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S T E L L I N G E N 

1) Het 'leaf-disk' systeem voor het transformeren van planten met behulp van 
Agrobacterium, blijkt voornamelijk efficient in combinatie met modelgewassen 
en is niet zo algemeen toepasbaar als vaak wordt verondersteld. 

Horsch, R.B. et al. (1985) Science 227; 1229-1231. 
Dit proefschrift 

2) Het onduidelijk omschrijven of soms zelfs geheel niet vermelden van 
gebruikte plasmiden en bacteriestammen, is een ernstige belemmering voor 
het reproduceren van onderzoeks resultaten door derden. 

Purdy, L.H. and Dickstein, ER. (1989) Plant Disease 73; 638-639. 
Schmidt, R. and Willmitzer, L. (1988) Plant Cell Reports 7; 583-586. 
Chee, P.P. (1990) Plant Cell Reports 9; 245-248. 

3) Het gebruik van de frequentie van tumorvorming en de grootte van tumoren 
als maat voor de transformatie-efficientie van Agrobacterium is onjuist. 

Charest, P.J. et al. (1989) Plant Cell Repons 8; 303-306. 
Clapham, D. et al. (1990) Theor.Appl.Genet. 79; 654-656. 
Delzer, B.W. et al. (1990) Crop Sei. 30; 320-322. 

4) Het gebruik van ß-glucuronidase assays als bewijs voor genoverdracht, 
ondanks achtergrondactiviteit, terwijl opinedetectie als analyse methode wordt 
afgewezen, op grond van de aanwezigheid van endogene produkten, is meten 
met twee maten. 

Ahokas, H. (1989) Theor. Appl. Genet. 77; 469-472. 

5) GUS-assays, als indicator voor de weefsel- en celspecifieke expressie van een 
promoter, zijn alleen betrouwbaar als het expressiepatroon bevestigd wordt door 
in situ localisaties aan het corresponderende mRNA. 

Koltunow, A.M. et al. (1990) The Plant Cell 2; 1201-1224 



6) Aangezien apo-lipoproteine B niet uitwisselbaar is tussen verschillende 
lipoprotéine fracties, is de aanwezigheid van dit eiwit op de lipidenemulsie, 
als gevolg van incubatie van de emulsie met VLDL-vrij serum, waarschijnlijk 
een artefact. 

Mamö et al. (1991) Biochimica et Biophysica Acta 1081; 241-245 

7) Daar de eindprodukten van genetische manipulatie en kruisingsveredeling 
principieel gelijk zijn hadden de 'Ziedende Bintjes' net zo goed, en met 
minder schade voor de maatschappij, zichzelf om kunnen ploegen. 

8) Het zelfstandig verzorgen van patiënten door leerling verpleegkundigen, zoals 
dat gebruikelijk is in ziekenhuizen waar Integrerende Verpleging wordt 
toegepast, is niet verantwoord. 

9) De huidige problemen in de sociale zekerheid zijn op te lossen door het 
invoeren van een ministelsel. 

10) De superioriteit als huisdier van katten boven honden blijkt alleen al uit het 
feit dat men bij katten nooit de behoefte heeft gevoeld het basismodel te 
veranderen. 

Stellingen, behorende bij het proefschrift 'Agrobacterium-mediated gene transfer to chrysanthemum' door 
Monique F. van Wordragen, in het openbaar te verdedigen op dinsdag 19 november, te Wageningen. 



"De ware ontdekkingsreis bestaat niet uit het zoeken van 

nieuwe vergezichten, maar in het krijgen van nieuwe ogen." 

Marcel Proust 

Aan mijn ouders, 

voor Edwin. 
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C H A P T E R 

Outline of this thesis 



Aim of the research 

The cutflower chrysanthemum (Dendranthema grandiflora Tzvel.) is one of the 

economically most important ornamental crops in the Netherlands. Like most 

ornamental crops, culture of chrysanthemum is threatened by a wide range of diseases 

and pests like Japanese Rust, leafspot disease, nematodes, aphids and insects like 

leafminers and the larvae of species like Spodoptera exigua and S. tittoralis (Hill, 1987). 

To cope with this problem growers use large amounts of chemical controlling agents. 

Preventive controlling regimes, which imply spraying with a mixture of controlling 

agents several times a year, are routinely applied (Berends, 1988). The use of vast 

amounts of pesticides effectively control diseases and pests in chrysanthemum culture. 

(Hill, 1987; Duyvensteyn et al. 1990). However, the extensive use of pesticides and 

insecticides is no longer acceptable, because of the environmental pollution and the 

dangers for human and animal health. Many pesticides are already legally forbidden or 

will be in the near future. Dutch governmental policy, as indicated in the National 

Environmental Policy Plan, NMP (Ministerie van V.R.O.M., 1989), is aimed at a 

substantial reduction of the use of chemical controlling agents by 1995. New pesticides 

or insecticides will only be allowed if they are less detrimental to the environment than 

the agents they will replace. Therefore it is extremely important that great effort is put 

in both conventional and molecular breeding for resistance in ornamentals. The study 

presented here has originated from this notion. 

Breeding for resistance 

In conventional breeding the introduction of new traits is managed by crossing 

cultivated varieties within the species or with related wild species that possess the 

desired trait, followed by numerous, and often time consuming, back crossings with the 

cultivated genotype, to regain the characteristics of the crop. Conventional breeding for 

resistance in ornamental crops has not been developed much, because breeders have 



concentrated mainly on flower color, flower morphology and traits like longer vase life 

(Dons et al., 1991). Therefore, rapid development of resistant genotypes by 

conventional breeding is not to be expected. This is especially true for chrysanthemum, 

because no resistances are known in closely related species. If a desired trait, is only 

present in far related species the breeder has to deal with crossing barriers. Crossing 

barriers can be overcome by techniques like ovarium culture or embryo rescue (Van 

Tuyl et al. 1991), but even then the resulting progeny is often not fertile. In those cases 

in which conventional breeding is problematic or impossible, the application of 

molecular techniques might be an alternative. 

The rapid progress that has been made over the past 15 years in molecular and cellular 

biology has lead to the development of several techniques aimed at the introduction 

of one precisely known gene into the genome of a single plant cell and the subsequent 

regeneration of that cell into a mature plant (Uchimiya et al., 1989; Potrykus, 1990). 

The most obvious advantage is that the recipient plant does not loose its characteristics 

and only gains one property. This means that usually back crossings will not be 

necessary, which will be a substantial saving of time. Another advantage is that gene 

transfer is no longer limited to related species. Genetic engineering offers the 

opportunity to introduce resistances, bypassing all existing crossing barriers. It is now 

even possible to introduce genes from outside the plant kingdom. In fact most of the 

genes, so far introduced, originate from prokaryote species, because they are more 

accessible to molecular genetics. Genes from viruses and bacteria have been used 

successfully in protecting plants from viral or insect attack (Lawson et al., 1990; Vaeck 

et al. 1987) and the isolation of new resistance genes is frequently reported (Höfte et 

al., 1987; Hilder et al., 1987; Ward and Ellar, 1988; Hilder, 1989). Of course, the 

application of these genetic modification techniques brings along its own problems. The 

integration of a gene in the plant DNA is a random process, therefore it is not possible 

to predict the level of expression of the new gene. Because the underlying mechanisms 

in the plant involved in genetic transformation are often not known in detail, most of 

the protocols have been worked out using trial and error procedures. This also means 

that for each new plant species that has to be genetically engineered the basic 

procedures of regeneration and transformation have to be developed anew. 



Research on genetic engineering in vegetable crops is far ahead of that in ornamentals. 

The only ornamental crop that can be routinely genetically modified until now is 

petunia. Petunia belongs to the solanaceous species, which are in general easy to 

transform and are therefore often used as model species in plant molecular genetics 

studies (Willmitzer, 1988; Van Der Krol et al., 1990). Thus far, there are no examples 

of ornamental crops that have been genetically engineered in order to breed for 

resistance. 

Introduction of insect resistance in chrysanthemum. 

The research project 'Resistance to insects in Chrysanthemum by introduction of toxin 

genes from Bacillus thuringiensis' has started in 1987 as a co-operation project of the 

Institute for Horticultural Plant breeding (IVT), the Research Institute Ital (in 1990 

both institutes merged with the Foundation for Agricultural Plant Breeding (SVP) to 

form the Centre for Plant Breeding Research (CPO)), and the Research Institute for 

Plant Protection (IPO), and was partly financed by the Innovation Fund for Plant 

Breeding (InPla). The aim of this project was to introduce insect resistance in 

Deiidranthema grandiflora, by using the toxin genes from the entomopathogenic 

bacterium Bacillus thuringiensis (Bt). This toxin is harmless for vertebrate species and 

has been used for many years as a biological controlling agent (Krieg, 1986). The 

advantages of having the plant producing the toxin itself above spraying it on the crop 

are obvious. First the toxin is only present at the site where it is needed, namely in the 

crop plant and not in the soil or on surrounding vegetation. This can even be refined 

by using gene expression regulators that only activate the introduced gene when the 

plant is attacked by insects. Secondly the toxin reaches not only those insects that feed 

on the surface of the leaves but also the ones that feed in (leafminers) or under 

(Spodoptera) the leaf. Furthermore, the introduction of the gene spares the grower the 

labour and the costs involved in spraying the insecticide. 

Chrysanthemum was chosen as a model species for several reasons. As pointed out 

above, the crop is economically important and is threatened by many pest insects. 



Moreover, for several years research was performed on in vitro culture and 

regeneration of chrysanthemum, and application of biotechnology in ornamental crops 

was (and is) far behind on vegetable crops. Last but not least, less difficulties were 

expected with the release of a genetically modified ornamental crop, compared to a 

food crop. The research partners IVT and Ital each focussed on one of the two main 

issues, that constituted the project. 

At the IVT research concentrated on the development of a genetic modification system 

for chrysanthemum. To select the most efficient way to introduce genes into plants a 

distinction can be made between monocotyledonous and dicotyledonous plants. For 

ornamentals this means roughly a division into bulb flowers and non-bulb species. This 

separation is based on regeneration possibilities and on the limitations of the genetic 

modification technique based on the natural gene transferring capacity of the plant 

pathogenic soil bacterium Agrobacterium tumefaciens. This bacterium is able to transfer 

foreign genes to the genome of plants and to stably integrate them in the plant DNA 

(for a detailed description see chapter 7). This process is very efficient in many dicots, 

but is extremely difficult to apply on monocots. As chrysanthemum belongs to the 

dicotyledonous plant species, we chose to develop an Agrobacterium-mediated gene 

transfer protocol. This part of the research project is described in the present thesis. 

At the Research Institute Ital the molecular cloning and characterization of Bt genes 

was performed. For efficient control of the target insect it is necessary to carefully 

select the B. thuringiensis gene that is to be used. To be able to use the bacterial gene 

in plants it has to be modified and plant regulatory sequences have to be added to 

replace the bacterial regulation signals. Furthermore, domain-function relations in the 

toxin gene were studied. This part of the research project will be described by Guy 

Honée in a thesis, which is in preparation. 

This thesis 

The research described in this thesis deals with the Agrobacterium mediated 

transformation of chrysanthemum and the expression of Bt.-toxin genes in transformed 



tissue. In chapter 2 the screening of several chrysanthemum cultivars and a range of 

Agrobacterium strains in order to find an efficient combination is described. As shown 

in chapter 3, the selected cultivar 'Parliament' was used in transformation experiments 

with A. rhizogenes. From these experiments it became clear that tumour induction is not 

always a good measure for transformation efficiency. This is confirmed in chapter 4 for 

A. tumefaciens transformation of chrysanthemum, representing a good example of the 

problems that can arise because of the limited knowledge on the gene transfer proces. 

The reporter gene GUSintron that is used in the research described in chapters 4 and 

5 enabled us to gain a lot of information on early transformation events. Chapter 4 

describes the use of the gene to select efficient cultivar/bacterial strain combinations, 

circumventing the use of tumour induction efficiency as a measure. The GUSintron 

gene was also used as an easy reporter gene to evaluate the effects of alterations in 

the transformation/regeneration protocol (chapter 5). These changes were necessary, 

because it was shown that in the standard procedure, the bacterial infection caused a 

severe reduction of the regeneration capacity of chrysanthemum genotypes. While the 

optimization of the method was still in progress Bt-toxin genes were introduced into 

chrysanthemum tissue using tumorigenic Agrobacterium strains. Chapter 6 describes the 

high level of resistance against feeding of the test insect, the tobacco bud worm 

(Heliothis virescens), that was achieved using this method. Finally, in chapter 7 a survey 

is given of crops that have been used in transformation research between 1987 and 

1991. Both transformation with and without successful regeneration into transgenic 

plants were taken into account, resulting in a complete overview of the state of the art 

in transforming recalcitrant crops. From this and from results described in this thesis, 

some general rules could be deduced, which may be useful for future research on 

transformation of other plant species. 
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C H A P T E R 2 

Genetic transformation of Chrysanthemum 

using wild type Agrobacterium strains; 

strain and cultivar specificity 

Monique F. van Wordragen, Jan de Jong, Hans B.M. Huitema 

and Hans J.M. Dons 

(Plant Cell Reports (1991) 9: 505-508) 
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Summary 

To develop a procedure for Agrobacterium-mediated transformation of chrysanthemum 

we studied the transformation efficiency of commonly used A. tumefaciens strains on 

14 chrysanthemum genotypes by comparing tumour size and frequency. One genotype 

was analyzed in detail using 14 strains of both A. tumefaciens and A. rhizogenes. Only 

a few genotype/strain combinations resulted in significant tumour formation. Especially 

0-type strains were highly efficient. An 0-type strain was used to transfer genes for neo-

mycine phosphotransferase (NPT II) and ß-glucuronidase (GUS) to a susceptible 

cultivar. Transfer of the GUS gene was confirmed by using the Polymerase Chain 

Reaction (PCR). 

Introduction 

The aim of our research is the genetic engineering of the cutflower chrysanthemum, 

which is globally one of the most important ornamental crops. Genetic transformation 

of dicotyledonous plants is still most efficiently achieved by using the natural gene 

transfer system of Agrobacterium. The susceptibility of chrysanthemum to Agrobacterium 

has already been demonstrated (Miller 1975; DeCleene and DeLey 1976), but there is 

no information on genetic variation in susceptibility among chrysanthemum cultivars and 

within a cultivar for various Agrobacterium strains. This is of interest because both the 

Agrobacterium strain and the cultivar used might influence transformation efficiency in 

recalcitrant species (Puonti-Kaerlas et al. 1989). Recently, the supervirulent strain A281 

was found.to be very useful for transforming recalcitrant crops (Fillipone and Lurquin 

1989; Raineri et al. 1990). Strain A281 has a very broad host range and induces 

tumours that appear faster and are larger than tumours induced by other strains (Hood 

et al. 1986). The transformation efficiency of poplar was enhanced 14 times with strains 

harbouring the essential vir genes of A281 (Pythoud et al. 1987). We have included 

A281 in our experiments because of these supervirulent characteristics. The aim of the 

13 



investigation presented here was: to study genetic variation in tumour formation; to 

analyse the susceptibility of a sensitive cultivar for 14 Agrobacterium strains and to 

investigate whether tumours are stably transformed. For this latter purpose the transfer 

and expression of the NPT II and GUS genes was studied. 

Material and Methods 

Plant material. For greenhouse experiments 6 week old cuttings of chrysanthemum (Dendranthema 
grandiflora, Tzvel.) grown under long day conditions were used. For leaf expiant transformations, four 
week old, sterile cuttings of cultivar (cv.) 'Parliament' were used, grown on MS medium (Murashige and 
Skoog 1962) containing 3 % w/v sucrose and 0.5 /jM IAA, pH 5.8, solidified with 0.8 % w/v Purified 
Oxoid agar. 

Bacterial strains: Agrobacterium strains were obtained from the Phabagen collection (Utrecht, the 
Netherlands) and from Dr. P. Hooykaas (Leiden, the Netherlands). All strains used are tumorigenic, 
except strain LBA4404, which is the disarmed derivative of Ach5 (Hoekema et al. 1983). Strain A281 
has the chromosomal background of C58 and the Ti-plasmid of B0542 (Sciaky et al. 1978). Part of the 
vir region of pTiB0542, responsible for the supervirulent properties has been cloned in a cosmid vector, 
pTVK291 (Komari et al. 1986; Jin et al. 1987). Both A281 and A281(pTVK291) were used. The binary 
vector pCPOl was derived from pPCV708 (Koncz and Schell 1986) and harbours the NPT II gene 
driven by the nos promoter. Insertion of GUS in pCPOl behind the TR-2' promoter resulted in the 
vector pCPOl-G. Both vectors were introduced in A281(pTVK291) by conjugation according to Rogers 
et al. (1988). Transconjugants were selected on kanamycin and carbenicillin (both 50 mg/1). All strains 
were cultured in Luria Broth: 10 g/1 trypton, 5 g/1 yeast-extract, 5 g/1 NaCl, 1 g/1 glucose, pH7.0. 

Greenhouse infection. Plants were wounded at an internodium and infected at the wounded spot with 
Agrobacterium, using a sterile toothpick. At least 4 plants were used for each strain. Effects were 
measured by looking at the number of tumour forming plants and tumour size. 

Leaf expiant transformation. Leaf expiants were incubated for 5 min in an Agrobacterium suspension 
diluted to a concentration of about 5 x 108 cells/ml. Expiants were blotted dry and placed upside down 
on hormone free MS medium, pH 5.7, containing 3% w/v sucrose and 0.7% w/v purified Oxoid agar. 
After two days expiants were transferred to medium containing 250 mg/1 cefotaxime and 400 mg/1 
vancomycine and after six days to medium containing half of the antibiotic concentration and if required 
100 mg/1 kanamycin. Tumour tissue was subcultured on the same hormone free medium. 

Determination of transgene expression. GUS activity of transformed cells was determined using a 
fluorimetrical assay (Jefferson et al. 1987). To measure NPT II activity a dot blot assay was used, based 
on the protocols described by Piatt and Yang (1987) and by McDonnel et al. (1987). Specific activity, 
bound to phosphocellulose P81 was determined by measuring the amount of label per spot in a liquid 
scintillation analyzer. Opine assays were performed according to Petit et al. (1983). Protein amounts in 
extracts were determined by using the Biorad kit. 

DNA-anafysis. DNA was isolated from tumour tissue following the procedure of Koes et al. (1989). To 
remove the excess of poly-saccharides an extra purification step was required. 1 M NaCl was added and 
the solution was incubated for 15 min at -20° C, followed by centrifugation at 10.000 g for 15 min and 
precipitation of the DNA from the supernatant. The presence of the GUS gene in tumours was 
demonstrated by using PCR (Mullis et al. 1986). Amplitaq polymerase was purchased from Perkin Elmer 
Cetus. The amplification protocol was: 1 min melting at 92 °C, 1 min annealing at 63 °C and 2 min 
elongation at 72 °C for 30 cycles. The oligonucleotide primers were 5'-CTG TAG AAA CCC CAA 
CCC GTG-3' and 5'-CAT TAC GCT GCG ATG GAT CCC-3', yielding a fragment of 514 basepairs. 

14 



Table 1. Virulence of 3 Agrobacterium strains on 14 genotypes of chrysanthemum. 

Genotype LBA4404 
0 1 2 3 4 

size classes 

Ach5 
0 1 2 3 4 

C58 
0 1 2 3 4 

Parliament 
P.Lane 
D.Flamenco 
Refour 
Daymark 
S.Cassa 
Greenpeas 
L.Bijoux 
Cottonball 
D.P.Pompom 

Topper 
Carroussel 
Guilderland 

4 
3 
4 
4 
3 
4 
3 
3 
4 
1 
3 
2 
2 
3 

-
1 
-
-
1 

1 
1 

3 

2 
2 
1 

1 2 1 
2 2 -
- 2 2 
4 - -

Italicized genotypes were tested in a separate experiment. Tumours were divided into 
five classes; 0=0-1 mm, 1 = 1-3 mm, 2=3-5 mm, 3=5-7, 4=larger than 7 mm. Underlined 
means significantly different from control. 

Results 

Genotype effect 

Fourteen cultivars were infected with two wild type bacterial strains; C58 (LBA201), 

a nopaline strain, and Ach5 (LBA1), an octopine strain. LBA4404 was used as a 

control. After 4 weeks the effect of infection was scored. The susceptibility to Ach5 and 

C58 was highly genotype dependent (table 1). The wound reaction also varied between 

genotypes and in some cases was rather strong, which interfered with detection of 

tumour formation. Those genotype/strain combinations in which all four plants showed 

larger tumours than the controls were considered to be significantly susceptible to 

Agrobacterium. Three genotype strain combinations resulted in a significant tumour 

induction. 
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Table 2. Susceptibility of D. grandiflora cv. 'Parliament' to 14 Agrobacterium strains. 

Bacterial 
strain 

opine 
type 

size classes 
1 2 3 4 

B6 
15955 
T37 
ID135 
C58 
398 
B0542 

223 
1855 
8196 
EU6 
1771 
CHR3 
Control 

(LBA1) 
(LBA8250) 
(LBA8370) 
(LBA8150) 
(LBA201) 
(LBA8180) 
(LBA8120) 
(LBA8490) 
(LBA9220) 
(LBA9402) 
(LBA9365) 
(LBA9000) 
(LBA9070) 

o 
o 
n 
n 
n 
0 
0 
c 
n 
a 
m 
n 
0 

. 
-
. 
-
-
-
-
-
1 
4 

5 
6 
5 
-
-
5 
6 
4 
5 
2 

1 
-
1 
-
-
1 
-
2 

-

-
. 
-
. 
1 
. 
-
. 

1 

-
. 
-
. 
4 
. 
-
. 

5 

-
. 
-
6 
1 
_ 
-
. 

-

A 
A 
B 
B 
B 
C 
C 
B 
B 
B 
A 
A 
C 
A 
A 

Strains are referred to by their original names, LBA numbers are given between brackets. Six tumour 
classes were distinguished; 0=0-1 mm, 1=1-3 mm, 2=3-4 mm, 3=5-7 mm, 4=8-10 mm, 5=larger than 
10 mm. Underlined means significant reaction. A, B and C are significantly different groups. Control 
plants were inoculated with water. Abbreviations: o=octopine, n=nopaline, a=agropine, m=mannopine, 
c=cucumopine, 0=not octopine or nopaline. 

Effect of bacterial strain 

To analyse the susceptibility of cv. 'Parliament', a broad range of bacterial strains was 

tested covering all common opine types all biotypes and A. tumefaciens as well as A. 

rhizogenes strains. 'Parliament' was chosen because regeneration protocols were 

available, which made it attractive for future transformation experiments (Broertjes and 

Lock 1985). Six weeks after inoculation the effects of infection were examined. The 

reaction was regarded to be significant only when there was no tumour size overlap 

with the control plants. Strain CHR3, which is an Agrobacterium strain isolated from 

chrysanthemum tumours (J.Tempé, pers. comm.) is not virulent on cv. 'Parliament'. 

Nine strains induced a reaction that differed significantly from the control (table 2). 

In this experiment infection with C58 resulted in small tumours, whereas in the first 

infection assay C58 did not induce tumours on cv. 'Parliament'. This can be explained 

by the fact that tumour formation in the second experiment was scored 2 weeks later. 

Strains 398, 1771 and B0542, that significantly induce the largest tumours (group C in 

table 2) all belong to the 0-type. 
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Tumour induction in vitro. 

To analyse the expression of transferred marker genes, leaf expiant transformation 

experiments were performed. Infections were carried out with 4 strains: A281, 

A281(pTVK291), A281(pTVK291+pCP01) and A281(pTVK291+pCP01-G). Previous 

experiments had shown that tumour growth is completely inhibited on medium 

containing 50 mg/1 kanamycin. On non selective, hormone free medium 85%-100% of 

the expiants produced hormone autotrophic callus, which was already visible eight to 

ten days after infection. The extra vir region on the cosmid pTVK291 did not 

significantly enhance tumour formation. Three weeks old callus induced on non 

selective medium by all 4 strains, was subcultured under selective and nonselective 

conditions. For each treatment 144 independent callus lines were used. Kanamycin 

(100 mg/1) completely inhibited growth of wild type tumours (fig.l). Half of the tumours 

induced by bacteria containing binary plasmids were resistant to kanamycin, indicating 

50% cotransfer of the two T-DNA's. The tumours have now been subcultured for more 

than a year on selective medium. 

Analysis of transformants; use of PCR. 

