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ABSTRACT 

Scheut Jens, Jan M.H.M., Laboratory for Physical and Colloid Chemistry, 

Agricultural University, Wageningen, The Netherlands. 

MACROMOLECULES AT INTERFACES; a flexible theory for hard systems. 

Ph.D. Thesis, Agricultural University, Wageningen, (1985). 

168 + 8 pages, 61 figures, 4 tables. English and Dutch summaries. 

A statistical theory for flexible macromolecules at interfaces has been devel­

oped. The theory is based on a lattice model in which the equilibrium set of 

molecular conformations in a concentration profile is evaluated, using a self-

consistent procedure. In this way, the Flory-Huggins theory for polymer solu­

tions is extended to inhomogeneous solutions of macromolecules without any 

additional assumption. Apart from the Flory-Huggins polymer-solvent interac­

tion parameter x% a similar parameter xs is used to describe the interaction 

of polymer segments with a solid interface. The average number of molecules in 

each particular conformation can be computed, so that a very detailed picture 

of the interfacial structure is obtained. Thus also the train, loop, and tail 

size distributions of adsorbed polymer can be calculated. In principle, there 

are no adjustable parameters in the theory. Moreover, there are no restric­

tions on the system parameters such as polymer concentration, chain length, 

number of species in a mixture or solvent quality, although in some cases 

numerical problems may occur. Results are given for adsorption of homopoly-

mers, polydisperse polymer, polyelectrolytes, and star-branched polymer, for 

the structure of lipid bilayers and of the amorphous phase of semicrystalline 

polymer, and for the interaction between surfaces due to the presence of 

adsorbing or nonadsorbing polymer. Available experimental data on adsorption 

isotherms, bound fraction, layer thickness, surface fractionation, steric 

stabilization, and polymer bridging agree very well with the theoretical 

predictions. 

Free descriptors: polymer adsorption theory, lattice model, polymer chain 

statistics, step weighted walk, adsorbed chain conformation, macromolecular 

interfacial structure, segment density distribution, polymer concentration 

profile, polymer adsorption isotherm, surface tension, steric stabilization, 

flocculation, polymer bridging, surface fractionation. 
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INTRODUCTION 

1.1 GENERAL 

The subject of this study is the behaviour of linear, flexible polymer 

molecules at interfaces. A new statistical theory has been developed, which 

gives a very detailed picture of the equilibrium state of the interfacial 

region. The basic concept of this theory is applicable to all systems in­

volving concentrated inhomogeneous distributions of polymer molecules in 

thermodynamic equilibrium. 

Polymer adsorption from solution is a very universal phenomenon. Many 

applications are based on the repulsive or attractive forces between two 

polymer layers • 

In food technology and pharmacy the utilization of natural polymers like 

polysaccharides and proteins as stabilizers for emulsions is widespread. 

Other examples where the stabilization of colloids plays a major role are 

pesticides, cosmetics, paints and inks. 

Destabilization of dispersions occurs often at low concentrations of 

polymer and is important in mineral processing and water purification. This 

phenomenon is called flocculation, since one of the essential steps is the 

forming of large floes with a loose but stable structure. The capability of 

inducing floe formation makes polymer very helpful for the improvement of 

soil structure. 

Polymer adsorption and adhesion are operative in biological systems and 

interfere with many processes used in polymer technology. It is crucial in 

the production of magnetic tapes, rubber coatings for tires, and for the 

operation of gum erasers. 

Most applications have been developed without insight into the underly­

ing mechanisms. Some 30 years ago the knowledge about polymer adsorption was 
2 

very poor, but it has increased steadily over the last decades • In view of 

the diversity of materials, the lack of suitable experimental techniques and 

the complexity of polymer adsorption, it is not surprising that in most 

cases a comparison between theoretical and experimental results show only 



qualitative agreement. A detailed description of polymers at interfaces is 

therefore of extreme importance for all applications mentioned above. A 

quantitative prediction of the forces between two polymer covered colloidal 

particles hinges on the knowledge of the exact shape of the polymer layers 

in interaction. Due to the thermal motion of the flexible polymer molecules, 

this shape is statistically determined and hence, a theory for polymer ad­

sorption is necessarily based on statistical methods. 

1.2 POLYMER STATISTICS 

1.2.1 Polymers 

A flexible, linear polymer molecule consists of a chain of monomer 
3 

units. A variety of polymers exists . The number of units in a chain may be 

as large as 10 , but is usually between 10 and 10 . Molecules with less 

than around 100 units are called oligomers. 

For homopolymers the repeating units are all identical, whereas co­

polymers have two or more different types of monomer units in sequences that 

are either systematically (synthetic alternate and block copolymers, but 

also natural macromolecules like DNA, RNA, and proteins) or statistically 

(random and blocky copolymers) arranged. Polyelectrolytes contain units that 

are electrically charged. According to the nature of the charges the poly-

electrolyte is either weak or strong. 

The primary structure of flexible polymers is not always strictly 

linear. Some polymers are branched (irregular, star- or comb-like) and a 

special class is formed by the ring polymers. 

In a homodisperse polymer sample all chains have the same number and 

type of monomer units. Most synthetic and many biological polymers are poly-

disperse: they have a statistically determined chain length distribution. 

The term heterodisperse is used to refer to a distribution in monomer 

sequences in random and blocky copolymers. 

Solution and adsorption properties of polymers depend largely on the 

characteristics of the chains and a general theory for macromolecules at 

interfaces must be able to incorporate the main features of each polymer 

type in order to predict its behaviour in real systems. 



1.2.2 Polymers In solution 

The solubility of macromolecules is low, due to their high molecular 

weights. A polymer chain in solution interacts simultaneously with a very 

large number of solvent molecules. Because of the rotational freedom of the 

chemical bonds between the monomer units the chain can assume a large number 

of different spatial arrangements and its shape is continually changing by 

thermal motion. For sterical reasons each bond has a small number of prefer­

red rotational angles which determine the main permissible distributions, 

called conformations, of the chain. The number of conformations is extremely 

large. For example, if for a chain of x monomer units each bond has on the 
x—1 average three preferred angles, the number of conformations is 3 , which 

x/2 
is approximately 10 • Even for polymers with only 100 monomer units per 

molecule this number is already as high as 2.10 . Since it is impossible to 

consider every permissible conformation individually, a statistical approach 

must be adopted. 

The shape of the macromolecules is a weighted average of the shape of 

their conformations. Energetically favourable conformations have a relative­

ly high probability. Specific interactions between monomer units, such as in 

proteins, have a strong influence and reduce the number of significant con­

formations considerably. Therefore, proteins are relatively rigid, whereas 

most homopolymers are flexible. 

Much theoretical work has been done on the average shape of homo-

polymers . To some extent, they can be described as a sequence of identical 

and rigid segments with bond angles that can assume any value. The length of 

a segment and the number of segments per chain are adjusted such as to mimic 

the length and flexibility of a real chain. Thus, with increasing flexibili­

ty of the real chain, the number of segments increase and their length de­

creases. Typically, each segment represents 2 to 5 monomer units. 

If the segments are infinitely thin, there is no excluded volume for the 

segments and the conformations of the chain can be simulated by random 

walks. The average shape of such a chain is that of a random coil. The 

radius of gyration of such a coil, for a chain of r segments, is proportion­

al to r . However, a real polymer chain has a finite thickness and it is 

clear that two monomer units will never occupy the same volume. Hence, self-

ïat a 

0.6 

avoiding walks are more appropriate. Computer simulations indicate that a 

chain of r spherical segments has a radius of gyration proportional to r 



For finite chains the exponent depends on the ratio between length and 

thickness of a segment and, for various geometries, it has a value between 

0.5 and 0.6. The volume of the chain acts as a repulsive force between the 

segments which causes the coil to expand. 

Although locally the chains are always self-avoiding, the overall con­

formation of the chain depends also on the solvent quality. There are two 

cases in which a polymer coil has the dimensions of a random walk: in pure 

liquid polymer and in an ideally poor or G-solvent at low concentrations of 

polymer • In liquid polymer the repulsive force between segments of the same 

chain equals that between segments of different chains. Coil expansion does 

not decrease the total repulsion, but merely the number of conformations. 

Only the entropy determines the average conformation. At low concentrations 

in a 0-solvent the hard core repulsion between the segments is compensated 

by a mutual attraction, or equivalently, by a repulsion between segments and 

solvent. Obviously, this latter repulsion decreases with decreasing solvent 

concentration, hence, with increasing polymer concentration. Consequently, 

in a 0-solvent, the coil expansion as a function of polymer concentration 

exhibits a maximum and it is zero in very dilute solutions and in pure 

liquid polymer. 

