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Stellingen 

1 Bij het ontwerpen van een experiment ten behoeve van inverse modellering dient over 
de identificeerbaarheid van de model-structuur grondig vóórgedacht te worden. 

2 Met behulp van Kalman filtering kan de bijdrage van de verschillende foutenbronnen 
aan de voorspellingsfout beter worden geschat. Hierdoor kan voorkomen worden dat 
bij de verbetering van weervoorspellingen onnodig veel geld wordt geïnvesteerd om 
een kleine bijdrage nog verder te verkleinen. 

3 De bepaling van de massa-balans, ter controle van de nauwkeurigheid van numerieke 
oplossingschema's, zoals voorgesteld door Celia and Bouloutas, is slechts van be­
perkte waarde omdat de berekening van deze maat ook aan onnauwkeurigheden 
onderhevig is. 

Celia, M.A. and E.T. Bouloutas, A general mass-conservative numerical solution for the 
unsaturated flow equation, Water Resour. Res., 1990. 

4 Omdat numerieke wiskunde een steeds belangrijkere rol speelt bij het modelleren van 
veel bodemfysische processen, verdient het aanbeveling om mathematische en statisti­
sche software libraries een inherent onderdeel te laten uitmaken van het standaard 
gereedschap van de modelbouwer. 

5 Het optimaliseren van een experiment vraagt een goede communicatie tussen experi­
mentele onderzoekers, modelbouwers en statistici, omdat het theoretisch optimale 
ontwerp van het experiment praktisch niet uitvoerbaar kan zijn. 

6 De positieve effecten van zowel resonantie-therapie en transcendente meditatie zijn 
gebaseerd op "wishfull thinking" en zijn wetenschappelijk niet te onderbouwen. 

7 Om tegen wateroverlast verzekerd te zijn moet men een drijvend huis bouwen. 

8 Het invoeren van een ISO-9000 certificaat ter beoordeling van de kwaliteit van een 
opleiding kan de huidige prioriteitsstelling bij veel onderwijsinstituten, te weten 
kwantiteit boven kwaliteit, weer omdraaien. 

9 De huidige spelregel bij zaalvoetbal, waarbij een terugspeelbal op de keeper leidt tot 
een directe vrije trap vanaf de zes-meterlijn, leidt tot prijsschieten en draagt daarom 
niet bij aan de primaire doelstelling van sport, namelijk verbroedering. 

10 Het zou de samenleving ten goede komen als notabelen hun plaats weer zouden 
innemen aan de stamtafel van de lokale kroeg. 

S.L.J Mous 
On identification of nonlinear systems 
Wageningen, 11 april 1994 
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Chapter 1 

INTRODUCTION 

1.1 BACKGROUND 

Models of physical, chemical or biological processes are probably more 

important than non-specialists may realize. One can use models for various 

purposes, e.g., simulation, prediction, control. With simulation models one 

can analyze the effect of different inputs, moreover, different scenarios of 

control policies for a process can be evaluated. Prediction models on the 

other hand may provide very useful information for making decisions. For 

example, the weather forecast can be very important for the decisions a 

farmer has to make. In control problems a model of a process is essential for 

the design of a control system: to maintain a constant temperature in a stirred 

tank, it is necessary to know the transfer function between feed flow rate and 

stirred tank temperature in order for the control system to compensate for 

disturbances in the feed flow rate or feed temperature. 
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System identification deals with the problem of building accurate 

models of processes. Since many processes are nonlinear, complex numerical 

models may be necessary to describe them. An introduction into nonlinear 

regression techniques for estimating parameters in nonlinear dynamical 

models can be found in e.g., Bates and Watts (1988). Nonlinear regression 

methods are suitable for the identification of simulation models, since these 

models aim to predict the output of the process based on input data. For the 

identification of prediction models, nonlinear filtering techniques may be 

more appropriate. Nonlinear filtering techniques are used to estimate the 

future state of the process based on input and output data of the past. A 

criterion based on the difference between the predicted state and the obser­

vation of this state is then a natural choice. An introduction into nonlinear 

filtering theory can be found in e.g., Jazwinski (1970) and Anderson and 

Moore (1979). 

In this thesis we will focus on models that are used to describe 

nonlinear processes in hydrology and meteorology. The first process that will 

be analyzed deals with the movement of water in unsaturated soils. The 

knowledge of the displacement of water in unsaturated soils is important for 

the development of water management systems: water from precipitation, 

from irrigation or from an influent river, infiltrates through the ground 

surface and percolates downward through the unsaturated zone into a phreatic 

aquifer. Information about the displacement of water in the unsaturated zone 

is needed in order to determine the replenishment of a phreatic aquifer as part 

of the groundwater system. A description of the flow of water in the unsatu­

rated zone is also needed to predict the spread and accumulation of dissolved 

pollutants in the unsaturated zone and the rate and concentration at which 

these pollutants reach the water table (Bear and Vermijt, 1987). 

In meteorology models are used in the prediction of the weather for a 

number of days ahead. Models of the atmospheric circulation are analyzed in 

the second part of this thesis. Due to sensitive dependence on the initial state 
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it is not possible to produce accurate forecasts beyond a range of about five 

days. Although the accuracy of weather models has been improved substan­

tially in the last decades, it is very difficult to compare the quality of diffe­

rent weather models, because the predictability range may depend on the 

initial state. In the evaluation of the model it may be meaningful to distin­

guish here between the mathematical model and the numerical integration 

scheme. Numerical errors add up to errors due to neglecting certain physical 

processes in the mathematical model. It is known how numerical errors 

should be estimated. However, there does not exist yet a systematic approach 

to evaluate the error that is caused by not incorporating certain physical 

processes or by incorrect parameterization of such processes. In the second 

part of this thesis we will address to this problem. 

1.2 SYSTEM IDENTIFICATION 

In some literature system identification is sometimes denoted by 

'inverse modeling' or 'inverse problem' (e.g., Kool and Parker, 1988). It 

refers to the determination of (differential) equations that describe the 

physical process, given the input and output signals. Zadeh (1962) gives a 

more precise definition of system identification. It is the determination given 

input and output data of a system within a specified class of systems to 

which the system under test is equivalent. In this formulation 'the system 

under test' is the process and the elements of 'the class of systems' are the 

models. Due to the systems complexity, as well as the incomplete availability 

of observations and the limited a priori knowledge, it is generally impossible 

to try to obtain an exact mathematical description of the physical process. 

