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1. Ook landrassen zijn niet in staat hoge opbrengstniveau's onder 
ongunstige groeiomstandigheden te handhaven. 

dit proefschrift 

2. Een biotechniek die tot doel heeft de genetische variatie te vergro­
ten, heeft alleen toekomst als deze doelgericht kan worden toegepast. 

3. Het gebruik van gewasgroeisimulatie bij het beheer van een genenbank-
collectie maakt het aanleggen van een 'core' collectie overbodig. 

4. Toepassing van gewasgroeisimulatie verbetert de capaciteit en kwali­
teit van evaluatieprogramma's voor genenbankcollecties. 

dit proefschrift 

5. Tenminste een deel van een genenbankcollectie moet onder verschillende 
groeiomstandigheden geëvalueerd worden. 

dit proefschrift 

6. Het aanbieden van zeer korte arbeidscontracten door overheidsinstan­
ties moet alleen worden toegestaan als de werknemer ook dan ambtenaar 
in de zin van de Algemene burgerlijke pensioenwet wordt. 

7. Het gebruik van Holland en Nederland als synoniemen doet onrecht aan 
de afkomst van vele Nederlanders. 

8. De waarde 0.004 kg kg"1 als minimum stikstofgehalte van tarwestro is 
niet algemeen geldig. 

dit proefschrift 

9. Landrasgroepen van Syrische durum tarwe zijn voor een lange periode 
geteeld in relatief kleine gebieden met specifieke klimaatomstandig­
heden, gevolgd door een recentere verspreiding van enkele groepen. 

dit proefschrift 

10. Het ontwikkelen en uitgeven van nieuwe rassen in ontwikkelingslanden 
heeft alleen zin als goede zaaizaadvoorzieningsprogramma's aanwezig 
zijn. 

11. Bij sterke droogtestress na de bloei wordt de korrelvulling zowel door 
de 'sink' als door de 'source' beperkt. 

dit proefschrift 

12. The wide adaptability of a variety is different from its local 
adaptation. 

Nguyen & Anderson, 1991 

13. Het gezegde zou tegenwoordig moeten luiden: "Wat de stedeling niet 
kent, dat eet hij niet", nu deze nog steeds het liefst Bintjes eet. 

Stellingen behorende bij proefschrift van A. Elings: The use of crop growth 
simulation in evaluation of large germplasm collections. 
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Mon cher seigneur, dit Wiwine, des gens de ma famille sont couchés sous 

ces dalles, et leur devise est sur oreiller. Plus est en vous. Plus est 

en moi que de rendre oubli pour oubli. 

Marguerite Yourcenar, 

l'Œuvre au noir. 

'From this we may learn two things: first, not to draw general 

conclusions from a very partial view of nature, and secondly, that trees 

and fruits, no less than the varied production of the animal kingdom, do 

not appear to be organized with exclusive reference to the use and 

convenience of man.' 

Alfred Rüssel Wallace, 

The Malay Archipelo. 
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ABSTRACT 

A. Elings, 1992. Evaluation Methods for Large Germplasm Collections; 

Distribution, Variation and Evaluation of Syrian Durum Wheat Landraces. 

183 pages. 

Landrace populations of Syrian durum wheat were collected. Regions of 

collection and landrace groups were described with respect to 

environmental and plant characteristics, respectively. Phenotypic 

variation patterns were studied, and agronomic performance under various 

environmental conditions, frost tolerance and host resistance to three 

fungal diseases was evaluated. 

Evaluation methods were formulated, that allow the utilization of 

single-evaluation results in forecasting growth and development under 

different environmental conditions. Use is made of knowledge on the 

environment of origin, analysis of variance, and simulation models. 

Herewith, the qualitative and quantitative limitations related to the 

evaluation of large germplasm collections can be reduced. 
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Chapter 1 

GENERAL INTRODUCTION 

1.1 Evaluation of large germplasm collections 

1.1.1 Limitations to germplasm evaluation 

Plant genetic resources centres collect or acquire, characterize, evalua­

te, maintain and disseminate plant germplasm with characteristics that 

now or in the future may contribute to improvement and stabilization of 

yields. The key role of germplasm collections in plant breeding, and their 

frequent use, puts high demands on their evaluation. This generally 

comprises two steps: a preliminary evaluation by the genebank's crop 

curator, in which a limited number of traits of interest to the majority 

of users is recorded, followed by a more specific evaluation of promising 

material on the basis of user's specifications. 

The number of replications in time and space in a genebank's prelimi­

nary evaluation is often limited. The considerable genotype x environment 

interaction makes extrapolation of single-evaluation results difficult 

(Ceccarelli, 1989), or even impossible, if location x year interaction 

is significant (Lin & Binns, 1988). Therefore, evaluation results have 

often limited applicability. To overcome that problem, extensive multi-

locational or multiseasonal evaluation would be needed to assess plant 

characteristics, but this expensive procedure can often not be applied 

to entire germplasm collections, that may consist of many thousands of 

accessions. Moreover, extensive evaluations may still not lead to unequi­

vocal results. 

Consequently, if germplasm centres are forced to limit their evalu­

ation programmes because of financial constraints (Giles, 1990), assess­

ment of the potentials of germplasm for cultivation under different 

climatic conditions comes under pressure, so that initial selections have 

to be made on the basis of preliminary characterization and evaluation 

covering only one or very few seasons, often at a single location. This 

involves the risk that part of the useful germplasm may not be recognized 

as such, and thus not be utilized. 

Therefore, an efficient method is required that allows assessment of 
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plant characteristics of large numbers of accessions under various envi­

ronmental conditions, utilizing a limited number of evaluation results. 

1.1.2 Genotype x environment interaction 

Results of one or few evaluations can only be utilized in forecasting 

growth and development under different environmental conditions, if 

processes underlying genotype x environment interaction are qualitatively 

and quantitatively understood. 

Various techniques have been developed to address the problems created 

by genotype x environment interaction, and to analyze the effects of 

environmental factors on plant characteristics. Broadly speaking, three 

approaches can be distinguished: analysis of variance (ANOVA), calculation 

of a stability parameter (Gotah & Chang, 1979), and crop growth simulat­

ion. 

Qua litat ive ana lys is 

ANOVA tests the significance of the effects of factors and their interact­

ions, and establishes experimental error (Bowman, 1989; Sokal & Rohlf, 

1981). This technique analyses effects of population, year, location, 

fertilizer application, and other environmental factors. An ANOVA provides 

a qualitative indication of the relative importance of factors, and is 

therewith a first step in analysis of experiments. However, it does not 

provide insight in the mechanisms underlying variation, and therefore, 

it offers little scope for understanding and predicting crop growth under 

different environmental conditions. 

Stability parameters are derived from regression analyses that relate 

plant characteristics, e.g. yield, to a particular environmental variable, 

e.g. seasonal rainfall. The difficulty to relevantly characterize environ­

ments is in many cases dealt with by defining average population yield 

as the environmental index. Stability parameters appear in two forms: as 

regression coefficients (Finlay & Wilkinson, 1963), and as deviations from 

the regression line (Eberhart & Russell, 1966). Their validity is limited 

by the range of genotypes and environments tested, and the number of 

environmental characteristics considered. Such analyses provide some 

insight in genotype x environment interaction, but remain descriptive, 
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and do not explain plant growth and development. Therefore, their predic­

tive capacity is limited. 

Quantitative analysis 

Crop growth simulation models describe dynamically dry matter production 

and phenological development, incorporating plant genetic and environ­

mental characteristics. Crop growth models account for genotype x environ­

ment interaction on the basis of quantitative knowledge on the relations 

between plant genotypic and environmental characteristics. They allow 

extrapolation of effects at the level of single plant organs to the growth 

of a complete canopy in a continuously changing field environment 

(Spitters & Schapendonk, 1990). 

In addition to ANOVA, a well-calibrated simulation model offers a 

comprehensive tool to analyze genotype x environment interaction, which 

can assist in germplasm evaluation and selection for specific environ­

mental conditions. 

1.2 Environmental characterization 

Environmental characterization of the collection region may be used in 

assessing plant genotype and forecasting growth under different climatic 

conditions. Provided that the germplasm originates from the collection 

region, agronomic practices and ecological characteristics during domesti­

cation and cultivation have influenced its genotypic constitution: variat­

ion has narrowed, and landraces adapted to cultivation have developed. 

Hence, a relation exists between the agro-ecological conditions of the 

region of provenance and the morpho-physiological make-up of the plant. 

It may be expected also, that the former can be related to phenotypic 

plant characteristics at locations with different environmental con­

ditions. Such relations are used, for instance, when a breeder requests 

seeds from 'a desert area' in search for drought tolerance. 

Elucidation of such relations may contribute to understanding of plant 

performance in different environments. However, establishment of unequivo­

cal relations is hampered by environmental interactions associated with 

plant phenotype. 

Accessions can be classified on the basis of differences in their 
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agro-ecological background, which requires detailed characterization of 

the environment of provenance. It is possibly more efficient to evaluate 

a representative sample of a germplasm collection in a number of dis­

tinctly different environments, possibly over a number of years, than to 

evaluate the entire collection in a single environment. 

1.3 Variation 

The evaluation of genotype x environment interactions may be complicated 

by genetic heterogeneity, as in the case of landraces. Plants within 

populations differ genetically, while also variation can be observed among 

populations and population groups, e.g. populations from specific regions. 

The degree of variation varies, presenting germplasm curator and plant 

breeder with problems with respect to collection strategies, and descript­

ion, evaluation and selection of germplasm. 

Assessment of, mostly phenotypical, diversity forms an essential part 

of plant germplasm evaluation, as it indicates the breeding value of 

observed plant characteristics. Also, knowledge of variation patterns aids 

in planning future collection missions, and variation in plant character­

istics and in environmental conditions in the collection region can be 

related. 

The complex interplant relations within a landrace population are 

balanced towards long-term yield stability in the environment of origin. 

Intrapopulation variation can be quantified with ANOVA, but this is of 

little predictive value for different environmental conditions. Also, 

regression analyses and crop growth simulation models at the population 

level, do not incorporate intrapopulation variation and do not explain 

therefore the consequences of heterogeneity in different environments. 

1.4 Problem definition 

The overall objective of the present study was development and testing 

of a method allowing rapid identification of agronomic characteristics 

of accessions, and application of single-evaluation results for analyzing 

crop behaviour in other years and at other locations with different 

climatic conditions. 

Three research phases were distinguished, each with a number of 
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intermediate objectives: 

7'. Collection and description of germplasm. 

- collect germplasm, 

- provide a description of environmental conditions in the regions of 

provenance, 

- provide morphological characterization of the germplasm. 

77. Phenotypical characterization: 

- establish relations between environmental characteristics of the region 

of provenance and plant characteristics at other locations, 

- study diversity patterns. 

777'. Agronomic evaluation: 

- carry out multilocational, multiseasonal agronomic evaluations, 

- perform statistical analyses of the agronomic trials, 

- analyze the agronomic trials through crop growth simulation, 

- develop a suitable evaluation method. 

1.5 General overview 

A collection of durum wheat landraces from Syria was considered suitable 

as research material, and missions were organized to collect new germplasm 

(Chapter 3). 

The domestication of durum wheat and the role of wheat landraces in 

Near Eastern agriculture are briefly discussed in Chapter 2. The evalu­

ation study on Syrian durum wheat landraces is presented subsequently: 

Chapter 3 reports on the collection missions, and gives environmental and 

morphological descriptions of regions of collection and durum wheat 

landrace groups, respectively. Patterns of phenotypic diversity are 

analyzed in Chapter 4. Chapters 5 and 6 deal with agronomic field trials, 

descriptive statistical analyses, explanatory analyses by simulation 

models, and the establishment of relations with environmental conditions 

in the regions of collection. Chapters 7 and 8 illustrate the establish­

ment of relations between plant characteristics and environmental charac­

teristics of the regions of provenance; Chapter 7 treats evaluation of 

frost tolerance, and in Chapter 8 fungal disease resistances are related 

to the environmental characteristics of the regions of origin. Chapter 

9 finally contains a general discussion. 



Chapter 2 

DURUM WHEAT 

2.1 Domestication of wheat 

Domestication of plants in West Asia started in the Late Stone Age 

(Neolithic) in the so-called Fertile Crescent, i.e. present northern 

Israel and Jordan, Lebanon, western and northern Syria, southern Turkey, 

and the Euphrates/Tigris basin in Iraq and Iran, where rainfall sufficed 

for non-irrigated agriculture. Initially, wild plants were selected, which 

adapted to human needs. In the process, cultivable types emerged, differ­

ing from their wild relatives to such an extent that now they are some­

times considered as distinct species. 

The Triticeae annuals show greatest species diversity in the eastern 

Mediterranean semi-arid lowlands and the mountain areas of Turkey, Iran 

and the Caucasus (West et al., 1988). In this main centre of diversity, 

wheat was domesticated, as were many more plant species, such as barley, 

chickpea, lentil, peas, clovers, faba bean, onion, flax, olive, apple and 

pear (Simmonds, 1976; Vavilov, 1951; Zeven & de Wet, 1982). Vavilov (op. 

cit.) identified the region as the fourth centre of origin, 'The Near-

Eastern Centre of Origin of Cultivated Plants', and emphasized its wealth 

of varieties of cultivated wheats. 

Cultivation of wheat and barley started towards the end of the 8th 

millennium B.C., which enabled man in the Near East to transfer from 

hunting and food collecting to farming (Harlan & Zohary, 1966), and to 

expand its Neolithic agriculture to West Asia, Europe and North Africa 

(Zohary & Hopf, 1988). The first evidence of free-threshing tetraploid 

wheats (of which durum wheat fTriticum turqidum L. var. durum (Desf.) MK.] 

is the main representative) dates from 7th to 6th millennium B.C. sites in 

Syria, Turkey, Iraq and Iran (Zohary & Hopf, 1988). During the Neolithic 

and Bronze Age, their importance increased. Bread wheat (T. aestivum L.) 

is currently the most important wheat species. 

From the Fertile Crescent, wheats spread over Europe, North Africa and 

Asia. After introduction of tetraploid wheats in Ethiopia, a secondary 

centre of diversity developed (Zeven & de Wet, 1982). In recent centuries, 

wheats have spread to larger parts of Africa, the Americas and Australia. 
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Ever since the start of domestication, wheats have evolved, while 

agriculture diffused from its location of origin (Harlan, 1986). Mutations 

and gene combinations with favourable properties were preserved, while 

cultivated species in the centre of origin remained in close contact with 

their wild relatives, and absorbed new genes through introgression. 

Exposure to new environments and developing agricultural systems resulted 

in new genotypes and widening variation. In the 20th century, modern 

breeding techniques substantially contributed to development of genotypes 

with higher yield potentials. Therefore, crops cultivated presently, 

including landraces, differ considerably from the types domesticated 

millennia ago. 

2.2 Wheat landraces in Near Eastern agriculture 

Constraints for wheat production in the arid regions of West Asia and 

North Africa (WANA) are low and erratic rainfall, limited irrigation 

possibilities, low soil fertility, low winter temperatures and high 

temperatures during the grain filling period, poor management practices, 

and occurrence of pests and diseases (Ceccarelli et al., 1987b; Miller, 

1987; Osman, 1986; Stapper & Harris, 1989). As the possibilities for 

application of external inputs such as irrigation and inorganic ferti­

lizers are limited, introduction of modern varieties that require these 

inputs to fully realize their genetic potential is feasible only in the 

higher rainfall zones. Although mainly restricted to these zones, an 

increasing part of the total wheat area in Syria is planted to modern 

varieties: currently over 50%, compared to approximately 10% in 1973 

(Belaid & Morris, 1991). As rainfed agriculture remains important to WANA, 

which faces a growing gap between wheat production and consumption 

(Adamowicz, 1988; Belaid & Morris, 1991), germplasm that has been domesti­

cated locally and is adapted to the erratic exposure to growth-limiting 

factors, may contribute to the improvement of yield level and yield 

stability. 

Maximum yields of landraces are moderate, but average yields are 

generally more stable under a wide range of environmental conditions than 

yields of modern varieties. Since the start of domestication, landraces 

have been cultivated in various agro-ecological niches by farmers who 

maintained their own seed, and may have traded to other regions (Harlan 
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et al., 1973). This practice has resulted in wide variation in plant 

characteristics, among and within locations, which are balanced in such 

a way that unfavourable environmental conditions are generally not cata­

strophic and do not lead to substantial yield losses. Farmers in marginal 

environments still adhere to a considerable extent to landraces, as was 

observed during the collection missions. Therefore, landrace germplasm 

is extensively used in breeding programmes aimed at environments charac­

terized by high probabilities of growth limitations. 



Chapter 3 

AGRO-ECOLOGICAL AND MORPHOLOGICAL CHARACTERIZATION 

Abstract 

A total of 185 durum wheat fTritlcum turgldum L. var. durum (Desf.) 

MK] landraces was collected from 166 sites in the Syrian Arab Republ­

ic. With K-means clustering the collecting sites are grouped based on 

four climatological variables to create relatively homogeneous regions 

of origin with respect to agro-ecological characteristics. Stepwise 

Discriminant Analysis confirmed the minimization of variation within 

regions. 

Regional description with respect to agro-ecological characteris­

tics is given. According to farmers' estimations, average grain yield 

is lowest in western mountainous regions, and highest in southern 

parts of the country, which illustrates the tendency of landraces to 

produce more straw rather than grain dry matter under high rainfall 

conditions. Other data, however, show that farmers in southern regions 

supposedly have overestimated yield levels. 

Landraces groups as distinguished by farmers are morphologically 

identified, to provide a sytematical description of visable variation. 

Distribution patterns of the various landrace groups are indicated. 

Only few landrace groups are widely distributed, whereas most others 

are regionally concentrated. Genetic diversification is found in the 

heterogeneous nature of landraces and in the cultivation of different 

landraces per region or village. Large proportions of T,. aestivum were 

found in T.- durum populations in the mountainous regions in the west 

of the country, where farmers apparently desire a species mixture. 

3.1 Introduction 

Efficient use of germplasm requires characterization and evaluation. The 

latter is normally performed in two steps: a preliminary evaluation, which 

concentrates on recording a limited number of traits thought to be desir­

able by a consensus of users (IBPGR, 1985), followed by a more specific 

evaluation of promising material. While the large quantity of accessions 
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limits multilocational preliminary evaluation, information resulting from 

one-site evaluation cannot be used to predict performance in other envi­

ronments due to genotype x environment interactions (Ceccarelli, 1989). 

In addition, further evaluation may not include useful material that has 

not been recognized as such in the preliminary evaluation. Part of the 

problem is the restricted use of environmental parameters of the collec­

tion region in germplasm evaluation. Agronomic and ecological characteris­

tics have influenced the genotypic constitution of landraces during 

domestication (Harlan et al., 1973), and hence a relation exists between 

the agro-ecology in the collection region and the morphophysiological 

make-up of the plant. 

This study aims to provide a method to define regions of collection 

whereby agro-ecological characteristics, in combination with multilocatio­

nal evaluation results, can help in understanding crop performance under 

various growth conditions. This knowledge can be utilized in selecting 

for different agro-ecological zones, thus reducing the exclusion of 

valuable germplasm. 

A collection of durum wheat fTriticum turqidum L. var. durum (Desf.) 

MK] landraces from the Syrian Arab Republic was considered suitable for 

this purpose for the following two reasons: 

- Syria is situated in the "Fertile Crescent," where the first cereals 

were domesticated by ancient civilizations about 10,000 years ago in 

the late Mesolithic Period and the early Neolithic Age (Hawkes, 1983; 

Harlan, 1986), and where tetraploid wheats are cultivated since the 7th 

millenium B.C. (Zohary & Hopf, 1988). Up to the present wheat and 

barley have been grown here (Vavilov, 1951; Zeven & de Wet, 1982), and 

have spread to many other parts of the world (Bell, 1987; Yamashita, 

1980). 

- Although landraces are outyielded by newly-developed varieties under 

favourable conditions, they may yield higher under stress due to 

heterogeneity (Hawkes, 1983; Nachit et al., 1988). 

However, no existing collection could be identified that met the 

following necessary requirements for an eco-geographic study: a) regular 

distribution of collection sites over the regions of collection, b) 

representation of various agro-ecological zones, c) availability of 

information on agro-ecological site parameters, and d) availability of 

seed samples representative of the populations in the field. The first 
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three requirements were not met due to the dearth of information on the 

precise origin of available Syrian accessions (Toll, 1984), while the 

fourth implied access to bulk samples. An entire new collecting mission 

was made, which paid attention to record of passport and collection 

information (IBPGR, 1985), and which provided an agro-ecological descrip­

tion of each site. 

Evaluation results have often been interpreted in relation to the 

origin of the material. Morphological and agronomic crop characteristics 

were presented per country or group of countries (Asins & Corbonell, 1989; 

Gallagher & Soliman, 1988; Erskine et al., 1989; Jain et al., 1975; Kato 

et al., 1988; Narayan & Macefield, 1976; Porceddu, 1976; Spagnoletti Zeuli 

& Qualset, 1987; Spagnoletti Zeuli et al., 1984), or per region or site 

within countries (Bekele, 1984; Bogyo et al., 1980; Ceccarelli et al., 

1987a; Damania & Porceddu, 1983; Murphy & Witcombe, 1981; Weltzien, 1988). 

Isozyme frequencies were similarly presented (Asins & Carbonell, 1989; 

Nakagahra et al., 1975). Although such groupings elucidate the structure 

of data sets, they are less satisfactory in interpreting the agro-ecologi­

cal background of germplasm. On the other hand, Burt et al. (1980) pro­

vided networks of floristic, soil and climatic characteristics of collec­

tion sites and correlations between environmental characteristics. Alloz-

yme frequencies were related to environmental factors (Nevo et al., 1986, 

1988) and the ecogeographical distribution of glutenin alleles was studied 

(Levy & Feldman, 1988). 

When regions of collection have to be defined independently from 

evaluation results, only site characteristics can be considered, whereas 

crop characteristics can be related to the regions only afterwards. Burt 

et al. (1979) identified regions in South and Central America most likely 

to provide the legumes required for Northern Australia, before plants were 

explored. 

In this study, K-means clustering of collection sites on the basis of 

independent environmental characteristics was tested. The K-means cluster­

ing procedure is well adapted to large data sets (Lebart et al., 1984) 

and partitions into groups such that cases within a group are relatively 

homogeneous and cases in different groups are relatively heterogeneous 

for the characteristics involved (Press, 1982). Also, regions formed by 

clustered sites were described for agro-ecological characteristics. 

This study also seeks to provide a brief morphological description of 
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the Syrian durum wheat landrace group as distinguished by farmers. Each 

group has its specific morphological characteristics and geographical 

distribution pattern, and is referred to by a local name that is often 

derived from a striking character or supposed origin. Jacubziner (1932) 

studied the Syrian durum wheats and developed a detailed taxonomie key 

based on detailed morphological observations. However, this approach is 

less useful for studying population performance, which requires identifi­

cation of a particular landrace rather than the genotypes that compose 

it. 

3.2 Materials and methods 

The Syrian Arab Republic is situated on the eastern side of the Mediterr­

anean. It has parallel mountain ranges in the west and, in the southeast, 

is incorporated in the Arabian Desert (Anonymous, 1977). Extensive parts 

of the country consist of plains interspaced by river valleys and mountain 

ridges. The year can be divided into four seasons: a cool and rainy 

winter, a hot and dry summer, and short transition periods in spring and 

autumn. Three climatic regions can be distinguished: a) coastal area with 

high relative humidity (mean annual relative humidity 60-75%), mild 

winters (mean January temperature 4-12°C), warm summers (mean August 

temperature 22-26°C) and relatively high annual rainfall (up to 1400 mm), 

b) desert area with low relative humidity (45-55%), cool winters (3-8°C), 

hot summers (24-32°C), and low precipitation (less than 300 mm annual 

rainfall); and c) areas located between the first two regions and in an 

about 50 km-wide strip along the northern border, characterized by rela­

tively moderate relative humidity, temperature, and rainfall conditions 

(50-60%, 5-7°C (Jan.) and 25-31°C (Aug.), and 300-500 mm, respectively) 

(Rafiq, 1976). 

In June 1987 and June 1988, ICARDA's Genetic Resources Unit conducted 

collecting missions for Triticum durum in cooperation with the Genetic 

Resources Unit of the Syrian Agricultural Research Centre, Douma, in most 

of the regions of Syria where landraces of this species were known or 

expected to be cultivated. A total of 185 landraces was collected from 

166 sites (van Slageren et al. 1989). The geographical distribution of 

the collection sites is presented in Figure 3.1. 
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Figure 3.1. Geographical distribution of the collection sites (indicated 
as dots) of durum wheat landraces in the Syrian Arab Republic. 

la = Lattakia 
lb = Tartous 
lc = Central Mountains 

2a = Aleppo 
2b = Idleb 
2c = Hama 
2d = Central Area 
2e = Northeast 
2f = Hassake 

3a = Homs 
3b = Qaryatain 
3c = Damascus 
3d = Quneitra 
3e = Hauran 

Two random samples were taken per population : 100 individual spikes, 

and 100 spikes in bulk (Marshall & Brown, 1975). The individual spikes 

were used for evaluating genetic variation, while the bulk samples were 

multiplied, characterized and evaluated for agronomic traits, and stored. 

Standard passport and collection information (IBPGR, 1985) was recorded 

at each site, using ICARDA's collecting forms, which provide geographical 

and ecological features, as well as qualitative and quantitative informa­

tion on the collected seed samples (Elings, 1989). Farmers, who were 
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present at 132 sites, were asked for information on the landraces and 

their farm management practices: local name of the landrace; origin of 

the seed (own farm, another farm in the same village, another village in 

the same region, another region, market); number of years the seed had 

been used locally; rotation scheme; irrigation practice; average sowing 

date and rate; average harvesting date; estimated grain and straw yields 

(lowest, average and highest); frequency of grazing by sheep instead of 

harvesting (indication of crop failure); fertilizer (N,P) and manure 

application; and means of weed, disease and pest control. Although the 

resulting data were possibly biased, they seemed sufficiently reliable 

for comparative purposes. Some soil characteristics were recorded (stonin-

ess, cracking, soil type, and soil layer depth), and soil samples from 

the 20 cm soil surface were taken at three arbitrarily chosen spots in 

each field. The three samples were mixed and analyzed for organic matter 

content, total N (Kjeldahl, Bremner method) and extractable P (Olsen). 

Tiller density was also determined at three randomly chosen sites in the 

field. The number of seeds per spike, seed weight per spike, and the 

thousand kernel weight of the single heads collected were determined. 

Data were analyzed using the BMDP statistical software package (Dixon 

et al., 1985). The 166 collection sites were grouped following the K-means 

clustering method (Lebart et al., 1984) so that variation is minimized 

within and maximized among groups. The analysis was based on a set of four 

climatological variables, viz. the difference between the longest and the 

shortest daylength in the course of a year ("daylength amplitude"), annual 

precipitation, and maximum and minimum annual monthly temperature. All 

other observed variables were assumed dependent. The daylength amplitude 

is the difference between the daylengths at June 21st and at December 21st. 

Latitude was considered an unsatisfactory parameter, as it is not a 

driving force in crop development, and in choosing daylength itself 

definition and determination of the optimal date, which would need to be 

related to plant development, was problematic. Temperature was described 

by the mean maximum temperature in August and the mean minimum temperature 

in January. In these two months, the highest and lowest values are 

reached, respectively. Nearly all rain falls during the growing season, 

and was therefore supposed to be totally available to the crop. The 

rainfall figure for irrigated sites was not adjusted since it is believed 

that domestication has occurred under rainfed conditions, which therefore 
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represents the agro-ecological background of the concerned populations. 

Values were standardized to unit variance, and the Euclidean distance 

was used to measure distances between each case and the centre of a 

cluster. In subsequent steps, Syria was divided into regions and then 

further sub-divided into subregions. Variables highly discriminative in 

the first step could lose this characteristic in favour of other variables 

in the following step, causing a "fine-tuning" effect: the smaller the 

geographical scale, the more accurate and hence realistic the descriptive 

value of the discriminating variables (Press, 1982). 

To verify the consistency of the constructed clusters, a spanning tree 

based upon the same cases was formed, using the centroid method. This 

agglomeration method is preferable to the other technique available to 

BMDP, the single linkage (H. Nilwik, personal communication); furthermore, 

in a comparative study by Peeters and Martinelli (1989), centroid and 

average linkage, rather than single linkage, confirmed expectations. The 

pattern of amalgamation was considered: it was tested whether sites 

belonging to the same cluster merged before merging with sites belonging 

to other clusters. A parallel between the K-means clustering and spanning 

tree would indicate consistency of the clusters. 

Stepwise Discriminant Analysis (SDA) was used to describe the vari­

ation between the collection sites in terms of linear combinations of the 

original variables. 

In addition to the four climatological variables mentioned above, 

several other ecological and agronomic characteristics (Table 3.1) were 

defined for the regions formed during the first clustering step. The 

significance of differences between the latter cluster means was tested 

by analysis of variance. 

Only landraces were selected of which the same farm or village had 

been indicated as indicated source. Of 89 landraces, 50 single spike 

progenies were sown separately at ICARDA's main farm, located 32 km south 

of Aleppo, Syria. Each single head line was taxonomically identified, as 

some populations were mixtures of T. durum and T. aestivum. 

A taxonomie description of the species T. durum has been given by Bor 

(1968) and Tan (1985). For landrace groups description, three to four 

specimens were randomly selected per population, and a number of morphol­

ogical characters was recorded: pubescence of leaves, spike density, 

spikelet attitude, glume colour, lemma colour, awn colour, and glume 
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Table 3.1. Mean values of variables describing the three initial clusters 
(standard deviations in brackets). Climatic characteristics are retrieved from 
the Climatic Atlas of Syria (Anonymous, 1977). 

