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Stellingen 

1. De huidige generatie kasklimaatmodellen is gebaseerd op drastische vereen

voudigingen, zoals de veronderstelde uniformiteit van fysische grootheden 

in de kas. Het is onaannemelijk dat -uitgaande van deze vereenvoudigingen

een klimaatmodel kan worden samengesteld via bekende fysische relaties uit 

de warmteleer. Een aanpak waarmee de nauwkeurigheid van de modellen wordt 

verbeterd, zonder hun complexiteit te vergroten, is dat de (fysische) re

laties per geval geschat worden uit meetgegevens. 

Dit proefschrift, hoofdstukken 2, 3, 7 en 9. 

2. Eenvoudige dynamische modellen, die op een "personal" computer kunnen wor

den gesimuleerd, kunnen een wezenlijke bijdrage leveren aan de verbetering 

van kasklimaatregelingen in de praktijk. 

Dit proefschrift, hoofdstukken 3, 7 en 9. 

3. Het is fundamenteel onjuist het momentane kasklimaat te optimaliseren op 

basis van (produktie) modellen die zijn verkregen uit lange-termijnproef-

nemingen. 

Dit proefschrift, hoofdstuk 8. 

4. Het aantonen van de verbeteringen die worden bereikt met een kasklimaat-

regeling die gebaseerd is op metingen aan planten (zie b.v. Takakura et al. 

1978), door op traditionele wijze de opbrengst van een teelt te bepalen, 

stuit op dezelfde problemen als die waarvoor indertijd een dergelijke ma

nier van regelen is aanbevolen (Germing, 1969). Significante uitkomsten 

zijn dan ook niet te verwachten. 

T. Takakura, G. Ohara, en Y. Nakamura. 1978. Direct digital 
control of plant growth III. Analysis of the growth and develop
ment of tomato plants. Acta Hort. 87: 257-264. 
G.H. Germing. 1969. Recente ontwikkelingen bij de regeling en be
heersing van het kasklimaat. Tuinbouwmeded. 32(7/8): 344-353. 
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5. De aanpak van de modelvorming van Otto et al. (1982) is niet juist omdat 

een dynamisch (hoogfrequent) model -zoals in de regeltechniek wordt toege

past- wordt gebruikt om een verschijnsel (het temperatuurverloop in een 

kas) te beschrijven dat vooral laagfrequente componenten bevat. 

P. Otto, K. Sokollik, J. Wernstedt, en M. Diezemann. 1982. Ein 
Innentemperaturmodell zur Mikrorechnersteuerung der Heizungs
systeme von Gewächshäusern. Arch. Gartenbau 30(3): 139-146. 

6. Bij de discussies rondom de zogenaamde 1%-Uwisiregel, die het effect van 

lichtvermindering op de opbrengst beschrijft, wordt er ten onrechte van 

uitgegaan dat het zinvol is het genoemde percentage nauwkeurig te bepalen. 

7. Binnen de daarvoor geldende marges, draagt fossiele energietoevoer nauwe

lijks bij tot de produktiesnelheid van winterkomkommers in Nederland. 

8. Ten onrechte wordt in het handboek van Godman en Payne (1979) het "muize-

val-effect" voor straling aangewezen als bepalend voor het kasklimaat. 

Reeds in 1909 is door Wood en in 1910 is door Van Gulik aangetoond dat dit 

effect lang niet het belangrijkste is (Businger, 1963). 

A. Godman, en E.M.F. Payne. 1979. Longman dictionary of scientific 
usage. Longman Group, Harlow, Engeland. (2e druk), p. 407-408. 
J.A. Businger. 1963. The glasshouse (greenhouse) climate. In: 
W.R. van Wijk [ed]. Physics of plant environment. North-Holland 
Publ. Co., Amsterdam, p. 277-318. 

9. Bij het beschrijven van algoritmen voor discrete "model reference adaptive 

systems" gaat Landau (1979) ten onrechte voorbij aan de problematiek hoe 

de parameters van het discrete proces aangepast moeten worden. 

Y.D. Landau. 1979. Adaptive control, the model reference approach. 
Marcel Dekker Publ. Co., New York. 406 p. 

10. Programmeertalen komen, programmeertalen gaan, maar FORTRAN blijft altijd 

bestaan. 

11. In discussies over verbetering van de volksgezondheid wordt vaak beweerd, 

dat een centraal gegevensbestand met informatie over patiënten en hun ge

zinssituaties voor de arts van groot nut is. Deze bewering komt voort uit 

de fundamenteel onjuiste opvatting dat meer gedetailleerde informatie tot 

betere beslissingen leidt. Een gebrekkig gegevensbestand met informatie 

over artsen, dat ter beschikking staat van patiënten, zou wellicht een 

veel wezenlijker bijdrage tot de volksgezondheid leveren. 



Voorwoord 

Het in dit proefschrift beschreven onderzoek is beïnvloed door talloze kon

takten met mede-onderzoekers. Daarnaast verleenden velen hun medewerking. 

Ik zou hiervoor mijn erkentelijkheid willen uitspreken. 

Mijn promotor prof. ir. J.J. van Dixhoorn zou ik willen bedanken voor zijn 

aanmoediging, vooral tijdens de beginfase van het onderzoek in 1976. Het 

streven om regeltechnische karakteristieken van het kasklimaat te vertalen 

naar fysische eigenschappen, kan gezien worden als een uitvloeisel van zijn 

inzichten. 

Mijn promotor prof. dr. ir. J. Schenk heeft vooral gedurende het laatste 

deel van het onderzoek het ,eigenlijke schrijven van dit proefschrift inten

sief begeleid. Daarbij fungeerde hij als klankbord voor het begripsmatige 

deel van het proefschrift en -uiteraard- bij de fysische interpretatie van 

de meetgegevens. Ik zou hem hiervoor willen bedanken, en daarnaast ook voor 

zijn streven naar nauwkeurige formuleringen, waardoor in een aantal gevallen 

een extra dimensie aan de inzichten kon worden toegevoegd. 

Het onderzoek dat aan dit proefschrift ten grondslag ligt, is gedragen 

door een informele werkgroep "Optimalisering kasklimaat ten behoeve van de 

teelt van kasgewassen", bestaande uit ir. G.P.A. Bot (LH, Natuur- en Weer-

kunde), dr. ir. H. Challa (CABO), dr. ir. J. van de Vooren (Proefstation 

Naaldwijk) en ikzelf, waarbij zich in een later stadium dr. ir. A.H.C.M. 

Schapendonk (CABO) voegde. Mijn inzichten en opvattingen zijn sterk beïnvloed 

door de vele onderlinge gesprekken en door het vele gezamenlijke onderzoek. 

Dit multidisciplinaire aspect van het werk behoort tot mijn meest plezierige 

en stimulerende ervaringen. 

Het leeuwedeel van het onderzoek is uitgevoerd bij het Proefstation voor 

Tuinbouw onder Glas te Naaldwijk, in een hechte samenwerking pet dr. ir. J. 

van de Vooren. Deze heeft op de onderliggende inzichten veel invloed uitge

oefend, en heeft daarnaast vele proefnemingen uitgevoerd. Vanaf deze plaats 

wil ik hem daarvoor zéér hartelijk dankzeggen. 

De werkzaamheden in Naaldwijk vonden plaats in het kader van een samen

werkingsovereenkomst tussen het Proefstation en de Landbouwhogeschool 



(vakgroep Natuur- en Weerkunde). Ik zou het Proefstation in de persoon van 

zijn direkteur ir. E. Kooistra willen bedanken voor de verleende mogelijk

heden èn voor de ontvangen aanmoediging. Op het Proefstation verleenden velen 

hun medewerking of waren bereid hun inzichten te verklaren. Ik ben hen daar

voor erkentelijk, immers voor een toegepast onderzoek is zoiets van onschat

bare waarde. De nuchtere inzichten van Th. Strijbosch verdienen hier apart 

gememoreerd te worden. 

De gescheiden bereik (split-range) regeling in hoofdstuk 4 is onderzocht op 

het Proefstation voor de Bloemisterij in Nederland te Aalsmeer, in een ple

zierige samenwerking met ing. J. Valentin. 

De publikatie, die in hoofdstuk 5 is opgenomen, werd geschreven met prof. 

ir. H.B. Verbruggen, TH Delft. Ik zou hem voor deze samenwerking willen be

danken. 

Binnen de vakgroep Natuur- en Weerkunde hebben vele van de collega's direkt 

of indirekt aan het onderzoek bijgedragen. Hen zou ik willen bedanken voor 

de stimulerende werksfeer. Graag wil ik de hechte samenwerking met ir. G.P.A. 

Bot noemen, die mij wat vertrouwder wist te maken met de fysica van het kas-

klimaat. Ir. J.G. Lengkeek is in de beginfase van het onderzoek aktief ge

weest en heeft de eerste kontakten geëntameerd. J. van Zeeland heeft veel 

bijgedragen met name op het gebied van de gescheiden bereik regelingen 

(hoofdstuk 4). Prof. ir. O.H. Bosgra zou ik willen danken voor zijn aanmoe

diging en het bekritiseren van hoofdstuk 5. Tenslotte hebben vele studenten 

op de een of andere wijze aan dit proefschrift meegewerkt. Ik zou hen voor 

hun entoesiasme willen danken. 

De medewerkers van het elektronica ontwikkelings laboratorium van de vak

groep, ing. C.J. van Asselt, G. Lenters en P. Jansen worden bedankt voor het 

animo waarmee zij hun deskundigheid inbrachten, hetgeen ook geldt voor de 

mechanische werkplaats: A.E. Jansen, T. Jansen en W. Hillen. 

Mijn naaste collega's, ing. D. van den Akker, ing. W.F.M. Driessen, ing. 

B. Lammers, mej. C. Pitlo en dr. ir. G.A. van Zee zou ik willen bedanken voor 

hun hulp en hun inbreng. Daarenboven hebben zij in het laatste jaar de moge

lijkheden geschapen om de tijd vrij te maken die voor een onderzoek in de 

eindfase nodig is. 

Voor een proefschrift is uiteraard de vormgeving van groot belang. 



Mevr. L.M.A. van der Zel-Kriek verrichtte op uiterst voortvarende wijze het 

type-werk. P. van Espelo verzorgde de tekeningen en gaf vele nuttige adviezen 

met betrekking tot de uitvoering. J. van de Brink verzorgde het fotomateri

aal. De omslag is een ontwerp van Wiert Douglas, illustrator. Mijn hartelijke 

dank gaat naar hun vakkundige inbreng uit. 

Tenslotte zou ik een woord van dank willen uitspreken aan mijn gezin. 

Lieve Ellen, bedankt voor je steun. Aan onze zoons Floris en Jasper, die de 

toekomst nog in zich bergen, draag ik gaarne dit proefschrift op. 

Rhenen, 6 november 1982. 
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1 Introduction 

In the Netherlands, the popularity of mini- and microcomputers for the 

control of greenhouses is steadily growing. At present approximately 2500 

greenhouse computers are in operation at commercial holdings, with units 

ranging from central minicomputers with extensive user facilities to 

straightforward functional replacements of conventional equipment. In this 

development the control algorithms in the computer usually perform the same 

functions as conventional controllers. In a computer system, however, more 

sophisticated control methods could be applied. Because improved methods not 

necessarily require more extensive computer hardware, this means that the 

potentials of computers are not fully exploited. 

, outside \ ^ i greenhouse \ 
\ conditions .' \ structure / 

Fig. 1.1 The greenhouse control 

situation. 
,' actuator 
\ conditions 

, iL_ 

_w ' inside v 
\ conditions .' 

crop *|_ 

In fig. 1.1 the greenhouse control situation is depicted schematically 

(after Seginer, 1980). The crop that is grown in the greenhouse, is in

fluenced by the conditions -insofar relevant for growth and development-

inside the greenhouse. The conditions inside result from actuator conditions 

(which can be varied by the grower) and from outside conditions, which act 

upon the inside via the greenhouse structure. Examples of the structure are: 

covering-material (single or double-layered glas or plastic), dimensions of 

the greenhouse, thermal screens. Examples of actuators: heating system, 

ventilators, water supply, artificial lighting. The outside conditions are 

composed by the weather. A subset of the inside conditions is referred to as 

the greenhouse climate. 

1 



Greenhouse computers are used for a wide variety of tasks. Control of the 

inside conditions is computerized, but also data-logging and alarming tasks 

are performed. Boiler control and load-scheduling are other options. Climate 

oontvol is only one of the activities of a greenhouse computer system. 

The computer fits well into the development of automation in greenhouses. 

Automation made a hesitating start in the late fifties (Vijverberg and 

Strijbosch, 1968) by the introduction of thermostats for heating control. 

Later analogue electronic controllers were introduced. At first performing 

similar functions as thermostats, but later with growing capabilities 

(Winspear and Morris, 1965, Winspear, 1968), such as the automation of 

ventilation windows (Strijbosch and Bol, 1965, Strijbosch, 1966). Also 

functions like irrigation were automated with irrigation dependent on the 

daily global radiation sum (De Graaf and Van den Ende, 1981) as advanced 

feature. 

With the increasing level of automation, an increasing quantity of equip

ment has been employed. Especially when control actions are based upon time-

varying outside weather conditions, like outside air temperature or irradia

tion, the analogue electronic equipment becomes quite complex. Under these 

conditions the costs of a computer system compare favourably, which explains 

the rapid increase of computer systems in greenhouse control (Gieling, 1980). 

The greenhouse computer can perform all the control functions of the 

conventional analogue electronic climate controllers, with the additional 

feature that those functions can be more flexible because they are no longer 

physically related to electronic circuits. The supplier of the greenhouse 

computer can easily extend the software with new control methods and make 

them operational on existing computers. This facilitates to follow the newest 

trends in control methods and the individual wishes of growers, without the 

necessity for considerable investments for additional equipment. This 

explains why most greenhouse computer suppliers in this country update the 

software regularly, which is done for limited extra costs. 

An interesting aspect of the development in recent decades is that the under

lying philosophy in control with greenhouse computers conforms to an operator1 

making use of the various actuators. Instead that the grower is adjusting his 

actuators by himself when walking around in his greenhouse, the same task is 



now performed by a controller (Vijverberg and Strijbosch, 1968). Using 

external information and measurements, and applying time clocks it is 

possible to translate this operator approach into procedures which are 

carried out by the controller (be it a conventional analogue electronic one 

or a computer). In a greenhouse computer these procedures are easily transfer

red into software; in a conventional controller this requires complex 

hardware. 

It is stated here that also the grower's perception with reference to green

house control is essentially that of an operator. The climate controller is 

designed as to facilitate this task. In the greenhouse computer industry most 

research activities are focused on improving the computer performance by 

translating established operator methods into control procedures and sub

sequently include these in the software. As a result, in industry an ever

lasting effort is put into the upgrading of software since the established 

control procedures are permanently changing (new types of greenhouses, new 

varieties, higher fuel costs). 

The rapid introduction of computers in the Netherlands contrasts with 

developments in other countries. The difference can be explained from the 

level of automation in greenhouse control. Under the permanently changing 

weather conditions in this country in greenhouses many actuators are in use. 

Because of the amount of actuators and because of the size of an average 

commercial holding, a high level of automation is essential to save a 

considerable amount of labour. When also control procedures become widely 

accepted, which is an other way of describing a general high level of 

expertise of the growers, the required analogue electronic equipment becomes 

so expensive that a computer system is economically justified. 

When, conversely, the outside climatic conditions are generally steady 

(as they are in Japan, Israel, Southern France), heating and ventilation 

control can be performed with thermostats with a satisfactory degree of 

accuracy. When also the holdings are of a small size and the outside climatic 

conditions, the level of expertise, or the way the crop is grown are such 

that control procedures are not applied, a greenhouse computer system of the 

type that is presently in vogue is too expensive. This will change when very 

low-cost systems will be marketed that can compete with the thermostatic 

controls and with the time switches that are presently used in low-cost 

solutions for greenhouse control. 



Permitting a glimpse into the future, with the advance of low-cost single 

chip microcomputers (containing a microprocessor, memory, real-time clock, 

analog and logical input/output channels) this breakthrough can be expected 

within a few years. The greenhouse control will be performed by a 

decentralized computer network, where the main tasks will be performed by 

decentral computers which are connected with a central computer system 

(carrying out alarm, data-logging and central operation tasks). Using far 

more expensive hardware, in the Netherlands decentralized systems have 

already been realized at the IMAG in Wageningen (Van Meurs, 1980) and at the 

Experiment Stations in Aalsmeer and Naaldwijk. 

The operators attitude of the grower has also consequences for the generally 

accepted approach to greenhouse control. Because in growers procedures 

actuator signals (like ventilation window aperture or heating system 

temperature) are directly related to the (assumed) reactions of the crop, in 

practice most control procedures are formulated along these lines. Typically 

in practice control procedures are improved by adding operator knowledge in 

terms of conditional compensations or logical decisions. The dynamical nature 

of the process under control is generally not analyzed. As a result, in 

practically oriented research on control as it is done in horticultural 

experiments, the research is aimed at improvement of procedures. 

The research on climate control reflects this practice and little attention is 

paid to climate control as such. Because of this in the field of greenhouse 

climate control relatively few studies have been published which deal with 

the dynamical aspects of the climate control loops (O'Flaherty, 1973, Tantau, 

1979, Udink ten Cate and Van de Vooren, 1977, 1981). The prevailing interest 

in climate control procedures, where the interrelation between climate control 

and the related crop response is regarded as one aggregated problem, does not 

motivate research to new climate control methods very much. A methodological 

restriction is that an eventual improved performance cannot be demonstrated 

in the traditional field trials (Germing, 1969a,b, Germing and Van Drenth, 

1971). Also the development of models of the greenhouse climate, that are 

suitable for computer simulation and can be used for the design of new 

algorithms, has received little attention. 

Because of the energy crisis much research is devoted to new greenhouse 

4 



structures, heating systems etc. in order to reduce the heating costs. In 

these new greenhouses the climate differs from the traditional ones (e.g. 

higher humidities occur in better insulated glasshouses). A better under

standing of the control of the climate might lead to quicker results than the 

traditional research for climate control procedures by lengthy and costly 

field trials. 

Quite another aspect is the application of computerized optimization methods 

in order to maximize economic results. Much academic research is performed 

in this field of optimal plant growth and it is felt that the feasibility of 

these methods depends on the accuracy of the climate control. Also the 

application of explicit growth models in the control algorithms requires an 

accurate climate control. 

As indicated above, the greenhouse climate can be described from various 

points of view using disciplines like horticulture, physics or control 

science. Although it could be argued that in the end all approaches amount to 

the same thing, in reality this is not so true. 

Emphasizing the archetypes, in horticulture the climate is in fact the 

climate regime, its relation with growers' procedures and its influence on 

crop growth and development. Much attention is given to avoid extreme climatic 

conditions that may damage the crop (including damage by diseases). In physios 

the research is mainly concerned with the impact in climatic terms of 

structural aspects of greenhouses (heating systems, thermal screens, double 

glazed roofs etc.), thereby giving a detailed description of the climate 

factors as they occur in the greenhouse. Control science focuses on the 

dynamical nature of the controlled processes of which the climate is the 

basic one -which itself is strongly related to the crop growth and develop

ment processes. In control the stability and accuracy of the resulting 

control loops is of interest. 

The crucial question is whether control science will contribute solutions for 

the above-mentioned developments with respect to greenhouse control, new 

types of greenhouses and optimal control of plant growth. Therefore in this 

thesis much effort is given in formulating the problem in adequate terms and 

to describe possible approaches. A system approach is followed where green

house climate control, plant growth and crop development are described as 



ooupled subsystems. In Chapter 2 such a description is presented, stressing 

the point that climate control cannot be regarded as a problem in its own 

right, but is embedded in requirements stemming from the other subsystems. 

The approach permits reflection on the feasibility of optimal plant growth 

via climate control (Chapter 8). 

Simple dynamical models are essential in the design and analysis of 

controllers. In Chapter 3 models are presented that describe the dynamics 

(high frequency behaviour) of the greenhouse air temperature. Methods for its 

control are presented in Chapter 4. Because outside weather conditions have 

a strong influence on the dynamics of the temperature control loop, an 

adaptive (or: self-adjusting) heating system control algorithm has been 

proposed. The theory is treated in Chapter 5 where a reprint is presented of 

a publication that was written jointly with prof. ir. H.B. Verbruggen (Delft 

University of Technology). The greenhouse application is discussed in 

Chapter 6. 

Models that describe both the dynamical (high frequency) behaviour and the 

statical (low frequency) behaviour of the greenhouse climate yield the 

absolute values of the greenhouse climate (dynamical models usually only 

describe the variations accurately). These models can be used to assess the 

heating requirements of new greenhouse structures or can be applied in 

optimal procedures with respect to plant growth. For the greenhouse air 

temperature such models are presented in Chapter 7. Conclusions are presented 

in the final Chapter 9. 



2 A description of the control problem 

2.1 TERMINOLOGY 

In greenhouse climate control the terminology is not defined very well, so 

that various authors do not use the same concepts. Consequently, special 

care is taken to formulate precisely the terminology that is adopted in this 

thesis. This formulation is outlined below. 

2.1.1 Local, spatial average and crop canopy, climate 

As is depicted in fig. 1.1 the conditions inside a greenhouse influence the 

growth and development of a crop. Relevant conditions are e.g. air 

temperature, air humidity, C02 content, long wave radiation, short wave 

radiation, air movement, artificial light, water supply, fertilizers, 

nursing methods. The first three conditions (air temperature, humidity and 

CO2 content) are associated with the greenhouse atmosphere and are usually 

of concern in air-conditioning studies. 

A comprehensive treatment of the relevant conditions can be found in texts 

on greenhouse operation, like von Zabeltitz (1978), Kanthak (1973), Seemann 

(1974) or Hanan, Holley and Goldsberry (1978). A subset of these inside 

conditions can be referred to as climate. The term climate is not very 

strictly defined, but conditions or factors that obviously form the green

house climate are air temperature, humidity and radiation. Seemann (1974) 

uses the term meteorological growth factors to denote a set of relevant 

climate factors, including long and short wave radiation, air temperature, 

C02 content and humidity. 

Inside the greenhouse the climate can be described in space. Of interest for 

the individual plant is its surrounding local climate. The greenhouse can 

also be looked upon as having uniformly distributed values of the climate 

factors, which can be approximated using the notion of spatial average 

climate. 

When using the term spatial average climate it should be realized that in 



a greenhouse large gradients can occur both vertically and horizontally. 

Another drawback of the term spatial average climate is that it is restricted 

to to the climate factors of the greenhouse atmosphere (air temperature, 

humidity and CO2 content). It is for example not so obvious to include inside 

air movement or local radiation (like long wave radiation from the heating 

system) in the concept. Therefore, the term crop aanopy climate is introduced 

to refer to the spatial average climate inside the crop canopy, which itself 

is the ensemble result of the local climates surrounding the individual 

plants. In the term crop canopy climate, factors like local radiation 

balances and air movement are also considered. 

To distinguish between spatial average climate and crop canopy climate is 

of importance for research, since a change in the greenhouse structure can 

have a different impact on both climates. A thermal screen, another type of 

heating system (air heating instead of heating pipes) can result in the same 

spatial average climate ( in terms of the greenhouse atmosphere), whereas 

other factors of the crop canopy climate -notably the long wave radiation and 

air movement- will be quite different. 

2.1.2 Environmental and climate control 

In control the terminology can be refined too. In environmental control the 

interest is focused on all measures that influence the inside conditions in 

the greenhouse. Examples of environmental control are: heating by heating 

pipes or by air heaters, ventilation by natural or by forced ventilation, 

screening, shading, spraying of water, fan and pad cooling, artificial 

lighting; in short the use of the whole range of installations and devices in 

a greenhouse that are employed in order to accomodate a beneficial crop 

environment. 

The term control is used in a broad sence here. In a more strict sense in 

control only the dynamical aspects are of interest. This is not so in 

environmental control, where the attention is mainly focused on the effects 

on the inside conditions and subsequently on the crop. The only dynamical 

notion is, that the magnitude of the environmental control actions can be 

varied. 

Climate control restricts itself to the control of the spatial average 

climate factors in the greenhouse and can be regarded as a sub-class of 
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environmental control. The term control can be used in the broad sense, when 

the attention is directed to the effects on climate factors. 

In the more strict sense the dynamical behaviour is of primary interest. 

A climate process is controlled of which the relevant climate factors (the 

climate) are the output variables. The input variables of the climate process 

are the climate control actions that are applied to regulate the climate. 

These control actions serve as driving variables or actuator signals for the 

input of the climate process. Other factors that influence the output, but 

are not controllable (outside weather conditions) act as disturbances. 

The driving variables have to be more or less continuous in time, which 

excludes actuator signals like the drawing of a thermal screen or other 

actions that cause an abrupt change in the inside conditions. These phenomena 

can be seen to change the properties of the climate process, or can be 

modelled as disturbances. Naturally the distinction between admissable and 

non-admissable input variables is not very sharp. 

In control -or more precisely in feedback control- the process output 

variables are measured. Via the controller an actuator is regulated which 

generates an input signal for the process. The dynamics of the process and 

the feedback loop determine the control scheme that is employed, where 

accuracy and stability are important criteria. When the dynamics of the 

process are known a-priori also a form of feedforward control can be applied 

in order to compensate for fast disturbances. 

To emphasize the fact that in climate control in the more strict sense, 

the dynamical nature of the climate process is of interest and that a form of 

feedback is essential, the term Greenhouse Climate Feedback/Feedforward 

Control (GCFC) is used throughout this thesis in order to distinguish from 

the term climate control in the broad sense and from the term environmental 

control. 

Because of the fact that the controlled climate process output variables have 

to be measured and that the number of variables has to be kept as small as 

possible in order to avoid complex control schemes, in the practice of 

growing only spatial average climate factors of the greenhouse atmosphere 

are measured and controlled. The most important factors are air temperature 

and humidity, which -in the usual greenhouse in the Netherlands- are 

regulated by the actuators heating system and ventilation windows. 



It is noted that -because of its direct relation to the crop- it is more 

natural to control the crop canopy climate instead of the spatial average 

climate. That this is not done, might be explained from the relative difficulty 

to measure crop canopy climate factors in practical horticulture. 

2.1.3 Plant and crop responses 

The responses of the plants on the internal conditions in a greenhouse can be 

described both in time and in space, leading to notions similar to that in 

the case of the climate. 

The responses of a plant can be evaluated from a relatively short time 

scale (up to one day because of the diurnal periodicity) to a long time scale 

(plant development, production of fruits). In most cases it is not practical 

to regard every plant individually so that is referred to the crop as the 

ensemble of plants. It is seen that the response of a crop is the ensemble of 

responses of individual plants to their local climates. 

On a short time scale the response of the crop is referred to as over-all 

plant response. It is assumed that the over-all plant response can be 

described adequately as the response on the (average) crop canopy climate. 

On a long time scale the over-all plant response is denoted as crop 

response in order to distinguish between both time scales. It is seen that 

the crop response is the result of the crop canopy climate over a long time 

scale -which is usually referred to as the crop canopy climate regime. With 

respect to the over-all plant response and to the crop response, it can be 

assumed that there exists a strong coherence between the climate regime of 

the spatial average greenhouse climate and that of the crop canopy climate. 

2.2 CROP GROWTH AS A HIERARCHICAL SYSTEM 

In greenhouses the ultimate goal is to accomodate conditions as to stimulate 

crop growth. Crop growth and development are the result from the inside 

conditions over a long time scale. In this thesis the attention is restricted 

to these inside conditions as they are controlled by GCFC. However, because 

of the ultimate interest, a qualitative analysis is presented of the relation 

between climate control and crop growth and development. 

The control of crop growth and development is very complex because the inside 

10 



conditions can be influenced in many ways. When we restrict ourselves to 

climate conditions, the crop canopy climate is the relevant set of inside 

conditions. There are many ways to influence the crop canopy climate and also 

crop growth and development can be described by many processes. This leads to 

a large family of relevant input and output variables, so that some 

restriction is essential in order to describe the system conveniently. In the 

case at hand, the problem is how to control crop growth and development by 

imposing a climate in the greenhouse. Therefore, the system is described as a 

hierarchical system, consisting of three levels, where the higher level 

controls the lower levels (fig. 2.1). 

average 
climate 

^ 2 green 
house 

over- all 
plant growth 

I s t level y^ 
control 
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2 plant 

crop growth and 
development 
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plant 
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control 
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Fig. 2.1 Crop growth as a hierarchical system. 

The control of the average climate is the first level of the hierarchical 

system of fig. 2.1. Other environmental control actions are not considered 

here but could be included if desired. The greenhouse structure determines 

the properties of the climate process. The output of the first level is the 

spatial average climate, but for the coupling with the second level subsystem 

the crop canopy climate is required. Since the spatial average climate is 

described by a subset of the family of variables describing the crop canopy 

climate, a certain ambiguity is introduced. 

On the second level the short term over-all plant responses are described in 

relation to the imposed crop canopy climate. The crop canopy climate is not 

completely controllable; factors like solar radiation for example, are mainly 

the result of outside climatic conditions and act as a disturbance in our 

1 1 



description. Factors like irrigation, application of fertilizers, the 

occurence of pests etc. are of course very important in plant growth, but are 

omitted in our description. 

There are various control strategies that can be followed on this level. 

The most straightforward approach is to measure fundamental processes that 

determine plant growth. This speaking plant approach (terminology from Bot, 

Van Dixhoorn and Udink ten Cate, 1978a, Udink ten Cate, Bot and Van Dixhoorn, 

1978) is rather cumbersome because the measurements are difficult to perform 

and only give local information. In the practice of growing not the actual or 

instantaneous over-all plant growth is of interest, but what one from 

experience expects the "over-all" plants to do in a given situation over a 

limited time span (minutes to several hours). Therefore the time scale of the 

process on level two is from minutes to one day, thus describing the diurnal 

course of the plant. It incorporates several plant growth subsystems which 

are discussed in more detail later. A number of cultivation methods, as they 

are incorporated in GCFC methods and in control procedures, can be put on the 

second level. In the hierarchical system the control of level two sets the 

desired values for the GCFC on level one. The first level control will then 

attempt to realize these values. 

On the third Zevel crop growth and development are of interest, with a time 

unit of one day. The integrated effects over the whole cropping period are 

yield quality and time of harvesting (earliness) which determine the economic 

value. 

A mechanism that controls the output of this system on the basis of 

measurements cannot be established because the result is only known after the 

harvesting. Decisive here is the expected economic result, the expectation of 

which is based on blue prints of cultivation methods and the growers 

observation of the growth stage, in addition to experience, intuition and 

spirit of enterprising. The expectations lead to actions on the second (and 

subsequently the first) level. 

The separation between the second level system describing over-all plant 

growth and the third level system describing crop growth and development is 

mainly based on the time scale: a time span of one day describes the diurnal 

course of the plant growth processes, so that one day is the time unit of 

crop growth. However, it also reflects the way of modelling that is used to 

describe the phenomena. On level two causal relations are used whereas on 
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level three empirical (Van Wijk, 1963) models are employed. In the 

hierarchical system level two and level three are coupled, but because of the 

way of modelling, the set of output variables of level two is not very much 

apt to resemble the set of input variables of level three. 

The hierarchical system description has been introduced by Bot et al. (1978a) 

and by Udink ten Cate et al. (1978) and was later adopted by other authors. 

Carlsson, Christensen and Nilsson (1979) observe a similarity between their 

approach for an economical model of crop growth and the above model. 

Hashimoto et al. (1980, 1981 a,b) use the idea of speaking plant approach in 

describing their research; Copet and Videau (1980) use a hierarchical system 

description in the presentation of an adaptive control scheme. 

2.3 CONTROL OF THE CLIMATE SUBSYSTEM 

The first level of the hierarchical system describes the spatial average 

greenhouse climate and its control. In this section some general aspects will 

be reflected. 

For crop growth the crop canopy climate is of interest. As said before 

(see 2.1.1 and 2.1.2) the factors that determine the spatial average climate 

are measurable and basically controllable. Conversely, factors of the crop 

canopy climate, like air movement, are neither readily measured nor 

controlled. Since GCFC restricts itself formally to spatial average climate 

factors, the crop canopy climate is controlled implicitly via limitations and 

minimal or maximal values of control actions, of which the values are based 

on practical experience. 

There is no reason why one should restrict oneself to the control of 

climate factors of the greenhouse atmosphere. Suppose, for example, that more 

knowledge becomes available of the ventilation process in greenhouses which 

describes the relation between window aperture and the air change rate. Then 

the water vapour flow from the greenhouse can be calculated using data from 

inside and outside humidity and of condensation on the roof using roof 

temperature measurements (Van de Vooren, personal communication). By control

ling the ventilation, the vapour flow from the crop and the greenhouse soil 

can be controlled. It might well turn out that this approach is more relevant 

to the crop canopy climate and the over-all plant responses than -for example-

control of the humidity. 
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One of the main problems in GCFC is that control cannot be very accurate. 

This is partly due to the strong influences of the outside climate conditions 

which act as disturbances in the control loop. Another reason is that the 

crop itself influences the greenhouse average climate by évapotranspiration 

(evaporation from the soil and transpiration from the plants combined 

together). As a result disturbances are not rejected very well. In general 

only a lower and an upper limit of the controlled variables can be kept. 

As discussed above, the control of the crop canopy climate with the usual 

GCFC actuators (heating system, ventilation windows) is not established. This 

does not mean that no relations could be formulated. It is felt that the use 

of the crop canopy climate concept in research will facilitate the application 

of experimental results obtained in phytotrons. In horticultural research 

crop canopy climate factors could be measured explicitely. This is not done 

in the usual approach towards research on climate control procedures. 

Consequently, the relations between actuator signals and the crop canopy 

climate are only included implicitely. 

