.0 

A 
r11 

-

-
0.00 

0.06 

Log-likelihood and parameters estimates for 

QTL 
fitted 
(yes/no) 

1 2 

n n 

n n 

n y 

y n 

Marker 
fitted 
(yes/no) 

1 2 

y 

n 

y 

n 

n 

n 

n 

n 

3 

n 

y 

n 

y 

Log-
like­
lihood 

-476.1 

-473.8 

-467.7 

-467.0 

A 
r12 

-

-

0.16 

0.12 

various 

A 

' 2 1 

-

0.16 

-

0.13 

A 

' 2 2 

-

0.00 

-
0.04 

models with markers as 

Genetic linkage 

A 

-

-

-

0.05 

A 

-

-

-

0.13 

3 

A 

*21 

-

-

0.16 

-

A 

' 2 2 

-

-
0.00 

-

A 
31 

-

-

0.4 

1.0 

A A ? 

a2 oz 

1.2 

0.2 1.2 

1.2 

0.9 1.0 

covariables 

Regr 
phen 
gene 

-

-

-

0.9 

ession of 
otype on 
typeb 

A A ? 

a2 a1 

1.2 

1.2 

0.6 1.1 

1.1 

The effects of the QTL's were additive (G=m+A)+A2). The parameters values used to simulate the data 
were r^=r]2=r2,=r22=0.09, a,=a2=1, a2=1 and n=200 individuals. 
a rn denote the recombination frequencies between the first QTL and its flanking markers; r21 and r22 

denote the recombinaton frequencies between the second QTL and its flanking markers; A.,, v,, and £, 
denote the genetic linkage parameters for the first QTL: A.,=log(1/2(1-r,,)(1-r,2)); v,=log(r,,)-log(1-
r ^ C ^ l o g ^ - l o g O - r ^ ) ; X2, v2 and (2 denote the genetic linkage parameters for the second QTL: 
X2=log(Vi(1 -r21)(1 -r22»; v2=log(1 -r21); C2=log(r22)-log(1 -r22) 
b m, a, and a2 denote the parameters for regression of phenotype on genotype: m is the mean of the 
expected phenotypes of individuals with 0,0,0202 and q,q,q2q2 at the QTL, respectively; a, and a2 are 
the additive effects of the first and second QTL, respectively; o denotes the variance of the fitted normal 
distribution 
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marker loci may be derived easily by using Table 2. Since the allelic constitution at the 
QTL can be C^Q/q^, Q,q2/q1q2, q1Q2/q,q2 or q ^ q ^ , the phenotype follows a mixture 
of four distributions. 

Models were fitted with the markers at the known distance of 20 cM. Table 5 
shows log-likelihoods and parameter estimates for various models. In this example the 
values of the test statistic 2(logä!,-logä0) are 6.6 and 2.2 for the first and second QTL, 
respectively. Using again the threshold xio95=5-99 as a rule of thumb, only the first QTL 
will be detected. However, estimates of the location of the QTLs on the linkage map and 
estimates of the QTL effects are highly biased. Déviances between the 'true' model (in 
which the two QTLs are fitted simultaneously) and the two single QTL models (in which 
a single QTL is fitted at a time) are large (18.2 and 13.8). This suggests that the detection 
procedure may be improved by testing models versus the true model instead of versus 
a 'no-QTL' model. However, in real applications the true model is unkown. 

An adaptive procedure is to fit a single QTL at a time by using its flanking markers, 
and to incorporate the remaining marker as covariable into the linear model for the 
response variable. Table 5 shows log-likelihoods for the two single QTL models with 
marker covariables. It demonstrates that the likelihoods (-467.7 and -467.0) are now very 
close to the likelihood of the true model in which the two QTLs are fitted simultaneously 
(-467.0). The parameter estimates are much better than in the two single QTL models 
without using marker covariables. Note that the likelihoods of the 'no-QTL' models with 
marker covariables (-476.1 and -473.8) are also very close to the likelihoods of the single 
QTL models without using marker covariables (-476.1 and -473.9). 

DISCUSSION 
In this paper a general and flexible mixture model is developed for mapping QTLs by 
using molecular markers. The computational idea is that, by adopting the EM algorithm 
for parameter estimation, the mixture problem can be split into two solvable non-mixture 
problems, one concerning genetic linkage analysis, the other concerning regression of 
phenotype on genotype. Moreover, by using generalized linear models a framework is 
provided covering regression techniques for many types of data. More accurate and 
efficient mapping of QTLs can be achieved by these procedures, which are extensions of 
methods proposed by LANDER and BOTSTEIN (1989) and KNAPP et al. (1990). The 
computational work can be done by statistical packages having facilities for generalized 
linear models, such as GENSTAT (GENSTAT 5 COMMITTEE 1987). 

The included examples illustrate the generality and flexibility of the described 
mixture model. For the sake of brevity other examples, such as modelling experimental 
design factors or modelling of epistatic QTLs, have not been included. It will be obvious 
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that these are easily dealt with. 
Testing for the number of components in a mixture is an important and difficult 

problem which has not been resolved completely (cf. MCLACHLAN and BASFORD 1988; 
TITTERINGTON et al. 1985). As suggested by our second example, the procedure for 
detection of QTLs may be improved by testing versus a polygenic model instead of 
testing versus a 'no-QTL' model. One strategy could be to use a hypothetical polygenic 
model, e.g. a dense map of QTLs at distances of 20 cM. However, there will be problems 
of model selection as in multiple regression, and computational problems to cope with. 
Important work still has to be done to develop adaptive detection procedures and to 
study their behaviour for various situations in the QTL-mapping case. An adaptive 
detection procedure might be to fit a single QTL at a time (or two or more QTLs 
simultaneously) by using flanking markers, and to incorporate the remaining markers as 
covariables into the regression model of phenotype on genotype. This procedure shows 
promise, as was suggested in the second example. 

The robustness of the method against deviations from the model assumptions also 
needs further consideration. In the first example it was shown that (at least) 
complications in testing may arise when the underlying phenotypic component 
distributions are non-normal, whereas normality is assumed. In such cases a 
transformation analysis should be carried out to find a suitable transformation such that 
the normality assumption holds. Alternatively, mixtures of other types of distribution 
should be used (MCCULLAGH and NELDER 1989). 
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III. INTERVAL MAPPING OF MULTIPLE QUANTITATIVE TRAIT LOCI 

ABSTRACT 
The interval mapping method is widely used for the mapping of quantitative trait loci 
(QTLs) in segregating generations derived from crosses between inbred lines. The 
efficiency of detecting and the accuracy of mapping multiple QTLs by using genetic 
markers are much increased by employing multiple QTL models instead of the single QTL 
models (and no QTL models) used in interval mapping. However, the computational work 
involved with multiple QTL models is considerable when the number of QTLs is large. In 
this paper it is proposed to combine multiple linear regression methods with conventional 
interval mapping. This is achieved by fitting one QTL at a time in a given interval and 
simultaneously using (part of) the markers as cofactors to eliminate the effects of 
additional QTLs. It is shown that the proposed method combines the easy computation 
of the single QTL interval mapping method with much of the efficiency and accuracy of 
multiple QTL models. 

INTRODUCTION 
Conventional methods for the detection of quantitative trait loci (QTLs) are based on a 
comparison of single QTL models with a model assuming no QTL. For instance in the 
'interval mapping' method (LANDER and BOTSTEIN 1989) the likelihood for a single putative 
QTL is assessed at each location on the genome. However, QTLs located elsewhere on 
the genome can have an interfering effect. As a consequence, the power of detection 
may be compromised, and the estimates of locations and effects of QTLs may be biased 
(LANDER and BOTSTEIN 1989; KNAPP 1991). Even non-existing so-called 'ghost' QTLs may 
appear (HALEY and KNOTT 1992; MARTINEZ and CURNOW 1992). Therefore, it is obvious 
that multiple QTLs could be mapped more efficiently and more accurately by using 
multiple QTL models. KNAPP (1991), HALEY and KNOTT (1992) and MARTINEZ and CURNOW 

(1992) developed approximate methods for mapping QTLs using the information in the 
expected values of marker genotype means. JANSEN (1992) described a general mixture 
model for the case of multiple QTLs. Unfortunately, the computation involved with all 
these methods is almost infeasible when the number of QTLs is large. Also, standard 
multiple linear regression procedures are used in mapping QTLs (COWEN 1989, STAM 

1991). The regression method is available in many statistical packages, but suffers from 
the relative lack of interpretability in terms of genetical models. In these standard 
multiple linear regression procedures the quantitative trait is regressed on the markers, 
so that all markers are treated as if they are QTLs themselves. The effects of QTLs will be 
absorbed (partially) by linked markers. STAM (1991) showed that in a backcross 
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population of infinite size QTL effects are fully absorbed by their flanking markers when 
these are used as regressors. Although this will rarely be the case in finite populations 
(due to random deviations from the theoretical cosegregation ratio of markers), flanking 
markers will tend to absorb the effects of nearby QTLs. JANSEN (1992) suggested a 
detection and mapping approach that is basically a hybrid between the interval method 
and the multiple regression method. It was proposed to fit single QTL models (one per 
marker interval) and use (selected) markers to eliminate the effects of possible QTLs in 
other intervals. This can be achieved by using markers as cofactors in the regression of 
phenotype on genotype. Again, single QTL models may be compared with the model 
assuming no QTL, but now markers are used as cofactors. In the present paper this 
hybrid approach is worked out and illustrated for backcross populations, but the same 
ideas apply to other types of population; emphasis will be on detection aspects. A simple 
simulation study with three QTLs, two of them located on the same chromosome, is 
presented to illustrate the potential use of marker cofactors in the detection of multiple 
QTLs. A simulated example concerning detection of 11 QTLs on a genome of 10 
chromosomes is also included. 

SOME PREUMINARY INVESTIGATIONS 
A genome of two chromosomes was simulated 100 times in a backcross of F,-individuals 
to one of the parental lines with two markers (M) and a single QTL (Q,) on the first 
chromosome (IV^M/mq^), and with three markers and two other QTLs (Q2 and Q3) on 
the second chromosome (MQ2MQ3M/mq2mq3m). The markers were set at a distance of 
20 cM apart. The QTLs were located halfway between between their flanking markers. 
The environmental contribution was normally distributed. The effects of the genes at the 
QTLs were additive; the additive deviations (half the differences between the 
homozygotes) were set to one standard deviation. In all simulations data were generated 
for 200 individuals assuming absence of interference. 

Tables 1 and 2 show the specification of the various models which were fitted to 
the simulated data. Expressions for the simultaneous likelihood of the observed 
phenotypic and genotypic (marker) data are given by JANSEN (1992). Let seA, %, s£c, %, 
SEA. and S2B. denote the maximum log-likelihoods of the corresponding models. For 
instance, S2A can be written as follows 

äA=E logP(/i)+E l09 _L_£P&| / i>«p<±Ä 
s/2^9 2a2 

where y is the phenotype, h is the observed marker genotype with probability P(h), g is 
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Table 1. Outline of the models fitted to compare different 
strategies for detection of QTL 1 (see also Figure 1) 

Model 

A 

B 

C 

D 

A' 

B' 

1 

Yes 

No 

Yes 

No 

Yes 

No 

QTL fitted 

2 

Yes 

Yes 

No 

No 

No 

No 

3 

Yes 

Yes 

No 

No 

No 

No 

Marker co-
factors fitted 

No 

No 

No 

No 

Flanking markers of 
QTLs 2 and 3 

Table 2. Outline of the models fitted to compare different 
strategies for detection of QTL 2 (see also Figure 2) 

Model 

A 

B 

C 

D 

A' 

B' 

1 

Yes 

Yes 

No 

No 

No 

No 

QTL fitted 

2 

Yes 

No 

Yes 

No 

Yes 

No 

3 

Yes 

Yes 

No 

No 

No 

No 

Marker co-
factors fitted 

No 

No 

No 

No 

Flanking markers of 
QTLs 1 and 3 

the complete genotype (markers and QTLs) with conditional probability P(g | h), m(g) is 
the normal mean and a2 the normal variance of individuals with genotype g. In general 
m(g)=m+A+M, where A is now the additive component of the QTLs and M is the 
component for the marker cofactors with two levels per marker. 

In conventional interval mapping, the detection of a QTL is based on S£C-S£D. &A-$£B 

is a similar expression, but now the QTLs on the other chromosome are also accounted 
for. Figure 1a shows that a rak is less than S£A-S£B in almost all simulations. Thus higher 
power for detection of QTL 1 is achieved when taking the QTLs on chromosome 2 into 
account. Figure 1 b shows that taking the QTLs on chromosome 2 into account by using 
multiple QTL models results in about the same power as using the markers of 
chromosome 2 as cofactors. Contrary to Figure 1a, Figure 2a shows now that S£C-S£D 

exceeds S£A-seB in all simulations. The single QTL model (model C) now absorbs the 
simultaneous effect of QTL 2 and 3, so that S£c-ä!D represents approximately the 
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Figure 1. A comparison of strategies for detection of QTL 1 (see also Table 1). A simulated backcross of 
F, individuals with IvK^M/rrK^m on the first chromosome and MQ2MQ3M/mq2mq3m on the second 
chromosome to the parent with a normally distributed trait. The effects of the QTLs were additive and set 
to one standard deviation. All distances between QTLs and flanking markers were set to 10 cM. sfA, afB, SE0 

aD, s£A. and sfB. denote the maximum log-likelihoods of the corresponding models (Table 1 ). Differences sfA-
SEB, Sfc-S£o a nd 3fA"SfB' represent the contribution of QTL 1 to the log-likelihood, 
(a) Interval mapping approach versus a multiple QTL approach, (b) Interval mapping approach using marker 
cofactors versus a multiple QTL approach. 
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Figure 2. A comparison of strategies for detection of QTL 2 (see also Table 2). A simulated backcross of 
F, individuals with M Q ^ / m q ^ on the first chromosome and MQ2MQ3M/mq2mq3m on the second 
chromosome to the parent. Differences SEA-SfB, S£C~^D anc ' 2?A"2?B' represent the contribution of QTL 2 to the 
log-likelihood, otherwise as Figure 1. 
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simultaneous contribution of QTLs 2 and 3, while S£A-äB represents the contribution of 
an additional QTL in the model. The fact that S£c-aD exceeds äA-«£B therefore indicates the 
possible presence of multiple QTLs on chromosome 2. Figure 2b shows that again s£A-S£B 

may be well approximated by äA-äB' using the flanking markers of QTLs 1 and 3 as 
cofactors. 

In this example the 'saturated' multiple QTL model still involves only three QTLs, 
which can be dealt with satisfactorily in terms of computational efforts. However, when 
the number of QTLs to be fitted simultaneously increases, the computational complexity 
quickly becomes prohibitive. Though representing a simple situation, the example clearly 
demonstrates the following points. First, searching for one QTL at a time by using 
markers as cofactors to absorb the effects of additional QTLs is (approximately) as 
powerful as searching for QTLs by dropping a single QTL from the full multiple QTL 
model. Second, the comparison of (a) the difference between the full multiple QTL model 
and one from which a single QTL is dropped, and (b) the difference between the 
conventional single and no-QTL model, is indicative of the presence of multiple QTLs on 
the same chromosome. In the next sections these ideas are extended to a general 
strategy for the detection of multiple QTLs. 

A GENERAL STRATEGY FOR THE DETECTION OF MULTIPLE QTLS 
The log-likelihoods of various models when maximized over unknown parameters provide 
a basis for choosing the genetic model that best fits the data: the genetic model which 
gives rise to the largest likelihood is the best fitting one. However, it is clear that, for 
instance, by adding an extra QTL or an extra marker cofactor to the model, the likelihood 
will increase. To allow for the fact that different genetic models depend on different 
numbers of parameters, we choose the genetic model that leads to the largest value of 
the log-likelihood (9!) minus a penalty for the number of free parameters (k) in the 
model. Equivalent^, Akaike's Information Criterion (AIC) 

AIC = -2(s£ - *) 

may be minimized (SAKAMOTO, ISHIGURO and KITAGAWA 1986). If the difference between 
AlCs for two models is larger than 2, then the difference is considered to be significant 
(SAKAMOTO, ISHIGURO and KITAGAWA 1986). A single QTL model with the QTL located at 
a marker position is equivalent to the model with that specific marker as cofactor, i.e. 
that marker is also considered to represent a QTL. We impose no penalty on the AIC for 
the additional recombination parameter in a single QTL model. Then the above single 
QTL model and marker cofactor model have the same AIC. Our detection procedure 
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consists of two stages: (1) selection of markers located closely to QTLs, and (2) interval 
mapping using (subsets of) the selected markers to absorb effects of other QTLs. An 
example in the next section serves to illustrate the procedure. Figure 3 shows a flow 
diagram for the detection procedure; the details will now be described below. 

The first stage starts with multiple regression of the quantitative trait on all 
markers. By a subset selection method for multiple regression (the method of backward 
elimination) markers are dropped from the model until no further reduction in AIC can 
be achieved. The final model is denoted by B,. The final subset of markers will be used 
in the second stage of the procedure. Models A,, A2, A3, B,, B2, B3, C and D as used 
below, now refer to the models specified in Figure 3 and in the example given in the 
next section. Models A„ A2 and A3 are single QTL models, models B„ B2 and B3 are 'no 
QTL' models. Models C and D are the commonly used models with and without a single 
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s u b s e t of markers by backward e l i m i n a t i o n 

Chromosome by chromosome: i n t e r v a l mapping 
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< AIC„ and AIC. + 2 
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Figure 3. Flow diagram for interval mapping of multiple QTLs. 
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QTL (no marker cofactors used). It is the difference among AlCs that matters and not the 
actual values themselves. Therefore, we present AlCs relative to the AIC of the multiple 
regression model using all selected markers (model B,). 

Selected markers (hopefully) indicate locations of QTLs or at least regions where 
QTLs are located. Important QTLs are located on those chromosomes for which the 
dropping of markers from the final multiple regression model results in a large increase 
of AIC (model B2 is compared with model B,). 

In the second stage (the interval mapping stage) selected markers are used as 
cofactors in the regression of phenotype on genotype (JANSEN 1992). Interval by interval, 
the AlCs of several models are calculated. Firstly, a single QTL model is fitted using all 
selected markers as cofactors (model A,). However, by fitting the putative QTL, some (or 
all) of the selected markers on the current chromosome may now be redundant. This 
may be studied by dropping some or even all selected markers on the current 
chromosome (model A, is compared with models A3 and A2, respectively). Suppose that 
for some interval all selected markers on the current chromosome may be dropped 
without a loss in AIC (model A2 fits better than model A,). In that case a single QTL 
suffices to take over the role of these markers. However, if the putative QTL may also be 
dropped (model B2 fits better than model A2) without a loss in AIC, then no QTL is 
detected on the current chromosome. Alternatively, suppose that the AIC of model A2 

exceeds the AIC of model A, in all intervals. This indicates that a single QTL cannot take 
over the role of the markers, and the presence of multiple QTLs on the current 
chromosome is indicated. Then a second selection procedure is carried out interval by 
interval. Starting from the single QTL model using all selected markers, it is studied which 
markers still may be dropped (those markers previously explained the effect of the 
putative QTL), and which markers cannot be dropped (these markers possibly absorb the 
effects of other QTLs on the current chromosome). Dropped markers will often be the 
markers flanking the interval. Interval by interval, detection of the putative QTLs is now 
carried out by dropping the QTL (model B3 is compared with model A3) using for each 
interval its own subset of selected markers. 

