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STELLINGEN 

LAZs 

1. De synerese van wrongel kan op bevredigende wijze in model worden 

gebracht. Uit dit model blijkt dat de endogene syneresedruk ongeveer 

1 Pa is. 

Dit proefschrift. 

2. De vlokking van paracaseïnemicellen en de permeabiliteit, synerese(druk) 

en reologische eigenschappen van wrongel hangen alle nauw samen. 

Dit proefschrift. 

3. Indien uitvlokking van colloïdale deeltjes ongestoord (dus bij afwezigheid 

van stroming en sedimentatie) plaatsvindt, resulteert deze in de vorming 

van één netwerk door de gehele vloeistof. 

4. De hypothese van Van den Tempel dat de inhomogeniteit van een netwerk 

van uitgevlokte colloïdale deeltjes wordt bepaald door de tijd die nog 

niet geaggregeerde deeltjes hebben om naar het centrum van grote 

aggregaten te diffunderen, is onjuist. 

M. v.d. Tempel, 1979. J. Colloid Interface Sei., 71:18-20. 

5. De belangwekkende proeven van Schmidt c.s. over de stabiliteit van 

kunstmatige caseïnemicellen van variabele samenstelling zouden met 

vrucht uitgebreid kunnen worden met stremproeven, teneinde het inzicht 

in het stremproces en de struktuur van caseïnemicellen te vergroten. 

6. Het model van Payens voor de stremming van melk is onjuist. Veel betere 

resultaten kunnen worden bereikt met een simulatiemodel waarbij de 

volgende informatie tevens in aanmerking wordt genomen: 

- de onderlinge positie van de K-caseïnemoleculen op het mi cel oppervlak 

- de splitsing van deze moleculen in aselecte volgorde 

- de gevolgen van nog niet volledige splitsing voor de repulsie tussen 

mi cell en 

T.A.J. Payens, 1979. J. Dairy Res., 46:291-306. 

7. De opvatting van Beltman dat synerese door diffusie bepaald wordt, is in 

zijn algemeenheid onjuist. 

H. Beltman, 1975. Proefschrift, Wageningen. 



8. Het lactosegehalte van de (verdunde) wel geeft aanvankelijk geen juist 
beeld van het waseffekt van warm water dat aan de wei-wrongel :1s 
toegevoegd. 

8. Het subsidie dat in het kader van het scheppen van werkgelegenheid aan 
bedrijven In het Oosten en Noorden van het land wordt verleend, schept 
althans bij zulvelbedrijven geen extra werkgelegenheid. 

10. Enkele door het Zuivel-kwaliteitskontrolebureau gehanteerde methoden 
ter beoordeling van de kwaliteit van boter, te weten de bepaling van 
diacetylgehalte en de stevigheid, kunnen misleidende uitkomsten geven. 

11. Voedingswaarde-etikettering heeft voor de consument het meeste nut 
indien deze zeer globaal is en slechts die voedingsstoffen worden 
vermeld waarvan een niet onaanzienlijk deel van de consumenten te veel 
of te weinig gebruikt. Bij de opgegeven gehalten en energie-inhoud moet 
vermeld worden of deze relatief hoog of laag zijn. 

12. Wiskundige statistiek en simulatietechnieken kunnen uitstekend worden 
toegepast bij het bepalen van de speltaktiek in de rugbysport. 

13. Ingevolge de Wet Gelijke Behandeling dient bij een advertentie voor 
'kaasmeisjes' de toevoeging M/V te worden geplaatst. 

Proefschrift van H.J.M, van Dijk 

The syneresis of curd 

Wageningen, 6 oktober 1982 
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2 
or deformed (m ) 

LIST OF SYMBOLS AND ABBREVIATIONS 

a constant in Eq. 6.12 

a radius of a tube (m) 

b constant in Eq. 6.12 
2 

B\B, permeability (coefficient) (m ) 
B(0) permeability (coefficient) at the 

2 
moment of the first reading of h(,t) (m ) 

B permeability (coefficient) at the 

moment when the gel is pressurized 

or deformed 

Sn permeability of the curd slab at the 
2 start of syneresis (m ) 

a constant in trial functions for P(i); 
a - d ^y \ 0 3 / d £ 

d d iameter 
d volume-surface average diameter (m) 

dt tube diameter (m) 

DS -1 
jrr substantial time derivate operator (s ) 
D B(1 - e ) 3 P'/n (see Eq. 6.1) (s"1) 

2 -1 g acceleration due to gravity (m »s ) 
2 

G' storage modulus (N/m ) 
2 

G" loss modulus (N/m ) 
2 

GQ instantaneous shear modulus (N/m ) 

h difference between the levels of the 

unwetted curd and the adjacent whey 

(Chapter 3) (m) 

h height below surface of the gel (m) 

h. t;h(k,t) thickness of slice number k at time 

t (in the model) (m) 

h{t) level of the whey in the tube (Eq. 4.2) (m) 

H height of the slab (m) 

5 Q height of the slab at t = 0 (m) 

LH shrinkage of a slab (m) 



i\i, , volume of concentrated milk/volume 

of original milk; h^ t / h k Q 

k number of the slice in the slab (in 

the model) 

K' ;K dimensionless time variable (K' = ZK) 
L;L, , dimensionless thickness 

m number of slices in the slab (in the 

model) 

n number of experiments 

Pr protein concentration of the sample/ 

protein concentration of original 

milk 

PCM paracasein micelles 

P',Pk f syneresis pressure (Pa) 

PQ pressure of the curd at t = 0 (Pa) 

P endogenous pressure (Pa) 

P* pressure on the whey caused by weight 

of the matrix (Pa) 

P | Pg at the bottom of the slab 

Pt pressure difference between lower and 

upper surface of the gel in the tube 

(Eq. 4.1) (Pa) 

Q constant defined in equation 7.1 

depending onP(i) 

r (surface of tubes)/(surface of vat) 

Re Reynolds number 

str, liquid volume flux that flows from 

slice k into slice k - 1 (in the model) (m/s) 

S;5, dimensionless pressure P, ,/P« 

t time (s) 

t time at which the pressure difference 

was applied to the column (s) 

T temperature (°C) 

v local velocity of the whey in the 

x-direction (m/s) 

v local velocity of the liquid (whey) (m/s) 



v local velocity of the solid (matrix) (m/s) 

w u-coordinate (transformation distance 

coordinate) (m) 

WPN whey protein nitrogen 

x x-coordinate, distance from the 

interface of curd/whey (m) 

z s-coordinate (m) 

ß dimensionless permeability (3,, tJ^n) 
Y shear strain 

Y 0 maximum shear strain 

r dlogff/dlog* 

ô phase shift or phase angle between 

stress and strain (tg <5 = G"/G') 

6 average thickness of the strands (m) 

e porosity (void fraction) 

A difference 

n viscosity (Pa«s) 

p density (kg/m ) 

p, density of the whey (which is assumed 

to be independent of the time and 

position) (kg/m ) 
2 

a shear stress (N/m ) 
2 

an maximum stress (N/m ) J0 

V Laplace-operator 

GO angular frequency (rad*s ) 

Milk samples used: 

A milk A; reconstituted from 12 g skim 

milk powder per 100 g water, used for 

acid curd and for some experiments 

with rennet curd 

R milk R; 10.5 g skim milk powder per 

100 g water used for rennet curd 



1 INTRODUCTION 

Though cheese is made in an overwhelming variety of types, the 

technique of cheesemaking is in principle the same. Cheesemaking 

starts by curdling (clotting) the milk. As to the curdling method a 

division can be made between curdling with the aid of rennet and 

curdling without rennet but only by acidification. As most cheese is 

made by renneting we will mainly discuss this method. 

After renneting the curd (i.e. a gel) must be cut slowly and 

carefully into pieces. Now whey is expelled from the curd pieces; 

this is called syneresis. Syneresis of these curd pieces can occur 

without external manupulation, but is enhanced by stirring. Shrinkage 

can be further enhanced by more vigorous stirring, temperature rise 

or increase of acidity. Finally fairly solid curd particles are 

collected and drained. According to the type of cheese the following 

additional treatments can be performed: cheddaring, pressing, salting, 

ripening. 

Thus an important aspect of the technique of cheesemaking is the 

removal of the greater part of the whey which makes up the bulk of 

the milk. This process must be controlled well as the final water 

content is an essential property of the cheese. In industrial practice 

the control of this process is empirical. 

A question which is still not answered is how syneresis proceeds. 

On syneresis of curd much has been published, but most publications 

deal with the overall effect of some variables on syneresis or even 

on final moisture content (e.g. Walstra, 1979; v.d. Waarden, 1947; 

Cheeseman 1962; Stoll, 1966). The experiments can not easily be 

compared, mainly because the curd is cut and stirred in different 

ways and precisely these variables have a large effect. We have only 

little understanding of the process. Before we go into any detail we 

will first look at what happens during renneting. 

About 801 of the protein in the milk is found in the casein 

micelles which are globular particles with a volume surface average 

diameter of ~ 100 nm (Schmidt, Walstra & Buchheim, 1973). The enzymes 

in the rennet remove the protective hairy layer (Walstra, 1979) of 

the micelles. The resulting paracasein micelles (PCM) are unstable and 

flocculate. PCM assemble into growing aggregates. As calculations of 

1 



Sutherland (1967) predict and as observed by Milder, De Graaf & 

Walstra (1966) these aggregates have a very open structure, i.e. the 

volume fraction is about the same as the volume fraction of the 

original milk. Unless disturbance (e.g. by stirring or streaming) or 

appreciable sedimentation occurs, finally one large aggregate, (i.e. 

the entire matrix) is formed. The interstitial liquid is called whey. 

Electron micrographs of Knoop & Peters (1975) give a good picture of 

the matrix. The schematic drawing in Fig. 1.1. shows two strands. 

A hypothetical mechanism is proposed. After the gel is formed, 

the PCM surfaces that are not in contact with each other have still 

many more reactive sites. Possibly the whole surface is reactive. By 

Brownian motion or deformation these surfaces may locally come close 

together and stick, thus causing a (higher) stress in the strands 

(see Fig. 4.7.). In order to get enough freedom for movement it might 

be necessary that at some other place they first have to break. The 

resulting endogenous pressure causes syneresis. 

Another mechanism may be "fusing" of PCM, i.e. the contact area 

between any two PCM becomes larger. This is also visible in electron 

micrographs (Knoop & Peters, 1975). This is apparently a slow process. 

According to Darling (personal communication) an explanation for the 

latter phenomenon may be the rearrangement of colloidal calcium 

phosphate, which apparently keeps the subunits of individual (P)GM 

together. We presume this effect to be small, particularly at the 

beginning. 

If the pH is lowered the PCM shrink (Walstra & Delsing, un

published) thus causing syneresis. In our experiments the pH was kept 

Fig. 1.1 Schematic drawing of two strands of paracasein micelles. 



constant. 

The stresses occurring on the strands of the matrix cause a 

tendency to shrink or synerize. The matrix does not comply momentarily 

because of the viscous drag on the outflowing liquid, or in other 

words, the limited permeability of the matrix. This implies that the 

whey in the matrix is under pressure. The whey also can be put under 

pressure by deformation of the curd. We thus must distinguish the 

latter external pressure from the endogenous syneresis pressure. 

Syneresis is thus a function of the pressure and the resistance 

against flow through the matrix, expressed in the permeability. This 

flow and the resulting change in content of components should ideally 

be obtained from direct local measurements in the curd grains. This 

is practically impossible. In the absence of information from direct 

measurements of local properties and event, we must therefore rely 

on other sources, i.e. macroscopic experiments. 

Permeability coefficients (B) as defined in the equation of 

Darcy (see Section 4.1) can be obtained from measurements on homo

geneous pieces of curd which do not shrink during the experiments ; 

casein concentration and other properties can be varied. 

Syneresis pressure could not be measured in this way or any 

other. Evidence was found that this pressure is always very low (less 

than 10 Pa). 

A mathematical model can be postulated, and depending on the 

assumptions made, syneresis rate can be predicted for various con

ditions. Comparison on the calculated results with the results on 

actual syneresis experiments may show whether a model is realistic. As 

permeability and endogenous pressure both depend on place and time, 

calculations are rather complicated. We have restricted ourselves to 

syneresis in one direction, as the calculations become unwieldy for 

the three dimensional case. Moreover, unequivocal experiments are 

much easier to perform. 

Such an integrated theoretical and empirical approach can yield 

a better understanding of the process and the mechanism. Where approp

riate, the results of this study are compared with those found in the 

literature and with practical experience. 

Finally some experiments were carried out on acid milk gels, 



produced by adding acid to milk at low temperature and then slowly 

warming it. This enables us to test the model for a gel of rather 

different properties. 



2 MATERIALS AND METHODS 

2.1. SKIM MILK POWDER 

Skim milk powder was obtained by spray drying of one batch of 

low pasteurized skim milk. The dry matter content of this skim milk was 

9.131 (m/m) (according to FIL/IDF 21:1962 standard). The dry matter 

content of the powder was 96.11 (m/m) (according to FIL/IDF 26/1964 

standard). 

For the experiment 10.5 g powder per 100 g of démineralized 

water was used. This resulted in a milk indicated as milk R with the 

same dry matter content as the original milk. 

In the early stages of this study we dissolved the skim milk 

powder adding small quantities during about 1 hour at about 45 C; when 

all the powder was dissolved the reconstituted skim milk was kept for 

about 1 hour at 30 to 45 C. In the course of the study it appeared that 

the pretreatment of the reconstituted skim milk somewhat affected its 

renneting and curd properties (see Table 7.1). Therefore we soon 

standardized our pretreatment. After all the skim milk powder was 

dissolved, we kept the milk for 1 hour at 45 °C. Then the milk was 

cooled to the desired temperature. However, the time until the milk 

was used varied between about 0.5 and 5 hours. This may, to a certain 

extent, explain the spread in some results, as it takes about 24 h at 

the temperatures used until equilibrium is reached, especially in the 

distribution of Calcium among the micelles and the serum (Snoeren, 

personal communication). 

Undenaturated whey protein nitrogen (W.P.N.) in the original 

milk and the powder were determined (American Dry Milk Institute, 

1971), Results were 6.7 mg W.P.N./g powder for the original milk and 

6.3 mg W.P.N./g powder for the reconstituted skim milk. 

For the experiments with acid gels, a different skim milk powder 

was used. For the reconstitution 12 g powder per 100 g water was 

used giving milk (indicated as milk A) with a higher total solids 

content (i.e. 10.21) than the original milk. 



2.2 RENNET 

Commercial calf rennet (Coöp. Stremselfabriek Leeuwarden), 

strength 10 000 units was used and diluted 1:10 before use. 80% of 

the activity in the rennet originated from chymosin. 

2.3 WHEY 

Whey was prepared by renneting fresh skimmilk in a centrifuge 

tube at 30 °C and subsequent by separating the curd from the whey by 

centrifugingat 4000 g for 15-20 min. 
o 

The values for the viscosity at 30 C were for the rennet and 

acid wheys 1.020 and 1.025 mPa-s, respectively. 

2.4 THIMEROSAL 

25-100 ppm Thimerosal, also named thiomersal (CJL-.Hg.S.CJI.COO 

Na), was used as a preservative in milk and whey if the experiments 

lasted over 3 hours. It was checked whether the preservative affected 

the renneting or syneresis process in our experiments; no significant 

effects were found. 

2.5 CONCENTRATED MILK 

Concentrated milk was obtained by ultrafiltering reconstituted 

skim milk at room temperature. Molecular cut-off of the membrane was 

about 10 000 Daltons. A twofold concentration was reached. 

2.6 TREATMENT OF THE GEL AND STARTING SYNERESIS 

Rennet and acid gels stick to the surfaces of, for instance, 

glass and stainless steel with a low nickel content (Arentzen,1966; 

Hostëttler, 1954). Hence, at these surfaces no syneresis will occur. 

This enables us to perform fairly simple experiments. However, the 

gels should be handled with care as they are easily disrupted from 

the wall surface before they are firm enough. 



Fig. 2.1 Interface of curd/air with large contact angle of the whey. 

The syneresis was started by wetting the upper, free surface 

of the gel. Until this moment no syneresis occurred. An explanation 

may be that the surface of the casein network that is in contact with 

air during renneting is not easily wettable; in other words, the 

contact angle, as measured in the whey would be > 90 (see Fig. 2.1). 

The capillary pressure trying to force the whey inwards would then 

easily exceed the syneresis pressure. Of course, this does not hold 

for a freshly cut surface. A disadvantage of this method is a possible 

difference of the upper, free surface of the curd in contact with air 

and a surface formed by cutting, causing a different syneresis. 

However, the layer in which the difference resides must be extremely 

thin. Measuring syneresis at a freshly cut surface was expected to 

cause considerable practical problems in apparatus design and repro

ducibility. Care was taken that the moisture content of the air above 

the surface of the gel remained high until it was wetted. The wetting 

could not be done by simply pouring whey over the surface, because it 

caused local damage to the gel. Therefore, the surface was wetted 

first by gently spraying whey on it (followed by pouring). 