Variable* West South Centre/North p 

Daylength amplitude (hrs) 
Altitude (m) 
Rainfall (mm year"1) 
Max. temperature (°C) 
Min. temperature (°C) 
Potential evaporation (mm) 
Texture1 

Stoniness2 (Z) 
Cracking3 

Surface soil depth (cm) 
Organic matter (Z) 
Nitrogen (ppm) 
Phosphorus (ppm) 
Inputs4 

Sowing rate (kg ha"1) 
Rotation5 

Average grain yield (t ha"1) 
Max. grain yield (t ha"1) 
Average straw yield (t ha"1) 
Max. straw yield (t ha"1) 
Crop growth duration (days) 
Spikes m"2 (-) 
Seeds per spike (-) 
Spike weight (g) 
Thousand kernel weight (g) 

4.8 
386 

1045 
29.0 
5.4 

1273 
4.8 
42 

1.2 
69 

3.1 
1632 
12.7 
1.9 
195 
2.8 
1.1 
1.8 
1.5 
2.3 
216 
115 

27.8 
1.3 

45.0 

(0.0) 
(269) 
(215) 
(1.8) 
(2.0) 
(101) 
(0.6) 

(30) 
(0.4) 
(104) 
(1.4) 
(779) 
(15.3) 
(0.3) 

(53) 
(0.8) 
(0.6) 
(0.8) 
(0.7) 
(1.6) 

(25) 
(39) 

(6.4) 
(0.4) 
(4.9) 

4.5 
754 
267 

33.8 
2.1 

1734 
4.5 

19 
1.6 
239 
1.4 
823 

13.0 
1.5 
112 
2.2 
1.9 
2.9 
1.3 
2.2 
205 
109 

31.3 
1.1 

35.9 

(0.1) 
(169) 
(115) 
(1.6) 
(0.9) 
(227) 
(0.9) 
(25) 

(0.5) 
(319) 
(0.8) 
(438) 
(13.0) 
(0.5) 

(68) 
(1.1) 
(1.4) 
(1.7) 
(0.7) 
(1.2) 

(33) 
(74) 

(4.6) 
(0.3) 
(6.2) 

5.0 
445 
357 

37.6 
2.2 

2052 
3.9 
13 

1.6 
459 
1.5 
939 

15.8 
1.9 
131 
2.3 
1.5 
2.3 
1.3 
1.8 
201 
138 

27.0 
1.0 

37.7 

(0.1) 
(94) 

(120) 
(2.1) 
(0.7) 
(326) 
(1.4) 
(23) 

(0.5) 
(424) 
(0.8) 
(413) 
(23.4) 
(0.4) 

(36) 
(1.1) 
(0.7) 
(1.1) 
(0.8) 
(1.2) 

(26) 
(67) 

(4.3) 
(0.3) 
(7.0) 

**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
* 
**** 
**** 
** 
** 
*** 
* 
* 
* 
* 
** 
* 
**** 

(+): 1 = Symbols used for texture: 1 = sand, 2 = sandy loam, 3 = loam, 4 » 
clayloam, 5 = clay. 

2 = Symbols used for cracking: 1 = no cracking, 2 « cracking. 
3 = Stoniness is expressed as percentage soil cover. 
4 = Inputs considered are: N and P fertilizer manure, fungicides, 

pesticides and herbicides. Scale: 1 = no inputs used, 2 - one or 
more types of input used. 

5 = To quantify the rotation-schemes, the following symbols have been 
used: 1 - cereals + fallow, 2 = cereals only, 3 - cereals + legumes, 
4 = cereals + legumes + other crops. 

****: 0 < p S 0.001 
***: 0.001 < p < 0.005 

**: 0.005 < p £ 0.05 
*: 0.05 < p 
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Figure 3.2. Collection sites, constituting 14 regions, plotted against 
the first two canonical faviables formed in Stepwise Discriminant Analy­
sis . 
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hairiness. The spike density classes distinguished were intermediate, 

dense, and very dense, representing the number of spikelets per cm (1.75 -

2.75, 2.75 - 3.50 (- 3.75), and (3.50 -) 3.75 - 5.00, respectively). 

Spikelet attitude was expressed as the angle between rachis and spikelet. 

Three angles were distinguished: 45°, 30°, and very acute, with the 

spikelets almost parallel to the rachis. If discriminating, other charac­

ters were observed: kernel colour, kernel shape, spike shape, stem width 

and stem solidness. 

Farmers sometimes gave landraces double names (e.g. Baladi Bayadi, 

Suweidi Abassieh). In these cases, the first name was considered an 

indication of the relevant landrace group, and the second name describing 

an inherent character, an area of cultivation or another subdivision to 

which no further attention was paid. 

3.3 Results 

3.3.1 Agro-ecological characterization 

K-means clustering on the basis of daylength amplitude, annual precipita­

tion and maximum and minimum annual monthly temperatures of all 166 

collection sites resulted initially in three regions: a) the mountainous 

western part of the country, b) the eastern part of the province of Horns, 

together with southern areas (Damascus, Sweida, Dara' and Quneitra), and 

c) the remaining inland areas in the north, centre and east. For convenie­

nce, the regions will be referred to as "West", "South", and 

"Centre/North", respectively. In the next step, each of the regions was 

further subdivided, as presented in Figures 3.1 and 3.2. The sites were 

thus clustered into 14 regions, each of limited size. At that stage, the 

clustering process was stopped, because a large number of small regions, 

each one comprising of only a few sites, would complicate rather than 

simplify the analysis. 

The relative importance of the clustering variables in each step is 

indicated in Table 3.2 by their univariate F-values. In the first step, 

which divides Syria into the three major regions, rainfall is the most 

influential variable, followed by daylength amplitude and minimum temp­

erature. However, if each regions is subdivided, rainfall would lose 

importance. Clustering the collection sites in "West" is strongly based 
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on maximum temperature, closely followed by minimum temperature, whereas 

in "South" daylength amplitude is the most important variable, followed 

by rainfall. In "Centre/North" maximum temperature again dominates clust­

ering. 

Table 3.2. The univariate F-values of the clustering 
variables in the course of the clustering process. For 
each step, the relatively most important variable is 
printed in bold. 

Step 

94 

42 

9 

82 

45 

188 

Variable 1 2a 2b 2c 

Daylength amplitude 265 15 

Rainfall 380 29 

Max. temperature 28 37 

Min. temperature 112 33 27 40 

Step 1 = clustering of all Syrian sites, step 2a 
= clustering of western sites, step 2b = cluster­
ing of southern sites, step 2c = clustering of 
central sites. 

The consistency of the 14 clusters was tested through spanning tree 

construction. The tree diagram, starting with 166 branches merging one 

by one, and therefore not presented here, showed in general the same 

picture as the K-means clustering, which started from the other end. 

Ideally, the sites belonging to one cluster would have combined before 

the 14 main branches merge in two steps. The tree diagram was not com­

pletely consistent in this, but parallels with the clustering appeared 

clear enough to confirm the consistency of the K-means clustering. 

SDA resulted in four canonical variables, of which the first two 

accounted for 93% of the total variation (Table 3.3). The first canonical 

variable was related to daylength and maximum temperature and the second 

to annual rainfall and maximum and minimum temperature. Plotting the first 

two canonical variables (Figure 3.2) yielded a picture in which geographi­

cal patterns could be recognized. Latitude, via daylength amplitude, 

dominantly determined the position on the X-axis. Since the isohyets in 
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most collection areas run parallel to the longitude, the latter influenced 

the position on the Y-axis. The group formed through clustering appeared 

with only minor overlap. 

Table 3.3. Correlation coefficients between the canonical and the depen­
dent variables and the cumulative proportion of the total dispersion for 
each canonical variable. 

Canonical 
variable 

Correlation coefficient Cumulative 
dispersion(Z) 

Daylength Rainfall Maximum Minimum 
amplitude temperature temperature 

1 

2 

3 

4 

0.98* 

0 .22* 

- 0 . 0 3 

- 0 . 003 

- 0 . 04 

0 .98* 

0 .11 

0 .19* 

0 .57* 

- 0 . 7 8 * 

- 0 .14 

0 .24* 

- 0 . 1 9 * 

0 .72* 

- 0 . 6 6* 

0 .12 

56 

93 

98 

100 

Significant at p < 0.01 

"West", "South", and "Centre/North" clusters could be defined on the 

basis of Table 3.1, where cluster means of these groups are given for a 

set of 25 climatic, ecological and agronomic variables. All the climatic 

variables had significantly different mean values. In "West", annual 

precipitation was high, combined with relatively warm winters, cool 

summers, and low potential évapotranspiration. Mean altitude was low, due 

to the collection sites near to the sea. "South" was characterized by a 

short daylength amplitude, low rainfall, mild winters, and moderately high 

summer temperatures and evaporation. In "Centre/North", maximum tempera­

ture and evaporation reached their highest values, while annual rainfall 

was slightly higher than in "South" owing to the relatively high values 

for Aleppo and Hassake. 

"South" and "Centre/North" had similar soil parameters, whereas "West" 

showed relatively high values of organic matter and nitrogen contents. 

In "South", input use was limited, and sowing rate was lowest. "West" had 

the highest sowing rate and the most diversified rotation scheme, which 

was narrowest in "South". 
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Average and maximum grain yields were highest in "South", average and 

maximum straw yield in "West", where the crop growth duration was longest. 

The yield components did not show a consistent pattern. 

Table 3.4. Percentage of Triticum aestivum plants in T.. durum 
landrace populations ; the individual observations and mean value 
are given per agro-ecological region. 

Agro-ecological 
region 

Percentage of £. aestivum 

per population* mean value 

la Lattakia 
lb Central Mountains 
lc Tartous 
2a Aleppo 
2b Idleb 
2c Hama 
2d Central Area 
2e Hassake 
2f Northeast 
3a Horns 
3b Qaryatain 
3c Damascus 
3d Quneitra 
3e Hauran 

2, 
52 
54 
2, 
8, 
0 
13*0 
3*0 
28, 
2*2 
36, 
24, 
6 
14, 

9*0 
50, 
30, 

6*0 
2, 0 

46, 
28, 

2*2, 
20, 

0 
12, 6, 4, 3*0 

18, 8, 4*0 
2*0 

4*0 
12, 8, 3*6, 2*0 

2*0 

0.2 
25.3 
15.4 

0. 
3. 
0. 
0. 
0. 
7. 
1.0 
7.2 
6.2 
6.0 
4.7 

9*0 = 9 fields without X- aestivum plants 
3*6 = 3 fields with 62 T.. aestivum plants 

3.3.2 Morphological characterization 

In the mountainous area along the Meditteranean several populations were 

collected that were mixtures of J. durum and T. aestivum (Table 3.4). 

Landrace populations collected in other provinces generally showed much 

lower frequencies of species mixutures, although high impurities (more 

than 8%) were occasionally found. In Table 3.5, the proportion of bread 

wheat plants is given per landrace group. Baladi landraces in particular 

comprised high amounts of bread wheat plants, which corresponded with the 

high percentage for the Tartous region. 

A uniformly solid stem was observed only once in the case of Sheirieh. 

In the other landraces the stem was generally solid just below the spike, 



p. 
3 
o 
u 
00 

CU 
(J 
cd 
u 

• d a 
cd 

1-1 

4-1 

eu 

•g 

u 
3 
•a 
ß a 

-H 

> • , 

CO 

4 - 1 

o ß o 
•H 
4-1 
3 

X I 
•H 
U 
4-> 
CO 

• H 
• O 

• Ö c 
n) 

>% 
00 

o 
rH 
O 

X i 
a. 
u 
o 
S 
eu 
> 

•H 
4-1 
cd 
l-i 
cd 
a. 
S 
o 
o 

m 

o 

eu 
X I 
cd 

H 

cd 
eu 

x ! 
lï 

VO 

-3-

O 

• O 

-* • CM 
CM 

tn 
S - . 

U 
eu 

X i 
4J 

U 
a> 
j j 
CJ 
cd 
u 
as 

Xi 

U 

S g 

eu 3 i o 
3 rH 

rH O 

5 S 
CU ••") 

3 -w 
. - H cd 

a xi 
*-> eu 
eu -Ö 

rH 3 
CU 4-1 

M - A 
• H 4J 
P . 4-1 

co cd 

~ 4J 
eu -w 
M co 
•H ß 
D. eu 
co -a 

cd 
M 

• d 
ß 
cd 

• J 

CO 
p. 
3 
O 
1-1 
00 

1 

rH 

X I 

p . 
1 

>* 
CO 
P. 

•rH 
4-> 

>>x> 
rH 

CO 
rH 
eu 
a 
u 
ai 

M 

> • > 

i-i 

i-i 

CO 
•-H 
eu 
ß 
u 
a> 

rH 

Xi 

P . 

o 
o. 
.„ 
!•» 

1 

•-H 
X I 

. 
O. 

CO 
p . 

•H 
4-1 

• - I 
X I 

i 
X I 

CO 
p. 

• H 
4J 

o 
p< 

.M 
cj 
cd co 

rH eu 
x i > 

14 
• eu o c 

xi 
•-H 

i 

> ï CO 
I p . 

> • > • * 

rH 4J 

XI 
P. 

00 

-3-

p . 
• H 
4-> 

o 
p . 

X I 
p . 

o 
CO 

o 

o 

00 
ß -o 
o • - eu 

r-l ^ & 
CU o 

CO "Ö X I 

-H a eu eu eu 
ß rH ,M 
1-1 CO -H 
CU P . 

ü U ) 01 

o 

o 

1 

o 

o 

1 

o 

o 

.„ 
•«• CU 

^M 0 
I-H -iH eu 

P . 4J 
CO CO CO 

1-1 
eu eu M 
ß oo o 
U U -H 
ai cd x ! 

, M rH 4J 

X I X ) 

> * p . p . 

o 
p . 

p . 
•H 
•P 

X I 

X>" 

00 

•H 
ß 
cd 
V4 
3 
cd 
33 

•rJ. 
X I 
cd 

•-4 
cd 

M 

•H 

-o cd 
r-l 
cd 

« 

cd X> 

* 
•.-I 
•O 
cd 
t^ 
cd 

ca 

o 
p . 

•H 

r-l 

a 
rH -H 
X I 4-1 

o 
p . 

o 
p . 

p . 
•ri 
4-1 

o 
p . 

X I 

a. 
rH X I 
00 P i 

o 

X I 
p . 

X I rH 
p , 00 

o 
I 

o 
CI 

eu 
co 
ß 
CU 

• d 

> 

Ol 
CO 
a 
eu 
•d 

• > 

eu 
co 
ß 

i ai 
• -d 

4-1 
ß • 

•H > 

ai eu 
co co 
ß ß 
ai ai 

• d - d 

ß 
ai 

• d 
i 

• 4-1 
ß 

•H 

ß 
eu 

• d 
i 

• 4-1 
ß 

-H 

• 4-1 
ß 

•H 

•H 
• o 
•H 
Ol 

S 
CO 

•H 
ß 
cd 

XS 
•H 
X! 
CO 

cd 

<-> 
rH 

< 
ß 

•H 
CO 

ß 
Ol 

• d 

• > 

X ! 
CU 

s 3 
O 

rH 
00 
at 

CO 

cu 
CO 
ß 
eu 

X I 

cd 
•d 
3 
i-> 

eu 
CO 
ß 
Ol 

• d 

X! 
Ol 

• H 

e cd 
X ! 
CO 



o o 
o 

o 
o 

T 

o 
o 

S 
U 
a 

•Ö 

co 4J 
i - l co 
eu -H 
G - ö u -o 
CU <u 

M u 

p . 
• H 

4«i 
ü 
cd 

r- l 

43 co 
o 
(3, 

43 43 43 

O. !>% C U 

43 43 

O. 

43 
O. 

•H 
4J 

(̂  .-H 

CO 
O . 

•H 
•P 

43 

• O 
o. 

•̂  >-. rH 

43 
.-1 

1 
>-v 

CO 
O . 

•H 
P 

i-l 
43 

O 

a. 
• •> 43 

. H 
1 

> ï 

CO 
Cu 

•H 
4J 

rH 
43 

<« >s 

CO 
O . 

•H 
4J 

• - I 
43 

••• (̂  

!»> i 
S». 

1-H 

(*. •H 

.-) 43 

• O 
CU 

«-43 
rH 

1 

CU 

> M 
CU 
G 

+ 
co 
a 
•w 

t^ P 

CO 
o. 

•rH 
•P 

.-H 
43 

O 
Cu 

» 43 
•-1 

1 

co 
CU 

> u 
CU 
(3 

(•, + 

43 
rH 

• * 43 
•-H 

1 
> ï 

CO 
Cu 

•H 
4J 

•H 
43 

Ó CU 

« 43 
rH 

| X 

CO 
CU 

43 
O 
P 
ca 

a 

43 
•H 

• «. 43 
iH 

1 

^ 

CO 
CU 

•H 
P 

iH 
43 

O 
CU 

• » 43 
rH 

1 
• * 

CO 

cu 
43 
O 
4J 
cd 
CU 

cu 
43 
CJ 
•p 
cd 
CU 

43 
.-1 

•«• ^ 

CO 
Cu 

• H 
P 

i-l 
43 

• 
O 
CU 

• • 

>-, 

43 
. H 

1 

!** 

co 
CU 

TH 
+J 

rH 
43 

O 

a 
••> 43 

i H 
1 

(». 

43 
Cu 

43 
Cu 

CU 
co 
G 
cu 

•d 

cu 
co 
G 
CU 

•O 

• p 
G 

-H 

(3 
eu 

•ö 
i 

> P 
Ö 

•iH 

» •P 
G 

•H 

eu 
co 
G 
cu cu 

• ö 

<u 
co 
CS 
cu 

• ö 

G 
<u 

T l 
1 

• •P 
G 

•H 

cd 

>-> 
•H 
43 
cd 

55 

43 
eu 

•H 
CO 
CO 
id 

43 

< 

U 
•H 
eu 
CO 
CO 
d 
o 
S 

43 
eu 

•H 
J-l 

•H 
CU 

43 
c/> 

43 
CU 

•H 
1-J 
d 

en 

43 
eu 

•H 
co 
£3 
3 
0 

H 

43 
eu 

-H 
u 

• H 
i j 
cd 

» 

-H 
M 
cd 
M 
cd 

S 

<-i >> cd £ 
bOH Cu P 



26 Evaluation of durum wheat 1 andraces 

but hollow further down. Stem wall thickness in the lower half of the stem 

varied considerably, both within and among populations. 

Spike density and spikelet attitude were interrelated: angles of 45° 

occurred in combination with very dense spikes, angles of 30° with all 

density classes - although mainly with dense spikes, and a very acute 

angle coincided generally with intermediate spike density. 

Glume, lemma and awn colour were a highly variable, both within and 

among landrace groups. Two basic colours were found: yellow and brown to 

black. Glumes and lemmas varied from light yellow to light brown, and 

could possess black tips and blackish nerves. Awns were either completely 

(light) yellow, or (light) yellow only at the terminal part, with a brown 

or black colouration at the base. 

Within the landrace groups of Bayadi, Shihani and Surieh both plants 

with glabrous glumes and plants with pubescent glumes were observed. The 

other landrace groups were characterized by only one form of glume hairin­

ess. 

Kernels were yellow, except in the cases of Bayadi (partly yellow, 

partly light yellow), Shamieh (light yellow) and Ahmar (reddish; ahmar 

= red in Arabic). 

Morphologically, the Haurani and Halabi groups (from Hauran and Aleppo 

region, in Arabic, respectively) appeared to belong to the same type of 

landrace, which was also indicated by the farmers, who sometimes combined 

both names. Only the suggested geographical origins differed. 

The variation in spike density was a clear first character to dif­

ferentiate, since it dominated the visual impression of a landrace. The 

Haurani/ Halabi landraces were predominantly characterized by very dense 

spikes and yellow to light brown colouration of the glume, lemma and awn. 

Baladi (from balad = locality, native to in Arabic) showed a wide 

range of forms, and was difficult to describe accurately, and gave the 

impression that many landraces may be called Baladi, implying that this 

landrace group may actually comprise more than just one group. 

Most other landraces had an intermediately dense to dense spike, and 

had to be differentiated on the basis of other characteristics. Bayadi 

(from abiad = white in Arabic) landraces could be divided into two groups 

on the basis of spike type: very acute angles or 30° angles, the latter 

group tending to be darker. Sweidi (from aswad = black in Arabic) was 

easily recognizable because of the completely brown or black colouration 
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of the entire spike, in contrast to Shihani, which was only partly black. 

Sin Al Jamal (= tooth of the camel in Arabic) was characterized by a long 

and slender kernel in combination with a long, bowed and slender spike. 

Shamieh could be uniquely characterized by its broad stem, and Surieh by 

its reddish seeds. 

Table 3.6. Number of collected populations (in brackets) per agro-
ecological region, per landrace group. 

Landrace group Number of accessions per region 

Haurani 

Halabi 
Baladi 

Bayadi 

Suweidi 

Shihani 

Sin AI Jamal 
Saglouweh 
Juda 
Nabi Jamal 
Mousseirieh 
Sheirieh 
Abassieh 
Shamieh 
Hamari 

Zaraa 
Kendahri 
Haririeh 
Tounsieh 
Ahmar 
Surieh 
Hredieh 
Harari 

Damascus (23) 
Qaryatain (4) 
(1) 
Hassake (4) 
Tartous (13) 
Qaryatain (4) 

Hauran (16), Hassake (6), Northeast (5), 
Quneitra (2), Aleppo (2), Hama (1), Horns 

Mountains ( 6 ), Aleppo (8), Central 
^„_, ,.,, Hama (1), Damascus (1) 
Palmyra (6), Hama (4), Horns (4), Qaryatain (2), Aleppo 
(2), Tartous (1), Hassake (1) 
Idleb (7), Lattakia (4), Central Mountains (3), Tartous 
(1), Horns (1) 

Northeast (5). 
Northeast (2) 

Palmyra (1) Hassake (6) 
Hassake (3) 
Palmyra (1) 
Palmyra (1) 
Palmyra (1) 
Palmyra (1) 
Tartous (1) 
Tartous (1) 
Idleb (2) 
Aleppo (4), Tartous (2), Idleb (1), Hama (1), Horns (1), 
Palmyra (1) 
Damascus (1) 
Northeast (1) 
Lattakia (2) 
Lattakia (1), 
Lattakia (1) 
Lattakia (3), 
Lattakia (1) 
Lattakia (1) 

Tartous (1) 

Central Mountains (2), Tartous (1) 

Table 3.6 lists the principal regions of geographical distribution, 

and in Appendix I, distribution of all encountered landrace groups is 

mapped. Haurani was the most widespread landrace, both in number of 

populations and in distribution. It was collected in most durum wheat 

production regions, in the Hauran region itself and in Damascus region 
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at a high frequency. Baladi and Bayadi were widespread as well, with 

concentrations in the regions of Tartous, Central Mountains and Aleppo, 

and in the regions of Horns, Hama and Palmyra, respectively. All other 

landraces were regionally concentrated. Some were cultivated in rather 

extended areas, such as Hamari, while others were limited to a much 

smaller region, such as Sin AI Jamal. Surprisingly, Halabi was not found 

in the province of Aleppo, but was concentrated in the east. An explanat­

ion may be that in Aleppo this group is called "Baladi", since the Baladi 

landraces in this region are all of the Haurani/Halabi type. 

3.4 Discussion 

3.4.1 Agro-ecological characterization 

Dividing the regions of collection helped define sub-regions with more 

or less uniform climatic conditions. Although high homogeneity for all 

characteristics could not be expected, since variation was minimized in 

a multidimensional space, the majority of mean values differed sig­

nificantly (Table 3.1). The minimization of within-group variation was 

confirmed by SDA, which separated regions by formation of two canonical 

variables. The small inconsistencies between the two analyses can be 

caused by variation in climatic conditions determined by local factors 

such as topography, vegetation and the presence of bodies of water. 

Differences in agronomic characteristics are of particular interest. In 

"Centre/North" yields are lower than in "South", in spite of higher 

rainfall (Table 3.1). Regional durum wheat nurseries (Yau, 1987, 1988, 

1989) indicate that as annual rainfall increases from 200 to 500 mm, seed 

yield also increases. Grain yields were also calculated from the number 

of seeds per spike and thousand kernel weight of the individual spikes 

collected and the number of spike-bearing tillers m"2 (Tables 3.1 and 3.7). 

These values differed considerably from farmers' estimates (Table 3.7): 

in "West", the calculated value is 0.3 t ha"1 higher than the estimated 

value, in "South" 0.7 t ha"1 lower, whereas in "Centre/North" they 

approximately match. It is unlikely that not randomly collecting accounts 

for the whole difference. This suggests that in "South", the farmers have 

reported overestimated yield levels. 

Straw yields and harvest indexes are biased by harvesting methods: 
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while in "West" harvesting by hand is a common practice, resulting in low 

loss of straw, in other parts harvesting is mostly done by machine, which 

causes loss of the stubble. Consequently, straw yield is lower and harvest 

index higher. 

Table 3.7. Grain, straw and total yield, and harvest index for the three 
subregions, under favourable and average growing conditions. 

Favourable 
Grain yield (t 
Straw yield (t 
Total yield (t 
Harvest index 

Average 
Grain yield (t 
Straw yield (t 
Total yield (t 
Harvest index 

ha"1) 
ha'1) 
ha"1) 

ha"1) 
ha"1) 
ha"1) 

West 

1.8 
2.3 
4.1 
0.44 

1.1 
1.5 
2.6 
0.42 

(1 4)* 

South 

2.9 
2.2 
5.1 
0.57 

1.9 
1.3 
3.2 
0.59 

(1 2 ) * 

Centre/North 

2.3 
1.8 
4.1 
0.56 

1.5 (1.4)* 
1.3 
2.8 
0.54 

* = normal grain yield as calculated from observed yield components. 

Therefore, it is questionable whether under favourable growing condit­

ions, performance is best in "South", where the highest grain and total 

yield and harvest index are reached (Table 3.7). In "West" and 

"Centre/North", total yields are equal under favourable conditions, but 

grain yield in "West" is considerably lower, illustrating the tendency 

of landraces to produce more straw rather than a higher grain weight under 

high rainfall conditions. 

Noteworthy differences were found between seed rate (in kernels m"2) 

and number of spikes m"2. For "West", "South" and "Centre/North", these 

are 433 and 115, 312 and 109, and 347 and 138, respectively. Evidently, 

emergence and crop establishment are poor. Frost and drought at early 

development stages could account for this, in combination with the common­

ly used split ridge sowing technique and bird damage. 

Yield trials, with focus on the interaction between crop and climate 

characteristics, are necessary for clearer interpretation of observed 

trends. Then also the relevance of the demonstrated clustering to crop 
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characterization on basis of field evaluations can be investigated, if 

clustering on basis of agronomic and physiological traits has parallels 

in the clustering of environments. 

3.4.2 Morphological characterization 

Durum wheat landraces in Syria are threatened with extinction (van 

Slageren et al., 1989). The dangers of disappearance of germplasm have 

been pointed out repeatedly (Bennett, 1965; Dahlberg, 1983; Feldman & 

Sears, 1981; Mooney, 1979), and it is therefore important to ensure the 

preservation of the Syrian T. durum genepool, which may hold yet unknown 

genes and gene complexes. 

Large proportions of T. aestivum were found in T. durum populations 

only in the regions of Tartous and Central Mountains. The lower propor­

tions inland could be related to the lower annual rainfall, which favours 

the better adapted durum wheat. However, the high purity of the landraces 

collected in Lattakia province, where annual rainfall is also high, 

indicates that other factors play a role. Impurity is apparently accepted 

and desired by farmers, who otherwise would produce a purer crop. Human 

diet preferences and differential disease resistance may be of influence. 

The term "landrace group" was used by Zeven (1986) for landraces 

derived from one another or sharing a common origin. In Western Europe, 

it was possible to group landraces with different names, but in Syria it 

is still not known how landraces of different names are related, and 

therefore only landraces carrying the same name were grouped. This em­

pirical division was thus based purely on identification by farmers. 

Mac Key (1966) noted the continuity of morphological traits among T. 

turqidum convarieties. which has a parallel in the morphological variation 

among the T. durum landrace groups, to such an extent that clear dis­

tinction between groups could not always be made. The grouping should 

therefore merely be considered as a systematical description of visable 

variation. 

Depending on environmental influence, the expression of characteris­

tics in the region of origin may differ from that in the evaluation site, 

and therefore the descriptions may not be completely accurate in giving 

the morphology of landraces in their original habitat. 

Geographical distribution patterns can be recognized within the total 
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germplasm collection of Syrian durum wheat landraces. Only three landrace 

groups, viz. Haurani/Halabi, Baladi and Bayadi, were really widely distr­

ibuted, whereas others, although found outside the principal regions of 

collection, should not be considered as such, as they were encountered 

only occasionally. The reason for the success of Haurani can only be 

speculated upon. Possibly, the intermediate climatic conditions of the 

supposed region of origin, Hauran, gave the landrace a relatively easy 

access to other climatic conditions. It should be noted that Haurani is 

not cultivated in the western part of the country. Apparently, the land-

race had a competitive disadvantage that prevented its spread into moun­

tainous areas. 

Besides regional diversification, genetic diversification is found in 

the heterogeneous nature of the landraces and in the cultivation of 

different landraces per region or village. Apart from the Hauran and 

Quneitra region, where only Haurani landraces were collected, three or 

more landrace groups were sampled per agro-ecological region. 



Chapter 4 

PATTERNS OF VARIATION 

Abstract 

Phenotypic variation components were estimated with respect to days 

to heading, flag leaf length and width, plant height, awn and spike 

length, awn and spike colour, spikelets per spike and seed shrivelling 

of 84 Syrian durum wheat landrace populations. Multivariate patterns 

of variation were established through principal component analysis to 

describe relationships between landrace groups and regions of collect­

ion. Agro-ecological site characteristics and plant traits were com­

pared with respect to patterns of geographical variation. Grouping on 

the basis of landrace groups proved more discriminative than on the 

basis of regions of origin. Landraces originating from sites charac­

terized by favourable growth conditions tended to be later in heading 

and to have longer spikes with longer awns but with less spikelets. 

