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STELLINGEN 

I 

Iedere semi-norm p op een eindig dimensionale Archimedische Riesz ruimte 

E zodanig dat p(x) = p(|x|) voor alle x e E is een Riesz semi-norm. 

De verwijzing die Aliprantis en Burkinshaw voor deze stelling geven is 

niet terecht omdat deze stelling reeds in 1961 is bewezen door Bauer, 

Stoer en Witzgall. 

Aliprantis, C D , en Burkinshaw, 0. 
Locally solid Riesz spaces, Academie Press (1978). 

Bauer, F.L., Stoer, J. en Witzgall, C. 
Absolute and monotonie norms, 
Numer. Math., Vol. 3, pp. 257-264 (1961). 

II 

Als p een reguliere vectoriële pseudonorm: £ ^ IR is, N(p) = {x e £ n ; p(x) = 0} 

en R(p) = (p(x); x e % } , dan is dim R(p) < n - dim N(p). 

III 

Als op een Archimedische Riesz algebra E een L-norm II- II gedefinieerd is dan 

bestaat er op E een semi-inproduct. 

Als E een Archimedische $-algebra is en (E, II. II) een AL-ruimte, dan is er 

een norm II- II' op E zodanig dat (E, II -II') een Hubert ruimte is. 

IV 

De lineaire ruimte B(X,Y) met operatornorm van alle norm begrensde lineaire 

operatoren van X naar Y, waarbij X * {0} en Y genormeerde lineaire ruimten 

over F zijn, is juist dan norm compleet als Y norm compleet is. 

Het analogon van deze stelling in Riesz ruimten, met orde begrensd in plaats 

van norm begrensd en Dedekind compleet in plaats van norm compleet, is geldig 

onder de beperking dat de orde duale X van X voldoet aan X =£ {0}. 

Pfaffenberger, W.E. 
A converse to a completeness theorem, 
Amer. Math. Monthly, Vol. 87, no. 3, p. 216 (1980). 

Aliprantis, C D . 
On order properties of order bounded transformations, 
Canad. J. Math., Vol. 27, no. 3, pp. 666-678. 



V 

Als X een lineaire ruimte over K is, Y een Dedekind complete Riesz ruin 

en p: X -> Y een sublineaire operator van de vorm |Lx| (L een lineaire 

operator van X naar Y ) , dan is voor iedere x e X de verzameling 

K = {y e X; p(x + y) = p(x) + p(y)} een pre-kegel in X. 

VI 

Zij voor alle n e H de n x n matrix A gegeven door A (i,j) = e '1 J' 

(i, j = 1, ... , n). 
e + 1 Voor de spectraal straal p(A ) van A geldt lim p(A ) = _ •, . 

VII 

Veksler en Geiler hebben bewezen dat iedere voorwaardelijk lateraal com

plete Archimedische Riesz ruimte de projectie eigenschap bezit. 

Bernau zegt van deze stelling een generalisatie te geven in tralie-geor

dende groepen. In tegenstelling tot zijn bewering is zijn resultaat voor 

Riesz ruimten zwakker dan dat van Veksler en Geiler. 

Veksler, A.I. en Geiler, V.A. 
Order and disjoint completeness of linear partially 
ordered spaces (Russisch), 
Sibirsk Mat. 1., Tom. 13, pp. 43-51, 
English transi.: Siberian Math. J., Vol. 13, pp. 30-35. 

Bernau, S.J. 
Lateral and Dedekind completion of archimedean lattice groups, 
J. London Math. Soc. (2), Vol. 12, pp. 320-322. 

VIII 

De statistische selectie- en rangschikkingstechnieken, waarvoor recent 

in de statistische literatuur veel belangstelling aan de dag is gelegd, 

verdienen in het landbouwkundig onderzoek grote aandacht. 

IX 

Het verdient aanbeveling de uitdrukking "een x-aantal" niet te bezigen 

zonder specificatie van x. 

X 

De overheid dient ten aanzien van alternatieve groeperingen geen alter

natieve gedragslijn te volgen. 

Stellingen bij het proefschrift "Disjunctive linear operators and partie 
multiplications in Riesz spaces". 

B. van Putten 
Wageningen, 17 december 19Î 
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Landbouwhogeschool, dat als titel had "vectorial norms on linear spaces". 
Dit was tevens de titel van mijn afstudeerverslag (mei 1976). Dit project
voorstel werd goedgekeurd en in september 1977 werd begonnen met de uit
werking van dit project. 
Daartoe werden normen bestudeerd, die waarden aannemen in Dedekind comple
te Riesz ruimten. Al spoedig kreeg ik daarbij te maken met de operatoren, 
die in dit proefschrift een belangrijke plaats innemen en die zeer de 
moeite waard leken om te worden bestudeerd. Voor verdere studie van het on
derwerp was kennis van deze operatoren noodzakelijk en zo langzamerhand 
werden de ruimten die het bereik zijn van deze normen het domein van studie. 
Intussen bleek dat de operatoren die mijn belangstelling hadden ook bestu
deerd werden door enkele anderen, meestal vanuit verschillende achtergronden. 
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Chapter I 

RIESZ SPACES 

In this chapter we give an exposition of the elements of the theory of 

Riesz space; for a short historical introduction we refer to the books 

of Aliprantis and Burkinshaw [1978] and Luxemburg and Zaanen [1971] . 

1. Order relation 

An order relation on a non-empty set S is a subset < of the Cartesian 

product S x S of S with the following properties: 

< is transitive, i.e. if (x,y) e < and (y,z) e < for x,y,z e s, then 

also (x,z) e < ,< is reflexive, i.e. (x,x) e < for all x e S, < is 

anti-symmetric, i.e. (x,y) e < and (y,x) e < for x,y'e S implies x = y. 

It is common to write x < y instead of (x,y) e < . 

A partially ordered set is now defined as a pair (S,<) where S is a 

non-empty set and < is an order relation on S. 

Two elements x and y are called comparable if at least one of the state

ments x < y, y < x holds, otherwise they are called incomparable. 

A non-empty subset X of a partially ordered set (S,<) is called a chain 

in (S,<) if all pairs of elements of X are comparable. 

(S,<) is said to be totally ordered if S itself is a chain in (S,<). 

If x is an element of a partially ordered set (S,<) such that x < y for 

y s s implies x = y, then x is called a maximal element of (S,<). 

x is a minimal element of (S,<) if y < x for y e S implies y = x. 

For elements x,y,z of a partially ordered set (S,<) the following nota

tions are used: 

x < y for x < y & x # y; 

y > x for x < y; 

y > x for x < y; 

x < y < z for x < y & y < z; 

x,y < z for x < z & y < z; 

[x,y] for the order interval {zeS; x < z < y}. 



I f X and Y are non-empty subsets of a pa r t i a l l y ordered set ( S , < ) , then 

X i s majorized by Y, in formula X < Y, i f x < y holds fo r a l l xeX and 

y e Y . In that case Y is cal led minorized by X. I f Y is a singleton { y } , 

then we wr i te X < y instead of X < { y } , y is said to be a majorant of X 

then. 

Dually, i f X is a singleton { x } , then we wr i te x < Y instead of {x} < Y 

and x is said to be a minorant of Y. 

A non-empty subset X of ( S , < ) is cal led majorized in ( S , < ) , in formula 

X < , i f there exists a z e s such that X < z , minorized in ( S , < ) , in 

formula < X, i f there exists a y e S such that y < X and bounded, in f o r 

mula < X < , i f X is majorized and minorized at the same t ime. 

As a consequence, we have that a non-empty subset X is bounded i f and 

only i f there ex is t y,z e S such that X c [ y ,z ] . 

Now we can formulate Zorn's lemma, which we give in the fo l lowing form. 

1.1. Zorn's lemma. If every chain in a partially ordered set (S, < ) is 

majorized in ( S , < ) then (S, < ) contains at least one maximal element. 

An element x of a partially ordered set (S,<) is called a supremum of a 

non-empty subset X of S if x is a majorant of X and at the same time a 

minorant of the set of all majorants of X, in formula X < x and if X < y 

for some y e S then x < y. It follows from the anti-symmetry of the order 

relation that a supremum is unique. 

The supremum x of X + tf> is denoted by sup X. 

Dually, z e s is called an infimum of X if z is a minorant of X and at the 

same time a majorant of the set of all minorants of X, in formula z < X 

and if y < X for some y e s then y < z. Also an infimum is unique and is 

denoted by inf X. 

1.2. Def init ion. A lattice is a partially ordered set ( S , < ) with the 

property that for all x , y £ S holds that sup {x.,y} and inf {x,y} exist 

in S. 

In the sequel we wr i te x.Vx^V... Vx fo r sup { x , , x 2 , . . . , x } and 

x,Ax2^...Ax fo r i n f { x , , x 2 , . . , x } . 



A l a t t i c e ( S , < ) is cal led d i s t r i bu t i ve i f for a l l x , y , zeS holds that 

(xVy)Az = (xAz)V(yAz). 

A l a t t i c e ( S , < ) is d i s t r i bu t i ve i f and only i f for a l l x , y , z£S holds 

that (xAy)Vz = (xVz)A(yvz) (c f . e.g. Birkhoff [1967, I . 6 thm 9 ] . 

1.3. Def in i t ion . A lattice ( S, < ) is called 

(a) (order) complete if sup X and inf X exist in S for every non-empty 

subset X of S. 

(b) Dedekind complete if sup X exists for every majorized subset X of S 

and inf Y exists for every minorized subset Y of S. 

(c) Dedekind a-complete if sup X exists for every majorized countable 

subset X o f S and inf Y exists for every minorized countable subset 

Y of S. 

1.4. Def in i t ion . A distributive lattice ( Sj < ) is called a Boolean 

algebra if 1 : = sup S and 0,: = inf S exist and if for every x e S there 

exists a (necessarily unique) x ' e S such that xAx' = 0 and xVx' = 1 . In 

that case x ' is called the complement of x. 