2.7 STANDARD CONDITIONS FOR RENNET GELS 

Unless mentioned otherwise milk R was prepared as described in 

Section 2.1 and used between 1 and 4 hours after preparation, 500 ppm 

rennet was added and the temperature during the whole experiment was 

kept at 30 C. No CaG- was added. These will be called standard 

conditions. 



2.8 STANDARD CONDITIONS FOR ACID GELS 

Milk A was prepared as described in Section 2.1. 3 N HCl was used 

for acidification at 4 C to pH 4.3-4.8. The milk was then heated at 

a rate of 0.5 C per minute to 30 C, which caused a gel to form. 



3 ENDOGENOUS SYNERESIS PRESSURE 

As stated in Section 1, syneresis must be caused by an endogenous 

syneresis pressure. In principle the pressure could be measured by 

fixing the gel between two plates and measuring the force needed to 

keep the plates at constant distance. We concluded this to be not 

feasible, the main reason being the very low stress. However, two 

experiments working on different principles gave some idea of the 

stresses involved. 

In one experiment (see Fig. 3.1.), curd was formed in a vat and 

cut carefully only in the vertical direction. The curd was not dis

turbed, and its surface kept dry. In this way blocks of curd were 

formed with a height of 2 cm and width of 1 cm. The upper surfaces 

of some of these blocks were wetted with whey while other remained 

dry. After 1 hour at 33 °C the blocks with the wetted upper surface 

were shrunk, while others shrunk far less: the difference (h) between 

the levels of the unwetted curd and the adjacent whey was always 

below 1 mm. The stress pulling the upper surface down must be equal 

to the pressure exerted by the whey column h, amounting to h p g. 

Consequently, the syneresis pressure was in this situation < 10 Pa at 

33 C. It should be noted that this is not the original situation as 

the volume has changed during the experiment. 

In another experiment it was tried to measure the pressure 

exerted on the whey in the matrix. A small and sensitive pressure 

transducer would be needed, but we could not find one that was 

Fig. 3.1 Syneresis of blocks of curd. A: The curd in the vat has been 
cut in a number of blocks. The upper surface of some of these blocks 
are wetted. B: After 1 hour at 33 C the blocks with the wetted surface 
are shrunk far more than the other blocks (h = vertical shrinkage of 
blocks with unwetted surface). 



electric current for 

Fig. 3.2 Estimation of the endogenous syneresis pressure by recording 
the pressure exerted on the whey. 

sensitive enough. Therefore, we tried an experiment as shown in Fig. 3.2. 

In a vat a glass tube was placed; the tube had a diameter of 0.5 mm 

and was filled with whey. Milk with rennet was added and after setting 

the curd was cut loose from the wall. At first the whey level was 

higher than the level of the curd because of capillary rise. The 

syneresis pressure now should further raise the whey level. Only if 

the curd was warmed as high as 40 C, the level in the tube did raise 

perceptibly, i.e. about 1 mm corresponding to 10 Pa. The actual 

syneresis pressure must have been higher as considerable transport of 

whey is needed for the measurement. 

Another cause for syneresis could be the weight of the casein 

matrix. The lower parts of the network have to bear more or less the 

network above their level. This means that in curd at a level h below 

Pwhey) g hc~ 7S hc (in S.I. units) the interface a pressure of (p 

would exist. In Chapter 7 it will be concluded that the weight of the 

casein network plays a role in syneresis pressure. 

Also from creep measurements (see Section 5.3) we concluded that 

endogenous syneresis pressure was probably lower than 10 Pa, maybe 

~ 1 Pa at standard conditions (Section 2.8). Consequently, an order 

of magnitude can be given. 
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4 PERMEABILITY 

4.1 INTRODUCTION 

For the calculational model we are interested in the resistance 

a fluid meets when it flows in one direction through a fixed matrix. 

A measure for this is the permeability or permeability coefficient. It 

is the proportionality constant in the equation of Darcy (see e.g. 

Scheidegger (1960)): 

v = -~VP (4.1) 

in which: 

v = superficial velocity (i.e. volume flow rate/cross-sectional area) 

n = viscosity 

VP = pressure gradient. In our case this is always in the same x-

direction (i.e. parallel to the tube). So VP = dPt/dx. The pressure 

difference between the lower and the upper surface of the gel is 

called P t or P j t ) (see Fig. 4.2). 

B = permeability coefficient. It is a property of the matrix and its 

geometry and scale. The dimension is length squared.(Compare the 

laminar flow through a cylinder with radius at where 

v = - (a^/8n) dPt/da:.) (4.1.a) 

The equation is valid in a certain velocity domain (see Section 4.3.1). 

4.2 MATERIALS AND METHODS 

4.2.1 "Tube" method 

For measuring the permeability of the curd it is necessary that 

the curd does not shrink during the experiment. This was achieved by 

making the curd in tubes of 2.0 or 3.7 mm internal diameter and 25 cm 

length. Unless mentioned otherwise the 3.7 mm diameter tubes were used. 

The tubes were cleaned thoroughly so that the curd would stick to 
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the wall and either placed in a holder whereby the tube was resting on 

a plexiglas base or sealed on lower side with laboratory film in which 

a pinhole was made. They then were slowly lowered in a vat filled with 

milk to which rennet had been added, thereby slowly filling the tubes 

(see Fig. 4.2). When the clot was firm enough the tubes were drawn out 

of the vat. The tube holders or the laboratory films were removed. 

The tubes were put in a rack in the whey. The whey then started flowing 

through the curd. The whey-level in the tubes was read at regular 

intervals with the aid of a cathetoscope. The whey-level in some tubes 

without a gel also was measured. The experiments were executed in 3- or 

4-fold as about 101 of the curds became unstuck from the tubes. 

4.2.2 The "Torsionflux" method 

When measuring B, e.g. as described in the previous Section, the 

gel is being deformed, because of the pressure difference applied (see 

Section 4.3.2.1). The deformation of the gel (in the direction of the 

flow) affects the permeability of the curd. With the tube method we 

cannot measure the deformation. Moreover the deformation depends on 

the distance to the wall of the tube and on the rigidity of the gel. 

The method described here was applied to measure the permeability 

as a direct function of deformation of the gel, if deformation was 

perpendicular to the direction of flow. The gel was made between a 

metal inner cylinder and a glass outer cylinder (see Fig. 4.1). One 

hour after adding rennet the inner cylinder was rotated over a certain 

angle and kept so for one hour. In this way the deformation is preci

sely known. Then the whey inlets were opened, about 5 mm of whey was 

placed on top of the curd and the walls of the cylinders were wetted. 

The whey-level was read at regular intervals with the aid of a cathe

toscope. 

4. 2. 3 Calculation of permeability coefficient (B) 

Generally, for the purpose of permeability measurements, an 

apparatus is used which holds the pressure constant. In this way the 

equation of Darcy (eq. 4.1) simply can be used. But during our experi

ments (see Fig. 4.2) the pressure difference (P) between the ends of 

12 
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I ^ = a i r c 
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ng 

outlet 

—inner cylinder 
-whey 

-curd 

-outer cylinder 

A-— whey inlet 

Fig. 4.1 Schematic representation of the "torsionflux" apparatus 

the column changed depending on the velocity (.v(t) = dh{t)/dt): 

d Ft(t) _ d{h(«) - hjt)} _ , . 
Zt~Q-g a* u(*3 

with p = density of the whey and g = gravitational acceleration. 

(4.2) 

In this case the equation of Darcy (Eq. 4.1) can be written as: 

dh(t) = g P t ( t J (4.3) 
M n H 

P(t) is caused by the difference h(°°) - h{t) in the level of the whey. 

fl»00 - g P g{h(°>) - h(t)} 
3* n A 

(4.4) 

Integration leads to: 

h(t) = ~{Ä(») - Ä(0)} exp ("g
n
P/ *) + ÄC-) (4.5) 

This can be rewritten as: 

- In M») - Ht), 

3_
 ln kn -h(or ng 

P g t 

(4.6) 

A problem is that B was not constant: it usually increased during the 

measurements. For sake of simplicity we assumed g(t) to change linearly 

with time; subsequent measurements showed this to be true within the 
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Fig. 4.2 Schematic representation of permeability measurement. 
a. formation of curd in a tube 
b. permeability measurement. 

accuracy of the experiments. If B{t) is changing linearly with time 

Eq. 4.3 turns to: 

St— 

5(0) + 
dB 

a* 
t Pt(t) 

H (4.7) 

in which dB/'dt is a constant. Following the same method as described 

above we obtain: 

5(0) = 
- m c ft H - Ht) 

M°0 - ft(Q) 
•) n B 

p 9 * 
dB 

a* 
(4.8) 

,dB 
B(0) + 237-*» a™* at B(2t) we Since B(t) is linear with time B G t ) 

find the same result as with Eq. 4.6. So Eq. 4.6 can still be used if 

the permeability coefficient (B) is taken at the half time between 

the readings of /z(0) and h(t). 

Up till now we have tacitly assumed that the level of the whey 

outside the tube is constant. This need not be true. If the level is 

not constant, and the surface ratio of the tubes to the vat is r then: 

d P(tX = 

3t p g (1 + r)v(t) (4.9) 
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A possible small effect of different v(t) in different tubes is 

neglected. We find in analogy to previous solutions: 

.pf01 -{B(0)t + J g t2} p gO + i0 
Ä(t)-ACO) = ̂ I r r ; s e x p { —^ } - 1 VW^~7) v x n~ïï 

(4.10) 
or rewritten: 

B C0) (1 + r) p g t 5 3 t * t4-11J 

In the experiments always r < 0.01. If the velocities in the 

various tubes during one experiment differed, r was made as small as 

possible (< 0.001) and neglected. 

To find dB/dt a number of subsequent readings had to be made and 

from these B at different times was calculated. 

As mentioned already dB/dt indeed was found to be not significant

ly dependent of time. In some experiments, especially with the 

torsionflux apparatus (see 4.2.2), the readings were less accurate. 

A better estimate of B and dB/dt can be made by second degree poly

nomial regression, provided dB/dt is independent of time. We can use 

the rewritten Eq. 4.10 for analysis: 

m {»(-)-Mt)> p ; t f + T) -

In tt W - M0)} p ̂  + r) - B(0)t - j g t2 (4.13) 

where B(0) and làB/dt are the regression coefficients. 

Finally, it should be noted that B(0) is the permeability of the 

gel at the moment that measurements started. Mostly, the pressure 

difference had to be applied 10 to 20 minutes earlier, for practical 

reasons. Consequently, B i.e. B at the moment that pressure difference 

was applied, can only be had from extrapolation. 

4,2.4. Calculation of the viscosity of the whey 

Because of the limited accuracy of the measurements, it was not 

necessary to determine the viscosity for every whey sample, except 
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when the temperature or the concentration were changed. According to 

Eilers (1945) the viscosity changes considerably with temperature and 

we used his results. Any concentration of the milk was done by ultra

filtration. By this method the whey is concentrated also. 

The ensuing increase in viscosity was calculated with the aid of 

the experimental results of Peri (1976). 

4.3 RESULTS 

4.3.1 Validity of the equation of Darcy 

It should be checked whether the equation of Darcy is valid in 

the performed experiments. This is normally so if laminar flow occurs. 

The result shows however that the permeability changes with time. It 

should be proven however that at a given time B is independent of 

liquid velocity. To characterize the flow, it is customary to intro

duce a "Reynolds number" (Re) as follows: 

Re = v p d/x\ 

where d is a diameter associated with the porous medium. If porosity 

is low, d could be the average hydraulic pore diameter of the strands. 

We always kept v < 10 m«s ; p = 10 kg«m and n = 1 mPa'S. For d < 
-1 1 mm we then find Re < 10 . Since always d « 1 mm, Re « 1. So 

laminar flow can be expected. 

Moreover, measurements were performed at different dP/dx, by 

changing the column length and/or P, and different tube diameter (dt). 

For practical reasons the measurements could only start 10-20 minutes 

after t : the time at which the pressure difference was applied to 

the column. Fig. 4.3 shows that there is no significant difference 

between the extrapolated values B at t . 

4.3.2 Results with the tube method 

4.3.2.1 Influence of deformation on permeability 

As stated before, curd deforms during measurement as a result of 
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Bx10,3(m2) 

6-

d= 3.7 mm dP/dx =8 kPa.m"1 

d= 2.0 mm dP/dx =8 ICPCMTT1 

d= 3.7 mm dP/dx - 5 k P a n f 1 

d= 2,0mm dP/dx =5kPa.m" 1 

0 1 2 3 
time (h) 

Fig. 4.3 Permeability as a function of time. Illustrating the time 
derivative depends on dt and dPt/dx. At time te the tubes were placed 
in the whey. The dots represent the calculated 5(0) values (see Eq. 
4.10). 

the applied pressure gradient (dP Jàx). For instance, at 8 kPa«m it 

was visibly deformed. This deformation depended on the distance to the 

wall, on dP/dx, on tube diameter (d ) and gel strength. The results in 

Table 4.1 show that larger dPt/dx and larger d , which gave larger 

deformations, resulted in a higher dB/dt. Eventually, the gel breaks. 

Incidentally, the gels always broke at a distance of about \dt from 

the wall; this is indeed the region where the deformation of the gel 

should be largest. Some results are also shown in Fig. 4.3. 

Table 4.1 Influence of pressure gradient (dPt/dx) and tube diameter 
(dt) on dB/dt. Average values and range of three experiments. 

dr 
(mm) 

3.7 
3.7 
3.7 
3.7 
2.0 
2.0 
2.0 

dPt/dx 

(kPa'nf') 

0 
5 
8 

20 
0 
5 
8 

dB/dt x 1017 

(̂  ..-') 

0.81) 
1.4 (1.4 - 1.5) 
2.8 (2.6 - 2.8) 
gel breaks 
0.81) 
0.8 (0.6 - 0.8) 
1.4 (1.3 - 1.5) 

^From Table 4.2 : {Be(2h) - BeOh)}/3600 
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4.3.2.2 Change of permeability of undeformed curd with time 

Gels in tubes were put under pressure for measurements at 

different time after rennet addition. From the flow in 4 - 12 tubes 

the average B value and range and the average dB/dt value and range 

were calculated (see Table 4.2 and Fig. 4.4). In Table 4.2 also 

ABe/A* = {Be(*2) - Be(*.,)} / C*2 - V is 8 i v e n -

4.3.2.3 Influence of concentration 

The influence of casein concentration was studied by ultra-

filtering fresh skim milk. Concentration was expressed as i = volume 

of concentrated milk/volume of original milk. Naturally, we are 

interested more in the permeability of homogenous gels concentrated 

by syneresis, but such gels cannot be made homogenous and they will 

show syneresis on holding. 

The length of the gel column was taken so that the flow of the 

whey was always between 0.1 and 0.3 mm«s . A constant clotting time 

of 0.25 was used. The results were fitted to power curves. 

Table 4.2 Change of permeability with time. dPt/dx = 5 kPa'm-1. 
For explanation see text and Fig. 4.4 . 
n = number of experiments 
t = time after rennet addition 

n ta B e x 101 3 ASe/At dB/dt x 10 1 7 

x 101 7 

(h) (m2) (m2«s-l) (m2«s_1) 

8 
4 
8 
4 
2 
4 
8 
8 

0 .5 
0.67 
1 
1.5 
2 
3 
4 

24 

1.5 
1.9 
2.2 
2.4 
2 .5 
2.9 
3.3 

11.1 

(1 .0 -
(1.9 -
(2 .2 -
(2 .3 -
(2.4 -
(2 .9 -
(3.1 -

(11.1 -

1.8) 
2.0) 
2 .3) 
2 .5) 
2 .7) 
3.1) 
3.1) 

11.1) 

6.6 
2.5 
1.1 
0.6 
1.1 
1.1 
1.1 

6.1 (4.2 - 7.0) 
2.3 (2.2 - 2.8) 
1.6 (1.2 - 1.9) 
1.6 (1.5 - 2.5) 
2.3 (1.5 - 3.0) 
1.6 (1.5 - 1.8) 
1.3 (1.1 - 1.7) 
1.3 (1.0 - 2.0) 



BxloW) 

7 

ü 1 2 3 k IU 
time after rennet addition ( h ) 

Fig. 4.4 Permeability as a function of time, of deformed curd during 
the experiment (solid line) and of undeformed curd (dashed line inter
connecting calculated values of B e ) . 

We found: 

d ß e / d t = 8 x 10 1 8 - 2.2 x 1.017 (1 - i ) 2 ' 4 (m2-s~1) (4.14) 

and: 

B (i) = 2.3 x 10"1 3 i2-6 (m2) (4.15) 

with sample correlation coefficients (r) of 0.98 and 0.998, respective

ly. Integration and combination yields: 

B ( i , f) = {8 x 1 0 " 1 8 - 2 .2 x 10"17 (1 - i)1A} t + 

+ 2.3 x 10" 1 3 i 2 - 6 (m2) (4.16) 

which relation was used in the model. Eqs. 4.14 and 4.15 are shown in 

Fig. 4.5. Note that B (i, t) and dB /dt for i < 0.5 were found by 

extrapolation. For i = 0.5 dB /dt calculated from Eq. 4.14 has about 

twice the experimental value. This would only have a minor effect on 

the comparison of the calculated and the determined syneresis since 

only results for AH/HQ < ^ 0 . 5 were considered. 
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i = vol. concentr. /vol.orig.m. 

