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STELLINGEN 

I 
Dat de 'gemiddeld-veld theorie' van Christenson e.a. repulsie voorspelt tussen twee 
oppervlakken in een medium van vloeibaar alkaan, wat in tegenspraak is met hun 
eigen metingen, is niet te wijten aan de gemiddeld-veld benadering maar aan de in 
hun berekening opgelegde uniforme dichtheid. 

Christenson, H. K; Gruen, D. W. R; Horn, R. G.; Israelachvili, J. N. 
J. Chem. Phys., 87, 1834-1841 (1987) 

n 
Er zijn veel verschillende 'gemiddeld-veld' benaderingen. 

m 
In de theorieën van Evers e.a. en van Böhmer en Evers voor de adsorptie van 
zwakke polyelectrolyten, zijn de entropie-bijdragen die samenhangen met de 
menging van de gedissocleerde en ongedissocieerde segmenten verwaarloosd. 

Evers, O. A.; Fleer, G. J.; Scheutjens, J. M. H. M.; LykLema, J. 
J. Colloid Interface Sei., 111. 446-454 (1986) 

Böhmer, M. R; Evers, O. A.; Scheugens, J. M. H. M. Macromolecules, 23, 2288 (1990) 

IV 

Rond apolaire (delen van) molekulen opgelost in water bestaat geen laag van 
watennolekulen die meer of sterkere onderlinge waterstofbruggen hebben. 

Dit proef schrift, hoofdstuk IV. 

V 

De afleiding waarmee Leermakers en Scheutjens pretenderen aan te tonen dat in de 
membraan-vonnings isotherm zoals door hen berekend, voor de thermodynamisch 
stabiele situatie moet gelden dat MA"/L\ 90% < 0, is niet juist. 

Leermakers, F. A. M.; Scheutjens, J. M. H. M. 
J. Chem. Phys.. 89, 3264-3274 (1988) (vgl 19 t/m 21). 

VI 
Voor de didactiek van de thermodynamica zou het beter zijn om de notatie van 
partiële afgeleiden meer in overeenstemming te brengen met de in andere 
vakgebieden gebruikelijke schrijfwijze, en in plaats van het aangeven van 'constant 
gehouden grootheden' door middel van subscribten, de argumenten van de te 
differentiëren functie weer te geven , b.v. 

dG(n,p,T) . , + (dG) 
—*—f-—'- m plaats van — 

on V*iJp,T 

vn 
Het gescheiden etaleren van romans en romannetjes zoals in veel openbare 
bibliotheken gebeurt, werkt een eenzijdige ontwikkeling van het lezerspubliek in de 
hand. 



vm 
Er is voor aankomende studenten een aantal goede redenen om exacte studies te 
mijden. 

IX 

De laatste twee letters in 'OIO' dienen slechts ter rechtvaardiging van een 
bezuiniging op salariskosten. 

X 

De economische waarde van een doctorsgraad is negatief. 

XI 

De tendens bij grote bedrijven om hun research meer 'business-gericht' te maken is 
enigszins onverenigbaar met het streven goede wetenschappers voor zich te laten 
werken. 

xn 
De weergave van de overeenkomsten en verschillen tussen de polyelectroliet-
adsorptie-theorieën van Wiegel, Muthukumar en Böhmer door Van der Steeg e.a. is 
onjuist en derhalve hun verklaring voor de verschillen en overeenkomsten tussen de 
voorspellingen m.b.t. kritische desorpüe eveneens. 

Van der Steeg, H. G. M.; Cohen Staart, i/l. A.: de Keizer, A.; Bysterbosch, B. H. 
Langmuir, 8, 2538-2546 (1992) 

xm 
De auteursnamen bij een wetenschappelijke publicatie geven niet altijd juist weer 
wie aan het onderzoek hebben bijgedragen. 

XIV 
De vervanging van fosfaten in wasmiddelen is schadelijk voor het milieu. 

XV 

De BET-adsorptievergelijking is kwalitatief onjuist voor systemen waarbij het 
adsorbaat het adsorbens niet volledig bevochtigt. 

XVI 
Bij hun bespreking van de effecten van niet adsorberend polymeer op de stabiliteit 
van kolloidale dispersies, gebruiken Fleer en Scheutjens op een verwarrende manier 
het begrip 'flocculation' waar zij het hebben over evenwichts-fasescheiding. 

Fleer, G.J.; Scheutjens, J.M.H.M. in "Coagulation and Flocculation, Theory and Application", 
B. Dobias, Ed., Surfactant Science Series VoL 47, Marcel Dekker, New York (1993) 209-263. 

Stellingen behorende bij het proefschrift Statistical Thermodynamics of Fluids with 
Orientation-Dependent Interactions; Applications to Water in Homogeneous and 
Heterogeneous Systems. N.A.M. Besseling, Wageningen 20 september 1993. 
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C H A P T E R I 

GENERAL INTRODUCTION 



CHAPTER I 

l WATER 

On first sight, water seems to be rather uninteresting. It is a 
colourless, tasteless and odourless fluid. It cannot explode, it doesn't 
even burn. It is not at all rare and very cheap; we just bathe in it and 
drink it if nothing better is available. Every child knows what water is. 
Then, why should a generous OIO* salary be spent on research on 
water? 

Upon second inspection water is extremely interesting. It is one of 
the most abundant compounds on earth and it is essential for the 
existence of life as we know it. It has various properties that makes it 
exceptional among low-molecular compounds and that are essential for 
its roles in biological and environmental systems. The heat capacity and 
heat of vaporisation are relatively high. This is important in stabilising 
the temperature of, for instance, individual humans as well as the 
global climate. At ambient pressure, water contracts upon melting and 
its isobaric density reaches a maximum at 4 °C. This is of great 
ecological importance. Below the frozen surface of a lake, fish and other 
organisms can survive winter. Not only do many organisms live in 
water, all living beings consist for a large part of water. Water is the 
medium for all processes that constitute life. Some important 
phenomena in this respect are the formation of biological membranes 
and the conformation of proteins 1. 