EXAMPLE 
A simulated backcross example will be worked out in the case of a genome of 10 
chromosomes and a quantitative trait which is affected by 11 QTLs spread over the 
chromosomes (Figure 4). The example serves to illustrate the behaviour of our new 
interval mapping approach and to compare this approach with the traditional interval 
mapping method. Data were simulated for 500 individuals. Genotypes were generated 
assuming absence of interference. The markers were set at a distance of 20 cM apart, 
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Figure 4. A simulated backcross of 500 individuals with a genome of 10 chromosomes and 11 QTLs spread 
over the chromosomes. The markers were set at a distance of 20 cM apart. The QTLs were located halfway 
between their flanking markers. Lines indicate chromosomes. Blocks indicate QTL positions, the effect of 
a QTL is either 1 (Q) or -1 (•). Marker locations are indicated by a -1- and -f. A subset of all markers was 
selected by backward elimination in multiple linear regression of the trait on the markers; selected markers 
are indicated by -f, the other markers by ±. Arrows indicate per marker interval when the left («•) or the 
right (s.) flanking marker is dropped in the second marker subset selection (see also text. Table 3 and Figure 
3). Markers are numbered 1 to 5 from the left to the right on each chromosome. 

Table 3. Outline of the models fitted in the example 

Model 

A, 

B, 

A2 

B2 

A3 

B3 

C 

D 

QTL fitted 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Selected marker cofactors used on 
this/other chromosome(s) 

This 

All 

All 

None 

None 

See Figure 4 

See Figure 4 

None 

None 

Other 

All 

All 

All 

All 

All 

All 

None 

None 
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the QTLs were located halfway between their flanking markers. The environmental 
contribution was normally distributed. The effects of the genes were additive and the 
additive deviations were set to either 1 or -1 standard deviation. Expressions for the 
simultaneous likelihood of the observed phenotypic and genotypic (marker) data are 
given by JANSEN (1992). 

Table 3 shows the specification of the various models fitted. Some results are 
presented in Table 4 for chromosomes 1, 6, 7, 8, 9 and 10; emphasis is on detection 
aspects. Results for other chromosomes were similar. A complete overview of the results 
would contain not only AlCs as given in Table 4, but also a monitoring of AlCs and 
parameter estimates during the whole detection process and for the complete genome. 

The total phenotypic variance in the simulated data was equal to 3.76, which 
consisted of environmental variance (1.02) and genotypic variance (2.74). The explained 
(genotypic) variance was in the range of 0.00 to 0.74 when using single QTL models 
(conventional interval mapping), and in the range of 2.18 to 2.36 when using single QTL 
models with marker cofactors. This clearly demonstrates that a considerable part of the 
genotypic (QTL) variance was absorbed by marker cofactors. Table 4 shows that the AlCs 
of single QTL models (conventional interval mapping) were large relative to the single QTL 
models with marker cofactors. Thus, the better fit of the model to the data is achieved 
when using marker cofactors. 

The procedure indicates correctly the presence of no QTL on chromosomes 1, 2 
and 3, the presence of one QTL on chromosomes 4, 5 and 6, and the presence of 
multiple QTLs on chromosomes 7, 8, 9 and 10. The multiple QTLs could be well 
separated on chromosomes 7 and 8. The estimates of the QTL effects on chromosome 
9 take values -0.06, 0.36, 0.45, -0.67, -0.67 and 0.01 in the first up to the sixth interval 
(model A3), which shows a clear changeover at the third marker. No clear separation of 
the two QTLs on chromosome 10 could be obtained. The estimates of the QTL effects 
on chromosome 10 are 1.27,1.20, 1.63,1.60,1.11 and 0.94 in the first up to the sixth 
interval when using model A2, and they are 0.44, 0.38,1.24,1.22, 0.30 and 0.05 when 
using model A3. This change clearly represents the effect of the marker cofactors. 
However, the selected marker 1 was not replaced by the single QTL in the third interval. 
Nevertheless, the AIC for the model without marker 1 was close to the AIC for the given 
optimum model. Similar results hold for the selected marker 4 and the single QTL in the 
fourth interval. Thus discrimination between the various models was poor. 

The choice of a genetic model may also be based on additional considerations. For 
instance, a QTL is indicated in the fourth, fifth or sixth interval on chromosome 7, but 
the markers 4 and 5 are simultaneously redundant as cofactors only when fitting a QTL 
in the fifth interval (model A3). Therefore, only a QTL in the fifth interval can take over 
the role of these markers. It may also be worthwhile to force a marker cofactor to be 



40 chapter III 

Table 4. Interval mapping multiple QTLs: AIC values for various models in a simulated backcross (see Figure 
4 for a description of the backcross and see Table 3 and Figure 3 for an outline of the models A,, A2, A3, 
B,, B2, B3, C and D) 

Chromosome 

1 

(0.6) 

6 

(43.4) 

7 

(82.8) 

8 

(108.0) 

9 

(21.9) 

10 

(157.3) 

Model 

A, 

A2 

C 

A, 

A2 

C 

A, 

A2 

A3 

B3 

C 

A, 

A2 

A3 

B3 

C 

A, 

A2 

A3 

B3 

C 

A, 

A2 

A3 

B3 

C 

-1 

1.9 

2.5 

391.5 

2.0 

28.3 

385.0 

2.0 

60.2 

-2.7 

55.9 

371.1 

1.5 

43.6 

-0.3 

42.4 

346.5 

1.9 

23.9 

1.9 

0.0 

392.2 

2.0 

106.9 

0.0 

6.1 

349.5 

1-2 

2.0 

2.2 

390.9 

2.0 

2.5 

377.4 

2.0 

60.3 

-3.5 

0.0 

371.3 

1.9 

42.6 

0.0 

42.4 

341.7 

1.9 

23.9 

0.0 

5.3 

391.7 

2.0 

79.4 

0.0 

6.1 

333.9 

Marker interval 

2-3 

1.9 

1.1 

385.7 

2.0 

-1.4 

374.0 

1.0 

79.4 

0.5 

0.0 

392.3 

1.4 

53.8 

1.4 

0.0 

346.9 

1.4 

22.1 

-0.5 

5.3 

392.0 

2.0 

5.2 

0.0 

55.0 

297.0 

3-4 

1.9 

0.0 

385.6 

2.0 

11.1 

377.6 

0.0 

61.5 

-2.2 

8.9 

381.0 

1.1 

41.0 

0.0 

43.5 

348.4 

1.5 

5.3 

0.0 

23.9 

389.3 

2.0 

7.0 

0.0 

55.0 

297.6 

4-5 

1.5 

0.0 

391.8 

1.8 

30.4 

388.0 

2.0 

54.7 

0.0 

60.2 

374.7 

-0.7 

41.3 

-2.5 

43.5 

349.3 

2.0 

5.7 

0.0 

23.9 

389.0 

1.9 

87.7 

0.0 

2.1 

340.3 

5-

1.5 

2.2 

392.3 

1.6 

35.4 

389.0 

2.0 

57.4 

0.0 

10.9 

375.8 

0.6 

69.4 

0.6 

0.0 

369.3 

2.0 

16.9 

2.0 

0.0 

391.2 

1.9 

125.0 

1.9 

0.0 

363.2 

A subset of markers was selected by backward elimination in multiple linear regression of the trait on the 
markers. Only selected markers (or subsets of selected markers) were used as cofactors. All AlCs are 
relative to the AIC for the multiple regression of the trait on the selected markers (model B,). AlCs for 
model B2 are printed between brackets below the chromosome number, the AIC for model D equals 
390.3. 
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included in the selected subset. For instance, when observing the changeover in the 
estimated QTL effects at marker 3 of chromosome 9, a marker cofactor for marker 3 can 
be reentered into the model. The estimates of the QTL effects on chromosome 9 now 
take the slightly better values 0.52 and -0.77 in the third and the fourth interval, 
respectively (model A3). 

In the conventional interval mapping approach the detection and mapping of QTLs 
is based on models with a single QTL (model C) and without a single QTL (model D). The 
AIC of the latter model is equal to 390.3. A LOD threshold of about 2.4 (LANDER and 
BOTSTEIN 1989; their Figure 4), or equivalently, an AIC threshold of about 2(2.4/log,0e -
1)»9.1 is commonly used as a threshold for the detection of QTLs. A QTL would be 
indicated then in those intervals for which the AIC of model C is less than 381.2. 
Following this approach, QTLs would be indicated on all chromosomes but chromosome 
9. The putative QTL on chromosome 8 is most likely (but incorrectly) located in the 
second interval. 

The example clearly demonstrates the following points. Firstly, the AIC profile is 
much steeper around QTLs when using model A2 instead of when using model C (see 
for instance chromosome 6 in Table 4). Therefore, the locations of the QTLs can be 
assessed more accurately when using marker cofactors. Secondly, the difference for AIC 
between model A2 and model B2 is often (much) larger than the difference for AIC 
between model C and model D in case a single QTL is indicated on a specific 
chromosome (see chromosome 6, results were similar for chromosomes 4 and 5). This 
difference is indicative for the effect of dropping the QTL, so that detection is more 
powerful when using marker cofactors. Finally, contrary to our method, conventional 
interval mapping does not indicate the presence of multiple QTLs on chromosomes 8, 9 
and 10. In conclusion, the example demonstrates that more efficient detection and more 
accurate mapping can be achieved by the interval mapping approach proposed here than 
by conventional interval mapping. 

DISCUSSION 
Detection of multiple QTLs is hampered by two main problems. First, though exact 
models for mapping multiple QTLs can be formulated (JANSEN 1992), the computational 
work involved is almost infeasible for large numbers of QTLs. Second, many genetic 
models have to be compared, so that problems of model selection arise. In the present 
paper an approach is developed to get around these problems. In this approach only 
single QTL models are used, while effects of other QTLs are (hopefully well) eliminated 
by their flanking markers. A small simulation study demonstrated the usefulness of this 
approach for the detection of multiple QTLs. The Akaike Information Criterion (AIC) is 
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used to evaluate the goodness of the assumed models (SAKAMOTO, ISHIGURO and 
KITAGAWA 1986). A model which minimizes the AIC, or models for which the AIC is close 
to the minimum, are considered to be the most appropriate. This procedure shows 
promise, as is suggested by the example: the results indicate that more efficient detection 
and more accurate mapping can be achieved by using our approach than by using the 
conventional single QTL interval mapping approach. However it should be noted that, 
even when it is detected that a specific chromosome contains multiple QTLs, large data 
sets may still be required to unravel the separate effects of closely linked QTLs. 

Conventional interval mapping starts with a 'no QTL' model and compares this 
model with a single QTL model. The test statistic shows the improvement in fitting a 
single QTL over fitting no QTL. If the improvement is significant, a second test may be 
carried out and the test statistic shows the improvement in fitting two QTLs over a single 
QTL, and so on. However, the first test may not be significant due for instance to linked 
genes with opposite effects or to unaccounted segregation on other QTLs. In 
conventional interval mapping the error of 'missing an existing QTL' is uncontrolled and 
may therefore be high. It has also been reported that non-existing 'ghost' QTLs can 
appear, due to interference between undetected multiple QTLs (HALEY and KNOTT 1992; 
MARTINEZ and CURNOW 1992). The interval mapping method proposed in this paper starts 
with a hypothetical 'polygenic' model to get around such detection and mapping 
problems concerned with interferring QTLs. This method has like multiple regression 
methods the advantage of controlling the error of 'missing an existing QTL'. In 
conventional interval mapping the probability of 'detection by error of a QTL somewhere 
on the genome, whereas no QTL is actually present' is controlled. However, the 
assumption that 'no QTL is actually present' makes no sense whenever a QTL is detected. 
In that case the significance level of the test is no longer known. Probabilities (and costs) 
of both error-types ('missing an existing QTL' or 'detecting by error a QTL') may be 
balanced by the researcher; he may prefer to choose an AlC-threshold with a value other 
than the one used here (=2) for the comparison of models. Further research has to be 
done to study the probabilities of both error-types under various circumstances (e.g. for 
different levels of heritability, different numbers of multiple QTLs, linked or unlinked 
QTLs, linked QTLs in repulsion or coupling phase, different population sizes and so on). 

The general and flexible facilities of the mixture model approach described by 
JANSEN (1992) also apply to the interval mapping method proposed in this paper. For 
instance, it is possible to analyse non-normally distributed traits in addition to normally 
distributed traits, to take experimental design factors into account, or to carry out a 
(combined) analysis of different population types. Furthermore, the interval mapping 
method can readily be programmed in statistical computer packages that have facilities 
for generalised linear models. The observed quantitative trait and the observed marker 
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genotypes should be specified by the user and standard output may then be produced. 
But a general procedure would make it also possible to specify the type of distribution 
for the trait or to include the experimental design. More advanced users may also be able 
to leave the beaten track and may try to fit alternative models. For instance, specific 
markers which were dropped during the process may be added again to the model. 
Alternatively, specific markers may now be excluded. For instance, selected markers which 
are located on chromosomes for which no QTL is detected may be dropped. The 
advanced user may also want to fit multiple QTL models, for instance two or three QTLs 
simultaneously on one chromosome, while taking into account additional QTLs on other 
chromosomes by marker cofactors. This is possibly the most accurate, efficient and still 
feasible way to unravel the separate effects of closely linked QTLs. 

LITERATURE CITED 
COWEN, N.M., 1989 Multiple linear regression analysis of RFLP data sets used in mapping QTLs in 

Development and application of molecular markers to problems in plant genetics, edited by T. 
HELENTJARIS and B.BURR. Cold Spring Harbor Laboratory 

HALEY, C.S. and S.A. KNOTT, 1992 A simple regression method for mapping quantitative trait loci in line 
crosses using flanking markers. Heredity 69:315-324 

JANSEN, R.C., 1992 A general mixture model for mapping quantitative trait loci by using molecular markers. 
Theor Appl Genet 85:252-260 

KNAPP, S.J., 1991 Using molecular markers to map multiple quantitative trait loci: models for backcross, 
recombinant inbred, and doubled haploid progeny. Theor Appl Genet 79:583-592 

LANDER, E.S., and D.BOTSTEIN, 1989 Mapping Mendelian factors underlying quantitative traits using RFLP 
linkage maps. Genetics 121:185-199 

MARTINEZ, O., and R.N. CURNOW, 1992 Estimating the locations and the sizes of the effects of quantitative 
trait loci using flanking markers. Theor Appl Genet 85: 480-488 

SAKAMOTO, Y., M. ISHIGURO and G. Kitagawa, 1986 Akaike Information Criterion Statistics. KTK Scientific 
Publishers, Tokyo 

STAM, P., 1991 Some aspects of QTL analysis in Proceedings of the eighth meeting of the Eucarpia section 
Biometrics in Plant Breeding. BRNO, July 1991 



IV. HIGH RESOLUTION OF QUANTITATIVE TRAITS INTO MULTIPLE LOCI 
VIA INTERVAL MAPPING 

ABSTRACT 
A very general method is described for multiple linear regression of a quantitative 
phenotype on genotype (putative QTLs and markers) in segregating generations obtained 
from line crosses. The method exploits two features, (a) the use of additional parental 
and F, data, which fixes the joint QTL effects and the environmental error, and (b) the 
use of markers as cofactors, which reduces the genetic background noise. As a result, 
a significant increase of QTL detection power is achieved in comparison with conventional 
QTL mapping. The core of the method is the completion of any missing genotypic (QTL 
and marker) observations, which is embedded in a general and simple EM algorithm to 
obtain maximum likelihood estimates of the model parameters. The method is described 
in detail for the analysis of an F2 generation. Because of the generality of the approach, 
it is easily applicable to other generations, such as backcross progenies and recombinant 
inbred lines. An example is presented in which multiple QTLs for plant height in tomato 
are mapped in an F2 progeny, using additional data from the parents and their F, 
progeny. 

INTRODUCTION 
Since the pioneering papers of WELLER (1986), LANDER and BOTSTEIN (1989) and PATERSON 

et al. (1988), the detection and genetic mapping of quantitative trait loci (QTLs) by using 
molecular markers is gaining growing attention from biometrical geneticists. A variety of 
genetic models and estimation procedures for QTL mapping has been proposed, some 
focusing on specific breeding designs. A widely applied QTL mapping method is 
"conventional" interval mapping, first described by LANDER and BOTSTEIN (1989) and 
successfully applied in a number of case studies (e.g. PATERSON et ai. 1988,1991; STUBER 

et al. 1992). Addressing the issues of the power of detecting QTLs and the precision of 
QTL mapping in F2's and backcross progenies obtained from line crosses. VAN OOIJEN 

(1992) showed that, generally speaking, efficient "conventional" interval mapping 
requires population sizes which are beyond the sizes commonly used in this type of 
experiment. 

In interval mapping, QTLs are usually mapped one at a time, ignoring the effects 
of other (mapped or not yet mapped) QTLs. It is now generally recognized that 
simultaneous mapping of multiple QTLs is more efficient and more accurate (cf. KNAPP 

1991; HALEY and KNOTT 1992). In the ideal case all genotypic variation in for example an 
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F2 is explained by putative QTLs, i.e. the residual variation after fitting QTLs should be 
approximately equal to the phenotypic variation observed in the isogenic parents and F,. 
Also the observed difference between the parents and that between each of the parents 
and the F, should ideally be explained by the joint QTL effects. 

In this paper we present an approach to QTL detection and mapping which 
combines two important features for power improvement: (a) the use of markers as 
cofactors (as a working substitute for simultaneous mapping of multiple QTLs) and (b) 
the use of parental and F, data (which fixes the joint QTL effects and the environmental 
error). Both features tend to decompose more powerfully the phenotypic variation into 
genetic and environmental variation and thus improve the accuracy of QTL mapping. We 
present an example on plant height in tomato which demonstrates that with this method 
the ideal situation sketched above can even be reached with a data set of moderate size. 

WELLER (1986), LANDER and BOTSTEIN (1989) and other authors have shown that a 
quantitative trait derives from a mixture of (normal) distributions, so that statistical 
methods for maximum likelihood estimation in finite (normal) mixture models can be 
applied. Recently it has been demonstrated that the finite mixture model can be 
embedded easily in the framework of multiple linear regression models, and even in that 
of generalized linear models (JANSEN 1992,1993a). 

Estimating the effects of QTLs and also mapping of QTLs by using molecular 
markers can be considered as a multiple regression problem with missing genotypic data. 
The basic idea of our unified approach to this problem is the completion of any missing 
genotypic data. The formulation of multiple linear regression models or generalized linear 
models (GLMs) for the completed data is straightforward. Parameter estimation is carried 
out by iterative weighted regression. The details will be worked out in this paper for an 
F2 progeny. 

The phenotype can be regressed on a single QTL, on two or more QTLs 
simultaneously, on markers and so on. Here we follow the method described by JANSEN 

(1993b), which is essentially a computationally feasible alternative to simultaneous 
mapping of multiple QTLs. In this method the phenotype is regressed on a single putative 
QTL in a given marker interval and at the same time on a number of markers that serve 
as cofactors. The rationale behind using markers as cofactors is that these will eliminate 
the major part of the variation induced by QTLs located elsewhere on the genome, thus 
reducing the genetic background variation. 

MULTIPLE LINEAR REGRESSION OF PHENOTYPE ON GENOTYPE IN AN F2 

Segregation analysis for quantitative traits and QTL mapping can be viewed as problems 
in which the data are incomplete: the observations of the genotypes at the quantitative 
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trait loci are missing. Complete data models and incomplete data models for an F2 

progeny are described in the next two sections. 

Genotype known. We will adopt the following notation for the genotypes at a diallelic 
locus: A and B denote homozygous (parental) genotypes and H denotes the 
heterozygote. Let us assume that the genotype at all loci affecting a quantitative trait is 
known. Then, assuming absence of epistatic effects, the regression model reads 

Y = m + £ xaj a, + £ xdl d, + E 
i / 

where Y is the phenotypic trait, m is the mean, a, and dj are the additive and dominance 
effects of individual loci and E is the environmental error; the summation is over loci 
affecting the trait. The xai and x# are indicator variables for the genotype; xai takes the 
value - 1 , 0 and +1 for the genotypes A, H and B, respectively; x,, takes values 0, 1 and 
0 for A, H and B, respectively. E is generally assumed to be normally distributed. 