The observed relation between favourable growth conditions in the 

region of origin and smaller flag leaves may be caused by genotype x 

environment interaction. 

Among populations variation was high, and amounted to 96Z of the 

total variation, whereas the remnant 42 was contributed to differences 

within populations and among lines. Variation among landrace groups 

and among regions was calculated as 79Z and 75Z of total variation, 

respectively. 

4.1 Introduction 

Rainfed agriculture in West Asia and North Africa is influenced by vari­

ation in environmental conditions among localities and years, such as 

rainfall, summer and winter temperature, nutrient level, diseases, pests 

and management practices (Ceccarelli et al., 1987b). This restricts the 

use of modern varieties that require inputs such as fertilizer and supple­

mentary irrigation to exploit fully their genetic potential. Landraces, 

although moderate in maximum yield, generally offer a more stable yield 

over a wide range of environmental conditions (Hawkes, 1983). Since 
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domestication, landraces of a particular crop have been cultivated in 

various agro-ecological niches by farmers who maintained their own seed 

and applied so-called "unconscious selection" (Harlan et al., 1973; 

Heiser, 1988). This process has resulted in a wide variation of plant 

characteristics, among and within locations, which are balanced in such 

a way that environmental pressures are generally not catastrophic to the 

crop and do not lead to great loss of harvest. The variable genetic 

composition of landraces is an important factor in stress tolerances, 

which can be utilized by breeding programs aimed at the production of 

varieties suitable to areas where biotic and abiotic stress conditions 

are regularly encountered (Ceccarelli etal., 1987a; Nachitetal., 1988). 

Breeding programs often face the problem of evaluating large germplasm 

collections to identify entries carrying promising traits as potential 

parents. It may be more efficient to evaluate a representative sample of 

a collection at a number of sites with distinct environmental characteri­

stics, possibly over a number of years, than to evaluate the entire 

collection in a single environment. However, dividing accessions into 

groups that represent diverse backgrounds requires detailed knowledge of 

the original environments and diversity pattern of the material under 

evaluation. Also, Brown (1989) argues that carefully chosen subsamples 

of a species will contain more genetic diversity than randomly chosen 

subsamples. 

This study describes phenotypic variation components for a collection 

of durum wheat, and relates variation in plant and environmental charac­

teristics among populations, among landrace groups and among regions of 

col lection. 

4.2 Materials and methods 

Germplasm collecting missions for landraces of durum wheat fTriticum 

turqidum L. var. durum (Desf.) MK] in 1987 and 1988 in the Syrian Arab 

Republic (van Slageren et al., 1989) yielded 59 and 25 landrace populat­

ions, respectively. These had most probably evolved at or near the site 

of collection, as farmers had declared that the seed was not recently or 

in the past obtained from other regions. The collection sites represented 

a wide range of agro-ecological areas. Four climatic characters, viz. 

maximum and minimum annual monthly temperature, annual precipitation and 
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the difference between the longest and shortest day length in the course 

of a year, were used to cluster collection sites into geographical regions 

that were relatively stable for these characters as compared to differ­

ences between regions. The regions were described for a set of climatic, 

ecological and agronomic characteristics, and landrace groups as distin­

guished by farmers, who identify them with different names, were morphol­

ogically described (Chapter 3). 

Each accession was collected both as a bulk sample and as randomly 

selected spikes. Bulk samples were multiplied for agronomic evaluation, 

and the single head progenies were evaluated for variation components. 

After collection, the seed samples were fumigated with aluminum 

phosphide (6 g m"3 Phostoxin) to control insect infestation, and before 

sowing the threshed seeds were treated against common bunt (Tilletia 

caries and T. foetida) by application of Vitavax 200 (2.5 g carboxine and 

thiram per kg seed). The crop was sprayed at regular intervals with 

Bayfidan (250 g Triadimenol l"1, 0.5 1 ha"1), a broad spectrum fungicide. 

Fifty spikes as single head progenies were sown in a randomized 

complete block (RCB) design with one landrace population per block. Since 

the number of seeds per collected spike was in most cases small, no 

replications were possible. The 1987 collection was evaluated in the 

1987/88 season, the 1988 collection in the 1988/89 season. A local land-

race, Haurani, was used as check, with one and three lines added at random 

per evaluated population, in 1988 and 1989, respectively. 

Evaluation fields were situated at the farm of ICARDA's headquarters 

near Tel Hadya, Syria, located at 36°01' N and 36°56' E, and 284 m eleva­

tion. The fields had not received fertilizer for some years, and contained 

at sowing in november 1987 0.89% organic matter, 590 ppm N and 2.4 ppm 

P, and at sowing in november 1988 0.88% organic matter, 677 ppm N and 5.2 

ppm P. Total annual precipitation amounted to 504 mm and 234 mm, respecti­

vely, and seasonal minimum air temperature was reached at -7.4 °C and -9.7 

°C, respectively. 

The number of days from emergence to heading was recorded for all 

lines. After flowering, observations were made on 25 single head progenies 

and all check lines for flag leaf length and width on five plants per 

line, and for plant height on three plants per line. A higher number of 

observations on the flag leaf was considered necessary because of its 

greater variation than plant height. After maturity, five spikes of each 
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line were harvested at random measured in the laboratory for awn and spike 

length, awn and spike colour, number of spikelets per spike and degree 

of seed shrivelling. In Table 4.1 the scale used to quantify spike charac­

ters is specified. Awn length (mm) was measured from the top grain to the 

termination of the longest awn, spike length (mm) from the top grain to 

the deepest point of the collar, and the number of spikelets per spike 

included the lowest, aborted spikelet(s). 

Table 4.1. Scale used to quantify spike characters (after Mattatia, 1986; 
Williams et al., 1988). 

Awn colour 

1 = yellow, straw colour 
3 = tan coloured to light beige-brown 
5 = mostly darker brown to reddish 
7 = purple to black at the base, lighter tan coloured to yellow distally 
9 = dark purple to black 

Spike colour 

1 = cream-white to yellow (straw colour) 
3 = darker, beige to brownish or reddish, tips greenish 
5 = spike mottled or patched: tips, margins or other parts of glumes 

and/or lemmas purple to black, the rest yellow 
7 = tips, margins or other parts of glumes and/or lemmas darker purple 

to grey, the rest beige-brown, reddish or greyish 
9 = spike mostly dark purple or black 

Seed shrivelling 

1 = smooth 
3 = slightly shrivelled: only one lateral side, possibly slightly on the 

other lateral side 
5 = fairly shrivelled: on both lateral sides 
7 = shrivelled: on both lateral sides and bottom side 
9 = very shrivelled, deformed 

Bread wheat lines, which were identified in some populations, were 

excluded. Remaining data on durum wheat lines were analyzed using the BMDP 

statistical software package (Dixon et al., 1985). 

Mean values were calculated for each single head progeny, and 

subsequently population means were established on basis of the landrace 

single head progenies. Initial analysis showed that landrace group x year 
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interaction was not significant for all characters except for days to 

heading (p = 0.03), and awn and spike colour (p < 0.01). Although this 

cannot be interpreted as pure genotype x year interaction, it was decided 

to rescale population mean values to comparable 1987/1988 values through 

Analysis of Covariance (ANCOVA) of landrace group on year, using the check 

values as covariable. Awn and spike colour which characterized landrace 

groups and regions represented by only one year were not rescaled. Adjust­

ment of these qualitative characters occasionally led to values below one, 

which on the scale used would be meaningless. Means per landrace group 

and per region were calculated. 

Calculations on population mean values were first performed. Character 

association was studied through calculation of correlation coefficients 

between agro-ecological site characteristics and population means of 

observed traits, and between population characteristics only. Positive 

correlation between site and plant characteristics would suggest that 

variation between populations is related to agro-ecological variation 

between collection sites. High correlation coefficients between plant 

characteristics would indicate corresponding patterns of geographical 

variation in phenotypes (Bekele, 1984), as well as genotypes, if the 

conclusion of Cheverud (1988), based on animal research, also holds good 

for plant populations. He concluded that "phenotypic correlations are 

likely to be fair estimates of their genetic counterparts in many situat­

ions". If the heritability is sufficiently high, this assumption is likely 

to be correct. 

Principal Component Analysis (PCA) on basis of rescaled values was used 

for definition of multivariate patterns of variation among landrace groups 

and regions of collection. 

Secondly, on the basis of line values the coefficient of variation 

(c.v.) per landrace group and per region was calculated to express the 

phenotypic variation. Mean values of both collections were taken. 

Contribution to phenotypic variation by populations, landrace groups 

and regions was analyzed with a nested analysis of variance (ANOVA): 

1. Populations 
a. landrace groups 

populations within landrace groups 
b. regions 

populations within regions 
2. Lines within populations. 
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Table 4.2. Regions of origin, landrace groups (Chapter 3) and population means 
for observed traits per population, after rescaling through ANCOVA. 

(1) 

1 
4 

25 
32 
40 
42 
44 
51 
52 
54 
56 
58 
70 
72 
76 
94 
95 
97 
99 

100 
101 
102 
103 
117 
119 
127 
128 
135 
136 
163 
167 
172 
174 
203 
205 
208 
209 
218 
220 
222 
224 
236 
245 
246 
247 
250 
251 
255 

(2) 

12 
14 
14 
12 
13 
12 
14 
12 
12 
12 
12 
12 
12 
12 
12 

7 
7 
7 
7 
7 
7 
7 
7 
9 
8 
8 
8 
8 
8 
8 
8 
9 
9 
5 
5 
4 
4 
5 
5 
5 
5 
4 

10 
10 
10 

3 
3 
6 

(3) (4) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
4 
1 
3 
9 

10 
11 
12 

1 
4 
4 
9 
4 
1 
1 
4 
1 
4 
3 
2 
6 
6 
2 
5 
5 
2 
6 
1 
6 
3 
5 

13 
3 

152.57 
148.17 
147.70 
149.53 
152.89 
150.13 
146.84 
147.45 
150.98 
152.00 
147.37 
161.71 
148.28 
149.07 
148.61 
149.98 
151.43 
158.85 
158.35 
152.77 
152.40 
148.30 
152.30 
152.24 
153.50 
150.72 
152.93 
150.65 
147.45 
153.45 
152.29 
148.73 
150.79 
149.99 
147.84 
151.02 
153.30 
148.76 
149.42 
147.89 
149.61 
153.15 
161.02 
153.28 
144.43 
154.52 
155.30 
147.49 

(5) 

22.49 
17.92 
17.65 
20.88 
21.81 
19.88 
19.25 
21.94 
22.08 
21.88 
17.69 
20.08 
21.06 
18.64 
18.02 
22.55 
22.06 
21.88 
20.93 
25.05 
23.46 
19.16 
22.76 
18.37 
22.66 
24.41 
18.61 
25.94 
21.49 
22.35 
24.93 
18.62 
25.48 
19.85 
19.05 
23.27 
20.86 
20.72 
19.51 
17.27 
21.47 
16.69 
17.83 
21.97 
19.48 
20.26 
18.66 
22.59 

(6) 

1.65 
1.51 
1.23 
1.75 
1.63 
1.59 
1.41 
1.78 
1.83 
1.54 
1.26 
1.55 
1.69 
1.61 
1.48 
1.85 
1.31 
1.56 
1.70 
1.59 
1.34 
1.64 
1.34 
1.43 
1.36 
1.54 
1.25 
1.58 
1.62 
1.82 
1.41 
1.43 
1.48 
1.57 
1.55 
1.72 
1.44 
1.59 
1.43 
1.23 
1.66 
1.44 
1.43 
1.6 
1.46 
1.52 
1.24 
1.78 

(7) 

86.81 
85.12 
82.76 
96.89 
91.83 
94.87 
90.12 

103.90 
94.61 
94.44 
83.97 

113.11 
98.06 
80.93 
85.12 
94.48 
98.86 

108.27 
118.19 
125.09 
111.58 

71.68 
90.58 
79.76 
93.24 

108.53 
98.64 

115.04 
105.16 
106.17 
107.90 

90.50 
110.36 

79.79 
93.58 

105.44 
93.34 

101.80 
78.82 
74.52 

106.57 
103.89 

75.51 
102.60 

98.39 
93.17 
84.78 
99.37 

(8) 

109.94 
101.18 

91.00 
106.20 
106.41 

97.00 
97.09 
98.37 
92.51 

125.95 
102.35 
112.76 
103.50 
105.65 

94.79 
105.64 
127.51 

96.48 
130.56 
132.95 
135.99 

85.99 
130.29 
104.42 
126.72 
118.40 

-
117.46 
102.10 

99.46 
136.25 

94.63 
130.71 

-
90.28 

109.20 
131.04 

98.16 
85.29 
84.68 

103.16 
115.55 

-
114.27 

90.56 
106.18 
105.79 

97.12 

(9) 

56.18 
48.66 
50.58 
52.22 
53.87 
55.69 
50.08 
57.20 
50.43 
61.85 
53.76 
83.36 
52.07 
44.44 
50.41 
55.55 
68.48 
64.35 
80.37 
80.42 
68.70 
57.00 
67.30 
49.59 
77.60 
83.52 

-
87.09 
47.59 
56.78 
77.29 
49.47 
78.52 

-
53.48 
67.27 
74.75 
56.91 
47.07 
45.33 
53.15 
51.52 

-
65.59 
43.52 
64.70 
65.90 
53.11 

(10) 

17.57 
18.77 
16.55 
19.17 
16.52 
19.32 
19.79 
20.17 
20.31 
20.14 
17.98 
19.10 
19.30 
17.75 
19.10 
19.44 
15.68 
21.90 
20.25 
20.00 
13.83 
15.33 
13.33 
17.46 
17.38 
17.26 

-
18.08 
16.63 
19.15 
18.18 
18.92 
16.41 

-
18.54 
17.36 
17.42 
19.24 
17.91 
19.06 
18.10 
19.04 

-
18.56 
18.12 
17.59 
14.83 
18.74 

(11) 

1.17 
1.00 
1.14 
1.04 
1.01 
1.21 
1.00 
1.15 
1.00 
1.01 
1.00 
1.63 
1.04 
1.12 
1.00 
1.00 
6.92 
1.72 
3.29 
5.30 
6.86 
2.68 
6.69 
1.02 
5.94 
6.04 

-
5.76 
1.49 
1.00 
6.74 
1.00 
6.93 

-
1.00 
3.92 
7.10 
1.29 
2.51 
1.95 
1.00 
7.01 

-
7.05 
2.68 
5.90 
1.59 
1.00 

(12) 

1.27 
1.00 
1.14 
1.04 
1.04 
1.23 
1.00 
1.10 
1.00 
1.09 
1.00 
1.05 
1.04 
1.04 
1.01 
1.05 
2.05 
4.89 
1.34 
2.03 
4.72 
1.06 
3.29 
1.05 
2.87 
2.52 

-
2.61 
1.45 
1.02 
4.41 
1.06 
3.61 

-
1.00 
2.94 
4.36 
1.92 
2.87 
3.99 
1.00 
4.44 

-
6.79 
2.68 
4.23 
1.23 
1.02 

(13) 

3.45 
1.76 
2.00 
2.23 
3.93 
3.41 
2.60 
3.15 
3.94 
2.61 
1.55 
2.08 
2.10 
1.60 
3.13 
2.32 
1.43 
4.56 
2.50 
3.73 
2.81 
1.31 
2.41 
3.30 
2.00 
3.35 

-
4.44 
2.98 
3.32 
3.14 
3.48 
2.28 

-
4.47 
2.27 
2.37 
3.30 
4.35 
3.97 
3.84 
3.28 

-
3.20 
2.98 
3.16 
3.11 
3.12 
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269 
270 
272 
274 
275 
276 
277 
283 
286 
287 
290 
300 
301 
319 
329 
332 
335 
336 
342 
348 
351 
357 
358 
362 
364 
369 
381 
385 
386 
389 
393 
402 
406 
410 
411 
412 

10 
3 
2 
2 
2 
2 
3 
3 
3 
3 
3 
7 
7 
7 
7 
7 

11 
11 
11 
11 
11 

1 
1 
1 
1 
1 
3 
1 
1 
1 
1 
2 
1 
2 
3 
2 

3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
1 
1 
3 
1 
2 
6 

14 
8 
8 
6 
2 
6 
7 
7 

15 
7 
7 
7 
7 
2 

152 
155 
153 
156 
154 
156 
152 
155 
152 
156 
152 
151 
150 
150 
150 
149 
149 
148 
151 
150 
158 
151 
156 
156 
158 
152 
151 
154 
154 
156 
157 
151 
151 
153 
153 
151 

.95 

.28 

.47 

.05 

.67 

.15 

.27 

.37 

.10 

.94 

.79 
13 
53 
53 
73 
51 
51 
15 
41 
15 
35 
25 
50 
80 
49 
19 
85 
61 
85 
01 
90 
84 
17 
62 
11 
06 

17 
18 
16 
19 
21 
18 
19 
17 
21 
18 
20 
20 
18 
19 
20 
20 
20 
19 
21 
20 
14 
17 
22 
21 
20 
21 
21 
22 
21 
20 
20 
21 
21 
20 
21 
19 

79 
99 
88 
66 
86 
66 
14 
89 
54 
34 
01 
10 
78 
78 
50 
38 
50 
59 
21 
52 
71 
94 
64 
44 
91 
50 
91 
65 
48 
13 
94 
62 
21 
84 
32 
83 

1.20 
1.08 
1.16 
1.34 
1.24 
1.19 
1.29 
1.06 
1.29 
1.13 
1.27 
1.58 
1.32 
1.46 
1.58 
1.58 
1.58 
1.57 
1.72 
1.56 
1.38 
1.44 
1.56 
1.65 
1.54 
1.47 
1.31 
1.74 
1.38 
1.32 
1.56 
1.32 
1.24 
1.35 
1.45 
1.19 

81.87 
80.10 
85.95 
89.69 
98.58 
88.70 

107.51 
82.09 

104.19 
86.16 

109.41 
96.11 
97.09 
92.61 
97.62 
97.14 
90.05 
92.58 
93.58 
92.97 
67.69 
91.09 
96.12 
99.60 
93.13 

100.14 
97.01 
98.00 
90.22 
93.72 
99.82 
97.68 
96.77 
95.69 
92.29 
97.18 

88.35 
126.09 

97.56 
119.51 
104.86 
119.81 
119.45 
112.99 
105.74 
121.39 
101.44 
102.50 

96.79 
100.18 
101.47 
105.84 
100.63 

95.42 
103.11 

91.94 
114.59 
109.94 
126.51 
122.35 
124.03 
120.06 
109.42 
125.38 
119.36 
113.84 
135.41 
119.07 
117.77 
116.91 
119.74 
113.50 

58.99 
79.79 
71.28 
72.54 
92.01 
81.23 
76.97 
79.83 
69.65 
81.64 
73.16 
61.78 
58.51 
57.94 
57.50 
58.79 
54.62 
52.55 
59.44 
52.35 
74.73 
76.65 
65.00 
68.70 
63.10 
61.32 
71.86 
66.40 
72.38 
79.63 
77.70 
75.41 
67.52 
70.16 
73.14 
73.06 

16.42 
17.36 
16.00 
16.87 
17.49 
17.70 
16.91 
18.64 
19.06 
19.82 
17.03 
16.29 
18.68 
18.09 
19.15 
18.02 
17.81 
18.90 
19.88 
19.68 
18.44 
17.71 
20.37 
18.09 
19.29 
17.79 
17.31 
18.80 
16.64 
17.05 
21.27 
18.25 
16.85 
17.78 
17.00 
18.29 

1.22 
1.45 
1.35 
1.83 
3.37 
1.32 
1.46 
1.75 
1.12 
1.67 
1.00 
1.12 
1.78 
1.00 
1.00 
1.04 
1.00 
1.00 
1.01 
1.00 
3.21 
6.30 
6.16 
5.64 
5.76 
5.08 
6.48 
5.66 
5.56 
2.00 
4.30 
1.69 
3.34 
5.48 
6.74 
3.60 

1.13 
1.03 
1.17 
1.55 
3.20 
1.19 
1.46 
1.40 
1.14 
1.54 
1.00 
1.05 
2.11 
2.18 
1.00 
1.04 
1.00 
2.44 
1.60 
1.94 
3.09 
4.74 
4.18 
4.43 
4.78 
3.33 
4.77 
4.93 
3.76 
1.79 
3.97 
4.02 
3.58 
3.56 
4.96 
4.04 

2.80 
3.24 
2.34 
3.43 
3.70 
2.68 
3.05 
4.04 
3.20 
4.13 
4.55 
2.21 
3.09 
3.78 
2.38 
2.29 
2.58 
2.99 
3.35 
3.10 
3.59 
3.27 
1.89 
2.56 
2.63 
2.22 
3.28 
2.87 
3.01 
2.63 
2.49 
2.90 
2.47 
2.63 
3.38 
3.21 

Columns : Regions of origin: Landrace groups : 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 
(13) 

ID collection number 
region of origin 
landrace group 
days to heading (d) 
flag leaf length (cm) 
flag leaf width (cm) 
plant height (cm) 
spike length (cm) 
awn length (cm) 
spikelets per spike (• 
spike colour (-) 
awn colour (-) 
seed shrivelling (-) 

1 = 
2 = 
3 -
4 = 
5 = 
6 = 
7 = 
8 = 
9 = 

10 = 
11 = 
12 = 
13 = 
14 = 

Lattakia 
Central Mountains 
Tartous 
Aleppo 
Idleb 
Hama 
Central Area 
Hassake 
Northeast 
Horns 
Qaryatain 
Damascus 
Quneitra 
Hauran 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

= 
= 
-
= 
= 
= 
= 
= 
ss 

= 
= 
= 
= 
= 
= 

Haurani 
Baladi 
Bayadi 
Shihani 
Hamari 
Sweidi 
Surieh 
Haririeh 
Nabi Jamal 
Mousseirieh 
Saglouweh 
Juda 
Sheirieh 
Harami 
Ahmar 
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4.3 Results 

Population means of observed plant characeristics are given in Table 4.2, 

and mean values per landrace group and per region of collection, are given 

in Tables 4.3 and 4.4, respectively. 

Correlation coefficients between site and plant characteristics (see 

for characteristics and scales Chapter 3 ) , significant at p = 0.01 were 

generally low, with values less than |0.45| (Table 4.5). Highest signifi­

cant correlations were found between flag leaf width and annual rainfall 

(r = -0.52), soil organic matter (r = -0.57), and soil nitrogen (r = -

0.57). The results also suggest that drought and high temperature stress 

is negatively correlated with days to heading, but positively with flag 

leaf width and, although less pronounced, with flag leaf length and plant 

height. Rainfall and low temperatures further show positive correlation 

with spike and awn length. Soil fertility, use of inputs and sowing rate 

are negatively correlated with flag leaf width and length and spikelets 

per spike, but otherwise these site characteristics are positively related 

with plant characteristics. Separately processing of the 1987 and 1988 

collection data sets gave a comparable matrix of correlation coefficients. 

Among plant characteristics (Table 4.6), the highest significant 

correlation coefficients were between awn and spike colour (r = 0.81), 

awn length and spike length (r = 0.69), awn length and colour (r = 0.67), 

flag leaf length and plant height (r = 0.69) and days to heading and spike 

length (r = 0.67). 

With PCA, possible relationships between landrace groups and between 

regions were elucidated. Three principal components were defined, of which 

the first two accounted for 51% and 29%, respectively, of the variance 

in the factor space (Table 4.7). The first axis was positively related 

to days to heading, awn and spike colour and awn and spike length, and 

the second axis to flag leaf width and spikelets per spike. Plant height 

and flag leaf length were explained about equally by both first two 

factors, while degree of seed shrivelling was highly related only to the 

third factor. 

Apart from some outliers, the Haurani and Bayadi landrace groups over­

lapped at the negative side of the first factor, and the majority of the 

populations had positive values for the second factor (Figure 4.1). This 

implicates relatively early heading, short, light coloured awns and 
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Table 4.7. Unrotated factor loadings and proportion of variance 
in factor and data space. 

days to heading 
flag leaf length 
flag leaf width 
plant height 
awn length 
spike length 
spikelets per spike 
awn colour 
spike colour 
seed shrivelling 

variance in factor space 
variance in data space 

pc 1 

0.61 
0.58 

-0.12 
0.53 
0.87 
0.78 

-0.14 
0.83 
0.69 

-0.02 

51Z 
46Z 

pc 2 

-0.28 
0.65 
0.86 
0.65 

-0.07 
-0.27 

0.52 
-0.06 
-0.07 

0.09 

292 
10Z 

pc 3 

0.48 
-0.20 
-0.13 

0.08 
-0.08 

0.29 
0.59 

-0.31 
-0.06 

0.73 

20Z 
14Z 

spikes, broad flag leaves and a high number of spikelets per spike. Baladi 

populations appeared mainly in the lower half of the diagram. The Shihani 

landrace group was plotted at the upper end of the first factor, neigh­

boured at by the Sweidi landrace populations. Surieh landrace populations 

were found amidst Sweidis, although restricted to the negative side of 

the second factor. Shihani landrace populations were generally charac­

terized by higher values for all traits. Sweidi and Surieh were late in 

heading, had long and dark coloured awns and spikes, were tall and had 

long flag leaves. Surieh landrace populations were further characterized 

by moderately narrow flag leaves and relatively few spikelets per spike. 

Hamari landrace populations carried the same last two characteristics. 

For clarity, landrace groups represented by only one or two accessions 

were not included in the figure. The two Haririeh populations appeared 

close to coordinates (1.2,0.1), Nabi Jamal at (1.7,1.9), Mousseirieh at 

(1.9,-0.4), Saglouweh at (-1.3,-0.8), Juda at (1.2,-1.1), Sheirieh at 

(-0.3,-1.8), Harami at (1.2,0.5), and Ahmar at (1.4,0.4). 

Grouping sites on basis of regions of collection (Figure 4.2) produced 

less clear differentiation, due to strong overlap of regions. Western 

collection regions appeared in majority in the fourth quadrant, whereas 

the southern collection regions were distributed generally over the second 

and third quadrants. Northern, central and eastern collection sites were 
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plotted in all quadrants. Separation into subregions gave no substantial 

improvement, because of spatial separation of sites belonging to the same 

subregion. 

Landrace populations from western collection sites can be charac­

terized by late heading, long and dark coloured awns and spikes, narrow 

flag leaves and a few spikelets per spike; populations from southern sites 

by early heading and short and light coloured awns and spikes. 

In Tables 4.3 and 4.4 are given the coefficients of variation by 

landrace group and by region. Whereas differences between plant characters 

were high, values per landrace group and per region were relatively 

stable. The highest coefficient of variation of days to heading was 0.03, 

in contrast to the highly variable awn and spike colour and, to a lesser 

extent, the degree of seed shrivelling. 

The contributions of phenotypic variation components as calculated 

on basis of the nested ANOVA model is given in Table 4.6. The contribution 

of among population variation to the total variation was generally much 

higher than of lines within populations: 96% and 4%, respectively. Among 

landrace groups, contribution to total variation varied from 64% to 92%, 

with a mean value of 79%. Among regions, these values were 59%, 86% and 

75%, respectively. 

In all cases, awn colour had the highest component of variation. Days 

to heading ranked second for variation among populations and fifth for 

the other two components, but otherwise no major differences appeared in 

the sequences. 

4.4 Discussion 

All observations are phenotypic, and thus comprise an environmental 

component, which is however, difficult to estimate on the basis of avail­

able information. The mean square of the experimental error is given in 

Table 4.3 as an indication. The environmental variation consists of three 

elements, viz. a year effect, a field effect, and an effect caused by 

growing the plants in an environment different from the original one. 

Rescaling partially eliminated year effects, and allocation of all lines 

of a particular population to one block reduced within population variat­

ion at the expense of among population variation. Awn and spike colour 

are particularly sensitive to environmental conditions (Hervey-Murray, 
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1980; Zeven, 1983), and scoring on a quantitative scale can over-emphasize 

shades of colour. These and other field evaluations, though, suggest that 

under Syrian arid conditions post-anthesis drought stress induces de­

colouration. In this respect, both evaluation seasons have had similar 

effects, moreover since drought stress has been relatively uniform within 

evaluation fields. 

The fact that PCA formed multivariate components of variation that 

discriminated improperly between all landrace groups and poorly between 

regions of collection implies that the combination of characters into 

principal components has reduced the total variation, but that within 

group variation was reduced less, or that clusters are similar. Based on 

the characters evaluated, grouping of accessions on the basis of landrace 

groups is more promising than on the basis of regions of collection. The 

generally low correlations between site and plant characteristics confirms 

this. Although the origin of the seed was verified, there remains the 

possibility that farmers have traded seed between regions. 

The earlier conclusion based on spike characters that the Haurani and 

Bayadi landrace groups are morphologically similar (Chapter 3) was con­

firmed by the PCA, which did not distinguish between these two landraces 

groups. 

The Arabic word "baladi" means native or indigenous; in other words, 

it indicates that a population carrying this name is local, and can be 

a representative of any landrace group. This is not clearly shown in 

Figure 4.1, which displays these populations intermediately, but separat­

ely processing of the 1987 collection data (resulting plot not given) 

makes this more obvious. The Baladi's then overlap considerably with other 

groups. Figure 4.1 further suggests similarity of the Sweidi and Surieh 

landrace groups. 