In the last two examples the so-called hydrophobic effect plays an 
important role. "Hydrophobic effect" is a somewhat vague term that is 
used in relation to the behaviour of water when it interacts with apolar 
molecules, fragments of molecules or with apolar surfaces. These are 
hydrophobic, which means that they tend to minimise their contacts 
with water. The solubility of apolar compounds in water is low and they 
tend to form a separate phase. Macromolecules such as proteins, tend 
to assume a conformation that minimises the contact between apolar 
parts and water. They usually have a globular conformation with the 
apolar parts enriching the inside. Association of lipids into 

* OIO stands for 'Onderzoeker in Opleiding'. 
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biomembranes and of surfactants into micelles is driven by the 
hydrophobic nature of aliphatic chains of these molecules. 

That the affinity between "like" molecules is larger than between 
unlike molecules is not at all restricted to apolar solutes in water. This 
is for instance reflected in Berthelot's principle 2, which states that the 
magnitude of the attraction between unlike molecules is the geometric 
mean of the values for the interactions between like molecules. What is 
special with apolar solutes in water, is the temperature dependence of 
the solubility; reflecting the roles of energetic and entropie 
contributions to the Gibbs energy of solvation. These point out that the 
origin of the low compatibility of water and apolar compounds is 
entropie, whereas the energetic effect is small and at low temperature 
even promotes compatibility. 

It may be clear that an adequate understanding of water is essential 
for the understanding of numerous biological phenomena. Although 
much research, both experimental and theoretical, has been done on 
water, our understanding is still incomplete. In the present study 
aqueous systems will be investigated using a theory that accounts for 
local orientational correlations. Since this approach is quite versatile, 
the relations between the properties of individual water molecules and 
the behaviour of water at a large variety of circumstances can be 
clarified. 

2 STATISTICAL THERMODYNAMICS 

The aim of this branch of science, which is also known as molecular 
thermodynamics, statistical mechanics and statistical physics, is to infer 
macroscopic from microscopic properties. In the present study, the 
microscopic properties refer to molecules. Essentially, we consider the 
dependence of the interaction energy of the molecules upon relative 
positions, orientations and conformations. Macroscopic properties are 
properties that cannot be attributed to a single molecule or to a few 
ones, only to large collections of molecules. Examples are pressure, 
temperature, melting point, heat capacity. It is inappropriate to speak 
of the pressure of a methane molecule or of a melting water molecule. It 
is correct however, to speak of the melting of ice and the pressure of 
methane at some density and temperature. 
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Inferring the behaviour of a system consisting of a very large number 
of molecules from the properties of the individual molecules is not 
trivial. As the adjective statistical in the title of the present section 
suggests, probability plays a large role here (for a nice introduction to 
probability theory see ref. 3). Gibbs has developed a general theoretical 
framework for the evaluation of macroscopic behaviour from molecular 
properties, the so called ensemble method. This is treated in numerous 
books on statistical thermodynamics, for instance refs. 4> 5. In this 
method, the probability distribution of microscopic states is evaluated 
of systems for which macroscopic characteristics are given. This 
method will be used in the present study. 

Another method that is often applied to the similar systems as will 
occur in this thesis is Molecular Dynamics Simulation. This is 
conceptually rather simple: Newton's laws of classical mechanics are 
applied to a box containing a finite number of molecules (typically a few 
tenths to a few hundreds). Realistic functions for the intermolecular 
interactions can be used. This method is rather (computer) time 
consuming. Only short intervals of real time can be simulated. Hence, 
one is not always certain that the equilibrium state of a system is 
reached. Especially the results for thermodynamic functions as entropy, 
chemical potentials etc. suffer from statistical uncertainties. 

3 LATTICE MODELS FOR FLUID SYSTEMS 

Often, molecules can be regarded as particles that satisfy the laws of 
classical mechanics. Accordingly, the Hamiltonian of a system, the 
energy as a function of phase-space coordinates, can be separated into 
a configurational-energy- and a kinetic-energy term. The 
configurational (is potential) energy of the system results from all 
Interactions between the molecules and of the coupling with external 
fields, if present. This energy will generally depend on the configuration 
of the system, for instance on the distances between the molecules. 
Within the limits of classical mechanics, the configuration of a system 
and the velocity distribution of the molecules are independent. Partition 
functions can be written as products of a configuration- and a kinetic 
factor. The latter is fairly universal but the configurational properties 
are strongly system dependent. The great variety of macroscopic 
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phenomena is mainly due to these configurational properties. The 
present study concerns configurational properties and kinetic 
contributions are not considered. 

Since often the systems we are interested in are very complicated on 
a molecular scale, we have to rely on models in which the most 
important properties of the molecules are captured as well as possible. 
The work described in this thesis is based on lattice models. In such 
models, molecules or molecular segments are confined to a regular 
lattice of sites. Consequently, the possible distances between molecules 
and angles that contacts between molecules make can vary only in a 
discrete way. 

The title of the present section is somewhat paradoxical. It is well 
known that fluids have a disordered structure, unlike that of a regular 
lattice. One of the reasons why lattice models are applied to fluids is of 
a merely pragmatic nature ; the configurational statistics are easier 
analysed on a discrete lattice than for a continuum. Confinement of the 
molecules to a lattice of sites will obviously reduce the configurational 
freedom and consequently the entropy. In many cases however, this 
shift of entropy per molecule will be more or less independent of 
temperature, composition etc.. Hence, within a lattice model changes of 
thermodynamic quantities upon changes of conditions will often be 
predicted rather well. As an a posteriori justification of this approach it 
might be added that in practice lattice models often work out 
surprisingly well. 

For instance, Raoult's law, according to which the fugacity of one 
given component in a mixture is equal to its mole fraction, holds if the 
enthalpy does not change upon mixing and if the entropy of mixing nx 

molecules of species 1 and n2 of species 2 equals 

^ . k l n k f * * (1) 
n1!n2! 

This expression can be derived from a model where the molecules are 
arranged on a lattice of nx + n^ sites 4- 6. The entropy of mixing in a 
fluid and on a lattice is similar. 

In practice, eq. (1) holds if the molecular species do not differ too 
much in size and shape, and if interaction energies between molecules 
of species 1 (uu) , between molecules of species 2 (u22). and between a 
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molecule of species 1 and one of species 2, (u12) are similar, this means 
that u12 = u12 - ^ ( "n + u22) has to be small. To approximate the mixing 
entropy by eq. (1) for cases where u12 * 0 is referred to as the Bragg-
Williams- or random-mixing approximation. Establishing the origins 
and consequences of deviations of eq. (1) is one of the issues of the 
present study. 