The solvent quality is determined by the net interaction between seg­

ments and solvent. The free energy of mixing of polymer and solvent has been 

extensively examined by Flory and Huggins, who approximated the solution by 

a semicrystalline lattice. They introduced the parameter x> which gives the 

interaction energy difference (in kT units) when a solvent molecule is 

transferred from pure solvent to liquid polymer . For an athermal solvent 

X = 0 and it increases with decreasing solvent quality. The entropy of 

mixing was calculated by evaluating the number of distinguishable ways in 

which a given number of solvent molecules and sequences of segments can be 

placed in the lattice. It appeared that x = 0.5 for a 0-solvent. In a worse 

than 0-solvent (x > 0.5) the polymer is not soluble at all concentrations 

leading to phase separation domains. For x < 0.5 the solution is thermo-

dynamically stable at all concentrations. 

A lattice model is especially suitable for quantitative comparisons 

between free energies under different conditions. The set of possible con­

figurations on a lattice comprises a representative sample of the infinite 

number of spatial distributions in a real system. 



1.2.3 Polymer adsorption 

Flexible polymer molecules are able to adjust their conformation in the 

presence of an interface such as to maximize short range interactions 

between polymer segments and the surface. The attraction between segment and 

surface is multiplied by the large number of adsorbed segments per polymer 

chain so that a strong attractive force per molecule is present, even when 

the contribution per segment is only small. If enough surface area is avail­

able, each single chain in the system will be adsorbed. In this case the 

adsorbed macromolecules are so far apart that they do not affect each other 

(isolated chains). The spherical shape of the polymer coils in solution 

changes drastically upon adsorption ' . 

A very elegant model for the description of the adsorption of isolated 

chains is that of DiMarzio and Rubin » , who developed a matrix method for 

the generation of all conformations, with their appropriate probabilities, 

of a chain near a wall. As in the Flory-Huggins model, they represent the 

conformations of the chain by random walks on a lattice. Each step in or 

towards a lattice layer adjoining the wall simulates a segment in contact 

with the surface and hence, is assigned a weighting factor exp(xs)> where 

-% is the adsorption energy per segment (in kT units). 

This and other models predict that most of the segments of isolated 

adsorbed homopolymers form long sequences, 'trains', in contact with the 

surface. The trains are interconnected by short 'loops' of segments sticking 

into the solution. The chain ends are either adsorbed or form dangling 

'tails'. The average conformation of an adsorbed chain depends on the ad­

sorption energy. If xs is below a critical value xsc» the polymer does not 

adsorb, whereas a value slightly above x s c causes the chain to adsorb in a 

very flat conformation with long trains, short loops, and hardly any tail. 

The critical adsorption energy x s c
 i s t h e energy per segment that just com­

pensates the conformational entropy loss of the chain when its shape changes 

from a 3-dimensional coil to a 2-dimensional conformation parallel to the 

surface. 

If the surface is saturated with polymer, the segments have to compete 

for surface sites. With increasing polymer concentration, the fraction of 

segments in loops and tails will increase • The first theories on polymer 

adsorption at high concentrations calculate the number and lengths of loops 

by minimizing the free energy of an adsorbed polymer layer with a predeter-



mined shape of the segment density profile in the loop region. For instance, 
o a 

Silberberg used a constant loop density and Hoeve an exponential decay. 

For computational reasons, tails were not taken into account. 

A few lattice models allow for the computation of segment density pro­

files at high concentration: that of Mackor and Van der Waals for ad­

sorption of rigid rods, of Ash et al. for adsorption of very short flex-

12 

ible oligomers, and that of Roe for flexible homopolymers. The most ad­

vanced theory is that of Ash et al., but it suffers from severe computation­

al problems. Only results for chains not longer than tetramers have been 

obtained. The Roe theory applies for relatively thin adsorbed polymer 

layers, with most of the segments in trains. This theory is not adaptable to 

copolymers or special chain structures like branches and it gives no inform­

ation on the average conformation of the adsorbed polymer in terms of train, 

loop, and tail distributions. 

1.2.4 Reversibility of polymer adsorption 

Theories that are based on equilibrium thermodynamics are not very use­

ful for systems in which the establishment of equilibrium is very slow. A 

rather common opinion is that adsorption and desorption of polymer are very 

slow processes. Evidence that seems to support this view is amply available: 

the adsorbed amount often increases slowly in time, even on a time scale of 

weeks and once adsorbed, polymers are difficult to desorb by dilution. An­

other problem is that the amount adsorbed per surface area often increases 

with increasing volume of the equilibrium solution. Because of these 'arte­

facts' many experimental data were not very reproducible and polymer ad­

sorption was considered to be irreversible. 

Fortunately, it has been shown recently that many of the apparent irre­

versibility effects are now quantitatively explainable using simple argu-
13 ments . The most important parameter which has often been overlooked is the 

polydispersity of the polymer. From dilute and semidilute solutions of a 

polydisperse sample, long chains adsorb preferentially over shorter ones. 

When the surface is saturated with polymer, the chains are competing for 

surface sites and small differences in chain length will discriminate 

between 'winners' (long chains) and 'loosers' (short chains). The resulting 

fractionation process may take a long time, because the diffusion of a small 



fraction of very long chains towards the surface through a high concen­

tration of lower molecular weight polymer is slow. Thus, the average mole­

cular weight of the adsorbate increases slowly with time, due to the dis­

placement process. The variation in adsorbed amount reflects the molecular 

weight dependence of the adsorption. If the latter is weak, displacement 

still occurs, but it does not lead to a higher adsorption. 

Adding more polymer, either by increasing the solution concentration at 

constant volume or increasing the solution volume at constant concentration, 

is tantamount to introducing new winners and the composition of the adsor­

bate will change again. On the other hand, removing polymer from the solu­

tion, which contains only loosers, does not affect the interface. Hence, the 

hysteresis after addition and removal of the same amount of polymer is 

caused by a difference in composition of these polymer fractions and conse­

quently, this hysteresis does not detract from the reversibility of polymer 

adsorption. 

Strong evidence that polymer adsorption is reversible is also available. 

Apart from the quantitative prediction of polydispersity effects while as­

suming complete equilibrium, polymer adsorption is usually reversible with 

respect to changes in solvent type, pH, and salt concentration. Hence, theo­

ries on equilibrium thermodynamics are in most cases appropriate and poly­

dispersity effects should be taken into account when the polymer is not 

homodisperse. 

1.2.5 Steric stabilization and flocculation 

Polymer adsorption has a very pronounced effect on the stability of 

colloidal systems • A strong interaction between polymer covered particles 

arises as soon as adsorbed polymer layers overlap each other. In a better 

than 9-solvent this interaction is repulsive and increases the stability of 

the dispersion, whereas in a worse than 0-solvent the force is attractive 

and flocculation ensues. 

Loops and tails protuding from one particle may form bridges by adsorb­

ing on free surface of another particle, inducing an attraction between 

these surfaces. For flocculation to be effective the net interaction between 

the particles must be attractive. If the particles are stabilized by elec­

trostatic forces, the loops and tails must protude beyond the double layer 



in order to reach the opposite surface. A thick polymer layer is not con­

sistent with free surface on the particles, hence flocculation occurs only 

over a limited range of surface coverages. Bridging works most efficiently 

when fully covered particles are mixed with an equal portion of uncovered 

14 particles 

For a quantitative evaluation of the interaction between two adsorbed 

polymer layers, the segment density profiles and the conformations of the 

polymer must be known as a function of the particle separation. 

DiMarzio and Rubin have adopted their matrix model for one chain be­

tween two plates and showed that the interaction between the surfaces is 

repulsive for non-adsorbing polymer (xs < Xs c) and attractive for adsorbing 

polymer (x > Xqf.)> independent of the interplate distance. 

For real systems one expects a repulsive force at small surface separa­

tions if the amount of polymer between the surfaces remains constant, since 

polymer occupies a certain volume. Hence, a single chain model is not able 

to predict essential characteristics of a many chain system. A quantitative 

model should give information for high surface coverages. 

1.3 PURPOSE AND BASIC CONCEPTS OF THIS STUDY 

The aim of the present study is to develop a theory that gives a detail­

ed description of the behaviour of macromolecules at interfaces. For polymer 

between two surfaces, the model must be able to predict steric stabilization 

and flocculation quantitatively. 

The lattice model of DiMarzio and Rubin is chosen as a starting point, 

since it allows to obtain all relevant information about the chain conforma­

tions, is not restricted to homopolymers, and the generation of conforma­

tions is much simpler than in the theory of Ash et al. . 

The most important problem is to incorporate the volume of the segments 

so that each lattice site is not occupied by more than one segment at a 

time. In the model of DiMarzio and Rubin, this volume exclusion is neglect­

ed. Consequently, all steps have the same probability, except steps in or 

towards a surface layer where the adsorption energy is operating. In a so­

phisticated model, all steps into a lattice site already occupied by a seg­

ment have to be prohibited. An exact solution of this problem is not yet 

feasible. An approximate solution is possible by using a mean field ap-



proach. Then the assumption is made that the probability that a site on 

distance i from a surface is occupied is equal to the average volume frac­

tion (t>j of segments at distance i. This leads to a weighting factor 1 - <J>. 

for each step in or towards layer i. In this way a step into a region of 

high segment density becomes less probable and the generation of conforma­

tions via random walks is shifted, to some extent, towards that via self-

avoiding walks. The volume fraction fy* is to be obtained by the matrix meth­

od, where the matrix is now a function of all <t>.:'s. A self-consistent solu­

tion can be found numerically. 

