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STELLINGEN 

1. De verschillen in korrelgrootteverdeling en in hoeveelheid, kwaliteit 

en verdeling van de organische stof veroorzaken een groot deel van de 

verschillen in fysische eigenschappen van Rijnafzettingen uit het Laat 

Weichselien en uit het Holoceen. 

Dit proefschrift. 

2. Bodemvorming (met name in het Laat Weichselien) is verantwoordelijk 

voor de verschillen in chemische eigenschappen, in kleimineralogie en 

in bodemclassificatie van Rijnafzettingen uit het Laat Weichselien en 

uit het Holoceen. De zeer dichte, starre microstructuur van de rivier-

afzettingen uit het Laat Weichselien is eveneens het gevolg van peri-

glaciale bodemvorming. 

Dit proefschrift. 

3. Holocene Nederlandse rivierafzettingen zullen nooit zo dicht worden 

als rivierafzettingen uit het Laat Weichselien tenzij er een nieuwe 

ijstijd komt. 

Dit proefschrift. 

k. De regeneratie van de porositeit van verdichte gronden of bodemlagen 

door biologische aktiviteit is kwalitatief verre te prefereren boven 

een regeneratie door mechanische ingrepen. Bij de bedrijfsvoering dient 

instandhouding of bevordering van de bodemmacro- en mesofauna te worden 

nagestreefd. 

M.J. Kooistra, J. Bouma, O.H. Boersma and A. Jager (1984): Physical and 
morphological characterization of undisturbed and disturbed 
ploughpans in a sandy loam soil. 
Soil and Tillage Research: ^05-^17. 

5. Dat een proefschrift (ook dit) gewoonlijk slechts één auteur heeft, 

suggereert ten onrechte dat het een éénpersoons werkstuk is. 

6. De opvatting, dat de bodemvorming in loess in Nederland alleen optreedt 

in het Holoceen,is onjuist. 

H.J. Mücher (1986): Aspects of loess and loess derived slope deposits: 
an experimental and micromorphological approach. 

Doctoral thesis University of Amsterdam; Nederlandse Geografische 
Studies, no. 23. 



7. Grondmonsters dienen bewaard te worden bij een vochtgehalte binnen de 

grenzen van de natuurlijk ondervonden fluctuaties. 

D. Tessier (198*0: Etude expérimentale de l'organisation des matériaux 
argileux. Hydratation, gonflement et structuration au cours 
de la dessiccation et de la réhumectation. 

Thèse Docteur es Sciences, Université de Paris VII. 

8. De (micro)morfologie is onontbeerlijk voor het ontwikkelen van meet­

methoden en het begrijpen van de uitkomsten van bodemfysische metingen 

en het Theologisch gedrag van gronden. 

D. Lafeber (1964): Soil fabric and soil mechanics. 
In: A. Jongerius (Ed.): Soil Micromorphology: 351-360. 

J. Bouma (1984): Using soil morphology to develop measurement methods 
and simulation techniques for water movement in heavy clay 
soi 1 s. 

In: J. Bouma and P.A.C. Raats (Eds.): Water and solute movement in 
heavy clay soils.-. I LR I publication 37: 298-315. 

9. Dat klei-inspoelingshuidjes macromorfologisch waarneembaar zouden zijn, 

zoals in veel profielbeschrijvingen staat vermeld, wordt bij nader 

micromorfologisch onderzoek in veel gevallen gelogenstraft. 

10. Het niet inpolderen van overrijpe kwelders is strijdig met de eeuwen­

lange historische tradities die Nederland groot hebben gemaakt. 

11. De psychiatrische behandelingsmethode met electroshocks dient te worden 

afgeschaft. Psychotherapie is op zich al schokkend genoeg. 

12. Als in een rijksbegroting de defensie uitgaven structureel stijgen en 

er bezuinigd wordt op onderwijs, cultuur en volksgezondheid dan pleit 

dat niet voor de aan de mens toegeschreven verstandelijke vermogens. 

13. Bij het uitschrijven van een Elfstedentocht gaat de Vereniging "De 

Friesche Elf Steden" niet over één nacht ijs, ondanks aandrang daartoe. 

14. De sociale controle op alternatieve samenlevingsvormen kan er in de 

toekomst toe leiden dat huizen zonder voordeur worden gebouwd. 