An important distinction between two groups of lattice models for 
fluid systems is that between models where sites are allowed to be 
vacant and models where all sites are occupied. Models of the first type 
are called lattice-gas-, lattice-fluid-, or hole models. In these models, 
density variations and pressure effects are accounted for. For the 
configurational statistics it is immaterial whether one deals with a 
lattice gas or with a model that does not contain vacancies. An n-
component lattice gas is equivalent with a model without vacancies that 
contains n +1 components. Only if one wants to infer thermodynamic 
quantities such as pressure, it is necessary to specify whether 
vacancies are present or if all sites are occupied by molecules. 

In lattice models it is possible to accommodate molecules of various 
sizes. The size of a molecule is hence only discretely variable; a 
molecule occupies an integer number of sites. The entities occupying 
one site are called segments. The segments of a molecule can be of a 
different nature. 

The discreteness inherent in lattice models implies that the 
"resolution" by which molecular details can be implemented and the 
results that are obtained, is restricted. For instance in a multilayer 
lattice model of a fluid adjoining a smooth surface, the oscillatory 
density profile cannot be dealt with if the size of the molecules equals 
that of the lattice sites (see however refs. 7-8). 

It should be kept in mind that it is always somewhat arbitrary what 
to choose as a model for a certain molecule. In these choices one seeks 
a compromise the complexity of the model and the number of 
parameters, that is preferably small, and the accuracy of the results, 
which is preferably high. 
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4 NON-UNIFORM DISTRIBUTIONS, MEAN-FIELD APPROXIMATIONS AND 

SELF-CONSISTENT FIELDS 

It is often convenient to formulate the expressions for the molecular 

distributions over locations orientations etc. in terms of self-consistent 

field equations. These express the density of molecules a t a certain 

posit ion, having a cer tain or ientat ion etc. a s a p roduc t of a 

normalisation factor and the weighting factor. The normalisation factor, 

usually the activity, is the same for all molecules of the same species. 

The weighting factor which accounts for interaction forces t ha t a 

molecule in a certain position and orientation experiences will generally 

depend on position and orientation etc.. Such a mathemat ica l 

formalism reflects that the molecules distribute themselves according to 

the forces they experience. This potential-energy field is always partly 

determined by these same molecules and hence related to the 

distribution of molecules over positions, orientations, conformations 

etc.. (see for instance 8"10) 

The discussion of the following paragraphs reviews some aspects of 

what h a s been called the potential-distribution method. This h a s 

extensively discussed in the refs. 1 1 1 3 . I will here emphasise the 

relation with the self-consistent field formalism as , for instance, in the 

theory of Scheutjens and Fleer 9 and in the present s tudy. As an 

example the density profile in one direction is examined. For this we 

can write rigorously 

p(z) = ^ e x p - ^ | ^ (2) 

Here p[z) is the number density in the plane z, A = exp(/x/JcT) is the 

activity and ¥[r,z) is the potential energy of a molecule a t some 

position in the plane z. This energy is a function of the positions and 

orientations etc. of all molecules r ; (exp- f ( r , z)/kT) is the average of 

exp- f ( r , z)/kT over all r . If also an expression for (exp-¥ /(r ,z)/kr) in 

terms of p[z) were available, then we could in principle solve for the 

equilibrium distribution p[z), S uch a complete combinat ion of 

expressions is referred to as "self-consistent field equations". 

Equation (2) can be rewritten as 
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H = JcTlnp(z) - JcTln/exp- ̂ =r) = fcTlnp - JcTln/exp- ̂ \ (3) 

where jx = JcTlnA, p and (exp^VfryicT)) are the averages over z of p(z) 
and (exp(-f(f,z)/fcT)), respectively. Equation (3) is the statistical 
mechanical expression for the chemical potential. This expression is 
widely applied in the so-called "test-particle method" for the evaluation 
of the chemical potential from molecular simulations (i.e. molecular-
dynamics, Monte Carlo). The quantity -fcTln{exp-*P(f,z)/fcT) is often 
referred to as "potential of the mean force" at z. The term kT In p in eq. 
(3) is the ideal chemical potential, the next accounts for non ideality 
due to intermolecular interactions; (exp- *F(r)/kT)~ can be recognised 
as the activity coefficient. 

The equations (2) and (3) are both completely general and exact 
within the framework of classical mechanics. They are derived from the 
classical configuration integral ll~13. 

Although the meaning of (exp- f(r, z)/kt) is quite clear, it is often 
extremely complicated to evaluate this quantity in terms of p[z). 
Usually, it is necessary to make some assumption. Consider for 
instance the well-known lattice-gas model for isotropic molecules. In 
such a model the fraction of occupied sites in layer z is given by 
<j>[z) = p(z)/v, where u is the volume per lattice site and z indicates the 
lattice layer. To two or more molecules on the same site, an infinite 
energy is attributed and hence exp(-f/fcT) vanishes for such cases. 
This leads to a factor l-0(z) in the expression for (exp-f(r,z)/kT). If 
there are no further interactions then this is the whole story and 
equation (2) can be rewritten rigorously as p(z) = A(l - 0(z)). However, in 
the case that molecules on nearest-neighbour sites have an interaction 
energy u, the potential energy of a molecule with n nearest-neighbours 
equals nu. A factor (exp(-nu/kT)), the average over all configurations of 
exp(-nu/kT), should be added. For (exp(-nu/JcT)) no exact expression 
is available. 

In the so-called the Bragg-Williams approximation (also called 
zeroth-order- or random-mixing approximation) the molecules on each 
layer are assumed to be distributed at random. Hence, the number of 
nearest-neighbours of a molecule in layer z, is given by q(0(z)) = 
q±0(z-l) + qo0(z) + q±0(z + l), where q0 and q± are the number of 
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nearest-neighbour sites in the same layer and in an adjoining layer, 

respect ively. Each s i te h a s q = q 0 +2q ± n e a r e s t n e ighbour s . 