Eight calli, derived after transformation of cultivar 'Parliament' with strain 

A281(pTVK291+CP01-G) were analysed in more detail. The calli were maintained on 

selective medium. Callus of each transformant was used in NPT II, GUS and opine 

Percentage survival 
110 WÊM A281 

Mm A281(pT) 

• • A281(pT+pCP01) 

mm A281(pT+pCP01-G) 

(pT=pTVK291) 

8 weeks KmO 

Treatments 

3 weeks KmO 
5 weeks Km 100 

Figure 1. 
Survival of tumours induced on non selective medium, 5 weeks after transfer to selective or fresh non 
selective medium. Figures are based on 144 pieces of callus for each treatment. 
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Table 3. Analysis of 8 independent transformed calli 

Callus No. GUS activity NPT11 activity 

sd mean sd 

G3 
G4 
G7 
G8 
G9 
G15 
G16 
G17 

386.0 
0.0 
0.0 

144.0 
0.0 

466.0 
12.7 

148.3 

30.0 
-
-

30.0 
-

17.0 
6.0 

30.0 

40 
n.d. 
276 
51 

894 
227 
84 
98 

9 
-

190 
17 

290 
139 
71 
69 

The results represent the mean of 4 determinations. GUS activity is in ^mol MU/min/mg protein, 
NPT II activity is in cpm//xg protein; sd = standard deviation. 

assays. In all calli NPT II activity as well as opines could be detected (table 3, fig.2). 

In G9 and G15, only mannopine was found and agropine was absent. 

Although the GUS and NPT II gene are closely linked on the same T-DNA not all 

of the analysed calli exhibited GUS activity. The level of expression of the NPT II 

and GUS genes varied considerably between the calli (Table 3). No correlation 

between relative GUS and NPT II activities was observed. DNA-analysis using 

Southern blotting methods was difficult because of the large genome of D. 

grandiflora (25 pg DNA/cell, determined flowcytometrically). Therefore the presence 

of transferred genes in the calli was demonstrated using the PCR technique. The 

GUS gene was selected as target DNA because it is the gene located closest to the 

left T-DNA border. In 6 out of 8 calli the presence of the GUS gene could be 

demonstrated (fig.3). No positive signals were found for tumours G7 and G9, which 

were also negative in the GUS assay. 

Discussion 

The efficiency of Agrobacterium mediated gene transfer to chrysanthemum strongly 

depends both on genotype and bacterial strain. Out of 14 genotypes of 

18 



:>5Ä*,* « 'V 

<af U8 ( i d G15 G16 G17 

Figure 2. 
Agropine/mannopine assay on 8 
independently transformed tumours 
(Abbr.: A=agropine, M=mannopine). 

G15 GIB G17 M 

Figure 3. 
Polymerase chain reaction analysis of 
8 independently transformed tumours. 
Amplification of a 514 bp fragment 
of the ß-glucuronidase gene. 

chrysanthemum only 4 were found to be significantly susceptible to infection with 

Ach5 and C58. Nine other strains, including the supervirulent strain B0542, showed 

significant virulence on 'Parliament'. Remarkably a correlation between opine-type 

and virulence was found. The strains significantly inducing the largest tumours all 

belonged to the 0-type. Unlike a correlation between nopaline type strains and 

virulence (Byrne et al. 1987), a relation between 0-type strains and host range has 

not been reported before. For nopaline strains the presence of the tzs locus can 

explain the enhanced virulence (Akiyoshi et al. 1985) but the biological basis for a 

correlation between 0-type strains and virulence is not clear. The results of the 

infection assays stress the fact that it is extremely important to select both cultivar 

and bacterial strain with great care if recalcitrant plant species are involved.In 

contrast to results with Nicotiana glauca (Jin et al. 1987), the presence of an 

extra vir-region on cosmid pTVK291 did not enhance the virulence of A281 towards 

chrysanthemum. Using A281(pTVK291) containing a binary plasmid, harbouring the 

NPT II and GUS genes, it was shown that genes can be stably integrated and 

expressed in chrysanthemum. Though closely linked on the same T-DNA no relation 

was found between relative enzyme activities of NPT II and GUS. This may be 

19 



caused by different regulation of the promoters or by a position effect. Therefore 

enzyme activity of a reporter gene is not a measure of the degree of expression of 

cotransferred genes. 

In 3 out of 8 analysed kanamycin resistant calli no GUS activity was observed. This 

could be caused by imperfect transfer of the T-DNA. T-DNA single strand synthesis 

starts from the right border (Zambryski et al. 1989), which means that the left part 

of the T-DNA can be incomplete. This is in line with the observation that with the 

PCR technique, which proved to be very useful to detect single copy genes in large 

plant genomes, the GUS gene was only found in 1 out of the 3 GUS negative 

tumours. The lack of GUS activity in tumour G4 must be caused by absence of 

transcription. Selection for a correctly expressed NPT II gene does not necessarily 

mean that complete T-DNA's are transferred. Therefore it would be better to use 

vectors on which the selection marker is located close to the left hand border, so 

that selection for kanamycin resistance is also selection for presence of a full length 

T-DNA. 
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Summary 

The agropine type Agrobacterium rhizogenes strain LBA9402 induced callus and roots 

on stems of greenhouse grown plants and on leaf disks of in vitro grown plantlets of 

chrysanthemum (Dendranthema grandiflora Tzvel.). In this callus and roots no opines 

were detected, nor were any of the other features of the 'hairy root' syndrome 

observed. Experiments aimed to identify the nature of the tumour-like growth revealed 

that induction was correlated with the presence of the TR-DNA on the Ri-plasmid. 

Root induction was probably the result of auxin synthesis following transient expression 

of iaaM and iaaH genes, present on the TR-DNA. The chrysanthemum cultivar used, 

cv. 'Parliament', showed a high auxin sensitivity compared to tobacco. Analysis of early 

transformation events using the GUSintron reporter gene revealed that low efficient 

gene transfer and transient gene expression took place, but most probably without 

stable integration of the T-DNA in the plant genome. The results presented here stress 

the fact that callus formation or root induction as measures for transformation 

efficiency should be used with caution. 

Introduction 

Agrobacterium rhizogenes is the causative agent of the hairy root syndrome, the 

proliferation of highly branched roots, and affects a wide range of plant species (De 

Cleene and De Ley, 1981). The induced roots have an altered phenotype, with specific 

features such as phytohormone independent growth, extensive branching and 

plagiotropism (Gelvin, 1990). The underlying mechanism is the transfer of several genes 

to the plant genome, mediated by the bacterium. These genes, the root loci or rol 

genes, are located on a piece of DNA, the T(ransfer)-DNA, that is part of a large 

plasmid, the root inducing or Ri-plasmid. The products of the ro/-genes probably alter 

the sensitivity of plant cells to auxin (Gelvin, 1990). In addition to this, some A. 

rhizogenes strains are able to transfer a second piece of DNA, carrying the iaaM and 
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iaaH genes, coding for enzymes involved in auxin biosynthesis. The piece of DNA 

carrying the rol genes is called TL-DNA whereas the other part, harbouring the iaa 

genes, is known as TR-DNA. Analogous to the A. tumefaciens system artificial T-DNA 

can be transferred to the plant using A. rhizogenes, either in addition to its own T-

DNA or by using disarmed strains (Vilaine and Casse-Delbart, 1987; Ottaviani et al., 

1990). Gene transfer mediated by A. rhizogenes can be advantageous compared to gene 

transfer by A. tumefaciens, because A. rhizogenes strains are often more virulent than 

A. tumefaciens strains. It is also relatively simple to regenerate shoots from transformed 

'hairy' roots (Noda et al., 1987; Ottaviani et al., 1990), which is valuable when direct 

regeneration of shoots from transformed cells is not possible. 

As a part of our effort to develop a genetic transformation protocol for chrysanthemum 

we have tested the virulence of several A. rhizogenes strains in vivo (Chapter 2: Van 

Wordragen et al., 1991), which revealed that both cucumopine and agropine strains 

induced tumours on Dendranthema grandiflora cultivar 'Parliament'. In this study the 

tumour proliferation after infection with the agropine strain LBA9402 was further 

analysed. Surprisingly, the often large tumours and the induced roots never contained 

opines, nor could any of the other characteristics of the hairy root disease be detected. 

To be able to answer the question whether the induced 'tumours' are the result of gene 

transfer or not, we investigated root induction on leaf disks from in vitro grown plants. 

Material and methods 

Plant material. Plants from the chrysanthemum (Dendranthema grandiflora) cultivar 'Parliament' were 
used both in greenhouse experiments and in vitro. Nicotiana tabacum 'Petit Havana SRI' was used in 
in vitro experiments only. Plants were grown as described earlier (Chapter 2: Van Wordragen et al., 
1991). 

Bacterial strains. The/4, rhizogenes strain LBA9402, carrying the plasmid pRil855, is an agropine strain 
(Table 1). Its T-DNA consists of two parts; TL, containing the rol loci and TR harbouring the genes 
for agropine/ mannopine synthesis and the iaa genes, involved in auxin biosynthesis in the transformed 
plant cell (Vilaine and Casse-Delbart, 1987). LBA8490 is a cucumopine strain. The T-DNA of pRi8490 
is homeologous to TL-DNA of pRil855, and TR-DNA is missing (Filetici et al., 1987). 
The plasmids pEllO and pH3018 were constructed by Vilaine and Casse-Delbart (1987) and contain the 
complete TR- and TL-region of the agropine type Ri-plasmid respectively. The plasmids were both 
introduced into LBA4404 by conjugation as described by Rogers et al. (1988). pEllO was also 
introduced into LBA8490. Transconjugants were selected on 50 mg/1 rifampicine and 1.5 mg/1 
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Table 1. Agrobacterium strains used, and some of their characteristics. 

Ri-plasmid sec. plasmid1 T-DNA2 
reporter geneJ 

LBA9402 
LBA9402(pGUSi) 
LBA8490 
LBA8490(pE110) 
LBA4404 
LBA4404(pE110) 
LBA4404(pH3018) 

pRil855 
pRil855 
pRi8490 
pRi8490 
pAL4404 
pAL4404 
pAL4404 

-
p35SGUSintron 
-
pEHO 
-
pEHO 
pH3018 

TL 
TL 
TL 
TL 
-
TR 
TL 

R agr/man 
TL + TR + Ta agr/man/GUS/neo 

cue 
R euc/agr/man 

agr/man 

1) secplasmid = secondary plasmid; 2) TL= left T-DNA (or homologous to left T-DNA), TR = right 
T-DNA, Ta= artificial T-DNA; 3) agr = agropine, man = mannopine, cue = cucumopine, GUS = 
ß-glucuronidase, neo = neomycin phosphotransferase II. 

tetracycline, resulting in the strains LBA4404(pE110), LBA4404(pH3018) and LBA8490(pE110). The 
binary vector p35SGUSintron (Vancanneyt et al., 1990) was introduced into LBA9402 using the same 
conjugation protocol. The transconjugant strain LBA9402(pGUSi) was selected on 50 mg/1 rifampicine 
and 50 mg/1 kanamycin. Restriction analysis was used to confirm the transconjugant nature of the strains. 
Bacterial strains were maintained as glycerol stocks at -80° C. All strains were cultured at 28 °C in MYA 
broth (0.8 % mannitol, 0.05 % casamino acids, 0.2 % (NH4)2S04, 0.5 % yeast extract, 0.5 % NaCl) 
except for LBA9402, which was cultured in YMB (1.0 % mannitol, 0.05 % K2HP04, 0.01 % NaCl, 0.04 
% yeast extract, 0.02 % MgSO„.7H20) 

Greenhouse infection. Two days before infection 10 jul of an overnight grown liquid Agrobacterium culture 
was spread on solid culture plates and grown at 28°C. Greenhouse grown plants were wounded with an 
sterile toothpick at the 6th internode from the top. The wounded spots were inoculated using a 
toothpick, dipped in a bacterium colony. For each strain eight plants were infected. The infected site 
was protected against desiccation with parafilm tape. After two days the parafilm was replaced by wetted 
rockwool and covered with plastic (Van der Mark et al., 1990). Six weeks after infection the effects were 
measured by counting the number of tumour forming plants and by estimating the tumour size. As a 
control plants were inoculated with the disarmed A. tumefaciens strain LBA4404. 

Expiant transformation. Leaf expiants (diameter 7 mm) were punched out of the upper 4 or 5 leaves of 
in vitro grown plantlets. stem expiants were prepared from the upper three internodes, that were 
longitudinally cut into two halves. Infection and cocultivation of the expiants was carried out as 
described before (Chapter 2: Van Wordragen et al., 1991). Four to six weeks after infection, 'tumour' 
tissue was taken from the expiants and subcultured on the same medium. 

Determination of auxin sensitivity. Leaf expiants from tobacco and chrysanthemum were placed on MS 
culture medium (Murashige and Skoog, 1962), supplemented with 30 g/1 sucrose and containing 0, 2.5, 
5, 10, 20 or 50 pM indole acetic acid (IAA). Each treatment consisted of 4 petridishes with 6 expiants 
each. After two days the expiants were transferred to hormone free MS medium containing 200 mg/1 
vancomycin and 125 mg/1 cefotaxim, to mimic culture conditions after Agrobacterium infection. The 
number of roots per expiant was determined after four weeks. 

Regeneration of adventitious shoots on internodes. Internode explants were infected with LBA4404 or 
LBA9402 and placed with the wounded site on culture medium either without phytohormones, with 4 
/iM benzyl adenine (BA), or with 4 ^M BA and 0.5 /JM IAA. Non-infected expiants were used as a 
control. Each treatment consisted of 2 petridishes with 6 expiants each. After 2 days expiants were 
transferred to medium with 200 mg/1 vancomycin and 125 mg/1 cefotaxim to suppress bacterial growth. 
Regeneration of adventitious shoots was scored after 6 weeks. 
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^JZ^'^rS GUS-actmty- «-Glucuronidase (GUS) activity of plant cells, transformed with 
LBA9402(pGUSi), was determined by using the histochemical X-Gluc assay, as described by Jefferson 
et al. (1987) with one adjustment. The use of a phosphate buffer of pH 7.5 instead of pH 7 0 was 
necessary to prevent endogenous enzyme activity (Chapter 2: Van Wordragen et al., 1991) The assay 
consisted of 4 petridishes containing 6 expiants each. Half of the expiants (derived from all 4 dishes) 
were examined 6 days after infection, and the other half was stained at day 21. 

Determination of opines. Opine assays were performed using paper chromatography. Agropine and 
mannopine were detected using silver staining as described by Petit et al. (1983). Cucumopine was 
detected using the Pauly reagent as described by Savka (1990). 

Results 

Tumour induction in vivo 

Greenhouse grown plants from the cultivar 'Parliament' were infected with the 

oncogenic A rhizogenes strain LBA9402. On the site of infection a large proliferation 

of undifferentiated tissue and the development of roots was observed (Fig.lA). The 

noninfectious strain LBA4404, which was used as a control, caused no reaction of the 

plant except occasionally a minor development of wound callus at the site of infection. 

The size of tumours on LBA9402 infected plants was enlarged compared to previous 
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Figure 1. 
Tumorous tissue induced by A rhizogenes LBA9402. A) Stem tumour on 'Parliament' in vivo B) Hairv 
roots originating from tobacco SRI leaf explants. C) Leaf disk tumour on 'Parliament' in vitro. 
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Table 2. Root and callus induction on leaf expiants of chrysanthemum and tobacco upon infection 
with various Agrobacterium strains. 

LBA4404 
LBA4404(pE110) 
LBA4404(pH3018) 
LBA8490 
LBA8490(pE110) 
LBA9402 

roots1 

0 
0 

13 
23 
30 

>100 

SRI 
callus2 

-
+ + 
+ 
+ 
+ 
+ 

opines3 

nd 
A/M 
none 
C 
A/M/C 
A/M 

roots1 

0 
3 
0 
0 
0 

25 

Parliament 
callus2 

. 
+ 
-
-
-

+ + + 

opines3 

nd 
none 
nd 
nd 
nd 
none 

1) The figures represent the mean nr. of roots and callus per petridish, containing 6 expiants; 2) -
no callus, +, ++ and + + + = increasing amounts of callus; 3) A = agropine, M = mannopine, C 
cucumopine, none = no opines detected, nd = not determined. 

assays (Chapter 2: Van Wordragen et al., 1991), by protection of the infected wound 

with wetted rockwool. Galls varied in diameter from 6 to 12 mm, measured from the 

stem. On each tumour adventitious roots developed. A mean number of 5 +. 2 roots 

was calculated over eight infected plants. Tissues from six independent tumours and 

from ten roots derived from these plants were assayed for the presence of opines. 

Neither agropine nor mannopine was found in any of the tissues. To enable further 

analysis of this phenomenon several in vitro transformation experiments were carried 

out. 

In vitro infection with various A. rhizogenes strains; effect of TL and TR DNA 

Leaf expiants of tobacco SRI and the chrysanthemum cv. 'Parliament' were infected 

with the strains LBA9402, LBA8490, LBA8490(pE110), LBA4404, LBA4404(pE110) 

and LBA4404(pH3018). The disarmed control strain LBA4404 did not induce roots or 

substantial amounts of callus on leaf expiants of either tobacco or chrysanthemum 

(Table 2). 

Upon infection with the various strains of A. rhizogenes, expiants from tobacco SRI 

formed neoplastic outgrowths, as expected. Infection with the TL-DNA containing 

strains LBA9402, LBA8490, LBA8490(pE110) and LBA4404(pH3018) resulted in the 

formation of large numbers of highly branching, fast growing roots, which were easily 
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recognized as 'hairy roots'. Occasionally some callus was formed on the edge of the leaf 

expiant at sites where many roots originated. The hairy roots grew vigorously on 

hormone free culture medium with a growth rate of approximately 4 cm per week (Fig 

IB). Opine assays revealed the presence of agropine and mannopine in most of the 

tested roots, originating from LBA9402 infection and cucumopine in most roots induced 

by strain LBA8490. In roots induced by LBA8490(pE110), in which the Ri-plasmid of 

the cucumopine strain is combined with the TR-DNA of the agropine strain, either one 

or both opine types were detected. As expected, roots induced by strain 

LBA4404(pH3018), harbouring TL-DNA only, did not contain opines as the opine 

synthetase genes are located on the TR-DNA. No roots were induced after infection 

of tobacco with LBA4404(pE110). This strain contains the TR-DNA, which is known 

to be unable to induce hairy roots in tobacco (Vilaine and Casse-Delbart, 1987). 

Instead some callus was formed, which contained agropine and mannopine. 

The results obtained with leaf disks of chrysanthemum strongly contrast those obtained 

with tobacco (Table 2). Chrysanthemum expiants produced adventitious roots only upon 

infection with the strains LBA9402 and LBA4404(pE110), both harbouring TR-DNA. 

Leaf expiants infected with LBA8490, LBA8490(pE110) or LBA4404(pH3018) produced 

no roots or callus and became necrotic within two weeks. Infection with LBA9402 also 

resulted in a strong proliferation of callus tissue, very similar to the tumour-like growth 

induced in vivo (Fig.lC). Subculture of callus and roots on hormone free medium, 

however, was not possible. After four to five weeks the callus stopped growing and 

excised roots first grew at a rate of less then 0.5 cm per week but died within three 

weeks. The phenotype of the roots and their growth properties on hormone free 

medium resembled those of normal roots. 

More than a hundred calli and roots induced on chrysanthemum leaf disks by LBA9402 

infection, originating from twelve experiments, were assayed for the presence of 

agropine and mannopine. None of them contained detectable amounts of opines. 

Infection of chrysanthemum leaf disks with LBA4404(pE110), harbouring TR-DNA 

alone, also resulted in the induction of phenotypically normal roots. These roots 

resembled the roots induced by LBA9402, but they appeared in smaller numbers. 

Agropine and mannopine were not detectable in these roots. 
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The role of auxin in root induction. 

The observed root induction on chrysanthemum expiants upon LBA9402 infection could 

be attributed to the stimulating effect of auxin, synthesized either by the bacteria or by 

the plant cell. To investigate this hypothesis, leaf expiants of 'Parliament' and tobacco 

SRI were cultured on a range of auxin concentrations, and the number of induced 

roots was scored. Root induction on leaf expiants of chrysanthemum occurred at high 

rates and appeared even at the lowest concentration of auxin, whereas tobacco leaf 

disks only formed a low number of roots at the highest auxin concentration used 

(Fig.2). The induced roots of both species were phenotypically normal. No callus was 

induced on tobacco expiants, not even at the highest auxin concentration, whereas on 

'Parliament' callus was formed at auxin concentrations of 10 /xM and higher. This 

compact, green callus resembled the callus induced upon infection of 'Parliament' leaf 

expiants with LBA9402, but the ratio of callus to roots was inversed, as upon culture 

on auxin little callus and many roots were formed. 

To determine an auxin-like effect of LBA9402 on chrysanthemum, internode explants 

of 'Parliament' were infected with LBA9402, and shoot regeneration was studied in the 
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Figure 2. 
The effect of auxin on root formation 
on leaf expiants of chrysanthemum 
cv. 'Parliament' and tobacco SRI. 
Figures are the mean number of 
roots induced per expiant, measured 
over twelve leaf expiants. Vertical 
lines represent the standard 
deviation. 
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Table 3. Shoot and root induction on internode explants of chrysanthemum cv. 'Parliament' 

strain +BA.+IAA1 +BA.-IAA -BA.-IAA 
roots shoots roots shoots roots shoots roots 

0 
0 
0 

+BA, -IAA 
shoots 

10 
0 

29 

uninfected 0 135 0 10 0 0 
LBA4404 0 30 0 0 0 0 
LBA9402 0 39 0 29 25 0 

The figures represent the mean number of roots and shoots per petridish, containing 6 expiants. 
1) BA=4 /iM benzyl adenine, IAA=0.5 /JM indole acetic acid. 

presence or absence of exogenous auxin. This should reveal whether LBA9402 could 

compensate for auxin in the culture medium (Table 3). Uninfected expiants placed on 

regeneration medium, supplemented with both auxin and cytokinin, produced numerous 

adventitious shoots all over the surface of the internode. Shoot regeneration was 

reduced upon infection with both wild type and disarmed Agrobacteria. On medium with 

BA but without IAA shoot regeneration on uninfected expiants and expiants infected 

with the disarmed LBA4404 was severely inhibited, only rarely shoots were formed at 

the basal end of the expiant. In contrast, LBA9402 infected expiants formed shoots to 

the same extent as on culture medium with IAA, suggesting complementation for the 

externally applied auxin. On hormone free medium no shoots were induced, but 

expiants infected with LBA9402 showed root induction. The addition of BA inhibited 

this root induction by LBA9402 infection. 

Detection of early transformation events using the GUSintron reporter gene. 

Early transformation events were detected by using an intron containing GUS gene. 

Using this gene, bacterial GUS activity, which hampers detection of transformed plant 

tissue when the uninterrupted GUS gene is used, was eliminated. 

Leaf expiants from tobacco SRI and 'Parliament' were infected with LBA9402 or with 

LBA9402(pGUSi) and glucuronidase activity was determined after 6 or 21 days (Table 

4). Both on chrysanthemum and on tobacco, less roots were formed if the strain 

carrying the binary vector was used compared to infection with LBA9402. In tobacco, 

many blue spots were observed at day 6 and 45% of the roots, formed after 21 days 
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Table 4. Early detection of transformation in tobacco and chrysanthemum leaf expiants by 
determining expression of the GUSintron gene. 

day 6 
day 21 

LBA9402 

spots % pos. 

0 
0 

0 
0 

SRI 

LBA9402 
(GUSint) 

spots % pos 

173 92 
114 83 

'Parliament' 

LBA9402 

spots % pos. 

0 
0 

0 
0 

LBA9402 
(GUSint) 

spots % pos. 

11 42 
0 0 

Each figure represents the result of twelve expiants. Both the total number of blue spots and the 
percentage of positive expiants are shown (100 % = 12). 

stained blue, mainly at the roottip and in the vascular tissues. In 'Parliament' only 

occasionally a transformation event at day 6 was detected and none after 21 days. The 

few blue spots were found mainly in callus tissue that started to develop. No blue spots 

were found in root primordia at day 6 nor in roots at day 21. These results suggest that 

gene transfer to 'Parliament' by LBA9402 is a rare and transient process. 