Stellingen behorend bij het proefschrift: 

Soil formation, microstructure and physical behaviour of Late Weichselian 
and Holocene Rhine deposits in the Netherlands. 
Rienk Miedema, 12 oktober 1987, Wageningen. 
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ABSTRACT 

Miedema, R. (1987). Soil formation, microstructure and physical behaviour of 
Late Weichselian and Holocene Rhine deposits in the Netherlands. Doctoral 
thesis, Department of Soil Science and Geology, Agricultural University, 
Wageningen, (XIV)+ 339 p. 60 figs. 78 tables, 224 refs, 5 appendices, Dutch 
summary. 

Dutch Late Weichselian braided river deposits and Holocene meandering river 
deposits of the Rhine have been studied and compared. Cross sections 
demonstrate the lateral and vertical variations of the Late Weichselian 
sediments. Soil mapping of these deposits, even on a very detailed scale, 
proves very difficult. Best results have been obtained with a legend based 
on hydrology enabling the distinction of topo-hydrosequences of well drained 
brown soils, imperfectly drained mottled soils and poorly drained grey 
soils. 

Advanced soil formation and notably the dramatic processes in the Late 
Weichselian period (decalcification, clay illuviation, pseudogleying, 
periglacial formation of a highly reoriented, very dense microstructure) 
have caused clay mineralogical, chemical and physical changes in the Late 
Weichselian soils. 

The well drained and imperfectly drained Late Weichselian soils have an 
argillic horizon (Alfisols, Luvisols), occasionally with very low base 
saturation (Ultisols, Acrisols) and with strong subsequent pseudogleying in 
the imperfectly drained soils. The Holocene soils demonstrate 
decalcification and biogenic homogenization as well as some gleying 
according to their drainage position. These soils are classified as 
Inceptisols (Cambisols), occasionally as Mollisols (Phaeozems). 

Less favourable physical characteristics and behaviour (soil strength, 
structure stability and tillage behaviour) of the Late Weichselian soils and 
soil material is quantitatively documented. Differences with the Holocene 
soils and soil material are statistically highly significant and are caused 
by differences in texture, content, quality and distribution of organic 
matter and the highly reoriented, very dense microstructure. 

Use as permanent grassland or ley in the crop rotation is recommended to 
increase levels of biological activity. This seems the only remedy for the 
imperfectly and poorly drained Late Weichselian soils that are compacted by 
natural soil forming processes not counteracted by biological activity. Very 
recently improved drainage of large areas of Late Weichselian imperfectly 
drained soils has increased the saturated hydraulic conductivity to non-
critical levels through increased earthworm activity to some metres depth. 

Free deeariptors: Late Weichselian braided river deposits, Holocene 
meandering river deposits, soil formation, Luvisols-Alfisols, Acrisols-
Ultisols, Cambisols-Inceptisols, Phaeozems-Mollisols, micromorphology, clay 
mineralogy, physical characteristics, soil strength, structure stability, 
soil tillage. 
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1. INTRODUCTION AND AIM OF THE INVESTIGATION 

Koenigs (1949) was Che first Co recognize Lace Weichselian Rhine deposics in 

the area of Azewijn in Che eastern part of the Netherlands. In that area 

these deposits are extensively covered by Holocene fluvial deposits of 

varying thickness. Koenigs distinguished between these deposits on the basis 

of a number of differences in soil properties. Schelling (1951) and Pons 

(1957) mentioned essentially similar differences for their research areas 

where Late Weichselian Rhine deposits occur ac Che surface. These 

differences have also been described in Che books accompanying the 1:400.000 

and 1:200.000 soil surveys of the Netherlands (Edelman, 1950 and Soil Survey 

Institute, 1965 respectively). In recent soil survey reports accompanying 

map sheets of the systematic 1:50.000 soil survey these differences are 

again quoted in a somewhat extended form (Soil Survey Institute, 1970; 1972; 

1975; 1976; 1979; 1983). 

