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Stel 1 i n g e n 

1. Bij de veredeling van zei fbevruchtende gewassen kan het selektiekriterium 

gebaseerd zijn op schattingen van kwantitatief-genetische parameters. Deze 

methode voldoet niet, indien de in het selektie-milieu aan genotypen 

gemeten fysieke grootheid niet in redelijke mate overeenkomt met dezelfde 

fysieke grootheid van deze genotypen in het doel-milieu. 

dit proefschrift 

2. Bij een hoge tussen-1ijnen erfelijkheidsgraad ligt de schatting van de 

genetische variantie van een F3 gemiddeld dichter bij de waarheid dan op 

grond van een Williams-Tukey betrouwbaarheidsinterval te verwachten is. 

dit proefschrift 

3. Een publikatie van een genetische kaart, die geen melding maakt van de 

statistische betrouwbaarheid van de positie van de loei, is onbetrouwbaar. 

Helentjaris, TIG (1987) 3: 217-221: Young & Tanksley, TAS (1989) 77: 95-101 

4. De grote interesse in de literatuur voor de kans op negatieve ANOVA-

schattingen van variantiekomponenten leidt de aandacht af van het 

werkelijke probleem: de relatief grote mate van onnauwkeurigheid van 

schatters van variantiekomponenten. 
Bridges & Knapp, TAG (1987) 74: 269-274: Tan & Wong, Biom.J. (1978) 20: 69-79; Verdooren, Biom.J. 

(1982) 24: 339-360 

5. Bij de ontwikkeling van een praktisch toepasbaar model dient men de 

uiteindelijke bruikbaarheid van het model te toetsen aan realistische 

praktijkomstandigheden in plaats van aan andere model systemen. 

Jinks S Pooni, Heredity (1976) 36: 253-266, en Heredity (1980) 45: 305-312 

6. Met behulp van over het genoom verspreide merkergenen verloopt de 

introgressie van een gen in een ras van een zei fbevruchtend gewas enkele 

malen doelmatiger dan met konventionele methoden. 

7. Het in gebruik nemen van snellere methoden door plantenveredel ingsbedrijven 

komt overeen met een wapenwedloop. 



8. Een "QTL" (quantitative trait locus) is een hoofdgen (major gene). 

Paterson et al, Nature (1988) 335: 721-726 

9. Honden moeten wettelijk worden gelijk gesteld aan wapens. 

Stellingen behorend bij het proefschrift "The predictive value of estimates 

of quantitative genetic parameters in breeding of autogamous crops" van 

Johan W. van Ooijen 

Wageningen, 29 november 1989 
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V o o r w o o r d 

Dit proefschrift is het eindprodukt van mijn promotie-onderzoek, uitgevoerd aan 

de vakgroepen erfelijkheidsleer en plantenveredeling. Het is een samenbundeling 

van drie artikelen die in wetenschappelijke tijdschriften gepubliceerd of in de 

pers zijn, en een hoofdstuk waarvan tezijnertijd nog één of twee artikelen van 

geschreven gaan worden. Dit geheel wordt voorafgegaan door een inleidend 

hoofdstuk, en afgesloten met een algemene diskussie. 

U moet dit boekje niet zien als een produkt van slechts één persoon. Er zijn 

een groot aantal mensen betrokken geweest bij het onderzoek, zowel bij de 

praktische uitvoering van de proeven, als bij het uiteindelijke opschrijven van 

de resultaten in wetenschappelijke artikelen. Daarom wil ik op deze plaats de 

mensen nog eens noemen en bedanken voor hun bijdrage. 

Voor het uitvoeren van de veldproeven met zomertarwe heb ik technische 

assistentie gehad van Herman Veurink. Van de proefveldmedewerkers van de 

vakgroep plantenveredeling wil ik Frans Bakker noemen als degene die het 

grootste deel van de verzorging van de proeven heeft gedaan. Ook de medewerkers 

van de proefboerderij de Minderhoudhoeve in Swifterbant hebben een goed aandeel 

gehad in de uitvoering van de tarweproeven. 

Voor het uitvoeren van de kasproeven met Arabidopsis heb ik assistentie gehad 

van Corrie Hanhart en Patty van Loenen Martinet-Schuringa. De verzorging van de 

proeven werd gedaan door het tuinpersoneel van de vakgroep erfelijkheidsleer. 

Een grote bijdrage hebben een zevental studenten geleverd. Zij waren 

intensief betrokken bij de uitvoering en verwerking van de experimenten. In 

chronologische volgorde waren dit Leo Braams, Peter Kruyssen, Ton Scheepens, 

Petra Wolters, Siebe Haalstra, Angélique Monteiro en Peter Metz. 

De mensen die een aandeel hebben geleverd bij het schrijven van het 

proefschrift zijn: prof. J.E. Parlevliet, de promotor, prof. J.H. van der Veen, 

en dr. L.R. Verdooren. 

De wetenschappelijke begeleiding was in handen van dr. Piet Stam, dr. Thomas 

Kramer en dr. les Bos, waarvan Piet het leeuwedeel voor zijn rekening heeft 

genomen. 

Al deze mensen, in het bijzonder Piet, dank ik van harte voor de zeer 

prettige samenwerking en voor hun bijdrage aan het tot stand komen van dit 

proefschrift, ook de mensen die ik hier niet met naam heb genoemd. 

Ik dank de vakgroep erfelijkheidsleer ("mijn standplaats") in het algemeen 

voor de prettige werksfeer. En natuurlijk dank ik N.W.O. voor het subsidiëren 

van het onderzoek. 

Johan W. van Ooi jen 



1- G e n e r a l i n t r o d u c t i o n 

During the last four decades quantitative genetics theory has developed models 

in order to provide a scientific basis for the selection on quantitative 

characters in self fertilising crops. With the quantitative genetic models, 

among other possibilities, the genotypic variation can be described, and more 

importantly, the progeny of crosses between pure lines can be predicted. The 

prediction concerns the mean and variance of the Fm-generation. Knowing the 

mean and variance, and assuming a normal distribution, the probability of 

obtaining superior segregants in the F^-progeny of a cross can be calculated. 

In a breeding programme the two parameters (the Fm-mean and F^-variance) can be 

estimated in an early generation (e.g. the F3) for all crosses. Subsequently, 

the probability to obtain segregants superior to a certain threshold level can 

be predicted for each cross. The breeder can select the most promising crosses, 

and concentrate in the subsequent breeding programme on the progeny of these 

crosses. 

Though the theory has been available for some time now, the only current 

usage of the theory in practical plant breeding is describing the amount of 

genotypical variation, and choosing accordingly the appropriate selection method 

by some rule of thumb. Practical plant breeding does not apply the prediction 

procedure, because of serious doubt about its predictive value. The predictive 

value has only been established for traits with high heritability (cf. Jinks 

& Pooni, 1976, 1980; Snape & Parker, 1986). The prediction procedure is prone 

to various types of errors, which possibly invalidate the procedure: 1) 

stochastic variation, 2) the genetic assumptions on which the theory is founded 

are incorrect, and 3) genotype-environment interaction, in particular 

intergenotypic competition. The present study intends to evaluate the prediction 

procedure by studying the effects of the individual sources of error. The study 

has employed field experiments, computer simulation, and mathematical statistics 

theory. 

The estimation and prediction procedure, and the assumptions 

In order to predict the probability of obtaining superior segregants in the 

Fm-progeny of a cross, one needs to know the probability distribution of the 

quantitative character of this F^-progeny. It is generally assumed that a 

quantitative trait is determined by a large number of independently segregating 

genes with equal individual effects on the genotypic value. A second assumption 



Z General introduction 

is that epistatic effects are absent, i.e. there is no interaction between the 

loci. If these assumptions are valid, then the F^-generation (when it is 

obtained without selection) has a normal probability distribution, which is 

fully determined by its mean and variance. 

