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ALTERRA,
Wageningen Universiteit & Research centre
Omgevingswelenschappen

I. FIELD OBSERVATIONS THAT REQUIRE EXPLANATION Tf(ﬁﬂtﬂ,’ﬁg‘:,‘;'f%ﬁ,f,ﬂiﬂl“;.

ABSTRACT

Latteral flow components can be caused by a vertical force in an
anisotropic sloping soil, Such a latteral flow can cause water accumu-
lation in concave parts of the landscape and outcrop of water by
seepage at some roadcuts, This, in turn, if proved correct could ex-
plain experimental observations of moisture accumulation, runoff at
low intensity rains, various erosion phenomena by seepage forces and
a number of other hydrological phenomena. This article is an introduc-
tion to a series that will prove in details the existence of such

latteral flows.

1. HISTORICAL NOTE

The series of articles to be published in the following summs up
work that has started around 1964. The senior author has been asked
to review the regulations given in literature and used in practice to
prevent erosion in water channels dug in soil. The study of many field
observations has indicated that something is wrong with the present
notions about erosion. The importance of seepage forces and piping has
been realised. It led to the measurement of piping in cohesive soils
(ZASLAVSKY and KASSTFF, 1965 and KASSIFF et al., 1965). Observations
in later years indicated that the mechanism of piping by seepage
forces may be quite important in field erosion as well. However, it
was impossible to explain how it can occur in semi-arid zones without
the presence of groundwater. Seepage out of the soil was beyond our
understanding in such places where seemingly the onlf flow could be
into the soil because it is unsaturated,

In 1968 the senior author had the opportunity of serving as a

guest scientist at the Hydrograph Laboratory of S.W.C. in the A.R.S.



of the U.S. Department of Agriculture. One of the main tasks was to
evalﬁéte Ehe approach to surface hydrology and mainly rain - runoff
relations from the premises. Serious doubts has been raised as to the
present apprbaches to the problem and mainly as to the soundness of
its elementary physics and mathematics. First hints towards a new
approach to surface hydrology have been published by the U.S. Depart- '
ment of Agriculture in a report (ZASLAVSKY, 1970). It indicates the
existence of horizontal flow component as a result of rain in the soil
rather than above it. Among other very interesting results it explains
also how seepage forces that cause field erosion can be formed. The
rain enters in the scil first and then accumulates in some points and
seeps out to form both runcff and erosion.

Back in Israel a series of grants by the U.S. Department of Agri-
culture through P.L. 480 and the Israel - U,S.Binational Science
Foundation coupled with aid by the Israely Soil Conservations Service
made it possible to make some more detailed studies. Several graduate
students participated in this work. G. Shacham and E. Sabach did some :
sork on erosion and splashing raindrops. Dr. Gideon Sinai was most
instrumental in several parts of this work, but his main contribution
is in the numeral solution of the transient flow near the soil surface,

Finally the senior author has been invited to the State Agricul-
tural University in Wageningen and the Institute for Land and Water
Management Research (ICW) there, where he had the opportunity to pre-
sent the whole work in a series of lectures and summarize them up. In
view of many reactions of scientists and engineers having a large volume
of field experience it seems more and more that the theory offered in
the following is of a universal interest. It suggests a straight for-
ward explanation for an increasing number of situations. It offers a
rational approach for many engineering solutions.

It is especially difficult to bring the many field observations
that have convinced us in the soundness of our approach. For example
Dr. J. Morin of the Soil Conservation Service has made numerous and
systematic studies throughout Israel on infiltration runoff and erosion.
His enthusiastie support after a long experience with field observa-
tions has a special weight in letting us to believe that the material

is ripe for publication,




2. RAIN AND RUNOFF

The classical model that serves the hydrologists universally to

date, is that runoff is formed in one of two ways:

a. the rate of rain exceeds the infiltration capacity of the soil at
a point, implying that at a lower rate of rain there will be no
runoff;

b. there is a buildup of groundwater table or of perched water table
that eventually flows out of the soil., This outflow of groundwater
is considered strictly for streamflows or baseflow of large delay,

certainly not during one rainstorm.

These concepts may be represented by MEINZER (1923, 1942),
LOWDERMILK (1926), SHERMAN (1932), HORTON (1935), BARNES (1939),
ROUSE (1950) and many that followed. A statistical organization of
these models such as by SCHREIBER and KINCAID (1967), DISKIN (1970),
CLARKE (1973) do not really get away from the basic notions that run-
off is conmstituted of rain minus infiltration, One can cite stochastic
models such as by CHOW and RASASESHAN (1965), GRACE and EAGELSON
(1967), MATALS (1967), BURAS (1972), VEN TE CHOW (1964} and VISSER
(1967) or deterministic models by KISIEL (1969), VEN TE CHOW (1964),
CRAWFORD and LINSLEY (1962, 1966), JAMES (1970). The two basic notions
will prevail,

¥REEZE (1969, 1971, 1972a, 1972b, 1973, 1974, 1976), AMERMAN
(1973) introduced a more rigorous treatment of saturated and unsaturated
flow in the soil. Still they remained within the same two notions that
the water will run off either by not being able to penetrate the soil
or by accumulating in the groundwater, Where the groundwater seeps out
of the soil the xunoff may be formed. However, it is delayed long af-
ter the raim,

Actual observation of runoff that oceur within the rainstorm with
a delay as short as few minutes or a portion of a minute indicate that

the above notions draw at best a very partial picturé. Certainly, rain

| that exceeds the infiltration capacity runs off, However, why some-
times quick runoffs are formed by rains which are much lower than the

infiltration capacity. All kinds of excuses have been invented to ex-




plain this fact. They are often short even of admitting the “phenomenon.
The infiltration capacity is presumably a unique figure. This
primitive concept which prevails so many years does not allow for
dependence of runoff on antecedent moisture. In more sophisticated
treaties, a more realistic picture of unsaturated flow in the soil is
admitted. We shall not refer here to a number of articles that relate
the rate of infiltration to the water storage in the soil. The real
phenomenon can best be understood by the work of BRAESTER (1973). Ac-
cording to this work, the surface moisture gradually increases during
the rain. The infiltration capacity in a uniform soil is simply its
hydraulic conductivity. The soil approaches saturation after a long
time if the rate of rain equals, or surpasses the hydraulic conductivi-
ty (in a non~uniform soil a different definition is necessary). Even
if the rain exceeds the infiltration capacity (in a uniform soil the
hydraulic conductivity), there is a need for certain time to reach
surface saturation and flooding. This time will depend on the rain
intensity, on soil properties (not only the saturated hydraulic conduc-
tivity) and on antecedent moisture.

A high antecedent moisture alone cannot account for runoff pheno-
mena. In view of unsaturated vertical flow, a very short time after the
end of a rain, the soil everywhere reaches a more or less fixed mois-
ture known as the field capacity. A few days between rainstorms are
sufficient to evaporate only few millimeters of water from the soil
(and often not even that). Neither the previous wetting, nor the drying
that can be refilled in few minutes of rain, can possibly explain the
cumulative effect of rainstorms in gradually increasing the runoff
during the rain season. It is quite common experience that in many re-
gions little or no runoff occurs before a few hundred millimeters of
rain have occurred. The time distribution hardly affects this phenome-
non. The intensity of a given storm affects the runoff only in addition
to the total cumulative rain and antecedent moisture. These well known
experiences encourage investigators only to invent statistical tricks
and fudging factors. The worst part is that afterwards they give names
that intend to insinuate true physical entities. The basic dilemma
remains: How does runoff form when the rain does not exceed the infil-

tration capacity over the whole field.
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At least two more ideas should be mentioned that attempt to ex-
plain runoff, One is the formation of a surface crust (SEGINES and
MORIN, 1970), which has been shown to develop in direct correlation
with the accumulative rain (MORIN, 1976, personal communication). For
example some wind blown loess soils of Israel can start at infiltration
capacity of 30 to 40 millimeters per hour and end at 3 to 5 millimeters
per hour after a cumulative rain of some 200 millimeters. However, af-
ter each drying period there will be some recovery of surface permea-
bility. In any case the initial rate of infiltration for any new rain
will be at least 10 to 20 mm per hour. Only the final rate of infiltra-
tion which is obtained after a portion of an hour will be very low.
However the runoff starts much earlier., The curst formation can thus
explain only part of the problem.

The other concept which should be mentioned here is that of a
partial contribution or partial area which states that small parts of
the soil surface have a very low infiltration capacity and thus contri-
bute considerably to runoff while the other do not at all., One cannot
prove or disprove this concept. It is only another way of saying that
there must be some reason for runoff despite the fact that the rain
seemingly does not exceed the infiltration capacity. There can certain-
ly be parts of the area where the rain exceeds the infiltration capa-
city.

In the following we shall show how some parts of the landscape
contribute runoff. However, they are related mainly to the topografic

configuration and not to parts which are less permeable,

3. MORE RESERVATIONS ABOUT THE COMMON CONCEPTS OF RUNOFF (following
ZASLAVSKY, 1970)

Scalars and vectors

Traditionally the infiltration into the soil has been almost
synonymous with vertical flow. TIn reality it is only-one out of three
(or at least two) flow components., The horizontal flow component cannot
be added to the infiltration as if both were scalars. The commonly

used equation




where R = runoff
P = precipitation
I = infiltration

can be used at most as an overall scalar balance over an area where

it is not really measured at a point but is the difference between the
measured precipitation and the outflow through a well defined and
measurable river or channel (assuming the boundaries of the drainage
basin to be determinable by the topography alone). Thus eq. (1) cannot
be considered an equation at a point and is not one to predici runoff

but to calculate net recharge over a field.

Errors in P and I

Precipitation can be measured with a limited accuracy (e.g. +20%).
Infiltration capacity can be measured or estimated in a very rough
manner. It can change within a storm (SEGINER and MORIN, 1970), It is
not a constant in time or space. A change by a half order of magnitude
is not uncommon.

It is therefore unrealistic to expect any reasonable accuracy in
predicting the runoff R which is most commonly 5 to 10Z of the P
(precipitation). Eq. (1) or any similar equation of differences,
sophisticated as it may look, cannot be seriously considered as a tool

for prediction based on actual measurements,

Is it possible to measure rumnoff?

The question of measuring runoff R depends on its definition. If
it is the outflow through a well defined channel, then it is reasonably
meaningful and measurable. However, at a point in the field or as over-
land sheet flow or as sometimes more carefully called runoff supply it
defies unique measurement as well as definition. The difficulty of de-
fining the surface runoff is as it is difficult to define the soil
surface itself. This problem of definition will be treated later in

this report. It is reasonably clear that at the soil surface there is
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a transition between the soil bulk and the air, The porosity as well
as the hydraulic conductivity gradually increase in a direction from
the soil bulk outward. Some may find it hard to accept this'very
fundamental argument about the transitive nature of the soil surface.
They may then appreciate the practical problem of intercepting the
runoff for measurement. The result will depend strongly on the depth
at which such interception will be performed. A common falacy is to
produce a 'deep enough' cutoff and let 'every drop of water' climb
above it. This type of measurement definitely affects the entity
which is to be measured and undoubtably tends to increase the apparent
runoff, The alternative is‘a very thin horizontal threshold that sup-
posedly divides between the runoff and the flow within the soil., The
question is how thin is the threshold and at what elevation. As the
soil surface is irregular, to which size irregularities should the
divider between the soil bulk and the air conform.

It is much more sensible, and in fact feasible, to measure the
horizontal flux component or, easier still, the horizontal discharge
(by vertical integration of the horizontal fluxes). In fact, that is
what one measures near a vertical cutoff. Stagnation near such a wall
causes sometimes part of the water to overflow and part of it to
underflow the cutoff. The horizontal flow can be within the soil or
outside the soil. There is no way to tell. The problem is not that

of a technical limitation but a fundamental one.

In summary, the notion of rumoff as a point value over the soil
area is fundamentally wrong and practically impossible.

As popular as it is (from kindergarden and up), the model of eq.
(1) still lacks a real demonstration of relevancy to either the
physical understanding, the consistent mathematical formulatiom, or

to practical measurement,

4. CONCENTRATION OF WATER IN CONCAVE AREAS

There is a phenomenon of moisture concentration in concave areas,

By concave we mean, not only the slope bottom or valleys but any
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transition from a steep to a moderate slope. This is a phenémenon
that cannot be explained by any existing hydroiogic models. Such a
concentration has been observed in an area of sand dunes with 70 mm
rain per year, and infiltration capacity of some 500 mm per hour., It
occurred both on steep slopes and moderate ones. In the southern part
of Israel one has to travel following the rain and see the green of
the seasonal grass and shrubs painting concave parts of the landscape.
Beduins have been used to plant their barley only in concave parts of
the landscape. The accumulation has been observed in areas where no
surface runoff could possibly be observed, where no water table was
present and where no highly impermeable layer and perched water were
obvious.

In the flowerbulb sand area near Lisse (The Netherlands) it has
been observed in a soil cross—section that under concave surface the
sand was wetted to a considerably greater depth (personal communication
van der Valk and Knottnerus). This in turn had its effect on meisture
availability to plants and on wind erosion patterns.

Looking at fields under rain or after a rain, water often appear
in some very shallow concave parts either in the form of small puddles
or just as shining soil surfaces.

Concave parts in fields often suffer from wetness, traficability
problems and even aeration problems. Shallow water ways accumulate
moisture and stay wet for a long time even where there is no water
table,

Any model attempting to explain surface hydrology should be

compatible with this phenomenon.

5., MATN OBSERVATIONS IN THE BEER SHEVA EXPERIMENT

Curvature of the soil surface has been measured geodetically

through the elevation z at different points according to the formula

- 4z,.)/n (2)

e | i TSI I S W I O BT E

Moisture contents have been measured at 20 and 40 cm depth over

70 x 70 meters area. The field has been planted more or less parallel
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fig, 2

to contours. The main slope was 12%. Yields have also been measured.
In brief, the results are shown in fig, 2 where the concavity is esti-
mated by sz. The correlation between the moisture contents 2 weeks

after the rain and the curvature has been found at r = 90Z to be
2
C = 8,67 + 50.4V7z (3)

We shall not cite here the details of measured yields (thﬁt were
exactly correlated with the moisture). It reached more than 2 tons
per ha in the concave part and as little as 0.2 -~ 0.3 tons per ha in
some convex parts.

No runoff was observed in the usual sense. The soil was a loess-
loam which was plowed and disced in a regular commercial manner. No
water table, perched water or impermeable layer was found anywhere
near. The rain totaled some 250 mm. Diagnostic tests other than the
moisture content have been run (salinity, fertility, clay content,

etc.) without any visible trends.

6. SOIL FORMING PROCESSES (following ZASLAVSKY, ROGOWSKY, 1969)

The concentration of water in concave parts of the landscape
can explain some soil forming processes., The pedologic 'genetic' for-
mation of the 'B' horizon is pronounced on a flat land but thickest
on concave parts (excluding hydromerphic alluvial bottom land). Upper
on the slope at convex parts the development of B horizon is smallest.

Many theories related this differentiation to overland flow and
erosion, They cannot explain how concave slopes (nevertheless relati-
vely steep slopes) ‘'catch' more water or clay to form a thick B
horizon. The existing theories cannot explain how erosion, that carry
away any A and B horizon leave a distinct B horizon, though faintly
developed. Is it that there are some tens or hundreds of years of B
horizon developments and then some of erosion?

The development of loamy B horizon of dune sand parent material
serve as a perfect model to shake existing theories and offer some
new insight. It is perfectly clear that the clay is imported into the

sand by rainwater and settling dust. Water is certainly the vehicle
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by which the clay accumulates in the B horizon. The duné sand has a
hydraulic conductivity of some 103 em/day, Only rains of few minutes

may have an intensity that will exceed this hydraulic condﬁctivity.
However, the actual infiltration capacity of such short term rain

spurts is certainly several times larger than this hydraulic conducti-
vity (BRAESTER et all, 1971; BRAESTER, 1973). In short, it is very
unlikely to get any runoff and surface flow on sand dunes. Concentration

of water in concave parts of the landscape can serve an explanation.

7. A SUGGESTED EXPLANATION

ZASLAVSKY (1970) introduced the concept of lateral flow in the
unsaturated soil which is not caused by boundary conditions but by
the so0il anisotropy. The anisotropy is caused by soil layering. When
the layers are horizontal the main driving force (gravity) is orthogonal
to the layers and so is the flow which is straight down. When the
layers are at an anéle to the horizon the gravity force points down-
stream from the orthogonol. Tt will therefore cause a horizontal flux
component.

It was therefore reasonable to assume (and in fact later to prove)
that at least under steady state the average horizontal flux a; is
proportional to the vertical average flux E: to the slope tan a and to
a coefficient of anisotropy U,

q = q, U tan (4)

This simple notion leads to many possible explanations. In a
concave landscape the incoming slope is larger than the outcoming one.
Therefore the horizontal incoming flux is higher than the outcoming
one. In other words, there will be moisture accumulation in concave
parts. In mathematical terms in two dimensional problems (z vertical,

x horizontal)

tan a = - " (5)



- =5 +tqr=q U-"— : (6)

assuming E;'and U not to be functions of X as a first approximation
and ¢ the moisture content and qv* outcoming water by more vertical
flux. In short, any concave part of the landscape (Bzz/sz) > 0

leads to higher moisture contents and a higher share of vertical in-
filtration. With more water there is more development of B horizon.
Furthermore, on convex parts of the landscape there is a lack of
moisture and smaller vertical flow (32z/3x2 < 0). In fact, as the B
horizon develops the anisotreopy U develops and qv* is negative more
and more, The development of the B horizon in convex parts of the
landscape stops of its own accord. This new explanation is interesting
as it also interprets the fainter B horizon on straight and convex
slopes in genetically mature soil catenas. This is without the question-
able crutch of erosion and runoff theories,

The latteral flow component and moisture accumulation in concave
parts of the slope could explain the Beer Sheva experiment. Further-—
more if proven correct and of proper magnitude it could explain
saturation in some parts of the field, seepage out of the soil and
the formation of overland flow. The partial area contribution would
get a new meaning. Any rain, falling on areas with surface seepage
will not infiltrate into the ground. This would not be because of the
limited infiltration capacity, the value of which is totally irrelevant
in this case.

