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fijiïo$zo\ }Z<+2 

STELLINGEN 

behorende bij het proefschrift 

Analysis of the Exit Problem for Randomly Perturbed Dynamical Systems 

in Applications 

1. Het is in de literatuur gebruikelijk om bij de constructie van contouren 

in de toestandsruimte waarlangs de eikonaalfunctie een constante waarde 

aanneemt uit te gaan van een beginwaarde-probleem. Deze methode is 

problematisch vanwege de sterke afhankelijkheid van beginwaarden. Deze 

moeilijkheid wordt vermeden door het probleem te herformuleren als rand­

waarde-probleem. Zie hoofdstuk 4 van dit proefschrift. 

2. De uitdrukking (3.28) in [1], zijnde de kans dat op een bepaald tijdstip 

de stochastisch belaste slinger een kritieke energie heeft overschreden, is 

incorrect omdat niet aan de rechter-randvoorwaarde is voldaan. Rekening 

houdend met verschillen in notatie wordt de juiste uitdrukking gegeven 

door formule (5.15) in hoofdstuk 2 van dit proefschrift. 

[1] A. Katz and Z. Schuss (1985), Reliability of elastic structures driven 

by random loads. SIAM J. Appl. Math. Vol. 45, No. 3, 383-402. 

3. In de praktijk worden verdelingen voor de levensduur van mechanische sy­

stemen dikwijls verkregen door meetresultaten te benaderen met een be­

kende statistische verdeling (zoals de gammaverdeling, de Weibull-verde-

ling, e tc) . M.b.v. het uittreemodel is het soms mogelijk om deze verdelin­

gen (en/of hun momenten) af te leiden uit de dynamica van het systeem 

[1],[2]. 

[1] J. Grasman en H. Roozen (1989), Reliability of stochastically forced 

systems. Proc. of the second workshop on road-vehicle-systems and 

related mathematics, June 20-25, 1987, Torino, 219-235. 

[2] Dit proefschrift hoofdstuk 2. 



4. Bij toepassing van de stralenmethode kan een cusp-singulariteit optreden. 

In de standaardvorm is deze singulariteit gegeven door P(Ç,a,b) = \Ç4 — 

a£2 — b£. De lijnen Pf = 0 in het (a, 6)-parametervlak komen overeen 

met stralen. Dit zijn precies de lijnen die in [1] gebruikt worden om de 

cusp-singulariteit uit te beelden. 

[1] T. Poston and I. Stewart (1978), Catastrophe theory and its applica­

tions. 

5. Dynamische systemen vormen een uitgebreid studie- en onderzoeksgebied 

voor wiskundigen, maar bieden in een aantal gevallen ook niet-wiskundigen 

de mogelijkheid om met elementaire middelen (zoals een microcomputer) 

op relevante wijze modelbouw te verrichten in hun eigen discipline. 

6. De oplossing van een tweede-graads algebraïsche vergelijking is voor ve­

len standaardkennis. Weinigen echter kunnen een derdegraadsvergelijking 

oplossen. Zie hiervoor [1]. 

[1] R.M. Miura (1980), Explicit roots of the cubic polynomial and appli­

cations. CMS Applied Math. Notes, 5, 22-40. 

7. Een goede bibliotheek is voor wiskundigen van primair belang. Bezuinigen 

op het boekenbudget moet dan ook opgevat worden als een zeer ernstige 

maatregel. 

8. Een voorwaarde voor succesvolle practische toepassing van het inverse 

model van de electrocardiografie is dat men van elk te onderzoeken persoon 

de individuele geometrie van hart- en torso-oppervlak in rekening brengt. 

9. Wie in boekwinkel of bibliotheek zoekt naar boeken over lineair program­

meren, zijnde een onderdeel van de operationele analyse, treft deze gewoon­

lijk aan tussen de computerboeken. 

10. Wie zich op een autoweg bevindt waarvan bekend is dat een van de twee 

rijstroken (die dezelfde verkeersrichting hebben) verderop geblokkeerd is, 

schiet het snelst op door op de geblokkeerde rijstrook te gaan/blijven rijden 

en pas vlak voor de blokkade op de andere rijstrook in te voegen. 
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OVERVIEW 

In the preface of his book entitled 'Theory and applications of stochastic 

differential equations', Z. Schuss (1980) noticed a gap between the theory of 

stochastic differential equations and its applications. In addition to the work 

of Schuss and many others in the field, the present work aims at narrowing this 

gap. 

This thesis deals with randomly perturbed dynamical systems. Such sys­

tems frequently arise in the modelling of phenomena in biology, mechanics, 

chemistry, and physics. In some cases random perturbations form a minor as­

pect of the problem under study. Then a deterministic description can be used. 

In the present work the behaviour of the dynamical systems depends essentially 

on the random perturbations. We encounter systems with so-called 'diffusion 

across the flow' (Chapters 1,2) and systems with 'diffusion against the flow' 

(Chapters 1,3-5). The stability of equilibria of these systems (and thus, the 

lifetime, reliability of these systems) is affected by random perturbations. 

In the study of so-called 'exit problems' we consider a domain in the state 

space of the dynamical system and try to compute statistical quantities related 

to escape from this domain, such as the probability density function of the 

exit-time, the probability density function of exit points on the boundary of 

the domain (or, less ambitiously, the first few statistical moments of these 

densities: mean, variance, etc.). The expectation value of the exit-time can be 

used to express the stochastic stability of the system. 

We speak of randomly perturbed dynamical systems, so we assume that 

the stochastic fluctuations are small. This is often a realistic assumption. To 

1 



derive expressions for the statistical quantities mentioned above, we employ 

asymptotics where the small parameter is related to the intensity of the random 

perturbations. The asymptotic method used in Chapter 2 is well-established. 