This mean and variance must be estimated using an early generation of the 

cross, so that the plant breeder can predict the F^-progeny as early as 

possible, and hence make an early decision on whether to select the cross for 

the succeeding breeding programme. A number of estimation methods, which have 

been developed, such as the North Carolina experiment III (Comstock & Robinson, 

1952), the triple test cross design (Kearsey & Jinks, 1968), and the method 

using basic generations (F1; F2, Bx and B2) described by Jinks & Perkins (1970), 

require large numbers of test crosses to be evaluated. Since this is very labour 

intensive, it makes these methods very unattractive for application in practical 

breeding. The present study concentrates upon the procedure, which employs the 

F3-generation. The F3 is still an early generation, that can be obtained without 

further crossing, and it has the advantage over the F2 of having more 

individuals to assess, and thus offers a greater precision for the estimation 

of the parameters. Another advantage is that the dominance component of the 

genotypic effects (if present) ([h] in the terminology of Mather & Jinks, 1971) 

in the F3 is half the size of that in the F2. 

A breeding programme employing the F3 has the following appearance. A number 

of crosses are made between pure breeding lines. The F/s and F2's are grown, and 

if necessary, selection between crosses is applied for qualitative traits only. 

The F3's are grown in an appropriate statistical design, that enables the mean 

(mF3) and the between and within line genotypic variance (V1F3 and V2F3 

respectively) to be estimated for each F3. An assumption, necessary with respect 

to certain confidence intervals of the estimates, is that the residual 

variances, i.e. both the genotypic and the environmental, are homoscedastic. 

This means that all F3-lines should have equal residual variances. For a good 

comparability of the F3's the design has to ensure, that there are no non-

genetic systematic differences between the F3's, and that the random differences 

are as small as possible. The estimated F3-mean is taken as the prediction of 

the F^-mean: 

A A 

œF œ = m ^ . 
Under the above mentioned assumptions the Fm-variance (VFJ equals the additive 

component of genotypic variance (D), while V1F3 and V2F3 are different functions 

of both the additive and the dominance (H) component of the genotypic variance: 
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V1F3 = 2 , D + Î^*H' and 

v*s = rD + rH-
The unbiased estimator of D is taken as the predictor of the F,„-variance: 

A A 4 A A 

Y F m = D = J-(2-v1F3 - y 2 F 3 ) . 
The definition of superior segregants in the Fm depends on the breeding goal. 

A logical choice would be the lines superior to the level of the currently best 

cultivar, or, probably better, superior to the expected level of the cultivars 

at the time when the breeding programme has to produce the new cultivar. This 

level will be called the selection threshold level (T). Since we have a 

prediction for the mean and the variance of each F^-progeny, and we have defined 

a common threshold level, we can predict for each Fm-progeny the probability of 

obtaining superior segregants (PT). This prediction is based upon the assumption 

that the genotypic values of the F«, follow a normal distribution: 

PT = Pr{ mF(0 + (VVpJ'X > T } (x is a standard normal random variable). 

The crosses with the highest probabilities are selected for further line 

breeding. The numbers of evaluated and selected crosses depend on the capacity 

of the breeding programme; this is not subject of the present study. The 

justification for the use of a normal distribution of genotypic values rests on 

the assumption, that in a quantitative trait many genes with small individual 

effects are involved. 

Error through stochastic variation 

The prediction of the Fm is based on estimated parameters. The estimators are 

random variables. The stochastic variation is caused by genetic sampling and 

by environmental (residual) error. The latter includes the internal 

developmental differences that occur in plants. An F3-population of finite size 

is a genetic sample (through the meiosis of the fx and the F2) of all possible 

F3-genotypes that are embedded in the fl. Residual and genetic sampling error 

determine the accuracy of the estimators. Jinks & Pooni (1980) introduced an 

alternative method of estimating the additive genotypic variance, which showed 

an improved accuracy relative to the above mentioned estimator. The method 

performs a trade-off between bias and variance. Jinks & Pooni did not extend 

their conclusion on the accuracy of the estimator beyond their specific case of 
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two traits in tobacco. 

The accuracy of both estimators can be improved by taking more F3-lines, by 

increasing the number of plants per line, and/or by cultural practices for 

reducing environmental error. Chapter 2 presents for both estimators an 

optimization of the F3-structure (i.e. the number of plants per line) given the 

F3-size, such that each estimator has minimum mean square error. Subsequently, 

both estimators are compared, each under their optimum F3-structure, for various 

combinations of heritability, dominance level and F3-size. 

Bias through invalidity of (genetic) assumptions of the theory 

One of the important assumptions in the quantitative genetic theory on 

autogamous crops is that the studied quantitative trait is determined by a 

large number of independently segregating genes of small effect. This assumption 

enables the theory to utilize the normal distribution (because of the central 

limit theorem), which greatly simplifies further estimation and prediction 

procedures ( c f . Bulmer, 1985). However, careful study of some traits that were 

previously believed to be polygenic turned out to be oligogenic or even 

monogenic (Thompson & Thoday, 1974). It is very difficult, not to say virtually 

impossible, to obtain an accurate estimate of the number of genes, that are 

involved in the segregation of a quantitative trait, just by studying its 

phenotypic frequency distribution (Thoday & Thompson, 1976). This may have 

important consequences for the applicability of the theory. Simulation studies 

with data of a quantitative trait in Arabidopsis thaliana, which was known to 

be determined by two independently segregating genes, produced some interesting 

results regarding the precision of the estimate of D. This study is described 

and elaborated in chapter 3. 

In this Arabidopsis study violations of the assumption of homoscedasticity 

were encountered. First, if a quantitative trait is determined by only two 

loci, then the various lines will differ in the genotypic within line variance, 

because some lines will segregate for both loci, some for one locus, and some 

will not segregate at all. So, in this case the requirement of homoscedasticity 

of residual genotypic effects cannot be satisfied through the very nature of 

genetic segregation in the generation following a cross between two pure lines. 

This effect will, of course, diminish when many loci are involved. The second 

violation of homoscedasticity in the Arabidopsis study was that the various 

genotypes had rather deviating environmental variances. Often an observed 

heterogeneity of variances can be cured by a suitable transformation of the 
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data. For some data, though, it may be hard to find a proper transformation. 

Chapter 3 describes the investigations on the robustness of the estimation of 

D to heterogeneity of variances. 

The genotypic variance components of a breeding population are usually 

considered as parameters of the probability distribution from which the actual 

population was sampled. Consequently, statements about these parameters, such 

as confidence intervals, apply to this conceptual probability distribution. In 

the case of a cross between two pure lines this means that the confidence 

interval for the parameter D is a characteristic of the cross. D is the 

genotypic variance of the F^-generation to be obtained by subsequent selfing 

an infinite number of plants. The plant breeder, however, is not so much 

interested in parameters of this probability distribution, i.e. the potency of 

the cross, but rather in the potential future of the actual, and finite, 

F3-population. The estimated value will on the average be closer to the true 

value of the actual sample than to the true value of the cross from which the 

actual F3 was sampled. As a consequence the confidence interval for the 

parameter D (the method of Williams and Tukey, described by Boardman, 1974) 

will be conservative. There is no standard method for a confidence interval of 

D, that is correct for inference with respect to the actual F3. The behaviour 

of the Will iams-Tukey confidence interval on D, when the inference concerns the 

current F3, is studied by means of computer simulation in chapter 3. 

Bias caused by genotype-environment interaction 

Normally, when a quantitative trait is investigated in an early breeding 

generation it is assumed (sometimes tacitly), that it corresponds to the same 

phenotypic trait in the commercial growing environment, which is the environment 

the breeding programme is aimed at. One of the characteristics of an early 

generation breeding method is, that, as a consequence of genetic segregation, 

each evaluated population consists of many different genotypes. For an 

agriculturally important trait like grain yield of wheat or barley, it is known 

that yield of a genotype measured in a mixed stand of many genotypes can deviate 

substantially from yield of the same genotype in a pure stand (monoculture) 

(Spitters, 1979, 1984). This phenomenon is called intergenotypic competition. 