Late Weichselian deposits of loamy sand Co clay differ from Holocene ones in 

Che following aspecCs: 

a. The parcicle size disCribuCion of Lace Weichselian and Holocene 

deposits is essentially similar, except for a coarser sand fraction in 

the Late Weichselian deposits. 

b. Late Weichselian deposits have very low organic matter contents and 

are non-calcareous in otherwise comparable situations. 

c. The colour of the well drained Late Weichselian deposits is more 

reddish (7.5 YR or redder) and has higher chromas. In imperfectly 

drained and poorly drained situations the colour of the deferrated 

zones is more light grey to whitish (higher values) wich very 

pronounced colour contrasts and with more iron and manganese mottling 

and concretions of differing colours. Holocene soils generally have 

10 YR colours in well- drained situations, tending to 2.5 Y and 5 Y 

colours in imperfectly and poorly drained situations. 

d. Late Weichselian deposits have a more firm consisCency, a drier 

habiCus and a lower hydraulic conductivity than the Holocene deposits 



in comparable situations. 

e. Late Weichselian deposits have a lower structure stability. 

f. Soil tillage of Late Weichselian deposits is more difficult. The 

moisture content range to obtain good tillage results is narrower in 

situations of comparable textures. When wet, these Late Weichselian 

soils become sticky and puddled and in dry conditions they get very 

hard, coarse clods. (Cover photo). 

g. Late Weichselian deposits have a lower linear extensibility, specific 

surface area, base saturation and pH than Holocene deposits. 

h. Late Weichselian deposits have a more advanced soil formation than 

Holocene deposits. 

Farmers distinguish between the two materials and agree with the differences 

pertaining to soil management and tillage for arable cropping (Koenigs, 1949 

and personal experience). 

The above-mentioned differences are qualitative rather than quantitative. 

They have been attributed to weathering (Edelman, 1950), weathering and soil 

formation (Schelling, 1951) or to a difference in properties of the parent 

material rather than a difference in time of sedimentation or soil formation 

(Soil Survey Institute, 1975; 1979). Poelman (Soil Survey Institute, 1975; 

1979) assumes that the clay fraction is different and contains more quartz. 

The reasons for the mentioned differences are still largely unknown and, 

quoting Schelling (1951): "It is difficult to explain the differences in 

behaviour without extensive chemical and clay mineralogical investigations". 

The aim of the investigation reported here was to determine the differences 

in a quantitative way and on the basis of detailed field investigations 

followed by micromorphological, chemical, clay mineralogical and physical 

analyses to put forward explanations for them.The consequences of these 

findings for land utilization types, and the possibilities for ameliorative 

measures will be discussed. 



2. GEOLOGY, GEOMORPHOLOGY AND SOIL CONDITIONS 

2.1. GEOLOGICAL SETTING 

The Quaternary geology of the Meuse Valley and of the Lower Rhine Valley has 

been summarized by De Jong (1967, 1971), Braun et al, (1968), Quitzow 

(1974), Zonneveld (1977), Zagwijn (1975), Zagwijn and Van Staalduinen 

(1975), Van der Meene (1977) and Van der Meene and Zagwijn (1978). A general 

soil landscape map of the area is presented in Fig. 1. (Backflap). 

In the east and south, the Lower Rhine Valley is surrounded by Paleozoic 

highlands. These highlands belong to the German Shale Plateau 

('Schiefergebirge'). During Late Pliocene and Pleistocene times this plateau 

underwent severe tectonic activity and uplift. Incision of the Rhine, 

situated in a tectonically lowered block, kept pace with uplift; this 

resulted in the deep, narrow Middle Rhine Valley. 

This uplift and incision caused considerable fluvial deposition in the Lower 

Rhine Valley which extends from Bonn (where the Rhine leaves the Shale 

Plateau and widens considerably) to the Dutch North Sea coast. 

Tectonic history, and the Pleistocene sea-level changes shaped the Middle 

and Lower Rhine Valley. Changes in river regime and climate were responsible 

for changes in the kind of deposits, while incision of the Rhine in its own 

sediments resulted in a sequence of terraces, which are very clear along the 

Middle Rhine Valley and along the eastern border in the extreme southern 

part of the Lower Rhine Valley. The situation is more complicated along the 

western border of the Lower Rhine Valley, where, due to blockfaulting, 

younger deposits may be found as lower terraces or overlying older terraces. 

Younger deposits may also overly older ones in areas where the river 

gradient becomes less steep e.g. due to the sea-level rise in the Holocene 

and where subsidence plays a major role, as in the coastal areas of The 

Netherlands. As a result, there are several terrace crossings between Bonn 

and the North Sea coast. It is difficult to distinguish subsequent deposits 



in the area close to a terrace crossing. 

Three groups of terraces have been distinguished with respect to the 

Holocene flood plain of Meuse and Rhine: the High or Main Terrace, the 

Middle Terrace and the Low Terrace. Each of these groups has been further 

subdivided, but here only the subdivision of the Lower Terrace will be 

discussed in more detail. 