Therefore, mathematical models only can describe the system approximately. 

In this light it is more natural to consider system identification as approxi­

mate modeling on the basis of observed data and a priori knowledge 
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(Janssen, 1988). 

In general, one can say that the identification process contains three 

essential ingredients: 

selection of the class of systems 

definition of a criterion of best fit 

experimental design 

The problem of selecting the class of systems is highly influenced by the a 

priori knowledge of the process. If one has sufficient insight into the process, 

one may give a detailed "physical" model structure. However, often one has 

to use some type of empirical relations or even a "black box" model structu­

re. A model structure is a description of a process, expressed in terms of 

mathematical equations. Sometimes one has to decide between two or more 

model structures. The choice of a specific model structure may be based on 

statistical selection criteria. In Rasch et al. (1992) some of these statistical 

selection criteria are discussed. Besides these statistical selection criteria other 

criteria can play a role also. For example, in predicting the future behavior of 

a process, it may be more suitable to use a simple model than a detailed 

description of the process, since the calculation of the prediction with the 

detailed model may cost so much time that the prediction becomes worthless. 

After the choice of the model structure, the identification problem is 

reduced to a parameter estimation problem. Parameter estimation may be 

defined as the experimental determination of values of parameters that govern 

the dynamic behavior assuming that the structure of the model is known. 

Eykhoff (1974) pointed out that the distinction between knowledge of the 

model structure and parameters is not as straightforward as it may appear on 

first sight. The change from a non-zero to zero value of a parameter may 

represent a simplification in the structure, as that 'branch' of the model may 

be deleted. Thus, the result of the parameter estimation problem can be that 
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one has to reconsider the structure of the model. 

To determine the best approximating model, we have to define a 

criterion of best fit. For the identification of simulation models a reasonable 

choice would be to use the sum of squares of the differences between 

observations and model values as object function. If the purpose is not 

simulation but prediction it may be more useful to define an object function 

based on prediction errors. In the literature of system analysis the first 

method is called an output-error method whereas the second method is called 

a (one-step ahead) prediction error method (e.g., Ljung, 1987). 

Some statistical methods, such as the Maximum Likelihood method, 

require a priori knowledge of the probability distribution of the error terms. 

Often it is assumed that the observations are contaminated by white Gaussian 

noise and that the differential equation is perturbed by a white Gaussian noise 

process. For linear systems the Maximum Likelihood estimates can then 

easily be obtained using the Kalman-Bucy filter (cf., Harvey, 1981), For 

nonlinear systems we may linearize near some solution and make an approxi­

mation in this way. 

An important aspect of identification is experimental design. Experi­

mental design means the specification of the input signals, the sampling rate 

and the number of observations to be taken (Rasch, 1990). In this thesis only 

the specification of the input signals is considered. The advantage in con­

triving a well-designed experiment is that we may obtain richer and more 

informative output signals. Of course we cannot manipulate the input signals 

freely, because the experimental conditions may not deviate too much from 

the conditions in the final application. Sometimes there are no controllable 

input signals, for example with the weather system. For the identification of 

such systems the determination can only be based on (passive) observations 

of the process. 
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1.3 OBJECTIVES OF THIS STUDY 

Not every meaningful looking combination of model structure, criterion 

of best fit and experimental design will lead to a unique estimate of the 

unknown parameters. The problem of not finding a unique solution of the 

identification problem was already noticed by Bellman and Astrom (1970). 

To analyze this non-uniqueness problem, they have introduced the concept of 

structural identifiability. A model is called (globally) identifiable if the model 

structure with different parameters values and identical input signals yields 

different output signals. However, an identifiable model structure is not suffi­

cient to ensure a unique parameter estimate because uniqueness may also 

depend on the chosen criterion, non-linearities, the dynamic behavior of the 

system, and the design of the experiment (e.g., Walter, 1982, Ljung, 1987). 

One can distinguish several cases in which problems occur in the unique 

estimation of the parameters. In this study, we first have considered the case 

where the object function is insensitive to certain parameters or linear combi­

nations of parameters. It is clear that then the optimization problem will not 

have a unique solution, because many parameter combinations will give an 

(almost) equal value of the object function. As a second case, we have 

considered a combination of criterion and model structure which makes the 

problem ill-posed. This type of optimization problems cannot be solved by 

ordinary optimization algorithms. An example of such a problem is the 

identification of a chaotic system (Baake et al., 1992). 

Possible causes of an insensitive object function are overparameteri-

zation of the model structure, non-informative input signals and non-linearity 

(Ljung, 1987). Noise in the system may mask the insensitivity to parameters 

because the optimization problem may have many local minima. One can 

easily be misled when an optimization algorithm converges to such a local 

minimum. In many practical situations it can be very difficult to prove that 

the model structure is not identifiable. In practice we have to restrict our-
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selves to a specific combination of model structure, criterion and experi­

mental design and analyze the existence of a unique solutions for this 

combination. 

An example of such a combination is studied in the first part of this 

thesis. There we analyze the identifiability of the model used in the ONE-

STEP method, describing the movement of water in unsaturated soils (Kool 

et al., 1985,1988). The water movement in the unsaturated zone is described 

by the Richards equation in conjunction with the Mualem-van Genuchten 

relations (Mualem, 1976, van Genuchten, 1980). The study of this problem 

was motivated from the statement made by several authors that not all 

parameters could be obtained uniquely (e.g., Hornung, 1983, Kool et al., 

1985 and van Dam et al., 1990). The object was to find the cause of this 

non-uniqueness problem and to suggest designs for new experiments. In a 

recent paper, Toorman et al. (1992) describe a new experimental setup, in 

which pressure head measurements have been included. The improved 

sensitivity of the object function with respect to the parameters, which was 

reported in their paper, could also be predicted as a result of this study. 

In the second part of this thesis the identification of chaotic systems is 

studied. As mentioned above the identification of these systems may lead to 

an ill-posed optimization problem (Breeden and Hübler, 1990, Farmer and 

Sidorowich, 1991, Baake et al., 1992). The optimization method with an 

output-error criterion for this class of problems is ill-posed, because the 

model's solution depends sensitively on its initial states. The observed values 

and the model values will then diverge due to the limited accuracy of the 

initial state. Consequently, the optimization problem with this criterion will 

also have many local optima. Therefore, one may be tempted to say that the 

model is also not-identifiable. In the previous case, an other experimental 

setup that gives more informative output signals may solve the problem of 

non-identifiability. Here, this approach is not necesarily to solve the non-

identifiability problem since in essence the output signals contains enough 
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information (Baake et al., 1992). An approach to solve the problem of non-

identifiability may be to use a different criterion of best fit. We have ana­

lyzed the performance of criteria that are less sensitive to disturbances in the 

initial state. 