Take for example research that is conducted towards a direct relation 

between crop growth and the aperture of the ventilation windows. There is no 

reason to see why it is impossible to define air movement in the greenhouse 

and subsequently the boundary layer resistance of leaves in relation to 

growth. Research results on the relation between air movement and over-all 

plant growth as obtained in phytotrons could be used here, instead of 

experimentally establish in field trials a relation between crop growth and 

minimum aperture of ventilation windows or minimum heating pipe temperature. 

2.4 REVIEW OF CLIMATE CONTROL METHODS 

In this section existing methods in greenhouse climate control are reviewed 

briefly. The hierarchical system description presented in the foregoing 

sections is used as a framework. The climate control equipment is discussed 

as well. 

2.4.1 Methods 

In applied research on climate control in greenhouses, the attitude of the 

grower is adopted. This means that the relation between control procedures 
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and the crop responses is investigated. The effects of climate control 

actuators on the crop canopy climate lead to control procedures where the 

objective is to avoid extreme situations that may damage plant growth. 

The following researches illustrate the approach to avoid extremes. 

Groenewegen (1962) describes a comparison between commercial holdings where 

tomato crops are grown. A significant difference is found in humidity 

between heated and unheated greenhouses. In order to avoid high humidities 

-which also occur in heated greenhouses during dull days in winter- research 

has been carried out by Strijbosch and Bol (1965) and Strijbosch (1966); for 

an overview see Vijverberg and Strijbosch (1968). The problem can be solved 

by concurrent heating and ventilation and by situating the heating pipes 

just above the ground between the crop. A disadvantage of this approach is 

that once the extreme situations are avoided, the solution can be less 

optimal with respect to other criteria, such as fuel consumption. 

A logical suite of the avoidance of extreme situations is climate control 

that is based on knowledge of plant reactions.. An example is the light-

dependent temperature control (Bowman and Weaving, 1970, Bokhorst, Van 

Drenth and Van Holsteyn, 1972), which is based on the assumption that when 

more photosynthetic active radiation becomes available, a higher crop 

temperature increases photosynthesis and subsequently plant growth. Depending 

on the amount of solar radiation an increment is added to the normal value of 

the desired greenhouse air temperature. Apart from the fact that the 

assumption of increasing photosynthesis is not generally valid, the 

beneficial effect of this strategy is hard to establish, because in winter

time a higher air temperature demands a higher fuel consumption. The higher 

yields have to pay off the higher fuel costs, so that an economic 

optimization problem is considered (Hand and Soffe, 1971, Calvert and Slack, 

1975, 1980). This makes it difficult to assess a significant outcome, which 

can be regarded as a fundamental problem in this type of climate research 

(Germing, 1969a,b, Germing and Van Drenth, 1971). 

In practical horticulture the strategy is followed only when the 

temperature increase is realized by solar radiation, so that the effect is 

that no "free" heat is wasted and some air exchange is maintained. This can 

be realized by extra criteria for setpoints in the controller (Bokhorst et 

al., 1972). The same effect can also be achieved by founding the aperture of 

the ventilation windows on outside weather conditions (Van de Vooren and 
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Strijbosch, 1980). 

Another strategy that is based on a-priori assumptions on évapotrans

piration in the greenhouse in relation to solar radiation is the delta-X 

control (Heijna, 1975). It is used for simultaneous heating and ventilation. 

In the above strategies, a form of control on the second level of the 

hierarchical system is realized, since the strategies perform essentially 

setpoint control of the first level. The widely accepted use of different 

day and night temperatures can also be understood in this way. 

It is noted that in the mentioned strategies no explicit measurement of 

plant growth is realized. 

2.4.2 Control with a "speaking plant" 

In the research on climate control, second level relations are hard to assess 

in the traditional field trials. Germing (1969 a,b;) (Germing and Van Drenth, 

1971) suggests that plant responses can be monitored in the research and 

eventually used in a feedback control loop. The latter is essentially what 

was called the speaking plant approach, of which the drawbacks were already 

mentioned in section 2.2. Some specific research in this field has been 

reported. Takakura et al. (1974) present the control of photosynthesis via 

atmospheric climate factors, where the photosynthesis is indirectly 

determined by measuring the CO2 uptake in a closed system. Results on a 

tomato crop have been reported (Takakura, Ohara, Nakamura, 1978). Control of 

leaf temperature was investigated by Matsui and Eguchi (1977b) for a 

phytotron and by Mackroth (1974) for a greenhouse. None of these experiments 

seems to be very decisive, partly because only a single variable was measured 

and partly because positive results .could also be explained from "average" 

influences (higher temperatures, CO2 enrichment), thus leaving an economical 

optimization problem to be solved. 

Whereas the speaking plant approach in the previous alinea has not produced 

new methods, the approach to avoid extreme situations and the practical use 

of methods like light-dependent temperature control or delta-X control, have 

been markedly succesful. In the Netherlands improved climate (or better 

environmental) control has been considered a aheap means of improving crop 

quality and yield (Vijverberg and Strijbosch, 1968). In most commercial 
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controllers methods like light-dependent temperature control or delta-X 

control have been incorporated, with a number of conditional settings to 

obtain the desired results. 

2.4.3 Operation of control equipment 

The control methods discussed above lead to rather complex controllers. In 

the relevant literature these controllers are explained, but the interest is 

focused on the sensor types and the conditional settings (of setpoints of 

the first level climate control). Not so much attention is paid to the 

dynamics of the climate processes themselves, and in many texts only 

environmental control is treated in statical (equilibrium) situations. 

Winspear and Morris (1965) and Winspear (1968) discuss the early 

potentialities of environmental and climate control. Bokhorst et al. (1972) 

discuss the setpoint conditions of the light-dependent climate control in 

some commercial controllers and Heijna (1970) does so for delta-X control. 

The use of controllers in practical horticulture is among others discussed 

by Van der Meer (1977) and by Strijbosch (1974). A comprehensive overview of 

sensors and commercial controllers is given by Taveirne (1972) and by 

Heijnen, Buitelaar and De Kroon (1979). Gieling and Van Meurs (1977) present 

a survey of commercial equipment for greenhouse control, which indicates the 

complexity as well as the prices of analogue electronic controllers. 

In the books of Kanthak (1973) and Seemann (1974) much attention is paid 

to environmental control. In the book of von Zabeltitz (1978) a detailed 

treatment is given on environmental control, the thermal properties of green

house structures and some dynamical aspects of GCFC. In Hanan et al. (1978) 

the environmental control is discussed in terms of practical use. 

In recent years, in the literature some attention is given to greenhouse 

computers. Although much of the literature is not open (since most research 

is performed by commercial firms) some descriptions of computer systems have 

been published. Van de Vooren (1975) and Van de Vooren and Koppe (1975) 

discuss the computer control of the multifactoral climate glasshouse at the 

Naaldwijk Horticultural Experiment Station (with a Siemens 330 minicomputer). 

A twin system was installed at the Aalsmeer Floricultural Experiment Station 

in 1977. Weaving and Hoxey (1980) describe a Texas Instruments TMS 990/10 
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system developed at the National Institute of Agricultural Engeneering 

(England). Tantau (1981b) deals with the developments at Hannover University 

(Germany). Van Meurs (1980) describes a decentralized computer system at the 

IMAG (Wageningen) using a central DEC PDP 11/34 mini. Saffell (1981) reports 

a system with a PDP 11/05 datalogger at Nottingham University (England). In 

Japan computer installations are found at Shimane University (YEW YODAC/200 

system), at Tokyo University (Takakura, Taniwaki and Shimaji, 1980) and 

recently at Ehime University (Matsuyama) (Mitsubishi MELCOM minicomputer). 

Because industrial type systems employ expensive hardware, also low-cost 

solutions are considered and developed. White and Olsen (1978) discuss a 

low-cost system with a programmable HP 9810 calculator. Killeen et al. (1980) 

describe a system employing a low-cost KIM 1 microcomputer. Willits, Karnoski 

and McClure (1981) discuss a system based on an Intel 8080 microprocessor. 

The emphasis of the cited references is focused on hardware and the by far 

more interesting software that is employed is only vaguely described. Also no 

data of reliability is available. In contradiction to what the low number of 

references suggest, the commercial applications are widespread (Gieling, 

1980). 

2.4.4 Control loop dynamics 

Because of the prevailing approach in greenhouse climate control, studies 

that are concerned with modeling and analysis of the dynamical behaviour of 

the GCFC control loops are relatively few. The most extensive studies were 

carried out by Tantau (1979), who uses classical control methods to model the 

GCFC dynamics in the frequency domain. The results are then used for 

analyzing the behaviour of PID (three term) controllers. The studies are 

carried out for various types of heating and ventilation systems. O'Flaherty, 

Gaffney and Walsh (1973) analyze the dynamical behaviour of a temperature 

control loop in the time domain and apply the resulting model in a (analogue-

computer) simulation. 

In the modern applications of computer control, that are discussed in the 

following section, the dynamics of the control loops are modelled and used 

in design and simulation. As for a digital implementation of continuous time 

methods, results have been reported by Udink ten Cate and Van de Vooren 

(1977, 1981) for the control of a heating system, by Udink ten Cate and 
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Van Zeeland (1981) for a dog-lead algorithm for an improved heating system 

control and by Udink ten Cate, Van Zeeland and Valentin (1979) for a split-

range temperature control. These results will be reviewed in Chapter 4. 

2.5 REVIEW OF GREENHOUSE MODELS 

2.5.1 Greenhouse mode Is 

In contrast to the limited availability of models for GCFC, models of the 

(spatial) average greenhouse climate that are based on the physical phenomena 

of heat and mass transfer are widely used. Typically in these models the 

average climate is calculated with the outside weather and the environmental 

control actions as time-varying boundary conditions, which enter as input 

Variables into the model. The thermal properties of the greenhouse structure, 

the soil and the crop can be established using known physical relations and 

enter into the model as parameters. The obvious advantage of this approach is 

that the effect of changes in the structural aspects of the greenhouse (e.g. 

thermal screens, other covering materials) on the average climate can be 

calculated straightforwardly. 

In the sixties methods based on the steady-state energy budget have been 

suggested e.g. by Businger (1963). Here the energy balances are calculated 

from the input variables using algebraic relations. In the greenhouse no 

energy storage elements are modelled, because doing so would lead to simul

taneous differential equations which at the time were not easy to solve for 

arbitrary time-varying input variables. Because the crop and the soil 

influence the average climate very much -mainly by latent heat transfer- the 

radiation balances are of importance in the modeling. This leads to quite 

complex models. The energy balance method was used e.g. by Kimball (1973) for 

shading and evaporative cooling in a greenhouse; by Garzoli and Blackwell 

(1973) for greenhouses under Australian summer conditions; by Maher and 

O'Flaherty (1973) for evaporative cooling with polythene as cladding material; 

and by Heijna (1970) to investigate the influence of delta-X control. Seginer 

and Levav (1971) present a modeling approach where energy balances are used 

in combination with laboratory size scale models which are used in controlled 

experiments for model validation. 
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The energy balance models are essentially steady state models and do not 

account for energy storage in the greenhouse. For the basic diurnal 

periodicity of the outside weather, the energy stored in the soil is of 

interest. For rapidly varying weather conditions during the day, also other 

energy storage elements, like the inside air, the structure, or the heating 

and irrigation system are of importance. As a result, the agreement of these 

models with measurements is satisfactory only in steady weather conditions. 

These objections have motivated modeling which at least can account for 

diurnal periodicity. Takakura, Jordan and Boyd (1971) presented such a model 

where the input signals were decomposed using Fourier series expansion of low 

harmonics. Froehlich et al. (1979) present a model using steady-periodic 

input signals. Kindelan (1980) describes a model in which small energy 

storage elements are neglected as to describe the diurnal course. Bot, Van 

Dixhoorn and Udink ten Cate (1978b) describe a dynamical model employing all 

energy storage elements that are considered relevant. This model could be 

used for arbitrary input variables, but only diurnal basic periodic results 

are presented. 

2.5.2 Applicability of greenhouse models 

The models based on energy storage elements give qualitatively good results 

when idealized input signals are applied. For low-frequent inputs in a 

real-world greenhouse also satisfactory agreement is claimed. No results are 

reported with arbitrary rapidly time-varying weather conditions. A problem 

with these models is that the greenhouse is approximated as a perfectly 

stirred tank, resulting in a single homogeneous inside air temperature etc. 

This type of approximation is not very realistic, since in the greenhouse 

atmosphere large temperature gradients occur both vertically and horizontally. 

An accurate modeling of the greenhouse atmosphere with more than one 

perfectly stirred tank results in models with small time constants, which are 

computationally untractable. 

In the modeling the phenomena are described using known physical relations. 

These relations usually determine the parameters of the model. Because the 

known relations are used together with assumptions on uniform distributions 

and because not all the relations are linear, some errors are introduced. 

Added to that, some of the thermal phenomena are rather unpredictable (e.g. 

reflectivity of dusty cladding material) or even unmeasurable (e.g. 
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condensation on the roof). This leads to inaccuracies in the parametrization 

of the model. For example, Garzoli and Blackwell (1981) find a poor agreement 

between calculated and measured values of heat-loss during the night. 

Studies on the greenhouse average climate which involve measurements 

(Stanhill et al., 1973, Jimenez and Casas-Vazquez, 1978) indicate that the 

"average" values of the variables are not readily determined. This makes 

detailed validation of the models cumbersome. As a result, these models are 

used in essentially the same way as the energy balance models (containing no 

energy storage elements) for the same classes of idealized input signals. For 

example, Van Bavel, Damagnez and Sadler (1981) use this approach of modeling 

to assess the properties of a new "fluid roof" type of greenhouse. 

Because the physical phenomena enter into the model as parameters, it seems 

straightforward that a form of parameter estimation can be used for the 

fitting of measured data with the model responses - both for steady-state and 

for dynamical models. Hitherto some attempts have been reported with the 

dynamical model of Bot et al. (1978b) by Oosterhuis (1979) and by Jacobs 

(1981), for a greenhouse without a crop (only sensible heat fluxes), and for 

a limited amount of parameters. The rather large amount of parameters in the 

greenhouse models makes this approach rather cumbersome. 

The attractiveness for GCFC of greenhouse (spatial) average climate models is 

that they can be used for the design and evaluation of control systems. For 

this purpose -as a rule- only dynamical models can be applied. However, when 

dynamical average climate models are based on a stirred tank approximation, 

the distributed nature of the greenhouse climate is not modelled. This 

distributed nature leads to transport times in the greenhouse with respect to 

the relation between control actuators and controlled climate factors. When 

these characteristics are neglected, the controller will perform not so well 

in a real-world greenhouse (Udink ten Cate, 1980b). In fact these problems 

can be seen as the result of the relevant time scale in the spatial average 

climate models (hours to days) and GCFC modeling (minutes). An approach to 

circumvent this problem is to use in GCFC simple black-box models. These 

models are defined for a working point (a steady-state situation) which is 

the result of all the variables acting upon the spatial average climate. 

Recently, results have been reported by Otto et al. (1982), where parameters 

of a black-box model are validated. 
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2.5.3 Modern control 

Because of the lack of dynamical models that can be used in controller 

synthesis and evaluation not many applications of modern control science 

(using state space variables) are reported in the literature. Potentially, 

using more detailed information of the climate process, with modern control 

concepts an improved control performance could be achieved. Hoenink (1978) 

gives a simulation example of a state-regulator based on the model of Bot et 

al. (1978b). An optimal controller for soil temperature is reported by Hara 

and Sugi (1981). 

Because in the greenhouse climate process some parameters can vary in an 

unpredictable way, it is possible to estimate on-line certain process 

characteristics that are relevant for the control behaviour of the GCFC loops. 

This leads to adaptive control. A reliable GCFC model is essential here in 

order to establish the performance of the controller in simulation. Adaptive 

control is reported by Copet and Videau (1981) for heating and ventilation 

according to Richalet and Rault's method of model predictive heuristic con

trol (Richalet et al., 1978). 

As a general comment it can be said that most of the designs are rather 

"academic" and are not well tested in field trials. In Chapter 6 of this 

thesis an adaptive control algorithm of the heating system is described, 

which has been in operation in GCFC over several years. 

A completely distinct approach is to use fuzzy Bet theory as introduced by 

Zadeh (1973), see also Gupta, Saridis and Gaines (1977). Here the operator's 

approach is formalized into procedures using the linguistic relations that 

growers use themselves. A study on the ventilation of a greenhouse has been 

reported by Van Steekelenburg (1982). 
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3 Models for temperature control 

3.1 INTRODUCTION 

In the field of GCFC most research has been attributed to the control of the 

greenhouse inside air temperature. This can be explained because traditio

nally the temperature is considered the most important climate factor. 

Though other factors are of importance too, in this thesis the general trend 

will be followed so that the main attention is focused on temperature con

trol. For control the dynamical nature of the GCFC loops has to be modelled. 

In this chapter some models will be discussed. The parameters of the 

models are estimated experimentally and the relations between the parameters 

and the thermal characteristics of the greenhouse are investigated using a 

simple mathematical model. 
I 0a 
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Fig. 3.1 Greenhouse climate control. Of ^ 
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In fig. 3.1 a greenhouse is depicted with the actuators that are commonly in 

use in GCFC in the Netherlands. Inside the greenhouse the climate factors 

air temperature 8 [ C] and the absolute humidity x f g kg ] are regulated 

by heating and ventilation and depend on the outside weather conditions as 

ambient air temperature 0 [ C], ambient absolute humidity x [g kg ], wind 
-1 * . .a 

velocity v [m s ] and direction, shortwave (solar) rad%ation è [W] and 
° w s 

longwave radiation if [W]. 

The greenhouse heating system consists of steel pipes in which water is 

circulated with inlet temperature 6 [ C]. The temperature of the outlet 

t In this thesis the absolute humidity is employed instead of the commonly 
used relative humidity, because it is more meaningful in describing the 
climate process and the related transport phenomena. 
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(return) water is 9 [ C] and this water is mixed with feedwater from the 
r J 

main boiler with temperature 6. [ C]. This is performed by a mixing valve of 

which the position is denoted by r eEO, 100%]. Ventilation is achieved by 

opening ventilation windows which are situated in the roof. The aperture of 
3 -1 the windows is r e[0, 100%] and leads to an air exdhanqe rate q [m s ]. w u v̂ 

More details on the lay-out of the system as well as design criteria can be 

found in the relevant literature (Heijnen et al., 1979, Taveirne, 1972, von 

Zabeltitz, 1978). 

Fig. 3.2 A block diagram of the 

greenhouse climate. 
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The system of fig. 3.1 can be represented as a black-box with inputs r (t) 
w 

and r (t), and outputs x (t) and 9 (t) (fig. 3.2). The variables are a func-
m g g 

tion of time. The outside weather conditions act as disturbances on this 
system and have a significant influence on the relationship between input and 
output of the system. Because r (t) and r (t) control the ventilation and r J w m 
heating processes respectively, these can be shown separately (fig. 3.3). As 

will be discussed later in this chapter, q (t) is dependent on r (t) as well 

as on v (t), while 6, (t) depends on r (t) and 6_(t). 
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Fig. 3.3 A block diagram with the 

actuator processes shown 

separately. 

Of 

In the greenhouse system of fig. 3.3 the output variables [6 (t), x (t)] 

have the same order of magnitude, which also holds for the input variables 

[r (t), r (t)] and the intervariable 6, (t). As a result no scaling has to be 
w m n 

carried out. The intervariable q (t) is usually replaced by the ventilation 

rate (air change rate) S (t): the (theoretical) arithmetic number of times 
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the greenhouse air is completely refreshed per hour 

q (t) 3600 
S (t) = -Ï [h '] (3.1) 

V 
8 

3 
where V is the greenhouse air volume [m ]. In an average greenhouse in win
ter conditions r and r e[0, 100%], S e[0.5, 10 h _ 1 ] , 6,e[20, 100 °C], 

w m v h 

x £[10, 20 g kg '] and 0 eT10, 35 °C]. In summer conditions S can be 

considerably more important S £[0.5, 100 h ]. With the above described range 

of the variables the greenhouse system of fig. 3.3 is sufficiently scaled. 

It is noted here that the measurement of the system variables introduces some 

ambiguity. In fig. 3.3 a uniform distribution of the values of the variables 

in the greenhouse is suggested. In reality this is not the case. In control 

the variables are measured at a single point which leads to a behaviour 

somewhat different from what one should expect using a simple physical model. 

Such a simple model is reviewed in the following sections for temperature 

control. It is demonstrated that this model, which is based on simple thermal 

analysis, can be adequately used for the prediction of the control 

characteristics. Experiments are reported in which the parameters of the 

control models are determined. Methods of temperature GCFC are described in 

Chapter 4. 

3.2 A SIMPLE THERMAL MODEL 

3.2.1 Incremental variables 

The block diagram of fig. 3.3 does not represent the dynamical behaviour of 

the GCFC loops in a convenient way. This is accomplished in fig. 3.4 where 

the GCFC process is defined in terms of increments. For example, the 

increment 8(t) of the temperature 8(t) is defined as 

e(t) = e(t) - ê (3.2) 

The average 8 describes a working point (also called: equilibrium situation, 

stationary situation). 
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Fig. 3.4 The GCFC process. 
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In this chapter our attention is restricted to the inside air temperature 

6 (t). The relation of each of the input variables or the disturbances with 
g 

ïï (t) can be investigated separately. In fig. 3.5 the heating process of the 

greenhouse is shown, where the transfer function H , relates 6, (t) with 
g,h h' 

eg(t). 

Fig. 3.5 The heating process. 
0h 
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In a first approximation the process is described by a first order system 

with a dead time (transport time). Taking the Laplace transform 

e (s) K e 
"Td,hS 

g.h eh(s) T S + 1 
(3.3) 

where s the Laplace operator, K is a gain, x, , is a dead time and T is the 
g d,h g 

dominant time constant of the greenhouse. The values of x and x. . are 
g d,h 

usually expressed in minutes. The approximation of eqn. (3.3) is usual in 
thermal systems with distributed parameters. 

The temperature 6 (t) is measured at one point in the greenhouse. In the 

heating system 9, (t) is assumed to be uniform. As a rule the inlet tempera-
h 

ture of the water in the heating pipes is measured and taken as 8, (t) which 

is acceptable when 8, -6 <<8, a condition that is usually satisfied since the 
h r h 

temperature loss of the water in the heating pipe network of the greenhouse 

is not large. 
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The model of eqn. (3.3) is presented without specific knowledge of the 

process characteristics in physical (thermal) terms, and is essentially a 

black-box model. Related models are presented in eqns. (3.10) and (3.15) for 

the ventilation and the radiation processes. Because much data of the thermal 

properties of greenhouses are available -which are applied in design and 

construction- it seems worthwhile to investigate the process of eqn. (3.3) in 

more detail. To do so, an idealized approximation is employed, where in the 

greenhouse the variables are assumed to be uniform in a perfectly stirred 

tank approximation (fig. 3.6) leading to a simple thermal model. The relation 

of the parameters of the black-box models with the simple thermal model is 

presented in sections 3.2.2, 3.2.3 and 3.2.4. Experimental results on the 

black-box models as well as on the simple thermal models will be given in 

section 3.4. 

Fig. 3.6 The greenhouse as a 

perfectly stirred tank. 

»• qy.ög 

The dead time T , , will not be present in the perfectly stirred tank model 

because it represents the non-uniform characteristics of the greenhouse in 

relation to single point measurements. However, when single point measure

ments are applied in the experimental validation of the perfectly stirred 

tank model, dead times must be introduced again. 

Consider the greenhouse of fig. 3.6 where uniform variables are assumed. 

Summing the (sensible) heat fluxes leads to the equation 

de 1 
c — - - <L(t) c . p . (e ( t ) - e ï t ) ) + - (e. ( t ) - e ( t ) ) + 

d t v p , a i r a i r a 

1 
+ - (e ( t ) - e (t)) + n<t> ( t ) ( 3 . 4 ) 

R a g 
r 

where C is the greenhouse heat capacity [J K ], c . is the specific heat 
s - l - i p , a i S 

of dry air at constant pressure [J kg K ], p . [kg m ->] is the density; 
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R, , R [K W ] are the thermal resistances of the heating system and of the 

roof and sidewalls; <p is the incoming short-wave radiation and i) is a frac

tion ne[0,l]. Note that only sensible heat fluxes are represented in eqn. 

(3.4) and that the longwave radiation and the latent heat are not taken into 

account. This is motivated because in the two thermal resistances already 

latent heat and longwave radiation are incorporated in the way they are ob

tained. The fraction n indicates the fraction of shortwave radiation that is 

effective for the sensible heat flux; the other part of <p is reflected or 

transferred into latent heat by évapotranspiration. 

3.2.2 Heating 

To investigate the transfer function associated with the heating process of 

fig. 3.5 from eqn. (3.4) a relation in increments has to be derived. 

Linearizing around a working point (an equilibrium) and assuming that q , 9 

and c|> are constant from eqns. (3.2) and (3.4) the relation follows 

de 1 1 1 
C _ £ = _ (q c . p . + _ + _ ) 9 ( t ) + _ e (t) (3.5) 

g \r p,air air g h 
h r h 

To normalize this equation, (3.5) is expressed in terms of units of ground 
2 

area of the greenhouse. The greenhouse ground area is A [m ], so that the 
* -1 —2 —* - ̂  -1 

normalized parameters are C = C /A [J K m ], q = q /A [m s ], g g g ' ̂ v v g 
k* £ 1/(1 A )[W m_2K_1] and k* = 1/(R A )[W m _ 2 K - 1 ]. This yields 

C* — £ = - (q* c . p . + k* + k*) G (t) + k* 0, (t) (3.6) 
g v p,air air h r g h h 

The greenhouse air volume V = A h where h is the average height, 
-* - - - 8 8 8 8 
q = q /A = q h /V . In analogy with the other k-factors a factor k is Hv Hv' g Hv g' g bl v 
introduced: 

k £ c . p . q h / V (3.7) 
v p,air air v g g 

This k will be expressed in term of the ventilation rate S . With c . = 
i v -1 -1 -3 V P'a i r 

= 10J[J kg K ], p . = 1.2[kg m ] and with eqn. (3.1): 

k* = ç h S [W m"2 K"1] (3.8) 
v g v 
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where ç = c . p . /3600 = '/3ÜW h m 3K ' ] . p,air air J 

Substituting in eqn. (3.6) and taking the Laplace transform yields a first 

order transfer function 

K' 
H' 

g,h s T' + 1 

T ' = C / (k + t + k ) 
g g v h r' 

K' = k. / (k + K + k ) 
g h v h r 

[s] 

[-] 

(3.9a) 

(3.9b) 

(3.9c) 

Comparing this result with eqn. (3.3) the transfer function is similar with 

the exception of the dead time, which has vanished because of the approxima

tion employed in eqn. (3.4). 

3.2.3 Ventilation 

The relation between ventilation rate and greenhouse temperature can be 

described as a black-box model (fig. 3.7). 

Fig. 3.7 The ventilation process. 
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In accordance with eqn. (3.3) the transfer function H is approximated by 
8,v 

H (s) 
g.v 

e (s) K e 
= g _ _v 

-T, S 

d,v 
(3.10) 

S (s) T S + 1 
v v 

with T, and T expressed in minutes. 
d,v v 

In order to express the parameters of eqn. (3.10) in terms of the simple 

thermal model of eqn. (3.4) a linearization around the working point is 
carried out with in this case and constant. When the product 

q (t)6 (t) is neglected because it is comparatively small a model results: 
v s 
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de 

dt 

1 1 
(q c . p . + - + - ) e (t) + c . p . (e - e ) q (t) 

v p.air air R, R 
h r 

p,air air a g v 

(3.11) 

Normalizing this equation by dividing by A and using eqn. (3.8) gives 

C* — & = - (k* + k* + k*) e (t) + ç h (9 - 9 ) S (t) (3.12) 
g d t v h r' g' g a %' v' 

where the factor k is given by eqn. (3.8): 

k = ç h S 
v g v 

[W m 2K '] (3.13) 

with ç = 1/3ÜW h m K ' ] . 

Taking the Laplace transform gives a first order transfer function 

K' 
H' = V-

g ' V
 T' s + 1 

T' = C* / (k* + k* + k*) 
v g v h r 

Cs] 

(3.14a) 

(3.14b) 

* * *. K' = ç h (9 - 0 ) / (k + ku + k ) [K h] (3.14c) 
v g a g v h r 

K' is a negative gain. Comparing the T' of eqn. (3.14b) with T' of eqn. 

(3.9b) it appears that the time constants for heating and ventilation are 

described by the same relation. 

3.2.4 Radiation 

~n ~2 In fig. 3.8 the relation between radiation flux density <|> [W m ] and the 

greenhouse temperature 9 is depicted. 
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Fig. 3.8 The radiation process. 
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The transfer function can be approximated by 

H „ = <S> 
g.s 

e (s) K e 
= g _ s 

"TJ
 s 

d, s 

(3.15) 
|>"(s) T S + 1 

S s 

with T and T in minutes. Linearizing around the working point and 

normalizing of eqn. (3.4) yields: 

C* • & = - (k* + k* + k*) e (t) + n <?"(t) 
g d t v h r' gv ys 

(3.16) 

Taking the Laplace transform gives 

K' 
s H' 

S ' S
 T' S + 1 

(3.17a) 

T' = C / (k + k, + k ) 
s g v h r 

[s] (3.17b) 

K' = n / (k* + k* + k*) 
s v h r 

[K m2 W '] (3.17c) 

Here again the time constant is described by the same relation as the time 

constants of the heating and ventilation transfer functions. 

In this section, the heating, ventilation and radiation transfer functions 

H , , H and H respectively are presented in eqns. (3.3), (3.10) and 
g.h g,v g,s 

(3.15) in a black-box manner. The relation of the parameters of these black-

box models with a simple thermal model is given in eqns. (3.9), (3.14) and 

(3.17). A relation between 6 and 9 is not presented as such because the 
a g 

variations in 9 -which are caused by outside weather conditions- are so slow 
a J 

that they can be regarded as a slowly time-varying working point. 
31 



The transfer functions presented in this section are of the single-input 

single-output type. When more than one input is active, the combined result 

on 6 is assumed to be additive, leading to the model of fig. 3.9. 

Fig. 3.9 The GCFC temperature 

process. 
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3.3 ACTUATOR PROCESSES 

3.3.1 Mixing valve 

The transfer function f , that is associated with the mixing valve behaviour 
m, n 

(fig. 3.10) is non-linear. 

Fig. 3.10 The mixing valve process. 
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The relation between the input and the output can be described as 

(t) =? {1 
,(t) 

.00 "} 9 r ( t ) + 

rJc> 
m 

TÔT 

ef(t); r e[0, 100 %] 
m 

(3.18) 

Here 0 (t) is the temperature of the return water and 9 (t) is the tempera

ture of the feedwater from the main boiler. In most lay-outs (9-8 )>>(9, -9 ). 
J h g h r 

The value of 8 depends on the surface conditions of the heating pipe net

work and on the circulation rate of the heating water. An approximation of 
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is made with 

-T , S 

d,m 

:(S) = f r ^ T T C e h ( s ) " K m { V s ) -9g( s ) } ] 
(3.19) 

with T in the order of one or two minutes, T, depends on the flow rate of 
m d,m 

the heating water and K e[0.02, 0.1] depends on the temperature decrease of 

the water in the heating pipe network. Because of the ranges of the variables 

it is not useful to describe the relations in terms of increments. 

In control, the responses of eqns. (3.18) and (3.19) are fast compared to 

the responses of H , , H and H as long as the changes in r (t) are not 
g,h' g,v g,s ö ö mv 

(on purpose) constrained. In general this holds for increasing 6. . When 9, 
h h 

has to decrease, a complication arises because the heat-loss from the heating 

pipe network into the greenhouse is relatively small and 6 ~ 9 . Consequent

ly r is put to its minimum value when a decrease of more than some tenths of 

m 

a degree is desired. 

The mixing valve is usually controlled by a separate feedback loop of 

which the behaviour is saturated for large upward steps of the desired value 

of 9 and also saturated for small and large downward steps of 8 . The 

behaviour is only linear in regulator situations (8 has to be kept on a 

constant value). More on the characteristics of mixing valves can be found in 

e.g. von Zabeltitz (1978). 

3.3.2 Ventilation windows 

In the usual type of greenhouse in the Netherlands -the Venlo type glasshouse-

the ventilation windows are situated in the roof. When the windows are opened 

natural ventilation occurs. To induce the low rates of air exchange which are 

kept under winter conditions, the ventilation windows on the lee-side of the 

prevailing wind direction are opened. 

Fig. 3.11 The ventilation windows 

process. 
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The relation f between aperture of the ventilation windows r (t) and 
w,v w 

the ventilation rate S (t) (fig. 3.11) is not well established and S (t) is 

also not measurable in a commercial greenhouse in contrast to 6 . For a 

greenhouse with ventilation windows in the roof, relations are presented by 

Businger (1963) and by Whittle and Lawrence (1960). For the climate glass

house at the Naaldwijk Experimental Station -where the experiments reported 

in this chapter were performed- Bot (1982) has established a relation for 

Zee-side ventilation: 

S = (a. + r ) a, v (3.20) 
v 0 w 1 w 

where a_ and a, are constants, r e[0, 30 %] and v e[1, 10 m s ]. The 
0 1 w w 

relation was found with experiments using C0„ as tracer gas in empty glass

houses and was calculated from steady-state situations. Nederhoff (1982) 

found the same relation for the same glasshouses, now with a cucumber crop 

and measuring the decay-rate of a high CO» concentration. The uptake of C0„ 

by the crop was accounted for in the data-processing. 