From the relations between site and plant characteristics, it was 

concluded that landrace populations originating from sites characterized 

by favourable growth conditions tend to be later in heading, to have 

smaller flag leaves, and to have longer spikes with longer awns but with 

less spikelets. Especially the tendency of smaller flag leaves seems 

contradictory to the normally positive relation between growth conditions 

and size of vegetative organs. However, as the material was evaluated at 

fields low in organic matter, nitrogen and phosphorus, genotypes from 

favourable regions may have had a comparative disadvantage, which resulted 



Patterns of variation 51 

in reduced growth and smaller leaves. Such expression of genotype x 

environment interaction illustrates the care with which single 

evaluations, have to be interpreted. 

Consistency in geographical patterns of variation was shown by several 

of the studied plant characteristics, as indicated by the matrix of 

correlation coefficients (Table 4.6). 

Table 4.8. Estimates of phenotypic variation components, as 
percentage of total variation. Mean values for 1987 and 1988 
collections. 

character 

awn colour 
days to heading 
spike length 
spike colour 
awn length 
flag leaf width 
flag leaf length 
seed shrivelling 
spikelets per spike 
plant height 

mean 

among 
populations 

99.2 
98.9 
98.8 
98.8 
98.1 
95.0 
94.4 
94.4 
93.6 
88.7 

96.0 

among 
landrace 
groups 

92.8 
77.7 
91.9 
89.6 
91.6 
72.0 
72.8 
63.9 
69.9 
65.1 

78.7 

among 
regions 

86J. 
76.6 
84 £ 
81.6 
83.7 
74 3 
68.6 
715 
59 3 
58 J. 

74 5 

Phenotypic variation could be allocated almost entirely to differences 

among populations (Table 4.8), whereas within population variation was 

low. Especially populations collected in non-mountainous regions are 

morphologically relatively homogeneous; also, the experimental design has 

influenced the distribution of variation. Variation among landrace groups 

and among regions contributed about equally to the total variation, 

although for some characteristics classification on basis of landrace 

groups seemed more discriminative. Landrace groups showed little within 

variation, and the magnitude of the c.v. was not related to the number 

of populations forming the landrace group, as it did not increase with 

the populations number. 

This is in agreement with other estimates of variation components, 

although results tend to depend on the character studied, the statistics 
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that expresses variation, and the number of components included in the 

nested ANOVA. Measures of variation that assume additive decomposition 

of total genetic variation suffer from conceptual inconsistency, according 

to Gregorius (1988). He recommends to characterize demes by the number 

of individuals by which they differ from the remainder of the population. 

However, if mean square is used as estimate, variation among groups of 

countries (Jain et al., 1975) or countries (Porceddu, 1976; Spagnoletti 

Zeuli et al., 1984; Spagnoletti Zeuli & Qualset, 1987) dominates, just 

as variation among regions (Bogyo et al., 1980; Damania & Porceddu, 1983; 

van Leur et al., 1989). In some cases, variation among regions is lower 

than variation within regions (Weltzien, 1989) or lower than variation 

among populations and among lines (Bekele, 1984). Comparisons with land-

race groups were not given in these studies. Whereas Harlan (1986) argues 

that greatest diversity occurs at the local level, other distribution 

patterns seem to exist as well. 

A collection of Syrian and Jordanian barley landraces has been studied 

by Weltzien (1988, 1989) for agronomic and morphological characters, 

Ceccarelli et al. (1987a) for agronomic characters and van Leur et al. 

(1989) for disease reactions. Weltzien reported 37% and 15% variation 

among regions (mean values of eight characters), when total variance was 

split into among and within region components, and into among regions, 

within regions and within populations, respectively. Ceccarelli et al. 

observed 83% among population variation (mean value of 12 characters), 

and van Leur et al. showed that effects for regions and sites within 

regions were not significant for all studied diseases. The regions used 

in this study were partly located in other parts of the country and were 

smaller than the ones defined by Weltzien and van Leur et al. The smaller 

within region variation for durum wheat in comparison to barley could be 

explained by this difference in region size, and by the more intensive 

seed exchange between farmers in the case of durum wheat (J. van Leur, 

ICARDA, personal communication). Within population variation, determined 

by Ceccarelli et al. as mean squares, was also low in the case of barley. 



Chapter 5 

AGRONOMIC PERFORMANCE 

Abstract 

It is demonstrated that sub-classification in landrace groups, followed 

by evaluation of a representative part of the collection, may be an 

effective approach to germplasm evaluation. The application of single-

evaluation results has potential for forecasting crop behaviour in 

other years and at other locations, taking into account genotype x 

environment interaction. 

Syrian durum wheat landrace populations were evaluated. Only in the 

case of the highest yielding experiment the best check variety yielded 

higher than the best landrace, which demonstrates the breeding value 

of locally domesticated germplasm. 

Grain yield was stable between years within sites. Population effect 

was significant for grain yield, but not for total yield. In many 

cases, fertilizer application resulted in a decrease in kernel density 

and grain yield. 

Correlations among plant characters were consistent among exper­

iments. Annual rainfall, summer maximum and winter minimum temp­

eratures, potential annual évapotranspiration, and soil organic matter 

and nitrogen content were collection site characteristics most cor­

related to plant characters. 

Relating grain yield to landrace groups resulted in more pronounced 

clusters than relating to regions of origin. Landrace groups may have 

been domesticated within relatively small areas with specific climatic 

conditions, followed by recent dispersion of some groups without losing 

characteristics. 

5.1 Introduction 

The task of plant genetic resources centres is to collect or otherwise 

acquire, evaluate, maintain and disseminate germplasm with characteristics 

that now or in future may contribute to improvement and stabilization of 

yields, in either specific or diverse environments. Evaluation results, 
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which form the basis for selection, are often of limited applicability, 

due to the considerable genotype x environment interaction. Therefore, 

extrapolation of single-evaluation results is difficult (Ceccarelli, 

1989), or even impossible when location x year interaction is significant 

(Lin & Binns, 1988). To overcome that problem, extensive multi-locational 

or multi-seasonal evaluation would be needed, but that is normally not 

possible because of financial constraints. Hence, an efficient evaluation 

methodology is required, in which the properties of large numbers of 

accessions in various climatic conditions can be investigated. 

Assuming that collected plants have evolved in the environment of 

collection, the agro-ecological characteristics of the environment of 

origin will greatly determine their genotypic constitution. At other 

locations, interaction of the genotype with different environments will 

determine plant growth and development. It may thus be expected that the 

environmental characteristics of the region of origin can be related to 

plant characters at locations with other environmental conditions (Burt 

et al, 1979; Frankel, 1989). Information on the location and environmental 

characteristics of collecting sites is routinely recorded (IBPGR, 1985). 

Although this so-called passport and collection information is as valuable 

as the seeds themselves in view of assessment of their properties, it is 

seldomly considered in interpretation of field trials. 

Constraints to wheat production in arid regions are the year-to-year 

fluctuations in the amount and distribution of rain; low soil fertility; 

low winter temperatures and high temperatures during the grain filling 

period; and occurrence of pests and diseases (Ceccarelli et al., 1987b; 

Miller, 1987). Germplasm domesticated in the Fertile Crescent (Vavilov, 

1951) and adapted to the erratic exposure to growth-limiting factors may 

contribute to the improvement of yield level and yield stability in Middle 

Eastern countries, which in many cases face a growing food gap (Adamowicz, 

1988). 

This paper relates evaluation results to the agro-ecology of collection 

regions. The study's overall objective is to develop a method that enables 

the application of results of a single evaluation for forecasting crop 

behaviour in other years and at locations with by different climatic 

conditions. 
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Table 5.1. International Cereal Durum Wheat (ICDW) accession numbers of the 
evaluated durum wheat landrace populations and environmental information on 
the respective collection sites. 

ICDW ID Landrace 
access- coll- group 

Environmental characteristics of collection sites8 

ion 
number 

19489 
19491 
19500 
19506 
19511 
19521 
19523 
19524 
19529 
19530 
19555 
19558b 

19559b 

19574 
19576 
19578 
19583 
19584 
19586 
19587 
19594 
19596 
19598 
19599 
19600 
19609 
19617 
19618 
19622e 

19623e 

19626 
19636 
19638 
19639 
19640 
19641 
19648 
19651 

ection 
number 

1 
4 

25 
32 
40 
54 
56 
58 
70 
72 

127 
135 
136 
163 
167 
172 
203 
205 
208 
209 
218 
220 
222 
224 
225 
236 
245 
246 
250 
251 
255 
272 
274 
275 
276 
277 
287 
290 

Haurani 
Haurani 
Haurani 
Haurani 
Haurani 
Haurani 
Haurani 
Baldadi 
Haurani 
Haurani 
Shihani 
Shihani 
Haurani 
Haurani 
Shihani 
Haurani 
Bayadi 
Baladi 
Sweidi 
Sweidi 
Baladi 
Hamari 
Hamari 
Baladi 
Haurani 
Sweidi 
Haurani 
Sweidi 
Hamari 
Sheirieh 
Bayadi 
Baladi 
Baladi 
Baladi 
Baladi 
Baladi 
Baladi 
Baladi 

1 

730 
990 
780 
800 

1060 
1220 
860 
840 
700 
750 
490 
500 
500 
570 
540 
410 
440 
540 
440 
610 
490 
600 
590 
490 
470 
350 
450 
410 
670 
670 
350 
520 
970 
680 
610 

50 
570 
160 

2 

150 
290 
235 
215 
800 
270 
165 
165 
215 
215 
380 
440 
440 
430 
425 
290 
300 
300 
455 
495 
420 
495 
450 
355 
315 
665 
480 
545 
645 
645 
325 

1305 
1385 
1310 
1160 

920 
1200 
915 

3 

34.0 
32.0 
34.0 
36.0 
28.0 
32.0 
34.0 
34.0 
35.5 
35.0 
39.5 
40.0 
40.0 
39.5 
39.5 
39.0 
36.5 
36.5 
35.0 
35.0 
35.0 
35.0 
35.0 
36.0 
36.5 
35.0 
34.0 
34.0 
31.0 
31.0 
37.0 
28.0 
26.0 
26.0 
27.0 
30.0 
30.0 
30.0 

4 

1.5 
2.5 
2.5 
2.0 
1.5 
1.0 
1.0 
0.5 
2.0 
2.0 
2.0 
2.0 
2.0 
2.5 
2.0 
1.5 
2.0 
2.0 
3.0 
3.0 
1.5 
1.5 
1.5 
1.5 
2.0 
4.0 
3.5 
4.0 
5.0 
5.0 
3.0 
5.0 
4.0 
4.0 
5.0 
8.0 
7.0 
8.0 

5 

1950 
1600 
1750 
2050 
1200 
1750 
2000 
2000 
2000 
2000 
2350 
2400 
2400 
2350 
2350 
2200 
1850 
1900 
1650 
1650 
1650 
1600 
1650 
1750 
1900 
1650 
1600 
1600 
1300 
1300 
1900 
1200 
1200 
1200 
1200 
1400 
1200 
1400 

6 

0.87 
0.83 
0.96 
0.89 
1.71 
0.87 
1.44 
1.03 
0.86 
0.83 
1.03 
1.32 
1.32 
1.29 
1.45 
1.22 
2.30 
1.01 
0.96 
2.02 
0.94 
1.72 
1.73 
1.33 
2.19 
3.17 
2.37 
1.43 
1.67 
1.67 
1.85 
5.11 
3.20 
6.23 
3.78 
2.62 
3.34 
3.68 

7 

584 
526 
713 
716 
889 
556 
889 
682 
518 
526 
599 
831 
831 
824 
975 
797 

1374 
712 
584 

1346 
583 

1019 
1025 

756 
1197 
1776 
1390 

774 
900 
900 

1165 
2505 
1429 
3174 
2130 
1438 
1651 
2016 

8 

5.2 
1.9 

17.6 
4.0 

27.3 
4.5 

11.1 
10.4 
8.2 
3.4 
3.7 
9.4 
9.4 
5.6 
4.5 
6.0 

14.9 
4.0 
2.8 

16.5 
4.0 

lfl.2 

28.4 
11.4 
10.0 
11.4 
22.9 
58.6 
6.3 
6.3 

13.6 
33.8 
6.3 
7.4 
5.2 

16.7 
2.3 

69.8 

a : see legend on next page 
b,c : same collection sites 
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Table 5.1. Continued. 

1: Altitude (m) 
2: Rainfall (mm year"1) 
3: Mean maximum August temperature (°C) 
4: Mean minimum January temperature (°C) 
5: Potential évapotranspiration (mm year"1) 
6: Soil organic matter (Z), Walkley and Black method 
7: Total soil N content (ppm), Kjeldahl, Bremner method 
8: Total soil P content (ppm), Olsen 

5.2 Materials and methods 

Collecting missions for durum wheat landraces fTriticum turoidum L. var. 

durum (Desf.) MK] in various parts of the Syrian Arab Republic in 1987 

yielded a total of 185 populations (Chapter 3; van Slageren et al., 1989). 

Fifty-nine of these presumably originated at or in the vicinity of their 

collection sites, and were considered representative for the respective 

environments. Table 5.1 provides a list of thirty-eight evaluated landrace 

populations and agro-ecological information on their collection sites. 

Since rainfall amount and distribution is a dominant factor in dry 

matter production in arid environments (Entz & Fowler, 1989), four locati­

ons in Syria, characterized by different long-term rainfall averages, were 

selected for agronomic evaluation: Tel Hadya, site of ICARDA's main 

experimental farm; Breda, an ICARDA sub-station; and the towns of Horns 

and Izra'a, with long-term annual rainfall means of 330, 271, 425 and 300 

mm, respectively. Table 5.2 gives their geographical coordinates. Tempera­

ture regime in Breda is more extreme than at other sites. 

Per location and year, the thirty-eight landrace populations and three 

check varieties were sown at two levels of nutrient availability in two 

replicates. A randomized complete block design with two replicates was 

used for each experiment. 

Natural fertility represented one level of nutrient availability, 

whereas the other level was created through additional nitrogen and 

phosphorus application. Nitrogen (ammonium nitrate 33.5%) at a rate of 

total 40 kg ha"1 for Tel Hadya, Breda and Izra'a, and 60 kg ha"1 for Horns, 

was split-dressed in equal amounts at sowing and at end of tillering. 

These arbitrary application levels were used to eliminate nitrogen defici­

ency and achieve comparable production levels, which is higher for the 
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high-rainfall site Horns. At all locations, 40 kg ha"1 phosporus (triple 

superphosphate 46%) was applied at sowing. Soil characteristics determined 

just before sowing are presented in Table 5.2. The use of different fields 

in the second season may be the cause of high variability in soil charac­

teristics for Breda and Izra'a. 

The three durum wheat check varieties included in the experiment were: 

Haurani-27, a landrace originating from Lebanon and generally used as 

local check; Cham 1, a variety suitable for high input conditions; and 

Cham 3, a variety with better stress tolerances than Cham 1. Checks were 

sown in double the number of plots of the landrace populations. 

Before sowing, seeds were treated with Vitavax 200 (2.5 g carboxine 

and thiram per kg seed) against common bunt (Tilletia caries and T. 

foetida). During the growing season, plants were sprayed at regular inte­

rvals with Bayfidan (0.5 1 ha"1, 250 g l"1 Triadimenol), a broad spectrum 

fungicide. Pest and disease incidense was low in all situations. 

Plants were sown in plots of 2.5 x 1.6 m, in eight rows 20 cm apart. 

To avoid border effects, no space was left between plots. Dates of sowing 

and harvest are given in Table 5.2. 

As a precaution against possible grain mixture and interpiot competi­

tion at plot borders, only inner plants were considered. At all locations 

plant height, spike density, total aboveground dry weight, grain yield 

and thousand kernel weight were recorded. Spike density was recorded in 

all trials except at Horns in 1989. Plant height was measured between flo­

wering and maturity; spike density was determined in duplicate using a 

metal frame of 0.5 m2; total dry weight and grain yield were determined 

at harvest on the central 2 m of the inner six rows; straw yield, harvest 

index and number of kernels per spike were calculated. At Tel Hadya, date 

of anthesis was also observed. 

The significance of factors was tested through combined analysis of 

variance (AN0VA) per plant character. Location and year were considered 

main factors, and population and fertilizer level sub-factors. This design 

yields more accurate information on population and fertilizer effects, 

at the expense of information on location and year effects (Sokal & Rohlf, 

1981). Also, per year and location, the effects of population and fer­

tilizer application on plant characters were determined by means of two-

way AN0VA. 

Correlation coefficients among plant characters, and between plant 
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200 

% 150 

281 302 323 344 365 21 

Breda, total 195 mm 

—-.. Homs, total 276 mm 

Izra'a, total 222 na 
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84 105 126 147 168 189 

time (Julian day number) 

Figure 5.1. Cumulative rainfall during the 1988-89 season at Breda, Homs 
and Izra'a. 

250 

S. 200 

Breda, total 183 mm 

Tel Hadya, total 234 

Homs, total 218 mm 

Izra'a, total 266 mm 

I I I I I 1 I 
281 302 323 344 365 21 42 63 84 105 126 147 168 189 

time (Julian day number) 

Figure 5.2. Cumulative rainfall during the 1989-90 season at Tel Hadya, 
Breda, Homs and Izra'a. 



60 Evaluation of durum wheat landraces 

281 302 323 344 365 21 42 63 84 105 126 147 168 189 

time (Julian day number) 

Figure 5.3. Mean weekly radiation during the 1989-90 season at Tel Hadya, 
Breda, Horns and Izra'a. 

characters and collection site characteristics were calculated per loca­

tion and fertilizer level. 

Grain yield was related to the classification of regions of collection 

based on minimization of variation in climatic characteristics, and to 

the taxonomie classification of populations into landrace groups on the 

basis of information supplied by farmers (Chapter 3 ) . 

5.3 Results 

Rainfall, graphically presented in Figures 5.1 and 5.2, was below average 

in both seasons. Horns did not receive particularly more precipitation than 

the other sites, but the soil contained residual moisture from rainfall 

or irrigation in the previous season. Mean weekly radiation for 1989-90, 

which were similar to those for 1988-89, is given in Figure 5.3. Radiation 

was highest at Breda, whereas radiation levels at the other sites were 

comparable. Highest maximum May temperatures were recorded at Breda (39.0 

and 43.1°C in 1989 and 1990, respectively); lowest at Horns (36.2 and 

40.9°C). During the coldest week of the growing season, highest absolute 

minimum temperatures were recorded at Horns and Izra'a, both with -8.0°C 

in 1989 and 1990, respectively; and lowest at Breda (-9.4°C) and Tel Hadya 
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(-8.7°C), in 1989 and 1990, respectively. Coldest sites also experienced 

more frost days. 

Results of Tel Hadya 1988-89 were considered not reliable because of 

leaf yellowing as early as March, possibly due to a residual herbicide 

effect. These data were eliminated, and therefore, Tel Hadya 1990 was also 

excluded from the four-way ANOVA. However, comparison with three-way ANOVA 

including Tel Hadya 1990 did not show major differences in effects of main 

and sub-factors: significant location or year effects combined into 

significant location-year effects. Since at Horns 1989 spike density was 

not established, analysis of this trait and number of kernels per spike 

excluded both Horns seasons. 

Evaluation results as mean values over all landrace populations per 

location, year and fertilizer level are given in Table 5.3. Considerable 

differences were observed among locations. Horns showed satisfactory perfo­

rmance in both seasons, and to a lesser extent Izra'a in 1990, whereas 

the other locations and years showed very low yields. 

Mean grain yield of landraces is lower than that of one or more of the 

checks, however, maximum grain yield is achieved by landraces (Figure 

5.4). Only in the highest yielding experiment (Horns 1989+; + and - indi­

cate with and without additional fertilizer, respectively), was Cham 3 

the highest yielding. Under lowest yielding conditions, grain yield of 

check varieties sometimes was lower than the landrace population mean. 

Main effects were significant, except the year effects for grain yield 

and harvest index; the location effect for number of kernels per spike; 

the population effect for total dry matter; and the fertilizer effects 

for spike density, number of kernels per spike and plant height (Table 

5.4). Interaction effects of the two main factors, location and year, were 

significant, except for spike density and number of kernels per spike. 

Interaction effects of both sub-factors, population and fertilizer ap­

plication, were not significant. For yield levels, significance was shown 

for the interaction effects of location and fertilizer application on 

grain and straw yield and total biomass production; and for the inter­

action effect of location and population for grain yield. Among populat­

ions, total dry matter was more stable than either grain and straw yield. 

Two-way ANOVA's per location and year are summarized in Table 5.5. 

Generally, significant population and fertilizer effects for grain yield 

were demonstrated, whereas effects for straw and total dry matter were 
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Table 5.6. Experiments showing significant correlations (p £ 0.1) between 
collection sites and plant characteristics. The sign of the correlation is 
given first in brackets, followed by the relevant experiments. 

Site 
charac­
teristic 

Latitude 

Longitude 

Altitude 

Rainfall 

Max. 
temp. 

Hin. 
temp. 

Plant 
character 

Plant 
height 

( + ) 
Iz90+ 

( + ) 
Iz89-
Iz90+ 
Ho90-

(-) 
Ho89-

" 

-

-

" 

( + ) 
Iz90+ 

-

Grain 
yield 

" 

( + ) 
Br90-
Iz90+ 

" 

( + ) 
Ho90-

Iz90+ 

(-) 
Br89-
Iz90+ 

" 

( + ) 
Br89-,+ 
Iz90+ 
TH90+ 

(-) 
Br89-,+ 
Iz89-

Straw 
yield 

" 

(-) 
Iz89+ 

( + ) 
B r 9 0 + 

(-) 
IZ90+ 

-

( + ) 
Iz89-
Iz90-
TH90-

(-) 
Br90+ 

(-) 
I z 8 9 -
I z 9 0 -

C + ) 
Br90+ 

( + ) 
Iz89+ 
Iz90-

+ 
+ 

+ 
+ 

+ 

Total 
dry 
weight 

" 

( + ) 
Br90+ 

(-) 
Iz89+ 

<-) 
Iz90+ 

-

( + ) 
IZ89-.+ 
Iz90-.+ 

(-) 
Br90+ 

(-) 
IZ89-.+ 
Iz90-,+ 

( + ) 
Br90+ 

( + ) 
Iz89+ 
ÏZ90-.+ 

Harvest 
index 

" 

( + ) 
Br89+ 
Iz90+ 

~ 

( + ) 
Ho90-

-

(-) 
Br89+ 
Iz89-
Iz90-

( + ) 
B r 8 9 -

C + ) 
Br89-
Iz89-
lz90-
TH90+ 

" 

(-) 
Br89-
Iz89-
Iz90-
Ho90-

+ 
+ 

+ 

+ 

+ 
+ 
+ 

Spike 
density 

C-) 
Iz90-

-

" 

(-) 
Iz89+ 
TH90+ 

-

( + ) 
Br89-
Iz89-
Iz90+ 
Ho90-
TH90-

(-) 
Br90+ 

(-) 
Iz89+ 
Ho90-

" 

( + ) 
Iz89-
Ho90-

+ 
+ 

+ 

+ 

+ 

Kernels 
per 
spike 

" 

( + > 
Ho90-

" 

( + ) 
Iz89-,+ 
Ho90-

-

(-) 
Br89-,+ 
ÏZ89-.+ 
Iz90+ 
HO90-.+ 

-

C + ) 
Br89-,+ 
IZ89-.+ 
Ho90-
TH90+ 

" 

(-) 
Br89-,+ 
IZ89-.+ 
Ho90-

Thousand 
kernel 
weight 

( + ) 
Iz90+ 

(-) 
Iz89-
Ho89-

( + ) 
Br89+ 

-

( + ) 
Iz89-,+ 
H o 8 9 -

( + ) 
B r 9 0 -

(-) 
IZ89-.+ 
Ho89-

" 

( + ) 
Iz89-,+ 
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Eva­
poration 

Soil org. 
matter 

Soil 
N 

Soil 

P 

( + ) 
Iz90+ 
Ho90-

" 

-

-

-

-

(-) 
Ho90-

-

( + ) 
Br89-,+ 
Iz89-
Iz90+ 

(-) 
Br89-,+ 
Iz89-
Iz90-
Ho90-

( + ) 
Br90-

(-) 
Br89-,+ 
Iz89-,+ 
Iz90-
Ho90-
TH90-

-

-

<-) 
Iz89+ 
Iz90-,+ 

( + ) 
Br90+ 

< + ) 
Iz89-,+ 
Iz90-,+ 

(-) 
Br90+ 

( + ) 
Iz90-,+ 

(-) 
Br90+ 

( + ) 
Iz90-,+ 

-

(-) 
Iz89+ 
Iz90-

( + ) 
Br90+ 

( + ) 
Iz89+ 
Iz90-

(-) 
Br90+ 

( + ) 
Iz89+ 
Iz90-

(-) 
Br90+ 

( + ) 
• Iz90-

(-) 
Br90+ 

+ 

+ 

+ 

+ 

( + ) 
Br89-
Iz89-
Iz90-
TH90+ 

" 

(-) 
Br89-
Iz89-
Iz90-
TH90-

-
(-) 
Br89-
Iz89-
Iz90-
Ho90-
TH90-

-

(-) 
Br89+ 
Iz89+ 
Iz90-

-

+ 

+ 

+ 

+ 

+ 

+ 

(-) 
Iz89+ 
Ho90-

" 

( + ) 
Br89-
Iz89-,+ 
Iz90+ 
HO90+ 
TH90-

(-) 
Br90+ 

( + ) 
Iz89-,+ 
Iz90+ 
Ho90+ 

(-) 
Br90+ 

(-) 
Iz90+ 

-

( + ) 
Br89-,+ 
Iz89-,+ 
Ho90-

~ 

(-) 
Br89-,+ 
Iz89-,+ 
Iz90+ 
Ho90-
TH90-

-
(-) 
Br89-,+ 
Iz89-,+ 
Iz90+ 
Ho90-
TH90-

-

-

<-) 
Iz89-,+ 
Ho89-
TH90-

-

( + ) 
Iz89-,+ 

-
( + ) 
Iz89-,+ 

-

( + ) 
Ho89-

-

(+) - significant positive correlation 
(-) - significant negative correlation 
Br - Breda 
Ho " Horns 
Iz - Izra'a 
TH - Tel Hadya 

89 - 1989 
90 - 1990 
- - natural soil fertility 
+ • with fertilizer application. 
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only significant at Izra'a. For Breda 1990, no significant effect was 

found. Fertilizer application significantly postponed anthesis at Tel 

Hadya 1990 by one day from 144 to 145 days after sowing. 

The pattern of interrelationships among plant characters in different 

experiments was comparable. Correlation coefficients per location and 

fertilizer level among plant characters did not indicate significant neg­

ative correlations among grain and straw yield and total dry matter. Plant 

height was not significantly correlated with other plant characters, with 

the exception of spike density for Breda 1990+ and Izra'a 1990-. Total 

dry matter and grain yield were not or positively, but never negatively, 

correlated with number of kernels per spike and with spike density. Only 

in the case of Tel Hadya 1990+ was the number of kernels per spike sig­

nificantly positively correlated with spike density. 

Grain yield was strongly linearly correlated with calculated kernel 

density (Table 5.3): 

grain yield nf2 = -12.3 + 0.43 x number of kernels nf2 (r = 0.989, p < 

0.001). 

This relationship was independent of the fertilizer application level. 

Latitude and altitude of the collection sites were rarely significantly 

correlated to any of the plant characters (Table 5.6), and longitude and 

soil P only in few cases; however, annual rainfall, summer maximum temper­

ature, winter minimum temperature, potential annual evapotraspiration, 

soil organic matter content and total soil N content were significantly 

correlated to plant characters in higher frequencies. Harvest index and 

number of kernels per spike and, to a lesser extent, grain yield and spike 

density were the plant characters most frequently significantly correlated 

to site characteristics. The Izra'a experiments, Breda 1989 and Horns 1990-

gave the highest numbers of significant correlations. Breda 1990+ is 

exceptional because of the inverse correlations compared to the majority 

of correlations. 

Relating grain yield to regions of origin was difficult. At best, weak 

tendencies could be identified, indicating that landrace populations ori­

ginating from mountainous areas performed relatively well in high yielding 

experiments. Regions with intermediate climatic conditions, e.g. Idleb, 

northeastern Syria, Horns and Hauran (Chapter 3), provided populations that 

yielded relatively moderate to good in all experiments. 

Although variation was high, differentiation with respect to grain 
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yield on the basis of landrace groups proved more successful (Tables 5.1 

and 5.7). Haurani, the most widespread landrace within Syria, performed 

relatively well to very well in all experiments; in contrast to Baladi, 

which generally performed relatively poorly. The Bayadi, Sweidi and 

Shi ham' landrace groups had their comparative tops in the lowest, medium 

and highest yielding experiments, respectively. Sheirieh performed well, 

except in the lowest yielding experiment, and Hamari was variable. 

5.4 Discussion 

Under Syrian arid conditions, yield levels are closely related to avail­

able water and soil fertility. Residual soil moisture from the previous 

season in Horns was reflected in higher yields. Higher radiation at Breda 

than at other locations may have intensified the water stress. Although 

high temperatures during grain filling can reduce the thousand kernel 

weight (Ehdaie & Waines, 1988; Wardlaw et al., 1989), water stress at 

Breda, Izra'a and Tel Hadya seems to have dominated. At Horns, where more 

water was available, thousand kernel weight was higher. 

Yields of landraces under sub-optimal conditions demonstrate that sel­

ection of locally adapted plants can contribute to achieve breeding goals. 

Previously, Nachit et al. (1988) found that certain landraces possessed 

desirable traits lacking in other germplasm, such as resistance to drought 

and cold, early plant vigour and long peduncle. However, these traits are 

not common to all landraces. Furthermore, landrace populations showing 

superior performance under all conditions could not be identified (cf. 

significant population effect in Table 5.4). And at more favourable 

locations grain yield of varieties was higher than mean grain yield of 

landraces (cf. Ehdaie et al., 1988). The high variability in grain yield 

of landrace populations reflects different response to environmental var­

iation. This may be related to the fact that traditional Syrian agricul­

ture has developed into a situation of geographical diversification of 

populations (Chapter 3) with buffer capacity based on their genotypically 

heterogeneous nature to account for seasonal environmental variation. 