The genotypes at QTLs are, of course, not known. However, marker loci may take 
over the role of QTLs. In fact, the loci in the regression model may be either a set of 
markers, a single QTL, multiple QTLs or any combination of markers and QTLs. In order 
to be able to regress on the unknown QTL genotypes, one can complete the missing QTL 
genotypic data. This is elaborated in the next section. 

Missing genotypic observations. All genotypic data at QTLs can be viewed as missing. 
In practice it also occurs frequently that the observation of a molecular marker genotype 
fails for a number of plants, for instance due to faint bands on the autoradiogram. It is 
quite common that (up to) 5 percent of the marker data are missing. Apart from these 
fortuitously missing data, another type of missing marker data may occur in a natural 
way, namely when markers are dominant and the heterozygote cannot be distinguished 
from one of the homozygotes. Plants with any missing marker data might be eliminated 
from the regression, but in multiple linear regression of the trait on many markers only 
a very limited set of data would then remain. A general solution to the problem of 
missing genotypic data is to complete them in the way described below. 

The basis of completing missing genotypic observations is to assign weights to the 
possible genotypic states at a locus for which the observation fails. These weights are 
conditional probabilities of the genotypic states given the observed phenotype and the 
observed genotypes at other (linked) loci. In this way both phenotypic and genetic 
linkage information is used to complete the missing genotypic observation. Having 
completed the data, estimates of the regression parameters are obtained by weighted 
regression of phenotype on the completed genotype. Repeated updating of weights, 



48 Chapter IV 

based on the current parameter estimates, followed by parameter estimation are the 
basic steps of an iterative EM algorithm to obtain maximum likelihood estimates. 

The completion of missing genotypic observations not only applies to a putative 
QTL, but also to any missing marker genotype. Since both putative QTLs and markers are 
factors (in statistical sense), they are dealt with in exactly the same way. We will now 
describe in detail how phenotypic information is used; next the use of genetic linkage 
information is dealt with, and finally the simultaneous use of phenotypic and linkage 
information are discussed. 

The phenotype can be used to complete missing genotypic data in the following 
way. Suppose, for the moment, that it is known that genotypes A, B and H at a specific 
locus have different mean phenotypic values, genotype A having the largest mean 
phenotype. An observed large phenotypic value y then indicates that the missing 
observation is most likely to be A. This could be expressed by assigning weights of, for 
instance, 0.6 to A, 0.3 to H and 0.1 to B. The basic idea of an iterative EM algorithm 
described by JANSEN (1992, 1993a) consists of the replacement of the single incomplete 
observation y by its three complete observations (y,A), (y,B) and (y,H), and weighting the 
three complete observations by specified or updated (conditional) probabilities. The 
conditional probability P(A|y) that the missing observation has constitution A equals 
P(A|y)=P(A)-f(K|A)/f(y), where fly) = P(A)-f(y|A)+P(B)f(/|B)+P(H)f(y|H), P(A)=P(B)=y4, 
P(H)=V2 and f(y | A), f(y| B) and f(y | H) are the probability density functions of observations 
with genotypes A, B and H, respectively. Similar expressions hold for P(B \y) and P(H \y). 
Generally, parameter values are unknown and their maximum likelihood estimates can 
be obtained iteratively by the following alternating steps: 

Step 1: specify or update weights, 
Step 2: update the estimates of the regression parameters by a weighted 

regression of phenotypes on the completed genotype. 
The weights in step 1 are calculated by using the current parameter estimates. When the 
environmental error is assumed to be normally distributed, the updates in step 2 are 

ß=(XTWX)-'XTW/, 

â2=l(V-Xê)TW(/-Xê), 

where Y is the complete data vector, X is the design matrix for the complete data, W is 
the diagonal matrix of weights, ß is the vector of regression parameters for the normal 
mean, a2 is the normal variance and N is the number of individuals. The algorithm is 
conveniently started by setting the parameters to (well-chosen) initial values. The same 
procedure can be used to estimate the parameters of a multiple linear regression of the 
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trait on two or more loci. The data of a single plant are replicated three times for any 
missing genotypic observation (-) and completed with the three possible outcomes A, B 
and H, the three possibilities being properly weighted. Similarly, all data of a plant are 
replicated twice for incomplete observations 'non-A' or 'non-B' which occur in the case 
of dominance, and completed with B and H, and A and H, respectively. 

Flanking loci can also be informative to complete missing genotypic data. For 
instance, suppose that for two adjacent loci the score is A-, which means that the 
observation on the second locus is missing. The observation on the neighbour locus 
indicates that the missing observation most likely will also be A. The single incomplete 
observation is replaced by its three complete observations AA, AB and AH. The 
conditional probability P(AA| A-) that the missing observation has constitution A equals 
P(AA | A-)=(1 -rf, where r is the recombination frequency between the two loci. The other 
two conditional probabilities are P(AB | A-^r2 and P(AH | A-)=2r(1 -r). Similarly, conditional 
probabilities are calculated for the genotypes B and H when the missing observation is 
scored as non-A, or for the genotypes A and H when it is scored as non-B. These 
conditional probabilities can be calculated directly when the value of r is known. In 
practice the genetic linkage map of the markers is often fixed and a putative QTL is 
moved along the genetic map, so that for a given map position of the QTL all 
recombination frequencies are fixed. If r must be estimated from the same data an 
iterative procedure may be followed with the above step 1 and a new step 2: 

Step 2: update the estimate of the recombination frequency based on the 
weights. 

The APPENDIX describes how to update the estimates of recombination frequencies for an 
F2. The same procedure also applies to scores for multiple loci such as HHH, A-H, H—H 
or A - - B . 

The information contained in the phenotypic values and in the marker map can 
also be used simultaneously to calculate conditional probabilities given the observed 
marker data and given the phenotypic values: the above procedures can be combined 
and this leads to our QTL mapping method. Given the current parameter estimates the 
conditional probability in step 1 is updated as follows: 

where P(g\h) is the conditional probability for the complete genotype g given the 
incomplete genotype h, f(y\g) is the probability density function of the trait y given the 
complete genotype g, and f(y\h)= Eg P(g\h)-i(y\g) is the mixture of probability density 
functions of the trait y given the incomplete genotype h. In step 2 the regression 
parameters are updated and so are the recombination frequencies if the map is not fixed. 
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This method is a modification of the approach proposed by JANSEN (1992). The method 
described here allows more efficient computer programming. A computer program has 
been written in GENSTAT (GENSTAT 5 COMMITTEE 1987), exploiting weighting options for 
(generalized) linear models. 

The completed data are used for the weighted regression of phenotype on 
genotype and residuals may be calculated in the usual way. A measure for the 
discrepancy between the data and their fitted values can be obtained by calculating the 
weighted sum of the squared residuals 

A2=EP(g|y./>)-o^"g>
2. 

9 

where mg is the mean of genotype g. For observations obtained from one of the parents 
or from the F, progeny, the weighted sum of squared residuals is in fact a squared 
residual. For non-mixture data the squared residual follows approximately a chi-squared 
distribution with one degree of freedom, multiplied by the residual variance. No standard 
theory is currently available on the distributional properties of the weighted sum of 
squared residuals in the case of mixture models; as an ad hoc approximation we used the 
chi-squared distribution with one degree of freedom, multiplied by the residual variance. 

Generalizations. In our approach outlined above, phenotypic data of the parental lines 
and their F, progeny can be included without any further modification. The genotypes 
at the marker loci are completely known; no data completion is required. By definition 
then, all markers and putative QTLs have genotype A for one parent, B for the other 
parent, and H for the F,. 

Other generations, such as doubled haploids, backcross progenies and F3's, can be 
dealt with in a similar way to the F2. In a backcross progeny, for example, an incomplete 
observation (y) is replaced by two weighted complete observations y(A) and y(H) (or y(H) 
and y(B), depending on the direction of the backcross). When using information from 
linked markers in a backcross, the weighting rules must be adapted accordingly. 
Recombinant inbred lines (RILs) can also be dealt with easily, the modification being that 
only homozygotes can occur; and again the weighting rules must be adapted accordingly 
when using linkage information. 

When the experimental set-up involves fixed effects, like block effects or replicates, 
these are accommodated for straightforwardly by adding corresponding terms in the 
regression model. 

The above procedure applies not only to multiple linear regression models, 
assuming a normal error distribution, but also to generalized linear models (GLM). 
Generalized linear models can be used to describe the dependence of phenotype on 
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genotype for grouped normal, gamma, binomial, multinomial, Poisson, ordinal data, and 
so on (MCCULLAGH and NELDER 1989). This is of particular importance since the 
distribution of many agronomic traits in crop species, for which QTL mapping is relevant, 
is of one of the above listed types. The same procedure also applies to variance 
component models that are often used for QTL mapping in animals. 

Model selection. We choose the genetic models that maximize the value of the log-
likelihood (s£) minus a penalty for the number of free parameters (k) in the model. 
Equivalently, Akaike's Information Criterion AIC=-2(sN:) may be minimized. The number 
of parameters should not be too large, preferably less than 2/(number of observations) 
(SAKAMOTO, ISHIGURO AND KITAGAWA 1986). 

In many experiments designed to detect associations between marker genotypes 
and quantitative characters, the number of segregating molecular markers may be fairly 
large. Since in an F2 each marker that is used as a cofactor corresponds to two 
parameters, the number of parameters may readily exceed 2/(number of observations). 
In order to avoid this situation we have used the following procedure to select only the 
most influential markers as cofactors. Linkage group by linkage group, the AlCs for 
several models are calculated and subsets of markers are selected. First, the phenotype 
of the F2 progeny is regressed on the markers of only the first linkage group, and the 
corresponding AIC is calculated. Some of these markers may be dropped from the model 
to reduce the AIC; the subset of markers with the smallest AIC is retained. Next, the 
phenotype of the F2 progeny is regressed on the markers of only the second linkage 
group, and the corresponding AIC is calculated. Some of these markers may be dropped 
to reduce the AIC of the second linkage group, and so on. In the end the selected 
markers of all linkage groups are amalgamated and a new, overall AIC value is calculated 
for the regression of the phenotype of the F2 progeny on all selected markers. 

In the process of interval mapping, a single putative QTL is moved along the 
genetic marker map and at each position the deviance (twice the log likelihood ratio) or 
the LOD score (deviance divided by 2ln(10) « 4.6) between the model with and that 
without the assumed QTL is calculated and plotted along the marker map. Table 1 lists 
the models for which it makes sense to calculate (maximum) likelihoods (same notation 
as JANSEN 1993b). For the example data we have calculated the déviances between 
models A2 (with QTL) and B2 (without QTL) of Table 1 ; in both cases the selected markers 
on the other chromosomes were used as cofactors. We also calculated the déviances 
between models A, (with QTL and all selected markers) and B2 (without QTL, with 
selected markers on other chromosomes only), which expresses the joint effect of a 
putative QTL and the selected markers on the same chromosome; the resulting deviance 
curve will be (approximately) a level line if there is a single QTL the effect of which is 
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absorbed by selected flanking markers. If there is an additional QTL on the same 
chromosome, the deviance curve may show a peak at the position of that second QTL, 
and so on (see JANSEN 1993b for more details). For the sake of comparison we also 
calculated and plotted the deviance between models C and D, which corresponds to 
"conventional" interval mapping. 

The use of AIC provides a decision strategy for model selection and enables us to 
compare nested and unnested hypotheses. One should consider all models which have 
approximately equal AlCs (i.e. models with an AIC difference less than 2 or some other 
chosen threshold). Regular methods can be used for testing of nested hypotheses. Tests 
for the presence of a QTL (model C versus model D, or model A2 versus model B2) can 
be based on the deviance, but its (asymptotic) distribution is not exactly known. As a rule 
of thumb, we use the chi-squared distribution with 3 degrees of freedom (one degree 
of freedom for the recombination parameter, one for the additivity parameter of the QTL 
and one for the dominance parameter of the QTL). Each additional marker in the model 
takes two extra degrees of freedom. It takes 4 degrees of freedom to test for the 
simultaneous effect of two markers in multiple regression on markers; it takes 5 degrees 
of freedom to test model A, versus model B2 for the simultaneous effect of a single QTL 
and one marker, and so on. Many tests are performed when moving along the genetic 
map. An overall significance level cannot be guaranteed due to the current lack of 
knowledge about the statistical behaviour of the (interdependent) tests. Using a 
significance level of 0.001 per test, the overall significance level in conventional interval 
mapping would be between 1% and 5% for a genome of 12 chromosomes covered 
with 50 markers (KNOTT and HALEY 1992). We use the same significance level per test 
(0.001) in the practical example on tomato plants described in the next section, but an 
overall significance level for our mapping approach cannot be guaranteed. The chi-

Table 1. Outline of the models fitted 

QTL fitted 

yes 

no 

Selected markers used 
chromosomes 

no 

C 

D 

other 

A2 

B2 

on no/other/all 

all 

A, 

B, 

Models C and D are compared in "conventional" interval 
mapping. Models A,, A2, B, and B2 make use of additional 
marker cofactors to reduce genotypic variation induced 
by QTLs located elsewhere on the genome 



High resolution interval mapping 53 

squared threshold at a significance level of 0.001 per test equals 13.8 for 2 degrees of 
freedom; it is 16.3, 18.5, 20.5, 22.5, 24.3 and 26.1 for 3, 4, 5, 6, 7 and 8 degrees of 
freedom, respectively. By using a high significance level per test the probability of missing 
any existing QTL may become undesirably large. QTLs the presence of which cannot be 
demonstrated significantly may still partly explain the differences for phenotypic values 
between the parents, F, and F2. Therefore, selected markers may be retained in the 
regression even though no QTLs are indicated significantly in the nearby region. 

APPLICATION 
A practical example on plant height in an F2 progeny of tomato will be used to illustrate 
the methods described in the previous section; additional parental and F, data and 
marker cofactors are used in the interval mapping. The data are part of a larger 
experiment, the details and results of which will be reported elsewhere. 

The parents were a commercial tomato cultivar (Lycopersicon esculentum) and a 
wild species (Lycopersicon pennellii). In the F2 52 restriction fragment length 
polymorphism (RFLP) markers were scored. Plant height was measured six weeks after 
sowing. Mean phenotypic values and variances for the parents, the F, and the F2 progeny 
are presented in Table 2. A log-scale was used as is commonly done for young plants 
when growth is nearly exponential. Four percent of the marker data were missing. Two 
of the 84 F2 plants had broken tops so that their observations of plant height were 
missing. Nevertheless, their marker data could still be used for mapping markers. 

The markers were assigned to linkage groups and mapped (and the recombination 
frequencies between adjacent markers were estimated) by using the computer package 
JOINMAP (STAM 1993). The total number of markers is 52, so that the total number of 

Table 2. Mapping QTLs for plant height: some population 
parameters for L. esculentum, L. pennellii, the hybrid F, 
and the F, 

Population 

L Esculentum 

L. Pennellii 

F, 

F2 

Number of 
plants 

18 

20 

11 

82a 

Mean 
phenotype 

4.009 

3.885 

4.049 

4.022 

Phenotypic 
variance 

0.0199 

0.0219 

0.0877 

0.1483 

Plant height (cm) has been log-transformed. 
äRFLP data for 84 plants, plant height data for 82 plants. 
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parameters in the regression of the phenotype on all markers is equal to 104. This 
number exceeds the number of F2 plants (82), and is still too large for reliable model 
selection even when parental and F, data are added (49 plants). Therefore, we applied 
the procedure of marker selection described above, using the F2 data. These selected 
markers were subsequently used as cofactors in interval mapping (also some non-selected 
marker cofactors were added again during the interval mapping stage; see below). Next, 
the phenotypes of the F2 progeny, the parents and the F, progeny were simultaneously 
regressed on a single QTL and on selected markers. This putative QTL was moved along 
the genetic maps of the various chromosomes. The results are shown in Figure 1. The 
impact of a single putative QTL on a given chromosome is indicated by the deviance 
between models A2 (with QTL) and B2 (without QTL); in both cases the selected markers 
on the other chromosomes were used as cofactors (finely dashed lines). The joint effect 
of the putative QTL and selected markers on the same chromosome is expressed by the 
deviance between models A, (with QTL and all selected markers) and B2 (without QTL, 
with selected markers on other chromosomes only) (coarsely dashed lines). 

At least six QTLs were indicated, one on each of the chromosomes 6, 7, 8 and 9 
(in the regions were the finely dashed lines in Figure 1 exceed the critical level of 16.3) 
and two QTLs on chromosome 2 (in the regions close to the marker cofactors; see 
below). Selected markers on chromosomes 3, 5 and 10 were retained in the regression 
to absorb effects of possible QTLs whose presence could not be demonstrated 
significantly, but which still explain a part of the phenotypic variation. On chromosome 
8 the smallest AIC value of model A, is much less than the smallest AIC value of model 
A2 (the AIC difference is 41.93-27.96-2/r=5.97>2, where k is the number of free 
parameters for the additional two cofactors; see Figure 1). This indicates multiple QTLs 
on chromosome 8. However, the deviance difference of 13.97 is still not significant: it 
is less than the critical value of 18.5. We did present only the most apparent result 
(estimates for a single QTL on chromosome 8), but we should bear in mind that the true 
genetic background can be more complex (multiple QTLs on chromosome 8). On 
chromosome 2 the joint contribution of the two marker cofactors to the deviance is 
significant: the coarsely dashed line in Figure 1 exceeds the critical value of 18.5. The 
effect of the cofactors are opposite, which indicates an extremely difficult case to 
unravel: linked QTLs with opposite effects. The finely and coarsely dashed lines in Figure 
1 result from using either none or both of the two cofactors, respectively. We also fitted 
model A, with either the first or the second cofactor; the estimates of the two QTLs are 
based on these models. The effect of one QTL is estimated on the assumption that the 
effect of the other QTL is eliminated by the marker cofactor. 

Table 3 presents estimates of the QTL effects. Three out of the six QTLs have large 
positive additive effects, the other three have large negative additive effects. Note that 
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the parents, the F, and the F2 have approximately the same mean height (Table 2), so 
that the effects of the QTLs should approximately cancel. The discrepancy between the 
summed QTL effects and the observed differences between the parents could be due to 
undetected QTLs; their effects are hopefully eliminated by the marker cofactors. The 
pooled environmental variance for the original parents and the F, equals 0.0273 (after 
removing one F, plant; see below). Table 3 shows that this value is approximated very 

Table 3. Estimates of QTL effects, residual variance and recombination frequency between QTL and left 
flanking marker 

Chromo­
some (and 
marker 
interval) 

2 
(2-3) 

2 
(4-) 

6 
(1-2) 

7 
(2-3) 

8 
(1-2) 

9 
(1-2) 

QTL effects 

Additive 

0.255 
(0.050) 

-0.247 
(0.043) 

-0.204 
(0.044) 

-0.248 
(0.047) 

0.272 
(0.058) 

0.249 
(0.037) 

Dominance 

0.026 
(0.065) 

-0.071 
(0.057) 

0.205 
(0.063) 

-0.114 
(0.067) 

0.118 
(0.064) 

-0.087 
(0.048) 

Variance 

0.0197 
(0.0053) 

0.0208 
(0.0050) 

0.0244 
(0.0043) 

0.0236 
(0.0043) 

0.0181 
(0.0028) 

0.0249 
(0.0042) 

Recombination 
frequency3 

0.130 
(0.041) 

0.091 
(0.040) 

0.070 
(0.039) 

0.111 
(0.039) 

0.165 
(0.038) 

0.111 
(0.036) 

Standard errors of the estimates are presented between brackets. 
*The QTL was moved along the genetic map with steps of 2.5 cM; the recombination between the QTL 
and its left flanking marker is reported. 