The asymptotics in Chapters 3-6 are of a formal character. The asymptotic 

analysis is performed to the lowest order necessary to incorporate the essential 

effects. In view of the complexity of this simplest approach, we did not carry 

out higher order calculations. 

The first chapter forms an introduction to some important topics in the 

theory of exit problems. We discuss the relevant (initial-) boundary-value 

problems, the classification of boundaries of domains of stochastic dynami­

cal systems, and we give elementary examples of systems with 'diffusion across 

the flow' and 'diffusion against the flow' and their asymptotic solution. This 

chapter facilitates access to literature on exit problems and to the remaining 

chapters of this thesis. A more detailed treatment of the topics touched upon 

in this chapter is found in the cited literature. 

Chapter 2 is concerned with the dynamics of a loaded stiff rod. The load 

consists of a deterministic part and a small stochastic part. An accumulation of 

stochastic load fluctuations may drive the energy of the rod across some critical 

level. The expectation value of the time to reach this critical energy level is a 

measure for the reliability of the system that contains the rod. According to 

the directions in which the loads act, various cases are distinguished. We de­

rive expressions for the expectation value of the exit-time and (for some of the 

cases) of a number of other statistical quantities, as the exit-time density, its 

moments and cumulants and the probability density function of the square root 

of the energy (as a function of time). We use an asymptotic method known as 

the averaging technique. As a matter of fact, the model is a randomly loaded 

slightly damped oscillator. Since many practical systems near equilibrium be­

have essentially like a slightly damped oscillator, the results obtained may be 

expected to have a wide range of application. 

In Chapter 3 we study the exit problem for a stochastic dynamical system 

of interacting biological populations. Exit from the domain (the positive or-

thant) corresponds with extinction of a population. We start with a birth and 

death process, having a discrete state space, and subsequently formulate an 

'approximate' Fokker-Planck (or forward Kolmogorov) equation in a continu­

ous state space. It is assumed that the deterministic system associated with the 

stochastic dynamical system has a point attractor in the positive orthant. The 



biological system will remain for some (probably long) time in a neighbourhood 

of the attracting point, but after a (rare) succession of random fluctuations, 

one of the populations will get extinct. Determining the expected time of exit 

(of whichever of the populations), and of which population will probably get 

extinct first, requires the numerical solution of a system of so-called 'ray equa­

tions' (obtained from the Fokker-Planck equation by the WKB-method). In 

literature these differential equations arc provided with initial conditions, which 

entails difficulties in the numerical construction of contours in the state space 

on which the eikonal function attains a constant value (confidence contours). 

We define boundary conditions instead of initial conditions and thereby resolve 

these difficulties. The ideas are illustrated by a two-dimensional generalized 

Lotka-Volterra model. This model allows a nice demonstration of the concepts 

of deterministic stability and stochastic stability. Numerically constructed con­

fidence contours are shown for predator-prey, mutualism and competition vari­

ants of the model. We carry out numerical simulations of birth-death processes 

to check the results. 

A discussion of various ways of numerical solution of the system of ray 

equations is found in Chapter 4. In particular we explain the boundary-value 

method referred to above. Moreover we give some details on the numerical 

construction of rays and confidence contours. At the end we present an ex­

ample with intersecting rays. This phenomenon is investigated analytically in 

Chapter 6. 

In Chapter 5 we are concerned again with a stochastic version of the 

two-dimensional generalized Lotka-Volterra model. The approach differs from 

that in Chapter 3 in that now we pay attention to what happens near the 

boundaries of the domain (the positive coordinate axes). The main difficulty 

is caused by the fact that the normal components of both the drift and the 

diffusion coefficients vanish near the boundaries, as linear functions of the dis­

tance to the boundaries. To obtain expressions for the statistical quantities 

of interest, we generalize a method of other authors in the study of a similar 

one-dimensional problem. The asymptotic expressions contain some unknown 

constants, that can be obtained numerically. Explicit calculations are carried 

out for a predator-prey system as an example. 

Applying the WKB-method to the forward Kolmogorov equation, we ob­

tain the ray equations. In the solution of the ray equations one sometimes 

observes intersecting rays forming caustic surfaces. This phenomenon is stud-



ied in Chapter 6. Near locations of intersecting rays, the WKB-approximation 

does not hold. We derive a uniform asymptotic expansion in terms of new 

canonical integrals whose validity extends over regions containing caustics. We 

start with the simple case of a cusp arising in a diffusion problem for which 

explicit results can be obtained. Subsequently, we generalize it to a formal 

approach to singularities arising in the forward Kolmogorov equation. 

The text of each of the chapters has appeared as a report or a publication 

in a scientific journal or is going to: 

[1] H. Roozen (1989), A short introduction to exit problems. CWI Quarterly, 

Vol. 2, No. 1, 45-65. 

[2] H. Roozen (1989), Stochastic stability of the loaded stiff rod. Journal of 

Engineering Mathematics 23, 357-376. 

[3] H. Roozen (1987), Equilibrium and extinction in stochastic population 

dynamics. Bull. Math. Biol., Vol. 49, No. 6, 671-696. 

[4] H. Roozen (1986), Numerical construction of rays and confidence contours 

in stochastic population dynamics. Technical Note, Centre for Mathemat­

ics and Computer Science, Amsterdam. 

[5] H. Roozen (1989), An asymptotic solution to a two-dimensional exit prob­

lem arising in population dynamics. SIAM J. Appl. Math. Vol. 49, No. 