Grain filling rate may be source limited, i.e. determined by the supply 

of assimilates, or sink limited, i.e. determined by the temperature-

dependent potential rate of dry matter accumulation in the kernels (van 

Keulen & Seligman, 1987; Sofield et al., 1977). Relations between spike 
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density, number of kernels per spike and grain yield are well described 

by the strong linear correlation between kernel density and grain yield. 

However, since this is not proven to be a causal relation, it can not be 

deducted that grain filling duration (which under conditions of drought 

stress after flowering corresponds with post-anthesis green area duration) 

and kernel density were the only major yield determining factors. Water 

stress may have resulted in reduced source capacity. 

Drought in itself may have affected the ear-bearing tiller number, by 

affecting by the tiller survival rate (Blum & Pnuel, 1990), and post-

anthesis green area duration, whose limited length may have exhausted more 

rapidly stem reserves. Landrace populations and check varieties showed 

comparable yield reduction with decreasing water availability, hence 

neither seems capable of maintaining grain yield level under severe 

drought stress. 

Fertilizer application positively influenced total biomass production, 

though not significantly (see Table 5.5), but only at Horns and Breda 1989 

did grain yield increase. The generally negative effect on kernel density 

reflected in lower grain yields. This effect is different from the nor­

mally positive effect of increased nitrogen availability on the kernel 

number (van Keulen & Seligman, 1987). The one-day delay of anthesis, as 

observed at Tel Hadya 1990, shortened the already limited grain filling 

period. 

The significant population effect for grain yield contrasts with the 

stability for total biomass production among populations (Table 5.4). On 

the other hand, a year effect was found for total biomass production, and 

not for grain yield. Harvest index is affected differently over populat­

ions, years, locations and fertilizer levels. 

The number of significant correlations between collection site charac­

teristics and plant characters at evaluation is limited, but the majority 

of relations has equal sign (Table 5.6). In combination with the generally 

consistent interrelationships among plant characters, this facilitates 

interpretation of a specific experiment in terms of forecasting crop 

behaviour under different growth conditions. 

Surprisingly, relating grain yield to landrace groups resulted in more 

pronounced clusters than relating to regions of origin. Although variation 

within groups was wide, this observation suggests that genotypes within 

the landrace groups of the T. turqidum var. durum sub-species are relati-
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vely uniform. Nevertheless, it remains probable that plant characters are 

largely determined by the environment in the domestication area. If so, 

then it must be concluded that durum wheat landrace groups have been 

domesticated within relatively small areas with specific climatic con­

ditions, followed by dispersion of some groups without losing characteris­

tics. This probably has occured only recently, since otherwise dispersed 

landrace groups would have been less uniform in agronomic characteristics 

due to different environmental pressure. 

Regions with moderate climatic conditions provided landraces with rel­

atively stable yields. This observation supports the practice of utiliz­

ation of germplasm from such regions. Only for regions where specific 

stress factors are prevailing, germplasm from regions with more extreme 

environmental conditions may be more useful. 

An effective first step in evaluation of landrace germplasm seems to 

be taxonomie sub-classification, followed by agronomic evaluation of a 

representative part of the collection. Prediction of best performing acc­

essions seems unlikely, but the fact that a number of correlations between 

collection site characteristics and evaluation results appear to have 

wider validity, suggests that experimental establishment of such relations 

may lead to identification of groups from which successful selections or 

crosses most likely are made. 



Chapter 6 

SIMULATION OF GROWTH AND DEVELOPMENT 

Abstract 

A crop growth simulation model, developed for spring wheat, was adapted 

to durum wheat and applied for analysis of the results of durum land-

race evaluations. Thirty-eight landrace populations of durum wheat were 

evaluated for agronomic performance over two growing seasons at four 

locations in Syria, characterized by different rainfall patterns, at 

two levels of nutrient availability. 

Under favourable environmental conditions, weather variability is 

reflected in the amount of reserve carbohydrates at the end of grain 

fill, and variation in grain yield among populations within a given 

experiment is mainly the result of differences in net flow of assimil­

ates. Under low-yielding conditions, when early complete senescence 

leads to cessation of grain fill, higher grain yields are the result 

of more efficient remobilization of reserve carbohydrates, mainly due 

to higher kernel densities. Factors that influence grain filling 

duration are reflected in grain yield. 

Total dry matter production was higher under higher total, and 

higher spring rainfall. At higher levels of moisture availability, more 

aboveground dry matter was produced per kg rainfall. Moisture and 

nitrogen availability interacted. At very low rainfall, moisture 

availability was the dominant growth limiting factor, whereas at higher 

levels of moisture availability, nitrogen recovery and total dry matter 

production increased, and nitrogen availability became an additional 

growth-limiting factor. 

The low observed minimum straw nitrogen content of 0.0019 kg kg"1 

appears to be partly a species characteristic, and partly a landrace 

characteristic. 

Despite shortcomings, the model simulated a recognizable durum wheat 

crop and reproduced in a consistent way genotype x environment interac­

tions and their effects on yields. Application of modelling in evalu­

ation of extensive germplasm collections, through forecasting growth 

and development in diverse environments, would reduce quantitative and 
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qualitative limitations to evaluation programmes. 

6.1 Introduction 

Potential dry matter production of wheat in arid regions is limited by 

amount and distribution of rainfall (Buresh et al., 1990; Entz & Fowler, 

1989). Stapper and Harris (1989) concluded on the basis of the results 

of a validated crop growth model and historical weather data, that with 

respect to weather variables, grain yields were most sensitive to rainfall 

and that timely sowing is important, as early canopy development restricts 

moisture losses by soil surface evaporation. In addition, nutrient defi­

ciencies are widespread in the Mediterranean region and are a yield-

limiting factor in many instances (Buresh et al., 1990; van Keulen, 1975; 

Matar & Brown, 1989). 

In such environments, evaluation results of yield trials are strongly 

influenced by genotype x environment interactions, and extensive multiloc-

ational or multiseasonal evaluations are needed to assess plant charact­

ers. Such a costly procedure can often not be applied to entire germplasm 

collections, which may consist of many thousands of accessions. For 

example, the Genetic Resources Unit of ICARDA comprises about 17,500 

accessions of durum wheat (ICARDA, 1992). Initial selections are made on 

the basis of preliminary characterization and evaluation (IBPGR, 1985), 

carried out during one or a few seasons. The consequence is that part of 

the useful germplasm may not be recognized, and hence not utilized. An 

efficient evaluation method is therefore required, that allows investiga­

tion of large numbers of accessions under various climatic conditions. 

Crop growth simulation models dynamically simulate dry matter produc­

tion and phenological development, incorporate plant and site characteri­

stics, and account for their interactions, within defined system bound­

aries (de Wit, 1982), and excluding processes of supposedly minor importa­

nce. Crop models facilitate extrapolation of effects at the level of 

single plant organs to the growth of a canopy in a continuously changing 

field environment (Spitters & Schapendonk, 1990). A well-calibrated 

simulation model offers a comprehensive tool to analyze genotype x envi­

ronment interactions, and can assist in germplasm evaluation and selection 

for specific environmental conditions. 

Simulated growth and development will mostly to some degree deviate 

from reality. However, in preliminary evaluation, some error is accepta­

ble, as curators are interested in -" general overview of an entire coll-



Simulation of growth and development 75 

ection, rather than in performance of individual populations under speci­

fic conditions. Subsequent detailed evaluations may provide additional 

information on plant properties. 

This paper reports on application of an adapted crop growth simulation 

model for spring wheat in analyzing multilocational, multiseasonal evalu­

ation data for durum wheat landraces in an arid Mediterranean environment. 

6.2 Materials and methods 

6.2.1 Field evaluations 

Collection missions for durum wheat landraces ["Triticum turqidum L. var. 

durum (Desf.) MK] in the Syrian Arab Republic in 1987 and 1988 yielded 

a collection of germplasm representative for various agro-ecological 

regions (van Slageren et al., 1989). Thirty-eight populations, whose 

putative origin was at or in the vicinity of their collection sites, were 

evaluated for agronomic performance over two growing seasons, viz. 1988-89 

and 1989-90, at four locations in Syria, viz. Tel Hadya, Breda, Horns, and 

Izra'a (Table 5.2), characterized by different climatic conditions. 

Details on experimental design, weather conditions, observed data, and 

establishment of relations between plant and collection site characteris­

tics have been reported in Chapter 5. Natural fertility represented one 

level of nutrient availability, while a second level was created through 

application of nitrogen at a rate of 40 kg ha"1 at Tel Hadya, Breda and 

Izra'a, and 60 kg ha"1 at Horns, and phosphorus at a rate of 40 kg ha"1. 

Three check varieties were included in the experiment: Haurani-27, a local 

landrace; Cham 1, a variety suitable for high input conditions; and Cham 

3, a more stress tolerant variety than Cham 1. 

Previously reported observations included grain and straw yield, tiller 

density, grain density (Chapter 5), and late season frost damage (Chapter 

7). Additionally, phenological development stages (Zadoks et al., 1974), 

death of flag leaves, stems and spikes, and grain dry matter content were 

determined at about weekly intervals at ICARDA's principal experimental 

farm at Tel Hadya, during 1989-90. Results of Tel Hadya 1988-89 were 

omitted because of premature leaf yellowing in early March. 

As flag leaves, stems and spikes remained completely green until 

anthesis, their relative green area at that moment was defined as 100%, 
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20 40 60 50 100 
spike dry matter content (%) 

Figure 6.1. The observed relation between grain dry matter content and 
total spike dry matter content. Crosses and the solid line represent 
observations and the theoretical 1:1 relation, respectively. 

and subsequent death was estimated from their relative discolouration. 

End of grain filling can be established from grain dry matter content, 

since, after cessation of transport of water to the grains, water loss 

continues and grain dry matter content sharply increases (van Keulen and 

Seligman, 1987). As a nearly 1:1 relation was observed between complete 

spike and grain dry matter content (Figure 6.1), the former was used as 

indicator. Four randomly selected spikes per plot were harvested and 

transferred to a refrigerator; total fresh weight was determined the same 

day, and total dry weight after drying for 48 hours at 120 °C in a venti­

lated oven. 

Seed and straw nitrogen contents were determined at maturity by near-

infrared reflectance and microkjeldahl analysis, respectively (Williams 

et al., 1988). Nitrogen use efficiency was calculated as total aboveground 

dry matter production (kg ha"1) divided by total nitrogen uptake (kg ha"1), 

and three-quadrant graphs (van Keulen, 1986) for population averages were 
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constructed per year and site. The initial slope of the yield-nitrogen 

uptake curve is called initial efficiency, and was calculated as: 

1/(0.01 + 0.004 x straw weight/grain weight) (van Keulen, 1986). 

The proportion of applied nitrogen taken up by the aboveground plant 

material is defined as the nitrogen recovery fraction. 

6.2.2 Model description 

The simulation model applied to study the effects of genotype and environ­

ment on growth and development was adapted from the spring wheat model 

described by van Keulen and Seligman (1987). A FORTRAN-version runs in 

the FORTRAN Simulation Environment (van Kraalingen, 1991). Daily values 

of rainfall, maximum and minimum air temperature, total global radiation, 

air humidity and wind run are required weather inputs. Sets of soil and 

plant parameters characterize the soil environment and plant genotype, 

respectively. The soil moisture balance is described on the basis of 10 

soil layers, for each of which daily changes in soil moisture content are 

tracked. Crop transpiration is dependent on live canopy leaf area, rooted 

depth and soil moisture status. The soil nitrogen balance includes organic 

nitrogen in stable organic matter, in labile fresh organic matter, and 

in microbial biomass, and mineral nitrogen. The model includes descrip­

tions of the effects of soil moisture and nitrogen availability on growth. 

Dry matter accumulation is based upon daily gross C02-assimilation, 

calculated as a function of daily radiation, total green canopy area and 

the photosynthesis-light response curve of individual leaves, character­

ized by its initial light use efficiency and maximum assimilation rate 

(Goudriaan, 1986; Spitters, 1986; Spitters et al., 1986). Daytime air 

temperature below 10 °C, soil moisture status and nitrogen status of the 

crop affect gross assimilation. Maintenance and growth respiration are 

accounted for. Phenological development is a function of average tempera­

ture only, neglecting photoperiod sensitivity and vernalization requirem­

ents. Partitioning of assimilates to roots, leaf blades, stems and leaf 

sheaths, and a reserve pool is governed by crop phenological development 

and modified by moisture and nitrogen availability. Assimilates from the 

reserve pool may be remobilized, before anthesis for growth of vegetative 
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organs, after anthesis for grain growth. Organ formation includes tillers, 

spikes, spikelets, fertile florets and finally grains. The rate of organ 

initiation is proportional to the rate of carbohydrate supply to the 

meristematic sites during the successive development phases and inversely 

proportional to the rate of development. It is influenced by temperature 

through development rate and assimilation, and by moisture and nitrogen 

availability through assimilate availability. Nitrogen availability only 

affects tiller formation directly. 

6.2.3 Model modifications 

The model, that was calibrated for modern bread wheat varieties, had to 

be modified for durum wheat landraces (Table 6.1). In comparison to modern 

wheat varieties, landraces are generally characterized by more and longer 

roots, lower harvest indices, less kernels per m and per spike, more 

leaves, higher tiller production, but lower tiller survival, which results 

in lower assimilate utilization efficiency, restricted response to nitro­

gen application, and higher tolerance to environmental stresses. These 

characteristics are reflected in relatively stable yields, viz. low 

potential grain yields under favourable growth conditions, but restricted 

reductions in dry matter production and grain yield under environmental 

stress (Ehdaie & Waines, 1989; Hawkes, 1983). 

Durum wheat belongs to the tetraploid wheats, an intermediate stage 

between diploid and hexaploid wheats with respect to average 

photosynthetic and transpiration rates (Araus et al., 1989; Kaminski et 

al., 1990). However, as within-species variation is high (cf. Ecochard 

et al., 1988), and own observations at different levels of soil moisture 

and nitrogen availability (Heitholt et al., 1991) were not available, 

calibration for photosynthesis was not performed. 

Simulations started well before sowing, since early season rains 

appeared to affect final dry matter production. Initial moisture contents 

of soil compartments were selected such, that early-season root growth 

was just not hampered. Only for Horns residual soil moisture was assumed 

because of high rainfall and supplementary irrigation in the preceding 

seasons. Since information on soil mineral N was not available, its 

distribution over soil compartments was derived iteratively from simulated 

nitrogen uptake by the crop. 
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Table 6.1. Added and modified model input, exclusive site specific weather 
and soil data. 

Acronym Description Unit Value* 

AGEFT 

CROHTB 

CULTM 

DIV* 

FACTI* 

FNEXT 

FROSTL* 

PGRIGT 

RED1* 

RED2* 

RGRL 

TLNFIN 
TLNSEC* 

Relative green area of spikes 
as function of development 
stage 

Crop height as function of 
development stage 

Parameter to modify post-
an the sis development rate 

Balance of dry matter 
distribution between main 
shoot and tillers 

Parameter to modify pre-
anthesis development rate 

Fraction of labile nitrogen 
exported from vegetative 
tissue to the grain, as a 
function of average nitrogen 
concentration in the 
vegetative tissue 

Relative death rate of leaves 
due to late frost damage 

Potential growth rate of 
individual grains as function 
of air temperature 

unitiess 

unitless 

unitless 

Empirical parameter in relative 
death rate of leaf blades due 
to water shortage 

Empirical parameter in relative 
death rate of stems due to 
water shortage 

Relative growth rate of leaf area 
in exponential leaf area growth 
phase 

Final main stem and tiller number 
Number of tillers per plant 

unitless 

unitless 

unitless 

unitless 
unitless 

0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
1 

47 
49 
8 
85 
1 

• 
3 , 
5 , 
1 , 
2 

, o 
, o 
, 1 
, 1 
, o 
, o 
0 
0 .2 
ob s 
obs 

obs. 

0 , o 
0 .0025 , 0 
0 .007 
0.012 
0.016 
0 .02 
0 .025 

, 0 .3 
, 0 .5 
, 0 . 4 4 
, 0 .4 
, 0 . 3 6 

0 .0375 , 0 .24 
0 .07 
ob s . 

0 , 0 
8 , 0 

10 , 7 
16, 2 . 
20, 2 . 
25, 2 . 

, 0 . 1 6 

5xl0" 7 

025xl0"6 

475xl0"6 

775xl0"6 

30, 3xl0" 6 

35 , 3xl0"6 

0.4 

0.7 

0.014 

obs. 
2.5 

new input 
obs. = observation 
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Table 6.2. Timing of average phenological development stages (Zadoks 
et al., 1974) for durum wheat landraces during the 1989-90 growth 
cycle at Tel Hadya, Syria. 

Julian calendar Phenological development stage 
day (1990) 

without with description 
fertilizer fertilizer 

3 
24 
31 
42 
80 
96 

102 
110* 
111* 

13 
22 
22.5 
30 
31 
41 
49 
65 

13 
22 
22.5 
30 
31 
41 
49 

65 

3 leaves unfolded 
main shoot and two tillers 
2.5 tillers 
pseudo stem elongation 
first node detectable 
flag leaf sheath extending 
first awns visible 
anthesis halfway 
anthesis halfway 

equals 991 d°C 
equals 1008 d°C 

Pre-anthesis development rates were derived from observed flowering 

dates and temperature sums at Tel Hadya 1989-90 (Table 6.2). 

Early drought may cause premature senescence of tillers or plants. To 

more accurately describe this process, a distinction was made between main 

shoots and tillers. A tiller was assumed to receive half the assimilates 

of the main shoot, and temperature sums were tracked separately. Pre-

anthesis loss of biomass due to drought was reflected in reduced tiller 

weight, while main shoots were assumed unaffected until death of all 

tillers. As plant organ dynamics appeared difficult to simulate accuratel-

y, tiller density was introduced as a forcing function, 

characterized by sowing density, formation of 2.5 tillers per main shoot 

(Table 6.2), and observed final tiller density. Spike density was set 

equal to tiller density at anthesis, and grain density was based on field 

observations. 

Sink-limited, temperature-dependent, exponential growth of the green 

leaf area, as described by Spitters et al. (1989), was introduced. Follow­

ing their suggestions, the development stage (DVS) for the switch from 

sink-determined to source-determined growth rate was set at 0.15 and the 

relative growth rate at 0.014 per unit degree-day. 
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The effects of late season frosts were derived from experimental data 

(Chapter 7) and described by a fractional decline in green leaf weight 

and area, for each day after floret initiation with daily minimum air 

temperature below -4 °C. 

Since anthesis generally followed heading within 2-4 days, the func­

tion relating development stage to relative green area of the ears was 

adapted to spike appearance at DVS = 0.47. Calculation of stem green area, 

based on total plant height, was subsequently adjusted to a maximum spike 

length of 10 cm. 

As grain yield was initially underestimated due to sink limitations, 

the potential grain filling rate at 30 °C was set to 3 x 10"6 kg grain"1 

d"1 (Pinthus, 1963). 

In the original version of the model, death due to water shortage was 

underestimated, and post-anthesis green area duration and length of the 

grain filling period were overestimated. Therefore, relative death rate 

of leaf blades after anthesis due to water shortage was defined as the 

maximum of the potential death rate due to dehydration, and the relative 

transpiration deficit, multiplied by an empirical factor. Death of stems 

and spikes after anthesis followed that of leaf blades with an observed 

delay of eight days, with a relative death rate derived from that of the 

leaves by multiplying by an empirical factor. 

Nitrogen translocation from the vegetative material to the grains is 

determined by either the demand of the grains or the supply from the 

vegetative parts. Simulation results showed that initially the potential 

rate of nitrogen accumulation in the grain was limiting, and only at later 

stages the supply rate. Initial results showed insufficient nitrogen 

translocation and consequently underestimation of grain nitrogen accumul­

ation. Export from the vegetative tissue in the model was therefore 

enhanced by increasing the relative rate of nitrogen turnover in the 

vegetative biomass, and doubling the potential fraction of labile nitrogen 

exported to the grains. 

6.2.4 Water use 

Water use efficiency (WUE) was defined as total aboveground biomass (kg 

dry matter ha"1) divided by total rainfall (kg ha"1), the water use coeffi­

cient (WUC) as total transpiration (kg ha"1) divided by total gross 
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photosynthesis (kg C02 ha"1), and the transpiration coefficient (TC) as 

total transpiration (kg ha"1) divided by total aboveground biomass (kg dry 

matter ha"1) (de Wit, 1958). 

6.3 Results 

6.3.1 Field evaluations 

Soil characteristics at sowing, as presented in Table 5.2, show that at 

Izra'a and Horns soils at the beginning of the 1989-90 season were charac­

terized by relatively low carbon/nitrogen ratios. 

Phenological development of fertilized and unfertilized crops was 

similar throughout most of the growing season prior to anthesis (Table 

6.2), which was significantly delayed by one day in the fertilized treat­

ment (Chapter 5). This could be an indirect effect of nitrogen shortage 

through increased canopy temperature (van Keulen & Stol, 1991). 
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Figure 6.2. Grain dry matter content as a function of time, at natural 
soil fertility and additional fertilizer application. The standard devi­
ation refers to the overall average. 
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Grain dry matter content was not significantly influenced by ferti­

lizer application (Figure 6.2). Combined data for all populations showed 

increasing variation in time. At complete senescence, grain dry matter 

content was about 0.45 kg kg"1, i.e. below the value of 0.65 kg kg"1 that 

generally characterizes physiological maturity (van Keulen & Seligman, 

1987), and was reached about 10 days later. 

Average grain and straw yields, grain and straw nitrogen contents and 

uptake, nitrogen harvest index and nitrogen use efficiency per experiment 

are presented in Table 6.3. Variation among years and locations in nitro­

gen uptake, in combination with highly variable dry matter production and 

harvest index, resulted in wide variation in nitrogen contents in both 

grain and straw. Dry matter production and grain yield were positively 

correlated with nitrogen harvest index (NHI), with the exception of Breda 

1989-90. Total dry matter production was also positively correlated with 

NUE. 

Fertilizer application had variable effects (Figures 6.3a to d ) . At 

Breda, neither nitrogen uptake nor grain yield were affected. At Izra'a, 

grain yield was not affected in either season, but in the more favourable 

1989-90 season nitrogen uptake increased. However, late season moisture 

stress then caused early senescence and cessation of grain filling. 

Therefore, at Breda and Izra'a, moisture availability appeared the domi­

nant growth-limiting factor. At Horns 1988-89, natural soil fertility was 

high, and as grain yield was higher under fertilizer application without 

higher nitrogen uptake, nitrogen availability appears non-limiting. In 

the 1989-90 season however, at substantially lower natural soil fertility, 

nitrogen application (recovery fraction 0.15) resulted in increased total 

dry matter production and grain yield, hence nitrogen availability was 

growth-limiting. At Tel Hadya 1989-90, moisture availability allowed an 

intermediate level of total dry matter production (2.2 ton ha"1), and at 

low natural soil fertility, fertilizer application with a recovery frac­

tion of 0.16 resulted in a slight increase in total dry matter. However, 

grain yield was lower, as a direct consequence of lower kernel density 

(Chapter 5). A significant nitrogen recovery fraction, even though very 

low in most cases, was always associated with an increase in total dry 

matter or grain yield. 

Data from individual experiments showed that minimum straw nitrogen 

concentrations below 0.004 kg kg"1 were reached at Izra'a 1989-90 and in 
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Figure 6.3. The average relations between nitrogen uptake and grain yield, 
between application and nitrogen uptake, and between nitrogen application 
and grain yield for durum wheat landraces at Breda (a), Izra'a (b), Horns 
(c), and Tel Hadya (d), respectively. Solid lines and dashed lines repres­
ent the 1988-89 and 1989-90 seasons, respectively. Initial efficiency and 
nitrogen recovery fraction are given by the figures in the first and 
fourth quadrant, respectively. A = nitrogen application (kg ha- 1), U = 
nitrogen uptake (kg ha"1), Y = grain yield (kg ha"1). 
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both seasons at Horns, with an absolute minimum of 0.0019 kg kg"1. Lowest 

straw nitrogen concentration in the check varieties was 0.0025 kg kg"1, 

and lowest grain nitrogen concentration in landrace populations 0.0151 

kg kg'1. Initial efficiencies ranged from 27 to 30 kg kg"1 (Figures 6.3a 

to d ) , with the exception of Breda 1989-90 and Horns 1988-89, with values 

of 37 and 41 kg kg'1, respectively. 

6.3.2 Simulation of growth and development 

Differences in sowing dates and temperature regimes among locations and 

years resulted in different development patterns in the vegetative stage. 

However, development stages (DVS) converged towards anthesis. Grain 

filling generally ceased before physiological maturity. 

Green area index (GRAI, Figure 6.4) varied little among populations 

at a given location. Higher values of maximum GRAI generally coincided 

with higher values for total dry matter production and grain yield. At 

Horns, simulated senescence was completed 1-2 weeks later than at the other 

locations, which matches unrecorded observations during irregular field 

visits. Sharp increases in GRAI followed the end of the exponential leaf 

area growth phase and the onset of stem elongation (DVS=0.175). 

Populations in a given experiment showing different yields, generally 

differed not significantly in simulated weight of other plant organs. 

Higher grain yields were the result of increased remobilization of reserve 

carbohydrates, which was also the main cause of variation in straw yield. 

Under favourable growing conditions, as at Horns, reserve carbohydrates 

were fully depleted, whereas under unfavourable conditions, as at Breda, 

complete senescence caused termination of grain filling before physiologi­

cal maturity was reached, and the reserve pool was not depleted. 

Observed dry matter production per population was very variable among 

locations and years, and an overall best performing landrace was not 

identified (Chapter 5 ) . Average simulated grain and straw yields per 

evaluation site and fertilizer regime are given in Table 6.3. Observed 

and estimated grain yields lower than 1000 kg ha"1 mostly corresponded with 

a maximum error of 140 kg ha"1, but under more favourable conditions, grain 

yields were overestimated and straw yields underestimated. Total dry 

matter production was strongly underestimated for Izra'a 1989-90, and 
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Figure 6.4. Simulated green area index (GRAI) of population ICDW 19521 
grown at natural soil fertility, at various locations and years, a = Breda 
1989-90, b = Tel Hadya 1989-90, c = Izra'a 1988-89, d = Breda 1988-89, 
e = Horns 1988-89, f = Horns 1989-90. 
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19574 at Horns 1988-89, c = ICDW 19558 at Breda 1988-89. 
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could only be corrected by assuming a higher soil nitrogen content, which, 

however, resulted in strong overestimation of nitrogen uptake. Assuming 

additional soil moisture supply at various moments during the growing 

season did not improve the simulation results. 

Examples of the net flow of assimilates, i.e. the difference between 

gross assimilation rate and maintenance respiration rate, are given in 

Figure 6.5. At Horns 1988-89 maintenance requirements for ICDW 19521 and 

ICDW 19574 were about similar, but assimilation rates for the former were 

higher after day 115, resulting in higher grain yield, viz. 2.8 and 1.8 

ton ha"1. Also in low-yielding environments, net flow of assimilates became 

negative towards the end of the growth cycle, but without consequences 

for yield, since the reserve pool was not depleted. 

Grain growth rate at Horns 1988-89 was constant for 18 days at about 

130 kg ha"1 d"1, after which it slowly decreased, reaching zero when the 

reserve carbohydrates were exhausted, well before physiological maturity. 

Grain filling in lower-yielding environments followed similar patterns, 

but at lower rates (e.g. about 10 kg ha"1 d"1 at Breda 1988-89). 

6.3.3 Nitrogen balance 

Validation of the nitrogen balance (Table 6.3) was aimed at achieving a 

realistic balance of grain and straw yield, and grain and straw nitrogen 

contents at harvest. 

Despite model modifications, simulated nitrogen translocation to the 

grains was consistently underestimated, so that the final nitrogen harvest 

index was too low in all cases (Table 6.3). Simulated nitrogen contents 

in the vegetative tissue at maturity available for translocation (AVN) 

were at most five kg ha"1, except for Breda, where higher values were 

found. Translocation is thus limited by this low value of AVN, and also 

associated with the low weight of live vegetative tissue. In principle, 

AVN can be increased by assuming a lower level of residual non-remobiliza-

ble nitrogen in the vegetative tissue, which would be supported by the 

observed low straw nitrogen contents. However, that hardly affected the 

simulated translocation rates because of the low weight of live vegetative 

tissue. Accelerating translocation by increasing the temperature-dependent 

potential rate of nitrogen accumulation in the grains, resulted in higher 

grain nitrogen contents. However, experimental data to support this 
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modification were not available. 

Simulated grain nitrogen uptake for the highest yielding population 

(ICDW 19521) at Horns 1988-89 under additional fertilizer (Figure 6.6), 

shows that potential rate of nitrogen accumulation in the grains was 

limiting for about one week after the onset of grain fill, and 

subsequently potential rate of nitrogen export from the vegetative tissue. 

In lower-yielding environments, where grain filling duration was shorter, 

potential rate of nitrogen accumulation was the predominant limiting 

factor. 

6.3.4 Water use 

Simulated WUE, WUC and TC are given in Table 6.4, calculated on the basis 

of average plant characteristics per experiment. At higher levels of 

moisture availability, more aboveground dry matter is produced per unit 

rainfall, and less water is transpired per kg aboveground dry matter. 

Assimilation in terms of water use was most efficient at Breda 1989-90, 

and least efficient at Horns 1988-89. On the whole, there seems to be no 

relation with total dry matter production. 