Businger (1963) suggests also a term containing 8-8 in relation (3.20), but 

in the studies of Bot and Nederhoff this was not found to be significant. These 

latter results agree with those of Whittle and Lawrence, who investigated the 

leakage of greenhouses. The relation of eqn. (3.20) is based on fixed values 

of r and the validity of the eqn. for changes (increments) r (t) has not 
w w 

been verified -as far as the author knows. Because the relations of eqns. 

(3.10) and (3.14) are expressed in terms of increments, eqn. (3.20) is 

linearized around a working point, leading to 

S (t) = a. v r (t) + a, r v (t) (3.21) 
V 1 w w 1 w w 

where fluctuations in wind velocity as well as changes of r (t) are taken 
w 

into account. The product a,r (t) v (t) is assumed sufficiently small to be r 1 w w 
neglected. In accordance with eqn. (3.20) this relation can only be expected 

to be valid by lee-si.de roof ventilation and for small apertures r e[0, 30 %] 

and v e[1, 1 0 m s ]. 
w 
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3.4 EXPERIMENTS 

3.4.1 Experimental set up 

The experiments described in this section have been performed in the Naald

wijk multifactoral glasshouse (Van de Vooren and Koppe, 1975) situated at the 

Horticultural Experiment Station, Naaldwijk, The Netherlands. In the glass

house a (Siemens 300) minicomputer regulates 24 identical compartments in-

2 
dependently. The size of the compartments is 56 m . Details of the computer 

programs are found in Van de Vooren (1975). The glasshouse is of the Venlo 

type. The general lay-out is depicted in fig. 3.12. Fig. 3.13 shows one com

partment. Table 3.1 summarizes some characteristics. 
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Fig. 3.12 The Naaldwijk multifactoral glasshouse (after Van de Vooren 

and Koppe, 1975). 
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Fig. 3.13 Dimensions of one compartment. 
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ground surface A = 5 5 . 7 m 2 

air volume V =163.0 m0 

g 
average height h = V /A = 2.93 m 

g g g 
sidewalls surface A = 8 5 . 2 m 2 

s 
roof surface A = 6 3 . 0 m2 

r 

heating pipes length (active) 1, = 110.0 m (diam. 51 mm) 

heating pipes surface A^ = 17.6 m 

heating pipes volume V, = 0.216 m3 

Table 3.1 Glasshouse characteristics. 

The measurements were carried out by the computer system. Temperatures are 

measured with copper-constantan thermocouples with electronic zero-junction 

compensation. The resolution of the computer system is 0.125 C and the 

absolute accuracy can be assumed not better than 0.5 C (Van der Wel and Van 

de Vooren, 1981). Temperature and relative humidity are measured by aspirated 

psychrometers (one in every compartment). Outside shortwave radiation is 

measured using a Kipp solarimeter. Details on the instrumentation can be 

found in Van de Vooren and Koppe (1975). 

The crop that was grown during the experiments was Chrysanthemum. The plants 

were grown in beds parallel with the gutters, with 3 beds in every compart

ment. The average height of the crop at the time the measurements were made 

was 1 m. Most of the experiments described here have been made in compart

ments no. 1 - 8 of the glasshouse. 

3.4.2 Signa I aonditioning 

In order to estimate the parameters of the transfer functions, test signals 

were imposed on the process input. Because the transfer functions are formu

lated in terms of increments, a working point has to be defined. 

The disturbances acting upon the glasshouse are time-varying to such 

extend that an equilibrium situation over a longer period of time ( 2 - 1 2 

hours) is not maintained. This means that a working point is gradually 

changing. As a result, step responses -which are frequently used for 

determining the parameters of a first order transfer function- do not give 

reliable results. 
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The unreliability of step responses is illustrated with results obtained in 

the Naaldwijk glasshouse. Here step responses were measured in order to 

estimate the parameters of H , . A step wise change of 9, is applied and the 
g,h r h 

result on 8 is measured, assuming that no other disturbances are present. 

For this reason the step responses were measured at night (<(>" = 0). It was 

found that with closed windows (r = 0) K e[0.18, 0.25], T e[22, 36 min.] and 
w g 8 

Td h e ^ ' '^ mi-n- ] under various weather conditions, which led to the conclu

sion that the characteristics of H strongly depend on outside weather 

condition. However, the variations in the results can also be explained from 

disturbances acting upon the measurements. Once this was realized, it was 

decided to carry out a new series of experiments, which have been performed 

in the spring of 1982. Here the time-varying nature of the working point is 

taken into account. 

The working point is subject to slow variations, which can be described as 

trend and low frequency disturbances. In a linear system the input and output 

signals are in the same frequency range. The output frequency components that 

depend on the input can be discriminated from the disturbances by filtering, 

provided the input frequencies are in a suitable (high) frequency range. For 

this reason for the estimation of e.g. H the input signal 6 (t) was 
g, n n 

selected to be a block signal with a period of 2 hours, so that the basic 

harmonic is much higher than the disturbances and also in the range of the 

process cut-off frequency. The dead time was found from step responses. 

For a set of measurement data this estimation procedure is illustrated. The 

analysis and the filtering have been carried out using an interactive soft

ware package (Van Zee and Van den Akker, 1983). The data set contains 720 

points of 9U and 9 of compartment no. 1 (from 1982-03-01:19.00 to 03-02:7.00 
h g 

hrs.; sample time T = 1 minute). The data are first corrected for linear 

trend and then transformed using a FFT (Fast Fourier Transform) routine with 

a rectangular window and zero's added to the data set in order to obtain 

2 = 1024 points. The frequencies are defined on 1024 data points. It is 

seen that 9 (to) contains low frequencies that are not a result from 9, (œ) 

(fig. 3.14). Using filtering techniques, in the frequency domain these com

ponents can be removed. After an inverse transformation a filtered signal in 

the time domain is obtained. The procedure is shown in fig. 3.15 on time 

series, where fig. 3.15a shows the "raw" data and fig. 3.15b the processed 
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data using linear trend correction, FFT, removing the first harmonics by a 

bandstop filter (minimum cut-off frequency 0, maximum 3; harmonics defined on 

1024 data points), and inverse transformation. Of the filtered time series a 

part is selected for estimation. 
a 50 

Fig. 3.14 Frequency contents 

of data set. 

3.4.3 Actuator processes 

Before investigating the dynamics of the GCFC process (mixing valve process 

and ventilation window process), the actuator processes are treated. 

The mixing valve process f (fig. 3.10) is not of interest in the para

meter estimation, because its output is measurable. The mixing valve 

behaviour is used in simulation and for the analysis of control algorithms. 

The parameters of eqn. (3.19) have been determined from step responses in the 

Naaldwijk glasshouse. A reasonable accuracy was obtained with T, = 6 min., 

T = 2 min. and K = 0.05. 
m m 

For the ventilation windows process f (fig. 3.11) in the Naaldwijk glass-
w, v 

house, results have been obtained by Bot (1982) and by Nederhoff (1982) 

starting from the relation of eqn. (3.20). In eqn. (3.20) a = 1 represents 

the leakage. According to Bot a = 0.072 and to Nederhoff a = 0.064. Because 

the measurements of Bot are based on equilibrium (steady-state) situations 

and since those of Nederhoff on the decay-rate under slowly-varying wind 

velocities, the value a = 0.064 is preferred. This value was established for 
r e[2, 18 % ] , v = 4 m s"1 or r e[0, 5 % ] , v = 7.5 m s"1 (Nederhoff, 1982). 
W W w w 

38 



11 

E 

Fig. 3.15 Filtering of set of measurement data; "raw" data (a) and 

filtered data (b). 
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3.4.A Heating process 

To estimate the parameters of H test signals were applied by varying 6 (t) 
g, h n 

and by keeping the ventilation windows closed (r = 0). The signals were 
w applied to the compartments no. 1 8. A block signal was obtained for 9,(t) 

by imposing a desired value u to the control loop that regulates 8 (t). The 

test signal was u, (k) = u t 5 °C; where u, (k) is a piece-wise constant 

signal, t = k T and T is the sampling interval (1 minute). The output 

signal as well as the realized input signal were filtered in order to remove 

trend and low frequency disturbances. For compartment no. 1 the filtered 

signals 9 . and 8 . are shown in fig. 3.15b. A part of the time series was 
n, t g,I 

selected and by optimization techniques a best fit is obtained for the para

meters of a calculated response and the actual response. The response was 

calculated numerically with a system input x(k) = 8 f ( k ) ; t = k T , and the 

calculated system output is y(k). Adams-Bashfort 2nd order integration is 

th a step size equal to T (1 minute). The res 

to 8 ^(k) by minimizing a quadratic error criterion 

used with a step size equal to T (1 minute). The response y(k) is fitted 

g,fv 

N 
E = E e (k) 

k=l 
(3.22) 

with e(k) = y(k) - 9 f (k). The optimization was carried out by Powell's 
S> t 

conjugate gradient method using a software package described by Birta (1977). 

The dead time in H . was selected as a multiple of the sampling time T , 
g»h s 

its value following from step responses as well as from the best fit. The 

test signals are concurrently employed in 7 compartments, which means that 

the external disturbances have the same influence. Because of the mixing 

valve process characteristics, the (desired) u - 9 for u = 50, 60 C. For 

lower values of u, , u, (k) was not so closely followed as is depicted in fig. 

3.16. 

40 
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Because the compartments are similar with respect to the lay-out, the 

external disturbances are comparable so that significant differences in the 

parameter estimation are due to thermal characteristics and not to these 

external disturbances. Table 3.2 summarizes some results for the compartments 

no. 1 - 7. The error criterion E is defined in eqn. (3.22). 

comp 

1 

2 

3 

4 

5 

6 

7 

9h = 

r = 
w 

% 

50 

60 

30 

25 

30 

60 

50 

" h ± 5 

0 

\ 

50.7 

60.2 

32.2 

27.8 

32.3 

60.2 

50.7 

°C \ 

K 
8 

Td,h 

0.187 

0.228 

0.149 

0.147 

0.160 

0.227 

-

} = 5.5 
a 

} = 5.7 
w 

T 
g 

E 

= 6 min. 

20.7 

20.3 

21.3 

21.6 

23. 1 

22.1 

-

°C 
-1 

m s 

3.54 

4.04 

3.23 

3.34 

3.98 

4.38 

-

fil 

K 
g 

Td,h 

0.176 

0.216 

0.145 

0.144 

0.157 

0.215 

0.190 

T 
g 

E 

= 7 m m. 

18.6 

18.3 

19.7 

20.8 

21.0 

19.9 

20.9 

tered results 

T 
s 

3.62 

3.98 

3.16 

3.21 

3.85 

4.34 

3.51 

820302 

= 1 mi 

K 
g 

Td,h 

0.167 

-

0.138 

0.141 

0.154 

0.210 

0.187 

0.00 -

n. 

T 
g 

E 

= 8 mm. 

16.7 

-

17.9 

19.9 

20.2 

18.9 

20.1 

5.50 

3.90 

-

3.29 

3.29 

3.89 

4.62 

3.34 

hrs. 

Table 3.2 Results from measurements (March 1 19.00 hrs. - March 2 7.00 

hrs., 1982). 

A best fit for compartment no. 1 is shown in fig. 3.17. 

Fig. 3.17 Best fit of the model in compartment no. 1. 
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From the results of table 3.2 it can be concluded that a value of T, , = 7 
d,h 

min. gives a relatively good fit. This corresponds with step response 
measurements performed in other experiments where T h

€ E6, 10]. The average 

of T 19.9 min. (or better 20 min.), 
g 

The values of K seem to depend on 0 . A linear regression is made 

K = 8.12-10-2 + 0.214-10-2 6, (3.23) 
g.regr h 

with regression coefficient r = 0.97. Because of the filtering, only regres

sion with the average values 0, is meaningful. 

3.4.5 Non-linearity of the heating system 

In eqn. (3.23) only a regression is carried out, indicating a non-linear 

behaviour of the heating system. In order to obtain understanding of this 

result, it is interpreted in terms of the idealized model of eqn. (3.6). It 

is assumed that of eqns. (3.9) the values T' and K' are equal to T and K of 
g S~ g g 

H of eqn. (3.3), which means that in eqn. (3.6) 6, (t) is replaced by 
0, (t - T, , ) . From eqn. (3.23) it is anticipated that the heating system 

h d, h 
k-factor k* is non-linear. The following ratio's are introduced 

ag = kh ' (kr + O (3.24a) 

c = C* / (k* + k*) (3.24b) 

g g r v 

Eqn. (3.6) can be written as: 

de 
C* — & = - {k* + k*} e (t) + k* {6, (t-T, ) - e (t)} (3.25a) 

g d t r v gv h h d,s g 

With eqns. (3.24) this leads to 

d0 1 
— & = _ [- 9 (t) + a {6, (t-T, ) - 0 (t)}] (3.25b) 

Ai. g g h d,s g 
dt c 

g 
From eqn. (3.9) it follows that a = K /(1-K ) and c = T /(1-K ) since it is 

g g g g g g 
assumed that K = K' and T = T'. It was checked that a and c calculated 

g g g g g g 
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this way from table 3.2 yield the same results as optimization using eqn. 

(3.25b). The calculated results are presented in table 3.3. 

Compartment 

1 

2 

3 

4 

5 

6 

7 

hg 

31.0 

37.1 

17.6 

14.8 

16.7 

37.3 

31.7 

a 
g 

0.214 

0.275 

0.169 

0. 168 

0.186 

0.273 

0.234 

c 
8 

22.6 

23.3 

23.0 

24.3 

25.0 

25.4 

25.7 

Table 3.3 Calculated values of a and c from table 3.2 for T , , = 7 min. 
g g d,h 

Calculating the regression from 6, - 6 , - 8 gives 
hg h g 

a = 9.95-10"2 + 0.441-10"2 9, (3.26) 
g.regr hg 

with regression coefficient r = 0.96. The results of table 3.3 indicate that 

a depends upon 9 and that c is the same for all compartments. Averaging 

c for all compartments yields c = 24.17 min. (r = 0.97, a = 1.14). A model 

can be fitted where c = c for all compartments and a is fitted. The 
g g g 

results are presented in table 3.4. 

Compartment 

1 

2 

3 

4 

5 

6 

7 

timated values 

a 
g 

0.223 

0.282 

0. 175 

0.167 

0. 182 

0.265 

0.223 

m = 

of a with c 
g g 

E 

3.77 

4.05 

3.19 

3.22 

3.94 

4.43 

3.99 

26.59 

= c . 
g 
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Calculating the regression from a of table 3.4 with 9, from table 3.3 it 
g hg 

results 

a = 10.1-10-2 + 0.437-10-2 e\ (3.27) 
g.regr hg 

with regression coefficient r = 0.96. This form is quite similar to eqn. 

(3.26) and indicates that the results of the optimization procedure are 

reliable in that no sub-optima are found. 

In the results presented in table 3.4 all the optimizations are carried out 

separately for fixed c = c and the data are fitted by eqn. (3.27). It is 

also possible to perform concurrent optimization of all 7 compartments. The 

process is now described by 

eg= i â g+ U 0 i + bo V ( S h - V <3-28> 
cg 

with 6 = [ f' ], e = [0 . ], e, = [e, . ] and 8, = [e, . ] ; i denoting the 
g dt -g g.i ~hg hg,i -h h,i 

i t n compartment and element of the vector, and the superscript T means 

transpose. The vector £ is the unity vector: all vectors e R . The parameters 

c , a_ and b. in eqn. (3.28) are estimated yielding 

a . = 9.97- 10~2 + 0.437- 10~2 e\ (3.29) 
g.optim hg 

and c = 24.18 with E = Z E. = 28.46. 
g t i 

The results of eqns. (3.27) and (3.29) suggest that the ensemble average of 

the time series equals the time average so that the estimated values of the 

parameters explain the process output over the whole data set used for the 

estimation and that eqns. (3.29) and (3.27) describe a physical phenomenon. 

The relations in eqns. (3.27) and (3.29) can be investigated somewhat 

further. Because the ventilation windows are closed and the windspeed does 

not vary very much, k and k can be assumed constant, so that k. will cause 
r v h 

the non-linearities. Theoretically, the convective heat transfer from a pipe 
1 25 

in still air can be described by Q. = a 6, where 8, = 8, - 8 . xh c hg hg h g 
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Linearizing this relation yields 

Q(t) - -® 
hg 3hg 

Ï, = a eu , a = 1.25 a 0^°'25 (3.30) 
hg g hg g c hg 

From eqn. (3.4), its linearized version eqn. (3.5), and its linearized and 

normalized version eqn. (3.6) we know that k, is proportional to a . Since 

k and k are constant; from eqn. (3.24a) it follows that also a is r v . i v / g 

proportional to a . Consequently we may assume that 

ag = *, Cg' <3-3» 

where b, = 0.25. By regression with a from table 3.4 with 8, from table 3.3 
1 _2 8 h S 

it is found that a = 4.41*10 and bj = 0.49. It is remarked here that for 

b a higher value is found than 0.25, which suggests that the heat transfer 

from the heating system is not adequately modeled from well-known natural 

convection heat transfer relations. 

3.4.6 Relation with thermal parameters 

With the relations following eqns. (3.9) and (3.24) only the quotients of the 

thermal parameters of the simple thermal model of eqn. (3.6) are obtained. 

Now experiments are presented that facilitate to calculate the thermal para

meters themselves. The results are then compared with data found in the 

literature. 

For the ventilation k-value k , in the Naaldwijk multifactoral glasshouse it 

is found from eqn. (3.7) with an average height h - 3 m. (table 3.1) and 

ç = '/3 [W h m~3K- 1] that 

k* = Ç' Sv , Ç' = 1.0 [W h m _ 2 K _ 1 ] (3.32) 

The k of the heating system is calculated from the following experiment. The 

mixing valve is closed so that no heat is supplied to the heating system. The 

pumps are running, so that 6, decreases only because of heat transfer from 

the heating pipe network into the glasshouse in a normal operating condition. 

Approximating the heating pipes as a cylinder of water with uniform tempera-
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ture the heat balance reads 

„. de, (t-T, , ) 

< V =h^V^d,h)-V
t)} (3.33) 

The parameters C and h are defined per unit ground area. The time shift 

T , = 7 min. follows from eqn. (3.25). The data are fitted with a model with 

calculated output y(k); y(0) = 9.(0). In fig. 3.18 a best fit is presented 

for the interval 9, e[3, 20 C], where the fit cannot be distinguished from 
hg 

the measurements. 

Fig. 3.18 Measurements and best fit for measurements at May 26, 1982 from 

0.00 hrs. to 5.00 hrs. in compartment no. 1. 

Compartment 

1 

5 

r = 0 m 
r = 0 w 

e 
a 

V 

w 

= 

ah 

6.18 10~5 

6.15 10~5 

13.5 

0.55 

* 
hh 

1.00 

0.998 

results 820526: 

T = 1 
s 

b 

1.452 

1.457 

0.00 -

min. 

5 00 

E 

7.81 

5.47 

hrs. 

Table 3.5 Results from measurements (May 25 19.00 hrs. - May 26 7.00 hrs., 

1982). 

Results are given in table 3.5. Here a. = h. / C, . The value of h, = a. C, 
° h h h h h h 

can be calculated. From table 3.1 V, = 0.216 and A = 55.7; since 
h g 
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C* = c ^ p t V, / A = 4.187 103 0.216 / 55.7 = 16.24 kJ K 'm 2 , h* can h water water h g ' h * 
be found. From table 3.5 values are selected h, = 1.0 and b = 1.46, so that 

ck , the heating pipe network heat loss per unit ground area is 

* 1.46 
* h = '-O 9h g (3.34) 

By linearizing (compare eqn. 3.30) it is found that 

k* = 1.46 ê " ' 4 6 (3.35) 
h hg 

When k, is known, the other thermal parameters of eqn. (3.6) can be calcula

ted, as is done in table 3.6. 

Compartment 

1 

2 

3 

4 

5 

6 

7 

* 
k h 

, * * 
k + k 

r v 

0.223 

0.282 

0.175 

0. 167 

0.182 

0.265 

0.223 

hg 

31.0 

37.1 

17.6 

14.8 

16.7 

37.3 

31.7 

kh 

7.1 

7.7 

5.5 

5.0 

5.3 

7.7 

7.2 

average 

* * 
k + k 

r v 

31.8 

27.3 

31.2 

30.2 

29.3 

29.1 

32.1 

30.1 

* 
C 

g 

46.1 

39.6 

45.3 

43.8 

42.5 

42.2 

46.6 

43.7 

103 

,0J 

10J 

103 

103 

10J 

103 

103 

c /c . 
g air 

11.8 

10.1 

11.6 

11.2 

10.9 

10.8 

11.9 

11.2 

Table 3.6 Calculated parameters of the simple thermal model. 

The result of eqn. (3.35) can be compared with eqn. (3.31). The exponents 

are 0.46 and 0.49 respectively, and the factor 1.46/(k + k ) = 1.46/30.1 = 
-2 -2 V r 

= 4.85 10 corresponds with a = 4.41 10 
* - 1 - 2 

With C . = c . p . V- Ik ~ 3.9 [J K m ], in table 3.6 the ratio 
A * air p.air Kair g g 

C /C . is calculated. Its value 11.2 is much higher than one should expect 
g air 

at first sight. It means that the parallel thermal capacities are much higher 

than the capacity of the air alone. In Jacobs (1981) a ratio 7.5 was 

calculated for the same glasshouse for a detailed physical model. 
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The results of table 3.6 can be compared with data from the literature. It is 

recalled that the parameters originate from linearization around a working 

point. When non-linearities occur this leads to other parameters than in a 

simple heating-load analysis. For example, for k, in eqn. (3.35) in heating 

load calculations the (exact) value 

k* = 1.0 9 °'46 (3.36) 
h,ss hg 

is used. The suffix ss indicates here a steady-state or statical relation

ship. 

From the literature k-values are available from studies for energy consump

tion (Okada and Takakura, 1973, Okada and Hayashi, 1978, von Zabeltitz, 

1978, Tantau, 1981a), where only the steady-state part of eqn. (3.4) is 

evaluated. The analysis implicitely includes the latent heat transfer. In von 

Zabeltitz (1978; p. 151) the heating requirement of a greenhouse with closed 

ventilation windows and v = 4[m s ] is 
w 

A 
<(. = 7.56 — (9 - e ) [W m : (3.37) 

g 

so that (k + k ) = 7.56 A / A . However, in the Naaldwiik glasshouse 
r,ss v,ss r g 

compartments, also the sidewalls have to be taken into account (although they 

are not important for the heating-load) leading to (k + k ) = 

= 7.56 (A + A )/A = 20. From table 3.6: k* + k* = 30. 
r s g v r 

In the factor k* also the latent heat loss is included. Okada and 
v, ss 

Takakura give values of k depending on outside weather conditions. A 
v,ss 

worst case value is k = 2.5 A / A = 2 . 8 for v = 4[m s ] and s = 1 . 2 
v,ss r g w v 

so that k = 2.3 k and small compared to k resp. k . 
v,ss v r r,ss r 

The results of table 3.6 depend upon the initial accuracy of k, in eqn. 

(3.35). This eqn. is compared with data from von Zabeltitz (p. 166, tab. 42) 

who gives,for the heating system the dissipated heat per m heating pipe of 

51 mm. external diameter. With a 9, = 4 0 C and 6 = 20 C the dissipated 
h g 

heat is 44 W. In the glasshouse 1,/A = 110/55.7 = 2 m (table 3.1) so that 
-* h 8 

0 = 88 W. Because 

0* = k* ë, [W m"2] (3.38) 
h h,ss hg 
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it follows that k = 4.4. Using eqn. (3.36) k = 20 
II« O O II y b b 

,0.46 
4.0, so that 

the outcomes are quite comparable. In Chapter 7 it is demonstrated that when 

k is calculated from steady-state conditions "acceptable" values are 

obtained, which indicates that eqn. (3.36) is not unrealistic. 

It can be concluded that the parameters of H can be approximately 

calculated from heating load data, but that because of linearizations and 

other simplifications the parameters tend to be too low so that some care has 

to be excersized. For a rough estimate, the inaccuracy will be smaller than a 

factor two. 

3.4.7 Venti lotion 

The parameters of the transfer function H have also been estimated. Here a 
8,v 

test signal was established by changing r stepwise around a working point 
w r ± 2.8 % so that with eqn. (3.21) and S w ^ v 0.064-3.5 r 0.22 r 

Because in the initial experimental set-up the value of T was expected to be 

small, a test signal period of 30 min. was selected. The heating system was 

set at a constant 60 C. Table 3.7 summarizes the results. 

Comp. 

1 

2 

3 

4 

5 

6 

7 

8 

r = r 
w w 8 = 60 h 

r =u 
w w 

2.8 

8.7 

14.7 

26.7 

26.7 

14.6 

8.9 

2.8 

±2.8% 

°C 

K 
v 

Td,v=0 

-0.92 

-0.88 

-0.57 

-0.76 

-0.71 

-0.54 

-1.0 

-0.89 

ê = 4.6 a 
v = 3.5 
w 

T [min] v 

7.12 

9.65 

6.31 

12.1 

13.9 

4.90 

10.4 

6.08 

°C fi 

m s 

E 

4.18 

5.17 

5.86 

4.42 

13.5 

4.22 

4.38 

4.76 

Ltered res 

T = 1 
s 

S 
v 

0.86 

2.2 

3.5 

6.2 

6.2 

3.5 

2.2 

0.85 

e 
ag 

-17.2 

-15.9 

-13.5 

-11.2 

-11.4 

-13.9 

-15.3 

-16.7 

ults 820331: 22 

min S = 
v 

K /T v v 
TV[S] 

2.1 10~3 

1.52 10~3 

1.50 10~3 

1.05 10~3 

0.85 10~3 

1.84 10~3 

1.66 10~3 

2.45 10~3 

.50-0104: 05 

0.22 r 
w 

* 
C 

g 

8.0 103 

10.4 103 

9.0 103 

10.6 103 

13.4 103 

7.5 103 

9.2 103 

6.8 103 

.00 hrs. 

Table 3.7 Results and calculations from measurements (March 31 19.00 hrs. 

to April 1 7.00 hrs., 1982). 
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The values for x do not correspond to the results from table 3.2. When from 
v 

the ratio K /x 
v v ch 8 /C (see eqns. 3.14) the value of C is calculated, 

g ag S * g 
the results also do not agree with table 3.6. Note that C is calculated 

* 
without knowledge of k . 

The incorrect value of x can be explained from the fact that the test signal 

period was too small. Because only the ventilation windows are controlled and 

not the ventilation rate S , one might well expect that only the first har

monic of the test signal is supplied to the process. Because H is a first 
g,v 

order transfer function, using harmonic input signals any combination of K 
and x can be found, as long as the ratio K /x is constant. Clearly the 

v ° v v 

applied test signal is not suitable in this case and should contain more 

distinct frequencies. 

The results of table 3.7 might suggest that the approach using thermal 

characteristics is not completely correct. Therefore, in table 3.8 results 

are presented for H , , but with the ventilation windows opened at fixed 
_ g»h 

apertures r . 

comp. 

T d,h • 7 

hg 
S Ek 

V V 

0 

5.6 

11.6 

23.6 

0.201 20 . 2 2 . 15 

0 . 215 21 . 9 7 .04 

0 . 186 22 .1 4 . 9 5 

0 .167 2 1 . 3 8 .44 

30.4 7.0 0.23 27.6 42.2 10 

31.2 7.1 1.5 24.4 37.9 103 

33.2 7.3 2.9 29.0 51.7 103 

35.3 7.5 5.6 32.0 57.6 103 

average: 28.3 47.4 103 

u, = 50 ± 5 
h 

4.8 °C 

v = 3.6 m s 
w 

filtered results 820330: 20.40-0331: 02.50 hrs 

T = 1 min 
s 

Table 3.8 Results and calculations from measurements (March 30 19.00 hrs. 

to March 31 07.00 hrs., 1982). 

Here S is calculated with eqn. (3.20) and k, using eqn. (3.35). The average 

value of k = 28.3 is close to that from table 3.6; where (k + k ) = 30.1 
r r v , 

and with k =0.36 it follows that k v r 29.6. The average of C is 47.4-10 
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and agrees with 43.7-10 from table 3.6. 

From the results presented in table 3.8 it might be concluded that a static 

(steady-state) ventilation rate S does comply with the approach using 

thermal data. From table 3.7 it can be seen that in the mechanism describing 

S in relation to r some unknown influences are present, 
v w 

3.4. Radiation 

The parameters of the transfer function H (eqn. 3.15) have been estimated 

from measurements. Because on $" no test signal can be superimposed, one has 

to wait for suitable experimental conditions. Also the estimation can be less 

efficient in that the input signal does not contain sufficient distinct 

frequencies (recall the problems associated with the experiments from table 

3.7). In table 3.9 results are presented. In the experiment 6. = 6, was kept 

constant and the windows are closed. 

Compartment Tg[min] 

d, s 

0.0278 

0.0310 

0.0248 

0.0239 

27.6 

28.7 

27.5 

26.6 

17.7 

21 . 1 

38.6 

65.2 

35.0 

30.0 

25.1 

21.0 

r = 0 
w 

0 = 6.4 °C 
_a 
v = 4.5 m s 

w 
-1 

filtered results 820330: 08.00 - 15.00 hrs 

T = 1 min 
s 

Table 3.9 Results from measurements (March 30 08.00 hrs. - 16.00 hrs.). 

In table 3.9 the value of T is higher than results presented in tables 3.2 

and 3.8 but should be similar (eqn. 3.17b). However, the dead times represent 

several small time constants and might be added to the measured time con

stants. In that case the results of tables 3.2, 3.8 and 3.9 agree. For 

compartment no. 1 the "raw" data are shown (fig. 3.19a) as well as the best 

fit (fig. 3.19b). 
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Fig. 3.19 Measurements and estimation results for compartment no. 1 at 

March 30 08.00 hrs. - 16.00 hrs. Measured radiation and 

greenhouse air temperature (a), filtered air temperature and 

best fit (b). 
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The values of (k + k ) and n can be calculated from eqns. (3.17) with k 

according to eqn. (3.35). In table 3.10 the average results of experiments on 

three days are presented including their relative variance. In all cases the 

windows are closed and 6, is kept as the same constant levels in the same 

compartments. 

experiment 

820330: 

820407: 

820409: 

08.00 - 0330: 

07.00 - 0407: 

07.00 - 0409: 

16.00 

18.59 

18.59 

9 
a 

6.5 

11.7 

4.9 

V 
w 

4.5 

7.6 

5.3 

*s 

133 

136 

234 

n 

0.71 

0.58 

0.72 

an 

n 

0.026 

0.045 

0.073 

* * 
k +k 

r v 

22.1 

16.4 

19.9 

ok 

k 

0.045 

0.045 

0.079 

Table 3.10 Averages of calculated results of three experiments. 

Comparing the calculated values of k + k with the results obtained in 

sections 3.4.6 and 3.4.7 a satisfactory agreement can be claimed. The values 

are somewhat lower which might be caused by the fact that the corridors are 

heated by radiation too, which makes the experiments different from those 

discussed in the previous sections. 

3.5 DISCUSSION 

The results presented in this chapter indicate that the modeling of the 

dynamical behaviour of the greenhouse temperature control loops can be per

formed with a satisfactory degree of accuracy. Although the measurements were 

carried out in one type of greenhouse, it is felt that this conclusion also 

holds for greenhouses in general. 

In addition to the determination of transfer functions, the results of the 

parameter estimation are related to the parameters of a simple thermal model. 

This facilitates to explain the relations in terms of heating-load coeffi

cients or thermal parameters. 

The results suggest that the estimated thermal parameters are constant or 
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have distinct non-linearities. The processes are deterministic by nature i.e. 

that no phenomena occur that have to be modelled by their statistical proper

ties -if any. However, the parameter estimation is based on selected periods 

of time so that no statements can be made on the eventual occurrence of 

bursts of sudden disturbances. 

It is recalled that these results are based on four key features. The first 

is that the non-linear actuator processes are separated from the climate 

process. The second is that the climate process is linearized around a 

working point and that the variables are formulated in terms of increment's. 

This draws the attention on the disturbances acting upon the working point. 

The third feature is that experiments are set up such that the disturbances 

on the working point can be filtered out (in the frequency domain) using time 

series analysis techniques. The fourth feature is that the experiments have 

been performed concurrently in identical greenhouses, which provides the 

opportunity to investigate non-linearities that occur with respect to the 

working point. 

The results are markedly different from what is found in the literature on 

this subject (Tantau, 1979, von Zabeltitz, 1978, O'Flaherty et al., 1973). 

In the work of Tantau, which is the most elaborate study available as yet, 

only approximate results are obtained (p. 93, table 6-1). Tantau has 

described the greenhouse properties by directly measuring frequency diagrams 

using sinusoidal input signals -a common approach in air-conditioning 

research. When this method is applied in greenhouses, the discrimination of 

disturbances that act on the working point is unsatisfactory. By nature the 

curves are not interprétable in terms of thermal parameters. It is felt that 

parametric modeling in relation to a simple thermal model as presented in 

this chapter has profound advantages over the direct measurement of frequency 

diagrams. 

54 



4 Temperature control 

4.1 DESIRED PERFORMANCE CHARACTERISTICS 

In GCFC, the control of the inside air temperature has received most atten

tion. Tenperature control is achieved by heating -when the temperature would 

drop too low- and by ventilation -in case the temperature would rise too 

high. Concurrent heating and ventilation is only employed when a certain air 

change rate is considered to be beneficial for the crop. The control of the 

heating system has received most interest, which is reflected in the existing 

literature on GCFC (Heijnen et al., 1979, von Zabeltitz, 1978, Tantau, 1979). 

This preference is understandable, since the energy consumption of a green

house is mainly associated with heating. 