Figure 1 . Deviance plots for plant height in an F2 progeny of tomato. The phenotypes of the F2 progeny 
were regressed on a putative QTL, which was moved along the genetic map of each chromosome 
("conventional" interval mapping). The deviance between the model with the QTL (model C) and the 
model without the QTL (model D) was plotted (solid line). The phenotypes of the F2 progeny, the parents 
and the F, progeny were simultaneously regressed on a putative QTL and a number of selected markers; 
again the QTL was moved along the genetic map. The finely dashed line shows the plot of the deviance 
between model A2 (with the QTL) and model B2 (without the QTL); in both cases all selected markers from 
other chromosomes were used. The coarsely dashed line represents the plot of the deviance between 
model A, (with the QTL and all selected marker cofactors) and model B2 (without the QTL but with selected 
markers only on other chromosomes). 
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well by using single QTL models with marker cofactors on other chromosomes, indicating 
that these models explain the total genetic variation satisfactorily. 

It should be mentioned that the interval mapping stage was passed through several 
times. The first time all preselected markers were used as cofactors (so far chromosome 
8 contained no selected markers). Then the deviance plot for chromosome 8 showed a 
clear peak, indicating a QTL between marker 1 and 2. Therefore, the second time two 
cofactors were added on chromosome 8 to eliminate the putative QTL effect. Next the 
weighted sums of squared residuals were checked for outliers. Figure 2 presents a 
histogram of the weighted sum of squared residuals obtained from the multiple linear 
regression of the phenotype of the F2 progeny, the parents and the F, progeny on all 
selected markers. At a significance level of 0.01 the critical value equals approximately 
0.24, so that one observation from the F, may be considered to be an extreme outlier. 
One plant of the F2 progeny has a weighted sum of squared residuals just exceeding the 
critical value. The F2 outlier also caused narrow sharp peaks in the coarsely dashed lines 
close to marker cofactors (not shown): the factor for a putative QTL absorbed the effect 
of the outlier rather than an effect of a true QTL. The plant heights of these two outliers 
were removed, which reduced the variance among F, plants from 0.0877 to 0.0512, and 
changed the variance among F2 plants from 0.1483 to 0.1499 (see Table 2). For the third 
and final time the interval mapping was then passed through. After each successive 
passing of interval mapping the peaks shown in Figure 1 for chromosomes 6, 7, 8 and 

9 became more pronounced. 

L esculentum 

L pennellii 

F1 

Y///À F, 

rmt 
0.05 0.10 0.15 0 .» 025 0.30 0.J5 0.40 0.45 0.50 

Figure 2. Histogram of the weighted sum of squared residuals, used for the detection of outliers for plant 
height in an F2 progeny of tomato. The residuals were obtained from the multiple linear regression of the 
phenotypes of the F2 progeny, the parents and the F, progeny on all selected markers. Two outliers are 
indicated, namely the plants with the weighted sum of squared residuals > 0.24. 
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To compare the above results with conventional interval mapping, the phenotypes 
of the 82 F2 plants were regressed on a single putative QTL, which was moved along the 
genetic map. The deviance between the model with the single QTL (model C) and that 
without the single QTL (model D) was plotted at each map position (solid line in Figure 
1). A comparison of deviance curves for chromosomes 6, 7, 8 and 9 demonstrates that 
our approach is much more powerful than conventional interval mapping. Only two QTLs 
are detected by conventional interval mapping (one QTL on chromosome 6 and one on 
chromosome 7). 

DISCUSSION 
Powerful and accurate QTL mapping can serve several important goals. First, dissecting 
quantitative characters into Mendelian factors yields a position from where the genetics 
of complex characters can be studied in terms of individual gene effects rather than in 
the statistical terms (variances, covariances, etc.) of classic quantitative genetics. Secondly, 
the application of indirect selection via markers and other forms of tracing individual 
genes in breeding programs, such as guided introgression, gains substantially from 
powerful QTL mapping methods. In this paper none of these ultimate goals was aimed 
at directly; nevertheless, the example given illustrates the potential contribution of our 
new analytical method to progress in these areas. The phenotypic variation of the 
quantitative trait was resolved into at least six putative QTLs and an environmental error 
component. These results should still be regarded as preliminary; they have to be 
confirmed by further experiments. F3 lines, isogenic for regions of putative QTLs, may be 
produced and tested (PATERSON et al. 1991); also backcross inbred lines may be used for 
this purpose (BECKMANN and SOLLER 1989). 

Our approach to QTL mapping uses the unified concept of completing missing 
genotypic data for both a putative QTL and markers. If many data are missing, this may 
give rise to computational problems: in an F2 one missing marker observation may 
actually have one of three allelic constitutions, two missing marker observations (for the 
same plant) result in nine possible constitutions, and so on. If in a data set with many 
markers a certain proportion of the marker genotypes is missing, the number of 
weighted completed data may become so large that computation is no longer feasible. 
Molecular geneticists, who are generally collecting the marker data, should be aware of 
the consequences of missing marker data, so that they hopefully will strive for 
completeness of their data. However, to complete data it is not necessary to use all 
available information; the amount of computation can be reduced considerably by a 
limited completion of missing data: genotypes with negligible weights may be 
disregarded, without substantial loss of information. 
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In conventional interval mapping data from the parents and the F, progeny cannot 
be used; if the parental and F, data were included, the results would be seriously biased 
because the single QTL would be called upon to explain all the mean differences 
between the parents and the F, progeny. It is only because markers are used as cofactors 
in our approach that data from parents and F, can be included; QTL mapping may 
become much more powerful when marker cofactors explain a large proportion of the 
genetic variation (or at least the mean difference between the parents and the F, 
progeny). In other cases, for instance when there are numerous QTLs of small effect 
distributed throughout the genome, the power of QTL mapping may be reduced by 
using parental and F, data, because the additional constraints on the parameters are too 
exacting. 

In our example data set, an interaction between marker cofactors and a putative 
QTL is indicated (Figure 1, chromosome 8): if the inclusion of marker cofactors simply 
reduced the residual variance, the solid and finely dashed lines should be approximately 
similar in shape, although the finely dashed lines might be higher. We speculate that in 
the small F2 progeny of 84 plants in our example, deviant segregation ratios for two or 
more unlinked QTLs have masked the effect of the QTL on chromosome 8 when we 
applied the conventional interval mapping method. In our approach, the effects of the 
QTLs involved could be unravelled by the use of marker cofactors. This problem for small 
populations should be explored in more detail by simulation. 

Little is known about the influence of outliers on QTL mapping; we proposed a 
weighted sum of squared residuals to indicate outliers. Two particular observations in the 
example data set were detected as potential outliers. It was observed that such outliers 
can incorrectly indicate multiple linked QTLs. Also they may hamper efficient and accurate 
resolvability of QTLs. 

In the example we have come across a situation which represents a "worst case" 
configuration: linked QTLs with opposite effects. As indicated by STAM (1991), and 
confirmed by the present study, in such a case multiple regression will be more powerful 
than "conventional" interval mapping. Our single data set cannot answer the general 
question as to what resolution power is attainable with our method. To answer this 
question a number of known configurations of QTLs and QTL effects, as well as 
heritability and population size, need to be studied by simulation. 

The regression models that are used in our approach assume additivity of effects 
over loci. Though epistatic effects can in principle be modelled straightforwardly as well, 
we have chosen not to do so because of the rapid increase of the number of parameters, 
relative to the amount of data. In our view, however, the detection of epistatic effects 
requires a different type of experimental approach, such as raising the F3 offspring of 
deliberately chosen F2 multilocus marker genotypes. 
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APPENDIX 
Updating the estimates of the recombination frequencies in the EM algorithm runs 
parallell to the "normal" EM procedure for estimation of r from F2 data, as outlined 
below. In an F2 recombinant the F, gametes could be counted directly from the 
frequencies of the genotypes AA, AH, AB, HA, HH, HB, BA, BH and BB if the contribution 
of repulsion and coupling phase to HH were known. Given the current estimate, r, the 
ratio of repulsion and coupling phase within the double heterozygotes equals r2 : (1-r)2. 
Denoting the observed genotypic frequencies by n(AA), n(AH), etc., the EM procedure 
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runs as follows: 
Step 7: update the unknown number of repulsion heterozygotes, 
Step 2: obtain the new estimate by counting recombinant gametes. 

This leads to the following update 

n(AH)-ni(HA)-m(BH)+n(HB)+2 
N-

n(AB)+n(BA)n 
rMl -r)2 

n(HH) 

When updating the estimate of r in our QTL mapping method, the above equation is 
used; the numbers n(-) are replaced by the updated summed weights w(-), where w(-) 
and n(-) are defined analogously. 



V. CONTROLLING THE TYPE I AND TYPE I I ERRORS IN MAPPING 
QUANTITATIVE TRAIT LOCI 

ABSTRACT 
Although the interval mapping method is widely used for mapping quantitative trait loci 
(QTLs), it is not very well suited for mapping multiple QTLs. Here, we present the results 
of a computer simulation to study the application of exact and approximate models for 
multiple QTLs. In particular, we focus on an automatic two-stage procedure in which in 
the first stage "important" markers are selected in multiple regression on markers. In the 
second stage a QTL is moved along the chromosomes by using the preselected markers 
as cofactors, except for the markers flanking the interval under study. A refined 
procedure for cases with large numbers of marker cofactors is described. Our approach 
will be called MQM mapping, where MQM is an acronym for "multiple-QTL models" as 
well as for " marker-QTL-marker ". Our simulation work demonstrates the great advantage 
of MQM mapping compared to interval mapping in reducing the chance of a type I error 
(i.e. a QTL is indicated at a location where actually no QTL is present) and in reducing the 
chance of a type I I error (i.e. a QTL is not detected). 

INTRODUCTION 
The advent of maps of molecular markers enables geneticists to detect and map 
individual loci affecting quantitative traits (cf. PATERSON et al. 1988). In the ideal case all 
genetic variance of the trait is explained by detected QTLs. In practice a number of QTLs 
may be missed (a type I I error) and at the same time a number of false positives may 
occur, indicating QTLs at map positions (or regions) where actually no QTLs are present 
(a type I error). The actual balance between the cost of false positives and the benefit 
of detected QTLs depends on the aim of the experiment (e.g. map-based cloning or 
introgression breeding). Nevertheless, one often strives for keeping at least the chance 
of a type I error below 5%. Therefore, the QTL mapping method used should keep the 
chance of a type I error below 5%, but at the same time it should minimize the chance 
of a type I I error. The interval mapping method (LANDER and BOTSTEIN 1989) is widely 
used, but it is now generally recognized that the chance of a type I or a type I I error 
is higher in interval mapping than it is in simultaneous mapping of multiple QTLs (cf. 
HALEY and KNOTT 1992; MARTINEZ and CURNOW 1992; JANSEN 1993b). This has motivated 
theoretical research for multiple QTL mapping methods. Recently, JANSEN (1992,1993b) 
and JANSEN and STAM (1994) developed a unifying framework of exact and approximate 
models for multiple QTLs, from now on called MQM mapping. MQM is an acronym for 
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"multiple-QTL models" but also for "marker-QTL-marker" (which reflects the insertion 

of QTLs between markers on the genetic linkage map). The framework includes interval 

mapping and regression on markers (COWEN 1989; STAM 1991; RODOLPHE and LEFORT 

1993; ZENG 1993) and also includes their "hybrid" in which the phenotype is regressed 

on a single putative QTL in a given marker interval, and at the same time on a number 

of markers located elsewhere on the genome. The rationale behind using markers as 

cofactors is that these markers will eliminate the major part of the variation induced by 

nearby QTLs. Some simulation work (JANSEN 1993b) and a practical application (JANSEN 

and STAM 1994) indicated that the MQM mapping method is computationally feasible 

and substantially more powerful than interval mapping. For the present paper a 

computer simulation study was set up to study more thoroughly the chances of a type 

I or type I I error in MQM mapping, and to compare MQM mapping with interval 

mapping. A number of QTL configurations were studied by simulation, covering the most 

relevant multiple-QTL configurations; the results are presented and discussed. 

STATISTICAL MODELS FOR MQM MAPPING 

In this section statistical aspects of MQM mapping are summarized. For more details see 

JANSEN (1992,1993b) and JANSEN and STAM (1994). Further refinements to MQM 

mapping are proposed, concerning the testing for the presence of a putative QTL, and 

concerning the parameter estimation for the case that many marker cofactors are used. 

The framework. We restrict ourselves to backcross progenies, but the same method 

applies to other inbred or outbred progenies. Furthermore, we assume a normally 

distributed environmental error. The general model in MQM mapping is Y= m + E x ^ + 

E, where Y is the phenotypic trait, m is the mean, a, are the allele substitution effects of 

individual loci and E is the (environmental) error; the summation is over all loci affecting 

the trait. The X; are indicator variables specifying the genotype. In a backcross progeny 

they can take two values: 0 or 1. The loci in the above expression can be one or more 

QTLs, but -as an approximation- markers can be used as well. Therefore, the model 

includes interval mapping (LANDER and BOTSTEIN 1989), but also exact models for multiple 

QTLs (JANSEN 1992,1993b; JANSEN and STAM 1994), multiple regression on markers 

(COWEN 1989; STAM 1991; RODOLPHE and LEFORT 1993; ZENG 1993), and the hybrid 

between interval mapping and multiple regression on markers (JANSEN 1993b) in which 

marker cofactors are selected prior to the analyses considering a QTL in each interval in 

turn. Parameter estimation is based on the simultaneous distribution of the genotype and 

phenotype; the core of our method is completion of any missing genotypic (QTL and 

marker) information, which is embedded in a general and simple EM algorithm to obtain 
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maximum likelihood estimates of the model parameters (JANSEN and STAM 1994). In the 
case of exact models for multiple QTLs, this procedure makes simultaneous estimation 
of QTL positions possible. 

Preselection of marker cofactors. Markers can be used in the regression to take over 
the role of nearby QTLs. STAM (1991 ) demonstrated that in multiple regression the effect 
of a QTL is absorbed only by its flanking markers, at least if the progeny size is large; 
other markers are then redundant. Since the locations of the QTLs are generally 
unknown, the question is which markers have to be used as cofactors in MQM mapping. 
A standard regression selection procedure can be used to select the "important" 
markers. One such procedure is backward elimination of marker cofactors in multiple 
regression of the phenotype on the markers. Jansen (1993b) minimized Akaike's 
Information Criterion, A\C=-2<M-k), where ä is the log-likelihood and k is the number of 
free parameters in the model. Here, we minimize -2(s£-3/c), i.e. a more stringent penalty 
for the number of free parameters is used. In "ordinary" regression with adequate 
degrees of freedom to estimate a2, a penalty of k is equivalent to the use of (about) the 
16% point of the F-test for the comparison of two nested models, which differ only by 
the inclusion of one free parameter; a penalty of 3k is equivalent to the use of (about) 
the 2% point (MCCULLAGH and NELDER 1989). At each step of the backward elimination 
process a marker is dropped, namely the marker which gives the largest decrease of the 
criterion; the process is stopped when no further reduction of the criterion can be 
achieved. In the next stage (the actual mapping stage), the selected markers will be used 
as cofactors. For proper marker selection a reasonable number of recombinants between 
flanking markers is required (the larger the QTL effect, the fewer recombinants are 
required). Because of the near collinearity of closely linked marker cofactors, it makes 
little sense to use a very dense map in a progeny of, say, 100 individuals. 

Very recently, ZENG (1994) presented a simulation study in which all markers were 
used as cofactors, except for the markers flanking the interval under study. He, however, 
also suggested preselecting the markers which explain most of the genetic variation in 
the genome. 

Testing for the presence of a putative QTL. In MQM mapping at each map location 
the log-likelihood s£, for a single QTL in a given interval can be calculated and compared 
with the log-likelihood % of no QTL in the given interval, using in both models the same 
set of marker cofactors (or the same set of QTLs in other intervals when exact models 
for multiple QTLs are used). The likelihood-ratio test statistic for the presence of a 
putative QTL in a given interval is then expressed as the maximum of 2(se,-9!0) over the 
interval. The distribution of the test statistic for the presence of a QTL in a specific 
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interval is not exactly known. However, when no QTLs are segregating, the asymptotic 
distribution is expected to be between the %\ and %\ distribution (TITTERINGTON, SMITH and 
MAKOV 1985). The latter distribution is justified by the difference in the number of 
parameters (one for the allele substitution effect a of the putative QTL, and one for the 
location of the QTL in the marker interval). The former is justified by the fact that the null 
hypothesis is defined by the single constraint a=0. LANDER and BOTSTEIN (1989) and VAN 

OOIJEN (1992) simulated the distribution of the test statistic. Based on extensive 
simulations these authors published appropriate thresholds for the test statistic so that 
the chance of a false positive occurring anywhere on the genome is at most 5% (still 
under the assumption that no QTLs are segregating). We here suggest that these 
thresholds are also suitable for MQM mapping: they can be used when no QTLs are 
segregating, since in that case it is expected that no or only a very few markers will be 
selected in MQM mapping. Moreover, these thresholds can also be used when QTLs are 
segregating, the effects of which are eliminated by marker cofactors in MQM mapping. 
One condition is, however, that the number of degrees of freedom for estimating a2 is 
large enough (see below). 

Marker cofactors should not replace the putative QTL in the interval of current 
interest. It was decided to study a simple approach to prevent this: for a given interval 
all selected markers are used as cofactors, except the ones flanking the interval of current 
interest. We expect that this approach applies well if marker selection is properly based 
on reasonable numbers of recombinants between flanking markers (see above). 
Otherwise, a general (but more computer intensive) selection approach can be used 
(JANSEN 1993b): starting from the single-QTL model using all selected markers, it is 
assessed which nearby markers still may be dropped (those markers previously explained 
the effect of the QTL), and which markers cannot be dropped (these markers possibly 
absorb the effects of other QTLs on the current chromosome). 

When the number of marker cofactors is large. In ordinary regression the number 
of parameters estimated from the data should not be too large when maximum 
likelihood is used. Asymptotic relations such as the ^-approximations do not necessarily 
hold in the case of large numbers of parameters. The main reason for this is the bias of 
the maximum likelihood estimate of the residual variance. The usual bias adjustment of 
the estimate of the variance is to multiply the estimate by N/(N-p), where N is the 
number of individuals and p is the number of free parameters used for modelling the 
relation between the mean and explanatory variables. When comparing a sequence of 
(nested) models we have the option of using a common estimate of variance for all 
models in the sequence, or using separate estimates derived from the fit of each model 
in turn (MCCULLAGH and NELDER 1989). In "ordinary" regression analysis a single estimate 
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of the variance obtained from the most complex model is usually considered. This 
estimate of the variance is used for all models in the sequence, which at the same time 
guarantees that the test statistic takes only positive values (cf. HALEY and KNOTT 1992). 
This property does not hold if for each model a separate bias-adjusted estimate of the 
variance is used. Here, we deal with mixture models instead of "ordinary" regression 
models, because of missing QTL and marker observations (it is quite common that a small 
proportion of the marker data are missing). Variable selection and bias adjustment of the 
maximum-likelihood estimate of the residual variance in mixture models is an area open 
to research, probably because mixture models with many parameters did not occur 
before. Mixture analysis can be viewed as "ordinary" regression with missing values for 
one or more factors (JANSEN 1992,1993a). Therefore, it is natural to adapt the approach 
for variable selection and bias adjustment in regression models to the case of mixture 
models. In MQM mapping with complete linkage maps we propose the use of the 
following heuristic three-step procedure: 
(1) Obtain maximum-likelihood estimates for the most complex model (usually the 

model for regression of phenotype on all markers); 
(2) Adjust the estimate of the residual variance for bias; 
(3) Obtain maximum-likelihood estimates in the sequence of models (in the models for 

regression of phenotype on subsets of the markers during the selection process, or 
in single-QTL and no-QTL models with selected marker cofactors), keeping the 
variance fixed at the value obtained from step 2. 

