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Stellingen 

1. De werkelijke genetische waarden van dieren die in een populatie worden 

geïmporteerd, zullen bij verwaarlozing van niet-additieve effecten over 

het algemeen worden overschat. 

dit proefschrift 

2. Bij de momenteel toegepaste reproduktietechnieken is de benutting van 

dominantie-effecten ten bate van geplande paringen bij rundvee van 

weinig foktechnische betekenis. 

dit proefschrift 

3. Analyse van phenotypische gegevens uitsluitend van geselecteerde 

generaties levert in geen geval een schatting op van de genetische 

variantie in de ongeselecteerde basispopulatie. 

D.A. Sorensen and B.W. Kennedy, 1984 J. Animal Sei. 59:1213 

4. De minimale eisen die de maximum likelihood methoden stellen aan de 

familiestructuur in een dataset, hebben de behoefte aan betrouwbare 

criteria betreffende de kwaliteit van schattingen van genetische 

parameters vergroot. 

dit proefschrift 

5. Behalve selektieintensiteit wordt ook het behoud van variantie in een 

kleine populatie overschat met formule's voor oneindige populaties. 

dit proefschrift 

6. Bij kritiek op het gebruik van simulatiestudies wordt vaak ten onrechte 

geen onderscheid gemaakt tussen simulatiestudies ter verificatie van 

methoden, en simulatiestudies voor het voorspellen van de werkelijkheid. 



7. Het dilemma van de fokkerij, dat bij een toenemende nauwkeurigheid de 

toekomstige mogelijkheden sterker worden verkleind, wordt met name 

duidelijk bij gebruik van moleculair-genetische selektie criteria. 

8. Veefokkerij-onderzoek zal, naast het gebruik van genetische variatie, 

relatief meer plaats moeten inruimen voor de problematiek van het behoud 

van genetische variabiliteit. 

9. Toepassing van biotechnologische en medische vindingen zullen moeten 

leiden tot een explicietere formulering van het mens-zijn, aangezien God 

of lot in een aantal gevallen wordt vervangen door eigen verantwoor

delijkheid. 

10. Het terugbrengen van de formele universitaire studieduur tot 4 jaar is 

in het kader van een toenemende internationale concurrentie een blunder 

te noemen. 

11. Vervangen van het begrip 'instromer' door de term 'doorstromer' getuigt 

van een afnemend vertrouwen in eigen academisch kunnen. 

12. Cultuur heeft vele gelijkenissen met genetica; het repliceert, het 

evolueert en eenvormigheid is een van haar grootste bedreigingen. 

J.H.J. van der Werf 

Models to estimate genetic parameters in crossbred dairy cattle 

populations under selection. 

1 juni 1990. 



"Although this may seem a paradox, all exact science 

is dominated by the idea of approximation" 

(Bertrand Rüssel (1872-1970) 
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CHAPTER 1 

INTRODUCTION 

Reliable estimates of genetic variance and heritabilities serve several 

purposes in animal breeding. First, heritabilities and estimates of non-

additive variation provide information about the mechanism of inheritance 

of phenotypically observed characteristics in animals. Secondly, genetic 

parameters can be directly applied to estimate breeding values and to 

design and optimize breeding programs. 

Phenotypic expression is affected by changes of environment and, when 

there is artificial selection, by a change of the underlying genetic 

variation. Genetic parameters might therefore be subject to change. 

Accurate and updated genetic parameters are needed to optimize breeding 

programs. Moreover, accurate and regular parameter estimation allows for 

the detection of shifts from the assumed pattern of inheritance, as 

selection programmes become more effective and complex. 

Methods to determine genetic variance have been greatly improved over 

the last two decades. Recently, maximum likelihood based methods have been 

introduced (Patterson and Thompson, 1971) making use of mixed models 

(Henderson, 1984). This has proved to be a general framework for the 

analysis of data and the estimation of genetic parameters. It potentially 

accounts for all systematic effects, unbalanced data and various forms of 

selection and non-random sampling, the last being particularly important 

for animal breeding applications. Analysis of dairy cattle data is often 

based on systematically recorded field data because, selection experiments 

are expensive and can only be of limited size. Besides a good method and 

reliable data, the model actually used to estimate parameters is crucial. 

It is related to the estimation method and to the properties and the 

structure of the data. Restrictions on the model have diminished, through 

improvement of both methods and computing capacity. 

High estimates of heritability for milk production traits in Dutch Black 

and White cattle in recent years (Wilmink and De Graaf, 1986) were direct 

motivation of this research. The main characteristics of this cattle 



population are a large import of American Holstein bull semen and an 

intensified selection of parents to have progeny. Models currently used 

for genetic evaluation only assume additivity of gene effects for milk 

production traits and random sampling of the genetic effects. 

Non-additive effects for milk production traits in cattle have been 

reported to be low and were therefore not utilized in the breeding scheme. 

However, little is known about the extent of bias in estimation of additive 

genetic effects, when non-additive effects are ignored. Bias is expected 

to depend on the magnitude of non-additive effects and the design of mating 

parents from different breed groups. Therefore, the influence of non-

additive effects on estimation of additive parameters will be determined 

in a simulation study for different mating designs (Chapter 2). Models that 

account for non-additive and additive genetic effects, will be compared in 

Chapter 3 and these effects will be estimated, using field data. 

Estimates of genetic parameters used in selection programs should 

preferably not be biased by this selection (Robertson, 1977). Accounting 

for selection bias is a general problem, that is not only relevant for 

cattle populations, but also for other species. Several studies have 

indicated that mixed models account for selection, when all relationships 

between animals and records on which selection was based are used (Sorensen 

and Kennedy, 1984; Gianola and Fernando, 1986). However, data based upon 

field records are usually sampled during a limited time period. 

In this thesis, an attempt will be made to determine to what extent 

estimates of genetic variance are biased, if pedigree information and 

ancestral records are not available. The problem will be studied using 

simulated data from a "species neutral" population (Chapter 4 ) . A method 

that was proposed to account for selection on pedigree (Gräser et al., 

1987) will be investigated in Chapter 5. The actual effect of ignoring 

selection will be quantified and discussed for the dairy cattle data. 
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ABSTRACT 

A population was simulated having progeny that descended from sires and 

dams with various fractions of genes from two breeds. Additive breed 

effects and non-additive effects from breed crosses were simulated. 

Data on performance were analysed using mixed models that accounted for 

fixed additive genetic effects and random sire effects. Three additive 

models, with genetic groups defined according to 1) breed composition of 

the progeny, 2) breed composition of the sire and the dam, or 3) linear 

regression on breed fraction of the progeny, were compared with a non-

additive model with a linear regression on breed fraction, heterozygosity 

and recombination in the genome of the progeny. Variance components were 

estimated using restricted maximum likelihood. 

Additive genetic variance and heritability were overestimated for an 

additive model with progeny groups. Additive models gave estimates for 

breed difference, group effects and breeding values that were not equal to 

true additive genetic values. Breed differences were overestimated when 

when sire groups were used. Estimators for each parameter were unbiased 

with the non-additive model. 

INTRODUCTION 

Due to increased exchange of semen and embryos, dairy cattle data often 

result from a mixture of genes from different populations. Therefore, the 

observed genetic effects in the resulting population might not be solely 

additive and may contain non-additive genetic effects. In some crossbree

ding programs, the objective is explicitly to estimate or to use the non-

additive genetic variation. However, non-additive variance is not often 

used explicitly in dairy cattle breeding. Moreover, models for analysis of 

data from crossbred dairy populations often consider only additive genetic 

effects. Ignoring non-additive variance might bias predictions of breeding 

values, which also may not be of minimum prediction error variance. 

Estimators of variance components and additive genetic parameters might be 

biased as well. 

Genetic variation in crossbred populations usually is estimated from 



within breed variance, i.e. , predictions of random effects are adjusted for 

fixed breed-group effects. Recently, estimates for heritability of milk 

production traits in crossbred populations, using mixed models with breed-

group effects (12,20,22), were higher than published values from pure 

breeds (7,10). Among other factors, non-additive effects might have caused 

an increase in heritability estimates. 

Experimental evidence for non-additive effects in dairy production 

traits has been reviewed by several authors, (e.g. 14, 19). Estimates of 

heterosis, defined as the relative deviation of the Fl mean from the 

midparent mean, for first lactation 305-days milk yield varied from -1.7% 

to 8.2%. Recent estimates for percentages of heterosis were 10% for Hol

stein Friesian x Red Danish (4) and 2% for Swedish Friesian x Swedish Red 

and White (2). 

There are some examples of a linear relationship between degree of 

heterozygosity and heterosis (15). In most data from farm animals, however, 

heterosis in Fl crosses is more than twice that in F2 crosses (19). Such 

a deviation from linearity between degree of heterozygosity and observed 

heterosis can be due to epistatic effects, which are often estimated as 

recombination loss (8). There is a considerable variation in estimates of 

recombination loss for milk production, ranging from -12% (4) to -0.4% (2). 

Crossbreeding parameters might be hard to estimate, particularly from field 

data, and well designed experiments are required, at minimum (3,18). 

In this paper, the impact of heterosis and recombination loss on the 

estimation of additive genetic parameters was studied for data from 

crossbred populations. Computer simulation was used for a comparison of 

estimates from different models with known values. A half-sib structure, 

typical for estimation of variances In dairy populations, was considered. 

MATERIAL AND METHODS 

Simulation of Data 

A dairy population from a combination of two breeds, Dutch Friesian (FH) 

and Holstein Friesian (HF), was simulated. Cows originated from matings of 

different genetic groups on the basis of the fraction of HF-genes. 

Records were simulated according to the following model; 



yijkmn - /* + h i + y s j + gSk + g ^ +NA,,,,, + atjm + e i j k i m 

where y. is the population mean of reference breed FH; ht and ys_j are fixed 

environmental effects of herd and year season with i-1,..,150 and j-1,..,4; 

gs and gd are fixed additive effects of breed group of sire and of breed 
k DO 

group of dam with k-l,..,9 and m-l,..,9; NA^ is the fixed non-additive 

effect of interaction of sire group k by dam group m; â ,, is the additive 

genetic effect of the cow making the record; and e1Jklnn is a residual effect. 

Sires and dams were genetically unrelated; only relations between sires and 

daughters were considered. 

Heritability (h2) was .30 and phenotypic variance (a2) was 518,400. p 

was fixed at 6000 kg. A pseudorandom value for each of herd was sampled 

from N[0, O.ICT2] and for each year-season effect from N[0, 0.025a2], cor

responding to assumed fractions of the observed variance in milk production 

that is due to herds and year-seasons. The additive effect of the cow 

(akmn) w a s 0-5* asire + 7(0.75) *an, where atlre and a„ were sampled from 

N[0, a\\ and ei^bm was sampled from N[0, a 2 ] . o\— h2a2 is additive genetic 

variance and a\— (l-h2)<72 is residual variance. 

Breed difference (HF - FH) was 800 kg. Additive genetic group effects 

were linearly related to fraction of HF genes of animals from that group. 

Let two parents be mated with fraction of HF-genes being ps for sire and 

pd for dam where p.- (k-l)/8 for sires in group k and pd- (m-l)/8 for dams 

in group m. Group effects were 0.5*p,*800 for sire group and 0.5*pd*800 for 

dam group. The fraction HF-genes (pp) in the progeny was equal to 

[(P.+Pd)/21. 

Non-additive effects (NÂ ,,) originate either through dominance effects, 

from interactions between HF and FH genes within loci, or epistatic effects 

from interactions between loci. It is assumed that a very large number of 

loci contributes to the genetic variance with no linkage in segregation. 

Coefficients for the heterosis effect (HET) were derived from the degree 

of heterozygosity of the animals (3). Thus, heterosis represents dominance 

effects as well as 50% of additive by additive effect that is confounded 

with dominance. The coefficient for heterosis (bgĵ ) was [ps(l-P(j)+ Pd(l-

Ps)]-

Dickerson (1) defined recombination (REC) loss as a deviation from 

linear relation of performance with heterosis, such that "the coefficient 



of REC describes the average fraction of independently segregating pairs 

of loci in gametes from both parents which are expected to be non-parental 

combinations. " The coefficient for a recombination effect (bĝ .) was 

derived from the heterozygosity of the parental gametes, representing a 

within-gamete epistatic effect as [p,(l-pB)+ Pd(l-Pd) ] • Hill (6) argued that 

Dickerson's definition can be ambiguous and he prefers an explicit 

parametrization with dominance effects and additive by additive effects 

(epistatic effects). Assuming that recombination refers to 50 X of the 

epistatic effects (with no linkage), however, the parametrization that was 

used by Dickerson (1) defines appropriately the sum of dominance and 

epistatic effects. Effects of heterosis and recombination were simulated 

with the level varying at 0, 5 and 10% of the phenotypic mean of the two 

breeds. 

Three data structures were simulated with particular sire group by dam 

group combinations. For structure I, additive and non-additive effects for 

each combination of sire and dam group are in Table 1. Matings were such 

that non-additive effects were unequal within groups of progeny that had 

equal additive effect. Hence, additive effects and non-additive effects 

were not confounded. In structure I, data were distributed equally over 

sire group by dam group combinations. A second structure was created to 

represent an actual mating situation in a gene importing country. Structure 

II (Table 2) was based on Dutch data from 399,383 crossbred cows (Dutch 

Friesian x Holstein Friesian) calving between 1983 and 1986 (21) . Structure 

III (Table 3) represented a future generation of cows, which sires were 

distributed over groups according to the inseminations in 1987 in The 

TABLE 1.Additive (Add) and Non-additive1 (Nadd) effects (kg) for different 
combinations of sire- and dam groups for structure I . 

group of dam 
(XHF genes) 

1 (OX) 

5 (50Z) 

effect 

Add 
NAdd 
Add 

Nadd 

group of 

1 (0%) 

0 
0 

200 
80 

sire (ZHF genes) 

5 (50X) 

200 
80 

400 
0 

9 (100%) 

400 
320 
600 
80 

1 heterosis- 5%, recombination loss- -5% 

10 



TABLE 2. Distribution of data over sire- and dam groups1 for structure II. 

group of dam 

1 
5 
7 
8 
9 

total 

1 

.251 

.004 

.015 
0 
0 

.270 

group 

5 

.059 

. 00-3 

.008 
0 
0 

.070 

of sire 

7 

.034 
0 

.006 
0 
0 

.040 

8 

.010 
0 
0 
0 
0 

.010 

9 

.495 

.014 

.090 

.007 

.004 

.610 

total 

.849 

.021 

.119 

.007 

.004 

1.000 

1 group number i corresponds to (i-l)*12.5 2HF genes 

TABLE 3. Distribution of data over sire- and dam groups1 for structure III. 

group 

1 
2 
3 
4 
5 
6 
7 
8 
9 

of dam 

total 

1 

.034 
0 

.004 
0 

.012 
0 
0 
0 
0 

.050 

5 

.030 
0 

.008 

.005 

.057 
0 

.010 
0 
0 

.110 

group of 

7 

.016 
0 

.004 

.003 

.031 
0 

.006 
0 
0 

.060 

sire 

8 

.009 
0 
0 
0 

.018 
0 

.003 
0 
0 

.030 

9 

.158 

.005 

.055 

.033 

.385 

.016 

.074 

.016 

.008 

.750 

total 

.247 

.005 

.071 

.041 

.503 

.016 

.093 

.016 

.008 

1.000 

1 group number i corresponds to (i-l)*12.5 ZHF genes 

Netherlands. Dams were distributed over groups according to the distribu

tion of progeny that resulted from matings in structure II. 

For each mating structure, a data set was simulated for 100 sires having 

progeny in a number of herds. Total number of records per herd averaged 33, 

with a standard deviation of 17. Progeny group size was 50 and alternative 

sizes were 25 and 100. For each herd, daughters were randomly assigned to 

dam groups and to sire groups according to the distribution of the 

structure. Such a design was sampled 10 times. To reduce sampling variance, 

11 



10 replications within each design resulted in 10 x 10 repetitions for each 

alternative. Using one design for several samples was attractive computa

tionally . 

Models for Evaluation 

Additive models Al, A2 and A3 varied in strategy to account for fixed 

genetic effects. In Al, fixed group effects (gp) were defined according to 

breed composition of the progeny making the record. In A2, two breed groups 

were defined according to the breed composition of the sire (gs) and of the 

dam (gd). Al will be referred to as progeny group model and A2 as parent 

group model. Model A3 accounted for breed differences by a linear 

regression of performance on breed composition of progeny (pp) . In addition, 

a complete genetic model (NA) was used that included a regression on pp and 

on coefficients for heterosis and recombination in the progeny. Models can 

be represented as ; 

model Al: yiJkn = HYSi + gPj + sk + rijkn 

model A2 

model A3 

model NA 

yijkmn - HYSi + g S j + gdm+ s j k + r i j k n m 

Yijkn - HYSt + b ! *p P j + s k + r i J k n 

yijkn - HYSi + b l * P P j + t>2*bHET + b j ^ R j c + Sk + r i j k n 

Fixed herd-year-season (HYS) effects were used to account for environmental 

effects. Effects of HYS were not simulated. Rather, HYS subclasses were 

used to create subclass sizes as is common in sire evaluation programs. 

Sire and residual effects were taken as random with variances var(s)-

0.25*IS al and var(r)- In (*a + 0.75 a»). 

Variance components for s and r were estimated using REstricted Maximum 

Likelihood (REML) (11). Solutions were computed for fixed additive group 

effects from the same model, using REML estimates for the variance com

ponents. Breeding values were computed from model A2 as 2(gs + sjk) or from 
j 

model Al as (gp + 2sk), where gp is the solution for progeny group, with the 

same fraction of HF genes as the sire. 

12 



RESULTS 

Genetic Parameters 

Estimates of variance components and heritability were obtained for each 

model. Results for structure I are in Table 4, by levels of heterosis (HET) 

and recombination (REC), averaged over 100 repetitions. 

When non-additive effects were absent, models showed similar results 

with respect to estimates of variances and heritability. Hence, differences 

in expectations of y ^ i ^ due to fixed additive genetic effects were 

accounted for by each model; the parent group model was equivalent to the 

simulated model and the progeny group model reflected the genetic mean of 

animals making the record. A linear regression on pp (models A3 and NA) 

also accounted appropriately for differences due to breed effects. 

When non-additive effects were different from zero, the progeny group 

model (model Al) gave biased estimates for additive genetic variance and 

heritability (Table 4) . Overestimation of a\ and h2 was relatively small for 

TABLE 4.Estimates for variance components (a\, a\) and heritability (h2) 
with additive and non-additive models for analysis of different 
levels of heterosis (HET) and recombination effects (REC) simulated 
for structure I. 

model HET(X) REC(X) h2 

Al 

A2 

A3 

NA 

0 
10 
5 
10 
10 

0 
5 
10 

0 
5 
10 

0 
5 
10 

0 
0 

-5 
-5 
-10 

0 
-5 
-10 

0 
-5 
-10 

0 
-5 
-10 

148543 
196263 
208168 
270781 
395279 

148904 
148640 
148380 

148576 
195545 
328522 

148791 
148791 
148791 

479780 
480569 
480573 
481009 
481117 

479768 
484100 
496976 

479766 
484932 
498578 

479791 
479791 
479791 

0.287 
0.370 
0.390 
0.493 
0.681 

0.287 
0.285 
0.277 

0.287 
0.365 
0.565 

0.287 
0.287 
0.287 

sampled values 151955 479220 0.293 

13 



levels of heterosis and recombination of 52 and smaller. Bias increased 

with increasing level of heterosis and recombination. Estimates of a\ did 

not increase. Hence, the progeny group model accounted for non-additive 

genetic effects by other effects in the model. 