With respect to the required ventilation, the prevailing opinion is that with 

the existing blue print temperatures, in winter conditions a high temperature 

is beneficial for crop growth. This means that the air change rate is kept at 

a low level as to maintain a minimum level of CO2 (when no CO2 enrichment is 

applied) and to avoid diseases by lowering the relative humidity. Higher 

ventilation rates will preferably be employed only when the greenhouse 

temperature is rising too high. The topic is discussed in section 4.5. 

The requirements that are put upon the performance of the heating system 

control are not formulated straightforwardly, because of the special way 

GCFC is performed in the practice of growing. Many control actions are formu

lated in terms of manipulating control actuators (see Chapter 1), and the 

controls should allow such manipulations. As an example, due to horticultural 

requirements, limits are put upon the values of the heating pipe temperature, 

constraining both the maximum and the minimum. It is also accepted practice 

to raise the heating pipe temperature a few hours before sunrise, in order to 

avoid condensation on the crop. 

The setpoint of the GCFC loop is time-varying too. As a rule at night a 

lower temperature is kept and during the day the setpoint is varied when for 

example light-dependent temperature control is applied. 
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In some cases only a minimum temperature is controlled. When the weather 

conditions cause a rise in temperature, e.g. when the radiation drives the 

temperature over the setpoint, this extra rise is not thought to he a dis

advantage as long as the heating can be turned off. To drop under the set-

point is on the contrary not desirable since the setpoint represents a 

minimum admissable value. As a result the following requirements can be 

formulated for GCFC heating system control, with the greenhouse air tempera

ture as controlled variable; 

1. The temperature should not drop significantly (a few degrees) under the 

setpoint at daytime when disturbances act upon the greenhouse or when the 

setpoint is time-varying. 

2. The setpoint should be followed aoourately at night. Typically at night 

the setpoint is constant and no significant disturbances act upon the 

greenhouse. 

3. The temperature should not exceed the setpoint due to energy input via the 

heating system (if the energy is "free" this requirement does not apply). 

4. Changes in the setpoint should be followed reasonably accurate (in order 

to create an optimal plant growth situation). 

The order of the requirements formulated above reflects their relative 

importance in existing practice. In commercial GCFC equipment, the first 

requirement is difficult to cope with and is not usually satisfied. The 

second is quite reasonably fullfilled in practice (and is a typical selling 

argument), and also the third is satisfied. The fourth requirement is not 

recognized to be of importance. 

When the hierarchical system description of fig. 2.1 is recalled, in fact 

the fourth requirement summarizes the three others. When control schemes have 

to be employed which are formulated on the second level -for example when 

control is based on plant responses- a close tracking of the setpoint becomes 

essential. For this reason the fourth requirement is formulated explicitly here. 

In most commercial controllers the limits on the heating pipe temperatures 

-which are formulated because of horticultural reasons- are used to improve 

the control behaviour, for example by linking the minimum pipe temperature 

with the outside air temperature. The result is satisfactory in steady-state 

situations, but in transients induced by setpoint changes or high-frequency 

disturbances the performance is such that the requirements are not satisfied. 
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4.2 HEATING SYSTEM CONTROL 

4.2.1 Control scheme 

In GCFC the control of the heating system is usually carried out using a 

master-slave (or cascade) configuration. The slave loop controls the heating 

pipe temperature 9, . The master regulates the greenhouse inside air 

temperature 9 by imposing a desired value of 6 , a signal refered to as u, , 
g g h' 

on the slave. In fig. 4.1 a master-slave configuration is depicted. In this 

case the control algorithms are incorporated in a greenhouse climate 

computer. 

^ ^ / y ^ algorithm ^®— 

computer i greenhouse 

valve 
control 

U m T 
valve 

disturbances 

Qhjgreen house 
heating 

9g 

Fig. 4.1 Master-slave control of the greenhouse air temperature. 

The application of the slave-loop is motivated by fluctuations that occur in 

the feedwater temperature 6 and subsequently in the return water temperature 

0 (see fig. 3.1). The dynamical behaviour of the slave is fast compared to 

the master. The relation between the position of the mixing valve r and 9, 
6 m h 

is such that the valve behaves linearly for increasing u . For decreasing 
u, the heat loss in the greenhouse is so small that 9 > u, . so that r is 

n ° r h' m 
put in fully closed position. In terms of dynamic behaviour this is a 

constraint (or: saturation). The decrease of 9, is in this case determined 
h 

by the heat transfer from the heating pipes into the greenhouse. This leads 

to an asymmetric behaviour of the mixing valve control, with a small time 

constant for increasing u, and'a large one for decreasing u, . For small 

changes in u, , as will occur when a constant 9 is kept and the disturbances 
" g 

are small, the valve process will behave linearly. The slave control 

algorithm is usually of the proportional type, where in computer control a 

time-proportional algorithm is employed. 
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The master controller is usually of the PI (proportional plus integral) type. 

The transfer function of the controller is given by 

Hr(s) = Kr ( 1 + T i 7 ) (4.1) 
i 

The parameters of eqn. (4.1) -the controller settings- are selected using 

estimated values of the parameters of the greenhouse heating transfer 

function H , (s). The slave loop is, considered transparant (H , (s) = l), so 
g,n r m,h 

that in fact only a design is made for upward transients of u and for steady 

state regulation. For downward steps -or equivalent disturbances- the control

ler behaviour is not so satisfactory and some tricks have to be applied in 

order to establish an acceptable performance. 

For the Naaldwijk multifaatoral glasshouse using the model of eqn. (3.3), for 

the design of a controller a transfer function is used 

n oc - 8 s 
H . = ^ ^ (4.2) 

g ' 20 s + 1 

with a worst-case value for K . The dead time includes the dead time intro-
8 

duced by the actuator circuit of the digital control (|T ; T = 1 min.). 

The actual dead time T , , e[7, 8 min.]. Although the computer dictates the 

application of discrete time algorithms, the sample time T is sufficiently 

small to allow a continuous time domain analysis for the selection of the 

controller settings. Using Bode-diagrams, it is seen that a choice of 

T. = 30 min. and K = 10 would satisfy stability criteria. Because this K 
l r J J r 

would lead to overshoot for upward transients usually a lower K = 8 is 

selected. By limiting the valve motor actuating signal u a satisfactory 

behaviour can be achieved in upward transient situations, at the expense of 

disturbance reduction capability. 

4.2.2 Discrete time algorithms 

In discrete time a PI control algorithm can be formulated (Verbruggen, 

Peperstraete and Debruyn, 1975): 

u'(k) = k e(k) (4.3a) 
P 
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k-1 
u"(k) = k. I e(k-j) = u"(k-l) + k. e(k) (4.3b) 

1 j-O x 

u(k) = u'(k) + u"(k) (4.3c) 

Here u(k) = u(t) at time t = kT . In eqns. (4.3) the controller output 

u(k) s u (k) and the error e(k) = u (k) - 9 (k). The signal u'(k) represents 

the proportional action and u"(k) the integral action. Compared to eqn. (4.1) 

k. = K T /T. and k = K . 
l r s l p r 

The algorithm of eqns. (4.3) can be written in a more compact form as a 

modified PI algorithm 

u(k) = u(k-l) + K (e(k) - e(k-l) + K. e(k)} (4.4) 

with K = k and K.K = k.. The PI algorithm of eqns. (4.3) and the modified 
p p l p l 6 

PI of eqn. (4.4) are equivalent in linear behaviour. When constraints are 

present in the control loop, the integral part of the controller (eqn. 4.3b) 

can grow to large values (windup) and is therefore limited in an anti-windup 
procedure. In eqn. (4.3b) limits are imposed L . < u"(k) < L with r min ~ max 
L . < L arbitrary scalars, and also L . < u(k) < L where [L . , L ] 
m m max min max m m max 

is the operating range of the controller. In eqn. (4.4) only u(k)efL • ,L 1 r D O -l j L m l n » m a X
J 

which gives a better damped response when the limits are effective. 

This is demonstrated by simulation of a process with transfer function 

-5 s 
H ( 1 - y(s) _ 0.2 e ,, ,-N 

p^ ; u(s) (10 s + 1)(30 s + 1) l " ' 

which is controlled by a PI algorithm according to eqns. (4.3) and one 

according to eqn. (4.4). Also a PID type algorithm is used which is 

formulated like eqns. (4.3) and where a four-point difference was applied 

(Takahashi, Rabins and Auslander, 1970). Fig. 4.2a shows the simulated 

responses. In all cases the controller gains are selected K = 10, T. = 33 

and in the PID controller T, =.10. The system is linear where zero represents 

an arbitrary working point. The setpoint is varied from 0+5 and backwards and 

the limits L =10 and L . = -5 act upon u(k). max m m 
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m E 

Fig. 4.2 Effect of anti-windup procedure in PI algorithm (A), modified PI 

(B) and PID algorithm (C). Shown are output of the system (a) and 

actuator signals (b). 

In fig. 4.2b the signal u(k) from the controller is shown, indicating that 

the modified PI is quicker coming out of its saturation, resulting in an 

improved response. This is explained because u" (k) of eqn. (4.3b) comes out 

of its saturation when e(k) changes sign, whereas in eqn. (4.4) a trade-off 

between e(k)-e(k-l) and K.e(k) is made. The response of the PID control is 

also shown indicating that the modified PI adds an extra damping in a 

saturated situation. 

Eqn. (4.4) is liable to setpoint changes because the proportional gain 

factor K leads to proportional kiek (Verbruggen et al., 1975). There are 

situations where this is not desirable. In section 4.3.2 this is discussed 

in more detail. 

4.2.3 TypiaaI performance 

The modified PI has been implemented in the computer control of the Naaldwijk 

multifactoral glasshouse since 1977, in several forms -including an adaptive 

one as is presented in Chapter 6. Although the performance is better than the 

usual PI of eqns. (4.3), some notorious problems remain. This is illustrated 
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in fig. 4.3 showing u , 9 as well as u, and 6 g g h 
on a bright winter day with 

relatively strong radiation during the day and a cold night (Jan. 5, 1980). 

30 

°C 

24 

18 

12 

m 

sag 

12 

undershoot 

16 20 24 
time hrs 

M 

16 20 24 
time hrs 

Fig. 4.3 Typical performance of GCFC temperature control. 

The responses demonstrate examplary the problems associated with GCFC heating 

control. In the morning the setpoint u rises, and subsequently u and 9 

rise. Because of the limited capacity of the main boiler (note the response 

of 9, between 8.00 hrs. and 10.00 hrs.), u, and 9, diverge and u, is clamped h h h n 
to L (100 C). When 9 approaches u , u, decreases but because of the 

max g g h 

divergation between 9, and u, this has no immediate effect. As a result a 

large overshoot (3 C) of 9 occurs, partly due to the incoming radiation. 

In the afternoon the radiation decreases, causing a sag at 15,00 hrs., the 

effect of which is hidden by the decrease of u . At the end of the afternoon 
g 

-when u is put on its night value- an undershoot occurs caused by a similar 
divergence between u, and 9, as in case of the overshoot discussed above. 

° h h 

This leads to an undershoot for about 4 hrs. which can be considered to be 

the most detrimental of the undesired effects, since the night temperature is 

usually a minimal acceptable value (in winter) and the temperature should not 

drop under its desired value. It is seen that the steady-state behaviour 

during the night is satisfactory. 
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The responses in fig. 4.3 are better than those which would be obtained with 

a PI algorithm according to eqns. (4.3), which can be argued from the fact 

that u, (k) comes out of its saturation before e(k) changes sign. Naturally, 

the responses in fig. 4.3 could be improved by the selection of better values 

for L . and L : a choice 30, 80 C would much improve the controller 
min max 

performance. However, "good" values of L . and L depend on the outside 
m m max 

disturbances (the weather conditions) and cannot in general be calculated 

from measurements, so that this kind of solution is either inadequate or 

requires day to day tuning by the grower. 

Of the responses the overshoot is exceptionally large because of the large 

setpoint change and the favourable bright weather. The sag and the undershoot 

will also occur for small setpoint changes. The sag because it is the result 

of outside disturbances. The undershoot is caused by the large time constant 

associated with the decrease of 6 and will nearly always be present. It is 

only less severe in the rare occasion that the weather conditions are such 

that the value of L . is close to the value which is necessary to maintain 
m m 

the required night temperature. 

In the foregoing discussion the tuning of the slave loop has not received any 

attention because it was assumed that the slave was properly tuned. However, 

an important parameter in the slave loop is the gearing mechanism that 

relates the valve motor to mixing valve position. This mechanism differs for 

various makes so that the slave is adjusted on-line in an ad-hoc fashion. 

An often encountered problem is that the proportional gain in the slave 

loop is put to a too low value and causes stability problems in the main 

master loop. For the Naaldwijk glasshouse such a situation is shown in fig. 

4.4, leading to slow oscillations in 9 with a period of time of 25 min. 

These oscillations are also present in the response of 0 . Often, in such a 

situation the solution is sought in decreasing the slave loop gain, believing 

that the slave loop is too fast. The correct solution is to increase the 

loop gain (Udink ten Cate, 1980). The responses were obtained at Jan. 6, 1980. 
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Fig. 4.4 Responses of 6 (t) for a too slow mixing valve actuation. 

4.3 DOG-LEAD ALGORITHM 

4.3.1 The algorithm 

In the discussion on fig. 4.3, the poor performance of the PI control with 

respect to undershoot, sag and overshoot, was explained because the actual 9 

deviates from its desired value u, . It seems straightforward to develop a PI 

algorithm where this is not the case. By Udink ten Cate and Van Zeeland 

(1981) such an algorithm is presented, which is called the dog-lead algorithm» 

This algorithm is described here. The method was inspired by a paper of Hanus 

(1980). 

The PI algorithm of eqn. (4.4) can be rewritten as 

u(k) = u(k-l) + A u(k) (4.6a) 

A u(k) = K {(e(k) - e(k-l)) + K. e(k)} 
P i 

(4.6b) 

which follows directly from-eqn. (4.4). Because of saturations in the 

actuator u(k) can diverge from its realized value.,Hanus (1980) suggests to 

use instead of eqn. (4.6a) the algorithm 

u(k) = u (k-1) + A u(k) (4.7) 
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where u (k-1) is the realized actuator output. This implies that the 

saturation occurs in the actuator circuit and that its output is measurable. 

Because A u(k) is not bounded, the instantaneous behaviour of the controller 

still remains of the PI type, but the value of u(k) is prevented from 

diverging from its realized value u (k). 

In the greenhouse heating system 9 (t) is the actuating variable for the 

GCFC heating process. The mixing-valve circuit contains the dominant 

saturations of the control loop, so that u = 8, agrees with the requirements 

concerning eqn. (4.7). A complication arises because 8, itself is controlled 

by the slave controller and by using eqn. (4.7) fluctuations in 6 are not 

reduced, but instead used to generate a new master controller output u, (k), 

causing a drift in 9, and subsequently poor control. In order to suppress 
h 

fluctuations an essential modification leads to the algorithm 

u(k) = u'(k-l) + A u(k) (4.8a) 

ur(k-l) - R < u'(k-l) < u (k-1) + R (4.8b) 

R and R„ are constants. In the GCFC loop u s e and u = u . The term A u(k) 

is defined in eqn. (4.6b). Eqns. (4.8) state that the output u, (k) of the 

master controller is free to move between limits imposed by u (k); reason to 

call this concept the dog-lead method. The values of R. and R are selected 

such that in steady-state control a ripple on u {= 8 ) falls within the 

range spanned by eqn. (4.8b). In this respect, the values of R and R„ depend 

on the accuracy of the slave loop. In the Naaldwijk glasshouse by trial and 

error R = R„ = 5 °C. 

4.3.2 Proportional kick 

The algorithms of eqns. (4.4) and (4.7) are sensitive to proportional kick. 

When a setpoint change occurs, the value of u(k) is changed. In a saturated 

situation this can cause undesirable behaviour as is depicted in fig. 4.5, 

which is the result of a computer simulation described in section 4.3.3. 
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Fig. 4.5 Proportional kick. (A) Conventional PI algorithm (4.3), modified 

PI and dog-lead PI, without (B) and with (C) proportional kick 

suppression. 

In this fig. u < 9 as can be the case on a summer day. When u changes 

upward, in the control algorithm this is equivalent to a negative change in 

8 , which results in the increase of u and thus the mixing valve will be 

opened. This happens regardless of the fact whether the new setpoint is above 

or below the actual 8 . In a linear operating condition this behaviour is 

correct, but in the saturated case of fig. 4.5 this is not so. It is seen 

that the conventional algorithm of eqns. (4.3) does not exhibit this sensi

tivity because the kick is suppressed by the saturated integral action of 

eqn. (4.3b). The proportional kick sensitivity of the modified algorithms is 

reduced by including conditional (IF) statements in the algorithm. This is 

represented in fig. 4.6 where eqn. (4.6b) is rewritten with e(k) = x(k)-y(k): 

u(k) K.{x(k) 

K.{x(k) 

y(k)} Kp{(x(k) x(k-l)) - (y(k) - y(k-l))} 

y(k)} + K {Ax(k; k-1) - Ay(k; k-1)} (4.9) 

By putting Ax(k; k-1) = x(k)-x(k-l) to the values as indicated in fig. 4.6, 

the proportional kick is suppressed in undesired situations, as is shown in 

the simulation results of fig. 4.5. 
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Fig. 4.6 Conditional suppression of 

undesired proportional kick. 

4.3.3 Performance of the PI algorithms 

Ug 1 

CI U x - 0 
Ug 1 

" g — I 
Ax-0 

Ug 1 
\Ax 

Ug 1 t 

time • 

In order to compare the dog-lead algorithm of eqns. (4.8) and (4.9) with the 

conventional type of eqns. (4.3) simulation is carried out. The greenhouse 

heating process is simulated by a transfer function 

-5 s 

(4.10) \,^ » f 
(s) 0.25 e 

(s) 20 s + 1 

The working point is defined by 30 C and 15 C. The mixing valve 

is described according to eqn. (3.18) with 9. = 50 C and the parameters of 

eqn. (3.19) are selected T , = 6, T = 2 min., K = 0.05. The slave circuit 
d,m m ' m 

is controlled by a time-proportional controller: u (k) (the actuating signal 

for r (t)) e [-15, 15 sec.]. In the master controller K = 6 and T. = 30; 
m r l 

T = 1 min. The range of u (k) e [10, 80 C ] , In fig, 4.7a the responses 

are simulated when a stepwise disturbance occurs on 6, of 10 C for 

t e [90, 210 min.]. The boiler feedwater temperature is rather low so that 

windup will occur. 

The results of fig. 7a clearly show the improvements obtained by the dog-

lead method. In fig. 7b and 7c the u (k) and 9 (t) for both algorithms are 

shown, demonstrating the effectiveness of the dog-lead anti-windup procedure 

when saturations occur in the control loop. 

Apart from simulation, the dog-lead PI and the modified PI algorithms -both 

with kick reduction according to eqn. (4.9)- have been compared in field 

trials. In January 1981 extensive experiments have been performed in the 

Naaldwijk multifactoral glasshouse (see section 3.4.1), in order to obtain a 

good tuning of the controller settings for a stepwise upward setpoint change 

in the early morning, as well as for steady-state behaviour. For the modified 
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Fig. 4.7 Comparison of conventional and dog-lead PI in simulation. 

Shown are: greenhouse temperatures (a); heating system responses 

for conventional PI (b) and dog-lead PI (c). 
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Fig. 4.8 Comparison of dog-lead PI and modified PI on March 22, 1981 
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PI K = 8 and K. = 0.033. The choice of K is rather low as to reduce over-
p l p 

shoot as much as possible. For the dog-lead algorithm K = 12 and K. = 0.04 

was selected. 

In fig. 4.8a responses are shown of 9 for both algorithms, on a relative 

warm day in March (March 22, 1981), 8 = 10.2 C, with alternating sun and 

clouds, causing strong disturbances. The dog-lead PI responses are obtained 

in compartment no. 5; the modified PI responses in compartment no. 3. 

The performance of the algorithms is evaluated in terms of overshoot, sag 

and undershoot of 6 . Other differences between u and 9 are not relevant 
8 . g g 

as was discussed in section 4.1. Differences between 9 of both algorithms as 
g 

they occur from 8.00 - 16.00 hrs. are caused by the glasshouse structure and 

not of importance here. The relevant areas in fig. 4.8a are shaded. The 

superior performance of the dog-lead algorithm in this situation is clearly 

demonstrated and can be explained from the responses of u, (k) and 9, (t) of 

the two algorithms as are shown in fig. 4.8b (modified PI) and fig. 4.8c 

(dog-lead PI). 

In fig. 4.9 also responses of other days are presented. In fig. 4.9a the 

responses of 9 (t) are shown on March 17, 1981: a cold day, 6 = 4.8 C. 
8 - o a 

In fig. 4.9b a warmer day is shown 9 = 7.4 C (April 21, 1981). 

The performance of the dog-lead and modified PI was also compared using daily 

experimental results between January 28 and May 24, 1981. The responses were 

compared in terms of overshoot, sag and undershoot, on a 5-point scale. In 

fig. 4.10 the results are presented, in cumulative values of the available 

evaluations. Note that not every day an evaluation could be made because of 

the outside weather conditions; or because of missing or incomplete data. 

It is seen that the dog-lead PI algorithm according to eqns. (4.8) and (4.9) 

performs significantly better than the modified PI of eqns. (4.4) and (4.9). 

It was observed that the upward step responses is somewhat slower. The 

improvement originates from the fact that in a saturated situation the dog-

lead method reacts quicker than the modified PI does. Such a saturated situa

tion occurs regularly in the controller, so that the dog-lead algorithm can 

be considered to be of great practical interest. 
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Fig. 4.9 Comparison of dog-lead PI and modified PI. Greenhouse tempera

tures on a cold day (a): and on a warmer day (b). 
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Fig. 4.10 Results from fielt} trials between January 28 - May 24, 1981. 

4.4 SPLIT-RANGE HEATING SYSTEM CONTROL 

In the foregoing sections the heating system is constructed of one heating 

pipe network, situated just over the ground. In many greenhouses in the 

Netherlands a lower and an upper heating pipe network is used, each with a 

seperately controlled temperature. The lower network is used to meet the 

primary heating load. It is situated in the crop, so that the maximum 

admissable temperature can be 40 - 50 C. When the lower network cannot 

supply the required heat, the upper network is used (which is situated over 

the c r o p ) . The limited capacity of the lower pipe network makes it necessary 

to use the upper network in transient situations as well in steady-state 

situations with a large heating demand. In fig. 4.11 a greenhouse with two 

heating systems is depicted. 

0s 

er,u 

Fig. 4.11 A greenhouse with two 

heating pipe networks. 

e f = W — 

e'=*l — 

6r,l 

8h,u 

6h,l 
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In practice there are various methods to operate the pipe networks. A popular 

approach is to use two separate master-slave controllers and decide logically 

which pipe network has to be turned on. Especially in transient situations 

this can lead to oscillatory behaviour. 

Such a situation did exist in the computer controlled glasshouses of the 

Research Station for Floriculture at Aalsmeer, the Netherlands. To improve 

the control, a split-range control algorithm was designed, where one master 

algorithm controls the lower and the upper pipe network by imposing a desired 

water temperature to two separate slave controllers (Udink ten Cate, Van 

Zeeland and Valentin, 1979, Valentin and Van Zeeland, 1980). 

A simple transfer function is established for the transfer functions of the 

lower and of the upper pipe network respectively. Using the same model as 

presented in eqn. (3.3): 

g _ g,l . (4.11a) 

o, , T , S + 1 

h,l g,l 

e K e~Td,h,u 
H , (s) = — & - = -&2- (4.11b) 

g'h'U ïï T s + 1 
h,u g,u 

Here the suffix 1 means lower; u means upper. From step responses the para

meters in eqns. (4.11) were obtained as T , - T = 3 0 min., 
g.l g.u 

T, , . = T , , = 5 min., K , = 0.15 and K =0.12. The similarity between 
d,h,l d,h,u g,l g,u 

the values of T , and T can be explained from the simple model parameter 
g.l g.u \ 

of eqn. (3.8b), where the normalized k is equal for heating with a heating 

pipe and for heating up cold heating pipes (disregarding the temperature 

dependance of k, to 8, ) . Equal time constants could be expected this way. 
The dead times T , , , and T , , depend partly on the water flow through the 

d,h,l d,h,u r 

pipe networks as well as on the length and could be unequal in another con

struction. The same holds for K , and K 
g.l g." 

For a wide-span glasshouse a split-range control system has been designed as 

is shown in fig. 4.12. The master algorithm is of the modified PI type. The 

split-range operates first on the lower pipe network and then on the upper 

one, although this could be reversed easily. The decision procedure is 
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defined by the algorithm 

u. ,(k) = u, (k) if 9, . < 9, , 
h,l h h,l h,l,max 

e l s e uh „(k) = uv,(k) n,u n h,l,max 0 

where C. is an offset, usually C. =9, . . 
0 ' ' 0 h,u,mm 

(4.12) 

The suffixes max and min denote 

a maximum or minimum value respectively (and can be compared to L . , L in 
mm max 

eqn. 4 . 4 ) . 

^ 
PI 

algorithm 

computer ' greenhouse 

f®~ 

uh split range 
decision 

valve 
control 

k®- valve 
control "m,l 

valve 

valve 

Fig. 4.12 A split-range heating control system. 

When the master switches from lower to upper pipe network, K and K. can be 

changed without disturbing the output u, ( k ) . The lower limit of u(k) in eqn. 

(4.4) is given by 8, , . ; the upper limit by 6, + 9, , - C_. In & J h,l,mm' ** J h,u,max h,l,max 0 

fig. 4.13 a response is presented for a large setpoint change of 10 C 

(Valentin and Van Zeeland, 1980). At daytime the setpoint is varied according 

to the amount of light. 

The response is acceptable -which also can be explained because the setpoint 

takes two hours to go from night to day level. Some sag and undershoot can be 

observed. It is seen that the take-over from the upper and the lower pipe 

network is satisfactory. 
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Fig. 4.13 Responses of split-range temperature control. Greenhouse tempe

rature (a). Heating pipe temperatures (b). 

4.5 VENTILATION CONTROL 

Ventilation control in GCFC is not only performed in order to maintain a 

specified.temperature level. It is also done to provide a minimum amount of 

air exchange, lowering the air humidity inside the greenhouse and otherwise 

thought to be beneficial for the crop. By ventilation CO can be provided 

when no enrichment is applied. This has motivated various strategies. Usually 

a minimum air change rate is maintained using heuristic criteria derived from 

outside weather conditions. Above a certain level temperature is controlled 
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(Van de Vooren and Strijbosch, 1980, Strijbosch, 1973, Albers, 1971). Heijna 

(1975) suggests for the delta-X control to ventilate according to the inside 

air humidity and the expected transpiration of the crop. 

Regardless of the research strategy, one of the main problems of ventila
tion control is that the air change rate S is not measurable. An experimen

ts v 

tal relation as presented in eqns. (3.20) and (3.21) is not known to be 

valid for an arbitrary greenhouse. An additional requirement is that the 

number of times the motor is actuated, has to be as low as possible in order 

to avoid wear and tear of the ventilation mechanism. 

A typical control layout -as it is realized in the computer control of the 

Naaldwijk multifactoral glasshouse- is given in fig. 4.14. The lee-side 

windows are opened first. The reason that r is measured is explained because 

in some ventilation strategies the value of r is controlled. 
w 

When the temperature is controlled, a process with two inputs and one 

output is regulated. Because the time constants of the heating and the venti

lation process are of the same value, dynamically any combination of admis-

sable inputs can give the desired output. An additional criterion is that a 

minimum of heating energy should be used. In a practical situation this is 

realized by putting the setpoint of the ventilation at least 1-2 C over that 

of the heating. 

computer greenhouse 

ug P 
algorithm **& 

window 
control 

window 
motor 

rw 
actuator 
process 

Ivent Nation! 

ventilation 
process 

eg 

Fig. 4.14 Ventilation control system. 
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5 Least-squares like gradient methods for on-line parameter 

estimation 

5.1 INTRODUCTION 

In this chapter parameter estimation techniques are treated that can be used 

in adaptive control. As indicated in Chapter 4, in GCFC the temperature con

trol loop is subject tc disturbances and non-linearities which change the 

parameters of the transfer function. To compensate for these parameter 

variations an adaptive temperature contrai method is presented in Chapter 6. 

The applied parameter estimation technique is treated here. 

The parameters of the transfer function of a process can be estimated by 

methods that minimize the difference between the parameters associated with 

the process and those of a corresponding model. This parameter difference 

can be expressed in several criteria (Eykhoff, 1974, Young, 1981). In this 

treatment the equation error formulation is used. A gradient algorithm 

minimizes an -instantaneous error function based on the equation error. 

In the present study a%stability approach to on-line gradient methods is 

described. The parameter estimation problem is formulated as a gradient 

minimization of which the convergence is investigated by stability methods. 

This results in least-squares like gradient (LSLG) algorithms that resemble 

the algorithms of the well known recursive least-squares methods which 

originate from a statistical point of view. The approach facilitates a 

detailed investigation of the convergence properties of the proposed 

algorithms. The algorithms are described both in continuous time and in 

discrete time. In discrete time LSLG algorithms have been reported earlier in 

the literature by Udink ten Cate and Verbruggen (1978), a reprint of which is 

presented in section 5.3. The method has been applied for adaptive GCFC by 

Udink ten Cate and Van de Vooren (1977, 1981). An application to discrete 

model reference adaptive control systems was presented by Udink ten Cate 

(1979). The results for the continuous time domain have not been reported 

earlier and serve as an introduction to the method. A related algorithm for 

continuous time is described by Young and Jakeman (1980). 
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The application of stability methods to investigate the convergence of 

gradient algorithms has been described by Lion (1967) for a simple continuous 

time gradient algorithm. For discrete time the approach has been used among 

others by Mendel (1973). Both authors use Liapunov's second method to 

investigate the stability proporties. Using hyperstability methods Landau 

(1976) and Landau and Béthoux (1975) described related algorithms in discrete 

time. 

5.2 CONTINUOUS GRADIENTS 

A linear univariate process can be represented by the differential equation 

(n) (n-1) (0) _ , f(m) f(m-l) (o) 
g + a , g + ... a e = b r + b , r + . . . + b r 
6 n-16 o m m-1 0 

(5.1) 
where g = — * V ; g(t) is the process output signal and f(t) is the 

dtk 

process input. The parameters a. and b. (i = 0(l)n-l; j = o(l)m) are unknown 
and time invariant or slowly time varying. A more convenient notation for 

eqn. (5.1) is obtained with g (t) = y(t) and 

6T = (b0, b,, .... b m , -a0, -a,, -an_,) 

uT<t> - <f( 0 ), f ( 1 \ .'...f( B ). g( 0 ). g(1>. . . . , ^ - ] ) ) 

0, u e R . The superscript T denotes the transpose. Eqn. (5.1) can be 

rewritten as 

y(t) = 6T u (t) (5.2) 

Note that y(t) is not the output of the process output g(t), but merely a 

short-hand notation. The estimation of the unknown parameter vector 6 is 

carried out by a model of the process of corresponding dimensions. The model 

contains the estimates £(t) of the process parameters. Assuming that u(t) is 

deterministic -which means that u(t) is measurable without error- the model 

is described by 

y(t) = êT(t) u(t) (5.3) 
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where y(t) is the estimate of y(t). The paramater difference is denoted 

£.(t) = 9,-9 (t). As a measure of ó.(t) the equation error is introduced 

E(t) = y(t)-y(t) (Eykhoff, 1974, Lion 1967, Young, 1981). From eqns. (5.2) 

and (5.3): 

e(t) = ST(t) u(t) (5.4) 

In gradient techniques a criterion function J(6.; t) is established, that is 

minimized by adjusting 9.(t) according to a gradient mechanism (Lion, 1967, 
2 

Eykhoff, 1974). Selecting J(ó; t) = |e (t) the gradient is 

grad J(6; t) - H - | | e(t) = u(t) e(t) (5.5a) 
6_ — -, 

This leads to the adjustment law 

d<5(t) . 
dt 

A grad J (6; t) = - A u(t) e(t) (5.5b) 

where the gain matrix A = diag [X.], the constants \.>0 and AeR m 

d6(t) dê(t) ,c ..1 , . 1 

Since — = - — = - T eqns. (5.5) can be rewritten: 
dt dt ^ 

^ f ^ - = A u(t) e(t) (5.6) 

With eqn. (5.6) an adjustment law is given for the model parameters. The gain 

matrix A is usually diagonal and constant. It is used to scale the adjust

ments of the various model parameters. The values of X. follow from trial and 
l 

In this section a time-varying gain matrix is presented. Conditions are 

established for an arbitrary time-varying gain matrix. 

When a matrix is selected that is related to the inverse of the process 

covariance matrix, a continuous version of the well known least-squares 

method is obtained. Consider instead of eqn. (5.6) a gradient algorithm 

^ J ^ - = - c(t) P(t) u(t) e(t) (5.7) 

where c(t) is a time variant scalar and P(t) is a time variant matrix of 
• ^ j- • T, ,,(n+m+l)x(n+m+l) Tj. . , ., . „,.,. . 

appropriate dimensions: PeR . It is assumed that P(t) is 
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positive definite: P(t)>0. 

The convergence of the parameter difference vector £(t) towards the origin 

after an initial disturbance can be investigated using stability methods. 

When the second method of Liapunov is applied, a Liapunov function is 

selected for the parameter difference 6.(t). The norm |] 6(t) || will then be 

shown to converge to zero if eqns. (5.6) or (5.7) are satisfied and the 

process input is sufficiently excitated. For eqn. (5.6) Lion (1967) demon

strates this for A being a single constant. Udink ten Cate (1974) uses a 

diagonal constant matrix for a modified form of eqn. (5.6). 