Accordingly, the potential energy of a molecule at some site (that is not 

occupied by another molecule) in layer z is q(<j>(z))u and equation (2) is 

approximated by 1 2 , 1 3 

p(Z) = A ( l - ^ ) ) e x p - Ä (4) 

This expression is equivalent with the self-consistent field theory of 

Scheutjens and Fleer 9 applied to molecules that occupy one site a t a 

time (the present parameter is related to the Flory-Huggins parameter 

for the interaction between a molecule and vacancy as % ~ ~\<V^)-

For non-zero nearest-neighbour interactions it is inconsistent to 

a ssume tha t the molecules are distributed randomly within the layers 

and t ha t the environment of each site and i ts occupation are 

s tochastically independent . In fact, all molecules find / c reate 

themselves a "potential-energy dip". The lowering of the potential energy 

due to this ordering is partly compensated by a lowering of entropy. 

That is why the inaccuracies in the Bragg-Williams values for t he 

energy and entropy are always much larger t han for the Heimholte 

energy. Often this last quantity are predicted rather well. As we will see 

in the following chapters this is not the case for compounds with 

strongly orientation-dependent intermolecular interactions such a s 

water. That is the reason we use the more accurate quasi-chemical 

approximation in the present study. 

A quantity like q(<j>{z))u is sometimes called a "mean potential". In 

mean field approximations, the "potential of the mean force" is 

approximated by the "mean potential". Mathematically, in calculating 

the mean potential, the sequence of taking the average and the 

exponential of the potential energy is inverted. It is important to note 

the effect upon calculated t empera ture dependencies: the mean 

potent ial q(<j>[z))u is i ndependent of t empera tu re whereas t he 

corresponding potential of mean force varies with temperature. This is 

obviously directly related to the defects of t he Bragg-Williams 

approximation in determining the values of energy and entropy. 

Somet imes the d i screpancies due to the approximat ions a re 
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compensated by making some ad hoc assumption about some 
temperature dependence for u. 

In the present study we will not use the Bragg-Williams 
approximation but the quasi-chemical approximation (also called 
Bethe-Guggenheim approximation or first-order approximation) 4> 6. 
This accounts for correlations in the occupations of neighbouring sites. 
It is assumed that the occurrence of a contact does not depend on other 
contacts. This is not exact for lattices with closed rings of sites. It is 
interesting to note that the Bragg-Williams approximation can be 
obtained from the quasi-chemical one as the limiting result for an 
infinitely large lattice coordination number 6. 

Apart from disregarding short-range ordering, the occurrence of all 
long-range ordering within the layers is also precluded in the equation 
(4) and in its first-order alternative. Only inhomogeneity in the z 
direction, which allows for the existence of a density gradient normal to 
a macroscopic interface, is accounted for. It is a general feature of mean 
field approaches that one has to specify the possibilities for long-range 
ordering (symmetry breaking). Examples of forms of long-range order 
are: density heterogeneity in some direction, as discussed here (or in 
two directions as in ref. 1 0), nematic ordering in systems with a 
homogeneous density and the formation of super-lattice structures 6 . 
Usually, the smaller the symmetry one assumes for a system, the more 
complicated the evaluation. 

5 ORIENTATION-DEPENDENT INTERMOLECULAR INTERACTIONS 

The differences between the results from the zeroth- and first-order 
approximation for isotropic molecules are only quantitative and usually 
not very large 6. Especially if intermolecular interactions depend on the 
relative orientations of molecules, it is of great importance to account 
for correlations. Not only does each molecule influence the local 
composition in its neighbourhood. It also influences the orientations of 
the neighbouring molecules. The possibilities for the molecules to find 
and create "potential-energy dips" are larger in the case of orientation-
dependent intermolecular interactions. This has important 
consequences for the macroscopic properties of such compounds. 
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The temperature dependence of the thermodynamic properties of 

systems containing molecules with orientation-dependent interactions 

is often very different from that of simple isotropic molecules. As h a s 

been suggested long ago by Hirschfelder et al., the occurrence of closed-

loop coexistence curves can be explained by orientation-dependent 

intermolecular interactions 14. As will be demonstrated in a number of 

chapters of the present thesis, the well know anomalous properties of 

water can also be explained by the strongly orientation-dependent 

interactions (i.e. hydrogen bonds) between water molecules. 

Of all compounds that possess orientation-dependent intermolecular 

interactions, water is undoubtedly the most interesting. It exhibits 

many anomalous properties that are due to these interactions. There 

are still many open quest ions a s to the relat ions between the 

macroscopic behaviour of water and the properties of the individual 

molecules. 

Applying the zeroth-order approximation (Bragg-Williams / random-

mixing), the effects of or ientat ion-dependence of intermolecular 

interactions cannot be reproduced. Within tha t approach, molecules 

with orientation-dependent interactions show the same behaviour as 

isotropic ones. This fault is due to unweighted averaging over relative 

orientations, which is implicit in the zeroth-order approximation. 

Consequently, in calculating the properties of homogeneous systems in 

zeroth-order approximation, the orientation-dependent interaction 

energy between anisotropic monomers can j us t as well be replaced by 

an effective isotropic interaction energy. This effective interaction energy 

is calculated by averaging the intermolecular interactions over all 

orientations of the two molecules: ^ U A B / X * where o and p are 

orientations of monomers A and B respectively. Hence, the results of 

the zeroth-order approximation are often qualitatively wrong if applied 

to molecules with orientational interactions. 

In the present study, the first-order approximation, which does 

account for correlation effects, is generalised so tha t compounds like 

water can be modelled. 



12 CHAPTER I 

6 OUTLINE OF THIS THESIS 

The present study deeds with the development of a lattice theory that 

is applicable to sys tems containing molecules with orientation-

dependent in teract ions. In the following chapter th is theory is 

introduced in a rather general fashion. That chapter mainly consists of 

a derivation of the self-consistent field equations and of the expressions 

for thermodynamic quant i t ies for a n a rbi t rary combinat ion of 

monomeric species. Further, some illustrations of the capabilities of the 

method are given. 

In chapter III, a lattice-fluid model for water is introduced and 

analysed according to the theory introduced in chapter II. Results on 

the properties of water, i ts s t ructure, equation of s tate and liquid-

vapour equilibrium and of the liquid-vapour interface are presented and 

discussed. 