In meteorology this is a highly actual problem because the atmospheric 

circulation behaves chaotic. Parameters in models for the atmospheric 

circulation are often known with a limited accuracy. The effect of a small 

perturbation of a parameter may be significant (de Swart, 1988, Grasman and 

Houtekamer, 1992). An example of a small perturbation is a possible devi­

ation in the equator-pole temperature gradient. The equator-pole temperature 

gradient can be seen as the driving force of our atmosphere. Therefore, 

detecting a systematic change in this driving force may give more insight into 

the greenhouse effect. 

1.4 OUTLINE OF THE THESIS 

This thesis contains four self-contained chapters. In chapter 2 and 3 the 

main topic is the identification of displacement of water in the unsaturated 

zone. The accuracy of some numerical schemes is analyzed in chapter 2. 

Special attention is given to the size of truncation errors due to spatial 

discretization. These errors may be large because of the presence of a steep 

"drying front". This makes it difficult to approximate the fluxes accurately. 

One may obtain accurate approximations of the fluxes by using a variable 

step-size scheme. This scheme is made more efficient by choosing optimal 

locations of the nodes. 

In chapter 3 the connection between the numerical accuracy of the 

model output and the identifiability of the model is studied. Identifiability 

analysis shows that not all parameters of the Mualem-van Genuchten relati­

ons can be estimated using the ONE-STEP method. Furthermore, the question 
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has been raised whether other experimental designs may result in richer and 

more informative output signals. This chapter has been presented as a paper 

at the XVI General Assembly of the European Geophysical Society and has 

been published in the Journal of Hydrology. 

In chapter 4 and 5 applications in meteorology are treated. In chapter 4 

two methods for assessing the size of an external perturbation in a chaotic 

model are investigated. The first method is based on Lions' sentinel functions 

(Lions, 1988, 1990). This method is originally developed for analyzing 

processes that are described with partial differential equations. In this chapter 

a modified sentinel method is presented that can be used to detect perturbati­

ons in processes that are described by systems of ordinary differential equati­

ons. The second method is an adaptive extended Kalman filter. In this 

method the unknown parameters are regarded as random variables and the 

state vector is augmented with these variables. Since the extended Kalman 

filter yields estimates of the state vector, it provides an estimate of the 

unknown parameters as well. This chapter has been published in Mathemati­

cal Models and Methods in Applied Sciences, with J. Grasman as co-author. 

Since the use of the adaptive extended Kalman filter was rather 

successful for these meteorological problems, this method has been developed 

further in chapter 5. The advantage of the adaptive extended Kalman filter 

over the sentinel method is that it provides more accurate estimates in a 

shorter time. An additional advantage is that it is an on-line method. This 

gives the possibility to estimate also a parameter that slowly changes with 

time (Mous, 1993). There are also some disadvantages: reduction in perfor­

mance because the filter uses initially the wrong parameter values, filter 

divergence due to the chaotic behavior of the process and finally the compu­

tational costs in case of high dimensional systems. 

The first problem may be overcome by repeating the process using the 

estimated parameter values from the first run as initial estimates for the 

parameters in the second run. Although this approach may have a better 

9 
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performance, the advantage of an on-line method disappears. The second 

problem, the divergence of the extended Kalman filter, can be solved by 

adding an artificial noise term to the state equations. With this noise term we 

can control the memory of the extended Kalman filter (Jazwinski, 1970). 

However, for an optimally working extended Kalman filter the noise parame­

ters that describe the artificial noise term have to be estimated as well. In 

chapter 5 an approximated maximum likelihood method is used to estimate 

the unknown model parameters and the noise parameters. The last problem of 

high computational costs has not been solved yet. A solution may be found in 

using fast sub-optimal filters, such as the simplified Kalman filter of Dee 

(1991) or in using other criteria, which can make the function and gradient 

evaluation much faster. 
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Chapter 2 

NUMERICAL SOLUTIONS FOR 

THE ONE-STEP EXPERIMENT 

Abstract 

The ONE-STEP experiment (Kool et al., 1985) describes an experi­

mental procedure for determining the hydraulic properties of a soil sample. It 

involves measurement of cumulative outflow with time from a soil core 

placed in a pressure cell. The water flow in this soil core is one-dimensional 

and can be described by the Richards equation. 

In this paper some numerical solutions of this equation are compared. 

The effort that is required to obtain accurate solutions, for both the finite 

element and the finite difference approach, strongly depends on the experi­

mental conditions. In case the pneumatic head applied to the pressure cell is 

low, e.g., 250 cm, both approaches are sufficiently accurate. However, if the 

pneumatic head is high, say 1000 cm, a small spatial discretization step size 

13 



CHAPTER 2 

is required to obtain accurate solutions. Since such a small step size is only 

needed in a small part of the solution space, a variable step size scheme will 

improve the efficiency. The optimal positions of the nodes are determined 

using estimates of the truncation errors. It turns out that this variable step-size 

scheme yields the same order of accuracy using only 1/4 of the number of 

nodes. 

2.1 INTRODUCTION 

Recently, a considerable effort has been put in the determination of soil 

hydraulic properties from transient flow data. Knowledge of these hydraulic 

properties is important for the calculation of groundwater movement in 

unsaturated soils. In most models it is assumed that the movement of water in 

unsaturated soils satisfies the classical Richards equation. The main subject of 

this paper is the analysis of the discretization errors that are made by the 

numerical approximation of the solution of this equation. This topic plays an 

important role in identification methods such as the ONE-STEP method (e.g., 

Kool et al., 1985, 1988). It is therefore that in this paper we study the 

problem of approximating numerically the solution of the Richards equation 

as a separate problem. 

Several authors have given numerical approximation schemes for the 

Richards equation. Hanks et al. (1969) presented a finite difference approach 

to solve the Richards equation, while van Genuchten (1982) presented a finite 

element approach. The integration method originally used in the ONE-STEP 

method was adopted from van Genuchten. More recently, several papers have 

appeared on so-called mass-conservative schemes (Milly, 1985, Ceila et al., 

1990). These schemes have smaller errors due to time discretization compa­

red with schemes where the implicit Euler method is used for time stepping. 