Fig. 4.5 Permeability and its time derivate as a function of 
concentration of the milk before curdling. 

4.3.2.4 Influence of temperature during measurement 

The gels were made and treated according to the standard method. 

One hour after rennet addition the temperature was changed. Results 

are given in Table 4.3. It shows that dB/dt increases with increasing 

temperature. 

4.3.2.5 Influence of temperature during renneting 

For these experiments skim milk A was used. One hour after rennet 

addition the tubes were placed in whey of 30 C with dP/dx = 4 kPa«m . 

The results are shown in Table 4.5a. Permeability as measured one hour 

after rennet addition (B ) increased with increasing renneting 

temperature. The influence on dB/at was less consistent. A probable 

cause is that only a few readings of h{t) were done. 

In another series of experiments skim milk R was used and the 

temperature during renneting was maintained during measurement. The 

results are shown in Table 4.5b. In these experiments B and dB/dt 

increased with increasing temperature. 
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Table 4.3 Influence of temperature during measurement on dB/dt 

Temperature 
(°C) 

12 
25 
30 
35 

dB/dt x 10 

(m «s ) 

dP t/<ta : 0 

< 0.05 
0.7 ( 0 . 6 - 0 .7) 
1.0 (0 .8 - 1.1) 
5.1 (4.9 - 7 .3) 

17 

8 (kPa«m -1) 

< 0.05 
1.0 (0 .9 - 1.2) 
2 .8 (2 .6 - 2 .9) 
8 ( 7 - 8 ) 

4.3.2.6 Influence of rennet concentration and type of skim milk 

Two series of experiments were done. In the first series fresh 

skim milk was used and in the second the usual reconstituted skim milk. 

Results are shown in Table 4.4. From Table 4.1 and Fig. 4.4 values of 

dB/dt and B for 500 ppm rennet were taken. 

The results show that initially B increased and dB/dt (during 

measurement, i.e. while there is deformation) decreased with increasing 

rennet concentration. After 2\ hours, influence of rennet concentration 

was small, if existent. Fresh milk gave higher results for B and dB/dt. 

4.3.2.7 Influence of CaCl, addition 

CaCl2 was added in different concentrations and rennet was added 

in such a quantity that the same clotting time was achieved in all 

experiments. The results in Table 4.6a show that at t = 1 h, B does 

not depend on the applied Ca concentration and dB/dt decreases with 

increasing Ca concentration. At t = 2 h. B and dB/dt decreased with 
a e 

increasing concentration. 

In another experiment only the CaCl_ concentration was varied. 

The results in Table 4.6b show that B was constant or slightly 

increased at CaCl- concentrations of 0 to 500 ppm and decreased at 

concentrations of 7400 to 22100 ppm. dB/dt decreased with increasing 

concentrations. 
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Table 4.5 Influence of temperature during renneting. 

a. dP\./dx " 4 kPa«m .Skim milk A 

Temp. 

(°C) 

30.2 
32.8 
35.6 

B x io 1 3 

e 
(m2) 

2.4 (2.1 - 2.5) 
3.0 (3.0 - 3.1) 
6.5 (6.1 - 6.8) 

dB/dt x 1 0 1 7 Z ) 

(m «s ) 

2.6 (2.0 - 3.0) 
3.6 (3.0 - 4.4) 
3.4 (2.9 - 3.7) 

b. Temperature maintained during measurement. 
dPt/da; = 5 kPa«nrl.Skim milk R 

27 1.7 .(1.9 - 2.2) 
30 2.21' 
33 3.0 (2.8 - 3.4) 

2 .(1 
1.6° 
5 (4 

- 2 ) 

- 7 ) 

^from Table 4.1 
less accurate as only a few readings of h(t) were 
available 

4.3.2.8 Influence of acidity on permeability 

The pH of the gels was varied by adding HCl or NaOH. As in Section 

4.3.2.5 skim milk A was used for the experiments shown in Table 4.7a 

and b. 

The results in Table 4.7 show that B at t = 1 h decreased with 
e 

increasing pH. The effect on dB/dt will be discussed later. 

4.3.2.9 Influence of fat content 

The fat content of fresh milk was varied by taking whole milk 

(3.321 fat), separated milk (0.10%) and a mixture (1.96»»). 

The results in Table 4.8 show that B decreased with increasing 

fat content. There was found no significant correlation between dB/dt 

and fat content. 
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Table 4.6 Influence of CaCl„ concentration on permeability, 

a. At constant clotting time dP^/dx = 5 Pa-mm 

CaCl2.2H20 rennet Bex 10*3 AB I At x 1017 
(ppm) (ppm) (m2) (m2.s~l) 

*a = 1 

0 
450 

1600 
3200 

500 
250 
125 
62.5 

2.2 (2.1 - 2.3) 
2.3 (2.2 -• 2.5) 
2.1 (2.1 - 2.3) 
2.3 (2.3 - 2.3) 

1.6 (1.2 - 1.8) 
1.2 (0.6 - 1.6) 
1.1 (1.1 - 1.2) 
1.0 (0.7 - 1.3) 

0 
450 

1600 
3200 

500 
250 
125 
62.5 

2.6 (2.4 - 2.7) 
2.5 (2.3 - 2.7) 
2.3 (2.1 - 2.4) 
2.4 (2.1 - 2.5) 

1.8 (1.5 - 1.9) 
1.4 (1.2 - 1.5) 
1.2 (1.1 - 1.3) 
1.0 (1.0 - 1.0) 

b. At constant rennet concentration äP lax = 8 Pa'mrn . t = 1 h 
t a 

0 
250 
500 

7400 
14700 
22100 

500 
500 
500 
500 
500 
500 

2.3 (2.1 - 2.4) 
2.3 (2.2 - 2.4) 
2.5 (2.3 - 2.5) 
2.4 (2.2 - 2.6) 
2.2 (2.0 - 2.4) 
2.0 (2.0 - 2.1) 

2.7 (2.3 - 2.9) 
2.5 (2.2 - 2.8) 
2.4 (2.1 - 2.6) 
1.3 (1.0 - 1.7) 
0.8 (0.8 - 1.0) 
0.9 (0.7 - 1.1) 

4.3.2.10 Permeability of acid gels 

Gels were made in tubes as described in Section 2.8. Permeability 

and storage modulus C' were measured 20 hours after heating. 'Ibe 

results are in Fig. 4.6. At pH 4.6 the permeability was also measured 

2 hours after heating; it was higher (i.e. 1.9 x 10~13 m2) than after 

20 h, this in contrast to the permeability of rennet gels, which 

increases with time. IXiring measurement (dPJàx = 5 kPa«m~1), B 

remained constant (i.e. dB/dt was zero) in all cases. 
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Table 4.7 Influence of acidity on permeability 

.30.5 °C a. Milk R (12 g powder/100 g water). 250 ppm rennet. Temp. 
Rennet added Mb. after pH setting. Original pH : 6.5. dPt/dx = 8 kPa'm-1) 

pH Clotting Be x 1013 

time » 
(min) (m ) 

6.0 15 3.0 (2.9 - 3.1) 
6.3 25 2.0 (1.9 - 2.0) 
6.6 40 1.3 (1.3 - 1.3) 

dB/dt x 1017 

(m »s ) 

1.0 (0.9 - 1.2)*} 
0.4 (0.3 - 0.7)2^ 
1.3 (1.3 - 1.4) ; 

b. Standard conditions (see 2.7). Rennet addition J h after pH setting 
Original pH : 6.65. dPt/àc = 5 kPa-m-1. 

6.55 2.7 (2.5 - 2 . 7 ) n 

6.65 2.2 (2.2 - 2.3) ; 

6.75 2.0 (2.0 - 2.3) 

1.2 (1.0 - 1.6)n 

1.6 (1.2 - 1.9) ; 

2.2 (1.8 - 2.3) 

c. Same milk and conditions; rennet added 3 h after pH adjustment. 

6.55 2.3 (2.3 - 2 . 4 ) n 

6.65 2.2 (2.2 - 2.3) ' 
6.75 2.1 (2.1 - 2.3) 

i) Results taken from Table 4.2 
2) Less accurate as only a few readings of h(t) 

2.2 (1.8 - 2 . 6 ) n 

1.6 (1.2 - 1.9) ; 

2.4 (2.0 - 2.6) 

are done 

Bx10"(m'; 

6.0 

5.5 

1.5 

LO

CI 

O 

GINm ) 

500-

400-

300-

200.J 

~ÏT 44 ZS S W Ï8 pH 
£ 1 -

43 U 4.5 46 47 48 pH 

Fig. 4.6 Permeability (B) and storage modulus (G') of acid gels as a 
function of pH. 
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Tabel 4.8 Influence of fat content on permeability. Fresh milk was 
used. dPt/dx = 5 kPa*m~'. Experiments starting J h after rennet 
addition (ta = { h) 

Fat content B x 1013 dS/dt * 1017 

(%) (m2) (m2-s"1) 

0.10 5.2 (5.1 - 5.3) 4.2 (4.1 - 4.5) 
1.96 4.8 (4.7 - 5.0) 4.5 (4.4 - 4.9) 
3.82 4.5 (4.3 - 4.5) 3.1 (2.6 - 3.2) 

4.3.3 Influenae of deformation, temperature and pH on permeability as 

measured with the torsionflux method 

Temperature during the experiment was varied between 28 and 33 C. 

The results in Table 4.9 show that B increased with increasing defor

mation and temperature. B increased roughly exponentially with shear 

strain y. At higher temperatures B depended more on y. Most gels broke 

if Y = 1.05 (see Table 4.9). From Fig. 5.4 it can be deduced that 

gel will break if y e 1 after 1 hour (standard conditions). 

dB/dt (during measurement) increased a little with increasing 

deformation and temperature. 

The influence of acidity was studied by changing the pH by 0.1 

unit. Permeability was increasing with decreasing pH and increasing 

shear strain (y) (see Table 4.9). 

4.4 DISCUSSION 

The general results of the experiments are: 

A) The permeability of the different gels varied between ̂ 1 0 and 
1n-12 2 
10 m . 

This result can be expected from electron micrographs (Knoop & 

Peters, 1975; Mulder, De Graaf & Walstra, 1966; Green, Turvey & 

Hobbs, 1981). They show an average thickness (6) of the strands of 

^ 250-500 nm. The matrix is not homogeneous. While z is on average 

about 0.93, there are regions with a high density of strands (local e, 

say 0.8) which alternate with pores (where local e = 1). The pores 
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Table 4.9 Influence of deformation, temperature and pH on the permeability as measured with 
method. dPt/dx - 5 kPa-nf'. Values of Be are in 10-1-* m2» values of dB/dt in 10~17 m*-s~ ; r 

the torsionflux 
ranges between 

parenthesis, n =• number of experiments. Deformation started 1 hour after rennet addition, pressure was 
applied 1 h later (t = 2 h). ' 

Rotation of itmer-
cylinder (degrees) 

Resulting shearing 
strain (y) 1.05 

temperature (°C) 

33 

dfi/dt 

n 

dfl/dt 

n 

*e 
dB/dt 

n 
Be 

dB/dt 

1 .9(1 .4-2 
2 (1 -2 ) 

8 
2 . 5 ( 2 . 2 - 2 
2 (1-2) 

1 
4 . 4 
6 

2 
4 . 2 ( 4 . 0 - 4 
6 (4-8) 

0) 

6) 

4) 

1 .8(1.5-
1(1-1) 

6 
2 . 6 (2 .2 -
1(1-1) 

1 
5 .0 
5 

2 
4 . 9 (4 . 6 -
6 (4 -7 ) 

-2 

-2 

-5 

1) 

7) 

2) 

2 . 1 ( 1 . 9 
2 (1-2) 

11 
3 . 0 ( 2 . 4 
2 (1-2) 

1 
5 .5 
7 

2 
5 . 5 (5 .1 
7 (5-8) 

-2 

-3 

-6 

3) 

5) 

0) 

2 . 4 ( 2 . 1 - 2 . 7 ) 
4 (3 -5 ) 

4 
3 . 6 ( 3 . 1 - 4 . 0 ) 
4 (3-5) 

1) 

1 
6 . 3 

15(11-20) 

1 
5 .2 

12 

M 

1) 

pH 

n 4 4 3 2 
B 3.3(3.2-3.4) 3.4(3.1-3.6) 4.0(3.6-4.5) 5.0(4.6-5.4) 

dfl/di 4(3-4) 4(3-5) 5(4-6) 10(8-13) 

6.65 (see T=30°C, above) 

6.75 « 4 4 3 4 
Be 2.6(2.2-3.0) 2.8(2.2-3.2) 2.9(2.6-3.2) 3.4(2.9-4.0) 

dB/dt 3(1-4) 3(2-4) 3(2-4) 4(3-5) 

*) gel breaks (also at 30°C and y = 1.05 the gel was broken in two experiments) 
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comprise roughly half the volume of the gel. Typical values for pore 

diameters are 5-10 ym. The effective volume fraction of the para

casein micelles (1-e) is taken to be 0.07.In literature (e.g. 

Scheidegger, 1960) a number of equations are given which predict the 

permeability of model systems. 

The equation of Iberall deals with a model of a random distri

bution of circular cylindrical fibres. According to this equation 

B = -.4 fji. ; - Y ie (4.18) 
16 1 - e 4 - In Re 

-5 -13 2 

in which the Reynolds number (Re) ^ 10 , we find B ̂  10 m . The 

Kozeny-Carman theory represents the porous medium by an assemblage of 

channels of various cross-sections, but of definite length. According 

to the equation of Kozeny-Carman (Scheidegger, 1960) 

3 ,2 
B = XË (4.19) 

180 (1-e) 

in which d - volume surface average diameter of the micelles (A = 

104 nm according to Schmidt, Walstra & Buchheim, 1973), we would find 

B = 1 x 10" m . Since the (superficial) flow through a collection 

of pores is proportional to pore diameter squared, flow through the 

very small pores inside the dense regions of the matrix will be 

negligible as compared to the larger pores between dense regions. 

Hence, the regions with a high density of strands, as shown in the 

electron micrographs, may be considered impermeable. Assuming them 

to be spheres with a diameter of 10 ym, and effective e to be 0.5 
-13 (see above), we find from Eq. 4 . 1 9 B = 3 x 1 0 . Experimentally we 

-13 -13 found under standard conditions B = 2x 10 and 4x 10 for gels 

of reconstituted and fresh skim milk respectively. 

We will continue this discussion later when we deal with the 

influence of the porosity or concentration on the permeability 

coefficient. 

B) B changed with time 

This leads to the conclusion that the strands in the network are 

rearranged or change in diameter, or both, The fact that B is 
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increasing implies that the matrix becomes less homogeneous and/or 

that the diameter of the strands or the micelles is reduced. The 

latter indeed holds for casein micelles and rennet curd when the pH 

falls (unpublished results, Walstra & Delsing). Strands as a whole 

may be reduced in effective diameter when the strands become less 

frayed. This can be seen in electron micrographs (Knoop, 1975). A 

less homogeneous gel would result from rearrangement of strands. This 

can occur when strands are moved by Brownian motion or by deformation 

(slight vibrations, as occur in a building, might be enough) and are 

thus anabled to touch and form new crosslinks. Two examples are given 

in Fig. 4.7 and 4.8. As a result of the newly formed cross-links the 

strands will be under stress. And the matrix will either relax by 

shrinking (syneresis) or, especially when the gel is fixed, by 

breaking of bonds (micro-syneresis) (see Fig. 4.7). The broken strands 

which have more freedom to move may fuse again with other strands. The 

latter step certainly enhances permeability as the interface matrix-

whey will decrease and most likely the pores will enlarge. Micro-

syneresis may then continue until the strands are so rigid that these 

processes stop or macroscopic rupture occurs. 

dB/dt was constant with time under the applied circumstances 

(within the limit accuracy of the experiments) except for dB /dt for 

a short while (i.e. within 1 hour) after rennet addition (standard 

conditions). An explanation for this linearity could not be given. 

C) B increased exponentially with deformation as measured with the 

torsionflux method and increased more at higher temperature. 

The strands will break at a certain yield stress. Probably this 

implies that the yield stress varies among strands, and in such a way 

that the number of strands that break increase exponentially with the 

applied deformation. When a strand is broken the resulting free ends 

now have more freedom of movement, hence a greater probability to 

touch another strand, forming new crosslinks. This would result in 

wider pores, hence a higher permeability. 

Note that the deformation in the tubes depends on dPjàx and 

on the rigidity of the gel (see Section 7.3.3). 
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Fig. 4.7 Schematic drawings of two strands forming new crosslinks. 
This results here (in this particular example) in shrinkage of the 
network and the breaking of the strand. Arrows indicate new crosslinks. 

D) The dependence of the permeability on concentration is poorly 

predictable from previously published models. 