Estimates for additive variance were not biased using the parent group 

model (A2). In A2, however, the estimate of residual variance was higher 

resulting in a slight underestimation of heritability. A model with linear 

regression on p (A3) yielded an overestimation of both genetic and residual 

variance. Model NA accounted for all additive and non-additive effects and 

showed unbiased estimates for each parameter at each level of non-additive 

effect. 

Structure I is an example of a balanced situation. To make inferences 

toward 'real life' situations, structures II and III were investigated, 

reflecting a first and second generation of cows in a country that imports 

semen. Table 5 gives estimates for variance components for data structures 

II and III, for moderate levels of heterosis and recombination effects. 

With structure II, each model, except A3, gave estimates for variance com

ponents that were close to simulated values. Differences in heritability 

estimates were small as well. Differences between models were larger for 

structure III; models Al and A3 gave considerable bias in estimates of 

additive genetic variance and heritability. 

TABLE 5.Estimates for variance components (o\ and a\) and heritability (h2) 
with additive and non-additive models for analysis for structures 
II and III.1 

structure model h* 

II 

III 

Al 
A2 
A3 
NA 

Al 
A2 
A3 
NA 

160430 
156139 
245806 
156574 

184720 
154825 
210494 
155344 

480281 
481161 
484272 
479669 

480559 
481225 
482100 
480143 

.308 

.300 

.449 

.301 

.350 

.297 

.393 

.299 

1 heterosis- 5%, recombination loss- -52 
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Estimation of Genetic Effects 

Sire effects are usually interpreted as additive genetic effects within 

populations, and group effects as additive genetic differences between 

populations. Therefore, solutions for sire effects and for group effects 

were considered to be biased when they also contained non-additive effects. 

Solutions were determined for a moderate level of non-additive effects (5% 

for heterosis and -5% for recombination). Group solutions for animals with 

0%HF genes were restricted to zero. Hence, additive genetic effects were 

expressed relative to the FH population. 

Table 6 gives group solutions and average sire effects for structure I. 

Sire effects were averaged for groups of sires with equal breed composi

tion. In the progeny group model (Al), sires were cross-classified with 

groups. Sire effects and group effects were each biased by non-additive 

effects. Non-additive effects were partly accounted for by solutions for 

groups, but residual bias caused overprediction of effects from 100%HF 

sires. Sire effects from other groups were underestimated. Hence, variance 

between sires was biased upward. The deviation of group solution from 

additive genetic value was largest for the 50ZHF group (Table 6). The group 

effect for 100ZHF cows was biased downward due to overestimation of the 

effects of their sires. 

TABLE 6.Solutions1 from different models for genetic groups of progeny(gp) , 
sire(gB) or dam(gd) and average predicted sire effects (Sj ) within 
sire groups for structure I.2 

model 

Al 

A2 
A2 

A3 

NA 

additive 

Group 

effect i-

EP, 

2g,, 

K 
bi*PPi 

bi*PPi 

values 

Solut 

• 3 

301 

_ 

-

173 

197 

200 

Lons 

5 

497 

409 
235 

347 

394 

400 

7 

511 

. 
-

520 

591 

600 

9 

-

1113 
-

694 

787 

800 

Average 

s i . . 

-45 

0 

-65 

-2 

2 

Sire 

s 5 . . 

-80 

0 

-40 

2 

6 

Effects 

s 9 . . 

121 

0 

103 

0 

0 

1 s u - g»r «di - ° 
heterosis— 5%, recombination loss- -5% 

15 



In model A2, sires are nested within sire groups. Predictions of sire 

effects within groups were unbiased because sires were equally distributed 

over dam groups. Group solutions contained additive effects as well as 

average non-additive effects (Table 6). Non-additive effects not accounted 

for by groups contributed to an increase only in the residual variance. 

Solutions for the group of 100XHF sires considerably overestimated the 

additive genetic effect. The group effect of OX HF dams was overestimated, 

i.e., group solution for 50%HF dams was lower than expected additive value 

(Table 6). 

Model A3 gave biased estimates of group effects as well as biased 

prediction of sire effects. The estimate for linear regression of 

performance on pp (bx) was 697 for structure I, which is lower than true 

additive genetic value (Table 6 ) . 

The non-additive model (NA) yielded estimates for group effects and sire 

effects that were close to true additive genetic effects. Solutions for 

group effects (Table 6) were derived from the estimate for b1. 

Results for structures II (Table 7) and III (Table 8) were comparable 

with those from structure I. Estimators from the non-additive model were 

empirically unbiased. Regression on portion of HF genes was 793 for 

structure II and 773 for structure III. The estimate for heterosis was, 

TABLE 7.Solutions1 from different models for genetic groups of progeny(gp) , 
slre(gs) or dam(gd) and average predicted sire effects (Sj ) within 
sire groups for structure II.2 

model 

Al 

A2 
A2 

A3 

NA 

additive 

Group 

effect i-

ePl 

2gS( 

2 * ; 

b i * p P i 

b i * p P i 

values 

Solutions 

• 3 

320 

-4 

172 

198 

200 

5 

688 

528 
34 

343 

397 

400 

7 

647 

940 
10 

515 

595 

600 

9 

760 

1380 
158 

686 

793 

800 

Average 

si.. 

-10 

0 

-183 

0 

2 

Sire 

s5.. 

-77 

0 

-115 

-6 

-20 

Effects 

s9.. 

15 

0 

94 

0 

-8 

1 EP!" gSl- gd! "O 
heterosis- 5%, recombination loss- -5% 
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TABLE S.Solutions1 from different models for genetic groups of progeny(g„) , 
sire<gs) or dam(g,j) and average predicted sire effects (Sj ) within 
sire groups for structure III.2 

model 

Al 

A2 
A2 

A3 

NA 

additive 

Group 

effect i-

gPi 

2gS( 

2 g d ; 

b i * p P i 

°i*pP. 

values 

Solut 

• 3 

355 

-12 

75 

193 

200 

.ons 

5 

583 

561 
16 

151 

387 

400 

7 

583 

877 
115 

226 

580 

600 

9 

668 

1220 
256 

301 

773 

800 

Average 

si.. 

-64 

0 

-302 

-7 

-10 

Sire Effects 

s5.. 

-165 

0 

157 

-11 

-22 

s9.. 

36 

0 

48 

3 

1 

1 gPl= gSl~ gd! =0 
heterosis« 5%, recombination loss- -5% 

averaged over repetitions, 321 for structure II and 318 for structure III 

with empirical standard errors 5.8 and 5.4. Estimates for the recombination 

effect were -332 for structure II and -302 for structure III with empirical 

standard errors 15.0 and 8.7. Simulated values were 320 for heterosis and -

320 for recombination effect. 

The effect of size of the progeny groups on bias is given for model Al 

(Table 9). A greater fraction of non-additive effects was assigned to the 

random sire effects with increasing progeny-group size. Bias in estimation 

of additive genetic variances increased with more progeny per sire. Bias 

TABLE 9. Effect of progeny group size (ND) on bias in estimation of 
additive genetic parameters with model Al for structure I.x 

ND 

25 

50 

100 

parameters 

o\ 

195708 

208168 

223044 

h* 

.369 

.390 

.415 

group 

gP3 

310 

301 

297 

effects 

6P5 

525 

502 

464 

gp7 

565 

514 

453 

sire 

si.. 

-25 

-45 

-70 

effects 

s5.. 

-70 

-85 

-95 

ss. 

92 

127 

160 

1 heterosis- 5%, recombination loss- -5% 
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in estimation of group effects for progeny with 25XHF and 50XHF, which is 

due to non-additive effects, was smaller and bias for the 75%HF progeny 

group, which is due to overestimation of 100XHF sires, was larger with 

increasing number of progeny. 

DISCUSSION 

Non-additive models have been proposed in the literature, including 

those with random non-additive genetic effects due to dominance variation 

within breeds (e.g., 5). Those effects were not considered in this study 

because they are likely to be less important than fixed non-additive 

effects due to interactions between breeds. Another simplification of the 

simulated model was the assumption of equal genetic variances across 

populations and across crossbred groups before genetic equilibrium was 

reached. Hence, additive genetic variation was expected to be homogeneous, 

i.e. differences in gene frequency were small. This is justifiable for two 

closely related breeds with no inbreeding and a trait that is determined 

by an infinite number of loci. However, it may be worthwhile to investigate 

models that account for heterogeneity of additive genetic variance across 

crossbred groups. 

More family information is often used in sire evaluation by incorpora

ting numerator additive genetic relationships between sires. Pollak and 

Quaas (17) have pointed out the association of relationships with genetic 

groups, i.e. groups can account for selection differentials between genera

tions not accounted for by relationships. Those groups, however, are 

defined on the basis of time to account for short-term selection. 

Differences between populations or breeds are based on long-term selection 

and group effects reflect effects of gene substitution and gene interac

tion. Hence, use of genetic relationships between generations is not 

expected to change the interpretation of group effects. However, bias in 

random effects, due to not accounting for non-additive effects, may 

decrease when information from relatives is used across genetic groups of 

sires. 

An alternative strategy for analysis of data from crossbred populations 

could be the use of an animal model so that additive genetic variance would 

be estimated from the random additive values of animals. Correction for 
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genetic means could be by groups that are defined on a basis of fraction 

of HF- genes of animals making the records. However, an additive animal 

model would not account for different non-additive effects within groups, 

so that additive genetic variance would likely be overestimated. 

In this simulation study, distribution of sire's progeny over dam groups 

was balanced and distribution of sire and dam groups over environmental 

effects was random i.e. all herds have dams with on average equal breed 

composition. Meyer (13) showed that environmental effects might account for 

differences between genetic groups when groups are partially confounded 

with environmental effects. 

Heterosis levels in crossbred populations, in particular in crosses 

between different strains of Friesian cattle, might be small in temperate 

climates (2,14). However, in addition to levels of heterosis and recombina

tion, the genetic structure of the data influences bias in estimating 

genetic variance and breeding values. Bias depends on the distribution of 

data over sire group by dam group combinations. In countries where sires 

are imported from other populations, a progeny group model gives more bias 

in estimation of additive genetic variance as dams have higher fraction of 

HF-genes. 

European countries recently have been interested in making comparisons 

of genetic merit between and within dairy cattle populations. Philipsson 

(16) mentioned some problems of comparing breeding stock internationally, 

such as possible bias due to selective mating and to special treatment of 

progeny. Bias in prediction due to non-additive effects was not considered. 

However, accounting for non-additive effects affects international 

comparisons of breeding stock. Estimating additive genetic values with a 

sire group model gives maximum bias through comparison of bull groups of 

the pure breeds, and mating them with dams from one of the breeds. Breed 

difference would be estimated as twice the group difference, hence 

overestimation would be equal to twice the heterosis. The impact of non-

additive effects on sire ranking, based on total genetic effect, is 

dependent upon the heterogeneity of the cow population. However, a correct 

sire evaluation procedure should specify the components of the total 

genetic merit. 
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CONCLUSION 

Low levels for heterosis and recombination affected estimators of 

additive genetic variance in crossbred populations. Predictions of breeding 

values and estimation of breed difference were considerably biased with 

additive models. It is necessary to estimate heterosis and recombination 

loss in actual populations to assess the problem of bias in genetic 

evaluations. 
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ABSTRACT 

Genetic parameters were estimated using data of cows with variable 

proportions of genes from two breeds: Dutch Friesian and Holstein Friesian. 

The data set contained 92,333 first lactation records (305 days milk 

production) from 675 young sires and 307,050 records from 202 proven sires. 

Data were analyzed using four additive mixed models with genetic groups 

defined according to 1) breed composition of the cow, 2) breed composition 

of sire and dam, 3) linear regression on the fraction of Holstein Friesian 

genes of the cow and 4) breed composition of sire. A non-additive model 

included a linear regression on breed fraction, heterozygosity and 

recombination in the cow's genome. 

Estimates for heterosis varied from 2.5% (fat yield) to 0% (protein 

percentage). Recombination effects varied from -1.9% (protein yield) to 

1.5% (fat percentage). Additive models with progeny groups overestimated 

genetic variance by 6%. Models with sire groups overestimated additive 

genetic values of imported Holstein Friesian sires by 33%. Using a non-

additive model, heritability estimates were .38 for milk yield, .80 for fat 

percentage and .70 for protein percentage. It was concluded that a non-

additive model was preferable for estimation of genetic variance and 

prediction of breeding values in crossbred dairy populations. 

INTRODUCTION 

Numerous estimates of genetic parameters for production traits have 

appeared in the dairy breeding literature (1,2,9,12,14,16,22,23). Such 

focus can be justified because production traits have high economic impor

tance, and heritabilities and variances may change due to selection, 

migration of genes from one population to another, or changing environ

mental conditions. Recently, genes from North American dairy breeds have 

been imported to European populations. Genetic parameters should be 

estimated regularly in such a process of upgrading from data collected in 

well organized milk recording schemes. 

Genetic parameters for milk production traits were summarized by Maijala 

and Hanna (12). The average heritability estimates were .27 for first 
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lactation milk yield and .24 for fat yield. Estimates using more sophisti

cated methods (i.e. REML) showed no major differences for first lactation 

traits (14, 18). More recently, higher heritabilities were found for data 

from Canada (2) and from the United States (22). Hill et al. (9) have shown 

that heritabilities tended to increase with production. Those authors used 

data mainly from single breed populations and thus parameters may not 

necessarily be valid for upgraded European dairy populations. 

Heritability estimates in crossbred populations were adjusted to various 

degree for fixed additive effects of breed contributions. Meyer (14) found 

higher heritability for first lactation milk and fat yield when data from 

imported Canadian sires were included and breed effects were not accounted 

for. Other authors accounted for breed of sire but found also high 

heritabilities in crossbred data (1,16,23). Van der Werf et al. (20) found 

heritabilities of .41 for milk yield and .79 for fat yield after accounting 

for breed of progeny. 

Models for estimating additive genetic variance and heritabilities from 

data of crossbred populations usually do not include non-additive effects. 

Heterosis and recombination effects are considered to be small for milk 

production traits (13). However, not accounting for these non-additive 

effects may cause upward bias in the estimation of additive genetic 

parameters (19). Elzo and Famula (4) proposed a general strategy to 

estimate sire effects, accounting for fixed additive and non-additive breed 

effects. Other models proposed for analysis of crossbred populations were 

intended to estimate effects of breed differences, heterosis and recombina

tion (6,10). However, random genetic effects within breed groups were 

ignored. 

The objectives of this paper were to estimate additive and non-additive 

genetic parameters for milk production traits in a crossbred population. 

Models accounting differently for fixed additive and non-additive breed 

effects were compared. Differences in estimates of genetic parameters from 

sub-populations were investigated. 
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MATERIAL AND METHODS 

First lactation records on 305 days milk, fat and protein yield were 

obtained from the Dutch Dairy Cattle Syndicate (NRS). Records were sampled 

from Black and White heifers freshening between August 1983 and September 

1986. Records had been previously adjusted for month of calving, and 

incomplete lactations of 90 days or more had been extrapolated to 305 days 

according to the methods described by Wilmink (24). Data on the following 

seven traits were obtained for each cow; milk yield (kg), fat yield (kg), 

protein yield (kg), fat percentage, protein percentage, fat protein 

corrected milk (FPCM kg) (11), and carrier (milk-fat-protein) (kg). 

Crossbred AI sire progeny of the Dutch Friesian (FH) and the Holstein 

Friesian (HF) breed were used. Breed composition (X HF genes) was known 

for all sires and their progeny. Editing of data included checks on age 

of calving (21 to 32 months) and on breed codes of sire and progeny. Total 

number of valid records was 451,261. 

Heifers were considered to belong to the sire's first group of daughters 

when the sire was younger than 70 months at the start of their lactation. 

Young sires were included that had a minimum of 75 progeny distributed over 

at least 50 herds. Omission of young sires was mostly due to not having a 

complete first batch of daughters within the period considered. Therefore, 

elimination was assumed to be unrelated to sire's genetic merit. In total, 

92,333 records from 675 young sires were selected. 

Records of proven sires improve connectedness in the data and therefore 

contribute to more accurate estimation of the herd-year-season effects and 

the within sire variance (21). Therefore, records of herdmates of young 

bull's progeny were also included in the analysis. Herdmates were required 

to descend from proven sires that were older than 80 months at time of 

initiation of lactation and had a minimum of 100 daughters in 75 herds. 

Herdmate records of 307,050 heifers from 202 proven sires were added to the 

dataset. 

Nine genetic groups were defined according to percentage of HF genes at 

intervals of 12.5Z. The distribution of progeny over groups of sire and 

groups of dam is expressed in Table 1. The distribution of sires over 

genetic groups is expressed in Table 2. Male ancestry was known for young 

sires, which consisted of 93 base animals. 
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TABLE 1 Distribution of data (%) over sire and dam groups1,2. 

group 
of dam 

1 
2 
3 
4 
5 
6 
7 
8 
9 

total 

1 

24.7 
-
0.4 
-
1.5 
-
0.0 
-
0.0 

26.7 

2 

0.1 
0.0 
-
0.0 
-
-
-
-
-

0.1 

3 

0.2 
-
0.0 
-
0.0 
-
0.0 
-
0.0 

0.3 

group of 

4 

0.0 
0.0 
-
0.0 
-
-
-
-
-

0.0 

5 

5.7 
-
0.3 
-
0.8 
-
0.0 
-
0.0 

6.8 

sire 

6 

0.1 
0.0 
-
0.0 
-
0.0 
-
0.0 
0.0 

0.1 

7 

3.2 
-
0.2 
-
0.6 
-
0.0 
-
0.0 

4.0 

8 

0.9 
0.2 
-
0.1 
-
0.2 
-
0.0 
0.0 

1.4 

9 

49.1 
-
1.4 
-
8.9 
-
0.7 
-
0.4 

60.5 

total 

84.1 
0.2 
2.2 
0.1 

11.9 
0.2 
0.8 
0.0 
0.4 

100 3 

1 group number i corresponds to (i-l)*12.5 X Holstein Friesian genes 
2 classes with "-" have no records 
3 100X - 399,383 records. 

TABLE 2. Distribution of number of sires over genetic groups1. 

group of sire 

total 

base 
young 
proven 

32 
174 

98 
10 

-
127 

9 

-
4 
-

-
Ill 

2 

-
35 
1 

61 
211 

92 

93 
675 
202 

1 group number i corresponds to (i-l)*12.5 X HF genes 

MODELS FOR ANALYSIS 

Several grouping strategies can be followed to attempt to account for 

fixed genetic effects of subpopulations (19). Four additive models that 

varied in their definition of genetic groups were considered. A non-

additive model (NA) also was considered, which accounted for interactions 

between breed groups due to effects of heterosis and recombination loss. 