Discussion 

Infection of the chrysanthemum cultivar 'Parliament' with the A. rhizogenes strain 

LBA9402 resulted, both in vivo and in vitro, in the proliferation of large amounts of 

callus and some roots. This tissue did not show hormone autotrophic growth and did 

not contain opines. However, the seeming tumour induction on chrysanthemum could 

not be ascribed to a wound or stress response, because infection with the disarmed 

strain LBA4404 did not result in any callus or root proliferation. In contrast to this 

LBA9402 induced large numbers of hormone autotrophic, agropine and mannopine 

containing, roots on expiants of tobacco. 

Transformation of chrysanthemum using another A rhizogenes strain, and Agrobacteriwn 

strains carrying only TL- or TR-DNA revealed that the phenomenon was correlated 

with the presence of TR-DNA in the infecting bacterial strain. TR-DNA harbours the 
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opine and auxin synthesis genes, whereas the roMoci, responsible for the hairy root 

syndrome are located on TL-DNA (White et al, 1985; Gelvin, 1990). The fact that 

opines were never detected in callus and roots after infection with A. rhizogenes strains 

contrasts with the distinct expression of opine synthesis genes in chrysanthemum tissue 

induced by the A. tumefaciens strain A281 (Chapter 2: Van Wordragen et al., 1991). 

This indicates that transferred agropine and mannopine synthetase genes are not 

subject to inactivation and can be expressed in chrysanthemum. Thus, the lack of 

opines in LBA9402 induced callus and roots on chrysanthemum suggests that this tissue 

does not result from stable integration of T-DNA, whereas tumours induced by A281 

do originate from stable gene transfer. However, genes present on the TR-DNA are 

involved and it is tempting to postulate that the observed neoplastic growth is a result 

of unstable expression of the auxin synthesis genes. Evidence for an auxin-like effect 

of LBA9402 infection was provided by the capability of LBA9402 to compensate for 

IAA during shoot regeneration. The inhibition of A. rhizogenes induced root formation 

by cytokinin also contributes to the evidence for the hypothesis that TL-DNA is not 

involved, because Spena et al. (1987) showed that root induction by the rol genes is not 

inhibited by externally applied cytokinin. 

Results with auxin application showed a very high sensitivity of 'Parliament' to 

externally applied auxin, compared to tobacco. A low concentration of auxin in the 

culture medium for only two days was sufficient to induce roots on leaf expiants of 

'Parliament' and therefore, temporary TR-DNA expression might be enough to induce 

the proliferation of roots and callus. 

Branca et al. (1991) have found that high auxin concentrations favour the induction of 

callus over roots. In chrysanthemum mainly callus is induced upon LBA9402 infection 

and only a few roots, and therefore, the pronounced sensitivity to auxin possibly reflects 

a high endogenic auxin level. Such a high endogenous auxin level might also explain 

the absence of TL-DNA transfer in chrysanthemum. Expression of the rol genes, 

located on TL-DNA, would result in an even enhanced auxin sensitivity of the plant 

cell (Shen et al., 1990). Such a change might very well be lethal in the case of the 

apparently very narrowly tuned internal hormone balance of 'Parliament'. Therefore, 

we assume that TL and TR DNA transfer both occur, but TL transformants will either 

34 



die or inactivate the transferred DNA, leaving only TR transformants to cause the 

observed effects. A similar conclusion was reached by Prinsen et al. (1990) to explain 

the consistent inactivity of the auxin synthesis gene, iaaM, transferred to Asparagus by 

oncogenic A. tumefaciens strains. 

The relatively low number of roots induced by LBA4404(pE110) and the lack of roots 

induced by LBA8490(pE110), both strains harbouring the TR-DNA, might be due to 

their chromosomal background, which differs from LBA9402. 

In conclusion, it is likely that root proliferation on chrysanthemum expiants after 

infection with A. rhizogenes results from the temporary expression of the iaa genes on 

the TR-DNA, resulting in an enhanced auxin level in the plant cells. Considering the 

high sensitivity of the cv. 'Parliament' to auxin, even a minor increase of the auxin level 

can result in the induction of root primordia. Moreover, the transient nature of iaa 

gene expression is in agreement with the transient expression of the GUS gene in 

chrysanthemum tissue after transformation with LBA9402 containing the GUSintron 

gene. 

One of the first steps in the development of an Agrobacterium mediated gene transfer 

protocol for recalcitrant crops is often the screening of a range of genotypes and 

Agrobacterium strains by infection with wild type strains. This procedure is applied for 

rapid selection of efficient genotype/bacterial strain combinations. (Byrne et al., 1987; 

Stomp et al., 1990; Chapter 2: Van Wordragen et al., 1991). In some studies only 

tumour size and frequency are used as a selection criterium (Armstead and Webb, 

1987; Clapham et al., 1990). The results presented in this paper show that this 

approach can easily lead to false conclusions, because tumour induction is the result 

of several factors such as T-DNA transfer, T-DNA expression and hormone sensitivity 

of the plant. Thus, tumour size or root induction is not always directly proportional to 

efficiency of gene transfer. In our opinion tumour size and frequency should not be 

used as a measure for transformation efficiency, to avoid misleading results; gene 

transfer must at least be confirmed by opine assays and preferably by DNA analysis. 
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Summary 

The susceptibility to gene transfer of seven genotypes of chrysanthemum 

(Dendranthema grandiflora), upon infection of leaf expiants with wild-type Agrobacterium 

strains, were compared in a search for highly efficient cultivar/bacterial strain 

combinations. Large differences between genotypes were found, but for all genotypes 

the supervirulent strain A281 was more efficient than the non supervirulent strain Ach5. 

Early transformation events could be monitored by using an intron containing ß-

glucuronidase (GUS) gene. It was found that expression of the GUS gene in 

chrysanthemum is detectable several days later than in tobacco. There was no clear 

correlation between size and frequency of tumour formation following infection with 

wild-type strains of Agrobacterium and transformation efficiency, as determined with the 

GUS-intron gene. The GUS-intron gene proved useful in the location of preferential 

gene transfer sites. Cells or cell clusters expressing GUS were mostly found near the 

edge of the leaf explant. 

Introduction 

The cutflower chrysanthemum (Dendranthema grandiflora Tzvel., previously known as 

Chrysanthemum morifolium Ramat.) is an economically important ornamental crop. As 

in many ornamentals, conventional cross breeding of chrysanthemum is seriously 

hampered by the high ploidy level. The development of molecular breeding strategies 

for chrysanthemum would therefore be very useful. Of all known gene transfer 

methods, the Agrobacterium tumefaciens mediated transformation is the most efficient 

way to introduce foreign genes into dicotyledonous plants. Nevertheless, the careful 

selection of both bacterial strain and plant genotype is reported to be essential for 

successful transformation of recalcitrant crops (Davis et al., 1991; Dandekar and 

Martin, 1988; Vahala et al., 1989). A major problem in establishing efficient 

Agrobacterium mediated gene transfer is the fact that the effects of changes in the 

41 



protocol are only noticeable after several weeks of selection. If the efficiency of the 

used protocol is very low the effect of changes may not be distinguished at all. This 

makes the development and optimization of protocols for recalcitrant species a time 

consuming and inefficient process. The widely used reporter gene ß-glucuronidase 

(GUS), on the binary vector pBI121, was primarily constructed to locate transformed 

tissue (Jefferson et al, 1987). However, although the gene is directed by the eukaryotic 

CaMV-35S promotor it is also transcribed by Agrobacteria. This makes early detection 

of transformation, within 1 or 2 weeks after infection, impossible because no distinction 

can be made between bacterial and plant GUS activity. Recently two approaches have 

beert adopted to solve this problem. Janssen and Gardner (1989) used a GUS gene 

that lacks a bacterial ribosome binding site and Vancanneyt et al. (1990) constructed 

a GUS gene that contains an intron derived from the potato gene LSI. As prokaryotes 

are not able to splice introns out of RNA, bacterial GUS activity is efficiently 

prevented. The usefulness of the construct is illustrated by the recent development of 

a transformation protocol for sunflower using the GUS-intron gene (Schrammeijer et 

al., 1990). We made use of the intron containing GUS gene to investigate the efficiency 

of initial gene transfer in leaf expiants of chrysanthemum and to find out if 

transformation occurs in the same regions as regeneration. The construct enabled us 

to study early gene transfer events (within 1 or 2 weeks after infection), without 

interference of bacterial GUS activity. Soon after infection, part of the visualized gene 

expression will represent unstable gene transfer, but we assumed that the rate at which 

stable integration in the genome occurred, would be proportional to the initial 

incidence of gene transfer. We also wanted to know whether there is a correlation 

between tumour proliferation and gene transfer efficiency. Tumours are the result of 

two factors other than transformation efficiency; expression of transferred genes and 

sensitivity of the plant to a surplus of phytohormones, which in turn is related to the 

internal hormone status. 

Out of a large number of regenerable D. grandiflora genotypes we made a selection of 

seven genotypes. Two wild-type Agrobacterium strains, Ach5 and A281, were used to 

determine the susceptibility of these genotypes to infection. A281 efficiently induces 

large tumours in vivo and in vitro on the chrysanthemum genotype 'Parliament' 
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(Chapter 2: Van Wordragen et al., 1991). The strain has also proved useful in 

transforming other recalcitrant crops such as goosefoot (Komari, 1990) and rice 

(Rained et al., 1990). A281 is called supervirulent, because it is a broad host range 

strain and induces tumours that appear faster and are larger than tumours induced by 

other strains (Guyon et al., 1980; Hood et al., 1986). The results presented show that 

this supervirulent strain will also be very useful in the development of a transformation 

system for chrysanthemum. The importance of discrimination between tumour induction 

and transformation is stressed. 

Material and methods 

Plant material: Sterile cuttings of the chrysanthemum genotypes 'Recital', 'Greta Verhagen', 'Calgary', 
'Toon Hermans' and 'Parliament', and the selection lines 1275 and 1610 were grown on Murashige and 
Skoog (MS) medium (Murashige and Skoog, 1962) containing 3 % w/v sucrose and 0,5 /JM indole-3-
acetic acid (IAA), pH 5.8, solidified with 0.8 % w/v Purified Oxoid agar. Sterile cuttings of Nicotiana 
tabacum 'Petit Havana SRI' were grown on the same medium but with 2 % sucrose and without 
hormones. Four week old plantlets were used in transformation experiments. 

Bacterial Strains: Strains were derived from the oncogenic A. tumefaciens strains A281 and Ach5. Two 
Plasmids were introduced into these wild-type strains. pBI121 (Jefferson et al., 1987) harbours the 
neomycin phosphotransferase (NPT11) gene and the GUS gene, directed by the nos and CaMV 35S 
promoter respectively. The construct p35SGUSintron (Vancanneyt et al., 1990) is a BIN19 derived vector 
carrying an intron containing GUS gene under the control of the CaMV 35S-promoter. The plasmids 
were introduced by conjugation according to the protocol described by Rogers et al. (1988), resulting 
in the strains A281(pBI121), A281(p35SGUSint) and Ach5(p35SGUSint) (Table 1). The disarmed A 
tumefaciens strain LBA4404 (Hoekema et al., 1983) was used as a control. All strains were cultured on 
Luria Broth (10 g/1 trypton, 5 g/1 yeast extract, 5 g/1 NaCl, 1 g/1 glucose, pH 7.0) with the antibiotics 
listed in table 1. 

Transformation protocol: The upper surfaces of leaves from four week old sterile plantlets were slightly 
wounded with a soft sterile brush. Expiants with a diameter of 7 mm were punched out of the leaves 
and were incubated for 5 minutes in an overnight culture of Agrobacterium diluted with liquid MS30 
medium to a density of 5 x 108 cells/ml. The expiants were blotted dry and placed upside down on 
hormone free MS medium, pH 5.7, containing 3% sucrose and 0,7% purified Oxoid agar. Six leaf 
expiants were placed on each 9 cm Petri dish. After 2 days expiants were transferred to fresh medium 
containing 250 mg/1 cefotaxime and 400 mg/1 vancomycine. Four days later the expiants were transferred 
to fresh medium containing half of the antibiotic concentration. 

Determination of opines: Four weeks after infection tumours were assayed for opine content. Agropine/ 
mannopine assays were performed using paper chromatography as described by Petit et al. (1983). 
Octopine synthetase assays were performed as described by Reynaerts et al. (1988). 

Determination of GUS activity: ß-Glucuronidase in bacteria was determined in overnight cultures, 
resuspended in phosphate buffer (50 mM, pH 7.5) containing 1 mM 5-bromo,4-chloro,3-indolyl-ß-D-
glucuronide (X-Gluc). After an incubation of 48 h. at 37 °C the appearance of a blue colour was 
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indicative of GUS activity, ß-glucuronidase activity of transformed plant cells was determined by using 
the histochemical assay, described by Jefferson et al. (1987), with one adjustment. To avoid hydrolysis 
of the substrate X-Gluc. by endogenous enzyme activity it was essential to use a phosphate buffer of 
pH 7.5 instead of pH 7.0. For microscopical observations expiants were bleached and fixed in ethanol 
and cleared in a saturated solution of chloralhydrate in lactic acid. In all assays at least twelve expiants 
were used for each treatment. 

Results 

Tumour induction in vitro 

Leaf expiants from seven chrysanthemum genotypes and from N. tabacum SRI were 

infected with the A. tumefaciens octopine strain Ach5 and the supervirulent agropine 

strain A281. Almost all leaf expiants developed callus which was able to grow in the 

absence of phytohormones (Table 2). In control experiments using the disarmed 

derivative of Ach5, LBA4404, no callus formation was observed and the leaf disks 

showed necrosis after 3 weeks. The amount of callus formed was estimated visually and 

the results are shown in table 2. Both strains were highly tumorigenic on N. tabacum 

SRI; the tumours grew fast and contained octopine after Ach5 transformation or 

agropine and mannopine after A281 transformation. Tumour formation in 

chrysanthemum was less extensive than in tobacco and highly genotype dependent. 

Table 1. Agrobacterium tumefaciens strains. 

Name 

A281 
A281(pBI121) 

A281(p35SGUSint) 

Ach5 
Ach5(p35SGUSint) 

LBA4404 

Virulence 
plasmid 

pTiB0542 
pTiB0542 

pTiB0542 

pTiAch5 
pTiAchS 

pAL4404 

T-DNA 
plasmid 

pBI121 

p35SGUSint 

p35SGUSint 

-

Transgenes 

ags, mas 
ags, mas, 
NPTll, GUS 
ags, mas, 
NPTll, GUSi 
ocs, ags 
ocs, ags 
NPTll, GUSi 
-

Antibiotics 
in mg/1 

R 100 
R 100, K 50 

R 100, K 50 

R 100 
R 100, K 50 

R 100 

Abbreviations: transgenes = transferred genes besides oncogenes, ags = agropine synthetase, mas = 
mannopine synthetase, ocs = octopine synthetase, GUS = ß-glucuronidase, NPTII = neomycinephospho-
transferase II, R = rifampicin, K = kanamycin. 
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Table 2: Callus induction after infection with three A. tumefaciens strains. 

genotype 

Recital 
1275 
G. Verhagen 
1610 
Calgary 
T.Hermans 
Parliament 
Tobacco SRI 

Ach5 
%pos. 

100 
100 
83 
92 

100 
67 
50 

100 

cal. 

4 
3 
3 
2 
1 
1 
3 
4 

Oct. 

_ 
+ 
-
+ 
+ 
-
-
+ 

A281 
%pos. 

92 
83 

100 
100 
83 

100 
92 

100 

cal. 

4 
4 
3 
4 
2 
1 
4 
5 

Agr. 
Man. 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

LBA4404 
%pos. cal. 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

Figures represent the mean of two separate experiments. The amount of callus (cal.) was scored 3 weeks 
after infection by using an arbitrary scale from 0 (no callus) to 5 (large amount of callus). Only callus 
forming expiants (% positive) were taken into account. Each figure represents the mean from 4 Petri 
dishes with 6 expiants each. Abbreviations: Oct=octopine, Agr.=agropine, Man.=mannopine, '-'=no 
opine, '+'=opines detected. 

Tumour proliferation following infection with the supervirulent strain was more efficient 

than infection with Ach5. Both chrysanthemum and tobacco tumours, induced by 

Ach5,were more compact than those induced by A281. All the tumours induced by 

A281 contained agropine and mannopine (Fig. 1), indicating that genes from the T-

DNA were expressed and that stable transformation had occured. In Ach5 induced 

tumours on chrysanthemum octopine was only detected occasionally and in low 

amounts. 

Determination of background GUS expression by bacteria 

To detect transformation soon after infection the plasmids pBI121 and p35SGUSintron 

were introduced into the wild-type Agrobacterium strain A281. The vector 

p35SGUSintron was also introduced into strain Ach5. The expression of the GUS gene 

in the resulting A281 strains was determined. The suspension with A281(pBI121) turned 

blue within 1 h., showing that the non-interrupted GUS gene is expressed. In contrast, 

the suspension with A281(p35SGUSint) showed no blue colouring at all, even after 48 

h. incubation. Furthermore histochemical assays were carried out on leaf expiants of 

genotype 'Parliament' 6 days after infection with A281(pBI121) and A281(p35SGUSint). 

Expiants transformed with A281(pBI121) showed a large amount of blue precipitate 
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1 2 3 4 5 6 7 8 9 Figure 1. 
Detection of agropine and 

A *•**• - ^-^^fc—^— mannopine in A281 induced 
^ ^ ^ ^ ^ * » tumours of seven chrysanthemum 

genotypes. Lanes: l=tobacco SRI, 
2=untransformed chrysanthemum 
tissue, 3='Recital', 4=1275, 
5=*G.Verhagen', 6=1610, 
7='Calgary', 8='T.Hermans', 
9='Parliament'. Abbreviations: 
A=agropine, M=mannopine. 

distributed all over the expiant, including intercellular staining and blue leaf hairs, 

which had to be ascribed to bacterial GUS activity (Fig. 2A). It was not possible to 

distinguish between GUS expression in the transformed cells and bacterial GUS activity. 

If the intron containing GUS gene was used, only distinct blue spots and no 

intercellular coloration or blue leaf hairs were observed (Fig. 2B). This leads to the 

conclusion that the intron is spliced out correctly in D. grandiflora and that bacterial 

GUS activity is effectively prevented, by the presence of intron sequences. 

Effect of bacterial strain and genotype 

Leaf expiants of seven chrysanthemum genotypes and tobacco SRI were infected with 

A281(p35SGUSint) and Ach5(p35SGUSint) and the number of blue spots, indicative 

for gene transfer, was determined 5 days after infection using the histochemical GUS 

assay. Each separate spot, either cell or cell cluster, was assumed to represent one 

independent gene transfer event. 

Figure 2: 
X-Gluc assay on leaf discs of chrysanthemum 5 days after infection 

A) Infection of 'Parliament' with A281(pBU21) 
B) Infection of 'Parliament' with A281(p35SGUSint) 
C) Cross section through a leafdisk of genotype 1610. 
D) Effect of genotype on the efficiency of gene transfer. 

'Calgary' x A281(p35SGUSint) 
E) Effect of genotype on the efficiency of gene transfer. 

1610 x A281(p35SGUSint) 
F) Effect of bacterial strain on the efficiency of gene transfer 

1275 x Ach5(p35SGUSint) 
G) Effect of bacterial strain on the efficiency of gene transfer 

1275 x A281(p35SGUSint) 
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Strong effects of both genotype and bacterial strain were observed (Fig. 2D-G and Fig. 

3). Some chrysanthemum genotypes were at least as susceptible to Agrobacterium 

mediated gene transfer as tobacco. The supervirulent strain A281 was very effective 

giving rise to 80-100% positive expiants, for all genotypes. The mean number of blue 

spots per expiant varied considerably between genotypes (compare Fig. 2D and Fig. 

2E), but the number of blue spots per expiant was always higher after A281 infection. 

This was most obvious in the highly sensitive genotypes 'Recital' and 1275 (Fig. 2F and 

Fig. 2G). Control infections with tobacco SRI also showed this effect of supervirulence. 

Location of transformation 

The location of the blue spots was similar for all genotypes. Spots occurred mostly near 

the edge of the expiant, preferably close to the basal cut site of a major vein (Fig. 2B 

and Fig. 2F). The same region is the characteristic site for regeneration of adventitious 

shoots in all seven genotypes. When the number of spots per expiant was very high, 

blue spots could be found all over the expiant, sometimes covering large zones of the 

expiant (Fig. 2G). Both single blue cells and blue cell clusters were found regardless 

of the time passed since infection. Intensity of the blue staining varied from pale blue 

to deep indigo. The intensity of the blue colour was not related to cell type, time or 

size of the blue spot, and is probably a combined effect of expression and location, on 

the surface or inside the callus mass, of the transformed cell. Cross sections through 

leaf expiants revealed that blue cells could be found in every cell layer except the 

epidermis and vein tissue (Fig. 2C). Blue spots were never found after infection with 

the disarmed strain LBA4404, provided that a phosphate buffer of pH 7.5 was used. 

At pH 7.0 endogenous hydrolytic activity was occasionally found at the guttation points 

of the leaves. 

Monitoring GUS expression in time 

To study the development of GUS expression after infection leaf expiants from 

genotypes 1610 and 'Calgary' and from tobacco SRI were infected with 

A281(p35SGUSint) and sampled every 2 or 3 days. Two days after infection there was 

already a substantial number of blue spots in expiants from tobacco, but none in 
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Figure 3. 
Transformation efficiency of seven 
chrysanthemum genotypes and 
tobacco SRI, with A281(p35SGUSint) 
and Ach5(p35SGUSint). Values are 
the mean of 24 observations. Standard 
deviation is indicated by the error bars 
above the columns. 
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Figure 4. 
Transformation of two chrysanthemum 
genotypes and tobacco SRI with 
A281(p35SGUSint). Monitoring GUS-
activity in time. Values are the mean 
of twelve observations. Standard 
deviation is indicated by the error bars 
above the columns. 

expiants from the two chrysanthemum genotypes (Fig. 4). The first blue spots could be 

detected 3 days (in 1610) and 4 days (in 'Calgary') after infection. Five days after 

infection the number of transformation events reached a peak level. In some expiants 

of 1610 the number of spots made it impossible to distinguish between them, making 

it difficult to count the number of blue spots per expiant (compare Fig. 2G). In these 

expiants the number of spots was taken to be 100, the number of spots at which 

accurate counting was no longer possible. Though this obviously led to an 

underestimation of the values at 5, 7 and 9 days after infection, it was necessary to 

enable statistical analysis of the results. The number of blue spots tended to decrease 

at later times after infection for both chrysanthemum genotypes, but not for tobacco. 

For genotype 1610, statistical analysis was hampered by the underestimation of the 

values as described, but the decrease was statistically significant for 'Calgary'. 
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Discussion 

Both by tumour formation and by GUS-intron screening it was demonstrated that in 

Agrobacterium-meâiated transformation of chrysanthemum the bacterial strain as well 

as the plant genotype are important for the efficiency of gene transfer. The commonly 

used octopine strain Ach5 as well as the supervirulent strain A281 were able to induce 

phytohormone independent tumours on seven selected chrysanthemum genotypes, 

showing that chrysanthemum is highly sensitive to crown gall formation. A281 induced 

tumours always contained detectable amounts of agropine and mannopine, but only 

three genotypes formed octopine producing tumours upon Ach5 infection, whereas all 

seven genotypes produced autonomously growing callus. This indicates that in four cases 

a part of the Ach5 T-DNA, was not transferred or inactivated after transformation. 

Genetic transformation was confirmed in histochemical assays, in which expression of 

the GUS-intron gene, detectable as blue stained spots in the expiant, was indicative for 

gene transfer. Histochemical analysis revealed that gene transfer could be achieved 

using the strain Ach5 but the efficiency was elevated by using the supervirulent 

Agrobacterium strain A281. After A281 infection the transformation efficiency in some 

genotypes was as high as in tobacco. The genotype had a large effect on the efficiency 

of transformation, but despite this variation A281 was always more virulent than Ach5. 

With the supervirulent strain blue spots were induced at the same rate as in tobacco. 

In most chrysanthemum genotypes gene transfer mediated by Ach5 was 4 to 5 times 

less efficient compared to A281, but in 'Recital' there was a twentyfold difference. 

This indicates that the virulence of the bacteria is a critical factor superimposed on the 

transformation potential of the plant. Comparison of the quantitative results of the 

histochemical assays using the GUS-intron gene with the results of tumour formation 

(Table 2) revealed that tumour formation is not always a good indicator of 

transformation efficiency. For instance, A281 as well as Ach5 induce tumours on the 

genotype 'Parliament' but histochemical assays showed little or no gene transfer events. 