Main Terrace 

This comprises the Kiezeloolite Formation (Upper Tertiary to Pretiglian 

glacial), the Tegelen Formation (Tiglian glacial), the formations of 

Kedichem (Eburonian glacial and Waalian interglacial, Menapian glacial) and 

Sterksel (Menapian glacial and Cromerian complex of glacial and interglacial 

periods). The Main Terrace is found at the surface west of the Central 

Graben in the Netherlands, and at the surface or below a loess cover in 

South Limburg and adjoining Germany. Zagwijn and Van Staalduinen (1975) 

recorded its occurrence below younger strata. Relatively narrow strips are 

found along the Middle Rhine and along the eastern margin of the Lower Rhine 

Valley. 

Middle Terrase 

This comprises the Formations of Veghel (River Meuse) and Urk (River Rhine) 

and was formed during the Cromerian (glacial and interglacial), Elsterian 

(glacial), Holsteinian (interglacial) and Saalian (glacial). This terrace is 

normally covered by several metres of loess or coversand and occurs at a 

lower elevation adjacent to the Main Terrace. In the south and east the 

Middle Terrace consists of narrow strips, but it is more extensive in the 

western part of the Lower Rhine Valley. It is encountered at shallow depths 

on the Peel Horst, and in South and Middle Limburg in the Netherlands, and 

in adjacent Germany. Zagwijn and Van Staalduinen (1975) recorded its 

occurrence below younger strata. 

Low Terrace 

This comprises the Kreftenheye Formation, deposited by the rivers Rhine and 

Meuse during the Saalian glacial, the Eemian interglacial and the 

Weichselian glacial periods. Because the Saalian and Weichselian glacial 

periods had a major impact on the shaping of the study area, the changes in 

environment from the Saale glaciation onwards will be discussed in more 

detail. 

Saalian period 

During the maximum extent of the Saale glaciation, tongues from the mainland 



Ice body protruded southward into the Lower Rhine Valley. Such a tongue was 

found in the tongue basin of Valburg, bordered by the ice-pushed ridges of 

the Southern Veluwe and of Nijmegen-Kleve, which were then connected (Thome, 

1958, 1959; Verbraeck, 1975). Similar tonguebasins have been found near 

Kranenburg, Xanten, Moers and Düsseldorf and, further west, near Wageningen, 

Amsterdam and in Flevoland. The ice tongue from Düsseldorf forced the Rhine 

to abandon its northern branch and follow a more western course as an ice-

marginal valley from Neusz through Viersen, Wachtendonk, Geldern, Goch, 

Ottersum, Gennep and Heumen. At Gennep, it joined with the Meuse. After the 

retreat of the land ice, the ice-pushed ridges of the Düsseldorf tongue 

basin were fully eroded and those of Moers strongly diminished and 

fragmented. Not until the end of the Saalian did the Rhine leave the ice-

marginal valley to resume its northern course, which it kept during the 

Eemian interglacial and the beginning of the Weichselian glacial period. 

(Zagwijn, 1975; Zagwijn and Van Staalduinen, 1975; Van der Meene, 1977, 

1979). 

Weiohselian period 

In the Middle Weichselian, the Rhine curved north of the ice-pushed ridge of 

Montferland-Elten and flowed westwards into the former tongue basin of 

Valburg. In the Late Weichselian (Van der Meene, 1977), or possibly earlier 

(Verbraeck, 1985) the Rhine broke through the ice-pushed ridge of Nijmegen-

Kleve-Elten-Montferland and created the gap known as 'Gelderse Poort' 

through which it flows at present. This change of course fossilized the 

former northern and southern branches, which functioned until the Late 

Weichselian as discharge outlets at extreme water levels. 

The southern branoh 

Downcutting in the southern branch formed the distinct Middle Terrace of 

Krefeld (Thomé, 1958, 1959) and Late Weichselian Low Terrace deposits occur 

in the broad valleys. The coarse-grained Low Terrace ends with a finer-

textured deposit, which is found at the surface. The Low Terrace can be 

traced to the Dutch North Sea coast, but from Nijmegen westward it is 

covered by Holocene deposits (Pons, 1954, 1957). 

The northern branch 

Middle Terrace deposits are not known from the northern Rhine branch, but 

Low Terrace deposits are extensive and similar to those in the southern 

branch. 



The central branch 

In the central branch, Low Terrace deposits are found from Millingen 

(Germany) upstream. The terrace crossing with the Holocene deposits is 

further east in the central branch than in the northern and southern 

branches. In Fig.l the soils of the Low Terrace have been subdivided into 

three hydrological classes: well drained, imperfectly drained, and poorly 

drained, reflecting conditions experienced after deposition, as will be 

explained later (chapter 3). 