2. Pa r t ia l l y ordered l inear spaces and Riesz spaces 

2 . 1 . Def in i t ion , A tripel ( E J + J < ) is called a (partially) ordered linear 

space if 

(a) (Ej+) is a linear space over H 

(b) (E, <) is a partially ordered set 

(cl) x < y implies x + z < y + z for all x^y^z e E 

(c2) 0 < x and A > 0 implies 0 < Ax for all A e ]R and x e E. 

In the sequel we abbreviate (E,+ , < ) to E for f ixed + and< . 

An element x of a p a r t i a l l y ordered l inear space E is cal led i n f i n i t e l y 

small with respect to 0 < y e E i f n x < y and -nx < y hold fo r a l l n e n . 

The set of a l l x e E such that x is i n f i n i t e l y small wi th respect to a 

given 0 < y e E is denoted by IS(y) . We abbreviate u { i s ( y ) ; 0 < y e E) to 

IS(E). E is cal led Archimedean i f IS(E) = {0 } . 



2 .2 . Def in i t ion . A partially ordered linear space ( E3+, < ) is called a 

Riesz space if ( Ê  < ) -is a lattice. A Riesz space ( E,+, '<) i s called 

dedekind complete if (E3<) is Dedekind complete, and Dedekind a-complete 

if ( Ej< } t s Dedekind a-complete. 

2 . 3 . P ropos i t ion . A Riesz space E -is Archimedean if and only if nx < y / o r 

x,y e E and a l l n e IN implies x = 0. 

Proof: ->- : follows d i rec t l y from the de f in i t i on 

+• : i f nx < y and -nx < y hold for certain x e E, 0 < y e E and a l l 

n e ]N, then n.sup (x , -x) < y holds for a l l n e fl. Now i t fol lows from 

sup (x , -x) > x , sup (x , -x) > -x that 2 sup (x , -x) > 0, so sup (x , -x ) > 0. 

Hence sup (x , -x) = 0 or x = 0. 

Next we give some examples of p a r t i a l l y ordered l inear spaces. A l l examples 

which are given here are well known in the l i t e ra tu re and there exists a 

reasonable uniformity in the l i t e ra tu re about a standard name of most of them. 

2.4. Examples. 
2 

(a) ]R is the real plane partially ordered componentwise, i.e. 

(x,,x2) < (yi.y2) if *i < Yi and *2 < y2
 at tne same time. Provided 

with the usual algebraic operations 1R is a Riesz space, where 

(z,,Zp) = (x, ,x2)V(y,,y2) if z. is the maximum of x. and y. (i = 1,2). 

Note that K is even Dedekind complete. 

(b) (F , lex) is the real plane ordered lexicographicly, i.e. 

(Xj.Xg) < (y1,y2) if [ Xj < yj] or [ x : = y l & x2 < y2] . 

With the usual algebraic operations (F , lex) is a Riesz space which 
2 

is totally ordered. However (K , lex) is not Archimedean, because 

n(0,l) < (1,0) for all n e IN. 

(c) P(1R) is the linear space of all real polynomials on the real axis 

with pointwise linear operations and pointwise partial ordering, i.e. 

x < y in P(R) if x(t) < y(t) for all t e R. 

P(]R) is a partially ordered linear space, which is moreover Archime

dean. However, P(1R) is not a Riesz space because xVy does not exist 

for x and y incomparable, which obviously exist in P(1R), e.g. x and 

y with x(t) = 1 and y(t) = t for all t e P are incomparable. 



(d) C(X) is the linear space of all continuous real valued functions on 

a topological space X with pointwise linear operations and pointwise 

partial ordering. 

C(X) is an Archimedean Riesz space, but in general not Dedekind com

plete. If C(X) is Dedekind complete then X is called extremally dis

connected. 

(e) (cf. e.g. Luxemburg and Zaanen [1971, ex.ll.2(ix)]). 

If H is a Hubert space over the complex numbers, with inner product 

(.,.), then by M we denote the real linear space of all bounded Her-

mitean operators on H, provided with the partial ordering given by 

S < T for S,T e x if (Sx,x) < (Tx,x) for all x e H. 

3C is an Archimedean partially ordered linear space. JC is a Riesz 

space only if the dimension of H is 0 or 1. 

(fj (Compare e.g. Aliprantts and Burkinshaw [ 1978, ex. 2.13 (2)]). 

If (X,r,y) is a measure space, i.e. a non-empty set X and a a-field 

r of subsets of X on which is defined a non-negative countably 

additive measure u, then let M(X,y] be the linear space of all real 

measurable functions on X. If we provide M(X,u) with the partial 

ordering given by x < y if x(t) < y(t) for all t e X, then M(X,u,< ) 

is a Dedekind a-complete Riesz space. 

(g) (cf. e.g. Luxemburg and Zaanen [1971, ex. 11.2(v)]). If in M(X,u) from 

example (f) x is called equivalent with y (x ̂  y) if x = y p-almost 

everywhere, then ̂  is an equivalence relation on M(X,u). The linear 

space M(X,y) of all equivalence classes [x] in M(X,y) (natural algebraic 

operations) can be provided with a partial ordering given by [x] < [y] 

if x < y p-almost everywhere. M(X,u,<) is a Dedekind complete Riesz 

space. 

(h) s is the linear space of all sequences of real numbers. With pointwise 

partial ordering s is a Dedekind complete Riesz space. 

(i) b is the linear space of all bounded sequences of real numbers. With 

pointwise partial ordering b is a Dedekind complete Riesz space. 



(j) c is the linear space of all sequences of real numbers which converge. 

With pointwise partial ordering c is an Archimedean Riesz space, which 

is not Dedekind complete, because if A = {(1,0,0,0,...),(1,0,1,0,0,...), 

(1,0,1,0,1,0,0,...), . . . } , then A < (1,1,1,...). however sup A does not 

exist. 

(k) c„ is the linear space of all sequences of real numbers which converge 

to 0. With pointwise partial ordering cQ is a Dedekind complete Riesz 

space. 

(1) cQQ is the linear space of all sequences of real numbers which are 

eventually 0. With pointwise partial ordering c n n is a Dedekind complete 

Riesz space. 

(m) FR is the linear space of all sequences of real numbers which have a 

finite range. With pointwise partial ordering FR is an Archimedean 

Riesz space which is not Dedekind complete, because if A = {(1,0,0,0,...), 

(1,^,0,0,0,. . . ) , (1 , ^ ,0 ,0 , ..),...} then A < (1,1,1,...), however sup A 

does not exist. 

3. Elementary properties of Riesz spaces 

In this section some abbreviations are given, most of which are commonly 

used, further some elementary properties are derived. 

For an element x of a Riesz space E the positive part x of x is defined 

by x = xVO, the negative part x" of x by x~ = (-x)VO and the absolute 

value |x|of x by |x| = xV(-x). 

x is said to be orthogonal to y, or disjoint to y, in formula xiy, if 

|x|A|y| = 0. The orthogonal complement x of a subset X of E is defined by 

A = {y e E; yix for all x G X}; {x} is abbreviated to x . A subset X of 

E and a subset Y of E are said to be orthogonal, or disjoint, in formula 

XIY if xiy for all x e X and y e Y. {x}lY is abbreviated to xlY. 

3.1. Definition. A subset P of a Riesz space E is called a polar of E if 

P = PU. 



It is known that for every subset X of a Riesz space E the equality 
X1 = X111 holds (cf. e.g. Luxemburg and Zaanen [1971, thm 19.2(ii)]). 
This implies that every subset of the form A (for some X c E ) is a polar 
of E; it is evident that conversely every polar is of this form. Every 
polar of E is a linear subspace of E (cf. e.g. Luxemburg and Zaanen [1971, 
thm 14.2]). 
For subsets X and Y of a Riesz space E we use X = {x ; x e X}, 
X" = {x~; x e X} |X| = {|x|; x e X}, X + Y = {x + y; x e X, y e Y}, 
X - Y = {x - y; x e X, y € Y}, XVY = {xVy; x e X, y e Y} and 
XAY = {xAy; x 6 X, y e Y}. We abbreviate {x} + Y to x + Y, similar abbre
viations are made in the other cases. For A e R we denote {Ax; x e X} by AX. 
In every Riesz space E the equality E = E - E holds (cf. e.g. Schaefer 
[1974, p. 58]). E+ is called the positive cone of E; the elements of E are 
called the positive elements of E. 

3.2. Proposition. For x and y positive elements of a Riesz space E the 

vncluszon x + y c (x + y) holds. 

Proof: If x + y i s for some s e E then from 0 < x, 0 < y it follows that 
x l s and y 1 s. But then also u I s and v i s for all u e x and v e y , 
hence u + v i. s, which implies u + v e (x + y) 

3.3. Theorem, (cf. e.g. Aliprantis and Burkinshaw [ 1978, thm. 1.1], Luxem
burg and Zaanen [1971, cor. 12.3] and Schaefer [1974,11, prop. 1.4, cor. 1, 
cor. 2 ] ). 

For x,y,Z elements of a Riesz space E we have 

(a) x = x+ - x", |x| = x+ + x~, x+ A x~ = 0 

(b) xvy = -((-x)A(-y)), xAy = -((-x)v(-y)) 
(a) x + (yvz) = (x + y)V(x + z ) , x + (yAz) = (x + y)A(x + z) 
(d) A(xvy) = (Ax)V(Ay) for all A e IR+ ; |Ax| = \\\\x\forall AGIR 
(e) (xvy)Vz = xv(yvz), (xAy)Az = xA(yAz) 
(f) x + y = xvy + xAy, |x - y| = xvy - xAy 

(9) (x - y )+ = x and (x - y)~ = y if xAy = 0 

(h) xiy if and only if |x + -y| = |x - y| 

(i) (Birkhoff's identity) |xvz - yvz| + |xAz - yAz| = |x - y | 

(J) (x + y)Az < (xAz) + (yAz) if x ,y ,z e E+ 



(k) x < y is equivalent to x < y & y" < x~ 

a ; ||x| - |y|| < |x + y| < |x| + |y|, (x + y ) + < x+ + y+, (x + y)" < x" + y" 

(m) if xi y then |x + y| = |x| + |y|, (x + y ) + = x+ + y+, (x + y)" = x" + y" 

(n) 0 < xAy < xvy < x + y tfx,y e E 

The following theorem is frequently used in Riesz space theory. 