Following this approach, the distribution of the test statistic for the presence of a QTL 
in a specific interval is expected to be between the F1idf and 2F2df distribution rather than 
between the x2 and %\ distribution, where df are the degrees of freedom for estimating 
o2

 (HALEY and KNOTT 1992). Therefore, appropriate thresholds for an entire genome 
should also be functions of the number of residual degrees of freedom. Of course, F and 
X2 distributions are closely related if the number of residual degrees of freedom is large. 

SIMULATIONS 
For a number of specified configurations of QTLs and QTL effects, we studied the 
distribution of the test statistic for the presence of a putative QTL. These configurations 
include no QTL, a single QTL or two QTLs, the two QTLs being unlinked, linked in 
repulsion (i.e with opposite sign effects) or linked in coupling phase (i.e. with equal sign 
effects). Furthermore, we considered small and large numbers of markers. In MQM 
mapping with many cofactors, a common and bias-adjusted estimate of the variance was 
used for all models according to the procedure described above. See Figures 1-9 for the 
description of the various settings. Putative QTLs are detected via the following 
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procedures: (a) by MQM mapping using (selected) markers as cofactors, (b) by MQM 
mapping with exact models for multiple QTLs, and (c) by interval mapping. In all cases 
we simulated by computer and according to the Mendelian segregation rules the 
genotypes and phenotypes of 100 individuals as if they had been produced by back-
crossing F, individuals to one of the parents. For each genetic setting 500 simulations 
were run. Marker distances were assumed to be known and to be equal to the values 
used for simulation. For each genetic setting we plotted the simulated distribution of the 
test statistic in a given interval (the maximum of 2(^-^) over all map locations in the 
given interval). The distributions turned out to be markedly skewed. To have a better 
presentation we plotted the square root of the test statistic. Two types of simulation 
were run: (a) simulations concerning configurations with no QTL in the interval of 
interest, aiming at a study of the type I error, and (b) simulations with a QTL in the 
interval of interest, aiming at a study of the type I I error. They are dealt with in the next 
two sections, respectively. 

Type I error 
The distribution of the test statistic for the presence of a putative QTL was simulated for 
a given marker interval, in which actually no QTL is located. When no QTLs are 
segregating or when the effects of QTLs are sufficiently eliminated, this distribution is 
expected to be between the %] arid %l distribution. If the number of degrees of freedom 
for estimating a2 is small, this distribution is expected to be between the F, df and 2F2df 

distribution. 
We successively considered the following situations. A single QTL is located on the 

same chromosome as the interval under study, or on another chromosome; or two QTLs 
in coupling phase are located on the same chromosome, one on either side of the 
marker interval of interest. We also considered how the distribution of the test statistic 
is affected by the number of free parameters to be estimated from the data. Finally, we 
studied the maximum value of the test statistic in an entire genome in absence of 
segregating QTLs. See Figures 1-5 for the description of the QTL configurations. 

A single QTL present on another chromosome. First, we studied the case that no QTL 
is present in the interval of interest, while a single QTL is present on another 
chromosome (Figure 1). In interval mapping the distribution of the test statistic may be 
affected by an unlinked major QTL when the marker interval 1-2 is wide (curve I): the 
curve deviates from the %2 distributions. In MQM mapping, the distribution of the test 
statistic is unaffected by the QTL when the markers 3 and 4 are used as cofactors (curve 
C(3,4)). It is of course generally unknown where the QTLs are and therefore one does 
not know which markers should be used as cofactors to absorb them. The QTL has, 
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case a single QTL is present on another 
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SQUARE ROOT OF TEST STATISTIC 

Backcross progenies of 100 individuals were simulated. Markers are numbered from the left to the right 
on each chromosome. The question mark (?) indicates the marker interval under study in which the 
likelihood for the presence of a putative QTL is assessed. The symbols v and A indicate the position of a 
QTL with an effect of positive and negative sign, respectively. The percentage (beside the chromosome) 
indicates what percentage of the expected total phenotypic variance is attributable to the expected 
(simultaneous) genetic variance of the QTLs on the given chromosome. The finely dashed curves indicate 
the x] distribution (left) and the xi* distribution (right). The coarsely dashed curves indicate the F, ] 7 

distribution (left) and the 2F217 distribution (right). The solid curves indicate: 
I : Interval (I) mapping; 
C(3,4): MQM mapping with markers 3 and 4 as cofactors (C). Analogous definition for other sets of 

marker cofactors; 
S: MQM mapping with selected (S) markers as cofactors (but markers flanking the interval under 

study are not used as cofactors, even if they were selected); 
E: MQM mapping with exact (E) models for multiple QTLs; 
A: MQM mapping with two adjustments (A): (1) the estimate of the variance in the most complex 

model is adjusted for bias and, (2) the variance in any other model is fixed at the value obtained 
from the most complex model; 

IA: Combination of I and A; 
CA: Combination of C and A; 
SA: Combination of S and A. 

however, a major effect and when marker selection was applied, markers 3 and 4 were 
selected in almost all simulations (not shown). Therefore, the curve for MQM mapping 
with selected markers as cofactors almost coincides with the curve C(3,4). As the 
expected genetic variance of the QTL represents 90% of the expected phenotypic 
variance, these simulations show the maximal influence of a single QTL on the type I 
error in an interval on another chromosome. 

A single QTL present on the same chromosome. Next, we studied the case that no 
QTL is present in the interval of interest, while a single QTL is present on the same 
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chromosome (Figure 2a-d). Both in interval mapping and in MQM mapping the presence 
of a major QTL in marker interval 2-3 has a very strong influence on the test statistic in 
marker interval 1-2, even when the markers 2 and 3 are used as cofactors (Curves I and 
C(2,3), respectively, in Figure 2a). We also considered the case that a major QTL is not 
in marker interval 2-3, but in marker interval 3-4 (Figure 2b). In interval mapping, the test 
statistic in marker interval 1-2 is still highly affected by the QTL (curve I in Figure 2b); in 
MQM mapping however, it is unaffected when the markers 3 and 4 are used as 
cofactors (curve C(3,4) in Figure 2b). In practice it is not apriori known that, for instance, 
a QTL is located in marker interval 3-4 and that therefore marker 3 and 4 should be used 
as cofactors to absorb the effect of the QTL. When marker selection was applied, in 
almost all simulation runs the two markers flanking the QTL were selected: marker 2 and 
3 in Figure 2a, and marker 3 and 4 in Figure 2b. In the first case the corresponding curve 
S deviates even more from the % distributions than that curve C(2,3) deviates from 
them, and in the second case curve S coincides with curve C(3,4) (S curves are not 
plotted). As the expected genetic variance of the QTL forms the major part of the 
expected phenotypic variance (90%), these simulations show the maximal influence of 
a single QTL on the type I error in another interval on the same chromosome. 

We also simulated the same configurations with a QTL with a much smaller effect 
(Figures 2c and 2d). In interval mapping, the test statistic is still highly affected by the 
presence of a QTL in marker interval 2-3 (curve I in Figure 2c), or by the presence of a 
QTL in marker interval 3-4 (curve I in Figure 2d). In neither case is the test statistic 
influenced in MQM mapping when the markers 2-3 or 3-4 are used as cofactors (curves 
C(2,3) and C(3,4) in Figures 2c and 2d, respectively). When marker selection was applied, 
in many simulation runs only one of the two markers flanking the QTL was selected 
(marker 2 or 3 in Figure 2c, marker 3 or 4 in Figure 2d). Since markers flanking the 
interval of interest are not used as cofactors when applying marker selection, this 
seriously affects the test statistic in the case of a QTL in the interval adjacent to the 
interval of interest (curve S in Figure 2c). However, when an additional marker between 
the interval of interest and the QTL is available, the test statistic corresponding to marker 
selection is hardly affected (curve S in Figure 2d). 

Two linked QTLs in coupling phase. Then, we studied the case of two linked QTLs in 
coupling phase (i.e. with effects of equal size and equal sign; see Figure 3). It is well 
known that in interval mapping the test statistic in this case will often be at its maximum 
in one of the intermediate intervals (MARTINEZ and CURNOW 1992). This can lead to the 
detection of a single QTL in the wrong interval (a type I error). Therefore, we studied the 
effect of both QTLs on the test statistic in the intermediate marker interval 4-5. The 
effect of the second QTL in marker interval 6-7 on the test statistic for the first QTL in 
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Figure 2. A study of the type I error in case a single QTL is present on the same chromosome (see Figure 
1 legend) 

marker interval 2-3 is dealt with in the next section (aiming at a study of the type I I 
error). 

In MQM mapping, the distribution of the test statistic for the presence of a putative 
QTL in marker interval 4-5 is unaffected by the two QTLs when the markers 2, 3, 6 and 
7 are used as cofactors (curve C(2,3,6,7)), and only slightly affected when selected 
markers are used (curve S). In interval mapping, the test statistic takes very large values 
(curve I). 
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Figure 3. A study of the type I error 
at an interval between two QTLs in 
coupling phase (see Figure 1 legend) 

Figure 4. A study of the type I error 
in case of many marker cofactors (see 
Figure 1 legend) 

The effect of the number of cofactors. Furthermore, we studied the effect of the 
number of cofactors on the type I error in MQM mapping with 80 marker cofactors 
distributed over 16 other chromosomes (Figure 4). This figure shows that the test statistic 
is seriously affected (curve C(3-82)). Therefore, it is clear that the number of redundant 
cofactors should not be too large in maximum likelihood estimation. Bias adjustment of 
the estimate of the variance could be a solution to this problem and therefore we 
reanalysed the case, using the bias adjustment procedure described above. The 
distribution of the test statistic for the case of 80 cofactors with the bias adjustment is 
between the F, 17 and 2F217 distribution (curve CA(3-82)), and so is the distribution of the 
test statistic when marker selection is combined with bias adjustment (curve SA). This 
confirms that the bias adjustment works. 

The maximum value of the test statistic in an entire genome. Finally, we studied 
the type I error in a genome with 40 markers distributed over 8 chromosomes (Figure 
5). In MQM mapping, we applied the variable selection and bias adjustment procedure, 
developed above for the case of many marker cofactors (curve SA). No or only a very few 
markers were selected (394 times no markers, 72 times one marker, 16 times two 
markers, 9 times three markers, 8 times four markers and only once five markers; 
together 500 simulation runs). The same case was reanalysed using the interval mapping 
method (curve I). The two distributions of the maximum value of the test statistic in the 
entire genome are very close to each other. This demonstrates that the results by LANDER 
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and BOTSTEIN (1989) and VAN OOIJEN (1992) can be generally used to choose a threshold 
for the test statistic such that the probability of a type I error is about 5%. Of course, 
the methods differ with respect to the estimation of a2, so that at least small differences 
can be expected. Moreover, the thresholds from interval mapping are less appropriate 
for MQM mapping if there are only a few degrees of freedom for estimating a2. Further 
simulation should reveal the thresholds for these situations (see also discussion below). 
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Type I I error 
The distribution of the maximum value of the test statistic for the presence of a putative 
QTL was simulated in an interval in which a QTL is actually segregating. We successively 
considered the following situations: another QTL is also segregating and the two QTLs 
are either unlinked, linked in repulsion, or linked in coupling phase. See Figures 6-9 for 
the description of the QTL configurations. We studied the effect which the second QTL 
has on the test statistic for the presence of the first QTL. We say that the QTL is detected 
if the test statistic exceeds the threshold at a significance level of 5% for a 1000 cM 
genome. This means that we assume the simulated intervals to be part of a large 
genome. The value of this threshold is 2.4-2-ln(10)«11.05 (LANDER and BOTSTEIN 1989; 
LOD threshold=2.4, see their Figure 4). The square root of the threshold is equal to 3.32. 

Finally, we also considered the effect of bias adjustment of the estimate of the 
variance and the effect of a common estimate of the variance in sequences of models 
(Figure 9). 

Two unlinked QTLs. First, we studied the case of two unlinked QTLs (Figure 6). In 
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interval mapping, the first QTL in marker interval 2-3 is detected with a chance of 0.14 
(curve I). In MQM mapping with markers 6 and 7 as cofactors the first QTL is detected 
with a chance of 0.74 (curve C(6,7)). In general the locations of the QTLs are unknown, 
so that markers to be used as cofactors should be selected. In some cases marker 1 or 
marker 4 may be selected and used as cofactor. The markers 1 and 4 are linked to the 
first QTL and can also (partially) absorb the effect of this QTL. As a consequence, the test 
statistic takes the smaller values in these cases (lower tail of curve S in Figure 6). 
Nevertheless, the chance of detecting the first QTL is still 0.70 when selected markers are 
used. This demonstrates that QTLs can be detected more powerfully by MQM mapping 
than by interval mapping (the chance of detection of the first QTL is 0.70 versus 0.14, 
respectively). As the expected genetic variance of the QTL forms the major part of the 
expected phenotypic variance (90%), these simulations show the maximal increase in 
power. 

MQM mapping with marker cofactors was also compared to MQM mapping with 
exact models for two QTLs. To that order, a putative QTL, or no QTL, was fitted in 
marker interval 2-3, while in either case a second QTL was fitted in marker interval 6-7 
(curve E in Figure 6). It is clear from Figure 6 that the curves C(6,7) (or curve S) and E are 
still rather different. This means that a proportion of the genetic variation of the second 
QTL could not be eliminated by the marker cofactors, due to recombinants between 
marker 6 (or 7) and the second QTL. Thus, MQM mapping with exact models for multiple 
QTLs is sometimes much more powerful than MQM mapping with marker cofactors. It 
is clearly beneficial to use exact models for those putative QTLs that have a major effect 
on the trait (and the corresponding marker cofactors can be dropped). 

Two linked QTLs in repulsion phase. Next, we studied the case of two linked QTLs 
in repulsion phase (with effects of equal size but opposite sign; see Figure 7). In interval 
mapping, the first QTL in marker interval 2-3 is detected with a chance of only 0.42 
(curve I). In MQM mapping with markers 4 and 5 as cofactors the first QTL is detected 
with a chance of 0.93 (curve C(4,5)). When only selected markers are used in MQM 
mapping (excluding the markers 2 and 3, which flank the interval under study), the 
chance of detecting the first QTL increases even to 0.97 (curve S). The increase is due to 
the fact that marker 4 sometimes partially absorbs the large effect of the first QTL, while 
marker 5 absorbs the large effect of the second QTL in marker interval 4-5; the value of 
the test statistic for the presence of the first QTL then increases by dropping marker 4 
or 5. Our simulations demonstrate that linked QTLs in repulsion phase can be detected 
and separated much more powerfully by MQM mapping with marker cofactors than by 
interval mapping. 

MQM mapping with marker cofactors was also compared to MQM mapping with 



Controlling errors in QTL mapping 75 

z 

I D 
CD 
Ol 

> 
5 => s => 
o 

1.0-

0.8-

0.6' 

0.4-

0.2-

0.01 

CHR 1 

CHR 2 

1 

b 

1 / 

, ?c , 
2 3 

6 7 

^ ( e j ^ y 

, « , 
4 

_ i 85% 
8 

E / 

_ j = 20cM 

| . . 0 -

= > 
CD 

or 
CD 

3 
ZD 
S 0.4-

0.2-

0.0-

1 2 3 4 " 5 6 

i i = 20cM 50% 

/> r/f 
1 J 

I / C(4,b) / s/7 E 

•• J JJJ : ^L_^/J 

SQUARE ROOT OF TEST STATISTIC 
2 4 6 

SQUARE ROOT OF TEST STATISTIC 

Figure 6. A study of the type 11 error 
in case of two unlinked QTLs (see 
Figure 1 legend) 

Figure 7. A study of the type 11 error 
in case of two linked QTLs in repulsion 
phase (see Figure 1 legend) 

exact models for two QTLs. To that order, a putative QTL, or no QTL, was fitted in 
marker interval 2-3 while in either case a second QTL is fitted in marker interval 4-5 
(curve E). It is clear from Figure 7 that curve S and curve E are only slightly different, i.e. 
MQM mapping with marker cofactors is almost as powerful as MQM mapping with exact 
models for multiple QTLs, when QTLs are in repulsion phase. 

Two QTLs in coupling phase. Then, we studied the case of two linked QTLs in 
coupling phase (with effects of equal size and equal sign; Figure 8). In interval mapping, 
the test statistic for the presence of the first QTL in marker interval 2-3 exceeds the 
threshold with a chance of 1.00 (curve I). In MQM mapping with markers 6 and 7 as 
cofactors the test statistic for the first QTL exceeds the threshold with a chance of 0.92 
(curve C(6,7)). Thus, in contrast to the results for the previous configurations, MQM 
mapping now leads to smaller values for the test statistic than interval mapping does. 
The reason for this is that the effect of the first QTL, but also the major part of the effect 
of the second QTL in marker interval 6-7, are absorbed when interval mapping of a 
single putative QTL is carried out in marker interval 2-3. In MQM mapping, the effect of 
the second QTL and that of the major part of the first QTL are absorbed by the marker 
cofactors 6 and 7; the test statistic for marker interval 2-3 gives the likelihood for the 
presence of multiple linked QTLs, one being located in marker interval 2-3, the other 
being located nearby markers 6 and 7. When only selected markers are used in MQM 
mapping (excluding markers 2 and 3, which flank the interval under study), the test 



76 Chapter V 

SQUARE ROOT OF TEST STATISTIC 
O 2 4 6 8 10 I! 

SOUARE ROOT OF TEST STATISTIC 

Figure 8. A study of the type 11 error 
in case of two linked QTLs in coupling 
phase (see Figure 1 legend) 

Figure 9. A study of the type 11 error 
in case of many marker cofactors (see 
Figure 1 legend) 

statistic for the presence of a QTL in marker interval 2-3 decreases slightly (the chance 
of detection of the QTL is 0.81 ; curve S). The reason for this is that markers 1 or 4 were 
selected (as well) in some simulation runs. The upper tail of curve S exceeds the upper 
tail of curves E and C(6,7) slightly. The reason for this is that either marker 6 or marker 
7 was selected in a number of simulations (rather than selecting markers 6 and 7 
simultaneously), thereby absorbing slightly less variation induced by the QTLs. 

MQM mapping with marker cofactors was also compared to MQM mapping with 
exact models for two QTLs. To that order, a putative QTL, or no QTL, was fitted in 
marker interval 2-3 while in either case a second QTL was fitted in marker interval 6-7 
(curve E). It is clear from Figure 8 that curve C(6,7) and curve E are very close; however, 
the lower tail of curve S deviates from them. Thus, not unexpectedly, MQM mapping 
with selected marker cofactors is not always as powerful as MQM mapping with exact 
models for multiple QTLs, when QTLs are in coupling phase. 

The effect of the number of cofactors. Finally, we will discuss the effect on the type 
I I error of two changes to MQM mapping, namely the use of a single estimate of the 
variance in a sequence of models and the bias adjustment of the estimate of the variance 
(Figure 9). Firstly, the test statistic for the presence of a putative QTL in marker interval 
1-2 on chromosome 1 is considered without using marker cofactors for other 
chromosomes (curves I and IA). Figure 9 shows the distribution for the test statistic 
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when the usual maximum likelihood method is used (interval mapping with a separate 
estimate of the variance in the single and the no-QTL model; curve I) and also when the 
variance in the no-QTL model is fixed at the estimate from the single-QTL model (which 
was adjusted for bias; curve IA). In this case the bias adjustment of the estimate of the 
variance will be almost negligible. The simulations clearly demonstrate that the use of a 
common estimate of the variance can lead to a more powerful QTL detection. 