If the rain can get into the ground (at least to a shallow depth)
before turning into overland flow then it has a different effect on
leaching. The longer term accumulation of rain water may have now an
effect on runoff.

If the rain gets first into the ground and then seeps out in
concave parts then it can explain field erosion by seepage forces.
Furthermore various depressions in the soil surface are often a
starting point of erosion. This is due to the high local accumulation
of moisture and concentration of streamlines that produce high seepage
forces.

Road cuts truncate the soil layering. The latteral flow reaches



the soil surface but cannot seep out as the soil is umsaturated. The
streamlines bend down and accumulate until seepage is formed (usually
followed by erosion). '

Concentration of rain water in concave points can explain net
recharge in some areas of limited rain. This is a natural form of
'water harvesting' where certain parts of the landscape obtain several
times more rain water than the average. This is totally contrary to
the partial area contribution theories that stipulate that these parts
are excluding most of the rain water to form runoff. Evidently the
latteral flow concept is more likely to be of physical significance,

It is suggested that every soil, without any exception, has a
more permeable layer at its surface. This by itself will produce a
latteral flow component. It is also suggested that splashing rain-
drops will produce a real latteral flow component, very much like in
eq, (4). However, it will not produce seepage of water coming out of
the soil.

If eq. (4) is proven to be physically sound then it has another
fringe benefit in bookkeeping. Certain errors in measuring the rain
E; will produce only the same relative errors in the horizontal flow
component., There is no amplification of the relative error because of
the smaller value of the runoff relative to the rain and the infiltra-
tion as in eq. (1). In fact eq. (4) assumes no such things as runoff
and infiltration. Every drop of rain may be supposed to be at the soil

surface and not above it or below it.

8. FORMATION OF GULLIES AND RILLS BY WATER EROSION (ZASLAVSKY, 1970)

The formation of pgullies and rills is evident in areas of little
runoff. In fact, the evolvement is mostly at their upper tip where
the quantity of the overland flow is the smallest. The most baffling
observation is that backward advance of erosion channels is by under-
mining that seems to be due to water that comes out of the soil. Such
undermining is followed by caving in and then by a gradual transporta-
tion by overland flow.

The explanation of this and other erosion phenomena depends on



the introduction of two processes:

a) a mechanism by which outcoming water erode the soil

b) a mechanism by which water comes out of the soil

The first mechanism is undoubtably that of seepage forces, At
sharp concave points very high hydraulic gradients can be formed due
to convergence of streamlines. The drag forces enacted by the out-
flowing water can then detach soil particles overcoming even high
cohesion.

The first mechanism of seepage forces is not possible without
water coming out of the soil. When water comes out of the scil it must
be at positive pressures {at least somewhat higher than atmospherice),
At positive pressures, the soil must be saturated or nearly saturated,

In people's mind saturated soil is -related to one of the two

cases:

a) high water table or perched water table above an impermeable layer
b) overland flow that forms when the rain exceeds the soil infiltration

capacity

Our enigma was how can water outflow be formed where there is no
water table or perched water table and where the rain does not exceed
the infiltration capacity.

A suggestion has been made that there is a latteral flow component
that cﬁn occur at any rain and in unsaturated soil. This horizontal
flow is within the soil and adjacent to the soil surface. Tt causes
moisture accumulation at concave parts of the landscape. It is possi-
ble that such a moisture accumulation can reach even saturation.
Saturation can be followed by outflow from the soil, by erosion and
runoff.

A badly gullied valley around Nahal Bohu in the Israeli Negev
was made a subject to a soil conservation and reforestation. In the
preparation, two air pictures taken 20 years apart have been compared.
The tips of some of the gullies were advancing at an average rate of
some 1 meter per year, invariably by undermining of a tunnel followed

by a caving in, The advancing gullies were almost invariably at concave



parts of the landscape where the topography is amfitheatérlike, The
measures suggested against further erosion were underground drainage
flow barriers and filters. Although there was no obvious water table

or another zone of saturated soil, such drains would let out water.

9. MORE OBSERVATIONS AND THE STRAW ROOF

After presentation of some of these ideas in an experimenl station
in Ohio (USA) (1968) the senior author has been shown an amfitheater-
like drainage basin with a spring at its mouth. There was no obvious
impermeable layer, Measurements did not indicate saturated flow around
or below the small area that was seeping out. The seepage continued
long after the rain, Since then many such places have been observed
with evidences on erosion and seepage in agricultural field and in
roadcuts.

The straw roof story is probably best to shake up some of the older concepts
and look for a better one. An 'expert' would have measured its infil-
tration capacity, and found it too high to serve as a roof. Despite

the expert's opinion no rain gets through the roof within the buil-

ding's area. Every drop of rain comes off but not a single drop runs

above the roof as an 'overland flow'. This case, though extreme, indi-

cates some of the limitations of present day surface hydrology. No

builder in his right mind would make a straw roof flat, the effect is
related to the slope and probably to the anisotropic nature of the

medium.

10. CORCLUSION

In the future chapters the detailed unsaturated .flow regime near
the soil surface will be studied. First we shall study splashing
raindrops, then the transition layer of the soil surface and finally

the layered soil. The theory of erosion and its application will also

A4



be elaborated., The report will include theoretical as well as some
preliminary experimental evaluations.

The report is based on the two notions:

a) that latteral flow component is formed by rain near the soil sur-
face and it accumulates in concave parts of the landscape;
b) seepage forces are a major cause of field erosion. For seepage

forces rainwater must come out of the soil.
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II. LATERAL FLOW DUE TO RAIN DROP SPLASHES

ABSTRACT

Several phenomena of surface hydrology could be explained by
stipulating lateral horizontal flow proportioned to the rain itself
and to the soil surface slope. Here this mechanism is shown to exist
as a result of raindrop splashing. Both theory and measureménts
prove it. As a result it is anticipated to have excess rain in parts
of the landscape, proportioned to their concavity, The effective
rain in concave parts of the landscape can reach several times the
average rain up in the air. This concavity can be measured geodetically.
It is roughly the local slope divided by the surface drainage density.
Erosion by splashing of soil material is also dependent on the same

mechanism and could be calculated there from.

P

1. WHY DO RAINDROP SPLASHES PRODUCE REAL LATERAL FLOW

If the soil is sloping the splashes downhill will travel further
away than uphill. The center of gravity of the original raindrop
will be found downhill of the first hitting point. This means that
given a certain distribution of rain intensity at some higher
horizontal surface the eventual 'effective' rain distribution on
the soil surface will be a result of a downhill translation. The
horizontal discharge amounts to the rate of rain times this horizontal
change in the center of gravity of the raindrops. An observer watching
the splashes passing will count more passing downhill than uphill,
The net difference is a very real net lateral flow. At least for
moderate slopes we may stipulate that the bias downhill increases
with slope. Over a long and uniform slope the result of the horizontal
flow will not be recognised, The final rain distribution will be

unchanged. At the top, at the bottom and at any point of change in



fig.

the slope the effects of the horizontal flow will be felt. In the
following we shall present three more or less independent parts.

A. An experimental evaluation of the net downhill flow as a function
of slope. B. Demonstration of moisture concentration at the bottom
of slopes. C. A theory that attempts a prediction of lateral flow

due to raindrop splashes.

2. A MODEL FOR RAINDROP SPLASHES

A raindrop when hitting a water surface produces a crown of
splashes (fig. 1). This phenomenon was investigated by many but
especially by MUTCHLER (1967, 1971). They come out at a fixed
angle B with the horizon. The size and distance of splash flight
has been found to be symmetrical to the initial flight path. However
the experiments were of vertical flight only. Splashes occur from a
non saturated soil as well.

We adopted first the convenient assumption that the exit angle
is uniform around the drop and that the exit velocity V0 is uniform
on the average, Notably both the final solution and conclusions are
not sensitive to some deviation from these assumptions.

A single splinter of initial velocity V0 of angle B will be
assumed to describe a parabolic path (with no air resistance and
over a flat gravity field). The components of velocity are then

\)
X

I

V cos B (1)
8]

<3
It

V sin B (2)
o

The equation of flight path is

2
g X
2

Z = X tan B - 7 .
2v0 Cos™ B (3)
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fig, 2

where:

z — the vertical coordinate positive upward

z = 0 at the intial hitting points

x - horizontal coordinate in the plane of splashflight

x = 0 at the initial hitting point of the raindrop

g - gravity acceleration

g, V0 - angle with the horizon and value of the exist velocity
x, and X, will be the hitting points of splinters downstream and

d
upstream respectively (fig. 2). If the slope angle is a

2.2 2
X, = . Vo cos B (tan B + tan a) (4)
_ 2.2 2 )
Xu = E—Vo cos B (tan B tan o) (5)

Consider now a three dimensional picture: (x, ¥ horizontal
coordinates and z upward vertical coordinates with the origin at
the hitting point). A mass m of a raindrop becomes a mass of
splashes m' = Emi. A single splinter forms an angle Oi with the 7
vector of slope tan o (fig. 3). The range of splashing r, of a mass
m, is simply obtained from (4) and (5) by adjusting the slope (tan «)

to (tan o cos Oi)

2 2 2
r, = 2 VO cos B (tan B + tan a cos Oi) (6)
where!
o, - the angle between the horizontal projections of the
i
slope and the splinter flight
VD,B - as before the speed and the angle of the exit velocity

vector
tan o — slope of the soil
Each splinter at an angle Oi then has on the average conjugate at
Oi + 7, The difference in range is:
A, = '
i7 "0, - Yo, + ) (7

1
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fig. 3

or explicitly

ar, = 2

V2 cos2 f tan & cos O, . (8)
i o i

The component in the direction of slope (x axis) is:

Ax,
i

v

1

Ar. cos B, = 2 coszﬂ cos2 O, tan (9)
i i o i

oo | &

The average translation of the center of gravity is defined by

Em.’ xilz

bx, = — > - (10)
m”

remembering that X, has been calculated for a pair of masses that

m, represents the mass of a splinter while m is the original and m™.

the total mass of splinters of the raindrop. The explicit translation

according to the above assumption is obtained by substituting (9)

into 10,

n
Ax~"= — V2 coszB tan ¢ X m7 COSZO. (11)
o j=1] L i

For many drops (in time and space) we pass in the limes to the

integral assuming equal probability for all angles Oi

T
n
lim _%- b c0320 = %-l coszeao (12)
n-e i=1 :
=0
Ax” = 2 V2 coszﬁ tan o L c0520 n”(9), de (13)
g o N m

Note that the center of gravity change has been calculated for
the mass of splinters m“and not for the mass of the rain,

The solution of (13) is

im, ..
= i-Vz coszﬁ tan o } (14)
g o m

ax”
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In words, the translation of the center of gravity of the raindrop
due to splashing is proportional to the specific kinetic energy of
the splashes V§/2g or to the maximum possible hight to which these
splashes can jump. This kinetic energy is probably related in some
manner to that of the original downdrop velocity less some losses
due to frictiom due to pick up of soil particles and the production
of new water surfaces. Consideration of the momentum conservation
requires the following two equations to be fulfilled (For a raindrop

which falls vertically)

]
o

Im, V , sin O, Im, V . cos B, sin O,
i xi i i ‘oi i i

(15)

1

]
o

Bm, V ., cos O,
1 xi

m. V . cos B. cos O,
i i ol i i

where in is the horizontal velocity component in direction O

of splinter i, with a mass m{. In passing to the limes of many

drops there may be maintained a symmetry of the horizontal momentum
with respect to two orthogonal lines, Continuity in the function of
© and the requirement that any distribution would have the slope

and a direction normal to it as principal axes leave a very small
number of possibilities with respect to velocity and mass distribution
of the splinters (or splashes) around the first hit of the raindrop.
The derivation above certainly fulfills the eq. (15}. A more rigorous
derivation of (14} will assume in eq. (9) a Vo and B varying from
one splinter to another just as Oi and m;' Furthermore on averaging
for many drops one can in¢lude also tan o;. The averaging or

i
summation should read then

AR =-—%" im, Vz. coszﬁ. cosze. tan a, (16)
i m’g 1 oi i i i

This will only amount to the assignment of average values to

all terms in eq. (14),
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3. THE LATERAL FLOW DUE TO SPLASHING

A single drop provekes on the average a mass m"with a translation
Ax”. The lateral flow can be found by counting the number of drops
passing through a vertical control surface. Clearly this is the
amount of splinters per unit time, times the distance (Ax)7 This
is the distance upstream over which drops fall and can still péss
through the control surface,.

The horizontal flow Qﬁ is then simply

—_ _ Zmi' i
QX = Ax P = Ax"P E (17)
_ _ Zmi‘ _
Ax = Ax” oo € Ax”

where Ax”is the time and area average translation, P the rate of

rain and Zmi/Zmi = ¢ is the ratio between the splashing mass and

the original mass of rain and Ax is the weighted equivalent translation
of rain drops.

Clearly Ax depends on the slope (eq. 14) on the rain energy, on
the type of soil, but also on the total rain and the intensity itself
as they determine the wetness conditions at the soll surface. The
ratio between splinters mass and rain mass may be changed from zero
to more than a unity. In horizontal soil Ax will vanish. It is
probably monotonic with the slope, at least on small slopes.

In the expression for Qx in (17) let us introduce the explicit

values of Ax“as in (10)

Im; Ax
_ i if2
Qx = Pe Im;, (18)
1
and writing the values for Ax. from (9)
. 2 & L mi Vﬁi coszﬂi
Q =P tana 2 [- T -] (19)
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The expression in brackets is proportional to the kinetic energy
due to the horizontal component of the exit velocity per unit width

of the slope

9 9 Lim. V 2 cosZB. Lim? v 2 sinZBItanzB.
£V 7 cos B = r 2 g .2 L (20)
2 7 Zm; Zm{ _

We may introduce a new parameter expressing the maximum hight of the

flight trajectory of a single splinter

_ 2 .2 :
8; = %2 Voi sin” g, (21)

where Voi and Bi are the speed and‘angle of the exit velocity

vector. Eq. 19 now reads

Qx = P tano 2e E/tanZB (22)
E me6./tan28.
- 1 1 1
tanZB kg

The parameter § may be estimated from measurements. Looking at
the muddy staining of walls we can observe qualitatively the hight.
Tt is typical for the soil and rain and gives us an order of
magnitude of the jumps. A more accurate estimate may be found by
the measurement of drop density in the air or by sponge paper
stained with methyl blue. From the area of the stained hlue one can
estimate the mass of the drops at every hight,

Introducing the jump hight into the above formulas one finds:

Q = PAx = P tan US (23)
U =2€2
tan 8

Ax = tan o ., UE

I1-7




Equation 23 is similar to the fundamental stipulation in the
previous part of this report (Zaslavsky Sinai 1978) eq. (4). The
rain is the rate of vertical flow. Due to the extremely short delay
and small storage of the splashing phenomenon eq. (23) may be
considered a quasi steady state. The parameters § and U
are due to the rain energy and- soil condition. They remind in

their form a layer thickness and coefficient of anisotropy.

Preliminary Measurements of lateral

flow

The first quantitative experiment was made with impermeable and
relatively smooth surfaces at various slopes. Rain was provided in
a raintower of |7 meter hight where the drop flight is on the average
vertical. The rain is reasonably uniformly distributed in time and
space and the flight velocity is very near the end velocities in
air. Measurements have been made of the actual splash distribution
over a distance upstream and downstream of an edge of a wide slope.
Still a considerable amount of splashes fell off the sides of the
slope. Thus the absolute values of lateral flow quoted here are on
the low side and can be in reality at least 20 — 30% higher.

From the measurements actual mass moments could be deduced and
change in center of gravity could be calculated. However, a simpler
check could be made by comparing the net downward splash discharge
from the edge of the slope with the net upstream splash discharge
across the upper edge of the slope, The difference is simply the
lateral discharge Qx' The results are given in fig. 4 as a function
"of the slope. They are given in terms of egs. (17) or (23) where

Ax can be calculated from the measured discharge Q* and the rate

fig. &4 of rain P,

The conclusions from the measurements are:

a. There is a considerable lateral flow due to raindrop splashing

b. Within the range of our experiment the lateral flow due to
raindrop splashing increases monotonically with the slope.
Furthermore up to some 207 slope it increases linearly with the

slope.
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One can convince himself about the order of magnicudel'cE
Ax by observing the hight of raindrop splashes on vertical walls.
Typically it reaches 30 cm hight. In equation (23) this cén be
taken for 6 . A typical value for B is 45° - 50° so that tanzﬁ =

| - 1.4. Let us assume also 2e ~2 we have then U= 1.4 - 2,

so that AX = 40 - 60 tan o 1in cm. (24)

From the experiment reported above one gets (up to a slope of

207)

Ax = 66 tan a 1in em (25)

so that either the existing angle of the spiashes B is somewhat
smaller or the associated mass thrown up by the raindrops splashing
is larger so that € > |. or both. This figure will probably vary
with the roughness, aggregate strength of the soil and the soil
moisture content. Similarly it may change with the rain intensity
not only as a result of changing the moisture regim at the soil
surface but also through the increase in raindrop specific kinetic
energy which is associated with increased rain intensity {an actual

increase in the final raindrop velocity).