However, tumour induction and blue spots are the outcome of different processes, 

namely the transfer of wild-type T-DNA and the transfer of 'artificial' T-DNA located 

on a binary plasmid. Therefore the discrepancy between tumour induction and number 
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of blue spots might be due to a very low number of co-transformations, or to 

preferential transfer of the wild-type T-DNA. Another explanation, which fits the 

genotype dependent nature of the phenomenon, is that tumour induction in this 

genotype might be enhanced by high phytohormone sensitivity. In assays measuring the 

effect on leaf expiants of a short pulse of auxin in the culture medium, 'Parliament' was 

much more sensitive to externally applied IAA than other genotypes (data not shown). 

Therefore only a few transformed cells, or even transiently expressing cells, might be 

enough to induce tumour proliferation in 'Parliament'. Previously 'Parliament' was 

assumed to be highly susceptible to Agrobacterium infection (Chapter 2: Van 

Wordragen et al., 1991). The results presented here suggest that this might be true for 

the disease symptoms, but not for the underlying gene transfer process. 

The location of the blue spots seems to indicate that the susceptibility for T-DNA 

transfer is different in various sectors in an expiant. Cells close to the cut basal end of 

a major vein and near the wounded edge are most susceptible to transformation. This 

is partly due to the fact that these sites are wounded and will have high concentrations 

of wound induced substances. However, an additional factor has to be involved, because 

cells at the centre of the leaf expiants were rarely transformed, though the upper 

surface of the leaf was also wounded. The large number of blue spots near the basal 

end of the veins might indicate that a transport dependent factor is involved as well. 

Regeneration of adventitious shoots also occurs mainly on the edge of the leaf expiants 

near the major veins. This is advantageous for the future development of a protocol 

aimed at the creation of transgenic shoots, using disarmed Agrobacterium strains. It 

suggests that cells that are competent of regeneration have some features in common 

with cells that are suitable for transformation. This characteristic might be the capability 

to dedifferentiate and start dividing shortly after wounding. 

In some expiants the formation of large GUS expressing zones could be observed. This 

phenomenon was also found in petunia (Janssen and Gardner, 1989), where it was 

ascribed to localized high gene transfer frequencies and not to cell-to-cell transport of 

transcription/translation products of the GUS gene. We favour the same explanation, 

because in chrysanthemum many spots can be found where the blue precipitate is 

limited to one cell, and there is no evidence that the enzyme is exported to non 
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transformed neighboring cells. The decrease in the number of spots per expiant later 

on might be due to the death of stably transformed cells, to the decline of transient 

expression or to the joining of separately transformed cells into clusters. 

The CaMV-35S promoter directed transcription of the linked GUS-intron gene in 

virtually all types of tissue in chrysanthemum leaf explants, though expression of GUS 

started slow compared to tobacco. If this also holds for the nos promoter, directing the 

expression of the NPT II gene, it indicates that the moment at which selection for 

transformed cells is applied should be postponed. Preliminary experiments in which 

expiants from a limited number of cultivars were placed on selective medium at several 

times after infection with disarmed A. tumefaciens strains, seem to confirm this 

hypothesis. 

In conclusion, we have demonstrated that it is possible to transform several 

chrysanthemum genotypes with high efficiency using a normal and a supervirulent strain 

and that foreign genes can effectively be expressed. The results stress the usefulness 

of the intron containing ß-glucuronidase gene. In a relative short period of time it is 

possible to obtain information about transformation efficiency, location of 

transformation events, effect of selection on the number of gene transfer events, which 

can be of great importance for the development of a transformation protocol. At the 

moment we are developing a transformation/regeneration protocol for chrysanthemum 

using the A tumefaciens strains EHA101 and LBA4404. These strains are the disarmed 

derivatives of A281 and Ach5, respectively (Hood et al., 1986; Hoekema et al., 1983) 

and therefore they offer the opportunity to obtain regenerated transformed shoots 

directly from the expiant. According to the results presented here the supervirulent 

strain EHA101 would be particularly useful, because of the highly efficient gene 

transfer rates that can be reached with A281 in chrysanthemum. 
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Summary 

Explants from leaves of in vitro grown chrysanthemum cultivars regenerated adven­

titious shoots without a callus phase. Additional wounding of the expiants by brushing 

increased regeneration of shoots in some genotypes. However, in expiants which were 

cocultivated with Agrobacterium tumefaciens brushing had a strongly adverse effect on 

shoot formation. This negative effect of brushing could be overcome by delaying the 

infection with Agrobacterium for 8 days. Delayed infection did alter the location of 

transformed sites, not the number of transformation events. Although transformation 

occured at numerous sites along the edge of expiants, no transgenic shoots were found. 

The failure to recover transgenic shoots from transformed leaf expiants may be 

explained by the inability of single transformed cells to develop into shoots amongst 

dying non transformed tissue. Induction of a callus phase to create a larger mass of 

transformed cells prior to regeneration is suggested. 

Introduction 

Chrysanthemum (Dendranthema grandiflora Tzvel.) is host to many insects, feeding on 

leaves and flowers and frequent applications of insecticides are required to limit the 

damage. Plant resistance to insects would prevent losses and reduce the need for 

insecticidal control. Since it is not possible to introduce insect resistance into existing 

chrysanthemum genotypes by conventional breeding, it appears of great interest to 

study whether insect resistance can be obtained by molecular mehods. For that reason 

we want to develop a procedure for the introduction of the insecticidal toxin gene of 

Bacillus thuringiensis in chrysanthemum via Agrobacterium mediated transformation. 

Application of Agrobacterium mediated gene transfer requires the regeneration of plants 

from transformed somatic cells. Methods to produce shoots from somatic tissues of 

chrysanthemum have been well documented. Adventitious shoots may be formed 

directly, without an intermediate callus phase, on expiants of leaves (Chin-Yi Lu et al., 
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1990, Kaul et al., 1990), stems (Kaul et al., 1990) and pedicels (Roest and Bokelmann, 

1975). Using different media and cultivars, indirect regeneration via callus, has also 

been reported. Hill (1968), Miyazaki et al., (1979) and Bhattacharya et al., (1990) 

raised shoots from callus induced on stem expiants. Petal expiants may form green 

callus along the edges from which eventually meristematic areas develop (Bush et al., 

1976). Furthermore, shoot tips have given rise to regenerable callus (Huitema et al., 

1989; Earle and Langhans, 1974). Shoot formation through a callus phase enhances 

somaclonal variation, which results in mutated plants. If these are unwanted, like in 

gene transfer studies, where the genotype needs to remain otherwise unchanged, callus 

should be avoided. Leaf expiants, which regenerate fast and directly, were therefore 

chosen as starting material for the development of an Agrobacterium mediated 

transformation protocol. 

As in alfalfa (Hernandez-Fernandez et al., 1989), tomato (Koornneef et al., 1987) and 

cucumber (Nadolska-Orczyk, 1989), regeneration of chrysanthemum is genotype 

dependent. Regeneration protocols developed for chrysanthemum are particularly 

adapted to responsive genotype(s) selected for study, but frequently fail for other, less 

responsive, genotypes (Fukai et al., 1987). We developed an alternative medium to suit 

the need of the cultivar 'Parliament' and used this medium and two other documented 

media (Roest and Bokelmann, 1975; Fukai and Oe, 1986) in a search for cultivars, that 

efficiently produced adventitious shoots on these media. 

Following cocultivation with Agrobacterium tumefaciens, however, we observed that the 

regeneration of otherwise well regenerating cultivars was significantly reduced. 

Both Agrobacterium mediated transformation and adventitious shoot formation are 

triggered by wounding the plant. Therefore, the degree and timing of the wounding are 

expected to be important factors in the gene transfer and regeneration proces. 

Experiments are reported in which the effect of wounding on the frequency of 

transformation, the location of the gene transfer sites and the number of shoots 

regenerated is studied. 
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Material and methods 

Plant material. Plant material was maintained in vitro by subculturing shoot tips at 5 week intervals onto 
CHR 01 medium. Shoots were grown at 25°C at 0.7 W m'2 provided by cool white fluorescent light for 
16 h per day. Expiants of 7 mm were cut from the youngest three fully grown leaves. In some 
experiments leaves were wounded by brushing prior to Agrobacterium infection. Care was taken not to 
punch through the midrib. The expiants were blotted dry and placed upside down on the media. Twenty 
expiants, equally divided over four Petri dishes were observed per treatment. The number of shoots was 
counted weekly. 

Plant media. All media used for the culture of plant tissue were MS basal media (Murashige and Skoog, 
1962), supplemented with 30 g/1 sucrose and 7 g/1 purified oxoid agar. The pH was adjusted to 5.8. IAA, 
when used, was added after autoclaving. The following growth regulators were added: 
CHR 01 : 0.1 mg/1 IAA 
CHR 02 : 4.0 mg/1 NAA, 1.0 mg/l BA 
CHR 03 : 0.1 mg/1 IAA, 1.0 mg/1 BA (Roest and Bokelmann, 1975) 
CHR 04 : 0.5 mg/1 NAA, 2.0 mg/1 BA (Fukai and Oë, 1986) 
Silvernitrate, when used, was added after autoclaving 

Transformation. Agrobacterium tumefaciens strains were grown overnight in liquid Luria Broth (10 g/1 
trypton, 5 g/1 yeast extract, 5 g/1 NaCl, 1 g/1 glucose, pH 7.0) supplemented with 50 mg/1 rifampicin and, 
if the binary vector p35SGUSintron (Vancanneyt et al., 1990) was used with 50 mg/1 kanamycin as well. 
Leaf expiants were incubated for 5 min in an Agrobacterium suspension diluted with liquid MS30 
medium to a concentration of about 5 x 108 cells/ml. Expiants were blotted dry and placed on plant 
culture medium. After two days cocultivation the expiants were transferred to fresh media with 250 mg/1 
cefotaxime and 400 mg/1 vancomycin to eliminate the bacteria. After four days this medium was replaced 
by one containing half the antibiotic concentrations. 
The Agrobacterium tumefaciens strains used were LB A4404, a disarmed derivative of the octopine strain 
Ach5 (Hoekema et al., 1983), and LBA4404(p35SGUSint) carrying the binary vector p35SGUSintron, 
which transfers ß-Glucuronidase and Neomycin phosphotransferase II (Vancanneyt et al., 1990). 

ß-Glucuronidase assay. Explants were histochemically assayed for ß-glucuronidase activity (GUS) 
according to Jefferson et al.(1987) except for using a phosphate buffer with a pH 7.0 instead of 7.5 to 
avoid endogenic hydrolysis of the substrate X-Gluc. Chlorophyll was removed from stained expiants with 
ethanol. Further clarification, when necessary, was done in a saturated solution of chloralhydrate in lactic 
acid. Per treatment at least 12 expiants were assayed. 

Results 

Cultivar effects on regeneration. 

At the outset of our study mainly the cultivar Parliament was used. Leaf expiants of 

this cultivar were incubated on CHR 02 for two days to initiate cell division and 

subsequently transferred to CHR 01 for shoot development. Regeneration was greatly 

enhanced (from 1.4 to 4.6 shoots per explant; p < 0.01) by slightly stabbing the leaves 

with a paint brush prior to cutting expiants. To prevent desiccation, leaves were 
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brushed and cut in CHR 02. Regeneration of expiants not cut in liquid medium was 

poor. 

Using this method for preparing explants, a large number of cultivars was tested for 

regeneration both on the medium sequence CHR 02/CHR 01, developed for 

'Parliament', and on medium CHR 03, a general medium designed for pedicel expiants 

(Roest and Bokelman, 1975). The results are presented in figure 1. A considerable 

number of cultivars form shoots on both media, but most of them produce only very 

few shoots. Some genotypes, like Parliament, performed better on CHR 02/CHR 01, 

while others, like line 1610, regenerated better on CHR 03 medium. Seven genotypes, 

Recital, line 1275, Calgary, Toon Hermans, Greta Verhagen, line 1610 and Parliament, 

that efficiently produce adventitious shoots on one or both media were selected. Those 

seven cultivars, together with 'Vincent', a cultivar that produces 3.1 shoot/explant on 

CHR 03, but was not tested for the medium sequence CHR 01/CHR 02, were used in 

further regeneration and transformation experiments. 

Shoot formation. 

On both regeneration media, primordia became visible along the cut surface of the leaf 

expiants within 2 weeks days after incubation. From that moment on the number 

increased rapidly, as shown in Fig.2. About half of the primordia developed into shoots, 

defined as plantlets with visible internodes. The first shoots were observed 24 days after 

cutting and their number increased until about 6 weeks after incubation, when they 

could be excised for rooting. 

A thin layer of friable callus cells formed along the cut edges but did not proliferate 

further. The primordia did not originate from the callus, but emerged directly from the 

expiant tissue, along the edge of the leaf disk (Fig. 3). Larger clusters of non 

regenerating callus were sometimes formed at the basal end of the cut veins. 

Brushing gave wounds over the whole surface of the leaf explant, but had no effect on 

the location of the adventitious shoots. Both in brushed and unbrushed expiants, the 

shoots arose along the cut surfaces, frequently close to basal ends of cut veins. 
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Figure 1. 
Regeneration capacity of 60 cultivars of 
chrysanthemum for 2 regeneration media. 
The mean number of shoots/explant obtained 
on CHR03 is plotted against the mean number 
of shoots regenerated on CHR02/CHR01. Each 
mark represents one genotype. 

Figure 3. 
Regeneration of adventitious shoots from 
leaf expiants of chrysanthemum. 
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Figure 2. 
Number of shoot primordia and shoots formed 
on 7 mm leaf expiants of chrysanthemum on 
medium CHR03. Data are collected from 3 
separate experiments. Each dot represents the 
mean over 6 cultivars with 20 expiants per 
cultivar. The cultivars were Recital, 1275, Greta 
Verhagen, 1610, Calgary and Toon Hermans. 
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Figure 4. 
Mean number of blue spots per leaf expiant 
of 7 cultivars of chrysanthemum and tobacco 
SRI, 6 and 9 days after infection with 
LBA4404(p35SGUSint). 
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Table l.The number of shoots formed per leaf expiant 6 weeks after infection with 
Agrobacterium tumefaciens LBA4404 compared to the controls with and without antibiotics. 

Experiment Medium Number of shoots 

- Agrobacterium + Agrobacterium 
- antibiotics + antibiotics + antibiotics 

1 
2 
3 
4 
5 

The data are from the cultivar Parliament in experiments 1 and 2 and averaged over the cultivars 
Recital, 1275, Greta Verhagen, 1610, Calgary and Toon Hermans in experiments 3 and 4, while 11 
additional cultivars were used in experiment 5. Mean separation in lines at 5% probability. Values 
indicated by different letters (a, b or c) differ significantly. 

CHR 02/CHR 01 
CHR 04 
CHR 03 
CHR 03 
CHR 03 

1.98a 
1.97a 
2.24a 

3.40a 
4.75a 
1.58b 
1.94a 
1.13ab 

0.52b 
0.00b 
0.70c 
0.91b 
0.36c 

Transformation 

To measure the susceptibility of 7 different genotypes for transformation by 

Agrobacterium, leaf expiants were cocultivated with LBA4404(p35SGUSint), that can 

deliver the reporter gene ß-glucuronidase to plant cells. The number of distinct blue 

spots per leaf expiant, detectable 6 days after infection, was used as an indicator for 

the efficiency of gene transfer. However, the number of blue spots did not remain 

constant, but appeared to be decreased when GUS-assays were performed 9 days after 

infection (Fig. 4). Large variation among cultivars is apparent in the number of blue 

spots. The breeding line 1610 was the most susceptible genotype, whereas Parliament 

was the least susceptible. No GUS expression was observed in expiants not cocultivated 

with Agrobacterium. 

Regeneration after cocultivation with Agrobacterium tumefaciens. 

If leaf expiants of the cultivar Parliament were cocultivated with the disarmed strain 

LBA4404 for two days, the number of shoots formed decreased considerably compared 

to controls with antibiotics (Table 1). 

Other selected, well regenerating genotypes were subsequently screened for capacity to 
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regenerate after infection with Agrobacterium and a decline in number of adventitious 

shoots was observed in all cultivars tested. 

Controls, with and without antibiotics added to the media, showed that the reduction 

in number of shoots is mainly due to cocultivation with Agrobacterium, while a smaller 

part can be attributed to the negative effects of the antibiotics added after 

cocultivation. 

The effect of brushing and cocultivation with Agrobacterium tumefaciens on shoot 

formation and transformation of leaf expiants was analyzed (Table 2). Cocultivation 

significantly reduced the number of shoots formed on brushed expiants, except in 

breeding line 1610, where the reduction is not significant. Brushing itself, without 

cocultivation had minor effects on regeneration, except again for the positive stimulus 

in line 1610. Gene transfer efficiency, as measured by the number of blue loci, was not 

affected by brushing. Despite the usual large variation observed in number of blue 

spots among expiants of identical treatments, genotype remains the overriding factor 

in the determination of the number of blue spots. Although blue spots were 

occasionally observed in the center of the expiants, the majority of the spots were 

located along the cut edge, irrespective of brushing. 

Table 2. The number of shoots formed per leaf explant on three cultivars of chrysanthemum. 

brushing 

Recital 
1610 
Calgary 

- Agrobacterium 
shoots 

-

1.25a 
0.20a 
3.60b 

+ 

0.95a 
0.95b 
3.25b 

+ LBA4404(p35SGUSint) 
shoots blue spots 

+ 

1.85b 1.05a 
O.ÓOab 0.15a 
2.25b 0.60a 

+ 

0.0 1.0 
16.3 11.9 
1.8 0.0 

The expiants were cut from sterile grown leaves either brushed (+) or not (-) prior to cocultivation with 
Agrobacterium tumefaciens. The number of blue spots per leaf expiant was determined 6 days after 
infection. Mean separation in lines for shoots produced at 5% probability. Values indicated by different 
letters (a or b) differ significantly. 
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Table 3. The number of shoots per leaf expiant of three cultivars of chrysanthemum without (-) 
or with (+) (»cultivation with Agrobacterium, averaged over 6 growth regulator combinations. 

cultivar LBA4404(p35SGUSint) 

+ 

Recital 
1610 
Vincent 

0.75 0.56 
0.49 0.21 
2.24 2.77 

Table 3, compiled from an experiment in which 20 unbrushed expiants per cultivar 

were incubated on MS30 medium with 6 growth regulator concentrations (BA 0.1 or 

1.0 mg/l with IAA 0.1, 1.0 or 10 mg/1), confirms that regeneration is not significantly 

reduced when unbrushed expiants are used for cocultivation. 

Postponed infection. 

The deleterious effect of cocultivation with Agrobacterium on regeneration could also 

be fully prevented by separating expiant preparation (cutting and brushing) from 

cocultivation. Leaf expiants infected with Agrobacterium 4 days after excision and 

brushing showed a partly restored regeneration, while delaying infection for eight days 

fully prevented the deleterious effect of Agrobacterium on regeneration. 

Fig. 5 illustrates the positive effect of culture prior to infection with Agrobacterium 

tumefaciens on the number of primordia and shoots produced. The variation among 

different cultivars are illustrated in Fig. 6. Only two cultivars, Calgary and Toon 

Hermans, retained an adequate regeneration capacity after cocultivation without 

delayed infection. Preculturing expiants for 8 days prior to infection restored 

regeneration for all cultivars and raised the level to that of the not infected controls. 

Breeding line 1610 was earlier shown to be the cultivar with the largest number of blue 

spots in GUS assays and this line was used to test the effect of postponed infection on 

the frequency of transformation events. Immediate infection resulted in 14 spots per 

expiant, while delaying infection for 4 or 8 days gave 12 and 37 spots per expiant 
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Days after cutting expiants 

Figure 5. 
Number of primordia and adventitious shoots formed per leaf expiant cocultivated with Agrobacterium 
tumefaciens for two days immediately after cutting expiants or with a delay of 4 to 8 days. The data are 
means over the cultivars Recital, 1275, Greta Verhagen, 1610, Calgary and Toon Hermans. 

Shoots/explant 
4 

Recital 1275 G.Verhagen 1610 

Genotype 
Calgary T.Hermans 

Figure 6. 
The effect of immediate and delayed infection with Agrobacterium tumefaciens on the number of shoots 
produced in 6 cultivars of chrysanthemum. 
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Figure 7. 
Location of blue spots in 
a leaf explant of line 1610, 
5 days after infection with 
LBA4404(p35SGUSint). 
Infection was postponed for 
eight days. 

respectively. On delayed cocultivation the transformed cells were still to be found along 

the cut edge, with a preference for the loose callus cells formed in the vicinity of basal 

vein ends (Fig. 7). 

In order to find out whether rewounding of precultured expiants would stimulate 

regeneration or transformation, brushed leaf expiants were precultured for 8 days and 

then brushed again immediately prior to cocultivation. Renewed wounding had no effect 

on regeneration of cocultivated expiants (Table 4), but in the non-infected treatment 

Table 4. The mean number of shoots and blue spots per leaf expiant of 3 cultivars of chrysanthemum. 

cultivar 

Recital 
1610 
Calgary 

- Agrobacterium 

shoots 

brushing 
+ 

1.60a 1.75a 
1.15c 0.35ab 
5.00c 2.85b 

+ Agrobacterium 

shoots 

brushing 
+ 

2.05ab 2.85b 
0.15a 0.33ab 
2.35ab 1.75a 

blue spots 

brushing 
+ 

0.1 0.1 
25.1 50.9 
0.5 0.0 

Expiants were precultured for 8 days and then brushed (+) or not (-) prior to cocultivation with A. 
tumefaciens for 2 days. Values indicated by different letters (a, b or c) differ significantly. 
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Table 5, Mean number of shoots formed on leaf expiants of three chrysanthemum cultivars incubated 
on regeneration medium CHR 03 supplemented with silvernitrate in 4 concentrations. 

AgN03 (mg/1) 

Cultivar 

Recital 
1275 
T.Hermans 

- Agrobacterium 

0.0 

0.55 
0.45 
3.25 

0.0 

0.85 
0.45 
3.05 

+ Agrobacterium 

2.5 

0.20 
1.55 
2.70 

5.0 

0.15 
0.30 
1.85 

10.0 

0.50 
0.75 
2.50 

20.0 

0.80 
1.20 
2.40 

the regeneration of Calgary and line 1610 was significantly reduced by brushing. 

Additional brushing did increase the number of blue spots observed in the readily 

transformable line 1610, while in Recital and Calgary the transformation frequency was 

not higher after additional wounding of callusing expiants. 

Silvernitrate. 

As the inhibition of regeneration after cocultivation with Agrobacterium might be related 

to a response to stress, inhibitors of the stress response might have a positive effect on 

the regeneration. To test this, silvernitrate, which is an inhibitor of the ethylene 

response, was added to the regeneration medium, in concentrations ranging from 0 to 

20 mg/1. The number of shoots produced, was, however, not affected by addition of 

AgN03 in any of the concentrations used (Table 5). 

Discussion 

Leaf expiants taken from in vitro grown plantlets of chrysanthemum regenerate well 

along the cut surfaces. Additional wounding of the surface of the leaves by brushing 

significantly increased the number of regenerated shoots in some genotypes. However, 

if this regeneration procedure was used in an Agrobacterium-mediated transformation 
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protocol the number of adventitious shoots was markedly reduced. It was shown that 

additional wounding had an adverse effect on the regeneration of expiants, cocultivated 

with Agrobacterium tumefaciens. Therefore, brushing of leaf expiants should be omitted 

in transformation experiments. Extensive wounding lowered the transformation and 

regeneration frequency in potato as well (De Block, 1988). An explanation could be 

that extensive wounding leads to excessive colonization of leaf expiants by 

Agrobacterium tumefaciens, which may be detrimental to regeneration. Limiting the 

ports of entry to the leaf margins, by omitting brushing, may prevent entire colonization 

of the expiants during cocultivation. 

The stress imposed on the chrysanthemum expiants, by infection with Agrobacterium, 

seems not associated with ethylene action, as AgN03, which blocks ethylene action by 

binding to ethylene receptor sites, had no effect on regeneration. This is in contrast 

with the results of De Block et al. (1989) in Brassica, where addition of AgN03 

restores regeneration of shoots from hypocotyl expiants, under selective conditions. 

Histochemical analysis showed that most gene transfer sites are located along the cut 

margins with a minority in the center region. This is also true for brushed expiants, 

suggesting a factor that opposes gene transfer to cells in the center of the expiant. 

Transport processes, either direct or indirect, probably play a role, as blue spots are 

most frequently observed near the basal end of cut veins. Internal transport of growth 

regulators may stimulate cell divisions at this site, thus creating cells competent for 

transformation (Firoozabady and Galbraith, 1984) 

If wounding the whole surface of the leaf is a prerequisite for regeneration, an 

alternative to prevent inhibition of regeneration is delaying cocultivation for 4 to 8 days. 