In chapter IV, the same model for water is applied to the molecular 

interpretation of the hydrophobic effect. 

Chapter V deals with the s tructure of water near inert interfaces and 

with the hydration forces between interfaces ensuing from overlap of 

solvation layers. This chapter is again based on the model for water 

that was introduced in III. 

In Chapter VI, some other aspects of the behaviour of water near 

interfaces is investigated: vapour adsorption and wetting phenomena. 

In the chapters II to VI, a molecule occupies only one lattice site. In 

chapter VII th is restriction is relaxed. The theory of chapter II is 

generalised to account for chain molecules that occupy a number of 

connected sites. A propagator formalism is derived tha t allows for an 

efficient evaluation of the distribution of chain conformations. 
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CHAPTER II 

STATISTICAL THERMODYNAMICS OF MOLECULES WITH 

ORIENTATION-DEPENDENT INTERACTIONS IN HOMOGENEOUS 

AND HETEROGENEOUS SYSTEMS 

A lattice theory is presented for homogeneous and heterogeneous 
systems containing molecules with orientation-dependent interactions. 
Correlations due to interactions are accounted for in first-order (quasi-
chemical) approximation by allowing variations of the distribution of 
intermolecular contacts. To model heterogeneous systems, parallel 
lattice layers are allowed to be differently occupied. A partition 
function, written as a sum over distributions of molecules over 
orientations and locations and of intermolecular contacts, is derived for 
any collection of monomelic species. Using a maximum-term argument, 
self-consistent field equations are derived for the equilibrium 
distributions. These equations are solved numerically. Allowing lattice 
sites to be vacant, free-volume effects can be accounted for. Expressions 
are obtained for energy, entropy, chemical potentials, pressure and 
surface tension. The capabilities of the method are illustrated by 
applying it to a number of specific systems, one of which exhibiting a 
closed-loop coexistence curve. Properties are investigated of coexisting 
phases and of the interface between them. 
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1 INTRODUCTION 

In lattice models for fluids, molecules are confined to a regular 
array of sites in which distances and angles are discrete. Such 
coarse-grained models are often useful in relating thermodynamic 
behaviour to molecular properties and obtaining semi-quantitative 
expressions for thermodynamic functions of complicated systems. 
The using of lattice models for fluids is justified by the consideration 
that the reduction of the molecular entropy, due to the confinement 
of the molecules to lattice sites, is more or less independent of 
temperature and composition. So this simplification does not greatly 
affect changes in the thermodynamic quantities, although it does 
alter the standard state. 

Well-known examples of successful applications of lattice models 
are mixtures of small molecules 1> 2 and of mixtures containing 
polymers 1~3. Effects of free-volume changes in pure fluids and fluid 
mixtures have been investigated by including vacant sites in the 
model. Such models are referred to as lattice-gas, lattice-fluid, or 
hole models *• 4"8. 

Various approximate methods to derive thermodynamic 
properties of lattice models for interacting molecules have been 
developed x- 2. The most simple is the Bragg-Williams or random-
mixing approximation. Guggenheim refers to it as the zeroth-order 
approximation. This approximation assumes the occupation of the 
sites to be stochastically independent although non-zero interaction 
energies are allowed for. The more accurate Bethe- and quasi-
chemical approximations, that Guggenheim demonstrated to be 
equivalent, are usually referred to as the first-order approximation 2 . 
This accounts for correlations between nearest neighbours, but 
assumes pairs of sites to be independently occupied. The existence 
of closed rings of sites is disregarded. Hence this approximation is 
sometimes referred to as the dendritic approximation. It is known to 
give exact results for one-dimensional systems l. More generally, it is 
exact for Cayley-tree lattices or Bethe lattices (lattices that contain no 
closed rings of sites) 9 . Higher approximations have been developed 
in which the interdependence within larger clusters of sites is 
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accounted for 2' 10, n . These are more difficult to apply to complex 
situations and using larger basic clusters does not generally guarantee 
more exact results. 

Especially for systems containing molecules with orientation-
dependent interactions, where the intermolecular interaction 
depends on the relative orientations of the molecules, it is important 
to account for correlations. It can easily be shown that, according to 
the zeroth-order approximation, which neglects all correlations, 
homogeneous isotropic systems containing molecules with 
orientation-dependent interactions show the same behaviour as 
systems that contain only isotropic molecules. Such a treatment fails 
in reproducing the more complicated temperature dependence of 
thermodynamic quantities of compounds with orientation-dependent 
interactions. For instance, the miscibility in a binary system can be 
increasing with decreasing temperature, and even a closed-loop 
coexistence curve with a lower critical solution temperature that is 
smaller than the upper critical solution temperature can occur. 

A simple way to formulate a lattice theory that reproduces such a 
phase diagram is to treat the parameter that accounts for the 
intermolecular interactions as a function of temperature. Then, it has 
the character of a free energy instead of an energy. However, such a 
treatment does not give any clue for a molecular explanation of the 
temperature dependence. 

The first quantitative statistical-thermodynamic treatments based 
on a physical model of binary mixtures of molecules with orientation-
dependent interactions are due to Barker and co-workers 1 2_ l5 and to 
Tompa 16. They used the above-mentioned first-order approximation. 
It was demonstrated by Barker and Fock that orientation-dependent 
interactions can lead to closed-loop coexistence curves with both 
upper- and lower critical solution temperatures 14. This occurs with 
mixtures in which there is a net attraction between unlike molecules 
in some relative orientations, whereas in most relative orientations 
there is a net repulsion between unlike molecules. The coexistence 
curves obtained by Barker and Fock are somewhat 'narrow shaped'; 
the difference between the compositions of coexisting phases seems 
to be too small. Bodegom and Meijer 17 have argued that this is partly 
due to imperfections of the first-order approximation. By using larger 
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basic clusters of sites, they obtained larger differences between the 
compositions of coexisting phases. On the other hand, it has been 
shown that a change of the physical model itself, increasing the ratio 
between the numbers of repulsive and attractive relative orientations 
of unlike molecules, also leads to larger differences between the 
compositions of coexisting phases 17, 18. In the original Barker-Fock 
model, the mixture is symmetrical with respect to exchanging the 
components. As a consequence, thermodynamic functions and 
coexistence curves are also symmetric in this respect. The Barker-
Fock approach has been generalised and applied to liquid-vapour 
phase diagrams of models for alkanes, alcohols 19, 20, to a model for 
aqueous polymer solutions 2 1 , and to mixtures adjoining inert 
surfaces 22. 