A possible ratio between lateral f1ow

and rain

On a uniform long slope the contribution of a lateral flow
may be negligible. It is a constant that does not depend on the
slopes's length. Consider a rain discharge Qp over a slope of

unit width and length L:
Q =P.L (26)

The horizontal splash discharge is Qx from eq. (17) or (23).
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The ratio of lateral discharge to the rain discharge is then

Qx _ Ax =[f§ tan a

T L - (27)
P

A%in the above experiment was found to be approximately (66 tan o)
in centimetres. The ratio then depends on the slope steepness and
length, Consider rills gullies andrdepressions every 2 metres so
that a typical value of the sldpe length is L = | meter and a
slope not exceeding 10Z. =x/L can reach a value of 7% i.e. 7% of
the rain flows towards the depression due to splashes only. This

is a considerable amount of lateral flow.

The term (tan o)/L has a significant physical meaning. Clearly

the concentration of rain in concave places will be proportional

to this ratio. It is the slope times the drainage density of the

landscape. Geometrically it is the curvature of the landscape.
It will be simpler to understand it by considering a simple model

of soil surface as a sinusoidal shape where the elevation z is

z =7 + % sin (w%) (28)

A/2 is the amplitude of the sine wave and L is half cycle

length. The first derivative of 2z is the slope. It's maximum value
2 . . - . .

T~ A and its average is s = A/L. The curvature is estimated by the

2 L . . . . . 2

derivative, It's maximum value is w

A In terms of the
— . f-2.

slope s it is “2 - 2
e (s/L).

Excess Rain in Coneave Places

In the above it has been proved that the lateral flow due to
raindrop splashing is quite significant may be responsible for
accumulation of rain in concave points. The expression for excess

rain may be obtained more rigorously from eq. 23, Consider tan o

is
second

average

the slope to be a vector of two components in the x and y directions

z being the elevation,

2z oz
+ 1

—tana=lx5-}—(- ys‘;

IT-10
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Qh is then also a vector parallel to tan a (if the soil surface

behave isotropically and the rain is vertical).

_ = 3z 9z
The excess rainwater in a given point can be simply obtained by
conservation equation _

2 2
P* = - div Q= (PUS) (—3-—2 + E_;L) (31)

9x oy
Assuming of course that the rain P and the coefficientsif.g
(eq. 23) are independent on the coordinates x and y. If not, one
should add a term to (31) grad (z).grad @U.§). The chances are
that the two vectors are parallel anyhow so that (31) 1s exact.
The total amount of rainwater landing on a soil would then be

P =P+ p* = p[1 + UF v22] (32)
where sz is the curvature that can be measured geodetically (see
first article of the series Zaslavsky and Sinai 1978).

It is interesting to note the order of magnitudes of the term
in the brackets of (32). It has been shown that the term U,§ can
reach a value of 66 c¢m (at least in the experiment reported above).
For slopes of | meter length and elevation differences of 0,1 m

3 cm_]. Thus the

only, the curvature is of the order of 5 x 10
rain excess at such concave points can be 33/100. The effective
total can then be nearly 1.5 times the original rain.

To have in some spots a precipitation higher than the average
rain is an extremely significant topographic effect from an
hydrological and agrotechnical point of view.

The curvature at some points in the field can be very highf
Theoretically at a meeting of two plane slopes the curvature
(second derivative of elevation) tends to infinity.-Does this

mean that one should expect there an infinitely higher effective

rain water. This problem has not been studied in details. There
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is certainly a scale effect which depends on typical distances

of splash flight and the minimum wavelength to be considerd in

the shape of soil. This is in assuming that the soil surface can

be described as a Fourier series. Infinit excess rain at a spot

of an infinit curvature does ot contradict in any way the physical
reality as its spreading over an infinitesimal area. We ran
experiments with a V shaped 107 symmetrical slope and runoff

and erosion appeared almost immediately at the bottom edge. However
this phenomenon may be explained by secondary splashing and by the

flow in the surface transition layer,.

A note about erosion by raindrop

splashes

The complete problem of raindrop action on soil structure will
not be treated here. It is sufficient for the present discussion
to know that the raindrop splashes carry with them soil material
which is measurable. Typical figures that have been measured by
us had | - 107 of splashed soil in the rdainwater by weight in a
Loess soil. Typically a treatment of the soil surface by a soil
conditioner reduced this figure to 0.25 - 0.5% or at least
reduced the flight distance. Each mm of rain gives in the example
calculated above, of | m slope with 10 cm elevation differences,
70 grams of raindrops flowing to the depression. | - 107 splashed
soil gives 0.7 - 7 grams of soil per square meter splashed towards
the depression. This is a considerable amount. It can explain the
accumulation of splashed material in soil depressions that one can
see almost in every soil after any rain. It can explain considerable
erosion if there is an actual runoff coming out of a depression that
is capable of carying away the splashed soil.

A typical annual rain of 500 mm is capable of carrying away
in the above example 0.3 - 3,5 millimeters of soil and rework more

than 10 times this amount.
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4, CONCLUSIONS

There is a horizontal flow due to splashing of raindrops on a
sloping soil. This splashing has been shown in theory and in some
preliminary experiments to be proportioned to the slope (at least
for moderate slopes up to 20%). The accumulation of rain in concave
parts of the landscape increases with the curvature of the soil
surface. The local effective rain intensity can be much higher than
the original average rain. This phenomenon involves possible runoff, and
increased groundwater recharge that.wi11 be discussed in the next
part of this report. It can explain and help caleculate a fahge

of erosion phenomena by spléshing of soil material._
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Fig. II.l. Typical splash shape caused by a raindrop hitting a soil
covered with a water layer of depth h (after CALVIN and
MUTCHLER, 1967)

Fig., II.2. Splashes trajectories downhill and uphill
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III. RAINFALL EFFECTIVE DISTRIBUTION

ABSTRACT

The rain passing through a high horizontal plane is not uniformly
distributed in time and space. Slanting of the rain flight causes
a further variance in the distribution of the precipitation on the
land. This is due to slopes of different aspects relative to the
rain flight aspect. Latteral flow due to raindrop splashing cause
concentration of rain in concave parts of the landscape. All three
sources of fluctuations when averaged produce runoff or met water
recharge at very low average rains and in general, non linear
relations between them, The soil surface roughness is defined as
the mean squar of the local curvature and or of the local slope.
They are very important hydrological parameters determining the
extent of precipitation distribution variance. The boundaries
of a surface drainage basin or watershed has a clear mathematical

definition in terms of latteral flow due to raindrop splashing.

I'. INTRODUCTION

In the previous part of this report (ZASLAVSKY and SINAI 1978 II)
it has been shown that there is a horizontal flow vector Qh due to

raindrop splashing (in volume per unit time and unit width)

Q, = P.U.8kan a (1)

where P is the rain intensity in length per unit time the slope is

a two dimensional vector

az 8z
- tan o= | x — + 1

- v 3y (2)

and U.§ is a quantity that could be formulated theoretically and

measured experimentally. In some experiments it has been found
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U § = 70 cm. There is an excess moisture accumulated in concave
places px calculated by the divergence of Qh in (1). It has the
same units as the rain itself. The total effective rain in a point

is Pt = P + P¥ ig given by

P, = PU + 0.5 v72) 3)
In the following the phenomenon of rain excess accumulation a.

its consequences will be studies,

2. SHARP V SHAPED SLOPES

It has been mentioned that at lower edge of a V shaped slope
the curvature tends to infinity. The physical consistency of
eq (3) is not disturbed as the area of high curvature must
diminish as the degree of curvature increases. An extension of
the mechanical theory brought in the previous part of the report
gets quite tedious algebraically. However it can show that the
rain concentration over a V shaped slope will be continous and
will have no tendency for infinit rain excess at infinit curvatures.

However, the actual physics may be different in view of some
secondary splashing. The secondary splashing may be of much
smaller distances however with large masses of rain. Such
repeated splashes should increase the concentration of rain in

sharp V shaped slopes.

An experiment was vun in such a slope with a rain simulator.
Runoff and erosion appeared almost immediately at the sharp ede-
However this observation may also be related to other phenomena.
One is that of a.lateral flow in the surface transition zone that
will be discussed in future parts of the report. The other would
be a simple surface runoff due to the already increased rain
concentration. This subject should be studied further. In the
soil surface roughness there are probably wavelengths that are
too small to be relevant for raindrop splashing. The distance
of splashing can reach about | meter and this is probably the order

of minimum wavelength which is still relevant to this process.
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3. SUMMATION OVER THE FIELD

Eq. (3) may be integrated over the whole field. For maintaining

of conservation of rainwater there must be
”P dxdy = ”dedy+V (4)
j; € JJ o .

From equation 3 this means
3 2
PU.S ||V" z dxdy = V_ . (5)
J ) .
This is easily proven true if Vo is some finite contribution or
losses of rainsplashes over the boundaries that become relatively

negligible for large enough areas. Equation 5 reads after first

integration (fig. 1)
s ;07 oz 0z dz _
P.U.§ [}\:(5-;)2 - (-5-;)1] dy + ”:(:a-i;)ll - (-5-;)3] dx =V (6)

the term

P.0.3 [(%f;) _ <_g§>] )
2 1

fig. 1

is the net rain addition by splashing in the x direction.
The other definesthe net gain in the y direction. The definition
of drainage basins is by boundaries along which the slope normal
to the boundary is zero. Therefore over surface drainage basin
V0 = (. There must be another way to express the curved nature
of the field and its impact on hydrological phenomena,

The type of averaging depends on the function involved and

the form of its dependence on the rain concentration.
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4, OTHER FORMS OF RAIN NON UNIFORMITY

The accumulation of rain in concave places is an important form
to cause non uniformity in the final distribution of the precipitation
water, There is another form which has been published by ZASLAVSKY
(1970). Consider a slanting rain (fig. 2) with an angle 8 with the
vertical over a slope o of the soil and with an azimuth of the slope Yy
and the azimuth of the rain w., The effective rain is then (from

simple geometrical considerations)
P effective = P [l + ntan a] . (8)
n= tan B(cos v cos w + sin y sin w) (9

It can be demonstrated that n tan o can easily be + 1, thus doubling
the effective rain on one slope and diminishing it to zero on the
other. The extreme of eq. 8 is easily checked when y and w have

the same value i.e. a two dimensional case where the slope and the
rainflight have the same aspect then eq. 8 reads

Poec =P [1 + tan o tan B] 9)

When a = 8 = 450 Peff = 2P or zero. For a vertical wall a finite
rate of rain accumulates on an infinitesimal point (tan o + « )},
It is interesting to combine the two mechanisms of concentration
in concave areas (eq. 3) and slanting rain (eq. 9).

A further complication of the behaviour is anticipated due to
variations in the rain intensity P itself at a higher level in the

air.

5. ANTICIPATED CHANGES IN & AND U WITH THE RAIN

The formulation of the latteral flow due to splashing remains
simple enough if the anisotropy U and the jump hight § are independent
on the rain. However, it is probable that the ratio of splashed mass

to the rain, as well as the recoverable kinetic energy will change
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fig. 3

with the rate of rain. Investigations (VEN TE CHOW 1969, MUTCHLER,
1967) indicate that larger rain drops occur with increased storm
intensity. They certainly reach higher final velocities. In a
given soil it has been observed that the specific kinetic emnergy

of the splashes is proportional to the original kinetic energy of
the rain drops. The product U.S is expected to be proportional to
the recoverable kinetic energy of the splashes. Therefore it is
anticipated that the change in U.5 (P) is somewhat like in fig, 3.
Therefore the horizontal discharge Qh will be related to the rain
intensity P by a positive power k:

no, K
Qb p ) 0<Kc<l (10)

us(P) /v Pk

This is a correction over eq. (1) where U.§ being considered a
constant. No experiment has been run to prove eq. (10).

However it is quite reasonable to stipulate it.

This in turn indicates that on averaging latteral flow due to
fluctuations in rain intensity we shall find a net contribution of
the intensity variance as well as that of the average rain (over
time and space). It means that short and strong and even local
bursts of rain can produce strong latteral flows more than proportional
to the intensity. Higher intensities will be associated with more

extreme concentration in concave places.

6. RAIN CONCENTRATION RUNOFF AND GROUND WATER RECHARGE

The main conclusion of the discussion above is that even under
uniform rain in time and space the effective rain in some points
on the soil surface can be higher than the average. This is due
to slanting rain and due to splashing that produce downhill flow
of raindrops. 7

Furthermore, a non uniform rain in time and space can increase
the amplitudes of the fluctuations of the precipitation over the
field. Let us assume that at least under some cases the eventual

local precipiation can exceed, the infiltration capacity and that
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the excess will turn into runoff. The same model may apply to ground
water recharge. A net recharge may occur only after a certain rain
quantity has reached the ground. The simplest mathematical form of

the model will be that of a difference equation.
R=P-1I (1)

where R is some net effect (may it be runoff or recharge or crop
yield). A common error is to write the average R as the difference

between the averages of P and T
R=P-T1 - (12)

The averages P and I are measured and then R is calculated.

In a corrected form we should calculate

=P -1 for (P-1) > O (13)

In the above it has been demonstrated that P can have large
fluctuations between zero and several times P. If P has an expected
value P and a variance 05 and so is I and c% then as a first
approximation (neglecting higher statistical moments)

R 02
eff

— - 2
=R+ f(R o I’ GPI)

o (14)

where OPI is the correlation between fluctuations in P and I. Most
often such a correlation will exist. For example if 1 is surface
retention and R is either runoff or water recharge then there is

a positive correlation. Surface crust forms as a result of rain
accumulation and especially in concave places, Thus if I 1is
infiltration there is a negative correlation with P as far as
runoff is concerned.

A case is possible where R = Oi.e. the average rain is equal
the average infiltration {plus retention etec.). Runoff may
nevertheless oceur due to local concentration of rain as expressed
by the statistical terms of 4. Similarly very slight rains may

produce net water recharge in some concave places of the landscape
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due to latteral flow. ZASLAVSKY (1970) calcu}ates the &4'~(¥4) assuming
a normal distribution for both P and I. It is possible to check that

the result is

— —  oR =2,. 2, R R

Reff =R + wors exp(- R /ZGR) -3 erfe (3;75) (15)
2. 2 2

oRf UP + OI 2 OPI GP ﬁI

(16)
R=P-1

It is not necessarily true that P and I have a normal distribution.
It is even clear that P and I cannot have a perfectly normal
distribution at least for negative values of P and I. However, other
distributions while being mathematically more complicated, will
produce qualitatively similar conclusions. It is interesting to
learn about the shape of eq. 15 with different values of P and oi.
For R = 0.

o

— R
Rees = Vor (17)

As P fluctuations can be of the same order of magnitude as the

average value of P and larger then o_ can be about P/2 and even

more and the runoff or net recharge Ean s5till be a significant part
of the rain (! and more). This is totally due to local concentration
of rain water by latteral flow.

At very high values of P (and R) the second term in (15) vanishes
and'f{_eff increases proportionally to R. This is true only if the
fluctuations remain unchanged. However, it has been found that the
fluctuations in effective P increase with its average (eqs. 3,8).
Therefore the terms §2/20§ and RKR in eq. 15 do not increase only so
much as I remains a constant. At higher values of R the ratio will
tend to become a constant. Thus in eq. (15) probably all three terms
increase in a similar fashion. Contrary to what ZASLAVSKY (1970)
suggests the term of local concentration of precipitation does not
become negiligible with increased rain intensity. It is even possible

that the effect of the fluctuation increases (e.g. in view of eq. 10).
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A most interesting conclusion may be drawn here. The'sihipiest
lineair equation 1like (13) has produced on a&eraging a non linear
relation like (15). This is due to a combination of fluctuations
and a treshold I. Equation (15) reminds more closely experimental
relations between rain and runoff that are far from linear with R

(ZASLAVSKY, 1970).

7. THE FIELD SLOPE AND ROUGHNESS

In most hydrologic models the field slope is considered.to be
an important feature. It has been proved so far, at least as far
as the raindrop splashing is concerned, that the local curvature
is just as an important entity.

The specific form of averaging depends on the explicit formulation
of the end function. As an example the oldest and most common
hydrological model is examplified in eq. (12) and somewhat corrected
in eq. (13). A specific statistical distribution is assumed in eq. (15).
The variance of P has been related to variations in slope (8) or
variations in curvature (3). _

Let us calculate the variance of P, Ug from equation (3)

assuming constant U and & (only concentration in concave spots)

) ([7222% axay

D I
Up - plyZg2 (18)

| [[dxdy
JJ

Clearly the roughness in this case is the average of the squared

curvature. Another variance is due to slanting rain (eq. 8).

[[nz tan2 o dxdy
J)

(19

[[dxdy
J}

NMote that n changes from point to point as the aspect of the slope

changes. This means that the roughness of the field may be different
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for slanting rains of different aspects. Still more complicated
cases can be obtained by a combination of the two mechanisms

(of slanting rain and concentration in concave spots). In the above
only integration over the space has been registered. Fluctuations
of the rain intensity P over space and time and dependence of U,§

on P would require the calculation of the variance as follows.