Stratigraphy of the Low Terrace 

Subdividion of the Low Terrace varies. In German literature, two main units 

are recognized (Paas, 1960, 1961, 1977; Steeger, 1952, 1954; Quitzow, 1956, 

1974; Brunnacker, 1978; Thoste, 1974). This subdivision is based on the 

Aller^d-time volcanic eruption of the Laacher See (Frechen, 1959) which 

brought pumice with the indicator mineral hauyn into the atmosphere. Pre-

Allertfd deposits (without pumice) belong to the Older Low Terrace, while 

Allerrfd and Post-Allerrfd deposits contain pumice and belong to the Younger 

Low Terrace. Within the Younger Low Terrace, Thoste (1974) recognized a 

younger 'degeneration' phase. 

In the Netherlands, six deposits are recognized in the Kreftenheye Formation 

(Van der Meene and Verbraeck, 1975; Van der Meene, 1977; Van der Meene and 

Zagwijn, 1978; Verbraeck, 1985) i.e. 

Kreftenheye 6: Late Weichselian and locally slightly younger pumice-

containing deposits in erosion valleys of older Kreftenheye 

deposits, 

Kreftenheye 5: Deposits in the northern and southern Rhine branches after 

abandonment of these branches 

Kreftenheye 4: Early Weichselian deposits in the former northern Rhine 

branch 

Kreftenheye 3: Eemian deposits 

Kreftenheye 2: Deposits in glacial basins after melting of the ice 

Kreftenheye 1: Deposits in the southern Rhine branch in front of the Saalian 

ice. 

Wind erosion in the periodically dry Late Weichselian river floodplain 

resulted in coarse, sandy, river dunes. These dunes were initially formed 

during the Late Weichselian, but formation continued in the Holocene. 

Surrounding Pleistocene deposits include coversands, melt-water and soli-

fluction deposits, and basal till. These deposits are indicated in Fig. 1. 



The Holoo&ne floodplain 

This floodplain has been subdivided into seven units by Brunnacker (1978). 

He distinguished 2 Old Holocene, 3 Middle Holocene, and 2 Young Holocene 

sedimentation periods. In the Netherlands, the Holocene Betuwe Formation has 

been subdivided into deposits Gorkum 1 through 4 and Tiel 0 through 3 (Soil 

Survey Institute, 1981). Havinga (1969) and Havinga and Op 't Hof (1975, 

1984) identified four main phases of Holocene river sedimentation in the 

Betuwe area. In Fig. 1. Holocene deposits have been subdivided 

physiographically into levees and backswamps. 

2.2. RIVER REGIMES DURING THE LATE WEICHSELIAN AND THE HOLOCENE 

The two main types of river regimes are braided and meandering. Doeglas 

(1951, 1973) has summarized conditions and sediment characteristics of these 

regimes. The braided river regime is bound to conditions of intermittent 

discharge with very large differences between maximum and minimum discharge. 

Such conditions occurred during the stadials of the Weichselian glacial 

period. Vegetation was virtually absent, the soil permanently frozen and 

precipitation mainly in the form of snow. In the short summer period the 

snow melted but water could not penetrate into the frozen subsoil. Large 

masses of water, heavily loaded with weathering debris, accumulated in the 

river. After the short summer period, supply of water and sediment came to 

an end and the river bed went dry. In such conditions the river consists of 

a system of small and medium sized shallow water courses which branch and 

recombine, thus forming an anastomosing system. During the high summer 

discharges, transporting power is high, and gravel bars and sand bars form, 

separated by shallow gullies. During the winter, the whole floodplain is dry 

and wind erosion may lift sandy material from the floodplain and create 

river dunes. 

The meandering river regime has a more permanent discharge, which, however, 

may vary considerably. The more regular discharge comes into existence when 

rainfall is intercepted by vegetation, infiltrates into the soil, and joins 

the groundwater before being discharged into the river. This situation is 

typical for interglacial periods, but may also occur during interstadials. 

The river is partly supplied with water by the groundwater, and part of the 



sediment load is due to colluviation and to erosion of the floodplain. The 

river occupies a single bed, which meanders through the floodplain, which 

has a low gradient. The river may change its course by meander cut off and 

by breaking into backswamp areas (crevasse). The meandering river is 

characterized by point bar deposits, levees and backswamps. 