The model of Iberall predicts that B <* e/(1-e), while experimen-

tally B « (1/1 - e) " was found. The model rests on the assumption 

that the thickness of the strands is constant and that the volume 

fraction of the strands is so low that any mutual effects of the strands 

on the flow disturbance are negligible. Particularly the latter assump

tion does not hold in our case. The model of Kozeny-Carman with d = 

0.1 pm gives better results. (E.g. for 2 x concentration the equation 

predicts BQ (i = 0.5)/BQ (•£ = 1) = 0.20, while experimentally 0.15 was 

found; nevertheless this model is usually considered to be restricted 

to systems with a porosity lower than 0.5. If we assume the curd to be 

a matrix of impermeable 'spheres' of about 10 urn diameter, as discussed 

in Section 4.4 A, these 'spheres' should increase in diameter or 

decrease in total volume while e decreases due to concentration, in 

Fig. 4.8 Zipperlike crosslinking of two strands 
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order to fit the model to the experimental results. For instance if 

i = 0.8 the diameter should increase to 11 ym or the spheres should 

comprise only 581 instead of 60$ of the volume of the gel. Electron 

micrographs indeed show that the micelles in the curd made from 2 or 

4 fold concentrated milk are packed in larger, more compact regions 

(Green, Turvey & Hobbs, 1981). 

E) The permeability of the skim milk in the experiments described 

in Sections 4.3.2.6 and 4.3.2.9 was almost twice as high as the 

permeability of the reconstituted skim milk. An explanation could be 

that this is caused by the denaturation of the whey protein, although 

low heat powder was used or is caused by the slow equilibration of the 

reconstituted skim milk. The permeability might also depend on the 

seasonal variation in milk composition. 

In the experiments some other factors were varied (composition, 

temperature). For most of these factors there is a correlation between 

clotting time, rate of syneresis, permeability and rheological 

properties. We will discuss these aspects and some aspects that are 

already mentioned in this section and in Section 7.3.3. 
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5 THE RHEOLOGICAL BEHAVIOUR OF CURD 

5.1 INTRODUCTION 

The viscoelastic properties of curd can give information about 

gel structure and changes therein. It may thus enhance understanding 

on what happens during syneresis and particularly on the effect of 

deformation on syneresis. 

Tuszynski et al. (1968) studied by means of a torsiometer and a 

trombelastograph the rate of increase of the so-called average complex 

rigidity modulus of renneted skimmilk. This modulus is a measure of 

the elasticity or firmness of a gel. The principle of these two 

apparatus is the same. The gel is formed between two coaxial cylinders. 

The resistance of the gel against deformation is measured. They found, 

for instance, that in undiluted milk a fall in pH from 6.66 to 6.18 

does not affect maximum firmness. For the same purpose Scott Blair 

(1957) used an apparatus described by Saunders (1953), which itself is 

a modification of a method proposed much earlier by Kinkel and Sauer 

CI925). Hereby the gel is made in an U-tube and deformed by constant 

air pressure on one surface of the sample. From the volumetric dis

placement of the other surface at a certain pressure the rigidity 

modulus (comparable to an instantaneous modulus) was calculated. The 

change of this modulus during setting was given as a function of time. 

Torado (1969) and Hossain (1976) used the trombelastograph. The 

influence of various factors on the rheological behavior of curd was 

studied. In contrast to the results of Tuszynski, Hossain found a small 

influence of pH on curd firmness, if the pH was varied from 6.70 to 

6.51. 

Further publications about rheological behavior of curd are by 

Douillard (1973), Burnett et al. (1963), Jacquet (1964), Marçais 

(1965), Frentz (1965) and Thomasow (1968). 

The type of rheological parameter measured and its magnitude 

depend e.g. on time scale, extent of deformation and size and shape 

of the sample. Since different authors generally used different types 

of apparatus, yielding different rheological parameters, comparison 

of results is not easy. For the rheological characterization of the 

curd we defined moduli that can easily be used for further calculation 
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and are generally accepted by rheologists. 

Two techniques were used. First, dynamic measurements which are 

especially suited to obtain the viscoelastic properties of the gel as 

a function of time after rennet addition and as a function of the time 

scale of deformation. Second, creep measurements were used to study 

the regime where irreversible breakdown of the gel structure occurred. 

Both techniques gave e.g. information of the relaxation behavior of 

the gels and the point at which irreversible change in the structure 

of the gel starts. 

5.2 METHODS 

5.2.1. Dynamic measurements with the "Den Otter" rheometer 

The rheometer was developed and described extensively by Duiser 

(1965) and Den Otter (1967). In brief, the apparatus consists of two 

coaxial cylinders. The inner one is suspended between a torsion wire 

and a strain wire and has a length of 15 cm and a radius of 3.75 mm. 

The outer cylinder has an inner radius of 4.5 mm. The gel is formed 

in the space between the cylinders. The whole apparatus is thermostated 

to within 0.1 C. 

The torsion wire is connected to a drive shaft that brings the 

wire, and thus the inner cylinder, in harmonic oscillation. The frequen-
-4 1 

cy (Ü)) can be varied between 2 x 10 and 300 rad-s . The amplitude 

difference and the phase shift (6) can be measured. From these the 

storage and the loss moduli G' and G" can be calculated. The storage 

modulus (G') is a measure for the energy stored during a periodic 

application of strain on the gel, and is thus a measure for the 

elasticity of the gel. The loss modulus (G") is a measure for the 

energy dissipated. In formulae 

G' = (ö(/Yo) C0S ô 

G" = (ö0/Y0) S i n 6 

in which 
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an = maximum shear stress 

Y n = maximum shear strain 

A comprehensive discussion is given by Ferry (1970). Correct 

values for G' and G" are obtained in an easy way only if the visco-

elastic deformation of the gel is linear, i.e. at constant frequency 

of the oscillation the deformation of the gel changes proportionally 

to the applied amplitude. For all curds linear behaviour appeared to 

exist if y < 0.03. 

5.2.2 Creep measurements with the "Deer" rheometer 

With this rotational instrument constant stress can be applied by 

an air-bearing induction type electric motor. The moment can be varied 
-7 -3 

between 5 x 10 and 10 N«m. Angular displacement is determined by a 

non-contacting electronic sensor which measured the disctance between 

a circular ramp and the sensor. The sample was brought between two 
-2 

coaxial cylinders. The stress can range between 0.05 and 600 N«m . 

5. 2. 3 Results and discussion 

The influence of time after renneting on G' and G" is shown in 

Fig. 5.1. The moduli kept increasing for a long time (~ 3 h ) . Lower 

pH values and a higher rennet concentration gave an earlier increase 

in G' and G" (which agrees with the shorter clotting time) and also 

high rates. However, the final values of G' only varied between 110 
_2 

and 140 and for G" between 34 and 43 N«m . 

As discussed in Section 4.3.2.2, permeability also increased with 

time. Electron micrographs as published by Knoop & Peters (1975) showed 

a change in the appearance of the gel matrix. One hour after renneting 

the strands in the matrix were frayed. Three hours later they were 

more compact. Such a change may cause an increase in permeability and 

in moduli. The latter may also or even more increase by an increase 

of bonds between already attached micelles. As discussed in Section 

4.4, strands may break. The resulting and already existing spoiled 

strands may fuse with other strings. This creates both thicker, i.e. 

firmer, strands and larger pores. Thus moduli and permeability increase. 
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log G INm'*) 
logG" INm-'l 

0 1 2 3 ^ 5 6 
time after rennet addition I h ) 

Fig. 5.1 Storage (G') and loss (G") modulus as a function.of time 
after rennet addition. Standard conditions: ü) = 1.0 rad»s . Temperature 
30 °C. 

pH = 6.65 rennet 250 ppm 
pH = 6.64 rennet 250 ppm 

— . — . — pH = 6.55 rennet 250 ppm 
— . . pH = 6.45 rennet 250 ppm 

pH=6.65 rennet 500 ppm 

Fig. 5.2 shows the moduli G' and G" as a function of angular 

frequency. The measurements were started after the moduli of the gel 

did not increase any more (e.g. 3-6 h). There was no significant 

difference in the dependence of the moduli or angular frequency if the 

pH was varied between 6.40 and 6.65 (see also Fig. 5.1). G' and G" 

increased with w, while G"/G' (= tg <5) decreased (see Fig. 5.2 ). 

It can be shown that G" is due to the relaxation of bonds. An energy 

content of only a few kT per bond would then be sufficient to explain 

the magnitude of G", while the energy dissipation caused by flow of 

the continuous liquid through the matrix (either around or through the 

strands) is very much lower (Van Vliet, to be published). For w < 0.5 

rad'S , when the gel is under stress for periods of ir/0.5 s, the slope 

of G' and the magnitude of tg ô increased as a function of w. Both 

phenomena indicate that the system has more the character of a fluid 
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log u> ( rad s"') 

Fig. 5.2 G', G" and tg 6 as a function of im at 30 C and -. 16 h after 
rennet addition 

when the time scale increases. This implies that a large part of the 

bonds spontaneously break and reform (relax) over time scales longer 

than seconds. It should be noted that this does not imply that whole 

strands in the network are broken. Many bonds in a strand can break, 

stil] leaving the strand as a whole intact. From the creep curves it 

can roughly be calculated (Ferry, 1970) that the relaxation time is, 

say, 10 - 50 s. 

Fig. 5.3 shows the instantaneous shear modulus (GQ) as a function 

of the protein concentration factor {j?r = protein concentration of the 

sample/protein concentration of original skim milk), for various times 

after rennet addition (t ) . For not too great values of -pr, pr " r . 

The skim milk was concentrated by ultrafiltration as described in 

Section 2.5 Except for one measurement with a lower value for G., 

(probably caused by a longer clotting time) the results fit reasonably 

well to the equation: 

G 0 = G0(p, 
2.7 

1)pf 
(5.1) 

If an increase in concentration only would result in an increase in 

the number of strands of the same diameter, theory (see e.g. Van 

Vliet, 1978) would predict G„ to be proportional to p f . There are two 

possible explanations for the discrepancy in the literature. Firstly, 

the proportion of spoiled strands will decrease with increasing p f . 
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log G0(N.rf?) 

Fig. 5.3 Instantaneous shear modulus (G.) as a function of protein 
concentration factor (p.). Parameter is time after rennet addition (t ) 

Secondly, the distribution of the strength over the strands is wider 

at a lower p f (Van den Tempel, 1979). Both explanations are based on 

an only partly effective contribution of the casein to the network. 

A precise physical explanation for Eq. 5.1 cannot be given. 

Fig. 5.4 gives the shear strain as a function of shear stress as 

determined from creep curves. The stress was applied 1 h after rennet 

addition. Parameter is the duration of the applied stress (t ) . The pH 

of the curd in Fig. 5.4 was 6.65. At the moment no real explanation 

can be given for the behavior shown in Fig. 5.4. It even is not known 

for sure whether the increase in Gibbs free energy of the network 

caused by deformation stems from a change in entropy (Flory, 1953) or 

in enthalpy (Lyklema et al.,. 1978) or both. The shape of the curves 

resembles that of an ideal entropie gel, although the linear region 

is much smaller. A possible, though speculative, explanation is that 

the increase stems from the same cause as the increase found for non-

ideal entropie gels (Treolar, 1975) and/or from an increase in number 

of elastically effective strands by means of an entanglement which 
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Fig. 5.4 Shear strain (y) as a function of shear stress (a). Parameter 
is the duration of the applied stress (t ). The pH of the gel was 6.65. 

starts to work at higher deformations (Ferry, 1970). Besides it is 

also possible that enthalpic effects like bending of strands start to 

play a more important part at higher deformations (Bailey et al., 1977). 

At pH = 6.65 and y ~ 1-1 the slopes of the curves increase. 

Probably the network structure gradually starts to break. The curves 

end where the gels break. Since for t = 900 s at pH =6.65 the breaking 

stress of the matrix was ̂  10 Pa, we conclude that the syneresis pres

sure should be below that value. 

At pH = 6.54 the curd was firmer. A smaller y(a,t ) for all 

values of a and t was found. At pH = 6.54 the slope of the curves 

increased at y ~ 1-3 and for t = 900 s the breaking stress was 25 Pa. 

So we conclude that at pH = 6.54 syneresis pressure is lower than 25 Pa. 

From the creep curves also a relaxation time of ̂  30 s could be cal

culated (Van Vliet, to be published). 
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6. THE MDDEL 

6.1 THE DIFFERENTIAL EQUATION 

The model is based on an analytical description of the transport 

of whey inside the curd. For a preliminary description we start from 

a fixed cartesian coordinate system. Later on we will turn to another 

coordinate system that refers to the curd matrix as a reference 

system. 

Thus we write a mass balance over a stationary volume element 

àx Ay As through which the whey is flowing: 

.rate of whey , , rate of whey, , rate of whey, 

accumulation ~ going in " going out (6.1) 

or (in formula) 

Ax Ay Az j ^ - A y Az {(e ^ ^ - (e P l „* ) ^ + ^ } + 

+ AxAs { ( e P i " J ) | y - ^Hvlyï\y+Ay) + 

+ AxAy ( ( E P l / ) | 3 - ^ P l ^ ) | 2 + AB} ^ 

where : 

t = time 

e = porosity (i.e. volume fraction of whey) 

p, = density of whey which is assumed to be independent of time and 

position 

v = local velocity of the whey in the x-direction (i.e. e p v = bulk 

mass flux per unit cross section) 

|x = at position x 

We divide the equation by (Ax Ay Ax) and take the limit as these 

dimensions approach zero. 

3(e p ) 3(e P, v h 3 Ce P vb 3Ce P, vh ^ 
i = ±—•£ _ -1 ¥ _ L_£ = _ y.{E p th 

U 3x dy 33 v l E V 
(6.3) 
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This is the equation of continuity, which in this case describes 

the rate of change of whey content at a fixed point, resulting from 

the change in the mass velocity vector. We want to replace v by the 

permeability coefficient (5) and syneresis pressure (P). Clearly this 

is possible if we first introduce the relative velocity (v - v) of 

the liquid with respect to the curd matrix. In the theory of binary 

diffusion the use of reference component centered velocities has 

been developed, where the velocity of one component is expressed as 

the velocity with respect to the second or reference component. The 

"Fickian" form of the mass balance in the reference component 

centered description is to be found in the literature. Van der Lijn 

gave a useful review in appendix A of his thesis (1976). Quoting Van 

der Lijn we start from his equation (A39) where we substitute our 

notation. 

(^ P S | ( T P F T P - ^ Ä P 1 •*<ePi*S> C6.4) 

in which 

~ = TT + vS'V = the substantial derivative operator, 

describing changes with time at a point 

moving with the velocity y of a local 

volume element of the solid matrix. 

P = the density of the solid phase 

As the densities P and P\ are constant we divide both sides 
s 1 

by P, and eliminate P . ' 1 s 
By inserting the right hand part of Eq. 6.3 we obtain: 

(1-e) j£ ( -j|- ) = - V-itv1} + V-{eus} = - V-leC?1 - us)> (6.5) 

For our experiments we used a one-dimensional system. So V may 

be written as --- . Introduction of the law of Darcy: 

r+s ->i B dP 
e ( y - v ) = — -j-
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and of 

d ( ^ ) = d ( - ^ ) 

then leads to 

Here we leave our original stiff coordinate system and turn to 

a new system that is fixed to the shrinking solid phase of our mixture. 

Clearly the substantial time derivative in the old system equals the 

partial time derivative in the new system. Moreover we have to intro

duce a new local coordinate that must satisfy 

dw = (1 - e) dx 

Introduction in Eq 6.6 yields 

^ _ f J _ 1 = 3 _ r B(l-e) aP, 
U L 1-e J 3u l n 3u 

If P were a unique function of the porosity e the pressure gradient 

in the new coordinate system, dP/dw may be written as dP/de.de/dw, while 
3 -1 also (l-e)de = (1-e) d(l-e) . Introduction in the equation gives 

r 1 , 3 , B(1-e)3P' 3 f j _ n 
L 1-e } 3w x n 3w L 1-£J 

in which P' is the first derivative of P(e). 

Calling B(1-e)3P' - = Z> we obtain the "Fickian" form 

"3T ( T^i" ) = 'S« { Da? ( 1 ~ ) } (6.7) 

The latter equation is the equivalent of Van der Lijns equation 

(A. 46). 
Boltzmann (1894) showed (see e.g.Crank (1975)) that for certain 
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boundary conditions, and provided D is a function of e only, e may be 
i 

expressed in terms of a single variable w/lt2- and that Eq. (6.7) may 
therefore be reduced to an ordinary differential equation with one 

new variable n, where 

i 
n = \w/t2 (6.8) 

So that Eq. (6.7) becomes 

- , d 1 _ d , n d 1 . 
~ m an VF~ "d^ ^ ~&L "FF J (6.9) 

It is only if the initial and boundary conditions can be expressed in 

terms of n alone, and t and w are not involved separately, that the 

transformation (6.8) can be used. They can be used, for example, when 

syneresis of a thin slab occurs and the porosity at the deepest layer 

of the slab is still unchanged (i.e. during the penetration period). 

2 
If the transformation is allowed it also follows that w a t (for 

i 

constant e) and M a t2 ; Ml = shrinkage of a thin slab (see Fig. 6.1). 

Some methods of solving Eq. (6.9) are given in the literature 

(Crank (1975), Phillip (1969)). 