3.4. Theorem, (compare e.g. Luxemburg and Zaanen [1971, cor. 15.6]) 

(a) (Dominated décomposition property) If x, ,... ,x and y are positive 

elements of a Riesz space E such that y < x, + ... + x holds, then 

there exist y,,... ,y in E such that y = y, + ... + y and y- < x. 

for all i = 1,..,n. 

(b) (Riesz interpolation property) If x,y,z,x,,..,x are positive elements 

of a Riesz space E such that x = y + z = x, + .. + x then there exist 

y^,.. >yn>
zi>- • >z

n ïn E such that y = y1 + ... + yp and 

z = z-, + ... + z and x. = y- + z- for all i = 1,. . ,n. 

3.5. Theorem, (cf. e.g. Schaefer [ 1974, II thm 1.5]) 

If X is a non-empty subset of a Riesz space E such that sup X exists in E, 

then for every x e E also sup (xAX) exists in E and the equality 

sup (xAX) = xA sup X holds. 

Now we collect some notions of extreme importance in Riesz space theory. 

3.6. Definition. If E is a Riesz space, then 

(a) a linear subspace R of E is called a Riesz subspace of E if for 

x,y e R holds that xAy e R. 

(b) a linear subspace J of E is called an (order) ideal of E if |x| < |y| 

for x e E and y G J implies x e J. 

(a) an ideal B of E is called a band of E if the following holds: 

if X is a subset of B such that sup X exists, then sup X e B. 

(d) an ideal J of E is called a o-band if for every countable subset X 

of J for which sup X exists holds that sup X e J. 

(e) an ideal J of E is called a principal ideal if there exists a z e E 

such that J = {x e E; |x| < Az for some X e R}. 

(f) a band B of E is called a principal band if there exists a z e E SUCTÎ 

t/zat B = z U . 



(g) a band B of E is called a projection band if B + B = E. 

(h) a band B of E which is a principal band and a projection band is called 

a principal projection band. 

For an element z of a Riesz space E the ideal {x e E;|x| < Az for some 

A e K} is called the principal ideal generated by z, and is denoted by I . 
11 

The band z is called the principal band generated by z, and is denoted 

by Bz. 

If z is an element of a Riesz space E, then the set IS(z) of all infinitely 

smalls with respect to z (cf. sect. 2) is an ideal of E, because if 

x,y e IS(z) and A,y e ]R then for all n e IN we have n|x| < z and n|y| < z 

hence,f or all n e ] N , n | A | | x | < z a n d n | y | | y | < z , son|A||x| + n|y||y| < 2z, 

which implies that n| Ax + yy| < n| A| |x | + n|y||y| < z holds for all n e IN, 

hence Ax + yy e IS(z). If x e IS(z) and |y| < |x|, then also n|y|<z for 

all n e IN, hence y e IS(z). Also IS(E) is an ideal in E, which can be proved 

likewise. 

Note that for a Riesz subspace R of a Riesz space E also xVy e R whenever 

x and y are in R. Hence, any Riesz subspace R of a Riesz space E, with the 

linear space structure and the order structure inherited from E, is a Riesz 

space by itself. Note further that every ideal is a Riesz subspace. 

It follows from Luxemburg and Zaanen [1971, thm 19.2(i)] that every polar 

of a Riesz space E is a band; the converse implication holds under the 

additional assumption that E is Archimedean (cf. Luxemburg and Zaanen [1971, 

thm 22.3] ). 

As an immediate consequence of the definitions we have (cf. Luxemburg and 

Zaanen [ 1971, thm 17.4] ). 

3.7. Theorem. Any arbitrary non-empty set-theoretic intersection of Riesz 

subspaces (or ideals, or bands, or polars) is a Riesz subspace (or an ideal, 

or a band, or a polar). 

ByL(E), respectively R(E), 1(E), B ( E ) , F(E) we denote the set of all linear 

subspaces, respectively Riesz subspaces, ideals, bands, polars of E, each 

partially ordered by inclusion. 



As a consequence of thm 3.7 all these sets form lattices under their or

dering. For, the infimum fo two elements is the intersection of these ele

ments, the supremum of two elements is the intersection of all linear sub-

spaces, respectively Riesz subspaces, ideals, bands, polars of E which 

contain these two elements. 

It is also an immediate consequence of thm 3.7 that all these lattices are 

complete, moreover 1(E), B(E) and P(E) are distributive (cf. Schaefer [ 1974, 

II prop. 2.31 for 1(E), Luxemburg and Zaanen [1971, thm 22.6] forB(E), and 

e.g. Bernau [1965 a, thm 1] for f(E)); 1(E) andR(E) are not distributive in 

general. 

We give a simple example for 11(E): Take E = IR , R = {(x.,xJ e E; x, = x„}, 

S = {(xjj^e E; Xj e R ] , T = {(0,x2) e E; x2 e R} then (RVS)A(RVT) = E, 

but RV(SAT) = R,if supremum and infimum in A(E) are denoted by V and A 

respectively.P(E) is a complete Boolean algebra (cf. Sik [1956 ] or Bernau 

[1956a ]);I(E) and B(E) in general are not. 

3.8. Definition. An ideal J of an Archimedean Riesz space E is called order 

dense if for all f s E with 0 < f there exists a g e J with 0 < g < f. 

In some representation theories of Riesz spaces the following two notions 

play an important role. (cf. [Schaefer, III def. 2.1, II def. 3.2]). 

3.9. Definition. An ideal J of a Riesz space E is called a prime ideal if 

x e E,y e E and xAy e J imply x e J or y e J. 

3.10. Definition. An ideal M of a Riesz space E is called a maximal 

ideal if M =£ E and there is no ideal in E properly between M and E 

(i.e. any ideal J such that M c J C E holds, satisfies either J = M 

or J = Ej. 

3.11. Definition, (cf. A.L. Peressini [1967, chap II, prop. 5.13b ]) 

A Riesz space E is called countably bounded if E contains a countable 

subset C with the property that for each x e E there exist e G C and 

A e ]R such that x < Ae. E is called bounded if there exists an e e E 

such that for each x e E there exists a A € ]R such that x < Ae. In 

the last case e is called a strong order unit of E. 
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It is evident that every bounded Riesz space is countably bounded; the 

converse does not hold, for the Riesz space c Q 0 of all sequences of real 

numbers with only a finite number of components not equal to 0, is count-

ably bounded (let C be the subset of c Q 0 whose elements are (1,0,0,0,..), 

(2,2,0,0,..), (3,3,3,0,...) ) , but c Q 0 is not bounded. 

In a bounded Riesz space E the order unit e has the property that e = {0}, 

for if xle, then, if |x| < Xe, we have |x|AXe = 0, which implies x = 0. 

3.12. Definition. A Riesz space E is called weakly bounded if there exists 

an e £ E with the property that e = {0} . In that oase e is called a weak 

order unit of E. 

It is evident that every bounded Riesz space is weakly bounded and every strong 

order unit is a weak order unit. The converse does not hold because the 

Riesz space E of all sequences of real numbers has a weak order unit 

e = (1,1,1,...), but no stronn order unit. 

The foregoing two examples can serve to demonstrate that a Riesz space E 

can be countably bounded without being weakly bounded, and weakly bounded 

without being countably bounded. 

The following theorem gives an important characterization of bounded 

Archimedean Riesz spaces. 

3.13. Theorem (cf. e.g. Luxemburg and Zaanen [1971, thm 27.6]). 

The intersection of all maximal ideals of a bounded Archimedean Riesz space 

consists of the zero element only. 

3.14. Definition. A Riesz space E is said to have the projection property 

(abbreviated to PPj if every band of E is a projection band. E is said 

to have the principal property (abbreviated to PPPJ if every principal 

band of £ is a (principal) projection band. 

Now we can state an important theorem for Riesz spaces. 
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3.15. Theorem (cf. Luxemburg and Zaanen [1971, thm 25.1]) 

With obvious notational abbreviations the following implications hold in 

any Riesz space E. 

<* Ded. a-complete ̂  
Ded. compl. ̂  PPP =» Arch. 

PP ** 

No implication in the converse direction holds; further E can have PP 

without being Dedekind a-complete and conversely; Dedekind a-completeness 

and PP together imply Dedekind completeness. 

F ina l l y , we discuss b r i e f l y the notion of la tera l completeness. 

3.16. Definit ion. A Riesz space E is called (conditionally) lateral complete 

if for every (bounded) set D in E of pairwise disjoint elements sup D exists 

in E. 

We remark that the notion of lateral completeness was already defined in 

Nakano [1950] for Dedekind complete Riesz spaces. 

A fundamental breakthrough was achieved by Veksler and Geiler [1972] , who 

proved that every Archimedean conditionally lateral complete Riesz space has 

PP. Futher contributions are by Aliprantis and Burkinshaw [1977], Bernau 

[ 1966] , [ 1975] , [ 1976] , Bleier [ 1976] , Conrad [ 1969] , Fremlin [ 1972] , Jakubik 

[1975] , [ 1978] and Wickstead [ 1979] . 

For a Riesz space E lateral completeness and being Archimedean are indepen-
2 

dent properties, for (]R , lex) is lateral complete but not Archimedean, 

C[0,1] is Archimedean but not lateral complete. 

For an Archimedean Riesz space E lateral completeness and Dedekind complete

ness are independent properties, because the Riesz space of all bounded 

sequences of real numbers is Dedekind complete, but not lateral complete. 