The Low Terrace was deposited by a braided river system (Pons, 1954, 1957; 

Van der Meene, 1977). This is illustrated by former gully systems, as 

indicated by Pons (1957) and on recent soil maps 1:50.000 by the Dutch Soil 

Survey Institute and the Geological Survey of Germany. 

The Holocene sediments were deposited by a meandering system: levees, 

backswamps and associated deposits are common features in these sediments. 

The gradients of the Late Pleistocene and Holocene systems are very 

different. According to Pons (1954, 1957), the gradient of the Low Terrace 

is approximately 30 cm/km and that of the Holocene deposits approximately 10 

cm/km. This difference in gradient is one of the explanations for the 

terrace crossing in the Nijmegen-Azewijn traject. West of this line, the 

Late Weichselian deposits are covered by Holocene deposits. A study done by 

the present author on detailed altitude maps of the Low Terrace deposits 

confirms the gradient given by Pons. 

The transition of a braided system to a meandering one goes through 

intermediate forms. Generally, the major part of the shallow gullies of the 

braided system lose their function, fossilize and become silted up, while a 

few of the deeper gullies deepen and start meandering. Such gullies may show 

weakly expressed levees. In the present author's opinion, however, the main 

gullies of the former southern and northern branches of the Rhine are 

erosive rather than sedimentary in character, and levees are generally 

absent. This will be elaborated in section 2.7. 

2.3 DATING OF DEPOSITS OF THE LOW TERRACE AND THE HOLOCENE FLOODPLAIN 

The various deposits have to be dated to study of the impact of differing 

climatic conditions and time on soil formation in these deposits. Zonneveld 

(1973) describes various methods that can be successfully used. Palynology 

(pollen analysis) has given an insight in vegetation successions during the 

Pleistocene and Holocene. Results have been summarized by Zagwijn and Van 



Staaldulnen (1975), Van der Hammen et dl* (1967) and Zagwijn and Doppert 

(1978). The biostratigraphy obtained through palynology has been linked to 

C determinations of absolute age for the period up to approximately 70.000 

years before present. Vegetation studies offer an insight into climatic 

conditions, notably summer temperature. Features such as frost cracks, 

cryoturbation, gelifluction and desert pavements give an indication of 

winter temperatures. The combination of palynological, radiocarbon and 

morphological data allowed a detailed bio-chronostratigraphy to be 

constructed for the Weichselian and the Holocene. The methods described 

above have long been used to date Weichselian and Holocene fluvial deposits 

(Koenigs, 1949; Schelling, 1951; Pons, 1957; Von der Brelie and Rein, 1956; 

Teunissen and Van Oorschot, 1967; Paas and Teunissen, 1978; Urban, 1978, 

1979; Teunissen and De Man, 1981). The use of palynology is not always 

feasible. To contain pollen, the sediment must have been preserved in 

anaerobic conditions. In many mineral soils this is not the case, and one 

will have to use peat or peaty deposits in former gullies or backswamps. 

Extrapolation of such data to nearby mineral sediments may be difficult 

because peat growth is not always synchronous with the termination of active 

sedimentation. 

In other cases, lithostratigraphic data may be used to separate subsequent 

deposits. Such data include grain-size distribution, gravel composition, and 

heavy mineral composition. (Zonneveld, 1977; Zagwijn and Van Staalduinen, 

1975). These methods have been successfully used to separate several Rhine 

terraces, as indicated before for the subdivision of the Low Terrace with 

the aid of pumice. 

In tectonically stable areas, geomorphology, often combined with the 

previously mentioned methods, may provide determinations of relative age 

(Brunnacker, 1978). Other occasional stratigraphie markers include the 

Usselo paleosol of Aller^d age, which is scarce in the fluvial area, and the 

occurrence of ancient dung beetle burrows. The latter are frequently 

encountered in Late Weichselian fluvial sand deposits and are mainly of 

early Preboreal age but fossil remains of these beetles are also known from 

the Late Weichselian interstadial periods (Brussaard, 1985). 

In Holocene sediments, archeological data may provide datable stratigraphie 

boundaries (Pons, 1957; Havinga, 1969; Brunnacker, 1978). 

In the fluvial area, however, the scarcity of datable sites and 

sedimentological data makes exact dating of deposits very difficult, 
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especially in the vicinity of a terrace crossing, where landscape 

morphological criteria are of little help. 