Secondly, the test statistic for the presence of a putative QTL in marker interval 1-2 
is considered when 80 markers (or a subset) on 16 other chromosomes are used as 
cofactors (curves CA(3-82) and SA). In such a case the estimate of the variance will be 
highly biased and bias adjustment is needed. The estimate of the variance in the most 
complex model (the model with all marker cofactors) was adjusted for bias as described 
above and we used this estimate as a common estimate in the subset selection procedure 
and in the single-QTL and the no-QTL models. The test statistic takes much smaller values 
when all 80 markers are used as cofactors (curve CA(3-82)) than it does when no marker 
cofactors are used (curve IA). This demonstrates that the 80 cofactors partially absorb 
the effect of the QTL in marker interval 1-2, even though these markers are located on 
other chromosomes. However, when preselected marker cofactors are used (curve SA), 
the distribution of the test statistic is much closer to the one found when no marker 
cofactors are used (curve IA). 

DISCUSSION 
The simulations presented in this paper demonstrate the great advantage of MQM 
mapping over interval mapping in controlling the chances of type I and type I I errors. 
The nice feature of MQM mapping is that marker cofactors are generally selected only 
in regions were QTLs are segregating. Because of this feature, thresholds for the test 
statistic, which were obtained for the case that no QTLs are segregating (LANDER and 
BOTSTEIN 1989; VAN OOIJEN 1992), are also suitable for MQM mapping. These thresholds 
can be used when no QTLs are segregating, since in that case no or only a few markers 
will be selected; moreover, these thresholds can still be used when there are QTLs 
segregating, the effects of which are eliminated by marker cofactors. One condition is, 
however, that the residual degrees of freedom for estimating the variance (or the 
dispersion parameter in generalized linear models) are adequate. In such cases, the choice 
of the appropriate threshold for the test statistic (so that the chance of a type I error is 
small, say 5%) can be made satisfactorily in MQM mapping. Further simulation work is 
required to reveal the appropriate thresholds for the cases in which the number of 
residual degrees of freedom is small. In interval mapping, the threshold for the test 
statistic should be used with caution. It is known that a single QTL affects the test 
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statistic in all intervals on the same chromosome; the test statistic often exceeds the 
threshold in a number of intervals on either side of the QTL, although one should not 
"detect" multiple QTLs in this region. In MQM mapping on the other hand, the effect 
of a QTL diminishes rapidly when the distance between the QTL and the interval of 
interest increases; a QTL often affects the test statistic only in the two intervals adjacent 
to the one of the QTL. 

The use of marker cofactors reduces the unexplained variance, so that the chance 
of a type I I error in the case of unlinked QTLs is generally smaller in MQM mapping 
than in interval mapping. Our simulations also demonstrate that the detection and 
unravelling of the separate QTL effects in the case of linked loci is much easier in MQM 
mapping than in interval mapping. Linked QTLs with opposite (and mutually neutralizing) 
effects are worst case configurations for interval mapping: often no QTLs will be 
detected. Also, linked QTLs with equal sign effects are a difficult configuration for interval 
mapping: often a single "ghost" QTL will be detected somewhere between the two QTLs 
(MARTINEZ and CURNOW 1992). Again, our simulations make it clear that separation of 
such QTLs is much easier in MQM mapping than in interval mapping. 

In our simulations the progeny size is fixed at 100 individuals, because we are 
involved in real experiments of that size. For such cases. VAN OOIJEN (1992) demonstrated 
that the chance of detecting a specific QTL is small, unless the QTL explains a large 
proportion of the phenotypic variance. Therefore, we considered QTL configurations for 
relatively high levels of heritability. Our simulations make it clear that QTLs can be 
mapped more powerfully by MQM mapping than by interval mapping. In some of our 
simulations, the gene was even of qualitative rather than quantitative nature (Figure 1, 
2a, 2b and 6). We expect that a similar power improvement can be achieved when 
several QTLs instead of one major gene contribute to the genetic variation. Furthermore, 
we expect that similar results can also be obtained for smaller levels of heritability if the 
progeny size is larger. On the other hand, in some types of progeny such as recombinant 
inbred lines, the heritability can be increased at will by using more plants per line, leading 
to similar configurations. 

In QTL-mapping experiments, large numbers of markers are commonly scored. In 
this paper we addressed problems concerning fitting models with many marker cofactors, 
and problems concerning selection of "important" marker cofactors. The maximum-
likelihood estimate of the residual variance will be biased when many markers are used 
as cofactors; the number of parameters should not be too large, preferably less than 
2/(number of observations) (JANSEN and STAM 1994). We propose a heuristic three-step 
procedure to adjust for the bias. Our simulations demonstrate that the bias adjustment 
works. This makes it possible to use many markers as cofactors in MQM mapping. 
However, the use of redundant marker cofactors can lead to a loss of detection power. 
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There are two causes for this loss of detection power: (a) any redundant marker which 
is used as a cofactor and which is located nearby the QTL can also (partially) absorb the 
effect of the QTL; and (b) the marker data are generally unbalanced so that the effect 
of a QTL can even be absorbed by redundant markers on other chromosomes, especially 
in small progenies. Therefore, selection of the "important" markers is beneficial. In order 
to exclude redundant markers, the selection criterion should be stringent, but not so 
stringent that important markers (those flanking the QTLs) are thereby excluded. JANSEN 

(1993b) proposed to maximize the log-likelihood minus the number of free parameters 
(k) in the model; this is equivalent to minimizing Akaike's Information Criterion AIC=-2(ä-
k). In general, a penalty in the range of k to 3k may provide plausible initial models 
(MCCULLAGH and NELDER 1989). In the present paper, we use the more stringent penalty 
of 3k. Our simulations demonstrate that (a) this penalty is stringent, since no or only a 
few markers are generally selected in the case of no QTLs segregating and (b) this 
penalty is still not too stringent, since markers are selected for those QTLs that 
considerably affect the test statistic in their nearby region; the effects of such QTLs are 
satisfactorily eliminated by selected markers. Nevertheless, we feel that it is still 
worthwhile to study the properties of the method for other levels of the penalty in the 
range from k to 3k. In particular, we believe that the penalty should depend on the aim 
of the experiment. For instance, consider an experiment in which the aim is prediction 
of phenotypic value followed by indirect selection via markers. In the case of prediction, 
the penalty should be probably k rather than 3k (MCCULLAGH and NELDER 1989). KNOTT 

and HALEY (1992) discuss another situation which should be investigated in more detail: 
a trait with a reasonable level of heritability, which is affected by very many genes of 
small effect distributed throughout the genome. In general, the benefit of using a small 
penalty is that more variation induced by QTLs is eliminated. The cost is loss of power, 
since also (many) redundant markers are selected. Also, the threshold for the test statistic 
should become more stringent, when the penalty decreases. In order to obtain thresholds 
as a function of the penalty and also as a function of the residual degrees of freedom, 
further simulation work should be done. LANDER and BOTSTEIN (1989) and VAN OOIJEN 

(1992) studied the mapping of a single QTL with no markers as cofactors (equivalent to 
a penalty of <») and ZENG (1994) studied the mapping of a single QTL with all markers 
as cofactors, except the ones flanking the interval under study (nearly equivalent to a 
penalty of 0). Simulation work by Zeng (1994; his Figure 1) demonstrated that XI^M c a n 

be used as an upper bound for the 100a% threshold for the overall test with M 
intervals, unless the number of parameters is too large. It should now be obvious that 
the xl.o/M relation does not hold if the number of parameters exceeds 2/(number of 
observations) (JANSEN and STAM 1994). Our work, however, makes it possible to fit 
properly models with many parameters. It also indicates that 2F2dWM can be used as an 
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upper bound, where df are the degrees of freedom for estimating a2. Finally, we note 
that our selection criterion applies not only to "ordinary" regression models, assuming 
a normal error distribution, but also to generalized linear models (GLMs; MCCULLAGH and 
NELDER 1989). In comparing a sequence of GLMs, a single estimate of the dispersion 
parameter (a2 in "ordinary" regression) based on the most complex model is usually 
considered. 

In the present paper we study an automatic MQM mapping procedure. In practice 
the user may wish to step in interactively. Some marker cofactors could be dropped and 
others could be added by hand. Also, exact models for multiple QTLs could be fitted for 
those putative QTLs that have a major effect on the trait (and the corresponding marker 
cofactors may be dropped). One can still take into account the effects of less important 
putative QTLs by using marker cofactors. Also, exact models for two (or more) QTLs could 
be fitted to separate the effects of QTLs located in adjacent intervals. Such an interactive 
approach is possibly the most accurate and efficient way to map multiple QTLs, which 
is still feasible. 
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VI. GENOTYPE BY ENVIRONMENT INTERACTION IN 
GENETIC MAPPING OF MULTIPLE QUANTITATIVE TRAIT LOCI 

ABSTRACT 
The interval mapping method is widely used for the genetic mapping of quantitative trait 
loci (QTLs), though true resolution of quantitative variation into QTLs is hampered with 
this method. Separation of QTLs is troublesome, because single-QTL models are fitted. 
Further, genotype by environment interaction, which is of great importance in many 
quantitative traits, can only be approached by separately analyzing the data collected in 
multiple environments. Here, we demonstrate for the first time a novel analytic approach 
(MQM mapping) that accommodates both the mapping of multiple QTLs and genotype 
by environment interaction. MQM mapping is compared to interval mapping in the 
mapping of QTLs for flowering time in Arabidopsis thaliana under various photoperiod 
and vernalization conditions. 

FLOWERING TIME IN ARABIDOPSIS 
Arabidopsis thaliana is a model organism for genetic analysis because of its small genome 
size, short generation time and ease of propagation (MEYEROWITZ and PRUITT 1985). 
Transition to flowering is one of the current issues in Arabidopsis research (MARTINEZ-

ZAPATER et al. 1994). At least twelve loci for flowering time were identified by mutational 
analysis (KOORNNEEF et al. 1991). Also, large differences between ecotypes exist for 
flowering time; the FRI locus was found to be responsible for some of these differences 
(CLARKE and DEAN 1994). The group of early genotypes, which includes the widely used 
ecotypes Columbia (Col) and Landsberg erecta (1er), was not analyzed extensively. Small 
differences in flowering time within this group have been reported (KOORNNEEF et al. 
1991), and it has been suggested that the FLC locus is involved (KOORNNEEF, personal 
communication). Flowering time strongly depends on many environmental factors, 
amongst which photoperiod and temperature (vernalization treatment) are most 
important. Distinct norms of reaction have been reported for several mutants and 
ecotypes (MARTINEZ-ZAPATER et al. 1994). Here, we report the genetic mapping of 
quantitative trait loci (QTLs) underlying the differences in flowering time between Col and 
Ler. Flowering time was recorded under various photoperiod and vernalization conditions 
in a set of recombinant inbred lines (RILs, Table 1) derived from a cross between Col and 
Ler; details of the experimental conditions will be presented elsewhere (Lister and Dean, 
manuscript in preparation). We used 37 of the previously mapped RFLP markers (LISTER 

and DEAN 1994). 

We successfully applied a novel method of analysis based on multiple-QTL models 
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Table 1 Genetic mapping of QTLs for flowering time (expressed by leaf number3) in Arabidopsis thaliana: 
some population parameters 

Environ­
mental 
conditionsb 

LD 

LDV 

SD 

SDV 

CL 

CLV 

Phenotypic 

Colc 

9.9 

9.0 

32.9 

22.2 

18.1 

11.3 

mean 

Ler1 

7.1 

7.4 

28.3 

19.5 

11.5 

8.3 

RILsd 

8.60 

8.58 

29.41 

21.23 

12.84 

10.29 

Phenotypic 
variance 
between RILs 

1.63 

0.38 

29.69 

5.51 

9.76 

0.78 

Multiple reg 
phenotypes 
markers 

Residual 
variance 

0.79 

0.23 

10.12 

3.37 

5.55 

0.37 

ression of RIL 
on all 37 

Variance 
explained 

52% 

39% 

66% 

39% 

43% 

53% 

aLeaf number is often taken as a measure of flowering time; leaf numbers in this table represent the total 
number of rosette and cauline leaves per plant. 
bSD=short day (10 hours of light); LD=long day (16 hours of light); CL=continuous light; LDV, SDV and 
CLV=LD, SD and CL + vernalization, respectively; Col=Columbia and Ler=Landsberg erecfa 
T w o sets of five plants per environment were tested. 
d ln total 99 recombinant inbred lines (RILs) were tested, each RIL with five plants per 

Fig. 1 Genetic mapping of QTLs for flowering time (expressed by leaf number) in Arabidopsis thaliana: QTL 
likelihood maps and QTL effect maps produced by interval mapping (IM). Chromosome number is indicated 
at the right-hand top corner of each graph, markers are plotted along the abscissa. The solid, dashed and 
dotted curves represent the test statistic (twice the log of the likelihood ratio) for the hypothesis of a QTL 
(with no QTL by environment interaction) in the environment indicated. The overall 5% significance 
threshold for the test is 10. Solid, dashed and dotted bars represent two lod (10log of likelihood ratio) 
support intervals for the map locations of detected QTLs (pattern of curves and bars are corresponding). 
SD=short day (10 hours of light); LD=long day (16 hours of light); CL=continuous light; LDV, SDV and 
CLV=LD, SD and CL + vernalization, respectively. 

Fig. 2 Genetic mapping of QTLs for flowering time (expressed by leaf number) in Arabidopsis thaliana: QTL 
likelihood maps and QTL effect maps produced by MQM mapping. Chromosome number is indicated at 
the right-hand top corner of each graph, markers are plotted along the abscissa. Selected markers are 
indicated by ' + ' when interaction wi th environment is still assumed, otherwise by ' A ' . Solid curves indicate 
the test statistic (twice the log of the likelihood ratio) for the hypothesis of a QTL wi th no QTL by 
environment interaction assumed (upper part) and the estimated QTL effect (lower part). The overall 5% 
significance threshold for this test is 11. Dashed curves represent the test statistic for the hypothesis of a 
QTL with QTL by environment interaction (upper part) and the estimated QTL effects (lower part). The 
overall 5% significance threshold for the interaction test (the difference between solid and dashed curve) 
is 19. Bars along the abscissa indicate two lod ('°log of likelihood ratio) support intervals for the map 
locations of detected QTLs. The QTL effect is expressed proportionally, i.e. the replacement of the putative 
QTL allele of Col by that of Ler (a) has no effect if the QTL effect is equal to 1, (b) proportionally increases 
the number of leaves, if the QTL effect is larger than 1 and (c) proportionally decreases the number of 
leaves, if the QTL effect is smaller than 1. SD=short day (10 hours of light); LD=long day (16 hours of light); 
CL=continuous light; LDV, SDV and CLV=LD, SD and CL + vernalization, respectively. 
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environment.(MQM mapping; JANSEN 1994); QTL by environment interaction is part of 
the models fitted. For comparison we also applied interval mapping (LANDER and BOTSTEIN 

1989), analyzing the data for each environment separately. 

COMPARISON OF INTERVAL MAPPING AND MQM MAPPING 
In interval mapping (IM) the likelihood for a single putative QTL is assessed at each map 
location on the genome and, in case of multiple environments, a QTL likelihood map is 
produced for each environment separately (Fig. 1). MQM mapping is an automatic two-
stage procedure in the first stage of which "important" markers and marker by 
environment interactions are identified by the backward elimination method in multiple 
regression on all markers and environments (including interactions). In the second stage 
the likelihood for a single putative QTL is assessed at each map location (like in IM), but 
the preselected markers are used as cofactors, except for selected markers flanking the 
interval under study (Fig. 2). Marker cofactors will hopefully eliminate the major part of 
the variation induced by QTLs located elsewhere on the genome. A likelihood curve for 
a single putative QTL with QTL by environment interaction is plotted in regions where 
interaction with environment is still assumed (Fig. 2). The overall 5% significance 
thresholds for the tests (for the hypothesis of a QTL with no QTL by environment 
interaction and for the hypothesis of QTL with QTL by environment interaction) were 
obtained by computer simulation, using the actual marker data and analyzing 1000 
replicates. Observed flowering times were log-transformed prior to analysis and distinct 
variance parameters for each of the environments were included. 

With MQM mapping, we found evidence for twelve QTLs; four of these display QTL 
by environment interaction (Fig. 2). The QTL by environment effects indicate a QTL by 
vernalization interaction, where vernalization decreases the effects of these QTLs (Fig. 2). 
This result is not unexpected, because vernalization considerably decreases both 
environmental and genetic variance (Table 1). Further, QTL by photoperiod interactions 
are indicated. For instance, on chromosome 2 the QTL near marker m323 has little effect 
at LD but a large effect at CL. A full analysis of the identified QTLs and their relationship 
to previously mapped flowering time loci will be presented elsewhere (Lister and Dean, 
manuscript in preparation). 

We now compare the results of MQM mapping with those of IM and discuss the 
features of MQM mapping and IM that contribute to the differences. In IM, single-QTL 
models are used and independence of residual errors is a basic assumption. In our 
experiment, however, each RIL is tested in six environments and the six observations are 
correlated via genetic identity of the underlying genes. Therefore, the usual assumption 
of independent residual errors may be seriously violated and a joint analysis 



88 Chapter VI 

accommodating the information from all environments is not possible with IM; QTL 
likelihood maps can only be produced for each environment separately (Fig. 1 ). Although 
environment-specific QTLs may be detected this way, the approach is intrinsically weak, 
because the interaction is not part of the genetic model that is being fitted with IM. In 
MQM mapping with a complete linkage map however, the major part of this correlation 
is removed by markers which are used as cofactors in the model. This makes it possible 
to produce a joint map, including QTL by environment interaction, in the univariate 
regression frame of MQM mapping (Fig. 2). 

The IM analysis indicates the presence of at least four QTLs in several environments 
(Fig. 1). The fact that IM detects a QTL at a specific map region in one environment but 
not in another environment, may indicate QTL by environment interaction (for instance, 
a QTL is detected near marker g4552 on chromosome 1 in environments SD and LD but 
not in CL). In the absence of true QTL by environment interaction, however, a QTL can 
also be detected in one environment and not in another environment, because the 
chance of simultaneous detection in both environments is small. Therefore, the IM 
analysis may be indicative but can not be conclusive on the presence of QTL by 
environment interaction. However, if a pattern of environment-specific QTLs really results 
from QTL by environment interaction, this is readily, and more powerfully detected by 
MQM mapping. 

In MQM mapping, genetic background "noise" is removed by using marker 
cofactors (JANSEN 1994). Therefore, the chance of detecting QTLs is generally higher in 
MQM mapping than in IM. Further, separation of linked QTLs is much easier in MQM 
mapping than in interval mapping (JANSEN 1994). In IM, linked QTLs of unidirectional 
effect tend to be mapped as a single "ghost-QTL" at some intermediate position on the 
marker map (MARTINEZ and CURNOW 1992; JANSEN 1994); also, linked QTLs of opposite 
effect may go unnoticed because of their mutually neutralizing effects (JANSEN 1994). 
Both situations and even the more complex configuration of multiple linked QTLs with 
effects of alternating sign, have been encountered in our Arabidopsis experiment (Figs. 
1 and 2). For instance on chromosome 2, MQM analysis indicates the presence of two 
QTLs. In IM, the QTL near m246 is found in LD and LDV. In the other environments a 
QTL is mapped at various positions (in the middle of the chromosome near g6842 in 
CLV, SDV and SD, and near m323 in CL), but support intervals are very large. This 
illustrates the problems in separating linked QTLs with unidirectional effects by IM. Here, 
the situation is even more complex due to QTL by environment interaction for the QTL 
near m323. Another example of linked QTLs is indicated on chromosome 3, where MQM 
mapping detects two QTLs. In IM, the QTL near m583 is detected in LDV, SDV and CLV 
but not in LD, SD and CL. The presence of the second QTL, with opposite effect only in 
LD, SD and CL, near m457 is one of the reasons for this. The other chromosomes 
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exemplify similar problems in mapping of linked QTLs by IM. 