Rainfall distribution strongly influences all three variables. Seasonal 

rainfall was comparable in both seasons at Breda, however total dry matter 

production in 1989-90 was about 1.5 times that in 1988-89, when a larger 

proportion of precipitation fell early in the growing season, and was lost 

by soil surface evaporation resulting in lower seasonal crop transpirat­

ion. Also Izra'a 1988-89 and Tel Hadya 1989-90 received comparable amounts 

of precipitation, but as rainfall distribution was more favourable at Tel 

Hadya, seasonal transpiration and total dry matter production were higher 

here. 

A strong positive correlation exists between total seasonal crop 

transpiration and total dry matter production (Tables 6.3 and 6.4). In 

general, differences in total crop transpiration between experiments 

increased after the onset of stem elongation. With the exception of both 

seasons at Horns, and to a less extent Izra'a 1988-89, in all environments 

high relative transpiration deficits were simulated during the major part 

of the growing season (e.g. ICDW 19521, see Figure 6.7). 
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Figure 6.6. Simulated development stage, potential rates of nitrogen 
export and uptake, and grain nitrogen content of population ICDW 19521 
grown at Horns 1988-89 with additional fertilizer, a = development stage, 
b = grain nitrogen weight, c = potential rate of nitrogen export, d = 
potential rate of nitrogen uptake. 
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Figure 6.7. Simulated relative transpiration deficit of population ICDW 
19521 grown at natural soil fertility, at various locations and years. 
For key, see legend of Figure 6.4. 
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Table 6.5. Relative change (Z) in simulated grain and straw yields, as 
a result of relative changes in input values, for Tel Hadya 1989-90 and 
Homs 1988-89, without fertilizer application. Each first and second datum 
represents the relative change in grain and straw yield, respectively. 

Input Relative change in input 

Tel Hadya Homs 

-10Z +10Z -10Z +10Z 

Sowing density 
Sowing date1 

Tiller density 
Tillers per plant 
Dry matter distribution between 
main shoot and tillers 

Plant height 
Pre-anthesis development rate 
Post-anthesis development rate 
Initial light use efficiency 
Threshold concentration of 

reserves beyond which 
assimilation is affected 

Time constant for dehydration of 
tissue2 

Average life span leaves 
Maximum rate of root extension 
Ratio of stem to leaf death, due 

to senescence 
Proportionality factor between 

relative death rates of stem and 
sheaths and leaf blades 

Proportionality factor between 
relative death rates of roots and 
stem and sheaths 

Empirical parameter in relative 
death rate of leaves 

Empirical parameter in relative 
death rate of stems and spikes 

Reduction factor for leaf blade 
growth as function of relative 
transpiration deficit 

Delay in death of spike and stem3 

Potential grain filling rate 
Floret density 
Relative growth rate leaves in 

exponential leaf area growth phase 
Development stage at end of growth 

exponential leaf area growth phase 

0/ +2 
+4/+15 

0/ -2 
0/ +1 
0/ -1 

0/ -1 
55/+15 
10/ +1 

0/ -3 
0/ -9 

0/ 0 
-40/+13 

0/ +1 
0/ -1 
0/ +1 

0/ 0 
+9/ 0 

0/ 0 
0/ +2 
0/ +7 

+1/ 
+14/ 

-1/ 
+1/ 
-1/ 

+1/ 
+4/ 

0/ 
-4/ 
-5/ 

+1 
-4 
-1 

0 
0 

-1 
-3 

0 
-2 
-3 

-1/ 
+2/ 
+1/ 
-1/ 
+1/ 

0/ 
-3/ 
+6/ 
+4/ 

+10/ 

-1 
-6 

0 
0 
0 

+1 
-1 

0 
+2 
+1 

0/ 0/ 0/ 0/ 

0/ -2 
0/ -7 
0/ +1 

0/ 0 

0/ +1 

0/ 0 

+8/ -2 

0/ -3 

13/ +2 
10/ +2 
10/ +2 

0/ +3 

0/ 
0/ 
0/ 

0/ 

0/ 

0/ 

-7/ 

0/ 

+8/ 
+10/ 
+10/ 

0/ 

+3 
+3 
-1 

0 

-1 

0 

-2 

+1 

+1 
-2 
-2 
+4 

+5/ 
-2/ 

0/ 

0/ 

+2/ 

0/ 

+4/ 

0/ 

-9/ 
-3/ 
-3/ 
-2/ 

-2 
-1 

0 

0 

0 

0 

0 

0 

0 
0 
0 
0 

+4/ 
+1/ 

0/ 

0/ 

-1/ 

0/ 

-1/ 

0/ 

+10/ 
+6/ 
+6/ 
+2/ 

+1 
+2 

0 

0 

0 

0 

0 

0 

0 
0 
0 

-1 

0/ 0/ +6 0/ 0/ +6 



0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 
0/ 

0 

0 

0 

+1 

0 

-1 

0 

-1 

-4 
0 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 
0/ 

0 

0 

0 

-1 

0 

+2 

0 

+1 

+4 
0 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 
0/ 

0 

0 

0 

0 

0 

0 

0 

-2 

-4 
0 

0/ 0 

0/ 0 

0/ 0 

0/ -1 

0/ 0 

0/ +2 

0/ 0 

0/ +2 

+1/ +5 
0/ 0 
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Relative leaf death rate due to 
late frost 

Basic relative rate of nitrogen 
turnover in vegetative biomass 

Fraction labile nitrogen exported 
from vegetative tissue to grains 

Level of residual non-remobilizable 0/ +1 
nitrogen in leaves 

Level of residual non-remobilizable 
nitrogen in stems 

Initial weight of fresh organic 
material in soil 

Initial weight of stable organic 
material in soil 

Initial weight of nitrogen in 
stable organic material in soil 

Initial mineral nitrogen in soil 
Nitrogen application 

1: changes in sowing date have intervals of one week 
2: changes in time constant for dehydration of vegetative tissue have 

intervals of one day 
3: changes in delay of death of spike and stem have intervals of one day 

6.3.4 Sensitivity analysis 

Table 6.5 summarizes the relative changes in simulated grain and straw 

yields resulting from 10% variation in both directions in the values of 

a series of initial conditions and parameters, for the low-yielding 

environment at Tel Hadya 1989-90, and the high-yielding environment of 

Horns 1988-89, under natural soil fertility, using average values for plant 

characters. Unless indicated otherwise, responses for the fertilized 

treatment were similar. 

Advancing sowing date at Tel Hadya results in a shorter sink-limited 

growth phase due to higher temperatures in the early growth stages, and 

a longer source-limited growth phase, since anthesis is less advanced than 

DVS=0.15. This results in more vegetative tissue, and a slightly higher 

grain yield. Delayed sowing results in lengthening, respectively shorten­

ing of the vegetative and reproductive growth phases, and reduced grain 

yield. Advancing sowing date at Horns results in earlier anthesis, a longer 

grain filling period, and higher grain yield. 

Lower pre-anthesis development rate at Tel Hadya delays the onset of 

grain filling and reduces the length of the grain filling period and grain 
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yield. Straw yield increases due to a longer vegetative period, and more 

residual reserve carbohydrates. Lower post-anthesis development rate also 

delays the onset of grain filling, which, in combination with fixed 

senescence, results in lower grain yield. With fertilizer application, 

the onset of grain filling is not delayed, and grain yield remains cons­

tant. At Horns, the consequences of variations in pre-anthesis development 

rate for grain and straw yield are determined by the balance between the 

opposite effects on dry matter production and the associated accumulation 

of reserve carbohydrates on one hand, and maintenance requirements on the 

other. Variations in post-anthesis development rate influence the timing 

of the onset of grain fill. With additional fertilizer, lower development 

rates cause grain yield reductions. 

Variations in the initial light use efficiency, and in the threshold 

concentration of reserves beyond which assimilation is affected, influence 

total dry matter production and reserve carbohydrate accumulation. At Tel 

Hadya, this affects straw yield, but not grain yield, as the pool of 

reserve carbohydrates is not depleted, whereas at Horns, also grain yield 

is affected. 

In the fertilized treatment at Tel Hadya, a 10% decrease in average 

leaf life span causes a reduction in vegetative biomass, one day earlier 

complete senescence, and 8% lower grain yield. At Horns it results in lower 

maintenance requirement and a reduction in reserve carbohydrates. Hence, 

more carbohydrates are available for translocation to the grains. A longer 

average life span also results in a higher level of carbohydrate reserves 

at the onset of grain fill, and higher grain yields. 

A lower maximum rate of root extension at Tel Hadya leads to a slight 

reduction in rooting depth and seasonal transpiration, with consequences 

for dry matter production and straw yield. 

At Tel Hadya, the empirical parameter governing the relative death rate 

of stems and spikes, and the delay in the onset of stem and spike death 

following death of leaves influence the date of complete senescence, and 

thus grain filling duration, which is reflected in grain yield. At Horns, 

variations in the former parameter have less effect than at Tel Hadya, 

since the relative change in grain filling duration is smaller. Limited 

variations in the relative death rate of leaf blades due to water shortage 

do not affect the overall death rate after anthesis, which is dominated 

by the relative transpiration deficit. 
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At Tel Hadya, variations in potential rate of grain filling and floret 

density are fully reflected in grain yield, indicating that sink capacity 

is a dominant yield-determining factor. At Horns, variations in these plant 

characteristics are only partly reflected in grain yield, as reserve 

carbohydrate availability also plays a role. 

At Tel Hadya, the relative growth rate of leaves in the exponential 

growth phase only influences straw yield. At Horns, however, higher values 

lead to higher dry matter production, more reserve carbohydrates, and 

higher grain yields. 

The development stage marking the end of the exponential growth phase, 

and initial soil nitrogen levels only influence straw yield. Variations 

in initial soil nitrogen content affect available nitrogen in the wet 

rooted zone, nitrogen uptake by the vegetation, and total dry matter 

production, but not remobilization of reserve carbohydrates to the grains 

and grain nitrogen content. 

6.4 Discussion 

At all locations except Horns, moisture availability was low in both 

seasons, and crop performance was characterized by low transpiration and 

assimilation rates, high relative transpiration deficits, rapid senescence 

after anthesis, and low values for GRAI, total dry matter production and 

straw and grain yields. Early senescence prevented complete translocation 

of pre-anthesis reserve carbohydrates to the grains. 

Under arid conditions, variation in amount and distribution of rainfall 

is the major cause of variation in dry matter production (Chaves, 1991). 

Higher moisture availability stimulates dry matter production (Horns), and, 

provided autumn rainfall is sufficient for emergence and early growth, 

higher spring rainfall leads to increased dry matter production and water 

use efficiency (Breda). Moreover, post-anthesis senescence rates will be 

lower and grain filling duration longer. 

The Breda experiments show that at very low rainfall (<200 mm), nitro­

gen application is not effective. At higher rainfall, total dry matter 

production, and nitrogen uptake and recovery are higher, but late season 

moisture stress may limit grain yields (Tel Hadya, Izra'a 1989-90). At 

still higher moisture availability, grain yields increase with increasing 

nutrient availability (Horns, both seasons). At high nitrogen supply from 
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natural sources, nitrogen uptake hardly responds to fertilizer application 

(Horns 1988-89), and the increased yield must therefore have been due to 

other nutrients applied. These results are in agreement with the general 

observation that under arid conditions, in the absence of growth-limiting 

nutrient shortages, available water explains most of the variation in dry 

matter production (Blum & Pnuel, 1990; Buresh et al., 1990; Stapper & 

Harris, 1989), and that at higher moisture availability, recovery of 

fertilizer nitrogen increases (Buresh et al., 1990). 

Under favourable environmental conditions, i.e. sustaining yields of 

1-2.5 ton ha"1, differences in weather conditions among locations and years 

are reflected in the residual reserve carbohydrates at the end of grain 

fill. Among populations within a given experiment, the balance between 

maintenance requirements and assimilation after anthesis determines to 

what extent the reserves are used by vegetative tissue at the expense of 

grain yield. Severe drought stress after anthesis results in rapid 

senescence and cessation of grain fill, so that the reserve pool is not 

depleted. Under those conditions, grain filling is initially sink-limited, 

as determined by grain density and potential grain filling rate, and 

subsequently source-limited by length of the grain filling period. Theref­

ore, factors influencing post-anthesis green area duration, e.g. sowing 

date, development rates, average life span of leaves, relative death rate 

of stems and spikes, and the delay in death of stems and spikes, are 

reflected in grain yield. Additionally, higher grain densities will allow 

more rapid translocation of reserve carbohydrates (Mac Key, 1988). 

Blum et al. (1983a, 1983b) observed continued, although reduced, 

translocation and kernel growth after chemical desiccation of 

photosynthetic active organs after anthesis, without any effect on grain 

fill duration. Including that process in the simulation model, consistent­

ly resulted in overestimation of grain yields. This would suggest that 

accelerated senescence due to abiotic stress is associated with cessation 

of grain fill. 

For a given experiment, the model simulates similar total dry matter 

production and fraction reserve carbohydrates at anthesis for different 

populations. Under high-yielding conditions, variation among populations 

in grain yield is mainly the result of differences in net flow of assimil­

ates, and as reserve carbohydrates are fully depleted, straw yields are 

similar. Under low-yielding conditions, higher grain yields are the result 
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of increased translocation of reserve carbohydrates, which is the main 

cause of variation in straw yield. However, under all conditions, actual 

straw yields show variation (Chapter 5). As under high-yielding conditions 

reserve carbohydrates, which also may vary, are depleted, actual total 

dry matter production at anthesis is most probably variable as well. Also 

under low-yielding conditions, it seems unlikely that populations orig­

inating from very different environments (Chapter 3 ) , have similar total 

dry matter production. 

The fact that the model could not reproduce these differences in total 

dry matter production limits its analytical capacity. Genotypic parameters 

would have to be identified to account for that variation, especially 

photosynthetic characteristics, duration of the sink-limited leaf growth 

phase, and the relative growth rate in that phase (Table 6.5). Variation 

in physiological characteristics in durum wheat germplasm has been report­

ed (Gummuluru et al., 1989), but as detailed information at that level 

was lacking, the model could not be calibrated per population. 

The slight overestimate of grain yield at Horns could be associated with 

underestimation of the death rate of vegetative tissue and overestimation 

of the assimilation rate, whereas the underestimate of straw yield may 

have been the result of incorrect initialization of soil moisture or 

nitrogen content. The serious underestimate of dry matter production at 

Izra'a 1989-90 may have been caused by incorrect weather and soil input 

data (de Wit & van Keulen, 1987). For instance, rainfall data seemed to 

exclude values below 0.3 mm. This seems more likely than attributing the 

aberrant behaviour to model structure, considering its performance under 

other conditions. 

Without resorting to statistical analysis on the basis of individual 

populations, Table 6.3 indicates that grain nitrogen concentrations are 

inversely related to harvest index and grain yield, in agreement with 

observations in bread wheat (Dalling, 1985; Kramer, 1979), and that grain 

and straw nitrogen concentration are positively related. Lowest minimum 

straw nitrogen concentrations were found in experiments with highest total 

dry matter production and NHI, which corresponds with Dalling's (1985) 

estimate that under conditions where post-anthesis supply of soil nitrogen 

is low, for example due to water shortage, nitrogen redistribution from 

vegetative organs can contribute more than 80% to grain nitrogen yield. 

These very low minimum straw nitrogen concentrations seem to be character-



100 Evaluation of durum wheat landraces 

istic for durum wheat landraces. The higher values for the check varieties 

were confirmed by unpublished results from non-fertilized durum wheat 

breeding material (M. Nachit, ICARDA, personal communication, 1991). These 

values, however, are still lower than the generally accepted value of 

0.004 kg kg"1 (van Keulen & van Heemst, 1982). 

Nitrogen translocation from vegetative tissue to the grains was in 

general underestimated, which could not be corrected by adjusting the rate 

of translocation, because of the small amounts of vegetative tissue during 

grain fill. Moreover, if grain filling duration was short because of early 

senescence, the potential rate of nitrogen accumulation in the grains 

(PRNAGR) was mostly the limiting factor. Introducing higher values of 

PRNAGR indeed resulted in higher translocation rates and more correct 

NHIs. Genotypic variation in efficiency of nitrogen redistribution in 

bread wheat has been demonstrated (Dal 1 ing, 1985; Dal ling et al., 1975), 

which may be related to the activity levels of proteolytic enzymes in the 

senescing organs (Bewley & Black, 1985), but higher rates of nitrogen 

accumulation would require higher rates of protein synthesis. It is 

questionable therefore, whether a value for PRNAGR that accounts for the 

large difference between observed and simulated values is realistic. 

Two features of the modified model limit its applicability: Firstly, 

tiller and grain density were introduced as forcing functions. Grain 

density is a dominant yield-determining factor especially under low-

yielding conditions, and it is important therefore to include an explana­

tory description in the model. Secondly, post-anthesis death was treated 

descriptively, and although at lower yield levels grain yield was esti­

mated satisfactorily, it showed sensitivity to the parameter describing 

death of stems and spikes. Also here, an explanatory description is 

required. 

The quantitative and qualitative limitations to evaluation of large 

germplasm collections can be reduced by pursueing an explanatory approach. 

It is shown in this study that under variable growing conditions where 

genotype x environment interactions are significant, a crop growth simula­

tion model presents a comprehensive tool to increase insight in plant 

growth processes. Despite shortcomings, the model simulated a recognizable 

durum wheat crop and reproduced in a consistent way genotype x environment 

interactions and their effects on yields. Preliminary evaluations of plant 

genetic resources are primarily aimed at establishing a general overview 
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of the properties of an entire collection, and the relative values of 

individual accessions, which relaxes the demands on accuracy in evaluation 

results, if it provides broad knowledge over diverse environments. Subse­

quent specific selections in promising material may effectively result 

in the desired germplasm. 

Data on plant characters for which model performance is sensitive are 

required. Partly, they can easily be recorded in common preliminary 

evaluations, such as date of anthesis and the associated temperature sum. 

Additionally, basic information on for instance relative leaf growth rate 

as a function of ambient temperature, dry matter distribution and assimi­

lation characteristics of individual leaves is required, characteristics 

that in landraces may be different from modern varieties, as can be 

deduced from their different growth performance. These may be determined 

experimentally on a limited number of selected genotypes, and then applied 

more broadly. Environmental input may consist of long-term weather aver­

ages and preferably detailed soil characterization, if necessary comple­

mented by specific weather or soil data representing more favourable or 

adverse growing conditions. Such an approach would provide adequate 

information on agronomic potentials of a given population. 



Chapter 7 

FROST TOLERANCE 

Abstract 

Syrian durum wheat landraces were evaluated for early and late season 

frost tolerance. Populations appear to be tolerant to early frosts in 

January, but late frosts in March can severely damage foliage. Locally 

evolved germplasm presumably is well adapted to usual environmental 

conditions such as limited early frosts. Late frost tolerance of 

foliage appears to be related to minimum winter temperatures in the 

regions of origin, with populations from coastal regions showing 

highest sensitivity. In simulation studies, foliar damage within the 

range of observed rates, did not reduce final grain yield, whereas 

additional floret damage caused reduced grain yields, in combination 

with a similar increase in straw yield. Therefore, it appears important 

to give the effects of late frosts on the apex priority over the 

customary scoring for foliar damage. 

7.1 Introduction 

Low temperature is an environmental factor that may limit dry matter 

production of plants. Although there appears to exist a wide temperature 

range for optimum photosynthetic performance, van Keulen & Seligman (1987) 

hypothesize that average daytime temperatures below 10 °C reduce maximum 

gross assimilation rate. Below 0 °C, plant growth ceases (Kirby & Ap-

pleyard, 1987). The rate of leaf initiation and appearance on the main 

culm are linearly related to the temperature of the shoot meristem (White 

et al., 1990), and therefore low temperatures will result in lower 

development rates and delay future development stages. Temperatures below 

zero may have a detrimental effect on cell structures, if morphological, 

physiological and biochemical adaptation is insufficient (Levitt, 1980). 

Low temperature tolerance is a desirable plant characteristic for 

autumn-sown cereals in continental and mountainous areas of the Mediterra­

nean region, which are characterized by winter and unpredictable late 
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frosts in spring. Stapper and Harris (1989) call the occurrence of frost 

the main uncertainty in the thermal regime in Syria. Landraces are a 

source for cold tolerance in cereal breeding, since some possess a wide 

genetic variation for this character. 

In this paper, results are reported of an evaluation for frost toler­

ance of durum wheat landraces from Syria, with regard to their geographi­

cal origin. On the basis of simulation of plant growth and development 

at two locations characterized by different moisture availability, effects 

of late frosts on final grain and straw yield are discussed. 

7.2 Materials and methods 

Collection missions in the Syrian Arab Republic in 1987 and 1988, con­

ducted in collaboration between the ICARDA Genetic Resources Unit and the 

Genetic Resources Unit of the Agricultural Research Centre, Douma, 

resulted in a collection of durum wheat fTriticum turqidum L. var. durum 

(Desf.) MK] landraces (van Slageren et al., 1989). Forty-nine populations, 

whose putative origin was at their 45 collection sites or in their vicin­

ity (Figure 7.1), were considered representative for their respective 

environments (Chapter 3). These were subjected to agronomic evaluation 

at ICARDA's principal experimental station, located at Tel Hadya, Syria 

(36°01'N, 36°56'E), during the 1989-90 crop cycle. The experimental design 

included two levels of nutrient availability in two replicates. Natural 

fertility represented one level of nutrient availability, while a second 

level was created through additional nitrogen and phosphorus (both 40 kg 

ha"1) application. 

A two-week period of below-zero daily minimum temperatures was recorded 

at the beginning of 1990 (Figure 7.2). During the remainder of January 

and February a number of shorter periods with night-frosts of decreasing 

severity occurred. In March a one-week period of frosts occurred with a 

minimum of -8.9 °C. Whereas early season frosts are characteristic for the 

climate at Tel Hadya, the probability of such severe frosts after mid-

March may be as low as once in a century (W. Göbel, ICARDA, personal 

communication). 

This temperature pattern provided an opportunity to evaluate tolerance 

in locally evolved landrace germplasm to both early and late season 

frosts. The January frost period coincided with early tillering (phenolog 
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X 

60 80 100 
time (Julian calendar day) 

3 leaves 2 tillers pseudo stem terminal first node 
elongation spikelet 

development stage 

Figure 7.2. Daily minimum temperature at Tel Hadya, Syria, for January, 
February and March 1990, with average phenological development stages of 
durum wheat landrace populations. 

ical stages 21 and 22; Zadoks et al., 1974). The March frosts occurred 

just before plants reached first node stage (phenological stage 31). Start 

of floral initiation, start of spikelet differentiation and terminal 

spikelet stage were estimated at Julian days 4, 15 and 59, respectively, 

on the basis of a crop growth and development model for spring wheat (van 

Keulen & Seligman, 1987). 

The January frosts caused little apparent foliar damage, and the effect 

was not observed. Only severity of the stronger late season frost damage 

to the foliage was visually scored on March 21 (Julian day 80). 

Frost damage was related to minimum winter temperatures in the regions 

of collection (Figure 7.1), and to a classification in landrace groups 

(Chapter 3). A landrace group is a subgroup within the Syrian durum 

wheats, as identified by farmers. Each group is characterized by some 

morphological traits, and by a specific geographical distribution pattern. 
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Reduction of grain and straw yield due to late frost damage could not 

be determined experimentally, because of absence of a control not sub­

jected to frost. Instead, yield reduction was estimated using a crop 

growth and development model for spring wheat (van Keulen & Seligman, 

1987) that was modified to take into account dry matter distribution 

between main shoot and tillers, and with respect to post-anthesis 

senescence as a consequence of water shortage. The effect of late frost 

damage was described by a fractional decline in green leaf weight and area 

(relative frost damage rate, FDR), every day after floret initiation the 

daily minimum temperature dropped below an arbitrary value of -4 °C. 

Although decreasing temperature presumably increases frost damage, because 

of lack of experimental data and absence of temperatures below -9 °C, FDR 

was left uninfluenced by frost severity. 

Growth and development were simulated for two locations in Syria, viz. 

Tel Hadya and Horns (36°43'N, 34°45'E), which represent a low and a high 

yielding environment, respectively. Plant growth at Tel Hadya during 1989-

90 was limited by a low seasonal precipitation of 234 mm, whereas a 

similar amount of 218 mm at Horns was compensated by residual soil moisture 

of the previous season. For both locations, late frost damage was simu­

lated at Julian days 76 and 77. For each location, final grain and straw 

yield were estimated for both levels of nutrient availability, and for 

increasing values of FDR. Consequences of only foliar damage, and of both 

foliar and floret damage, which was assumed equal to foliar damage, were 

simulated. 

7.3 Results and discussion 

Germplasm evolved in Syria presumably is well adapted to local environ­

mental conditions. Durum wheat, since it evolved in the fifth millennium 

B.C. in the Fertile Crescent from cultivated emmer (Zohary & Hopf, 1988), 

has yearly been exposed to local temperature regimes, such as early season 

frosts. The low damage caused by the early frosts in January, which were 

not particularly severe, suggests that prefrost acclimatation was suffic­

ient, and that tolerance has evolved naturally. 

Populations without and with additional fertilizer scored on average 

2.0 and 2.5 (see Table 7.1 for scale), respectively. This response is 

opposite to reported increase of resistance to early frost in Syrian 
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barley by fertilizer application (Salahieh & Abd, 1990). However, the 

negative fertilizer effect for late frost damage was not significant at 

p = 0.01, and therefore all four observations on frost damage were aver­

aged to one population mean. 

Severe foliar damage due to late frosts occurred to landrace popula­

tions originating from the coastal region of Tartous and the western 

littoral mountains (Table 7.1 and Figure 7.1; mean score 4.9, mean score 

other regions 1.1-2.1). Although the probability of severe frosts in March 

Table 7.1. Damage to check varieties and landraces, 
classified per region of collection and landrace 
group, due to March frost. 

Checks 
Haurani 
Cham 1 
Cham 3 

number of 
popul 

Regions of collection 
Tartous 
Horns 
Hauran 
Jezira 
Aleppo 
Idleb 

Landrace groups 
Baladi 
Sheirieh 
Hamari 
Nab el Jamal 
Haurani 
Bayadi 
Sweidi 
Shihani 

Overall mean 

ations 

10 
6 

14 
10 

6 
3 

14 
1 
3 
3 

18 
5 
4 
1 

49 

frost 

mean 

1.5 
4.9 
3.5 

4.9 
2.1 
1.8 
1.4 
1.1 
1.1 

4.0 
2.0 
1.8 
1.7 
1.6 
1.5 
1.5 
1.5 

2.3 

damage* 

range 

2.0-6.5 
1.3-4.3 
1.0-3.0 
0.8-1.8 
0.3-1.8 
0.3-1.8 

1.0-6.5 
-

1.3-2.3 
0.3-4.3 
0.8-3.0 
1.3-1.8 
1.0-2.3 

-

+ : measured on a 0-9 scale; 0, no damage, 9, 90Z or 
more damaged. 
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is very low, and this specific environmental condition has had minor 

evolutionary influence, observations indicate that tolerance to late 

season frosts is determined by more probable low temperatures during 

earlier winter months. During the months November - March, mean minimum 

temperatures inland are lower than in coastal regions, which is reflected 

in higher cold tolerance of germplasm originating from inland regions. 

Cocks & Ehrman (1987) found similar results when evaluating frost toler­

ance of annual legumes of Syrian origin. 

Classification of landrace population into landrace groups (Chapter 

3) gave a bimodal distribution: the Baladi landrace group showed a mean 

damage score of 4.0, whereas other groups scored an average of 1.5-2.0 

(Table 7.1). This corresponds with the geographical distribution pattern 

of the Baladi landrace group, which was collected mainly from the coastal 

region of Tartous, whereas other landrace groups originated from other 

parts of the country. 

At Tel Hadya, late frosts daily caused 12% foliar damage on average, 

and a maximum of 41% was scored. Observed grain and straw yields are given 

in Table 7.2. 

Table 7.2. Observed average grain and straw yield (kg dry 
matter ha"1) at Tel Hadya and Horns, for the season 1989-90, 
at two levels of nutrient availability. 

Location Fertilizer Grain 
application yield 

Grain 
yield 

338 
267 

1156 
1276 

Straw 
yield 

1597 
1706 

4992 
5180 

Total 
dry matter 
production 

1935 
1973 

6148 
6456 

Tel Hadya 

Horns 

natural soil fertility 
additional fertilizer application 

Late frost damage to florets was not observed. Whereas early in the 

season the apex is below the soil and protected against low temperatures, 

damage may occur later on. Syrian barley landraces show variation in rate 
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a) Tel Hadya, natural soil fertility 
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Figure 7.3. Observed and simulated grain and straw yields at Tel Hayda 
for the 1989-90 crop cycle, for different levels of daily frost damage, 
at natural soil fertility (a) and with fertilizer application (b). Simula­
tions assuming only foliar damage, and both foliar and floret damage are 
presented. 
Legend: + = observed grain yield 

x = observed straw yield 
• = simulated grain yield 
• = simulated straw yield 

= only foliar damage simulated 
= both foliar and floret damage simulated 
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a) Horns, natural soil fertility 
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Figure 7.4. Simulated grain and straw yields at Homs for the 1989-90 crop 
cycle, for different levels of frost damage to foliage, at natural soil 
fertility (a) and with fertilizer application (b). Simulations assuming 
only foliar damage, and both foliar and floret damage are presented. See 
Figure 7.3 for legend. 
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of apex development; a vernalization requirement results in slow initial 

apex development, which leads to high levels of cold tolerance through 

low temperature avoidance (E. van Oosterom, ICARDA, personal communicati­

on). The same mechanism may be found in Syrian durum wheat landraces. 

Observed and simulated grain and straw yield for Tel Hadya assuming 

foliar damage only, and simulated yields assuming both foliar and floret 

damage, are presented in Figures 7.3a and b. Observed yields, however, 

represent different populations and thus comprise a genotype and a 

genotype x environment interaction component. This caused variation and 

absence of an apparent trend in yield decrease. Simulated values corre­

spond on the average with observed values. Simulated grain yield is in 

the case of only foliar damage, within the range of observed rates of 

frost damage, not affected, unlike straw yield. Additional floret damage 

causes grain yield reduction, and an increase in straw yield with a 

similar amount in comparison with only foliar damage. 