6, 1793-1810. 

[6] H. Roozen (1989), Singularities arising in the asymptotic solution of the 

forward Kolmogorov equation. Report (submitted for publication). 



A SHORT I N T R O D U C T I O N T O EXIT P R O B L E M S 

H. Roozen 

Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

Many phenomena that occur in nature and technology exhibit a stochastic behaviour. 

When the stochastic element is relevant, it has to be included in the modeling of such 

phenomena. We discuss models with a deterministic component and a small stochas­

tic component. The short term behaviour of these models is determined mainly by 

the deterministic component, whereas the long term behaviour is influenced consid­

erably by the stochastic component. For the description of the long term behaviour, 

deterministic stability concepts (stable, neutral equilibrium) are inadequate and have 

to be replaced by stochastic stability concepts (the expected exit time from a region 

containing such a deterministic equilibrium). In the study of so-called exit problems 

we consider a domain in the state space of a stochastic dynamical system and try to 

determine statistical quantities (such as the mean exit time, the distribution of exit 

points over the boundary of the domain, etc.) related to leaving this domain. We 

treat the exit problems from an asymptotic (in the limit for small noise) point of view. 

1. I n t roduc t ion 

In this contribution we will study some aspects of stochastic dynamical 

systems that have a deterministic part (defining the associated 'deterministic 

system') and a small stochastic part consisting of Gaussian white noise (referred 

to as 'stochastic fluctuations'). 

In some of these systems, the dynamical characteristics of interest are dom­

inated by the deterministic system, while the stochastic fluctuations are only 



Figure 1. Illustration of diffusion (a) with, (b) across and (c) against 

the flow. 
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of secondary importance, in the sense that omission of the stochastic fluctua­

tions does not essentially alter these characteristics. This if demonstrated, for 

example, by a 'diffusion with the flow', see Figure la. Starting at a point in a 

bounded domain D, the trajectories of the stochastic dynamical system leave 

the domain D with probability close to one in the same time as the determin­

istic trajectory through that point. The probability density function defined 

on the boundary dD, describing the point of exit from D of the stochastic dy­

namical system, is concentrated near the deterministic exit point. Stochastic 

systems of this type will not be considered here. 

In other stochastic dynamical systems, the stochastic fluctuations, though 

small, are of great importance to the dynamical characteristics of interest. 

Without stochastic fluctuations these characteristics are essentially changed. 

One such example is a 'diffusion across the flow', as depicted in Figure lb. The 

deterministic system consists of a center point, surrounded by closed trajec­

tories. Consider a domain D, enclosed by one of these trajectories. In the 

deterministic system no exit from D can occur, since we follow ceaselessly the 

closed trajectory through the starting point. In contrast with this fact, in the 

stochastic dynamical system, i.e. in the deterministic system perturbed by 

stochastic fluctuations, exit will occur in finite time with probability one. An­

other such example is a 'diffusion against the flow', depicted in Figure le. A 

bounded domain D is entered at its boundary dD by deterministic trajectories 

that converge to an asymptotically stable limit point contained in D. In this 

deterministic system, if we start at some point in D, we approach the limit 

point along the trajectory through the starting point. Again, the determinis­

tic system does not allow exit from D, but when this system is perturbed by 

stochastic fluctuations, exit will happen in finite time with probability one. Al­

though more complicated systems exist that exhibit a similar behaviour, such 

as attracting limit cycles or strange attractors, etc., notably in higher dimen­

sional domains, we will confine ourselves to systems of the two simple types 

described here, in particular to systems of the last type. 

We will concentrate on a few statistical characteristics related to the prob­

lem of exit from a domain, like the expectation value of the time of first exit 

(which provides a measure for the stability of the stochastic system) and the 

distribution of exit points over the boundary of the domain. 



2. The equations 

A stochastic system is frequently described either in tenns of a stochastic 

differential equation (that, as an extension to an ordinary differential equation, 

contains stochastic terms) [1], or in terms of a Kolmogorov equation. In the 

former case, an equivalent description in terms of a Kolmogorov equation may 

be possible. In this section we formulate the forward and backward Kolmogorov 

equations [19,55], which form the starting point of our analysis. 

We consider a stochastic dynamical system that has been defined on the n-

dimensional domain D in the state space. Let v(x,t)dx denote the probability 

that the system is in the infinitesimal subregion (x, x + dx) E f l a t time t. This 

function satisfies the forward (Kolmogorov) equation (also called the Fokker-

Planck equation) 

•£ = Mtv, x e D, (2.1) 

where the differential operator Mt is defined by 

t = i t = i j = i j 

Equation (2.1) has to be supplemented with the relevant initial and boundary 

conditions. The first term on the right side of (2.2) represents the deterministic 

part of the dynamical system, 6 is called the deterministic or drift vector. The 

second term on the right side represents the stochastic fluctuations. The ma­

trix ea is known as the diffusion matrix and is symmetric and positive (semi-) 

definite. The parameter e, 0 < e <; 1, indicates that the stochastic fluctuations 

are small relative to the deterministic part. When e = 0 the stochastic fluctu­

ations are absent and equation (2.1) reduces to the Liouville equation. Then, 

if the initial position is deterministic, the initial probability density is a delta 

function, say 6(x — Xo), and the solution of the Liouville equation corresponds 

to the solution of the system of ordinary differential equations 

- ^ = &,(*), » = 1,2 n (2.3a) 

with initial conditions 

x(0) = x0. (2.36) 

This system is defined as the deterministic system corresponding to the stochas­

tic dynamical system. 
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In order to determine the distribution of exit points over dD, as well as the 

expected time of first exit from D, we use backward equations. Let p(x, y) dSy 

be the probability of exit at dSy G dD, given that we started at x G D, i.e. p 

is the exit density. Note that p is a probability density function with respect 

to y. We define the function ua(x) as follows: 

«,(*) = / f(y)p(x,y) dSy, (2.4) 
JdD 

where ƒ is a function on dD that can be chosen arbitrarily. With ƒ defined as 

the indicator function 

•{i 
on d\D, where d\D Ç dD, . . 