The Riesz space E of all real functions on ]R which are right locally 

constant in every t e ] R , (i.e. x e E i f for all t e K there exists an 

E > 0 such that x is constant in [ t,t + e)) is an example of a lateral 

complete Riesz space, which is not Dedekind complete. Aliprantis and 

Burkinshaw [1978, ex. 23.30] and Wickstead [1979] give examples of such 
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a Riesz space; especially the example in Aliprantis and Burkinshaw [1978] 

is rather complicated. 

3.17. Proposition. Every Dedekind complete Riesz space E is conditionally 

lateral complete. 

Proof: Evident 

3.18. Proposition. Every lateral complete Riesz space E contains weak 

order units. 

Proof: Lets be the set of all subsets X of E of pairwise disjoint elements. 

S * <t>, for {0} e s . We supposes to be ordered by inclusion. Application 

of Zorn's lemma gives that there exists a maximal element M in S. Now 

e: = sup M i s a weak order unit of E, because eix for some x * 0 would 

imply that S could be enlarged with |x|, contradiction. 

3.19. Definition. A Riesz space which is Dedekind complete and at the same 

time lateral complete is called universally complete or inextensible. 

Universally complete Riesz spaces are very important in Riesz space theory; 

every Archimedean Riesz space admits a unique universal completion (cf. e.g. 

Conrad [ 1971] ). 

4. Linear operators 

In this section, E and F are arbirary Riesz spaces. The zero operator 

from E to F will be denoted by 0. The identity operator on E will be 

denoted by I^, or simply by I. For a linear operator T from E to F the 

nullspace N(T) is defined by N(T) = {x e E; Tx = 0}. A linear operator 

T from E to F is called positive, in formula T > 0, if T(E+) c F+ . 

By £(E,F) we denote the linear space of all linear operators 

from E to F, provided with the partial ordering S < T if and only if 

T - S > 0, the socalled operator ordering. 

In the case E = F the space £(E,F) can be given moreover an algebra 

structure by composition. In that case £(E,F) is a partially ordered 

algebra, i.e. an algebra which is at the same time a partially ordered 

linear space, such that the product of two positive elements is posi-

13 



five again. A linear operator T e £(E,F) is called a Jordan operator 

if T is the difference of two positive linear operators. The class 

£ (E,F)of Jordan operators is a linear subspace of £(E,F). £ (E,F) is a 

partially ordered linear space under the operator ordering and in the 

case E = F a partially ordered algebra. A linear operator T from E to 

F is called order bounded if the image of every order bounded subset 

of E under T is an order bounded subset of F. Also the class £ (E,F) of 

all order bounded linear operators is a linear subspace of £(E,F) and a 

partially ordered linear space under the operator ordering and in the 

case E = F a partially ordered algebra under composition. 

4.1. Lemma. A mapping t from E to Y which satisfies 

(&) t(x + y) = t(x) + t(y) for all x, y e E+ 

(b) t(Ax) = At(x) for all'x e E and X > 0 admits a unique extension to 

a linear operator T from E to F. If moreover the range of t is con

tained in F , then T is positive. 

Proof: Let T: E -*- F be defined by Tx = t(x+) - t(x"), then T is a linear 

operator, which is an extension of t. If s is another linear operator which 

is an extension of t, then sx = sx - sx = t(x ) - t(x~) = Tx, hence S = T. 

If t(E+) c F+ then T(E+) c F+, hence T is positive. 

4.2. Theorem, (cf. e.g. Schaefer [1974, IV prop. 1.2 ]). For a linear 
operator T from a Riesz space E to a Riesz space F for the assertions 

(a) J exists in £(E,F) 

(b) T is a Jordan operator 

(c) T is order bounded 

holds that (a) =* (b), (b) => (c). In the case F is Dedekind complete all 

assertions are equivalent. 

4.3. Theorem. (Riesz-Kantorovic, cf. e.g. Schaefer [ 1974, IV prop. 1.3 ] ) . 

If E and F are Riesz spaces and F is Dedekind complete, then £ fE,F) is 

a Dedekind complete Riesz space, in which sup T /orTc£ (E,F) such that 

T < is given by (sup T)(x) = sup { T ^ + ... + T ^ ; {Ty ... , Tp} finite 

subset of T, x,, ... , x > 0-and x = x, + ... + xn) (x > 0) 
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Krengel [ 1963 ] gives an example of a Jordan operator T from C [ -1, 1 ] 
to C[-l,l ] for which T does not exist. No answer seems to have been 
given in the literature to the question whether PP for F is already 
sufficient to garantee that £ (E,F) is a Riesz space. 
The following example shows that PP is not sufficient. 

4.4. Example. If E is the Riesz subspace of s generated by e = (1,1,1,...) 
and cQ 0, then E, with the Riesz space structure induced by s, is an 
Archimedean Riesz space, namely the Riesz space of all eventually constant 
real sequences. Note that e is a strong order unit of E. 
If for all m e IN the element e of E is defined by e (n) = & for all 

m J nr ' m,n 

n e w (where S is the Kronecker function), then the elements e,e,,e?)... 
form a basis B of E. Let a linear operator T from E to'FR be given by 
Te = 0, Te, = e, and Te = - e r e , for all n > 2 . 

1 1 n n n n-1 n-1 

For an element y e FR we write y or (y) in stead of y(n) (n e IN). 
Let 0 < x e E be arbitrary, say 

CO 

x = Ae + 2 x.e., then A > 0 and A. >-X for all i e IM; almost 
i=l n n 1 

all A. are equal to 0. 

T is a Jordan operator, because T = I - ( i - T ) , where I is the canonical 
embedding operator from E into FR, and I-T is positive because 

00 00 oo A . A . 

(I -T)x = Ae + 2 x.e. - s A, Te, = Ae + s (x.e. + — e. , - y 1 e ,), 
i=2 n n i=2 1 n i=2 ! n i-1 1_i n n 

so for n e II we have ((I - T)x)n = A + \(^-) + Xn+1(£) > A - A ( ^ ) - A(±) = 0. 

Suppose T + exists in £ (E,FR), then for all n e u we have T en > (Ten) = - e n , 

hence (T+e ) > - 6n m for all m e IN. v n'm n n,m 

n v n' n n' 

If for certain pair (N,M) e IN x IN holds that H * M and ( T e ) > 0, then 
let S e £J(E,FR) be defined by (Se) = (T+e) for all m * M, 

rn m 
(se)M = (T+e)M - (T + e N ) M , (sen)m = (T + e n ) m for all (n,m) e u x « such that 
(n,m) * (N,M) and (SeN)M = 0. 
S > 0 because for all m * M we have (Sx) = (T x)„ > 0 and 

x 'm v 'm 
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(sx)M = A(Se)M + ^ X ^ S e ^ = A(Se)M + ^ A ^ s e ^ + XN(seN)M 

on 00 

<T+e>M - X ( T \ > M + ^ V T + e i>M = (T+(Ae - . ^ XTT+ei - ^ » M * ° = X( 
'M ' H ' M 

S > T because for all m * M we have (Sx)m = (T x ) m > (Tx)m and 

(sx)M= x ( s e ) M + ^ xi(sei)M = A(se)M+ X M ( s e M ) M + .^ xi(sei)M 

i*M 
CO 

= M s e M ) M + X(S(e - e M ) ) M + XM(seM)M + ^ Xi(Sei)M > X(SeM)M + XM(SeM)M > 

i^M > - y i + v = 
M M v 'M 

S < T + because for m * M we have (Sx)m = (T x ) m and 
oo ó> 

(SX)M = x<Se>M + .x=l M
S e i ) M = x(T+e>M - x < T + e A + ^ M S e i ) M

 + V S e A 
i*N 

X(T+e)M- X ^ e ^ + ^ X ^ T + e . ^ 

-U 

î N 

s < T+, because 0 = (SeH)M < (T+eN)M. 
It follows that for all n,m e fi that (T+e ) = 0 if n * m. 

+ n mi l 

If for certain K e fi we have that (T eR) > ±, then let R e £J(E,FR) be 
such that (Re)n = (T+e)n for n * K, (ReL. = i , Re„ = T+e„ for all n * K 

1 n n iv is. n n 
and ̂ K = K V 
R > 0, because (Rx) = (T x) for all n * K and 
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( R X ) K = X(Re)K + ^ X . (He. )K = X(Re)K + ^ X . (He. )K + XK(ReK)R 

= *(*>K
 + j j VT+en>K + V R e A = ïï + r > è - I - °-

i#K 

oo 

R> T because (Rx)n = (T+x)n > (Tx)n for n * K and (Rx)R-= X(Re)K + s ^ ( R e ^ 

co 

X(ReK)K + X(R(e - e R )) K + ̂  X. (Re. ) R + XK(ReK)K> X(ReR)K + XK(ReR)K > 

co 

R < T+ because (Rx)n = (T+x)n for all n * K and (Rx)R = X(Re)R + _2 Xi(Rei)K = 

^ + r < ( X + XK)(T+eK)K< 
co 

X(T+eK)K + X(T+(e - e K )) K + XK(T+eK)K + ^ X^\)K = 

co co 

X(r\)K + X(T+(e - e K )) K + £ X . ( ? +
e . ) K - X(T+e)K + ̂  x.(T+

e.)K = (T+x)K 

R < ï+ because i = (ReK)K < ( T + e K ) r 

It follows that (T+eJ = ̂  for all n e u . v n n n 

If for certain p e M w e have (T+e)p > (T+ep)p, then letw e £ (E,FR) be such 

that (We)n = (T+e)n for all n * p, (we) = \ and Wep = T+en for all n e w . 
CO 

W > 0 because for n i= p we have (Wx) = X(we) + s A. (We.) = 
CO CO 

(T +x) n > 0 and (wx)p = X(we)p + _ï X . f w e ^ = £ + s X . ( T + e . ) p = 

£ + M T V p = F + r>0 ' 
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W > T because (Wx) = (T+x) > (T-x) for all n * p and 

(Wx)p = x(We)p + 2 A ^ W e . ^ = | + / > F+i
 p

 P = (Tx) 

w < T + because (Wx)„ = (T+x)n for n # p and (Wx)„ = X(We)„ + 2 A.(We. 

oo oo 

= A + 2 \(T+e.)F < A(T+e)p + 2 X.(T+e.)p = (T+x)p. 

w < T + because ̂  = (We)p < (T+e)p. 