For the high yielding location Horns (Figures 7.4a and b ) , no observed 

data on frost damage were available. Simulation of only foliar damage 

resulted in a small grain yield increase, and a decline in straw yield. 

Grain yield increase was due to a slightly longer grain filling period 

as a consequence of a longer green area duration. Additional floret damage 

caused grain yield reduction, and for both nutrient conditions a slight 

initial increase in final straw yield, caused by reserve carbohydrates 

not translocated to the grains in combination with only a slight decrease 

in total dry matter production. Final straw yield decreased at higher 

frost damage rates. 

Nutrient availability has only limited influence on the relative 

changes in straw yield, although grain yield may be affected considerably. 

In the case of only foliar damage and FDR = 0.12 (the observed average), 

grain yield remained stable, and straw yield decreased with 3% to 6%. Only 

in the case of Horns with additional fertilizer, grain yield increased with 

6%. In the case of both foliar and floret damage, grain and straw yield 

changes of -18% to -24% and -2% to +5%, respectively, were observed. 

Simulation of the effects of late frosts under both low and high 

yielding conditions, resulted in grain yields not affected by damage to 

foliage only, whereas already low levels of additional floret damage 

resulted in grain yield reduction. This decrease in final grain weight 

is about equal to the increase in weight of reserve carbohydrates at the 
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end of the growth cycle, which causes the increase in straw yield in 

comparison with only foliar damage. It appears that the number of florets 

per m2 influences final grain yield, and therefore, it is important to 

observe the effects of late frosts on the apex, in addition to the custom­

ary scoring of foliar damage. 



Chapter 8 

FUNGAL DISEASE RESISTANCES 

Abstract 

As a consequence of the large size of many germplasm collections, 

preliminary evaluation can often not be carried out in great detail. 

To optimize collection and evaluation, knowledge on the relation 

between distribution of disease incidence and presence of host resist­

ance, can be utilized. 

Fourty-nine Syrian durum wheat landrace populations, whose putative 

origin was in the vicinity of the collection sites, were evaluated for 

response to the fungal diseases common bunt, yellow rust, and septoria 

tritici blotch. Results were interpreted on the basis of collection 

regions and landrace groups. 

Host resistance to common bunt and septoria tritici blotch was 

highest in germplasm originating from regions with environmental 

characteristics favourable for development and incidence of the 

concerned disease. However, host resistance to yellow rust was lowest 

in germplasm from 'favourable' regions. Landrace groups were also 

characterized by different levels of disease resistances, and were 

generally slightly more homogeneous than collection regions with 

respect to infection percentage. 

With respect to fungal disease resistances, collection of landrace 

germplasm may best be organized according to collection regions 

established on the basis of agro-ecological information, whereas 

evaluation for disease resistance could make use of classification in 

landrace groups. 

8.1 Introduction 

Indigenous landrace germplasm often possesses well functioning resistance 

against locally prevalent diseases (Hussey, 1990), since natural selection 

is likely to be successful in creating stable complexes of resistance 

genes and genotypes (Allard, 1990). Therefore, landraces are an important 

source of resistance in plant breeding. Although a small selection pres-
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sure exists against susceptibi 1 ity to diseases, certain balance mechanisms 

in landrace populations maintain their susceptible components (van Leur 

et al., 1989), and therefore, absolute resistance of all plants within 

a population is unlikely. 

Evaluation of plant germplasm at genebanks is normally of preliminary 

nature, as a consequence of the large size of germplasm collections. 

Promising material is subsequently evaluated in more detail. In the case 

of genetically heterogeneous landraces, this may imply that response to 

diseases is evaluated at plant population level, using inoculums consist­

ing of several races, and that thus responses of individual genotypes to 

specific races is not known. However, it is important that understanding 

is obtained with respect to geographical distribution of disease incid­

ence, as determinded by agro-ecological characteristics of cultivation 

areas affecting disease development, and that relations are established 

between this distribution and the presence of disease resistance in 

plants. Such information is, for instance, helpful in planning germplasm 

collection missions (Marshall & Brown, 1983; Vavilov, 1951), and effec­

tively selecting for disease resistances. 

The fungal diseases common bunt ["Tilletia foetida (Wall.) Liro and T. 

caries (DC) Tuil], yellow rust fPuccinia striiformis Westend, f. sp. 

tritici 1, and septoria tritici blotch fMycosphaerella qraminicola (Funkel) 

Sand.] are distributed over large parts of Asia, Europe, the Americas, 

Africa and Australia (Commonwealth Agricultural Bureaux, 1970, 1977, 1978, 

1984). Mamluk et al. (1990), in a four season field survey in Syria, 

reported common bunt, yellow rust and septoria tritici blotch as the most 

frequently encountered wheat diseases in all areas of the country. 

Durum wheat fTriticum turqidum L. var. durum (Desf.) MK] originates 

from the so-called Fertile Crescent, of which Syria forms a part (Vavilov, 

1951; Zeven & de Wet, 1982). It has been cultivated in its region of 

origin since the fifth millennium B.C. (Zohary & Hopf, 1988). Durum wheat 

landrace populations were collected in 1987 and 1988 from various regions 

of Syria (van Slageren et al., 1989). Populations whose putative origin 

was at the collection sites or in their vicinity, were considered repre­

sentative for their respective environments (Chapter 3 ) . Of this part of 

the collection, 49 populations were selected and used to examine the 

geographical distribution of resistance to the diseases common bunt, 

yellow rust and septoria tritici blotch, in relation to environmental 
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characteristics of the collection regions, and to formulate germplasm 

collection and evaluation strategies. 

8.2 Materials and methods 

The 49 landrace populations, originating from 45 sites, were evaluated 

under field conditions. The populations represented eight landrace groups, 

i.e. taxonomical groups as distinguished by farmers, each group with 

specific morphological characteristics and a geographical distribution 

pattern, and referred to by a local name (Chapter 3). The collection sites 

were grouped in seven regions (Figure 8.1), that were combined with the 

agro-ecological zoning (Anonymous, 1977), used by Mamluk et al. (1990), 

restricted to the rainfed zones. 

The populations were sown in two separately randomized replications 

for two seasons, viz. 1988/1989 and 1989/1990. Resistance to common bunt 

and yellow rust was field evaluated at ICARDA's principal station at Tel 

Hadya, near Aleppo, Syria, where the climate is characterized by hot and 

dry summers, a rainfall peak from December through February (mean annual 

precipitation 330 mm), and low relative atmospheric humidity. Screening 

for septoria tritici blotch was carried out in fields at the coastal 

ICARDA sub-station near Lattakia, where the climate is strongly influenced 

by the Mediterranean and is characterized by a longer rainy season with 

higher annual precipitation (annual mean 887 mm), higher relative atmos­

pheric humidity, higher winter and lower summer temperatures. 

Plants were artificially inoculated. The common bunt inoculum used was 

a composite bulk of teliospores, in which the presence of races L-9 and 

T-ll had been identified (Ismail, 1992), and which was prepared from 

bunted wheat spikes collected at various sites in Syria and adjusted to 

a T. foetida : T. caries spore ratio of approximately 1:1. Inoculum 

density was 0.006 gram spores per gram seed, resulting in about 80,000 

spores per seed. 

Yellow rust was inoculated three times between early tillering and 

early booting stage, in the late evening when dew formation was expected, 

or after slight rain. The inoculum was a bulk of viable uredospores 

preserved from the previous season, comprising the two predominant races 

in Syria and neighbouring countries, viz. 6E16 and 82E16. This was mixed 

with talcum powder and dusted over the plants. About 5 gram of uredospores 
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per hectare was used. 

Septoria tritici blotch inoculum consisted of a bulk of blastospores 

produced from pycnidiospores grown on artificial yeast-malt-saccharose-

agar medium (YMSA, 4-4-4-18 gram l"1 water) and multiplied on liquid medium 

(YMS) for five days. Pycnidia originated from leaf samples collected from 

all septoria-infected areas of the country. Between tillering and heading, 

plants were mist irrigated six times, and subsequently sprayed with an 

inoculum suspension of 2 x 106 spores ml"1. About 1.5 ml suspension per 

plant was applied. 

Common bunt was evaluated on plots of a single, 1-meter-long row. At 

maturity, when symptoms were clearly visible, spikes of a randomly chosen 

half meter per row were harvested. Numbers of bunted and healthy spikes 

were counted, and infection percentages determined. 

Yellow rust evaluation was conducted in plots of four, 1-meter-long 

rows. When symptoms were clearly visible after anthesis, percentage 

severity and reaction type were recorded. Severity of yellow rust was 

scored according to the modified Cobb scale (Peterson et al., 1948). The 

reaction type was classified in five classes: resistant (R), moderately 

resistant (MR), intermediate (M), moderately susceptible (MS), and suscep-

Table 8.1. Disease severity and vertical disease development of septoria 
tritici blotch, quantified based upon the 0-9 scale of Saari and Prescott 
(1975). Not presented scores are defined by intermediate severity and 
development. 

Score Severity Vertical develop­
ment 

Free from infection 

Few isolated lesions Lowest leaves only 1, very resistant 

5, intermediate Severe infection on lower 
leaves; moderate to light 
infection to the mid-point 
of the plant with upper 
leaves free 

Infections do not 
extend beyond the 
mid-point of the 
plant 

9, very 
susceptible 

Severe infection; spikes 
infected to some degree 

All leaves 
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tible (S). Scores on disease severity and reaction type were converted 

to coefficients of infection (Stubbs et al., 1986). 

Septoria tritici blotch was evaluated on plots of one row of 35 cm 

length, and observations were made after anthesis. Vertical disease 

development and disease severity were quantified based upon the 0-9 scale 

of Saari and Prescott (1975, Table 8.1). 

Populations were heterogeneous with respect to the durum wheat 

genotype, and sometimes consisted of mixtures of durum and bread wheat 

(Chapter 3). In the case of common bunt, harvested bread wheat spikes were 

discarded; in the case of yellow rust and septoria tritici blotch, obser­

vations were made on the durum wheat plants only, and one datum per plot 

was established by estimating the average score after inspection of 10-20 

plants. Data of the four replicates were averaged to one value per popul­

ation, with the exception of yellow rust reaction type, which was trans­

formed to a range per population. 

Mean values for observed resistance characteristics, per collection 

region and landrace group were calculated. Variation for infection among 

regions and landrace groups was studied by analysis of variance (ANOVA) 

of untransformed data. 

8.3 Results 

Mean values and ranges of the response to the three diseases, per collec­

tion region and landrace group are presented in Table 8.2. Common bunt 

infection varied strongly, with extremes of 0% in a Haurani population 

from the Hauran region, and 30% in a Sweidi population from the Idleb 

region. Average infection levels for populations from the Jezira region 

was 6%, whereas the highest average infection levels were found in those 

originating from the western regions of Syria, particularly from the Idleb 

region (21%). In general, resistance levels of the populations collected 

more inland, i.e. the Hauran, Aleppo and Jezira regions were highest. 

Among landrace groups, Nab el Jamal, Shihani, Bayadi and Haurani possessed 

on average highest resistance to common bunt. 

Yellow rust severity varied from 8% in a Hamari population from the 

Aleppo region, to 80% in the Nab el Jamal population from the Jezira 

region. Highest average severity was observed in populations originating 

from Coastal sites and the Jezira region (both 45%). Regions and landrace 
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groups with low average severity were not identified. Yellow rust reaction 

type varied widely for most regions and landrace groups, although the 

majority of individual population scores fell in the categories M and MS. 

Lowest average coefficient of infection (ACI) was 15, recorded for the 

Aleppo region, whereas the Horns, the Coastal and the Jezira regions showed 

ACIs of 33 and higher. The Hamari landrace group appeared most resistant 

(ACI = 13). Septoria tritici blotch score for vertical disease development 

varied from 3 in a Hamari population from the Horns region, to 8 in a 

Haurani population from the Hauran region and in a Shihani population from 

the Jezira region. For severity, the septoria score ranged from 2 in a 

Shihani population from the Jezira and a Baladi population from the 

Coastal region, to 8 in a Hamari population from the Horns region (the same 

population as with lowest score for vertical disease development). No 

regions or landrace groups were characterized by low mean scores, and on 

average, susceptibility to septoria tritici blotch in durum wheat land-

races appears common all over Syria. Vertical development and severity 

of septoria infection were significantly positively related: severity = 

1.33 + 0.52 x vertical development (r = 0.52; p < 0.001; for vertical 

development £ 1), although the explained variation was low (27%), probably 

due to the relative imprecise scale of observation. 

One-way AN0VA (Table 8.3) showed that generally, variation in infection 

among landrace groups was slightly higher than among regions for all three 

diseases. Only variation in vertical development of septoria tritici 

blotch was higher among regions. Variation in infection within regions 

and within landrace groups was in all cases lower than among regions and 

among landrace groups, respectively. 

8.4 Discussion 

Highest average resistance to common bunt was found in populations orig­

inating from the Jezira, the Aleppo and the Hauran regions, whereas 

populations from the Idleb and the Coastal regions showed low resistance 

levels. Although common bunt is spread over all collection regions, it 

is endemic to, and most severely affects the durum wheats in the Jezira 

region (Mamluk et al., 1990). This region is characterized by relatively 

low rainfall and dry soil, and low daily minimum temperatures in winter 

and spring. Such conditions favour common bunt development (Hoffmann & 
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Schmutterer, 1983). The high disease pressure in the Jezira region may 

explain the development of high resistance levels in locally evolved 

germplasm. Environmental conditions in the Aleppo and the Hauran regions 

are also relatively favourable for common bunt development, which may have 

resulted in higher resistance levels. Analogously, although common bunt 

is spread in the Coastal and the Idleb regions, the less favourable 

environmental conditions there (higher rainfall, higher temperatures in 

winter and spring) may have led to lowering the selection pressure result­

ing in lower resistance levels found in these two regions. 

Yellow rust incidence, both in terms of average severity and ACI, was 

highest in populations from the Coastal, the Horns and the Jezira regions. 

In Syria, yellow rust epidemics occur every three to four years. The 

disease commonly occurs in regions with high rainfall, but in years of 

epidemics it may also spread in areas with lower rainfall combined with 

a prolonged wet spring (Mamluk et al., 1990), e.g. the Jezira region, 

where lower rainfall is more evenly distributed over winter and spring. 

Additionally, disease development is favoured in the Coastal and the Horns 

regions by high soil fertility, and in the Jezira region by low night 

temperatures (Wiese, 1977). However, although the irregularity of disease 

occurrence may have interrupted the build-up of host resistance in favour­

able regions, this is no obvious reason for lower resistance in regions 

with high disease incidence. 

In Syria, septoria tritici blotch is spread moderately extensive in 

areas with more than 350 mm annual rainfall, but may spread into areas 

with lower rainfall, if low temperatures and high rainfall prevail during 

the critical months of February and March (Mamluk et al., 1990; Wiese, 

1977). Although on average susceptibility to the disease appeared common 

all over Syria, somewhat lower susceptibility scores were recorded for 

germplasm originating from the Idleb, the Horns and the Coastal regions, 

where annual rainfall is relatively high, and from the Jezira region, 

where the rainfall season may be extended. 

Statistical evidence for these relations can not be given, as this 

would require extensive quantitative knowledge of the relations between 

environmental characteristics and disease development in Syria. 

Our results on common bunt agree with those of Pecetti et al. (1989) 

for 118 other Syrian durum wheat accessions, who found a peak in the range 

of ll%-20% infection, although the mean value estimated from their graph 
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is lower. For yellow rust, a peak was observed in the same range, with 

an estimated mean between 21%-30%, which is below the mean value reported 

here (49%). It is difficult to disentangle plant genetic, race and envi­

ronmental effects in explaining this difference. However, as both our 

evaluation seasons were characterized by below average seasonal rainfall, 

which is disadvantageous to yellow rust development, and a similar 

inoculum was used, Pecetti et al. appear to have evaluated more resistant 

germplasm. 

More information on race specificity, intrapopulation variation, 

multiline effects, etcetera, would have been obtained with evaluation of 

individual genotypes, multiple readings in time, and other detailed 

observations. However, this is not the scope of preliminary evaluations 

of germplasm collections. In Syrian and Jordanian barley landraces, van 

Leur et al. (1989) found large intrapopulation diversity for disease 

resistance. If a similar diversity would be present in durum wheat land-

race populations, highly resistant plants may be found, even though on 

average the relevant populations may not be resistant. 

It may not always be possible to relate disease resistance to environ­

mental conditions, however, establishment of such relations would make 

future collection missions more efficient and would contribute to develop­

ment of improved germplasm with adequate disease resistance for certain 

agro-ecological zones (van Leur et al., 1989). For example, identification 

of resistance to common bunt and septoria tritici blotch is most likely 

in germplasm originating from regions with environmental characteristics 

favourable to development of these diseases, and to disease incidence. 

The generally slightly higher variation among landrace groups than 

among regions of collection, was also observed for phenotypic variation 

patterns of a number of plant characters of the same material (Chapter 

4 ) . In other words, landrace groups are slightly more homogeneous than 

regions of collection for several plant characteristics, including disease 

resistances. Although variation may be distributed differently for other 

crops and countries, the concept of landrace groups may be useful in 

germplasm evaluation. It appears efficient to evaluate a limited number 

of populations per landrace group, provided all environmental regions are 

incorporated, instead of evaluating all accessions for disease resistance. 

Most promising landrace groups, possibly from certain regions, can 

subsequently be evaluated in more detail. 



Chapter 9 

GENERAL DISCUSSION 

9.1 Evaluation of large germplasm collections 

Agronomic evaluation gave considerable differences in average yield among 

experiments. Performance per landrace population varied strongly among 

locations, and populations showing superior performance under all condi­

tions could not be identified. This typifies the complications caused by 

genotype x environment interaction in the evaluation of plant germplasm. 

It is difficult or impossible to extrapolate crop behaviour to different 

environmental conditions, and as large collections can not be evaluated 

at many locations over a sufficient number of seasons, an efficient 

evaluation method is required. 

9.2 Analysis of genotype x environment interaction 

Phenotypic plant charcateristies have genotypic and environmental compon­

ents, which both have to be investigated. 

It is difficult to determine a plant genotype, as there is always a 

surrounding environment, and observations are in all cases phenotypic. 

Particulary plant characteristics that are the result of many underlying 

processes, e.g. grain yield, are difficult to determine genotypically. 

Unequivocal quantification of fundamental plant characteristics, e.g. 

temperature sum to anthesis (Chapter 6) and characteristics of the light 

response curve, may be easier. 

In contrast, macro-environmental characteristics can be determined 

with suitable equipment. 

9.2.1 Analysis of variance 

Although determining a genotype itself is difficult, it is possible to 

assess the contribution of genotypic and environmental factors to the 

phenotypic variation. There are two methods for this: an analysis of 

variance (ANOVA), and a sensitivity analysis with a crop growth simulation 

model. 
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With ANOVA, sources of variation can be identified. For example, in 

Chapter 5 it is shown that the population, year, location and fertilizer 

effects were generally significant, as were interactions between year and 

location. Interactions between population and fertilizer application, 

however, were generally not significant. 

This technique is useful in preliminary, qualitative, analyses of 

evaluation trials. It is of little value, however, in forecasting crop 

performance. For example, the generally significant genotypic and environ­

mental effects indicate that under environmental conditions different from 

the conditions at evaluation, yield levels may be different. However, as 

the absence of significant effects between years indicated yield stabili­

ty, one could also speculate that grain yield does not rise substatially 

under higher rainfall conditions. ANOVA can not solve this contradiction. 

9.2.2 Sensitivity analysis 

Through sensitivity analysis using a crop growth simulation model, the 

consequences of different values for plant genetic and environmental 

characteristics for plant growth and development can be assessed. This 

technique provides a quantitative tool, and allows the investigation of 

plant of environmental characteristics that are difficult to vary under 

experimental conditions. In paragraph 6.3.4, this is illustrated. This 

technique can be used to further explore and quantify sources of variation 

indicated by an ANOVA. 

9.2.3 Growth analysis 

With a crop simulation model, growth and development can be analyzed 

quantitatively, and therefore understanding can be obtained of processes 

that cause variation. 

For instance, the consequences and interaction of rainfall distribu­

tion and nutrient availability with respect to dry matter production were 

investigated. Also, the process of grain filling was analyzed for differ­

ent environmental conditions and yield levels (Chapter 6 ) . 

Under variable growing conditions where genotype x environment inter­

actions were significant, the crop growth simulation model presented a 

comprehensive tool to increase insight in plant growth processes. Despite 
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some shortcomings, the model simulated a recognizable durum wheat crop 

and reproduced in a consistent way genotype x environment interactions 

and their effects on yields. The model may be used in exploring crop 

behaviour under different environmental conditions, and replace extensive 

multilocational and multiseasonal evaluations. By pursueing an explanatory 

approach, the quantitative and qualitative limitations to evaluation of 

large germplasm collections by trial and error, may be eliminated. 

9.2.4 Environmental characterization 

Interpretation of evaluation results on the basis of environmental charac­

terization of the regions of origin, may provide further understanding 

of crop behaviour. As this approach provides only general understanding, 

it is useful in preliminary evaluations that are aimed at identification 

of groups of accessions. 

The relations between some collection site and plant characteristics 

at evaluation (Chapter 5 ) , could be used to select germplasm on the basis 

of knowledge on the environment in the region of provenance. Application 

of such relations, however, is restricted to the tested environments. All 

evaluations were carried out at low to moderate soil moisture availabili­

ty, i.e. unfavourable conditions for crop production, and a negative 

correlation between annual precipitation at the collection site and grain 

yield at evaluation was found. Inclusion of evaluation sites with higher 

rainfall would possibly have caused a positive correlation at higher yield 

levels. 

Tolerance to late season frosts, which is uncharacteristic for the 

Syrian climate, was highest in populations from the inland, where minimum 

winter temperatures are lowest (Chapter 7). Application of this relation 

is straightforward: in the search for late season frost tolerance, breed­

ing material can best be selected from inland populations, where chances 

of success are highest. 

For fungal disease resistances, however, relations were not always 

clear (Chapter 8 ) . Only in the case of two of the three evaluated dise­

ases, host resistance was highest in germplasm originating from regions 

with environmental characteristics favourable for development and inci­

dence of these diseases. An efficient selection method is therefore 

difficult to formulate. Moreover, as the frequency of plants with specific 
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vertical resistance can be very low, it may remain necessary to evaluate 

an entire collection. 

Regions with moderate climatic conditions provided landraces with 

relatively stable yields (Chapter 7 ) . This observation supports the 

practice of utilization of germplasm from such regions. Germplasm from 

regions with extreme environmental conditions, however, may be useful for 

specific stress factors, e.g. late season frost tolerance. 

9.2.4 Evaluation methods 

Irrespective the further evaluation strategy, part of a germplasm collec­

tion should be evaluated at several locations over a number of seasons. 

This will provide data to analyze the variation patterns with ANOVA, 

validate a crop growth model, and determine possible relations between 

plant and collection site characteristics. 

For example, yields were more stable within landrace groups than 

within regions of origin (Chapter 5). Therefore, a pre-selection of 

germplasm on the basis of landrace groups, possibly taking into account 

representation of regions of origin, could be made to restrict the number 

of accessions. Evaluation of selected accessions would provide an indica­

tion of the characteristics of a certain landrace group. If necessary, 

this could be completed by a more detailed evaluation of promising 

material. 

Subsequently, two selection methods can be formulated, dependent upon 

the significance of the relationship between the observed plant character 

and environmental characteristics of the collection site. If such rela­

tionships are significant and causal, then preliminary selection of 

germplasm can be based upon collection site characteristics. An example 

is tolerance to late season frosts, and to a lesser extent some fungal 

disease resistance. If relevant relationships are difficult to establish, 

as for instance yield, then application of a crop growth simulation model 

appears a suitable technique in analysis of evaluation results of exten­

sive germplasm collections, and for exploring growth and development under 

various environmental conditions. Whereas only a limited part of a large 

germplasm collection is evaluated multilocationally and multiseasonally, 

crop growth analysis can be applied to an entire collection. This would 

alleviate quantitative and qualitative limitations to evaluation prog-
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rammes. 

As mentioned in Chapter 6, for application of such models, data on 

plant characters for which model performance is sensitive are required. 

Partly, these can easily be recorded in customary routine evaluations, 

such as date of anthesis and the related temperature sum. Additionaly, 

basic information on for instance physiological characters is required. 

These may be determined experimentally on a limited number of selected 

genotypes, and then be applied more broady. Environmental input may be 

long-term wheather characteristics and preferably specific soil charact­

eristics, if necessary completed by specific weather or soil data repre­

senting more favourable or adverse growing conditions. 

It is difficult to derive detailed plant characteristics from informa­

tion on the environmental characteristics of the collection region, for 

the purpose of model input. Firstly, the origin of the germplasm is not 

always known. Secondly, detailed knowledge on relations between environ­

mental and plant characteristics would be required, which would be diffi­

cult to obtain. Thirdly, although regions can be classified on the basis 

of relatively uniform environmental conditions, their plant genotypes may 

be variable, which causes genotype x environment interaction and different 

phenotypes in other environments. As this would reduce the accuracy of 

simulation, experimentally obtained plant characteristics are preferred 

model input. 

The heterogeneity of landrace populations complicates evaluation. Crop 

growth simulation models at the population level do not explain the 

consequences of heterogeneity in different environments. However, simula­

tion at the population level (Chapter 6) was sufficiently accurate to 

justify application in interpretation of preliminary germplasm evaluation. 

In subsequent evaluation and selection, it may be necessary to quantify 

intrapopulation variation, to determine breeding potentials of best 

performing populations. 

These observations and conclusions are valid for Syrian landraces of 

durum wheat, which is a self-pollinating field crop. Applicability to 

other crops and countries will vary, depending on conditions such as 

evolutionary history, geographical distribution of morphological groups, 

reproduction, cultivation, utilization, and seed exchange. 
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9.3 Landrace groups in germplasm evaluation 

Durum wheat in Syria forms a continuum of morpho-types, which farmers 

classify in different landrace groups, each with distinct characteristics. 

Each landrace group is morphologically variable, which causes some overlap 

by their extremes. The classification in landrace groups is compatible 

with both farmer's perceptives and taxonomie rules, which is important 

as it provided a base for data structuring. 

Within landrace groups, three patterns of geographical distribution 

can be distinguished (Chapter 3 ) . Some are widely distributed over most 

of the country, whereas most others are regionally concentrated, either 

in a limited region or in a few villages. Distribution maps of all encoun­

tered landrace groups are given in Appendix I, and their herbarium speci­

men are preserved at the Herbarium of ICARDA and at the Herbarium Vadense 

of the Department of Plant Taxonomy, Wageningen Agricultural University. 

If relations between plant characteristics and regions of origin could 

be established, the former could be derived from analysis of the region 

of origin. However, in this study, morphological characteristics were more 

related to landrace groups than to regions of origin (Chapter 4 ) , and 

efforts to establish relations between agronomic characteristics and 

regions of origin have been moderately succesful (Chapter 5 ) . 

Morphological characterization is important in distinguishing groups 

(here, landrace groups) that are relatively homogeneous with respect to 

agronomic characteristics (Chapter 5). The latter are normally more 

important, but more difficult to assess. Morphological characterization 

can be used to stratify large germplasm collections, and increase the 

efficiency of agronomic evaluation. 

9.4 Variation 

Genetic diversity was observed at four levels: within field populations, 

among populations at farm or village level, and belong to the same or 

different landrace groups, among regions, and as species mixtures in 

mountainous areas. 

Variation in morphological plant characteristics is considerably 

larger for the entire collection than for a single population (Chapter 

3). When populations are combined into groups, then within-variation is 
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widened. Variation is slightly lower within landrace groups than within 

regions of origin, similarly for fungal disease resistances. Landrace 

groups thus are slightly more homogeneous. However, as differences in 

degree of variation are small, it may be concluded that variation among 

landrace groups and among regions explain about similar fractions of the 

total variation. 

Agronomists are primarily interested in variation in agronomic charac­

teristics such as yield. However, as in preliminary evaluations it is 

easier to determine morphological characteristics, variation in these may 

be assessed. It is then difficult to estimate agronomic variation on the 

basis of morphological variation, due to the limited causal relation 

between the two. For example, although plant heigth and stature, leaf and 

spike characteristics and tiller production have an effect on dry matter 

production and distribution, these characteristics do not consequently 

show similar variation. For the same reason, it is equally difficult to 

estimate agronomic variation from variation in glutenin characteristics, 

which is often favoured as it is not affected by environmental conditions 

(Brown & Weir, 1983; Gepts, 1989), and may be positively related to 

morphological variation (van Hintum & Elings, 1991). 

9.5 Domestication 

Morphological discrimination was possible between many landrace groups, 

but difficult between populations from regions of origin; landrace groups 

were slightly more homogeneous for morphological characteristics and 

disease resistances than regions of origin; and it was easier to relate 

grain yield to landrace groups than to regions of origin. This relative 

uniformity of landrace groups seems contradictory to their geographic 

distribution, as that implies variation in environmental characteristics, 

which, in turn, would cause genetic variation. 

It is argued in Chapter 5 that landrace groups have been domesticated 

or cultivated for a long period, within relatively small areas with 

specific climatic conditions, followed by dispersion of some groups 

without losing characteristics. This probably has occured only recently, 

as otherwise dispersed landrace groups would have been less uniform in 

agronomic characteristics due to environmental pressure. 