The present study clearly illustrates the advantages of the MQM approach over IM 

in detection and mapping of multiple genes underlying quantitative traits, especially 

when data have been collected in multiple environments. Therefore, we feel that our 

approach is another step forward towards understanding the genetics of quantitative 

characters. Our results also suggest that re-analysis of several QTL experiments reported 

in literature (cf. PATERSON et al. 1988,1991 ; STUBER et al. 1992; DE VICENTE and TANKSLEY 

1993; HAYES et al. 1993; SCHÖN et al. 1993; LAURIE et al. 1994) may further lift the veil 

that covers the link between phenotype and genotype. 
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VII. MAXIMUM LIKELIHOOD IN A GENERALIZED LINEAR FINITE 
MIXTURE MODEL BY USING THE EM ALGORITHM 

ABSTRACT 
A generalized linear finite mixture model and an EM algorithm to fit the model to data 
are described. By this approach the finite mixture model is embedded within the general 
framework of generalided linear models (GLMs). Implementation of the proposed EM 
algorithm can be readily done in statistical packages with facilities for GLMs. A practical 
example is presented were a generalized linear finite mixture model of ten Weibull 
distributions is adopted. The example is concerned with the flow cytometric 
measurement of the DNA content of spermatids in a mutant mouse, which shows 
non-disjunction of specific chromosomes during meiosis. 

INTRODUCTION 
Generalized linear models (GLMs) have been proved very useful in many agricultural and 
biological applications (MCCULLAGH and NELDER 1989). Surprisingly, little attention has 
been paid to the use of GLMs in finite mixture models. In the past decades much 
literature on finite mixture models appeared, including important monographs by EVERITT 

and HAND (1981), TITTERINGTON, SMITH and MAKOV(1985), and MCLACHLAN and BASFORD 

(1988). The more straightforward situation is commonly dealt with, where the 
components have separate parameters for mixing proportions and separate parameters 
for mixing distributions. In this paper it is shown that, by adopting a simple EM algorithm 
(DEMPSTER, LAIRD and RUBIN 1977), the mixture problem can be split into two solvable 
non-mixture problems. This makes it possible to transfer all GLM facilities to the 
corresponding finite mixture equivalent. Moreover, standard statistical packages can be 
readily used to do the computational work. A general procedure, which requires 
specification of the GLM for the mixing proportions and specification of the GLM for the 
mixing distributions, can be easily written in for instance GENSTAT (GENSTAT 5 COMMITTEE 

1987). The distribution of the component counts may be either multinomial or Poisson. 
The mixing distribution can be for example univariate normal, Weibull, binomial or 
Poisson, but also for example multivariate normal or grouped normal. An illustration 
using data on non-disjunction in the mouse will also be given. 

A GENERAUZED LINEAR FINITE MIXTURE MODEL 
DEMPSTER, LAIRD and RUBIN (1977) considered the mixture problem as one of many 
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examples in which the data can be viewed as incomplete. They interpreted the mixture 
data as incomplete data by regarding an observation on the mixture as missing its 
component (or category) of origin. Complete data models and incomplete data models 
are discussed in the next two sections. 

Complete data. Suppose that each individual in a sample of size N is classified to one 
of M categories. Let the random variable Nt denote the number of individuals in category 
j (j=1,2...M), and let the random variable Y] denote the response of individual i with 
respect to an observable quantity (i=1.../V). 

In some cases it may be assumed that the numbers NVN2,...,NM are independently 
distributed according to the Poisson distribution. More commonly there are constraints 
on the NUN2,...,NM. For example, the total number of observations N is fixed. In that case 
the joint distribution of the NVN2,...,NM is the multinomial distribution. The usual 
hypotheses can all be formulated as multiplicative models (GLMs for count data). 

The response variable is often assumed to be normally distributed, in which case 
the usual hypotheses can be formulated as regression models. The distribution of the 
response variable is assumed to depend on the category, which is therefore one of the 
explanatory variables. The response variable may have some other continuous 
distribution, such as the log-normal or the Weibull distribution. It may even be discrete 
rather than continuous, such as is the case when percentages, counts, grouped or ordinal 
data are recorded. GLMs provide an extension of classical linear models for normally 
distributed data to these and many other types of data. 

Incomplete data. Suppose now that it cannot be observed to which category an 
individual belongs. The observed response variable does now have a finite mixture 
distribution. The categories are usually referred to as components of the mixture. The 
previously described GLMs for the counts NVN2,...,NM and the responses YUY2,...,YM may 
still hold, and the model may now be called a 'generalized linear finite mixture model'. 
It will be shown below that the parameters can be estimated by fitting GLMs to updated 
complete data in an iterative way. 

The case of a continuous response variable will be considered here. Expressions for 
a discrete response variable may be obtained by substituting probabilities for densities. 
Suppose that the likelihood of the i-th observation is 

M 

where ffi is the probability density function of the j-th component. The likelihood 
equations are 
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(EVERITT and HAND 1981). The likelihood equations can be solved by applying the EM 
algorithm (DEMPSTER, LAIRD and RUBIN 1977). Each iteration consists of two steps. First, 
in the so-called E-step, Pjh is evaluated given the current parameter estimates. Next, in 
the so-called M-step, the likelihood equations are solved by fixing the pjM whereby new 
parameter estimates are obtained. Note that in this case the likelihood equations are split 
into two terms; the first term is a function of the mixing proportions only, the second 
term is a function of the parameters of the component distributions only. Therefore the 
estimation of mixing proportions and the estimation of parameters of the component 
distributions are separated in the iterative scheme (EVERITT and HAND 1981). Until now 
it has not been recognized that each term can be treated as a likelihood equation for 
non-mixture problems of NxM observations. Each of the N observations is replicated and 
the number of replicas is equal to the number of components M. Asa result, an M-step 
for the mixture problem can be split into two M-steps for standard non-mixture 
problems. This makes it possible to embed the finite mixture model into the general 
framework of GLMs. The first problem is solved by fitting a GLM for multinomial or 
Poisson data to the 'data' piVr The second problem is solved by fitting a GLM to the 
response variable by using weights pw. 

APPLICATION 
An example is now discussed where the fitting of a generalized linear finite mixture 
model provides an informative interpretation of the data. 

The DNA contents of 6817 spermatids of a mutant mouse, which shows meiotic 
non-disjunction of specific chromosomes, and the DNA contents of 5488 spermatids of 
a control mouse, were measured by flow cytometry (FCM). Fig. 1 shows the observed 
FC M histograms. The control mouse produces spermatids of two different DNA content 
levels, namely spermatids carrying an X-chromosome and spermatids carrying an 
Y-chromosome. In addition to these two spermatid types, the mutant mouse was known 
to produce eight other spermatid types resulting from meiotic non-disjunction of 
chromosomes 11 or 131 (a so-called reciprocal translocation was used to enlarge 
chromosome 13 to 131). As a consequence of non-disjunction some spermatids have one 
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(a) control mouse 

180 190 200 210 220 230 240 

fluorescence intensity 

(b) mutant mouse 

190 200 210 220 230 240 

fluorescence intensity 

Figure 1 . Flow cytometry (FCM) histograms of 5488 spermatids from a control mouse and of 6817 
spermatids f rom a mutant mouse, which shows meiotic non-disjunction of specific chromosomes. Fitted 
mixtures of Weibull distributions are superimposed on top of the histograms. 
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extra chromosome, either chromosome 11 or 131, while other spermatids lack one of 
these. In accompanying cytological experiments no indication was found for simultaneous 
non-disjunction of chromosomes 11 and 13'. Conventional methods to estimate 
non-disjunction frequencies are based on chromosome counting. Statistical evaluation of 
the above data should reveal the usefulness of flowcytometry as a new and fast method 
for estimating non-disjunction frequencies in the mouse. 

Let yx and yy denote the DNA content of normal haploid spermatids carrying an 
X-chromosome and spermatids carrying an Y-chromosome, respectively. Next, lety,, and 
y13 denote the DNA content of chromosome 11 and 13', respectively. Obviously, the DNA 
contents of the four hyperploid and the four hypoploid spermatid types can be expressed 
in terms of yx, yy, yu and y,3 in a linear way. For example, the DNA content of an 
X-chromosome carrying spermatid which lacks chromosome 11, denoted by /„_.,„ is 
given by yx_n= yx-yu- Similarly, the DNA content of an X-chromosome carrying 
spermatid with an extra chromosome 11, denoted byyx+11, is given by yx+n=yx+y,,. The 
DNA contentsyx_13, yx+)3, y y . „ , yy+11, yy_13 and yy+)3 are defined and expressed in terms 
of y%, yr 7ii and y^ in the analogous way. 

The expected frequencies of spermatids carrying an X-chromosome and spermatids 
carrying an Y-chromosome (denoted by px and py, respectively) are equal, so that in 
control mice p=p=Vi. The expected frequencies of the ten spermatid types in mutant 
mice are derived from the frequencies of non-disjunction. Let Pu and Pn denote the 
probability of non-disjunction for chromosome 11 and 13', respectively. The frequencies 
of the ten spermatid types, using analogous definitions for their frequencies as for their 
DNA contents, satisfy the equations p=p=V20-P„-P,3), px,.u=px..u=pyi-U=Pv,+u=v*pu 
and Px,-i3=Px.+i3=Py.-i3=Py.+i3=1^Pi3- In the log-linear formulation offsets appear, i.e., 

log(px)=Jog(py)=log(1/2)+log(1 -Pu-P,3), 

log(px .n)=log(px ,„)=log(py _„)=log(py tll)=log(1/4)4Jog(P,1), 

lo9(Px..13)=log(px _13)=log(py .13)=log(py <13)=log(1/4)+log(/5l3). 

We supposed that the FC M measurement x arose from a mixture of Weibull 
distributions, i.e. that, using the notation of MCCULLAGH and NELDER (1989), the 
probability density function /(x|y) for spermatids with DNA content y is given by 
/(x|y)=ax*_1exp(/-x"exp(y)). Parameter estimation was carried out by the method 
described above. The computational work could be done easily in GENSTAT by exploiting 
its offset and weighting options for generalized linear models (GENSTAT 5 COMMITTEE 

1987). The estimated frequency distributions are plotted on top of the histograms (Figure 
1), the fit being satisfactory to the main body of the data. It should be noted that the 
FCM histograms were (unfortunately) automatically thresholded at the lower and upper 
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tail of the distribution to eliminate (a low level of) background noise. An adaptive 
procedure is to add an extra component to the mixture distribution to take background 
effects into account. The exponential distribution (the Weibull distribution with a=1) is 
often used in flow cytometry to model background noise (cf. BALDETORP, DALBERG and 
LINDGREN 1989). 

Table 1. Results of fitting a generalized linear finite mixture model of ten and two Weibull distributions 
to a mutant and a control mouse, respectively 

y> n Zn / ia " * n Pia 

Mutant mouse -366.25 -368.33 2.91 6.74 68.80 .45 .46 

Control mouse -288.28 -290.43 - - 53.50 

Parameter estimates are presented in Table 1. All standard deviations were close 
to 0, due to the huge numbers of observations. Estimates of yx and yy differ between 
control and mutant mice, so that accurate quantification of DNA contents of spermatids 
is unfeasible. However, the estimate of the sex-chromosome effect y,-yy is fairly constant 
over the two mice (-2.1). The estimated DNA contents of chromosome 11 and 
chromosome 131 are 1.4 and 3.2 times the estimated sex-chromosome effect, 
respectively. These values are close to 1.4 and 3.1 respectively, which values can be 
derived from estimated chromosome lenghts presented in genetical literature (EVANS 

1989). 
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SUMMARIZING DISCUSSION 

In this thesis a new, general and powerful method is developed for the detection and 
mapping of QTLs in plants. The method is termed "MQM mapping", where MQM is an 
acronym for "multiple-QTL models" as well as for "marker-QTL-marker". The first term 
indicates that the models take into account the individual effects of the QTLs on the trait 
as well as their joint effect. The second term refleas the fitting of putative QTLs between 
markers on the genetic linkage map. The contributions of our method to progress in QTL 
mapping methodology (and some related topics) are summarized and discussed below. 

Related methods. The interval mapping method (LANDER and BOTSTEIN 1989) has 
become the most widely used method for QTL analysis. In this method the likelihood for 
the presence of a single segregating QTL is assessed for each location on the genetic 
map. In statistical sense the trait is regressed on a single putative QTL and the unknown 
QTL-genotype is recovered via marker and phenotypic data as best it may. The use of 
single-QTL models in interval mapping is, however, in clear contradiction with the 
commonly assumed oligogenic or polygenic nature of quantitative traits. It is now 
generally recognized that interval mapping has several serious deficiencies. In interval 
mapping "ghost-QTLs" may be falsely detected between linked QTLs with unidirectional 
effects (coupling phase), or no QTL may be detected in the case of linked QTLs with 
opposite effects (repulsion phase). Moreover, the method is not powerful since QTLs are 
mapped one at a time, ignoring the effects of mapped or not yet mapped other QTLs. 
These deficiencies were already recognized to some extent by LANDER and BOTSTEIN (1989) 
and they made the first move towards fitting two QTLs simultaneously. Several authors 
(cf. KNAPP 1991; HALEY and KNOTT 1992; MARTINEZ and CURNOW 1992) subsequently 
developed methods for dissecting the effects of two or three linked QTLs. 

Another method of QTL analysis is based on standard multiple regression of the trait 
on markers (cf. COWEN 1989; STAM 1991). In this approach the effects of QTLs will be 
absorbed by nearby markers; or in statistical sense, markers are treated as if they are 
QTLs themselves. Of course the regression models only approximate genuine multiple-QTL 
configurations. Genome regions displaying QTL activity can be found by testing for and 
selection of the influential markers (hopefully markers flanking QTLs will be traced). 
Unfortunately, application of the multiple regression method is seriously hampered if part 
of the marker observations is missing. In practice this is nearly always the case. In this 
thesis, we develop a solution to this problem (see below). [ chapters ll-VI ] 

MQM mapping. The statistical framework of MQM mapping consists of multiple linear 
regression of the trait on any set of loci (QTLs and markers). The MQM mapping 
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framework therefore includes interval mapping and multiple regression on markers. 
Moreover, in MQM mapping it is possible to map multiple QTLs simultaneously. In theory 
the latter approach leads to the most efficient and most accurate mapping of multiple 
QTLs. However, when many QTLs are included in a multiple-QTL model, computation 
may become unfeasible (see also below). In this thesis an approximation of the genuine 
multiple-QTL configuration is described and extensively studied: a single putative QTL is 
moved along the chromosomes and the exact position of this QTL is assessed. Other 
putative QTLs are replaced by nearby markers (these markers are used as 'cofactors' in 
the model). In other words, these QTLs are 'located' at nearby marker positions instead 
of at their true (but unknown) positions between markers. This method is a combination 
of interval mapping and standard multiple regression on the markers. Recently, ZENG 

(1994) studied a similar approach. We focus on an automatic two-stage procedure, in 
the first stage of which "important" markers (hopefully those flanking the QTLs) are 
selected for multiple regression on markers. In the second stage a putative QTL is moved 
along the chromosomes by using the preselected markers as cofactors, except for 
selected markers flanking the interval under study. 

In MQM mapping also models can be fitted in which two or three QTLs are combined 
with marker cofactors that eliminate effects of other QTLs. Such an approach is currently 
the most efficient and most accurate way to map multiple QTLs, which is still 
computationally feasible. [ chapters ll-VI ] 

Exploiting the full power of complete linkage maps of markers. Complete linkage 
maps of molecular markers are now available for many species. In MQM mapping the 
trait is regressed on these marker loci simultaneously and thereby the full power of 
complete linkage maps is exploited as much as it is computationally feasible, to detect 
and map QTLs. We address problems concerning the selection of "important" marker 
cofactors; a backward-elimination procedure for marker selection is described. Problems 
concerning the fitting of models with many marker cofactors, the over-fitting of the data 
and the estimation of the error variance are solved. Related approaches for marker 
selection have recently been discussed by HACKETT (1994). 

For proper selection of markers close to QTLs, a reasonable number of recombinants 
between flanking markers is required. Because of the near collinearity of closely linked 
marker cofactors, it makes little sense to use a very dense map in a progeny of, say, 100 
individuals. In order to increase the resolution, one should increase the progeny size (to 
produce more recombinants) rather than the number of markers. [ chapters ll-VI ] 

QTLs: how often are they missed, or mapped at the wrong location? In practice 
often a number of QTLs will be missed (a type I I error) and at the same time a number 
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of false positives may occur, indicating QTLs at map positions where actually no QTLs are 
present (a type I error). One often strives for keeping at least the chance of a type I 
error below 5%, while at the same time the chance of a type I I error should be 
minimized. Our simulation work demonstrates that the chances of type I and type I I 
errors are generally much smaller in MQM mapping than in interval mapping. The 
reasons are that the unexplained variance is much smaller in MQM mapping and that 
linked QTLs can be detected and separated much better by MQM mapping. The chance 
of detecting a "ghost-QTL" is also much smaller in MQM mapping than in interval 
mapping. 

In interval mapping, the threshold for the test statistic should be used with caution. 
It is known that a single QTL affects the test statistic in all intervals on the corresponding 
chromosome; the test statistic often exceeds the threshold in a number of intervals on 
either side of the interval under study, although no multiple QTLs are present. In MQM 
mapping on the other hand, the influence of a QTL diminishes rapidly when the distance 
between the QTL and the interval under study increases; a QTL often affects the test 
statistic only in the two intervals adjacent to the one that contains the QTL. 

ZENG (1994) studied the use of all markers as cofactors, except the markers flanking 
the interval under study, and developed an upperbound for the corresponding type I 
error. The benefit of using many (or all) markers as cofactors is the elimination of as 
much QTL-induced variation as possible. The cost is a (sometimes tremendous) loss of 
power for QTL detection, due to over-fitting the data. [ chapter V ] 

QTL mapping: a problem of incomplete data. QTL mapping can be viewed as a 
problem in which the data are incomplete: the observations of the genotypes at the QTLs 
are missing. Since marker genotypes are (generally) known, markers can be informative 
to reveal QTL genotypes. In this thesis we develop a general and flexible EM algorithm 
to recover information about QTL genotype. When there are many QTLs or when there 
are marker cofactors with many missing observations, the computations in MQM 
mapping may become time consuming: it is unfeasible to take into account all possible 
genotypes (combinations of alleles) for the QTLs and marker cofactors. Disregarding 
genotypes with negligible probability of occurrence can be a solution to this 
computational problem. We adopt this approach in the analysis of Arabidopsis data (see 
below). For each plant we disregard all candidate genotypes which are a certain factor 
less likely than the most likely genotype. The value of the factor may be decreased to 10 
without substantial influence on the results. 

In practice it occurs frequently that the observations of marker genotypes fail. In 
addition to fortuitously missing data, another type of missing marker data may occur in 
a natural way, namely when markers are dominant, or when unequally informative 
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markers are used in experiments with cross breeders. In the first case, the heterozygote 

cannot be distinguished from one of the homozygotes; in the second case some markers 

may segregate according to, for instance, backcross rules, so the gametes from only one 

parent are informative, while other markers may segregate according to F2 rules, so that 

the gametes from both parents are informative (HALEY and KNOTT 1994; MALIEPAARD and 

VAN OOIJEN 1994). This happens in cross-breeding species where, for instance, the 

parents are homozygous for some markers and heterozygous for others. In the MQM 

mapping approach missing (QTL and marker) observations are recovered by using all 

information on phenotype and genotype (i.e. for the putative QTLs as well as for all 

markers) simultaneously. 