0 on d0D = dD\d1D, { b ) 

us{x) is the probability of exit at d\D, given that we started at x G D. The 

function u, is the solution of the stationary backward equation 

Lcu, = 0, x E D, (2.6a) 

subject to the boundary condition 

u, = ƒ(*), x G dD, (2.66) 

where the differential operator L£ is defined by 

n « n n Qo 
v ^ . / x du f v ^ V ^ / x d'u ,„ „, 

*«« s I > W ^ + 2 EE-oWä^J. (2-7) 
and a and 6 are the same functions as above. 

We consider the time-dependent backward equation 

-£ = Ltu (2.8a) 

as well. With the boundary condition 

u = ƒ(*), x G dD, (2.86) 

where ƒ is the indicator function (2.5), and the initial condition 

u(x,0) = 0, xED, (2.8C) 
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u(x,t) is the probability that exit occurs at d\D on the time interval (0,i\, 

given that we started at z € D on time t = 0. 

The time of (first) exit from D is defined as 

r(x) = inf {t\x(t) € dD, x{0) = x£D}. (2.9) 

Its expectated value T(x) = Er(x) is the solution of the boundary value prob­

lem: 

L(T=-1, x£D, (2.10a) 

T=0, x€dD. (2.106) 

Equation (2.10a) is known as the Dynkin equation. 

The reader interested in the details of the equations and the corresponding 

conditions that we have given here, and in related material, is referred to the 

literature [19,55]. In later sections we shall be concerned with the asymptotic 

solution of (2.1),(2.6),(2.8) and (2.10) for small e. 

The backward and forward differential operators Lt and Mt defined above 

are formal adjoints, which means that the following relation holds [48]: 

/ / (vL(u - uM<v) dx= f P.Z dSx, (2.11) 
J JD JdD 

where P is the vector with components 

+ biuv, i = l , 2 , . . . , n (2.12) 
n 

e 
du d{<iijv)' 

11 dxj dxj 

dSx is an infinitesimal surface element containing x, and £ denotes the outward 

normal on dD. 

3. The boundary 

In the study of exit problems, the behaviour of the stochastic system at and 

near the boundary of the domain deserves special attention, since the domain 

is left via the boundary. For a given stochastic system we must verify whether 

the boundary can actually be reached from the interior domain. 

In many practical situations the type of the boundary is determined by 

the drift vector and the diffusion matrix. For one-dimensional stochastic sys­

tems there is a classification of such boundaries originating from Feller [16]. In 
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h 
yes 
yes 
yes 
no 
no 
no 

integ 

h 
yes 
no 
no 
yes 
yes 
no 

rable 

h 

yes 
no 

U 

yes 
no 

type 
of 

boundary 
regular 

exit 
natural attracting 

entrance 
natural repelling 

boundary 
is 

attainable 
yes 
yes 
no 
no 
no 

interior 
is 

attainable 
yes 
no 
no 
yes 
no 

Table 1. Boundary classification for one-dimensional stochastic sys­

tems. Five boundary types are defined according to the integrability of 

some of the functions I\ to I4. The last two columns indicate whether 

the boundary is attainable from the interior domain and whether the 

interior domain is attainable from the boundary. 

a semi-group approach to adjoint forward and backward equations he distin­

guished the regular, exit, entrance and natural boundaries. In table 1 we have 

repeated schematically the boundary classification as it has been described in 

[54]. The type of boundary depends on the integrability at the boundary point 

of some of the following functions: 

h(x) = exp — I b(t)/a(t) dt. 

-J b(t)/a(t) h(x) = 
eayx) 

h(x) = h(x) J' I2(t) dt, 

h{x) = h{x)J h(t)dt. 

dt 

(3.1) 

If there are sample paths that hit the boundary in finite time, the boundary is 

attainable, otherwise it is unattainable. Table 1 indicates that it makes sense to 

talk of an exit problem only if at least one of the boundaries of the domain (an 

interval) is a regular or exit boundary (which are the only cases that permit the 

boundary to be reached in finite time from the interior domain). When we have 

a regular boundary we should speak of the problem of first exit from a domain, 

since in that case the exited domain can be re-entered and subsequently re-

exited. For higher dimensional stochastic systems a similar classification has 

never been published. 
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In other situations we dispose of a stochastic system, denned by a drift 

vector and a diffusion matrix on a domain D, and we want to erect a bound­

ary of a desired type at any place in D, thereby restricting the domain to a 

subdomain D' of D. Examples of such boundaries are absorbing and reflecting 

boundaries [19]. On reaching an absorbing boundary from the interior domain 

D', the system is taken apart (is absorbed) so that this domain cannot be 

entered again, comparable with an exit boundary. At a reflecting boundary 

no probability can pass, so that exit at this boundary is impossible. With re­

spect to the solution of the forward equation an absorbing boundary implies 

the boundary condition v(x,t) = 0, where x G dD', and a reflecting boundary 

implies the condition £.J(x, t) — 0, where x Ç dD', £ is the outward normal on 

dD' and J is the probability current, i.e. the vector with components 

Ji(x,t) = bi(x)v-^^2T-(aij(x)v), *'=l,2,...,n. (3.2) 

Absorbing and reflecting boundaries can be set up in domains of any dimension. 