Using this method shoot formation is initiated by wounding, but expiants are allowed 

to recover before infection with Agrobacterium tumefaciens. In this way, cocultivation 

is less detrimental to the regeneration capacity. Delayed infection has successfully been 

applied in Flax (McHughen et al., 1989) where a preculture period of 9 to 12 days 

yielded the highest number of transgenic plants. The flax expiants were stripped of 

their epidermis after preculture and immediately prior to infection, probably to solicit 

a wound response. In chrysanthemums renewed wounding after 8 days preculture is not 
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necessary to obtain gene transfer, but it may be required to direct the sites of gene 

transfer. GUS activity after preculture, without rewounding, was mainly observed in a 

thin layer of unorganized tissue covering the expiant. However, these callus cells do not 

participate in regeneration of shoots, which makes the production of transgenic shoots 

using preculture, without rewounding, highly improbable. 

Our effort to regenerate transformed shoots has not been successful, despite numerous 

attempts with and without wounding of the leaf expiants and with and without delayed 

infection. The failure to obtain transgenic shoots does not seem to be due to wrong 

targeting of transformation. Blue spots are observed throughout the tissue along the cut 

surface, which is the area where shoots originate from. 

Recently, successful transformation of chrysanthemum was reported from stem and leaf 

expiants. The reason for success with stem tissue (Lemieux et al., 1990) could be the 

difference in regeneration associated with explant type. Regeneration from stem 

expiants is indirect, via a callus phase, while on leaf tissue shoots emerge directly from 

the expiant, without an intermediate callus. Regeneration of single transformed cells 

may be facilitated by the presence of a larger body of transformed tissue. 

Transformation using leaf expiants (Ledger et a l , 1991) was succesful with one 

Dendranthema indicum genotype, that regenerated proliferously, while regeneration in 

six D. morifolium genotypes, that were tested in the same study, was poor. Our results 

indicate that many of the present day chrysanthemum cultivars show inefficient 

regeneration. As regeneration capacity is of crucial importance for succesful 

transformation, regeneration procedures need to be further improved, taking into 

account the effects of bacterial infection and antibiotics on shoot production. Our 

finding, that deleterious effects on regeneration of cocultivation with Agrobacterium can 

be prevented by limiting wounding of the expiant or delaying infection, might enlarge 

the range of transformable chrysanthemum genotypes. 
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Summary 

A 3' truncated crystal protein gene, çryLA(b), derived from Bacillus thuringiensis (Bt) 

subspecies aizawai 7.21 was constructed. The Bt gene was inserted into a binary 

plasmid also carrying the neomycin phosphotransferase II (NPT II) gene and the ß-

glucuronidase (GUS) reporter gene, and introduced in the oncogenic Agrobacterium 

tumefaciens strain A281, harbouring the Ti-plasmid pTiB0542. This strain was used to 

transform leaf expiants of chrysanthemum (Dendranthema grandiflora) cultivar 

'Parliament'. The resulting tumours were kanamycin resistant, exhibited ß-glucuronidase 

activity and produced agropine and mannopine. In most tumours all simultaneously 

transferred genes were expressed, due to selection for the presence of both T-DNA's, 

but no correlation was found between the level of expression of the various genes. The 

presence of the truncated crylA(b) gene, as well as the GUS and NPT II gene, in the 

plant DNA was confirmed by using the polymerase chain reaction (PCR). Expression 

of the NPT II gene and the truncated çrylA(b) gene was confirmed using a coupled 

reverse transcription and PCR assay (RT-PCR). A bioassay was developed in which 

larvae were fed with tumourous chrysanthemum tissue, to detect the effect of the 

transferred toxin gene on larval development. Using this bioassay with 2nd instar larvae 

of Heliothis virescens (tobacco bud worm) seventeen tumour lines were tested. Several 

of these lines proved to be strongly inhibitory to larval growth, whereas tumours 

without the 3'-truncated çrylA(b) gene were not. 

Introduction 

The cutflower chrysanthemum {Dendranthema grandiflora) is the second most important 

ornamental crop in the Netherlands. Chrysanthemum culture suffers from a wide variety 

of pest insects (Hill, 1987). Plants that show even minor visible insect damage are not 

allowed at the auctions, the so-called zero-tolerance. Therefore culture of 

chrysanthemum requires the preventive use of insecticides. As chemical insecticides are 
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environmentally polluting, their use has to be diminished. The aim of our research is 

to develop an alternative for the use of chemical insecticides in chrysanthemum culture. 

Breeding for resistance in ornamentals has, until recently, been given a low priority 

compared to breeding for traits such as flower color and morphology (Dons et al., 

1991). Moreover, the high ploidy level of D. grandiflora (hexaploid) hampers 

conventional cross breeding for resistance. Molecular resistance breeding, that has 

already proved to be successful in vegetable crops, might be a good alternative. This 

technique allows the introduction of resistance genes originating from outside the plant 

kingdom, like the crystal protein genes from Bacillus thuringiensis (Bt), encoding 

proteins with insecticidal activity. Several research groups have already successfully 

generated insect resistant plants by the introduction of Bt toxin genes. Vaeck et al. 

(1987) were the first to transfer a Bt gene to tobacco and Fischhoff et al. (1988) 

succeeded in the transformation of tomato with the same gene. Complete resistance 

against pest insects was found in some of these transgenic plants, but it also became 

clear that the Bt-genes are generally poorly expressed in plant cells. This can partly be 

ascribed to the occurrence of putative poly-adenylation signals and to preferential 

codon use, which is different for plants and bacteria (Perlak et al., 1991). To reach our 

goal, the development of an alternative for the use of chemical insecticides in 

chrysanthemum culture, a high resistance to pest insects is required. Therefore, in view 

of the expression difficulties described above, it is of great importance to investigate 

the expression and biological activity of Bt genes in chrysanthemum tissue. 

The group of the lepidopteran specific crystal protein genes of Bacillus thuringiensis 

(Cryl) encompasses all genes that have thusfar been used in plant transformation, 

including the gene described in this paper. These genes all code for a protoxin, with 

a molecular mass of 130,000 - 140,000 Da., that is processed by proteases in the larval 

midgut, resulting in the release of a toxic fragment of MR. 60,000. The now active toxin 

binds to receptors on the midgut epithelial cells and thereby disturbs the ion 

permeability of the cell membrane. This results in cell swelling and eventually cell lysis, 

causing larval death, (for a review see Höfte and Whitely (1989)). The toxic fragment 

is localized on the N-terminal half of the crystal protein. Deletion studies of several 
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crystal protein genes confirmed that the C-terminal half is not required for toxicity of 

the protein (Adang et al., 1985; Höfte et al., 1988). In this study a 3'-truncated toxin 

gene, encoding a protein of MR 70,000 is used. The truncated gene encompasses the 

toxic fragment of crylA(b). which is highly toxic against larvae of Heliothis virescens. 

Transformation of chrysanthemum was carried out using the supervirulent A. 

tumefaciens strain A281. This tumour forming strain was used, because yet no well-

established methods are available for the production of transgenic plants. The strain 

A281 has been proven to be able to transform the chrysanthemum cultivar 'Parliament' 

(Chapter 2: Van Wordragen et al., 1991; Chapter 4). In view of our primary research 

goal, to investigate if Bt-expression in chrysanthemum can be sufficiently high to induce 

insect resistance, the use of this strain has additional advantages. The induced tumours 

grow very rapid, thus permitting fast and easy screening of, if necessary, large numbers 

of transformants. The results can subsequently be used to design transformation 

experiments using disarmed strains. 

Material and methods 

Vector construction: DNA restriction, isolation of plasmid DNA's, ligation and other DNA manipulations 
were performed according to Sambrook et al. (1989). The plasmid pPCV708 was kindly provided by C. 
Koncz (Max Planck Inst., Köln) 

Bacterial strains: Transformation was performed using the oncogenic A. tumefaciens strain A281. This 
strain carries the Ti-plasmid pTiB0542 in a C58 chromosomal background (Hood et al., 1986). Binary 
Plasmids were introduced by conjugation according to the protocol described by Rogers et al. (1988). 
All strains were cultured at 28 °C, on Luria Broth (10 g/1 trypton, 5 g/1 yeast extract, 5 g/1 NaCl, 1 g/I 
glucose, pH 7.0) with rifampicine (50 mg/1). After introduction of a binary plasmid, carbenicillin (50 
mg/1) was used as a selective antibiotic. 

Plant material: Sterile cuttings of the chrysanthemum cultivar 'Parliament' were grown on Murashige and 
Skoog (MS) medium (1962) containing 3 % sucrose and 0.5 /JM IAA, pH 5.8, solidified with 0.8 % 
Purified Oxoid agar. Four weeks old plantlets were used in transformation experiments. 

Transformation protocol: The leaf disk transformation of chrysanthemum cv. 'Parliament' was carried out 
as described before (Chapter 2: Van Wordragen et al., 1991). Kanamycin resistant tumour tissue was 
taken from the expiants 6 weeks after infection and placed on hormone free MS medium. Tumours were 
subcultured every four weeks. After two subculture steps the tissue was assayed for the presence of 
bacteria by grounding a part of it in liquid LB medium and incubating the homogenate on LB culture 
plates at 28 °C for one week. If the tumours were free of bacteria, samples of the tissue were used to 
determine NPT II, GUS and opine synthetase activities. 

Determination of opines: Agropine/ mannopine assays were performed using paper chromatography as 
described by Petit et al. (1983). 
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Determination of GUS-activity: ß-Glucuronidase activity of transformed cells was determined using the 
fluorimetrical assay, as described by Jefferson (1987). Protein amounts in extracts were determined by 
using the kit from Biorad Laboratories based on the Bradford method (1976). 

Determination of NPT-ll activity: A dot blot assay was used, based on the protocols described by Piatt 
and Yang (1987) and by McDonnel et al. (1987). Callus tissue, 100-200 mg, was extracted in 100 ^1 
buffer (62.5 mM Tris.HCl (pH 6.8), 10 % glycerol, 0.1 % SDS, 5 % ß-mercaptoethanol). Of the 
supernatant 40 /ul was added to 110 /xl assay buffer (67 mM Tris-maleate (pH 7.1), 42 mM MgC12, 400 
mM NH4Cl2, 100 /ig/ml kanamycin) and 20 /xl T-32P-ATP (1 mCi/ml, 2000 Ci/mmol). The mixture was 
incubated for 2.5 h. at room temperature and then applied to the wells of a vacuum dot blot device, 
loaded with a sheet of nitrocellulose covering a sheet of phosphocellulose (P81). The slots were rinsed 
three times with sterile water, whereupon the membranes were removed and washed for several hours 
in sterile water at 60 °C. NPT II activity, bound to phosphocellulose and aspecific kinase activity, bound 
to nitrocellulose was determined by autoradiography and by measuring the amount of label per spot in 
a liquid scintillation analyzer. 

DNA-anafysis: DNA was isolated from tumour tissue following a procedure that has been described 
previously (Chapter 2: Van Wordragen et al., 1991). The presence of the transferred GUS, NPT II and 
toxin genes was demonstrated by using the polymerase chain reaction (PCR) technique, developed by 
Mullis et al.(1986). The Amplitaq polymerase from Perkin Elmer Cetus was used. The protocol used 
for all genes was 30 cycles of: 1 minute melting at 92 °C, 1 minute annealing at 63 °C and 2 minutes 
elongation at 72 °C The primers were for the GUS gene: 5'-CTG TAG AAA CCC CAA CCC GTG-
3' and 5'-CAT TAC GCT GCG ATG GAT CCC-3' resulting in a amplified fragment of 514 bp; for the 
Bt toxin gene: 5'-GTG GGA AGC AGA TCC TAC TAA TCC-3' and 5'-CCA TCA AAT GTG GAC 
TCC TAA TAC-3' resulting in an amplified fragment of 544 bp; for the NPT II gene: 5'-CAA GAT 
GGA TTG CAC GCA GGT TC-3' and 5'-TCC AGA TCA TCC TGA TCG ACA AG-3' resulting in 
an amplified fragment of 465 bp. 

RNA-anafysis: Total RNA was isolated by grinding 3 gr. callus tissue in liquid nitrogen and suspending 
the ground tissue in 2.5 ml. of extraction buffer (0.1 M Tris.HCL, pH 8.5, 0.1 M NaCl, 0.02 M EDTA 
and 1% Sarkosyl). The suspension was extracted twice with phenol/chloroform/iso-amylalcohol (24:24:1) 
and the RNA was isolated by subsequent precipitations with 0.8 vol. isopropanol, 4 M LiCl and 2 vols, 
ethanol. To remove traces of DNA the resolved RNA was treated with DNAse. An amount of 2 ng of 
this RNA was used as a template in a coupled reversed transcription-PCR assay, which has been 
described before (Sambrook et al. 1989). The same toxin gene primers were used as in the DNA analysis 
described above. The downstream primer was added in the reverse transcription reaction, both primers 
were added just before PCR. To exclude amplification of contaminating DNA, control reactions were 
performed, consisting of RNAse Tl treated samples. 

Bioassay: Eggs from Heliothis virescens were presterilized by incubating them for four hours in 4% 
formaldehyde vapour two days before hatching. Larvae were fed for two days with synthetic medium 
consisting of 160 g/1 Polenta maize flour, 80 g/1 wheat germ, 80 g/1 yeast extract, 8 g/1 ascorbic acid, 2 
g/1 sorbic acid, 1 g/1 p-OH benzoic acid, 0.1 g/1 streptomycin and 30 g/1 agar. Larvae were transferred 
to a well of a 24-wells plate, each well containing a piece of callus of approximately 0.5 cm3 placed on 
1 ml wateragar (15 g/1 agar, 2 g/1 sorbic acid) to prevent desiccation. For every independent transformant 
16 larvae were used. As a control, larvae were placed on water agar without callus. After five days larvae 
were weighed and the mean weight per transformant was determined. 

Statistical analysis: The variability in larval weight was not constant but increased as the mean weight 
increased. To achieve a better fit in the statistical model and a constant variance, natural logarithm 
transformation was applied on the figures. Thereupon regression analysis was performed. 
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Results 

Construction of the vectors pCPOl-Gs and pCPOl-GsT. 

The vector pCPOl is a derivative of pPCV708 (Koncz et al., 1990), in which the 

CaMV 35S promoter and pAG7 terminator sequences are replaced by the CaMV 35S 

promoter and CaMV 35S terminator sequences of pRT103 (Töpfer et al., 1987). The 

vector pCPOl carries four eukaryotic expression cassettes, one of which is occupied by 

the NPT II gene (Fig. 1). In the unique Bglll site of the vector a 1.9 kb BamHl-Bglll 

fragment was cloned, containing the ß-glucuronidase coding region. This fragment was 

obtained from the donor vector pBI101.2 (Jefferson et al., 1987) in which a Bglll site 

was created by linker insertion in the unique SacI site, located at the 3' end of the ß-

glucuronidase coding region. In the resulting vector pCPOl-Gs, transcription of the ß-

glucuronidase gene is under the control of the 35S promoter. The çrylA(b) gene was 

isolated from Bacillus thuringiensis subsp. aizawai 7.21 and truncated from the 3' end 

y GUS (1.9 kb) Bf"HI 

pCP01-GsT 

Termination signal 

Coding sequence 

[;•;•;•;•;•;-;•;>> Promoter, arrow indicates 
direction of transcription 

Figure 1. 
Schematic representation of the plasmid vector pCPOl and the construction of vectors pCPOl-Gs and 
pCPOl-GsT. Between the the right border (RB) and left border (LB) direct repeats four eukaryotic 
expression cassettes, consisting of promoter (P) and terminator (T) signals, are located. The Neomycin 
Phosphotransferase gene (NPT II) is driven by the nopaline synthase promoter (nos), while the ß-
Glucuronidase (GUS) and truncated çrylA(b) gene are controlled by the CaMV35S and TR2' promoter 
respectively. 

79 



Table 1. Expression of reporter genes in kanamycin resistant tumours of Chrysanthemum. 

nr. transformant 

1011 
1012 
1015 
1022 
1025 
1031 
1111 
1121 
1161 
1171 
1181 
1191 
1202 
1203 
2231 
2232 
2233 

1061 
1063 
1102 

control 

GUS 
pMoI MU/min//jg 

1.25 
0.22 
0.24 
3.66 
1.75 
2.61 
0.14 
2.45 
0.15 
0.95 
0.11 
0.12 
0.44 
0.41 
2.69 
2.32 
0.68 

0.82 
3.23 
2.23 

0.25 

NPTII 
cpm/pg 

11 
114 
27 
13 
55 
70 

280 
152 
133 
62 

166 
62 
55 
19 
10 
12 
33 

29 
73 
73 

2 

mas 

+ 
-
-
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
-
+ 
+ 
+ 
+ 

+ 
+ 
+ 

-

ags 

. 
-
-
+ 
+ 
+ 
-
+ 
-
+ 
+ 
+ 
-
+ 
+ 
-
-

+ 
-
+ 

-

The figures represent the mean of two separate assays, and represent the specific activity. 
Bold printed lines are data from non-Bt tumours, induced by A281(pCP01-Gs).Agropine/mannopine 
assays were performed only once. In the control experiment, the assay was performed on an 
extract of non-transformed 'Parliament' tissue. Abbreviations: GUS = ß-Glucuronidase activity, 
NPT II = neomycine phosphotransferase II activity, mas = mannopine synthetase activity, 
ags = agropine synthetase activity. 

as described previously (Honée et al., 1990). This fragment encodes a protein with a 

calculated molecular weight of 72,185 Da, that exhibits full toxicity. The vector pCPOl-

GsT was constructed by inserting a 2.0 kb BamHl-BglH fragment, containing the 3' 

truncated crylA(b) gene, in the unique BamHl site of pCPOl-Gs. The truncated 

crylA(b) gene is thereby placed under the control of the TR 2' promoter. Both vectors 

were introduced into the oncogenic strain A281, by triparental mating. 

Transformation of cv. 'Parliament'. 

Leaf expiants of D.grandiflora cv. 'Parliament' were infected with the strains 

A281(pCP01-Gs) and A281(pCP01-GsT). Of the expiants 27 % developed kanamycin 
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resistant, hormone autotrophic callus. From the induced kanamycin resistant tumours 

20 rapidly growing calli were subcultured. The calli all originated from different leaf 

expiants, to ensure their independent establishment. Three of them (nrs. 1061, 1063 and 

1102) originated from infection with A281(pCP01-Gs) and were ment to be used as 

a control in the bioassays, the other 17 were induced after A281(pCP01-GsT) infection. 

As expected, infection with the control A. tumefaciens strain A281, only harbouring the 

Ti-plasmid, did not result in the induction of kanamycin resistant tumours. 

After two subcultures tumours were no longer infected with bacteria, which allowed the 

determination of the expression of the transferred agropine/mannopine synthetase, 

located on the Ti-plasmid and the reporter genes NPT II and GUS, located on the 

binary plasmid. As selection for the presence of both T-DNA's was applied during the 

procedure, it was not surprising that expression of all reporter genes was found in the 

majority of the tumours (Table 1). Although all tumours grew phytohormone 

autotrophic, indicating the transfer of the T-DNA of the Ti-plasmid, mannopine and 

agropine were not always present. In 5 tumours only mannopine, which is a precursor 

bp 

500-

500-

- , — CS <V • , 

i i i i i i i i i i i i i i i i iy / 

500-

NPTII 

TOX 

GUS 

Figure 2. 
PCR analysis of 20 chrysanthemum tumours. Lanes 2-18 contain DNA derived from the tumours induced 
by A281(pCP01-GsT). The last three lanes contain DNA from the control tumours induced by strain 
A281(pCP01-Gs). The three panels show the result with the primers for the NPTII gene, the crylA(b) 
gene (TOX) and the GUS gene respectively. 
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of agropine, was detected. In all cases T-DNA of the binary plasmid was also 

transferred, since all tumours expressed the NPT II gene. In 14 tumours ß-

glucuronidase activity was detected as well. The figures in table 1 show a large variation 

in the activity measured for both enzymes, also there is no correlation between the 

levels of expression of GUS and NPT II. 

DNA analysis. 

To confirm the presence of the transferred genes from the binary T-DNA in the 

chrysanthemum genome, DNA analysis was performed using PCR. DNA derived from 

all twenty tumour lines was tested, using the three primer pairs for the NPT II, GUS 

and crylA(b) genes respectively. If all three primer pairs yielded a fragment of the 

proper size it was assumed that at least one full length T-DNA copy was present. This 

analysis revealed that 13 out of the 17 A281(pCP01-GsT) induced tumours, and all 

three A281(pCP01-Gs) induced tumours contained at least one complete copy of the 

binary T-DNA (Fig. 2). The tumour lines 1111, 1161 and 1191, did not contain the 

H p r i n e r s HPT11 pr imers 

bp 

1030 , 

700 
511 
165 
310 

Figure 3. 
RNA analysis of five callus lines, by RT-PCR. The five callus lines were assayed for the presence of 
çrylA(b) (Bt-primers) and NPT II (NPT II primers) RNA. Controls were: addition of RNAse before 
reverse transcription (CI), addition of RNAse after reverse transcription (CI) and omission of reverse 
transcriptase (C3). 
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Figure 4. 
A) Bioassay. Part of a 24-wells plate 

after 5 days incubation at 28 °C 
with larvae of H.virescens. Each 
well contains a different tumour 
line. 

B) Largest difference between a 
normally grown larva (upper), fed 
with control tumour tissue and 
a larva fed with crvIA(b) 
containingtumour tissue, after 5 
days incubation at 28 °C. 

GUS gene nor the toxin gene. Line 1015 did contain the toxin gene, but lacked the 

GUS gene. RNA analysis revealed the presence of transcription products of the NPTII 

gene in all tumour lines tested. Expression of the crylA(b) gene was shown in callus 

lines 1011, 1203 and 2233, but was absent in line 1191 and the control line 1063, that 

do not contain the Bt gene gene (Fig. 3). Two other lines, in which the crylA(b) gene 

was detected at DNA level, showed no expression of the BT-gene in the RT-PCR 

assay (data not shown). Expression of the NPT II gene was observed in all tested lines. 

Bioassays 

The transferred çrylA(b) gene codes for a protein that is highly toxic against larvae of 

Heliothis virescens (tobacco bud worm) which therefore was used as a test insect. 

Though H. virescens can easily be cultured on artificial food and leaves we first had to 

test if the insect showed normal growth on a diet of callus tissue. Therefore, 2nd instar 

larvae were placed on leaves and on A281 induced tumours of chrysanthemum cv. 

'Parliament'. After 5 days there was no difference in the mean weights of the two 

groups of larvae and on both diets normal growth properties were observed. 

Thereupon, the twenty Km-resistant calli, described above, were used in two separate 

bioassays to test the biological activity of the Bt toxin. After the five days incubation 

period the effect of the toxin gene was clearly distinguishable. The amount of callus left 

in the wells varied reciprocally with the size of the larvae (Fig. 4A). All surviving larvae 
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of the sixteen that were fed with one tumour line were weighed and their mean weight 

was determined. Mortality was, in this case, not a good measure for toxicity, because 

even in the control experiment with larvae that had not been fed at all during the 

period of 5 days, not all larvae had died. 

From figure 5, which represents the mean weight of the surviving larvae in each of two 

bioassays, it is clear that the two assays match very well. There was a substantial 

variation in the weight of the larvae, which had been fed with the same transformed 

tissue (Fig. 6), but this did not interfere with the statistical analysis. Ten out of the 

seventeen A281(pCP01-GsT) induced transformants, caused a significant growth 

inhibition on H. virescens larvae (p < 0.001), compared to larvae fed on the three 

tumours induced by A281(pCP01-Gs). Moreover, the larvae that had been fed with Bt-

tumours differed as a group significantly from the control group. Growth inhibition 

induced by toxic calli, varied between 35% and 100% and two tumour lines (1171 in 

both assays and 1011 in assay B) inhibited the development of the larvae completely. 

Extreme differences in size of larvae fed with control callus (1061, 1063, 1102) and 

larvae fed with the most toxic callus lines were found. Normally developed larvae could 

reach a length of 18 mm and a weight of 16.0 mg, whereas larvae fed with e.g. 

tumourline 1171 could measure only 2 mm and weigh 0.2 mg (Fig. 4B). The three 

callus lines, in which the toxin gene could not be detected by PCR (1111, 1161 and 

1191), were not toxic in the bioassay. 