Another approach to make the time discretization errors small is to use a 

14 
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high-order integration scheme, for example a linear multistep method or a 

Runge-Kutta method. For these high-order schemes a larger time step can be 

taken than the one for the Euler scheme without losing accuracy in the 

approximations. 

As mentioned above, the discretization errors are not only caused by 

time discretization, spatial discretization may also play a role. The main 

question is: what is the most important cause of the errors, the time discreti­

zation or the spatial discretization? We know from Milly (1985) and Ceila et 

al. (1990) that the errors due to time discretization can be significant and that 

to this point special attention has to be given. Ceila et al. (1990) have shown 

that their mass-conservative scheme, based on the mixed-formulation of the 

Richards equation, yields smaller errors due to time discretization. However, 

they also mention that a numerical scheme that conserves mass is not suffi­

cient to guarantee accurate solutions of the mass-balance differential equation. 

In this paper the attention is focused on numerical errors due to spatial 

discretization. The importance of the spatial discretization can be evaluated 

by estimating the magnitude of the spatial discretization errors; this can be 

done by making the time discretization errors comparatively small, so that the 

errors only depend on the spatial discretization. 

The paper begins with an outline of the outflow experiment. Special 

attention is given to the movement of water in the porous plate, since the 

movement of water in this plate is described by a degenerated Richards 

equation. The movement of water in the soil has to be solved numerically 

whereas the movement of water in the porous plate can be simply solved 

analytically. Numerical solutions using either a finite difference, a finite 

element or a finite element with variable step-size method are compared for 

two experimental setups of the outflow experiment. These experimental 

setups differ in the pneumatic head that is applied to a soil core. With a high 

pneumatic head the solution is characterized by a "steep drying front", which 

makes the solution sensitive to numerical errors. Finally in the last section we 
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make some concluding remarks. 

2.2 PROBLEM FORMULATION 

The ONE-STEP method (Kool et al., 1985) is developed for identifica­

tion of one-dimensional transient water-flow in porous media in a simple and 

fast way. In this section an improved mathematical description of this 

experiment is presented. 

CROSS. SECTION OF TEMPE PRESSURE CELL 

Figure 2.1. The measurement system. 

Figure 2.1. shows schematically the measurement system. It consists of 

a soil sample and a porous plate placed in a pressure cell. Initially the soil 
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sample is almost saturated. As a result of the pneumatic head that is applied 

to the cell water seeps out. Comparing the measured cumulative outflow Q(f) 

with the outflow that is calculated by a model, one may obtain the unknown 

parameters in the model using an inverse modeling procedure. The mathema­

tical model that is used to calculate the outflow is based on the Richards 

equation: 

a/o— = 4-
dt ox 

f (zu W 
K(h) 

dx 
0 < x < I, t> tn, (2-1) 

*o 
JJ 

h(x,t0) = h0(x), (2.2) 

WM = U (2.3) 
dx 

h{l,t) = -hc = -*£-, (2-4) 
PS 

where 

x = the vertical coordinate, with x = 0 at the top of the core and 

x = I at the bottom of the porous plate, 

h(x,t) = pressure head at time t at point x in the medium, 

C(h) = the differential water capacity of the soil at a pressure head 

h, 

K(h) = hydraulic conductivity of the soil at a pressure head h, 

Ap = gauge gas pressure applied to the cell, 

p = density of water, 

g = gravitation acceleration. 

In the above formulation it is assumed that the initial conditions (2.2) are 
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known. Furthermore it is assumed that the pressure at the bottom of the plate 

is atmospheric and that no water infiltrates into the soil sample. 

The mathematical functions for the hydraulic properties of the soil, 

C(h) and K(h) are modeled by Mualem (1976), van Genuchten (1980) and 

Wösten and van Genuchten (1988): 

CQi) =M= am(es-9r)5e
1/m(l -S]lmT(l -m)-1 , (2.5) 

dh 

K{h) = KSy
e(l - (1 -SxJmY)2, (2-6) 

e = er+s(ev-er) (2.7) 

with 

S = (1+ \ah\nym, 

m = l-l/n 

and where 9 is the volumetric water content. The unknown model parameters 

are a, n, Qr, Qs, Ks, y. In the numerical examples presented later we use 

numerical values for these parameters according to table 2.1. 

The volumetric water content 0 is used to calculate the cumulative 

outflow Q(t) according to 

ß(0 = AJ{Q(h(x,t0))-Q(h(x,t))}dx (2-8) 
0 

where A is the core area in a horizontal cross-section. Since the porous plate 

is saturated in the beginning of the experiment and remains saturated during 

the experiment, one may assume that the differential water capacity C(h) and 
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Table 2 .1 . Parameter values used in the Mualem-van Genuchten model. 

Parameter Value(unit) 

a 0.01 (cm 1 ) 

n 2.0 (-) 

6r 0.17 (-) 

0S 0.47 (-) 

K, 3.0 (cm/h) 

Y 2.0 (-) 

the hydraulic conductivity K(h) in the porous plate satisfy 

C(h) = 0, 

W) = K. 
p 

Consequently, the Richards equation degenerates to a simple ordinary 

differential equation in the fully saturated porous plate: 

?!i = 0 , b < x < I, t > ta, (2.9) 
dx2 

where x = b is the top and x = I is the bottom of the porous plate. So, the 

pressure head in the porous plate is given by: 

h(x,t) = h(b,t) + 'x-0 
Vd J 

(h,-h(b,t)) (2.10) 

with hi = h{l,t) the pressure head at the bottom of the porous plate and d = 

l-b the thickness of the porous plate. In the numerical examples we will use 
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as thickness of the porous plate, d = 0.57 cm and as length of the soil 

column, b = 4.00 cm. 