Spitters (1984) concluded that competitive ability in spring wheat is 

uncorrelated to yield capacity in a pure stand. Yield assessed in an F3 of wheat 

is subject to intergenotypic competition. So, in this case the trait measured 

in the early breeding generation does not correspond to the same phenotypic 
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trait in the commercial growing condition. As a consequence parameters like m 

and D are also affected by intergenotypic competition. To reduce the effects of 

intergenotypic competition, it is sometimes advised to grow at very wide stands 

(Fasoulas, 1977). But in that case the adverse effects of intergenotypic 

competition are replaced by the adverse effects of differential reactions of 

genotypes to wide stands (Spitters, 1979). 

In this thesis the growing conditions of an F3, with its mixture of many 

genotypes, are referred to as the "selection environment", whereas the 

commercial growing conditions are referred to as the "goal environment". 

Intergenotypic competition is a specific type of genotype-environment 

interaction. It is specific to the proposed early generation breeding system. 

Other types of genotype-environment interaction, such as genotype-location and 

genotype-season interaction, are not specific to this breeding system. On the 

contrary, any breeding system will have to cope with the problems that arise 

from these interactions. Chapter 4 and 5 present the research on the effects 

of intergenotypic competition on the estimation of the parameters m and D, 

respectively. The research was performed with spring wheat. The experiments 

were set up in such a way, that estimation of the parameters (m and D) in both 

the selection environment and in the goal environment was possible. For this 

purpose F3's were simulated in a special way, called "pseudo-lines" method. In 

the "pseudo-lines" method Mendelian segregation is mimicked by using mixtures 

of true breeding genotypes (varieties and other accessions). On the one hand, 

simulated F3's were grown according to the proposed procedure, imitating a 

practical breeding programme with realistic plot sizes, numbers of lines, etc.; 

this enabled estimation of parameters in the selection environment. On the other 

hand, large monoculture trials of the varieties, that were used for the 

simulation of the F3's, enabled calculation of the same parameters in the goal 

environment. 

Linkage and epistasis 

It is most likely that the assumptions of absence of linkage and epistasis will 

be violated in many quantitative genetic traits. A number of studies (Weber, 

1982; Kearsey, 1985) conclude that the influence of linkage is unimportant. When 

a trait is determined by many loci, it is very likely that these loci will be 

scattered over all chromosomes. Since chromosomes segregate independently, the 

loci will more or less behave as independent linkage blocks (corresponding to 

the chromosomes) with joint genotypic effects of the loci within the blocks. 
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The presence of epistasis can be tested with the so-called analysis of means 

(Mather & Jinks, 1971; Bulmer, 1985). Subsequently, epistatic variances can be 

included in the estimation and prediction procedure. Expressions have been 

derived that include only digenic interactions (Van der Veen, 1959), but there 

seems little reason why higher interactions should not be important if epistasis 

is present at all (Bulmer, 1985). However, the formulas become very complicated 

with many parameters, that have to bt estimated. As a consequence, the 

experimental size necessary to obtain ac:urate estimates of the interaction 

parameters would be far beyond a manageable breeding programme. 

Effects of linkage and epistasis are not the subject of a separate chapter, 

but they are discussed briefly in chapters 2, 4 and 5. 
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2 . E s t i m a t i o n o-F a d d i t i v e g e n o t y p i c 
var-iance w i t h t h e F3 o f a u t o g a m o u s 
c m o p s 

This chapter is published in Heredity 63 (1989): 73-81. 

Summary 

The additive genotypic variance, D, estimated with the F3 of autogamous crops 
can be taken as an estimate of genotypic variance of its F«,-progeny. Two 
possible ways of estimating D are compared on the basis of their mean square 
error. For each of the two estimators the F3-population design, i.e. the number 
of lines, the number of plants per line and the number of parent plants, is 
chosen such that for a given experimental capacity its mean square error is 
minimal. Subsequently the two estimators are compared for various combinations 
of Fm-heritability, dominance level and experimental size. In by far the most 
cases the second estimator, D2, which takes twice the between F3-line genotypic 
variance as its estimate, outperforms the first estimator, Dx, which uses both 
the between and the within F3-line genotypic variance. Further it is shown that, 
when it is necessary to work with plot totals because of low F^-heritabil ity, 
the performance of Dx becomes very poor. With respect to the estimator of the 
dominance component of genotypic variance, H, its very large mean square error 
and its highly negative correlation with Dj are demonstrated. 

INTRODUCTION 

Quantitative genetic theory has developed models that enable the prediction of 

the Fœ-progeny (its genotypic mean and variance) of a cross between two 

pure-breeding lines (e.g. Mather & Jinks, 1971). With the predicted mean and 

variance, and with a normality assumption, the ability of the cross to produce 

superior inbred lines can be predicted (Jinks & Pooni, 1976). The necessary 

parameters have to be estimated in a time and labour extensive way in order to 

be applicable in a practical breeding programme. One of the few approaches that 

meet these requirements is the method employing the F3-generation. This paper 

concentrates on the estimation of the FE-variance. In the absence of epistasis 

and linkage this F^-variance equals the additive genotypic variance D. We will 

assume that epistasis and linkage are absent, but in the discussion we will 

comment on these assumptions and try to relax these assumptions. 

There are two straightforward methods to estimate the additive genotypic 

variance D from an F3 of a cross between two inbred lines. One method is to 

estimate the genotypic between line variance (V1F3) and the genotypic within line 

variance (V2 F 3), and successively estimate D and H (H is the dominance component 
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of the genotypic variance). Since the genotypic variances are different linear 

combinations in D and H (e.g. Mather & Jinks, 1971): 

V1F3 = — D + — H and V?F3 = — D + — H, 
iF3 2 16 3 4 8 

D and H can be estimated from the estimated V1F3 and V2F3 (defining estimators Dx 

and Hi): 

Di =f' |-(2-î1F3 - Y 2 F 3 ) , and (1) 

def. 16 A A 

t i i = ^ - (2 -Y 2 F 3 - y1F3). (2) 

The second method is to estimate only V1F3, and successively estimate D as 

follows (Jinks & Pooni, 1980) (defining estimator Q 2 ) : 

D2
 d=ef- 2-V1F3. (3) 

A disadvantage of D2 is, in contrast to Dj, that it is biased if dominance 

variance is present (H>0): 

£(D2) = f(2-y1F3) = D + H/8. 

Another supposed disadvantage is that the dominance component H cannot be 

estimated. However, H describes genetic variation that cannot be exploited in 

autogamous crops, unless one is interested in making hybrid varieties (which we 

are not in the present study). An advantage of D2 is that there is no need to 

estimate the residual (environmental) variance by growing isogenous material 

(mostly the parents), for this may take up a fairly large proportion of the 

experimental field. D2 was introduced by Jinks & Pooni (1980), and they 

concluded that the D2-estimate could be used with the same confidence as the 

estimate from the (elaborate) triple test cross. However, they did not extend 

their conclusion beyond their case of two traits in tobacco. The purpose of this 

paper is to show that in many situations (i.e. combinations of heritability, 

dominance level and experimental size) D2 is a better estimator of D than Dlt 

i.e. the mean square error of D2 is smaller than that of D1. We make the usual 

assumptions: 1) the quantitative trait is determined by a large number of 

independently segregating loci, and hence that the trait will have a normal 

distribution, 2) the residual error also has a normal distribution, 3) there is 

no epis tas is . We define the FD-heritabi l i t y : h (Fm)=D/(D+E) 
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EXPERIMENTAL DESIGN BASED ON INDIVIDUAL PLANTS 

Numerous experimental designs are possible. A standard design is a completely 

randomized design (a 1-way classification), in which each F3-line is represented 

by the same number of plants and all plants of all lines are randomized. To 

estimate the residual error usually parent plants are added. The accompanying 

analysis of variance is given in Table 1. 

Table 1. Analysis of variance of a completely randomized F3. 