Recovering genetic information may be difficult if the marker map is sparse: too 

many candidate genotypes have a probability of occurrence that is relatively small but not 

negligible. Then, disregarding the relatively unlikely genotypes does not solve the 

computational problem in MQM mapping. In particular, problems arise when the genetic 

data are highly incomplete, for instance when many markers are dominant, when many 

QTLs are assumed, or when unequally informative markers are used. In such situations 

Monte Carlo solutions rather than analytic solutions can be used for updating parameter 

estimates in the M-step of the EM algorithm (Guo and THOMPSON 1992). The Monte 

Carlo EM algorithm is straightforwardly implemented, but computation requires very 

much computer time. [ chapters II and IV ] 

Type of population. In this thesis we mainly concentrate on QTL mapping in self-

fertilizing crops. Computer simulations for backcross progenies are given. In addition, 

practical applications in tomato and Arabidopsis thaliana for F2 and recombinant inbred 

lines, respectively, are presented. MQM mapping can also be used for other types of 

segregating progeny in self-fertilizing crops, such as doubled haploids or F3 lines. 

Furthermore, MQM mapping can be used in outcrossing species, such as apple and farm 

animals. In outcrossing species, chromosomes may contain markers of distinct type of 

segregation (see above). The interval under study may, for instance, be flanked by 

markers of the backcross-type. However, nearby markers of the F2-type may provide 

additional information on genotype and it is therefore important to use the information 

of multiple markers simultaneously (HALEY and KNOTT 1994; MALIEPAARD and VAN OOIJEN 

1994). Furthermore, QTLs and markers may segregate with two or more alleles per locus. 

MQM mapping easily deals with this multiple allelism. 

In MQM mapping we can easily analyse data obtained from different types of 

progeny simultaneously; this increases the power of QTL detection. In the case of 

complete linkage maps, phenotypic data from the parents can also be incorporated in 

the analysis. MQM mapping then exploits the information from parents and their 
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progeny simultaneously. The observed differences between the parents reflect the joint 
QTL effects. At the same time the environmental variation can be assessed from the 
parental data. The inclusion of data from individuals with known genotype (such as 
parental data), can lead to more efficient and more accurate QTL mapping. 

[ chapters ll-VI} 

Genotype by environment interaction. Many traits exhibit genotype by environment 
interaction when a set of cultivars (genotypes) is tested in diverse environments. In terms 
of gene effects, the expression of QTLs may change from one year to another, from one 
location to another, etcetera. In interval mapping, all information on this type of 
interaction would be lost if observations are averaged over years and locations; QTL 
effects may even become more masked by this averaging. Alternatively, the data for the 
multiple environments can be analysed separately in interval mapping. In the absence of 
true QTL by environment interaction, however, a QTL may be detected in one 
environment and not in another, because the chance of simultaneous detection in both 
environments is small. HAYES et al. (1993) use a model for interaction between a single 
QTL and environment and they neglect that observations are correlated due to the 
genetic identity of other QTLs. In MQM mapping with a complete linkage map, however, 
the major part of this correlation is removed by markers which are used as cofactors in 
the model. The models in MQM mapping can accommodate QTL by environment 
interactions, so that clear information about these interactions can be obtained. When 
the experimental setup involves other factors, such as blocks, these can also be 
accommodated straightforwardly. In this thesis a practical experiment is presented in 
which recombinant inbred lines of Arabidopsis thaliana are tested under diverse light 
conditions and with or without vernalization (see below). [ chapters II and VI ] 

QTL by QTL interaction. The expression of a given QTL may depend on the expression 
of one or more other QTLs (epistasis). The models developed in this thesis can 
accommodate such interactions between QTLs. Though epistatic effects can in principle 
be modelled straightforwardly, this will cause a rapid increase in the number of 
parameters in the model relative to the amount of data. Therefore, the detection of 
epistatic effects probably requires a different type of experimental approach, such as 
raising plants of deliberately chosen multilocus marker genotypes. [ chapter II ] 

Disease scores and such. In research on resistance against diseases one often uses 
disease scores, such as 0=no symptoms, 1=moderate infection, 2=severe infection, and 
3=dead. Obviously, there is no question of normally distributed and continuous variation. 
In MQM mapping other types of distribution for the trait can be assumed in addition to 
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the commonly assumed normal distribution. This is not only important for disease scores 
measured on an ordinal scale, but also for percentages, counts, life times, etcetera. In 
this thesis it is demonstrated that mixture models can be embedded in generalized linear 
models. Hereby, many types of distribution can be used in QTL mapping. We present an 
example in which the exponential distribution is used. HACKETT and WELLER (in press) deal 
with traits measured on an ordinal scale. Also, variance component models, which are 
often used in animal breeding research, can be used in the MQM mapping framework. 

[ chapter II ] 

Computer software. In MQM mapping we use a new and simple iterative EM algorithm 
to estimate the parameters of the genetic model. This algorithm can be readily 
implemented using standard statistical software packages (such as Genstat; JANSEN 1994). 
There are several advantages: the computer programme is general, flexible, short, easy 
to read (for Genstat writers) and reliable. The disadvantages are that computation may 
take much time and that the software is not (yet) generally accessible to non-
statisticians. [ chapters II and IV ] 

Application in two practical experiments. We detect QTLs for plant height in an F2 

progeny of tomato. We have evidence for two QTLs in interval mapping and evidence 
for six QTLs (four additional QTLs) in MQM mapping. In addition to F2 and marker data 
plant heights of parental and F, plants are used in the MQM mapping analysis. In a 
second experiment we detect QTLs for flowering time in recombinant inbred lines of 
Arabidopsis thaliana. These lines were tested under diverse light conditions and with or 
without vernalization. In MQM mapping twelve QTLs are detected, four of which display 
QTL by environment interaction. Unlike this, in interval mapping only four QTLs are 
indicated with much less precision for map location, and for these QTLs there is no 
conclusive information on QTL by environment interaction. These examples clearly 
illustrate the superiority of MQM mapping over interval mapping. 

[ chapters IV and VI ] 

Future work. Currently, QTL mapping in plants is a very active area of theoretical 
research. Many important issues are being investigated, such as thresholds for tests for 
QTL detection (REBAÏ, GOFFINET and MANGIN 1994), construction of confidence intervals 
for QTL location (MANGIN, GOFFINET and REBAÏ; in press) and analysis of outbreeding 
progenies (HALEY and KNOTT 1994; MALIEPAARD and VAN OOIJEN 1994). However, these 
issues are studied within the frame of interval mapping and they should now be re­
investigated for the more complex situation of mapping multiple QTLs. Other challenges 
are: the selection of markers to be fitted in the models as cofactors, the detection of 
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epistasis, the use of very dense marker maps, the fine mapping of QTLs, etcetera. These 
issues may bear upon statistical problems of multiple linear regression with many 
correlated regressors (and statistical solutions may or may not yet be available). The 
mapping of QTLs with sparse marker maps and very incomplete genetic data also needs 
further consideration. The use of the Monte Carlo EM algorithm as a computational tool 
needs further exploration. A last but certainly not least area of work is the development 
of user-friendly software, a prerequisite for making QTL mapping a successful tool in 
plant breeding. 

Impact on plant breeding. Molecular markers have become available around 1980 and 
expectations of their usefulness in plant breeding ran high. Molecular markers are now 
basic tools in scientific research. Powerful biometrical methods, such as developed in this 
thesis, make possible the detection and genetic mapping of multiple QTLs affecting 
complex traits. This leads to improved understanding and more efficient manipulation of 
many important processes in plants. Mapped QTLs can be traced in breeding 
programmes, for instance, indirectly via linked markers. New strategies aiming at 
accumulation of favourable alleles of QTLs are now within reach. Fine-mapped QTLs can 
also be cloned and transferred via molecular and cell-biological techniques. Such 
molecular marker techniques are now breaking through in applied plant breeding. 
Success stories stimulate breeding companies to change their strategy from classical 
breeding to marker assisted breeding. We believe that solutions to important public 
matters such as food production with less requirements for chemical pesticides can be 
suitably realised with the aid of the new techniques. 

Detection of major genes and other genetic applications. In this thesis we develop 
methods which can be applied to a much larger range of quantitative genetic problems 
than to "just" the current problem of mapping QTLs. In all these quantitative genetic 
problems the phenotype is observed in a segregating population, whereas the genotype 
is completely or partially masked. For instance, the detection of genes with major effects 
on a quantitative trait (major genes) without the use of genetic markers is closely related 
to the mapping of QTLs (JANSEN 1994; see COLON, JANSEN and BUDDING 1995 for an 
example). Here, we present a rather different application: the analysis of flow cytometric 
measurements of the DNA content in a segregating population of spermatids from a 
mutant mouse, which shows non-disjunction for specific chromosomes during meiosis. 
Another practical example is described by JANSEN and DEN Nus (1993): the estimation of 
the proportion of unreduced pollen grains in perennial ryegrass via the size of pollen 
grains. [ chapter VII ] 
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Mixture models in other areas of research. Our method of parameter estimation 
makes it relatively easy to handle complex mixture models. A large number of statistical 
tools has become available, because we embedded mixture models within the frame of 
generalized linear models. The method can be readily implemented in statistical packages. 
This offers new and important possibilities for research areas where (complex) mixture 
models are appropriate, such as chemistry, pharmacology, medicine, psychology and 
technology. [ chapter VII ] 

UTERATURE CITED 
COLON, L.T., R.C. JANSEN and D.J.BUDDING, 1995 Partial resistance to late blight (Phytophthora infestans) 

in hybrid progenies of four South American Solanum species crossed with diploid S. Tuberosum. 
Theor Appl Genet, in press 

COWEN, N.M., 1989 Multiple linear regression analysis of RFLP data sets used in mapping QTLs, in 
Development and application of molecular markers to problems in plant genetics, edited by T. 
HELENTJARIS and B. BURR. Cold Spring Harbor Laboratory, New York, pp. 113-116 

Guo, S.W. and E.A. THOMPSON, 1992 A Monte Carlo Method for combined segregation and linkage 
analysis. Am J Hum Genet 51:1111 -1126 

HACKETT, CA., 1994 Selection of markers linked to quantitaitve trait loci by regression techniques, in 
Biometrics in plant breeding: applications of molecular markers, edited by J.W. VAN OOIJEN and 
J.JANSEN. CPRO-DLO, The Netherlands 

HACKETT, C.A. and J.I. WELLER, 1995 Genetic mapping of quantitative trait loci for traits with ordinal 
distributions. Biometrics, in press 

HALEY, C.S. and S.A. KNOTT, 1992 A simple regression method for mapping quantitative trait loci in line 
crosses using flanking markers. Heredity:315-324 

HALEY, C.S. and S.A. KNOTT, 1994 Mapping quantitative trait loci between outbred lines using least 
squares. Genetics 136:1195-1207 

HAYES, P.M., B.H. Liu, S.J. KNAPP, F. CHENN, B JONES et al., 1993 Quantitative trait locus effects and 
environmental interaction in a sample of North American barley germ plasm. Theor appl Genet 
87:392-401 

JANSEN, R.C, and A.P.M. DEN NIJS, 1993 A statistical mixture model for estimating the proportion of 
unreduced pollen grains in perennial ryegrass (Lolium perenne L.) via the size of pollen grains. 
Euphytica 70:205-215 

JANSEN, R.C, 1994 Maximum likelihood in a finite mixture model by exploiting the GLM facilities of 
Genstat. Genstat Newsletter 30:25-27 

MANGIN, B., B. GOFFINET and A. REBAÏ, 1994 Constructing confidence intervals for QTL location. Genetics, 
in press 

KNAPP, S.J., 1991 Using molecular markers to map multiple quantitative trait loci: models for backcross, 
recombinant inbred, and doubled haploid progeny. Theor Appl Genet 81:333-338 

LANDER, E.S. and D. BOTSTEIN, 1989 Mapping Mendelian factors underlying quantitative traits using RFLP 
linkage maps. Genetics 121:185-199 

MALIEPAARD and J.W. VAN OOIJEN, 1994 QTL mapping in a full-sib family of an outcrossing species, in 
Biometrics in plant breeding: applications of molecular markers, edited by J.W. VAN OOIJEN and J. 
JANSEN. CPRO-DLO, The Netherlands 

MARTINEZ, O. and R.N. CURNOW, 1992 Estimating the locations and the sizes of the effects of quantitative 
trait loci using flanking markers. Theor Appl Genet 85:480-488 

REBAÏ, A., B. GOFFINET and B. MANGIN, 1994 Approximate thresholds of interval mapping tests for QTL 
detection. Genetics 138:235-240 

STAM, P., 1991. Some aspects of QTL analysis, in Proceedings of the Eighth Meeting of the Eucarpia Section 
Biometrics in Plant Breeding, BRNO 

ZENG, Z.-B., 1994 Precision mapping of quantitative trait loci. Genetics 136:1457-1468 



GENETISCHE KARTERING VAN GENEN VOOR KWANTITATIEVE 
EIGENSCHAPPEN (SAMENVATTING) 

Veel voor cultuurgewassen belangrijke eigenschappen, zoals opbrengst, kwaliteit en 
ziekte-resistentie, vertonen een continue variatie. Methoden om deze variatie te 
analyseren en vooral om de mogelijke genetische basis ervan te ontrafelen zijn derhalve 
van het grootste belang voor veredelingsdoeleinden; dit is het werkterrein van de 
kwantitatieve genetica. Reeds aan het begin van deze eeuw is aangetoond dat continue 
variatie het gecombineerde effect is van omgevingsfactoren en segregatie van 
verschillende, helaas niet direct traceerbare genen. Deze genen ("quantitative trait loci" 
of "QTLs") kunnen alleen goed opgespoord worden als men de beschikking heeft over 
genetisch gemarkeerde chromosomen. Voor zo'n gemarkeerde positie (een "merker") 
kan het genotype bepaald worden, bijvoorbeeld met moleculaire technieken. De 
gemiddelde waarde van een kwantitatieve eigenschap kan dan berekend worden voor 
elk van de genotypen die mogelijk zijn voor zo'n merker. Deze gemiddelden zullen 
verschillen als een merker in de buurt van een QTL ligt (tenzij er sprake is van zogenaamd 
tussen-locus-evenwicht). In de loop van de jaren tachtig zijn de eerste typen moleculaire 
merkers ontwikkeld en nu al zijn voor diverse plante- en diersoorten genetische kaarten 
gemaakt met grote aantallen van dergelijke merkers, gelijkmatig verspreid over de 
chromosomen. Daarmee is een nieuw tijdperk voor de kwantitatieve genetica 
aangebroken. 

Bij kartering van QTLs bestaan de gegevens uit metingen aan een eigenschap (het 
fenotype) en waarnemingen aan merkers (het genotype, met moleculair-biologische 
middelen vastgesteld). Er is behoefte aan efficiënte en nauwkeurige biometrische 
methoden om dergelijke gegevens te analyseren. Daarmee kunnen dan QTLs voor 
(complexe) eigenschappen worden gelocaliseerd. De overerving van de QTLs kan 
vervolgens worden gevolgd in veredelingsprogramma's, bijvoorbeeld via indirecte selectie 
op merkers. Of men kan deze QTLs kloneren en ze daarna met moleculair- of 
celbiologische technieken weer overbrengen naar planten. De traditionele 
karteringsmethoden zijn echter nog verre van optimaal en het onderzoek naar betere 
methoden is het werkveld van een toenemend aantal biometrici en kwantitatief genetici. 
Het onderhavige proefschrift vormt het verslag van een dergelijk onderzoek. 

In hoofdstuk I wordt de kartering van QTLs in een historisch perspectief geplaatst 
en wordt een overzicht van de in de loop der tijd gebruikte biometrische modellen 
gegeven. 

In hoofdstuk II wordt een nieuw, algemeen en flexibel biometrisch raamwerk 
ontwikkeld voor de kartering van QTLs. Een eenvoudig algoritme voor het schatten van 
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de parameters van de modellen wordt beschreven. Deze methode kan in veel 
verschillende omstandigheden toegepast worden (een of meer QTLs, diverse typen 
kruisingspopulaties, eigenschappen en proefopzetten, etcetera). In twee met de computer 
gesimuleerde voorbeelden worden enkele van de nieuwe mogelijkheden geïllustreerd. In 
dit hoofdstuk wordt ook het probleem van de gelijktijdige kartering van meervoudige 
QTLs aangepakt. Exacte modellen voor meervoudige QTLs kunnen nu gebruikt worden, 
tenminste in principe; maar er is veel rekenwerk als er veel QTLs zijn. Een benaderende 
methode voor het karteren van meervoudige QTLs wordt voorgesteld. In deze aanpak zijn 
de modellen exact voor een QTL op een veronderstelde kaartpositie. Ze zijn echter 
benaderend voor andere mogelijke QTLs; dit komt doordat in de analyse deze QTLs 
vervangen worden door nabijgelegen merkers (d.w.z. merkers worden als "cofactoren" 
in de analyse gebruikt). 

In hoofdstuk III wordt de methode voor het opsporen en karteren van meervoudige 
QTLs verder uitgewerkt. Enkele simulatie-studies illustreren de potentiële kracht van 
merker cofactoren hierbij. 

In hoofdstuk IV wordt het probleem van ontbrekende waarnemingen voor merkers 
opgelost. Er ontbreken altijd waarnemingen en dit bemoeilijkt het gebruik van merkers 
als cofactoren in praktische experimenten. Een zeer algemene methode wordt 
beschreven, die ons in staat stelt toch zo goed mogelijk alle ontbrekende genetische (QTL 
en merker) waarnemingen boven tafel te krijgen. Als eerste praktisch voorbeeld worden 
verschillende QTLs voor plant-hoogte gekarteerd in een F2-kruisingspopulatie bij de 
tomaat. Tevens wordt gedemonstreerd hoe gegevens van ouders en F,-populatie gebruikt 
kunnen worden bij de kartering van QTLs. 

In hoofdstuk V worden de kans op een fout van de eerste soort (d.w.z. een QTL is 
gekarteerd op een plaats waar helemaal geen QTL ligt) en de kans op een fout van de 
tweede soort (d.w.z. een QTL wordt niet opgespoord) bestudeerd door middel van 
simulatie met de computer. Problemen met betrekking tot de selectie van "belangrijke" 
merker cofactoren alsmede met betrekking tot het schatten van parameters in modellen 
met veel merker cofactoren worden opgelost. De karteringsmethode wordt verder 
verfijnd zodat het nu mogelijk is om de volledige kracht van complete koppelingskaarten 
van merkers optimaal te benutten. Deze methode heeft de naam "MQM mapping" 
gekregen. MQM staat voor "meervoudige-QTL modellen" alsmede voor "merker-QTL-
merker". Het eerste geeft aan dat de modellen niet alleen rekening houden met de 
individuele effecten van QTLs op de eigenschap, maar ook met hun gezamenlijke effect; 
het tweede geeft aan dat QTLs geplaatst worden tussen merkers op de al bestaande 
merkerkaart. 

In hoofdstuk VI worden verschillende QTLs en interacties tussen QTLs en milieu 
opgespoord voor het bloeitijdstip in ingeteelde lijnen van het modelgewas Arabidopsis 
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thaliana. 
Tenslotte wordt in hoofdstuk VII getoond dat het biometrische raamwerk ook zijn 

toepassing kent bij complexe mengselmodellen op andere gebieden van onderzoek. Een 
praktisch voorbeeld betreffende non-disjunctie bij de muis is uitgewerkt. 
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