4. An example of diffusion across the flow 

In this section we treat a simple example of diffusion across the flow. 

Consider an oscillator with a small damping, that is subjected to a stochastic 

forcing. The damping effect is introduced here since it leads to a realistic model, 

without essential complications for the analysis that follows. As a consequence 

of the stochastic effects, the energy of the oscillator can reach some critical level 

after some time. This critical level can for example be chosen as the energy 

at which the system, the oscillator is part of, breaks down. We will derive an 

expression for the expected time needed to reach this critical energy level, which 

is a measure for the stochastic stability of the oscillator. In nondimensional 

form, the differential equation for this problem is formally [53] 

x + cax + x = y/cq(x) £, (4.1) 

where x is the deviation from the equilibrium position, the dot denotes dif­

ferentiation with respect to the time /, c is a small positive parameter, and 

ea is a nonnegative 0(e) damping constant. The right side of (4.1) represents 

12 



Gaussian white noise with intensity cq2{x). The function q is approximated by 

the first two terms of its Taylor expansion around x — 0 

q(x)&ß0+ßix. (4.2) 

It is assumed that not both ß0 and ß\ are zero. The second order formal 

differential equation (4.1) is replaced by the system of first order stochastic 

differential equations [1] 

dx = xdl, 
(4.3) 

dx = -(eax + x)dt + \/t{ß0 + ß\x) dW, 

where W represents Brownian motion. The undisturbed (e = 0) system (4.1) 

is an undamped oscillator, whose dynamics are described by closed trajectories 

around the origin in the (x,i:)-phase space. Each trajectory corresponds to 

an energy level. The energy is larger for orbits farther away from the origin. 

The effect of nonzero c is that the trajectories tend to spiral slightly inwards to 

approach the origin as a consequence of damping if a ^ 0 and contain stochastic 

fluctuations in the i-direction. The backward equation corresponding to (4.3) 

reads [19] 
du .du , . . du e .„ „ x , ô 2 u .J ,. 
- = x--{cax + x)-+-(ß0 + ßlXf— (4.4) 

with u defined as in Section 2. This equation is studied asymptotically for 

small c and on the time scale of 0{e~l). With 

t = t/e, u = u° + cux + •••, (4.5) 

and the transformations (x,x) —* (r,0) defined by 

z = v 2 r c o s 0 , i = v2» 's inö, (4.6) 

we obtain to leading order in e 

implying that u° is a function of r and t only. The variable r is the square 

root of the dimensionless energy of the undisturbed (e = 0) system. The 

nondimensionalization process can be carried out such that the critical energy 

corresponds to r2 = 1, thus r G [0,1]. To the next order in e we obtain an 
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equation in terms of u° and u1. Terms with u1 vanish by integration of this 

equation with respect to 0 from 0 to 2n and the additional assumption that ul 

is periodic in 0 with period 2ic. The resulting equation for «° reads 

du° / a 0 \ du° ( 2\d
2u° 

with 

a0 = ßlß, ai = 0?/16, a2 = 3/?2/16 - a /2 . (4.86) 

The description to this order in e includes the effects of both damping and 

stochastic fluctuations. If, as a consequence of the latter effect the critical 

energy r2 = 1 is reached in finite time with probability one, starting from 

r G [0,1], the oscillator is said to be stochastically unstable. In that case, the 

stability of the oscillator is measured by the expected time of exit from the unit 

interval at 1. 

In the present discussion we only consider the case |/?o|,|AI 3* 0(e*), so 

that ao and aj do not vanish in the asymptotics leading to equation (4.8a) and 

thus appear in this equation indeed. The boundary r = 0 is then an entrance 

boundary and at r = 1 we adopt an absorbing boundary in order to model 

the breakdown of the oscillator at the critical energy. Thus exit from the unit 

interval can take place only at r = 1. Let u,(r) be the probability of exit at 

r — 1, given that we started at r on time t = 0. The leading order term w°(r) 

in the expansion of ua(r) in powers of e is obtained by solving the stationary 

equation (4.8a) with boundary condition u°(l) = 1. The only relevant solution 

(i.e. yielding values u°(r) G [0,1]) is wj(r) = 1. There is no freedom to 

specify an arbitrary boundary condition at r = 0. We conclude that if we 

start somewhere on the interval [0,1], exit at r = 1 will occur with probability 

one, so that the oscillator is stochastically unstable. Next we consider the 

expected exit time T(r), starting from a point r. Similar to the time scaling 

in (4.5) we put T — T/e and similar to the expansion of « in (4.5) we put 

f = f ° + ef1 + • • -, so that T = f°/e + fl + • • •. An approximation for T is 

found by solving the Dynkin equation 

, / a 0 \ df° j 2\9
2f° 

- 1 = ( T + a 2 r ) - g - + («o + a i r 2 ) - ^ , (4.9a) 

with the boundary conditions 

t ° (0 ) is finite, (4.96) 

T°( l) = 0. (4.9c) 
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For Œ2 ^ ai we find 

1 «2 . 1 

T(r)~-r-^ x / [ ( - s 2 + 1 ) 2 a i 2 - l l - ^ , (aaîÉO!). (4.10) 
e(ai - a2) Jr L\a0 / J s 

If Ü2 = a,i, this is substituted into equation (4.9a). Solving the corresponding 
boundary value problem we find 

T(r) ~ 7^~ f - l o g ( - * 2 + l ) ds. (4.11) 
2ca\ Jr s Vao / 

The reader is asked to take notice of the order of magnitude of the results 

(4.10) and (4.11) in order to compare this with results to be derived later for 

diffusion against the flow systems. The cases that either ßo or ß\ are of order 

0 ( e 5 ) must be treated separately. In the case ßo = O(e ' ) it can be shown 

that if the damping is larger than a certain value the oscillator is stochastically 

stable on the time scale under consideration. This means that on this time 

scale the probability of exit is less than one, in contrast with the result above. 