When two surfaces approach each other and the polymer remains adsorbed, 

the volume fractions $^ increase and eventually the step probabilities de­

crease rapidly. The result is that the force between the surfaces is always 

repulsive at short separations. At the minimum possible distance there is 

only polymer in the gap (<j>j •* 1 ) , the step probabilities are essentially 

zero and the force is infinite. 

Physically, the relation between step probability and volume fraction 

simulates segments competing for surface sites. An interesting consequence 

is that adsorption of many chains on one plate can be studied using the same 

model. For example, adsorption isotherms can be computed over the entire 

concentration range, from zero up to liquid polymer, and for any chain 

length. 

The model as given above, applies to athermal solvents, i.e., when the 

energy of a segment does not depend on the local concentration of other 

segments. For other solvents the net interaction energy between segments 

gives rise to another Boltzmann factor in the step probabilities, similar to 

the factor exp(x„) for the adsorption energy. According to the theory of 

Flory and Huggins the interaction energy of a segment at i equals 

-X<<t>i> kT, where x i s t ne polymer-solvent interaction parameter and <<t>i> is 

the average volume fraction of segments around a site at i. In fact, a seg­

ment competes with a solvent molecule for a lattice site. Since a step cor­

responds to the replacement of a solvent molecule by a segment the total 

energy change is -2x<<l>.|> kT and hence, the Boltzmann factor becomes 

exp(2x<<t>j>). As discussed in section 1.2.2, in a 0-solvent the interaction 

energy compensates the repulsive volume forces between the segments at low 

concentrations. In such a solvent x = 0.5 and if the step probabilities for 

steps not touching the surface are set equal to (l-((>i)exp(2x<<t>i>) the expo­

nent indeed compensates the decrease of the factor !-<)>.. at low concentra-
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tions in a 0-solvent. In this way the solvent quality as expressed by the 

X-parameter is incorporated in the theory. 

In order to give the theory a sound thermodynamic basis, a partition 

function has been derived from which the step probabilities can be found 

directly, using a statistical thermodynamic procedure (see chapter 2). 

1.4 COMPUTATIONAL PROBLEMS 

The first computer program that solved the implicit equations was based 

on a primitive iteration scheme and performed several hundreds of iterations 

for polymer chains up to 40 segments long. For a chain of r segments, a 

2 

series of r /2 matrix-vector multiplications was necessary for each itera­

tion. Fortunately, a considerable simplification of the DiMarzio-Rubin equa­

tions was possible (see the appendix of chapter 2) that reduced the number 

of matrix-vector multiplications to r per iteration. 

The number of iterations could be decreased by using the Newton-Ralphson 

method, for which a good initial starting point is necessary. Such a start­

ing point can be obtained from the polymer adsorption theory of Roe . With ! 

increasing chain length r, a number of problems occur. 

i) For adsorption on one plate the number of iteration variables in­

creases, because the thickness of the adsorbed layer and hence, the 

distance for which the segment density is higher than the solution 

concentration increases proportional to /r. On the average, a total of 

3/r variables is required, 

ii) A total of 3r/r quantities is to be stored during the matrix multipli­

cations. As this is currently impossible on most computers for 

r £ 1000 an overlay structure, using a disk as backing store, or re­

peatedly recomputing of data is unavoidable, 

iii) The sequence of r matrix multiplications may induce floating point ' 

overflows or underflows. A careful renormalisation of vectors solves 

this problem, 

iv) The Roe theory is not valid for long chains and provides in that case ] 

a poor starting point, leading to a large number of iterations. 

Calculations have been performed for r < 10 , which covers almost the whole 

molecular weight range of available polymers. 

The exchangeability of computer programs between different computers is 
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still poor. The software crisis forces one to rediscover most of the compu­

tational tricks and to develop a new program for almost each desired varia­

tion of a model. A suitable programming language for the type of calcula­

tions in this study would have facilities for structured programming, dynam­

ic memory allocation, vector processing, on-line debugging, and access to a 

mathematical library, including optimization routines. Currently, widely 

used programming languages in science are Fortran, Basic, AlgolóO, and 

Pascal. Of these, only Algol has the dynamic array facility which is very 

suitable for this study. Unfortunately, it is impossible to write portable 

Algol programs, since the input and output statements are not standardized. 

The first program of this study has been written in AlgolóO and all 

subsequent programs in Simula67. Simula is based on AlgolóO with the addi­

tion of many facilities such as pointer structures. It is available on many 

computers and is well standardized, but the number of users is not large. 

Some simplified versions of our programs have been translated into Fortran. 

1.5 OUTLINE OF THIS STUDY 

In chapter 2 the new theory is introduced and its derivation is given 

starting from the partition function. The theory requires only 5 parameters, 

all having a clear physical meaning. In principle, they are experimentally 

accessible. A number of numerical results for adsorption of homopolymers is 

shown and, where appropriate, compared with predictions from other theories. 

It is demonstrated that the tail fraction of adsorbed polymer is much larger 

than has been expected before. The assumption in other theories that end 

effects can be ignored is not warranted at finite solution concentrations. 

In chapter 3 the principles of the theory are explained in a more physi­

cal way and it is shown how to obtain more information about the structure 

of the adsorbed polymer, such as the train, loop, and tail size distribu­

tions. In addition, the thickness of the adsorbed layer is shown to be pro­

portional to the quare root of the chain length in all solvents. 

Comparison with experimental results in chapter 4 shows excellent agree­

ment for adsorption of homodisperse polymers. Preferential adsorption from a 

solution of polydisperse polymer is examined theoretically and a transition 

from preferential adsorption of long chains to preferential adsorption of 

short chains is predicted when the concentration of polymer in the solution 
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increases beyond a volume fraction of the order of 10%. 

In chapter 5 the interaction between adsorbed polymer layers is studied 

in detail. It is predicted that the force is always attractive for systems 

where polymer is allowed to desorb when two particles come close (full ther­

modynamic equilibrium). When the amount of polymer between the surfaces is 

constant, the force is repulsive at high concentrations of polymer and at­

tractive at low concentrations, even in good solvents. This prediction 

agrees with experimental evidence. The attraction originates from bridging 

of polymer between two particles. 

The principles of the new theory are applicable to many other systems 

involving flexible polymers. In chapter 6 a number of examples are given: 

adsorption of polydisperse polymer, of star-branched polymer, and of poly-

electrolytes; the structure of lipid bilayers and of the amorphous phase of 

semi-crystalline polymer; and depletion flocculation in the presence of non-

adsorbing polymer. 

The advantage of the new concept is that it can handle the entire molec­

ular weight range, from monomers up to very long polymers, the whole concen-i 

tration range, all types of solvent, all sequences of different segments 

within the polymer chain, all types of branches along the chain and all 

mixtures of different (chain) molecules. Recent interest from technical and 

industrial laboratories indicates that this study is not only of theoretical 

importance. 
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Statistical Theory of the Adsorption of Interacting Chain Molecules. 
Function, Segment Density Distribution, and Adsorption Isotherms 

1. Partition 

J. M. H. M. Scheutjens* and G. J. Fleer 

Laboratory for Physical and-Colloid Chemistry, De Dreijen 6, Wageningen, The Netherlands (Received July 17, 1978; 
Revised Manuscript Received December 29, 1978) 

We present a general theory for polymer adsorption using a quasi-crystalline lattice model. The partition function 
for a mixture of polymer chains and solvent molecules near an interface is evaluated by adopting the 
Bragg-Williams approximation of random mixing within each layer parallel to the surface. The interaction 
between segments and solvent molecules is taken into account by use of the Flory-Huggins parameter x; that 
between segments and the interface is described in terms of the differential adsorption energy parameter x8-
No approximation was made about an equal contribution of all the segments of a chain to the segment density 
in each layer. By differentiating the partition function with respect to the number of chains having a particular 
conformation an expression is obtained that gives the numbers of chains in each conformation in equilibrium. 
Thus also the train, loop, and tail size distribution can be computed. Calculations are carried out numerically 
by a modified matrix procedure as introduced by DiMarzio and Rubin. Computations for chains containing 
up to 1000 segments are possible. Data for the adsorbed amount T, the surface coverage 0, and the bound fraction 
p = d/V are given as a function of x9. the bulk solution volume fraction <f>., and the chain length r for two x 
values. The results are in broad agreement with earlier theories, although typical differences occur. Close to 
the surface the segment density decays roughly exponentially with increasing distance from the surface, but 
at larger distances the decay is much slower. This is related to the fact that a considerable fraction of the adsorbed 
segments is present in the form of long dangling tails, even for chains as long as r = 1000. In previous theories 
the effect of tails was usually neglected. Yet the occurrence of tails is important for many practical applications. 
Our theory can be easily extended to polymer in a gap between two plates (relevant for colloidal stability) and 
to copolymers. 