It follows that (T+e) = - for all n e]N, but this is in contradiction 
n n+ + 

with the finite range of T e, hence T does not exist. 

Note that FR is not Dedekind complete, but FR has PP (Aliprantis and 

Burkinshaw [ 1978, Ex. 2.13 (3) ]). 
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Chapter II 

SOME TYPES OF CONVERGENCE 

In this chapter three types of convergence are given; some attention is 

paid to the relations between them and finally continuity of linear 

operators with respect to these types of convergence is defined. 

5. Sequences in Riesz spaces 

In this section E is an arbitrary Riesz space. 

A sequence in E is a mapping f from IN to E. A sequence f in E is called 

increasing, in formula tf, if f(n) < f(n+l) holds for all n G IN , and 

decreasing, in formula 4if, if f(n) > f(n + 1) holds for all n e H . 
We write ftx if tf and sup f(N) = x, fl-y if if and inf f(!N) = y. 

The class of all sequences in E is denoted by seq(E). On seq(E) we define 

a linear structure by (f+g)(n) = f(n) + g(n), (Af)(n) = Af(n) for all n e IN, 

if X e F and f,g G seq(E). 

A partial ordering on seq(E) is defined by f < g if and only if f(n) < g(n) 

for all n e IN. (seq(E), < ) is a Riesz space in which (fvg)(n) = f(n)Vg(n) 

for all n e ]N. 

In the sequel (seq(E), < ) is abbreviated to seq(E). 

For x e E and f G seq(E) we define x + f G seq(E) by (x+f)(n) = x + f(n) 

for all n e IN . 

The sequence in E with range {0} is denoted by 0. 

For f G seq(E) and n G ]N we write occasionally f or (f) instead of f(n). 

If f is a sequence in E and a: IN ̂  IN is a strictly increasing function, 

then the sequence f°c is called a subsequence of f. 

By n(E) we denote the power set of E, i.e. the set {X; X c E}. 

6. Order convergence 

The first type of convergence we discuss is order convergence. 

In this section E is an arbitrary Riesz space. 
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We define a mapping °L, called order limit, from seq(E) to n(E) which 
assigns to f e seq(E) the element of n(E) consisting of all x e E such 
that there exists a g e seq(E) with the property that |f - x| < g and 
g;o. 

In the case °Lf i=<t>, it is well known (cf. e.g. Luxemburg and Zaanen 
[1971, thm 16.1 (i) ]) that there exists exactly one x e E such that 

Lf = {x}. In that case f is called order convergent, or more precisely, 

order convergent to x, and we write Lf = x. 

6.1. Theorem (compare Luxemburg and Zaanen [1971, thm 16.1 ] ) . 
For f,g e seq(E) and x,y e E, A,y e R it holds that 
(a) if ftx or f4-x then Lf = x 

(b) if t'f or 4-f and Lf = x then ftx or f4-x respectively 

(c) if °Lf = x and °Lg = y, then °L(Af + yg) = Ax + yy 
(d) if °Lf = x and °Lg = y then °L(fVg) = xVy and °L(fAg) = xAy 
(e) if f' is a subsequence of f and Lf = x then Lf' = x 

(f) if 0 < f < g and °Lg = 0 then °Lf = 0 

From this theorem it follows that the class of all order convergent 
sequences is a Riesz subspace of seq(E),and the class of all sequences 
order convergent to 0 is an ideal of seq(E). 

6.2. Theorem (compare Luxemburg and Zaanen [1971, sxc. 16.10 ]) 
For a Riesz space E the following assertions are equivalent 

(a) E is Archimedean 

(b) if for x e E, A e R, f e seq(E) and a e seq(R) holds that °Lf = x and 
°La = A, then °L(af) = Ax. 

Proof: (a) -*• (b) : There exists a sequence g in E such that |f - x[ < g 

and g4-0. If aQ = sup |a(W)|, then we have for all n e 1*4 that 

0 < |a(n)f(n) - Ax| < |a(n)f(n) - a(n)x| + |a(n)x -Ax|. 
Further it holds that |af - ax| < aQg and acg4-0, hence by thm 6.1 (f) it 
follows that °L(|af - ax|) = 0. 
We also have that L(|ax - Ax|) = 0. 
By thm 6.1 (c) it follows now that °L(|af - ax| + |ax - Ax|) = 0. One more 

application of thm 6.1 (f) gives °L(|af - Ax|) = 0, hence °L(af) = Ax. 
(b) -* (a): Suppose nx < y for certain x,y e E and all n e |J. If f,g e seq(E) 
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and a e seqQR) are such that f(n) = x, g(n) = y and a(n) = — for all 
n e u , then °La = 0, hence °L(ag) = Oy = 0. 
From 0 < f < ag it follows now by thm 6.1(f) that Lf = 0, hence x = 0. 

7. Regulator convergence 

In this section E is an arbitrary Riesz space. We define a mapping L, 
called regulator limit, from the Cartesian product seq(E) x E to 11(E) 
which assigns to (f,u) e seq(E) x E the element of 11(E) consisting of 
all x e E such that for all e > 0 there exists an N e IN such that 
|f(n) - x| < eu holds for all n > N . 

L(f,u) is called the regulator limit of f with respect to regulator u. 
For u{rL(f,u); u e E+} we write rLf. 
If for some pair (f,u) e seq(E) x E there is anx e E such that 

Y* Y* 

{x} = L(f,u), then we write x = L(f,u). 
f e seq(E) is called regulator convergent if Lf * $ . 
It follows directly from the definitions that for all u e E holds that 
L(0,u) = IS(u). If u is a strong order unit of E, then L(0,u) = IS(E), 

because if n|x| < y for some x e E, y e E and all n e j|, and m e IN is 
such that y < mu, then n|x| < mu for ail n G IN, hence n|x| < u for ail 
n e | , so x e IS(u). Hence, IS(u) = IS(E). 

7.1. Theorem (compare Luxemburg and Zaanen [1971, thm 16.2 (ii) ]) 

If x and y are elements of a Riesz space E and if f ,g e seq(E) such that 

x € Lf and y £ Lg., then 
(a) Ax + uy e rL(Af + yg) for all A,y G M. 
(b) xVy e rL(fVg) and xAy € rL(fAg) 

r r 

(a) if f' is a subsequence of f and Lf = x then Lf' = x 

(d) if 0 < f < g and 0 € rLg then 0 G rLf. 
From this theorem it follows that the class of all regulator convergent 
sequences is a Riesz subspace of seq(E) and the class of all sequences 
which are regulator convergent to 0, is an ideal of seq(E). 

+ r 

7.2. Proposition, !ƒ x e E, u e E and f e seq(E) such that x e L(f,u) 
then rL(f,u) = x + IS(u). 
Proof: if z e IS(u), then by definition n|z| < u for all n e u . 
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x G rL(f,u), hence for all e > 0 there exists anw G IN such that 

|f(n) - x| < EU holds for all n > N . If e > 0 then for all n e IN such 
1 that n > max (N 1 , entier (•*-)) we have that 

|f(n) - (x + z)| < |f(n) - x| + |z| < Jeu + leu = eu, hence x + z e rL(f,u). 

Conversely, if y G L(f,u), then for all e > 0 there exists anM G IN such 

that |f(n) - y| < eu holds for all n > M . 

Let e > 0. For all n > max (Nj , Mt ) we have that 

|x - y| < |f(n) - x| + |f(n) - y| < Jeu + Jeu = eu, hence x - y G L(0,U) = 

IS(u). 

7.3. Example. If E = (F , lex), u = (0,1) and f G seq(E) is such that 

f(n) = (0»i) for all n e IN, then rL(f,u) = {0} because 0 G rL(f,u) and 

IS(u) = {0}. However IS(E) = {(0,A); XG]R}. 

Note that rL(f,(l,l)) = IS(E) because (1,1) is a strong order unit of E. 

7.4. Proposition. If x G E and f G seq(E) such that x 6 rLf, ifosn 
rLf = x + IS(E). 

Proof: if z e IS(E), then there exists a y e E such that n|z| < y holds 

for all n e IN. x e rLf implies that there exists a u e E such that for 

all e > 0 there exists anN e ]N such that |f(n) - x| < eu holds for all 

n > N . If e > 0 then for all n > N we have that 
e e 

|f(n) - (x + z)| < |f(n) - x| + |z| < eu + ey = e(u + y ) , hence 
x + z G ri.f. 

r r 
Conversely, if y s Lf, then by thm 7.1.(a) we have x - y e L0, hence 
x - y e IS(E). 

7.5. Theorem. A Riesz space E is Archimedean if and only if for X G E 
r r 

and f e seq(E) it follows from x G Lf that x = Lf. 

Proof: -> if x,y e rLf, then x - y e rL0 = IS(E) = {0}, hence x = y. 

+• 0 e rL0, hence {0} = rL0 = 0 + IS(E) = IS(E) by prop. 7.4. 

7.6. Theorem (cf. e.g. Luxemburg and Zaanen [1971, thm 16.2 (i) ] ) . 
V» 

In an Archimedean Riesz space E it follows from X= Lf for xG Land 

f G seq (E) that x = °Lf. 

+ r 
If E is an Archimedean Riesz space and f G seq(E), u, v G E , then L(f,u) 

can be different from rL(f,v) if u * v. A simple example to demonstrate 
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this is E = F, f(n) = ̂  for all n e U , u = 1, v = 0, then rL(f,u) = 0 , 
r n 

however L(f,v) = 0. 