A more detailed description of the exit problem for oscillators as described 

here can be found in [53]. The stochastic stability of oscillators with a dif­

ferent type of damping (as cubic damping) or noise (red, dichotomic, etc.) 

and with a forcing described by a potential function has been treated in [14]. 

The asymptotics that we have used in this example to arrive at equation (4.8) 

are well established and are known under the names of averaging technique 

[3,31,35,50,56] and adiabatic elimination of fast variables [19]. 

5. Diffusion against the flow 

In this section we discuss the exit problem for systems that are of diffusion 

against the flow type. First we treat a one-dimensional system, then a mul­

tidimensional potential system that can be treated with essentially the same 

means, and we will conclude with more general multidimensional systems. 

5.1 A one-dimensional system 

Consider the stochastic system defined on [a,/?], where a < 0 and ß > 0, 

with drift coefficient b(x) satisfying 

> 0 , *€[<*,0), 
b(x) ^ = 0, x = 0, (5.1.1a) 

< 0 , z€ (0 , / ? ] , 
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so that x = 0 is an attractor, and diffusion coefficient (a(x), 0 < f < l , with 

a (ar)>0, x£[a,0\. (5.1.16) 

For this system we will find the functions us and T defined in Section 2, asymp­

totically for small e. The boundary value problem for u, reads 

L(us = ^a(x)-^- + b(x)-^- = 0, (5.1.2a) 

u,(a)=ca, us(ß) = cß, (5.1.26) 

where ca and Cß are given constants. The choice of boundary conditions (5.1.26) 

incorporates the following cases 

1. us(a) = 1,«,(/?) = 0: u,(x) is the probability of exit (in finite time) at 

the boundary a, given we start in x. 

2. us(a) = 0,«,(/?) = 1: u,(x) is the probability of exit (in finite time) at 

the boundary ß, given we start in x. 

3. ua(a) = 1, u,(ß) = 1: us(x) is the probability of exit (in finite time and 

independent at which of the two boundaries), given we start in x. 

Remark that u,(x) = 1 solves (5.1.2a) and satisfies choice 3 of the boundary 

conditions. Thus, with probability one exit occurs (in finite time). This result 

is independent of e and independent of the starting point x. 

The reduced equation (5.1.2a), i.e. equation (5.1.2a) with e = 0, is solved 

by any constant CQ. This solution is valid away from a and ß but not near these 

points since the boundary conditions (5.1.26) cannot be satisfied. We assume 

that the functions a and 6 have the Taylor series expansions 

a(x) = a(a) + a'(a)(x — a) + • 

b(x) = 6(a) + b'(a)(x - a) + • 

near 

near 

near 

near 

X 

X 

X 

X 

= <*, 

= », 

= ß , 

= ß . 

(5.1.3) 
a(x) = a(ß) + a'(ß)(x-ß) + 

b(x) = b(ß) + b'(ß)(x -ß)+-

As an abbreviation we use the notation 6(i) = 2b(x)/a(x). It follows from 

(5.1.1) that 6(a) > 0 and b{ß) < 0. A boundary layer analysis near x — a 

and x = ß shows the presence of 0(e) boundary layers m ar these points. An 

asymptotic expression for u, to leading order in € that is uniformly valid on 

[a, ß] is given by 

Us(x) ~ Co+(ca-co)exp[-6(a)(x-a)/e]-|-(c0-Co)exp[-6(/?)(a;-/?)/e]. (5.1.4) 

16 



Note that the constant Co is left undetermined by the given asymptotics. To find 

Co we utilize a variational formulation of the boundary value problem (5.1.2), 

following [23], see also [61]. After multiplication by the factor 

g(x) = exp ƒ 
Jo 

2b(s) - ea'(s) ^ 

ea(s) 

equation (5.1.2a) can be written as the Euler equation 

dFu, 

(5.1.5) 

dx 
Fu, = 0, (5.1.6) 

with F = ^(u's)
2ag. Consequently, the solution of (5.1.2) corresponds to an 

extremal of the functional 

J[u,] = j -(u',)2agdx, (5.1.7) 

with respect to functions us satisfying the boundary conditions (5.1.26), see 

[5,9,46,47]. The expression (5.1.4) for us is substituted into the integral in 

(5.1.7), and this integral is evaluated asymptotically for small e by the method 

of Laplace [2,4]. The constant Co is determined by the requirement that the 

corresponding function us is an extremal of the functional J thus obtained, 

that is, by 

£ - 0 . (5X8) 

In addition to (5.1.1) we shall henceforth assume that 

6' (x)<0, x£[a,ß). (5.1.9) 

Carrying out the above procedure we then find that the largest contributions 

to the integral in (5.1.7) are from the neighbourhoods of a and /?, and CQ is 

given by 

c = c,6(af)exp[-7(a)/t] - cßb(ß)exp[-I(ß)/c] 

b(a)exp[-I(a)/e}-b(ß)exp[-I(ß)/e} ' ) 

where I{x) is defined as 

I(x) = - f b(s) ds, (> 0 for x Ï 0). (5.1.11) 
Jo 

17 



The result (5.1.10) simplifies to 

co = < 

e, if 7(a) </(/?), 

% , i m * ' < * < ' < • > ' (5.1,2) 
ca6(a) - C/?6(/î) i f / ( a ) = / ( / ? ) 

6(a) - 6(/?) 