6.2 NUMERICAL SOLUTION 

The approach described in section 6.1 is not satisfactory for 

several reasons: we had to postulate P and B as a unique function 

of e. So the quantity D introduced in equation (6.7) should be 

exclusively dependent on e to allow an analytical solution. Both 

assumptions are untenable. As we have seen in Section 4.3.2.3 B 
changes with time, even if e remains constant. In Chapter 7 it will 

be shown that P changes with time as well. Since it is very unlikely 

that B.P' remains constant, this implies that D is time dependent. 

We now start the search for a numerical solution with a more 

general validity. In this section we report an explicite difference 

scheme. For that purpose we consider a thin slab of curd with initial 

thickness H devided into m thin slices of thickness Ä „-The original 
"-'° th thickness of the slices varies with the position, that of the k 
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whey 

Fig. 6.1 Schematic drawing of a thin slab of thickness H at t = 0 
and of thickness H. - A5, at t • T. The slab is divided in a number 
of slices that correspond with the mathematical grid. In the 
experiments the slab was in a horizontal position. 

slice being 1.2 times that of the (fc-1) . During the shrinkage the 

thickness H of the slab (and consequently the thickness of at least 

some of the slices k) change with time it) and with position in the 

slab (k; 1 « k 4 m). We define 

relative remaining volume {i) actual volume 
volume at t»0 

hk,t _ 1"e0 

'fc,0 1-e. k,t 

In Section 4.3.2.3 i was already defined in a different 

context as volume of concentrated milk/volume of original milk. 

Darcy's law for the flow of whey in the curd was given in Section 6.1 

For the present calculation it is rewritten as 

AP = str, n àx/B 

where str, is the liquid volume flux that flows from slice k into 

slice fc-1. Consequently we have AP = P. - P, , For (Aar/B) we intro

duce along the same lines Hih-jB,^) + C\/Sf e)}, being an inter

mediate value between the slices k and fe-1. With these substitutions 

the formula of Darcy turns to 
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In our model of the shrinking process the shrinkage is exclusively 

caused by the loss of whey. So we may state 

bk k,t = (strM,t- st%t ) A t 

Note that tJ%, is negative. Substituting the formula of Darcy we 

obtain 

M M pw,t ~F^ ( hw.* + h±A_ r1 -

Pk,t ~ Pfe-1,tr \ , £ fefe-1,t .-1 

In order to arrive at a more convenient calculation procedure we 

introduce dimensionless variables for the pressure P, the permeability 

B and the thickness h: 

\ t = \ t /P0>& = \ t /B0 ™d Lk,t = \ t /Ho , 

where PQ, BQ and HQ are the values of pressure, permeability and 

t o t a l thickness of the curd slab a t t = 0. Introduction of these 

reduced quant i t ies in the equation yields 

AL, . = Ax' US. .. . - S, .1 f JÇîliÉ. + - A ± l - 1 
C = AX {(Sfc+1 t~ S.A ( g ^ - ^ + - ^ ) 

<VW c ^ + i£^>~1} (6J0) 

We have introduced in t h i s formula the dimensionless time variable 

AX' = (2S0 P0 A*)/(n HQ
2) 
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The value of AX' was increased for each time interval by a factor 

1.005 to 1.05. During the calculation it was checked whether 

k atr. , A* 

"*.,—if-
being the difference between the shrinkage calculated by addition of 

the shrinkage of all the slices and the shrinkage calculated by the 

flow of whey out of the slab, which should be zero theoretically, was 
-9 smaller than 10 .If its absolute value was greater the time interval 

was lowered by 51. ., 

Finally Aff,/5Q was slotted versus K where M. = - EZAft, , and 

K = HAK' = \ (6.11) 

A major problem in the application of difference schemes to highly 

non-linear partial differential equations is that it is often difficult 

to prove stability and convergence to a true solution. Here too there is 

no such proof. 

However, in literature we find many succesful examples: e.g. Van 

der Lijn (1976), Kerkhof (1975), Schoeber (1976) and De Wit (1972). 

Moreover, the numerical method was checked by comparing with the 

results of the analytical solution whenever possible. Results with an 

unequally spaced 15 compartments slab were accurate within 2 1 . Further

more no substantial changes could be detected when the number of 

compartments or the time intervals were modified within limits. There

fore these solutions seem to be reliable. 

6.3 PARAMETERS (DEPENDENCE OF PRESSURE ON RELATIVE SHRINKAGE AND TIME) 

Equation (6.10) permits calculation of the change of thickness 

(Ai, , ) at any position k and at any time t if the conditions at that 

time (i.e. L-, ) are known for any k. To obtain numerical results, 

however, we still need values for the permeability (3) and the pressure 

(S). For the permeability the reader is referred to Section 4.3.2.3 

where the behaviour of the permeability as a function of shrinkage and 

time is already discussed. In the present section we will restrict 
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ourselves to a discussion of the pressure. As is discussed in 

Giapter 3, the pressure exerted on the whey is caused by the endogenous 

stress in the strands (P ) and by the weight of the matrix (P^): 

p = pS + F& 

As the matrix shrinks the pressure on the whey diminishes, since at a 

certain degree of shrinkage (i.e. when i = 1/3), syneresis stops, so 

P = 0. If only endogenous syneresis occurs, P = 0 means that the 

tendency of the gel to swell exactly compensates the tendency to 

shrink. If only gravity acts, P = 0 means that the elastic force 

resulting from compression of the matrix compensates the weight of the 

matrix. If P^ = 0, also P = 0 but it is not known in which way P and 

P° decrease with i. However, it must be assumed that as long as 

endogenous syneresis occurs (i.e. P > 0 ) , also P^ > 0. This is 

because a matrix with an endogenous tendency to shrink (P ) will also 

yield to any external force (such as P*). 

It may be so that P° = àp'g-h is independent of i and only 
s *" 2 

becomes zero when P does; however, it is more likely that P 6 will 

start to diminish at higher values of i. 
It is very likely that P. , will monotonously and rather smoothly 

decrease with increasing -i, . Therefore five trial functions were 

introduced, taking this into account. As a general form of our 

relation between P7 and i, , we adopt 

Fk,t = PD {a{ik,t " 1/3)2 + b(-%t " 1/3)} (6-12) 

with different values for a and b. As P, = P« for i = 1 we have 

Aa + 6b = 9. 

Four of our trial functions are now found by varying the starting 

value d(Pj* /PQ)/di at i = 1, that we call a. We see at once that 

c = (4a + 32>)/3. Solving a and b with respect to a we find b = 3 - a 
and a = 3/2e - 9/4. 

Introducing c = 3, 8/3, 7/3 and 2 successively we find the four 

parabolic trial functions represented in Fig. 6.2. The fifth trial 

function of Fig. 6.2 is defined as: 
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P(k,U/P(k,0) 

1.2-1 

O 0.2 0A 0.6 0 8 1.0 
h(k.l)/h(k,OI 

Fig. 6.2 Trial functions; S-shaped curve and (going upwards) o = 3, 
8/3, 7/3 and 2 (see text). Syneresis pressure as a function of 
porosity. 

pk t = 27Po {("i3 + 2*2 " *)/4} + ̂  (6-13;) 

which leads to ah S-shaped curve. 

For sake of simplicity, we assumed the effect of gravity either 

to diminish linearly with i or to be constant for i > \ and then to 

diminish linearly with i, P& becoming zero for i = 1/3. Other trial 

functions did not materially improve the fit between theory and 

results. P? depends, of course, also on the thickness of the layer 

above k. These considerations lead to the following formula for the 

pressure (on the whey): 

k 

- (? \o - ihk^ 
\ t - plt + *b J T0 t-^M " V3) (6J4) 

in which: 

P? = pressure caused by the weight of the slab at the bottom of 

the slab at t = 0. 

1 . 5 ( H + " 1/3) denotes the fraction of the pressure that is left 

in case P& decreases linearly with i in case P 8 decreases linearly withi. 

As will be shown later P and P* also depend on time when i is 

kept constant. In Eq. 6.11 P„ is substituted by P.. 
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7 SYNERESIS OF THIN SLABS (testing the model experimentally) 

7.1 INTRODUCTION 

As mentioned earlier (Section 6.1) the mechanism of syneresis is 

easiest examined if the flow of the whey and the shrinking occur along 

the same axis (one-dimensional model). Moreover, the flow and 

shrinkage should not be disturbed by side effects. This can be 

achieved by using relatively thin slabs of curd, so that a region in 

the centre of the slab remains plan parallel (i.e. within the accuracy 

of measurement). 

7.2 METHODS 

When curd is formed in a vat and the curd keeps adhering to the 

walls it will not shrink by syneresis. Also at the curd-air interface 

the casein matrix will not shrink, because this surface is not easily 

wetted. Syneresis starts after the curd is cut or the surface is wetted 

(see Section 2.6). The latter was done in the experiments. 

Drops falling on the curd surface and whey flooding the dry 

surface easily damage it. Therefore the first portion of whey (or 

water) was put onto the surface by means of a fine spray. 

Two methods were employed for measuring the shrinkage of a slab : 

I "Shadow" method 

The apparatus used is shown in Fig. 7.1. The triangular blade was 

slid down until it touched its shadow on the surface of the curd. The 

height was read off on a scale gauged in 0.1 mm. The first reading was 

done before the whey was poured onto the curd. By this method a number 

of vats, which were stored in a thermostated tank could be examined 

simultaneously. Every 5 to 10 minutes a vat was placed under the 

apparatus and the height was measured. After about 2 hours had relapsed 

longer intervals were taken. The radius of the slab was 9 cm. This 

method was especially used to follow the shrinkage of a slab for a 

long time, allowing the slab to shrink to equilibrium. 
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I 
light source 

lens W. 

Fig. 7.1 Schematic drawing of the apparatus uded to measure the 
syneresis by the shadow method, with field of vision drawn in the 
circle. The radius of the slab was 9 cm. 

II "Microscope" method 

A microscope with oblique illumination, employing a water-

immersion objective was used in conjunction with a specially designed 

thermostated vat holding the slab of curd; see Fig. 7.2. At a fixed 

time the curd was wetted by first spraying and then flooding with 

whey. Syneresis then started. The microscope was focussed as soon as 

possible on one of a few corundum grains sprinkled on the surface of 

the curd and the focussing height was read on the scale of the 

micrometer knob of the microscope. The first reading could be made one 

or two minutes after starting the wetting. Every 30 seconds the 

microscope was focussed again and the (reduced) height of the slab was 

read off. After 10 and 20 minutes the time interval was doubled, and 

later on even longer time intervals were taken. The depth of focus was 

M pm and one unit on the microscope scale corresponded with 2 ym. 

The radius of the slab was 5 cm. This method was more accurate than 

the previous one in the semi-interval between 1 or 2 minutes and about 

1 hour, though the absolute zero could not be determined. 
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objective I 

water -—• two-fluid spray nozzle 

whey 

tube 

curd 

Fig. 7.2 Schematic drawing of the apparatus used to measure the 
syneresis by the microscope method. The radius of the slab was 5 cm. 

7.3 RESULTS AND DISCUSSION 

7.3.1 Testing the model 

The first experiments were done with slabs of various diameter 

and height, in order to find the influence of these variables on the 

shrinkage in the middle of the slab, where the syneresis was measured. 

The shadow method was used. As the slab stuck to the wall the height 

of the slab remained the same there and shrinkage was at maximum in 

the middle of the slab. We found that if the radius of the slab was 

v|0 times the original height of the slab, the shrinkage in the 

middle of the slab remained uninfluenced by the size until equilibrium 

was reached. Then an area in the middle of the slab with a radius of 

2 to 3 cm remained flat (difference in height less than 0.1 mm). 

In Fig 7.3 double log plots of the results of the shadow method 

are given for slabs of different thickness under standard conditions 

(see Section 2.7). A curve was manually drawn through the experimental 

points resulting from 3 to 10 replicate experiments. The average 

deviation of the experimental points from the curve was 0.1 mm. The 

graphs show that initially the shrinkage of the slab was independent 

of its original thickness. The thinner the slab the sooner the curve 

deviated from those of thicker slabs. The deviation is expected to 

occur after the penetration period, i.e. as soon as the slabs also 

start to shrink significantly at the bottom. 

After about one day the thickness of the slabs had decreased to 

about 1/3 (range 0.27 - 0.37) of the original value. The results of 
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time (h) 

Fig. 7.3 Shrinkage (Äff) as a function of time (both on a log scale). 
Parameter is the original thickness of the slab (in mm). The dots (•) 
indicate 2/3 of original thickness. Numbers indicate original thickness 
of the slab itself. 

the slabs of 10 and 20 mm were fitted to a straight line by regression 

analysis; here r = dlogAH/ dlogt = 0.78. 

Fig. 7.4 shows double log plots from 4 experiments under standard 

conditions with the microscope method. The thickness of the slab was 

5 mm. For the shrinkage of the slab during the first minute 0.04 to 

0.08 mm was taken. In this way the results of this method agreed well 

with the results of the shadow method for 0.2 h < t < 3 h where both 

methods were used. 

For t < 0.1 h, r is not reliable. As will be reasoned later r is 

expected to be "x-0.5 for small values of t. The results obtained with 

this method are not at variance with such a value. 

Fig. 7.5 shows W a s a function of * on a linear scale. Again the 

experiments were done at standard conditions and the microscope method 

was used. The thickness of the slabs was 5 mm except for one which was 

10 mm. 

Fig. 7.5 suggests that the shrinkage rate of the slabs tends to 

be very high as t •*• 0. 

Fig. 7.6 shows calculated results from the model (Chapter 6). 

Because B and, as will be discussed further on, also P depends on t 
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Fig. 7.4 Shrinkage of a slab as a function of time (both log scale). 
For the shrinkage during the first minute 0.05 mm was taken. Original 
thickness of the slab was 5 mm. 

independently of i and moreover P is determined by the sum of P and 

P^, the graphs can only be used for one combination of the characteris

tic time t/K = n HQ
2/(BQ P Q ) and Pf/po* 

For sake of clearness not these terms which were used in the 

calculation are noted in Fig. 7.6, but specific values of n, S Q and 

HQ. n and s were taken as typical for the experiments at standard 

time Is) 

Fig. 7.5 Shrinkage of 11 slabs as a function of time. Original 
thickness of the slabs was 5 mm except for one slab which was 10 mm. 
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conditions. For Ä„ 10 mm was taken, but calculations with other values 

gave analogous results. The other parameters were varied. Although the 

graphs are only correct for one combination of t/K and P|[/PQ, they 

approximate calculations with other values of t/K and P|f/Pn-

Generally 101 deviation in the curve results from a 50% deviation of 

t/K or a 10°* deviation of P£/PQ. On the X-axis t = 1 h is indicated 

with an arrow. In all figures the experimental result with a slab of 

10 mm thickness is indicated with a broken line. 

The results of the calculation were only compared for t > oO.1 h 

and bH/Hç. < v|/3. As stated before the value of H cannot be determined 

accurately for t < 'UJ.I h. The value of H(t < 0.1 h) that can be 

expected on theoretical grounds will be dealt with later. For AÄ/Ä« > 

M / 3 the model will be less accurate. The permeability for i < 0.5 is 

found by extrapolation. Moreover the permeability of a gel formed by 

renneting ultrafiltered milk may be somewhat different from that of 

a gel formed by syneresis at lower values of i (if the permeabilities 

differ). 
s s Though all five trial functions for P* = P, Ai) (see Fig. 6.2) 

were used in the calculations, only three are shown in the graphs of 

Fig. 7.6. For the top curves in each graph (except Fig. 7.6 G and H) 

the S-shaped curve was used, for the middle curves a = 7/3 and for the 

lower curves a = 3. The curves for a = 2 and a = 8/3 gave comparable 

results. 

Fig. 7.6 shows the results of the calculations. The shape of the 

trial functions for P, = P, Ai) has only a small effect on the 

results. The difference is not only determined by the average value of 
Fj, + 0-)/PQ. If Pf f {i) decreases more slowly with decreasing i , the 

gel near the interface curd/whey will shrink faster (see Fig. 7.8). 

Thus the permeability will also decrease more here. The shrinking of 

deeper layers will therefore be retarded. 

Fig. 7.6 shows the results of calculations if B and P are 

independent of time (at constant i). As is to be expected from Eq. 6.9 

F = 0.5 (in this case) during the penetration period, i.e. the period 

where the total shrinkage of the slab is independent of the thickness 

of the slab because the shrinkage profile has not yet reached the 

deepest point of the slab. 
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3 S K -7 3 S i« - 1 3 S i« 

- I 1—I I I I, I U I I L L I I I I I I I I I I I M l 
3 5 ie - 2 3 S i« - 1 . 3 S 1» »0 

K- b E I g y h H.*) 

B = B (constant 

with time) 

Trial functions: 

e = 3, 7/3 and 

S-shaped curve. 

oê = 0. 

B = B{t) (see 

Eq. 4.16). 

PS
0 - ! Pa. 

Trial functions: 

o = 3, 7/3 and 

S-shaped curve. 

Pg = 0. 

B = B(t) (see 

Eq. 4.16). 

F® = 0. 1 Pa. 

Trial functions: 

a = 3, 7/3 and 

S-shaped curve. 

=8 1 Pa. 