UPZ = JJJ i}P -P) + PUGVZZ] dxdydt/t[[dxdy (20)
3

This is for the splashing effect. Luckily as the curvature is
time independent and possibly of no correlation with the rain
fluctuations, the actual calculation may be somewhat simpler.

It is important to point now the need for measuring different
topographic parameters and rain parameters that have not been
considered in the past. Unquestionably they have a decisive effect
on local and temporal concentration of rain that can 1eadlto:
ground water recharge, runoff or at least parts of the soil that
are wetter than others.

As an illustration let us produce a two—dimensional sinussoidal
landscape. With the elevation Z fluctuating around the average

Z with an amplitude Ai/2 and half cycle x = Li'

A,
= i . X
7 =Z + 5 sin (HE:J (21)
i
then the slope is
_Q9Z _ i X
tan a = o = Eﬁf; cos (ﬂi;) (22)

and the curvature is (droping the index i for ome cycle only)

2
3" Z A 2
5;g -7 E-(%) sin (ﬂ% ) - (23)

The roughness or variance according to eq. 18 is found by
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=2 A2 T4 [L

2 1 .22 .2, %, .
UP = i— PUS ('E) ('E) :) sin (n -f) dx =
_w b A2 2 22
= 5'(L) (2) PU S (24)

The standard deviation of the precipitation at the soil surface is

ot A m.5/2
L.
A ﬂ2 :
As mentioned earlier the term = 3 is the maximum curvature.
L

(A/L) is the average local slope while 1/L is the drainage density.
For L Azl and A only 0.1 m US can be 0,50 m (as measured in earlier
part of this report ZASLAVSKY, SINAI, 1978), The standard-deviation
can be around 0.2 P.

A second example can be of a3 slanting rain (eqs. 19 and 22).

Assuming n = | at a 45° glanting rain
A m.3/2
oy =P 1 P (26)

and for (A/L) 0.1 the value is about 0.18 P. Much higher values
may be obtained for a steeper relief of the soil and for shallower
slanting rain.

A rough estimate of the final variance of the precipitation
on the soil surface is probably an addition of the separate variances.
This means that the total standard deviation can easily be 50% of

the average raln intensity.

8. CONCLUSIONS

The study of the average hydroleogical behaviour over the field
requires the measurement of the rain statistical terms, the local
and themperal fluctuations of its intensity and the aspect and slope
of the rain flight, In addition one has to expres$s the soil surface

roughness in terms of the mean square of the local curvature or
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the local slope magnitude, depending on the phenomenon iy guestion.
The mean squar local curvature expresses the degree of'
precipitation concentration in concave places by raindrop splashes.
The soil surface is to be expressed as a Fourier series {or double
series), Each wavelength contributes linearly to the variance of the

. , . . A, ,
precipitation. If the amplitude is _i and half wavelength is Li then
2
the contribution is proportional to A/Li. However there is a

physical limit on the wavelength which is contributing to this
process. Very sharp changes in soil slope have Fourier harmonics
of short wavelength, If Li is smaller than a typical splashhdistance
of the raindrop it may not contribute to the precipitation accumulation.
This is a subject that should be further studied.
The order of magnitude of the effective precipitation in some
spots can be much larger than the average rain, Thus runoff and
water recharge can become a non linear function of the average
rain, Runoff can be formed even when the average rain is lower than
the infiltration capacity. Ground water recharge can be formed even
when the average rain is lower than the potential evaporation and runoff.
Ground water recharge can be formed even when the average precipi-

tation cannot but wet the top soil.
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IV, LATERAIL FLOW IN THE SOIL SURFACE - QUALITATIVE CONSIDERATTONS

ABSTRACT

In this part of the report a second mechanism is explained by
which latteral flow is formed during rain, followed possibly by the
concentration of moisture in concave places and possibly leading to
runoff, erosion and other physiographic phenomena. )

Streamlines that enter the soil vertically tend to curve down-
stream on a transition to a more permeable layer. In unsaturated flow
a more permeable layer can be produced by a local water accumulation.
Such an increase in moisture, pressure and conductivity can occur within
a layer which has a higher saturated hydraulic conductivity overlaying
a layer which has a slightly smaller hydraulic conductivity, There can
be a slight moisture accumulation or the formation of perched water
table. In either case latteral flow component is associated with the
vertical infiltration. The latteral horizontal flow is proportional
to the slope. The soil surface is defined as a transition from the soil
to the air with an extremely permeable layer at the top. Thus latteral
flow occurs in every sloping soil and with any rain even a very small
one. Every rain, even a very high one penetrates completely into the
ground, Concentration of rainwater in concave parts of the landscape
can now be explained by two consequent mechanisms, the splashing of
rain drops and latteral flow in the soil surface transition layer. A
plow layer is a special case of a thick transition layer.

While the process of moisture accumulation due to raindrop
splashing increases with concavity only up to a certain value, the
concentration due to flow in the transition zone can tend to very high
local values at high concavities. On the other extreme the flow in
the surface transition layer remains important at ver& moderate slopes
and curvatures, The process is significant for uniformity of irrigation
and for errosive processes, Concentration of moisture in concave places

continues during drainage and evaporation. It may explain the long
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term cumulative effects of the precipitation on the evéntual formation

of runoff in a given storm.

I. INTRODUCTION

In the first part of this report (ZASLAVSKY and SINAI, 1978I) it
has been suggested that there exists a horizontal flow component as a
result of precipitation over the soil surface. This horizontal flow
component is to substitute the concept of surface runoff flow and
similar terms used to describe a situation where the rain exceeds the
infiltration capacity.

It has already been shown (ZASLAVSKY and SINAL, 197811 and III)
in theory and experiments that raindrop splashes actually provide a
considerab!» horizontal flow component proportional to tha ain itself,
to the fir:st power or higher, and to the slope of soil surface. The
result is that the rain accumulates in corn: e parts of the landscape.
Local and temporal fluctuations in the precipitation can produce
moisture excess even at low rates of rain or low total rain depths,

It is the intention of the present part of the report to demon-
strate a similar phenomenon at the soil surface after the raindrops
rested and entered the ground, Under a uniform rain there will be a
horizontal flow component downstream which is similarly increasing
with the rain intensity and is proportional to the soil slope, Here
the analysis will be limited to relatively simple deductions intended
more towards qualitative conclusions and an insight into the process.
A demonstration of the existence of such a phenomenon is very simple.
Many, after reading the present discussion, will identify observations
they saw in nature that cannot be explained otherwise, The Beer Sheva
experiment reported in the first part of this report (ZASLAVSKY and
SINAI, 19781) is such an observation. Some of our deductions here will
be based on a steady state analysis. The results of the Beer Sheva
experiment show a non steady state regime which is very much like the
steady state. Its analysis has been done by numerical methods and is

postponed to some following parts of the report.
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fig, 1

2, THE CURVING OF STREAMLINES

When a streamline moves from one medium to another with the res-
pective conductivities KI, K, it will form different angles Yy Yy
with the orthogonal to the interface so that (fig. 1) -(BEAR et all.,
1969)

tan Yl KI . '
Tany, K, | M
Y2 %2

Consider fig. 1 as an example with two soil layers and an angle o
with the horizon. On passing from a less permeable to a more permeable
layer the streamline will turn from a vertical direction to a diagonal

direction having a horizontal component., If as in our case initially

Y, = o the ratio between horizontal and vertical fluxes will change to
K
2
tan o0 — - 1)
9% K _ 3 sin 2qU” )
_— = X = 3 H U=('K—""|) (2)
4y 2 I + sin“qU” I
]+E—-—tan01

1
as can be shown by simple trigonometric considerations.
I
At small slopes (angles ¢), =— tan'da << 1 so that

K
|

q
X v tan av” (3)
q, "

2

or i sin 20 A sin o and sin"a << 1, so that

I
— s sin (U™ (4)
9,

We shall see later that in more complex cases of unsaturated flow
one obtaines the same result except that the coefficient of anisotro-
py U” takes a somewhat different form (e.g. K, and K, being the
weighed averages of horizontal and vertical conductivities, respecti-
vely).

If q, happens to be the rate of infiltration I which is equal to
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some steady rain then K, = I. Substituting it in eq. (2) or (3) one

gets the horizontal flo; component as a function of the rain or the
steady rate of infiltration and the slope. -

In a medium of a gradually varying conductivity the change in
flow direction follows exactly the same rules. The angles of the
streamline are then related to the direction of the vector (grad K)
and a change in tan Y is expressed by its scalar product with an

elementary path length ds.

d(tan y) _ grad K.ds
tan v, q

(5)
By simple observation of fig. | and eq. (5) the following con-
clusion can be drawn with respect to a uniform slope with a more or

less vertical entry of the water:

a) if the hydraulic conductivity increases with depth the streamlines
will curve downstream to form a horizontal flow component;

b)Y if the conductivity decreases with depth the streamline may turn
upstream but not beyond a direction normal to the soil surface.
Thus one can conclude that there will be always a flow component
parallel togthe soil surface. This component can diminish to q
gin o in uniform soil and to zero in a highly impermeable part of
the soil. The parallel component is always downstream;

¢) as the horizontal flow component is proportional to the slope it

can explain concentration of moisture in concave places.

In using components dq and q, in fig, | parallel and normal to

the interfaces one gets the simple formula for any K value

qQ
-2 = tan Y - K tan vy (6)
K i
n |
and in the case that q, is vertical and ¥, = o the soil surface slope,

9g, = 9y sin o3 qn] = q, cos a (assuming 4, and q, positive pointing

down) then
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q
-—s—=5—tana . (N
qn q1

From eqs. (6) and (7) one can further validate the above conclusions.

3. CURVING OF STREAMLINES ABOVE THE WATER TABLE

The simplest case is that of a steady accretion to a phreatic
surface by rain (or negative accretion by evaporation). If the soil
is thick enough above the phreatic surface and it is uniform then the
streamlines will enter the soil vertically. Also Kl = q, (fig. 1) (see
for proof eq. 14 with z » =), The saturated hydraulic conductivity Ks
is near the phreatic surface. The slope is that of the water table
o =Y. The streamlines will enter the water table at an angle.

According to eq. (7)

0
=

—= = _% tan o (8)
qn q1

Or in the.xz coordinates by eq. (3)

Ay Ks
— = (— - 1) tan o (9)
qz qI

remembering that by conservations q, = q, at every depth

q, = (K, - q;) tan O (10)

Interestingly at smaller vertical fluxes the horizontal component will
be relatively larger. One can actually calculate the horizontal span
of a streamline while coming down from the soil surface. Assume a
saturation surface at elevation zero. The equation for the pressure

head of Y is found from Darcy's equation

-y
dz a; (1)
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remembering that q, is in a negative z direction.
Assuming an experimental relation between the conductivity K and

the pressure head ¥ one can integrate (11), For example
= . <
K KS expla (P + woﬂ’ P+ ¢0 £0 (12)

a and wo being experimental coefficients and K, the saturated hydraulic
conductivity,

Introducing into eq. (I1)

kK _
1 K Ks '
z-2z =-—lpn—>" (13)
O a q]
=%
5
solving for K
K=q + (K -q) exp [-a(z - zo)] (14)

z, is the elevation of saturated soil (Y = —wo). With the help of eq.
(9) where K is substituted by any K from eq. (l4) one can calculate
the horizontal translation of a streamline (which is identical with a

path line under steady state).

K

dx = (-I-(— - 1) tan 0 dz = (— - |) exp [—a(z—-z )] tan o dz (15)
: q] ql o
on integration
KS | —a(H—zO)
Xy = (ET - 1) tan o Y (1 - e ) (16)

where B~z is the height between the surface of saturation in the
soil and the soil surface over which the total horizontal movement is
Xy. In the case of a large term a(H—zo), eq. (16) is approximated by
K ]
X -1 C—i - 1) tan o (17
H a 'q
In some drainage problems the slope i1s 0.0l to 0.]. The hydraulic

conductivity can be 10 to 100 mm per day while the rate of drainage
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fig. 2

may be 2 to 3 mm per day. A typical value of the coefficient (a)-can

be 0.01 cm_l. Clearly the horizontal movement x, can be from few cen-

H
timetres to few metres within the unsaturated zone. This i§ a striking
result especially for some shallow water problems of waterways and
drains. Here, even in a flat land, the groundwater slope increases and
the latteral flow within the unsaturated soil will become significant.
This special case of non uniformity in conductivity and of.
lateral flow is due to the boundary conditions of the problem and
has already been recognised by FREEZE (1967-1976). Instead of the
numerical technique used by him it has been preferred here to have a
simple analytic derivation that demonstrates better the principal na-
ture of the phenomenon and its order of magnitudes. The interesting
point is that the unsaturated flow regime induces variations in the
hydraulic conductivity that in turn cause a significant horizontal
downstream flow component above the water table., This simple case is
introduced as an intermediate step towards the more general and more
significant case where the latteral flow is induced by a layering of
the soil. It has been known that a layered soil behaves anisotropically
on the average under saturated flow (BEAR et al., 1969). In the follow-

ing unsaturated flow will be considered.

4, A TWO LAYER PROBLEM (FOLLOWING ZASLAVSKY, 1970)

Consider a permeable layer of saturated conductivity Ks] and

thickness D, overlying a less permeable layer KSZ’DZ (Fig. 2). The

1
rain is of intensity q» which is smaller than the hydraulic conducti-
vity of the top layer K,. Thus the flow at this layer will be unsatu-

rated, under negative pressure, If D, is long enough the flow regime

at the top will approach asymptoticaily Kl = q and the hydraulic
gradient will approach a unity (see eq. 14 with z - «), Approaching
the interface between layers the pressure will increase gradually. The
hydraulic conductivity within the top layer will gradually increase
towards saturation K, K ;. In fig. 2 two adjacent vertical sections
are observed. Compare the pressure head curve on the upper one with

that on the lower one. At two points along a horizontal line C-D the
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elevation is the same. The pressure head is higher at the upper

section {curve 1) than in the lower section (curve 2), Therefore there

must be a flow component in the herizontal direction, i.e. downstream.
Let us study this problem in view of the streamline equations

(3) and (4). At the top of layer 1 (fig. 2) Kl > q, < K, . At the

Is
bottom of layer | K] = K]“, it increases and may approach Kls' As a
result of the less permeable layer and the unsaturated flow there is
a build up of moisture, pressure and conductivity above the interface.

The flow direction in the top layer will then change from vertical

(qx = 0) to

K it
1
q, = (al—- 1) tan (@) q, (18)
(from eq. 3 identifying Kl" = KZ’ q, = Kl). It becomes clear that if

there exists a more permeable layer at the soil top and if the flow

is unsaturated streamlines will bend downstream, It is stipulated that

every soil without an exception has a more permeable layer at its sur-—

face. Therefore in every sloping soil under prolonged rain the stream-—

lines will bend downstream. In other words, at the surface of every

sloping soil there will be a horizontal flow component downstream,
This has been shown to be under non-saturated conditions as well

as with the presence of a water table. Furthermore one may conclude:

a) under steady state flow the vertical flow component is the same at
every depth. The horizontal flow component is therefore explicitely
proportional to the vertical flux at every depth. So is the total
horizontal discharge. Implicitely the horizontﬁl flux increases
also due to the coefficient of an isotropy (ﬁ%_ - 1) which in turnm
increases also with the rate of vertical flow. Thus the horizontal
flow depends on the steady rain to a power higher than a unity;

b) if there is a change in the slope so that the landscape is concave
there is also a concentration of moisture. This is because the in-
coming horizontal flux is higher than the outcoming one. A very
high hydraulic conductivity at saturation (KS) usually means a fast
reduction of the conductivity due to suction e.g. having a higher

value of the coefficient {a) in eq. (12}. This means that relatively
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small depth of soil (z—z0 in eq. 14) is sufficient/'C¢' inake ‘the
conductivity equals the rate of infiltration and the flow vertical-
ly down. Thus the very high conductivity at every soil surface

validates our assumption of initial rain penetration to be vertical.

5. THE TRANSITION AT THE SOIL SURFACE

In the first part of this report (ZASLAVSKY and SINAIL, 1978I)
a criticism has been passed as to the possibility of measuring surface
flow because there is no unique definition where the soil surface
really is. ZASLAVSKY (1968) argues more generally that in soil physics
meaningful entities are averages over time and space that produce a
continuum, The same should be applied to the soil surface. For example,
the porosity can be measured over a finite sampling volume or over am
area, High in the air it will be 100Z. Somewhere in the soil it may
be 50Z. Anywhere inbetween it changes gradually. The hydraulic con~
ductivity will change in a similar way from some finite value well in
the soil bulk to a very high value at the air {e.g. change in K, of
eq. 12). In a similar way the air entry value wo will be reduced to
zero passing from the soil bulk to the air (wo + 0 in eq. 12). Final-
ly the rate of K reduction under suction will increase (coefficient
a in eq. 12), (see dictionary of soils by MUALEM and DAGAN, 1976).
The air can be considered as some limiting form of the porous medium
itself (very similar to a very coarse gravel). The pressure of the
raindrops is always atmospheric. The rate of flow is the rate of rain
and the unsaturated conductivity is conveniently equal to the rate of
rain. The surface transition is far from being just a mathematical
artifact. It may be very thin in some uniform and smooth sand but can
be several decimetres thick in most cultivated soils.

The soil surface is defined by a transition of the properties.
Its direction is defined by a surface normal to the property gradient.
Out of many such surfaces one can be chosen to represent the surface
through some convenient conservation demand (e.g. that the total poro-
sity will be unchanged). Then the property may change abruptly at this

representative surface. We may conclude that a unique soil surface is
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more of a mathematical artifact.