Various other models, that are easier to evaluate than the Barker-
Fock model, have been introduced to incorporate orientation-
dependent interactions including so-called decorated-lattice and 
double-lattice models where different types of lattice-sites are 
defined 18- 23-26, and models where 'internal' states are attributed to 
the molecules or their segments 8- 2 7 3 6 . Some of these models apply 
to mixtures containing molecules of different sizes, polymers 
included26 '31"33 '35 , 36 . In these models, one large molecule occupies 
a number of connected lattice sites. Some of these models are 
isomorphic with the spin-£ Ising model. So, some exact results can 
be obtained 24- 25- 34. 

The application of lattice models is not restricted to homogeneous 
systems. Allowing parallel lattice layers to be differently occupied, 
interfaces can be investigated 22, 37"40. Fluid interfaces 37, 38, 40"42 as 
well as the behaviour of fluids adjoining inert flat surfaces 2 2 have 
been modelled in this way. Adsorption of low- 1 and high- 4 3 ' 4 5 

molecular weight compounds at solid surfaces is an important 
phenomenon to which lattice models are successfully applied. In 
some of this work on interfacial systems, the first-order 
approximation was applied 22 ' 41, 42. Kurata 4 1 and Parlange 4 2 dealt 
with a fluid interface of isotropic monomers. Smirnova investigated 
mixtures adjoining an inert boundary which was taken to be a model 
for fluid interfaces 22. 
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In the present paper we present a generalisation of the first-order 
quasi-chemical treatment for both homogeneous and heterogeneous 
systems, the latter including fluid interfaces and fluids adjoining 
inert surfaces. These systems may contain any combination of 
monomer types, with or without orientation-dependent interactions. 
The generalisation towards chain molecules will be presented in a 
subsequent chapter. In sections 2 and 3, the model is described in 
general terms and most symbols by which the state of the system is 
described are introduced. The combinatory analysis of the 
configurations of the system is presented in section 4. This forms 
the basis of the partition functions that are formulated in section 5. 
In that same section the self-consistent field equations for the 
equilibrium configuration are derived from the partition function. In 
section 7, expressions for thermodynamic quantities are given. In 
the sections 8, 9 and 10 it is explained how the equations can be 
applied to various situations. Finally, to illustrate the capabilities of 
the present theory, in section 11 numerical results for a number of 
specific model systems are presented and discussed. Extensive 
results on a lattice-gas model for water are presented in a subsequent 
chapter. 

2 GENERAL DESCRIPTION OF THE MODELS 

To be able to count the configurational micro states of the fluid, 
the volume V that contains the fluid is divided into a regular lattice of 
JV identical sites. The volume of a site is denoted by u, so V = Nv. 
This lattice does not change with temperature or composition. The 
lattice serves as a system of coordinates, on which distances and 
angles are discrete rather than continuous. Each lattice site is 
surrounded by a fixed number, the lattice coordination number q, of 
nearest-neighbour sites. 

For the moment we will restrict the treatment to molecules 
occupying one lattice site. Such model molecules are called 
monomers. The surface of a monomer consists of q faces that are 
confined to be directed towards nearest neighbour lattice sites. 
Hence, to a monomer of type A, a discrete number a>A, of 
distinguishable orientations can be assigned. This number is 
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determined by the arrangement of different faces on the monomer 
surface. For example, an isotropic monomer, which has only one type 
of face, does not have distinguishable orientations (hence, coA = 1). A 
monomer with one labelled face has q distinguishable orientations 
because the labelled face can have q directions. Faces are 
characterised by their mutual interactions, as will be discussed in 
detail in the next section. In the present chapter, the term direction 
will be restricted to a face, orientation to a monomer and configuration 
to a complete system. 

In order to deal with systems that are spatially inhomogeneous in 
one direction, the lattice is divided into M parallel layers, each 
denoted by a ranking number z, which runs from 1 until M. Each 
layer can be filled differently. So inhomogeneities in the direction 
normal to the layers are possible. The number of sites in each layer is 
denoted by L. The number L is proportional to the surface area of the 
system A = La where a is the cross-sectional surface area of one 
lattice site. The surface area will be taken to be infinite so that edge 
effects can be ignored and the system can be considered as 
macroscopic. By choosing appropriate boundary conditions for the 
outer layers, a virtually infinite fluid, or a fluid adjoining a solid 
surface can be modelled. 

Allowing lattice sites to be vacant, free-volume effects, volume 
changes associated with changes of temperature, composition and 
pressure, can be accounted for. Empty lattice sites are referred to as 
vacancies. In the literature, the terms holes and voids are also used. 
In the statistical analysis, vacancies can be treated as just another 
type of monomer. In the subsequent sections the term monomer will 
be used accordingly for vacancies as well as for molecules. The 
choice whether one of the monomers is interpreted as vacancy can 
be postponed until the calculation of macroscopic thermodynamic 
properties such as pressure and chemical potentials. This will be 
discussed in section 7. 

The number of monomers of type A having orientation o that are 
located in layer z is denoted by nA{z). The complete set of values of 
nA(z), for all A, o and z, is denoted by |n^(z)}. The number of 
monomers of type A at layer z is given by nA[z) = ]jT nA[z), and the 
total number of monomers of type A by nA = ^ nA(z). The number of 
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faces of type a a t layer z, pointing in direction d, is n^(z). These 

numbers are directly related to the distribution of monomers over 

layers and orientations: 

J,n°A(z)qfa = 4iz) (1) 
A,o 

for each a, z and d. The factor q^a denotes the number of faces of 

type a with direction d, belonging to a monomer of type A with 

orientation o, it can have values 0 or 1. 

The number of contacts between faces of type a with direction d 

at sites of layer z, and faces of type ß, is denoted by n%[z)ß. If the 

layer z, and direction d, of a face a, are specified, then the layer and 

direction of the face that makes contact with a a re fixed. It h a s the 

opposite of d, denoted as - d . It is located at layer z ' , by which we 

denote the layer at which d is directed from a site a t layer z. So 
na(z)j8 = nßdlz\- The complete distribution of contacts is denoted a s 

For the distribution of contacts and faces the relation 

Xn2(z)/j = n2(z) (2) 
ß 

should hold for each a, z and d. 