Trial function: 

1 . 5 t f M - 1/3) 

Fig. 7.6 Experimental ( ) and calculated ( ) syneresis. HQ = 10 
B. = 0.23 pm2. n = 1 mPa-s. The arrows indicate t = I h. 
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I I I I I I I I 

1« » 0 

- 2 3 5 , . - . 
K- t 8,13 V (a H.1) 

"Î 

PQ~ 0.5 Pa. 

Trial functions: 

o * 3, 7/3 and 

S-shaped curve. 

1 Pa 

Tr ia l function: 

1.5(iM- 1/3) 

P0 » • Pa-

Trial functions; 

c = 3 , 7/3 and 

S-shaped curve. 

P\ - 1 Pa. 

Trial function: 

1/3) 

p ô • 2 Pa-
Trial functions: 

o - 3, 7/3 and 

S-shaped curve. 

P^ = 1 Pa. 

Trial function: 

1.5« f c t - 1/3) 

Fig. 7.6 Continued. 5 -• B(t) (see Eq. 4.16) 
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PQ 0.8 Pa. 

Trial function: 

a = 3. 

=g 0.8 Pa. 

Trial function: 

for i > J. 

6(ife É - 1/3) 

for 1/3 < i < \. 

p o = K 2 P a -
Trial function: 

a = 3 . 

P? « 0.8 Pa. 
D 

Trial function: 
Pg 

D8 
^ 0 

for i > \. 

6 (H 1/3) 
'M 

for 1/3 < i < £. 

Fig. 7.6 Continued. Upper full curve: P independent of time at 
constant i . Lower curve: Eq. 7.4 used. B - B(t) (see Eq. 4.16). 

If B increases with time at the rate given in Eq. 4.16, the 

results are as in Fig. 7.6 B. r increases from 0.5 for t < 0.01 h to 

^0.8 for K = 0.05. 

Up until here we have neglected any effect of gravity (P^ = 0). 

If only P 8 were active (i.e. Ps = 0 ) , the initial r would be 1 ; if 

P 8 were zero and only Ps were active, initial r would be 0.5 (see 

above). If both act, as is the normal case in our experiments, r will 
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be in between. Figs. 7.6 C-F show results for finite values of Pp and 
s s (J 

P«; the curves can significantly improve and P„ = P? = 1 Pa gives the 

best one. Here P** varies from 0 to Pr from top to bottom; see Section 

6.3. In these examples we assumed that P? , = Pf Q (a:) 1.5(i, . - 1/3), 

where x is distance from the top of the slab; in other words P8(i) 

linearly decreases with i until i - 1/3. In Figs. 7.6 G and H a 

different assumption was made, viz . P? = P? n for i > \ and 
a n ' ' 

K t = Fk 0 ^ 6 ^"k t ~ 1^3-' ̂ or 1/3 < i < \. This assumption may be 
more realistic. However, no significant improvement of the fit is 
attained. The higher average P may be offset by the more rapidly 
decreasing B near the curd/whey interface. 

Still r = 0.5 for t ->- 0. This is to be expected since at the 

start shrinkage only occurs very near the surface of the slab and P^ = 

0 at the surface. As t increases P decreases fastest near the surface, 

deeper layers of the slab come into play and P% becomes more important. 

Near the end of the penetration period (when ÙJl/Hç. = 0.1) the profile 

of P is roughly the same as the profile of P*, either has about the 

same contribution to the syneresis, and r will be about midway between 

0.5 and 1. 

It is also possible that P depends on time independently of i. 
Approximate values of this function P(t) can be obtained from the 

relation between P„ and dAH/dt. If the influence of dB/dt and dP/dt 

and of pf can be neglected we find the following relation, deduced 

from the numerical calculation as shown in Fig. 7.6 A: 

Where Q depends on the trial function Ps(-t) and varies between 0.58 

and 0.62. Differentiation yields: 

d^/y d^/y . d* lfl K-i Bo pSo r7 n 
— d T ~ = —dx dJ=2QK " T T t7-1-) 

nff0 
Elimination of #Q yields: 

a r - » « ^ ' (7-2) 
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Or, rewritten: 

0 
n t AùJl/àt ,2 (7.3) 

As long as B and P depend on i only which is nearly true for small t, 

penetration theory may be applied for small t (Section 6.1) and in 

that case r = 0.5. As seen in Fig. 7.6 this is indeed found, both in 

the experiments and from the numerical solutions, even up to t = 500 s. 

We conclude therefore that Eq. 7.1 is indeed a useful approxima

tion for the syneresis during the first 10 minutes. We did some 

experiments using the microscope method in which we varied the period 

between rennet addition and the start of the syneresis (t ). As shown 

in Fig. 4.4 we also did this in the permeability experiments. The 

results of the calculation of PQ from Eq. 7.3 are shown in part of 

Table 7.1 and Fig. 7.7. For the model the equation: 

Ps = Ps(i) (0.25 - 0.25 exp (-9.9 x 10 - 4 t/s) + 

+ exp (-6.6 x 10 t/s) (7.4) 

was used for all values of i. (although it was only determined for 

i = 1). Results are shown in Fig. 6.7 G and H. The results fit poorer 

1A-

10 

Q6 

02-

-v u 1 2 3 4 5 18 
time after rennet addition ( h) 

Fig. 7.7 P as a function of time after renneting under standard 
conditions as calculated with Eq. 7.3, in which Q = 0.6 ( ). Solid 
and broken ( •) lines follow Eq. 7.4. The solid line was used in the 
model (see Fig. 7.6 G and H). ( ) is an assumed extrapolation. The 
arrow indicates the clotting point. 
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to the experimental results. It should, however, be taken into 

account that the stress in the strands either relaxes by syneresis 

or by micro-syneresis, while application of Eq. 7.4 implies, as it 

were, that relaxation occurs twice. Therefore it is not to be expected 

that Eq. 7.4 holds for i « 1. 

Of course it is possible to fit the results of the calculations 

with certain assumptions exactly to the experimental results. We 

could not (directly) determine B{i,£) and P(i,t) for all values of 

i and t. It is also possible that B and P depend on di/dt. Better 

results can for instance be obtained if B or P or both increase more 

strongly with time for t - \ h. In addition to the total syneresis, 

shrinkage of the slab as a function of distance below the curd/whey 

interface (x) is of importance. We tried to measure it, but did not 

succeed. Nevertheless, model calculations may offer some interesting 

results. Fig. 7.8 is a typical example of such results. Here PQ => P^ = 

1 Pa combined with Eq. 7.4 was taken. P has the largest effect for 

smaller values of x while P* has the largest effect on the shrinkage 

at the bottom of the slab. This explains why the curves show a 

maximum. Such a phenomenon (stronger syneresis at the centre of a 

piece of curd than at some distance of the centre) will never occur 

in curd pieces floating in whey. It is a consequence of our experimen

tal conditions, where the effect of gravity is comparitively large. 

Fig. 7.8 Shrinkage profiles of a slab at different values of the 
dimensionless time (X) and different trial functions for PS (-£)/?§. For 
t/K - 4.35 x 105, K = 0.085 and 0.12 correspondends to t - 10 and 14 h 
respectively. X/HQ is the relative distance below the curd/whey inter
face a = d(Ps/P§)/dt at i » 1. S means S-shaped trial function Ps(i)IPff 
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7.3.2 Effect of some variables 

Syneresis rates were also determined as a function of some 

external Variable (see Table 7.1). 

A) Pretreatment of the milk 

In the first series the milk powder was dissolved and stirred 

for 1 h at different temperatures. In the second series the milk was 

cooled at 4 °C after dissolving at 45 °C and stored until the next 

day. The milk was then heated for 1 h at different temperatures before 

rennet was added. In both series there was a significantly higher 

syneresis rate in the gels of the milks that had been heated to 45 C 

as compared to 30 °C. 

If the milk had been renneted the same day the higher temperature 

might speed up attaining equilibrium (especially of Calcium distri

bution between micelles and serum) in the milk after dissolving 

(Jenness & Patton, 1959; Walstra & Van der Haven, 1979; Snoeren, 

personal communication). If milk has been cold stored ß-casein 

migrates to the micelles when the temperature is increased (Schmutz & 

Puhan, 1981). However at temperatures above 30 °C no further migration 

is found. The migration occurs within minutes (Van Hooydonk, personal 

communication). A better explanation for the effect of temperature is 

again that the distribution of Calcium among micelles and serum 

depends on temperature history. 

B) Temperature and pH during the experiment (including renneting) 

In accordance with general experience, the syneresis rate 

increased with increasing temperature (27 - 33 C) and with decreasing 

pH. This was caused by increasing permeability and increasing syneresis 

pressure. At 27 C H was almost linear with t above t = 500 s. 

According to the model this would mean that P « P°. When after 

renneting the temperature is lowered to 15 C or below no syneresis 

occurs. So both P and P° must be zero. The gel becomes firmer if it 

is cooled (Van Hooydonk, personal communication) and the static 

pressure caused by gravity is presumably counteracted by a yield stress 

of the gel. 
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Table 7.1 Effect of some external variables on syneresis rates of rennet gels. # Q = original thickness, n = 
number of experiments. Atf/At • {H(t =* 3000) - H(t « 500)}/25 s. So from tables in Chapter 4, from inter- or 
extrapolation, or from the most similar treatment (e.g. effect of pretreatment on BQ was not determined). 
P§ calculated with Eq. 7.3 (Q = 0.6). 

factor varied 

(mm) 

5 
2 
5 

10 
5 
5 
5 

5 
10 
5 

10 
5 

5 
5 

5 
5 
5 
5 

10 

n 

2 
1 
8 
1 
5 
4 
3 

5 
1 
4 
4 
3 

3 
3 

5 
3 
5 
2 
2 

100 dAff/dt 
(t-500s) 

13(12-14) 
19 
22(17-22) 
22 
20(17-22) 
22(20-25) 
23(20-27) 

10(09-11) 
12 
31(29-32) 
32(29-34) 

1*0 

28(26-29) 
20(18-23) 

15(12-17) 
24(22-26) 
21(18-24) 
13(13-13) 
18(16-20) 

ÄS/Äi. 

12(11-12) 
12 
16(12-17) 
19 
18(17-20) 
19(18-20) 
18(17-19) 

10(08-11) 
11 
24(22-25) 
27(26-30) 

^0 

21(20-22) 
16(12-18) 

16(14-18) 
21(19-22) 
13(12-15) 
10(09-10) 
12(11-13) 

100 dAff/d 
(t-3000s) 

11(11-11) 
8 

14(11-15) 
18 
15(14-16) 
16(15-17) 
15(11-17) 

10(10-11) 
10 
19(18-20) 
24(32-26) 

%o 

16(15-17) 
15(13-16) 

16(14-16) 
18(16-20) 
12(10-14) 
8(07-08) 

10(09-11) 

> 
um ) (Pa) 

pretreatment 
same day: 1 h at 30°C 

day before: 0.5 h at 30 C 
" 45°C 

temperature 
27°C 

33°C 

cooled to 5 or 15 C 

pH* 
6.55 
6.75 

time after rennet ing 

0.75 h 
2 h 
4 h 

M 8 h' 
M 8 h" 

water instead of whey5 

CaCl- addition 
500 ppm CaCl,.2H,0 

1600 " " 
3200 " 

CaCl,(const, clott. t.)* 
250 ppm CaCl,.2H,0 
500 " " 

rennet concentration 
200 ppm 

1000 " 

acid gels (pH 4.6) 

time after preparation 
0 h 
1 h 
3 h 

M 8 h 

5 
5 
5 

5 
5 

5 
5 

1 30 
1 40 
1 45 

1 24 
1 29 

1 20 
1 22 

18 
24 
28 

18 
22 

15 
16 

25 
19 
21 

15 
22 

13 
14 

220 
220 
220 
220 
220 
220 
220 

180 
180 
280 
280 
220 

270 
200 

200 
250 
330 

1000 
1000 

0.4 
0.9 
1.2 
1.2 
1.0 
1.2 
1.3 

0.3 
0.4 
1.9 
2.0 

•xd 

1.6 
1.1 

0.6 
1.3 
0.7 
0.09 
0.2 

220 
230 
230 

230 
250 

250 
230 

2.3 
3.9 
4.9 

1.4 
1.9 

0.9 
1.2 

5 
5 
5 
5 

1 31 
1 16 
1 9 
1 4(2-5) 

19 
8 
4 
4(2-6) 

11 
5 
3 
1(0-1) 

190 

120 

2.87 

0.8 
0.27 

0.07 

i. Day on which the sample was prepared and time(min.) and temperature (°C) treatment after the powder was 
dissolved, or, in case the milk was prepared the day before, the milk was stored at + 4°C and then heated 
at the indicated time (min.) and temperature (°C). 

2. Renneting and syneresis at indicated temperature, except experiments at 5 and 15°C which were renneted at 
30°C. 

3. Original pH: 6.65. (pH: 0.1 unit lower or higher) BQ from tables in Chapter 4, from inter- or extra
polation, or from the most similar treatment. 

"i. Time after renneting: 16 to 20 h. One of these experiments proceeded f or 2-3 h. After 1 h the curves were linear. 
5. Instead of whey water was used to moisten and flood the surface of a normal gel. 
6. Rennet concentration adjusted to get the same clotting time (15 min.) as with 500 ppm rennet and no 

calcium addition. _ _|_ 
7. Assuming BQ/T\ = 190 ym2-Pa l-s 1 
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C) Water instead of whey 

If water was used on top of the slab instead of whey syneresis 

was not significantly different. It may be expected that dilution of 

whey also has little effect. There seems to be no appreciable osmotic 

effect on syneresis. 

D) CaCl2 

Syneresis rate increased with increasing CaCl, addition (250-

3200 ppm CaCl2.2H20). Würster (1934) found a decrease in syneresis rate 

if more CaCl~ was added. It must be noted that also the pH is decreased 

by adding CaCl-. When the pH is adjusted LBjH- decreases with 

increasing CaCl- addition (0-1500 ppm CaCl-^H-O) (Cheeseman, 1966). 

E) Acid gels 

Qualitatively, the effect of the variation of the period between 

forming the gel and the onset of syneresis [t ) had the same effect 
cL 

on acid and rennet gels. BQ, however slightly decreased with t in 

acid gels, while it increased in rennet gels. These results suggest 

that the increase and decrease (relaxation) of P occur faster in 

acid gels. 

7.3.3 The relation between clotting of the milk and permeability 3 

syneresis (pressure) and rigidity of the owed 

In Chapters 4, 5 and 7 the influence of various factors on B, P, 

syneresis rate and rheological behaviour was determined. In the 

literature more information about this subject and about the influence 

on the enzymic and aggregation stage of renneting is found. We will 

discuss all the results in connection to each other. It should be noted 

that we speak of cross-linking when strands connect with one another, 

and that formation of bonds is meant to occur on a molecular scale 

between micelles. The trends observed are shown in Table 7.2. The 

curves are only meant to illustrate trends, and are thus very 

approximate; moreover the precise relationship may vary with other 

conditions. 

When we compare the various results the following considerations 
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Table 7.2. Effect of some variables on clotting, permeability, 
syneresis (pressure) and rigidity of curd. Very systematic and only 
meant to illustrate trends; arrows indicate direction of change only; 
(....) indicates probable relation. MP = (caseino-) macropeptide. 
dA/dt • aggregation rate (all K-casein split). Be = permeability one 
hour after rennet addition. dB/dt( ) = rate of change of Be with 
time (no deformation). dB/dt( ) = rate of change of B with time (with 
deformation). P| = initial syneresis pressure. dAff/dt = shrinkage rate 
at 500 s after start of syneresis &H<*/H0 = maximum syneresis. rig. = 
rigidity, measured with different instruments; ( ) = rigidity after 
1 h; = ( ) = rigidity after 4 h. t = with torsion flux method. 

acid gels 

factor varied 

deformation (y) 

temperature (°C) 

pH 

rennet cone. ( /oo) 

range 

0-1 

0-40 

6-7 

0-1 

clotting 

AMP 
dt 

M ,y 

1.2 

/ 

&A 
dt 

1,2,1 
3 / 

c* 
7 

permeab. 

*e 

if 

/ 

X 
r~ 

dB 
dt 

1^ 

v v - - . 

syneresis 

n 

^y 

V 

f— 

dAH 
dt 

y 
_s 

K 

^o" 

/ 

^ 

V> 

rig. 

^*. 
5^"^ 

•'T 
CaCl2 add. (%) 

a) const.rennet c. 

b) const, clott. t. 

c) cons. pH 

*a (»») 

protein cone. (%) 

fat content (%) 

0-2 

0-2 

0-2 

i—10 

3-7 

0-4 

/ 

•i ,k , 

5">i'o 

/ 

/. 

-.-4 

y 

— 

'"•••-I 

r-
S 
— 

% 
•%>_ . 

'"••Ù. 

^ , 

^ 

'"-•i 

A. 
/•••... 

'•••> 

/\-

"'•A 

/•••... 

/"-... 

" " • • • > 

/N^_ 

? 

"'"••A 

A. 