An important consequence of the above is that every rain, intense
as it may be, penetrates completely into the soil (at least into its
surface transition zone), There is no such a thing like a surface run-
off because the rain can never exceed the hydraulic conductivity of
the uppermost part of the soil surface (i.e., the air itself), Satura-
tion due to high intensity of rain when it occurs will always appear
first within the surface transition zone.

The splashing of raindrops proved to cause a horizontal flow com-
ponent proportional to the slope explicitely proportional to the rate
of rain and implicitely to some fractional power of the raim. Evidently
a steady flow through the surface transition layer is related exactly in
the same way to the rain. The response time of the splashing raindrops
is measured in fractions of seconds., It can therefore be considered
quasi steady (following exactly the rain itself). The flow in the
transition layer can be delayed, depending on its thickness. It is
expected that thin transitions will react faster.

At the wetting front the flow motivating force is mainly the
pressure gradient which is anticipated to be normal to the surface.
Therefore the flow will tend to be normal to the soil surface (qS + 0,
fig. 1) and even have a slight upstream flow component (qx <0, fig,
1). Well behind the wetting front the main force will be gravity and
downstream horizontal flow (qx > 0, fig. 1) will be formed..

The flow in the surface transition layer can sometimes be observed
as tiny trickles of water or shiny soil surfaces. Concave parts of a
very small dimension ﬁhere water concentrates can be considered in de-
tails as such or be averaged out as part of a thicker transition layer.

The exact limit depends arbitrarely on the chosen scale of observation.

6. ORDER OF MAGNITUDES OF FLOWS IN THE SURFACE TRANSITION

Consider first a well cultivated heavy soil with a good and stable
structure. The hydraulic conductivity at the top {even not near the
air) can reach 10_| cm/sec and even | cm/sec. These have been actually

measured in a drainage research field in Hazorea, Israel, In the subsoil
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the hydraulic conductivity may reduce to 10_6 cm/sec abdcless)/|This
means that the anisotropy coefficnet can change all the way from near-

6. One can actual-

ly zero at an extremely low rate of rain and up to 10
ly observe lateral flows of few metres or few tens over a vertical in-
filtration of few decimetres. Water puddles form after rain or irriga-
tion at slightly concave spots. This example is of course extreme and
almost trivial. The observations reported earlier (ZASLAVSKY and

SINAI, 19781) north of Beer Sheva is much less trivial and fits the
above analysis. Even a change of 2 orders of magnitudes in the hydraulic
conductivity and a slope of 1Z can produce a horizontal flux equal to
the vertical one. Higher slopes were in Beer Sheva (more nearly 107).

We have no directly measured data of the field anisotropy. This
and some other entities should be the subject of future research ef-
forts.

The two processes of raindrop splashing and flow in the surface
transition layer join to produce latteral flow and moisture concentra-
tion. Under laboratory conditions one may try the second one only
separately by applying the moisture without the high kinetie energy of
the raindrops. In nature it will be difficult to distinguish between
the two. In the previous part of this report (ZASLAVSKY and SINAI,
1978I1II) an experiment has been mentioned with a V shaped soil slobe.

An almost immediate runoff started at the sharp bottom edge. Raindrop
splashing alone cannot explain it. As there was no impermeable layer
or thorough saturation of the spilldirectly by the average rain then
.the phenomenon may be related to flow in the top transition layer. .
This deduction is supported also by the fact that the runoff at the .
'V' sharp edge involved also liquification of the soil and erosive’
flow. Such a flow can occur only if water is coming out of the soil.
Raindrop splashes remain outside the soil. However, the rain enteres
the transition zone and can then seep out.

It seems that the water flow in the surface transition zone can
be quite significant where the raindrop splashing is less. It can
respond to more extreme curvatures M in the soil surface M > | m_]
where it can produce runoff and erosion with very small amounts of rain
and in relatively short times. On the other extreme it can accumulate

moisture at relatively moderate curvatures M < 0.l m_] (in the Beer

Iv.11



Sheva experiment}. There, the effect of raindrop splashing becomes

negligible.

7. SOME NOTES ON THE OCCURRENCE OF SURFACE TRANSITION AND ITS SIGNIFICANCE

By definition any particulated material has a transition surface
layer which is at least several times the dimension of a particle, The
thickness of the transition will depend not only on geometry but also
on effects like the transfer of momentum in liquid flow (SUFFMAN,
1971). \

However most soils will have a more loose structure at the surface
with some aggregates root holes and other disturbances. Newly exposed
soil cuts will developp such thicker tramsitions over some time. Deve-
lopment of surface latteral flow and erosive mechanisms will develop
accordingiy.

Some surface layers may be very similar to & straw roof. This
may be the case in litter covered forest soil and possibly even in
some grass covered area where the old growth may have a marked orienta-
tion parallel to the soil surface.

The concept of surface transition may apply in an interesting
way to some other water flow problems such as cutcrop of water on-a
seepage face, Accordingly the flow medium will be described by highly
permeable layers at the surface. The concept of a seepage face becomes
redundant. The streamlines simply bend downstream in the transition
layers, In what has been called seepage face the flow is more or less
parallel to the surface but within the soil. It is significant not
only in contributing to the physical consistency of our flow analysis.
It can explain how some small surface geometrical irregularities can
cause local outflows and erosion due to seepage forces.

It is sipnificant that downstream horizontal flow component occurs
whenever the pressure head reduces with elevation. This is certainly
the case during drainage and drying of the soil surface by evaporation.
A surface transition makes the effect more significant. Thus the
latteral flow and moisture concentration in concave parts of the land-

scape will continue long after the rain has stopped. This process will
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keep the concave parts wetter over long periods and shiiiten the delay
to runoff on the next rain. It seems that the importance of the latteral
flow becomes quite universal in saturated and non saturated flow, du-
ring prolonged rain, drainage and drying of the surface. It occurs in
seepage faces. It occurs in the natural, exposed soil and possibly
with litter covered soil.

Irrigation in cultivated soils must be affected by latteral flow
of water. Farmers have been emphasising the importance of leveling
the fields, It seems that the term leveling is a semantic error
accompanied with a misinterpretation of the mechanism. Leveling of
fields is in practice the provision of plane surfaces (though with
smaller slopes too). It may be that leveling is not as important as
'planing'., Local, very small scale high curvatures such as furrows cause
non uniformities in the moisture distribution that are averaged out
by the soil itself and the plants. Still sharp edged furrows always
involve erosion and fast development of runoff, Some thought may be
given to the shape of the furrow in view of the above analysis. More
moderate curvatures still cause non uniformities in the moisture dis-
tribution. However they can be of a scale that cannot be evened out
by the size or the root volume of a single plant or by latteral redis-
tribution of water in deeper soil. Thus the plane shape of the field
becomes essential for an even distribution of rain or irrigation wa-

ter.
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Fig, IV.l, Turning of streamlines across interlayer surface. The
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Fig. IV.2, Pressure head { distribution for a vertical flow through a
sloping two-layered soil system. Comparison of two neighbouring
cross-sections 1 and 2 indicate downstream horizontal flow
component when Y increases with depth and upstream horizontal
flow when § decreases with depth



V. STEADY LATTERAL FLOW IN A LAYERED SOIL

ABSTRACT

Considering a layering in the soil inherited properties or in
the hydraulic regime, it is proved generally that on the whole the
soil behaves as an anisotropic medium, When the layers are sloping
the gravity force produces latteral flow components downstream. The
flow is proportional to the slope, to the vertical or normal flux and
to a coefficient of anisotropy that can be calculated. In a steady
state flow the problem becomes simpler and the latteral flow can be
related to the rate of rain or the net groundwater recharge. On the
whole the horizontal flow component increases with the rain more than
to the second power, In a cyclic layered soil it is relatively simple
to calculate the coefficient of anisotropy and its change with the
rate of rain. A surface transition of the soil hydraulic properties
could also be described as a sequence of layers,

The latteral flow can produce water concentration in concave
parts of the layers relief or in places where the layers are truncated.
The latteral flow should be taken into consideration in studies of
pollution, A mound or convex layers could be used to pfevent water
flow into structures or through sources of leachable pollutants. The
latteral flow due to soil layering add up to those due to raindrop

splashing and surface tramsition that have been studied previously.

|, INTRODUCTION

In previous parts of the report it has been deémonstrated that
latteral flow (parallel to the soil surface or in horizontal direction)
will occur above the soil due to raindrop splashing and within the

soil as a result of a layer at the soil surface of a higher saturated
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Fig.

conductivity. Every soil has such a layer at its surface.
In the present part more specific calculations will be made for
a layered soil. First it will be proved in genmeral that non-uniform
soil will behave on the average as non-isohopic. Then a cyclic
layered soil will be calculated in details and expressed as a non-
isotropic medium with a conductivity higher parallel to the layers.
There is some repetition in the presentation. However, it has
been found easier to follow this way. In addition somewhat different
routes of derivation have been found more or less plausible to differ-

ent readers.

2, BASIC ASSUMPTIONS

Consider a non-uniform soil with the soil properties changing
in a direction n. The parallel direction is s (Fig. 1). n and s make
an angle o with 2z and x coordinates respectively. Consider now the
flux q, to be known somewhere in the medium especially vertical in
the positive z direction as evaporation or in the negative direction
as infiltration.,

To solve an actual problem one needs the hydraulic properties
of the medium and some boundary conditions. The general case is of

very little interest. We are interested here mainly in two cases:

a) with uniformity along s, e.g. 3¥/9S = 0, 9K/35 = 0 etc.

b) with a uniform slope as above and a steady state flow

While these are not the most general cases they are sufficient
to provide some of the more important conclusions or at least as good

starting points lending us an insight to hydrological processes.

3. THE BASIC EQUATIONS OF FLOW AND THE GENERAL PROOF OF ANTSOTROPY

The fluxes in the n, s directions are by Darcy's law (Fig. 1):

q, = K sin o (1)



q, < —K(%% + cos Q) _ _ (2)

where K (n,¥) is the hydraulic conductivity that can vary with the
pressure head ¥ and the location along n, explicitely.
The fluxes expressed in the x,z system are found by simple

geometrical transformation from eqs. (1) and (2):

_ . _ of . ’
q, = q  cos & ¥ q sin g = K = sin a (3)
q =-q sin0a + q_cos O = -K(-Q-lg cos o + I) (4)
z s n an

At a point we assume the medium to be isotropic. Therefore q, and
q, can also be directly written from the Darcy equation (the n and s

directions were the principal axes and did not raise any problem of

isotropy)
_ o oY
4G = K5 (3)
_ ¥
1, = K+ D ©

Eqs. 5 and 6 check well with (3) and (4) if we transform the gra-
dient vectors in the uniform slope condition from the n,s to the x,z
systems.

At every point it is assumed that the force and flux are parallel
so that the ratio of flux components is exactly equal to the ratio of
the force components (simply divide ] by 2 with the same K at both or
3 by 4 or 5 by 6), This is the essence of assuming an isotropy at a
point.

The first question is whether the medium as a whole behaves iso-
tropically or not. To arrive at a general conclusion consider path
lines (that are identical with the streamlines only under steady state).
The ratios of path components in the s and n directions are found by
dividing (1) by (2) and integrate over n and divide for averaging by
fdn.

_fdn o Idn 7
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The ratio q /q is the angle of the flux vector and the l.h.s,
integral is the overall parallel component in the s direction, The
r.h.s. is found by expressing qs,qn from (1, 2). Clearly on the
r.h.s. if 9¥/9n is variable with n then the overall slope of water
path vary with n. The overall ratio of parallel force fs to the normal
force Fn is found by integrating the gradient components separately

over n and dividing by the integrated normal component over n

_ ;;n qfﬂn (8)
JZSH + cos 0,)dn

'ﬁfim'ﬂdl

n

3

Clearly the ratios in (7) and (8) become identical only if
o¥/on = 0. In every other case they differ. Another case where the
ratios become identical is trivially for sin a = 0, i.e, horizontal
soil layering. Clearly if the ratios of the overall flux component s
is different then the ratio of the overall force component s then the

soil behaves on the whole as nonm—isotropic,

The ratio between (7) and (8) is

j‘[’— + cos a)dn] [dn/(— + cos- 0_;]

(—)/__ = Jdn)[

n

z | (9)

The proof of the inequality is that the harmonic average is
smalier or equal to the arithmetic one. In effect it means that on
the average the conductivity in the direction (s) is higher than that
in the direction (n). The equality to unity in (9) is obtained only
when the numerator equals (fdn)z. This can be so only if 3¥/on = 0
i.e. in a uniform soil and flow regime. It is interesting that this
anisotropy on the average is induced not only by soil layering but
also by changes in Y due to boundary conditions.

In a cyclic medium ¥ and 3¥/9n fluctuate around some value. Thus

the first integral on (9) reduces over a complete cycle to cos O dn

and (9) reduces to dn
- = |
q F ()+l
S s _ Cos 0O
G/ F )cyclic - Jdn > 1 (10)
n n . -
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Care must be taken in the case of horizontal soil /as-{2)\and> (10)
have been obtained by dividing (7) and (8) béth of which vanish in
this case. . -

In summary where 9¥/9n # 0 and o # 0 there is always a flux down-
stream to the force. If the force is vertiqal there is a net horizontal

component downstream,

4. PRESENTATION OF THE STEADY STATE, TWO LAYERS PROBLEM (FIG. 2)

The case presented throughout is that of a uniform slope. This
means that on two parallel planes (whether vertical or diago;al) the
fluxes are identical at the same levels along the n-axis, Adding the.
condition of a steady state the same fluxes cross the soil surface

and any other surface parallel to it. On a control surface of Fig. 2
-p cos O dA = 9, dA (1)

P being the rain intensity over a horizontal surface above the soil.

Facoring out dA one gets:
Iy = “P cos o | | | ' (12)

But in eqs. (1) and (2) a, and q_ has been found by Darcy law. They

may be rewritten here for convenience with (12)

o
[}

-p cos O = —K(%§-+ cos O) . - o a3y

[t

g = Ksina S as
These three equations (two in 13 and one in lé)lﬁrovidé the whole
basis for our further calculation. First more specific expressions may

be found for (7), (8}, (9), (10). (7) reads
1 (9 JK dn |

. o |
—— | — dn = -tan o ; : (15)
dn)q_ pf dn . .

(8) reads



The ratio between the overall flow direction and the overall force

direction is

w[E_QE_H{”EE > 1 . A7)

(Idn)z K

which is in effect the ratio between the parallel average conductivity

K and the serial average Ks' Clearly this is the proof that on the

average the medium on the whole is nonisotrepic in the unsaturated

state as well as in the saturated state and if the force deviates

from the normal to the soil layers the flux will deviate even more.
The flux components in the x, z directions are by 13, 14 and 3,

4 for the steady state case

b4
q = —Kg—x = }(K-P) sin 2a (18)

q

, _K(%§ + 1) = -(P cos2 a+ K sin2 a) (19

By simple geometrical relations remenbering (gg = 0)

¥ Y

3% - §g Sin @ (20)
ay _ ¥
3% - n cos o 21)

As a result of 20 and 21

9z

Y _ 9y _ _ (oY o
i sz-tan o = (az) Fr (22)
if z, is the elevation of some surface n = constant,
By substituting 22 into 18 we get still for q:
o g 9Y '
q, = K o tan o (23)

aY . ,
Now 32 can be substituted from 19 in one of two forms
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or _ q, _ ¢y _ P 2 .2
N = _(E_ + 1) = =(I g cos & - sin o) (24)

Thus 23 becomes for the steady state case

q_ = (qz + K) tan o = (K-P) 0052 o tan o (25)

X

Note that during rain q, has a negative value pointing dowm.

Integration of q, over z gives the total horizontal discharge

tano(DK dz +jqz dz] (26)

Qx =_qu dz

or

tan o c032 u[_f[( dz - p_j‘dz] (27)

For convenience we define the averages

Q, =,rqx dz

i - 1
= Ef:((w)dz -q, = -]5qu dz (28)

- _ 1
dy = fqux dz

Then from 26:

K
aD=D4qg (=- =q : '
qu =D qz(qz 1) tan o q, U tan o D; (29)
RX
U= _—_])
(q

K4

where az is the averaged downward vertical flow. From 27 one gets

K
q D =P U* tan 0} U* = (EE - 1) cos? o (30)

Eq. (29) gives the basic ratio between the horizontal and vertical
components of flow, the basic subject of our discussion. Eq. (30) gives
a similar ratio between the rain and the horizontal average flux
which applies only on steady flow.

The horizontal flow component is really the needed fipure. It is
related to a unique coordinate system and can be integrated over a

map. We shall therefore have to continue using it although the use of



n, s coordinates is far more elegant,

In egs. 29 and 30 there appeared again the basic relations that
have been stipulated in the first part of the report (ZASLAVSKY and
SINAI, 19781) and later proved for splashing raindrops and surface
tranzition zone (ZASLAVSKY and SINAI, 1978 parts II - IV),

Strictly speaking eq. 29 is proper also for non-steady state. Eq.
30 that relates the horizontal flux to the rain is valid only under
steady state conditions. So far the uniformity of the slope is limited
to the demand that 93¥/3s = 0 or that this term is neglibible in the
calculation of the first approximation of the vertical flow regime.
Eqs. 29 and 30 are not limited to two-layered cyclic soil but to any
soil with varying conductivity along the n-axis (whether because of

soil properties or boundary conditions),

5. EXAMPLES AND CORDERS OF MAGNITUDE

5,1.Net recharge into deep groundwater

The net recharge is introduced into the soil in a form of
seasonal pulses., However, below several wavelengths the pulses damp
and the flow becomes practically steady. In the various equations P
must be considered not as a rain but as the net groundwater recharge.
If the net recharge is P mm per year and the moisture content is C
then the wavelength is about P/C e.g. if the moisture content is 30%
and the net recharge is about 300 mm the wavelength is 1 meter., A

net recharge of 300 mm/year is about IO_6 cm/fsec.