Note that in any Riesz space E we have L(f,0) + 0 for f e seq(E) if 

and only if f is eventually constant in E. 

7.7. Definition (cf. e.g. Luxemburg and Zaanen [ 1971, def. 39.1, def. 

39.3 and def. 42.1 ] ). 

If u G E and f e seq(E) such that for all e > 0 there exists an N efj 

suah that for all n,m > N holds that |f(m) - f(n)| < eu, t/zew f -is called 

a U-Cauchy sequence in E. 

f £ se.q(E) is called a regulator Cauchy sequence in £ if f is a u-Cauchy 

sequence in E for some u e E . 

E is called u-completeif for every u-Cauchy sequence f in £ holds that 

L(f,u) =£0. E is called regulator complete if E is U-complete for every 

ueE+. 

7.8. Theorem (cf. Luxemburg and Zaanen [1971, p. 281 (ii)]). 

For every Riesz space E the following assertions are equivalent 

(a) E is Dedekind o-complete 

(b) E has PPP and E is regulator complete. 

7.9. Theorem (cf. Luxemburg and Zaanen [1971, p. 281 (ii) ] ) . 

For every Riesz space E the following assertions are equivalent 

(a) E is dedekind complete 

(b) E has PP and E is regulator complete. 

7.10. Theorem (cf. Luxemburg and Zaanen [1971, thm 43.1 ] ). 

The Riesz space C(X) is regulator complete for any topological space X. 

8. Characteristic convergence 

The third notion of convergence we define here is the notion of character

istic convergence, which seems to be new. In this section E is an arbitrary 

Riesz space. 

23 



Let CL be the mapping, called characteristic limit, from seq(E) to n(E), 
which assigns to f e seq(E) the element of n(E) consisting of all x e E 
such that there exists a (countable) subset {P ; n e H } of the Boolean 
algebra J>(E) of all polars of E such that f(n) - x e p for all n e IN , 
P 1 c p for all n e IN and n {p ; n e n } = {o}, f is called character
istic convergent if cLf f <t>. If cLf = {x} for some x e E then we shall 
write Lf = x. 

8.1. Lemma, If {P ; n e IN } and {Q ; n e M } are (countable) subsets of 

P(E) such that Pn+1 c P^, Q n + 1 c Q^ for all n e n and n {Pp; n e IN } 
= n {Pn; n e H } = n {Qn; n e IN } = {0}, then n {(Pn + Qn)1-L ; n e IN } = {0}. 
Proof: We shall denote suprema and infima in p(E) by V and A respectively. 
Now we have for P, Q e P(E) that PAQ = P n Q, PVQ = (P u Q ) 1 1 = (P + Q ) 1 1 

(cf. e.g. Bernau [1965 a, proof of thm 1 ] ). 

Let N e IN . It follows from Bigard, Keime! and Wolfenstein [1977, prop. 
3.2.16 ] that n {(Pn + Q n ) i i ; n e fl } = n {(Pn + Q J 1 1 ; n e IN , n > N } 
C n {(PN + Q n ) U ; n e W } = A { P N V Q n ; n £ W } = V ( A { Q n ; n e W D 
= PjjV{0} = P I t follows that n {(Pn + Qn) i i ; n e N}c n {p^; N e fl } = {0}, 
hence n {(Pn + Q n ) i i ; n e ]N } = {0}. 

8.2. Theorem, !ƒ f e seq(E) -is characteristic convergent then Lf = x /or 
some x G E. 
Proof: Suppose x, y e Lf, then there exist (countable) subsets 
{Pp; n e H } and {Qn; n e j \ } of f(E) such that f(n) - x e Pn> f(n) - y e Qn, 
Pn+1 C Pn and Qn+1 c Qn

 for a11 n e IN and n {p^; n e H } = n {Qn; n e H } 
= {0}. Now we have x - y = f(n) - y - (f(n) - x) e Pn + Qn c (P + Q J11 

for all n e n . From the foregoing lemma it follows that x = y. 

8.3. Theorem. If x, y e E and f, g e seq(E) are such that x = Lf and 
y = cLg, then 

(a) cL(Xf + ug) = Xx + yy 

(b) cL(fVg) = xVy and CL(fAg) = xAy 
(c) x = Lf' for every subsequence f' o/ f. 

(d) cLg = 0 if 0 < g < f and CLf = 0. 
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Proof: Let {P ; n e IN } be a (countable) subset ofP(E) such that 
f(n) - x e Pn, g(n) - y e Qn> Pn + 1 c Pn and Q n + 1 c Qn for all n e N , 
n {Pn; n e w } = n {Qn; n e IN } = {0}. 

(a) |Xf + yg - (Xx + yy)| < |X(f - x) | + |y(g - y ) | , hence for all n e H 
|Xf(n) + yg(n) - (Xx + yy)| e Pp + Qn c (Pn + Q ^ 1 1 . From (Pn+1 + Q n + 1 ) u 

c (Pn + Qn)iJ- for all n e IN and lemma 8.1 it follows that cL(Xf + yg) 
= Xx + yy 

(b) From Birkhoff's identity (thru 3.3 (i)) and (a) it follows that for 

all n e IN we have |(f(n) - g(n))+ - (x - y ) + | < |f(n) - g(n) - (x - y) | 
G (Pn + \ ^ ' nence °L^ ~ 9)+ = (x " y) + - 0ne more application of 
(a) gives cL((f - g) + g) = (x - y) + y, hence cL(fVg) = xVy. 
cL(fAg) = xAy follows similarly. 

(a) If a: H •* H is a strictly increasing function, then n {P . .; n € N } 
= {0}' Pa(n+1) C Pa(n) for a11 n e ^ and (f»a)(n) - x e Pa ( n ) for all 
n e IN , hence cL(f°a) = x. 

(d) For all n e IN we have 0 < g(n) < f(n) e P , hence cLg = 0. 

It follows from this theorem that the class of all characteristic con
vergent sequences in E is a Riesz subspace of seq(E), moreover the class 
of all sequences which are characteristic convergent to 0 is an ideal of 
seq(E). 

9. Comparison of convergences of sequences 

In this section we compare the foregoing three types of convergence. 

In this section E is an arbitrary Riesz space. 

The relation between order convergence and regulator convergence for 
sequences has been studied in Luxemburg and Zaanen [1971, §16 ] . 
Their main results are the following. 

9.1. Definition. A Riesz apace E is called order convergence stable if 

for any f e seq(E) with flO there exists a 0 < a e seq(R)3 such that 

ta, {a(n); n e W is not majorized and L(af) = 0. 
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9.2. Theorem. An Archimedean Riesz space E is order convergence stable 

if and only if every order convergent sequence in E is also regulator 

convergent. 

9.3. Theorem. Every regulator convergent sequence f in an Archimedean 
r o 

Riesz space E is also order convergent, moreover Lf = Lf. 

9.4. Example. The condition that E is Archimedean cannot be omitted 

in the foregoing theorem, because in example 7.3 we have L(f,u) = IS(E) 

for some f e seq(E) and u e E , while IS(E) is not a singleton. 

9.5. Theorem. If for f e seq(E) and x,y e E holds that Lf = x 

and Lf = y then x = y. 

Proof: It is sufficient to show that if cLf = 0 and °Lf = x then x = 0. 

There exists a g e seq(E) such that |f - x| < g and gJ-0, hence 

f(n) e [x - g(n), x + g(n) ] for all n efli. 

For a l l n e IN we have [x - g(n + 1 ) , x + g(n + 1) ]. c [ x - g (n) , x + g(n)] 

and n [ x - g (n) , x + g(n) ] = { x } . 

On the other hand f(n) e p with P e D(E) such that P ±1 c P for all v ' n n • v ' n+1 n 
n e h and n{Pn; n G IN} = {0}. 

It follows now that x = 0. 

9.6. Example. Not every characteristic convergent sequence f in a Riesz 

space E is automatically order convergent. If E = C[0,1 ] and f e seq(E) 

is such that (f(n))(t) = -n2t + n if t e [0,n_1 ] and (f(n))(t) = 0 if 

t e [n_1,l ] for all n e l , then n{f( n ) i i ; n e JO = {0}, f(n) e f ( n ) U 

and f(n + l ) 1 1 c f(n)11 for all n e IN, hence cLf = 0. 

But Lf = 0 because (f(n); n e IM} is not bounded. 

Next we show that regulator convergence and characteristic convergence 

do not imply each other. 

If in an arbitrary Archimedean Riesz space E * {0} we have x > 0, then 

the sequence f in E with f(n) = n x for all n e IN is regulator conver

gent to {0} (regulator x). 

Suppose that f is characteristic convergent, then f is characteristic 

convergent to {0} by thms 9.3 and 9.5. 

However, f(n) = (— x) = x for all n e IN, hence f is not characteris

tic convergent to {0}, contradiction. 
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Conversely, if E is the (Dedekind complete) Riesz space of all sequences 

x of real numbers with componentwise linear operations and componentwise 

partial ordering, such that |x| is bounded by a real multiple of 

r = (1,2,3,...) and f is the sequence in E such that 

f(n) = (1,2,3,..,n,0,0,0,..) for all n e]\|, then, if g = f - r, we have 

f(n) - r e g(n)iJ-, g(n + 1 ) U c g ( n ) U for all n,£K and 

n{g(n) n ; n e IN} = {0}, hence cLf = r. 

Suppose f is regulator convergent, then Lf = r by thms 9.3 and 9.5. 

If u is the corresponding regulator, say u < Ar, then certainly Ar is 

regulator, but then also r is regulator. 

It follows that for all e > 0 there exists a H e fi such that for all 

n > N £ it holds that |f(n) - r| < er; however, if we take e=i, then 

there does not exist a n e u such that for all n > N holds that 

|f(n) - r\ < |r, because this would imply that f(n) > |r for n > N, 

contradiction. 