At the interface between soil and porous plate the pressure head and 

the flux are continuous functions of x. So at x = b: 

h(b',t) = h(b+,t) = h(b,t), (2.11) 

K(h(b,t)) 
dh(b~,t) 

v 
dx 

= K 
(h,-h(b,t)) (2.12) 

Equation (2.12) can be used as a boundary condition for the unsaturated flow 

equation describing the movement of water in the soil sample. This leads to 

the new problem formulation: 

C(h)— = — 
dt dx 

(K(h{dh \\ 
- 1 

ydx ;J 

0 < x < b, (2.13) 

h(x,t0) = h0(x), (2.14) 

dh(0,t) 
dx 

= 1, (2.15) 

/ 

dh(b,i) 

dx 

\ 
(h,-h(b,t)) 

K
P-2—d -Kp + K(h(b,t)) 

K(h(b,t)) 

(2.16) 

Because the differential equation and one of its boundary conditions are 

nonlinear, the solution of this equation is approximated numerically. In the 

next sections some numerical solutions of this equation are given and the 

results are compared. 
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2.3 NUMERICAL APPROXIMATIONS 

The numerical solutions of eqs. (2.13-2.16) are based on either a finite 

element or a finite difference approach for the space discretization. This 

semi-discretization of the Richards equation leads to a system of ordinary 

differential equations (ODE's) which is then solved by an ODE-solver. In 

previous work the Euler method is often used as ODE-solver (e.g., van 

Genuchten, 1982). A way to improve the efficiency and reliability of the 

numerical integration is to use a higher order ODE-solver, for example a 

linear multistep method or a Runge-Kutta method. Many software libraries 

supply routines in which these methods are implemented. These routines also 

include algorithms to optimize the order of the method and the step size 

(IMSL, 1987). Since our problem is likely to be stiff, we have chosen the 

implicit Gear method (backward differences up to order five). 

In the finite element (FE) approach the solution h{x,t) of eqs. (2.13-

2.16) is approximated by 

M 

h(x,f) = Eh.(t)v.(x) (2-17) 
j = o ' ' 

where Vj(x) are the selected basic functions. As basic functions the simple 

chapeau functions are used. The nonlinear coefficients C(h) and K(h) are also 

expanded in terms of the chapeau functions. Furthermore the mass matrix is 

lumped to guarantee non-oscillatory solutions (Ceila et al., 1990). Evaluation 

of the integrals that occur in this formulation leads to the following system of 

nonlinear ODE's: 

u = A(u)u + Diu) (2-18) 

with 
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Mu)--

*2\n (nr j . r ^Av*/^ ((2C0+C,)Axi)/3 ((2C0+C,)Ax73 

2 i ,Ai 

Ar0+jfuAr,+A:2| 

2fc,Ai 2btAx 

K,+K2 

2ijAi ~| 

(K,+K^K2+K,' 

IbAx IbAx 

K2+K3 

2b2Ax 

K-A- , _ 
2iM_,Ax 

X «-2+* ; «- l + * > - l + K M ^ m - i * * * 

KU-I+KM 

((C„.1+2C,,)Ai2)/3 ((C„.1+2C;„)Ax2)/3 

D(u) = 

-0.5(y/g 
((2C0+f,)Ax)/6 

O.5(X-0-A:2) 

o.syr,-*,) 

— 5 ; — 

OW„-2-K„) 

o 5(^„_,+/i:M)+/fp 

((CV,+2C'„)Ax)/6 

( \ 
K 

where 

Ax = b/M 

bj = {{Chl + 2Cj)Ax +(2Cj + Cj+1)Ax)/6, 

Kj = K(hj), 

Cj = C(hj), 

j=l,...,M-l, 

j = 0, ..., M, 

j = 0, ..., M. 

The second scheme that will be used is based on the finite difference 

approach. Using central finite differences for the spatial discretization of eqs. 

(2.13-2.16) one obtains: 
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d_ 
dx 

K(h) 
V 

1 
Ax 

dh. 

dx 

\\ 

: - i 
j ) 

v 

h.-h. 

Ax ~KJ-i 
h.-h. , 

Y\ 

Ax 
fO(Ajc2), j=0,...,M 

JJ 

(2.21) 

d\ 

dx 

\-h_ 

2Ax 
. + 0(Ax2), (2.22) 

3Ä 
M 

3x 2Äx 
+ 0(AJC 2) . (2.23) 

Neglecting the higher order terms and eliminating the pressure heads /z_, and 

hM+l with the boundary condition, gives the following system of ODE's: 

u' = A(u)u + D(u) (2.24) 

with 

Mu)= 

K-m+Km 

C.A*2 

^1 -1 /2 

C,Ai ! 

*"-'»«„ 

CA*2 

K\-m+K\tm 

C.Ax1 

Kitm 

C,Ax2 

_ K2-U2+K2tm 

C,Ax2 

2+1/2 

CA?' 

M-.V2 _ M -3 /2^"M- l /2 " « - I ß KM-1I2+KM 

CU_M2 

' vW-l/2 ,YM+[/2 , vM-1/2 M+l/2 

C„-,Ax; 

C„A*2 ~C^?~ 
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D(") = 

C,Ax 

(Ku.in+Ku.m)+2> 
—3-

C Ax 

( \ 
h, 

Generally, one approximates the conductivity between two nodes Kj+m using 

a linear interpolation of the pressure head, Kj+m = K((hj + hj+l)/2), or using a 

linear interpolation of the conductivity, Kj+in = ((K(hj) + K(hJ+1))/2). We will 

use FD1 and FD2 to refer to the finite difference approaches with the 

interpolation based on h and K respectively. It is noted that the finite element 

method uses the i^-based interpolation of the conductivity between nodes as 

can be easily seen by comparing the matrices A in eq. (2.18) and eq. (2.22). 

The errors due to space discretization can be analyzed more easily 

when the errors due to time discretization are negligible. The discretization 

errors in the finite element scheme as well as in the finite difference scheme 

are then of the order, 

error = 0(Ax2). (2.23) 

One can estimate the spatial discretization errors by calculating the difference 

between several approximations of the pressure head, each consecutive 

approximation uses half the step size (in space direction) of the previous one. 

These differences are proportional to the spatial truncation errors, according 

to 
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ejx,t) » l/3(hjx,t) - h2Jx,t)), (2.24) 

in case the asymptotic expression (2.23) is valid in sufficient extent. 

Equations (2.13-2.16) are first solved for the case that a relatively low 

pneumatic head, hc = 250 cm, is applied to the soil sample. The pressure 

head in the soil is then almost in equilibrium state after 2 hours. Therefore, 

the experiment is simulated from time t - 0 h up to t = 2 h. In a second 

experiment a relatively high pneumatic head, hc = 1000 cm, is used. Here, the 

experiment is simulated from t = 0 h up to t = 4 h. 