I. Introduction 
The adsorption of polymers at interfaces is an important 

phenomenon,.both from a theoretical point of view and 
for numerous practical applications. One of the areas 
where polymer adsorption plays a role is in colloid science, 
since many colloidal systems are stabilized or destabilized 
by polymeric additives. In these cases, not only the ad­
sorbed amount is an important parameter, but also the way 
in which the polymer segments are distributed in the 
vicinity of a surface. An adsorbed polymer molecule 
generally exists of trains (sequences in actual contact with 
the surface), loops (stretches of segments in the solution 
of which both ends are on the surface), and tails (at the 
ends of the chain with only one side fixed on the surface). 
If two surfaces are present at relatively short separations, 
bridges (of which the ends are adsorbed on different 
surfaces) may also occur. The properties of systems in 
which polymer is present depend strongly on the length 
and distribution of trains, loops, tails, and bridges. 

Many of the older theories1"6 on polymer adsorption 
treat the case of an isolated chain on a surface. These 
treatments neglect the interaction between the segments 
and have, therefore, little relevance for practical systems, 
since even in very dilute solutions the segment concen­

tration near the surface may be very high. Other theories7-8 

account for the interaction between chain segments but 
make specific assumptions about the segment distribution 
near the surface which are not completely warranted, such 
as the presence of a surface phase with only adsorbed 
molecules7 or the neglect of tails.8 For oligomers up to four 
segments a sophisticated theory has been presented9 but 
its application to real polymer molecules is impossible due 
to the tremendous computational difficulties involved. 
The most comprehensive theory for polymer adsorption 
as yet has been given by Roe,10 although here also a 
simplifying assumption is made, namely, that each of the 
segments of a chain gives the same contribution to the 
segment density at any distance from the surface. Roe 
arrives at the segment density profile near the surface, but 
does not calculate loop, train, and tail size distributions. 
Recently, Helfand11 has shown that Roe's theory is also 
incorrect on another point, since the inversion symmetry 
for chain conformations is not properly taken into account. 
Helfand corrects this by introducing the so-called flux 
constraint, but his calculations apply only to infinite chain 
lengths. 

Less work has been done on the problem of polymer 
between two plates. DiMarzio and Rubin12 give an elegant 
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matrix procedure for this case, but are not able to in­
corporate the polymer-solvent interaction. In two other 
recent theories13,14 this was done for terminally adsorbing 
polymers. The paper by Levine et al.14 can be considered 
as a combination of the matrix method of DiMarzio and 
Rubin and the self-consistent field theory.15 However, here 
also the loop, train, and tail size distributions were not 
calculated. 

In this series of articles, we describe how the probability 
of any chain conformation in a lattice adjoining one or two 
interfaces is found from the partition function for the 
mixture of polymer chains and solvent molecules in the 
lattice. The crucial difference with the theories of Roe and 
Helfand is that the partition function is not written in 
terms of concentrations of individual segments, but in 
terms of concentrations of chain conformations; throughout 
the derivation the chains are treated as connected se­
quences of segments. The interaction between segments 
and solvent molecules is taken into account by using the 
Bragg-Williams approximation of random mixing within 
each layer parallel to the surface, in a way similar to the 
well-known Flory-Huggins theory for moderately con­
centrated polymer solutions. The segment density near 
the interface is found from a modification of DiMarzio and 
Rubin's matrix formalism.12 Since the probability of each 
conformation can be calculated, the distribution of trains, 
loops, and tails (and for the two-plate problem also bridges) 
can be found. 

In this first paper we derive the adsorption isotherms 
and the segment density distribution for polymer ad­
sorbing on one plate. In a second article, the loop, train, 
and tail size distribution will be treated in more detail. 
The general trends are in agreement with earlier theo­
ries,7^10 but an important difference occurs concerning the 
segment density at relatively large distances from the 
surface. In this region, the main contribution to the 
segment concentration appears to be due to the presence 
of long dangling tails. This outcome was not found by 
former theories and may be considered as one of the most 
interesting results of the present treatment. It is certainly 
very important in the stabilization and flocculation of 
colloidal particles by polymers. 

In a subsequent publication we shall treat the problem 
of polymer between two plates which is, among other 
applications, relevant for flocculation. Our method can 
easily be extended to (block and random) copolymers, to 
heterogeneous surfaces, etc. In later contributions these 
aspects will be dealt with. 

II. Theory 
A. Formulation of the Model. We consider a mixture 

of n polymer molecules, each consisting of r segments, and 
n° solvent molecules distributed over a lattice such that 
each solvent molecule occupies one lattice site. In the 
present paper, we consider only homopolymers of which 
each segment has the same size as a solvent molecule and 
also occupies one lattice site. The lattice adjoins an ad­
sorbing surface and is divided into M layers of sites parallel 
to the surface, numbered i = 1, 2, ..., M. Each layer 
contains L lattice sites. Therefore 
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n° + rn = ML (1) 

The volume fractions of solvent in layer i are indicated by 
<£i° and 0;, respectively, and are given by 

$? = n<>/L fr = nJL (2) 

where rt;° and n, are the numbers of solvent molecules and 
polymer segments in layer i. Far from the surface these 
volume fractions approach the equilibrium bulk volume 

Figure 1. Some examples of different arrangements for a chain of 
10 segments (r = 10). All the indicated arrangements belong to the 
conformation (1,1 )(2,2X3,2)(4,3)(5,3)(6,4)(7,4)(8,5X9,6X 10,6). This 
example applies to a simple square two-dimensional lattice (z = 4, X, 
= 1/4, X0 = 1/2). The number of different arrangements in the given 
conformation is z9X,5X0

4 = 16. Only four of them are indicated. 

fractions 0.° and 0., respectively. 
If z is the coordination number of the lattice, a lattice 

site in layer i has z nearest neighbors, of which a fraction 
Xj_, is in layer ;'. Thus, X;_, = X0 if y = i and A,_< = Xj = X_! 
if j = I ± 1. As there are no nearest neighbors in non-
adjacent layers, Xj,, = 0 if \j - i\ > 2, and we may write 

E v, = l 1 < i <M (3) 

For the two boundary layers (i = 1 and i = M), a correction j 
has to be applied since there is only one adjacent layer, 
and a segment has only z(X0 + XT) = 2(1 - X:) nearest 
neighbors. Thus 

E V i = 1 - X, 1, M (4) 

The segments of a polymer chain are labeled s = 1, 2, 
..., r. Each chain can assume a large number of possible 
conformations in the lattice. We characterize a confor­
mation by defining the layer numbers in which each of the 
successive chain segments find themselves. We denote 
such a conformation by 

(l,0(2j)(3,fc)...(r - l,i)(r,m) 

indicating that the first segment is in i, the second in j , 
the third in k, etc. 

We have to realize that a conformation defined in this 
way is actually a set of many different arrangements. If 
segment s is placed in i and segment s + 1 in j , the number 
of different positions of segment s + 1 with respect to 
segment s is zX0 if j = i and zX, iij = i±l. A dimer with 
conformation (l,i)(2J) can assume LzX;_, different posi­
tions; a trimer with conformation (l,i')(2j')(3,fe) can be 
arranged in Lz2\j^Xb_j different ways, at least if backfolding 
of the chain is allowed. For example, in a simple cubic 
lattice (zXt = 1) backfolding occurs in the conformation 
(1,2)(2,3)(3,2). In section II.D, we shall correct partly for 
this backfolding effect. Figure 1 illustrates for a simple 
case some different arrangements in a conformation. 

We label the different conformations by c, d, .... If 
conformation c for an r-mer is characterized by the se­
quence given above, the number of different arrangements 
in this conformation is given by LzrlA;_;Xt_y...Xm-|. More 
generally, we can write for the number of arrangements 
LÜJCZ1"1 where aic is given by 

aic = I l (Xw+1)c (5) 

Here (Xw+1)c = XQ if, in conformation c, segments s and s 
+ 1 are in the same layer, and (As^+1)c = X: if these two 
segments are in neighboring layers. Since zr_1 is the 
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number of arrangements for a chain in bulk polymer, of 
which one of the segments is fixed, wc may be considered 
as the ratio between the number of arrangements of 
conformation c and that in bulk polymer. 

If the number of polymer molecules in conformation c 
is nc, we have 

n = Y, nc (6) 
c 

where the summation extends over all possible confor­
mations c. Obviously, the number of terms in the sum­
mation of eq 6 increases sharply with r. In a few cases we 
will consider all the possible arrangements of only a part 
of the chain. Then, we will use the symbol u>c(s,t) to in­
dicate the relative number of arrangements of the chain 
part from segment s up to and including segment t. 
Similarly, a summation Hew) specifies that all the possible 
conformations of that part of the chain have to be taken 
into account. In this terminology, a>c in (5) could be written 
as o)c(l,r) and Y.c in (6) as T.c(i,r)-

For the further elaboration it is expedient to introduce 
the symbol ric for the number of segments that confor­
mation c has in layer i. Then the number of segments in 
layer / is given by 

nt = E rliCnc (7) 
c 

In the following sections we need a symbol to indicate 
the layer number in which segment s of conformation c 
finds itself. For this we use k(s,c). Here, k is one of the 
layer numbers 1, 2 M and is completely determined if 
conformation c is specified. 