Consider now a series of soil layers changing from clay or rock
with a conductivity around the rate of net recharge. In eq. |5 the
ratio between the parallel and normal flux component is determined
by_fK dn. It can be at least tan o when K = P in a perfectly uniform
flow and up to several orders of magnitude if K changes from highly
impermeable to very permeable layers as it is the case in some alluvial

deposits.
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5.2.F1low behind the wetting fr oAt

This flow can be nearly steady in relatively short times. Then

as a first approximation the formulas using the rain P can be used.

5.3. The effect of a cumulative rain

The cumulative horizontal Flux over a time will depend mainly
on the cumulative rain. One can convince himself by expressing K in eq.
1 by 4, and o¥/9n in eq. 2. Similarly in the first part of eq. 25 re-
membering that K increases roughly with (-qz) or with P. The cumulative
vertical flux q, in a point is related to the cumulative rain and thus
also the cumulative horizontal flux.

It is thus expected as a rough approximation that regardless of
the precipitation regime the horizontal flow will depend first and
formost on the total precipitation, If this will be found true then
there will be an explanation to the fact that in many areas runoff
starts after a certain amount of rain has precipitated. This is to a
great extent irrespective of the rain distribution and intensity.

To actually calculate the flow regime and the coefficient of

anisotropy we shall have to introduce boundary conditions,

6. THE TWO LAYERS PROBLEM

From eq. |13 we pet by solving for dn and integrating (steady state)

cos U.fdn =f—1%g(—a,—) (31)

From eq. 19 one gets similarly along -the z coordinate

2 K(Y)
cos ujdz=fF_—Kw) (32)

figs. 3-5 The boundaries of integration are determined in figs, 3 to 5 that

describe two layers at four flow stages.
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Stage First layer Second layer
n-boundary Y-value n-boundary Y-value
A. top and bottom layets 0 Tl —DI Wz
completely unsaturated —D| Wz -(D|+D2) |
B. saturation appears in 0 0 -D, Wz
the top layer so that -D, WZ —(DI+D2) 0
Wl =0
C. partial saturation so 0 Wl —D] Wz
that ¥2 < 03 Wl > 0 -n, —(D|+D2)‘
e, is saturated D, ¥, —(D1+D2) 1
D. both layers are comple- 0 Wl —Dl
tely saturated —D] 0 —(D1+D2) :

< <
Kls P KZS

The actual values of ?1 and Tz can be found from an implicit

equation as a function of the rain P.

The solution can be easily found by introducing a relation K(Y)

for the two layers then ¥(n) or ¥(z) is found as well as K{(n) or K(z).

From these, in turn, one can calculate ax from (27) or 65 by integrating

(14).

As an example consider the experimental relation for the i

layer:

~
I

i si

K =K.
51

K . exp [ai (‘P+‘Po)]

for Y+¥
o

for VY+¥
o

Introducing (33) into (31) one gets:

i r
cos aj.dn =3 ln[% - K a(?—?o)]
q

where q and r are two consequetive points,

<0

>0

th

(33)

(34)

The unsaturated conductivity at any point R 1s expressed as a



function of the elevation difference from a known point /¢ 'and as‘-a

function of the conductivity at that point.
- K k)it - a(n-n, ) 35
K q + (P q){ exp{a cos a(n nq)} (35)

K of (35) can be now introduced into.the equaitons for calculating
the horizontal or parallel flux. At the interfaces the K-values are
related to each other by putting ¥ the same on both sides of the inter-
face.

The coefficient of anisotropy [ﬂﬁx/az) - E] has been calculated

as an example for two layers where

=— = 10

=6
i Kis i

|, P
[\*]
=

KZS ig
a

7l

with Wo = (. The absisa in Fig. 6 gives the rate of rain P. Two specific
points are given: P® where saturation appears at the surface and
another where there is no latteral flow P = 0,63, This rate of rain
equals exactly the point where the unsaturated conductivities of the
two layers beéome identical. This unique point of seemingly zero aniso-
tropy is unique for a two-layer problem. For multi-layer problems it
disappears. The same method can be used to calculate a transition layer
at the soil surface if it is represented by a sequence of layers, each
uniform and isotropic and varying slightly from its neighbouring layers.
Some of the details of such a study are interesting. For example, if
the saturated hydraulic conductivity reduces monotonically with depth
there must be a maximum in the pressure head distribution within the
surface transition. On inereasing gradually the rain, saturation will
appear first within the surface transition at this point of maximum
pressure, The place of saturation will move upward as the rain intensity
will increase, These and others can be easily proven however, the de-
tails are beyond the scope of this report.

It is instructive that the coefficient of anisotropy increases
with the rate of rain to a power higher than one (at least in the two-
layer problem). Therefore the latteral flow increases with the rain to

a power higher than two,



7. WATER CONCENTRATION AND OUTCROPPING

The latteral flow due to splashing of raindrops and due to surface
transition layers was more nearly following the rain as if it is steady
and its rate was proportional to the soil surface slope. In the present
part of the report any layering is considered which does not have to
be parallel to the soil surface. Therefore the moisture will concentrate
not necessarily at concave parts of the landscape.

There are many cases where the soil layers are more or less parallel
to the soil surface. This is the case in sand dune. Observation will
discover such repeated layering sometimes few millimeters thick due to
segregation of particle by size and due to slight chemical and physical
stabilization of freshly deposited layers. Where the soil layers are
parallel to the surface the moisture concentrations due to splashes
surface transition and layering all add up.

There will be many more cases of other changes in the soil layering.
The most common is that of truncated layers due to an excavation or
an erosion cukbt. In an unsaturated scoil the diagonal streamlines reach
near the soil surface and cannot come out. They then bend downward and
accumulate until saturation forms and seepage out of the soil starts,
Geological faults have been known to produce water Outcrops as springs.
This was hard to explain when no saturated water table could be observed
away from such faults. The latteral unsaturated flow as above renders
an explanation,

In pollution studies one wishes to follow the actual flow path
of the water. Thus one can predict that infiltrating polluting water
can move laterally large distances before they reach groundwafer. In
one place more than one hundred meters of interlayering of clay lenses
and sand was above the groundwater table., It was estimated that a
point source of polluting water would spread materially so long as some
ponded water will remain within the sandy layers. Then the coefficient
of anisotropy will be of the order of the ratio between the sand and
clay conductivity. The slope was measured in percenté and the anisotropy
in thousands. Thus the horizontal travel was expected to be several
hundreds meters to several kilometers before the pollutant would reach

the water table. Observations tended to confirm the qualitative pre-
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function of the conductivity at that point,
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K of (35) can be now introduced into the equaitons for calculating
the horizontal or parallel flux, At the interfaces the K-values are
related to each other by putting ¥ the same on both sides of the inter-
face.

The coefficient of anisotropy [ﬂﬁx/az) - E] has been calculated

as an example for two layers where
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with Wo = 0. The absisa in Fig. 6 gives the rate of rain P. Two specific
points are given: P® where saturation appears at the surface and
another where there is no latteral flow P = 0,63, This rate of rain
equals exactly the point where the unsaturated conductivities of the
two layers becbme identical, This unique point of seemingly zero aniso-
tropy is unique for a two—layer problem. For multi-layer problems it
disappears., The same method can be used to calculate a transition layer
at the soil surface if it is represented by a sequence of layers, each
uniform and isotropic and varying slightly from its neighbouring layers.
Some of the details of such a study are interesting. For example, if
the saturated hydraulic conductivity reduces monotonically with depth
thére must be a maximum in the pressure head distribution within the
surface transition. On increasing gradually the rain, saturation will
appear first within the surface transition at this point of maximum
pressure, The place of saturation will move upward as the rain intensity
will increase., These and others can be easily proven however, the de-
tails are beyond the scope of this report.

1t is instructive that the coefficient of anisotropy increases
with the rate of rain to a power higher than one {at .least in the two-
layer problem). Therefore the latteral flow increases with the rain to

a power higher than two.



7. WATER CONCENTRATION AND OUTCROPPING

The latteral flow due to splashing of raindrops and due to surface
transition layers was more nearly following the rain as if it is steady
and its rate was proportional to the soil surface slope. In the present
part of the report any layering is considered which does not have to
be parallel to the soil surface. Therefore the moisture will concentrate
not necessarily at concave parts of the landscape.

There are many cases where the soil layers are more or less parallel
to the soil surface. This is the case in sand dune. Observation will
discover such repeated layering sometimes few millimeters thick due to
segregation of particle by size and due to slight chemical and physical
stabilization of freshly deposited layers. Where the soil layers are
parallel to the surface the moisture concentrations due to splashes
surface transition and layering all add up.

There will be many more cases of other changes.in the soil layering.
The most common is that of truncated layers due to an excavation or
an erosion cut. In an unsaturated soil the diagonal streamlines reach
near the soil surface and cannot come out., They then bend downward and
accumulate until saturation forms and seepage out of the soil starts.
Geological faults have been known to produce water oufcrops as springs.
This was hard to explain when no saturated water table could be observed
away from such faults. The latteral unsaturated flow as above renders
an explanation.

In pollution studies one wishes to follow the actual flow path
of the water, Thus one can predict that infiltrating polluting water
can move laterally large distances before they reach groundwafer. In
one place more than one hundred meters of interlayering of clay lenses
and sand was above the groundwater table. It was estimated that a
point source of polluting water would spread materially so long as some
ponded water will remain within the sandy layers., Then the coefficient
of anisotropy will be of the order of the ratio between the sand and
clay conductivity. The slope was measured in percenté and the anisotropy
in thousands. Thus the horizontal travel was expected to be several
hundreds meters to several kilometers before the pollutant would reach

the water table, Observations tended to confirm the qualitative pre-



AR TL

dictions.

An interesting application of the lattefal flow with respect to
pollution may be concieved as follows. A proper convex cover of soil
layers can act as a 'straw roof'. Though highly permeable it can pre-
vent the penetrating water from leaching through a source of pollution,
Very often engineers look only for impermeable materials to prevent
flow through a structural element. Here there is another possible way

of obtaining such a protection.
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Fig. V.3. Two layers pressure head distribution, state A no saturation

and state B initial saturation

Fig. V.4. Two layers pressure head distribution, state C - partial

saturation

Fig. V.5. Two layers pressure head distribution, state D - total

saturation



Fig. V.l. Upright and sloping coordinate systems and related flux

components
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Fig. V.2. Control element in a two layer flow problem
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VI. NON-STEADY TRANSITION LAYER FLOW-NUMERICAL SOLUTION

ABSTRACT

A numerical solution by a mixed finite element and finite difference
method is used for studying a two dimensional flow regime with a non
uniform soil and rain. Specifically the soil has a sinusoidal surface
and a transition layer from soil bulk to the air. The traﬁsition is by
8 layers each uniform and isotropic., The hydraulic conductivity
changes stepwise from 10_5 cm/sec. to 100 cm/sec. The porosity changes
stepwise from 0.4 to 0.9. A wide range of problems has been run with the
thickness of the transition layer varying between 0.45 to 0 the half
cycle length of the sinusoidal varying from 40 meters to 0.2. meter.

The rain changed from 0.0l to 4 cm/hour.

The first group of conclusions to be drawn from the numerical
result are foliowing. Without a transition layer saturation will
appear only if the rate of rain exceeds the hydraulic conductivity.

It occurs after some small amount of rain and immediately associated
with water flow above the soil. With a tramsition layer it takes
more rain the thicker is the transition layer. However even rain
which is much smaller than the hydraulic conductivity can produce
saturation and seepage out of the soil.

The total rain necessary to produce saturation is almost the

same for a range of rain intensities varying 400 fold.

1. INTRODUCTION

In previous parts of this report (ZASLAVSKY, SINAIL, 1978 I - V)
it has been established that rain is associated with a horizontal
flow component at the soil surface. This component is proportional
to the land's slope and to the rain itself to some power greatef than

one. This horizontal flow component in turn, causes an accumulation
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of moisture in concave parts of the landscape. Field observations

have shown such accumulations, Contrary to existing notions the

horizontal flow occurs with a low rate rain that does not necessarily

exceeds the hydraulic conductivity of the soil., It happens in a

non-saturated soil as well as in a saturated one and does not require

an underlying impermeable layer or the vicinity of a watertable.
Three mechanisms have been shown to contribute towards the

formation of a horizontal flow.

a. The splashing of raindrops over a sloping land

b. Infiltration into a soil surface transition layer, in which the
hydraulic characteristics change gradually from the soil bulk
to the air

¢. Layered subsoil

The theory was advanced for steady state infiltration. The raindrop

splashing mechanism follows by a split second the changes in the

rain. Following the gradual changes of the soil conditions it can

be taken as a quasi steady state process. The flow through a

layered subscil tends to have more moderate time changes with

deeper soil and more uniform rain. The flow through the surface

transition layer is probably the farthest away from the steady

rate solution.

The analytical treatment in the previous parts of this report
considered a uniform slope. The curved soil surface has been taken
as first order changes only leaving the basic phenomenon as on a
uniform infinit slope.

It is the purpose of the following to treat a more realistic
problem of a non steady fl?? on a curved soil surface. A numerical
method has been adapted for this purpose.

Powerful as the numerical method was it was hardly sufficient
for a two dimensional non steady state problem. A sinuscidal soil
surface has been treated with varying half cycle length L and
amplitude A, Different rain intensities P have been tried. The
thickness of transition layer 8 was also changed. The purpose was

to check some of the previously drawn conclusions (some well proved

VIi-2




and others more tentative).

Among these conclusions were:

- The latteral rate of flow is roughly proportional to the slope

- There is moisture concentration proportionmal to the concavity
of the landscape

- Saturation will first appear within the transition zomne at its
most concave part, regardless of the rain intensity

- Early during wetting of the soil by rain the hydraulic force
tends to be orthogonmal to the soil surface and so is the flow.
There is always a downhill flow component parallel to‘the soil
surface,.
However the horizontal component may be temporarily uphill

- As the wetting front moves deeper into the transition layer
the net horizontal flow becomes downhill

- The accumulation of water in concave parts of the landscape
continues after the rain has ceased (drainage time)

- The total excess accumulated moisture depends mostly on the
total rain and less on its momentary intensity

- After saturation appears within the transition zone it can
spread upward and sideways. Eventually it leads to seepage
of water out of the soil in the form of runoff

- The fact that the rain gets first into the soil, even when it
is of a high intemnsity, and then comes out is of a general
significance but especially in accounting for interaction

between runoff and erosion.

The present and next part of this report are meant to retest these
conclusions. The numerical solution serves as a simulative experimental
tool. The fundamental laws of this simulation are well tested
throughout the literature of hydrology and soil physic. The only

questionable part is the accuracy of the numerical solution.
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fig. 1

fig., 2

.2, DESCRIPTION OF THE SIMULATION MODEL

A sinusoidal soil surface was described as in fig. 1. A transition
layer is underlied by a thick uniform soil (H), The shape of the soil

surface is given by its amplitude z,

z=(H+ A) + A cos ( %-ﬂ ) (1)

H is the sublayer depth which was in all problems 10 meters. The
amplitude A varied in the different problems between 2 x 10_4 meter
to 2 meters. However most problems were of A = 2 meters. These far
apart values where chosen to produce a given range of slopes and
curvatures while the half cycle 1. had the values 40, 20, 2 and 0.2
meters (see table).

The boundary conditions are as follows:

- A vertical line below the hill's top is a symmetry line and
thus a streamline

- A vertical line below the valley's bottom is a symmetry line
and thus a streamline

— The initial condition is an hydrostatic state throughout the
profile with the phreatic surface § = 0 at z = 0.

% - pressure head and z - elevation

A case could be argued to substitute the true state of hydrostatic
equilibrium by a state of field capacity. However the latter state
depends on the history of its attainment. It has therefore been
postponed for the stage when a long term regime would be digestable
by the computers.

The transition laver has been represented by 8 layers more or
less parallel to the soil surface and of the same thickness, More
exactly the grid points représenting the separate layers were chosen
in a way that will assure a uniform thickness of the layer in a
direction normal to the soil surface. Thus the subsequent sublayers
do not follow exactly eq. (1) less a fixed depth (fig. 2.).

Each layer was considered uniform and isotropic. There is a

stepwise change in the hydraulic properties of the different layers.
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fig.3
fig.4

The detailed values of porosity, retention curves and a saturated

hydraulic conductivity are given in figures 3 and 4.

The data for layers 4-8 have been taken from actual soil data.

The data for layers 1, 2 and 3 have been chosen artificially

maintaining the following trends

a.

The saturated hydraulic conductivity increases exponentially

layer number: 1 2 3 4 5 6 7 8
saturated hydraulic

N | -2 -3 -4 -5
conductivity 100 10 1 10 10 10 10 10

cm/sec, .
The rate of conductivity decreases with increased suction
increase as the saturated conductivity increases.

The crossing of conductivity curves for the layer pairs

1 -2, 2-3,3 -4 etc. folloy a monotonic order.