MS name df £(MS) 

MSB 
MSW 
MSI 

between 1ines 
within 1ines 
within parents 

1-1 
l.(n-l) 

Z-(i-l) 

E + V2F3 

E + V2F3 

E 

+ n-V 1F3 

1 - No. of lines; n - No. of plants per line; 
i - No. of plants per parent; E - residual variance; 
V1F3 - genotypic between line variance; 
V2F3 - genotypic within line variance. 

Mean square errors of the estimators 

A measure for comparing estimators is the mean square error (WSf). It comprises 

both the variance and the bias of the estimator. We will derive the mean square 

error of both estimators {^ and D 2 ). The mean squares of Table 1 have 

chi-square-1ike distributions: 

f(MS) , (^(df) is a chi-square random variable 
MS - -i=^-xz(df). 

df with df degrees of freedom.) 

Since var(x2(df))=2-df, the variance of the mean squares is: 

.„as,. £!§> .2.df. i ^Ml . (4) 
df df 

As a consequence of the experimental design the three mean squares are mutually 

stochastically independent. The estimators of V1F3 and V2F3 are: 

V1F3 = (MSB -MSJ)/n, resp. V2F3 = MSW - Mil. (5) 

Combining equations (1),(2) and (3) with (5) results in (simultaneously defining 

coefficients fx up to f 8 ): 



y-x 

H, 

U2 

-HOL» 1 - . 

3-n 3-n 

-16 „ 16+32-n 
= MSB + 

3-n 3-n 

2 -2 
= —MSB + —MSW 

n n 
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8 -8-4-n 4 def. 
•MSW + --MS1 = f^MSB + f2-MSW + f3-MSJ, (6) 

•MSW + — -MSI = f f4-MSB + f5-MSW + f6-M£I, (7) 

def. 
= f7-MSfi + fg-MSW. (8) 

The variances of the estimators are: 

var(Ü!) = f1
2-var(MSB) + f2

2-var(MSW) + f3
2-var(MSI), (9) 

vardlj = f4
2-var(MSB) + f5

2-var(MSW) + f6
2-var(MS_I), (10) 

var(D2) = f7
2-var(MSB_) + f8

2-var(MSW). (11) 

The covariance of D: with Hx is: 

c o v ^ U ! ) = fj-^-vardüSB) + f2-f5-var(MSJ) + f3-f6-var(MSJL). (12) 

The (usual) definition of the mean square error of a (possibly biased) estimator 

X of a certain parameter 8 is: MS£(X)=£(X-8)2. If the bias is S, i.e. £(X)=8+8, 

then: WSf(X)=var(X)+62. Thus, the mean square errors of the three estimators 

are: 

MSE{VX) = varCDj), «Sf(H1) = var(Hi), and «Sf(D2) = var(D2) + — - H 2 . 
64 

If there is no dominance variance, then D2 is unbiased and hence its mean square 

error is equal to its variance. Comparing equation (9) with (11) we can see that 

in this case the MSE of Dj will always be larger than the MSE of D2: 

, 64 7.111 4 o 
f, = - — Ô - = — Ô — > —ô = f ? , and 1 9-n2 n2 n2 ' 

, -8-4-n , -2.667 , -2 , , 
f2

2 = ( — ) 2 = ( 1.333)2 > ( — ) 2 = f8
2. 

3-n n n 

and additionally the variance of MSI contributes to the variance of Dx. 

Furthermore, the experimental size needed for Dj in this comparison is larger 

because of the need to estimate the residual variance. Therefore, we conclude 

that in the absence of dominance it is always better to use D2. Of course it is 

realized that one never knows beforehand the presence or level of the dominance 

variance (which also applies to epistasis and linkage). Thus subsequently only 

situations in which dominance is present need to be studied. 
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We define the scale independent parameter, the coefficient of error (CE) of 

estimator X of 9: CE(X)=7(WSf(X.))/6- For an unbiased estimator the coefficient 

of error equals the coefficient of variation. 

Optimum allocation of the experimental size 

Equations (9) and (11) show that, at a given experimental size k, the variance 

of Dx and D2 depends on the design of the F3-population and, additionally for Dl5 

on the proportion of the experimental size that is assigned to parent plants. 

In order to make a fair comparison between the two estimators we need to find 

the design, in which the number of lines (1), the number of plants per line 

(n), and the number of plants per parent (i) are optimal, i.e. the design in 

which 1, n and i are chosen such that the MSE, and consequently the variance, 

of the estimator is minimal. In practice, of course, the maximum number of seeds 

produced per F2-plant may be smaller than the optimum number of plants per line, 

in which case one will have to settle for a sub-optimal situation. 

The variance of D2 can be minimized for a given F3-population size k=l>n by 

substitution of 1 by k/n in an elaborated form (using equations (4) and (8)) of 

equation (11). The variance of D2 becomes a function in n (as far as the 

allocation of the experimental size is concerned), and using the first 

derivative of this function (6var(D2)/6n), the optimum number of plants per line 

for a given F3-population size k, and given magnitudes of variance components 

(viF3> V2F3 a nd E) can be found: 

(l+k).(E+V2F3)+k.V1F3 

2.(E+V2F3)+k.V1F3 
, and hence lopt = k/nopt. 

Since n and 1 are integer numbers, we have to evaluate var(D2) at the smaller 

and the larger integer numbers next to nopt; consequently the product l0pt*n0pt may 
sometimes not be exactly equal to k. The constraints on account of the ANOVA 

are: 1>2 and n>2. Fig. 1 presents the optimum number of plants for a few 

situations. It shows that nopt depends chiefly on the Fœ-heritabil ity and for 

medium to low F„-heritability also on the experimental size. There is very 

little influence of the dominance level. 

The minimization of var(D1) is somewhat less straightforward, because the 

experimental size is a function of three parameters: k=l«n+2-i. However, 1 and 

n appear only in the first part of (the elaborated form of) equation (9) 

[f1
2-var(MSB)+f2

2-var(MSW)], and i appears only in the last part [f3
2«var(MSI)]. 

For a given number of F3-plants c=l-n we can obtain the optimum number of plants 
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Figure 1. Optimum number of plants per line (nopt) for D̂  for various F^-heritabil ities, two experimental sizes 

(k) and two dominance levels. 

per line by minimizing this first part of equation (9) in a manner similar to 

the minimization of var(D2). This results in: 

(2+3-c).(E+V2F3)+2-c-V1F3 
5.(E+V2F3)+2.c.V1F3' a"U "CMl-C '°Pt - -'"opt-

-, and hence 1, c/n0 

Since i=(k-c)/2, we can now rewrite equation (9) by taking the minimum of the 

first part plus the second part, in which i is substituted by (k-c)/2. The 

resulting equation for varfDj) depends solely on c (as far as the allocation of 

the experimental size is concerned): 

64.(E+V2F3+c.V1F3).(5.(E+V2F3)+2.V1F3)2 

var(Di) 
9.((2+3-c).(E+VZF3)+2.c.V1F3).(c-l) 

96.((4+c).(E+V2F3)+2.c.V1F3)2.(E+V2F3) 32-E' 

9.((2+3-c).(E+V2F3)+2-c-V1F3).(c-l)-c 9-(k-c-2) 

The first derivative of this function in c, 6var(D1)/6c, could not be solved 
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1.0 

0.9 

op, A 

o k=50 

+ k=1600 

0.0 0.5 0.6 

h(F<») 

0.9 

Figure Z. Optimum fraction of the total experimental size taken up by the F3 (copt/k) for D, for various 

F.-heritabilities, two experimental sizes (k) and dominance level H=%-0. 

to find a solution for c. Therefore, the behavior of vard^) was studied 

numerically; it appeared that a unique minimum exists (at c=copt) for l<c<k-2. 

Fig. 2 shows the optimum fraction of the total experimental size taken up by the 

F3 (copt/k). It depends mainly on the F„,-heritabil ity, it varies only slightly 

with the experimental size. For situations without dominance (H=0) up to a high 

dominance level (D=2-H) the fraction deviates, for the same value of k, not more 

than 0.02 from the fractions presented in Fig. 2 (with H=^«D). Since l,n and i 

are integer numbers, vard^) must be evaluated at the smaller and larger integer 

numbers next to iopt=(k-copt)/2 and next to nopt. The constraints on account of the 

ANOVA are: ls=2, n>2 and i>2. 