2.4 RESULTS OF FIELD INVESTIGATIONS 

Fig. 2. Location of study areas and reference profiles. 

Late Weichselian f l u v i a l jNinjIijiij Holocene f l u v i a l deposits 
deposits and 
associated r i ve r dunes 

\////A Pleistocene sand landscape 

Area (Reference p ro f i l e ) • and reference p ro f i les 

locat ion investigated 
areas 

1 = Siebengewald (A7) 

2 = Ottersum (A6, A9) 

3 = Milsbeek (A8) 

4 = Heumen (A1, A2, A3, A12) 

5 = Megchelen (A13, A16) 

6 = Asbroek (A14, A5) 

7 = Veldhunten (A4, A10, A11] 

8 = Weurt (A18) 

9 = Ewijk (A17) 

10 = Randwijk (A19) 

11 = Opheusden (A22) 

12 = Kesteren (A20) 

13 = Lienden (A21) 

14 = Millingen (A16) 
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In the eastern part of the Dutch provinces of 'Gelderland' and 'Limburg' and 

in adjoining West Germany, Late Weichselian deposits occur at the surface 

(Fig. 1). 

These areas have recently been mapped in the systematic 1:50.000 soil survey 

of the Netherlands (Soil Survey Institute, 1972, 1975, 1976, 1979, 1983). 

Detailed maps and cross sections of parts of this area were published by 

Koenigs (1949), Schelling (1951) and Pons (1957). In order to cover the 

variation in the Late Weichselian deposits, some areas were mapped in detail 

by the present author, and additional cross sections were prepared. Selec­

tion of reference profiles was based on these detailed studies. Locations of 

the studied areas and reference profiles are indicated in Fig. 2. 

2.4.1. CROSS SECTIONS 

The following cross sections were investigated (Van Engelen, 1975; 

Vlaanderen, 1976; Van Dis and Robben, 1978; Van der Gaauw, 1979; Broekhuizen 

and Epema, 1979). Their location is given on the soil maps (Figs. 15, 17, 

19, 21, 23, 25, 27). 

- Siebengewald cross section (Fig. 3A). This section starts at the German 

border close to the River Kendel, and runs SW. The total length is about 

2800 m, and its average altitude is 16 m + NAP. 

Otteveum cross section (Fig. 3B). This section runs from the Reichswald, 

near the ice-pushed ridge of Nijmegen-Kleve, southwards. The total length 

is about 1500 m and its average altitude is 13 m + NAP. 

- Milsbeek cross section (Fig. 3C). This section starts at the foot of the 

ice-pushed ridge of Nijmegen-Kleve and runs due south. Its total length 

is about 1100 m and its average altitude is 12 m + NAP. 

Heumen cross section (Fig. 3D). This section starts near a field road and 

runs NE to the Looistraat. Its total length is about 500 m and its 

average altitude is 9 m + NAP. This section was published by Miedema et 

al. (1978). 

- Megchelen cross section (Fig. 4A). This section runs nearly NE-SW and 

connects two sections of the German border. Its total length is about 650 

m, and its average altitude 16.5 m + NAP. 

- Aebvoek cross sections (Fig. 4B/4C). Section Asbroek I starts north of the 
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Fig. 5. The Late Weichselian sedimentation profile. 

Munsterweg and runs south to the German 

border. This section is about 1000 m long. 

Section Asbroek II intersects the former 

perpendicularly, approximately half-way. This 

section is 700 m long. The surface in both 

sections is at an average altitude of 14.5 m 

+ NAP. 

Veldhunten cross sections (Fig. 4D/4E). 

Veldhunten I runs SW from the village; 

Veldhunten II runs south from the village and 

proceeds SW after 450 m. Both sections are 

about 1100 m long and their surface is at an 

average altitude of 14 m + NAP. 

Augering distances within the sections varied 

from 30-150 m, normally around 50 m. Average 

augering depth was 2.2 m. S S ^ ^ ^ H ^ H ' 90 
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The legend of all sections is based on texture 

and is given in Fig. 3. The Late Weichselian 

stratigraphy that can be concluded from the 

cross sections is described below and 

illustrated in Fig. 5. 

Gravelly sand and sandy gravel 

I The oldest deposits encountered in all 

sections are stratified very gravelly 

coarse sand and gravel. These very 

gravelly coarse sands have an undulating 

surface with many shallow and some deeper 

depressions; they are not always 

encountered within augering depth (e.g. 