Model Al was an additive model with grouping according to fraction of 
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HF genes in the progeny from which the records originated (gp). The model 

was described as : 

y i jk ta , - h y s i n + b l n ( A i j k l m - Ä > + b2n(A iJkl i»-Ä ) + "jn 

+ Sa + sLn + eijklnm i1] 

where : 

yijkimn" ijklmth observation for the nth trait (n-l,..,7), 

hysln= the fixed effect of the ith herd-year-season class for the nth 

trait (i=l 62605). Two seasons were distinguished per 

herd-year: February to August and September to January, 

Aijkim ~ t n e calving age (months) of the ijklmth cow 

A = the mean calving age, 

bln- the linear regression coefficient of age for the nth trait, 

b2n= the quadratic regression coefficient of age for the nth trait, 

mjn- the fixed effect of the j t h month of calving class for the nth 

trait (j-1,,.,12), 

g_ - the fixed effect of the kth progeny group class for the nth 

Ten 

trait; group referring to percentage HF genes (k-1 9 ) , 

s^- the effect of the 1th sire for the n"1 trait. Effects of young 

sires were considered random while proven sires were treated 

as fixed effects, 

eijkium~ t n e random residual effect for the nth trait associated with 

the ijklmth cow. 

Model Al was referred to as additive progeny group model. The model can 

be written in matrix notation as, 

y = Xb + Qgp + Zs + e [2] 

where b is a vector of fixed environmental effects, g_ is a vector of 

genetic effects of the progeny group, s is a vector of sire effects and e 

is a vector of residual effects. Design matrices for fixed effects, group 

effects and sire effects are X, Q and Z, respectively. The matrix Z and 

s' was partitioned into [Zx Z2] and [sj s J] , where Z1 and Z2 are matrices 

relating records to proven (sx) and young sires (s2), respectively. 
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First moments for model Al, treating sx sires as fixed, are; 

E(y)= Xb + Qgp + ZlSl [3]. 

Model A2 was a parent group model. It can be written as, 

y = Xb + Qlgs + Q2gd + Zs + e [4] 

with gs and gd being additive genetic effect of sire group and dam group 

and Qx and Q2 design matrices for sire and dam group, respectively. Model 

A3 is a model with a linear regression of performance on the fraction HF 

genes of the progeny, 

y - Xb + bipp + Zs + e [5] 

where p is a vector with the fraction HF genes for each animal, and bx is 

the regression of y on breed composition of the animal making the record. 

It should be noted that models Al, A2 and A3 account for additive genetic 

differences between crossbred groups. 

Model A4 was an additive sire group model, 

y - Xb + Qjg. + Zs + e. [6] 

This model is used in many countries for sire evaluation. 

Expectations for y were similar to [3] for models A2, A3 and A4, except 

for the second term which was replaced by Qjg. + Q2g<i> ^>iV , and Qxg. respec

tively. 

The NA model was defined as, 

y - Xb + b^p + b2h + b3r + Zs + e [7] 

where b2 and b3 are regressions on vectors with coefficients for hetero

zygosity effect (h) and recombination effect (r) for each animal (3,19). 

Additive genetic differences between crossbred groups were accounted for 

by a linear regression on the breed composition of the progeny making the 

record. 

The expectation of y under the NA model, treating st as fixed, is 
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E(y)- Xb + b l P p + b2h + b3r + Z ^ [8] . 

The dispersion matrix of y, treating sx as fixed, was for each model, 

var(y)= Z^Z^'a\ + Iuo
z
e [9] 

with var(s2)- Aaf, var (e)- In<7g and cov(e,s2)- 0. The matrix A contains 

additive genetic relationships between the young sires. The vector s2 was 

extended to include base animals (sires and maternal grandsires of the 

young bulls) . Sire variances and covariances were assumed to be homogeneous 

across populations. 

Variance components were estimated by REML. A univariate procedure was 

used for analysis of each trait. For estimation of genetic correlations 

between traits, a multivariate REML procedure was used. Computations were 

made feasible by transforming the data to canonical variâtes, possible 

because using design matrices were the same for each trait (15). Sampling 

errors for the variances were approximated using the estimates as true 

values. Sampling errors for the genetic parameters were derived from a 

linear approximation using Taylor series expansion (14). Breeding values 

of sires were computed from mixed model solutions for fixed additive 

genetic effects (groups or regression) and from predicted sire effects. 

RESULTS AND DISCUSSION 

Estimation of Non-additive Genetic Parameters 

Overall mean and solutions for heterosis and recombination effects for 

each trait from model NA are in Table 3. Estimates for heterosis were small 

but significant for yield traits (about 2.5Z). When considering the genetic 

distance between the Dutch Friesian and the Holstein Friesian breed, 

estimates for heterosis were in agreement with other estimates described 

in literature (5, 13). Estimates for milk composition traits were smaller 

than 1%. 

Estimates for effect of recombination were negative and smaller than 

heterosis (Table 3). Heterosis was assumed to represent dominance effects 
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and half of additive by additive effects, whereas the recombination effect 

represented half of the additive by additive effects (19). Literature 

values for recombination loss often are not significant (13) or are 

significant but small (5). The recombination effect for fat percentage was 

positive, which results from a smaller recombination effect for fat yield 

in comparison with milk yield. The heterosis for fat percentage was smaller 

than the recombination effect, which implies that the dominance effect of 

fat percentage was negative. 

TABLE 3.Estimates of heterosis, recombination effects, with standard errors 
and overall means for milk production traits. 

trait 

milk yield 
FPCM1 

carrier 
fat yield 
protein yield 
fatX 
protein% 

heterosis 

122.9 
136.93 
112.44 

5.959 
4.367 

.013 

.001 

SE 

5.4 
5.1 
5.0 

.22 

.17 

.003 

.001 

recombination 

-101.2 
-75.93 
-95.72 
-1.325 
-3.457 

.0640 
-.0056 

SE 

13.5 
12.8 
12.6 

.55 

.42 

.006 

.003 

mean 

5299 
5502 
4891 

229.6 
178.4 

4.34 
3.37 

1 fat protein-corrected milk 

Estimates for non-additive parameters and their low standard errors were 

consistent and in agreement with analysis of data simulated (19), using a 

distribution over sire- and dam groups similar to that described in this 

study. Low sampling errors might have been due to the use of regression to 

estimate heterosis, recombination, and breed effects. Regression was used 

rather than interactions between subclass effects, which have larger 

sampling errors. Results showed that it was feasible to obtain reliable 

estimates of crossbreeding effects from field data. Although the dis

tribution of data over crossbred groups was unbalanced, many combinations 

were represented with considerable amounts of data. 

Comparison of Models for Milk Yield 

Estimates of variance components and heritability for milk yield are in 

Table 4 for each model. Van der Werf and De Boer (19) have shown by 

simulation that all models give similar results in absence of non-additive 
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effects. With models Al and A3, however, non additive effects caused 

inflated estimates for sire variance and heritability. Results from the NA 

model were assumed to be unaffected by non-additive genetic effects (19). 

The overestimation of a\ and h2 was 6% using model Al. Simulation 

results, using a sire group by dam group structure as expressed in Table 

1, showed an overestimation of a\ by 2.5% when heterosis was 5% and 

recombination loss was -5Z (19). In a simulated structure with increased 

heterozygosity of dams, bias increased dramatically to 19%. In the data of 

this study, young sires (random) were mated to relatively more Fl dams, 

which explains the significant bias in spite of low levels of heterosis and 

TABLE 4.Estimates of sire variance (p\) , residual variance (o\) and herita
bility (h2) for first lactation milk yield (kg) with different 
models. 

model Ä2 ! èl2 n2 3 

Al 
A2 
A3 
A4 
NA 

1 approximated SE varied from 2968 kg2 (A4) to 3422 kg2 (A3). 
2 approximated SE were 1082 kg2 for each model. 
3 approximated SE were .02 for each model. 

recombination loss. Estimates for the residual component differed only 

slightly for all models. In accordance with sire variance, heritability was 

biased upward for models Al and A3. 

Estimates for additive genetic differences between crossbred groups and 

average breeding values of sires within groups are shown in Table 5. To 

make solutions comparable over models, groups with OX HF were restricted 

to 0 for each model and solutions of sire and dam groups were multiplied 

by 2. For models A3 and NA, additive genetic differences between groups 

were derived from the estimated regression on corresponding HF percentage. 

Solutions for 50% HF and 100% HF groups were relatively higher witth 

models A2 and A4 than with other models. Compared to the non-additive model 

(NA), breed differences were overestimated by 70% using sire group 
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49,525 
45,586 
53,351 
45,647 
46,553 

443,285 
443,438 
443,473 
443,986 
443,320 

.402 

.373 

.430 

.373 

.380 



Solutions. Differences between dam groups were small using model A2. 

Neither sire group nor dam group solutions from an additive model could be 

interpreted as representing half of additive genetic differences between 

subpopulations. Group solutions from the additive progeny group model Al 

were more in agreement with the NA model. The 50% HF progeny group was 

overestimated and the 100% HF progeny group was underestimated. Results 

from Table 5 agreed with previously reported results from simulation (19). 

Estimates of breeding values were similar for additive models A2, A3 

and A4 (Table 5). Average estimated breeding values of sires from those 

models were higher than estimates from the NA model; by about 20% for 50% 

HF sires and about 30% for 100% HF sires. The progeny group model underes

timated 75% HF sires, whereas 100% HF sires were overestimated by 10%. 

Breed difference between HF and FH was estimated at 530 kg with the NA 

model, whereas while differences between breeding values of sires averaged 

680, i.e., random effects of 100% HF sires were positive after correcting 

progeny records for fixed additive and non-additive genetic effects. The 

mean of effects of 100% HF sires was about 5 times its standard deviation. 

This may have been caused by assortative mating of young 100%HF bulls or 

by favorable treatment of their progeny. Such effects would be confounded 

with sire group effects in models A2 and A4. Models with sire groups gave 

therefore lower estimates for the sire variance than the NA model (Table 

4 ) . 

TABLE 5.Estimates of fixed additive genetic effects and average breeding 
values for sires of crossbred groups from different models (milk 
yield). 

model group effect average sire breeding value 

50%HFl 75%HF 100%HF 50%HF 75%HF 100%HF 

SE SE SE 
Al 
A2-sires2 

A2-dams2 

A3 
A41 

NA 

298 
434 
135 
154 
437 
265 

4 
11 
8 
3 

11 
5 

346 
582 
280 
231 
585 
397 

6 
13 
27 
5 

13 
7 

432 
904 
304 
308 
906 
530 

20 
7 

37 
6 
7 

10 

326 356 753 
367 531 900 

368 
371 
302 

524 
534 
408 

874 
902 
680 

1 Holstein Friesian 
2 solutions for sire and dam groups were multiplied by 2 
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Estimation of Additive Genetic Parameters for all Traits 

Variance components and heritability of each trait from model NA are in 

Table 6. Estimates were corrected for fixed effects of breed and for 

interaction between breeds. Within trait parameters from single trait 

models differed only slightly (<.2X) from estimates from a multivariate 

procedure. Heritability for milk yield was higher than that given by 

Maijala and Hanna (12) and somewhat higher than more recent estimates (1, 

16, 22). Heritabilities for milk composition traits were substantially 

higher than most literature values given for single breeds. However, 

heritability estimates for milk yield and fat percentage were very similar 

to those from a crossbred population of Holstein Friesian x European 

Friesian cows (1) . 

TABLE 6.Estimates of sire variance (a2), residual variance (â2), and heri
tability (A2) for milk production traits with a non-additive model 
(NA). 

trait a\ a\ fi2 SE 

milk yield 
FPCM1 

carrier 
fat yield 
protein yield 
fat X .024 .0965 .799 .03 
protein % .0046 .0216 .701 .03 

46,553 
34,941 
42,264 

74.84 
37.87 

443,320 
400,893 
389,960 

753.8 
422.9 

.380 

.321 

.391 

.361 

.329 

.02 

.02 

.02 

.02 

.02 

1 tat protein-corrected milk 

Estimates for genetic and phenotypic correlations between traits are in 

Table 7. Genetic correlations agreed with literature values, except for 

the correlation between milk yield and fat yield, which was lower in this 

study, and between milk yield and milk composition traits, which were more 

negative than most values in literature. Correlations were quite similar 

to those found by Boichard and Bonaïti (1) 

The lower correlation between milk yield and fat yield agreed with the 

more negative correlation between milk yield and the ratio of fat to milk. 

The correlation between milk yield and the ratio of protein to milk was 

more negative due to a relative higher genetic variability for milk yield. 

35 



Phenotypic correlations were lower between milk and fat yield and higher 

between milk yield and milk composition traits. 

TABLE 7.Estimates of phenotypic (above diagonal) and genetic (below 
diagonal) correlations for milk production traits with a non-
additive model (NA). 

milk, kg 
FPCM1 

carrier, kg 
fat, kg 
protein, kg 
fat % 
protein % 

kg milk 

.883 

.999 

.583 

.868 
-.515 
-.524 

FPCM 

.944 

.861 

.889 

.927 
-.062 
-.189 

carrier 

.999 

.932 

.548 

.851 
-.550 
-.551 

kg fat 

.796 

.947 

.776 
— 

.722 

.393 

.059 

kg prot. 

.929 

.960 

.920 

.853 
— 

-.222 
-.035 

fatX 

-.388 
-.075 
-.417 

.237 
-.192 

--. 
.657 

prot.% 

-.409 
-.190 
-.432 
-.057 
-.052 

.580 
— 

1 fat protein-corrected milk 

Estimation of Genetic Parameters from Subpopulations 

Because variance among sires may not be equal for different breed 

groups, the data set was divided into subsets according to breed composi

tion of the sire. Three subsets with progeny from 174 young FH sires in set 

I, from 127 young 50% HF sires for set II, and from 211 young HF sires for 

set III were analyzed. Herdmate records from proven sires were used in each 

subset, irrespective of breed composition. Progeny within subset were not 

necessarily from identical subpopulations because dams were from different 

breed groups. The NA model was used to correct for possible bias due to 

non-additive effects. 

Estimates of sire variance and heritabilities in subpopulations are 

given in Table 8. Sire variances for milk yield, carrier yield, fat yield, 

and composition traits were significantly larger in subset III than in 

other subsets. Standard errors on heritabilities in subset III varied from 

.03 to .07. Results suggested that variances and heritabilities were not 

equal for the different populations. 
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TABLE 8.Estimates of sire variance and heritability for milk production 
traits from subsets of data with progeny of sires with OX Holstein 
Frlesian, 50% HF, and 100% HF genes (model NA). 

sire variance 

trait 

milk, kg 
FPCM 
carrier, 
fat, kg 
protein, 
fat % 
protein 

kg 

kg 

% 

heritability 

OXHF 

.339 

.331 

.341 

.332 

.358 

.490 

.507 

50XHF 

.307 

.280 

.313 

.307 

.288 

.570 

.582 

100 

.444 

.332 

.463 

.384 

.336 
1.00 
.852 

OXHF 50%HF 100XHF 

34,743 35,960 59,499 
31,136 29,535 38,842 
30,601 32,245 54,865 

57.24 61.42 85.55 
36.23 32.23 41.35 

.0106 .0164 .0338 

.0029 .0038 .0058 

1 fat protein corrected milk 

However, heritabilities from subset III were also higher than recent 

estimates from North American and Canadian HF populations (2, 22). 

Variances and heritabilities from subsets I and II better matched 

literature values. Differences between subsets were relatively small for 

protein yield and FPCM. 

Breed differences between subsets were partly confounded with other 

effects. Progeny from 100% HF sires freshened more in later years. They 

also might have performed in herds with better management. Residual 

variance was 375,194 for subset I and 476,706 for subset III. Allowing for 

differences in scale, there was still a clear distinction between sire 

variance from subsets I and III. Increase in genetic variation has been 

correlated with level of production (9) or with herd type (16). 

Overestimation of sire effects of 100% HF bulls increases the estimate 

for sire variance. Differences between subsets might have been caused by 

assortative mating and preferential treatment of progeny of the young bulls 

from subset III. However, models with sires nested within groups (A2 and 

A4) also showed high heritabilities. Another bias might have arisen from 

selection of young bulls based on pedigree indexes. This type of selection 

is not accounted for when information of sires' ancestors is not included 

in the analysis (17). Although single trait selection would have reduced 

genetic variation (17), the estimated variance among the 100% HF sires was 

larger than in the American HF population. In contrast to sires from 

subsets I and II, sires from subset III descended from imported cows or 
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were imported themselves. Breeding values for imported sire may have been 

extreme either for milk yield or fat percentage, which are negatively 

correlated. As a result, genetic variance among imported sires would have 

been increased for each trait. Methods to accommodate for selection 

occurring prior to the formation of the base population (7,8) could be par

ticularly important for populations that import sires. 

CONCLUSION 

Small effects of heterosis and recombination were shown for Holstein 

Friesian x Dutch Friesian crosses. Nevertheless, differences between the 

non-additive model and additive models were substantial for estimates of 

breed differences, genetic parameters and breeding values across breeds. 

The use of non-additive models was therefore warranted for analysis of 

crossbred populations. 

Estimates of genetic parameters differed from known values, in 

particular for milk and fat yield, fat percentage and protein percentage. 

Analyses of subpopulations revealed higher genetic variances for data from 

progeny of imported sires. More research is needed to determine to what 

extent variances among imported sires are biased by selection on pedigree. 
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ABSTRACT 

A population of size 40 was simulated 1000 times for ten generations. Five 

out of twenty males were selected each generation and each male was mated 

to four females to have two progeny. The additive genetic variance (aj) 

before selection was 10 and the initial heritability was .5. Due to 

covariances among animals, inbreeding and gametic disequilibrium, the 

genetic variance was reduced to 6.72 after ten generations of selection. 

Reduction of variance was lower in another population simulated with size 

400 and ten percent of the males selected. Restricted Maximum Likelihood 

was used to estimate a\ using an animal model. The estimate of a\ was 

empirically unbiased when all data and all relationships were used. 

Omitting data from selected ancestors caused biased estimates of a\ due to 

not accounting for all gametic disequilibrium. Including additional 

relationships between assumed base animals adjusted for inbreeding and for 

covariances. Bias from gametic disequilibrium decreased slightly with the 

use of more relationship information, and it was smaller in the small 

population, and when selection had been practiced for just a few genera

tions. 

INTRODUCTION 

Parameters for production traits often are estimated from data on 

selected animals. It has been shown that, in principle, selection can be 

accommodated by an appropriate model that includes all data upon which 

selection decisions were based (Henderson, 1975; Sorensen and Kennedy, 

1984b, Gianola and Fernando, 1986). However, the time span covered by data 

generally is limited and in practice all data since the start of selection 

are not available. 