One remark on the use of conformations as defined 
above is in order. This definition corresponds to one 
particular way of grouping the possible arrangements of 
individual chains in a set. Other ways of grouping are, in 
principle, possible. Also, a procedure could be used in 
which the individual chain arrangements are not combined 
in sets but are all treated separately. It is easily proven 
that, although the partition function to be derived below 
is slightly changed, the equations obtained after max­
imization of the partition function are identical. Therefore, 
the grouping of chain arrangements in conformations as 
defined above is only a matter of convenience. 

B. Partition Function. Roe10 gives an approximate 
expression for the canonical partition function Q(M,L,-
T,|rt;°|) for a given concentration profile |n;°| of solvent 
molecules in a lattice of M layers with L lattice sites each. 
From this partition function, the equilibrium distribution 
of solvent molecules and thus also the overall distribution 
of polymer segments can be derived. Roe made no attempt 
to calculate the distribution of trains, loops, and tails. 

Roe's approach involves the assumption that the dis­
tribution of a polymer segment does not depend on its 
ranking number s. The contribution of each of the r chain 
segments to the segment concentration 0, in each layer is 
considered to be equal to 4>i/r. This is correct in bulk but 
not near an interface, because the interface imposes re­
strictions which are not necessarily the same for end and 
inner segments. As Helfand11 has shown, Roe's derivation 
contains another error because the inversion symmetry is 
not obeyed. This is the requirement that conformation 
c, defined as (l,i){2J)...(s,k)...(r,l), should have the same 
probability as the inverted conformation c', characterized 
by the sequence (1,1)...(r - s + l,k)...(r - 1 J)(r,i). Helfand 
maintains this symmetry by introducing an extra con­
straint, the flux constraint. His results apply only to 
infinitely high chain lengths. The flux constraint is only 
necessary if the partition function is written in terms of, 
and maximized with respect to, the concentrations of 
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indiuidual segments in each layer. It may be considered 
as a correction which is necessary to account fully for the 
connected nature of the segments in a chain. 

An alternative derivation is possible if the partition 
function is maximized with respect to the numbers of 
polymer chains in each conformation, i.e., with respect to 
concentrations of chains in each conformation. This has 
the additional advantage of giving immediately the 
probability of every chain conformation in the equilibrium 
situation, so that the train, loop, and tail size distribution 
can be easily evaluated. Moreover, as will be shown below, 
the inversion symmetry is an automatic result of this 
approach. Thus, we want the canonical partition function 
Q(M,L,T,|nc|) for an arbitrary but specified set of con­
formations |nc). We have to realize that a given overall 
segment distribution can be the result of a great number 
of different combinations of trains, loops, and tails. 

We now give a derivation of QCM,X.,T,|nc|). Since the 
numbers of chains in each conformation and thus the 
numbers of solvent molecules in each layer are specified, 
the energy U of the system for each of the possible ways 
of arrangement is the same, at least if we adopt the 
Bragg-Williams approximation. Therefore, the partition 
function can be written as the product of a combinatory 
factor (representing the configurational entropy) and 
exp(-U/kT). In accordance with Flory16 and Roe10 we take 
as the reference state disoriented bulk polymer and pure 
solvent. Then 

Q(M,L,7\K|) = ^e-uiOT (8) 

Here Q is the number of ways of arranging nc, nd, nt, ... 
polymer molecules in specified conformations, and nf, 
...nf, —nu° solvent molecules over M distinguishable layers 
of L lattice sites each. S2+ is the number of ways of ar­
ranging n polymer chains over nr lattice sites in amorphous 
bulk polymer. 

The combinatory factor f! has to be evaluated according 
to the assigned distribution of conformations \nc\. Nat­
urally, if this set of conformations \nc] is specified, the 
concentration profile |nj is completely determined. 

We use the Bragg-Williams approximation of random 
mixing within each layer. This implies that the polymer 
segments in each layer are considered to be randomly 
distributed over the L lattice sites. The number of ways 
of placing a chain in conformation c in the empty lattice 
is Lw^'1 (see eq 5). If part of the lattice sites is already 
occupied, a chain can only be placed if all the appropriate 
sites are vacant. Then we have to apply r correction 
factors, one for each of the chain segments. The correction 
factor for each segment is the vacancy probability of the 
site to be occupied. According to the Bragg-Williams 
approximation, we assume that all sites in layer i have the 
same vacancy probability, equal to 1 - v,/L, where v, is the 
number of previously occupied lattice sites in layer i. 
Obviously, ^ = 0 for an empty layer. The number of 
possibilities of placing one chain in conformation c can now 
be written as La^1U..,l

r(l - nkMID = wc(z / LTlY[„{(L 
- yfe(SiC)), where vk^c), is the number of previously occupied 
sites in the layer where segment s of conformation c is 
placed. For example, if conformation c of a hexamer is 
given by (l,j')(2>/)(3,t)(4j)(5,/e)(6J), OJC = A,6 and the number 
of possibilities of placing this conformation in a lattice 
where a^ a,, and ak lattice sites in the layers i', ), and k are 
already occupied is (Aiz/L)5(I/ - a,)(L - aj)(L - a, - 1)(L 
- a, - 1)(L - ak)(L - a, - 2). Generally, since rif segments 
are placed in layer i, this layer contributes r i c factors, 
namely, (L - a^L - a— 1)(L - ai - 2)...(L -at- rix + 1), 
to the multiple product W,^{(L - Kk(s c)). The product over 
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the segment numbers can thus be replaced by a product 
over the layer numbers. The number of arrangements u 
of placing the first chain (in conformation c) in the empty 
lattice (a, = 0 for all i) becomes 

»J,z/LT 
M I , . - ' 

1 n n (L ",-> (9) 

where layers in which conformation c has no segments 
(thus for which ric = 0) do not contribute to cu. 

Placing all the nc chains of conformation c gives a factor 
Ü>C"'(ZILY'~l)n' in (9) while the multiplication extends up 
to Vi = ncric - 1. Similarly, the number of arrangements 
for n = £crcc chains is 

w(n) = (Z/LY'-»« n << n n (L - ^ (10) 

because rc, = £„/•; crcc segments are placed in each layer. 
Next, solvent molecules have to be arranged over the L -
Ri remaining lattice sites, giving for each layer n„,=„/' HL 
- vi) possibilities. Thus, we find for SÎ the simple expression 

a = (V.)u(z/L)*-' • n ^ f t 1 
(11) 

since II„iML! = (L\)M. The factorials nc\ and n,-°! in (11) 
correct for the indistinguishability of the nc chains in each 
conformation c and of solvent molecules within each layer. 

It may be noted that the order of placing chains and 
solvent molecules is irrelevant for the final result. Sim­
ilarly, it does not matter which of the r chain segments of 
a chain is placed first. 

The combinatory factor Q+ has been derived by Flory16 

and can be written as 

a* 
(rn)\ 

-(z/rnY' (12) 

This combinatory factor can also be found by a procedure 
similar to the derivation of our eq 11. In the bulk all the 
layers i are identical, so that the distinction in lattice layers 
is irrelevant. Since rn is the total number of (equivalent) 
lattice sites in bulk polymer, the factor (L!)M in (11) has 
to be replaced by (rn)! and the factor Llr~1,n by (rn)<rl )". 
Moreover, all possible conformations are equally probable, 
and we can group them together in only one conformation. 
Substitution of nc = n, uc = 1, and n? = 0 in (11) gives the 
Flory expression (eq 12), demonstrating that our eq 11 is 
in complete agreement with earlier theories. 

Combination of (11) and (12) gives for the entropy part 
of In Q: 

In H/ST = ML In L - L nc In njwc - T. n,-° In n/> -

n\nr- ( r - l)n In L (13) 

if Stirling's approximation for the factorials is applied. 
The energy of the system contains a contribution due 

to the adsorption energy and a mixing term originating 
from the polymer-solvent interaction. We assume that in 
both cases only nearest-neighbor interactions are involved. 
The mixing term depends on the number of contacts 
between segments and solvent molecules. Each solvent 
molecule in layer i has zX;_, contacts in layer j , a fraction 
tt>j of which are with polymer segments, according to the 
Bragg-Williams approximation. Since a site in i has 
neighbors in the layers j - i - 1, j , i + 1 the number of 
unlike contacts per solvent molecule in i is zL ;.i

MX ;_;0,. 
The total number of contacts is found by multiplying with 
ni" and summing over all layers i. Thus, the total number 
of contacts of solvent molecules with segments is 
z£;=iWrijO(0j) and the (equal) number of segment-solvent 
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molecule contacts is z22,=i
Mn,<0iO>, where the site volume 

fractions (4>,) for segments and (0,°> for solvent molecules 
are defined as 

<«,-> = T. Xj. <0,°> 
M 

(14) 

In the bulk solution (0.) = 4>. and (0.°) = 0.°. For 1 < 
i < M, (<t>,) + (0,°> = 1; for i = 1 and i = M, <<A,> + (0,°) 
= 1 - X] (compare eq 4). 