Comparing Dx with fi2 

Now that we have established ways to obtain optimum population designs for any 

situation (within the boundaries of the current experimental design), both for 

Dj and D2, we can compare the two estimators. Above it has already been stated 
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b 
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Figure 3a,b,c. Ratio of the coefficients of error of D: and 0^ a for various F^-heritabilities, three dominance 

levels and experimental size k=100; b for various F^-heritabilities, three dominance levels and experimental 

size k=I600; c for various experimental sizes (k), three dominance levels and F^-heritabil ity of 0.75. 



1 6 Estimation of additive genotypic variance with the F3 of autogamous crops 

2.0n 

1.5-

CE(D,) 

CE(D2) 

1.0-

0.5-

C °'° 

a H=1/2 • D \ ^ 

A H=D 

x H-2• D 

50 100 200 400 80O 1600 

k 

Figure 3c. 

that for situations with no dominance (H=0) D2 is always better than Dj. For 

situations with dominance the ratio of the CE's of Dl and D2 depends as well on 

the ratio of the variances of the two estimators as on the dominance level. 

The variance of D2 is always smaller than that of D1. However, at very large 

experimental sizes and/or at high F„-heritabil ities the difference between the 

variances of Dj and D2 will be small, and hence the CE of D: will eventually 

become smaller than the CE of D2 because of the contribution of the dominance 

level to the CE of Q2. We computed the CE's of Dj and D2 for all combinations of 

seven F.,-her i tab il ity values (h2
(FM)=0.05 , 0.10, 0.25, 0.50, 0.75, 0.90, 0.95), 

six experimental sizes (k=50, 100, 200, 400, 800, 1600), and four dominance 

levels (H=0, Sj-D, D, 2'D). The ratio CE^/CE^) varied from 0.54 (at 

h2
(Fm)=0.95, k=1600, H=2«D) up to as large as 4.59 (at h2

(Fco)=0.05, k=800, H=0). 

Fig. 3 shows that the relative performance of Dj increases with the 

Fm-heritabil ity level and the experimental size, but that Dj only outperforms D2 

at a high dominance level combined with a large experimental size and a medium 

to high F^-heritabil ity level. Of all the 168 studied combinations only 11 

combinations showed a Dj outperforming D2, of which 9 were situations with 
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extreme overdominance (H=2*D). 

UI 

The optimum allocation of the experimental size with respect to Hj can be 

determined in a very similar way as applied to Dj. This optimum is different 

from the optimum with respect to Dj. This can already be seen at the optimum 

number of plants per line for a given F3-population size (c=1«n): 

(l+3.c).(E+V2F3)+c.v1F3 
n„ -

A . ( E + V 2 F 3 ) + C . V 1F3 

We determined the optima for Hj numerically for all previously mentioned 168 

combinations of F<„-heritabil ity, experimental size and dominance level, and 

subsequently evaluated the mean square errors at these optima. The optimum 

number of parent plants and the optimum number of plants per line were higher 

than for D1. In effect this means that H: needs a more accurate estimate of V2F3. 

The CE is in many of these cases rather high, e.g. at a h2
(Fao)=0.25 for k=1600 

with H=2-D Cf=1.4 up to as large as C£=32.0 for k=50 with H=^«D. 

For all 168 combinations, for which the allocation of the experimental size 

was optimized for Dj (!), we also computed the correlations of Hj with d (using 

equations (9), (10) and (12)). These were found to be highly negative: ranging 

from -0.83 to -0.95. Graphical demonstrations of these highly negative 

correlations can be found in Van Ooi jen (1986) and in Shaw (1987). 

EXPERIMENTAL DESIGN BASED ON PLOT TOTALS 

Sometimes the F„-heritability of a certain trait is so low that the experimental 

size, necessary for an accurate estimate of D, expands too much to be able to 

score each individual plant. In that case the experimental design will be based 

on plot totals (or plot means). A corresponding standard design is also a 

completely randomized design, but now based on plot totals (or plot means). The 

accompanying analysis of variance is presented in Table 2. 

Working with plot totals instead of with individual plants means loss of 

information on genotypic within line variance. As plot size increases there 

will be hardly any information left on genotypic within line variance. For 

example, the mean of 2 plots of 100 plants of the same line will hardly differ 

genotypically, instead most of the difference will be of environmental origin 

(residual variance). Thus V2F3 will become hard to estimate, its estimator will 

have a very large variance, and as a result the CE of D: will increase. For 
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Table 2. Analysis of variance of a completely randomized design of plots of 
F3-lines, based on plot totals. 

MS name df £(MS_) 

MSB between lines 1-1 n«Ew + n2«Eb + n«V2F3 + p-n2»V1F3 

MSW within lines l-(p-l) n-Ew + n2«Eb + n-V2F3 

MSI within parents 2-(i-1 ) n-Ew + n2«Eb 

1 - No. of lines; n - No. of plants per plot; p - No. of plots per line; 
i - No. of plots per parent; V1F3 - genotypic between line variance; 
V2F3 - genotypic within line variance; Ew - residual within plot variance; 
Eb - residual between plot variance. 

example, doubling the experimental size by taking a plot of two plants instead 

of just one plant resulted in an increase (!) in the CE of Q: for all studied 

combinations (mentioned above) with an FM-heritability of up to 0.75; only the 

studied combinations with an F^-heritability of 0.90 or 0.95 showed a slight 

decrease in the CE of Qj. (Rem.: for these calculations E was split into Ew and 

Eb by using the empirical law of H.F. Smith (1938) with a coefficient of 

heterogeneity b=0.5). 

In contrast with this is the effect on D2. D2 does not need an estimate of 

V2F3, it only depends on the accuracy of the estimator of V1F3, which is even 

raised by increasing plot size. Theoretically there will, of course, be an 

optimum allocation of experimental size regarding plot size, number of plots and 

number of lines. However, for many crops plot size will primarily be dictated 

by agricultural practice, such as the number of seeds produced per plant and the 

capacity of the harvesting equipment. Therefore it is not attempted in this 

paper to determine a way of obtaining the optimum allocation of such an 

experiment. 

DISCUSSION 

It will be clear that estimator D2 is more accurate than Dj in many cases. When 

it is necessary to use plot totals because of low F„-heritabil ity, the 

performance of Dj becomes very inaccurate. When working with individual plants 

the accuracy of Qj can only be better than that of D2 in combinations with a high 

dominance level, a higher F„-heritability, and/or a large experimental size. In 

practice there need be no doubt about D2 when H<D, h2
(Foo)<0.75, and n<400. For any 

situation it will be possible to approximate the mean square errors of both 
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estimators once the variance components have been (roughly) estimated in a pilot 

experiment. The experimenter can decide on which estimator to use, thereby also 

considering the available experimental capacity and the desired accuracy. 

The results may be extended to other experimental designs, such as a complete 

block design. These designs mostly aim at reducing the residual error. 

Therefore, we expect to find similar results. Of course it would be best to 

consider the mean square errors of both estimators for any specific desired 

design. 