Sorensen and Kennedy (1984b) simulated several generations of selection 

and omitted data from earlier generations. They concluded that the estimate 

of the additive genetic variance before selection was nearly unbiased when 

their model acknowledged all relationships that developed in previous 

generations. This seems inconsistent with the condition that all data are 

needed for unbiased estimation. 
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Since information on pedigree usually does not date back to a true base 

population, an assumption concerning a base population is made, e.g. the 

first generation of animals with data are considered as unrelated, 

unselected and noninbred base animals. Sorensen and Kennedy (1984b) indi

cated that such a model would estimate the genetic variance in the implied 

base generation. However, they analyzed data from only two generations with 

an animal model. The estimate would be the equivalent of offspring on 

parent regression which is unbiased by selection of parents. This may not 

be true if more generations are included. 

The aim of this research was to study estimates of additive genetic 

variance when base populations were selected. We examine how estimates are 

affected by omitting data from selected ancestors and by ignoring known 

relationships of selected animals and then systematically including more 

relationship information among animals. 

MATERIAL AND METHODS 

Simulated Data 

This study follows the Monte Carlo simulation strategy described by 

Sorensen and Kennedy (1984a). They assumed a genetic model where a large 

number of unlinked loci contribute to the genetic variance. A number of s 

males and m females, all assumed unrelated and unselected, were randomly 

sampled from a conceptually infinite base population. The base animals were 

mated at random (m/s— d females per male) to produce m males and m females, 

which is generation 1. The s phenotypically best males were selected in 

each of the subsequent generations. Each of the females was randomly mated 

to one of the selected males. Selection was only on males and generations 

did not overlap. 

The model, used for simulation of a record for the ith animal was 

yi- ̂  + ai + ei 

where yt is the phenotypic value of the i-th animal, a± is its additive 

genetic value, and et is a residual random value for possible nonadditive 

and environmental effects. The parameter n is the phenotypic mean of 

generation 1. Random values for et were drawn from a normal distribution 

with mean zero and variance 10. The additive genetic variance before selec

tion (o\) was 10 and initial heritability was .5. For the base animals 

44 



(generation 0) genetic values are drawn from N[0, 10]. Genetic values for 

animals of later generations were simulated as, 

where as and ad are genetic values of sire and dam of individual i. The 

value <f>i results from Mendelian sampling, which is independent of as and 

ad (Bulmer, 1971). The coefficient of inbreeding as defined by Falconer 

(1989) for the i-th animal is FL. The variance of aL can be presented as 

var(ai) = (l+F^aJ 

- *<var(as) + kvar(ad)+ kcov(as,ad)+ var(^) [2] 

The variance of <j> can be given as 

var(^)= (1+Fi)^- >svar(as)- ><var(ad)- Hcov(as,ad) 

- [(l+F^-^d+F.)- *(1+Fd)- Fi ]o\ 
- h[l-H(Fs+Fd))c,l [3] 

where Fs and Fd are inbreeding coefficients for sire and dam, respectively. 

Inbreeding coefficients were computed using Quaas' (1976) algorithm. The 

residual genetic value for each animal (̂ ) was drawn from a normal 

distribution with mean 0 and variance according to [3]. The number of 

replicates per population depended on the size and number of generations' 

(-g) simulated. Per sample, there was one record available for each of 

2*m*g animals and the (s+m) unselected and unrelated base animals were 

identified as parents without records (generation 0). 

Analyses of data sets 

To study the effect of omitting data from ancestral generations, 

additive genetic variance was estimated from data sets that differed in 

number of generations with records known. We used the complete relationship 

matrix, i.e. all relations were known since the start of selection, to 

account for inbreeding and covariances between animals. 

In another set of analyses we assumed data known for a limited number 
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of generations after animals had been selected for several generations. 

Using this data set we compared models that differed in amount of covarian-

ces known between animals by varying the generation that was assumed to 

consist of unrelated, unselected and noninbred animals. 

Inbreeding and covariances among animals in a given population depend 

upon the size of the population. We have therefore simulated two population 

sizes, with 40 and 400 animals per generation, respectively. Parameters for 

s and m were 5 and 20 for the small population and were 20 and 200 for the 

large population, respectively 

The true genetic variance in generation t was defined as 

°. "t 
- A <at'at-nä») [4] 

where at is a vector with true breeding values for n animals in generation 

t. The variance o\ is expected to be smaller than o\ since [4] does not 

adjust for inbreeding and gametic disequilibrium (Bulmer, 1971). Further

more, [4] does not adjust for covariances between animals, which par

ticularly occur in small populations. 

In a balanced hierarchical design for n animals having s sires and d 

dams per sire (sires and dams unrelated), each dam having p progeny, the 

expectation of [4] is equal to 

is (n-d*p) v a r ( a s ) + jj (SIE) var(ad) + var(^) [5] 
n-l n-1 

Family structures in later generations are more complicated due to 

covariances between sires and dams. We can write [4] more generally as 

n=! a'(I-ij)a - A a'Qa, with J being an n by n matrix with all elements 

equal to 1, and I is the identity matrix of order n. With no selection, the 

expectation of [4] is 

E ( < ) - A trOJA^o* [6] 

with At being the matrix with additive genetic relationships between animals 

in generation t. Sorensen and Kennedy (1984b) used a\ / a*(l-Ft) to indicate 

the reduction of genetic variance due to gametic disequilibrium. Ft 
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represented the average inbreeding coefficient in generation t. This ratio, 

however, does not adjust for an additional reduction due to covariances 

among animals. Therefore, we used a\ /„èjtrCQÂ aJ as a measure of disequi

librium due to selection. 

Estimation of Genetic Variance with Restricted Maximum Likelihood 

The following model was used for analysis of the data: 

y = Xb + Za + e [7] 

with E(y)- Xb 

var(a)- ka\ 

var(y)- V - Vxa\ + V0a* 

= ZAZ'a* + 1^1 

Mixed model equations after absorbing fixed effects are 

[Z'MZ +oA_1] â - Z'My [8] 

where M = I-X(X'X)~X' and a- a\/a\ 

We want to maximize the likelihood of the parameter vector r (=[<7J; a\\ ) in 

the space of error contrasts, hence maximize (r|K'y), where K'K- M. 

The log likelihood function of K'y can be written as (Searle, 1979; Smith 

and Gräser, 1986) : 

£(K'y)- constant + [N-rank(C)]loga* + qlogaj + log|C| + y'?y/o\, [9] 

where C is the full rank coefficient matrix of the mixed model equations 

before absorption of the fixed effects, q is equal to the number of random 

animal effects, and P - V"1 - V'^X'V^xrX'V"1. 

Procedures to determine the maximum of [9] have been presented by Gräser 

et al. (1987) and Meyer (1989). 

RESULTS 

Reduction of genetic variance due to selection 

To demonstrate the changes in genetic variance after selection in a 

small population, we show the mean variance at each generation averaged 

over 1000 replicates. Table 1 shows the results from random mating and 

47 



TABLE 1. Means (ät) and variances (o\ ) of true additive genetic values, 
expected variance, average inbreeding coefficient (Ft) and gametic 
disequilibrium (DE) averaged over 1000 replicates for 5 generations 
of random mating a. 

genera t ion â t 

0 - . 01 
1 - .02 
2 - .04 
3 - . 01 
4 - .03 
5 - . 01 

< 

10.03 (2 .92) d 

9.66 (2 .65) 
9.20 (2.69) 
8.91 (2.53) 
8.71 (2.57) 
8.46 (2.44) 

AtrtQAJa* b 

10.00 
9.49 
9.17 
8.93 
8.69 
8.47 

Ft 

.000 

.000 

.016 

.037 

.059 

.083 

DEC 

1.00 
1.02 
1.01 
1.00 
1.00 
1.00 

b 
initial genetic variance was 10 and each generation contained 40 animals 
expected variance after adjusting for covariances and inbreeding 
disequilibrium computed as a\ /nr1tr(QAt)a^ 

d empirical standard deviation 

TABLE 2.Means (a,.) and variances (a\ ) of true additive genetic values, 
expected variance, average inbreeding coefficient (Ft) and selection 
disequilibrium (DE) averaged over 1000 replicates for 10 genera
tions of selection a b. 

genera t ion a t 

0 .05 
1 .06 
2 1.31 
3 2.45 
4 3.55 
5 4 .65 
6 5.76 
7 6.81 
8 7.86 
9 8.86 
10 9.84 

< 

9.96 
9.37 
8.47 
8.05 
7.83 
7.59 
7.32 
7.10 
6.97 
6.80 
6.72 

( 2 .83) e 

(2.71) 
(2.34) 
(2.27) 
(2.07) 
(2.05) 
(1.79) 
(1.79) 
(1 .84) 
(1.83) 
(1.86) 

À t rCQAt ) ^ « 

10.00 
9.49 
9.14 
8.85 
8.64 
8.39 
8.17 
7.98 
7.76 
7.55 
7.37 

Ft 

.000 

.000 

.017 

.040 

.065 

.089 

.113 

.137 

.159 

.181 

.203 

DEd 

1.00 
.99 
. 93 
. 9 1 
. 9 1 
.90 
. 90 
.89 
.90 
. 90 
. 9 1 

initial genetic variance was 10 and each generation contained 40 animals 
five out of twenty males were selected each generation 
expected variance after adjusting for covariances and inbreeding 
disequilibrium computed as a\ /n=1tr(QAt)CTj 
empirical standard deviation from 1000 replicates 
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Table 2 shows these from selection in a population of size 40 (=2m). 

Mean additive genetic values were close to zero for all generations with 

random mating. The additive genetic variance declined due to the 

establishment of covariances between animals and an increase of the average 

inbreeding coefficient (Ft). The expected genetic variance according to 

[6] has been adjusted for both covariances and inbreeding. Deviations of 

DE from unity represented gametic disequilibrium. In case of no selection, 

this deviation is small and generated by chance only. Gametic equilibrium 

(or selection disequilibrium) has also been referred to as linkage 

disequilibrium, which we find a confusing term since loci are assumed to 

be unlinked. 

Table 2 shows the change of means and variance of additive genetic 

values for 5 generations with selection in the small population. There was 

a clear response to selection and the reduction of a\ was significant. As 

expected, the average inbreeding was somewhat higher with selection. The 

genetic variance decreased more compared to the situation with random 

mating. An additional decline of genetic variance was due to the establish

ment of disequilibrium. After some generations of selection, the coef

ficient for disequilibrium (DE) stabilized at a constant value because new 

disequilibrium and recombination offset each other. 

For infinite population size, the reduction of variance after 

truncation selection is equal to k- i(i-x) where x is the truncation point 

and i is the intensity of selection. Becker (1975) gives i- 1.27 and k-

.759 for a selected portion of 25Z. Selection intensities for small sample 

sizes can be derived from order statistics, e.g. i-1.2145 when selecting 

five out of twenty (Beyer, 1968; Becker, 1975). The effective selection 

intensity is further reduced when selection is on correlated variables. The 

first generation of our population consisted of five half-sib families and 

twenty full sib families with intraclass correlation equal to Hh2 and Hh2, 

respectively. From the selection response we can derive the obtained 

selection intensity to be equal to 1.12. This is in accordance with Table 

1 from Hill (1977). 

We used order statistics to compute the variance among a selected group 

as well. The variance among the five highest ranking out of twenty was 

20.72 of the variance before selection, giving k- .795. Apparently, the 

reduction of variance after selection in small samples is higher compared 
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to infinite population size. However, selection in small populations 

involves usually also selection on correlated variables because animals 

are more related to each other, and this gives a smaller reduction in 

genetic variance. Since values for DE had been corrected for covariances 

and inbreeding, we used a\ - DEtaJ in Bulmers' (1971) formula for an 

infinite population, 

a\ -><(l-kh2)^ + Hal + Hal , at "t-i "t-i V 

to derive empirically a k-value of about .6 for t- 2 and of about .5 in 

later generations. 

Estimation of genetic variance when data from selected animals are missing 

Genetic variance was estimated using different models and data sets. 

Average true genetic variances are given for one thousand replications for 

the small population (2m- 40) in Table 2 and for twenty replications for 

the large population (2m- 400) in Table 3. Selection response and effect 

of gametic disequilibrium on genetic variance was higher in the large 

population, due to the higher selection intensity. However, reduction of 

genetic variance was smaller because of less inbreeding in this population 

(Table 3). 

TABLE 3. Means (a,.) and variances (CTJ ) of true additive genetic values, 
expected variance, average inbreeding coefficient (Ft) and selection 
disequilibrium (DE) averaged over 20 replicates for 5 generations 
-jr _-•> _ _ . _ * _ _ a ta 

genera t ion 

1 
2 
3 
4 
5 

at 

.05 
1.90 
3.72 
5.47 
7.14 

alt n i 1 t r (QA t )a | « 

9.82 (1 .19) e 9.88 
8.92 ( .78) 9.79 
8.55 ( .76) 9.72 
8.19 ( .88) 9.61 
8.12 ( .79) 9.54 

Ft 

.000 

.005 

.013 

.020 

.027 

DEd 

.99 

.91 

.88 

.85 

.85 

a initial genetic variance was 10 and each generation contained 400 animals 
b Twenty out of 200 males were selected each generation. 
c expected variance after adjusting for covariances and inbreeding 
d disequilibrium computed as <jj /n=1tr(QAt)(7, 
* empirical standard deviation rrom 20 replicates 
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TABLE 4.Estimated genetic variance (o\) after omitting data from an 
increasing number of selected generations but including the 
complete relationship matrix. 

data used from a\ (small pop".) n a\ (large popb.) 

d gen 1-5 (all data) 9.81 (2.78)c 1000 10.09 ( .81) 
gen 2-5 9.49 (3.22) 997 9.90 ( .83) 
gen 3-5 9.54 (3.83) 980 9.58 (1.17) 
gen 4-5 9.60 (4.76) 901 8.93 (1.94) 

a Five out of twenty males were selected each generation 
b Twenty out of 200 males were selected each generation 
c empirical standard deviations from n replicates 
d empirical standard deviations from 20 replicates 

Estimated additive genetic variances by subsequently omitting data from 

parental generations are given for the two populations in Table 4. Some of 

the replicates for the small population did not converge to a solution and 

the estimate for a\ approached 0. Those replicates were omitted for 

calculating the mean result. 

The estimate of additive genetic variance using REML was close to the 

initial value when all data and the complete relationships matrix were used 

(Table 4). This agrees with the result of REML accounting for selection 

using the complete mixed model (Sorensen and Kennedy, 1984b;, Gianola and 

Fernando, 1986). 

Subsequently omitting data in the small population from generations 1, 

1 to 2 and 1 to 3, gave estimates for a\ equal to 9.49, 9.54, and 9.60, 

respectively (Table 4). This suggests that the relationships matrix ac

counted for most of the selection, even though the analysis did not include 

records on which selection decisions had been based. The empirical standard 

deviation of the estimates increased considerably, however, when data were 

omitted from the analysis. Omitting data from selected generations in the 

large population had more effect on the mean estimated genetic variance; 

estimates of a\ decreased more when data from more previous generations were 

omitted. Decrease of mean estimate was also larger when considered in 

proportion to the higher coefficient of disequilibrium for the large 

population. 

Table 5 shows the effect of assuming generation 5 as the base population 
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(unselected, unrelated and non-inbred). Note that In this case the assumed 

base population had a smaller variance than twice the variance generated 

by Mendelian Sampling. The genetic variance was estimated omitting data 

from subsequent generations. Omitting data had little effect on the mean 

estimate. Similar results were found when generation 6 was assumed to be 

the base generation. Adding data from more subsequent generations affected 

estimate of genetic variance in terms of standard error, but not in terms 

of the mean. Notice that with data from generation 6 and 7, and considering 

generation 6 as the base, an estimate was obtained, which was higher than 

a\ . This is not in agreement with the result of Sorensen and Kennedy 
6 

(1984b). 

TABLE 5.Estimated genetic variance (o\) after omitting data from an 
increasing number of selected generations for a given set of 
covariances between animals °. 

data used from base generation11 

gen 9-10 
gen 8-10 
gen 7-10 
gen 6-10 

gen 6-7 
gen 6-8 
gen 6-9 
gen 6-10 

5 
5 
5 
5 

6 
6 
6 
6 

8.56 (4.29)c 

8.15 (3.42) 
8.20 (2.84) 
8.30 (2.42) 

7.81 (3.85) 
7.78 (3.21) 
7.80 (2.61) 
7.92 (2.31) 

855 
973 
990 
999 

918 
982 
994 

1000 

• Five out of twenty males were selected each generation 
b Generation assumed to consist of unrelated, non-inbred and unselected 

animals 
empirical standard deviation from n replicates 

Including additional relationships between base animals 

Usually in data analysis, an arbitrary generation is treated as 

consisting of unselected, unrelated and noninbred base animals. Results 

from Table 5 suggest that bias from prior selection could be (partly) 

removed when relationships between these assumed base animals are included 

in the model. The effect of including relationships established in earlier 
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generations is shown in Tables 6 and 7 for the small and the large popula

tion, respectively. Data were used from animals of two generations and 

relationships known from an increasing number of previous generations were 

included. 

Estimates of genetic variance were higher than the true variance of the 

TABLE 6.Estimated genetic variance (a\) using data from two selected 
generations and including the relationships generated from a 
various number of generations a. 

data from 

gen 4-5 
gen 4-5 
gen 4-5 
gen 4-5 

gen 9-10 
gen 9-10 
gen 9-10 
gen 9-10 

base gen.b 

3 
2 
1 
0 

8 
7 
6 
5 

o\ 

8.71 
9.05 
9.34 
9.60 

7.76 
8.07 
8.33 
8.56 

(4.33)d 

(4.56) 
(4.68) 
(4.76) 

(3.97) 
(4.08) 
(4.19) 
(4.29) 

bias(X)c 

-7.3 
-5.9 
-5.6 
-4.6 

-7.4 
-7.1 
-7.5 
-6.3 

n 

924 
892 
896 
901 

903 
864 
859 
855 

* Five out of twenty males were selected each generation 
b Generation assumed to consist of unrelated, non-inbred and unselected 

animals 
c reference values computed as a\ for the case of no selection 
d empirical standard deviation from n replicates 

TABLE 7.Estimated genetic variance (ôj) using data from generations 4 and 
5 and including the relationships generated from an increasing 
number of generations a. 

base generationb bias(%)° 

8.58 (1.87)d 

8.75 (1.91) 
8.87 (1.93) 
8.93 (1.94) 

-12.3 
-10.6 

-9.8 
-9.8 

a Twenty out of 200 males were selected each generation 
b Generation assumed to consist of unrelated, non-inbred and unselected 

animals 
c reference values computed as a\ for the case of no selection. 
d empirical standard deviations from 20 replicates 
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assumed base population. Estimates were compared with values, that 

werecomputed using the same model, but with data obtained for the case of 

no selection of males. Results indicate that adding additional relation

ships between base animals accounted for covarlances and inbreeding. Table 

6 shows that estimates generally are only slightly less biased by disequi

librium from selection, when additional relationships between the assumed 

base animals are included. 

In the large population there was less accumulation of inbreeding and 

the effect of including more relationships was smaller (Table 7). However, 

the bias from gametic disequilibrium was larger than in the small 

population. This bias was only slightly reduced by including additional 

relationships between base animals. 

DISCUSSION 

We considered selection for a metric trait, which is equally affected 

by many unlinked loci. The change of genetic variance due to changes in 

gene frequencies is small and can be ignored in such an infinitesimal 

model. 