Tables 2.2, 2.3 and 2.4 give the approximations of the pressure head, 

for a series of step sizes Ax,- with AxI+1 = Ax/2; Moreover, the differences of 

consecutive approximations are given, so that the validity of the asymptotic 

expression (2.23) can be verified. Table 2.2 gives the results of the first 

experiment and table 2.3 and 2.4 the results of the second experiment. In the 

first case the largest and smallest errors are found at x = 0.0 cm and x = 4.0 

cm respectively. Therefore, the approximations in table 2.2 are given at these 

nodes. For the second case the situation is more complicated. The smallest 

error is for all approaches found at x = 0.0 cm. The largest error is found at x 

= 4.0 cm for the FD1 approach; for the FD2 and the FE approach the largest 

error is found at the last but one node Af-1. Therefore, the approximations of 

the pressure head are given at x = 0.0 cm and x = 4.0 cm for the first 

approach and at x = 0.0 cm and x = 3.8 cm for the two other approaches. 
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Table 2.2. Pressure head, h{x,t), at x = 0.0 cm, r=2.0 h and x=4.0 cm, f=2.0 h for several 

approximations, with h =250 cm. Each consecutive approximation uses half the step size 

(in space direction) of the previous one. FE stands for the finite element approach, FD1 

for the finite difference approach with a /i-based interpolation of Kj+m and FD2 for the 

finite difference approach with a K-based interpolation. 

FE 

FE 

FE 

FE 

FD1 

FD1 

FD1 

FD1 

FD2 

FD2 

FD2 

FD2 

Ax 

0.2 

0.1 

0.05 

0.025 

0.2 

0.1 

0.05 

0.025 

0.2 

0.1 

0.05 

0.025 

yo.o,2.o) 

-228.1091 

-228.0937 

-228.0898 

-228.0889 

-227.8942 

-228.0403 

-228.0765 

-228.0855 

-227.9863 

-228.0623 

-228.0819 

-228.0868 

" A T " 2 A * 

0.0154 

0.0039 

0.0009 

-0.1461 

-0.0362 

-0.0090 

-0.0760 

-0.0196 

-0.0049 

M4.0.2.0) 

-247.3963 

-247.3917 

-247.3905 

-247.3902 

-247.3578 

-247.3822 

-247.3882 

-247.3897 

-247.3738 

-247.3860 

-247.3890 

-247.3898 

" A X " " 2 A * 

0.0046 

0.0012 

0.0003 

-0.0244 

-0.0060 

-0.0015 

-0.0122 

-0.0030 

-0.0008 
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Table 2.3. Pressure head, h(x,t), at x = 0.0 cm, J=4.0 h and x=4.0 cm, £=4.0 h for several 

approximations, with /ÎC=1000 cm. Each consecutive approximation uses half the step size 

(in space direction) of the previous one. FD1 stands for finite difference approach with a 

/z-based interpolation of Kj+m. 

FD1 

FD1 

FD1 

FD1 

FD1 

FD1 

FD1 

FD1 

FD1 

FD1 

Ax 

0.2 

0.1 

0.05 

0.025 

0.0125 

0.00625 

0.003125 

0.0015625 

0.00078125 

0.000390625 

MO.0,4.0) 

-244.513 

-272.561 

-293.025 

-305.368 

-311.897 

-315.110 

-316.634 

-317.356 

-317.654 

-317.665 

"AT"2A t 

-28.048 

-20.464 

-12.343 

-6.529 

-3.213 

-1.524 

-0.722 

-0.298 

-0.011 

W4.0,4.0) 

-249.957 

-291.806 

-339.898 

-396.684 

-465.039 

-549.294 

-658.944 

-888.145 

-998.400 

-998.408 

" A T " 2 A J 

-41.849 

-48.092 

-56.786 

-68.355 

-84.255 

-109.650 

-224.201 

-110.255 

-0.009 

27 



CHAPTER 2 

Table 2.4. Pressure head, h(x,t), at x = 0.0 cm, f=4.0 h and JC=3.8 cm, £=4.0 h for several 

approximations, with Zzc=1000 cm. Each consecutive approximation uses half the step size 

(in space direction) of the previous one. FE stands for the finite element approach, FD2 

for the finite difference approach with a K-bascd interpolation of KJ+ia. 

FE 

FE 

FE 

FE 

FE 

FE 

FE 

FE 

FD2 

FD2 

FD2 

FD2 

FD2 

FD2 

FD2 

FD2 

Ax 

0.2 

0.1 

0.05 

0.025 

0.0125 

0.00625 

0.003125 

0.0015625 

0.2 

0.1 

0.05 

0.025 

0.0125 

0.00625 

0.003125 

0.0015625 

A^O.0,4.0) 

-324.491 

-320.710 

-318.987 

-318.205 

-317.875 

-317.741 

-317.691 

-317.674 

-324.376 

-320.673 

-318.964 

-318.200 

-317.872 

-317.739 

-317.690 

-317.673 

'W""2/Yr 

3.781 

1.732 

0.773 

0.330 

0.134 

0.050 

0.017 

3.703 

1.709 

0.764 

0.328 

0.133 

0.049 

0.017 

M3-8.4.0) 

-590.942 

-546.202 

-526.837 

-519.071 

-516.141 

-515.135 

-514.823 

-514.734 

-590.639 

-546.084 

-526.791 

-519.048 

-516.126 

-515.126 

-514.820 

-514.733 

"A*""2Ax 

44.740 

19.364 

7.766 

2.930 

1.006 

0.312 

0.089 

44.555 

19.293 

7.743 

2.922 

1.000 

0.306 

0.087 
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In the first experiment the difference between consecutive approximati­

ons reduces each time with a factor 4. This implies that the asymptotic 

expression (2.23) is valid in sufficient extent to have an accurate error 

estimate. For this situation the results are very well for all approaches and 

they are comparable in precision. In the second experiment the difference 

between consecutive approximations does not reduce with a factor 4. There­

fore, an accurate estimate of the errors cannot be given. However, it is 

obvious that the errors are very large, especially near the lower boundary. 