Asbroek I ) . In the Siebengewald cross 

section this deposit locally passes with 

depth into sandy gravel. Composition and 

topography suggest a gravel bar system 

common to braided rivers. 

Coavse sand 

IIa The very gravelly coarse sands are 
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abruptly overlain by stratified coarse sands without gravel. The 

abrupt boundary suggests non- deposition or even an erosive contact. 

The stratified coarse sands are of variable thickness. In the 

Mi Is beek, Megchelen and As broek I and II sections they are one to two 

metres thick and continuous, in the Siebengewald and Veldhunten I 

sections they are generally less than one metre thick and may be 

absent locally. The top of this deposit is undulating; the shallow 

depressions in its surface generally coincide with those in the 

underlying deposits, but the top of the sand may also be rather flat. 

The stratified sand deposit was exposed in the NE part of the 

Megchelen section. Its sedimentary structures point to a fluvial 

origin. In the Megchelen section, three filled channels are found 

within the sand body. Locally (Ottersum, Milsbeek and Veldhunten 

sections) wind action has built up high sand bodies. 

Fine sand 

lib The stratified coarse sands are locally overlain by fine sand with 

clayey laminae. This deposit was not encountered in the Asbroek 

sections and occurs in isolated remains only in the Siebengewald, 

Megchelen and Veldhunten sections. It is transitional to the overlying 

finer deposits. If the deposit is present, the transition from 

sediment IIa to overlying finer textured deposits III is gradual. If 

the deposit is absent, the transition is abrupt and suggests wind and 

water erosion after deposition of the stratified coarse sands and the 

sands with clayey laminae. Locally, this erosion has removed most of 

deposit IIa, and sediments III directly overly deposit I. (Siebenge-

wald section). In the latter case, overlying finer deposits may 

contain considerable amounts of gravel (10-30%, and locally more). 

In the Milsbeek section, the top of deposit lib is rather flat, 

without pronounced depressions. 

Loam 

III The overlying fine deposits have loamy sand to loam textures and are 

still of Late Weichselian age. The texture shows strong lateral 

variations which are related to pre-existing topography and to channel 

systems in the deposit itself. Textures are coarsest in topographic­

ally high spots, and finest in channel fills. As was indicated under 

lib, some or the channels, especially in the Siebengewald section,-may 

contain considerable amounts of gravel, testifying to the erosion of 
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the gravelly coarse deposit I. Channels which have their base higher 

in the deposit are devoid of such erosion products, and indicate 

passive infilling. It is difficult to distinguish the various 

deposltional stages which are suggested by the different levels of 

channels. It is hardly possible to relate specific channel systems to 

nearby deposits, although there are distinct phases in the activity of 

the various channels, and some terminated their activity prior to 

others. 

'Dril' 

In the Asbroek II and Veldhunten I sections, the Late Weichselian III 

deposits contain a layer of 'dril'. In the Veldhunten section, the 

'dril' is found within the III deposits, in the Asbroek section it is 

encountered between the III deposits and the underlying deposits IIa. 

'Dril' is a not fully ripened, sticky material which often contains 

numerous decomposing plant remains and is locally strongly calcareous. 

Koenigs (1949) indicated this material in his cross sections A, B, and 

D and stated that locally it showed signs of cryoturbatlon. 

Channel infillings 

One or more deep major channels partly infilled with peat and peaty 

deposits are encountered in almost every section. These channels are 

cut into the underlying I deposits and may be filled with more than 

four metres of Late Weichselian and Holocene material. Most complete 

channel fill sequences are found in the Heumen, Megchelen and 

Veldhunten sections. The channel in the SW of the Megchelen section is 

part of a meander-shaped outer bend. In the bottom part of the 

channel, calcareous sand and clay are found, overlain by lime gyttja. 

In turn, the lime gyttja is overlain by peat, peaty clay and by clayey 

deposits. Palynological investigation indicated that all sediments in 

the infilling are of Holocene age (section 2.5). Apparently, this 

meander was abandoned after the Late Weichselian. In the Roode 

Wetering channel of the Veldhunten I section, the bottom fill consists 

of lime gyttja and clayey peat. The lime gyttja is of Late Weichselian 

(Allerfid) age, and the transition to the Holocene is found in the 

overlying clayey peat. This channel was abandoned before the Aller^d 

(section 2.5). The lime gyttja was not encountered in the Roode 

Wetering infilling of Veldhunten II. Infilling of the major channel of 

Heumen was of Holocene age (section 2.5). The major channel in the 