Using the familiar Flory-Huggins polymer solvent in­
teraction parameter,16 we can write for the energy part of 
InQ: 

M 

U = rc,us + f ^ V + kTx T. n,°<0,> (15) 
i=i 

In this equation, us and us° are the adsorption energies of 
a segment and a solvent molecule, respectively. They 
represent the energy change corresponding to the transfer 
of a segment (or solvent molecule) from bulk polymer (or 
solvent) to the surface. Equation 15 has also been given 
by Roe.10 

It may be noted here that the energy terms in eq 15 also 
contain the thermal entropy, i.e., the additive part of the 
entropy proportional to the number of segments or solvent 
molecules. This thermal entropy includes vibrational and 
rotational contributions; the adsorption energy us may 
contain entropy terms due to orientation of solvent 
molecules near the surface (hydrophobic bonding). In this 
sense, the energy terms us, us°, and kTx may be considered 
as free energies. Obviously, the configurational part of the 
entropy is accounted for in In i i/ii+ . 

C. Conformation Probability. Equations 13 and 15 give 
the logarithm of the partition function at a given distri­
bution of conformations {ncj, which in general does not 
correspond to the equilibrium distribution. In order to find 
this equilibrium distribution, i.e., the number of chains nd 

in a particular conformation d in the equilibrium situation, 
we have to find the derivative of In Q with respect to nA. 
The free energy of mixing is given by F/kT = -In Q. At 
constant temperature and volume the variation in F is 
given by dF = Y.cl'c dnc + )ü.i*Vi0 dre/l In equilibrium 
the chemical potentials ßc = ßä = ... Mchain of a chain with 
respect to that in bulk polymer, and n;° = (*ƒ / o f a 
solvent molecule with respect to that in pure solvent are 
constant throughout the system. Adding one chain in 
conformation d (and removing r solvent molecules to 
maintain constant volume) changes F by an amount 
(aF/änd)MiiT„^„„, so that 

~hT 
I a In Q \ 

V m* )M 
= Mchain + 

M / a n A 
"° E 1 ^T ) = "•*•» - r"° (16) 

Roe10 derived an analogous expression using the grand 
canonical partition function. In eq 16 Mchain ~ rM° is a 
constant at given temperature and overall composition. 
The derivative dn®/dnd in (16) is obtained by realizing that 
the differentiation has to be performed at constant volume. 
This implies that on addition of one chain in conformation 
d, r solvent molecules are removed from the system, of 
which the spatial distribution is given by 

ri,A ' -(snP/and)M:LX„^ni (17) 

because in each layer r, d solvent molecules are displaced 
by the r,d segments that conformation d has in layer i. 
Obviously 
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(18) 

The logarithm of the partition function is given by eq 
13 and 15. The derivative of eq 13 is easily found with the 
help of (17), (18), and sn/dnd = d(Y.sJ/^ni - 1- The result 
is 

a In (ÎÎ/Q+) rcd 

= - In — + In uid - In r + r - 1 + 
dnd L 

M 
Y. r , d l n0 , ° (19) 
i=i 

For the differentiation of (15) we use also relation 17. 
We obtain 

s(-U/kT) M 
= £ rjxfiu + X«0,> - <0,°»l (20) 

and i-i 

Here x« is the adsorption energy parameter, defined as 

Xs = -(u, - ufl/kT (21) 
X, corresponds to the difference between the free energy 
of the transfer of a segment from bulk polymer to the 
surface and that of the transition of a solvent molecule 
from pure solvent to the surface. xs is positive if a segment 
is adsorbed preferentially to a solvent molecule. It is 
identical with the x» parameter used by Silberberg7 and 
Roe.10 

Combining eq 16, 19, and 20, we obtain 
M 

In nJL = In C + In ojd + £r,-d In P, (22) 

njh = Ca)dn P{" (23) 
i=i 

where the constant C is given by C = (1/r) exp(Mchair.
 -

rit°)/kT and the quantity P; is defined as 

In P, = xAi + X«0,> - <0,°>> + In 0,° (24) 

P, is a very important parameter determining the prob­
ability of finding a free segment (monomer) in layer i. This 
can be concluded from (23). For r = 1, this equation reads 
(t>i = nJL = P, exp(ji - ß")/kT. As for monomers P, is 
proportional to 0;, we may call P, the free segment 
probability. According to eq 24, P, may be written as 
^,.oe-Vi/dr w n e r e \f/ [s the difference in free energy 
(excluding the configurational entropy) between a free 
segment and a solvent molecule in layer i. A/,' contains 
an adsorption energy contribution -kTx* for the first layer 
and a mixing term &Tx(<0,°) - (0,)) arising from the 
segment-solvent interaction. The Boltzmann factor 
exp(-A///&T) has to be corrected by a factor 0,°, the 
fraction of the volume in layer i not occupied by segments. 
This factor 0,° = 1 - 0 , originates from the configurational 
entropy term of In Q; 0, represents the volume fraction 
which is excluded due to the presence of other segments. 
This effect is partly analogous to the well-known excluded 
volume effect for polymer chains in solution. If 0,° ~ 1, 
this "exclusion factor" is not important. That 0,° is an 
entropy contribution may also be seen by writing P, as 
exp(-A/,/feT) where A/, = A/;' - kT In 0,° now also includes 
the configurational entropy term k In 0,°. 

The starting point for further analysis is eq 23. It gives 
the relation between the number of chains in each con­
formation (of which the number of segments in each layer 
r ld is known) and the free segment probability P, in each 
of the layers. Equation 23 tells us that the probability of 
a conformation d is proportional to the quantity 
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ü!dn,.iMP, , ;d, which we will call the conformation prob­
ability. From this probability, all information on the 
segment density distribution and other equilibrium 
properties (such as the train, loop, and tail size distri­
bution) may be obtained. 

Equation 23 leads immediately to the conclusion that 
any conformation has the same probability as its inverted 
conformation (in which the segments are placed in reverse 
order), since all r,d values are the same for both confor­
mations. Thus the inversion symmetry discussed in section 
II.B is an automatic result of our derivation and need not 
be introduced as an extra constraint, as was done by 
Helfand." As discussed before, this is due to the fact that 
the partition function is maximized with respect to the 
number of chains in every conformation, which accounts 
completely for the connected nature of the chain segments. 

D. Segment Density Distribution. In this section we 
calculate the equilibrium segment density distribution 
from the conformation probability P(r)„ which according 
the the previous section can be defined as 

P(r\ : /y- = uc n Pu (25) 

Here we have used the fact that a product of P, over the 
consecutive layer numbers i may be replaced by a product 
over the consecutive segment ranking numbers s. In both 
products the free segment probabilities corresponding to 
each chain segment are taken once, and only the order in 
which the P '̂s occur is different. Pk{s,c) is the free segment 
probability for a segment in the layer where segment s of 
a chain in conformation c finds itself. This layer number 
is completely specified if c is given. 

We define the chain probability as the summation of 
P(r)c over all possible conformations: 

P(r) = T. P(r)c (26) 

P(r) will be needed as a normalization factor. 
It is useful to consider the probability P(s,i',r) that the 

sth segment of any chain of r segments finds itself in i. 
The probability P(s,i;r)c of a conformation c of which the 
sth segment is in i is equal to P(r)c with the additional 
condition that Pj,(„) = P;: 

P(s,i;r)c = u>c i t P»„,dP, n Pw,,c) = 
(=1 (=s+l 

£ n pku,ct n pt(,„ (27) 
ri (=i (=s 

The last part of eq 27 is obtained by including Pk(s,c)
 = Pi 

in both multiple products and is written in this way for 
later convenience. Note that P(s,i;r)c equals P(r)c if 
segment s in conformation c is in layer i, and zero if s is 
not in i. Obviously, the probability of finding the sth 
segment of any chain in layer i, P(s,i;r), is obtained by 
summing over all possible conformations: 

P(s,i;r) = E P(s,i;r)c (28) 
c 

Summation of P(s,i;r) over all layers gives just the chain 
probability P(r): 

M M 
L P(s,i\r) = E E P ( w ) c = E P(r)c = P(r) (29) 
i = l c i '=l c 

As mentioned above, the summation of P(s,i;r)c over all 
layers gives only one nonzero term P(r)c. 

