
1 INTRODUCTION

The time-dependent reliability analysis to model age-related deterioration is necessary to sup-
port strategic planning and optimization of civil engineering infrastructure systems. In the mod-
elling of deterioration, two types of uncertainties are encountered, namely, sampling and tempo-
ral uncertainties. The sampling uncertainty means that parameters of the deterioration process 
vary from sample to sample, and uncertainty associated with the evolution or progression of de-
terioration over time is referred to as temporal uncertainty. 

In engineering mechanics, the form of deterioration law, such as a linear or power law in 
time, is often known through experimental analysis and mathematical modelling. The sampling 
uncertainty can be captured by randomizing the parameters of the deterioration law, whereas its 
uncertain evolution over time should ideally be modelled as a stochastic process. 

In structural reliability estimation, the deterioration of structures is usually modelled through 
random variables (such as the deterioration rate) and the computation is based on the First-Order 
Reliability Method (FORM). Such models, referred to as Random Variable (RV) deterioration 
model, do not account for temporal uncertainty in a formal mathematical sense. The paper pre-
sents a general model of deterioration based on the gamma process (GP), which is a stochastic 
process with independent non-negative increments having a gamma distribution (Figure 1). In 
contrast with the Brownian motion with drift, also called the Wiener process, the gamma proc-
ess is monotonically increasing and positive, which makes it ideal for modelling deterioration 
processes.

Although the use of stochastic processes for modelling deterioration has been advocated, an 
intuitive explanation to draw a clear distinction between the features of the random variable ver-
sus the random process approach is not articulated in the engineering literature. The paper pre-
sents a comparative assessment and interpretation of the random variable and gamma process 
models for time-dependent reliability analysis in a simple setting to emphasize the additional 
value of information gained through the stochastic modelling.  
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Figure 1: Models of deterioration:  (a) RV model, and (b) GP model 

2 RANDOM VARIABLE DEGRADATION MODEL 

2.1 Model Definition 

For the sake of clarity, consider that the deterioration of resistance follows a linear model given 
as
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where r0 is the initial resistance, A is the random deterioration rate, and t is the time interval (or 
age). A common approach in time-dependent structural reliability analysis is to randomize the 
deterioration rate, A, and assign it a probability distribution based on some available data and 
expert judgment. 

The randomization of the degradation rate reflects its variability in a large population of simi-
lar components (in a similar manner as the variability in lifetimes). The failure of a component 
is defined as the down-crossing of resistance below an applied stress s, and the probability of 
failure can be estimated from the limit state function: 

00)()(0)( 0 ≤−=≤−−=≤− AttXsrstR ρ  (2) 

where ρ = (r0 - s) denotes the design margin or a deterioration threshold. Failure is defined as 
the event at which the cumulative amount of deterioration X(t) exceeds the deterioration thresh-
old ρ. The threshold ρ is taken as a constant for simplicity of discussion. We introduce the fol-
lowing notation to define the mean, variance and coefficient of variation (COV) of a random 
variable X:
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The mean, variance and the COV of deterioration at time t are given as  
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where µA, σA and νA denote the mean, standard deviation and COV of the deterioration rate, re-
spectively. From Equation (2), the cumulative probability distribution function of the lifetime, 
T, can be simply written as  
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Depending on the probability distribution of A, the life time distribution can be derived ana-
lytically or computed numerically using FORM or simulation.  

2.2 Remarks

Although the degradation model in Equation (1) can be considered as a stochastic process in a 
technical sense, a sample path of deterioration of a specific component remains fixed over its 
entire lifetime. In other words, the temporal variability associated with the evolution of the dete-
rioration process of a sample path over time is ignored. It is also reflected from Equation (4) that 
the COV of deterioration is constant over time. In fact, the future sample path in the linear dete-
rioration model becomes completely deterministic after a single inspection at a time ti quantify-
ing the amount of the deterioration, as shown in Figure 1. It means that a single inspection can 
determine the remaining lifetime of the component without any uncertainty. In principle, if there 
are n random variables in the deterioration law, n number of inspections will determine the re-
maining lifetime of a component.  

The RV deterioration model is implicit in several studies that apply FORM for time-
dependent reliability analysis (Pandey 1998). In the condition assessment and rehabilitation 
planning of existing structures, the uncertainty associated with the evolution of degradation over 
time is an important consideration. Since the RV model is not adequate to model temporal vari-
ability associated with deterioration, we present a more formal stochastic gamma process model 
to overcome this limitation. 