For eqn. (5.7) the convergence will be demonstrated below. To do so, for a 

process with bounded input signals a positive definite Liapunov function V(t) 

is selected 

V(t) = 6T(t) P_1(t) 6(t) (5.8) 

where V(t) is a scalar, P (t)>0, symmetrical and P is a bounded matrix of 

which the norm || P (t) II <L; L being a positive scalar Le(0, <»). The time 

derivative of V(t) is obtained as 

M £ l - 26
T(t) F"1 (t) « 4 M + 6

T(t) Ü ^ L s(t) (5.9) 
dt dt dt 

With eqns. (5.7) and (5.4) it follows that 

^ 1 = - ôT(t) (2 c(t) u(t) uT(t) - d P ^ ( t ) ) i(t) (5.10) 

From Liapunov theory, it follows that the convergence is ensured if the form 

(5.10) is negative definite. Therefore the form 

D(t) = 2 c(t) u(t) uT(t) - d F
d t

( t ) (5.11) 

has to be evaluated. 

There are several selections of P(t) and c(t) that lead to the desired 

result. For instance, in the gradient law of eqn. (5.6) P(t) = A and time 

invariant, so that —• • , = 0. With c(t) being unity this yields 

D(t) = 2 u(t) uT(t) (5.12a) 
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and 

^ ^ - = - 2<5T(t) u(t) uT(t) 6(t) = - 2e2(t) (5.12b) 

which is a negative definite form provided 6,(t) and u(t) are non-orthogonal. 

Another choice is P(t) = A and c(t)>0 is a time-varying term, for example 

c(t) = — +Ç ( Ç>0 an arbitrary small constant). Then 

and 

D(t) = 2 c(t) u(t) uT(t) ,c(t) > 0 (5.13a) 

^ ^ = - 2 c(t) e2(t) (5.13b) 

which is again a negative definite form. 

A selection leading to a continuous least-squares algorithm is 

d P
d t

( t - = - n(t) P~'(t) + Y(t) u(t) uT(t) ,P_1(0) > 0 (5.14a) 

so that 

and 

D(t) = 2 c(t) u(t) uT(t) + n(t) P '(t) - Y(t) u(t) uT(t) 
(5.14b) 

^ ^ - = - n(t) iT(t) P"'(t) 4(t) - {2 c(t) - Y(t)} e2(t) = 

= - n(t) V(t) - {2 c(t) - Y(t)} e2(t) (5.14c) 

With n(t)-0 and Y(t)<2c(t) this yields a negative definite form. 

The positive definiteness of P (t) in eqn. (5.14a) can be demonstrated 

following a theorem on linear matrix equations found e.g. in Brockett 

(1970; p.59) stating that the solution of a linear matrix equation of the 

form 

^ 1 ^ - = A,(t) X(t) + X(t) A2(t) + F(t) (5.15a) 

with A (t), A„(t) and F(t) known is given by 

X(t) = *,(t,t0) X(tQ) *2( t , to) + / *i(t'ff> F ^ > * 2 ( t , a ) d a 

fc0 (5.15b) 
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where $.(t,tn) is the transition matrix of — = - — = A.(t)x(t) with solution 

x(t) = $](t,t0)x(tQ) and $2(t,tQ) is the same for ~ ^ ~ = A2(t)x(t). 

Xn is the initial value of X(t) and a is a dummy variable. 

Rewriting eqn. (5.14b) with X(t) = P~'(t), A,(t) = A2(t) = -Jn(t)I 
T 

-I being the unity matrix- and F(t) = Y(t)u(t)y. (t) it is seen that because 

P (t_)>0 and because $.(t,tn) = $„(t,tn) the first term of the right hand 

side of eqn. (5.16) is a decaying matrix which is positive semi-definite. The 

second term is positive d< 

signal covariance matrix. 

second term is positive definite since Ju(t)u (t) is related to the process 

The selections of P (t) and c(t) in eqns. (5.12-5.14) lead to negative 

definite forms for — = — — provided £(t) and u(t) are non-orthogonal, and non

zero. This is the case when the process input signal is non-zero and contains 

sufficient distinct frequencies (Lion, 1967, Anderson, 1974). The expression 

,2_ will then be negative definite with respect to || 6,(t) II so that 

asymptotic stability in the sense of Liapunov is ensured. This means that 

after an initial disturbance II 6(t) || will converge to zero for t-**>. 

The selections of P(t) and c(t) lead to various adjustment laws. The law that 

is related to eqns. (5.12) was given in eqn. (5.6). The adjustment law 

related to eqns. (5.13) is written: 

^ = c ( t ) A u ( t ) £ ( t ) ,c(t) > 0 (5.16) 

With for example c(t) = — +Ç (£>0), a time-decreasing gain factor results of 

the type that is also found in stochastic approximation schemes (Young and 

Jakeman, 1980). Related to eqns. (5.14) the adjustment law is formulated 

^ à . = c(t) P(t) u(t) e(t) ,c(t) > 0 (5.17a) 

^ 1 ^ - = n(t) P(t) - Y(t) P(t) u(t) uT(t) P(t) 

,n(t) â 0 

Y(t) < 2c(t)(5.17b) 

Eqn. (5.17b) follows from eqn. (5.14a) using the relation for an arbitrary 

non singular matrix A(t) that 



**h*i m - A-\t) agi A-\v 

which follows from A (t)A(t) = I. The result of eqns. (5.17) is the 

continuous least-squares algorithm because of the similarity with the re

cursive least-squares algorithm in discrete time. In Young (1981) a related 

algorithm is described where n(t) = 0, c(t) = 1 and y(t) = 1 a nd which is not 

motivated from a stability point of view. 

It is noted that the vector u(t) and e(t) requires the generation of n 

derivative signals for a n order process. This can be accomplished by state 

variable filters (Kohr, 1967). Some experience with these methods (Udink ten 

Cate and Verstoep, 1974) indicates that high order derivatives are suscepti

ble to errors, limitating the feasibility of the method to 1st or 2nd order 

processes. 

Because of the complexity associated with the adjustment laws (5.17) in a 

practical situation a computer is applied using numerical integration-

differentiation on sampled data of the process. Another approach is to esti

mate the parameters of a discrete model of the process, leading to the 

discrete gradient method that is described in the following section. 
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5.3 À least-squares like gradient method for discrete process 
identification * 

A. J. UDINK TEN CATEf and H. B. VERBRUGGENJ 

A new deterministic ' least-squares-like gradient ' method is presented for the identi
fication of discrete processes. The method is gradient-based and physically similar 
to the recursive least-squares method. The novel gradient method is based on a 
stability concept (Liapunov's second method) yielding new views on the estimation 
procedure and more degrees of freedom compared with least-squares methods. The 
method can be applied for linear and a class of non-linear (multivariable) processes 
with slowly time-varying unknown parameters. 

1. Introduction 
In control theory, recursive least-squares techniques have found wide

spread acceptance for the identification of dynamic processes. The least-
squares (LS) technique originates from a statistical approach. In most texts 
on the subject reference is made to the presumable similarity between 
gradient-like techniques and LS (Eykhoff 1974, Young 1969). This motivated 
the authors to investigate this similarity in some detail, since, compared with 
the LS method, the usual discrete gradient techniques suffer from poor 
performance. 

In gradient methods, the study of the convergence of the parameter 
estimates to their true values is of interest (Graupe and Fogel 1976), see also 
Âstrom et al. (1977) for the self-adjusting controller. In deterministic discrete 
gradient methods the second method of Liapunov is applied for this purpose 
(Mendel 1973, 1974). In this paper a novel gradient method is introduced 
in which the so-called ' gain ' matrix is the inverse of the signal covariance 
matrix, which results in a technique that bears close resemblance to the LS 
method and therefore is called the ' least-squares-like gradient ' (LSLG) 
technique. Because of the similarity, the two methods are compared through
out this paper. The convergence of the LSLG method is investigated by 
Liapunov's second method. The attention is focused on the convergence, 
yielding interesting new views on the estimation procedure and more degrees 
of freedom compared with LS. The additional degrees of freedom could be 
used to accelerate convergence. 

In this paper the emphasis is put on the investigation of limitations in the 
choice of the parameters of the estimation procedure which are compared 
with the ones used in good engineering practice in LS techniques but are not 
justified theoretically. The new technique is an a-priori identifier (and not 
an a-posteriori, like LS) which makes the LSLG applicable to a class of 
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problems where LS is not, and vice versa. This, and the fact that the LSLG 
is based on a stability concept, makes the new technique promising for 
adaptive control applications. 

In our approach Liapunov's second method is used. Readers familiar 
with the results of Popov's hyperstability theory in this field (Landau 1976, 
Landau and Béthoux 1975) will observe similarities. And differences too, 
because Liapunov theory concentrates on the convergence of the estimation, 
whereas hyperstability concentrates on the stability of the estimation scheme. 

The authors recall the recent discussion between Bierman (1976) and 
Mendel on the subject of identification methods. The former advocates an 
approach of rigorously numerical mathematics, the latter defends the opinion 
that it might be valuable to look into the problem from a control ( = stability) 
point of view. We feel that our study is in favour of Mendel's arguments. 

In this paper the LSLG technique is presented for processes with time-
invariant, or slowly time-varying parameters (§§ 2 and 3). In § 4 a com
parison is made with the recursive LS technique. Extensions of the LSLG 
and the multivariable identification problem are treated in § 5. Finally, the 
choice of the parameters of the estimation procedure is discussed and results 
are presented of the identification of analogously simulated systems com
paring the LS and LSLG methods. 

2. Least-squares-like gradient method (LSLG) 
Consider a single-input, single-output, linear process with unknown time-

invariant parameters, described by the difference equation 
N M 

£ aa(kTe-iTs)= £ bp(hT,-3Tt), a0 = l (1) 
i - 0 j -= 0 

where y(iTs) and x(jTa) are the sampled process output and input signals 
respectively, and Ts is the sampling interval. In most cases 60 will be zero. 
Define y(iTB) as y(i) and x(jTs) = x{j) and the vectors 9T = (60, blt ..., bM, 
- a 1 ; - a 2 , ..., -aN)a,nduT(k) = (x(k),x(k-l), ...,x(k-M),y(k-l), ...,y(k-N)) 
with 9, ueiîAr+Af+1. The superscript T denotes the transpose. Equation (1) 
can be written as 

y(k) = Vu(k) (2) 

The parameters of the process are estimated by a model of similar structure 
and dimension, described by 

y(k) = P(k)u(k) (3) 

where Ô(fc) denotes the estimated values of 0 at time kTe and 

fiT(fc) = («„(*), *i(*). - , « * ( * ) . - « # ) . - * . (* ) . - . -âN(k)) 

The parameter difference between the model and the process is defined by 
the vector 8(fe)^Ô(fc) — 9. Assuming that noise-free measurements u(fc) are 
available, the difference can be measured indirectly by the ' generalized error 
model ' (Eykhoff 1974) or the ' equation error ' (Mendel 1973) : e(k) £y(k)-y(k), 
which yields eqn. (4) : 

e(k)±$(k)-y(k) = VI(k)u(k)-BT u{k) = hT(k)u(k) (4) 
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In the deterministic gradient method (Mendel 1973), a criterion function 
J(S(k)) = \w(k)e2(k) is defined, which is an instantaneous function of the para
meter difference ; w(k) > 0 is an instantaneous weighting factor. 

The sequential algorithm is described generally by 

ft(*+l) = ft(*)-A(*)^» (5) 

where A(k) is an (M + N+ 1) x (M + N+1) matrix weighting the various 
gradients and is referred to as the ' gain ' matrix. Usually A(k) is a time-
invariant and diagonal matrix and w(k) is chosen unity. 

If 8 is time-invariant, the gradient follows from 

dJ(h(k)) dj(h(k)) , , „ , „ 

W = W = W(*)e(*)U(Ä;) (6) 

which yields eqn. (7) : 

è(k + l) = è(k)-w(k)A(k)e(k)u(k) (7) 

Note that 9{k+\) can be calculated as soon as the information u(k) is avail
able, thus at time t=kTe + e (e : computing time). 

The problem is the choice of A(k). Moreover, the parameters Ô converge 
slowly to the parameters 8, especially when A(k) is chosen constant. How
ever, the algorithm is computationally simple. 

In the following a weighted gradient method is presented with the interest
ing feature : 

A(k) is chosen time-dependent and non-diagonal, leading to a better 
convergence at the cost of more computing time for each step of the 
sequential algorithm. A(k) is automatically updated and indirectly related 
to the signals u(k). 

The algorithm to be presented shows a close resemblance to the least-squares 
method (LS) and therefore is called the LS-like gradient (LSLG) method. 
The convergence of the parameter difference will be demonstrated by 
Liapunov's second method (Mendel 1973). 

The LSLG algorithm is in its basic form described by 

&(k+l) = S(k)-a(k)w(k)P(k)e{k)u(k), <x(k)>0 (8 a) 

p-i(k + 1 ) = P-!(i) + w(k)u(k)u'r(k) (8 b) 

The algorithm of eqn. (8 a) can be compared to the one defined in eqn. (7), 
with 8(k+ 1) — &(k) = è(k + 1) — B(k), and P(k) is a time-varying gain matrix 
comparable with A in eqn. (7). The scalar a(k) > 0 follows from stability 
analysis, as is shown later. The gain matrix P(k) is updated by the algorithm 
like the one of eqn. (8 6). Instead of the inverse matrix P~1(k), also the 
matrix P(k) can be calculated recursively as is shown in Appendix C. 

6 H 2 
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Now it will be shown that this procedure guarantees convergence of the 
difference vector to zero under very ample conditions by applying Liapunov's 
stability method. Choose the following Liapunov function : 

F(fc) = 8T(i)P-1(fc)8(Ä;) (9) 

with P_1(fc) as a positive definite symmetrical matrix, denoted by P_1(fc) > 0. 
In Appendix A it is shown that P~1(k + 1 )>0 and is also symmetrical, using 
eqn. (8 b). The convergence of the parameter difference vector is investi
gated by evaluating 

AV(k)^V(k+l)-V{k) (10) 

which has to be negative definite to guarantee asymptotic stability of the 
equilibrium Ô(fc) = 8 of the set of equations (Mendel 1973). 

The scalar a(k) > 0 is selected as follows : 

<x{k) = [ix{k) + w(k)u'I(k)P(k)u(k)]-\ p(k)>0 (11 a) 

A criterion for the choice of /x(fc) will be discussed later. 
In Appendix B it is shown that after substitution of eqn. (9) in eqn. (10), 

using eqns. (8) and (3) the following equation results : 

AV(k) = -w(k)a2{k)e2(k){-lj.
i(k) + 2p.(k) + w(k)\i's'(k)P(k)u(k)) (11 6) 

This expression is non-positive definite if the following conditions are ful
filled : 

w(k)>0, 0</x()fc)<2 (12) 

Then A V(k) = 0 for e(k) = 0. This is the case, see eqn. (4), if S(k) = 0, u(k) = 0 
or &(k) and u(k) are orthogonal. 

Excluding the case u(&) = 0 (the system is not excited), the special case is 
left that &(k) and u(k) are orthogonal. In Mendel (1973, 1974) it is stated, 
following Lion (1967), that if the process input is a periodic one and contains 
sufficient distinct frequencies, a gradient algorithm of the form of eqn. (7) 
is asymptotically stable in the large according to Liapunov's second method. 
This theorem obviously holds for eqn. (8), so that after an initial disturbance 
the Euclidean norm ||S(fc)|| will converge to zero for fc—>oo. 

Remark 1 
The rate of convergence of ||5(&)|| depends on AV{k)jV{k), a relative 

measure, while the convergence of |8(fc)|| depends on AV(k), an absolute 
measure. For a given V(k) the value of AV(k) is a measure for the converg
ence. An optimal value of A V(k) is obtained by minimizing A V for the 
parameter fi(k) which can still be chosen within the above-mentioned limits. 

By evaluating dAV(k)jdfx(k) = Q the optimum value n(k) = 0 is found. For 
a discussion on the validity of this approach for a similar problem the reader 
is referred to Mendel (1974), Bransby (1976) and finally to Graupe and Fogel 
(1976). 

From eq.is. (11a) and (116) with the condition fj.(k) = 0 it can be seen 
that AF(fc)-- — [uT(fc)P(/fc)uT(A;)]_1es(i;), thus w(k) can be chosen arbitrarily, 
for instance w(k) = l. 
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In a practical implementation however the scalar <x(k) in eqn. (11 o) can 
go to infinity for small values of u. This problem can be overcome by 
choosing w(k) very large or by putting [x(k) to a value ix(k) = e, if a(k) exceeds 
an upper limit. Since /j,{k) appears in the expression of a(k) only, one might 
as well limit a(k) directly to a maximum value. If fx(k) is chosen p(k) = l, 
from eqns. (11) it can be seen that AV{k)= —w(k)a(k)e2(k) with a(k) = [l + 
M)(^)uT(^)P(Jk)u(Ä;)]-1. 

This is an interesting case which can be compared to the results of the LS 
method (§4). 

Remark 2 
From eqn. (8 6) the influence of the magnitude of the input-output signal 

vector u can be demonstrated. Large values of u cause a relatively large 
increase of ||P_1(& +1)| | . Because of the validity of the above approach, 
using Liapunov's theory, AV(k+l) will be negative definite, so that V(k+l) 
will decrease. Therefore 18{k + 1 ) || decreases faster than || P~\k + 1 ) || increases. 
This is in accordance with the experience that the convergence of the estima
tion is accelerated by increasing the magnitude of the signal vector u. 

Remark 3 
From eqn. (8 6) the influence of the magnitude of j|P_1(0)|| can be 

demonstrated. A small value of ||P_1(0)|| yields a small value of 7(0) and 
accordingly AV(k) will decrease very slow ; a large value of ||P_1(0)|| yields 
a large value of 7(0) and A V(k) will decrease very fast (see Fig. 1 for a one-
dimensional case). The convergence of v(k) to 8 is however determined by 
AV/V. 

\ 
AV 

large 

AV 

1 

--

P|o] large 

—— 'S^. 
1 

Rio)" 

Figure 1. Influence of P(k) on the Liapunov function V(k) for k = 0. 

The LSLG algorithm of eqn. (8) can be rewritten, with eqn. (11 a) and the 
results of Appendix C, and since &(k+ 1) — &(k) = 6{k+ 1) — 6(fc) as 

è(k+l) = è(k)-a(k)w(k)e(k)P(k)u(k), w(k)>0 (13 a) 

a(ik) = [̂ (A;) + M)(i:)uT(/fc)P(A;)u(Ä:)]-1, 0^fj.(k)<2 (13 6) 

P(k+l) = P(k)-w(k)P{k)u(k)[l+w(k)u'r(k)P(k)u{k)]'1u'r(k)P{k) (13 c) 
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This algorithm can be applied for the parameter estimation of time-invariant 
processes. In the next section the method is extended to time-varying 
systems. 

3. Slowly time-varying parameters 
In the preceding section the process and the parameters were assumed to 

be time-invariant. In the algorithm of eqn. (8) the norm ||P_1(fc)|| will 
gradually increase as new measurements of u become available, so that 
||P(&)|| will decrease. This means that new process measurements give rise 
to smaller adjustments in the estimation of B(k). See also Young (1969) 
for a similar discussion in LS identification. When 8 is slowly time-varying, 
which means that 6 can be considered time-invariant during a sampling 
interval, old measurements have to be forgotten gradually in order to be 
able to track the parameter variations. This can be accomplished by chang
ing eqn. (8 6) into 

P-^k + 1 ) = ßikjP'^k) + y(/fc)w>(Ä;)u(Ä:)uT(ifc) (14) 

where the ' fading memory ' or ' exponential weighting ' factor ß(k) (Eykhoff 
1974) and y(k)^0 are factors related to the rate of change of the process 
parameters; 0<ß(k)^l. I t can be seen that for ß(k) < 1 old data are for
gotten in an exponential way. By taking y(k) > 1 the influence of the last 
measured data can be enlarged. In eqn. (8 6) P~1(k+l} will always increase 
for u(k)jtO. According to eqn. (14), however, P(k+1)~1 will increase or 
decrease. In Appendix A it is proved that P~1(k+ 1) > 0 if P _ 1 (0)>0. 

Choosing the Liapunov function of eqn. (9) it is demonstrated in Appendix 
B that after substitution of eqn. (9) in eqn. (10), using eqns. (8 a), (14) and 
(3), we obtain 

A V(k) = (ß{k)-l)V(k) + w(k)e\k)A (15) 

with 

A =a\k)[Y{k),x\k)-2p(k)ß{k)-ß(k)w(k)\i*(k)P(k)\i(k)} (16) 

If /j.(k) = 0 or if /x(k) > 0 and y(k)fji.(k) < 2ß(k) we get the scalar expression A < 0. 
Note that for 0 < ß{k) < 1 the expression A V(k) is negative definite with 
respect to &{k), which is not the case in eqn. (11 6) with eqn. (12). 

This theoretical result would indicate that the parameter difference will 
always converge to zero and that there are not restrictions on u, as discussed 
in §2. However, if 0 < / ? < l , P-1(k)—>0 in the limit if the matrix, summing 
the sequence y(k)w(k)u(k)uT(k), is singular or zero (Appendix A). This will 
not be so if the process input signal is persistently excited (Âstrom and Bohlin 
1966). This remark adds to the conception of Liapunov stability for processes 
with periodic (Lion 1967) or almost-periodic (Anderson 1977) input signals. 
The authors do not wish to investigate this matter in detail here. 

Remark 4 
As described in Remark 1, an optimal value of fi(k) can be obtained in 

this case too by evaluating the partial derivative of A V(k) with respect to 
fi(k), which yields the optimal value fi(k) = 0. 
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Remark 5 

In § 2 it is demonstrated that A F is non-positive definite in spite of the 
fact that P_1(k+l) is increasing in eqn. (9), see eqn. (8 6). Thus the para
meter vector will decrease strongly. In this section it is demonstrated that 
A F is negative definite ; moreover P~1(k+ 1) can as well increase as decrease, 
see eqn. (14). Therefore, the parameter vector might decrease in a very slow 
manner. To avoid this it is possible to increase u or to increase y(k). By 
choosing y(k) = 0 a constant value of | |P_1(fc+l)|| is found, whereas Ô(i+1) 
will still be adjusted. 

4. Comparison with the least-squares method 
In this section the proposed LSLG algorithm is compared with that of the 

weighted LS method. The LSLG algorithm can be written as 

9(fc + 1 ) = b(k) - a(k)w(k)e(k)P{k)u(k) (17a) 

a.(k) = \1i.(k)+w(k)uI(k)P(k)vi(k)Y1 (17 b) 

x [£(*) + y(k)w{k)ul:(k)P(k)u(k)]-lu'r(k)P(k) (17 c) 

where w{k) > 0 ; 0 < ß(k) < 1, y(k) ^ 0 and 

{fi(k) = 0}u{/*(£) > 0r>(%(jfc) < 2j8(A;)} (17 d) 

Expression (17 c) follows from eqn. (14), as is demonstrated in Appendix C. 
When ß(k) = y(k) = l the algorithm of eqn. (17) is identical to eqn. (11) for 
time-invariant parameters. 

The weighted LS algorithm (Mendel 1973, Young 1969) is written in a 
similar notation : 

ê(& + 1 ) = ô(jfc) - a(k +1 )w(k + 1 ) 

x[eT(Ä;)u(Ä;+l)-2/(i+l)]P(^)u(i-(-l) (18 a) 

P(Hl, = Â ( ^ ? W _ S # + 1 ) P W u ( i + 1 ) u T ( i + 1 ) i > W (186) 

a(k+ 1) = [A(jfc+ l) + w(k+ l)uT(fc+ l)P(k)u(k+ l ) ] - 1 (18 c) 

In eqn. (18) \(k) is the exponential weighting factor 0< A(&+1) < 1. 
Usually eqns. (18) are written in a different form with the matrix P(k+ 1) 

appearing in eqn. (18 a). The equivalence of the set of eqns. (18) with those 
of the usual notation is readily demonstrated (Eykhoff 1974). Comparing 
the eqns. (17) and (18), the similarity between the two algorithms is striking, 
especially if we choose ß(k)=fi(k)= A(fc+ 1) and y(k)=l. 

Now the difference between the two algorithms is that the LS algorithm 
calculates the value of 9(fc+l) at time t = (k+l)Ts (a-posteriori identification) 
and the LSLG algorithm calculates a trial value of 8(&+l) at time t=kTs 

(a-priori identification) (Mendel 1973). As a result the error e(k) in eqn. 
(17 a) differs slightly from the predicted error (ÔT(fc)u(fc+1) — y(k+1)) in 
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eqn. (18 a). In a practical situation, however, there is little difference 
between both algorithms. 

The difference is mainly caused by the number of parameters which can 
be selected in the algorithm and which is two in the LS-algorithm instead of 
four in the LSLG algorithm. Moreover, the LSLG algorithm is based on the 
Liapunov approach, which guarantees asymptotic stability of the parameter 
difference for deterministic measurements. The LS algorithm is based on a 
statistical approach which guarantees under certain circumstances an unbiased 
and convergent estimate of 8 for measurements contaminated with noise. 

Remark 6 
In the LSLG algorithm the optimal value fj.(k) = 0 can be chosen, whereas 

in the LS algorithm /i(fc) = l. 

Remark 7 
In the literature on LS methods (Eykhoff 1974, Young 1969), the starting 

matrix P(0) of P(k) is usually chosen as a diagonal matrix with elements of 
a high value to satisfy theoretical requirements, originating from the fact 
that the recursive algorithm is derived from a batch procedure. Theoretically 
the starting matrix P(0) = rjl with a large value of -q ( > 106) leads to a good 
parameter convergence ; however, in practice, due to small measurement 
errors, erroneous results are found for the first computations (Scheurer 1975). 
For this reason usually a smaller value of -q is chosen. 

In the LSLG method P(0) can be set to any value provided P_1(0) > 0, 
which is also established in practical experience with the method. In practice, 
however, P(0) should not be chosen too small. 

Remark 8 
In the LSLG method y(k) can be set to zero, which means that P(k) is not 

updated. In practice P(k) will tend to quasi-stationary values after an initial 
disturbance, so that setting y(k) = 0 for some Ä; can be advantageous by reduc
ing computing time without influencing the performance of the method. 

Remark 9 
I t is noted that the algorithms of eqns. (17 6) and (18 6) for evaluating 

P(k+\) are sensitive to small measurement and computational errors. 
Therefore it is recommended to evaluate either the upper triangular part of the 
symmetric matrix P(k+ 1) or to use an algorithm proposed by Mendel (1973) 
for the LS method, which is less sensitive. 

Concluding this section it has been shown that in comparison to the LS 
method, the LSLG method has more flexibility, resulting in an improved 
convergence or a more ' robust ' version of the LS algorithm with guaranteed 
stability of the method. Nevertheless, more parameters (ß(k), y{k), fi(k) and 
w(k)) have to be chosen than in the LS case where only two parameters w(k) 
and X(k) have to be chosen. At a first glance the choice of the parameters 
might seem to be not always obvious, and there is an interaction of the influ
ences of the various parameters. In § 6 some rules are given for the selection 
of these parameters. 
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Remark 10 
As was mentioned already, the difference between the LSLG method and 

the conventional discrete gradient method is caused by the gain matrix P(k). 
I t was seen that P(k) usually decreases after the start of the identification 
procedure. In order to improve convergence in gradient methods a decreas
ing gain matrix can also be applied (Mendel 1973). The difference with the 
LSLG is that the (decreasing or increasing, see Remark 5) LSLG gain matrix 
is based on the inverse signal covariance matrix, which leads to the observed 
similarity with the LS method. From the practical point of view and dis
regarding the small difference between a-priori and a-posteriori type of 
identification, the conventional discrete gradient method can be regarded as 
a special case of stochastic approximation, of which the convergence proofs 
can follow from stability methods (Albert and Gardner 1967). These results 
can, however, not be extended to LS methods (Graupe and Fogel 1976). A 
stochastic version of the LSLG may generalize the deterministic results into 
the framework of stochastic approximation. 

Remark 11 
The recent results of Âstrom et al. (1977) on the convergence of self-tuning 

regulators—where LS methods are applied—are to be mentioned here. Follow
ing a stability approach, the results in the regulator problem for LS methods 
are obtained by writing the discrete algorithm's as differential equations in 
the continuous-time domain. I t is noticed that the results for the LSLG are 
obtained in discrete time and are so far only valid for deterministic signals. 

5. Extensions of the algorithm 
5.1. A class of time-varying parameters 

The LSLG algorithm can also be applied to a process with time-varying 
process parameters 6(fc), described by 

9(k) = R(k)4> (19) 

where $eRL are constant or slowly time-varying process parameters (see § 3) 
and R(k)sRMxL is an a-priori known time-varying matrix (Mendel 1973). 
According to eqn. (4) the equation error can be written with eqn. (19) : 

e(k) = (fi(Jfc) - B(k))Tu{k) = (4»(fc) - 4>)TÄT(/fc)u(/fc) (20) 

As the Liapunov function is selected, according to eqn. (9) : 

V(k) = ($(£) - <t>)TP*-W(4> W - <t>) (21) 

Following the same reasoning as in § 2 it is readily verified that asymptotic 
convergence of 4>(fc) — <|> is guaranteed and a slightly modified algorithm is 
found substituting Rr(k)u{k) for u(k), P*(k) for P(k) and $(k) for d(k) in eqns. 
(17). 

The matrix R(k) could also contain known time-invariant quantities, in 
order to reduce the number of process parameters to be identified, for instance, 
in a closed-loop identification. Hang (1974) and Udink ten Cate (1976) have 
followed this approach in the design of multivariable continuous adaptive 
systems. 
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I t is noted that the LSLG method, which is an a-priori identifier, can be 
applied using the a-priori knowledge of R(k), while the a-posteriori LS identifier 
cannot be used in this way for this class of systems. 

5.2. Multivariable processes 
In this section the LSLG method will be formulated for a multivariable 

process. The approach outlined in this section is equivalent to that of Udink 
ten Cate (1975) for a conventional discrete gradient technique ; see also Kudva 
and Narendra (1974). The process with unknown, time-variant or slowly 
time-varying parameters is described by 

y(k+l) = Ay(k) + Bx(lc) (22) 

where the process state vector yeRN, the input vector xeRM and consequently 
AeRNxN, BeRyxM. A more convenient notation is obtained : 

y(k+l) = ®z(k) (23 a) 

® = [A\B], z.?(k) = [yT(k)[xT(k)] (23 6) 

where <I>= |0Ö | . The corresponding model is written as 

$(k+l) = <b(k+l)z(k) (24) 

In this multivariable identification problem a vector equation error is defined 
as e(k)^${k)-y{k). By defining D(k) =<J>(*+ l ) - 0 ( & + 1), and for conveni
ence (in order to get the same structure as given in eqn. (4)) a vector u(k) is 
introduced defined by u(k) Az(k— 1). The following equation error vector is 
found : 

e{k) = D(k)u{k) (25) 

The ith row of the matrix D(k) is denoted d^k). If the process parameter 
matrix O contains slowly time-varying quantities, the LSLG algorithm 
becomes in its basic form 

d ^ i + l ) » ^ * ) - « , ! * ) » ^ ^ ) ? ^ ! * ) (26 a) 

Pi-i{k+\) = ßi(k)Pi-\k) + yi(k)wi(k)u(k)ur(k) (26 b) 

Note the similarity with the univariate formulation as presented in eqns. (8). 
A Liapunov function is selected, cf. eqn. (9) : 

V(k)= t d(
T(fc)i'r1(*)«"i(*) (27) 

Because of the equivalence of the single terms of the sum in eqn. (27) with the 
univariate identification problem, it is stated without proof that the LSLG 
algorithm of eqn. (26) yields a negative definite form AF(fc)^ V(k+l)— V(k). 
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Therefore, the algorithm is asymptotically stable with respect to the para
meter difference. From eqns. (26) the LSLG algorithm can be written for a 
multivariable process ; with ft((jfc) denoting the ith row of 4>(&) : 

8,(i+ l M ^ - a ^ H ^ K M P ^ M f c ) (28 a) 

«,(*) = [ft#) + w4(É)uT(i)P1(É)u(É)]-i (28 6) 

P^+l) = ßi-i(k)(Pi(k)-«i*(k)yi(k)wi(k)Pi(k)u(k)u'r(k)Pi(k)) (28 c) 

«,•(*) =- [ft(fc) + y<(Ä;)Wi(/;)u
T(Ä;)Pi(i)u(i)]-i (28 d) 

with w îfe) > 0, 0 < &(&) < 1, yt(k) > 0 and 

fo(E) = 0}u{ft(t) > 0n^(fc)yi(*) « 2ft(fc)} (28 e) 

The eqns. (28) present the LSLG algorithm for the identification of a multi-
variable process. Regarding the similarity of the terms of the sum of the 
Liapunov function in eqn. (27), and the Liapunov function selected in eqn. (9) 
for the single-input, single-output process, the observations and remarks 
made in the preceding sections will also hold for the algorithm of eqn. (28). 
This means that criteria are present for the selection of the scalars ßt(k), y^k), 
w^k), fii(k) and the starting values Pt{0). 

5.3. Other extensions 
The LSLG method can also be applied to identify a class of non-linear 

processes, where the process parameters enter linearly into the equation error 
(Mendel 1973). This is analogous to continuous gradient methods (Lion 
1967) and the LS method. 

In most identification problems part of the process parameters are known 
beforehand. This might be used to simplify considerably the identification 
algorithm by identifying the unknown parameters only or alternatively to 
check the proper operation of the algorithm by estimating the known para
meters too. I t is readily demonstrated that the LSLG can include known 
parameters. 