According to this condition in combination with eq. (1), all layers 

con ta in t he s ame n umbe r of monomers . If one add i t iona l 

independent constraint is satisfied, which equates the total number 

of monomers and the total number of sites, 

YjnA=ML (3) 
A 

where sum extends over all monomer types (vacancy included), then 

it follows that ^AnA[z) = L for all z and £ ßn«(z)j8 = X n a ( z ) = L f ° r 

all d and z. 

Site fractions for monomers, faces and contacts are defined as 

$A(z) = nA(z)/L, 4>A[z) = nA[z)/L. t*(z)sn*[z)/L and 4>*{z)ß = n*lz)ß/L. 

respectively. In addition, we introduce 0AsnA/^" t he amoun t of 

component A expressed in equivalent lattice layers. Obviously, 9A 

equals £ J>A{z). 
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The quantities <j>%{.z), <t>A(z), <j>„(z) can be considered as probability 
distributions for sites at layer z to be occupied in a certain way. The 
joint probability distribution for the occupation of pairs of nearest-
neighbour sites, <t>aiz)ß, is related to the nearest-neighbour 
distribution function: 

d, , &zh ,A, 
¥a(z)a - — 7 i - ( 4 ) 

which is the conditional probability of a, provided that it is located at 
layer z, has direction d and makes contact with a face of type ß. 

Moreover, the nearest-neighbour correlation function can be 
defined as 

9a(z)ß- tâ(Z) - tâwfv) (5) 

Note t h a t ^(z)ß = <t>f{z\ a nd g*[z)p = g/{z\ b u t 
Vaiz)ß * Vßd(z\- I n c a s e t h e occupation of nearest-neighbour sites is 
stochastically independent, the joint probability for the occupation of 
these sites (such that a certain type of contact occurs) is simply given 
as a product of the probabilities for the occupation of each of the 
sites: 

0«d(z)/i = 0«(z)VV) (6) 

This will be referred to as the random distribution of contacts. In 
this case, for each a, the nearest-neighbour distribution, given by 
Vad(z)/3 = 0a(z)> i s independent of ß, and the nearest-neighbour 
correlation function, g^{z)ß, equals 1 for each a, ß, d and z. 

3 INTERACTION ENERGIES 

To account for the hard core repulsion between molecules, not 
more than one monomer is allowed on a single lattice site. 
Monomers on nearest-neighbour sites have an interaction energy 
that might depend on their relative orientation. Dependence of the 
interaction energy on rotation around the connection line between 
monomers is not accounted for; the interactions between monomers 



ORIENTATION-DEPENDENT INTERACTIONS 23 

only depends on the faces that are in contact. It is further assumed 
that pair-interaction energies are additive and that only nearest-
neighbour interactions contribute. 

For x different faces there are (x2 - x)jl independent interaction 
parameters. (The matrix of energies for aß contacts is symmetrical 
with respect to exchange of a and ß; for each type of face a 
potential-energy reference state has to be chosen). Exchange energies 
are defined such that these vanish for contacts between faces of the 
same type; Contact energies vanish for contacts with a vacancy. 
Contact energies are denoted by u ^ , exchange energies by vaß. 
These two types of parameters are related as 

"o0 = uaß - h(ucux + Ußß) ( 7 ) 

Consequently, u ^ = vaß-va0-Vß0, where the subscript 0 stands for 
vacancy. 

We will use exchange energies throughout the present chapter. In 
this way, all types of monomers as well as the vacancies, are treated 
in the same way. Expressions for various quantities in terms of 
interaction energies are given in APPENDIX III. 

The configurational part of the internal energy of a system is given 
in terms of exchange energies as 

U[{n%(z)ß}) = \ Zn*[z)ßVaß (8) 
a,ß,d,z 

where the sum extends over all contacts; the factor \ corrects for 
duplicate occurrence of each contact in the sum. 

4 COMBINATORY FORMULA 

We will derive an approximate formula for ß[|n^(z)j,m^(z)^|), the 
number of configurations in which specified distributions of 
monomers, [n^(z)j, and contacts, |n^(z)^| are simultaneously 
realised. 

Generally, the distribution of contacts differs from the random 
distribution, j r i^lzM; low energy contacts are preferred and the 
occupations of neighbouring sites are correlated, both with respect 
to the types of monomers involved, as well as to their orientations. 
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This is ignored in the zeroth-order (Bragg-Williams, random-mixing) 
approximation where the distribution of contacts is presumed to be 
random as given by eq. (6). The first-order (quasi-chemical) 
approximation that will be applied here is more accurate though not 
exact. The interdependence of all contacts on a lattice is solely 
accounted for by the over-all constraints (1), (2) and (3). In an exact 
treatment, eqs. (1) and (2) should hold not only for the system as a 
whole, but also locally, for each cluster of sites. Whereas the zeroth-
order approximation assumes the occupation of sites to be 
stochastically independent, the present first-order treatment 
assumes pairs of sites to be independent. It is presumed that all 
faces of the same type at the same layer and direction have the same 
probability distribution of contacts, given by the nearest-neighbour 
distribution function. This distribution is irrespective of the type of 
monomer to which a face belongs, nor of other contacts in which 
that monomer is involved. Accordingly, the present treatment is 
equivalent to a first-order Markov approximation for the occupation 
of chains of sites. The nearest-neighbour distribution function, 
y/a(z)ß as defined by eq. (4), represents the transition probability for 
the occupation of subsequent sites. Within this approximation, the 
expression for the degeneracy of a system with given {n^(z)| and 
jn^fzM is of the form 

2({nW},{n-(Z)ß})=
 f^°A{Z)\ Q({n°A(z)\,{n%(z)ß\) = —^ î ™- (9) 

\a,ß,d,z J 

Here factorials n„(z)a\ account for indistinguishability of contacts 
between identical faces. The numerator /({n^(z)]l is some function 
of the distribution of monomers over layers and orientations for 
which an expression has to be found. Since ß({ri^(z)},{ri£(z)0j) is a 
continuous function of the distribution of contacts, the following 
condition must be satisfied: 