/^. 
10 

— 

N 
N 

>/ 

jt 

F r 
.jS 

If 

time after 
preparation (h) 

-1-20 =^VV 
l. Foltmann, 1959; 2. Berridge, 1942; 3. Van Hooydonk, p. c. ; "•. Green & 
Marschall, 1977; 5. Hossain, 1976; 6. Scott Blair & Burnett, 1957; 
7. Walstra & Van der Haven, 1979; 8. Dalgleish, 1980; 9. Beeby, 1959; 
io. Cheeseman, 1962; n. Nitschmann & Bohren, 1955; 12. Torado & Alais, 
1969; 13. Van Vliet, 1982; it. Van Vliet & Dentener-Kikkert, 1982; 15. 
Kowalchyk & Olsen, 1977. 
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should be noted: 

The rate of the enzyme reaction does not affect the final 

properties of the paracasein micelles (PCM). But if the rate is 

varied and the measurements are started at a constant time after 

rennet addition this may have an affect on the results, since not all 

K-casein may have been split. For the effect of the varied factor on 

the aggregation rate (dA/di) it is assumed in Table 7.2 that this is 

done in an experiment in which all the K-casein is split. 

The micelles aggregate since the enzymic splitting of the K-casein 

causes a decreased repulsion between the micelles. Aggregation may be 

due to Van der Waals attraction or to specific bonds (e.g. electro

static ones), or both. Little is known about these interactions between 

micelles. A low activation free energy for the aggregation of micelles 

(whether caused by weak repulsion or strong attraction) will both 

enhance the clotting reaction and the formation of new cross links 

between strands. 

It must be assumed that an activation free energy exists for the 

breaking of bonds and thus of strands (at least the bond free energy). 

In Chapter 5 it is already discussed that the relaxation time of the 

bonds is a few times 1 0 s . The variables mentioned may also affect 

this free energy. To which extent the variation in this activation 

free energy affects the observed effects is not clear. We assume the 

influence to be small for most variables. An exception may be the 

effect of CaCl„ (see later on). 

If, because of a different composition or temperature more bonds 

exist between micelles, this does not imply that the clotting reaction 

or the formation of cross links in the matrix are enhanced also. But 

fewer strands will break under stress. Consequently, micro-syneresis 

is decreased and the gel will be firmer. 

An increase in the number of cross links results in a higher 

stress in the strands and a more rigid gel. 

The number of "spoiled" strands (i.e. strands only connected on 

one end with the matrix) decreases by cross-linking. 

The relation between the varied and the measured factors can be 

explained as follows: 
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A) Deformation (by shear strain) 

The effect of deformation is discussed in connection with the 

other variables and in Section 4.4. Generally, deformation causes an 

extra stress on part of the strands. Strands may break. In this way 

the stress in the strands causing the syneresis pressure may faster 

relax. Deformation as such will hardly affect the permeability. 

However, if some strands break the broken strands separate (as a 

result of the relaxation of the stress in the surrounding strands) and 

cross-linking of the broken strands may occur; this results in larger 

pores hence in an increased permeability. 

B) pH and temperature 

If the pH decreases or the temperature increases the activation 

free energy for contact between the micelles probably decreases. It is 

well established that the voluminosity of the micelles decreases with 

increasing temperature (see e.g. Walstra, 1979) or decreasing pH 

(Walstra & Delsing, unpublished); this may go along with increased 

Van der Waals attraction and decreased steric repulsion. A change in 

pH may influence the electrostatic interaction. Lower pH and higher 

temperature enhance the clotting reaction and, the formation of new 

cross links between strands in the network, and between "spoiled" 

strands in the network. Thus the permeability will increase faster. 

B is also larger because of a shorter clotting time. An increased 

rate of cross-linking will result in an increased stress in the strands 

and a faster increase of the rigidity of the gel (Hossain, 1976). If 

strands break because of deformation, the increased stress and the 

lower free activation energy will locally result in wider pores (i.e. 

B increases). A 0.2 units decrease in pH roughly gave a 501 increase 

in rate for all phenomena, while a 6 C increase in temperature gave a 

two - to five fold increase in all rates. This again points to a close 

relation between all phenomena. 

The higher permeability and higher syneresis pressure cause a 

higher syneresis rate. The final volume (A5/50) will decrease because 

of the lower voluminosity of the micelles (Walstra, 1979; Waltra & 

Delsing, unpublished). 

The effect of temperature on the rigidity of the gel after 4 h 
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is not clear. Hossain (1976) found the same rigidity in gels renneted 

at 28 and at 31.6 °C after 2 h but at 28 °C the rigidity was still 

increasing. He and Torado & Alais (1969) found a decrease of the 

rigidity at temperatures above 30 C. If a gel formed by renneting at 

30° C is subsequently cooled, it becomes more rigid (Van Hooydonk, 

personal communication). An explanation for the latter results may 

be that by cooling the voluminosity of the micelles increases (e.g. 

Walstra, 1979). It is not inconceivable that besides the temperature 

of measurement that of gel formation affects its rigidity. 

As the syneresis rate is about zero if the gel is cooled to 5 

or 15 C we conclude that P and P° are zero at these temperatures, 

unless h is very large. P g will only act if the pressure caused by 

the weight of the matrix (which depends on Ap g h ) surpasses the 

yield stress or if P > 0. With some simplification P g would either 

be zero or significantly larger than zero. If the temperature is 

increased P^ will become positive at a certain temperature; so P° will 

also become significant, independently of h . Moreover the yield 

stress will decrease, so P° will become significant below a certain 

distance from the top of a gel (h ) , irrespective of P (the critical 

h will be smaller for a higher temperature). Table 7.1 shows that 

dAfl/di changes much less with time at 27 C. As discussed before, this 

can be caused by P° being large compared to P . Calculation of P„ 

indeed yielded a lower value (0.3 and 0.4) while P? was 0.4 and 0.8 

for #„ = 5 and 10 mm, respectively. At higher temperatures P does 

increase while P° would remain constant, thus r decreases. 

The effect of acidity on dB/dt (obtained by the tube method; see 

Table 4.7) deviates from the results in Table 4.9 (obtained by the 

torsionflux method). This can be explained by a higher rigidity of 

the gel resulting in less deformation in the tube at constant dP./dx 

as the pH is decreased. 

C) Rennet concentration 

Increasing rennet concentration will result in an increasing 

enzymic reaction rate. The final result however will be the same if 

concentrations are not extreme. If the period between rennet addition 

and measurement is kept constant, rennet concentration may have some 
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effect, especially if the measurements start in an early stage of the 

formation of the matrix. In such an early stage, the gel is not yet 

Completely formed and at that time the greatest changes occur. 

D) CaCl2 addition 

Increasing the amount of CaCl- added increases the rate of 

coagulation of micelles. The increase in the rate of coagulation is 

only caused by a decrease of the pH. If the pH is kept constant the 

clotting time is constant too (Cheeseman, 1962) except for low Ca 

concentrations (< 10 mW) (e.g. Green & Marschall, 1977; Yamauchi & 

Yoneda, 1978). 

Since the rate of coagulation increases at increasing CaCl-

addition, one would expect that as a result of a lower activation free 

energy of the micelles for coagulation also the permeability would 

increase more (increasing B, dB /dt and dB/dt). This is not so. The 

activation free energy appears only to be lowered by a decrease in 

pH. Apparently the extra Ca ions are only involved in the formation of 

extra bonds between molecules of already aggregated PCM. This results 

in stronger strands. Fewer strands will break if stress is exerted 

on them. This is in agreement with the experiments of Yamauchi & 

Yoneda (1978). The phosphorylated Calcium caseinate solutions coagulated 

almost as fast as native Calcium casein at Calcium concentrations above 

20 mW. The yield of coagulated protein was the same for both caseins. 

Calcium content of the gel made of dephosphorylated casein was less 

than one fourth of that of native casein. Dephosphorylated casein gave 

a much softer gel than native casein. We conclude that both phosphate 

groups and Calcium are involved in the stronger bonds between the 

micelles. As a consequence of the decreased activation free energy, 

caused by pH reduction more cross links form, which results in a higher 

syneresis pressure. Also the rigidity increases as a result of CaCl~ 

addition (Scott Blair, 1957; Hossain, 1976). This is probably not 

caused by an increased number of micelles being bound to others, but 

by an increased number of bonds between any two touching micelles. 

E) Time after rennet addition 

The greatest changes in the matrix occur shortly after the matrix 
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is formed, since many "spoiled" strands still will be available and 

more bonds between already aggregated micelles can still be formed. 

The strands become less frayed (so B increases and dB /dt decreases) 

and stronger (so dB/dt decreases and the rigidity (ff') and (GQ) 

increases). 

After a few hours B and G' still increase, though at a lower rate, 

and P^ decreases. This can be explained as follows: There exists a 

distribution of yield stresses in the strands of the matrix. The weaker 

bonds between aggregated micelles cannot resist the contracting stress 

of the matrix. So they will break. The resulting "spoiled" strands will 

cross-link with other strands. This results in a less homogeneous 

matrix (increasing permeability), relaxation of the stress (decreasing 

£ Q ) and more rigid strands (increase in rigidity). This process will 

continue as long as there is a distribution of bond strengths between 

the aggregated micelles and as long as the overall stress is larger 

than the yield stress of the weakest bonds. 

F) Protein concentration 

Concentration of protein was achieved by ultrafiltration (see 

Chapter 2). A higher protein concentration will result in a higher 

rate of splitting (Van Hooydonk, personal communication). Just as in 

the case of rennet concentration, this will influence the other 

phenomena. 

Van Hooydonk (personal communication) found an increase in the 

initial rate of change in rigidity (a measure for the aggregation 

rate) with concentration in the milks which were renneted normally, 

i.e. not all the K-casein is split when aggregation starts. If all 

the K-casein is split there is no indication that thé activation free 

energy for the formation of bonds depends on the PCM concentration. 

Hence,the coagulation can be described by a bimolecular reaction 

according to Smoluchovski (Overbeek, 1952). Thus the aggregation rate 

is proportional to the PCM concentration squared. The influence of 

the enzymic reaction rate and of the aggregation rate on B~, P!!, 

syneresis and rigidity, as a change in rennet concentration, appeared 

to be small. It is expected to be similar in this case. The effect 

of protein concentration on BQ and dB/dt is discussed in Chapter 4. 
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We did no experiments in syneresis with varying initial protein 

concentrations. Cheeseman (1962) found a decrease in ^MJ^Q if t n e 

concentration was increased. This is to be expected since the final 

concentration will to a lesser extent be influenced by the structure 

of the matrix (see effect of £ ) . Green (1981) found that the basic 
3. 

structure of the matrix was laid down during the curd forming process 

and was not fundamentally altered later in cheesemaking. However, her 

results do not show whether there is an effect on ÛHJHQ. A S is 

generally the case, the rigidity increases with increasing protein 

concentration (see Fig. 5.3). After 1 hour an S-shaped curve is 

obtained (see Table 7.2). This will be caused by a decreased rennet/ 

casein ratio at higher casein concentrations, which results in a slower 

firming. 

G) Fat content (unhomogenized) 

If the fat content increases, the ratio of rennet to casein will 

slightly increase (at constant rennet addition to the milk). The 

permeability slightly decreases, probably due to a decrease in 

porosity. Also dB /dt will decrease, as a smaller part of the solids 

can change in structure. dB/dt decreases as the gel will be slightly 

weaker if part of the matrix is replaced by fat globules that are not 

part of the matrix.(The matrix will be less dense.) This will also 

cause a lower P!J. P? will lower as the density of the fat is lower 

than the density of the whey. A lower PQ and S Q will cause dH/dt to be 

smaller initially. Later on dAff/dt will mainly be lower because of a 

lower P§. WJHQ will decrease since the fat globules are imcompressi-

ble. 

H) Acid gels. Time after preparation 

The syneresis of acid gels is basically similar to that of rennet 

gels. But there are differences. The experiments did not show a 

maximum in the rate of syneresis with time. This is probably caused by 

the nature of the experiments or by their limited number. P~ will 

initially increase from zero to its maximum and subsequently decrease 

by relaxation. The maximum might already be reached during preparation. 

A possible explanation for the decrease of Sfl and PQ may be that the 

micelles swell. 
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7.4 CONCLUSIONS 

In this Chapter the shrinkage of slabs of curd was investigated. 

Both the shadow and the microscope method gave good results and were 

supplementary. The first series of experiments were done under 

standard conditions while only the thickness of the slab was varied. 

It was found that for M/HQ < M / 3 and #„ > 2 mm A# was independent of 

#„. The conclusion was that r = 0.5 for t < M O minutes. After M 5 -

30 minutes r had increased to ̂ 0.78 and it remained constant during a 

period depending on the thickness of the slab. After about one day the 

thickness of the slabs was 1/3 of the original value, irrespective of 

the original thickness. 

A dynamic simulation model of the syneresis of a slab was 

developed. The model describes and interrelates, permeability, 

syneresis pressure and shrinkage as a function of time and position. 

In one version of the model it was assumed that the permeability 

increased with time and with concentration as determined experimental-

ly; endogenous syneresis pressure (P ) decreased with concentration 

only; maximum gravitational pressure (PP) was constant; P» = Pr ~ 1 Pa 

(#n = 10 mm). This model fitted the results fairly good. From the 

syneresis rate, the permeability coefficient and the viscosity, the 
S s 

initial syneresis pressure (P„) can be derived. P„ was found to be a 

function of time after renneting (thus independent of i ) . However, the 

application of such a relation into the model did not improve the fit 

to the experimental results. 

A perfect fit will probably be obtained if either B or P increases 

more strongly with time up to t = 0.5 h. Our experimental evidence 

neither supports nor contradicts such behaviour ; further experiments 

would be needed to settle the points. 

In this Chapter we also investigated the effect of the composition 

and temperature on the syneresis rate. Syneresis rate increased with 

increasing temperature during reconstitution of the skim milk, 

increasing temperature during the experiment, decreasing pH and 

increasing Calcium addition. Rennet concentration did not affect the 

syneresis. As discussed in Section 2.1 pretreatment of the milk has a 

larger effect on syneresis. 
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Finally the relations between clotting, permeability, syneresis 

and rigidity were discussed. The main conclusions are (under the 

conditions of these experiments): 

Temperature and pH affect the free activation energy; probably 

via effects on steric repulsion and electrostatic attraction. This 

affects the rates of all phenomena. 

Addition of Calcium (> -v20 mM) only affects the strength of 

bonds between already aggregated micelles. 

After a gel has formed, formation of cross links still goes on. 

This results in a stress in the strands, which causes a tendency of 

the matrix to shrink. If the matrix is fixed, the strands will break 

at weak spots thus causing the stress to relax. 

The permeability increases with time. Initially this is mainly 

caused by the strands becoming less frayed, later on by breaking of 

strands. 

Table 7.3 Tentative relation between physico-chemical parameters and 
curd properties. 

high 
temperature 

' 

low 
pH 

low activation free 
energy for formation 
of bonds between PCM 

high rate of 
aggregation and 
cross-linking 

1 
high 
endogenous 
syneresis 
pressure 

much microsyneresis 

1 
rapid increase 
of rigidity 
with time 

• — 

^ 

high 
perinea 

\ 

high 
tea] 

* 
high activation free 
energy needed for 
breaking of bonds 

1 

strong cross links 
in the gel 

little 
micro
syneresis 

high 
gel 
rigidity 

high rate of 
syneresis 

sility 
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A tentative explanation of the effect of temperature, pH and 

addition of Calcium is given in Table 7.3. 

If we compare these results with the findings in pratical 

cheesemaking we see that the same relations are found between the 

composition and temperature and syneresis. However, whey expulsion 

happens much faster in practical cheesemaking. In the next Chapter it 

will be shown that external pressure can increase the syneresis rate 

by orders of magnitude. 

72 



8 SYNERESIS AS INFLUENCED BY EXTERNAL PRESSURE OR DEFORMATION 

8.1 INTRODUCTION 

In the experiments mentioned in Chapter 7 the curd was not 

deformed. It was our intention to test the model also under circum

stances where the curd is deformed by external pressure. In the model 

the flow of whey occurs only in one direction in a cartesian coordinate 

system. This geometry can be approximated in a cylinder of curd, where 

pressure is applied on the flat sides and the transport of whey occurs 

only through the curved surface. Moreover the diameter of the cylinder 

should not be so large that the shrinkage in tangential direction can 

be neglected. 

When a pressure is exerted on the two flat surfaces of the cylin

der, the strands are compressed in the axial direction and elongated 

in radial and tangential direction. The matrix under stress will tend 

to shrink momentarily but cannot do this because of the viscous 

resistance of the outflowing whey. This situation is comparable to 

syneresis without external pressure; the difference is that the 

pressure is higher. External pressure may in principle affect the 

permeability but we cannot find considerations to support the view 

that such a change would be significant. The height of the cylinder as 

a function of time can be predicted in principle from the results of 

creep measurements by which means any syneresis in the axial direction 

could be predicted; axial syneresis can occur if the flat surfaces are 

not made impermeable to whey. Moreover extra cross links can in 

principle be formed in the axial direction. However calculation of the 

height of the slab in the absence of syneresis proved to be of littleuse 

because the measurements of the volume of the slab were insufficiently 

accurate and because the deformation mostly occurred outside the linear 

visco-elastic region. 