A special case of P(s,i;r) is the probability P(r,i;r) that 
the end segment of any chain of r segments is in layer i. 
We use an abbreviated notation for this quantity: P(i,r) 
= P(r,i;r). We can write P(i,r) as E</V)c w i t n the addi-
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tional condition that P*(riC) = P;. According to (25): 

P(i,r) = P, E wc A PkM (30) 

From (29) it follows: 

J. M. H. M. Scheutjens and G. J. Fleer 

E P(i,r) = P(r) (31) 

We designate P(i,r) as the end segment probability. 
The segment density in layer i is proportional to the 

summation of P(s,i;r) over all the r chain segments: 

E P(s,i;r) 

E E P(s,<» 
1-1 s - l 

-H7T E P(s,i;r) (32) 
rP(r) ,.i 

Thus, if we are able to evaluate the probabilities P(s,i;r) 
we can calculate the segment volume fraction $, in each 
layer. This we accomplish in two steps. First we show that 
P(s,i;r) for any s can be expressed in the end segment 
probabilities P(i,s) and P(i,r-s+l), and next we use a 
well-known matrix procedure12 to obtain the end segment 
probabilities P{i,s). 

The first step starts from eq 28 in which the summation 
over all the possible conformations of the entire chain, 
Ec(i,r). 'S replaced by a summation over all the possible 
conformations of the first part of the chain, Ec<u)> and o n e 

for the second part, Ec(»,r)- If segment s is in layer i, the 
possible conformations c(l,s) are independent of the 
conformations c(s,r) because for any conformation of the 
first s segments all conformations for the last r - s + 1 
segments are possible. Thus, we may use the relation 
E.E,«,*, = ( E A M E A ) - Substituting (27) for P(s,j;r)c and 
splitting the multiple product wc = oic(l,r) = 11,.f "'(X, ,+1)c 

in the factors o!c(l,s) and ojc(s,r) (compare eq 5), we may 
write: 

P(s,i;r) = E E P ( s , i» c = 
c(l,s) c(s,r) 

U E aai,«) n pkUc)H E o>c(S,r) n p k U j 
" i c(l,s> t= l c(s,r) t=s 

Since Pfe(SlC)
 = Pi, the first factor between brackets equals 

P(i,s), according to (30); the second factor is equal to 
P(j>-s+l) because the number of conformations of the last 
r - s + 1 segments should be equal to that of the first r 
- s + 1 segments. Therefore we have 

P(s,i;r) = PU',s)P(i',r-s-rl)/P; (33) 

Thus, through eq 32 and 33 $, for r-mers can be expressed 
as a function of end segment probabilities of shorter chains. 

The second step for the calculation of 0; is to find a 
procedure to evaluate P(i,s). If the end segment of an 
r-mer is in layer i, the ( r- l) th segment can be in layer j 
(1 < j < M), with a nonzero probability only if ; = i - 1, 
i, i + 1. The probability P ( i » that the end segment of an 
r-mer is in i can then be expressed in the probabilities 
P(j,r-1) that the end segment of an (r-l)-mer is in layer 
j . Using eq 30, we can again split the summation in two 
parts: Eed/) = Ec(i^-i)EC(r-u(- As the rth segment is fixed 
in layer i, the summation E<*-i/-i includes only the possible 
positions of the ( r- l) th segment and may be replaced by 
a summation over ; if oic(r-l,r) is replaced by X;, and 

, by Pj. Thus 

P(i,r) = EV.-P.P ; E 
(l.r-D 

*>c(l,r-l) n PH,.C) 

In this expression we recognize P(j,r-1), so that we can 
write 

P ( i » = E X,-,P;P0>-1) (34) 

It may be noted here that in this derivation it was 
assumed that the free segment probabilities Pj for the last 
segment, Pj (j = i, i ± 1) for the penultimate ((r-l)th) 
segment and Pk (k = j , j ± 1) for the antepenultimate 
segment are independent of each other. P„ Pp and Pft 

include a factor for the average solvent volume fractions 
in the layers ;', j , and k. This assumption implies that 
backfolding of the chain (i.e., k = i in the example given) 
is allowed under the constraint of the average excluded 
volume in each layer. In other words, if segment r - 2 is 
placed in i and segment r - 1 in i + 1, segment r may fold 
back to i with a probability P; in which the presence of the 
(r-2)th segment is accounted for in the same way as the 
presence of all other segments in i. Segment r - 2 is, like 
all the previously placed segments, considered to be 
"smeared out" over all the lattice sites L in i. A similar 
approximation is made in the familiar Flory-Huggins 
lattice theory.16 

Equation 34 can be expressed as a matrix multiplication 
by defining a vector P(r) with M components P(j',r), whose 
sum according to (31) equals P(r), and a matrix W of which 
the elements Wy are equal to X;-;P,. Therefore 

P(r) = WP(r-l) = WrlP(l) (35) 

where the components of the vector P ( l ) are the "end" 
segment probabilities of a monomer and are thus simply 
equal to P, as defined by (24). The matrix Wis, apart from 
a different interpretation of P, (in which the polymer-
solvent interactions are included), identical with that used 
by DiMarzio and Rubin.12 ' 

Thus we can calculate all the end segment probabilities 
P(i',s) for s = 1, 2 r. Substituting (33) into (32) and 
realizing that Ei=i*V; = nr/L, we obtain 

n J_ 
LP(r) P, 

E P(i',s)P(;,r-s-rl) (36) 

From these M implicit equations the M 0 ; 's and the 
equilibrium values for P, can be solved by an iteration 
procedure (see section III). We can arrange all the nec­
essary information in the array shown in eq 37, where the 

P(l , l) . . . P(l,s) . . . P(l,r) 

/>0,1) ...P(i,s) . P(i,r) (37) 

P{M,l) . . . P{M,s) . . . P(M,r) 

components of the first column are equal to PP-.PJ.-.PJM and 
the components of the sth column P(t,s) are found from 
the first after s - 1 matrix multiplications. The sum of the 
components of the last column is equal to P{r) according 
to (31). For the calculation of 0, we need the ith row of 
array P , and we have to add the r products of the first and 
the last, the second and the penultimate, the third and the 
antepenultimate element, etc. 

All the probabilities P(i>;r), P(i',r), and P(r) used in this 
section depend on the lattice size M and on the average 
segment concentration rn/ML. We shall need these 
quantities in a following paper where we shall discuss the 
case of a polymer between two plates at relatively short 
separation and a constant amount of polymer. For the 
adsorption on a single plate we relate the concentration 
of polymer to the bulk volume fraction <t>.. It appears 
advantageous in this case to use probabilities related to 
those in the bulk solution. 
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E. Adsorption Isotherms. In calculating adsorption 
isotherms and related properties, the state of a chain or 
a segment near the interface has to be compared to that 
in the bulk of the solution. Consequently, it is useful to 
define the probabilities of any configuration near the 
interface with respect to those in bulk. We shall denote 
bulk properties by an asterisk. 

The free segment probability P . for a segment in the 
bulk solution is analogously to eq 24 given by 

In P. = x ( 0 . - <t>.°) + In fa (38) 

We now define the free segment probability p, with respect 
to the bulk solution as 
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• PJP. (39) 

It is easily verified that p, can be written as (0,°/0.0)-
exp(-A/;*/fcT), where Af* is the free energy difference 
(excluding the configurational entropy) for the exchange 
of a solvent molecule in layer i and a free segment in the 
bulk. The entropy factor fa°lfa" accounts for the dif­
ference in the "volume exclusion1' effect for a segment in 
layer i and a segment in bulk. It is obvious that p . equals 
unity. 

With eq 39 we define the vectors p(r) and the matrix 

p(r) = P ( r ) / P / 

w = W/P, 

p(i,l) = Pi 

'u = h-iPi 

(40) 

(41) 

It may be noted here that the error introduced by allowing 
backfolding (accounting for the average volume fraction) 
is eliminated here to a large extent if this effect is equally 
important in the bulk and in layer i, because probabilities 
in layer i are now compared with those in bulk. Now eq 
35 becomes 

p(r) = wp(r-l) = w' 'p(l) (42) 

In a more explicit form, (42) can be given as shown in eq 
43. Equation 36 can be written in a simpler way by re-

*>(!.'•) 

pd.r) 

piM.r) 

X0<>| *i/>l ° : 
X,p2 ' • • / ' • 
0 . 

"(43) 

alizing that from (34), which remains valid if P, and P(i,r) 
are replaced by p ; and p(i,r), follows that p (V) = p(*,r-l) 
= p(*,l) = p . = 1. Equation 36 applied for bulk solution 
gives 

*. = nr/Lp(r) (44) 

This can be substituted in (36), giving the result 

<t>. i ' 
i = — — L p(i',s)p(i,r-s+l) 

r Pi j »! 
(45) 

Also the components p(i,s) can be arranged in an array p 
(eq 46). The sum of the components of the last vector 

p ( l , l ) . . . p ( l , s ) . . . p ( l , r ) 

P ( i , l ) • • P(i,s) • P(',r) (46) 

p(M,l ) . . .p(M,s). . .p(M,r) 

of p is indicated by p(r), analogously to eq 31. 