These regions of domestication and routes along which germplasm has 
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spread are not known. Electrophoretic analysis of glutenin composition 

may help to analyse this. Glutenin diversity studies (van Hintum & Elings, 

1991) indicated that all glutenin alleles common in many landrace groups 

and are geographically widely distributed, were found in populations from 

the western parts of Syria. This indicates that genetic material has been 

introduced from other parts of the Mediterranean basin and possibly other 

regions into western Syria, from where alleles have been disseminated 

further. 

9.6 Collection strategy 

Three reasons justify representative sampling of both regions and landrace 

groups: 

- differences in plant characteristics among both regions and landrace 

groups are large; 

- the geographic distribution of landrace groups is heterogeneous; 

- both, regions of origin and landrace groups contribute about equally 

to variation. 

Hence, per agro-ecological region all landrace groups should be 

collected. Extension officers, village heads and farmers may provide 

information on presence of landrace groups. However, this approach does 

not guarantee acquisition of all landrace groups, as some may not be 

cultivated in a particular year, or due to time limits only few villages 

can be visited. Consequently, it is difficult to indicate what share of 

the total genetic variation is collected. 

Moreover, from each population a sufficient number of genotypes should 

be obtained (Marshall & Brown, 1975). Although intrapopulation variation 

may be relatively low, it can be high in absolute terms, as in germplasm 

from mountainous areas (Chapter 4 ) . 

Agro-ecological zoning for Syria can be based upon rainfall patterns, 

as moisture availability is a dominant factor in dry matter production 

in arid regions. Taking into account other factors, such as other environ­

mental characteristics, population density, government policies, etcetera, 

leads to a classification that better discriminates among various cropping 

systems. For Syria, this approach has resulted in 5 zones (ICARDA, 1989). 

However, in such large zones, environmental conditions may be still too 

heterogeneous to determine relations between environmental and plant 
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characteristics. As large zones are therefore not helpful in elucidating 

distribution and variation patterns, and setting priorities, planning of 

collection missions requires therefore a more stratified regional classif­

ication. On the other hand, classification in many small regions neither 

provides much clarification, as neighbouring regions are then likely to 

be similar, which limits the possibilities for discrimination, except for 

small areas with specific characteristics that may provide rare genetic 

material. 

The agro-ecological classification presented in Chapter 3 yielded 14 

regions, which appeared to meet the above mentioned criteria. Variation 

within regions of origin and within landrace groups were about equal. If 

the latter is taken as a reference, it follows that the regions were small 

enough to show limited variation. Admittedly, however, the agro-ecological 

classification was only moderately successful in elucidating agronomic 

performance patterns. It is doubtful whether a more detailed classifica­

tion would mprove that, as the moderate success is most likely associated 

with the supposed historic spread of landrace groups. 

9.7 Implications for genebank management 

When a simulation model for crop growth and development is to be used in 

analysis of evaluation results, the evaluations themselves should meet 

some specific demands. For instance, data on plant characteristics for 

which model performance is sensitive must be obtained. Some of these, such 

as date of anthesis and the related temperature sum can easily be recorded 

in routine preliminary evaluations, if necessary for all accessions. On 

the other hand, determination of basic information on for instance physio­

logical and morphological characteristics requires careful experimentat­

ion, including growth analysis. As this is not feasible for all access­

ions, such characteristics can be determined for a limited number of 

selected genotypes. Subsequently, the information obtained for part of 

the germplasm has to be analyzed such that it represents the entire 

collection. The concept of classification into landrace groups may be 

applied in this research phase. 

This implies that preliminary characterization, which could be com­

bined with first seed increase, has to preceed preliminary evaluation, 

as its results may be needed to organize the evaluation. If the former 
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is the only occasion that all germplasm is sown, characteristics that can 

easily be recorded (e.g. date of anthesis) should be observed then. 

Periodical harvesting requires relatively large evaluation fields, in a 

sufficient number of replicates, and determination of plant physiological 

characteristics requires specific equipment. Experiments under controlled 

conditions in a phytotron, which in most cases will not be available, 

should be avoided. 

Crop growth simulation models may be used to explore crop behaviour 

under different environmental conditions. Firstly, this requires appropri­

ate computer hard and software, which are widely available currently. 

Secondly, simulation models need to be available. For many crops, these 

have been developed for various levels of production. Although in this 

study a fairly complex model has been used, it may be more appropriate 

to apply summary models, such as SUCR0S87 (Spitters et al., 1989). These 

are small, comprehensible, and easy to parameterize for other plant 

characteristics or for other crops. It may also appear necessary to 

improve existing models by fundamental research and developing specific 

subroutines. This, however, is done most efficiently by experts. 

Crop growth simulation is an interdisciplinary activity, that makes 

knowledge available in comprehensive form to non-specialists. Neverthel­

ess, training in crop growth modelling and simulation will be necessary 

for curators that are not familiar with this discipline. The required 

minimum level of skill would be the ability to understand and apply 

summary models. Curators of larger genebanks, who serve a wide range of 

environments and who are consequently faced with more diversity in growth-

limiting factors, would benefit from a more thorough quantitative under­

standing of plant growth processes. 

Extensive data sets containing long-term weather data and detailed 

soil characterization of locations in various agro-ecological regions have 

to be available at the genebank. Simulation results based on these envi­

ronmental inputs provide a preliminary overview of an accession's potent­

ials. As subsequently more information will be required on growth under 

particular environmental conditions, additional data sets comprising 

specific weather or soil data representing more favourable or adverse 

growing conditions are needed. 

Germplasm documentation has to be reorganized, as more complete, and 

thus more complex, information on plant characteristics has to be pro-
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cessed and presented. Preliminary evaluation results, for instance, could 

be distributed in printed form or through computer networks. Germplasm 

for specific conditions could then be selected in interaction with the 

interisted agronomists, utilizing local environmental input. 

Simulation results need to be confirmed by field evaluation of a 

representative selection of the collection. Therefore, a genebank needs 

access to evaluation sites characterized by distinct environmental condi­

tions (see 9.2.4). Simulation of crop growth and development, however, 

can be sufficiently accurate to limit the number of evaluations that 

actually have to be carried out. 
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Abstract 

Abstract 

The need for an efficient evaluation method 

Evaluation results have often limited applicability, due to the consider­

able genotype x environment interaction. Extensive multilocational or 

multiseasonal evaluation would be needed to assess plant characteristics, 

but this expensive procedure can often not be applied to large germplasm 

collections. Moreover, extensive evaluations may still not lead to unequi­

vocal results. Therefore, an efficient method is developed that allows 

the assessment of plant characteristics of large numbers of accessions 

under various environmental conditions, utilizing a limited amount of 

evaluation results. 

Collection of durum wheat landraces 

A total of 185 landrace populations of durum wheat fTriticum turpidum L. 

var. durum (Desf.) MK] was collected in the Syrian Arab Republic in 1987 

and 1988. During the collection missions, attention was paid to recording 

passport and collection information, and providing an agro-ecological 

description of each site. Farmers were asked for information on the 

landraces and their farm management practices. 

Grouping of the 166 collection sites, based on four climatological 

variables, resulted in 14 relatively homogeneous regions of origin with 

respect to agro-ecological characteristics. Fifty-nine populations had 

their putative origin at or in the vicinity of their collection sites, 

and were considered representative for the respective environments. 

A brief morphological description was given of the landrace groups as 

distinguished by farmers. Each group has distinct morphological charact­

eristics, and is referred to by a local name that is often derived from 

a striking character or supposed origin. Some landrace groups are widely 

distributed over most of the country, whereas most others are regionally 

concentrated, either in a limited region or a few villages. 
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Agronomic evaluation 

Thirty-eight populations were evaluated for agronomic performance at four 

locations, characterized by different long-term rainfall averages, over 

two seasons, and at two levels of nutrient availability. Actual seasonal 

rainfall was below average (viz. below 300 mm), although at the location 

with highest average yield, residual moisture had to be assumed. 

Considerable differences in average yield were observed among experim­

ents. Performance per population varied highly among locations, and 

populations showing superior performance under all conditions could not 

be identified. Modern varieties (incorporated in the experiments as check 

varieties) showed superior performance under best growing conditions, and 

landraces appeared competitive under more marginal conditions. Both modern 

varieties and landraces were not able to maintain yield levels under 

adverse growing conditions. Fertilizer application resulted in many cases 

in decreased kernel density, and delay of anthesis by one day, which could 

be an indirect effect of nitrogen shortage through increased canopy 

temperature. 

Analysis of variance 

Analysis of variance showed that most year, location, population and 

fertilizer effects were significant, as were interactions between year 

and location. Yield stability, which is an important characteristic of 

landraces, was indicated by the absence of significant effects for grain 

yield between years, within sites, and by the absence of a population 

effect for total dry matter production. 

Through ANOVA, sources of variation are identified. This technique is 

therefore useful in preliminary, qualitative analysis of evaluation 

trials. However, it does not contribute to an understanding of processes 

underlying variation, and has therefore little capabilities in exploring 

plant behaviour under other environmental conditions. 

Simulation of growth and development 

Analysis of growth and development with a simulation model showed that 

total dry matter production was higher at higher total, and higher spring 
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rainfall, and that at higher levels of moisture availability, more 

aboveground dry matter was produced per unit rainfall. Moisture and 

nitrogen availability interacted: at very low levels of moisture availa­

bility, this was the dominant growth limiting factor, whereas at higher 

levels, nitrogen recovery increased, and nitrogen availability became an 

additional growth limiting factor. 

Under favourable environmental conditions, differences in weather 

conditions are reflected in the source size, i.e. the residual reserve 

carbohydrates at the end of grain fill. Genotypical differences in the 

balance between maintenance requirements and assimilation after anthesis 

determine to what extent the reserves are distributed to the sink. Under 

adverse growing conditions, severe drought stress after anthesis results 

in rapid senescence and cessation of grain fill, so that the reserve pool 

is not depleted. Under these conditions, higher grain yields are the 

result of increased remobilization of reserve carbohydrates, mainly due 

to higher kernel density. 

The crop growth simulation model presented a comprehensive tool to 

increase insight in plant growth processes. Despite some shortcomings, 

the model simulated a recognizable durum wheat crop and reproduced in a 

consistent way genotype x environment interactions and their effects on 

yields. The model could be used in exploring crop behaviour under differ­

ent environmental conditions, and replace extensive multilocational and 

multiseasonal evaluations. 

Environmente 1 characterization 

It appeared possible to relate some collection site and plant characteris­

tics at evaluation, which could be used to select germplasm on the basis 

of knowledge on the environment in the region of provenance. As this 

approach provides only general understanding, it is useful in preliminary 

evaluations that are aimed to identify groups of accessions in which 

further selections best can be made. 

The germplasm was additionally evaluated for early and late season 

frost tolerance. All populations were well adapted to moderate early 

season frosts, which is characteristic for the Syrian climate. However, 

tolerance to late season frosts, which is uncharacteristic, was highest 

in populations from the inland, where minimum winter temperatures are 
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lowest. Application of this relation is straightforward: in search for 

late season frost tolerance, breeding material can best be selected from 

inland populations, where chances of success are highest. 

For fungal disease resistances, however, relations were not always 

cases clear. Only in the case of two of the three evaluated diseases, host 

resistance was highest in germplasm originating from regions with environ­

mental characteristics favourable for development and incidence of the 

concerned disease. An efficient evaluation method is therefore difficult 

to formulate. Moreover, as the frequency of plants with specific vertical 

resistance can be very low, it may remain necessary to evaluate an entire 

collection. 

Evaluation methods 

It is useful to evaluate at least part of a germplasm collection at 

several locations over a number of seasons. This will provide data to 

analyze the variation patterns with ANOVA, validate a crop growth model, 

and determine possible relations between plant and collection site charac­

teristics. 

Subsequently, two evaluation methods can be followed, dependent upon 

the significance of the relationship between the observed plant character 

and environmental characteristic of the collection site. If such relation­

ships are significant and causal, then preliminary selection of germplasm 

can be based upon collection site characteristics. Example are tolerance 

to late season frosts, and to a lesser extent some fungal disease resist­

ance. If such relationships are difficult to establish, as for instance 

yield, then application of a crop growth simulation model appears a 

suitable technique in analysis of evaluation results of extensive germ­

plasm collections, and for exploring growth and development under various 

environmental conditions. Whereas only a limited part of a large germplasm 

collection is evaluated multilocationally and multiseasonally, crop growth 

analysis can be applied to an entire collection. This would alleviate 

quantitative and qualitative limitations to evaluation programmes. 

Landrace groups were generally more homogeneous for plant characteris­

tics than regions of origin. Therefore, a pre-selection of germplasm could 

be made on the basis of landrace groups to restrict the number of acces­

sions to evaluate. Of each group a small number of populations could be 
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chosen, randomly or on the basis of origin, and evaluated, which would 

provide an indication of the characteristics of certain landrace groups. 

If necessary, this could be completed by a more detailed evaluation of 

promi s i ng mater i a 1. 

Variation 

Genetic diversity was observed at four levels: within field populations, 

among populations at farm or village level, and belong to the same or 

different landrace groups, among regions, and as species mixtures in 

mountainous areas. 

The heterogeneity of landrace populations complicates evaluation. Crop 

growth simulation models at the population level do not explain the 

consequences of heterogeneity in different environments. However, simula­

tion at the population level was sufficiently accurate to justify applica­

tion in interpretation of preliminary evaluation. In subsequent evaluation 

and selection, it may be necessary to quantify intrapopulation variation, 

to determine breeding potentials of best performing populations. 

Domestication 

It is argued that landrace groups have been domesticated or cultivated 

for a long period, within relatively small areas with specific climatic 

conditions, followed by dispersion of some groups without losing charact­

eristics. This probably has occurred only recently, as otherwise dispersed 

landrace groups would have been less uniform in agronomic characteristics 

due to environmental pressure. 

Collection methods 

Both regions and landrace groups must be sampled representatively. Hence, 

per agro-ecological region all landrace groups should be collected. 

Moreover, from each population a sufficient number of genotypes must be 

obtained. Although intrapopulation variation may be relatively low, it 

can be high in absolute terms, as in germplasm from mountainous areas. 

Collection missions require a regional classification, such that the 

regions are relatively homogeneous with respect to environmental charact-
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eristics. In large zones, environmental conditions may be too heterogen­

eous to determine relations between environmental and plant characterist­

ics. Therefore, large zones are not helpful in elucidating distribution 

and variation patterns, and setting priorities, whereas classification 

in many small regions neither provides much clarification, as neighbouring 

regions are then likely to be similar, which limits the possibilities for 

discrimination. 

Implications for genebank management 

If a crop growth model is to be used in analysis of evaluation results, 

the evaluations themselves should meet some specific demands. Data on 

plant characteristics for which model performance is sensitive must be 

obtained. Some can easily be recorded in routine preliminary evaluations, 

if necessary for all accessions. Characteristics that require much effort 

to record, can be determined on few selected genotypes, and subsequently 

interpreted such that they are representative for the entire collection. 

Appropriate computer hard- and software is required, and simulation 

models need to be available. Although for this study a fairly complex 

model was used, it may be more appropriate to apply summary models. These 

are small, comprehensive, and easy to parameterize for other plant charac­

teristics or other crops. Training in modelling and simulation will be 

necessary for curators who are unacquainted with this. 

Extensive data sets containing weather data and detailed soil charac­

terization of locations in various agro-ecological regions have to be 

available at the genebank. Germplasm documentation has to be reorganized, 

as the more complex information on plant characteristics has to be pro­

cessed and presented. 

Simulation results need to be confirmed by field evaluation of a part 

of the collection. Therefore, a genebank will need access to evaluation 

sites characterized by distinct environmental conditions. 
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Samenvatting (in Dutch) 

De behoefte aan een efficiënte evaluatiemethode 

Als gevolg van aanzienlijke genotype x omgevingsinteractie hebben evalua­

tieresultaten hebben vaak een beperkte geldigheid. Een uitgebreide evalua­

tie gedurende meerdere seizoenen op meerdere locaties zou nodig zijn om 

planteigenschappen te bepalen, maar deze kostbare methode kan vaak niet 

worden worden toegepast in het geval van grote genenbankverzamelingen. 

Bovendien zou een uitgebreide evaluatie nog steeds geen eenduidige resul­

taten kunnen opleveren. Daarom is er een efficiënte evaluatiemethode 

ontwikkeld, die het mogelijk maakt planteigenschappen van grote aantallen 

nummers in verschillende milieus te bepalen, daarbij gebruik makend van 

een beperkte hoeveelheid evaluatieresultaten. 

De verzameling van durum tarwe landrassen 

In 1987 en 1988 werden 185 landraspopulaties van durum tarwe [Tritiçum 

turqidum L. var. durum (Desf.) MK] verzameld in de Syrisch Arabische 

Republiek. Tijdens de verzamel rei zen werd aandacht besteed aan het 

vastleggen van de paspoort- en collectiegegevens, en aan het geven van 

een agro-ecologische beschrijving van ieder verzamelpunt. Bij boeren werd 

informatie ingewonnen omtrent de landrassen en de bedrijfsvoering. 

Groepering van de 166 verzamelpunten op basis van vier klimatologische 

variabelen resulteerde in 14 oorsprongsgebieden die relatief homogeen 

waren met betrekking tot agro-ecologische karakteristieken. De veronder­

stelde oorsprong van 59 populaties lag op of in de nabijheid van het 

verzamelpunt, en deze populaties werden representatief geacht voor hun 

respectievelijke milieus. 

Van iedere landrasgroep, zoals boeren deze onderscheiden, is een 

beknopte morfologische beschrijving gegeven. Iedere groep heeft bepaalde 

morfologische kenmerken, en draagt een locale naam die vaak afgeleid is 

van een opvallend kenmerk of van de veronderstelde oorsprong. Sommige 

landrasgroepen zijn wijd verspreid over het grootste deel van het land, 

terwijl andere plaatselijk geconcentreerd zijn in een beperkt gebied of 

in een aantal dorpen. 
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Landbouwkundige evaluatie 

Gedurende twee seizoenen werden 38 populaties op vier locaties en op twee 

niveaus van nutriëntenbeschikbaarheid geëvalueerd met betrekking tot hun 

landbouwkundige prestaties. De locaties werden gekenmerkt door verschil­

lende lange-termijn regenvalgemiddelden. De gemeten seizoensregenval lag 

onder het gemiddelde (namelijk onder 300 mm), alhoewel op de locatie met 

de hoogste gemiddelde opbrengst de aanwezigheid van overgebleven vocht 

moest worden aangenomen. 

Tussen experimenten werden aanzienlijke verschillen in opbrengst waar­

genomen. Het gedrag per populatie wisselde sterk per locatie, en popula­

ties met een onder alle omstandigheden superieur gedrag werden niet 

geïdentificeerd. Moderne variëteiten, die als controles in de experimenten 

waren opgenomen, vertoonden een superieur gedrag onder de beste groeiom-

standigheden, en landrassen bleken concurrerend onder meer marginale 

omstandigheden. Zowel moderne variëteiten als landrassen waren niet in 

staat om hun opbrengstniveaus onder slechte groeiomstandigheden te hand­

haven. Kunstmestgift resulteerde in veel gevallen in een verminderde 

korreldichtheid, en een uitstel van de bloeidatum met een dag, wat een 

indirect gevolg zou kunnen zijn van stikstoftekort via verhoogde 

bladtemperatuur. 

Variant ieana lyse 

Variantieanalyse (ANOVA) toonde aan dat de meeste jaar-, locatie-, 

populatie-, en kunstmesteffecten significant waren, net als de interacties 

tussen jaar en locatie. De afwezigheid van significante effecten voor 

korrelopbrengst tussen jaren, binnen locaties, en de afwezigheid van een 

populatie-effect voor totale drogestofproduktie, duidden op opbrengst-

stabiliteit, dat een belangrijk kenmerk is van landrassen. 

Door middel van ANOVA worden variatiebronnen geïdentificeerd. Deze 

techniek is daarom zinvol in een voorlopige, kwalitatieve analyse van 

evaluaties. Het draagt echter niet bij aan een begrip van de onderliggende 

processen die de variatie veroorzaken, en het biedt dus weinig mogelijk­

heden ten aanzien van het onderzoeken van plantgedrag onder andere 

mi 1ieuomstandigheden. 
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Simulatie van groei en ontwikkeling 

Analyse van groei en ontwikkeling met een simulatiemodel toonde een hogere 

totale drogestofproduktie bij een hogere totale regenval, en bij een 

hogere voorjaarsregenval, en een hogere bovengrondse drogestofproduktie 

per eenheid regenval bij hogere niveaus van vochtbeschikbaarheid. Vocht­

en stikstofbeschikbaarheid vertoonden interactie: bij lage niveaus van 

vochtbeschikbaarheid was dit de dominante groei beperkende factor, terwijl 

bij hoger niveaus de stikstofbenutting toenam en stikstofbeschikbaarheid 

een add it ion iele groeibeperkende factor vormde. 

Bij gunstige milieuomstandigheden reflecteren verschillen in weersom­

standigheden in de omvang van de 'source', in de vorm van overgebleven 

reservekoolhydraten aan het einde van de korrelvulling. Genotypische ver­

schillen in de balans na de bloei tussen onderhoudsbehoeften en assimi­

latie bepalen in welke mate de reserves worden geredistribueerd naar de 

'sink'. Onder slechte groeiomstandigheden resulteert een sterk watertekort 

na de bloei in een snelle afsterving en een beëindiging van de korrelvul­

ling, waardoor de reserves niet uitgeput raken. Onder deze omstandigheden 

zijn hogere korrelopbrengsten het resultaat van een toegenomen remobili-

satie van reservekoolhydraten, voornamelijk als gevolg van een grotere 

korrel dichtheid. 

Milieukarakteristieken 

Het bleek mogelijk enkele milieukarakteristieken van de verzamelpunten 

en planteigenschappen bij evaluatie aan elkaar te relateren. Dit zou 

kunnen worden gebruikt in de selectie van genetisch materiaal op basis 

van kennis omtrent het milieu in het oorsprongsgebied. Aangezien deze 

benadering slechts een algemeen begrip verschaft, is het van nut in 

voorlopige evaluaties die tot doel hebben groepen nummers te identifi­

ceren waarin het best verder geselecteerd kan worden. 

Het materiaal werd eveneens geëvalueerd met betrekking tot vroege en 

late vorsttolerantie. Alle populaties waren goed aangepast aan matige 

vroege vorst, welke karakteristiek is voor het Syrische klimaat. Daaren­

tegen was late vorsttolerantie, welke niet karakteristiek is, het grootst 

in populaties afkomstig uit het binnenland, waar de minimim wintertempera-

turen het laagst zijn. De toepassing van dit verband is duidelijk: bij 
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het zoeken naar late vorsttolerantie kan veredelingsmateriaal het beste 

worden geselecteerd uit populaties afkomstig van het binnenland, waarin 

de kansen op succes het grootste zijn. 

In het geval van resistentie tegen schimmel ziekten daarentegen, waren 

de verbanden niet steeds duidelijk. Slechts in het geval van twee van de 

drie geëvalueerde ziekten was de waardplantresistentie het grootst in 

materiaal afkomstig uit gebieden met gunstige milieukarakteristieken voor 

de ontwik-kei ing en het voorkomen van de desbetreffende ziekte. Het is 

daarom moeilijk een efficiënte evaluatiemethode te formuleren. Bovendien, 

omdat de frequentie van planten met specifieke verticale resistenties erg 

laag kan zijn, kan het noodzakelijk blijven om een volledige collectie 

te evalueren. 

Eva luatiemetnoden 

Het is zinvol om tenminste een deel van de collectie gedurende een aantal 

seizoenen op meerdere locaties te evalueren. Dit zal de gegevens verschaf­

fen om variatiepatronen met behulp van ANOVA te analyseren, een gewas­

groeimodel te valideren, en mogelijke relaties tussen plant en locatie­

karakteristieken te bepalen. 

Vervolgens kunnen er twee evaluatiemethoden worden gevolgd, afhanke­

lijk van de significantie van relaties tussen waargenomen planteigenschap-

pen en milieukarakteristieken van het verzamelpunt. Als zulke relaties 

significant en oorzakelijk zijn, dan kan de voorlopige evaluatie gebaseerd 

worden op karakteristieken van het verzamelpunt. Voorbeelden hiervan zijn 

late vorsttolerantie, en in mindere mate een aantal resistenties tegen 

schimmelziekten. Als zulke relaties moeilijk te bepalen zijn, zoals in 

het geval van opbrengst, dan blijkt de toepassing van een simulatiemodel 

voor gewasgroei een geschikte techniek om evaluatieresultaten van uitge­

breide collecties te analyseren, en om de groei en ontwikkeling onder 

andere milieuomstandigheden te onderzoeken. Terwijl slechts een beperkt 

deel van een grote collectie op meerdere locaties gedurende meerdere sei­

zoenen wordt geëvalueerd, kan gewasgroeianalyse op een volledige collectie 

worden toegepast. Dit vermindert de kwantitatieve en kwalitatieve beper­

kingen van evaluatieprogramma's. 

Landrasgroepen waren in het algemeen homogener ten aanzien van plant-

eigenschappen dan oorsprongsgebieden. Daarom zou een voorselectie van 
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genetisch materiaal kunnen worden gebaseerd op landrasgroepen, teneinde 

het aantal te evalueren nummers te beperken. Van iedere groep zou een 

klein aantal populaties kunnen worden gekozen, willekeurig of op basis 

van hun oorsprong, en worden geëvalueerd, wat een indicatie van de karak­

teristieken van bepaalde landrasgroepen zou opleveren. Indien noodzake­

lijk, zou dit kunnen worden gecompleteerd met een meer gedetailleerde 

evaluatie van het veelbelovende materiaal. 

Variatie 

Genetische diversiteit werd waargenomen op vier niveau's: binnen veldpopu-

laties, tussen populaties op een boerderij of in een dorp, en die tot 

dezelfde of verschillende landrasgroepen behoren, tussen regio's, en in 

de vorm van soortenmengsels in bergachtige gebieden. 

De heterogeniteit van landraspopulaties compliceert de evaluatie. 

Simulatiemodellen voor gewasgroei op populatieniveau verklaren niet de 

gevolgen van heterogeniteit in andere milieu's. De simulatie op populatie­

niveau was echter nauwkeurig genoeg om de toepassing ervan in de interpre­

tatie van voorlopige evaluaties te verantwoorden. In hierop volgende 

evaluatie en selectie zou het nodig kunnen zijn om de intrapopulatie-

variatie te kwantificeren, teneinde de veredelingspotentiëlen van de best 

presterende populaties te bepalen. 

Domes t ica t ie 

Het wordt beargumenteerd dat landrasgroepen in relatief kleine gebieden 

met specifieke klimaatomstandigheden werden gedomesticeerd of gedurende 

een lange periode werden gecultiveerd, gevolgd door een verspreiding van 

enige groepen zonder dat daarbij hun karakteristieken verloren gingen. 

Dit heeft waarschijnlijk onlangs plaatsgevonden, aangezien anders de 

verspreide landrasgroepen minder uniform zouden zijn geweest als gevolg 

van milieudruk. 

VerzameImethoden 

Zowel regio's als landrasgroepen moeten representatief worden bemonsterd, 

dus dienen per agro-ecologische regio alle landrasgroepen te worden 
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verzameld. Bovendien moet er van iedere populatie een voldoende aantal 

genotypen worden verkregen. Hoewel de intropopulatie variatie relatief 

klein kan zijn, kan dit in absolute termen groot zijn, zoals in materiaal 

uit bergachtige gebieden. 

Verzamel rei zen vereisen een dusdanige regionale klassificatie dat de 

regio's relatief homogeen zijn ten aanzien van milieuomstandigheden. In 

grote regio's kunnen de milieuomstandigheden te heterogeen zijn om 

relaties tussen milieu- en plantkarakteristieken te bepalen. Daarom zijn 

grote gebieden niet behulpzaam in het verhelderen van distributie- en 

variatiepatronen en in het bepalen van prioriteiten, terwijl een klassifi-

catie in vele kleine regio's eveneens weinig helderheid verschaft, aange­

zien naburige regio's dan waarschijnlijk soortgelijk zijn, wat de onder-

scheidingsmogelijkheden beperkt. 

Gevolgen voor genenbankbeheer 

Als een gewasgroeimodel gebruikt gaat worden in de analyse van evaluatie­

resultaten, dan dienen de evaluaties zelf aan enige specifieke eisen te 

voldoen. Gegevens omtrent planteigenschappen waarvoor de modelwerking 

gevoelig is moeten worden verkregen. Sommige kunnen eenvoudig worden vast­

gelegd in de standaard uitgevoerde voorlopige evaluaties, indien noodzake­

lijk voor alle nummers. Eigenschappen die slechts met veel moeite kunnen 

worden verkregen, kunnen worden bepaald aan enkele geselecteerde genoty­

pen, om daarna zodanig geïnterpreteerd te worden dat ze representatief 

zijn voor de volledige verzameling. 

Geschikte apparatuur en programmatuur is vereist, en simulatiemodellen 

moeten beschikbaar zijn. Hoewel voor deze studie een redelijk complex 

model werd gebruikt, zou het beter zijn overzichtmodellen toe te passen. 

Deze zijn klein, begrijpelijk, en eenvoudig te parameteriseren voor ander 

planteigenschappen of andere gewassen. Onderwijs in modelleren en 

simuleren zal een noodzaak zijn voor curators die hiermee onbekend zijn. 

Uitgebreide gegevensbestanden met weergegevens en gedetailleerde 

grondkarakterisaties van locaties in diverse agro-ecologische regio's 

moeten beschikbaar zijn op de genenbank. De genenbank-documentatie moet 

worden gereorganiseerd, aangezien de meer complexe informatie ten aanzien 

van planteigenschappen moet worden verwerkt en gepresenteerd. 

Simulatieresultaten moeten worden bevestigd door evaluatie van een 
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deel van de collectie in het veld. Daarom zal een genebank toegang moeten 

hebben tot evaluatieplaatsen die worden gekarakteriseerd door onder­

scheiden mi 1i euomstand i gheden. 
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