The results of the FD2 and the FE approach (table 2.4), which both use a K-

based interpolation of Kj+m are almost identical. On the other hand the results 

of the FD1 and FD2 apprach (tables 2.3 and 2.4), using the h- and Ä'-based 

interpolation of Kj+m respectively, are quit different, especially near the lower 

boundary. This suggests that the accuracy of the solution strongly depends on 

the definition of the conductivity between nodes. From figure 2.2 it is seen 

that near the lower boundary the pressure head has a steep gradient (drying 

front) and that in this region the pressure head lies between approximately 

-300 cm and -1000 cm. For these /i-values the conductivity is a strongly 

nonlinear function of h (e.g. Van Dam, 1990). So, to increase the accuracy of 

the solution one has to approximate the fluxes near and at the boundary more 

precisely. This may be done by using a smaller step size in this region, that 

is, by using a non-uniform grid. The advantage of a non-uniform grid is that 

the accuracy thus obtained is comparable to the accuracy obtained with the 

finest grid. 
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-200 

Figure 2.2. Approximated pressure head h(x,t) for (=1.0h (solid line), f=2.0 h (dashed 

line), t=3.0 h (dotted line) and f=4.0 h (dotted-dashed line), with h=\000 cm, 

Ax=0.025 cm and using the FE approach. 

We have implemented a scheme with a non-uniform grid using the 

finite element approach; the same result will be probably obtained using the 

finite difference approach. Between the lower boundary and a distance dx 

from the lower boundary, we use a step-size Ax2; in the other region a 

step-size Ax,. As a first choice we take dx = 0.1 cm. The results of these runs 

are given in figures 2.3 and 2.4 and table 2.5. 
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Figure 2.3. Approximated pressure head h{x,f) for £=1.0 h (solid line), £=2.0 h (dashed 

line), £=3.0 h (dotted line) and £=4.0 h (dotted-dashed line), with fcc=1000 cm, 

Ax,=0.195 cm, Ax2=0.005 cm and using the FE approach with a nonuniform grid. 
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Figure 2.4. Difference between several approximations of the pressure head at t=4.0 h, 

each consecutive approximation uses half the step sizes Ax, and Ax2 of the previous one. 
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Table 2.5. Pressure head, h(x,t), at x = 0.0 cm, f=4.0 h and x=3.99 cm, t=4.0 h for several 

approximations, with fy=1000 cm. Each consecutive approximation uses half the step sizes 

A*! and Ax2 (in space direction) of the previous one. FEN stands for the finite elements 

approach with a nonuniform grid. 

Ax, Ax-, hJ.O.OA.0) hM-hz ^(3.99,4.0) h^-K 

FEN 

FEN 

FEN 

FEN 

FEN 

0.39 0.01 

0.195 0.005 

0.0975 0.0025 

-321.933 

-319.058 2.875 

-318.070 0.988 

0.04875 0.00012 -318.774 0.296 

0.024375 0.0000625 -317.694 0.080 

-855.425 

-848.844 6.581 

-846.725 2.119 

-846.129 0.596 

-845.972 0.157 

The performance of this scheme is very well because the differences reduce 

again with a factor 4. Also the estimated errors are very small, although we 

only used 1/4 of the number of nodes compared with the other approaches. 

From figure 4 it can also be seen that the errors in the area, where a larger 

step size is used, are comparable with the errors in the area where the 

step-size is small. This suggests that the choice of the ratio AJCJ /AX2 and that 

of d] is good. If dt is larger the number of nodes in the small region increa­

ses, because the same Ax2 is needed to obtain the same accuracy. However, if 

dx is smaller the number of nodes in the small region decreases, but the 

number of nodes in the large region must increase to obtain the same 

accuracy. 
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2.4 CONCLUSIONS 

In this paper it is shown that numerical approximations may be very 

poor in regions where the spatial derivatives of the pressure head are large. In 

outflow experiments this occurs if the pneumatic head imposed on the 

pressure cell is high, hc = 1000 cm. To analyze the errors due to the spatial 

discretization one first has to make the errors due to time discretization 

comparatively small. For this purpose a high order ODE-solver, adopted from 

a standard software library, is used. The advantages of a standard ODE-solver 

are a higher efficiency and reliability and a facility for error control. 

Three approximation schemes have been used for the spatial discretiza­

tion of Richards equation. One approximation scheme was based on a finite 

element approach and the other two schemes were based on finite differences. 

All three schemes have a second order spatial discretization error. The 

difference between the two finite difference schemes is the approximation of 

the conductivity between nodes. One scheme uses an approximation of Kj+m 

based on a linear interpolation of h; the other uses an approximation based on 

a linear interpolation of K. The fact that the results of the two finite differen­

ce schemes are quite distinct in regions where the solution has a steep front, 

suggests that the solution strongly depends on the non-linear hydraulic 

conductivity relation. If the pressure head has a steep front, the approximati­

ons of the nodal fluxes may be very poor and result in large discretization 

errors. In the finite element approach the same approximation of the nodal 

fluxes is used as in the finite difference approach with the interpolation based 

on K. This explains why the results of these two schemes are almost identi­

cal. It also confirms our point of concern that the spatial discretization of the 

flux may be the cause of large errors at and near the lower boundary. 

Because steep fronts of the pressure head occur also in related pro­

blems, for example infiltration into dry soils (Ceila et al., 1990), the numerical 

approximation of the fluxes at and near the wetting front will be very poor in 
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case a uniform grid is used and Ax is not sufficiently small. It is then almost 

necessary to use non-uniform adaptive grid methods. Although an adaptive 

grid is very accurate it is not very fast and therefore it is not suitable to be 

used in inverse modeling problems. It is shown that a simple non-uniform 

'fixed' grid is sufficient to obtain very accurate numerical simulations of the 

ONE-STEP experiment. The reason that this simple grid is sufficient is that 

the position of the steep front is known beforehand as opposed to the moving 

wetting front in the infiltration problem. The advantage of a non-uniform grid 

with respect to a uniform grid is that only 1/4 of the number of nodes is 

needed to yield the same accuracy. 
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Chapter 3 

IDENTIFICATION OF THE MOVEMENT OF 

WATER IN UNSATURATED SOILS; THE 

PROBLEM OF IDENTIFIABILITY 

OF THE MODEL 

Abstract 

The estimation of model parameters using nonlinear regression techni­

ques is one of the aspects of inverse modeling and is known as the identifi­

cation problem, the solution of which may be non-unique. The main causes 

of this non-uniqueness are the structure of the model and the design of the 

input signal. It will be shown that the parameters can be estimated only if a 

model with different parameter values yields different output signals. A 

model that has this feature is called identifiable. As an example, the identifi­

cation of a model for the movement of water in unsaturated soils is used. 
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This model appears to be non-identifiable, which results in non-unique 

solutions. 