2.3 Illustration

For sake of a consistent comparison between the random variable and the gamma process model 
we assume that the degradation rate, A, is a gamma distributed random variable and the damage 
threshold ρ has a fixed deterministic value. The probability density function of the deterioration 
rate is given as 
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where η and δ are the shape and scale parameter of the gamma probability distribution, respec-
tively. Note that we adopt Ga(x|η,δ) as a compact notation for the density function of a gamma 
distributed random variable X with shape and scale parameters of η and δ, respectively. The 
cumulative gamma distribution function is denoted as 

ñ=
y

dxxy
0

),|(Ga),(GA δηδη  (7) 

The mean and variance of the degradation rate are given as 
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Conversely, the shape and scale parameters can be related to the mean and COV, νA = σA/µA, as 
follows:

2)(

1

Aν
η =     and  

2

1

AAA νµµ
ηδ ==  (9) 

The cumulative damage in time interval (0, t], X(t) = At, is also a gamma distributed random 
variable with the density function:
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In this example, we assume µA = 2 units/year with a COV of νA = 0.4, and the threshold ρ = 100 
units. The distribution parameters are η = 6.25 and δ = 3.125. The probability density functions 



of deterioration in different time intervals ranging from 10 – 50 years are shown in Figure 2, 
which are calculated using Equation (10). 

Since the deterioration rate is gamma distributed, the lifetime (T=ρ/A) follows an inverted 
gamma distribution with the following density function: 

t
T e

t
tf /

1
1

)(

)(
)( ρδ

ηη

η
ρδ −

+

ö
÷
õ

æ
ç
å

Γ
=  (11) 

and the cumulative distribution function is written as 
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Figure 2: Probability density functions of deterioration X(t) in RV model 

3 STOCHASTIC GAMMA PROCESS DETERIORATION MODEL 

3.1 Background

A key issue in time-dependent reliability analysis is the modeling of the deterioration process 
that typically increases in an uncertain manner over the life of a structure. In structural engineer-
ing, a distinction is made between a structure's resistance (e.g. the crest-level of a dike) and its 
applied stress (e.g. the water level to be withstood). A failure may then be defined as the event 
in which the deteriorating resistance drops below the stress. Maintenance management mainly 
deals with condition failure rather than structural failure (collapse). The uncertain deterioration 
can be regarded as a stochastic process, and the associated uncertainty can be represented by the 
normal distribution. This probability distribution has been used for modelling the exchange-
value of shares and the movement of small particles in fluids and air. A characteristic feature of 
this model, also denoted by the Brownian motion with drift, is that a structure's resistance alter-
nately increases and decreases, like the exchange-value of a share. For this reason, the Brownian 
motion is inadequate for modelling deterioration. For example, a dike of which the height is 
subject to a Brownian deterioration can, according to the model, spontaneously rise up, which of 
course cannot occur in practice.  

The gamma process is ideally suited to model gradual damage that monotonically accumu-
lates over time, such as wear, corrosion, erosion, and creep of materials, which are common 
causes of failure of engineering components (Abdel-Hameed, 1975). 



3.2 Gamma Process Model for Deterioration 

The gamma process belongs to a general class of stochastic processes, referred to as the Markov 
process. In the gamma process, increments are independent and non-negative random variables 
(e.g. metal loss due to corrosion) having a gamma distribution with an identical scale parameter 
and a time dependent shape function. The other examples of processes with independent incre-
ments are the Brownian motion with drift having Gaussian increments and the compound Pois-
son process.  

In the gamma process model, the cumulative deterioration at time t follows a gamma distribu-
tion with the shape function, λ(t)>0, and the scale parameter, β  is a constant. To reflect the 
monotonic nature of deterioration over time, the shape function, λ(t), must be an increasing 
function of time. The probability density function is given as 
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The damage increment from time t1 to t2, given as [X(t2) – X(t1)], is a non-negative quantity 
that is independent of the cumulative deterioration at time t1, X(t1). The increment is gamma dis-
tributed with shape parameter [λ(t2) - λ(t1)] and scale parameter β. The fact that the damage in-
crement from any state X(t) is an independent random variable is a consequence of the proper-
ties of the gamma process. The gamma distribution is an infinitely divisible distribution, 
because of which the increments and their cumulative sum are gamma distributed. The sample 
paths of the gamma process are discontinuous and monotone, as shown in Figure 1. 

The mean, variance and COV of the cumulative deterioration at time t are given as 
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A comparison of Equations (4) and (14) shows that COV of deterioration in the random variable 
model is time invariant, but it is a time dependent function in the gamma process model. The 
cumulative distribution function of the lifetime can be derived as 
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It should be noted that the probability density function, f(t) = dF(t)/dt, has no closed form ex-
pression, though it can be computed numerically. 

3.3 Illustration

For the sake of a consistent comparison with the RV model, we consider deterioration as a 
stationary gamma process with λ(t) = α t. It implies that the average deterioration increases 
linearly with time, though the gamma process is not restricted to a linear model. As a matter of 
fact, any shape function λ(t) suffices, as long as it is a non-decreasing, right continuous, and 
real-valued function.  