Linkage and epistasis may bias both estimators. Depending on the magnitude 

of the linkage and epistasis parameters, D2 may even have a somewhat larger bias 

than D ^ A number of studies (Weber, 1982; Kearsey, 1985) conclude that the 

influence of linkage is unimportant, when we are regarding D as the Fm-variance 

and not as the "true" additive variance (Pooni & Jinks, 1986). The latter can 

be interpreted as the theoretical Fm-variance that would be obtained if linked 

loci were segregating independently. Because from the breeder's point of view 

the Fra-variance rather than the true additive variance is relevant, the present 

paper focuses on D as the F^-variance. Therefore, linkage is not likely to 

invalidate the main results. The influence of epistasis depends on the relative 

magnitude of its parameters. Pooni & Jinks (1979) describe methods to obtain 

estimates of these parameters. However, and this applies also to the paper of 

Jinks & Pooni (1982), in which methods are introduced that try to correct for 

linkage, 1) these methods are always too elaborate to include in a practical 

breeding programme ( c f . Van der Veen, 1959), and 2) the more parameters have 

to be estimated, the less accurate the estimates usually become. 
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Summary 

Genotypic additive variance (D), with respect to a certain quantitative trait, 
estimated in the F3 of autogamous crops can be used to predict the probability 
to obtain superior recombinant inbreds in the offspring of the cross between two 
pure breeding lines. Confidence intervals for the estimated genotypic variance 
are based on the assumption, that genotypic and environmental effects have a 
normal probabil ity distribution, and on the assumption of homoscedasticity of 
residual variances. Normality of genotypic effects is in turn based on the 
assumption, that the quantitative trait is determined by a large number of 
independently segregating genes with equal and infinitesimal effect. This paper 
investigates the behaviour of the confidence interval (method of Williams, 1962, 
and Tukey, 1951) on the genotypic variance when only a limited number of genes 
determine the quantitative trait. The paper also investigates the robustness of 
the confidence interval to heteroscedasticity of residual effects. 

The confidence interval of the method of Williams and Tukey is inference 
about the genotypic variance that is enclosed in the original cross between the 
pure breeding lines. The breeder, however, is not so much interested in the 
potency of the original cross, but more in the potential future of the actual 
Fj-population, because he will want to continue the breeding programme with this 
material. Since there is no standard method for a confidence interval when the 
inference is about the current F3, one might still apply the Williams-Tukey 
confidence interval. The behaviour of this confidence interval in this situation 
is studied. 

1. INTRODUCTIOM 

Estimates of the additive genotypic component of phenotypic variance in a 

population with respect to a quantitative character are indicative for the 

future success of directional selection in that population. In outbreeding 

species the heritability (the genotypic part of the total variance) can be used 

to predict future selection response. In self fertilizing species the genotypic 

variance, which is generated by crossing two pure breeding lines, changes with 

generations (F2, F3, etc.) and the purpose of estimation is slightly different. 

Usually, the genotypic variance of the FM-generation (VFm or D) is taken as an 

indication of the potential genotypic progress enabled by such a cross; the 
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larger D is, the larger the probability of obtaining transgressive recombinants 

in future generations. Estimates of D can be obtained in several ways from early 

generations. One of the most efficient ways (in terms of experimental effort and 

accurateness) is to use the estimated variance between F3-lines (Jinks & Pooni, 

1980; Van Ooi jen, 1989). 

Confidence intervals for the estimated variance component are mostly based 

on the (usual) assumptions about the distribution of genotypic and environmental 

effects, i.e. normality and homoscedasticity. A normal distribution of genotypic 

effects is in turn based on the assumption of the polygenic nature of 

quantitative characters, i.e. a large number of genes with small individual 

effects. In quantitative genetics theory this assumption of normally distributed 

joint effects of the genes plays an important role (see e.g. Bulmer, 1985). 

Though the theory assumes that many genes are involved in quantitative 

characters, the actual number of genes contributing to the genotypic variation 

is generally unknown and very hard to determine (Thoday & Thompson, 1976). 

Recently, a renewed interest in the possible oligogenic basis of quantitative 

genetic variation has arisen from studies in which molecular genetic markers 

have been used to detect possible quantitative trait loci (QTL) (Soller & 

Beekman, 1988; Helentjaris, 1987; Paterson et al, 1988). In cereals partial 

resistance to fungal diseases, a character of quantitative nature, seems to be 

governed by a few major genes (Parlevliet, 1978; Broers & Jacobs, 1989). For 

this reason the present paper investigates in some detail the confidence 

intervals of D-estimates under the assumptions of a limited number of genes 

being involved in a quantitative character. 

In addition to this, the influence of heteroscedasticity (i.e. heterogeneous 

within line variances) on the confidence intervals was studied. The most 

commonly observed form of heterogeneity of variances is of the type "constant 

coefficient of variation". When this is due to the multiplicative nature of the 

character (such as sizes and weights of organs and developmental times) this 

can, of course, be "dealt with" by a suitable transformation of the data. 

However, apart from environmental influences, heterogeneity of variances also 

results from the very nature of the genetic segregation in the generations 

following a cross of pure lines. When a limited number of major genes are 

segregating, the within line genotypic variance in an F3-generation may vary 

considerably, not necessarily leading to constant coefficients of variation. 

Therefore, the robustness of confidence intervals (based on the usual 

assumptions) to violations of these assumptions was investigated briefly. 
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The genotypic variance components in a breeding population are usually 

considered as parameters of the probability distribution from which the actual 

population has been sampled. Consequently, statements about these parameters, 

such as confidence intervals of estimates, apply to this conceptual probability 

distribution. The hypothetical nature of this probability distribution is 

evident in a breeding programme: the breeder's interest is in the potential 

future of the actual population rather than in the genotypic variance of the 

imaginary population from which the actual population was sampled. Referring to 

the case of a cross between pure lines, the parameter D (additive genotypic 

variance) is a characteristic of that cross; it is the genotypic variance that 

would be observed in the F^-generation to be obtained by subsequent selfing of 

an infinite number of plants. From the breeder's point of view this parameter 

is less relevant than the genotypic variance which is to be expected in future 

generations derived from the plant material from which the estimate was 

obtained. In order to deal with this problem we introduce, in addition to the 

parameter D in the usual sense, a sample dependent parameter, Ds, which is the 

Fm-variance which would be observed upon selfing of the sample population. The 

discrepancy between D and Ds is entirely due to genetic sampling. D is the 

Fjo-variance which corresponds to (exact) gene frequencies, p=q=%, per locus, 

whereas Ds depends on the actual gene frequencies in the sample population. Q ^ 

and DF3 will refer to (sample) generations F2 and F3 respectively. Since 

estimates of D are most efficiently obtained from F3 data, DF3 is the parameter 

which is of interest when the estimate (D) is used in the prediction of the 

potential future of the actual population. For these reasons we have studied the 
A - A 9 

behaviour of the mean square errors f(D-D) and £(D-DF3) , and of the confidence 
A 

interval, formulated for inference on Q with respect to D, but now applied to 

DF3-

2. BEHAVIOUR OF THE D-ESTIMATOR IN A SIMULATED EXPERIMENT 

As a first approach to study the behaviour of the D-estimator, a classical 

experimental setup was simulated using data collected on flowering time of 

Arabidopsis thaliana. Two true breeding lines were differing for two 

independently segregating genes for flowering time (fb- and fy-locus, Koornneef 

et al, 1983). The nine possible genotypes at this pair of loci had been obtained 

by crossing and line breeding. Of each genotype 20 plots of 6 plants had been 

grown in the greenhouse. The data collected with this oversized experiment were 

taken as the "true" values of the genotypes. Table 1 shows the estimates of the 
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population mean, the within plot variance and the between plot variance for each 

of the genotypes. It is clear that the heterogeneity of variances is not of the 

type "constant coefficient of variation". 

Table 1. Estimates of mean (m), within plot residual variance (EJ, and 
between plot residual variance (Eb) of the nine genotypes of a cross between 
two pure lines of Arabidopsis thaliana differing for two independent genes 
(loci fb and f ) with respect to flowering time, m is in days, and Ew and Eb 

are in days2. 

BB 
Bb 
bb 

YY 

23.4 
24.6 
41.8 

m 

Yy 

23.1 
24.7 
42.0 

yy 

32.6 
34.3 
50.3 

YY 

1.80 
2.17 
2.50 

E« 

Yy 

0.49 
0.89 
7.64 

yy 

8.53 
21.77 

7.00 

YY 

0.40 
0.52 
0.85 

Eb 

Yy 

0.25 
0.45 
1.50 

yy 

6.42 
0.81 
0*) 

*) The ANOVA estimate was -0.41. 