Changes due to inbreeding are irreversible. However, the coefficient of 

inbreeding is only a relative measure, i.e. a base population is a 

population that has by definition an average inbreeding coefficient of zero 

(Falconer, 1989). In practice, choosing a generation is arbitrary and 

accounting for inbreeding in previous generations does not provide 

estimates that are better able to predict future genetic gain because newly 

generated Mendelian Sampling variance will consistently be reduced through 

inbreeding. 

Bulmer (1971) has pointed out that gametic disequilibrium vanishes after 

selection is ceased. Moreover, the variance that is generated at each 

generation by recombination is not affected by disequilibrium. Estimates 

of genetic variance should therefore be corrected for the effect of 

disequilibrium. 

Robertson (1977) indicated that estimates of genetic variance based on 

half and full-sib analysis will be biased due to a reduction of genetic 

variance among selected parents. Parent-offspring regression is not 

54 



affected by this type of selection (Hill and Thompson, 1977). A maximum 

likelihood estimator, like REML, combines information from contrasts within 

a generation, with parent offspring covariances and with information from 

contrasts between families (i.e. between base parents) (Thompson, 1977). 

Little is known about the weighing of information from these different 

sources. It was empirically shown in this study that the mean estimate of 

additive genetic variance was primarily determined by the generation that 

was assumed to be the base generation (Tables 5 to 7). This is supported 

by results from Table 5, which show no change in mean estimate when 

information on more subsequent generations is available to estimate 

variance from Mendelian sampling. However, this result needs theoretical 

verification. 

REML using all relationships and all data, has been shown to account for 

all selection. The argument, that accounting for selection is possible only 

when all data is used (Gianola and Fernando, 1986), has been demonstrated 

for sequential selection within a generation, or with selection on a 

correlated trait (Meyer and Thompson, 1984). However, some of the genetic 

variance lost through selection is regained at each generation through gene 

segregation during meiosis (Mendelian sampling). Contributions from 

selected parents and those due to the Mendelian recombination can be 

treated as random and independently acting terms. Thompson (1977) has shown 

the contributions of parental generations acting on the total additive 

genetic variance. 

Let us consider to have data on generation 2 and at least one later 

generation. If we assume the covariance between sires and dams can be 

ignored, the variance in generation 2 can be written as 

var(a2) - Vvar(a, ) + War(ad ) + var(^2) [10] 

The variance in this generation is reduced due to selection of their sires 

only. Other terms are not affected by selection. Selection is on records 

from sires in generation 1, which is ys - n+ as + ex - ft+ 4as + 4ad + ̂ s 

+ ex (subscripts refer to the generation number). Assuming normality, the 

variance of the genetic variables after selection on ys is 

Hs- H-BP-1(I-P"lPs)B' (Pearson, 1903), with 
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-

h 

*i 

4 

P= var(yi) and Ps= (l-k)P. Then 

^-{6kh2 

4ekh2 

-èkh2 

4ekh2 

Mskh2 

-èkh2 

-Ikh2 

-èkh2 

^-*skh2 

[11] 

Note that the variance of as after selection is l'Hsl = (l-kh2)a2, 

which is equal to what was predicted by Bulmer (1971). From [11] it can be 

seen that the Bulmer effect, i.e. the reduction of genetic variance after 

selection, is due to the reduction of variance of each of the components 

of the total genetic variance, and, moreover, due to negative covariances 

between these components. In genetic terms this has been referred to as ' 

negative covariances between loci' (Bulmer, 1971). 

Eventhough the variance among the sires of generation 2 is reduced by 

kh2(72, the observed bias in estimation of genetic variance, using data from 

generation 2, was smaller than -*<kh2a2. Estimated values were 9.64 and 9.93 

for the small and for the large population, respectively. A mixed model, 

explaining the breeding values in terms of genetic values of parental 

generations, reduces bias from the Bulmer effect, since it does not include 

covariances between these parental contributions. Note that the sum of the 

diagonal elements of [11] is equal to (1-.375kh2)a2, rather than l-kh2a2. 

In the large population the bias from selection was considerably greater 

when data from more generations were omitted, even when the complete 

relationship matrix was used. After repeated cycles of selection, expres

sion [11] consists of more ancestral contributions, which are redundantly 

affected by selection, e.g. the sum of all diagonal elements after 
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selection on y2 would be (l-.45kh2). Bias from disequilibrium was small in 

the small population, and the difference with bias in the large population 

was not in proportion to the difference in coefficient for disequilibrium. 

Apparently, the effect of selection on different genetic components is 

dependent on the population size, e.g. in the small population, there is 

a greater chance of selecting related animals (Robertson, 1961), and the 

variance among Mendelian sampling terms is relatively not as much reduced. 

This tendency towards 'family selection' is greater when selection was on 

estimated breeding values using an animal model. 

IMPLICATIONS 

Including additional relationships between the assumed base animals 

accounted for covariances and inbreeding, and partly for bias from gametic 

disequilibrium as well. Relationships accounted for more bias from gametic 

disequilibrium when selection had been practiced for just a few genera

tions, or when the population size was small. The mean estimate of additive 

genetic variance was primarily determined by which generation was assumed 

as unrelated, noninbred and unselected and having more subsequent 

generations with data did not affect the mean estimates. Variance 

components used for animal evaluation should be estimated with a model that 

coincides with the same base population, possibly even with different 

values for the components of variance between selected base animals, and 

variance within families. Estimates of genetic variance to determine 

expected genetic progress are less biased by covariances and gametic 

disequilibrium, when more relationships are included in the model. 
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ABSTRACT 

A method to estimate genetic parameters conditional to selection occuring 

before formation of the base population was investigated. The method 

assumes base parents as fixed and a conditional variance is based upon the 

Mendelian sampling of gametes from the base parents. In a simulation study, 

s sires were selected and each was mated to m/s females to create 2m 

animals for the next generation. Selection was for five generations but 

only animals of generations 4 and 5 were assumed to have performance 

records and parents known. Simulated values for additive genetic and 

residual variance were 10. When s-20 and m-200, estimated genetic variance 

was 8.58 when base animals were assumed random, and it was 6.03 when they 

were fixed. Residual variance was overestimated in the latter case. When 

males of generation 4 were not selected to have progeny, estimated genetic 

variance was 9.91. It was concluded that estimates for genetic parameters 

with the conditional model were not biased by selection of base animals. 

However, the model introduced a new bias when descendants of base animals 

were selected to have progeny. 

INTRODUCTION 

Directional selection decreases the additive genetic variance due to the 

establishment of covariances between animals, inbreeding and gametic 

disequilibrium (Sorensen and Kennedy, 1984; Van der Werf and De Boer, 

1990). A mixed model accounts for the change of variance when additive 

genetic relationships are known, tieing animals back to a certain base 

population that consists of unrelated, unselected and noninbred animals 

(Sorensen and Kennedy, 1984). However, data used for estimation of genetic 

parameters arise generally from recording during a limited time period and 

a group of animals with unknown parents is treated as the base population. 

Therefore, base population animals may be selected and estimates of genetic 

variance, ignoring the history of data and pedigree, may be influenced by 

selection of ancestors (Van der Werf and De Boer, 1990). 

Henderson (1985, 1988) proposed to apply a 'conditional relationships 

matrix' to account for selected base populations. Gräser et al (1987) have 
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suggested to treat base animals as fixed and to estimate genetic variance 

independent from the variance among selected base animals. The latter 

procedure is in effect equivalent to that of Henderson, but the approach 

is more tractable from a genetic point of view. Gräser et al. (1987) 

divided the genetic variance into a part coming from variance between 

selected base animals and a part due to Mendelian Sampling. The method uses 

the fact that variance from Mendelian Sampling is assumed to be not 

affected by prior selection (Bulmer, 1971). 

The statistical and genetic properties of the conditional model proposed 

by Gräser et al. (1987) have not been extensively investigated. The authors 

used actual data on beef cattle, but they did not find significantly 

different results compared to a method treating base animals as random. A 

comparison based on simulated data was performed in this study because true 

variances as well as selection differentials are known. The method treating 

base animals as fixed was also applied to first lactation production 

records of Dutch Black and White dairy cows. Heritabilities from previous 

analysis of this data were suspected to be biased by selection of base 

sires, when a model with random base animals were used (Van der Werf and 

De Boer, 1989). A comparison with a conditional model was used to test this 

hypothesis. 

MATERIAL 

Simulated data 

A Monte Carlo simulation study was carried out as described by Van der 

Werf and De Boer (1990), considering a trait that was affected by a large 

number of loci. A base generation (generation 0) of s males and m females, 

all assumed unrelated and unselected, was mated at random to produce m 

males and m females. In each of the subsequent generations, the s 

phenotypically best males were selected and each of them was mated to m/s 

females. Animals were only mated within generation and the only fixed 

effect simulated was the mean. Two random effects were simulated; an 

additive genetic and a residual effect, both distributed as N[0,10]. 

Additive genetic values for animals not belonging to the base generation 

were ; 
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ai= ^as, + W + 4>L [1] 

where Sĵ  is the sire, d1 is the dam, and 4>i. can be seen as a random variable 

representing Mendelian sampling, 

with 

and 

4.i - N[0, var(^)] 

var(^)= lj[l-li(F,+ Ti)}a\ 

with Fs and Fd being inbreeding coefficients of sire and dam, respectively. 

Two population sizes were simulated to vary inbreeding and selection 

intensities. Parameters were s— 5 and m- 20 for population A, and s- 20 and 

m- 200 for population B. The total number of generations simulated was 10 

for A and 5 for B. 

METHODS 

Accounting for selected base animals 

Consider a data vector 

y- Xß+ Za+ e, [2] 

with ß,a and e being vectors of fixed effects, breeding values and residual 

effects, respectively. The matrices X and Z are design matrices. Breeding 

values can be expressed according to [1] in terms of contributions from 

parents, and a random term due to Mendelian sampling. Gräser et al. (1987) 

partitioned a vector with breeding values in ab for base animals (which they 

assumed unrelated) and ar as a vector of random additive values for 

descendents of the base animals. In matrix notation, [1] is expressed as, 

I 0 

P2I P22 

[3] 

where P21 and P22 are submatrices with each row having one half in the colomn 

for each of its two parents. The mixed model can be written as 
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y=- Xß + Zjab + Z2ar + e [4] 

with 

ar= (I-P22)-1P21ab+ ( I - F J J ) - V , [5] 

Note t h a t ( I - P^ ) " 1 e x i s t s because the d iagonals of P22 a re a l l zero and each 

row has only two non-zero e lements . Gräser e t a l . (1987) have w r i t t e n [4] 

as 

y - Xfl + [Zj + Z2Q]ab + Z2s* + e. [6] 

with Q- a-v22y
lv21 

s*- ( I - P 2 2 ) - ^ . 

Gräser et al. (1987) assumed that if additive genetic values of the base 

animals (ab) are treated as fixed the variances can be written as: 

var(y)= Z2var(s*)Z2 + var(e) 

and var(s*)- (I-P22)-1D((I-P22)')-1a2 - Ga\ [7] 

with Do, - var(#), a diagonal matrix. 

The matrix Q is what Quaas (1988) called a 'base ancestor- descendant' 

matrix and s* can be seen as genetic values for animals with records after 

correction for the breeding values of their parents. 

Gräser et al. (1987) have given suggestions for a 'derivative free' 

maximization of the likelihood function for [6]. Quaas (1984) has proposed 

an equivalent model to [2]. This model has been often used in algorithms 

for variance component estimation that utilize a tridiagonalization of the 

coefficient matrix (Meyer, 1986). It is presented here to show how the 

equations for a conditional model can be set up for those algoritms. 

Let A be the matrix containing the additive genetic relationships 

between animals. The matrix A has been written as IX' (Quaas 1976, 1984). 

we can also partition L in unrelated base animals, and their offspring; 

I 0 

(I-F22)"1r2i (I-Pa)" 1 ^ 

[8] 
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where the diagonals of D* contain d* and in our notation this is equal to; 

I 0 

Q G% 
[9] 

Analogously to Quaas (1984) we can write [6] as 

y= Xß + [Zj + Z2Q]ab + Z2G*0 + e. 

which we write as y- Xß + Wab + Z*6 + e. [10] 

where 0= G~*s*- D"V- Notice that var(0)- IrcJ, where Ir is an identity matrix 

of order r, and 6 represents a vector with Mendelian sampling variables, 

standardized to having a variance of a\. The variance of y is 

V= Wvar(ab)W' + Z*var(0)Z*' + var(e) 

When base animals are unselected, unrelated and noninbred, var(ab)= IbaJ 

where a\ is the additive genetic variance in absence of selection. It can 

easily be verified that in case of no selection V- (WW'+ Z*Z*' )a\ + ïna\ -

ZAZ'CT, + I„CTg, what is generally assumed. However, when base animals are 

selected, var(ab)- SXha\ with 5<1 whereas var(0)- Ir
CTa is n o t affected by 

selection. The genetic variance unaffected by selection can be computed by 

REML as the variance of random breeding values, conditional upon effects 

of selected parents the base generation. Now, since cov(ab,y)= SVa\ and 

var(ab)- Slha\, the variance of y conditional upon ab is 

var(y|ab) - V - WW'Sa\ 

- Z*Z*'o\ + lol 

Analogously to Gräser et al. (1987), when ab is assumed fixed, the variance 

of y can be written as; 

var(y)- var(s*)+ var(e) 
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var(y)= Z'Z*'a\ + ïa\ 

The mixed model equations for [10] assuming ab fixed, are 

X'X 

W'X 

Z*'X 

X'W 

WW 

z*'w 

1 
X'Z* 

WZ* 

Z * ' Z * + Q I 

r -] 
ß 

âb 

9 

-

r "I 
X'y 

W'y 

Z*'y 

[11] 

Mixed model equations according to [11] are exactly the equivalent mixed 

model equations as proposed by Quaas(1984) except for not adding a (= a\/a\) 

to the diagonal of the base animals in [11]. Equations [11] were applied 

to a sire model in this study to analyze milk production data. In ehe sire 

model, the vector a was replaced by a vector of sire effects, and a\ was 

replaced by the sire variance. 

Equations [11] are not advantageous for variance component estimation 

with an animal model using a so called 'derivative free algorithm' (Meyer, 

1989). In that case tridiagonalization is not used, and for very large 

pedigrees it is not easy to set up W W . Modified equations can be derived 

from [11], as indicated by Gräser et al. (1987). Using 

I 0 

0 I 

0 -G"%Q 

0 

0 

G"* 

[11] can be modified by premultiplying both sides of the equations by B and 

inserting B'(B')"1 between the coefficient matrix and the solution vector. 

The equations obtained are, 

[12] 

X'X 

zjx 

Z2X 

X'Zi 

ZJZj -hxQ'G^Q 

-aG_1Q 

X'Z2 

-aQ'G"1 

Z^+aG" 1 

ß 

«b 

âr 

-

X'y 

Zi 'y 

z 2 ' y 
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which are mixed model equations for [A], treating ab as fixed. Equations 

[12] can be rapidly constructed using the well known rules to set up the 

inverse of the relationships matrix (Quaas, 1976). This is easily seen by 

showing that 

L-1-
I 

-G~%Q 

0 

G-* 

and 

A"1- L-'L"1» 
I+Q'G_1Q 

-G^Q 

-Q'G"1 

Analysis of simulated data 

Mixed linear models were used for data analysis and Restricted Maximum 

Likelihood was used to estimate components of variance. To estimate 

additive genetic variance, records from selected generations were used and 

pedigree information was assumed known back to one previous generation 

only. An animal model was applied to the simulated data set and the maximum 

likelihood was determined with a derivative free approach (Gräser et al. , 

1987; Meyer, 1989). The likelihood equation evaluated was 

L- -h[(N-rank(C))logâ2 + log|c| + qlogâ* + y'Py/â* [13] 

with N being the number of observations, |c| is the determinant of the full 

rank coefficientmatrix for the mixed model equations according to the 

applied model, q is the number of random levels in a and P = V"1-V"1X(X'V" 

1X)'X'V'1. The term yP'y is a quadratic to estimate the residual variance 

and is equal to y'(y- Xfl- Za). 

Data sets were created from animals with selected base parents. We 

considered data from generations 4 and 5 (or 9 and 10) , with pedigree 

information known back to the previous generation only. An analysis with 
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all breeding values assumed random was compared with an analysis treating 

breeding values of the base sires as fixed effects. In the likelihood 

function [13], C and q are replaced by C* and qr, representing the 

coefficientmatrix of [12] and the number of random levels in ar, respective

ly. Because family sizes were small in the population A, dams were treated 

as unrelated and unselected random base animals to avoid too many fixed 

effects in the model. In fact, the derivative free algoritm did not 

converge to a constant value for a\/a\ in most of the samples of population 

A, when all base animals were treated as fixed. In populations B sires, as 

well as dams were treated as fixed. 

RESULTS 

In Table 1 the average results from 1000 replicates of simulation of 

population A are shown. The genetic variance within generations decreased 

from 10 to 6.67 due to inbreeding and gametic disequilibrium after 10 

generations of selection in the small population. Genetic variance was 8.03 

at generation 3 and 7.02 at generation 8. Genetic variance at generation 

t was defined as (at'at-nât)/(n-l), where at is a n*l vector with breeeding 

values of animals in the tth generation. More results of this simulation 

were described by Van der Werf and De Boer (1990). 

The result of estimating genetic variance using only records from 

generations 4 and 5, and assuming generation 3 as base animals, are shown 

in Table 2. The estimate of genetic variance (ajj) was 8.71 in the small 

population (A), when considering base animals as random. Using the same 

dataset, but treating base sires as fixed, gave an estimate for a\ of 9.38, 

which underestimated the true value of 10. Using data from generations 8 

and 9 an estimate of 7.76 when generation 8 was considered as a random 

base, and the estimate was 8.77 when the same animals were treated as 

fixed. 

The derivative free REML algorithm did not converge in about 9% of the 

replicates for population A. Due to the small sample sizes there was a 

greater chance of the within family variance being smaller than the between 

family variance. In all cases, the genetic variance adapted small values 

(<1) with further iteration. Those replicates were discarded from 
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TABLE 1.Means (ät) and variances (o\ ) of true additive genetic values, 
average inbreeding coefficient (FJ,) for several generations in a small 
and a large population a. 

generation ât a\ Ft 

small population1" (1000 replicates) 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

.05 

.06 
1.31 
2.45 
3.55 
4.65 
5.76 
6.81 
7.86 
8.86 
9.84 

9.96 (2.83)d 

9.37 (2.71) 
8.47 (2.34) 
8.05 (2.27) 
7.83 (2.07) 

59 (2.05) 
32 (1.79) 
10 (1.79) 
97 (1.84) 
80 (1.83) 
72 (1.86) 

.000 

.000 

.017 

.040 

.065 

.089 

.113 

.137 

.159 

.181 

.203 

large population0 

1 
2 
3 
4 
5 

(20 replicates) 
.05 

1.90 
3.72 
5.47 
7.14 

9.82 (1.19) 
8.92 ( .78) 
8.55 ( .76) 
8.19 ( .88) 
8.12 ( .79) 

.000 

.005 

.013 

.020 

.027 

a initial genetic variance was 10 
b five out of twenty males were selected each generation 
0 twenty out of 200 males were selected each generation. 
d empirical standard deviation 

TABLE 2.Estimated genetic variance (a\) using simulated data from selected 
generations of different populations and using a model treating 
base animals as random or as fixed a. 