Comparing the results of the growth inhibition, representing the expression of the toxin 

gene (Fig. 5) with the expression of the GUS gene and the NPT II gene (Table 2) 

clearly shows, that there is no correlation between the expression of the three genes, 

located on the same T-DNA. 

Discussion 

We have reported here the successful introduction and expression of a Bacillus 

thuringiensis derived crystal protein gene in chrysanthemum tissue. The introduction of 
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Mean weight (mg) 

assay A H assay B 

i l 

1011 10121015.1022 1025 1031 1111 11211161 11X1 11811191 1202 1203 2131 2232 2233 1061 11021063 

A281 (pCP01 -GsT) transformants Control 

Figure 5. 
Mean larval weight from two separate bioassays (A and B) after 5 days feeding on 20 independent 
chrysanthemum tumour lines. Each bar represents the mean weight of the surviving individuals out of 
a group of 16 larvae, fed with the same tumour line. Seventeen tumour lines were derived from 
transformation with A281(pCP01-GsT), harbouring the çryJA(b) gene. Tumour lines 1061, 1063 and 
1102 are controls, induced by A281(pCP01-Gs), which lacks the çjrylA(b) gene. Underlined numbers are 
significantly different from the controls, (p < 0.001). 

Larval weight (mg) 

12 

10 

nL_mii 
1015 1011 1171 2231 

A281 (pCP01-GsT) transformants 
1061 1102 

Control 

Figure 6. 
Variation in weight among individual larvae fed on tissue from the same tumour line. The results shown 
are from larvae fed on four different tumour lines containing cry_IA(b) and two control tissues, 
respectively. Larval weights are derived from bioassay A (Fig. 5). Only surviving larvae were taken into 
account. 
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Bt toxin genes is one of the most effective applications of molecular biology in 

resistance breeding. High levels of insect resistance have been reached in such diverse 

species as tobacco (Vaeck et al., 1987), tomato (Fischhoff et al., 1987) and Populus 

(McCown et al., 1991). However, expression of Bt genes in plants is often difficult and 

requires the screening of large numbers of transgenic plants. Alternatively the Bt gene 

can be altered to meet the plants preferential codon usage and to remove putative 

poly-adenylation signals (Perlak et al., 1991). Recently, this was done for cotton, 

resulting in enhanced numbers of transgenic plants exhibiting high insect resistance 

(Perlak et al., 1990). 

In view of the above, the results described here, showing that in chrysanthemum a high 

level of insect resistance can be achieved in a large percentage of the transformants, 

using a truncated, but otherwise unmodified, crylA(b) gene, are remarkable. Out of no 

more then 17 independent transformants, 10 were significantly toxic against H. virescens 

larvae. The tissue samples of the most toxic tumour lines show no visible signs of 

feeding after 5 days, and the larvae concerned show the same growth characteristics as 

larvae that have been starved. Therefore, the conclusion seems to be justified, that in 

chrysanthemum not only inhibition of larval growth is accomplished, but also cessation 

of feeding. 

These results were obtained in tumourous tissue, in which the TR-2' promoter drives 

the Bt-gene. This is a wound inducible promoter that has been reported to cause 

constitutive expression at a high level of the coupled gene in callus (Harpster et al., 

1988). Several reports have shown the stimulatory effect of auxin on the TR-2' 

promoter (Teeri et al., 1989; Saito et al., 1991). Since the oncogenic A. tumefaciens 

strain A281 was used as transformation vector, the iaa genes of the Ti-plasmid, coding 

for auxin biosynthesis enzymes, were transferred together with the TR-2'-cryIA(b) 

construct. Expression of the iaa genes will thus enhance the expression of the toxin 

gene and this probably generates the high percentage of toxic tumour lines found. In 

contrast to the assumed high expression it was not always possible to detect 

transcription products of the toxin gene. The same phenomenon was reported 

previously by Vaeck et al. (1987) for fully insect resistant tobacco, and is probably due 

to instability of mRNA. Furthermore, very low amounts of mRNA (0.0001 % of total 
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mRNA) are reported to be sufficient for complete protection of the plant (Vaeck et 

al., 1987). 

Another factor explaining the lack of crylA(b) transcription products in previously toxic 

calli, might be the fact that tumour lines were subcultured several times between 

bioassays and RNA analysis. Selection for NPTII expression was applied, but selection 

for crylA(b) expression is not possible. Therefore, in some lines gene expression could 

have been changed or the gene could have been lost during subculture. 

The introduction and proper expression of the oncogenes could be deduced from the 

vigorous hormone autotrophic growth of the calli. Besides this, the expression of five, 

simultaneously introduced genes in chrysanthemum was analysed; GUS, NPT II, 

crylA(b). ags and mas. There was no correlation at all between the expression levels 

of the genes, not even between genes, originating from the same T-DNA. All tumours 

possessed and expressed the NPT II gene, and presumably the oncogenes, because 

these genes were selected for. Most tumours contained at least one full copy of the 

binary T-DNA. Incomplete copy's, that were found in some tumours, always lacked 

genes located on the left site of the T-DNA, due to the fact that the selection marker, 

the NPT II gene was situated closest to the right border. Moreover T-strand transfer 

is assumed to proceed from the right border to the left border (Zambryski, 1988), so 

incomplete copies are most likely to lack lefthand sequences. 

In conclusion, we have demonstrated that it is possible to direct the proper expression 

of foreign genes in chrysanthemum tissue by 5 different promoters. The results 

presented here show that it is possible to obtain a high level of insect resistance in 

chrysanthemum after introduction of crystal protein genes from Bacillus thuringiensis. 

Though this result was obtained in tumours, where the enhanced level of auxin 

stimulated the expression of the chimeric TR-2'-cryIA(b) gene, it is encouraging for the 

possibility of future application of Bt-toxin genes in chrysanthemum to reduce the use 

of insecticides. 
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Introduction 

The rapid progress in the field of plant molecular biology has enabled the development 

of several techniques for precise and controlled addition of genes to the genome of a 

plant cell. Regeneration of such genetically modified cells results in transgenic plants 

with new traits and the application of these procedures for crop improvement is a 

major step forward in plant breeding. An obvious advantage of genetic modification 

compared to conventional breeding is the reduced need for back crossings, since the 

plant genome is only limitedly changed. Even more important is the possibility of 

bypassing the crossing barriers, which permits the use of genes from outside the plant 

species or even the plant kingdom. Furthermore the identity of the introduced gene is 

precisely known, though the integration into the genome can occur at many different 

sites, nearly randomly. These advantages enable interference with the plants 

biochemical processes in a well-considered way. Biochemical pathways can be altered 

or extended, as has been demonstrated for pathways affecting flower color (Van der 

Krol et al. 1988), male fertility (Mariani et al. 1990), fruit ripening (Smith et al. 1990) 

or nutritional value (Yang et al. 1989). It is possible to introduce completely new 

features into plants, like resistance to insects or viruses, as long as they are monogenic 

or oligogenic. Chemical processes as well as gene expression and regulation can be 

studied in detail by introducing minor modifications. However, an important limitation 

of gene transfer to plants is that virtually all genetic modification techniques are only 

routinely applicable on a few model plant species and can not yet be used for major 

horticultural and agricultural crops. This is a significant drawback for the application 

of these techniques in plant breeding. 

Techniques that have been developed to mediate gene transfer to plants are extensively 

reviewed by Potrykus (1990). From the large number of innovative and inventive 

strategies that have been developed, there are only a few methods which are used 

successfully in a number of plant species. These are: direct gene transfer, in which 

naked DNA is introduced into protoplasts via PEG or electroporation; micro injection, 

in which naked DNA is inserted mechanically into protoplasts or intact cells; biolistics, 
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in which DNA is introduced into intact cells or plant tissue through bombardment with 

DNA coated particles and Agrobacterium-mediated gene transfer, in which the DNA 

is transferred to plant cells using the natural gene transfer capacity of the soil 

bacterium Agrobacterium. 

A prerequisite for the production of transformed plants is the availability of a method 

to regenerate a complete plant from the altered cell. This holds for virtually all genetic 

manipulation systems. Especially in monocots this is a severe problem because here 

regeneration from protoplasts or tissue expiants is extremely difficult. In many dicots 

complete and healthy plants can be regenerated from various types of tissue, including 

protoplasts, either with or without a callus phase. However, there is increasing support 

To plant cell 
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v////////my/////////////////////////////zz^ W//////ZÄ 
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Figure 1. 
Agrobacterium gene transfer mechanism. Signal molecules excreted by the plant cell are recognized by 
the bacterium and trigger expression of vir-genes. Vir-products accomplish synthesis of a single stranded 
T-DNA copy. The T-strand, covered by protective virE proteins, is transported to the plant cell, through 
a channel in the bacterial cell wall. 

94 



for the hypothesis that not all cells are omnipotent, but that a few cells or cell types 

in each tissue have the capacity to regenerate into a adventitious shoot. This results in 

an additional problem in plant transformation as gene transfer has to be directed to 

those cells that have regeneration capacity, which is, in view of the random nature of 

most gene transfer techniques, not very easy. 

In this paper the state of the art in Agrobacterium-mediated transformation of non-

model plant species will be reviewed, focusing on literature published during the years 

1987-1991 (for an earlier review see Klee et al., 1987). Only reports published in the 

generally known, english written scientific journals, are reviewed. To enhance the 

reliability of the tables, the so-called 'grey' literature (proceedings from congresses and 

poster abstracts) and unpublished claims from industry are not taken into account. 

Also, model species e.g. Nicotiana tabacum and Petunia hybrida, for which routine 

transformation protocols have been established, are not taken into consideration. Other 

species of the Solanaceae, that are not commonly used as model systems, will be 

discussed, because they include some important crops. The review will concentrate on 

transformation by A.tumefaciens. The state of the art in transformation using 

A.rhizogenes has recently been reviewed by Tepfer (1990) and will be described only 

occasionally. Finally an attempt will be made to identify, out of the gathered 

experiences with a diversity of crops, some general rules for the development of a 

transformation protocol. 

Agrobacterium gene transfer mechanism 

Agrobacterium is a plant pathogenic soil bacterium that infects wounded plant cells, 

which leads to the induction of tumorous growth on the infected spot. There are two 

tumorigenic species of Agrobacterium; A.tumefaciens, that induces crown galls and 

A.rhizogenes, that induces the hairy root disease, an uncontrolled proliferation of highly 

branched roots with many root hairs (Gelvin, 1990). The transformation into tumour 

cells is accomplished by the transfer of a piece of DNA, the T-DNA, from the 
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bacterium to the plant cell. The T-DNA contains genes for phytohormone biosynthetic 

pathways or genes that enhance the sensitivity of the plant to phytohormones. 

Furthermore some T-DNA genes code for enzymes that are involved in the synthesis 

of certain amino acid derivatives, called opines, that are used by the bacteria as carbon 

and nitrogen source. Various strains direct the synthesis of different opines such as 

octopine, nopaline, mannopine, agropine, cucumopine and succinamopine. This has led 

to a classification of Agrobacterium strains based on opine type. The transferred T-

DNA becomes integrated in the plant genome and is expressed by the plant 

transcription and translation apparatus, leading to a disturbance of the internal 

hormone balance, which results in uncontrolled growth of transformed, opine producing 

cells. Both Agrobacterium species carry a large plasmid, named tumour inducing (Ti) 

or root inducing (Ri) plasmid respectively, on which the T-DNA and the genes involved 

in gene transfer and virulence, the wV-region, are located (Zambryski et al., 1989). 

Some virulence functions, especially the attachment of the bacterium to the plant cell, 

are provided by v/r-genes on the chromosome, the chv genes. The plasmid vir region 

includes at least 6 loci, named vir A, virB, virC, virD, virE and virG, each consisting of 

1 to 11 open reading frames. Some Agrobacterium strains have an additional virF locus 

and most nopaline strains possess a transzeatine synthetase (tzs) gene that is located 

near the vir region. The function of several vir genes is known (for an extensive review 

see Zambryski et al. 1989; Howard and Citovsky, 1990), which enabled the formulation 

of a model for the gene transfer mechanism of Agrobacterium (Fig.l). 

VirA products are membrane receptor proteins which can detect aromatic signal 

molecules, such as acetosyringone, excreted by wounded plant tissue. The occupied virA 

receptor, activates via phosphorylation, the product of the constitutively expressed virG. 

Activated VirG proteins bind to the promoters of all vir genes resulting in transcription 

and translation. VirC proteins bind to an overdrive sequence upstream of the right T-

DNA border. VirD provides the endonuclease/polymerase functions, enhanced by virC, 

that are necessary to make single strands nicks at the border sequences and to 

synthesize a single stranded T-DNA copy. VirE proteins, which have ss-DNA binding 

capacity, cover the naked T-DNA strand and the complex is transported through a 

membrane channel, composed of the products of 11 different virB products. The route 
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of the T-DNA through the plant cell wall, cell membrane and nuclear envelope to the 

final integration in the plant nuclear DNA remains a black box. There is some evidence 

that wVE and sequences just inside the borders are involved in integration (Howard and 

Citovsky, 1990; Matsumoto et al., 1990), but literature on this subject is not very 

consistent. 

Application 

Modification of the Ti-plasmid 

The genes of the vir region are sufficient to transfer any piece of DNA that is located 

on any plasmid in the bacterium if flanked by border sequences. This led to one of the 

major steps in plant genetic manipulation, the development of a binary gene transfer 

system, in which the T-DNA is separated from the vir region and located on a small 

plasmid, that can also be propagated in E.coli. These small T-DNA plasmids are easy 
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border (LB) and right border 
(RB) sequences, a selective 
marker gene, neomycin 
phosphotransferase II (NPT II) 
and ß-Glucuronidase (GUS), 
a reporter gene. Both genes 
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to manipulate and the oncogenes can be replaced by interesting genes. The plasmid can 

be reintroduced in an Agrobacterium strain harbouring a disarmed (T-DNA deprived) 

v/r-plasmid, where it can stay separate from the v/r-plasmid (binary system) or integrate 

in the v/r-plasmid via homologous recombination (cointegrate system) (Hooykaas, 1989). 

Both plasmid types have proven to be versatile tools in transformation and are 

commonly used, though a preference for binary vectors is noticeable (Table 2). A T-

DNA plasmid harbours, between the border repeats, a selection gene and the gene to 

be studied (often a reporter gene) flanked by eukaryotic expression signals (Fig.2). The 

selection gene usually codes for an enzyme that confers resistance to antibiotics, such 

as kanamycin and hygromycin, that are lethal to untransformed plant cells. Only cells 

expressing the transferred gene survive the selection and can be regenerated into 

mature plants. Reporter genes facilitate visual detection of the expression of the 

transferred gene either in situ or in plant extracts. The ß-glucuronidase gene, derived 

from E.coli, is one of the most widely used reporter genes (Jefferson et al., 1987). The 

enzyme, which is not present endogenously in most plant species can easily and 

sensitively be detected either in situ, as a blue precipitate or in extracts by quantitative 

fluorimetric or colorimetric assays. Transfer of T-DNA to plant cells first gives rise to 

transient expression of the introduced genes. At a much lower frequency genes become 

stably integrated in the plant genome and regeneration of such transformed cells leads 

to transgenic plants. Application of Agrobacterium infection in an existing regeneration 

protocol has been successful for some species. Well known is the so-called leaf disk 

transformation procedure (Horsch et al, 1985) in which transformed shoots regenerate 

directly from the wounded surface of leaf expiants. However, in our experience with 

a number of recalcitrant crops, like chrysanthemum, it is often more efficient to invert 

this procedure and adapt the regeneration protocol to the transformation procedure. 

A survey 

Since the development of Agrobacterium-mediated transformation for model plant 

species like Nicotiana tabacum, much effort has been put in the application of the 

technique to crop species, as it would be a useful supplement to the classical cross 

breeding. Almost a decade has past since the creation of the first transgenic tobacco 
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plant, but routine transformation procedures have been established for just a few plant 

species. The data reported in the literature on this subject are summarized in table 1, 

concerning transformation with tumorigenic strains, and table 2, focusing on 

transformation with disarmed strains. In both tables essential information on the 

transformation protocol, such as the Agrobacteriwn strain used, is given. Several 

important topics concerning the procedure are discussed in more detail in the following 

paragraphs. 

Table 1 and table 2 show that for more then sixty species successful gene transfer, 

either with or without regeneration into transformed plants, has been claimed. 

Unfortunately, adequate molecular evidence is sometimes lacking and usually there is 

no confirmation from other research groups. Regeneration of transformed plants, 

confirmed by molecular evidence, is reported for 27 species. However, if the criterium 

is used that the new gene should be inherited by progeny, it becomes clear that only 

fifteen species are proven to be stably transformed, and five of them belong to the 

Solanaceae family ( see the regeneration columns in tables 1 and 2). Only for 

Arabidopsis thaliana, Brassica napiis, Linuin usilatissimum and Lycopersicon esculentum 

inheritable gene transfer was reported from more than one lab. 

Control 
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Figure 3. 
Differential response of the chrysanthemum cultivar 'Parliament' upon infection of stems with several 
oncogenic Agrobacterium strains. 
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< ^ < Ĥ ^ . Q r-, 
t û I « V O Ï N > 

• — j « m •< o w 

Wï «ï t/5 1/5 
Ifl Ifl V3 W 
a> a> <u a> 

8 

U 

CQ 
O 

t/ï 
3 O 

E 

u 

( Q 
•U 

(U 

3 
O 

o 
ca 
O 

3 
O 

u 

C0 

<u 

3 
O 

E 

a j 
D 

t-> 
CQ 
OO 
3 

u , 
CO 
en 
3 

• o 
"S 

<U c j 

a . a . 
CQ CQ 

11 ( / ) W3 

O O 

U U V 

a a a 

ö ö <u 
u u u (/3 i/î Wî 

O O O 

<u 
CL, 

« 
•s 
( A 

O 

<D 
C L , 
CQ 

WD 

O 

Ü 
C L , 
CQ 

<L> 

t/i 

O 

<u 
C L , 
CQ 

4> 
t / ï 

O 

<u 
C u 
CQ 

1 ( / ] 

O 

4) 
CL. 
CQ 

"8 
m 

O 

<u 
? 
o 

*3 

S 

"S aï c î-? 
g ^3 u u c c 

s i s g f 1 J J I 
t-q> 

3 
W3 

u 

O 

3 

CJ 

O 
G 
C 
3 

3 
C 

% 

3 
C 

^ 

O 

o 

c 

iä 

CJ 
O 

J-1 
u 
c 
eo 
co 

q> 

o 
U 
C 
cQ 
CQ 

a a a <s 
c c c c 

fa, .2 -S .S -S 
.3» "a *a "a "a 
^ -S "S "S "S 

•a 
O O 3 

a c S 

faïfaJfa)fa)fa)fa)fa,fa,faifajfcnU 

c s: 
c c 

3 3 2 3 

S . O C C C C C C 
B. &• § . | 
c c c o è -a -a 

5 s s 
5 3 5 
3 o -e> 
'5. 5 5 

g X ^ 
S H H 

" 3 o a a a a a < 3 < 3 t 3 < 3 a « y «y -a -a -a -u -̂  •*-> .u -° -y -° -° 
Y> ? ? ? ?S pî 5 'S5 ' S 'Ei '25 '2; ' 5 

i ^ i i i i ^ i j ï i * ^ - b ^ 

0 § a 
" s ? s s ^ 
•a -s " z, « .«s 

1 1 3 3 II 
8 u a a « « « 
.3 .= 3 5 2 5 
O O Q Q £ £ 

8 8 

a ^ ^ fa, ^ i 

S 3 3 3 
3 3 3 3 3 
ï> Sj C C C •h -h e - -

-s; -c a 

•s -s I I I 
• 0 * 0 O O W . 

-S -S -S 
u u u 

Q a 5 -S -S 
-c -c -c 

" *î c c c 
.3 ^ ö a a 

http://JOU.Ii.ii
http://CuCXCl.C1.CU


E Ë o o 
S S .S 5 S 
2 2 o « o> 
O O C O Û 

vT 

o 

s 
Ui 

Q 

e 

c/> 

« } 

a 4> 
t - i 

l/ï 
«5 

i> 

v 
•- i2 

8 g 
£ 2 

Dû U } U ) &J) U } 

O o o o o 
l_ h* I -I Ui U I 

o- a a a a + + + + + 
l/l ( « Vi IA V i « i 
U i ) u Û O Û 

o 
I M 

o . 

+ o o o o S S o o ö 
+ + 

< S ö c 3 c J o w o c 3 c 3 c 3 c j < 3 0 0 0 0 0 < 3 < 3 

'S S 8 S 
"S. o o o 
2* a . o . o . 
o >* >* >> 

8-S 
O 

u 
Q . 

"E . 

Ö <u <u 

5 8 S CO « •— — 
-o Ë 
S « 

o ?, 
^ 3 

•1° 
O - A 

F 
<u 
t /3 

OL 
u. 
co 
D 

.. a 
O J 

>o P- S r~ 
s co < ca 
m O O 2 
CL o . o . o . 

2 2 a o. 
O O 
E- H 
o . o . 

—< 00 

C L > 

O 

E % E 

0£ 
u. 

o: 

•2 Ë 
o) 

Ë Ü 

53 i 

S - S . 

o . ë .°S. 'B. 
tq 53 cd ca 

a •" "> s o 
o 'S =3 =a 5 o 

7^ ™ fn ™ ££££ 

< 
o 
0 0 
r-

Ë 
co 
O 
o . 

- - H l ' 

( B D ü P ü h n m c a ü 
D . D - û . o . a a a a a a 

Z 
ca a . 

(N 

^f 

< O a . 

rM 

00 
CL 

-
o 

U) 
.> o . 

O 
< 
o <N 
CO 
CL, 
.CL 

< N | 

ca o . O a. 

z ü 
S 
P-
lii 
CO 

03 

w c 
e i o 

o 
i n 
00 

> 

m 
/. Ü 
S 
a. 
UJ 
t/) r-
P 

CS-

O 
i n 
00 
Cl 

> 

o 00 
Z 
O 

a. 
r--
P 

h O h O h 
a. CL o. o. a. 

•* "*• ,9 o o £ 

— o 
VO 00 
— CS 

< ? 5 o S o o . . . . 
0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 

~rt „ ? ? H ? ° 9 ? o H o O ° H 

5 s s s o < < a < Zé h N < ç s 5 s a » s < < ç a i= as < < h < < Ç s « ç ç s < ç 
O CJ < U < J -J U _) CJ 0. (X J Ü U O UJ U U U J J O U U U J J O . J J O U U O O U J O 

•* 3 — . 3 
O O - - * - H t-H — Q *— 

0 2 p 3 ^ i n u ^ i o C O Û Q O C Q C Q , ^ V } i n ' ^ > ^ H C C Q 

o — 
•* o _ rt „ 

s s o a a s S s 
ü ä ä l S 2 g - - ; o o o o 

B fl O ffl >^ ( 
<U 0) 0) u tv i 
O . Cu CL CL "O < 

C'a. M 
u , GO — 

ä U DO o 

rt O O O o o 
c5 c3 

4) ü e j CJ 

c c c e 

0 0 0 0 0 0 0 . o 
Û £ <u a a a a c L a o . CLE-' 

A x : o . « S 8 § 
S o > « - - -
£ E 

03 « . . 

Sb on 00 00 

5 

si > "-CS '•£: '•£: 

5 s 

"I 

5 
si 
§ -Si 
c 3 

• 5 cj 

% ^ 
•S « 

S 5 
<3 - i 

"S S s 

^ <r> •*> <r> ^ -S 

-J -J 

3 O <3 

3 p ^ -g o 
•S Ü i - Ï 

3 - 3 S £ 

1 1 8 « = 
S 8 I I | 

'c a; 
C3 

3 3 3 3 5 
f <3 « a 3 

: : « 
S £ Si „ 
3 3 § S 

x2 # I o§ 
Q , û , O , Q , 

• c l 
<r> -ZZ 

5 £ 
"' 3 

S S S S £ £ 
3 3 3 3 3 

^ 'o <o ^ «o ^ *o 
O Q p p p O O 

•a -5-s 
1^ 

5 * 1 
£ 5 a a 

£ £ £ 

•ô 5 -S 
û, * ai a ; c>5 ^ 

3 3 3 3 3 
c c c c c 

5 .« .0 .0 .0 

a 
£ 

.g 
ci 

co 

m
 tu

 
nt

he
s 

ar
bo

i 

3 a s 

So
la

n 
St

yl
os

 
V

ic
ia

 

§«§.1 
5 -5 -S 5 3 5 o § Hè&à 

a § -S -S -S -S 
a « **• ^ "^ * • 

5= S-â -3 -3 -3 

CL 

o 



Development of a transformation protocol 

The Agrobacterium-mediated transformation procedure has turned out to be not so generally 

applicable as was expected in the early days of the development of this gene transfer method. 