Hence, f is not regulator convergent. 

From the foregoing it follows that order convergence does not imply 

characteristic convergence. 

10. Some notions of ideals 

In the sequel we need some carefully chosen notions of ideals, which are 

defined below. 

In this section E is an arbitrary Riesz space. 

For an element x e E we write I = {y e E; |y| < Ax for some A e R } 

(sect. 3). 

10.1. Definition. A d—ideal of a Riesz spaoe E is an ideal J of E with the 

property that x = y and xe J; y e E imply y G J. 

The notion of d-ideal seems to have been introduced by Ball [1975 ] under 

the name full convex Jl-subgroup. 
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10.2. Proposition, (cf. Ball [1975, thm 1.1 (ii)] ) An ideal J of a Riesz 

space E is a d-ideal if and only if x c J for every x e J. 

10.3. Proposition. Every band B of a Riesz space E is a d-ideal. 

Proof: if x e B, y e E and x = y , then by Luxemburg and Zaanen 

[1971, thm 24.7 (ii)] it holds that |y| = sup{|y| A n|x|; n G M }. For all 

n e Uwe have |y| A n|x| e B, hence also |y| e B, so y e B. 

10.4. Example. Not every d-ideal of a Riesz space is a band. Let E be the 

Archimedean Riesz space of all continuous functions x on a locally compact 

Hausdorff space S, which is not compact. If J is the ideal of E consisting 

of all x e E which have a compact support, then J is a d-ideal of E, 

because if y e x for x e J, then the support of y is contained in the 

support of x, hence is compact. But J is not a band because J is not a 

polar, for J = E and J f E. 

10.5. Definition. An ideal J of a Riesz space E is called 

(a) an o-ideal if for all 0 < x G J holds that y e J whenever y e Lf 

for some 0 < f £ seq(I ) such that +f. 
x

 r 

(b) a r-ideal if for all 0 < x e J holds that y e J whenever y e Lf 
for some 0 < f e seq(I ) such that tf. 

r 
(a) a c-ideal if for all 0 < * e J holds that y e J whenever y e Lf for 

some 0 < f £ seq(I ) such that tf. 

o r c x 

( L, L and L are taken in E) . 
We note that there is a close relation between r-ideals defined here, and 

z-ideals, which are defined by Huijsmans and De Pagter [1980 ] . 

10.6. Proposition. Every d-ideal J of a Riesz space E is an o-ideal. 

Proof: if 0 < x e J, 0 < f e seq(I ) , +f and y = °Lf, then it follows 

from thm 6.1(b) that f + y. For all n e H we have that f(n) e I c x1 1. 
il 11 

From x is a band it follows now that y e x , hence y e J. 

A detailed discussion of the mutual connections between o-ideals, 

r-ideals and c-ideals is planned for the near future. 
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11. Continuity of linear operators 

In this section we study continuity of linear operators with respect to 

the three types of convergence defined above. E and F are arbitrary 

Riesz spaces in this section. Every linear operator T from E to F induces 

a linear operator, also denoted by T, form seq(E) to seq(F) by (Tf)(n) 

= T(f(n)) for all n e n . 

11.1. Definition. A linear operator T from E to F is called 

(a) (sequentially) order continuous (or an integral operator) if for 

every f G seq(E) holds that °L(Tf.) = 0 whenever °Lf = 0. 

(b) (sequentially) regulator continuous if for every f e seq(E) holds 

that rL(Tf) = IS(F) whenever rLf = IS(E). 

(a) (sequentially) characteristic continuous if for every f G seq(E) 

holds that CL(Tf) = 0 whenever cLf = 0. 

11.2. Example. Not every positive linear operator T from a Riesz space 

E to a Riesz space F is order continuous, becuase if T is the linear 

operator from C [0,1 ] to R which assigns to x the value x(0), then T 

is positive, however, if f e seq(C [0, 1 ] ) is such that for all n e W 

we have (f(n))(t) = 0 if t e [ n_1,l ] and (f(n))(t) = 1 - nt if 

t e [0,n_1] , then f 4- 0, hence °Lf = 0. However, °L(Tf) = 1 because 

(Tf)(n) = 1 for all n e ]N . 

11.3. Theorem, (compare Vulikh [1967, thm VIII 1.2 ] ) . Every Jordan 

operator T from a Riesz space E to a Riesz space F is regulator con

tinuous . 

Proof: It is sufficient to give a proof for positive T only. 

If rLf = IS(E) then 0 e rLf, hence there exists a u G E+ such that for 

all e > 0 there exists a N e IN such that for all n > w holds that 
e e 

|f(n)| < eu. But then also |Tf(n)| < T|f(n)| < eTu holds for all n > N , 

hence 0 e rL(Tf,Tu) c ri_(Tf). By prop. 7.4 we have now that rL(Tf) = IS(F). 

11.4. Example. Not every positive linear operator T from a Riesz space E 

to a Riesz space F is characteristic continuous, because if T is the 

canonical embedding operator from C [0,1 ] into the Riesz space F of 

all real functions on [0,1 ] , then T is a positive linear operator. 
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If f e seq(E) is such that for all n e N and t e [ 0,1 ] we have 

(f(n))(t) = 0 if t e [n_1,l ] and (f(n))(t) = -nt + 1 if t e [0,n_1 ] , 

then cLf = 0, because f(n) e f ( n ) U for all n e IN , f(n+l)ii c f(n)ii 

for all n e M and n {f(n)11 ; n e H } = {0}. But (Tf(n))11 D X U for 

all n e j) where x e F is such that x(0) = 1 and x(t) = 0 for t e (0,1 ] , 

hence CI-(Tf) f 0. 

It may be questioned whether every integral operator is order bounded. 

For a rather extensive class of integral operators (not exhaustive) this 

question is answered by Peressini [1967, prop. I. 5.15, prop. I. 5.13b ] , 

where it is proved that every integral operator from an Archimedean Riesz 

space to an Archimedean countably bounded Riesz space is order bounded. 

11.5. Example. Not every positive linear operator T from a Riesz space 

E to a Riesz space F is an integral operator. Let E = C [0,1 ] , F = F , 

T: E •+ F such that Tx = x(0), then T is a positive linear operator. If 

f e seq(E) is such that for all n e M we have (f(n))(t) = 0 if 

t e [ n_1,l ] and (f(n))(t) = 1 - nt if t e [ 0,n_1 ] , then °Lf = 0, but 

Tf(n) = 1 for all n e n , hence °i-(Tf) = 1. 

11.6. Theorem. If E and F are Archimedean Riesz spaces and E is order 

convergence stable, then every order bounded linear operator T from E 

to F is an integral operator. 

Proof: If for f e seq(E) holds that °Lf = 0, then there exists a 

g e seq(E) such that |f| < g and g + 0. E is order convergence stable, 

hence there exists a 0 < a e seq(R) such that ta, (a(n); n e K } is 

not majorized and °i.(ag) = 0. The latter implies the existence of x e E 

such that |ag| < x. Now we have that i'a(n) f(n); n e M } is order bounded, 

because -x < -ag < af < ag < x. But then also T({a(n) f(n); n e K } is 

order bounded in F, say -y < T(a(n) f(n)) < y for all n e n . It follows 

that |T(f(n))| < (a(n))-1y for all n e H such that a(n) f 0. Since F is 

Archimedean, we have °i-(Tf) = 0 by thm 6.2 (b). 

11.7. Example. If an Archimedean Riesz space E has the property that 

every order bounded linear operator T from E to an arbitrary Archimedean 

Riesz space F is an integral operator, then E is not necessary order 

convergence stable, even if E is universally complete. 
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To demonstrate this we use a Riesz space which appears in Tucker [ 1974 ] . 

If E is the Riesz space (with pointwise linear operations and pointwise 

ordering) of all realvalued functions on the set S of all 0 < a G seq(R ) 

such that fa, a(l) > 0 and {a(n); n e M } is not majorized, then E is 

universally complete. It follows from Fremlin [1975, cor. 1.13 ] that 

every order bounded linear operator from E to an arbitrary Archimedean 

Riesz space F is an integral operator. However, E is not order conver

gence stable, because, if f G seq(E) is such that (f(n))(a) = (a(n)) , 

then f 4- 0 because inf{(f(n))(a) ; n G fi } = 0 for alla e S, as 

(f(n))(a) = (a(n))"1 for all n e IN. But if 0 < a, fa, a(l) > 0 and 

{a(n); n e K } is not majorized, then for all n e IN we have that 

a(n)(f(n))(a) = 1, hence L(af) f 0. This implies that E is not order 

convergence stable. 
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Chapter III 
DISJUNCTIVE LINEAR OPERATORS 

In this chapter we study disjunctive linear operators, especially ortho-
morphisms and disjunctive linear functionals. Further we give some 
examples of unbounded orthomorphisms. 

12. Orthomorphisms. 

A notion of rather recent origin is the notion of disjunctive linear 
operator. The study of some special types of disjunctive linear operators 
such as Riesz homomorphisms, is much older. 

12.1. Definition, (cf. Cristescu [1976, p. 186 ] ). A linear operator T 
from a Riesz space E to a Riesz space F is called a disjunctive linear 

operator if for all x, y e E holds that Tx 1 Ty whenever x 1 y. 

12.2. Theorem. For a linear operator T from a Riesz space E to a Riesz 

space F the following assertions are equivalent 

(a) T is a disjunctive linear operator 

(b) |T|x|[ = |Tx| for all x e E 
Proof: (a) •* (b): x 1 x , so Tx 1 Tx . Now |TX| = |TX - Tx | 
= |Tx+ + Tx"| = |T|X|| by thm 3.3 (h). 