The moisture content at saturation approaches 100% at the

top layer
layer number | 2 3 4 5 6 7 8
porosity 0.9 0.85 0.8 0.750,7 0.6 0.5 0.4

The rate of moisture decrease due to suction increases with
porosity
The crossing of moisture curves for the layer pairs 1 - 2,

2 -3, 3 -4 etc. follow a monotonic order,

THE DIFFERENTIAL EQUATION

The differential equation is

v g =20
div q; = - == (2)
4 - the ith flux component
© - volumetric moisture content

t - time
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The flow equation is
q., = - K.. V¢. ‘ (3)

Ki.= the hydraulic conductivity capable of being a non-isotropic
al

tensor
¢ = the hydraulic head ¢ = z + ¢
z = the elevation
v = the pressure head

Putting (3) in (2) one has explicitly

d R 3 R
L@) = 0 K0 K by o) Ky -
i j

39 W _ =
3¢+sssjat 0 X, =1x,z (4)

In reality while the algorithm was prepared to take non-isotropic
media the problems run here where all of isotropic layers. In the
problem encountered here the anisotropic behaviour is only the result
of the overall average behaviour of the layered soil. The outstanding
difference between this model and some that have been claimed
(although not computed) in the past is that the anisotropy is not a
fixed property of the soil. The anisotropy changes with the moisture
regime itself. This is contrary to the inference of eq. (4) where
the whole change with moisture is attached to the isotropic term
KR(w),The non isotropy is independent of the moisture regime.

The duality found between a layered soil and a non isotropic one
on the average lends us to believe that any anisotropy in the hydraulic
conductivity in the soil will be found to be moisture dependent or

more generally flow dependent.

4, THE NUMERICAL METHOD - BRIEF DESCRIPTION

The solution was by finite element method. It has been based on
a combination between a variational principle (RITZ Method)} and a

weighed residue (GALERKIN Method) as described by NEUMAN ET AL (1972-1975).
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The method is applied by minimizing a proper functional letting the
coefficient of (3/2t) vanish at saturation and KR(¢) = | at saturation
(eq. 4). At any given moment the solution Y(x,z,t) may be described

by a complete set of functions En(x,z) and wn(t) time dependent

coefficients.
Pix,z,8) = I (E)E_(x,2) (5)
nsl :

In reality a finite sum of N terms renders wN which is the
projection of ¥ in a N dimensional space. Therefore L(!JJ)N is

orthogonal to any one of the vectors £n making this space.
N ,
Y converges to § if
. N
Lim //y -9 // =0 (6)
N +e
where the norm of a function £, // f // is defined as
2

118117 = [f av 7)

V being the volume over which f is defined. For a finite N

1im [/} - ¢N// = min, and in our case
/L)Y - 07/ = min | (8)

The problem is to find the coefficients wn for En by the

following

d 2
5% ,[ V[L(V)bfl v = 0 (9)

This GALERKIN method fits a given moment t. The derivative
/3t must therefore be determined independently. The more
interested reader is directed to the original article by
NEUMAN ET AL (1974).
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The grid points for solution are given in fig. 5, the upper
part giving the details of the transition layer.

fig. 5 There were three stages of the calculation

a. Preparatory program calculating the grid coordinates for
each problem the boundary conditions and the material
properties

b. The main multilayer calculation in terms of the pressure
head, moisture content total head, incoming and ocuktcoming
discharges. It was based on previously written program
(NEUMAN ET AL, 1974) and was adopted to the present :
problems

c. Data processing and plotting as may become more clear in

the following.,

5. ESTIMATE OF THE SOLUTION QUALITY

The semi implicit method of calculation with a system of linear
equation enables aconvergence of the solution., The choice of the
time step t affects the manner of convergence, A stepwise change in
the influx of rain or outflow of water is expected to introduce a
monotonic gradual change inside the flow medium. Too large At steps
cause fluctuations that gradual decay towards the true value. A
stepwise gradual change in the rain over a small number of time
steps can eliminate the problem, We shall not go into details of
the analysis. Eventually the time step has been chosen by a trial

and error method choosing a time step

At = t, - t (10)

and after the first itteration checking

by, -0
2 I
I1 K2 Kl
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and comparing tII with tI changing until.tI < tII' There were
of course sensitive points in the field that determined the
necessary time steps.
The density of grid points must also be related to the rates
of change, the typical time constant being (Ax/K)nAt. The density
of grid points was much lower than this criterion would call for.
A series of tests was made on the influence of grid points plaéing
on the solution. The largest deviation from a denser grid was found
near a wetting front. Typical errors in head were 1 — 6 cm or a
relative error of }Z. Taking even the limited head difference over
the whole transition layer as little as 100 cm (from the hilltop to
the valley bottom) the error makes some ] - 6Z at its maximum,
Where the rain flux q was locally larger than the hydraulic
Ax

_).

conductivity K the time step is determined by the flux (%E-< X

The difficult problems to solve were therefore those
with thin transition layer (small Ax)} and high rain intensity. In
fact they take proportionally more time steps to reach the same
total rain.

The part of a problem that gave most difficulties in computation
was the seepage appearance at the soil surface.

The grid density was increased horizontally from l1 to 21
column with a maximum change of only 1/4% at the wetting front
(not more than 3 cm of water). This is while the accuracy of the
whole calculation was to | cm of water. The potential increase in
accuracy {doubling the number of points indicated about 4 fold
increase in price {(from about 1000 U.S. dollars to 4000 U.S. dollars
per run).

The accuracy tests were run on several problems with different
geometrical scales and rates of rain.

Finally the moisture content profile at different times (fig. 6)
and the surface moisture at different times (fig. 7) was plotted
and would compare well with classical one dimensional solutions of
infiltration. The run presented in fig. 6, 7 is from problem 438
with no transition layer and a very low rate rain of 0.01 an hour.

This value can be related to the conductivity of the soil (10_5 cmfsec.)
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tabel

Column

Column

Column

Column

and the final moisture content found from fig. 4. It compares well

with figs. 6, 7. The transition is reasonable (BRAESTER 1973).

However one canmot expect a perfect fit, at least because there is

some latteral movement of moisture even in soil with no Eransition

layer. This is also why in fig. 7 there are two different curves

for uphill (x = 0) and the bottom (x = 20).

In conclusion there 1s no way to ascertain beyond a shadow of

doubt that the numerical solutions are perfectly accurate. However

after the computation of some 60 different problems with various

changes in the parameters the solution seems to be well behaved and

the resultsmake sense., Furthermore the present demand from the

solution is far less than a perfect numerical accuracy, Rather it

is required only that trends will be properly indicated., It is

used as an experimental tool. The conclusions from these numerical

experiments should compare with a number of analytical conjectures.

made before and a large volume of observations (ZASLAVSKY and SINAI
1978 T - V).

Following are the lists of problems solved and some of the results.

COLUMNS' EXPLANATION AND NOTES ABOUT RESULTS

Vi-10

The problems mentioned here are of wave length L 20 m 40 m
2mand 0,2 m

The amplitude of soil surface varied within each wave length.
The first large group of L = 20 m has the same amplitude 2
meters.

The thickness of transition layer 8. In the first group of

L =20mit is 0.45 m and 0 (the last being no tramsition)
The rain intensity P. In the first group of L = 20 m it is
mainly P = 4 cm/hour, | em/hour 0.0l em/hour and an intermittent
rain (problem 460). Note that the hydraulic conductivity of
the subsoil is 10_5 cm/sec, = 0,036 cm/hour. Thus the lowest
intensity is 3.6 times smaller and the highest is 270 times

higher. In some problems the rain has been increased gradually



Columns

Columns

Columns

Columns

5,6

7-9

10-13

16-18

stepwise thus P gives only the intensity of the main rain,
Therefore, it can easily be checked that the product of the
time T and intensity P does not produce the total rainm D.
These give the average slope A/L and the curvature A/Lz. These
have an important effect but not necessarily on the time and
total depth to saturation, which are the only results recorded
in this table,

The total rain Depth D the Time T and a number of
sat sat

£

calculation time steps Tssa to the first appearance of

saturation within the profi{e. In all cases of transition
layers concentration was observed towards the conca;e part.
The reason for no saturation shall be discussed in each case.
Total Rain Depth DSeep time Tseep and Calculation steps
TSseep for the spreading of saturation up to the soil
surface and seepage in problems with transition layers,

In problems with no transition layer this time and the time
for saturation become identical, In thinner transition

layer there is a tendency to decrease the time difference
between first saturation and seepage.

Total rain D, - D, Time T_ and a number of calculation steps

f d £
TS5, to the end of the computer run. In some problems the run

f
was stopped too nearly for anything to happen. This can be
easily identified. Still they were brought because they -
served to see some of the trends with no exception to the

conclusions that will be drawn in the following.

7. SOME OF THE MAIN RESULTS AND CONCLUSIONS

The details of the flow regime as found by the caleculation will

be presented in the following part of the report. Here only some of

the aspects that stand out from the problem table will be discussed.

The appearance of saturation within the transition layer is the

first outstanding result. It appeared with the low rain (problem 522)

the high rain (problem 388) with the highest rain (problem 815) and

the intermittent rain (problem 460).
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In a soil without a transition layer the saturation appeared
when and only when the surface was flooded by a high rain. (problem
533 D =D }. It has never appeared with the low rain (problem

sat seep
438). This is just as predicted by the classical theory.

At intermediate transition thicknesses (15 ecm in problems 752 A,
752 F and 5 cm in problem 536) the times for total rains for
saturation are intermediate between the tick transition layer (45 cm)

and no transition layer (533).

Some of the results for saturation appear in fig. 8.
There are several facts standing out.

a. There is hardly any difference in the total rain necessary
for saturation over an extremely wide range of rains. (problems
522, 388, 812)

b. The main effect is of the thickness of transition layer., For
high rain intensity there is proportionality between the
thickness of layer and the total rain depth at first
saturation.

c. At thinner layers and very low rates of rain no saturation

will appear,

A similar conclusion is to be drawn for the appearance of seepage

(saturation reaches the soil surface). Two trends stand out:

a. At lower rate of rain the total rain necessary to reach
seepage is larger.

b. The effect of a thick transition layer is to increase
considerably the total rain at seepage if the intensity
is high enough. At low rain intensity, very thin layers

will never reach the state of seepage,

These results are quite reasonable, There is a latteral movement
of moisture that tends to increase the total duty of added water in
the concave valley, However the question whether there will appear
saturation and seepage depends on the interplay betﬁeen several
mechanisms, The added moisture spreads over a given soil depth.

This depth increases with prolenged times. For a given total rain

the wetting depth is larger with a low rate of rain. Thus with low
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rates of rain there is more time for latteral motion but @156 itbre
time for deeper moisture distribution.

The latteral discharge depends on the total thickness of wetted
non isotropic or layered soil., Thus with thin tramsition layers the
discharge cannot be as high as with thick transition layers. This
is true at least over long encugh time where the wetting penetrates
beyond the thin transition layer. In a tick transition layer the
latteral discharge can grow over some time. Therefore thin layers
may require less rain to reach a saturation point but with low

enough rate of vain may not reach saturation at all,

Concentration of water in concave parts of the 1andscap; is
proved under non steady state flow regime. This concentration can
reach saturation and produce seepage and runoff. The known
experience of farmers is simulated here that deep permeable soil
surface and a level field delay runoff. The solution also simulates
the well known experience in many places that repardless of the
detailed flow regime sizable runoff would start only after a certain
amount of precipitation accumulated.

Contrary to this observation in areas of very thin transition
layers (e.g. soils with smooth surface crust) the saturation and
seepage will be produced only at high rates of rain. However such
conditions do not exclude moisture concentration even at a very low

rate of rain.

The above arguments and some more aspects of the flow regime

will follow in the next part of this report.
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Main Results

Program Data

Problem Main Geometric -5  Geometric Saturation Seepage End of Rain(Drainage) End of Rain Notes
Number Data = Ratios Total Time Time Total Time Time Total Time Time Total Time Time
Rain Steps Rain Steps Rain Steps Rain Steps
Notation L A__ S P A/L A/L Dt Teat TSgat Dseep Tseep Tsseede T, TS, D, T, TS,
Units M M M cm cm hours - ¢ hours - ¢m  hours - ¢ hours -
hour
Notes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
388 20 2 0.45 1.0 0.1 0.005 14.6 14.9 107 21.3 21.3 153 206 206 602 206 1388 1140
538 20 2 0.45 1.0 0.1 0.005 13.813.8 85 19.1 19.1 102 207 207 845 207 1390 1597
539 20 2 Q.45 1.0 0.1 0.005 13.813.8 &5 18.75 18.75 100 207 207 899 207 1390 1815
522 20 2 0.45 0.01 0.1 0.005 15.5 1550 163 60 6000 15.5 120 18000 894 120 20000 986
815 20 2 0.45 4.0 0.1 0.005 17.2 5.8 60 23.2 7.3 109 70 19 297 70 130.5 520 air
460 20 2 0.45 (A) 0.1 0.005 15.031.5 142 - - - - - - 20 34 152 intermittenf o
7524 20 2 0.15 1.0 0.1 0.00Q5 7.1 7.1 22 7.1 7.7 24 - 17.2 17.2 102
752 F 20 2 0.15 0.01 0.1 0.005 8.0 800 45 12 1200 50 50 15075 470 150 100000 741
536 20 2 0.05 1.0 0.1 0.005 2.6 5.4 22 3.4 6.2 24 - - - 17.2 20 293 stepwise rain
438 20 2 0 0.01 0.1 0.005 - - - - - - 130 20000. 810 130 100000 970
533 20 2 0O 1.0 0.1 0.005 0.97 6.7 80 0.97 6.7 80 2 14 81 2 100 24
535 40 12  0.45 1.0 0.3 0.0075 14.314.3 101 19 19 195 40 40 483 40 150 630
535 L 40 12 0.45 0.01 0.3 0.0075 - - - - - - - - - 0.02 2 3 too short rain
521 2 0.2 0.45 1.0 0.1 0.05 10.410.4 33 24.4 24.4 88 100 102 202 100 1000 569
521 X 2 0.2 0.45 0.0t 0.1 0.05 - - - - - - - - - 0.02 2 8 too short rain
379 2 0.020.45 i.0 0.010.005 16 16 65 38 38 155 120 t21 341 120 1000 659
379 1 2 0.020.45 0.01 0.010.005 - - - - - - - - - 100 10000 348
378 A 2 0.020.15 1.0 0.010.005 7.5 7.5 13 14 14 26 50 52 75 50. 600 194
378 H 2 0.020.15 0.01 0.010.005 - - - - - - - - - 600 60000 757
520A 2 0.2 0.15 1.0 0.1 0.05 5.6 5.6 12 8.4 8.4 15 100 105 82 100 400 181
520 2 ¢.2 0.15 0.01 0.1 0,05 - - - - - - 160 16000 284 160 30000 403
523 2 0.2 0.05 1.0 0.1 0.05 2.4 4.4 49 2.9 4.9 54 38 40 157 38 200 221
537 2 0.020.05 1.0 0.010.005 3.2 6 24 5.2 8 29 42.2 50 123 42.2 80 129
5378 2.0.020,05 0,01 0.010.005 - - - - - - 300 30200 529 300 50000 628
524 2 0.020.005 0.5 0.010.005 2 8.2 40 2.3 8.8 46 3.9 13 79 3.9 100 102
525 0.20.020.15 1.0 0.1 0.5 7 25 15 15 45 100 105 188 100 500 167
525 P 0.2 0.02 04 15 0.01 0._13 0.5 -3 - - - - - - 500 50000 623 500 150000 706
526 0.2 2x1 0.15 1.0 10 S5x10 7.6 8.8 25 - - - 18.3 {8.5 61 8.3 50 99
527 0.2 0. ’l 0.025 1.0 0.5 2.5 4.2 4.2 19 4.6 4.6 21 - - - 520 1304 444
528 0.20.02 04025 1.0 0._13 0.5 -3 2.5 6.3 30 3.8 7.1 34 524.2 932 342 524.2 3000 474
529 0.2 2x10 0.025 0.5 10 5x10 8.119.6 53 9.35 22.11 85 9.35 22 85 9.35 100 207
530 0.20.1 0.005 0.5 0.5 2.5 2 8.6 42 2 8.6 42 5.7 7 80 5.7 100 107
531 0.2 0.020.005 0.5 0.1 0.5 2 8.6 42 2.3 9.2 45 6.2 18 81 .
531 U 0.2 0.02 04 005 0.01 0._13 0.5 3 - - - - - - 300 3000 619 638%1238&) ?gg
532 0.2 2x107,0.005 0.5 10_ 3 5x10°7 2.3 7.8 46 2.3 7.8 46 2.4 8 48 2.4 50 108
532 WO0.2 2x10 70.005 0.01 10 Ex1Q - - - - - = 300 30000 547 300 800000 726
534 0.20.1 ] 6.2 0.5 2.5 0.624.1 19 - - 1.4 9 40 1.4 100 189
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VII. LATTERAL FLOW IN A TRANSITION LAYER - RESULTS OF NUMERICAL
SOLUTION

ABSTRACT

This report closes a series of 7 parts. Through this series
classical surface hydrology has been seriously questioned as a
matter of principle and due to experimental observations. In this
last part the details of non steady flow regime are demonstrated
by a numerical solution. It showed that the existance of altransition
layer at the soil surface produces accumulation of rain water at
the concave part of the landscape. This saturation may be spread and
form at some stage seepage face and outflow from the soil that leads
to runoff. This flow can cause erosion. Eroded gullies in turn
render an earlier runoff and stronger erosion, The excess rain
accumulation can be several times the average rain. Still saturation
can be formed only if the accumulation is over a thin enough soil

layer.