Not only are monocots hard to transform, but dicotyledonous crop species are also recalcitrant 

and the development of successful and efficient transformation protocols often requires several 

years (Baribault et al. 1989/1990; McGranahan et al. 1988/1990). Therefore it is of great 

importance to gather the experience of researchers in this field, who, though concerned with 

different plant species, often have to deal with the same problems. In the following paragraphs 

some of the general appearing obstacles are discussed and, if possible, the best way to deal with 

them is given. 

Effect of bacterial strain and plant genotype. 

Plant genotype dependency 

Most Agrobacterium strains appearing in table 1 and table 2 are referred to as 'wide host range 

strain'. Though these strains are pathogenic for a wide range of plants species, this term is 

confusing, because the virulence of these Agrobacterium strains, within one species, can be 

genotype dependent. In our opinion, the genotype effect might be partly caused by various 

responses to stress. The stress reaction of plants involves the excretion of phenolic compounds, 

which direct the bacterium to the wounded plant cells and switches on the vir genes. 

Consequently, differential stress response may lead directly to differential virulence. As 

transformation efficiency can be genotype dependent, it is necessary to test more than one 

genotype or cultivar. In some species, like lettuce (Michelmore et al., 1987), Arabidopsis 

(Schmidt and Willmitzer, 1988) and potato (Wenzler et al., 1989), the effect of the genotype 

is much larger than the effect of the bacterial strain used. In other species the bacterial effect 

overrules the genotype effect, as in tomato (Davis et al., 1991), pea (Puonti-Kaerlas et al., 1989) 

and Brassica species (Charest et al., 1989; Ohlsson and Eriksson, 1988). In most species 

however, both plant genotype and bacterial strain affect the efficiency of gene transfer (e.g. 

walnut (Dandekar and Martin, 1988), willow (Vahala et al, 1989) and chrysanthemum (Van 

Wordragen et al., 1991)). 
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Screening for virulence 

Often the development of an Agrobacterium mediated transformation procedure for a plant 

species starts with the screening of several wild type Agrobacterium strains to determine their 

virulence, the efficiency of gene transfer, on the species involved. This is a reasonable 

procedure, because practice has shown that there are large differences in virulence between the 

commonly used strains (Fig.3). Unfortunately, in some cases transformation efficiency is 

measured just by the size and frequency of tumours (Armstead and Webb, 1987; Charest et al., 

1989; Clapham et al., 1990; Delzer et al., 1990). This can easily lead to misleading results, 

especially when several genotypes are used, because tumour induction and tumour growth not 

only depend on gene transfer efficiency, but also on the hormonal status of the plant. Therefore 

the expression of introduced reporter genes should be analysed. This can be done by an assay 

on the presence of opines, but a more certain and quantitative way to detect gene transfer is 

to make use of the reporter gene GUS, coding for ß-glucuronidase (Jefferson et al., 1987). The 

GUS reporter gene has recently been improved by the insertion of an intron (Vancanneyt et 

al., 1990). This GUSintron gene, which can only be expressed in the plant cell, enables the 

detection of single transformed cells, within several days after infection (Schrammeijer et al., 

1990; Chapter 4: Van Wordragen et al., submitted). 

The screening may be narrowed down to Agrobacterium strains for which disarmed derivatives 

have been developed, namely Ach5, C58, A281, B6S3, T37, A6 (Charest et al., 1989; Delzer et 

al., 1990; Komari, 1989; Puonti-Kaerlas et al., 1989; Vahala et al, 1989). These strains include 

all opine types and together their host ranges cover all species, listed in table 1 and table 2, for 

which gene transfer has been reported. Therefore, it is not necessary to extend such a screening 

by using more than these six A.tumefaciens strains, as was done by Morris et al.(1989) for fir, 

by Stomp et al. (1990) for pine species and by Dommisse et al. (1990) for onion. In our 

Table 3. A representative selection of Agrobacterium tumefaciens strains and their characteristics. 

Name chromosomal 
background 

Ti-plasmid opine type disarmed 
derivative 

disarmed 
vir-plasmid 

Ach5 
C58 
A281 

Ach5 
C58 
C58 

pTiAchS 
pTiC58 
pTiB0542 

octopine 
nopaline 
succinamopine/ 
agropine 

LBA4404 
GV3850 
EHA101 

pAL4404 
pGV3850 
pEHAlOl 
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opinion, an even smaller selection of three strains (table 3), that cover the A.tumefaciens opine 

types octopine, nopaline and succinamopine/agropine, are in most cases enough for the purpose. 

Both the wild type strains and their disarmed derivatives can be used in combination with a T-

DNA plasmid with suitable marker genes, e.g. the binary vector p35SGUSintron. Apart from 

the labour involved in screening many strains, these strains will need to be cured before they 

can be used in a transformation/regeneration procedure. Just a few reports appeared in which 

regeneration of transgenic plants was obtained using oncogenic strains (Table 1) and in Brassica 

napus these plants were shown to be fertile (Radke et al., 1988). A different, but not very 

commonly applied procedure is the use of shooter mutants. These semi-oncogenic Agrobacterium 

strains lack an active auxin locus at the T-DNA (Ooms et al., 1981) and induce an enhanced 

endogenous cytokinin level in transformed tissue, which results in some species in tumours with 

a 'shooty' phenotype. These strains are sometimes used to transform recalcitrant species, which 

are difficult to regenerate (Steffen et al., 1986; Krens et al., 1988). The main disadvantage using 

tumorigenic strains is that the introduction of hormone genes often results in the regeneration 

of aberrant and non-fertile plants. 

Supervirulence. 

Several reports indicate that the chromosomal background of the strain is less important than 

the origin of the wV-region on the Ti-plasmid. In pea, transformation using the B6 vir region is 

less efficient compared to transformation using the C58 vir region. This is also true if the B6 

Ti-plasmid is placed in a C58 background (De Käthen and Jacobsen, 1990). The vir region of 

pTiB0542, present in the hypervirulent strain A281, is able to confer the supervirulent 

properties of A281 to strains with different chromosomal backgrounds. The supervirulent strain 

A281 and its disarmed derivative EHA101 (Hood et al., 1986) are more virulent than other 

strains in many species (e.g. alfalfa (Chabaud et al., 1988), pea (Hobbs et al., 1989; Luisdorf 

et al., 1991; Puonti-Kaerlas et al., 1989), Stylosanthus (Manners, 1987), walnut (McGranahan 

et ah, 1990)). This is particularly true for Solanaceae (Komari, 1989). In goosefoot (Komari, 

1990) and poplar (Pythoud et al., 1987), the virG and virB loci of the pTiB0542 vir region, 

present on an additional plasmid next to the Ti-plasmid, are essential for transformation. In 

other species however the supervirulent strain is not better than other strains or even worse, 

as in kalanchoe (Jia et al., 1989). 
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The basic mechanisms behind differences in virulence are not very clear. In case of the 

supervirulent pTiB0542 plasmid the supervirulent properties were found to be correlated with 

the virG and 3' vzVB loci (Jin et al., 1987). Therefore, supervirulence is probably results from 

enhanced transcription of the vir genes, leading to a more efficient transport of the T-strand 

through the bacterial cell wall. 

Phytohormone biosynthetic pathway genes 

Another factor that explains some of the differences in virulence is the presence of the tzs 

(trans zeatine synthetase) gene on the Ti plasmid. This gene, which is not essential for tumour 

induction, is present in nopaline strains, but not in octopine strains. The gene product is 

involved in the biosynthesis of transzeatine, a cytokinin. This phytohormone is excreted by the 

bacterium and probably stimulates dedifferentiation and cell division on the site of infection, 

which enhances the susceptibility of the plant cell for transformation (Binns and Tomashow, 

1988). The presence of this gene on the Ti-plasmid might explain the fact that nopaline strains 

are often more virulent than octopine strains (soybean (Byrne et al., 1987), pea (Hobbs et al., 

1989; Puonti-Kaerlas et al., 1989), oilseed rape (Charest et al., 1989), lettuce (Michelmore et 

al., 1987), mustard (Ohlsson and Eriksson, 1988)), though the reversed situation is also found 

e.g. in Alnus and Betula species (Mackay et al., 1988). 

A comparable phenomenon is found in A.rhizogenes strains. The agropine strains harbour two 

T-DNA's; TL and TR DNA. The TL-DNA contains the rol loci, responsible for the hairy root 

disease. This T-DNA is homologous to the single T-DNA of other A.rhizogenes strains. The TR-

DNA carries the tms genes, involved in auxin biosynthesis, that are also found on the T-DNA 

of A.tumefaciens strains (Zambryski et al., 1989). These tms genes are not involved in the 

induction of hairy roots, but they are responsible for an extended host range of agropine strains 

compared to other A.rhizogenes strains (Cardarelli et al., 1987). 

These two examples, tms genes in A.rhizogenes and the tzs gene in A.tumefaciens stress the 

importance of the hormonal status of the plant, during the transformation process. Differences 

in the tuning of the internal phytohormone balance might explain the genotype effect. This is 

supported by the fact that in some papers a different reaction upon Agrobacterium infection of 

in vivo and in vitro grown plants from the same genotype is reported (Hobbs et al., 1989). In 

our laboratory we found that for several recalcitrant plant species (e.g. chrysanthemum) gene 
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transfer is more efficient with greenhouse grown material than with in vitro grown plants. 

Effect of developmental stage 

Considering the assumed influence of internal hormone balance mentioned before, it is not 

surprising that many researchers have reported a large effect of the type and age of the tissue 

on gene transfer efficiency, measured either by tumour frequency or by number of transgenic 

shoots (Armstead and Webb, 1987; Dandekar et al., 1988; De Käthen and Jacobsen, 1990; 

James et a l , 1990; McClean et al, 1991; McGranahan et al., 1990; Pang and Sanford, 1988 and 

Visser et al., 1989). In most cases meristematic tissue with actively dividing cells is found to be 

the most susceptible starting material. Seedling expiants or embryos are often effectively used 

with both oncogenic (oilseed rape, soybean, walnut, lettuce, cedar, rice, spruce, pine, fir and 

eggplant; Table 1) and disarmed strains (arabidopsis, oilseed rape, cauliflower, musk melon, 

cucumber, carrot, soybean, cotton, sunflower, walnut, lettuce, flax, tomato and rice; Table 2). 

In other cases shoot tips, apices, microspores, cells suspensions or other rapidly dividing tissue 

is used. Leaves from young plantlets are a better expiant source compared to older leaves 

(Schmidt and Willmitzer, 1988) and young potato tubers do produce more transgenic shoots 

than old tubers (Sheerman and Bevan, 1988). To our knowledge only two reports describe the 

opposite phenomenon; old leaves of papaya were more efficiently transformed than younger 

leaves or cotyledons (Pang and Sanford, 1988) and in tomato older leaves and cotyledons were 

slightly more susceptible than younger leaves (Davis et al., 1991). In both cases oncogenic strains 

were used. 

Therefore a general prerequisite seems to be that cells should be used that are not yet fully 

differentiated, or that are easily able to dedifferentiate, and can be initiated to start cell division. 

In genera], such a condition is also favorable for regeneration of adventitious shoots, needed 

to obtain transgenic plants. Despite this, regeneration and transformation often occur in 

different cell types (Colby et al., 1991). 

The successful use of mature leaves as expiant source is almost exclusively restricted to model 

plants like Solanaceae, kalanchoë and arabidopsis. These species are all highly susceptible to 

Agrobacterium mediated gene transfer; optimization of the protocol will have no detectable 

influence on a transformation rate, which is already optimal. The well-known leaf disk protocol, 
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developed by Horsch et al. (1985) for tobacco, petunia and tomato, is therefore in our opinion 

not the best choice for the transformation of a (recalcitrant) crop species. 

Other factors influencing transformation efficiency 

Several other factors, not concerning the plant or the bacteria, have been found to influence 

transformation efficiency. Most of these factors probably have more influence on the 

regeneration of shoots from transformed cells, than on the gene transfer process itself. In this 

paragraph only those factors will be discussed, that are regularly mentioned to be beneficial for 

transformation. Such factors might be important to take into consideration when developing a 

transformation protocol. 

Induction of vir-genes 

The agrobacterial virulence genes, located on the Ti-plasmid, are activated by certain phenolic 

compounds that are excreted by wounded plants cell (Fig. 1). Methods applied to enhance 

transformation efficiency are often based on this knowledge. The most commonly used 

enhancers are culture on feeder layers or the addition of phenolic compounds, usually 

acetosyringone, to the culture medium. Feeder layers or nursing plates are layers of cells derived 

from a cell suspension of a readily transformable plant species like tobacco, petunia or potato. 

The expiants are usually placed on this cell layer, separated from it by a filter paper, one or 

more days prior to infection and throughout the cocultivation period. The beneficial effect on 

the transformation rate is probably largely due to the excretion by the nursing cells of phenolic 

compounds that efficiently induce the bacterial v/r-region. However, it is not unlikely that other 

excreted compounds, influencing dedifferentiation and regeneration of expiant cells or 

diminishing the negative effects of wounding and infection stress, also play a role. 

Induction of the wV-region can also be achieved by adding acetosyringone to the cocultivation 

medium or to the bacterial culture (Stachel et al., 1985). In many reports acetosyringone is used 

without first investigating its influence on transformation efficiency. Acetosyringone is only useful 

if the plant does not produce one of the many phenolic compounds that can be recognized by 

the bacterium (Ashby et al., 1988), which is seldom among dicots, or if the cocultivation period 

is too short to allow induction, Chemotaxis, attachment and gene transfer. Although 

acetosyringone is generally used irrespective of its promotive effect, in some cases it might be 
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deleterious for the transformation procedure. Some authors, who did investigate the effect of 

phenolic compounds, report a negative effect of acetosyringone or feeder layers on the number 

of transgenic shoots (De Käthen and Jacobsen, 1990; Catlin et al., 1988; Godwin et al., 1991). 

In other cases acetosyringone merely reduces the genotype effect (Delzer et al., 1990) and 

sometimes there is no effect at all (James et al., 1990; Lindsey and Gallois, 1990). Other 

components in the medium and environmental factors are also known to affect expression of 

the vir genes. Sucrose in the culture medium, an acidic pH and culture below 28 °C are 

essential for expression of v/rD and virG (Alt-Mörbe et al, 1989). The importance of a precise 

tuning of pH was also shown by Godwin et al. (1991), who found that shifts of 0.3 pH units can 

have a pronounced effect on the transformation efficiency in several plant species. 

Reduction of stress 

Other elements that may influence the final number of transformed shoots are factors that 

reduce the effects of stress. Medium supplements like AgN03 are inhibitors of the ethylene 

response, that triggers many stress reactions. De Block (1988, De Block et al., 1989) found this 

compound essential in transformation of Brassica napus, B.oleracea and less responsive potato 

genotypes. A preculture period, prior to infection is often effectively applied (McHughen et al., 

1989; Schmidt and Willmitzer, 1988; Tavazza et al., 1988); this will probably reduce wounding 

stress. The preculture period is presumably partly responsible for the positive effect of feeder 

layers, which usually require a culture period on the nurse plate before infection. 

Infection stress can be reduced by carefully establishing the incubation and cocultivation time 

(Chabaud et al., 1988; Fang and Grumet, 1990; Fillatti et al., 1987; Jia et al., 1989; Tavazza et 

al., 1988) and the concentration of bacteria used (Davis et al., 1991; Fillatti et al., 1987; 

Michelmore et al., 1987). The latter factor may also be important because of the growth phase 

of the bacteria at the time of infection. Again this is not a general rule, because in 

transformation of sunflower the cocultivation time is not important (Schrammeijer et al., 1990) 

and in potato the bacterial concentration has no effect on the transformation efficiency (Tavazza 

et al., 1988). 

Another stress-related problem in the development of transgenic plants is the finding in 

chrysanthemum, that leaf disk regeneration is seriously hampered by cocultivation with the 

bacteria (Chapter 5: De Jong et al., in preparation). This inhibition of regeneration might be 
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caused by the cumulation of wounding and infection stress. A comparable mechanism is 

probably responsible for the low transformation efficiencies in flax (McHughen et al., 1989). 

Finally, the way the selection for transformed cells is performed might influence the 

regeneration of transgenic shoots. Usually the neomycin phosphotransferase (NPT II) gene is 

(co)transferred to the plant cells to enable selection for transformed cells by the addition of the 

antibiotic kanamycin to the culture medium. Untransformed tissue will bleach and die, and only 

cells expressing the NPT II gene will survive. However, even if the cells are expressing neomycin 

phosphotransferase, kanamycin is often reported to inhibit regeneration of transformed shoots 

(Everett et al., 1987; Graham and McNicol et al., 1990), caused by the death of all surrounding 

untransformed tissue. A delay before kanamycin is added to the medium, during which the cells 

may recover from infection, start to divide and produce a sufficient amount of NPT II, is often 

beneficial (Boulter et al., 1990; Chabaud et al., 1988; Thomzik and Hain, 1990; Visser et al., 

1989). Several authors report that the use of an alternative selective agent, usually hygromycin, 

leads to better results compared to kanamycin selection (Luisdorf et al., 1991; Puonti-Kaerlas 

et al., 1990), though the opposite is also found (D'Halluin et al., 1990). 

Concluding remarks 

Despite the fact that transformation of recalcitrant crops is a hot research topic, only limited 

progress has been made the past four years. Just a few species can routinely be transformed 

and still little knowledge on underlying processes in the plant cell is available, which hampers 

the identification of bottle-necks in transformation and subsequent regeneration. 

The most obvious conclusion from the large number of reports that have been published the 

past four years, is that not many general rules can be given on the development of an 

Agrobacterium mediated transformation protocol for recalcitrant crop species. However, it is 

possible to recommend some main lines for the development of a transformation/regeneration 

procedure in à specific plant species. 

First of all it is important to carefully select both plant genotype and bacterial strain. Usually 

it will not be necessary to screen more than three A. tumefaciens strains, namely Ach5, C58 and 

A281. These strains are commonly used representives of three major opine types: octopine, 
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nopaline and agropine/succinamopine, and disarmed derivatives of these strains are available. 

The most virulent strains are often A281 and nopaline type strains, like C58, due to the 

presence of hypervirulent v/r-genes and the /zs-locus, respectively. 

Transformation should not be measured just by tumour size, but must be confirmed by opine 

assays or DNA analysis. The plant genotype to be chosen should easily regenerate adventitious 

shoots from various explants, as it is convenient to have a variety of expiant types from which 

the best transformable explant type can subsequently be selected. Regeneration protocols 

should be established in the presence of bacteria and antibiotics. Usually, leaf expiants are poor 

starting material for transformation. 

The number of transgenic shoots or calli is often a very unreliable measure for the 

determination of gene transfer efficiency, as usually very few, if any, transformants are obtained, 

before optimization of the procedure. This hampers statistical analysis of the effect of changes 

in the procedure. Furthermore, the essential establishment of the effects of acetosyringone, 

feeder layers, length of cocultivation period, selection etc. will then be an elaborate and time 

consuming process. Therefore, the use of the GUSintron reporter gene (Vancanneyt et al., 1990) 

is strongly recommended for the first steps in the development of a transformation protocol. 

The effects on the gene transfer efficiency of plant genotype, bacterial strain, selection and 

other changes in the protocol can then be visualized within several days after infection. 

Although transient expression is visualized too, we have found this gene a very useful tool to 

obtain a lot of information in a relatively short period of time (Van Wordragen et al., 

submitted). 

The GUSintron gene can also be used to select for suitable expiant sources. The best results 

are often found with seedling explants, hypocotyls or cotyledons, embryos or shoot apices. 

Transformed cells will not appear equally distributed over the whole expiant. The GUSintron 

gene can be used to locate the cells on which the regeneration protocol should be directed. 

Very little is known about the plant-bound factors that are essential for gene transfer. The fate 

of the T-DNA in the plant cell is still a black box. This means that optimization of a 

transformation protocol remains largely a proces of trial and error. Experience obtained with 

other plant species is only of limited value, as even genotypes of the same species can react 

very different. When more transformation protocols will be established, the essential factors 
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involved may become clear. More research should be aimed at the unraveling of the processes 

involved on the plant site. This knowledge will enable or facilitate the transformation of 

recalcitrant species like woody crops and monocots. 
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Summary 

Genetic manipulation of plants is a technique that enables us to add to the plant 

genome, in a precise and well controlled manner, one or a few new genes, coding for 

desirable traits. In contrast to this, the conventional method for the introduction of new 

properties in plants, by cross breeding, is a random process in which two complete 

genomes are mixed and the desired phenotype has to be regained by repeated back 

crossing with the cultivated parent line. Despite these differences, both procedures 

basically accomplish the same; the addition of new inheritable characteristics to the 

genome of a plant. If both are available, the choice between molecular or conventional 

breeding for the introduction of a trait is often determined by the unique advantages 

and disadvantages of the techniques. Though the development of protocols is very 

laborious, genetic manipulation is in principal faster than cross breeding, because of the 

reduced need for back crossings. On the other hand, cross breeding is still very 

successful in introducing traits, which can only be recognized by phenotypic expression. 

Genetic modification requires precise knowledge of the gene involved, and as this 

knowledge is still very limited, only a few genes are available. The most important 

advantage of genetic modification is the fact that it is not hampered by crossing 

barriers. Therefore, the technique opens the possibility to introduce genes even from 

outside the plant kingdom into crops. This offers new opportunities to develop crop 

genotypes, resistant to pests and diseases, that formerly could only be controlled by the 

(often excessive) use of chemical pesticides and insecticides. Therefore, much research 

effort has been put in the development of genetic modification protocols for a wide 

range of plants. Examples of genes that have been successfully applied in this respect 

are: viral coat protein genes, which confer resistance to various viral diseases, 

proteinase inhibitor genes and Bacillus thuringiensis toxin genes, which both confer 

resistance to feeding by a wide variety of pest insects. Other options, which are less 

interesting from an environmental point of view, but important for growers, are e.g. the 

introduction of new flower colours and elevation of food value by directing the 

synthesis of nutritious proteins. 

The aim of the research described in this thesis, was the development of a genetic 
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manipulation protocol for the ornamental crop chrysanthemum, employing the natural 

gene transfer capacity of the soil bacterium Agrobacteriwn tumefaciens, and the 

introduction of insect resistance genes derived from the insecticidal bacterium Bacillus 

thuringiensis (Bt). Though, until now, no Bt crystal proteins are known that are 

specifically toxic against the major pests in chrysanthemum culture (e.g. thrips, leaf 

miner and red spider mite), some minor pests, e.g. the Florida moth (Spodoptera 

exigua) are within reach. Moreover the development of genetic modification protocols 

for an ornamental crop in itself is important, in view of the large arrearage compared 

to applied biotechnology in vegetable crops (chapter 7). 

All genetic manipulation protocols, including the Agrobacterium mediated 

transformation, must fulfill two conditions: it should be possible to stably introduce a 

new gene in a plant cell and to regenerate a complete plant from that single altered 

cell. The genotype 'Parliament' that we chose as starting material seemed to meet both 

prerequisites. Gene transfer by several Agrobacterium strains was demonstrated by 

tumour induction in vivo and in vitro (chapter 2) and several direct regeneration 

protocols starting from diverse types of tissue had already been developed. 

A difficulty was the fact that induced tumourous outgrowths were sometimes not really 

tumours, or were the result of a gene transfer process, with a very low efficiency 

(chapter 3, chapter 4). It appeared that tumour-like tissue resulted even from a slight 

disturbance of the apparently very narrowly tuned hormonal status of 'Parliament'. 

Thus, very few gene transfer events, which needed not to be stable, were sufficient to 

induce cell proliferations. These findings were done by utilizing a newly developed 

reporter gene, the intron containing ß-glucuronidase gene. This gene allowed the rapid 

analysis of transformation events, shortly after infection. Previously this type of analysis 

was done by counting the number of transformed shoots or calli that were formed, a 

time consuming process and moreover a process that is virtually useless when the 

transformation efficiency is very low, as was the case in transformation of 'Parliament'. 

The new reporter gene allowed the screening of a range of chrysanthemum genotypes 

and the investigation of the effects of changes in the protocol and of the use of 

different Agrobacterium strains (chapter 4, chapter 5). 
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This work resulted in the selection of a few readily transformable genotypes and the 

preferential use of the supervirulent Agrobacterium strain A281 or its disarmed 

derivative EHA101. This part of the research is still being continued at the Centre for 

Plant Breeding and Reproduction Research (CPRO). 