So far it was assumed both for the LS and the LSLG method that the 
process signals were exactly measurable. When u(k) is contaminated, even 
by zero mean noise, the estimation of the parameters will be biased except 
for the case a{ = 0 for i = 1, ..., N, and for the case when the noise is white 
and coloured by an auto-regression filter of the same transfer function as the 
denominator of the process transfer function. A biased estimation occurs 
even with a relatively low noise level. When the frequency band of the 
noise can be separated from the frequency band of the process signals, the 
noise influence can be reduced by prefiltering the process input and output 
(Mendel 1973, Lion 1967). 

6. Selection of the parameters of the algorithm 
As is shown in the previous sections, a number of parameters has to be 

set before the LSLG algorithm can be applied. The results presented in this 
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section, a re re la ted t o t h e es t imat ion of var ious second-order sys tems (see 
Table 1), s imulated bo th inside and outside t he computer . As a test-signal 
a block-signal is used wi th a period of 20 s, a max imum value of 2 V and a 
m in imum value of 0 V. 

Continuous system 

H(s) = 
Co^ + CjS + Ca 

Discrete system 
c^z-1 + a22

_ 

H0H(z) = 
l+b^ + b^-2 

T.= l 

d1 

1. 
2. 
3. 

Overdamped 
Damped 
Non-min. phase 

0 
0 

- 3 

2 
10 

1 

20 
20 
5 

1 
11 
1 

0043 0037 
0-207 0-178 

-0-270 0-384 

6, 62 

-1-598 0-638 
-1-214 0-637 
- 1 1 8 7 0-301 

Table 1. 

6.1. The factor w(k) 

When t he identification procedure begins, dur ing t he first i terat ions t he 
influence of a t ime- invar iant pa rameter value of w(k) = w is s imilar to t he 
influence of t] in t he diagonal ma t r ix P(0) = i j / if ijwp | | u (0)uT(0) | . I n t h a t 
case (see eqn. (8 6)) i t follows wi th y(k) = ß(k) = 1 : 

p - i ( l ) p - i ( o ) 
- + u(0)uT(0) = — + u(0)uT(0) ~ u(0)uT(0) 

w rjw 
(29) 

Subs t i tu t ing P * " 1 ^ ) for (l/wjP-^k) or P*{k) for wP(k) y ields w i th eqns. 
( 13 ) and (13 6) : 

B(k + 1 ) = B(k) - a(k)e(k)P*(k)u(k) (30 a) 

a(k) = [^(k) + uT(k)P*{k)u(k)]-1 (30 6) 

I n exper iments identical results were obta ined for pa ramete r es t imat ion runs 
with t h e following set t ings : P(0) = 10 3 / , w = 1 ; P{0) =1, w = 103 a nd P(0) = 
10 6 / , w=l0~3. 

I t can also be shown t h a t t h e influence on t he convergence AV{k)/V(k) 
(see n ex t section) is equivalent to t he influence of ij for 

A V(k) - e2(/fc)a2(ifc)[ -/x2(fc) + 2/z(fc) + uT(k)P*(k)u(k)] 

with 

V(k) 5T(A:)P*-1(/fc)8(Â;) 

a(k) = [/j.(k) + uT(A:)P*(Ä;)u(Ä;)]-1 

(31) 

6.2. The factor v of P (0) 

The choice of t h e s t a r t ing mat r ix P (0) , usually a diagonal ma t r ix P(0) = i j / , 
is very impor t an t ; see also Remarks 7 and 9. Moreover, there is a depend
ence wi th t h e ampl i tude of t h e measurement signals (Remark 2). I n th is 
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Identification of discrete processes 945 

section the discussion is restricted to the choice of the parameter rj which 
should be chosen very high in order to satisfy theoretical requirements 
(Schreuder 1975, Young 1969). The choice of rj was related to the relative 
convergence AV/V (see Remark 1). 

A large value of rjw(k) (r/w(k)> 105) yields a fast increase of |P_1(Jfc+1)||, 
leading to a decrease of |8(ifc+1)|. Small values of rjw(k) (1 <rjw(k) < 102) 
yield a relatively small increase of | | P - 1 (Ä ;+ 1)||. The decrease of ||6(/fc+l)j| 
is significantly less than in the previous case. There is clear agreement with 
the convergence criterion 

* àV(k) 
À, V(k) 

given in Fig. 2 for various values of rj (w(k) is set to 1) for a process simulated 
in the computer. There is no advantage in choosing TJ > 10s ; moreover, for 

" N| number of i te ra t ions) 

20 60 

Figure 2. Influence of starting matrix on the convergence ; simulated process. 

larger values of rj, the criterion remains very small for small values of N. 
The criterion is also calculated for a process outside the computer. The 
results are shown in Fig. 3, and indicate that a maximum convergence is 
obtained for ij = 102, and that both for smaller and larger values of rj the 
convergence deteriorates. The reasons for small values of 77 are the same as 
outlined before ; however, for larger values of 77 there will be considerable 
parameter misalignments caused by small offset values. 

iber of i terations) 

Figure 3. As Fig. 2 ; real process. 
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946 A. J. Vdink ten Cate and H. B. Verbruggen 

A starting matrix 10/ < P(0) < 103/ will be a good choice in most cases. 
I t is noted that this choice is theoretically justified and is not subject to the 
requirement that P(0) has to be very large. In engineering practice in the 
LS method a relatively low value of P(0) is already applied. 

6.3. The variable a(k) 

The variable a(k) determines to a great extent the adjustment of the para
meters (see eqns. (13 a) and (17 a)). On the one hand, a(k) is influenced by 
fi(k) and on the other hand by P(k), since 

a(k) = [fi(k) + w(k)u't{k)P(k)u(k)]-1 (32) 

For values of rj > 103 the behaviour of a(k) as a function of k is shown in Fig. 4. 

[WU'R, ] 

Figure 4. Influence of starting matrix on <x(k) ; large starting values. 

Starting with u(0) = 0, a(0) = l/ft(0) and independently of ij. The values of 
a(k) will decrease very rapidly to a value a(k)~ [w(fc)uT(fc)P(&)u(fc)]_1, which 
is in the range of P_1(0) (see part 1, Fig. 4). Next the value of \\P~1{k+ 1)|| 
will increase according to eqn. (29 a), causing a decrease of w(fc)uT(A;)P(&)u(&). 
Thus the value of a(k) will increase after 10 to 25 iterations, depending on the 
value of rj (see part 2, Fig. 4). Finally the term w(k)ur(k)P{k)u(k) will be 
obscured again by /*(&), yielding a(k)~ l//x(&) (see part 3, Fig. 4). 

For values of r) < 10 the behaviour of a(k) as function of k is shown in 
Fig. 5. In that case w(k)uT{k)P(k)u(k) is already in the order of magnitude 
of p{k) right after starting the procedure. For very small values of i; (rj < 0-01), 
the value of a(k)~ l//i(fc) for all values of k. If u(0)#0, the starting value of 
a(0) will be very small and in the range of P_1(0) (see dotted curves in Figs. 
4 and 5). 

Figure 5. As Fig. 4 ; small starting values. 
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Identification of discrete processes 947 

The behaviour of a(k) as shown in Fig. 4 is most preferable with a small 
part 1 and a relative large part 2, which is the case for 10/ < P(0) < 103/. In 
Fig. 6 the results are shown for P(0) = 102/ (solid lines) and P(0) = 0-1/ (dotted 
lines) respectively. 

500 140 

'X--'Vv""vvv:'\^-A-~'"'^ 

Figure 6. Influence of starting matrix on estimation results 
7) = 0-1 (dotted lines). 

i) = 102 (solid lines) ; 

6.4. The factor n(k) 
Using the LSLG method one has the possibility of choosing 0 ̂  n(k) ^ 2 

(y(fc) = l), while in the LS method this parameter is fixed: /*(&) = 1. As 
shown in the previous section the value of (A.{k) influences the behaviour of 
a(k), which influences in turn the behaviour of the parameter convergence. 

By choosing /x(k) small, for instance 0-01, the parts 1 and 2 of Fig. 4 are 
extended, causing a better convergence of the parameters. Moreover, it can 
be shown by differentiating A V(k) with respect to fx(k) that an optimal choice 
of jx{k) would be zero. However, choosing /x(&) = 0 will cause very high 
values of a(k) which will influence the parameter behaviour too much when 
noise influences are present. 

A possibility is to choose u{k) as a function of uT(k)P(k)\i(k) as follows : 

fJ.(k) = pw(k)u'r(k)P(k)u(k) (33) 

In practical experiments the value p = 0-5 yields a fast parameter convergence 
and a diminished influence of the noise. In Fig. 7 the results are shown for 
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948 A.J. Udink ten Cate and H. B. Verbruggen 

P(0) = 103/, ^ = 0-1 (solid line) and P(0) = 103/, ix(k) = 0-5uT{k)P{k)u(k) (dotted 
line). 

3,1.0 06 

Figure 7. Influence of /j.(k) on estimation results. 

6.5. The factors ß(k) and y(k) 
The factors ß(k) and y(k) are introduced in order to track the parameters 

of a time-varying process. 
Recalling eqn. (14) and eqns. (17) it is clear that these factors influence 

the gain matrix P(k) directly and the updating of a(k) and 9(k) indirectly. 
The choice of the values of ß{k) and y(k) is discussed referring to eqn.(14) : 
P-1(k+l) = ß(k)P-*(k) + y(k)w(k)u(k)\iT(k) or with ß(k) = ß and y(k) = y : 

P 1(*-+l) = j8*+ip-i(0)+ S ß^yuiiMi^ii) 

An element of the gain matrix is adjusted according to 

Pmn
1(k+l) = ß^pmn

i(0)+ £ /3*-V(»)«*(»)«»(0 

(34) 

(35) 

where PmnHk+l) is the ran element of P - 1(fc+l). This equation is equi
valent to that of an exponential smoothing filter with a gain of y/1 — ß and 
an exponential weighting factor ß. 

By selecting a small value of ß old data are forgotten relatively fast (see 
Fig. 8) while by selecting y > 1 the influence of most recent information is 
enlarged. This can also be accomplished by taking a large value for w(k). 
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I Fig 6 

Figure 8. Exponential weighting of old data. 

Theoretically the fastest convergence of A V(k) is found for very small 
values of ß. The quasi-stationary value of P~1(k+\) will be obtained after 
a long period if a value of ß < 0-9 is chosen. Moreover, for these values of ß 
the parameter estimation is very sensitive to the influence of even a small 
amount of noise. 

In practice a value of 0-95 ; gß^ 0-99 would be a good choice. The influ
ence of ß as a function of k is given in Table 2 (y= 1, N is the value of k for 
which ^+ 1<0-1) . 

ß 

0-99 
0-98 
0-97 
0-96 
0-95 

N 

225 
113 
75 
56 
45 

Table 2. ßx+1^0-l. 

7. Conclusions 
A deterministic ' least-squares-like gradient ' (LSLG) identification method 

was presented that bears close resemblance to the well-known recursive least-
squares (LS) method. The interesting feature of the LSLG method is that it 
is based on a stability concept (Liapunov's second method) guaranteeing the 
convergence of the estimates to their true-values. Following this approach, 
it was demonstrated that the LSLG method has more degrees of freedom in 
comparison with the LS method, which could be used to make the method 
more suitable for a special problem. 

Because of the different types of estimators (LSLG : a priori versus LS : 
a-posteriori) both methods complement each other in certain applications. 
The stability concept combined with the a-priori type of estimator makes the 
LSLG method interesting for adaptive control. Present research is being 
performed on discrete and continuous model reference adaptive systems. 

CON. 61 
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Appendix A 
Theorem 

If the matrix P~1(k+ 1) is calculated from 

P-l(k+l) = ß(k)P-1(k) + y(k)w(k)u(k)u(k)i (A 1) 

with ß{k) > 0, y(k) > 0, w(k) > 0 and if P~\k) is positive definite, then P~1(k+ 1) 
is also positive definite. 

Proof 
By definition a matrix Q is positive definite, denoted Q > 0 if xTQx is 

positive definite. 
Pre-multiplying and post-multiplying the terms of eqn. (A 1) with xT 

resp. x, yields 

xFP-1(k + l)x = ß(k)xtP-1(k)x + y(k)w(k)xTu(k)u{k)'Ix (A 2) 

For ß(k) > 0 the first term on the right-hand side of eqn. (A 2) is positive 
definite, since P_1(fc) is positive definite. For y(k) > 0 and w(k) > 0 the second 
term on the right-hand side of eqn. (A 2) is non-negative ; therefore 
P - 1 ( i + l ) > 0 . 

Corollary 
If the starting matrix P_1(0) > 0 and is symmetric, then P~1(k+l)>0 

and P~1(k+ 1) is symmetric. 

Proof 
If y(k) > 0 and w(k) > 0 for all k the second term of (A 2) will be symmetric 

and u(k)u(k)T > 0. Thus P - 1 (1 )>0 and is symmetric, because the sum of 
two symmetric matrices is again a symmetric matrix. Evaluating P -1(2), 
etc. yields again positive definite symmetric matrices. 

Remark 

If 0<ß(k) < 1 and the matrix 

Q= f y(fc)w(Ä;)u(fc)uT(fc) (A3) 

is singular or zero, then P_1(fc) will be singular or zero respectively for k—> oo. 
The matrix Q > 0 and is non-zero if u satisfies the conditions of persistent 
excitation (Âstrom and Bohlin 1966). 

Appendix B 
The asymptotic stability of the LSLG identification scheme is demon

strated by Liapunov's second method (Mendel 1973). Consider the positive 
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definite Liapunov function 

V(k) = hT(k)P~1(k)S(k) ( B l ) 

with P(k) > O and symmetric. The LSLG technique is based on the algorithms 

&{k+l) = S(k)-a(k)w(k)e(k)P(k)u(k) (B 2 a) 

p-\k+l) = ß(k)P-\k) + y(k)iv(k)u(k)u'r(k) (B 2 b) 

with the scalars <x(k), w(k)>0; y(k)^0 and 0 <ß(k)^l. Also, the equation 
error is recalled : 

e(k)=S'I(k)\i(k) (B3) 

To investigate the stability the form AV{k) AV(k+ 1) — V(k) is evaluated; 
for notational convenience c(k) ̂ uT(k)P(k)u(k) : 

AV(k) = $T(k+l)P-1(k+l)&(k+l)- hT(k)P-i(k)h{k) 
= (ß(k)-\)V(k) + w(k)e2(k) 

x [y(k) - 2<x(k)ß(k) - 2oc(k)y(k)w(k)c(k) 
+ a\k)ß(k)w(k)c{k) + a2(%(fc)w2(Ä;)c2(fc)] (B 4) 

When the scalar a(k) > 0 is selected as follows : 

<x{k) = [/x(ifc) + M>(ifc)uT(ifc).P(Jfc)ii(ifc) ] _ 1 (B 5) 

with fj.(k) > 0 and bearing in mind that c(k) = uT(k)P{k)u(k), eqn. (B 4) can 
be written 

A V{k) = (ß{k) -l)V(k) + w(k)e2(k)A (B 6 a) 

with 

A = a2(fc)[y(/k)̂ 2()fc) - 2ß(k)jx(k) - j8(fc)w(ifc)uT(Â;)P(A:)u(Jfc)] (B 6 b) 

From eqn. (B 6 6) it can be seen, since uT(k)P(k)u(k) > 0, that sufficient 
requirements for the condition A^O are fulfilled by requiring 0<ß(k)^l, 
w(k) > 0, y(k) > 0 and 

fji(ifc) = 0}<J{M(fc) > 0ny{k)p(k) < 2ß(k)} (B 7) 

With condition (B 7) the expression for AV{k) of eqn. (B 6) is non-positive 
definite for ß(k) = 1 and negative definite for 0 < ß(k) < 1. 

Appendix C 
An algorithm is derived to evaluate the matrix P(k) from its inverse 

P~\k), given by 

P-1(k+l) = ß{k)P-1(k) + y(k)w{k)u(k)uT(k) (C 1) 

when the scalars y(k) > 0, w(k) > 0, 0 < ß(k) ^ 1. Using standard methods 
(Young 1969), pre-multiplying and post-multiplying with P(k+1) and P(k) 
respectively yields 

P(k) = ß(k)P(k+l) + y(k)w(k)P(k+l)u(k)u'r(k)P(k) (C 2) 

6i2 
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952 Identification of discrete -processes 

The scalar tx*(k) is in t roduced : 

<**(*) = [ßW + y(ifc)w(ifc)uT(Ä;)P(A;)u(A!)]-1 (C 3) 

Post -mult iplying of (C 2) w i th <x*(k)y(k)w{k)u(k)uT{k)P(k) : 

<x*(k)y{k)w{k)P{k)u(k)\i'r(k)P(k) = y(k)iiik)P(k+l)u(k)\iT(k)P(k) (C 4) 

Subs t i tu t ion of t he r igh t -hand side of eqn. (C 4) w i th eqn. (C 2) yields t h e 
recursive form : 

P(k+ l) = ß-1{k)P(k)-a*(k)y(k)w(k)P(k)u(k)u,T(k)P(k)) (C 5) 

where a*(k) is given by eqn. (3). F r om eqns . (C 3) and (C 5) i t is seen t h a t 
t he ma t r ix P(k) is symmetr ic provided t h e initial value P(0) is symmetr ic . 

R E F E R E N C E S 

ALBERT, A. E., and GARDNER, L. A., 1967, Stochastic Approximation and Nonlinear 
Regression (Cambridge, Massachusetts : M.I.T. Press). 

ANDERSON, B. D. 0 . , 1977,1.E.E.E. Trans, autom. Control, 22, 83. 
ÂSTROM, K. J., and BOHLIN, T., 1966, Proceedings of the IF AC Symposium on the 

Theory of Self-adaptive Control Systems (New York : Plenum). 
ÂSTROM, K. J., BORISSOK, U., LJUNG, L., and WITTENMARK, B., 1977, Automatica, 

13, 457. 
BIERMAN, G. J., 1976,1.E.E.E. Trans, autom. Control, 21, 883. 
BRANSBY, M. L., 1976, I.E.E.E. Trans, autom. Control, 21, 139. 
EYKHOFF, P., 1974, System Identification (London : Wiley). 
GRAUPE, D., and FOGEL, E., 1976, Automatica, 12, 53. 
HANG, C. C , 1974, Int. J. Control, 19, 365. 
KUDVA, P., and NARENDRA, K. S., 1974, I.E.E.E. Trans, autom. Control, 19, 549. 
LANDAU, I. D., 1976, I.E.E.E. Trans, autom. Control, 21, 194. 
LANDAU, I. D., and BÉTHOUX, 1975, Proceedings of the 6th IF AC World Congress, 

Paper 58.4. 
LION, P. M., 1967, A.I.A. Aerospace J., 5, 1835. 
MENDEL, J . M., 1973, Discrete Techniques of Parameter Estimation (New York : 

Dekker) ; 1974, I.E.E.E. Trans, autom. Control, 19, 820. 
SCHEURER, H. G., 1975, Regelungstechnik, 12, 427. 
UDINK TEN CATE, A. J., 1975, Electronics Lett., 11, 98 ; 1976, Ibid., 12, 359. 
YOUNG, P . J., 1969, Contol Engng, 16, No. 10, 119. 

1 0 2 



6 Adaptive control of the heating system 

6. 1 INTRODUCTION 

In this chapter an adaptive control application will be described. Adaptive 

control has received much attention over the last two decades. The basic idea 

is that the controlled process contains time-varying parameters which vary to 

such an extend that the controller has to be adjusted in order to retain an 

acceptable performance. 

The adjustment can be based on a-priori knowledge of the process. An 

example is the gain of the greenhouse heating transfer function, which depends 

on the heating pipe temperature according to eqn. (3.22). This relation can 

be used to compensate the variations by adjusting the gain of the heating 

system controller. When a-priori knowledge is used for compensation this 
o 

method is called gain scheduling (Astrom, 1981), a type of adaptive control 

that is widely used in practice. 

In other cases there is no a-priori knowledge available because the 

process parameters change in an unpredictable way, or because the process 

itself is not well identified. In such cases the relevant process parameters 

are estimated by an on-line procedure. The controller is adjusted according 

to some decision mechanism. When a form of on-line parameter estimation is 

applied, the method is usually referred to as adaptive, self-adaptive, self-

adjusting or self-tuning control. 

The estimation procedure has to fulfil several criteria, because it is 

applied on-line. The most important criterion is that it must lead to a 

stable control scheme. In adaptive control much research has been focused on 

the stability of the control and adjustment mechanism. In the early develop

ments in the field of adaptive control, the parameter estimation was 

performed combined with the adjustment of the controller, where the control

led process has to follow a fixed model. Much research has been performed on 

the stability properties of these model reference adaptive systems. Examples 

of this approach are found in the book of Landau (1979). The main results are 

established for the continuous time domain, for processes of which the order 
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is exactly known and for deterministic (noise free) signals. When in a 

practical situation measurement noise is present, the deterministic parameter 

estimation methods give rise to biased results (Eykhoff, 1974). This causes 

stability problems even when in a practical situation filters are used to 

reduce the noise level (Udink ten Cate and Verstoep, 1974). 

Arguing that stability of the whole scheme follows naturally when the 

on-line estimation is ensured to converge to the true parameter values, much 

research in the seventies deals with stochastic estimation procedures. 

Because of the more complex nature of the algorithms, the main interest is in 

discrete time representation. A summary of on-line estimation has been given 

by Young (1981). A typical problem in estimation is that the process input 

signal has to be sufficiently excited. In adaptive systems this is not always 

permitted. 

As a result of the problems associated with the application of adaptive con

trol, not so many applications have been reported for practical problems 

(Astrom, 1981). The adaptive greenhouse heating system control reflects the 

difficulties, in that care has been taken to circumvent the problems in the 

design stage. 

In this chapter the adaptive problem is formulated and then the algorithms 

are presented, which are the result of several years on-line evaluation. The 

performance is demonstrated from field trials. 

6.2 THE ADAPTIVE PROBLEM 

As discussed in Chapter 3, a simple relation between the heating pipe tempe

rature and the greenhouse inside air temperature is given by the transfer 

function 

9 (s) K e d ' h 

H S _! = _i (6.1) 
g ' 9, (s) T s + 1 

h g 

where the variables are formulated in terms of increments with respect to a 

working point. In the simple relation the parameters K and x vary due to 

physical phenomena and external influences, as well because of inaccuracies 

in the modeling. The relation H , is the basis for the adaptive control. 
g.h 
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In eqn. (6.1) the input signal is 9 (t) which is not a driving signal 

directly from the controller, but the output of the mixing valve process. 

As discussed in section 3.3.1 the mixing valve process is asymmetrical: a 

small time constant for rising 6 ; a large one for decreasing 8, . The small 

time constant is much smaller than T . The usual greenhouse heating system 

controller consists of a master-slave configuration as depicted in fig. 4.1. 

The use of eqn. (6.1) in the adaptive control means that the attention is 

focused on the behaviour of the master loop. 

In eqn. (6.1) two parameters are present. It is assumed that by changing K 

and T the time varying characteristics of H can be described adequately. 

The most straightforward adaptive approach is to estimate both parameters in 

an on-line procedure. In order to get an accurate result, the input signal 

9, has to be time-varying. Since this is not the case under normal conditions, 

a test signal has to be applied. The resolution of the measurements in a 

greenhouse is in the order of 0.1 C so that a ripple on 6 of 0.5 - 1 C as 

a result of the test signal is necessary. This is not acceptable, and no test 

signals can be used. In this case only the gain factor K can be estimated. 

As discussed in the previous chapter, the estimation of T with the LSLG 

method (or by related methods) may lead to biased results, which is not so 

for K . 
g 

The time varying nature of the parameters in eqn. (6.1) is assumed to be 

represented by a time varying K and fixed values for T and T , , . The master 
g g d,h 

loop of the heating control is designed for a constant value of K , and 

changes will be compensated in the adaptive controller. This approach was 

adopted by Udink ten Cate and Van de Vooren (1977, 1978, 1981) for tuning a 

modified PI controller (eqn. 4.4). In the next sections these results are 

presented. 

A choice in the adaptive design has been to apply a PI controller of which 

the settings are changed, instead of applying another control scheme. This is 

motivated because the adaptive controller has to be understood and accepted 

by potential users. The relation between climate and plant growth is very 

strong and often control procedures take the place of GCFC. A solution that 

can be added to the existing methods (and computer software) and is easy to 

override, seems attractive in such a situation. Existing knowledge of the 
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performance of conventional control methods could be evaluated in the design 

and eventually included. The adaptive PI algorithm fits well into these 

criteria. 

6.3 THE ADAPTIVE ALGORITHM 

The adaptive algorithm is discussed, that has been applied in the adaptive 

heating system control of the multifactoral glasshouse at Naaldwijk. In the 

model of eqn. (6.1) under various conditions T, , = 7 min, x = 20 min and 
d,h g 

K = 0.16 - 0.22. Like in conventional control the heating system is control-
g 5 

led by a master-slave algorithm. In the slave a time-proportional velocity 

algorithm is applied with respect to the valve position. In the master a PI 

algorithm is used. The idea of the adaptive approach is to compensate for 

variations in K by adjusting the gain of the controller, so that the PI 

algorithm is always tuned correctly. 

A problem is that the model of eqn. (6.1) is linearized around a working 

point. This is strongly influenced by the outside conditions, so that it is 

time-varying and not a-priori known. This causes serious difficulties in the 

estimation procedure because an incorrect calculation of the working point 

might lead to severe errors in the estimate of K , e.g. a negative value 

could be obtained. A solution to this problem is to use a high-pass filter 

for the signals used in the estimation. This method was not considered 

applicable in the greenhouse problem because only very low harmonics have to 

be rejected (see Chapter 3) which is not obtained by a simple filter. Other

wise, using a simple filter, high frequent signal components remain which 

have only a low magnitude compared to the noise introduced by discretizing 

the measured climate process signals. So a less elegant solution is 

considered by assuming a working point at zero, which means that a 

significant offset is introduced. The estimate of K will in this case never 

give a completely wrong result by yielding negative values. In the adaptive 

method the introduced offset is lumped together with the dynamic and time-

varying gain K , producing a new time-variant gain K'. In the Naaldwijk 

glasshouse K' = 0.2 - 1.0. The drawback of this approach is that variations 

in the dynamic gain K are estimated as variations in K' which will be 
8 g 

relatively of a smaller magnitude. Although in principle it is possible to 

estimate the offset separately, this is not considered because it would 

introduce an extra unknown parameter. 
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The gain K' is estimated on-line by a least-squares like gradient (LSLG) 

algorithm as presented in the previous chapter. To estimate the time-varying 

K', a discrete time estimatic 
g 

backward difference operator 

K', a discrete time estimation model of eqn. (6.1) is formulated using a 

e (k) = a, e (k-i) + K^(k)a2 eh(k-dd>h) (6.2) 

where 9 (k) and K'(k) are the estimates of 8 (k) and K'(k) respectively at 

the k-th sampling interval; a. = T /(1+T ), a, = l-a„, T = 30, d, , = 6 = 
° 2 s g 1 2' g d,h 

= T, , /T , T = 1 min. The values of 8 and 6, are in C with (the working 
d,h s' s g h 

point) zero as reference. The simple difference operator is justified by the 

high sampling rate with respect to the process dominant time constant. 

The values of T and d, , were obtained from large step responses, with 
0, = 20 -* 70 °C and 9 = 15 -+ 25 °C. These values differ from those used in 
h g 

eqn. (4.2) (20 min. and 8 respectively), the latter being obtained from 

better defined experiments. The values applied in eqn. (6.2) are however not 

unrealistic. The result will be that more variations in K' will occur in 
g 

order to explain variations in the process signals. Conform the theory K' is 
updated as 

K'(k+1) = K'(k) - a(k) {6 (k) - 9 (k)} P(k) 9, (k-d, ,)/a„ (6.3a) 
g g g g h d,h 2 

a(k) = [1 + P(k) e^(k-dd h)] ~' (6.3b) 

P~'(k+1)= ß(k) P"'(k) + Y(k) 9^(k-dd h) (6.3c) 

P(k) is a scalar here, ß(k) = 0.95 and y(k) is used as a switch to limit P(k) 

(and 0 or 1), 10 <P(k)<l and also 0.2<K'<2.0. The factor ß(k) is choosen 
relatively small because K' has to track variations in K' that might occur in 

g g 
a relatively short time interval (30 min.). 

The estimate resulting from eqn. '(6.3a) is used to tune a discrete PI 

algorithm of the modified type (eqn. 4.4) or a dog-lead algorithm (fig. 6.1). 

In both cases: 

K (k) = C, / K'(k) (6.4) 
P 1 g 
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From the decision procedure of eqn. (6.4) it can be seen that the product 

C is kept constant, where Cr has to be tuned on-line. It is Kp(k) K'(k) 

recalled that K'(k) in eqn. (6.4) is not the dynamic gain K of eqn. (6.1), 

so that keeping K'(k) K (k) constant does not imply a constant gain in the 

control loop and a corresponding dynamical behaviour. 

computer! greenhouse 

urn. 

disturbances 

ea 

Fig. 6.1 Adaptive control of greenhouse heating system. 

6.4 RESULTS 

To investigate the performance of the adaptive control, comparative field 

trials have been performed in winter/spring 1981, in the multifactoral glass

house of the Naaldwijk Experiment Station. The trials were run concurrently 

with those already described in section 4.3. A comparison is made between 

adaptive and non-adaptive versions of the modified PI and the dog-lead PI 

algorithms. The criteria used to evaluate the performance are overshoot, sag 

and undershoot; the same criteria used in section 4.3. The comparison has 

been carried out after the settings of the controller gains had been made as 

good as possible for winter conditions. 

6.4.1 Modified PI 

The performance of the adaptive/non-adaptive modified PI algorithm is 

examined first. After experiments with stepwise changes of the setpoint, a 

best setting was selected with K. = 0.033, K = 8 (non-adaptive; compartment 

no. 3) and C = 5 (adaptive; compartment no. 6). As in section 4.3, the 

responses of the adaptive and the non-adaptive controller are compared in 

terms of a 5 point-scale. Data is evaluated as obtained between January 21 

and May 24, 1981. The cumulative results are presented in fig. 6.2. 
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Fig. 6.2 Results from field trials of modified PI algorithms. 

From fig. 6.2 it is seen that the performance of the adaptive PI is slightly 

better for overshoot and undershoot, but that sag is not so well reduced. 

Fig. 6.3 Response of controller gain K for adaptive modified PI algorithm. 

The performance of the adaptive controller can be understood by evaluating 

the effect of the time-varying adaptive gain K (fig. 6.3). 

When the estimation result is examined it is seen that for higher values 

of 9 the controller gain K is higher. With eqn. (3.22) or (3.35) as a-priori 

information, a lower value of K would be expected to compensate for a higher 

value of K in eqn. (6.1). This is not so because the offset on the working 

point obscures this phenomenon. It can only be expected that for large 
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setpoint changes this result will produce favourable effects. In this case a 

higher value of B(k) could be motivated (8(k) = 0.98), leading to a slower 

adjustment of K . However, the estimated K' rises to a high value (» 1.0) 

during the day when strong disturbances (radiation) are present. This gives a 

low value of K (k), which will be less effective to reduce sag. Therefore 

ß(k) cannot be made much larger than the selected value (S(k) = 0.95). 

Responses of 6 and u are presented in order to illustrate the behaviour of 
g g 

the controllers (fig. 6.4). Shown are the responses on of March 2, 1981 

(9 = 8.4 C) and March 22, 1981 ( 10.2 C ) . March 2 is a dull day; March 

22 is a day with a high level of radiation and alternating sun and clouds. 
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Fig. 6.4 Responses of greenhouse temperatures using modified PI algorithms. 

Shown are March 2, 1981 (a) and March 22, 1981 (b). 
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6.4.2 Dog-lead PI 

When the adaptive/non-adaptive dog-lead PI algorithms are compared the 

performance of the adaptive controller comes out poorer than the non-adaptive 

one. In fig. 6.5 data are evaluated obtained between Feb. 26 and May 24, 1981. 

The controller settings were K. = 0.04, K = 12 (non-adaptive; compartment 

no. 5) and C. = 5 (adaptive; compartment no. 1). Also the responses of 6 and 

u are presented on March 2 and March 22, 1981 (fig. 6.6). 
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Fig. 6.5 Results from field trials of dog-lead PI algorithms. 
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Fig. 6.6 Responses of greenhouse temperatures using dog-lead PI algorithms 

on March 2, 1981 (a) and on March 22, 1981 (b) . 

6.5 DISCUSSION 

Considering fig. 6.2 and fig. 6.5 the field trials provide results that are 

disappointing for the adaptive control. With the modified PI controller the 

performance is somewhat improved for overshoot and undershoot; for sag the 

performance deteriorates. With the dog-lead PI controller only the overshoot 

is somewhat improved, but sag and undershoot are significantly poorer. 

This outcome can be understood, because of the most striking phenomena 

indicating improper controller behaviour (overshoot, sag, undershoot) only 

overshoot could be reduced by a better tuned (adaptive) controller. Sag and 

undershoot are caused by windup in the controller, and adaptive control is 

not a solution for this. The dog-lead method reduces the windup effects much 

more effectively. 

The adaptive tuning is not working properly at daytime because of the 

disturbances (radiation) that act upon the greenhouse heating process H . 
§j h 

Also, the selection of the working point at zero introduces errors in the 

estimate of K . Consequently, the adaptive controller is not well adjusted at 

daytime and sag and undershoot is not reduced well, which is more striking 

for the dog-lead than for the modified PI algorithm. 

The adaptive control as presented in this chapter does not improve the con

troller behaviour. The phenomena that cause poor controller performance are 

not adequately compensated by a better tuning of the controller gains. 