1. INTRODUCTION

In parts I - V of this report various observations have been
made and analytic deduction brought as to the latteral flow near
the soil surface associated with vertical infiltration. In part VI
the problem of latteral flow in a soil surface transition layer
has been set for a numerical solution. The numerical solution
serves as an experimental tool to study the effect of various
factors on the latteral flow, on the concentration of moisture
in concave parts of the landscape and eventually on runoff.

The table of solutions has been presented in the previous part
of the report. A partial one will be reproduced here for the present
discussion only.

Several conclusions have been drawn in the previous part of this

report with the help of the numerical results. Among them:
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- Without a more permeable transition layer at the soil surface
saturation appears if and only if the rain exceeds the hydraulic
conductivity of the soil and after a certain amount of rain
came down. '

- With a more permeable tramsition layer at the surface, moisture
concentrates and produces saturation. This saturation appears
even under rain which is less than the hydraulic conductivity
of the subsoil,.

.= In a thick transition layer the appearance of saturation is at
some total rain with only small changes due to the rain
intensity or whether it 1s continuous or intermittent. This
has been true over rain intensities changing 1 : 400 -

- After saturation at some point it spreads to the surface and
produces seepage and possibly runoff

~ The total rain necessary for saturation increases with the
thickness of the transition layer. The total rain necessary
for seepage greatly increase with the thickness of the transitiﬁn

layer. This is true at long enough rain intensity.

In the following some of the results will be shown in more details

to learn about the actual flow regime in the soil.

2, PRESENTATION OF RESULTS

The reader may be reminded that the soil surface had a sinussoidal
form with half cycle 1, and amplitude A and a transtion layer of
thickness 8§ changing its conductivity from the soil bulk (KSat =

10_5 cm/sec.) to the surface (Ksa = 100 ecm/sec.) and the porosity

from the soil bulk (n = 0.4) to tﬁe surface {(n = 0.9). The water
was at hydrostatic equilibrium initially (T.8§ =0 T =0 D = 0) with
water table (¥ = 0) at a depth of some 10 meters (z = 0).

Following is a partial table of problems whose solutions will be

used in the present discussion.
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fig. 1

fig. 2-6

Problem Number half cycle amplitude thickness main rain
of transition i{ntensity

388 20 2 0.45 o
522 20 2 0.45 0.0}
815 20 2 0.45 4
438 20 2 0 1
533 20 2 0 0.01
752 A 20 2 0.15 1
752 F 20 2 0.15 0.0l

Each drawing will have an identification table in the form of

fig, 1.

The results will be presented along with the development of the
discussion. They will include moisture distribution, hydraulic head

distribution integral moisture accumulation etc,

3. THE FLOW REGIME - INDICATION OF LATTERAL FLOW

To show the details of the head distribution 3 sections have
been magnified (fig. 2)(A) at the top of the hill (B) at its
maximum slope (C) at its bottom.

Fig. 3 shows the lines of equal head at high rate of rain and
after some 112 mm of rain entered the soil. It is clear that at
the wetting front the flow is normal to the transition layer.
Behind the wetting front steamlines (that would be normal to the
equipotential) clearly slope downstream. It is mostly pronounced
in the high slope section B.

In fig. 4 one can observe slanting flow in the upper drawing
which is of soil with a transition layer & = 0.45 problem 522)
and practically vertical flow in the lower drawing in a soil with
no transition layer § = 0 problem 438). Both have the same very
small rains, about one third of the subsoil hydraulic conductivity.
Both are taken at the steepest slope after the precipitation of

256 mm of rain.
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Fig. 5 shows the evolvement of the flow regime through the
equipotential in a soil with a very high rain intensity (problem
815)., It is interesting to note the marking of elevation on the
left and right side of the drawings. If the hydraulic head registered
on the equipotentials is lower than the elevation, the flow is
under suction and maybe not saturated, One can study fig. 5 as well
as figures 2 - 4 and identify again the high suction gradients at
the wetting front and ascertain that in all the examples the flow
is under suction. Certainly there is no flooding or perched water
formation anywhere. Still the latteral flow component forms both at
rains which are far higher and far lower than the hydraulic
conduetivity, In fig., 5 one can see that in the beginning the flow
tends to be normal to the soil surface as suction gradients are
predominant. Later the normal flow is maintained ohly within the
wetting front. The latteral flow continues quite significantly
after the rain has stopped (the lowest part of .fig. 5).

Fig. 6 clearly shows how a soil with no transition layer at
its surface differs from that with a transition layer. The flow
starts being more or less normal to the soil surface. After

prolonged rain the flow becomes vertical.

4, RELATION BETWEEN SLOPE AND THE LATTERATL FLOW COMPONENT

In previous parts of the report it has been shown that under
steady state infiltration the horizontal flow component is proportional
to the slope.

The question is whether one can draw a simple rule like that for
the complex non steady flow being considered here. To study this
problem one has to integrate the moisture content© over a vertical

column to get w{xt) = [ 0 (xzt) dz. Then by conservation
J

P = 22&51 ()

3
'a—t- W(Kt) N

P - being the rate of rain. We assume the lower bound of z over

which O is integrated to exclude any deep leakage of water. The
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values of w have been found in the computation and so where 5% wixt) .
This allows in principle to find (Q(x) by integration over x from

a point where Q(x)} = 0 at x = 0. One can now divide this calculated
discharge at every point by the local slope. The following is such

a table for problem 522. Instead of the discharge the weighed average
of the horizontal hydraulic gradient has been expressed, exactly

proportional to the discharge.

Place Point Ratio of horizontal gradienmt
to local slope

hill top 0

steepest slope

[T = T e e = A T ¥, B B PRI
(WL
%, ]

bottom valley

Very clearly the horizontal hydraulic gradient follows very
closely the local slope. This conclusion is far from general. At
most it is a hint that such a rule of a thumb is reasomably taken.
At the bottom, where more water accumulates the gradient decreases.
At the hill top, moisture depletion also will tend to limit the

gradient.
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5. FORMATION OF SATURATION AND SEEPAGE
figs.7,8

Out of the many results two sets have been chosen to illustrate
the main findings(fig. 7, 8).

In these drawings 4 sequences of pictures from top to bottom
show four stages of flow within the top soil transition layer.
This layer has been blown up in the vertical scale 20 : | to be
able to show the details. Lines of .equal moisture have been drawn
with the moisture content indicated on a volume basis. Zones of
saturation have been shaded. Due to vertical scale blow up lines
of equal moisture should not be used to deduce about flow directions.

The first sequence of problem 522 in fig. 7 shows earlyl
precipitation stages with the beginning of moisture built up at
the bottom valley. At some stage saturation appears. As rain
continues the saturated area spreads upward and sideways until
it reaches the soil surface, After the cessation of the rain
(drainage period) the =zone of higher moisture is still maintained
for a long period despite respreading by downward and sideways
flow of the excess water. These saturation and seepage occur
despite the fact that the rain is about 1/3 of the hydraulic
conductivity of the subsoil. Accumulation in the concave part
produces local precipitation duty which is far higher than the
average.

Problem 438 in fig. 7 has the same low rate rain but no
surface transition layer. There occurs no saturation, no seepage
and no runoff.

In fig. 8 the comparison between soils with and without transition
layers 1is repeated, Problems 388 and 533 differ from those in
fig., 7 by their high rain intensity (some 30 times larger than the
hydraulic conductivity. Qualitatively the same phenomenon occurs
at high and low rate of rain. With the transition layer in both
cases the rain enters first the soil. It then produces horizontal
flow components followed by moisture accumulation in concave places.
Saturation appears first in such concave places within the transition
layer, Later saturation reaches the surface in one place only, where

runoff could start in the usual sense.
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fig.9

There is a new and important conclusion from the above.
It has been argued before that surface saturation can be produced
by low intensity rains that enter first the ground. Here it is
shown that with the surface transition layer there is no ofher
mechanism. Every drop of rain penetrates first into the soil,
The classical model that predicts runoff only when the rain exceeds
the local infiltration capacity fails not only for low rates of rain.
It is incorrect under any circumstances as long as the surface
transition is a universal phenomenon.

The details of the flow at the bottom valley can not be seen
in fig. 7-8. However it has been found that upward hydraulic
gradient actually forms and there is a flow out of the soil ‘in
addition to the inhability of any additional rain to penetrate
the soil at this point,

The seepage area is capable of producing runoff. Furthermore
it can start an erosive process by piping (seepage forces),

In one example the outflow has been actually calculated. It
only serves as an illustration (fig. 9). The high rate of rain
(about 110 times higher than the hydraulic conduetivity) should
have produced by the traditional model water excess very soon and
interrupted very shortly after the rain has stopped. Note the type
of hydrograph actually obtained by excess flow in what would be

considered a point in the field where runoff is produced.

6. GULLIES AND THE SEEPAGE MECHANISM

Consider the sinusoidal landscape as in all the above solutions
with one difference. There is an erosive vertical cut at the bottom
valley (e.g. on the right of all the profiles in drawings 7, 8).

The solution remains unchanged up to the time when saturation appears.
The exposed boundary under suction acts as an impermeable one i.e.

a streamline. In that it is not different than the symmetry line
agsumed in the original solution.

Seepage flow out of the soil, will start as soon as saturation

will occur. This is much earlier than the initiation of seepage when
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saturation has to reach the uneroded soil surface. Recall typical
times for saturation and seepage or the total rain necessary before
first saturation and first seepage. For the.present discussion this
may be considered as total rain for seepage out of the soil with
undlsturbed smooth and continuous transition layer and with

truncated transition layer.

Problem Half Amplitude Transition Main Total rain for seepage Notes
number  cycle }ayer _ rain Eruncated Yo :
length thickness intensity . .
transition truncation
layer (smooth
(Gullies) surface)
L A ) P D D
8 seep
m m m cm/hour cm cm
388 20 2 0.45 I 14.9 21.3
522 20 2 0.45 0.01 15.9 60
815 20 2 0.45 4,00 17.2 23.2
752A 20 2 0.15 1.00 7.1 7.7
752F 20 2 0.15 0.01 8.0 12.0
536 20 2 0.05 1.00 2.6 3.4
535 40 12 0.45 1.0 14,3 19.0
521 2 0.2 0.45 1.0 10.4 24,4
379 2 0.02 0.45 1.0 16.0 38.0
378A 2 0.02 0.15 1.0 7.5 14,0
3791 2 0.02 0.45 0.01 - -
378A 2 0.02 0.15 0.01] - -
5204 2 0.2 0.15 1.0 5.6 8.4
5203 2 0.2 0.15 0.0l - -
523 2 0.2 0.05 1.0 2.4 2.9
537 2 0.02 0.05 1.0 3.2 5.2
5378 2 0.02 0.05 0.01 - -
524 2 0.02 0.005 0.5 2 2.3
525 0.2 0.02 0.i5 1.0 7 15
526 0.2 0.0002 0.15 13.0 8.8 -  not run
527 0.2 0.1 0.025 1.0 4.8 4.6 long enough
528 0.2 0.02 0.025 1,0 2.5 3.3
529 0.2 0.0002 0,025 0.5 8.1 9.35
530 0.2 0.1 0.005 0.5 2.0 2.0
531 0.2 .02 0.005 0.5 2.0 2.3
532 0.2 0.0002 0,005 0.5 2.3 2.3
525P 0.2 0.02 0.15 0.01 - -
531V 0.2 0.02 0.005 0.01 - -
5324 0.2 0.0002 0,005 0.01 - -
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The conclusion is that gullieé shorten considerably the time and
total rain for the beginning of seepage outflow. Smooth deep plough
layers will increase the amount of rain that can penetrate the soil
before seepage can start. Step by step in the above table one can
observe.

a. The lower the slope (and the concavity) the more rain it

takes to form saturation and seepage )

b. The deeper the layer & the more rain it takes for saturation

and seepage,

If the seepage forces are the main erosive mechanism then erosion
can start as soon as seepage starts. The upward and outward gradient
as found in the numerical soluticn may seem small. However, note that
a slight and local dent in the soil surface can cause a local
concentration of streamlines and highly increased seepage forces.
Once, erosion has béen initiated the seepage gradients and outflow
on the gully sidewall are much higher and they cause elongation,

widening and branching of the gully.,

A very interesting explanation is suggested here for the formation
of tunnel erosion which is very typical to many areas. In Israel it
is pronounced especially in the wind blown loess soils of the south.
It is a well established fact there that the initial bulk density
is low. A delicate cohesive structure of the loess can be collapsed
on saturation. The appearance of such saturation in the profile has
been demonstrated well in the analysis above. It is exactly where
we find underground tunnels in the loess area. On collapse of the
structure a free space is produced. Water seepsoul on the upper
end of this space and enters back to the soil on the lower end.

By transporting eroded soil more and more free space is formed
(the difference between the initial soil and the hydraulically
redeposited so0il). The tunnel is elongated and widened until its

top falls in. Often it finds an outlet to a larger truncation,

VII-9



Evidently erosion will progress at an increasing rate once it
has been started. Moisture concentration will start erosion and
runoff and the erosion in turn will produce a more efficient

system of moisture accumulation seepage and eventual runoff.

7. HORTZONTAL REDISTRIBUTION OF RAIN WATER
figs.
10-14
In search for a more economic expression of the results, the

vertical integral of moisture content has been performed at |1 grid

lines of the numerical solution.
wixt) = J O(xzt) dz (2

From it the intial value WO at t = 0 has been substracted to give
Mw(xt) as a result of the rain. The average E;(t) is calculated

A/

and finally the relative value Mw is expressed. Where it is

a unit the local addition equals the average added water. Where
there is accumulation the ratio is higher than one. Figures j0-14
show the results for five different problems. Consider first fig. |0
for problem 388 (24 cm rain per day). The curves in the lower part
are during the rain. Initially at 2.5 hours and 2.5 cm of rain
there is some uphill accumulation as the flow is normal to the

s0il surface and the gravity force is still negligible, compared
with the pressure gradient. Later the local water duty in the
concave part (on the right) increases and reaches even twice the
average. After the end of the rain {upper part of the drawing -
drained) there is still a build up of the moisture at the lower
concave part and depletion in other parts. Fig. is of a very

low rate of rain 0.24 cm rain per day). The relative excess 1is

very significant in the concave part and reaches more than three
times the average rain. This higher concentration builds up fuxther
for some time after the end of the rain. Despite deep drainage it
is maintained for a relatively long period. After more than a year
it is still twice the average added rain. In all the above problems

evaporation was not included.
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Problem 438 in fig. 12 is with no transition layer and serves
for comparison. There is a very little moisture accumulation and it
is to a great extent uphill., Figy; 13 exhibits the behaviour under
a very high rate of rain (40 mm per hour - 96 cm/day). It becomes
clear that during the rain itself there is less time to move
laterally and the accumulation is less than in problem 388. Both
are less than in 522. Later on after the rain has stopped there
is still time for the accumulation to develop.

Several outstanding conclusions may be taken tentatively:

a. The relative accumulation depends first and foremost on the
total rain

b. The lower the rate the more latteral accumularion occurs

¢. The accumulation due to latteral flow continues long after
the rain has stopped

d. Intermittent rain may be taken on the average as a low rate

continuous rain.

One has to remember that latteral migration of rain and accumulation
in concave parts of the landscape may produce saturation seepage and
runoff but they do not have to. The accumulation can occur over a
long column of soil when the moisture is so distributed as to have
low local values, High intensity rains while causing somewhat less
moisture accumulation have less time to penetrate deep into the
goil. Thus they are more liable to produce saturation and seepage.

The last figure of this group (14) shows a low rate of rain over
a layer 15 cm thick (a third of that given in previous drawings). The
degree of moisture accumulations is impressive, During the rain it
reaches four times the average rain. It should be mentioned again
that despite this impressive accumulation the saturation and seepage
will be formed omly if the moisture concentrates at a thin enough
layer.

The accumulation has been further condensed by calculating a

concentration coefficient Ao as follows:

L
% ,[ |aw(xt) - dw(t)|dx (3)
4]

Ao(t) =
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where Aw(xt) is the added moisture integrated over a columit!/Aw(t} s
the average addition (without accumulation).

In fig. 15 one can observe on the left a comparison between the
problems 522, 388 and 815 varying only by the rate of rain. As in
522 the rain is low it has ample time to concentrate. On the right
one can compare low rates with no transition layer with 15 cm one
on 45 cm one. All at low rate of rain. The same at somewhat different
scale can be seen in figure 16. The conclusions are repetitive
of those that have already been mentioned.

In the numerical solution the rain has been taken to be uniformly
distributed over the surface. Note that in reality splashing rain drops
and slanting rain may cause higher local concentration over which the
act of the surface transition layer is superimposed. It can be by far
the more important process. Especially, that it is tied with erosion
by seepage. Furthermore it has been shown to be valid over a wide
range of slopes and curvatures.

The distribution of Aw{xt) figs. 10 - 14 reminds a negative
of the surface sinusoid giving the higher moisture accumulation in the
more concave parts of the landscape. It is clearer why moisture wili:
give a high correlation with the concavity even though it is not a
perfect one. Note also that in the above a reasonable proportionality
(but not a perfect one) was found between the horizontal discharge
and the slope. The relatively limited range of our calculations cannot
serve as a perfect proof to that effect. Strictly speaking the slope
of moisture distribution may be a coincidence. To be certain a large
number of threedimensional problems should be run. However recall that
under steady state conditions it has been analytically proved. In the
field it has been observed. The individual mechanisms have been
demonstrated beyond any doubt. It therefore seems safe enough to
consider the present deductions at least as a correct trend that

calls for a complete revision of out approach to surface hydrology.
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