Pop 

Ab 

A 
A 
A 

Bc 

B 
B 

data (gen) 

4-5 
4-5 
9-10 
9-10 

4-5 
4-5 
4-5 

base generation 

3 random 
3 sires fixed 
8 random 
8 sires fixed 

3 random 
3 sires fixed 
3 sires +dams fix. 

n 

924 
872 
903 
865 

20 
20 
18 

o\ 

8.71 
9.38 
7.76 
8.77 

8.58 
9.14 
6.03 

(4.33)" 
(4.95) 
(3.97) 
(4.75) 

(1.86) 
(2.26) 
(2.14) 

o\ 

10.17 
10.04 
10.00 
9.69 

10.44 
10.19 
11.77 

" initial genetic and residual variance was 10 
b five out of twenty males were selected each generation 
c twenty out of 200 males were selected each generation 
d empirical standard deviations from n replicates 
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determination of the mean estimate. Empirical standard deviations were 

calculated over valid replicates and appeared to be 15 to 20% higher when 

sires were treated as fixed. 

Estimates were expected to be affected by the average inbreeding coeffi

cient of the base animals, since the model assumes non-inbred base animals. 

We expected additionally a downward bias from the assumption of dams being 

random and unselected. Such expected values would therefore be a function 

of the terms (1-Fbase)a| and a\ . Those terms were equal to 9.6 and 8.05, 

respectively, when animals from generation 3 were the base, and the 

estimate was 9.38. The same values were 8.41 and 6.97, respectively, when 

the base is at generation 8, wereas the estimate was 8.77. Hence, the 

estimate of genetic variance was higher than expected, and the estimate of 

the residual variance was lower than 10 in the small population using a 

model with fixed sires. 

Table 2 also shows the estimates for the population B with 200 females 

per generation. Average inbreeding coefficient at generation 3 was 0.012. 

Genetic variance among animals of generation 3 was 8.53. Estimating genetic 

variance and only treating sires as fixed resulted in 9.14. The estimate 

from a model treating both base-sires and -dams as fixed was much lower; 

6.03 for population B. The estimate with all base animals fixed was 

therefore significantly lower than 2 times the Mendelian Sampling variance 

at generation 4, which was 9.88 for population B. Estimates of residual 

variance were higher than the simulated value of 10. 

To study further the large bias observed in the large population, a data 

set with records only from the first two generations was analysed. Note 

that base animals from generation 0 were noninbred and unselected. Results 

are shown in Table 3, indicating that estimates for genetic variance were 

also biased when a conditional model and data from generations 1 and 2 was 

used. Apparently, having a selected base population was not the cause of 

bias in the conditional model. 

We also analysed data for the case of no selection of parents to have 

progeny. Results from no selection, however, were not biased, indicating 

that selection of animals with records did cause biased estimates. This was 

even more clearly demonstrated in a simulation, in which parents with 

records known were randomly chosen, but those from previous generations had 

been selected. Analyzing records from generations 4 and 5, and selecting 
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1-2 
1-2 
4 - 5 
4 - 5 

9.97 (1 .80) c 

6.51 (3.00) 
8.58 (1.87) 
6.03 (2.14) 

10.17 
11.79 
10.44 
11.77 

1-2 
1-2 
4 - 5 
4 - 5 

9.92 (1.76) 
9.95 (4.16) 
9.79 (2.18) 

10.08 (3.81) 

10.35 
10.26 
10.01 
9.83 

TABLE 3.Estimated genetic variance {a\) using simulated data from selected 
generations with varying heritabilty and a model treating base 
animals as fixed " b. 

base gen. data (gen) a\ a\ 

selection 

0 random 
0 fixed 
3 random 
3 fixed 

no selection 

0 random 
0 fixed 
3 random 
3 fixed 

selection, except in generation 4 

3 fixed 4-5 9.91 (3.77) 9.93 

a initial genetic variance was 10 
b twenty out of 200 males were selected each generation 
0 empirical standard deviations from n replicates 

parents, except in generation 4, gave an unbiased estimate of genetic and 

residual variance (Table 3). Hence, the conditional model accounted for 

previous selection before forming the base generation, but estimates were 

biased when animals with records were selected. 

Bias from a model with fixed base animals reduced, when more generations 

had data (Table 4). Bias from analysis of a data set with base animals 

having records was similar to the case when these records were omitted, 

but emperical standard errors were slightly lower (Table 4) . Note that the 

term ho\+ o\ was always close to 15. This terms represents the 'within 

family variance' or, with more generations, the total variance given the 

variance among base animals. This estimate was rather robust to the models 

and data sets used. 
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TABLE 4.Estimated genetic variance (ö\) using simulated data from different 
selected generations and a model treating base animals as fixed " 
b 

data (gen) base gen. a\ a\ 

4-5 3 
3-5 2 
2-5 1 
1-5 0 

4-5 3 
3-4 2 
2-3 1 
1-2 0 

including records from base animals 

6.03 (2.14)° 
8.28 (1.79) 
8.96 (1.23) 
9.24 (0.99) 

6.03 (2.14) 
7.94 (2.72) 
7.05 (3.45) 
6.51 (3.00) 

11.77 
10.76 
10.49 
10.34 

11.77 
10.99 
11.47 
11.79 

(3) 4-5 3 
(2) 3-5 2 
(1) 2-5 1 

6.02 (1.94) 
8.37 (1.60) 
8.93 (1.14) 

11.87 
10.82 
10.59 

a Initial genetic and residual variance was 10 
b Twenty out of 200 males were selected each generation 
c Empirical standard deviations from n replicates 
d Data on parents only for the generation between brackets. 

DISCUSSION 

Properties of the conditional model 

When only base sires were treated as fixed, the procedure of Graser et 

al. (1987) seemed to reduce the bias in o\ considerably, by applying a 

different model to the same information on data and pedigree (Table 2). 

However, treating all base animals as fixed gave an estimate of genetic 

variance which was much lower than two times the variance of Mendelian 

Sampling in generation 4; the component that was assumed to be estimated. 

Dams were nested within sires. Therefore, to create a full rank 

coefficient matrix in [1] , equations for sires and for it were set to zero 

in a model treating base animals fixed. It should be noted that the 

procedure of Gräser et al. (1987) can not be applied to an animal model 

with single records available on animals from one generation only, since 

there is no covariance between animals within full sib classes after 
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correction for family effects. 

Estimates of effects of base dams, when fixed and nested within sires, 

can be seen as estimates of family means. The variance of the random 

genetic component is then derived from deviations from family means. Çurnow 

(1961) has shown that the log-likelihood can be written as the sum of the 

log-likelihood of parental values (yb) plus the log-likelihood of offspring 

values given parental values (zp). However, offspring values were derived 

from offspring records deviated from a regression of parental values on 

offspring values (zp= yp- [cov(yb,yp)/ var(yb) ]yb). When base animals are 

taken as fixed, the deviations considered are zp- yp- 4yb and therefore 

parent offspring regressions may not be appropriate. 

The following example, suggested by Thompson (1989, personal communica

tion), shows how fixed base animals can lead to biased estimates. Suppose 

records are available only on females from two generations (1 and 2) and 

no male pedigree known. Furthermore, dams from generation 0 are base dams 

and they each have one female offspring. Dams from generation 1 are 

selected and have n offspring each. If base dams are assumed fixed, there 

are only two contrasts that provide information about the variance 

components : the within family variance is derived from the contrast (y2 

- y2 ) , estimating ajj - a\ + .75 a\. The other quadratic is based upon 

contrasts between family means, corrected for the fixed effect of the base 

dam; it uses (y2 - Hy^ ) . Let the variance of selected 1st generation dams 

with progeny be kapl, and a\x is the genetic variance in that generation, 

which is reduced due to selection of base parents (gen 0). The term (y2 

*sŷ  ) can also be written as (-H(l-hj)y^ + e2i ) , where 4hf is the 

regression of y^ on y^ • '^ie variance of (-*4(l-hi)ŷ  + ê21 ) is k(l-

hf)2var(y^ ) + <7*/n + Ho^ (1-hJ) , and it can be shown that this is equal 

to ffj/n + kcal, with c- (kag+aj^/ffpj. Hence, estimates are not biased by 

variance among base dams, since a\x does not appear in the expectations. 

However, when there is selection in generation 1, c becomes smaller than 

1 and the residual variance will be underestimated and consequently the 

estimate of a\ will be biased upward. This result was confirmed by a 

simulation with 200 dams in generations 0 (no records), and selecting 100 

dams (out of 200) in generation 1 to have 4 progeny each. The estimate of 

a\ (100 replicates), considering base dams fixed, was 0.692 times the true 

value. If base dams were not fixed, information of unselected dams about 
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the selected dam mean could be used to account for this selection 

(Thompson, 1973; 1976). 

The example with one sex recorded was an easy structure, and used to 

show that in a conditional model the expectations can be biased by 

selection of progeny from fixed base animals. Magnitude and sign of bias 

are not general but depend on population structure, parameters and 

selection intensity. In the population simulated in this study, records 

were known for two sexes. In a hierarchical structure with two sexes known, 

there are three quadratics available to estimate variance components ; the 

within family variance, the variance among full sib groups within half sib 

groups, and the variance among half sib groups. It is difficult to derive 

a general formula for the bias for more complicated structures. Results 

from simulation with two base parents fixed showed an under- rather than 

overestimation of the genetic variance (Table 4). The bias decreased with 

a higher heritability, and with the number of base sires in generation 0 

smaller than 20 (Table 5). 

With no selection and no inbreeding, the variance among the components 

of genetic variance is assumed to be constant, i.e. V(sires): V(dams): 

V(Mendelian Sampling)— Sa: Sd: 5m= .5: .5: 1. The variance among sires and 

among dams will be reduced by selection of parents and grandparents.There -

fore, we assumed in an alternative analysis a fixed ratio between the three 

components of additive genetic variance. For example assuming a reduction 

TABLE 5.Estimated genetic variance {o\) using simulated data from selected 
generations with varying number of base sires and varying 
heritability and a model treating base animals as fixed a b. 

no. 
20 
10 
1 

heri 
.50 
.80 

data (gen) 

of base sires(ns), h2= 
1-2 
1-2 
1-2 

tability, ns-20 
1-2 
1-2 

base 

.50 
0 
0 
0 

0 
0 

gen. ôl 

6.51 (3.00) 
7.34 (3.90) 
7.73 (3.82) 

6.51 (3.00) 
8.95 (1.99) 

11 
11 
11 

11 
3 

79 
64 
36 

79 
00 

a Initial genetic variance was 10 
b ns out of 200 males were selected each generation 
c empirical standard deviations from n replicates 
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TABLE 6.Estimated genetic variance (âj) using simulated data from selected 
generations b and a model assuming a fixed ratio between different 
components of genetic variance. 

r a t i on 
v s • v d • vm 

.3 : . 4 : 1 

.25 : . 5 : 1 

n 

20 
20 

o\ 

9.71 (1 .97) c 

8.74 (1.86) 

o\ 

9.99 
10.34 

a Vs, Vd and Vm- variance among sires, dams and among Mendelian sampling 
terms, respectively. 

b Data used from generations 4 and 5 of population B assuming generation 
3 as base. 

c Emperical standard error between brackets. 

of variance among sires of 50% would give a ratio of Ss: Sd: 6m=.25: .5 : 

1. A better approximation of the true ratio for the animals of generation 

4 was assumed to be .3: .4: 1. Operationally we added in [12] a/Ss to the 

diagonals for sires and a/8d to the diagonals for dams in ab. Results in 

Table 6 show that assuming a reduced variance among base animals gave a 

better estimate of the additive genetic variance than treating base animals 

as fixed. Bias of estimated variances was smaller when the assumed 

parameter ratio approached the true values more accurately. 

Comparison with Westell grouping 

Henderson (1988) has shovm a more general way to account for selected base 

populations. He described selection on a vector of breeding values as M'a, 

and proposed to account for this kind of selection by substracting 

aM(M'AM)"1M' from the random part of the mixed model equations (Z'Z+ aA"1). 

Considering selection on base animals as selection on 

M'a-[Mb 0] 
a„ 

a term of aMb^'A^M,,)"1!!,,' would be subtracted from the partition of base 

animals from the coefficient matrix. Henderson remarked that assuming base 

animals as fixed is equal to assuming Mb—I and a(Ab b)_ 1- alb would be 

subtracted from the diagonal block pertaining to base animals, which gives 

equation [12]. 
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Henderson (1988) indicated that to predict random effects his M'a 

selection could also be accomodated with a 'phantom grouping' strategy as 

proposed by Westell et al. (1988) and further described by Quaas (1988). 

Using our notation we can show this analogy as follows. The equations with 

groups for phantom parents, assuming var(a)- ka\ and var(e)-In<7*, are 

(Quaas, 1988) 

X'X 

Z'X 

0 

X'Z 

Z'Z+aA"1 

-aQg'A-

0 X'y 

Z'y 

0 

[14] 

where Qg relates animals to groups and Qg is defined as (I-?)'1?bQb, P 

describes the gene flow among animals and is equal to 

0 

P22 

as in [3], Pb relates animals to phantom parents and Qb relates phantom 

parents to groups. When two phantom parents are assigned to each base 

animal, and those two phantom parents are assigned to the same group, PbQb 

is a matrix (with order nr. of animals x nr. of groups) equal to [Ib : 0] ' . 

Since A"1 can be written as (I-P')D_1(I-P), the term A_1Qg in [14] can be 

replaced by (I-P')D"1PbQb which is equal to [Ib : 0] ' , and Qg'A^Qg - Ib. 

Therefore, using this grouping strategy and absorbing equations for groups 

in [14] is in effect equal to subtracting alb from the base animals 

partition of the coefficient matrix, giving again equations [12]. Hence, 

assuming one group for each base animal is a grouping strategy equivalent 

to treating base animals as fixed. 

Base animals could be combined in one group, e.g. according to their 

age- or breed, and equation [14] can be modified according to the 

definition of Qb. Contrasts between base animals from different groups are 

not used to estimate genetic variances, but contrasts within groups are. 

It seems therefore that Henderson's approach, or equivalently the phantom 

grouping strategy (eq'n [14]) can be a general strategy to account for 
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(liferent expectations among base animals. A requirement for unbiased 

estimation of a\ is that the variance among base animals within groups is 

not altered by selection, and, as shown in this study, that progeny of base 

animals are not selected to have records. 

Analysis of field records 

First lactation records (305 days milk production) from Dutch Black and 

White heifers calving between September 1983 and September 1986 were used. 

Records were on crossbred animals carrying various portions of Holstein 

Friesian and Dutch Friesian genes. Details on data edits and data structure 

are in Van der Werf and De Boer (1989). The data set is summarized in Table 

7. Data were split up in three subsets according to the breed of the sire, 

because selection strategies may have been different for the base 

populations in the different breeds. 

TABLE 7.Characteristics of sub sets of field records; number of proven 
sires (NPS), number of young sires (NYS) and average effective 
number of daughters per young sire (ED). 

total records NPS NYS ED 

subset I (FH)a 89,576 202 174 82 
subset II (50% HF) 87,217 202 127 91 
subset III (HF) 163,132 202 211 120 

" refers to breed of young sires where FH- Dutch Friesian, HF- Holstein 
Friesian. 

Records of field data were analyzed using a mixed linear model that 

accounted for fixed effects of herd-year-season, month of calving, a second 

dergree polynomial for age of calving, fixed genetic effects and random 

effects of sires. Fixed genetic effects consisted of linear regression on 

percentage of HF genes, on heterozygosity, and on recombination in the 

genome of the progeny. Sires of unproven sires were considered to be base 

animals. We compared analyses treating base sires as random (model RB) with 

an analysis were they were treated as fixed (model FB). Because young 

bulls were assumed to be not selected to have progeny, the estimate of 

genetic variance was not biased by selection. 
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Variance components were estimated using the REML-EM algorithm on a 

tridiagonal set of equations (eq'n [11], and Meyer, 1986). In order to 

utilize the orthogonality of the tridiagonalizing matrix in computing the 

sums of squares necessary for the EM-algoritm, fixed effects and base 

sires, when treated as fixed, had to be absorbed into equations of their 

random sons before the coefficientmatrix was tridiagonalized. 

Table 8 shows estimates for different subsets and for overall data using 

a model with base animals assumed fixed (model FB). Estimates are given 

proportional to the estimate from a model assuming base animals random. 

Deviations from 100 represent bias from the random model due to selection 

of base animals. Directional selection on one trait is expected to lead to 

an underestimation of the genetic variance using a model RB. For example, 

with a proportion selected of 60% with an accuracy of .90, the expected 

reduction in genetic variance among sires of young bulls is about 50% and 

the variance among young bulls is expected to be reduced by 12.5%. The 

value for the relative variance in Table 8 would be (1/.875* 100%)= 114.4. 

Since estimates of residual variance were almost identical for both models, 

relative values for heritabillty were close to relative values for the 

genetic variance. 

In field data it is difficult to predict the change of variance after 

selection because the realized selection intensity is not precisely known. 

Selection is practiced on several traits and independent culling type of 

selection on two negatively correlated traits might even have given rise 

to an increase of genetic variation. Gräser et al. (1987) applied the 

conditional model to a field dataset and also found only small differences 

compared to a model assuming unselected base animals. From Table 8 it 

TABLE 8 Estimates of genetic variance with base animals fixed relative to 
estimates with base animals random 

milk yield (kg) 
fat yield (kg) 
protein yield (kg) 
fat content 
protein content 

subdatasets 
0% 

101.4 
101.7 
100.9 
104.7 
103.4 

(%HF in 
50% 

99.9 
101.8 
100.6 
96.3 
87.9 

sires) 
100% 

107.8 
97.9 

106.1 
106.4 
97.1 
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appears that the reduction in variance among sires was small in our 

dataset. This might be due to the fact that selection was for more traits 

and the selection intensity per trait was low. Genetic trends estimated for 

tested bulls in the Netherlands (1980-1988) were lower for the FH sires 

compared with sires with HF genes (Boukamp, 1989). Results from Table 8 

show that the change of variance after selection was also lower for FH 

sires. 

CONCLUSION 

Conditional models treating base animals as fixed can be useful to account 

for selection prior to the base population. However, estimates will be 

biased by selection of progeny of base animals, even when data of culled 

animals are available. When base animals as well as progeny are selected, 

different components of genetic variance have to be estimated, e.g. the 

variance among base animals, and the variance conditional to the base 

parents. However, this is not feasible with many data sets. Estimation of 

genetic variance based on field recorded milk production data could be 

accounted for selection of sires of test bulls, and estimated variance for 

milk yield was about 8% higher compared to a model that assumes no 

selection. 
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Chapter 6 

GENERAL DISCUSSION 

Results from studying genetic as well as statistical assumptions made 

in analysis of data to estimate genetic parameters were presented in this 

thesis. Non-additive genetic effects between breeds were estimated and its 

influence on the estimation of additive genetic parameters has been 

discussed. In this chapter some general comments will be made concerning 

the estimation of non-additive parameters from field data and the need to 

account for non-additive effects in practice. Furthermore, the effects of 

selection and inbreeding on estimates of additive genetic variance and 

methods to account for these effects were studied. Genetic and non-genetic 

aspects of estimation of genetic variance of milk production traits in 

crossbred populations under selection as well as the choice of variance and 

heritability estimates, used in genetic evaluation and optimization of a 

breeding program, will be discussed. 