A second problem we met was the fact that the efficient regeneration of adventitious 

shoots in 'Parliament' was severely or even completely inhibited by infection with 

Agrobacterium. A recent publication, by Ledger et al., in which a different 

chrysanthemum variety was transformed, also stressed the importance of highly efficent 

regeneration for succesful Agrobacterium-tnediated gene transfer. Further investigations 

revealed that inhibition of regeneration due to infection was a general problem in 

chrysanthemum. However, the phenomenon turned out to be partly genotype 

dependent, which enabled us to select for less sensitive cultivars. Also, procedures were 

developed to diminish the repressive effect of infection on the regeneration (chapter 

5). It was recognized that the detrimental effect on regeneration was caused by the 

superimposement of infection stress and wound stress. Therefore, adaptations of the 

procedure were aimed at the reduction of stress, either by omitting brushing of the leaf 

expiants prior to cocultivation, or by separating expiant excision and infection in time, 

by preculturing the expiants for eight days before infection, the results of this research 

suggest that the inhibitory effect of Agrobacterium infection might be partly responsible 

for low transformation efficiencies obtained in recalcitrant crops. However, since the 

control for regeneration often consists of uninfected expiants instead of expiants 

infected with disarmed strains, this phenomenon might have escaped attention in many 

studies. 

In the course of our studies a successful transformation protocol for chrysanthemum 

was reported by Dr. C. Lemieux, at DNAP, California. The protocol has been reported 

on congresses, but is not yet published in literature. Though detailed information is 

unfortunately not available, which hampers comparison of their procedure with ours, 

it did become clear that the expiant source might be of crucial importance. In the 

procedure described in this thesis we used leaf expiants, taken from in vitro grown 

plants. Regeneration of shoots is very efficient and shoots develop directly from the 

127 



explants, without intermediate callus production. From the results of Lemieux, it was 

apparent that a callus phase before regeneration was essential. This is best achieved 

if expiants from greenhouse grown plants are used. This option is now being explored 

at the CPRO. 

Expression of transgenes in plants is influenced by many factors. This also holds for Bt 

toxin genes, for which recent analyses in several plant species have revealed poor 

expression of the protein. This might be caused by the presence of poly-adenylation 

signals and other plant regulatory sequences within the coding sequence, leading to 

mRNA instability and reduced translation efficiency. This latter phenomenon may be 

deteriorated by the bacterial codon use, which is different from the preferential codon 

use in plants. This information, necessitated the investigation of the level of expression 

and biological activity of Bt genes in chrysanthemum, even though a transformation/ 

regeneration protocol was not yet available. To explore the attainability of insect 

resistance in chrysanthemum by the introduction of Bt genes, we introduced the 

crylA(b) gene in Agrobacterium induced tumours. In that way it was possible to analyse 

the expression and translation of the foreign gene in chrysanthemum cells, and 

moreover to assess the insect resistance of the transgenic tissue. 

A bioassay was developed for larvae of the tobacco budworm, Heliothis virescens, with 

which the effect of feeding with tumourous chrysanthemum tissue on the growth and 

development of larvae could be measured accurately. In view of the expression 

problems pointed out above, the bioassays were remarkably successful. In some tumour 

lines a complete resistance to feeding by larvae of Heliothis virescens (tobacco 

budworm) was reached (chapter 6). Several other lines showed intermediate growth 

inhibition of the larvae and some lines were not resistant at all. These results indicate 

that it will eventually be possible to introduce insect resistance in chrysanthemum by 

utilizing the toxin genes from Bacillus thuringiensis. 
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Samenvatting 

Genetische manipulatie van planten is een techniek die het mogelijk maakt, om op een 

nauwkeurige en controleerbare manier, één of enkele genen te introduceren in het 

DNA van een plant. Op deze manier kan een gewenste eigenschap worden toegevoegd 

aan het erfelijke materiaal van een plant. De klassieke methode om cultuur planten 

aan te passen aan de wensen van de kweker, de kruisings veredeling, is een 

willekeuriger proces. Hierbij worden twee complete sets erflijke informatie gemengd, 

waarna door terugkruisingen met de gecultiveerde ouder de gewenste nieuwe plant 

geselecteerd moet worden. Ondanks dit verschil wordt met beide technieken in essentie 

hetzelfde doel nagestreefd, het erfelijk materiaal van een cultuurplant wordt verrijkt 

met een nieuwe eigenschap. De keuze voor de ene of de andere techniek, als ze allebei 

beschikbaar zijn, wordt in hoge mate bepaald door hun specifieke voor- en nadelen. 

Zo is genetische manipulatie, ondanks het feit dat de techniek, wat cultuurgewassen 

betreft, nog in de kinderschoenen staat, vaak veel sneller dan de conventionele 

methode, omdat de langdurige terugkruisings programma's vaak overbodig zijn. Aan de 

andere kant heeft kruisingsveredeling veel goede resultaten geboekt met het inkruisen 

van eigenschappen waarvan alleen de uiterlijke kenmerken bekend zijn. Genetische 

modificatie vereist exacte kennis van het gen dat overgedragen moet worden en dit 

soort kennis is nog steeds erg beperkt, zodat er ook nog maar weinig genen 

beschikbaar zijn. Het belangrijkste voordeel van genetische manipulatie boven 

kruisingsveredeling is echter dat er voor de nieuwe techniek geen kruisingsbarrieres 

bestaan, wat de mogelijkheid geeft om eigenschappen zelfs van buiten het plantenrijk 

te introduceren. Hiermee wordt een enorm potentieel aan resistentie genen ontsloten, 

waardoor de mogelijkheden om planterassen te creëren, die niet meer vatbaar zijn voor 

virussen en insecten, verruimd worden. Op dit moment worden veel van die plagen nog 

steeds bestreden door bespuitingen met schrikbarend grote hoeveelheden chemische 

insecticiden en pesticiden. Om deze reden wordt er overal ter wereld veel 

onderzoeksinspanning gestoken in het ontwikkelen van genetische modificatie methodes 

voor een grote verscheidenheid aan planterassen. Voorbeelden van genen, die in dit 

verband al met succes gebruikt zijn, zijn: genen voor viraal mantel eiwit, die resistentie 
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verlenen tegen diverse virus ziektes, genen voor proteinase remmers en toxine genen 

uit Bacillus thuringiensis, die beiden bescherming geven tegen vraat door een groot 

aantal verschillende insecten. Minder interessant uit milieu oogpunt, maar wel 

belangrijk voor telers zijn de opties om nieuwe bloemkleuren in te brengen en om de 

voedingswaarde van bijvoorbeeld veevoedergewassen te verhogen door het laten 

aanmaken van nieuwe eiwitten met een hoge voedingswaarde. 

Het doel van het onderzoek, dat in dit proefschrift wordt beschreven, is het 

ontwikkelen van een protocol voor de genetische manipulatie van het siergewas 

chrysant. Daarbij wordt gebruik gemaakt van Agrobacterium tumefaciens, een 

grondbacterie, die van nature de capaciteit heeft om genen over te dragen naar 

planten. In de natuur resulteert dit in tumorvorming op de plant, voor laboratorium 

toepassingen zijn de tumor verwekkende eigenschappen meestal verwijderd. Uiteindelijk 

zou een gen uit de bacterie Bacillus thuringiensis (Bt), dat de plant resistent kan maken 

tegen insektenvraat, overgedragen moeten worden naar chrysant. Hoewel er, tot nog 

toe, nog geen Bt kristal eiwitten bekend zijn die specifiek werkzaam zijn tegen één van 

de belangrijkste plagen in chrysant (bijv. trips, mineervlieg en spinmijt) kunnen 

sommige andere plaaginsecten wel bestreden worden. Bovenal is chrysant als 

modelgewas gekozen, omdat het ontwikkelen van genetische transformatie protocollen 

op zich voor siergewassen heel belangrijk is, gezien de grote achterstand op het terrein 

van de biotechnologie, in vergelijking met groentegewassen (hoofdstuk 7). 

In elk genetisch manipulatie protocol, dus ook transformatie met behulp van 

Agrobacterium, zijn twee noodzakelijke processen te onderscheiden. Ten eerste moet 

het nieuwe gen ingebracht worden in een plantecel en ten tweede moet er een 

methode zijn om uit die ene veranderde cel weer een complete plant te laten groeien, 

de regeneratie. Met de door ons gekozen chrysantecultivar 'Parliament', leek dat allebei 

mogelijk. Genoverdracht door Agrobacterium werd aangetoond door tumor vorming na 

infectie met de bacterie (hoofdstuk 2). Regeneratie protocollen, gebaseerd op 

verschillende typen weefsel, zoals blad, stengel en bloemsteeltjes, waren al ontwikkeld. 

Toch bleek al snel dat het opzetten van een transformatie systeem voor chrysant niet 

eenvoudig zou zijn. 
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Een eerste obstakel was het feit dat het op chrysant geinduceerde woekerweefsel, niet 

of maar voor een heel klein deel uit veranderde cellen bestond (hoofstuk 3, hoofdstuk 

4). Op tumoren lijkend weefsel ontwikkelde zich al na minieme verstoringen van het, 

blijkbaar zeer wankele, interne hormoon evenwicht van 'Parliament'. Daardoor was het 

mogelijk dat heel weinig transformatie gebeurtenissen, waarbij de genoverdracht niet 

eens stabiel hoefde te zijn, al voldoende waren om cellen tot woekeren aan te zetten. 

Deze ontdekking werd mogelijk gemaakt doOr het gebruik van een nieuw ontwikkeld 

zogenaamd 'reporter' gen; het onderbroken ß-glucuronidase gen. Met dit gen konden 

de transformatie gebeurtenissen in een stukje planteweefsel zeer snel en kort na 

infectie geanalyseerd worden. Voorheen werden dit soort analyses gedaan door het 

aantal getransformeerde scheutjes of calli te tellen dat onstond. Een tijdrovende 

procedure, die bovendien zo goed als onbruikbaar is als de tranformatie efficiëntie erg 

laag is, zoals by 'Parliament'. Het nieuwe reportergen maakte het mogelijk om een hele 

reeks chrysantecultivars te bestuderen en om het effect van kleine veranderingen in het 

protocol en van het gebruik van verschillende Agrobacterium stammen te onderzoeken 

(hoofdstuk 4, hoofdstuk 5). Dit werk resulteerde in de selectie van een aantal makkelijk 

te transformeren cultivars, waar 'Parliament' achteraf niet toe bleek te behoren. 

Bovendien kon een voorkeur worden uitgesproken voor het gebruik van de 

supervirulente Agrobacterium tumefaciens stam A281 of de daarvan afgeleide, niet-

tumorigene EHA101. Met deze combinatie van cultivars en bacteriestammen wordt het 

onderzoek nog steeds voortgezet op het Centrum voor Planteveredelings en 

Reproduktie Onderzoek (CPRO-DLO). 

Een andere moeilijkheid, was het feit dat de efficiente regeneratie van scheutjes uit 

losse cellen bij 'Parliament', sterk geremd werd door infectie met Agrobacterium 

(hoofdstuk 5). Een recente publicatie van Ledger et al., waarin transformatie van een 

verwante chrysantesoort wordt gemeld, benadrukt nog eens het belang van een goede 

regeneratie voor het succesvol tranformeren van chrysant met Agrobacterium. Nader 

onderzoek leerde dat, hoewel het verminderde regeneratie vermogen na infectie een 

algemeen probleem was in chrysant, er een duidelijk cultivareffect was. Dit maakte het 

mogelijk om minder gevoelige cultivars te selecteren. Daarnaast werden er procedures 
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ontwikkeld die het remmende effect op de regeneratie nog verder verminderden 

(hoofdstuk 5). Het werd duidelijk dat het nadelige effect op de regeneratie te wijten 

was aan een opeenstapeling van verwondingsstress en infectiestress. Daarom waren de 

aanpassingen in het protocol erop gericht om de stress te verminderen door minder 

verwonding van de blaadjes of door de het scheiden van de stressveroorzakers in de 

tijd. De resultaten van dit onderzoek doen vermoeden dat dit negatieve effect op de 

regeneratie ook bij andere gewassen (mede)verantwoordelijk kan zijn voor de lage 

transformatiepercentages, die behaald worden. In veel studies ontsnapt dit feit aan de 

aandacht, doordat als controle op de regeneratie experimenten uitgevoerd worden met 

ongeïnfecteerd weefsel in plaats van met weefsel, dat is geïnfecteerd met een avirulente 

bacteriestam. 

In de loop van het project werd successvolle transformatie van chrysant gerapporteerd 

door Dr. C. Lemieux, van DNAP in Californie. Van de methode werd melding gemaakt 

op congressen, maar het protocol is nog niet gepubliceerd in de wetenschappelijke 

literatuur. Hoewel het daardoor moeilijk was om ons protocol te vergelijken met de 

Californische methode, lijkt het er op dat de oorsprong van het uitgangsmateriaal van 

belang is. Op explantaten van steriel opgekweekte planten, die gebruikt werden in de 

in dit proefschrift beschreven procedure, worden scheuten op een heel efficiente manier 

direct vanuit het explantaat geregenereerd, zonder intermediaire callus fase. Uit de 

resultaten van Lemieux bleek, dat een callus fase vóór de regeneratie van scheuten 

essentieel was. Callusinductie verloopt het best op explantaten afkomstig van 

kasplanten. Het effect van het gebruik van kasplanten wordt momenteel bestudeerd op 

het CPRO. 

De expressie van overgedragen genen wordt door veel factoren beinvloed. Dit gaat ook 

op voor toxinegenen van Bacillus thuringiensis, waarvoor recent onderzoek in 

verschillende plantesoorten heeft uitgewezen dat de expressie van het toxische eiwit 

bijzonder laag is. Waarschijnlijk wordt dit veroorzaakt door de aanwezigheid van poly-

adenyleringssignalen en ander regulatoire sequenties binnen het coderende gedeelte, 

wat resulteert in instabiliteit van het mRNA en slechte translatie. Dit laatste wordt 
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waarschijnlijk nog verergerd door het bacteriële codongebruik, dat afwijkt van het 

preferentiële codongebruik in planten. Deze informatie maakte onderzoek naar het 

expressieniveau en de biologische activiteit van Bt genen in chrysant noodzakelijk. Om 

een uitspraak te kunnen doen over de haalbaarheid van insecteresistentie in chrysant 

via introductie van Bt-genen, werd besloten om het gen in te brengen in 

chrysantetumoren. Op deze manier was het mogelijk, om de expressie en vertaling van 

het vreemde gen in een chrysantecel te bestuderen en vooral, om vast te stellen of het 

nieuwe gen inderdaad leidt tot de ontwikkeling van insecteresistentie. 

Daarvoor werd een bioassay ontwikkeld voor rupsen van een tabaks mot, Heliothis 

virescens, waarmee het mogelijk was om het effect van het eten van chrysantetumoren 

op de groei en ontwikkeling van de larven accuraat te meten. Gezien de hierboven 

geschetste expressieproblemen, was de uitkomst van deze bioassays een onverwacht 

groot succes. In sommige transformanten werd een volledige resistentie tegen vraat 

door het testinsect, de rups van een tabaksmotje (Heliothis virescens) gevonden 

(hoofdstuk 6). Verschillende andere lijnen leken een gedeeltelijke weerstand te hebben, 

terwijl er ook waren, die helemaal niet resistent bleken. Zo'n patroon weerspiegelt de 

mate waarin het gen tot expressie komt in de verschillende transformanten. Deze 

resultaten geven aan dat het uiteindelijk mogelijk moet zijn om met behulp van Bt 

genen volledig insecteresistente chrysanten te creëren. 
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Nawoord 

Errare humanuni est. Toen ik in het begin van dit jaar serieus met schrijven begon 

dacht ik niet dat dit proefschrift ooit af zou komen, maar toch leest u nu in het 

eindprodukt. Na bestudering van de inhoud van dit boekje zal het duidelijk zijn dat, 

hoewel alleen mijn naam op de omslag staat, het niet tot stand had kunnen komen 

zonder de hulp van vele anderen, waarvan ik een aantal met name wil noemen. 

Het onderzoeksproject is tot stand gekomen dankzij de financiële steun van de Stichting 

Innovatiefonds Plantenveredeling (InPla). Een bijdrage in de drukkosten van het 

proefschrift wordt geleverd door het LEB-fonds. 

In de eerste plaats heb ik van het begin af aan veel gehad aan de ruime weefselkweek 

ervaring van het vaste chrysantenteam van het IVT/CPRO, Jan de Jong en Wim 

Rademaker, sinds kort versterkt met Jan van den Berg. Vooral de intensievere 

samenwerking in de laatste fase van het project, is heel vruchtbaar geweest. 

Wat samenwerking betreft, mogen ook de mensen van de 'andere kant' van het project, 

Guy Honée en Bert Visser, niet onvermeld blijven. Hoewel de beide onderdelen van 

het project niet zo nauw verweven konden worden als de bedoeling was, is het contact 

altijd heel goed geweest en waren we voortdurend op de hoogte van eikaars resultaten. 

De hulp van Bert Visser en Elly Munsterman, bij het opzetten van de bioassays, was 

van grote waarde voor mij. 

De uitwisseling van gegevens en onderzoeksresultaten in het Italse Promovendi-clubje 

van Lous van Vloten-Doting heb ik altijd heel stimulerend gevonden, niet in het minst 

door de levendige belangstelling van Lous voor zowel het onderzoek als de 

onderzoeker. 

Het regelmatige overleg met mijn copromoter Hans Dons, wiens kritische blik soms 

wel eens een beetje te scherp was naar mijn zin, voorkwam vele fouten in de opzet van 

proeven en zijn inzicht en brede ervaring zijn een grote steun geweest bij het 
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interpreteren van resultaten. Ook in de laatste schrijffase bleef Hans heel betrokken 

bij de voortgang en kon ik er altijd van op aan dat stukken ook inderdaad op de 

afgesproken datum gecorrigeerd waren. 

Ook mijn promoter Ab van Kammen heeft van het begin af aan grote belangstelling 

voor het project getoond, waarbij zijn betrokkenheid niet geremd werd door het feit 

dat het onderzoek niet in zijn eigen vakgroep plaatsvond. Zijn adviezen en herhaalde 

oproepen tot meer samenwerking zijn vaak bepalend geweest voor de richting van het 

onderzoek. 

Van groot belang voor elk promotie onderzoek zijn de studenten die eraan meewerken. 

In mijn geval waren dat vier onvolprezen jongemannen, die stuk voor stuk een grote 

inzet en interesse voor het onderzoek toonden. Gilles Jonker beet het spits af met 

onderzoek naar het effect van een alternatief selectief agens en andere cultivars. Pieter 

Ouwerkerk, die net als Gilles uit het verre westen kwam, namelijk van de Vrije 

Universiteit te Amsterdam, is een vol jaar gebleven. In die periode heeft hij een groot 

deel van de gegevens uit hoofdstuk 3 verzameld. Wat korter, maar tochjiog langer dan 

hij van plan was, is Martin Schornagel gebleven. In die relatief korte periode van 

enkele maanden heeft hij een enorme hoeveelheid werk verzet. De gegevens die hij 

boven tafel bracht worden beschreven in hoofdstuk 4 en 5. Ook de resultaten die Arjan 

van der Bij behaalde, zowel tijdens zijn afstudeervak voor de Internationale Agrarische 

Hogeschool Lahrenstein, als in een maand vakantiewerk, zijn belangrijk geweest, vooral 

voor het inzicht in de expressie van verschillende promoters in chrysant. 

Produktief onderzoek kan alleen maar plaatsvinden in een vruchtbare, stimulerende 

omgeving en daarvoor stonden de collega's van het CPO garant. Speciale vermelding 

verdienen mijn beide paranimfen Ingrid Hoek, mijn kamergenoot, en Anne-Claire van 

Altvorst, een mede-transformator. Het enige bezwaar van hun aanwezigheid was dat 

het weleens te gezellig werd, wat niet bevordelijk was voor het doorworstelen van die 

stapel literatuur. Alle andere mensen van de oude sector Biotechnologie en de 

hoofdafdeling Ontwikkelingsbiologie, waarvan er veel in de loop van die drieëneenhalf 
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jaar goede vrienden zijn geworden, wil ik bedanken voor hun gezelligheid en 

saamhorigheid. Hoewel we nog steeds geen vaste kroegmiddag hadden, kun je toch 

bepaald niet stellen dat we gebrek hebben gehad aan borrels, labuitjes en andere 

festviteiten! 

Tenslotte moet ik het thuisfront nog noemen. Mijn zus Barbara wil ik bedanken voor 

het aandragen van een actueel onderwerp voor een stelling. Mijn broer Peter-Paul is 

aan het begin van mijn promotieonderzoek naar de U.S.A. vertrokken en zijn bijdrage 

bestaat dan ook slechts uit het organiseren van een weekendje Grand Canyon na het 

UCLA congres in Park City, Utah. 

Dit proefschrift is niet voor niets opgedragen aan Anke en Jacques, mijn ouders, en 

aan Edwin, al tien jaar mijn steun en toeverlaat. Mijn ouders hebben vanaf de lagere 

school mijn leergierigheid gestimuleerd. Zonder hun warme belangstelling en (ook 

financiële) steun was het niet mogelijk geweest om mijn studie en promotie-onderzoek 

af te ronden, en dat terwijl ze eigenlijk niet geloofden dat er een droge boterham te 

verdienen viel in de Biologie. De steun van Edwin gaat natuurlijk niet zo ver terug 

maar is daarom niet minder essentieel geweest. Elke promovendus kan erover 

meepraten, dat in de regelmatig voorkomende tot-over-je-oren-in-het-werk periodes, 

het niet altijd mogelijk is om eerlijk 50% van de huishoudelijke beslommeringen op je 

te nemen. Een begrijpende partner is dan onontbeerlijk, niet alleen voor de praktische 

zaken, maar vooral voor de morele steun en het aanbieden van een schouder om af 

en toe op uit te huilen. Edwin, jij hebt ondanks je eigen, soms hectisch drukke, baan 

altijd klaar gestaan als ik je nodig had. Zonder jou had ik het niet gered! 

0\KAûue^ 
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Curriculum vitae 

Monica Francisca van Wordragen werd geboren op 29 april 1964 in Haarlem. In 1982 

behaalde zij het diploma 'ongedeeld V.W.O.' aan het Dom Helder Camara College te 

Haarlem. In datzelfde jaar werd gestart met de studie Biologie aan de Rijks 

Universiteit Leiden. Aldus behorende tot de eerste lichting twee-fase structuur 

studenten, kon na de propedeuse, waarvan het diploma werd behaald in 1983, direct 

begonnen worden met de doctoraal fase. Als specialisatie richting koos zij Moleculaire 

Biologie. De praktijkpunten werden behaald in twee stages van 9 maanden. De eerste, 

in 1985/1986, was bij de vakgroep 'Plantevirussen' van de subfaculteit Scheikunde, in 

samenwerking met de Biologie vakgroep 'Moleculaire basis van celdifferentiatie bij 

planten', onder directe begeleiding van Dr. Ir. C. van Dun. Dit onderzoek behelsde het 

transformeren, met behulp van Agrobacterium, van tabak, met genen van het Alfalfa 

Mosaic Virus, met als uiteindelijk doel het introduceren van virusresistentie. De tweede 

stage periode, in 1986/1987, werd doorgebracht op de afdeling 'Research and 

Development' van Gist brocades te Delft. Onder leiding van Dr. Ir. W. van der Wilden, 

hoofd van de onderzoeksgroep 'Celbiochemie', werd de inductie van heatshock eiwitten 

in gist bestudeerd. In augustus 1987 werd de studie Biologie met het behalen van het 

doctoraal diploma afgerond. Op 15 juli van dat jaar werd zij aangesteld als 

Onderzoeker bij het Instituut voor de Veredeling van Tuinbouwgewassen te 

Wageningen, later het DLO-Centrum voor Plantenveredelings- en Reproduktie-

Onderzoek (CPRO-DLO). Tot 1 januari 1991 werd daar het onderzoek verricht, dat 

beschreven is in dit proefschrift. Sinds 1 mei 1991 is Monique van Wordragen 

werkzaam bij de vakgroep Moleculaire Biologie van de Landbouw Universiteit 

Wageningen. Daar werkt zij aan de constructie van een geïntegreerde 

klassiek/moleculair genetische kaart van chromosoom 6 van tomaat. 
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