112 



Although in some cases the performance is better, the total result over a 

long period of time (99 observed days) is insignificant (modified PI) or even 

worse (dog-lead PI). 

When the relative complexity of the adaptive algorithms is also taken into 

account, it can be concluded that adaptive methods will not improve green

house air temperature control -even when design problems like the definition 

of the working point are solved. 

Other methods are more likely to lead to better temperature control perfor

mance. The dog-lead method reduces undershoot and to some extend the sag. The 

sag might further be reduced by feedforward control using radiation measure

ments. Realizing the deterministic character of the greenhouse climate 

process -as discussed in Chapter 3- improvements could be obtained using 

a-priori knowledge of the climate process in gain-scheduling procedures. 

Also a type of adaptation called self-tuning is feasible, where self-tuning 

means that automatically a test program is carried out on-line and the 

process parameters are estimated. When the estimation procedure complies with 

the procedures presented in this thesis, it is felt that this is realizable. 

This self-tuning procedure can be carried out when the control installation 

is put into operation for the first time, and occasionally during the growing 

period. 
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7 Improved models 

7.1 INTRODUCTION 

In Chapter 3 dynamical models have been presented. The models were formulated 

in terms of increments (eqn. 3.2), which are defined for a fixed working 

point. A fixed working point is associated with an equilibrium situation. In 

reality, such an equilibrium situation seldom occurs. The actual behaviour 

can be modeled as disturbances that act upon the steady-state (static) 

situation. Another approach is to allow the working point to vary slowly in 

time, in a quasi-static way. Conceptually both ways of representing the 

working point do not differ very much. The steady-state representation is 

more easily calculated. The quasi-static representation can be applied in a 

wider range of conditions. 

The quasi-static behaviour of the working point can be modeled by writing the 

relevant variables, e.g. the greenhouse inside air temperature 8 (t) as: 

e (t) = e (t) + e (t) (7.1) 
g g.ss g 

where the suffix ss means that 6 (t) is quasi-static , containing steady-
g » ss ^ 

state, trend and low frequency components of 8 ( t ) , and 8 (t) contains the 

high frequency components of 9 ( t ) . It is remarked that -although eqn. (7.1) 

seems to differ from eqn. ( 3 . 2 ) - in terms of the followed parameter estima

tion procedure in Chapter 3 implicitly eqn. (7.1) was used when the average, 

the trend and the low frequency components of the process signals were 

filtered out. When the low frequency components are considered not as 

disturbances but as slow variations of the working point, the modeling can be 

carried out according to eqn. ( 7 . 1 ) . 

t The meaning of this term "quasi-static" agrees with the thermodynamic 
definition, where during a quasi-static process the system is at all times 
infinitesimally near to equilibrium. However, here "quasi-static" is associa
ted with the time behaviour of the variables, whereas in thermodynamics a 
process characteristic is meant. 
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Another reason to use eqn. (7.1) is that the models presented in Chapter 3 

only bear a relation to the reality in a dynamical sense, which means that 

they are not easily interprétable for an arbitrary behaviour of a greenhouse 

since only a -high frequency- part of the observations is modeled. Adding the 

quasi-static behaviour to the dynamical models facilitates the description of 

the actual behaviour of the greenhouses in recognizable values of the 

relevant variables. Now the models are greenhouse climate models of the type 

discussed in section 2.5. 

Based on the same experiments that are described in Chapter 3, in this 

chapter the working point will be investigated. Firstly a simple steady-state 

approach will be presented in order to calculate the working point. Secondly, 

the slowly time-varying nature of the working point is modeled. 

As in Chapter 3 the parameters are expressed as thermal parameters. It is 

shown that the values of the thermal parameters describing low frequency 

phenomena (of the working point) differ from similar parameters describing 

the high frequency phenomena (of the dynamical models). 

7.2 STEADY-STATE CALCULATIONS 

Steady-state calculations of the working point are carried out using average 

values of the variables constituting the average heat balance of a greenhouse 

K ' ê. - (k* + k* ) ë + n f' = 0 (7.2) 
h,ss hg r,ss v,ss ga ss s 

with 9, = 9, - 9 , 9 = 9 - 9 and the suffix ss denoting the steady-state 
hg h g' ga g a 

(static) values of the variables, which follow from steady-state relations. 

Eqn. (7.2) follows from eqn. (3.4) for an equilibrium situation, with the 

k-values defined as in eqn. (3.6) and eqn. (3.7). In the eqn. (7.2) 9 is the 

heating pipe temperature, 9 is the outside air temperature, $" is the 
a s 

radiation flux density and the star * indicates that the relation is 

normalized per m^ ground area of the greenhouse. 

Eqn. (7.2) is only solvable when one of the terms is assumed to be known: 
here k is assumed to be known according to eqn. (3.36). 

n» ss 

It is noted that although in eqn. (7.2) the (shortwave) radiation <j>" is 

present, with respect to the calculation of the working point this term is 

not correct. The calculation is carried out with average values of the 
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variables, where the actual values do not differ too much from the average. 

This is not the case with the radiation, where a diurnal periodic course is 

made. This means that the working point is only defined according to eqn. 

(7.2) in periods with absence of (shortwave) radiation (at night) or at 

periods with low radiation intensity. 

The procedure that is carried out to calculate the working point is outlined 

below. When the term containing 0" is neglected, eqn. (7.2) can be rewritten 

-* * - s 

with d>, = k, 6, as 
T h h,ss hg 

Ä* = (k* + k* ) ë (7.3a) 
T h r,ss v,ss ga 

In this formula $, is calculated from eqn. (3.36) as 

*u = k* 6, = 1.0 ë, K 4 6 (7.3b) 
Y h h,ss hg hg 

A value for k is calculated with eqns. (3.8) and (3.20) as 
v, ss 

k* = ç' S ,(ç' = ç h = I/3-3 = 1.0) (7.4a) 
v,ss ss V ss J 

S = (1 + r )-0.064-v (7.4b) 
V w w 

where h = 3 [m] follows from table 3.1. As 9 and 6, are know from measu-
* * ga hg _ ^ 

rements, (k + k ) can be calculated from eqns. (7.3). With k 
r,ss v,ss v,ss 

according to eqns. (7.4) the values of k are found. For the same experi

ment that constitutes the results summarized in table 3.2 in table 7.1 the 

values of the relevant variables are presented for the various compartments. 

In fig. 7.1 the best fit in the least-squares sense is depicted for 

(k + k ) . Note that the line expressing this relation according to 
L J S S V J S S 

eqn. (7.3a) crosses the origin by necessity (and is not a linear regres

sion). The best fit is k + k = 10.4. 
r,ss v,ss 

The values of (|> in table 7.1 and fig. 7.1 follow from eqn. (7.3b) (and eqn. 

3.36) and are not all within the range 9, e[3,20 C] for which that eqn. is 

valid. This is done because also in Chapter 3 eqn. (3.36) has been used 

outside its validity range to perform the calculations e.g. for table 3.6. 
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compartment 

1 

2 

3 

4 

5 

6 

7 

eh8 

31.0 

37. 1 

17.6 

14.8 

16.7 

37.3 

31.7 

*h 

150.4 

195.6 

65.8 

51.1 

61.0 

197.1 

155.4 

e 
ga 

14.2 

17.6 

9.1 

7.5 

10.1 

17.4 

13.5 

200 

Table 7.1 Steady-state calculations 

(for table 3.2) 

Fig. 7.1 Best fit for table 7.1. 

The same results can of course be obtained by fitting in fig. 7.1 <|> -k S 
3 6 & h v,ss ga 

with 6 . Because k is the same in all compartments this is not 
ga v,ss_ 

necessary, but in case r is different for the various compartments, this 

procedure has to be followed. This means that also for the experiment 

described in table 3.8 a value of k can be calculated. 
r,ss 

For various experiments the value of k has been evaluated (table 7.2). 
r,ss 

For convenience also the calculated leakage S (r = 0) is presented. 
v w 

experiment 

820301 

820330 

820331 

820525 

19.00 - 0302: 

19.00 - 0331: 

24.00 - 0401: 

19.00 - 0506: 

07.00 

07.00 

07.00 

07.00 

e 
a 

5.5 

4.8 

4.5 

13.4 

V 
w 

5.7 

3.6 

3.6 

0.55 

S (r = 0) 
v w 

0.36 

0.22 

0.23 

0.03 

* 
k 

r,ss 

9.9 

9.8 

9.4 

7.0 

remarks 

r = 0 
w 

various r 
w 

various r 
w 

r = 0 
w 

Table 7.2 Steady-state calculations. 

The steady-state results indicate that it is possible to calculate the 

working point for night conditions (<(>" = 0) . In the calculations it was 
* s 

confirmed that the values of k are reasonably consistent for the various 
r,ss 

compartments, although fig. 7.1 indicates that the assumptions on the value 

—* — 
of <)> might not hold for larger values of 0, . The table 7.2 summarizes the 
available experimental material; no outlayers are omitted, with the exception 
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of an experiment with a varying r (table 3.7) for which a value of 

k =12.6 was obtained. 
r,ss 

Apart from the possibility to calculate the working point, table 7.2 also 

leads to values of k that comply with values found in practice. In eqn. 

(3.37) a value is presented for (k* + k* ) = 7.56 A /A = (table 3.1) = 
_j * r.ss v.ss' r g 

= 8.55; v = 4[m s ]. With k according to eqns. (7.4) this would lead 
w _ v,ss ° n 

to k* = 0.25 (r = 0) and k* = 8.3. This value of k* is similar to 
v,ss w r,ss r,ss 

the results presented in table 7.2. 
* * 

This indicates that the assumptions made on k, (and on k, ) are not 
h,ss h 

unreasonable and that the relation found for k, (and k, ) is realistic. 
h,ss h 

This being true, it can be observed that the same parameter of the perfectly 

stirred tank model of eqn. (3.4) has different values for the dynamical 

models presented in Chapter 3 and for the steady-state case. 
7.3 QUASI-STATIC MODELING 

In this section the feasibility of low frequency modeling will be discussed. 

The model that is used is given by 

d e 
c* SiM _ k* {e (t ) _ 9 ( t ) } _ 
g,ss , h,ss h,ss d,h' g,ss 

- ik* + ç' S (t)} (e^ (t) - e (t)} + r,ss ss v,ss g,ss a,ss 

+ n <|>" (t) (7.5) 
ss s,ss 

which is the perfectly stirred tank model of eqn. (3.4) for the quasi-static 

case. The dead time T. . is introduced in order to use the model of eqn. 
a,h 

(7.5) for parameter estimation, following the same arguments as in case of 

eqns. (3.25). Note that not k is used here, but the term ç' S (t) in 
^ v,ss ss v,ss 

order to allow more explicitely for slowly time-varying values of the 

ventilation rate. The introduction of the multiplicative term leads to a 

bilinear system albeit in a quasi-static form. S (t) is calculated 

according to eqns. (7.4). 

In eqn. (7.5) a longwave radiation term, representing the longwave 

radiation balance with the sky is not present. This can be considered to be 

an omission when low-frequency behaviour is of interest. For dynamical 

118 



modeling (and also for steady-state calculations) this radiation term is 

modeled with the shortwave radiation at daytime, and seen as a disturbance at 

nighttime. 

The storage term C 
d e 8,ss is present in eqn. (7.5) in order to 

'g,ss dt 
facilitate the model to dampen sudden peaks (numerical inaccuracies) that may 

occur in the generation of the time responses of the quasi-static variables. 

The effect is mainly cosmetic, and for its value C = C (table 3.6) is 
g,ss g 

selected. 

The model of eqn. (7.5) will be validated on experimental data. Like in eqn. 

(7.2), the quasi-static variables in eqn. (7.5) do not contain sufficient 

distinct frequencies as to facilitate a complete parameter estimation. This 

means that the value of one of the terms should be known. Again, k is 
h,ss 

taken according to eqns. (3.36) and (7.3). 

In fig. 7.2 the measured value of 9 and the best fit with quasi-static 
g,ss 

variables is shown, according to eqn. (7.5). The estimation is carried out 

for the same experiment as depicted in fig. 3.17 (a nightly experiment 

$g s s = 0 in compartment no. 1). The result of that experiment in terms of 

thermal variables is given in table 3.6. 

Fig. 7.2 Quasi-static modeling for experiment of fig. 3.17. 

In the quasi-static case the best fit is obtained for k and t' , where 
r,ss ss 

ç' contains a correction term representing the influence of the wind on 

k* as well as incorrect calculation of the leakage. The result is 

Çgs = 0.42 and k = 8.2. Of the available 720 datapoints 600 were used. 
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The quasi-static signals are obtained by substracting in the time domain a 

filtered signal (see Chapter 3) from the original signal. This is a very 

straightforward method, introducing numerical inaccuracies. Also filtering 

can be used. 

The ultimate interest of the quasi-static models is to use them to describe 

the observed variable(s) according to eqn. (7.1), where the greenhouse air 

temperature is formulated as the sum of a quasi-static and a incremental 

(dynamical) variable. By adding the response of 9 of fig. 3.17 (obtained for 

the observed data set of 600 points) to the response of 8 of fig. 7.2, 
^ g » SS 

the total response of 6 = 6 + 8 is obtained (fig. 7.3a). In fig. 7.3b 
g g,ss g 

the response is depicted when the working point is calculated according to 

eqn. (7.2) so that here 8 = 8 + 8 . It is seen that in this nightly 
g g o 

situation the two responses are quite similar, with the error criterion (eqn. 

3.22) E = 91 for the case of the quasi-static response (fig. 7.3a) and 

E = 106 for the steady-state working point calculation of fig. 7.3b. 

The same procedure is carried out for the case that radiation is present. Now 

the experiment depicted in fig. 3.19 (for compartment no. 1; see also table 

3.9) is treated. Fig. 7.4a and fig. 7.4b show the original signal of 

radiation <j>" and air temperature 8 as well as their low frequent components 
<t>" and 8 (obtained by filtering the first three harmonics and not only 

s,ss g,ss } 

one harmonic as was done in section 3.4.8). Here 420 data points are used out 

of a set of 480. 

The estimation according to eqn. (7.5) yields a best fit with a value of 

k = 7 . 7 and n =0.45; the influence of the wind in terms of variations 
r,ss ss 

was neglectable, so for ç' = 0.064 was set. In fig. 7.5 the response of the 

actual value of 8 is compared with a simulated response of a dynamical model 

with a quasi-static working point. As discussed in section 7.2 for daytime 

conditions steady-state calculations are not well defined, so no simulation 

could be carried out for that case. 

120 



m 

Fig. 7.3 Actual and simulated responses of the greenhouse air temperature. 

Simulation with quasi-static working point (a); with steady-

state working point (h). 
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11 

Fig. 7.4 Responses of the original signal and its quasi-static component; 

for the radiation (a); for the greenhouse air temperature (h). 
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Fig. 7.5 Actual and simulated responses of greenhouse air temperature. 

Simulation with quasi-static working point. 

7.4 DISCUSSION 

In this chapter a method is described to calculate the working point of a 

dynamical model -of the type presented in Chapter 3. In a steady-state 

situation the working point can be computed from the average values of the 

relevant variables. When the variables constituting the working point tend to 

deviate too much from their average, the working point is described by a 

quasi-static model, where the average, trend and low frequency components of 

the relevant variables are used to model the slowly time-varying working 

point. For two cases it is demonstrated that this leads to quite acceptable 

results. 

The calculations of the working point are based upon a simple thermal model. 

This model is applied for the dynamical modeling in Chapter 3, and is 

sufficiently accurate there. However for the modeling of the working point, 

more heat transfer terms should be included, notably a term representing the 

longwave radiation to the outside atmosphere (the sky temperature). Also 

terms describing the heat fluxes to and from the greenhouse soil and latent 

heat fluxes could be incorporated. It appears that for an accurate modeling 

of the working point detailed physical climate models of the type discussed 

in section 2.5 become of interest. 
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In terms of harmonics, the distinction between high frequency signals 

(applied in dynamical models) and low frequency signals is > 5 or s 3 

harmonics defined on 1024 data points, or between harmonics of a period S 3| 

or £ 6 hours. The applied test signals have a period of 2 hours in case of 

the determination of the heating transfer function H of eqn. (3.3). 
S> h 

With respect to the working point the applied test signals are of a low 

frequency, and the distinction between test signals and the quasi-static 

signal components is rather abrupt. This means that the filtering techniques 

that are applied are critical. 

When the working point is calculated, a-priori known values of the normalized 

k-value of the heating system k are used. The values of k, are of crucial 

importance, since the accuracy of other thermal parameters (see Chapter 3) 

relies on the accuracy of k . Therefore, in Chapter 3, k, was estimated from 

a dynamical experiment (fig. 3.18) and checked against steady-state results 

(eqns. 3.35 and 3.31). Also k, has been compared with data from literature 

(eqn. 3.38). This leads to values of the normalized roof k-value k that are 

higher than could be explained. However, when m section 7.2 values of k 

are calculated based on a-priori known values of k, which follow from the 
h,ss 

same measurements as in Chapter 3, much lower values of k result that do 

agree with results from literature (table 7.3). This stresses the point that 

using the same simple thermal model, the values of the (thermal) parameters 

found in the dynamic case and in the steady-state (quasi-static) case do not 

necessarily possess the same values. 

experiment 

820301: 

820330: 

820330: 

19.00 - 0302: 

19.00 - 0331: 

08.00 - 0330: 

07.00 

07.00 

16.00 

* 
k 

r, ss 

9.9 

9.8 

7.7 

* 
k 

r 

29.7 

28.3 

21.8 

remarks 

table 7.2/table 3.6 with k£=0.4 

table 7.2/table 3.8 

comp.no.1/table 3.10 with k =0.3 

Table 7.3 Comparison of results for steady-state (quasi-static) and 

dynamical models. 
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8 Optimal control of plant growth 

8.1 THE HIERARCHICAL SYSTEM DESCRIPTION 

Plant growth was described as a hierarchical system in Chapter 2 (fig. 2.1). 

In this description three levels are distinguished. The use of these levels 

will be motived in this section. 

Plant growth can be considered as a complex system. In protected cultivation, 

the output variables of this system are usually related to the economical 

output at the time of harvesting of the crop; with variables likes yield, 

quality, earliness. The input variables are all the factors that attribute to 

growth, like planting material, application of fertilizers, pest control, 

nursing methods, labour, climate (inside and outside the greenhouse), green

house structure. Plant growth is a development in time, which means that 

especially the time course of the input and output variables is of interest. 

In a very complex system, it is useful to reduce the complexity by focusing 

on certain relations. A common approach is to isolate families of input 

variables. Relevant to this thesis are the set of input variables associated 

with the greenhouse climate and structure; in general the environment of the 

crop in terms of environmental physios. After this first restriction, still 

a very complex system remains, relating environmental physics inside a green

house with the ultimate output variables at the time of harvesting. A next 

step can be made by realizing that the output variables at the time of 

harvesting are the resultant of the system over a period of time (the whole 

growing period) and therefore associated with an integral action. These 

integral variables represent the final outcome of the processes described by 

the system. Consequently their relation to time differs from that of the 

input variables. Therefore, a second restriction can be made in that the 

integral output variables are distinguished from output variables that are 

time-varying (although the time units that are used may be up to weeks). 

After these preliminary restrictions the plant growth system itself is 
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considered. When the eventual purpose of the control actions is to obtain 

"optimal plant growth" in terms of considered input and (integral) output 

variables, a hierarchical system description can be useful. Here the idea is 

to break the complex system down into subsystems. Preferably the input/output 

variables of the subsystems are formulated such that the output of one sub

system can be considered as the input of another subsystem. The subsystems 

are arranged in a hierarchy where the lower level generates the inputs of the 

higher level. Control of the system is formulated such that the higher level 

operates on the controls of the lower level. 

When optimality is pursued, this is obtained by optimizing the higher 

levels in terms of output variables of the lower levels, and to optimize each 

of the levels within these limits set by the higher levels. This approach 

facilitates to reduce the complexity of the optimization, although it might 

be less optimal then optimizing the whole system. 

The hierarchical system description presumes that subsystems can be formula

ted meaningfully, that the inputs and the outputs of the subsystems are 

measurable and that the feedback from the higher to the lower levels (other 

than via control on purpose) can be neglected. The first two assumtions are 

obvious, the last one can be used as a criterion, requiring the absence of 

interaction. In reality, however, some (weak) interaction is always present. 

Because the interaction criterion alone does not reduce the complexity of the 

system sufficiently, another criterion is formulated. It is assumed that a 

distinction can be made on the relevant time scale of the process that is 

described. 

As for the plant growth system, on the basis of weak interaction the climate 

subsystem can be isolated from the plant. This subsystem constitutes the 

first level of the hierarchical system. The output of this climate subsystem 

is in principle measurable, and its input is (partially) controllable, so 

that it forms a sound basis for future optimization. 

Regarding the plant, a distinction can be made using the time scale cri

terion. Plant processes that operate on a short time scale and processes 

which operate on a long time scale can be distinguished. What is done in the 

hierarchical system of fig. 2.1 is to define a border at the diurnal course 

of the plant. Plant processes that fall within this time scale are situated 

on the second level; processes operating on a longer time scale are placed 
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on level three. The requirement of the absence of-interaction is not 

necessarily satisfied here and also with respect to the measurement of the 

input and output variables -and even to the identification of what the 

relevant variables are- some questions remain. 

With respect to the formulation of level two and three of the hierarchical 

system it is recalled that the purpose of the system is to facilitate optimal 

control of plant growth. Therefore it is tried to split the complex plant 

growth system into meaningful subsystems. From a scientific point of view 

this might seem unsatisfactory, because seemingly this approach obscures 

potential relations between the levels, and denies the idea that "everything 

is related to everything". This approach is justified because it is followed 

in order to reduce the complexity of the system, in relation with the purpose 

to control the growth of plants optimally via a distinct (hierarchical) 

strategy. 

The ideas on the hierarchical system description as outlined above, will be 

reflected on research on optimal control of plant growth as it is found in 

the literature. 

In section 2.4.2 it was pointed out that some knowledge on level two and 

level three processes is already incorporated in existing climate controllers 

in an implicit way. Here explicit strategies are discussed. 

In the strategies a distinction can be made between the knowledge that is 

used in optimal control procedures, and the approaches that are followed 

-although these two are related to each other. 

With respect to the available knowledge, on level two diurnal plant growth 

is considered and the plant responses (see section 2.1.3) fall into two 

classes of models: transpiration models and structural dry matter increase 

models. On level three the crop responses can be described by crop growth 

and development models. The three models differ in terms of input and output 

variables and can be formulated independendly. 

The models represent subsystems of the hierarchical system, and can be 

regarded as processes when input/output relations are considered. Some of the 

variables of the processes can be measured, using techniques that as a rule 

originate from plantphysiological research. 
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The (optimal) control strategy can operate on the second or on the third 

level of the hierarchical system. When on level two over-all plant response 

measurements are involved, we will say that the speaking plant approach 

is followed. When on level three the crop growth is considered, optimal crop 

growth is envisaged over the whole cropping period, with the objective to 

maximize the yield-earnings/running-costs ratio. 

In the literature several attempts are described where over-all plant 

responses or crop responses are related to space average climate control on 

level one. Some of the studies are based on phytotron experiments, others are 

carried out in greenhouses under experimental conditions. In the next 

section, models of plant and crop reactions -as they are used in control- are 

treated. Then, control strategies based on these models are described and 

their feasibility in the practice of growing is discussed. 

8.2 GROWTH MODELS FOR CONTROL 

Plant growth on the second level of the hierarchical system of fig. 2.1 can 

be described by two classes of subsystems, one using transpiration models and 

the other using structural dry matter increase models. Both subsystems 

represent plant physiological phenomena. 

Transpiration models deal with plant-water relations. The plant responses are 

described by causal relationships. In relation with control, a model of this 

type has been described by Hashimoto and co-workers (Hashimoto, Morimoto and 

Funada, 1981a, Hashimoto et al., 1981b). The model has stomatal aperture and 

leaf temperature as output variables (facilitating to determine CO2 uptake). 

Inputs are the crop canopy climate and water uptake by the roots. Inter-

variables are the water content of the stem and of the leaves. The parameters 

from the model describing the relations between these variables are estimated 

from experiments in phytotrons, where the input variables are varied in order 

to induce test signals into the system (Hashimoto et al., 1981b, Hashimoto, 

Morimoto and Funada, 1982a, b ) . A similar approach to describe causal 

relationships is suggested by Hopmans (1981), who relates temperature, 

transpiration rate and water potential in leaves. 

Structural dry matter increase models are concerned with photosynthesis, 

128 



respiration and translocation processes in plants. Takatsuji, Kaneko and 

Tsuruoka (1979) describe such a model as a basis of an optimal control 

method. Challa (1976) established a relation for cucumber plants, that was 

used in a blue-print approach for varying night temperatures (Van de Vooren, 

De Lint and Challa, 1978). 

Crop growth and development models are -in a control context- presented by 

Matsui and Eguchi (1976, 1977a, 1978). Also more elaborate crop growth models 

(De Wit et al., 1978) have been employed for control purposes (Soribe and 

Curry, 1973, Krug and Liebig, 1979). A problem with elaborate crop growth and 

development models is that they are not readily validated. 

The output variables of crop growth and development models are based on 

the time unit of these models which is one day. Of interest is the integrated 

result of these variables over the time span of the whole cropping period. 

In traditional horticultural research the growth and development is evaluated 

by describing the status of the crop (number of leaves, tross formation) in 

time. The main interest is focused on the integrated or integral result with 

integral variables like yield, quality, earliness which can be related with 

auction prices in order to assess the economical output. It is seen that 

these integral variables are not the same as the output variables of the crop 

growth and development process, although they are related. For this reason in 

the hierarchical system of fig. 2.1 an integral block relates crop growth and 

development and the yield (including all integral variables). In research, 

using explicit models the outlook on the final result can be adopted, where 

the interest is focused on one integral variable, or on a scalar function 

. which represents a weighted sum of all integral variables leading to 

production models. Challa and Van de Vooren (1980) have investigated the 

relation between earliness of a winter crop of cucumbers and the temperature 

regime. Seginer(1980) uses a scalar function for growth which is the 

derivative of a scalar function of integral variables. 

Comparing the three types of growth models, the transpiration models are seen 

to be based on causal relations, the described processes are reproducible and 

subsequently the parameters of the models can be estimated from test-signal 

experiments. This situation conforms to that of the greenhouse climate 

modeling as presented in this thesis. Conversely, crop growth and development 

models are based on empirical relations (Van Wijk, 1963), the processes are 
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not generally reproducible so that test-signals give no useful information. 

Structural dry matter increase models fall somewhat between these two 

extremes. By the way the three models are formulated (the methodology of the 

observed relations) and because of the variables that are relevant to the 

models, it is obvious that there is no unambiguous relation between the 

models. This means that it is -in principle- not possible to control 

explicitly one of the growth subsystems via another one. 

In practice, the result is that the control strategies are focused on one 

of the subsystems. However, the control actions operate via other subsystems 

(on the lower levels of the hierarchical system). This means that the other 

subsystems influence the effective control of the relevant subsystem. Because 

the other subsystems operate on another time scale, it seems possible to 

reduce their influence in an average sense. This (implicitly) leads to 

restrictions with respect to the time behaviour of the control signals. 

8.3 SPEAKING PLANT APPROACH 

Control of the greenhouse climate can be based partially on the measurement 

of plant processes associated with transpiration or structural dry matter 

increase. This is called the speaking plant approach, where the purpose is to 

create a "comfortable" environment for the plants. This is conceptually 

similar to the "comfort" criteria for air-conditioning in buildings. 

In the literature, the speaking plant approach has been formulated by several 

authors (albeit not under this name). It can be considered as a quantitative 

sequel on the research for control procedures of the greenhouse climate. As 

such this approach has been suggested in order to overcome the problem that 

"improved" climate control cannot be demonstrated to give higher yields in 

the traditional field trials (Germing, 1969a,b, Germing and Van Drenth, 

1971). In the "Green energy program" of the Japanese Ministry of Agriculture 

this approach is advocated in a strategy for saving heating costs (Agric. 

Res. Council, 1980). 

When the speaking plant approach is used in research, the relation can be 

established between extreme situations that may damage the plants in terms of 

the spatial average climate or the crop canopy climate. This knowledge, added 

to the already existing practical knowledge and experience with respect to 
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over-all plant behaviour, can be applied in controllers and in control proce

dures. The knowledge could also be used by incorporating an explicit strategy 

in the control algorithm e.g. using predictive control methods. In this way 

models of the plant response become important, because prediction assumes a 

correct knowledge of the actual plant status. 

Transpiration and structural dry matter increase models are based upon many 

fundamental processes, leaving a large number of variables to be measured. 

Because this is hardly practical, only a limited number is measured. 

Measurements can be made directly -which means that the sensors are 

attached to a single plant- or indirectly (for example C02 uptake indicating 

the rate of net-photosynthesis). The indirect measurements are usually 

tedious because other processes influence the measured variable (as is the 

case with C0„). 

The direct measurements have to be performed on living matter, which makes 

them rather cumbersome. Also the representativeness is questionable. In the 

first place the measurements are taken locally within the crop while a crop 

shows a significant variation between the individual plants. In the second 

place the sensors have to make contact with the plant. Research indicates 

that plants which are regularly stirred have lower yields compared with 

unstirred plants (Klapwijk, 1976, Mitchell et al., 1975). According to 

Mitchell et al. this raises questions on the representativeness when in 

routine measurements the sensors continuously make contact with the plant. 

The complexity of the problem has motivated research to control methods, 

where only one or two variables related to transpiration or structural dry 

matter increase are measured. By closing a control loop around the variables 

it is expected that at least some improvement could be obtained. This was 

done by e.g. Takakura et al. (1974) who determined photosynthesis by 

measuring C0„ uptake in a closed system. The same type of measurements has 

been described by Hand and Bowman (1969) and Hand (1973). Results on a tomato 

crop have been reported (Takakura, Ohara, Nakamura, 1978). 

Also the control of leaf temperature has received some attention 

(Mackroth, 1974) with the objective to control this variable instead of the 

greenhouse air temperature. Matsui and Eguchi (1977b) and Hashimoto (1980) 

studied the control of the leaf temperature via climate control in phytotrons. 

The last two studies are mainly concerned with the control of the transpira-
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tion processes. A discussion on the control of leaf temperature can be found 

in the book of Hanan et al. (1978). 

The results of the approach using a limited number of measurements have 

not been very decisive with respect to the eventual yield. In the few cases 

that an improvement could be demonstrated, the results could also be 

explained from phenomena like the occurance of CO. depletion or extreme 

humidities, which occurred by the crop that was grown according to the 

standard treatment. In a good "blue-print" climate regime, these extremities 

are also avoided, which means that the speaking plant approach in fact is not 

compared to a standard treatment. Without the plant measurements required for 

the speaking plant approach the same result could be obtained. The compari

sons should be carried out with "good" blue-prints, leaving an economical 

optimization problem to solve. 

An approach in which structural dry matter increase information is used is 

presented by Takatsuji, Kaneko and Tsuruoka (1979). Here the relevant 

variables are measured and controlled in growth chamber experiments. The 

obtained data are expected to lead to a model on which control of optimal 

plant growth can be based. 

Another approach is the application of detailed models. In the case of 

transpiration processes Hashimoto et al. (1981b) suggest the use of models as 

a basis for control. It is not obvious how in this case information has to be 

obtained in a practical application, but the studies suggest a form of pre

diction with models and on-line correction of the predicted variables. 

8.4 OPTIMAL CROP GROWTH 

Crop growth is associated with level three of the hierarchical system. The 

relevant time span is the whole cropping period, with one day as a unit. The 

relevant output variables are associated with the growth over one day (fresh 

weight, length, dry weight, leaf area). One is, however, interested in the 

final result of these variables integrated over the cropping period with 

integral variables like yield, earliness, quality. 

Matsui and Eguchi (1976, 1977a, 1978)(Eguchi and Matsui, 1977, 1978) use 

pattern recognition .techniques in order to determine fresh weight increase, 
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leaf growth and plant elongation. These measurements facilitate to evaluate 

crop growth on a daily basis. The measured variables are then led along 

trajectories (which are assumed to be known) in order to obtain an optimal 

result (Eguchi, personal communication). Since here growth chamber experi

ments are discussed, it is not clear if and how actual outside weather 

conditions fit into this approach. 

When the integral variables are of interest, in fact the economic result is 

considered. This opens a possibility to apply optimization procedures which 

are related to the economic results. Using a production model Krug and Liebig 

(1979) propose to calculate the economic result/running-cost ratio's for 

various crops, planting dates and auction prices under average weather 

conditions. Gal, Angel and Seginer (1981) 'present ä similar approach, but 

suggest to calculate a set of trajectories in order to be able to account for 

the actual weather conditions (over a longer period). Also, Seginer and 

Albright (1980) and Seginer (1980) use a production model in order to 

calculate the effect of early closing of thermal Screens in terms of pro

duction delay versus energy conservation. , 

Challa and Van de Vooren (1980) related, a production model (with earliness 

of a cucumber crop versus temperature regime) to rate of leaf formation. This 

enables to relate actual variables (on a time scale of a few hours) and 

actual energy consumption to earliness and economic output. An on-line 

optimization can be carried out. This was ..done' experimentally for a cucumber 
v • -

crop (Challa et al., 1980) yielding a small difference between the optimal 

and a standard treatment in terms of economical benefits.' 

8.5 DISCUSSION ..'"'. 

With respect to optimal control of plant growth, it is. obvious that the 

result are not encouraging when it comes to the , traditional horticultural 

criterea of economic output (in integral variables). This can be explained 

because improvement of the second level control- is not directly related to 

the final output. • * 

On the third level the production models have <to compete with existing 

knowledge and expertise from which the application is partly based on 

observations of the grower during the growing process. In production models 

these observations are not readily included* which Stresses the point that 
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the production models do not so much relate input variables to output 

variables, but originate from relating output to input by mathematical 

differentiation. Apart from their scientific merits, they are not seen to 

improve the economics of growing an individual crop by a grower under 

specific weather conditions. 