1 Non-additive effects in crossbreeding data 

1.1 Estimation of crossbreeding parameters from field data 

Estimates of non-additive parameters presented in this thesis were based 

on field data. The advantage of such data is that many observations were 

available. Estimates from literature arise mostly from crossbreeding 

experiments in which the design can be made optimal. The question is how 

estimates from field data compare with those from carefully designed 

experiments. 

Let Yj be the phenotypic mean of the ith combination of sire- and dam 

group (i-l,..,n), ßj is the j t h crossbreeding parameter (j-l,..p) and K is 

a (n x p) matrix with k^ being the coefficient for the j t h parameter in the 

ith mating combination. Then Y - Kß + e and p- rank(K). The matrix K can 

be constructed for the breed combinations found in this study (Table 1) . 

Parameters are estimated as ß= (K'VHO^K'V'V and var(ß)= (K'V^K)"1. 

Approximate estimates and measures of accuracy can be easily made by 
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TABLE 1. Mating combinations used in this study (Chapter 3, Table 1) with 
actual and optimal number of observations. 

mating 
Ps 

0 
0 
.5 
.5 
.5 
.75 
.75 
.875 
1 
1 
1 

type" 
Pd 

0 
.5 
0 

.5 

.75 
0 
1 
0 
0 

.5 

.25 

actual 
% records 

24.7 
1.5 
5.7 

.8 

.6 
3.2 

.7 

.9 
49.1 

8.9 
1.4 

optimal1" 
X records 

5.8 
8.0 
8.0 
9.1 
8.8 

10.2 
7.2 
7.1 

13.1 
10.9 
11.6 

" pB and pd refer to fraction HF genes of sire and dam, respectively 
b according to criterium of Fimland (1983) 

assuming the matrix V to be a diagonal matrix, with vt is a\/ni, where nL is 

the number of observations for each combination. Such a variance-covariance 

matrix V gives the Weighted Least Squares Solution (WLS) of ß. The sampling 

variances and correlations between estimates were obtained from var(ß), 

after obtaining ß as WLS (Table 2). Note that the WLS standard errors are 

lower than the standard errors from the GLS analysis (Chapter 3), because 

covariances due to animal effects were ignored. Table 2 shows estimates of 

breed effects and non-additive parameters to be negatively correlated, 

whereas heterosis and recombination estimates had positive sampling 

correlation. 

TABLE 2. Variances and correlation matrix of parameter estimates from 
Weighted Least Squares for actual data set1. 

parameter variance correlation matrix 
breed heterosis recomb 

mean 4.38 -.08 -.35 -.27 
breed effect 76.67 1 -.86 -.57 
heterosis 24.43 1 .55 
recombination 143.40 1 

1 data set was described in Chapter 3 (Table 1) 
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Fimland (1983) presented a method to determine a design with approximate 

optimal number of observations for each mating combination, given a set of 

mating combinations and a number of total observations. Such a design 

should give maximum information about the parameters of interest. When kL 

is the ith row of K, the optimal number of observations (n4) as a fraction 

of N observations for the ith mating type can be approximated as nj/N = 

[l/VkJ/S^tl/kj.kj] (Table 1 ) . 

Sampling variances and correlations for an optimal structure with the same 

total number of observations and the same mating types are given in Table 

3. The size of the data set is inversely related to sampling variances 

whereas the design determines sampling variances as well as sampling 

correlations. For example, an optimal designed experiment of size 4000 

would give sampling correlations as in Table 3 but sampling variances would 

TABLE 3.Variances and correlation matrix of parameter estimates from 
Weighted Least Squares for optimal data structure.2 

parameter variance correlation matrix 
breed heterosis recomb 

mean 11.74 -.47 -.42 -.59 
breed effect 37.37 1 -.43 -.12 
heterosis 19.05 1 .08 
recombination 52.82 1 

1 size of data set as in Table 2 

be 100 times larger than those of Table 2. It can therefore be concluded 

that estimates for crossbreeding parameters from field data give low 

sampling errors, relative to estimates from small scale experiments, but 

sampling correlations can be substantially lower using a designed experi

ment. 

It should be noticed that Fimland's approximate method for an optimal 

design does not consider sampling covariances. Other optimality criteria 

to determine optimal designs have been used, e.g. the D-optimality, 

maximizing the determinant of (X'V"lX) (Cameron and Thompson, 1986; Sölkner 

and James, 1989). Using D-optimality, Sölkner (1989) showed the efficiency 
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of estimations to be quite robust for suboptimal numbers of observations 

allocated to each group but concluded that choice of the right genetic 

groups (i.e. mating combinations) are more important. 

1.2 Parametrization of crossbreeding effects 

Although nine genetic effects can be derived from a two-locus model 

(Anderson and Kempthorne, 1954) the model is usually restricted to only a 

few of these. Fimland (1983) gives the expectation of parameters when some 

other factors are ignored. Let K contain the coefficients for the 

parameters in Table 2, and ¥^ be a column of coefficients for the maternal 

effect for each mating combination. The expectation of the parameters in 

the model ignoring the maternal effect (m) is then 

E(ß) = ß + Qm (1) 

where Q- (K'V^K^K'V"1«.. For the data set in this study, Q'- [-.004, 0.64, 

-.324, .743). Hence, ignoring a significant positive maternal additive 

effect would give an underestimation of the heterosis component whereas the 

recombination effect would be overestimated. 

Using (1), a Q' for the paternal effect of [.007, 1.18, 0.401, -0.236] 

can be obtained. Although the paternal genetic effect is expected to be 

low, there could be a 'paternal effect' due to favorable treatment of 

daughters of (imported) HF sires or imported semen could have been used to 

breed the best dams. Preferential treatment of cows related to the 

percentage of Holstein genes of the sire would therefore give an upward 

bias for the breed effect and the effect of heterosis whereas the 

recombination effect would be underestimated. 

Heterosis and recombination loss have been related to genetic 

effects at locus level by Hill (1982). Let S represent the dominance 

effect, aa the additive by additive epistatic effect and SS the dominance 

by dominance interaction. Using Hill (1982), it can be shown for a two-

locus model that heterosis represents (25-aa) and recombination can be 

replaced by (,-aa-SS) . When dominance by dominance interactions are ignored, 

the vector of parameters (ß) that includes heterosis and recombination can 

be transformed to produce a vector c with parameters S and aa; c = T ß. Now 

Var(c)- T Var(ß)T' and since T is invariant to the design, genetic effects 
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from different model of the same design are simply linear functions of each 

other. The solution for 5 was then 112.1 (s.e.- 7.6) and for aa it was 

101.2 (s.e.- 12.0). Sampling correlation of 6 with estimated breed effect 

was .17 and with aa it was .96. Correlation of aa with breed effect was 

.57. 

1.3 Non-additive effects within breeds 

The existence of positive heterosis in a cross of two strains of 

Friesian cattle indicates that dominance effects exist. However, Beckett 

et al. (1979) analyzed crosses between inbred lines of Holstein cows and 

concluded that the possibility of using specific combining abilities of 

inbred lines was not very likely. Under an 'infinitesimal' model with many 

loci affecting the trait under selection, the change in gene frequency 

after several generations of selection is small compared to differences 

between breeds and the variation within breeds. It would be interesting if 

the hypothesis concerning the underlying genetic model could be supported 

by molecular genetic techniques to measure genetic distance, as recently 

proposed (e.g. Sharp, 1987), but within breed applications of these methods 

are unknown. 

Dominance might not be used in dairy cattle breeding, but it could be 

nuisance variance. Estimates for dominance variance from sire by maternal 

grandsire components have often been found insignificant or with high 

standard errors (Allaire and Henderson, 1965; Lee and Henderson, 1969). 

Studies on twins showed higher covariances than expected from additive 

variance, but this can be due to environmental effects as well (Johannson 

and Rendel, 1968). Recently in dairy cattle the number of full sibs has 

increased substantially due to embryo transfers (ET). Tempelman (1989) 

found high estimates of dominance variance (as a ratio to total variance); 

0.08-0.31 for milk yield and 0.08-0.50 for fat yield. However, about 20% 

of the data arose from ET coming from highly selected parents and families 

were partly confounded with herd groups. Furthermore, standard errors and 

sampling correlation with additive variance were high. 

Henderson (1985a,b) has proposed animal models including additive as 

well as non-additive genetic variances. Components of additive and 

dominance variance could be obtained from such models using a Restricted 

Maximum Likelihood procedure. Lin and Lee (1989) advocated a full-sib 
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model, arguing that an animal model is often not practical because it 

requires inversion of a large coefficient matrix. Although the computatio

nal argument diminishes due to the introduction of derivative free methods 

(Meyer, 1989) and/or sparse matrix techniques (Misztal, 1989), setting up 

a full-sib model could be useful because it provides more explicit 

information on whether different components of variance are separable from 

a given data structure. 

Inbreeding depression depends on dominance as well. The change of the 

mean is proportional to the degree of inbreeding (Bulmer, 1980). Estimates 

of effects per percent of inbreeding range from -15kg to -40kg for milk 

yield and from -0.5 to -1.0 kg for fat yield (Hodges et al., 1979; Hudson 

and Van Vleck, 1984). Dairy cattle populations generally have low 

coefficients for average inbreeding, but coefficients increase with more 

intensive use of MOET schemes, e.g. in nucleus herds. A mixed model using 

additive and dominance relationships matrix accounts for the effect of 

inbreeding on the variance-covariance structure, but not for inbreeding 

depression (Mäki-Tanila and Kennedy, 1986). Inbreeding depression could be 

accommodated by inclusion of the inbreeding coefficient (F) as a covariate 

in the model (Kennedy and Sorensen, 1987). 

1.4 Non-additive effects and genetic evaluation 

The influence of non-additive genetic effects on estimation of breeding 

values has been clearly demonstrated in this thesis. Non-additive effects 

from crossbreeding should be seen as nuisance effects which have to be 

accounted for in breeding value estimation. As demonstrated in Chapter 3, 

this can be done simply by including heterosis and recombination as 

covariables in the model. It might be useful to determine sampling 

variances and correlations for a particular design because effects may be 

confounded in some data sets. 

Ignoring significant non-additive variance within breeds would have an 

impact on genetic evaluation (Chapter 3). For example, covariances between 

full sibs would be underestimated, which is undesirable because breeding 

values of sires and elite cows are often based on information from full sib 

ET progeny. Predicted breeding values, -however, would not be biased by 

dominance as long as the appropriate heritability is used. 

Using dominance effects to predict performance of planned matings does 
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not seem to be opportune in the current dairy cattle breeding. The 

coefficient for dominance relationship diminishes rapidly with distant 

relationships. With sufficient genetic progress, it will mostly not be 

interesting to reproduce dominance effects at the time it has been 

accurately estimated. Predicting dominance effects would be more useful 

when more links exist between animals (e.g. with heavier inbreeding) or if 

identical genotypes (clones) would be generated. 

2 Estimation of additive genetic variance 

2.1 Genetic aspects of the model 

It has been assumed throughout this thesis that genetic variance was 

equal for the different populations and that different crossbred groups 

showed homogeneous variances. This was justified assuming very small 

differences in gene frequency between parental populations, which was 

suggested to be possible under an infinitesimal model. Little is known 

about validation of this assumption. Meyer and Hill (1990) have tested the 

'infinitesimal model' hypothesis using data from a long term selection 

experiment in mice. They suggested some of the change of genetic variance 

was due to changes in gene frequencies. Simulations at one-locus level show 

heterogeneity of variance for moderate (>.l) gene frequency differences. 

Analysis by subpopulation showed some heterogeneity of genetic variance 

(Chapter 3 ) , but this could also be caused by environmental effects or by 

genotype by environment interaction. 

Although the model corrected for systematic population effects and 

selection, heritability estimates for milk production traits continued to 

stay higher as previously assumed. Other forms of non-random sampling are 

assortative mating of the best sires to the best dams or sampling of the 

best genotypes at the high yielding herds. The fact that some sires have 

daughters only in the best herds could be a problem when there is a sire 

by herd interaction. Meyer (1987) found a small reduction in sire variance 

after accounting for this interaction. Assortative mating would lead to an 

overestimation of the sire component of additive variance using a sire 

model which assumes all dams unrelated and their merit to be uncorrelated 

with the sires genotype. An animal model should account for this bias, at 
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least when there are records available on dams and when assortative mating 

is based on these records. 

Preliminary analysis using an animal model was done for 4 different data 

sets of about 10,000 records each. Records of Black and White cows (Dutch 

x Holstein Friesian crosses) were obtained from the Dutch Cattle Syndicate 

(NRS) for the years 1983-1989. Heritability estimates for milk yield 

averaged 0.47. Estimates from a sire model in similar data were lower 

(Chapter 3). Variances obtained from animal models (Swalve and Van Vleck, 

1987; Van Vleck and Dong, 1988) have been found to be slightly higher than 

previous estimates from sire models, particularly because sire models often 

ignore relationships among sires and include effects of selected sires. 

However, sire models used in this study accounted for these effects. 

Recently, high heritabilities for milk production have also been found 

TABLE 4 Recent estimates of heritability (h2) , and genetic (CTJ) and 
mental variance (CT2) for 1st lactation milk yield. 

environ-

authors 

Hill 
et al. 1983 

Boichard and 
Bonaïti ,1987 

Van Vleck 
et al., 1988 

Van der Werf & 
De Boer, 1989 

herd type 

low mean 
high mean 
low var. 
high var. 

all 

low mean 

method1 

SM 

SM 

AM 
moderate mean 
high mean 

all SM 

breed 

BF 
BF 
BF 
BF 

FF/HF 

HF 
HF 
HF 

FH 
HF 

fi2 

.24 

.30 

.24 

.30 

.37 

.23 

.29 

.36 

.34 

.44 

*; 

85360 
153630 

72132 
164500 

242060 

75780 
118600 
150380 

138970 
238000 

o\ 

264480 
355070 
233510 
382010 

410286 

247220 
288480 
280920 

269769 
302904 

1 SM= sire model AM= animal model 
2 BF, FF, FH, HF = British, French, Dutch and Holstein Friesian, 

tively 
respec-

using a sire model (Cue et al., 1987) or dam-daughter regression (Wade and 

Van Vleck, 1989), the last method being unaffected by selection of dams. 

Heritabilities as high as 0.47 have not been often published for milk 
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yield in American Holstein populations. Variance in this study could be 

higher because genes from two strains of Friesian cows are mixed, or 

because the imported Holstein population expresses other genes in a new 

environment. On the other hand, high genetic variances and heritabilities 

have been reported in high yielding herds (Table 4; Wade and Van Vleck, 

1989). Estimates of heritability, and genetic and environmental variance 

are summarized in Table 4 for different herd production levels and 

different Friesian populations. More detailed analysis is needed using data 

stratified by subpopulation and herd production level. 

2.2 Aspects of the data structure 

Parent-offspring regression and half-sib analysis put requirements on 

the data structure. Since variance components from animal breeding data are 

estimated using methods that are based on mixed model equations (MIVQUE, 

REML), requirements to be set on the data structure have become more loose. 

A REML analysis can essentially be applied to almost any data structure, 

and it will mostly provide estimates for genetic variance as long as there 

is data on related animals. Information to estimate the additive genetic 

component of variance, coming from different sources such as contrasts 

among parents, parent-offspring covariances and contrasts within families, 

is combined to a final REML estimate. It would be useful to know how those 

different sources of information contribute to the final estimate. Possible 

bias from ignoring maternal-, dominance- or permanent environmental 

effects, or bias from selection could be assessed. An example has been 

described in Chapter 4 where we compared data sets relating to the same 

base but with data on a different number of subsequent generations. We 

showed empirically that having more generations with data did not reduce 

the bias from selected base animals. However, there is a lack of theory 

about how the 'between-' and the 'within-'base animal components of 

variance are weighted. 

There is also little known about the information available from data 

from a complex family structure. Thompson (1989) suggested to find 

eigenvalues of the coefficient matrix of an animal model by diagonalization 

of the mixed model equations. The number of nonzero eigenvalues shows how 

many contrast between animal are available. Each eigenvalue can be seen as 

the coefficient for the animal component of variance in the expectation of 
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the quadratic pertaining to the information available on a certain animal. 

He named the list of latent roots a ' familyogram'. It is not yet clear what 

exactly are properties of a 'good' familyogram. 

The information provided by a given data set is determined by the number 

of contrasts that can be used to estimate each component of variance. Using 

ANOVA methods, the estimability of components is relatively easy to see 

from the degrees of freedom that is associated with fitting certain 

effects. The information coming from the data determines the shape of the 

curve from plotting the likelihood against parameter values. The second 

derivative of the likelihood function is summarized in the information 

matrix, containing information about approximate variances and covariances 

of the parameter estimates. REML algorithms often use only first deriva

tives or use a direct derivative free maximization and the information 

matrix is not explicitly set up. The matrix can be approximated (Meyer, 

1989) but this is more difficult when more then two components have to be 

estimated. Sometimes accuracy of estimation and speed of convergence can 

be improved by a reparametrization of the variance components, e.g between-

and within- family variance is estimated rather than additive genetic and 

residual components (Thompson and Meyer, 1986). REML estimation of several 

genetic components using an animal model therefore requires careful 

inspection of the data structure. 

2.3 Which variances should be used? 

Best Linear Unbiased Predictions of breeding values only exists when 

true variances are known and they are better approximated as used variances 

approach the true values. It has been shown in Chapters 4 and 5 that 

different estimates for genetic variance can be obtained, depending upon 

the data and the model used. Hence the question arises which heritability 

is actually needed for animal breeding applications? 

Mixed models for genetic evaluation assume the base population to be 

noninbred and unrelated. It has been argued in Chapter 5 that inbreeding 

does not have to be accounted for to estimate genetic variance, but the 

genetic variance used in the evaluation model should relate to the assumed 

base population. Accounting for relationships among "base" animals uses 

more information on relatives and can account for some bias from gametic 

disequilibrium, particularly in small populations. Animal models are 
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expected to produce higher estimates of genetic variance when they account 

for more relationships. This has been shown in chapter 4 and by Dong et 

al. (1988). It would be consistent in this respect to use higher heritabi-

lities in animal model prediction of breeding values. 

The genetic variance was divided in a part coming from variation between 

base parents and a part resulting from Mendelian sampling at formation of 

parental gametes; between- and within-family variance, respectively. 

Between- and within-family components of variance are only equal in case 

of no selection. Should the heritability, in case of selection, be 

accounted for the reduction of the between family component due to gametic 

disequilibrium? For the prediction of long term response of selection the 

Mendelian sampling variance is the relevant parameter. Both within- and 

between-family variance are needed to predict immediate response. 