8.2 METHODS 

It turned out to be impossible to perform experiments with a 

cylinder of a height much larger than the diameter, because of 

73 



buckling. Ultimately we have chosen for flat cylindrical slabs with a 

diameter of 9 or 14 cm and a height of 5,10 or 15 mm. Milk was 

renneted in a bottomless mould which was placed in a thermostated 

vat (see Fig. 8.1). In the vat whey was poured around the mould. 50 

Minutes after rennet addition the curd was cut free from the inner 

wall of the mould and moistened by spraying whey on the upper surface 

to the slab. The mould was removed and the slab cut free from the 

bottom. More whey was added. The wheight of the plate was counter

balanced by means of a counter weight and a pulley, to assure the 

pressure exerted by the plate itself being zero. Pressure on the curd 

slab is introduced by placing weights on the scale at the top 

(see Fig. 8.1). The height of the slab was recorded with a displace

ment transducer and its cross section was determined from photographs 

of the bottom of the slabs by means of a Quantimet image analyser. In 

this way the volume of the slab was calculated as a function of time, 

giving the syneresis. 

One hour after rennet addition a weight was placed on the scale. 

Two series of experiments were done. In the first series pressure was 

milk, rennet 

whey ! mould 

- i — 

a ac 

scale on which 
to put weights ^ t 

h 
^fv-pulley 

4T 
-coun terweight 

displacement 
U~ transducer 

£—pla te 

\ \jb|—camera 

Q b C 

Fig. 8.1 Schematic representation of the apparatus for applying 
pressure on a slab of curd. 

a. Milk provided with rennet is brought into a mould in a 
thermostated vat. Whey is added to the vat. 

b. When the curd has formed it is cut free from the walls of the mould. 
The mould is removed and the slab is cut loose from the bottom of 
the vat. The bottom is cleaned. 

c. A horizontal plate is brought into contact with the curd slab and 
the first photograph is taken. Weights can be placed on the upper 
plate. 
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applied for one minute, followed by 5 minutes without pressure. 

In the second series thé weight was placed and removed from the scale 

each time for 5 and 10 s, respectively. This was done 12 times (i.e. 

during 3 minutes) whereupon no pressure was exerted for 3 minutes. 

The total time, during which the slab was under pressure thus was the 

same as in the first series. After 6 minutes the following scheme was 

used for both series: 10; 0; 50; 0; 100 g, each time for 1 minute (see 

Fig. 8.2). 

8.3 RESULTS AND DISCUSSION 

A typical result is given in Fig. 8.2. The curves giving the 

height of the slab as the result of the putting in and removing of 

weights, have a shape analogous to creep curves. The curd is a visco-

elastic system. At the moment of applying the pressure elastic 

deformation occurs ; after that the deformation is a result of retarded 

elasticity and viscous deformation. 

height of slab (mm) 
1<h 

J0_ 1Q_ .52. weight on scale (g) 

'/o syneresis 

20 

time after rennet addition (h) 

Fig. 8.2 Height of the slab (ff, full curve) and % syneresis (bottom 
line) or relative volume reduction as a function of time. Example of 
an experiment of the first series (50 g for 1 minute. Further expla
nation in the text). Original cross section of the slab 153 cm^. Ori
ginal height 10 mm. At t = 0 the pressure was 30 Pa. 
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pressure (Pa) 

Fig. 8.3 Syneresis during the first 5 minutes of the experiments (see 
Fig. 8.2) as a function of pressure at t = 0. Without pressure the 
relative volume reduction was estimated at 0 - 4%. The curves indicate 
the function: % syneresis = 0.58 Ki; where K is for total pressure 
(external and endogenous) 

D O V O = wheight on scale for 1 minute continuously. 
• • f • = wheight on scale for 1 minute intermittant. 

V ? = height of the slab: 5 mm, cross section 153 cm„ 
O • = height of the slab: 10 mm, cross section 153 cm„ 
O + = height of the slab: 15 mm, cross section 153 cm 
O # = height of the slab: 10 mm, cross section 62 cm 
- « — = arrows indicating % syneresis after 5 minutes of a 

slab without external pressure (see Chapter 7) 

From Fig. 8.2 it also appears that extra pressure enhanced 

syneresis. Without pressure the volume reduction after 5 minutes of 

a slab of 1 cm thickness was estimated at 0 - 41. While an external 

pressure of about 30 Pa resulted in about 101 syneresis. The extra 

syneresis occurs as long as pressure is exerted on the slab, and for 

a short time afterwards. The latter is imaginable if one considers 

that after the weight is removed the stress in the matrix does not 

momentarily relax. In a number of experiments the pressure, the 

height and the surface of the slab were varied. The results are given 

in Fig. 8.3. 

The syneresis is shown in Fig. 8.3 as a function of the pressure 

at the moment the weight is placed on the scale. Directly afterwards 

the slab is deformed and therefore the cross section area is enlarged 
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which implies that the effective pressure is somewhat lower. 

The results of the measurements with the apparatus were found to 

be not very reproducible. Hence, the results are only approximate and 

it cannot be concluded that the introduced variations in height and 

diameter of the slab as well as the time scheme by which the pressure 

was exerted on the slab affected the syneresis rate. But the increase 

in syneresis rate with increasing pressure is unmistakable. 

In Fig. 8.3 also Eq. 7.1 is shown for two values of HQ, i.e. 5 

and 10 mm. Other parameters were BQ = 2.3 x 10 m2, t = 300 s, n = 

1 mPa-s. For PQ the external pressure + 1 Pa for endogenous pressure 

was taken. It is seen that the curves fit the results obtained from 

the experiments both with and without external pressure within an 

order of magnitude. 

The results of these experiments show the same trend as the 

results given by Van Dijk et al.(1979) (see Fig. 8.4). Here also 

the pressure had a great effect on the syneresis. The first point in 

Fig. 8.4 (lowest pressure)pertains to curd grains in whey kept 

stirring for 2 h; the pressure here is roughly calculated from 

Bernoulli's equation from the velocity gradients in the whey. The 

second point pertains to curd merely pressed by its own weight under 

the whey; hence, this pressure is also somewhat uncertain. If the 

m m water 
10 100 1O00 

Fig. 8.A Water content (%) of curd from whole milk after 1 h stirring 
and 1 h pressing under the whey at various pressures; temperature and 
pH were kept constant. 
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same curd had been left undisturbed for 2 h, and had been subject 

only to its own syneresis pressure of some 1 Pa, its water content 

would only have been lowered from its original 871 to some 85°s 

according to measurements on thin slabs of curd. Finally it should be 

noted that Fig. 8.4 may not be taken as representative of actual 

cheesemaking practice, because experimental conditions were substan

tially different. 

From the results of the experiments it can be concluded that in 

practical cheesemaking external pressure on the curd grains is very 

important. Such pressure is exerted in practical cheesemaking by 

stirring, draining and pressing. 

78 



SUMMARY 

H.J«M. van Dijk, Syneresis of curd 

This study deals with the syneresis of curd. Rennet gels are 

primarily considered; some comparisons with acid milk gels are given. 

After curdling the milk, the curd tends to shrink; in other words, 

the network of aggregated paracasein micelles (PCM) will be under 

stress. If the curd is cut or - as was the case in our expirements - a 

curd surface is wetted, syneresis starts. The rate at which the whey 

is expelled depends on the pressure gradient in the whey and on the 

permeability of the network. 

In Chapter 2 the materials and methods generally used are 

described. Unless mentioned otherwise, standard conditions were used in 

the experiments. By standard conditions is meant: reconstituted skim 

milk with the same dry matter content as the original milk, to which 

500 ppm rennet was added; the temperature during the whole experiment 

was kept at 30 °C; no CaCl9 was added. 
s The endogenous syneresis pressure (P ) appeared to be very low, 

about 1 Pa. In Chapter 3 two methods are described which give an order 

of magnitude of the stresses involved. Moreover, the weight of the 

network can cause an additional pressure. The maximum pressure caused 

by the weight (P^) at a level h below the interface is 

(P j - P i . ) 9 h„ - 75fe Pa {h in m ) . ^curd KwheyJ y C c v c •* 
The permeability measurements are described in Chapter 4. Two 

methods were used; in both, the flow of whey through a vertical column 

of curd was measured as a function of head pressure. A problem is that 

the curd is deformed during the experiment. In the "tube" method, 

deformation is a function of the pressure gradient (dP.làx), the 

diameter of the tube holding the curd (df), and the rigidity of the 

gel. In the second method the "torsionflux" method, the deformation 

was adjustable. The tube method led to the following results: 
-13 2 The permeability is of the order of 10 m . 

Permeability increases with time, which is ascribed to 

"microsyneresis", i.e. syneresis at local sites in the gel. The 

rate of increase is approximately constant. 
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The increase in permeability (dB/dt) is higher for a higher 

pressure gradient or a wider tube; both lead to larger deformation 

of the curd. 

The change of the permeability with time in the absence of 

deformation (dB /dt) was obtained by applying the head pressure 

at different times after addition of rennet. Shortly after 

clotting permeability increases fastest. Between 1 and 24 h 

dB /dt was constant. 

The permeability of curd made from ultrafiltered skim milk (B(£)) 

and its change with time (dB(£)/d£) were determined. This yielded 

the permeability as a function of concentration and time (B(•£,£)). 

The permeability also depends on temperature, CaCl~ concentration, 

acidity, fat content and type of skim milk. 

In acid milk geld permeability was of the same order of magnitude, 

but it hardly changed with time. 

The Theological behaviour of curd is discussed in Chapter 5. The 

dynamic measurements with the "Den Otter" rheometer show that the 

moduli G' and G" kept increasing for a long time 0 3 h) after rennet 

addition. From the dependence of G' and G" on the angular frequency it 

was deduced that G" is due to the relaxation of bonds and that the 

relaxation time is a few times 10 s. 

The instantaneous shear modulus (Gn) was determined as a function 

of protein concentration. The obtained relation can be explained in 

terms of an only partly effective contribution of the casein to the 

network; this contribution being relatively smaller at lower 

concentrations. Also from the creep measurements it was concluded that 

the endogenous syneresis pressure was less than 10 Pa. 

If both permeability and pressure are known for all values of 

concentration (or relative remaining volume (?')) and time (t), the 

syneresis can in principle be calculated. This is in the model 

described in Chapter 6, in which the equation of Darcy is combined 

with the equation of continuity. A numerical procedure is developed, 

for a one dimensional case; the syneresis of a thin slab. 

The pressure in the whey is the sum of the endogenous syneresis 

pressure (P ) and the pressure caused by the weight of the network 

(Pg). For P {%) and P̂ (-i) some trial functions were considered. 
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In Chapter 7 the syneresis of slabs is studied. The results of 

the experiments show that initially r = dlogM/dlogt is about 0.5. 

For t > 0.5 h r increases to ̂ 0.78. r is independent of the original 

thickness of the slab (#Q) during a certain period (penetration 

period). The length of this period depends on HQ. 

After one day H did not change any more and H^jHç. was about one 

third. The best fit between model calculations and experimental 

results was obtained if it was assumed that: 

the permeability increases with time (t) and decreases with i3 

as was found in the experiments, 

endogenous syneresis pressure (Ps) decreases only with shrinkage, 

maximum gravitational pressure (Pg) is constant, 

P Q = pS = 1 Pa (#0 = 10 mm). 

P Q was found to be a function of time after renneting, at first 

increasing, then (after 1 - 2 h) decreasing. However, the introduction 

of such a relation in the model did not improve the fit to the 

experimental results. After all, the pressure cannot relax twice, both 

by shrinkage and by "ageing". 

The effects of several parameters (pH, temperature, Ca concentra

tion, etc.) on milk clotting, gel permeability, syneresis and curd 

rigidity are interrelated. A survey is given in Table 7.2 and a 

tentative explanation is summarized in Table 7.3. 

In Chapter 8 it is shown that external pressure has a dramatic 

effect on the syneresis rate. Extrapolation to zero external pressure 

yields, again, an endogenous syneresis pressure of about 1 Pa. 
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SAMENVATTING 

H.J.M, van Dijk, Syneresis of curd 

Deze studie behandelt de synerese van gestremde melk. Onder 

synerese wordt verstaan: het samentrekken van een gel onder het uit

drijven van vocht. Synerese treedt met name op bij melkgelen. Bij de 

kaasbereiding wordt dit proces bovendien bewust bevorderd. Hierdoor 

worden de eiwitten en het melkvet van het grootste deel van het vocht 

gescheiden. Door dit proces te laten samengaan met een beheerste 

verzuring door melkzuurbacteriën wordt een smakelijk produkt verkregen, 

dat bovendien veel langer houdbaar is dan melk. 

Het gel wordt in het algemeen verkregen door aan de melk stremsel 

toe te voegen en soms door de hiervoor genoemde beheerste verzuring. 

Bij beide methoden gaan de caseïnemicellen ("kaasbolletjes" met een 

diameter van ongeveer één tienduizendste millimeter), die in de melk 

zweven, aan elkaar kleven. Hierdoor worden vlokjes gevormd die ver

volgens ook weer aan elkaar kleven. Tenslotte wordt één groot, ijl 

netwerk gevormd; de ruimten daartussen zijn opgevuld met wei. Door in 

de gestremde melk te snijden of het oppervlak te bevochtigen kan ze 

zich gaan samentrekken tot wrongel. Daarbij wordt wei uitgedreven. 

Waardoor dit gebeurt, in welke mate en wat het effect is van 

veranderingen in samenstelling en temperatuur, alsmede de verklaring 

daarvan, waren de voornaamste vragen die we in dit onderzoek aan de 

orde stelden. 

Het netwerk heeft de neiging om samen te krimpen en om in te 

zakken; het eerste gebeurt spontaan (endogene synerese), het tweede 

onder invloed van zwaartekracht. Deze processen worden echter ver

traagd doordat wei uit het netwerk moet stromen om het netwerk te 

laten krimpen. Hierdoor komt de wei in het gel onder druk te staan. 

Indien deze syneresedruk en de doorstroombaarheid bekend zijn kan het 

verloop van de synerese berekend worden (Hoofdstuk 6). De synerese

druk bleek overigens te klein te zijn om ze met een instrument te 

kunnen meten, maar ze kon wel indirekt bij benadering bepaald worden. 

In hoofdstuk 3 worden twee experimenten beschreven waaruit deze druk 

indirekt valt te bepalen. De conclusie luidt dat de syneresedruk van 
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de orde van grootte is van 1 Pa (overeenkomende met 0.1 mm waterkolom). 

Onafhankelijk hiervan volgt dit ook uit de reologische metingen 

(Hoofdstuk 5) en uit de experimenten beschreven in Hoofdstuk 8. 

De syneresedruk en de doorstroombaarheid bleken behalve van de 

samenstelling van de melk, de temperatuur en de mate waarin de 

synerese al had plaats gevonden ook afhankelijk te zijn van de tijd, 

die verlopen was na het toevoegen van stremsel. De doorstroombaarheid 

werd steeds groter; de syneresedruk nam aanvankelijk toe maar later 

weer af. 

Om het aantal factoren dat invloed heeft op de synerese te ver

kleinen, werd gewerkt met een ééndimensionaal model, bestaande uit 

horizontale dunne plakken wrongel. Dit is ook de eenvoudigste manier 

om de uitkomsten van het wiskundig model van het synereseproces, dat 

wij opstelden, te vergelijken met de resultaten van proeven. Verder 

kon op deze manier een praktisch probleem worden opgelost. De plak 

begon namelijk pas te synereren nadat ze bevochtigd was. Zo kon op 

een eenvoudige manier een experiment gestart worden. 

De uitkomsten van de modelberekeningen komen het beste overeen 

met de uitkomsten van de experimenten als hierin het volgende wordt 

aangenomen: 

De doorstroombaarheid is een functie van de indikking en de 

tijd (zie vergelijking 4.16). 

De aanvankelijke endogene syneresedruk (P„) is gelijk aan 1Pa. 

De druk veroorzaakt door het gewicht van de wrongel (P?) is gelijk 

aan 75 x de afstand (in meters) tot het oppervlak van de wrongel. 

P en P° nemen af naarmate de synerese voortschrijdt, maar de 

wijze waarop dat precies gebeurt, heeft, bij de door ons geprobeerde 

functies, slechts een geringe invloed op het resultaat. De endogene 

syneresedruk van nog niet gesynereerde wrongel verandert met de tijd 

na het toevoegen van het stremsel. Zodra synerese optreedt en daarmee 

indikking, zal deze relatie met de tijd echter geheel anders zijn: de 

druk kan immers niet twee maal relaxeren, door indikking èn door 

veroudering. De beste overeenkomst tussen modelberekeningen en experi

menten werd gevonden door de invloed van tijd als zodanig te verwaar

lozen. 

De invloed van enkele parameters (pH, temperatuur Ca concentra-
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tie, enz.) op de stremming van melk de doorstroombaarheid van het 

gel, synerese en de stevigheid en hun onderlinge correlaties worden 

gegeven in Tabel 7.2 en een voorlopige verklaring wordt gegeven 

in Tabel 7.3. 

Uit de experimenten in Hoofdstuk 8 blijkt dat bij de praktische 

kaasmakerij de opgelegde druk door roeren, draineren en persen van 

overheersende invloed is op de synerese van wrongel. 
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