From the discussion on the various models it is seen that it is important to 

use the proper variables for the control of the individual subsystems. This 

means that the proper input variables have to be actuated, based on measure

ments of the proper output variables. For example, when envisaging the final 

result (integral variables: yield, earliness, quality), the related variables 

are the output of the crop growth process, namely fresh weight, lenght, dry 

weight, leaf area, and not temperature sums, radiation sums, or air humidity 

sums over one day -as is usually done. Using these latter crop canopy climate 

factors in integral form (of one day) assumes that their effects on dry 

matter increase (on a diurnal base) are mutually independent. This assumption 

might hold in an average sense, but it is surely not possible to base 

decisions for actual control actions (time basis of minutes) on these type of 

models. 

Considering the time scale on which the subsystems operate, it is seen that 

the transpiration process operates on a minute basis. Because it seems 

possible to measure the output variables of this process, it opens the 

feasibility to control the transpiration behaviour of the crop. However, in 

a greenhouse the disturbances (solar radiation) can be much faster than the 

control system can respond, so that no tight control can be achieved. Also, 

the desired state of the output variables of the transpiration process is not 

sufficiently known so that only the avoidanae of stress situations can be the 

strategy. 

The time scale of the structural dry matter increase model is in the order 

of hours. The time response of the control system can effectively regulate 

these processes, so that a tight control can be achieved. Measurement of the 

process output variables is not so well defined, but for example C0„ uptake 

can be measured. Combined with a model, the output variables could be 

estimated and used in the control loop. Because also the observations of the 

grower are based on a longer time scale than hours -which explains the 

134 



application of control procedures in GCFC- improvements in this field are 

potentially obtainable. 

In the discussion above, the merits of the optimal control of each of the 

subsystems have been reflected. In the hierarchical system description in 

section 8.1 it was stated that optimal control of each level leads to an 

over-all optimal behaviour. Summarizing the potentials with respect to the 

subsystems that are used in the hierarchical system description leads to the 

following points of view. With respect to the second level, transpiration is 

not easily controllable because of the relevant time constants, but is other

wise directly related to the first level (the climate), and the variables are 

relatively easily measurable. However, transpiration is not seen to lead to 

optimal behaviour of level two. Structural dry matter increase is more 

related to optimal results, is controllable in terms of dominant time 

constants, but the associated variables are not easily measured. On level 

three plant growth and development optimization has already been carried out 

in practice by the growers. Optimal procedures on this level have to compete 

with existing expertise and are for that reason not readily seen to 

accomplish very much. However, when other factors are considered, such as 

labour management in relation with crop development, some improvements might 

be achieved on level three. 
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9 Final discussion and suggestions 

In the introduction of Chapter 1, the question has been posed whether control 

science would contribute solutions with respect to a better understanding of 

greenhouse control, new types of greenhouses and optimal control of plant 

growth. In this final chapter it is examined which answers are tentatively 

provided for these questions and suggestions are made for future research. 

Generally speaking, in this thesis two lines of thinking are followed. The 

first one is a heuristic engineer's approach with a high esteem of the 

achievements obtained in horticultural practice. Since in practice control 

procedures are followed by the grower, the emphasis is laid on improving 

these control procedures by improving the effectiveness of GCFC methods 

(GCFC = greenhouse climate feedforward/feedback control). 

The second line of thinking is a system approach, where the question is 

how to incorporate more (scientific) knowledge in climate control. Here the 

concept of the hierarchical system is introduced, where the first level (the 

greenhouse climate) is investigated in more detail. This results in a novel 

approach to greenhouse climate modeling (employing high-frequency and low-

frequency models). 

The two lines of thinking do not naturally exclude each other, but 

indicate the target-groups for which the results might be of interest. The 

engineer's approach and related results may appeal to the grower, traditional 

horticulture and greenhouse computer manufacturers. The system approach is 

concerned with more fundamental issues and is related to plant physiology and 

environmental physics. 

Models of the greenhouse climate constitute the basis of both lines of 

thinking. For control, models that are formulated in terms of incremental 

variables are of interest. In this thesis a basis is laid for the formulation 

of such models in terms of the spatial average climate (Chapter 3). This is 

done by demonstrating how these models, which are formulated in a black-box 

fashion, are estimated from experimental data. The models are established for 

sensible heat fluxes only. An important contribution of this thesis is that 
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the black-box models are reformulated in terms of thermal parameters (heating-

load coefficients) for a simple thermal model. By this way of modeling the 

behaviour of the greenhouse climate dynamics can be predicted from heating-

load coefficients which are widely available. This opens a wide range of 

applications. Using simple thermal models in design, control procedures as 

well as control methods can be improved. Simulation of the proposed control 

algorithms could assess the relative merits. In the greenhouse computer 

industry, by this approach the reliability of GCFC can be significantly im

proved. 

A related result holds for new types of greenhouses which are in the 

drawing-table stage, but of which the heating-load characteristics are known. 

Also the lay-out of the heating and ventilation systems can be based on these 

thermal models. 

Because the models are quite simple, for simulation a low-cost personal 

computer will do the job, so that suggestion 1 is to develop software 

packages for greenhouse climate models and for control on a suitable personal 

computer. 

For the individual greenhouse, the parameter estimation method of the 

black-box models as presented in Chapter 3 can be applied in order to deter

mine the relevant characteristics of the GCFC dynamics as well as the heating 

system non-linearity. This facilitates the tuning of the controller algorithms 

of a newly installed greenhouse computer by employing analytical tools and/or 

off-line simulation. This might speed up the tuning of the greenhouse compu

ter controller settings considerably. 

The models of Chapter 3 can be improved by modeling the working point, as is 

suggested in Chapter 7. As a result, the dynamical (high frequency) models 

get a more realistic appearance which makes the actual values of the variables 

more easily interprétable. Another result is that, employing these improved 

models in individual greenhouses, the occurrence of e.g. heat-leaks can be 

determined. 

The models as described in this thesis are not complete. Air humidity is not 

modelled, which leads to suggestion 2: to establish models that include 

latent heat fluxes (air humidity). 

The ventilation phenomena in greenhouses are not well known, so that 

suggestion S is to investigate the relation between ventilation rate and 
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window aperture (also in the dynamical sense). This being clarified, 

opportunities emerge for humidity control. With more reliable sensors 

becoming available (than the aspirated psychrometers presently used) humidity 

-or a related variable, see section 2.3- can be controlled. In the control 

algorithm a trade-off can be made between the lowering of the humidity and 

its associated heat-loss. 

In the greenhouse, the heating system is not modelled in sufficient detail, 

so that suggestion 4 is to model the dynamical behaviour of the mixing valve 

in relation to the heating system temperature (section 3.3.1). 

With respect to the frequency dependency of the estimated parameters of the 

simple thermal model, some intriguing issues arise. The results in this 

thesis are obtained for a simple thermal model based on the assumption of a 

perfectly stirred tank which accounts for one energy storage element only. In 

more detailed physical climate models, more variables are employed -for 

example roof temperature, plant temperature, soil temperature- where each of 

the variables is related to an energy storage element. Frequency dependency 

can be anticipated when these energy storage elements are not modelled 

separately, but lumped, into one element - as is the case with the simple 

thermal model. However, does the simplified modeling employed in this thesis 

account for the observed frequency dependency, or is the frequency dependency 

also apparent in more detailed climate models? If this were true, this might 

explain the not very reliable results of the available greenhouse climate 

models found in the literature (Chapter 2). Suggestion 5 is to investigate 

this intriguing matter in detail. 

It is recalled that the climate models represent the spatial average climate. 

In Chapter 2 it has been suggested to use the crop canopy climate as family 

of climate factors. Suggestion 6 is to formulate models in terms of the crop 

canopy climate. This offers potential advantages. In terms of optimal control 

of plant growth, the crop canopy climate is more closely related to the over

all plant responses than the spatial average climate. Added to that, the 

concept of crop canopy climate might make it possible to simulate the green

house climate in phytotrons, thus making phytotronic results link with 

practice in greenhouses. This might facilitate research to extreme climate 

situations in a greenhouse. It also illustrates the need to improve the 

dynamics of the existing climate control in phytotrons. 
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Returning our attention to control, in Chapter 4 performance criteria are 

formulated for temperature control. The behaviour of controllers, as it most 

frequently occurs in practice is analyzed, leading to the terms overshoot, 

sag and undershoot. These terms can be used to evaluate controller perfor

mance, which is done in Chapter 4 in a comparison between various control 

algorithms. A new dog-lead algorithm is introduced and is seen to be of 

great practical interest. For greenhouses with upper and lower heating pipe 

networks a split-range control method was presented. Suggestion 7 is to 

investigate the characteristics and to evaluate the performance of split-

range control methods in more detail. 

Adaptive temperature control is presented in Chapters 5 and 6. The relevant 

theory is treated in Chapter 5. From the appearance of the presented gradient 

algorithms, resemblance to the well-known "least-squares" methods is claimed. 

This claim is done on purpose, since least-squares methods are known for 

their nice statistical properties. An algorithm that is based on gradient 

minimization, that is stable (according to Liapunov's method) and of which 

the statistical properties are well established, is naturally attractive for 

on-line parameter estimation and adaptive control. However, the claim of 

resemblance just by looking to the resulting algorithms is somewhat meagre, 

and is not likely to convince a sceptical reader. Therefore, suggestion 8 

is to establish more firmly the least-squares likeliness of the stable 

gradient methods. 

Employing a simple algorithm from the theory, in Chapter 6 an adaptive 

temperature control algorithm is presented. The problems associated with the 

design of the proposed adaptive PI control algorithm are outlined. The adap

tive algorithms are compared with their non-adaptive variants in a full-scale 

trial spanning 99 days of observation. It turns out that the adaptive 

algorithms do not lead to an improvement. However, realizing the deterministic 

nature of the dynamical models, adaptation can be employed in the form of 

gain-scheduling. Suggestion 9 is to investigate gain-scheduling schemes e.g. 

for the non-linear heating system gain or in order to reduce the effect of 

measurable disturbances like radiation. The problem here is to find an easy 

way to separate on-line, high and low frequency components of the disturbance 

signals. Suggestion 10 is to develop a self-tuning procedure in which the 

GCFC dynamics are estimated by an on-line estimation procedure. 
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Using the hierarchical system description, optimal control of plant growth is 

discussed in Chapter 8. The central theme here is that control is an order 

more complicated than describing or explaining empirical or causal relations. 

As this chapter is speculative by nature, many suggestions could be for

mulated. Two will be mentioned here. Suggestion 11 is to establish a clear 

distinction between optimal control and the blue-print approach. This is seen 

to be of importance in order to clarify whether computer systems are essen

tial to carry out the control. Suggestion 12 is to formulate optimality in 

terms other than growth and its associated direct (energy) costs; for example 

by introducing labour management aspects in order to constitute a sub-optimum. 

A final word should be said on the issue whether (in the future) advanced 

computer systems could "replace" the grower. The ideas outlined in Chapter 8 

on optimal control of plant growth, indicate that the scientific knowledge is 

not sufficiently coherent to be able to regulate plant growth in a closed 

loop. At best one can hope that more information can be made available to the 

grower so that he can make better motivated decisions. It is recalled that a 

computer is basically an information processing device, and easy achievements 

can only be obtained for processes that are characterized by streams of 

readily available information. Because of this in Chapter 8 labour management 

has been suggested as a potential area for optimization. 

It can be concluded that the replacement of the grower by the computer, 

which from an ethical point of view is regarded to be undesirable, from a 

heuristic point of view is seen to be untractable. Both points of departure 

arrive at the same conclusion, indicating that ethical and heuristic thinking 

do not necessarily exclude each other and most surely agree on the statement 

that the availability of a computer system does not offer the researcher a 

short-cut from science to relevance. 
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Summary 

The material presented in this thesis can be grouped around four themes, 

system concepts, modeling, control and adaptive control. In this summary 

these themes will be treated separately. 

System concepts 

In Chapters 1 and 2 an overview of the problem formulation is presented. It is 

suggested that there is some ambiguity with respect to what exactly control 

is since in practical horticulture control procedures are used. This has 

motivated to introduce the term GCFC (greenhouse climate feedback/feedforward 

control) where control in the strict sense is meant. It is ascertained that 

-despite much research in the field of control procedures- in the field of 

GCFC little results have been reported in the literature. 

It is argued that climate control (or more strictly GCFC) in practice 

restricts itself to climate factors with respect to the greenhouse atmosphere 

(air temperature and humidity, CO2 contents). It is suggested to formulate 

GCFC in terms of the crop canopy climate in that notably the radiative part 

of the control actuators is considered as a controlled variable too. 

The existing control methods for greenhouse climates are described using the 

concept of a hierarchical system formulation. Here the problem of creating a 

beneficial environment for the plants is described as a system with three 

levels. On the first level GCFC is found, on level two plant growth on a 

diurnal basis, and on level three crop growth and development. It is argued 

that the control procedures as they are employed in the practice of horti

culture, can be seen as a combination of the levels one and two, whereas 

GCFC restricts itself to level one. It is suggested that the control proce

dures can be improved by solving the GCFC problem adequately and formulate 

the procedures as setpoint control of level one. 

Also, in Chapter 2 an overview of existing literature is presented, both 

on control in greenhouses and on models of the greenhouse climate. 
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Another conceptual part is presented in Chapter 8, where the optimal control 

of plant growth is treated. Here the idea of the hierarchical system is 

employed to describe the optimal control problem. The system is broken down 

into less complex subsystems (levels in the hierarchical system) and each of 

the higher levels is optimized in terms of output variables of the lower 

levels. This assumes that the variables that are used in the optimization 

correspond with the relevant level. 

These ideas are reflected against the literature. It is ascertained that 

measurements on plants can be performed (the speaking plant approach) and 

that potentially plant transpiration can be regulated -at least in an expe

rimental situation. However, the measurements have to be made in relation 

with specific knowledge of the plant processes under control. The measurement 

of single variables like leaf temperature, évapotranspiration etc. alone is 

not seen to lead to significant results. 

Although the material in Chapter 8 is speculative by nature, the basic 

ideas are well established. Scientific knowledge alone does not imply more 

opportunities of (optimal) control, and for optimal control the approach 

should be aimed at reducing the complexity of the problem by focusing on 

variables (and relations between variables) that comply with the level of the 

hierarchical system. 

Modeling 

The second theme of this thesis concerns the modeling. In Chapter 3 a new 

approach to the modeling of dynamical greenhouse climate processes is 

presented. The approach incorporates a sequence of key features which differ 

from the usual one. 

The first feature is that the greenhouse climate process -in our case 

restricted to the temperature- and the actuator processes (mixing valve 

process and ventilation window process) are described separately. For the 

mixing valve process that regulates the temperature of the heating pipe net

work, this is quite natural since the output of the mixing valve process (the 

heating pipe temperature) can be measured. For the ventilation windows 

process this is less natural, because the output of this process is the air 

change rate, which is not directly measurable. However, by the proposed way 

of description the main non-linearities are removed from the climate process. 

The following steps follow logically when dynamical systems are of 

142 



interest: the climate (temperature) process is formulated in terms of 

incremental variables and a working point is defined. Essential in green

houses is that the working point is slowly time-varying. By supplying 

(relatively) high frequency signals as inputs of the system, the low fre

quency variations of the working point can be rejected using filter tech

niques. Then parameter estimation is carried out in the time domain, using 

optimization techniques in order to determine the parameters of a simple 

model. 

In this thesis, for the filtering of the signals frequency domain techniques 

have been used, but filtering in the time domain (with finite impulse 

response filters) could be used as well. For the test signal, a block signal 

was applied, because some frequency dependency of the parameters was 

anticipated. This test signal performs well for the mixing valve as actuator 

of the process, but for the ventilation windows a test signal spanning a wider 

frequency range must be used. 

Up to this point, the traditional goal of control engineering is satisfied, 

since the process is sufficiently described. However, from the results some 

dependencies on physical phenomena could be guessed (section 3.4.5). There

fore it was tried to interpret the results in terms of physical parameters. 

Because a detailed physical model does not comply with the simple dynamical 

model, an approach was followed using heating-load coefficients (k-values), 

where the heating-load coefficients enter as the parameters into the simple 

thermal model. 

To carry out the interpretation (section 3.4.6), at least one heating-load 

parameter has to be known. For this, the parameter describing the heat flow 

from the heating pipe network into the greenhouse is used. This parameter was 

determined from one type of experiment, and was found to be non-linear. 

Because the parameter estimation of the dynamical models was carried out on 

various temperature levels, the non-linearity of the heating system could be 

checked and was found to comply in both types of experiments. 

From the parameter of the heating system, the other parameters could be 

calculated. The values that are found are consistent, as they are confirmed 

in several different experiments under different outside weather conditions. 

The value of the heating system parameter was found to agree with values from 

literature. However, the values found from parameter estimation differ roughly 
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a factor two from the corresponding values found in literature. 

This latter result could be caused by a defective value of the heating system 

parameter. Therefore, in Chapter 7 a steady-state analysis is carried out to 

determine the parameters, where again the heating system parameter is assumed 

to be known. This time the parameters agree with results found in the litera

ture, so that it may be concluded that the parameters of the dynamical 

(control) models and the static heating-load models differ, and that the 

first ones are frequency dependent. 

For a few cases in Chapter 7 it is also demonstrated, that it is possible to 

model the slowly time-varying working point, using a quasi-static model. The 

absence of a long-wave radiation term from the sky in the model can be seen 

as an omission here. It was suggested that at daytime a quasi-static model 

should be employed, and that at nighttime a (more simple) steady-state 

(static) model can be used. When the responses of the working point are 

combined with the responses of the dynamical model, the "real" climate 

responses can be calculated so that a model of the greenhouse climate is 

obtained. This model is quite accurate in predicting the momentaneous 

behaviour of the greenhouse climate process. 

ControI 

The control of greenhouse climates in terms of GCFC is discussed in Chapter 4. 

Here the attention is focused on temperature control. 

By analyzing the behaviour of the control loop, performance criteria are 

formulated, where the attention is focused on the behaviour of the controller 

when saturations occur caused by the influences of the outside weather 

conditions. In this respect the control differs from the usual ones. This 

leads to the formulation of the performance of the GCFC control in terms of 

overshoot, sag, and undershoot. 

The performance of a conventional type PI controller is compared with a new 

dog-lead PI algorithm -which is easily implemented in a computer- in terms of 

the performance criteria. It is seen that the dog-lead algorithm is by far 

superior in performance with respect to undershoot, better with respect to 

sag, and similar with respect to overshoot. Since undershoot is the most 
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severe phenomena with respect to poor performance, it is suggested that the 

dog-lead algorithm is of great practical interest. 

Also a split-range algorithm is described, which can be used in green

houses with an upper and a lower heating pipe network. 

Adaptive control 

An adaptive control method of GCFC of the greenhouse temperature is presented 

in Chapter 6, and the relevant theory is treated in Chapter 5. 

The theory is concerned with a novel approach to the estimation of para

meters of a dynamical process. The algorithm is based on stability criteria 

and is formulated as a gradient optimization. From the appearance of the 

resulting algorithm in the discrete time domain, resemblance to the well 

known least-squares method is claimed. In the continuous time domain similar 

algorithms are presented. 

Adaptive control is presented in Chapter 6. After an outline of the problems 

associated with the design, results are given of a field test that concludes 

several years experience with the adaptive method. It is claimed that for the 

comparison made in the field test, the "best" tuned algorithms were compared, 

so that within the design criteria no further improvement can be obtained. 

By comparing the adaptive algorithms with the non-adaptive variants it was 

clearly demonstrated that the adaptation does not bring significant improve

ment when the behaviour over a longer period of time is evaluated. In case 

of the adaptive dog-lead method the results even deteriorate by using 

adaptation. It was suggested that this is mainly caused by the saturated 

behaviour of the controller. This not very encouraging result can be seen as 

an illustration that adaptation of a process does not come in the place of 

detailed knowledge of that process. 

Final discussion 

In Chapter 9 a final discussion is presented and suggestions are made for 

future research. 
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Samenvatting 

De onderwerpen die in dit proefschrift aan de orde komen, kunnen in vier 

categorieën worden ingedeeld: systeembegrippen, modelvorming, klimaatrege

ling en adaptieve klimaatregeling. In deze samenvatting zal elk van de 

categorieën afzonderlijk worden behandeld. 

Sys teenbegrippen 

In de hoofdstukken 1 en 2 wordt een overzicht gegeven van de probleemstelling. 

Gesteld wordt dat enige onduidelijkheid bestaat over wat nu precies "regelen" 

is, omdat in de tuinbouw meestal regelprocedures worden toegepast. Dit geeft 

aanleiding om de term GCFC (greenhouse climate feedback/feedforward control) 

te introduceren, waarmee klimaatregeling wordt onderscheiden van het meer 

algemene begrip klimaatbeheersing. Ondanks veel onderzoek op het gebied van 

regelprocedures, valt te constateren dat op het gebied van kasklimaatrege-

ling (GCFC) zelf slechts weinig resultaten in de literatuur bekend zijn. 

Kasklimaatregeling (GCFC) beperkt zich in de praktijk tot klimaatfactoren 

die verband houden met de kaslucht (luchttemperatuur, luchtvochtigheid, CO2 

gehalte). Voorgesteld wordt om kasklimaatregeling te beschrijven in termen 

van gewasklimaat, waarbij vooral het stralingsaandeel van de regelorganen als 

een geregelde variabele wordt beschouwd. 

In hoofdstuk 2 wordt de regeling van het kasklimaat beschreven als een 

hierarchisch systeem. Het probleem om een gunstige omgeving te scheppen voor 

de plant wordt beschreven als een systeem dat is opgebouwd uit drie niveau's. 

Op het eerste niveau vindt men de eigenlijke kasklimaatregeling (GCFC). Op 

het tweede niveau treft men de dagelijkse plantengroei aan en op niveau drie 

gewasgroei en ontwikkeling. Regelprocedures zoals die in de praktijk worden 

aangewend, kunnen worden gezien als een combinatie van de niveau's één en 

twee, terwijl kasklimaatregeling zich beperkt tot het eerste niveau. Er wordt 

voor gepleit de regelprocedures te verbeteren, door de kasklimaatregeling als 

probleem op zich adequaat op te lossen en om vervolgens de procedures te 

146 



formuleren als setpoint (gewenste waarde) sturingen van het eerste niveau. 

Daarnaast wordt in hoofdstuk 2 een overzicht gegeven van de bestaande 

literatuur, zowel voor de regeling en beheersing van het klimaat in kassen 

als voor modellen van het kasklimaat. 

Een volgend begripsmatig gedeelte is te vinden in hoofdstuk 8, waar de opti

male regeling van plantengroei wordt behandeld. Hier wordt de benadering van 

het hierarchische systeem gebruikt om het optimale regelprobleem te be

schrijven. Het totale systeem wordt opgedeeld in subsystemen van een geringe

re complexiteit (de niveau's van het hierarchische systeem) en elk van de 

niveau's wordt geoptimaliseerd. Verondersteld wordt hierbij dat de variabelen 

die gebruikt worden in de optimalisatie inderdaad bij het desbetreffende 

niveau gedefinieerd kunnen worden. 

Deze gedachten worden getoetst aan bestaande literatuur. Gesteld kan wor

den dat het meten aan planten, dat voor zo'n optimalisatie nodig is, in 

principe uitvoerbaar is (de "sprekende plant" benadering). Op deze wijze kan 

de transpiratie van planten worden beheerst -tenminste in een experimentele 

omgeving. De metingen dienen echter gerelateerd te zijn aan specifieke kennis 

van de te beheersen processen in de plant. Het meten van enkelvoudige varia

belen als bladtemperatuur, evapotranspiratie etc. lijkt derhalve niet tot 

gunstige resultaten te leiden. 

Hoewel de stof in hoofdstuk 8 verkennend van aard is, zijn de grondge

dachten tamelijk uitgesproken. Wetenschappelijke kennis alleen impliceert 

niet de aanwezigheid van meer mogelijkheden voor (optimaal) regelen. Daar

naast dient bij optimaal regelen de aandacht gericht te zijn op het reduceren 

van de complexiteit van het probleem door de variabelen te beschouwen (en de 

relatie tussen variabelen) die overeenstemmen met het niveau van het hier

archische systeem waarop de optimalisatie wordt uitgevoerd. 

ModeIvorming 

Een tweede reeks onderwerpen in dit proefschrift, heeft betrekking op model

vorming. In hoofdstuk 3 wordt een nieuwe benadering van de modellering van 

het dynamische kasklimaat proces beschreven. Deze nieuwe benadering bezit een 

aantal kenmerkende eigenschappen waarmee hij zich onderscheidt van het alge

meen gangbare. 

Het eerste kenmerk is dat het kasklimaat proces -in ons geval beperkt tot 
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een proces met één uitgang, de luchttemperatuur- en de processen die direkt 

te maken hebben met de regelorganen (mengklep en luchtramen) afzonderlijk 

worden beschreven. Voor de mengklep, die de temperatuur van de verwarmings-

buizen reguleert, is dit nogal vanzelfsprekend omdat de uitgang van het meng-

proces (de temperatuur van de verwarmingsbuizen) eenvoudig kan worden gemeten. 

Voor de luchtramen is dit minder vanzelfsprekend, omdat deze ingrijpen op het 

ventilatievoud -dat nu eenmaal niet direkt te meten is. Met de voorgestelde 

wijze van beschrijven is het echter mogelijk de belangrijkste niet-lineari-

teiten van het klimaat proces te isoleren. 

De volgende kenmerken zijn een logisch uitvloeisel van het formuleren van 

dynamische systemen. Het klimaat (temperatuur) proces wordt beschreven in 

termen van incrementele variabelen en een werkpunt wordt gedefinieerd. In een 

kas zal het werkpunt slechts langzaam in de tijd variëren. Door (relatief) 

hoogfrequente signalen aan de ingangen van het klimaat proces toe te voeren, 

kunnen de laagfrequente variaties van het werkpunt geëlimineerd worden door 

toepassing van filter technieken. Vervolgens wordt in het tijddomein een 

'parameter schatting uitgevoerd, waarbij optimaliseringstechnieken worden ge

bruikt om de parameters van een eenvoudig model te bepalen. 

Voor het filteren worden in dit proefschrift technieken in het frequentie 

domein aangewend, maar evengoed kunnen technieken in het tijddomein worden 

toegepast (met name filters met een eindige impulsresponsie). Als testsignaal 

is een blokvormig signaal gebruikt omdat het vermoeden bestond dat de para

meters enigszins frequentie afhankelijk zouden zijn. Dit testsignaal voldoet 

goed wanneer de mengklep als procesingang fungeert maar bij de luchtramen 

dient een testsignaal met een groter frequentiebereik te worden gebruikt. 

Op dit punt is de traditionele doelstelling van de regeltechniek gerealiseerd, 

immers het proces ligt nu voldoende vast. Uit de verkregen resultaten kon 

echter afhankelijkheid van fysische verschijnselen worden verondersteld 

(§ 3.4.5). Als gevolg hiervan is geprobeerd om de resultaten te interpreteren 

in termen van parameters die op de fysica gebaseerd zijn. Omdat een gedetail

leerd fysisch model niet overeenstemt met de aanpak die leidt tot een een

voudig dynamisch (regeltechnisch) model, is een benadering gevolgd waarin 

voor de modellering warmtetechnische kentallen (k-waarden) zijn gebruikt. 

Deze warmtetechnische kentallen vormen de parameters in het dynamische model. 

Om de interpretatie uit te kunnen voeren (§ 3.4.6) moet tenminste één 
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warmtetechnisch kental bekend zijn. Hiervoor is het kental gebruikt dat het 

warmtetransport van de verwarmingsbuizen naar de kas representeert. Het ken

tal' is verkregen uit één type experiment. Het bleek niet-lineair te zijn. 

Omdat de parameter schatting van de dynamische modellen is uitgevoerd op 

verschillende temperatuur niveau's, is het mogelijk ook op deze wijze de 

niet-lineariteit van het verwarmingssysteem na te gaan. Het blijkt dat beide 

typen van experimenten t.a.v. de niet-lineariteit hetzelfde resultaat op

leveren. 

Met het warmtetechnische kental van het verwarmingssysteem kunnen de ande

re kentallen worden berekend. De uitkomsten zijn betrouwbaar, daar ze meerde

re malen werden verkregen voor verschillende experimenten onder verschillende 

weersituaties. Ook stemt de waarde van het kental van het verwarmingssysteem 

overeen met literatuurgegevens. De waarden die resulteerden uit de parameter 

schatting verschillen ruwweg een factor twee van overeenkomstige waarden uit 

de literatuur. 

Dit laatste resultaat zou het gevolg kunnen zijn van een foutieve waarde van 

het warmtetechnische kental van het verwarmingssysteem. Daarom is in hoofd

stuk 7 een evenwichtsanalyse uitgevoerd om opnieuw de kentallen te bepalen, 

waarbij het kental van het verwarmingssysteem wederom bekend is veronder

steld. Dit maal komen de berekende kentallen wèl overeen met gegevens uit de 

literatuur, zodat verondersteld kan worden dat overeenkomstige parameters 

van de dynamische en van de statische modellen verschillen en dat ze frequen

tie-afhankelijk zijn. 

Voor een paar gevallen wordt in hoofdstuk 7 aangetoond dat het mogelijk is 

het langzaam tijd-variërende werkpunt te beschrijven met een quasi-statisch 

model. Uiteraard is het ook mogelijk het werkpunt te beschrijven met een 

volledig statisch model. Voorgesteld wordt om voor de dag een quasi-statisch 

model te gebruiken en voor de nacht een (eenvoudiger) statisch (evenwichts) 

model. Wanneer de responsies van het werkpunt model gecombineerd worden met 

responsies van het dynamische model, kunnen "echte" klimaat responsies worden 

berekend. Hiermee wordt een kasklimaat model verkregen dat vrij nauwkeurig 

het momentane gedrag van het klimaat in de kas (de luchttemperatuur) voor

spelt. 
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Klimaatregeling 

In hoofdstuk 4 wordt de regeling van het kasklimaat in termen van GCFC be

sproken. De aandacht is hier gericht op temperatuurregeling. 

Door het gedrag van de regeling nader te analyseren worden criteria gefor

muleerd om de prestaties te bepalen. Hierbij is het vooral van belang hoe de 

regelaar zich gedraagt wanneer door de invloed van de weersomstandigheden, 

verzadigingen optreden in de regellus. Hiermee wijkt de klimaatregeling af 

van wat normaal in regelingen gebruikelijk is. Dit leidt tot het formuleren 

van criteria ten aanzien van de prestaties van de kasklimaatregeling in ter

men van doorschot naar boven, doorzakking en doorschot naar beneden. 

De prestaties van een conventionele PI regelaar worden vergeleken met die van 

een nieuw honderiem PI algoritme -dat gemakkelijk in een computer geïmplemen

teerd kan worden. Vastgesteld wordt dat het honderiem algoritme aanmerkelijk 

beter werkt bij het optreden van doorschot naar beneden (in feite wordt dat 

tot nul gereduceerd), beter werkt ten aanzien van doorzakking en vergelijk

baar is bij doorschot naar boven. Aangezien doorschot naar beneden de ern

stigste tekortkoming van de regeling is, kan gesteld worden dat het honderiem 

algoritme van groot praktisch nut is. 

Tenslotte wordt in § 4.4 een gescheiden bereik algoritme beschreven dat 

kan worden gebruikt in kassen met een boven- en een ondernet. 

Adaptieve klimaatregeling 

Een adaptieve methode voor de regeling van de kasluchttemperatuur wordt be

schreven in hoofdstuk 6, terwijl de bijbehorende theorie is gegeven in hoofd

stuk 5. 

De theorie behelst een nieuwe aanpak van de schatting van de parameters 

van een dynamisch proces. Het schattings algoritme is gebaseerd op stabili-

teits criteria (de methode van Liapunov) en wordt geformuleerd als een 

gradient optimalisatie. Afgaande op de vorm van het schattings algoritme in 

het discrete tijddomein wordt overeenkomst gesignaleerd met de bekende 

"kleinste kwadraten" methode. In het continue tijddomein wordt een overeen

komstig algoritme afgeleid. 

De adaptieve klimaatregelingen worden beschreven in hoofdstuk 6. Na een 
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exposé van de problemen die met het ontwerp samenhangen, worden de resultaten 

gegeven van een proefneming die een periode van meerdere jaren ervaring met 

een adaptieve kasklimaatregel ing afsluit. Voor de vergelijking die in de 

proefneming wordt gemaakt, geldt dat de "best" ingestelde algoritmen zijn 

vergeleken. Hierdoor kunnen binnen de ontwerpeisen geen verdere verbeteringen 

worden verkregen. 

Door adaptieve algoritmen te vergelijken met hun niet-adaptieve varianten, 

wordt duidelijk aangetoond dat adaptatie géén significante verbeteringen 

geeft als de werking over een langere tijdsperiode wordt beschouwd. Bij de 

honderiem methode verslechteren de prestaties zelfs door het toepassen van 

adaptatie. Er wordt vastgesteld dat de slechte resultaten vooral veroorzaakt 

worden door de verzadigingen die in de regellus optreden. 

De weinig bemoedigende resultaten kunnen worden gezien als illustratie van 

het feit dat adaptatie van een proces niet de plaats kan innemen van gede

tailleerde kennis over een proces. 

Slotbeschouwing 

In hoofdstuk 9 wordt een slotbeschouwing gehouden en worden suggesties gedaan 

voor toekomstig onderzoek. 
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