The data given in the example of Section 2.3 are used to calibrate the parameters of the 
gamma process. The COV of deterioration is time dependent in GP model (Equation 14), and 
given as  
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To calibrate the gamma process, we take νX(t) =νA =0.4 at the time at which the expected dete-
rioration exceeds the failure threshold, that is, at tF =  50 years. The shape parameter is calcu-
lated as α = η/tF = 6.25/50 = 0.125. The scale parameter is obtained by matching the mean dam-
age rate in both RV and GP models, which leads to β = δ/tF = 3.125/50 = 0.0625. The 
probability density functions of cumulative damage at different time intervals are shown in Fig-
ure 3.  
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Figure 3: Probability density functions of deterioration X(t) in the gamma process model 

3.4 Comparison of the GP and RV Models 

As seen from Figure 1, the main difference between the GP model and the RV model is that the 
sample paths of the gamma process are discontinuous and monotone, whereas the sample paths 
of the latter approach are straight lines for a linear deterioration law. According to theory of the 
gamma process, one inspection reveals only one observed increment which can be used to pre-
dict the probability distribution of future deterioration. According to the random-variable degra-
dation model, however, one inspection already fixes the future deterioration beforehand. Al-
though the RV model can be a good approximation, one should be careful as soon as inspections 
are involved. Details of inspection models based on the gamma process are presented elsewhere 
by van Noortwijk et al. (1995, 1997). 

In Figure 4, the lifetime density of the RV model (Equation 11) is compared with that com-
puted for the GP model by discritizing the cumulative distribution given in Equation (15). The 
lifetime cumulative distribution functions are compared in Figure 5(a), which shows that the 
tails of the two distributions are different. This difference is seen more clearly in Figure 5(b), 
where the survival curves for both models are plotted on a log scale. It is interesting to note that 
survival probabilities in advanced ages (t > 50) in the GP model are much less than those ob-
tained from the RV model, in spite of the fact that mean deterioration rate is the same in both 
models. The pessimistic prediction of the GP model is attributed to uncertainty associated with 
evolution of deterioration in form of independent gamma increments. In contrast, the deteriora-
tion rate in the RV model is fully correlated over the lifetime, which possibly results in the 
overestimation of survival probabilities.  

Another way to compare the GP and RV models is to study the probability of realizing differ-
ent levels of condition (or remaining resistance margin) during the lifetime, such as a case 
shown in Figure 6. In case of the GP model (νA =0.4), at the origin (ρ =100, t = 0) the lifetime 
corresponding to 5th, 50th and 95th percentiles (5%, 50% and 95% quantiles) are estimated as 
22, 50 and 90 years, respectively (Figure 6a), whereas the RV model leads to lifetime estimates 
of 30, 50 and 110 years for 5th, 50th and 95th percentiles, respectively. These bound are com-
puted from Equations (12) and (15) by decreasing ρ from 100 to 0. It can also be computed by 
using Equations (10) and (13) and determining percentiles for different values of t. The discrep-
ancy between the GP and the RV models is amplified substantially, when the COV of deteriora-
tion rate is increased to νA =1 (Figure 7). The upper bound curve (95% percentile) in the RV 
model is highly skewed and it results in unreasonably large values of the lifetime (Figure 7b), 
whereas the GP model provides reasonable bounds on the lifetime. An arbitrary increase in the 
uncertainty associated with the deterioration process is handled by the gamma process model in 
a logical manner, whereas the RV model appears to provide unreasonable estimates of the life-
time.  
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Figure 4: Comparison of lifetime probability density functions for RV and GP models 
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Figure 6: Probability of realizing different condition during the lifetime for νA =0.4: (a) GP model, and 
(b) RV model 
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Figure 7: Probability of realizing different condition levels during the lifetime for νA =1: (a) GP model, 
and (b) RV model  

4 CONCLUSIONS

The paper presents a stochastic gamma process model to account for both sampling and tempo-
ral variability associated with a deterioration process that increases the probability of failure 
with aging of the structure. The proposed gamma process model is more versatile than the ran-
dom-variable damage rate model commonly used in the structural reliability literature. The rea-
son being that the random rate model cannot capture temporal variability associated with the 
evolution of degradation. For example, the coefficient of variation of cumulative deterioration 
in the random variable model is time independent, whereas the gamma process has an explicit 
dependence over time. A consequence is that the random variable model overestimates the 
probability of survival over a long term horizon. The temporal variability associated with the 
deterioration process is incorporated by the gamma process model in a more logical manner, and 
it provides more reasonable estimates of lifetime. A comparative evaluation of the gamma proc-
ess and random variable models presented in the paper would contribute to increased use of sto-
chastic processes in the modeling of structural deterioration. 
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