M 
n({n°A4{n*aHz)ß}) = ü({n%[z)}) = - j ^ (10) 

A,o,z 
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where ,ß({n^(z)}] indicates the number of ways to arrange a collection 
of monomers with distribution {n^(z)| on the lattice. The right-hand 
side of eq. (10) can be recognised as a product of M multinomial 
coefficients, one for each layer. The factorial L! equals the number of 
ways to arrange L distinguishable monomers on a layer of L sites. 
Factorials n^(z)! account for indistinguishability of monomers of the 
same type and orientation. The second equality of eq. (10) is exact. 
The random distribution of contacts, {n„d(zM maximises 
^({rlA(z)}'{rla(z)y3}) with respect to variations of m^(z)^| under 
condition (2). It will be proven in section 5 that this is consistent 
with expression (6) but for the moment we will proceed without 
bothering about an expression for the n^(z)B's. In eq. (10) we have 
simply substituted the maximum term ßllnA(z)J, jn^fzM] for the full 
sum X{a2(z) }ß({nA(z)}.{n«(z)^})- By doing so, a proportionality 
constant between these two quantities is disregarded. This is 
justified because it has no consequences for thermodynamic and 
configurational results. 

From eqs. (9) and (10) it follows that 

L!M 

-fi-»«4^»-iRi5yL» 
•*H>V* ( ID 

A,o,z 

The second factor on the right-hand side accounts for correlations 
between the occupation of neighbouring sites. The exponent ^ is 
needed since in the product over a, ß, d and z, each type of contact 
is counted twice. With Sterling's theorem for large n: lnn! = n l n n - n , 

W"11 2Xa,/M,zn«d(ZVntód(z)/» = S a ,d l Z
na ( z ) l n^a ( z )* w h i c h follows 

from eq. (6),' and with ^aßdzn^{z)ß\n^{z)ß - £ a d zn
d(z) In 0d(z) = 

2 X Bd na^ß^n9oi^z)ß- which follows from eq. (4), eq. (11) can be 
rewritten as 

lno({n%[z)}.{n*iz)ß}) = - £nA(z)In0A(z)-± J^n*[z)p]ng*lz)ß 
A,o,z a,ß,d,z 

(12) 

Here the last term accounts for correlations between the occupations 
of neighbouring sites. In case of random formation of contacts, it 
vanishes, otherwise it is negative. 
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5 PARTITION FUNCTIONS AND THE SELF-CONSISTENT FIELD 

The configurational canonical partition function, Q({nA},L,T), can 
be written in terms of the degeneracy, ß({n^(z)|,|n.^(z)^|), and the 
potential energy [/(jn^(z)^jj: 

Q{{nA},L,T) = X n({nA[z)},{n%(z)ß})exp-
{n%lz)}.[n*lz)ß} 

(13) 

kT 

where the sum extends over all distributions (n^(z)| that satisfy 
condition (3) and over all m^(z)^| such that the saturation 
constraints (2) are satisfied (with the numbers of faces related to the 
numbers of monomers by eq. (1)); the symbol k r epresents 
Boltzmann's constant. 

The characteristic thermodynamic function for the independent 
variables {nA}, L and T is the Helmholtz energy: F = 
-kTInQ({nA},L,T). We define the partial Helmholtz energy of 
component A as 

'*-(£-) (14) 

In section (7), it will be shown how these partials are related to 
chemical potentials and pressure. 

The partition function for an ensemble of systems where for each 
system {/A} and M are fixed instead of {nA} is obtained as a Laplace 
transform of Q({nA},L,T): 

~{{fA},M,L,T) = £ 0 ( W } , L , T ) e x p 2 ^ (15) 

where the sum extends over all distributions {nA} that satisfy 
condition (3). The characteristic function for the variables {/A}. M, L 
and Tis given by F - £ A n A / A = yA = -kT In S[{fA},M,L,T) where y is 
the interfacial tension. 

In the thermodynamic limit, in the present case for large L, the 
most probable distributions of contacts and of monomers dominate 
the equilibrium properties. At these distributions the summands of 
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the right-hand sides of eqs. (15) and (13), are maximal under the 
constraints (2) and (3). It is convenient to locate this maximum by 
means of the multiplier method of Lagrange. Hence, an 
unconstrained function, 2Jm£(z)},{ri£(zM], is formulated by adding 
to the constrained function for each constraint an undetermined 
multiplier times a term which vanishes if the constraint is satisfied: 

t{{n%iz)},{n*Wp}) = lnü({n0
A[z)},{n^z)ß})-

t/({ng(z)/»}) | 
fcT I 

A 

a.d.z 
+ I * ) K(Z)-n2(z) +X %nA-LM 

\A 

(16) 

where In ßlm£(z)},{ri£(zM] is given by eq. (12) (where it is 

£(z) for convenient to write ^ a n£(z)ß In <j>%(z)p - £ a rf z n
d{z) In ft 

^a^a^a^ß^da^ß-i l% t o / }} ) is given by eq*. (8). 
The most probable distributions ri^(z)|, n^fzJ^J, as well as the 

Lagrangian multipliers X and all A^(z)'s are obtained from the set of 
equations 

^ - m t f W , - i + * W + tfM-£-o (17) 

for each a, ß, d and z, 

- ^ - = - l n ^ ( z ) - l + q + X q ^ ( l n ^ ( z ) - A t o ) + ̂  + ̂  = 0 (18) 
dnA{z) a,d i KT 

for each A, o and z, simultaneously with the eqs. (2) and (3). To 
arrive at eq. (18), we have made use of dn%[z)/dnA(z) = q ^ which 
follows from eq. (1). 

As can be shown easily, equation (17) is consistent with a mass-
action law for contacts: <pi{z)ß<j>f(z)al{^

d(z)a^j(z)ß^ = exp(-2ua/,/kr), 
resembling the condition for chemical equilibrium. This is why the 
present approximation is called quasi-chemical 

We will not proceed from the mass-action relations as such but 
introduce a factor G%[z) = ^(z)exp(^-A^(z)j for each a, d and z. 
Hence, eq. (17) can be rewritten as 