In the limit e —• 0 we thus have the following result. The position of the 

starting point is of importance only if we start in 0(e)-neighbourhoods of the 

boundaries a and /?. All other starting points exit with the same probability 

at a certain boundary; this is with probability one at the boundary with the 

lowest value of I. If 1(a) = I(ß) and if we start outside O(e)-neighbourhoods 

of the boundaries, the probability of exit at a and the probability of exit at ß 

are constants with values between zero and one (adding to one), depending on 

6(a) and b(ß). 

The asymptotic result that we have derived above is found alternatively 

by evaluation for small e of the exact solution of the boundary value problem 

(5.1.2). For the higher dimensional problems in the following subsections no 

exact solution is possible in general, and can we only use asymptotic methods. 

Next we derive an expression for the expected time T of exit from the 

interval [a,/?]. The function T satisfies the inhomogeneous equation 

with the conditions 

T(a) = 0, T(ß) = 0. (5.1.136) 

The approach to this boundary value problem is largely the same as above, 

the only additional difficulty is the appearance of the inhomogeneous term in 

(5.1.13a). We anticipate that T is of the form 

T(x) = c0(e)r(x), (5.1.14a) 

where Co is a constant with respect to x that depends on c in the following way 

l/c0(e) = o(e), (5.1.146) 

asymptotically for small e. Expression (5.1.14a) is substituted into (5.1.13) and 

the corresponding boundary value problem is asymptotically solved to obtain 

T. For T we find 

T{x) ~ c0(c) { l - exp[-6(o)(x - a)/e) - exp[-6(/?)(* - ß)/e)) , (5.1.15) 
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to leading order in e uniformly on [a,0\. The unknown constant CQ is deter­

mined again from a variational principle. Equation (5.1.13a) is multiplied by 

the factor g defined in (5.1.5). The solution of the boundary value problem 

(5.1.13) then corresponds to an extremal of the functional 

J[T\ = J ^-{T'fa-T\gdx, (5.1.16) 

with respect to functions T{x) satisfying the boundary conditions (5.1.136). 

This functional is evaluated by substitution of (5.1.15) into (5.1.16) and ap­

plication of the method of Laplace. The major contributions to the integral 

in (5.1.16) are from neighbourhoods of a and ß and from a neighbourhood of 

x = 0. Putting (5.1.8) it is found that 

2xc 

C° 6(a)exp[- /(a) /e]-6(/J)exp[-I( /?) /e]" 

This result simplifies to 

TTC 

C0 = 4 */ -6'(0)a(0) '< 

f - ^ exp [7 ( a ) / e ] , if 7(a) < /(/?), 

- ^ exp[7(/?)/e], if ƒ(/?) < 7(a), (5.1.18) 

j - i j - e x p ï / ^ / e ] , if 7(a) = /(/?). 

Thus, in the limit e —• 0, if we start outside an O(e)-neighbourhood of the 

boundaries a and /?, the expected exit time is independent of the starting 

point x and equals one of the constants given in (5.1.18), depending on the 

magnitude of 7(a) and I(ß). Note that the expected value of the exit time 

is an exponential function of the reciprocal of the small parameter c, which is 

very large. 

Other asymptotic approaches to the type of problem we encountered in this 

subsection can be found in de Groen [24], who used an eigenfunction expansion 

method, in Jiang Furu [26], who used the two-scale method, and in Matkowsky 

and Schuss [41], whose method will be explained further on. A biologically 

relevant model in which at one of the boundaries of the domain both the drift 

and diffusion coefficients vanish, linearly with the distance to this boundary, 

has been treated in [25,52,59,60]. 
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5.2 Potential systems 

The method to determine c0 in the previous section is based on the fact 

that with the factor g defined in (5.1.5) the nonself-adjoint backward differential 

operator Le turns into a self-adjoint operator, so that consequently variational 

formulations of the boundary value problems of exit become feasible. In this 

subsection we shall see that for multidimensional stochastic systems a similar 

factor g exists only for a class of so-called potential systems. Results for these 

systems will be derived. 

We consider an n-dimensional stochastic system with a domain D that 

contains a deterministic point attractor and that has a boundary dD at which 

the deterministic trajectories enter D. We assume that the diffusion matrix 

is positive definite. First we study the asymptotic solution of the boundary 

value problem (2.6). Equation (2.6a) with e = 0 is solved by a constant CQ. It 

can be shown [19,55] that this solution is valid outside an 0(e)-neighbourhood 

of dD (this is related to the fact that deterministic trajectories enter D). We 

assume that dD is smooth. For points x £ D near dD, we introduce n—\ new 

coordinates along dD, and the new coordinate p = \x — x'\, where x' is the 

projection of x on dD. Using the stretching transformation 

z = ep (5.2.1) 

we then obtain from (2.6a) the boundary layer equation 

I ö ( « ' ) ^ + * ( * ' ) ^ = 0 , (5.2.2a) 

with â and 6 defined as 

n n n 

*(*') = £ E "ii&Kiti. *(*') = - E 6'(*%-, (5.2.26) 

where £ denotes the outward normal on dD. Equation (5.2.2a) is solved with 

the conditions (2.66) and lim u, = CQ. In the original variable x we find 
z—>00 

u,(x) ~ co + (ƒ(*') - c0)exp[-6(«')k - *'IA1. (5-2-3) 

uniformly on D, where 6(x') = 2b(x')/ü(x'). We intent to determine the un­

known constant c0 from a variational principle again. In general the backward 
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operator Le defined in (2.7) is nonself-adjoint. A factor g(x) is sought such 

that gLc is self-adjoint. This requirement leads to the following expression 

dlogg 
= E«tf 

dXi j=x 
1 ^ dxk k=i 

= Vit i = l , 2 , . . . , n (5.2.4) 

where cC1 denotes the inverse of a;j (we assume this matrix is invertible). A 

function g satisfying (5.2.4) exists only if the vector field V is irrotational, that 

is, can be described by a potential function <f> as follows 

« = - & < 5 " > 

Stochastic systems for which (5.2.5) holds are called potential systems. The 

remaining analysis in this subsection will be restricted to such systems. In 

order for the vector field V to be irrotational independent of the value of e, we 

assume in addition that 

<j> = <j>0 + c<j>l. (5.2.6) 