2.1 Methods 

The (computer) simulated experiment consisted of a number of random F3-lines, 

each derived from individual F2-plants, grown in individual plots in a balanced 

completely randomized design. In the simulation random sampling of genotypes, 

which applies both for sampling of F2-parents and for sampling of F3-genotypes 

from the sampled F2-parents, was done according to the Mendelian ratio's of two 

unlinked loci. The genotypic values of Table 1 were used. Within plot residual 

deviations were sampled for each individual from a normal distribution with zero 

mean and variance depending on the genotype from Table 1 (EJ. This implies 

heteroscedasticity for the residual plant effects. The between plot residual 

deviates were sampled as follows: for all plants within a plot one single 

standard normal random deviate was sampled, and for each individual plant 

translated in an individual between plot deviation by multiplying this deviate 

with the residual between plot standard deviation depending on the genotype of 

the plant (the square root of Eb from Table 1). This implies heteroscedasticity 

for the residual plot effects. The phenotypic value of a plant was the sum of 

its genotypic value, its within plot residual deviate, and its between plot 

residual deviate. 

From the simulated F3 the parameter D was estimated using the ANOVA of Table 

2. D was estimated as twice the between F3-l ine variance, i.e. 
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Table 2. Analysis of variance of a nested design of an F3. 

source 

1 ines 
plots within 1ines 
within plots 

Ew - within plot 
Eb - between plot 

MS 

MSL 
MSP 
MSR 1 

residual 
residual 

df 

1-1 
l-(p-l) 

•p-(n-l) 

variance; 
variance; 

f(MS) 

V2F3 + Ew + n-Eb + p-n.V1F3 

V2F3 + Ew + n-Eb 

V2F3 + Ew 

1 - number of 1ines; 
p - number of plots per line; 

V1F3 - between line genotypic variance; n - number of plants per plot; 
V2F3 - within line genotypic variance. 

D=2'V1F3=2'(MSL-MSP)/(p.n) (parameters defined in Table 2). (Though this 

estimator is biased when dominance and/or epistasis are present, it is generally 

to be preferred to unbiased estimators because of its small mean square error; 

see Van Ooi jen, 1989.) For each simulated F3 an approximate confidence interval 

of D was calculated using the method of Williams-Tukey. Boardman (1974) has 

shown that the methods of Williams (1962) and Tukey (1951) are equivalent; it 

is based upon normality and homoscedasticity of all random effects. He has also 

shown that this method is one of the best available. Confidence intervals using 

this method will hereafter be referred to as WT-confidence intervals. The lower 

and upper WT-confidence bounds for D are (confidence coefficient = 1-a): 

U T ! , MCD M S L / M S P - ^(^,^,1-0/2) WT-lower = 2-MSP-

WT-upper = 2«MSP 

P'n«F(r!,<x.,l-a/2) 

MSL/MSP - l/F(r2,r1,l-a/2) 

p.n/f(»,r1,l-a/2) 

in which F(a,b,l-a) is the right a-point of the F-distribution 

( Pr{F(a,b) < F(a,b,l-a)}=l-a ), r^l-1, r2=l-(p-l); 1, p, n, MSL and MSP 

are defined in Table 2. The confidence coefficient used in all simulations 

was 0.95 (a=0.05). (Rem.: since D=2«V1F3 the confidence bounds for D are 

obtained by multiplying those for V1F3 by 2.) 

Since the true genotypic values are known, the expected value of the estimator 
A 

D, including the bias from dominance and epistasis, can be calculated. 

Subsequently, the realized confidence, which is the frequency with which a 

calculated confidence interval includes the true value, also referred to as 

coverage, can be determined from a large number of simulated F3's. For each 
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situation we simulated 1000 F3's, hence for a 95% confidence interval one 

expects 950 cases in which the true D is comprised in the calculated interval. 
A 

Additionally, the variance of 0 was estimated over the simulated F3's; the 

expectation of this variance was calculated assuming a normal and homoscedastic 

distribution of all effects (and hence a chi-square type distribution of the 

mean squares: MS=£(MS)-x2
df/df ); this expected variance will be labeled 

A A 

var(D! normality) (or var(D|norm.)). 

In order to study the effect of unequal vs. equal Ew and Eb over the 

genotypes (hetero- vs. homoscedasticity), a set of simulations was performed 

with equal (average) Ew and Eb. In another set of simulations the (relative) 

magnitude of the residual variances was increased. The parameter used to 

describe the relative magnitude of the genotypic vs. the residual effects is the 

between line heritability : h2(bl )=(V2F3+p'n«V1F3)/(V2F3+Ew+n'Eb+p'n'V1F3) 

(parameters from Table 2). 

2.2 Results 

The results are presented in Table 3. A first remark is that the between line 

heritability of the studied character (flowering time) is very high. For five 

experimental designs (Ew and Eb unmodified from Table 1, the five upper left 

cases of Table 3) we found a coverage of the WT-confidence interval of D above 

the 95% level (which means that the interval is conservative). Accordingly, the 
A 

variance of D, estimated from 1000 replicate runs, was smaller than 
A 

var(D|normality) for all five cases. We realize that estimating variances over 

1000 replicate runs can be inaccurate. Therefore we performed for all situations 

two extra sets of 1000 replicate runs. These simulations showed results (data 

presented in the addendum of this chapter) very similar to those presented in 

Table 3. 

Possible causes for the effects on the WT-confidence interval and the 
A 

variance of D are: 1) non-normality of the genotypic effects, 2) 

heteroscedasticity of the genotypic effects, and 3) heteroscedasticity of the 

residual effects. To identify the main cause another set of simulations were 

performed, but now with equal, i.e. homoscedastic, Ew and Eb. The new Ew was the 

weighted (according to the genotype frequencies) mean of the individual 

Ew-values, and the new Eb was the square of the weighted mean of the square 

roots of the individual Eb-values. (Using the homoscedastic Ew and Eb, calculated 

this way, results in mean squares with the same average over replicate runs as 

the mean squares in the heteroscedastic cases.) The results with equal residual 
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Table 3. Results of simulations of F3 of Arabidopsis. 2 loci; 6 plants per plot; 
varying numbers of lines (lines) and numbers of plots per line (plots); 
variances of D in (days2)2. 

heteroscedastic Ew and Eh homoscedastic Ew and Eh 

1 ines 
plots 

25 
2 

50 
2 

100 
2 

25 
4 

25 
8 

25 
2 

50 
2 

100 
2 

25 
4 

25 
8 

fw and Eb unmodified from Table 1: 
h2 (bl) 0.985 0.985 0.985 0.992 0.996 
%ACoyerage 98.3 98.7 99.1 97.2 98.2 
vâr(D) 839 412 199 828 737 
var(ü|norm.) 1251 613 303 1168 1129 

fw and fb 100 x the values of Table 1: 
h2 (bl) 0.396 0.396 0.396 0.561 0.716 
% coverage 94.8 94.4 94.5 97.0 97.4 
var(D) 15836 
var(D|norm.) 10618 

7888 
5230 

4103 
2596 

4278 
3897 

1941 
2211 

0.985 0.985 0.985 0.992 0.996 
98.2 98.7 98.9 97.5 97.4 

912 419 198 813 753 
1251 613 303 1168 1129 

0.395 0.395 0.395 0.560 0.716 
96.3 96.1 96.4 98.2 96.7 

10321 5190 2699 3436 1992 
10628 5235 2599 3900 2212 

variances for both the coverage and the variance of D are similar to those with 

unequal residual variances (Table 3, upper right part). This indicates that the 

heteroscedasticity of the residual effects is not the main cause of the raised 
A 

coverage of the WT-confidence interval and the lowered variance of Q. 

Since the heritability in the previous simulations is rather high, the 

influence of heteroscedasticity of the residual effects was also studied with 

lower heritability. The simulations with equal and unequal Ew and Eb were carried 

out with 100 times increased values of Ew and Eb. Their results are in the lower 

part of Table 3. Here the coverages of the confidence interval of D are closer 

to the desired 95% level, both for homo- and heteroscedastic Ew and Eb, and 

especially for the cases with a lower between line heritability (i.e. cases with 

2 plots per 1ine). 