Prediction of response to selection may than be complicated by selection 

on correlated variables (Hill, 1977). For the estimation of breeding values 

in populations under selection, including different parameters for the 

within- and between family component could be considered because it is 

relatively easy to do, as demonstrated in Chapter 5. Estimating those 

different components may be difficult when data sets don't contain more 

than two generations with data, which is often the case. Alternatively, one 

could assume a certain ratio between the two components. This approach is 

rather pragmatic, although basically not more so than assuming ratios that 

refer to a situation without selection. 

The effect of accounting for different values for the between- and 

within-family variance has not been quantified. Using a compound value 

would give an underestimation of information on sibs whereas parental 

information would obtain too much weight. However, selection based on 

family information is quite robust to errors in heritability. 

A reason to have a conservative policy with respect to the heritability 

used could aim at a lower weight for an animals's own performance. This 

could be desirable if it is believed that preferential treatment of records 

occurs. On the other hand, a higher heritability as actually estimated has 

been advocated to optimize long term selection (James, 1972). The reason 

is that long term index (or BLUP) selection and conserving genetic 

variability is antagonistic and individual (or mass) selection would make 

more use of the available variability. BLUP procedures maximize genetic 
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progress on short term, given the data, but it does not maximize long term 

response because it capitalizes on family selection, in particular with low 

heritabilities. Another aspect in long term selection can be creation of 

new variation by mutation (Hill and Keightley, 1988) or new genes becoming 

more important with a rise of production level. In both cases a higher 

heritabilities would be appropriate since the family information would need 

less weighing (Dempfle and Gründl, 1988). 

Methods to account for heterogeneous variance in animal models may be 

exhaustive, although simplifications exist when heritabilities are assumed 

equal for different environments, and when genetic correlations are assumed 

to be unity (Henderson, 1984). Meyer (1987) reported a small sire by herd 

interaction for milk yield but Merks (1988) found surprisingly low genetic 

correlations for growth and backfat in pigs comparing similar traits at 

nucleus level and farm level. Winkelman and Schaeffer (1988) accounted for 

heterogeneity of genetic and residual variance but they did not find an 

effect for sire evaluation. The effect on cow evaluation is expected to be 

larger. A problem with heterogeneous variance models might be the amount 

of information available per stratum to estimate variances. A Bayesian 

approach might be useful and practical to handle such problems (Gianola et 

al., 1989) 

3 Recommendations 

Not accounting for non-additive effects in genetic evaluation of 

crossbred populations causes biased estimates of additive genetic 

differences and breeding values between crossbred groups. Analysis of 

crossbreeding data with linear regression on breed effect, heterosis and 

recombination effect is therefore recommended to adjust for systematic 

additive and non-additive breed effects. 

Variance among parents for a certain trait will be affected by intensive 

selection on that trait or on highly correlated traits. Estimates of 

genetic parameters will be less affected by selection of parents if more 

relationship information among parents is used. A conditional model could 

be used to account for previous selection, only if progeny of base parents 

are not selected. 

Variance components used for animal evaluation should be estimated with 
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a model that coincides with the same base population. Estimates of genetic 

variance are often higher with an animal model, compared to a sire model, 

and those animal model estimates should be used if genetic evaluation is 

done with such a model. Estimates of genetic parameters to determine 

expected genetic progress are less biased by covariances and gametic 

disequilibrium, when more relationships are included in the model. 

High estimates of heritability for milk production traits in crossbred 

dairy cattle justify a raise of parameters currently used for genetic 

evaluation of the Dutch Black and White dairy population. However, before 

using values higher than .40 for yield traits, more research is suggested 

to investigate whether the increased genetic variance is due to genetic or 

to environmental changes, and whether these high values will persist. 
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SUMMARY 

Estimates of genetic parameters needed to control breeding programs, 

have to be regularly updated, due to changing environments and ongoing 

selection and crossing of populations. Restricted maximum likelihood 

methods optimally provide these estimates, assuming that the statistical-

genetic model used is correct. 

Generally, a model for analysis of milk production data assumes only 

additive genetic effects and random sampling. These assumptions are rarely 

met. In many animal populations genetic material from other populations is 

used. Crossing of lines or breeds often gives rise to non-additive effects. 

Furthermore, most of the data used for genetic analysis come from 

populations under selection. The subject of this thesis was to determine 

whether or not models for genetic evaluation of dairy populations should 

account for non-additive effects and selection, and how this should be 

done. 

The influence of non-additive effects on the estimation of heritabili-

ties and breeding values was studied in Chapter 2. A population having 

progeny that descended from sires and dams with various fractions of genes 

from two breeds was simulated. Additive breed effects and non-additive 

effects from breed crosses, were simulated. Data on performance were 

analyzed using mixed models, that accounted for fixed additive genetic 

group and random sire effects. Three additive models, with genetic groups 

defined according to 1) breed composition of the progeny, 2) breed 

composition of the sire and dam, or 3) linear regression on breed fraction, 

were compared with a non-additive model, with a linear regression on breed 

fraction, heterozygosity and recombination in the genome of the progeny. 

Variance components were estimated using restricted maximum likelihood. 

Additive genetic variance and heritabillty were overestimated for an 

additive model with progeny groups. Additive models gave biased estimates 

for breed differences, group effects and breeding values. Breed differences 

were overestimated when sire groups were used. Estimates for each parameter 

were unbiased using the non-additive model. 

In Chapter 3, the same models were applied to data of cows with variable 

proportions of genes from the Dutch Friesian and the Holstein Friesian (HF) 

populations. The data set contained 92,333 first lactation records (305 
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days milk production) of cows from 675 young sires and 307,050 records of 

cows from 202 proven sires. Estimates for heterosis varied from 2.52 (fat 

yield) to 0Z (protein percentage). Recombination effects varied from -1.9X 

(protein yield) to 1.5% (fat percentage). Additive models with progeny 

groups overestimated genetic variance by 6%. Models with sire groups over

estimated additive genetic values of imported HF sires by 33%. Using a non-

additive model, heritability estimates were .38 for milk yield, .80 for fat 

percentage and .70 for protein percentage. It was concluded that a non-

additive model was preferable for estimation of genetic variance and 

prediction of breeding values in crossbred dairy populations. 

In the fourth chapter, the effect of selection on estimation of additive 

genetic variance was studied. A population of size 40 was simulated 100 

times, for ten generations. Five out of twenty males were selected at each 

generation and each male was mated to four females and had two progeny. The 

additive genetic variance (o\) before selection was 10 and the initial 

heritability was .5. The genetic variance was reduced to 6.72 after ten 

generations of selection, due to covariances among animals, inbreeding and 

gametic disequilibrium. Reduction of variance was lower in another 

population simulated with size 400 and ten percent of the males selected. 

Restricted Maximum Likelihood was used to estimate a\ using an animal model. 

The estimate of a\ was empirically unbiased, when all data and all relation

ships were used. Omitting data from selected ancestors caused biased 

estimates of a\ due to the fact that not all gametic disequilibrium was 

accounted for. Inbreeding and covariances were adjusted for, when 

additional relationships between assumed base animals were considered. Bias 

from gametic disequilibrium decreased slightly with the use of more 

relationship information. Estimates from data based on later generations 

only, were biased by selection. Mean estimates of genetic variance depended 

on the assumed base population and were insensitive to the number of 

subsequent generations with data. 

A method to estimate genetic parameters conditional to selection 

occurring before formation of the base population was investigated in 

Chapter 5. For this, simulated data from the same populations as in Chapter 

4 was used. The method assumes base parents as fixed and a conditional 

variance is based upon the Mendelian sampling of gametes from the base 

parents. Selection was for five generations but only animals of generations 
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4 and 5 were assumed to have performance records and parents known. 

Additive genetic and residual variance were assumed to be 10. When 20 out 

of 200 sires were selected per generation, estimated genetic variance was 

8.58 when base animals were assumed random, and it was 6.03 when they were 

fixed. Residual variance was overestimated in the latter case. When males 

of generation 4 were not selected to have progeny, estimated genetic 

variance was 9.91. It was concluded that estimates for genetic parameters 

with the conditional model were not biased by selection of base animals. 

However, the procedure with fixed base parents was biased when descendants 

of base animals were selected to have progeny. 

Genetic variance of milk production traits was estimated with a 

conditional model to account for selection of sires. In the HF subpopula

tion, which had been selected more intensively, genetic variance for milk 

yield was estimated about 8% higher compared to a random models that 

assumes no selection. 

Estimates of heritability for milk production traits were found to be 

high with a sire model, after correction for non-additive effects (Chapter 

3) and selection of parents (Chapter 5 ) . Preliminary results with an animal 

model, which accounted for non-random mating of sires, did not show lower 

estimates. More research is suggested to determine whether the cause for 

high heritabilities is genetic or environmental. 

Main conclusions 

By not accounting for non-additive effects in genetic evaluation of 

crossbred populations, biased estimates of breeding values and additive 

genetic differences between crossbred groups are found. Records of 

crossbred dairy cattle should therefore be adjusted for systematic 

additive and non-additive breed effects. 

Estimation of crossbreeding parameters from field data can provide low 

standard errors, although sampling correlation may be high for certain 

mating designs. 

Estimates of genetic variance based on data from selected generations 

only were biased by selection. Mean estimates of genetic variance 

depended mostly on the assumed base population and were insensitive to 

the number of subsequent generations with data. Additional relationships 

adjust genetic variance estimates for covariances among animals, and for 
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some of the gametic disequilibrium. 

Estimates for genetic parameters with a conditional model are not biased 

by selection of base animals, but a bias will be introduced when descen

dants of base animals have been selected to have progeny. 

Heritability estimates of milk production traits in crossbred dairy 

cattle data were found to be higher as parameters currently assumed for 

genetic evaluation. 
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SAMENVATTING 

Genetische parameters, benodigd voor fokwaardeschattingen en optimalisatie 

van fokprogramma's, moeten regelmatig opnieuw worden geschat omdat 

milieuomstandigheden steeds veranderen, en populaties voortdurend 

onderhevig zijn aan selectie en inkruising. De restricted maximum 

likelihood (REML) methode geeft hiervoor optimale schattingen indien de 

statistische en genetische aannames in het gebruikte model correct zijn. 

In het algemeen wordt bij de analyse van melkproduktiekenmerken een 

additief genetisch model aangenomen en de gegevens worden verondersteld op 

toevallige manier verzameld te zijn. Aan deze aanames wordt meestal niet 

voldaan. Tussen populaties van landbouwhuisdieren wordt vaak genetische 

materiaal uitgewisseld en bij het kruisen van rassen treden vaak ook niet-

additief genetische effecten op. Verder wordt er in de meeste populaties 

geselekteerd. In dit proefschrift wordt ingegaan op de vraag of modellen, 

gebruikt voor de genetische evaluatie van melkvee populaties, rekening 

dienen te houden met niet-additieve effecten en met selectie. 

De invloed van niet-additieve effecten op de schatting van erfelijk-

heidsgraden en fokwaarden komt in hoofdstuk 2 aan de orde. Er werden 

produktiegegevens gesimuleerd voor een populatie van koeien die afstamden 

van ouders met verschillende fracties genen van twee uitgangsrassen. 

Hierbij werden additieve raseffecten en niet-additieve kruisingseffecten 

gesimuleerd. De gegevens werden geanalyseerd met behulp van gemengde 

modellen waarin vaste effecten van genetische groepen en random stier 

effecten werden opgenomen. In drie additieve modellen werden genetische 

groepen gedefinieerd volgens 1) rassamenstelling van de koe 2) ras-

samenstelling van de moeder en van de vader, of 3) een lineaire regressie 

op de rassamenstelling van de koe. Deze modellen werden vergeleken met een 

nlet-additief model waarin een lineaire regressie op coëfficiënten voor 

rasaandeel, heterozygotie en recombinatie in het genotype van de koe. 

Variantie componenten werden geschat met de REML-methode. 

Additief genetische variantie en erfelijkheidsgraden werden overschat 

met een additief model met nakomelingengroepen. Alle additieve modellen 

gaven onzuivere schattingen voor rasverschil, groepseffecten en fokwaarden. 

Rasverschil werd overschat in een model met stiergroepen. Schattingen voor 

alle parameters waren zuiver bij gebruik van een niet-additief model. 
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In hoofdstuk 3 werden bovenstaande modellen toegepast voor de analyse 

van een praktijkdataset met melkproduktiegegevens van koeien met variërende 

aandelen Holstein Friesian (HF) en Fries Hollands (FH) bloed. De gegevens-

set bestond uit 92.333 eerste lactatielijsten (305 dagen produktie) van 

dochters van 675 proefstieren, en 307.050 lactaties van dochters van 202 

fokstieren. Schattingen voor heterosis varieerden van 2.5% voor vetproduk-

tie tot 0% voor percentage eiwit in de melk. Recombinatie effecten 

varieerden van -1.9% voor eiwit produktie tot 1.5% voor vet percentage. 

Een additief model met nakomelingen groepen overschatte de genetische 

variatie met 6%. Modellen met stiergoepen overschatten de addititief 

genetische waarden van geïmporteerde stieren met 33%. Geschatte erfelijk-

heidsgraden met een niet-additief model waren .38 voor melkproduktie, .80 

voor vetproduktie en .70 voor eiwitproduktie. De conclusie was dat bij 

gekruiste melkvee populaties gebruik moet worden gemaakt van een niet-

additief model voor het schatten van genetische variantie en fokwaarden. 

In het vierde hoofdstuk is het effect van selectie op de fokwaarde

schatting bestudeerd. Een populatie ter grootte van 40 dieren werd 1000 

maal gesimuleerd voor 10 generaties. In iedere generatie werden van de 

twintig mannetjes 5 geselekteerd. Alle vrouwtjes werden met één van de 

geselekteerde mannetjes gepaard om 2 nakomelingen te produceren. De 

additief genetische variatie voor selectie was 10 en de oorspronkelijke 

erfelijkheidsgraad was .5. De genetische variantie nam af to 6.72 na 10 

generaties van selectie door het onstaan van covarianties tussen dieren, 

door inteelt en door een onevenwichtige verdeling van genen over de gameten 

(disequilibrium). De reductie van de variantie was kleiner in een tweede 

populatie met 400 dieren per generatie, waarbij steeds 10% van de mannetjes 

werd geselekteerd. De genetische variantie werd geschat met REML, gebruik

makend van een diermodel. De schatting van a\ was empirisch zuiver bij 

gebruik van alle gegevens en alle genetische relaties. Weglaten van 

gegevens van geselekteerde ouders veroorzaakte een onderschatting van a\ 

door disequilibrium. Het gebruik van alle afstammingsgegevens zorgde voor 

schattingen die waren gecorrigeerd voor covarianties en inteelt, terwijl 

een gedeeltelijke correctie plaatsvond voor disequilibrium. De onzuiverheid 

veroorzaakt door disequilibrium verdween enigszins bij het gebruik van meer 

verwantschapsinformatie. Schattingen van de genetische variantie waren dus 

onzuiver door selectie als ze uitsluitend gebaseerd zijn op gegevens van 
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latere geselekteerde generaties. Het niveau van de schatting werd bepaald 

door de veronderstelde basispopulatie en de schatting werd slechts in 

geringe mate beïnvloed door het aantal latere generaties dieren met 

gegevens. 

Een methode voor het schatten van genetische parameters welke niet wordt 

beinvloed door selectie in eerdere generaties is in hoofstuk 5 onderzocht. 

Hierbij werd gebruik gemaakt van dezelfde gesimuleerde populaties als in 

hoofstuk 4. De onderzochte methode gaat uit van een voorwaardelijke 

kansverdeling die is gebaseerd op de variatie als gevolg van Mendeliaanse 

recombinatie van gameten van de ouderdieren. Na vijf jaren van selektie 

werden alleen gegevens en ouderinformatie van de dieren van generatie 4 en 

5 gebruikt voor de analyse. De werkelijke additief genetische variantie en 

restvariatie waren gelijk aan 10. Bij selektie van 20 van de 200 mannetjes 

in iedere generatie was de schatting van de genetische variantie gelijk 

aan 8.58 in een model met random basis dieren, en de schatting was 6.03 als 

de basis dieren fixed werden verondersteld. De restvariantie werd overschat 

in het laatste geval. De geschatte genetische variantie was gelijk aan 9.91 

als dieren van de vierde generatie niet werden geselekteerd. De conclusie 

was dat schattingen van genetische parameters met het voorwaardelijke model 

niet onzuiver waren door selektie van basisdieren, maar een onzuiverheid 

werd gelntroduceed indien nakomelingen van basisdieren werden geselekteerd. 

De genetische variantie van melkproduktiekenmerken werd geschat met een 

voorwaardelijk model om te corrigeren voor selektie van stiervaders. In de 

HF deelpopulatie, waarin een intensievere selektie had plaatsgevonden, werd 

de genetische variantie 8Z hoger ingeschat in vergelijking met een model 

dat random basis dieren aanneemt. 

Schattingen voor erfelijkheidsgraden voor melkproduktie bleken hoog te 

zijn bij gebruik van een stiermodel, ook na correctie voor niet-additieve 

effecten en voor selectie. Voorlopige resultaten op basis van een 

diermodel, waarbij nog wordt gecorrigeerd voor selectieve inzet van 

stieren, bleken geen verlaging van de geschatte erfelijkheidsgraad op te 

leveren. Vervolgonderzoek moet meer duidelijkheid brengen omtrent het punt 

of een verhoogde erfelijkheidsgraad een genetische oorzaak heeft, dan wel 

door omgevingsomstandigheden wordt bepaald. 
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De belangsrijkste conclusies waren 

Modellen die niet corrigeren voor niet-additieve effecten bij de 

genetische evaluatie van gekruiste populaties veroorzaken een onzuiver

heid in de schatting van fokwaarden en additief genetische verschillen 

tussen kruisingsgroepen. Gegevens van gekruiste populaties dienen daarom 

te worden gecorrigeerd voor systematische additieve en niet-additieve 

raseffecten. 

Schattingen van niet additieve parameters op basis van praktijkmateriaal 

leveren nauwkeurige schattingen op, hoewel correlaties tussen schattin

gen hoog kunnen zijn bij bepaalde datastructuren. 

Schattingen van genetische variantie die slechts gebaseerd zijn op data 

van geselekteerde generaties dieren, zijn onzuiver door deze selektie. 

Het niveau van de schatting wordt vooral bepaald door de veronderstelde 

basisgeneratie, en wordt weinig beïnvloed door het aantal volgende 

generaties waarvan gegevens bekend zijn. Opnemen van meer verwantschaps-

informatie bij het schatten van de genetische variantie geeft een 

correctie voor covarianties tussen dieren, en in enige mate ook voor 

disequilibrium. 

Schattingen van genetische parameters met behulp van een voorwaardelijk 

model zijn niet onzuiver door selektie van basisdieren, maar er wordt 

een onzuiverheid geïntroduceerd indien nakomelingen van basisdieren 

geselekteerd zijn. 

Erfelijkheidgraden van melkproduktiekenmerken in gekruiste melkveepopu

laties werden hoger bevonden dan de parameters die momenteel in de 

fokwaardschatting worden toegepast. 
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