3.1 INTRODUCTION 

Computers have made it possible to build complex models of physical 

dynamical processes. To use such a model, for example for prediction or 

simulation of a process, the model has to be identified first. A model that can 

often be used to describe a dynamical process is a partial differential equation 

of the form 

du(x,t) 
= /(Vx«(x,0,V u(x,t),u(x,t),v(x,t),a), (3.1) 

where the state variable u(x,t) is a function of space and time. The state 

variable often has physical significance, for example temperature or pressure. 

The input of the dynamical process is denoted by v(x,t) and is also a function 

of space and time, for example a source of heat. The model parameters 

(coefficients) are denoted by the vector a. In most practical cases the partial 

differential eq. (3.1) cannot be solved analytically. The solution of eq. (3.1) is 

then often approximated using a semi-discrete finite element or a finite 

difference method. This semi-discretisation appproach leads to a system of 

ordinary differential equations for the discretised state vector 

u(t)=(u(xl,t),u(x2,t), - ,u(x„,t)), 

^=fl(u(t),v(t),a). (3-2) 
dt 

The observations y(kT) of the states are often restricted to be sampled 

at discrete and equidistant instants of time kT, k=l,...,N, where T is the 

sampling time. It is assumed that the output is disturbed by random measure-
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ment errors e(kT). The model for the observations is then given by 

y(kT) =f2(u(kT),a)+e(kT). (3.3) 

In the remainder of this paper a model is called deterministic if the disturb­

ances are equal to 0 and stochastic otherwise. 

Before the parameter vector a can be estimated in the case of a 

stochastic model the input signals v{t) have to be designed and the initial 

values of the states have to be known. The set of the input signals is called 

the experimental design. 

In the last decade, studies of the movement of water in unsaturated 

soils have encountered problems with the uniqueness of the parameter 

estimates (Hornung, 1983, Kool et al., 1985 and van Dam et al., 1990). The 

experiment mostly used to identify this process is known as the ONE-STEP 

experiment of Kool et al. (1985). In this experiment outflow measurements 

are taken from a soil core. In conjunction with an inverse modeling procedure 

these outflow data are used to identify the unknown model parameters. In this 

paper it will be shown that the non-uniqueness of the parameter estimates is 

not due to a bad choice of the optimization algorithm; it is merely a conse­

quence of the structure of the model and the design of the experiment. 

Because the latter can be avoided, it is worthwile to analyze the cause of this 

non-uniqueness. 

In some other papers, where rainfall-runoff models are discussed, 

non-uniqueness of the parameter estimates is also said to be one of the main 

problems (e.g. Kleissen et al., 1990, Sorooshian and Gupta, 1985). Sorooshi-

an and Gupta (1985) suggested using the sensitivity ratio to analyze the 

influence of the structure of the model on the non-uniqueness of the parame­

ter estimates, but this ratio does not take into account the influence of 

significant numerical errors in the sensitivity matrix. For this purpose the 

concept of identifiability may be more suitable (Walter, 1992). In section 3.3 

this concept is further developed so as to take also numerical errors into 
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account. 

3.2 ONE-DIMENSIONAL TRANSIENT WATER FLOW 

The ONE-STEP experiment was developed to identify one-dimensional 

transient water-flow in porous media in a simple and fast way. The usual way 

to model the movement of water in unsaturated soil is to use the Richards 

equation with the pressure head as state variable, 

dt dx 
K(h) 

dx J} 

(3.4) 

where x is the vertical coordinate taking positive downward (cm), h{x,i) is the 

pressure head at time t at point x in the medium (cm), C(h) is the differential 

water capacity of the soil at a pressure head h (cm) and K(h) is the hydraulic 

conductivity of the soil at a pressure head h (cm h"1). 

The differential water capacity and the hydraulic conductivity in 

unsaturated soils depend on the pressure head in the soil. The expressions 

proposed by Mualem (1976) and van Genuchten (van Genuchten, 1980) are 

often used to model these relationships and are given by 

C{h) = am(0 j - 9r)5e
1/m(l -Se

1/ra)md -m) ' 1 , (3-5) 

K(h) = KSy
e(l-(l-Sl"nrf <3-6) 

with 

S = ( l + l aA lT 

m = 1 - lin. 
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The model parameters oc, n, 0r, 0S, Ks, y are the parameters to be estimated. 

The parameter Bs (-) is the saturated water content (9 at h = 0 cm), Ks (cm/h) 

is the saturated hydraulic conductivity. The parameters a (cm1), n (-), 6r (-) 

and y (-) have no clear physical significance. 

The initial values of the pressure head and the boundary conditions 

belonging to eq. (3.4) can be derived from the experimental setup. The 

experiment consists of a soil sample and a porous plate placed in a pressure 

cell (Kool et al., 1985). Initially, the water in the soil core is in a state of 

equilibrium and the volumetric water content in the soil is high (almost 

saturated). The porous plate is saturated. Then an additional pressure hc(t) is 

applied to the pressure cell and water seeps out. Since no water infiltrates in 

the sample, there is a zero flux condition, 

<7(0,0 = -K(h) 
dh__x 

dx U = 0' 

at the top of the soil core, which gives boundary condition (3.8). Assuming 

that the pressure at the bottom of the plate is atmospheric, the pressure hc(t) 

leads to the boundary condition (3.9) at the bottom of the porous plate: 

h(x,t0) = h0(x), (3.7) 

M = l , (3.8) 
dx 

h(L,t) = -hp). (3.9) 

Because the porous plate is saturated in the beginning of the experiment and 

remains saturated during the experiment the capacity C(h) and the conductivi­

ty K(h) in the porous plate are assumed to satisfy 
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C(h) = 0, 

K(h) = Kp. 

The output signal, the cumulative outflow Q(t), can be calculated by integra­

ting the volumetric water content over the soil sample, according to 

L 

Q(t) = AJ{ Q(h0(x)) - Q(h(x,t)) }dx (3.10) 

e = e + s (e - e ) 

where A is the core area perpendicular to the flow and 9 is the volumetric 

watercontent and. The cumulative outflow is sampled with a constant sam­

pling time from time /„ up to te. The sampling time is then equal to 

T- te~l° (3.11) 
N 

where ./V is equal to the number of samples. 

By discretizing the space variable in the mathematical description of 

the process given above, the problem can be reformulated into the general 

form of the state-space model given by eq. (3.2) (Mous, 1990). It is then 

clear that the pressure hc(f) imposed on the soil sample is the input signal of 

the model. 

3.3 IDENTIFIABILITY 

After a model structure is specified, the unknown parameters can be 
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