Referring to Table 3 it is seen that in the case of a low heritability, 

heteroscedasticity of Ew and Eb influences the discrepancy between estimated 

variance of D and var(D|normality). Homoscedasticity of Ew and Eb causes the 
A 

estimated variance to be much closer to var(D|normality). We can look at the 
A 

components of the variance of D in Table 4. This table presents the estimated 

variances of the mean squares together with their expected values based upon 
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Table 4. Continuation of results of simulations of Table 3; estimated variances 
of the mean squares (from Table 2) and their expected values based upon 
normality assumptions (var(MS|norm.)); variances in (days2)2/100, except for the 
variances of MSP and MSR in the upper part of the table, that are in (days2)2. 

heteroscedastic Ew 

lines 25 
plots 2 

fw and Eb unmodifi 
vâr(MSL) 284 
var (MSJ,! norm.) 449 
vâr(MSP) 279 
var(MSP|norm.) 178 
vâr(MSR) 55 
var(MS_R|norm.) 14 

50 
2 

ed from 
140 
220 
151 
89 
29 
7 

100 
2 

Tabl 
67 

109 
76 
44 
15 
4 

fw and Eb 100 x the values of 
var(MS_L) 3412 
var(MSL|norm.) 2782 
vâr(MSP) 2545 
var(M£P|norm.) 1041 
vâr(MSB) 132 
var(MSB|norm.) 31 

1633 
1363 
1421 
520 
69 
15 

900 
674 
677 
260 
32 
8 

înd Eb 

25 
4 

e 1: 
1162 
1681 
117 
59 
51 
7 

Table i 
5357 
5265 
1122 
347 
108 
15 

25 
8 

4183 
6502 

71 
25 
42 
4 

: 
10445 
12589 

804 
149 
87 
8 

homoscedastic 

25 
2 

315 
449 
266 
178 
51 
14 

2534 
2784 
1074 
1042 

30 
31 

50 
2 

141 
220 
160 
89 
27 
7 

1354 
1364 
532 
521 
15 
15 

Ew and Eb 

100 
2 

67 
109 
73 
44 
14 
4 

669 
675 
259 
261 

7 
8 

25 
4 

1145 
1681 
114 
59 
47 
7 

4784 
5269 
365 
347 
16 
15 

25 
8 

4288 
6502 

70 
25 
42 
4 

11315 
12594 

150 
149 

7 
8 

normality assumptions (and homoscedasticity). In the heteroscedastic cases the 

estimated variances of the mean squares are larger than their expected values, 

except for the variance of MSL for the case with 8 plots per line. This is in 

contrast to the homoscedastic cases, where the estimated variances are all 

approximately equal to their expected values, except for the variance of MSL 

for the cases with 4 or 8 plots per line. It is clear that heteroscedasticity 

of the residual variances rises the variances of the mean squares and hence the 
A 

variance of D. In both the hetero- and the homoscedastic case with 8 plots per 

line the estimated variance of MSL is smaller than the expected value. One 

expects that heteroscedasticity of the genotypic (within line) effects has a 

similar variance increasing effect on the mean squares as heteroscedasticity of 

the residual effects. This cannot be detected in the homoscedastic cases with 

low heritability, but in the cases (both hetero- and homoscedastic) with high 

heritability the estimated variances of MSP and MSR were larger than their 
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expected values (Table 4 ) . But even in those cases the estimated variance of MSL 

was smaller than the expected value. The only remaining invalid assumption 

responsible for this smaller variance of MSL is non-normality of the genotypic 

effects. Therefore, we can state that non-normality of genotypic effects most 

likely reduces the variance of MSL. In one of the heteroscedastic cases (25 

lines, 8 plots/line) the between line heritability is of such a high level 

(0.716, Table 3), that the variance increasing effect of heteroscedasticity of 

the residual variances is counteracted so much by the variance reducing effect 
A 

of the non-normality of the genotypic effects, that the variance of D has become 

smaller than its expected value. 

2.3 Non-normality of the genotypic effects 

In order to further investigate the influence of non-normality of the genotypic 

effects, caused by the oligogenic nature of the quantitative trait, we simulated 

F3's for various small numbers of loci, analogous to the simulation described 

in section 2.1, i.e. genotypes were sampled at random according to the Mendelian 

segregation ratio's. Dominance, linkage, and epistasis were absent. The value 

of the additive genotypic effect per locus (d) was equal for all loci and was 

chosen depending on the number of loci such that the true value of D was always 

equal to 1 (it can be shown that in the absence of epistasis and linkage D 

equals the sum of d2 for each locus, i.e. D=Ed2, e.g. Mather & Jinks, 1977). 

Residual effects were normally distributed with equal variances for all 

genotypes. The F3's consisted of 25 lines, 2 plots per line and 6 plants per 

plot. The simulations were performed for three levels of the residual variances. 
A 

For each level var(D|normal ity) of was calculated. For each situation the 
A 

coverage of the WT-confidence interval was determined and the variance of D 

estimated over 1000 replicate runs. (Rem.: as stated before, we repeated the 

1000 replicate runs two more times, of which the results showed the same trends; 

see addendum of this chapter.) 

The results are presented in Table 5. The effects of non-normality decrease 

with increasing number of loci and with decreasing heritability. The ratio of 
A A 

the estimated variance of D and var(D|normality) rises above 0.90 when more 

than eight loci are involved at high heritability, when more than two loci are 

involved at intermediate heritability, and even starting at one locus at low 

heritability. The coverage of the WT-confidence interval only deviates 

substantially from the desired 95% level at one or two loci combined with high 

or intermediate heritability. (Rem.: Since the WT-confidence interval is not an 
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Table 5. Results of simulations of F3's with 25 lines, 2 plots per line, 6 
plants per plot, at varying number of loci, and at 3 levels of Ew and Eb; 
1000 replications per situation; Ew and Eb in days2. 

loci 1 2 4 5 8 10 14 16 

E„=0.252, Eb=0.102, h2(bl)=0.98 : 
%ACoyerage A 99.2 97.6 96.8 96.0 96.3 96.5 96.7 96.7 
vâr(D)/var(D|norm.) 0.51 0.77 0.86 0.84 0.90 0.96 0.95 0.93 

fw=i.52, Eh=0.52, h2(bl)=0.63 : 
%ACoverage A 98.6 97.6 96.3 97.8 97.1 96.8 95.9 97.6 
vaY(D)/var(D|norm.) 0.77 0.97 0.97 0.95 0.97 0.96 1.07 0.97 

Ew=2.52, Eb=1.02, h2(bT)=0.34 : 
%ACoyerage 97.1 96.8 97.2 96.7 96.9 96.7 96.6 97.0 
vaY(D)/var(D|norm.) 0.92 0.98 0.92 0.92 0.97 0.89 1.01 0.97 

exact confidence interval, the approximate confidence was determined for the 

case in which all effects (genotypic and residual) do have a normal 

distribution, using a comparable computer simulation (100,000 repl ications). For 

the above used F3-size and -design and for the same three levels of Ew and Eb the 

coverage of the 95% WT-confidence interval was approximately 96.5%). 

3. DISCRETENESS OF THE DISTRIBUTION OF GENOTYPIC VALUES 

The results from the previous section indicate that the D-estimator of 

oligogenic quantitative characters has a smaller variance than would be expected 

based on normality assumptions. This resulted in some cases in a higher realized 

confidence of the WT-confidence intervals. Therefore we will investigate the 

variance of the estimator of D when the number of genes is limited, and compare 

it to its variance when normality is valid. 

The estimator of D in an experiment as described in the previous section 

essentially estimates twice the genotypic variance between F2-individuals. Since 

the estimator of the F2-variance is much simpler than the D-estimator for the 

F3, we will concentrate on properties of the estimator of the F2-variance. We 

will use a general formula for the variance of the usual variance estimator in 

terms of cumulants, and subsequently use the cumulants of the presupposed 

distributions to compare the variances for oligogenic and polygenic (i.e. 

infinite number of independent genes with small equal effects) characters. 