(b) -> (a): if x l y then |x| A |y| = 0. Now |T|X| - T|y| | = |T( | |x| - |y| | 
= |T(|x| - | y | ) + + T(|x| - |y|)"| = |T|X| + T|y||, because (|x| - | y | ) + 

= |x| and (|x| - |y|)" = |y| by thm 3.3 (g). By thm 3.3 (h) we have 
Tjx| i T|y|, hence |T|X|| I JT|y||, so |TX| l |Ty|, consequently Tx l Ty. 

The most important disjunctive linear operators are the positive ones, 
called Riesz homomorphisms. A bijective Riesz homomorphism is called 
a Riesz isomorphism; a Riesz space E is called Riesz isomorphic to a 
Rieszspace F if there exists a Riesz isomorphism from E to F. 

With the aid of Riesz homomorphisms factor spaces of Riesz spaces can 
be defined, which are Riesz spaces themselves (cf. e.g. Luxemburg and 
Zaanen [1971, §18 ] ) . This is a consequence of the preservation of the 
lattice operations by a Riesz homomorphism, a fact which is stated below. 
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12.3. Theorem. For a linear operator T from a Riesz space E to a Riesz 

apace F the following assertions are equivalent 

(a) T is a Riesz homomorphism 

(b) T(xVy) = TxVTy for a l l x, y e E 
(c) T(xAy) = TxATy for a l l x, y 6 E 
(d) |Tx| = T|x| for a l l x e E. 

(compare Schaefer [1974, II, prop. 2.5 ] where similar statements are 

proved; Riesz homomorphism are called lattice homomorphisms there). 

There exists an important relation between real valued Riesz homomorphisms 
on a Riesz space E and maximal ideals of E. This relationship is expressed 
in the following theorem. 

12.4. Theorem, (compare e.g. Luxemburg and Zaanen [1971, thm 27.3 (i) ] 
and Schaefer [ 1974, cor. of II. prop. 3.4 ] ). If <$> i s a r e a l v a l u e d R i e s z 
homomorphism on a Riesz space E, then the nullspace N((f>) of § is a maxi

mal ideal of E. If M is a maximal ideal of E and x £ E is arbitrary such 

that x £ M, then there exists exactly one realvalued Riesz homomorphism 

<|> on E such t h a t <j>(M) = {0} and <j>(x) = 1. 

12.5. Definition. A realvalued Riesz homomorphism § on a Riesz space E 

with strong order unit e is called standard if <t>(e) = 1. The set of all 

standard realvalued Riesz homomorphisms on a Riesz space E is denoted by 

R(E), or simply by R if there is no ambiguity. 

12.6. Theorem. For an Archimedean Riesz space E with strong order unit e 

the set R is total, i.e. R is not empty and if <)>(x) = 0 for certain 

x e E and a l l <j> e R then x = 0. 
Proof: By thm 3.13 the set of all maximal ideals of E is not empty. Let 
M be a maximal ideal of E, then e £ M. Now by thm 12.4 there exists a 
standard realvalued Riesz homomorphism on E, hence R f <P. If <J>(x) = 0 
for all <j> e R, then by thm 12.4 we have that x e M for every maximal 
ideal M of E, hence by thm 3.13 we have that x = 0. 

12.7. Example, (cf. Meyer [1979, Ex. 1.4 ] ) . Let E be the Riesz subspace 
of C [0,1 ] consisting of all x e C [0,1 ] such that the right differen
tial quotient of x in the point t = -̂  exists as a real number x'(-~). 
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let T: E •+ ]R be the linear operator such that Tx = x'(T). If x l y in E, 
1 1 

then x ' ^ ) = 0 or y ' W = 0, hence Tx l Ty, so T is a disjunctive linear 

operator. Note that neither T nor -T are Riesz homomorphisms. 

12.8. Theorem, (cf. Meyer [1979, Thm I. 6 ] ).A disjunctive linear oper

ator is a Jordan operator if an only if it is order bounded. 

12.9. Definition. A linear operator T from a Riesz space E to itself 

is called a stabilizer on E if T preserves orthogonality in the fol

lowing strong sense: if x 1 y then also Tx 1 y. 

12.10. Theorem. For a linear operator T from a Riesz space E to itself, 

the following assertions are equivalent 

(a) T is a stabilizer on E 

(b) T is polar preserving, i.e. T(P) c P for every polar P of E 

(c) Tx e xiJ- for every x e E. 

Proof: (a) •+ (b): if x e P, then x l y for all y e F , hence Tx l y for 

all y e r , or Tx l P1, hence Tx e P11 = P 

(b) -> (a): evident 

(a) ->- (a): Suppose x l y. Tx e x ,• hence Tx l y. 

The linear subspace of £(E,E) consisting of all stabilizers on E is 

denoted by Stab(E). In section 4 it was observed that £(E,E) is a par

tially ordered algebra if we suppose on £(E,E) the operator ordering and 

if multiplication is the composition of mappings. Stab(E) is a partially 

ordered subalgebra of £(E,E) because x, y e E, x i y and S, T e Stab(E) 

imply Sx l y, hence TSx i y. 

Until recently it was unknown whether every stabilizer is also a Jordan 

operator. A negative answer to this question was given independently by 

Meyer [ 1979 ] and Bernau [ 1979 ] . Their counterexamples are essentially 

the same and in fact a modification of a well known (norm) unbounded 

linear operator, namely the differential operator in an appropriate 

Hubert space. 

Really surprising is the fact that there exist also unbounded stabilizers 

in some universally complete Riesz spaces. This was proved by Wickstead 

[1979 ] by a kind of Hahn-Banach proof for the existence of an (unbounded) 

extension of the Meyer-Bernau stabilizer to the universal completion of 
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the underlying Riesz space. Abramoviï, Veksler and Koldunov [1979 ] 

assert that there exists a bijective unbounded stabilizer on the Riesz 

space M([0,1 ] , y, < ) where y is Lebesque measure (example 3.4 (g) ) . 
We give more examples of unbounded stabilizers in section 14. 

The fact that there exist unbounded stabilizers implies that Stab(E) for 

a Riesz space E is in general not a Riesz space, because for every Riesz 

space E holds that E = E - E (every element of a Riesz space can be 

written as the difference of two positive elements, section 3). 

12.11. Definition. A linear operator on a Riesz space E which is the 

difference of two positive stabilizers on E is called an orthomorphism 

on E. 

Note that every positive orthomorphism is a Riesz homomorphism. 

The linear subspace of £(E,E) consisting of all orthomorphisms on E is 

denoted by Orth(E). Orth(E) is a partially ordered subalgebra of Stab(E). 

In contrast to Stab(E) we have that Orth(E) is a Riesz space in general, 

whenever E is Archimedean. This was independently proved by Bigard and 

Keimel [1969 ] and Conrad and Diem [1971 ] . A direct proof was given by 

Bernau [ 1979 ] . However the last proof is rather complicated and not very 
transparent. 

A linear operator T from a Riesz space E to itself is called a ûêntre 

operator on E if T is bounded in the operator ordering of £(E,E) by two 

multiples of the identity operator l £ on E, i.e. if there exist A, y e IR 

such that Al < T < yl. 

Every centre operator T on a Riesz space E is an orthomorphism, because 

if AI < T < yl for A, y e R then T is the difference of |y|l and 

|y|l - T. |y|l is positive and a stabilizer because x l y implies |y| x l y. 

Also |y|l - T is positive because T < yT < |y|l and a stabilizer because 

if x l y then |y| |x|A|y| = 0, hence ( |y|l - T) |x|/\|y| = 0, so certainly 

|(|y|l - T)x|A|y| = 0, hence (|y|l - T)x l y. 

The linear subspace of £(E,E) consisting of all centre operators on E is 

denoted by Z(E). We note that Z(E) is a partially ordered subalgebra 
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of Orth(E). It follows immediately from the definitions that Z(E) is a 

Riesz subspace of Orth(E), whenever E is an Archimedean Riesz space. 

12.12. Example. If E is the partially ordered linear space of all func

tions x from an arbitrary non-empty set S to E , with pointwise linear 

operations and pointwise partial ordering, then E is a universally com

plete Riesz space. If we define an algebra structure on E by pointwise 

multiplication, then E is a partially ordered algebra with multiplicative 

unit e, the function constant 1 on S. 

If for z e E we define the linear operator fl by fl x = xz, then fl is a 

stabilizer, because if x l y in E, then x(s)y(s)= 0 for all s e S, hence 

x(s) z(s) y(s) = 0 and this implies xz i y, or fi x i y. In fact, fl is an 

orthomorphism, because fl = fl + - A and fl + and fl are positive linear 

operators. 

Every stabilizer can be written conversely as an operator fl for some 

z e E, hence is an orthomorphism. This can be seen as follows. If T is 

a stabilizer on E and z = Te, then for every x e E and every s e s we 

have (x - x(s)e)(s) = 0, hence x - x(s)e l x where xAt) = 0 if t / s, 

Xs(s) = 1. 

It follows that also T(x - x(s)e) l x > hence (Tx - x(s)z)(s) = 0, which 

implies that (Tx)(s) = x(s)z(s). Hence T = fl . 

It is one of our purposes to find a description of orthomorphisms as 

multiplication operators in an arbitrary Archimedean Riesz space. While 

not every Archimedean Riesz space can be provided with an appropriate 

multiplication, we shall deal in the sequel with multiplications in 

Riesz spaces, which are only partial in a certain sense. In order to 

develop an independent theory, we shall make no use of the fact that 

Orth(E) is a Riesz space whenever E is an Archimedean Riesz space. 

12.13. Proposition, (compare Conrad and Diem [1971, Prop. 2.1 ]) 

If T is a positive linear operator from a Riesz space E to itself, then 

(a) T is an orthomorphism whenever I + T is a Riesz homomorphism 

(b) I + T is an orthomorphism whenever T is an orthomorphism. 

Proof: 

(a) if I + T is a Riesz homomorphism and x l y in E then 

(I + T)|x|A(I + T) |y| = 0 . From | T X | < T | X | < ( I + T ) | X | and 
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