Figure 2. Illustration of the definition of the excess adsorbed amount 
rwc and the adsorbed amount T. rwc is equal to area A, while T 
equals the sum of A and B. In order to show the difference between 
T and rexc more clearly, a rather high bulk volume fraction {tj>. =0.1) 
was chosen in this example. The concentration profiles have been 
calculated for r = 1000, x5 = 1. X - 0.5, and \ 0 = 0.5 (hexagonal 
lattice). 

The simplest way of defining the adsorbed amount is 
to consider only the excess concentration of segments in 
each layer with respect to the bulk concentration. Then 
the excess adsorbed amount per surface site is 

M 
••) (47) 

This definition was used by Roe. However, another 
definition is sometimes useful. If we want to know the 
number of chain segments belonging to adsorbed chains, 
subtracting 0. from <̂  for all layers is not the correct 
procedure, since the volume fraction fa in the layers close 
to the surface is predominantly (or completely, for i = 1) 
due to adsorbed chains. In order to find the number of 
adsorbed molecules, we have to correct only for the volume 
fraction 0 / of free (i.e., nonadsorbed) chains that have not 
a single segment in the first layer (see Figure 2). In the 
surface layer ((' = 1), <p' = 0 / = 0, for the other layers 0,f 

< 0., so that eq 47 gives an underestimation of the ad­
sorbed amount. Therefore we define the adsorbed amount 
T as 

r = £ to - .*/) (48) 

r thus gives the number of segments of adsorbed chains 
per surface site; if r = 1, one equivalent monolayer is 
adsorbed. This definition of T was also used by Silber­
berg.7 Note that the summation of (48) contains only 
nonzero terms for i < r. 

The problem now is to find <t>'. A free chain has only 
one extra restriction: no segment of the chain may be in 
the first layer. This is equivalent to the statement that 
for the segments of free polymer molecules the free seg­
ment probability p t in the first layer equals zero 
(equivalent to xs

 = -co)> while in the other layers the free 
segment probability pj is the same for segments of ad­
sorbed and nonadsorbed chains. Naturally, the value of 
Pi for i > 1 is based on the total segment density fa. We 
may therefore define a vector P((l) with components Pfd',1) 
= (1 - rjyJpO'.l) and a matrix w, with elements wtij — (1 
- &ij)\j-jPi. The end segment probability vector for free 
chains is then given by 

Pr(r) = WfP,(r-l) = w r ' P r d ) (49) 
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As before, we can write these vectors pf(r) in an array 
where the sum of the components of the last vector is 
denoted as pt(r) (eq 50). 

0 0 0 0 
P, Pf(2,2) Pf(2,s) Pf(2,r) 

J. M. H. M. Scheutjens and G. J. Fleer 

(50) 
PfO',2) />(('>) Pt(i.r) 

PM P(M,2) Pf(M,s) P,(M,r) 

Comparing (50) with (46), we note that Pf(i,s) = p(i,s) 
for i > s, P((i,s) < p(i,s) for 2 < i < s, while Pf{l,s) = 0. For 
each i, the value of 0,f can now be found from (45), sub­
stituting pr\i,s) for p(i,s). For the calculation of T we need 
E.-iM0i' which can be derived directly from Pf(r). To that 
end, we realize that according to (44) nr/L = £,-=i*'0; = 
p(r)4>,. Analogously, Li-iM0; f = PfM0., so that (48) may 
be written as 

T = |p(r) - p f(r)|0. = pa(r)0. (51) 

where pa(r) = p(r) - Pf(r) is the adsorbed chain probability 
which we shall need as a normalization constant for the 
adsorbed chains. It may be noted that, unlike P(r) as used 
in the previous section, the adsorbed chain probability pa(r) 
= r/<t>, is independent of M, at least for large M. 

Thus, for the calculation of F at given 0. we need the 
normalization constant p(r), which is found by the iteration 
procedure to be described in section III, and Pf(r). Once 
the iteration process has given the free segment proba­
bilities Pi = p(i,l), Pi<r) and thus pt(r) are simply the result 
of r - 1 matrix multiplications according to (49). 

F. Interfacial Free Energy. Using the Gibbs convention 
(see, e.g., ref 17), we assign to the Gibbs dividing plane a 
surface excess free energy F", a surface excess n' of polymer 
molecules, and a surface excess n°" of solvent molecules. 
The relation between these surface excesses is given by17 

F- = yA + r » c h a i n + n V (52) 

where Mchain and ju° are the chemical potentials of a polymer 
molecule and a solvent molecule with respect to the ref­
erence state, 7 is the interfacial free energy, and A is the 
interfacial area. The free energy F - F" of the bulk phase 
is then 

(53) F - F" = (n - n")Mch„i„ + ("° - " " "V 

Combining (52) and (53), and introducing a = AjL as the 
area per surface site, we find 

TO 

kT ' 
InQ 

ft Mchain 

L ~kf L kT 
(54) 

The term In Q is given by eq 13 and 15. Expressions for 
feh«in and *<0 have been derived by Flory:16 

r0.° + In 0. + rx0.°(l - 0.) (55) 

,./r + In 0.° + X0.(1 - 0.°) (56) 

Vchtin/kT = 1 

n°/kT = 1 - 0 

Equation 55 can also be derived by differentiating In Q 
with respect to rcc at constant T, n,°, and nd (d ^ c); 
similarly, eq 56 follows from the derivative of In Q with 
respect to n® at constant T, nc, and n;° (j ^ i). 

Before substituting (55) and (56) into (54), we rewrite 
nc in eq 13. With the equilibrium condition (25) and the 
normalization condition (26), we obtain njn = 
UcOli-fPM/Plr). Using P(r) = P.rp(r) (eq 40) and eq 
44, we find 

L 
n p/- (57) 

which can be substituted into (13), giving after some re­
arrangement 

-In Q = n In 4,. + E re,0 In •p," + Y. n, In p, + U/kT 

(58) 

Thus the nc In nc term in In Q is replaced by a term 
containing the free segment probability pr The energy 
term of (58) is given by (15). Combining eq 54, 55, 56, and 
58, we derive the following expression for 7: 

7a 

kT 

4>iUs + 4>i uv 

kf 
M 

0,° In —- + 0, In Pi - (0,° -

0.°) - (0; - i,.)/r\ + x L |0,°(<*,> - 4") - -A-V, - <MI 

(59) 

This equation can easily be extended for systems with 
more than two components. For a binary system (0, + 0j° 
= 1) the term - £ , - iM |(0,° - 0.°) + (0, - 0.)/r| reduces to 
[1 - (l/r)]rc>c. Apart from the 0, In p, term, all the terms 
of eq 59 also appear in Roe's equation (eq 36 of ref 10). 
In section V we give a more detailed comparison between 
Roe's and our theories. 

I I I . Method of Computation 
Equation 45 comprises M implicit simultaneous 

equations from which the M unknown 0 b 02, ..., 0M can 
be solved by an iterative procedure. If for a given 0. an 
initial estimate for the concentration profile {0j is used, 
the vector p(l) follows from (40) in combination with (38) 
and (24) and the matrix wfrom (41). In principle, a new 
value for \4>,\ could then be calculated using (45), and the 
procedure could be repeated by finding new values for the 
components p(i,l), for wand again |0j|. It turned out, 
however, that in this way the iteration usually does not 
converge. Therefore, a slightly more complicated method 
was applied, in which Xi = In 10,/U - 0,)} instead of 0; was 
chosen as the iteration variable and Newton's method (see, 
e.g., ref 18) was used to improve the convergence of the 
iteration. This method is easier to apply if the variables 
are unconstrained, and therefore the variable X; was 
preferred to the variable 0(, which is constrained within 
0 and 1. 

The procedure was as follows. We indicate the initial 
estimate by |0J(" and the /ith solution by \<f>i\

m. From | 0 j w 

the vector p(l)fÄ) and the matrix wfk) were calculated using 
(41). Then a new set I0;)1" was found from (45). The (k 
+ l )th solution follows from 

X«<+i> = x ' " - [Gl*'r'g,*> 

where X w is a vector whose ith component X/*' = In 
|0i(*'/(l - 011")), g*" is a vector with components g,'*1 = In 
(0i(*')/0,-(*)), and the matrix Gm is the Hessian,18 with 
elements G;/*' = dg^/dXj. In order to avoid the complex 
differentiation which is necessary to find G;/*1 differences 
where used for the derivatives: G,/*' =; Ag^/AXj. The 
initial estimate | 0 j a ) was found from Roe's approximate 
expression10 and is itself the result of a short iteration. 

If we want to calculate the segment density distribution 
and the adsorbed amount for an r-mer, it is in principle 
necessary to use a lattice with more than r layers, i.e., M 
> r, since then all the possible conformations, including 
the completely perpendicular ones, can be taken into 
account. This would require a large amount of computing 
time and an enormous storage capacity in the computer. 