From (5.2.4),(5.2.5) and (5.2.6) it follows for g that 

g(x) = exp[-<p0(x)/e + <t>i(x)], (5.2.7a) 

with 

*o(*) = - ƒ EÈsa r . ^ c / * , - , 
Jx° « = 1 jzzl 

-x n n n n 

j*° i=ij=i t = i oxk 

M*)=-I >:i:tf£.%£**<. 
(5.2.76) 

The integrals in (5.2.7b) are functions of x that are independent of the path 

of integration. The integrals equal zero at the point xo, which is chosen to 

coincide with the position of the deterministic attractor. Using the relationship 

(5.2.4) with the matrix a brought to the left side, we find that equation (2.6a) 

multiplied by g can be written as the Euler equation 

n Q 

-F«+Eïï7-F«*. = 0 ' (5-2-8°) 
1 = 1 a x i 

with F equal to 

F = -g ^2 X ] a<J Ux< Uxi • (5.2.86) 
i = l j '= l 
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In these expressions we suppressed the subscript s of « for the reason of clarity. 

Thus, the solution of the boundary value problem (2.6) corresponds to an 

extremal of the functional 

JD 
F dx, (5.2.9) 

taken over functions u, satisfying the boundary condition (2.66). Expression 

(5.2.3) for us is substituted into the integral in (5.2.9), which subsequently is 

evaluated for small e by the method of Laplace. To be definite we assume that 

the drift vector and the diffusion matrix are such that the major contributions 

to this integral come from the boundary dD. From (5.1.8) we then find 

= lap m b(y)t(y) exp[-&,(g)/e + fr(y)] dSy 

fdDb(yn(y)eM-My)/e + My)]dsy ' [ ' ' ; 

Using the definition (2.4) of us we write 

l i m / f (y) 
c^° JdD 

'p(x,y)
 b(y)t(y) «pI-*o(y)A + My)] dSy = o. faDb(y)Ç(y) exp[-^o(i/)A + ̂ i(y)] dsy 

(5.2.11) 

This result indicates that for small e the exit density p is independent of the 

starting point x, given |ar — a?'| ^> 0(c), and that this density is sharply peaked 

near the boundary point(s) with minima] potential 0o- In typical situations, 

there is a unique y* such that 

*o(v) > M»'), fory^y*, y,y*edD, (5.2.12) 

see Figure 2. Then (5.2.11) implies that in the limit e —• 0 the exit density 

becomes: 

p(x,y) = 6(y-y*), (5.2.13) 

that is, exit occurs with probability one at y*. For cases that the minimum of 

0o on dD is attained on a set larger than one point, the reader is referred to 

the literature [41]. 

An asymptotic expression for the expected time of exit from a region, for 

systems of the potential type considered above, can be derived as in subsection 

5.1. This is left as an exercise for the reader. 
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Figure 2. Contours on which <j>o attains a constant value. This value 

is higher for contours farther away from XQ. The lowest value of <j>o 

on dD is attained at y*. 

5.3 More general multidimensional systems 

As we have seen in Section 5.2, the method to determine Co described in 

Section 5.1 for one-dimensional stochastic systems is applicable to multidimen­

sional systems only if they are of a particular potential type. In the present 

section we give a brief outline of the approach to more general multidimensional 

systems, due to Matkowsky and Schuss [41]. 

We take over the discussion of Section 5.2 until the determination of the 

constant co. The idea is to determine this constant by the employment of the 

relationship (2.11) between the backward operator (2.7) and the adjoint forward 

operator (2.2). To this aim, we first construct a solution of the stationary 

forward equation (2.1). This is done by means of the WKB-method [37], which 

assumes that this solution is of the form 

v(x)-w(x)exp[-Q(x)/e], (5.3.1a) 

for small e, where 

Q(x0) = 0, w(x0) = 1. (5.3.16) 

The condition on w is a normalization. Substitution of (5.3.1a) into (2.1) with 

the left side set equal to zero yields to leading order in e the eikonal equation 

. b^+i:2:Tdx-dx-=o> (5-3-2) 
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and to the next order in 6 the transport equation 

n 

i = i 

dw \-^ 
dxi i = i 

E / a , j d2Q dujj dQ\ db{ 

. \ 2 dxidxj dxi dxj J ox,- 0. 

(5.3.3) 

The functions Q and w are solutions of equations (5.3.2) and (5.3.3). Then the 

relation (2.11) is evaluated with the function v defined by (5.3.1),(5.3.2),(5.3.3) 

and the expression (5.2.3) for us. In the limit e - > 0 w e obtain 

_ UP f(y) b(y)t(y) w(y)exp[-Q(y)/e] dSy 

JdD
b(y)-t(y)w(y)eM-Q(y)/e]dsy • [ - > 

Following the argument of the previous subsection, we find that for small e the 

exit density p is peaked near the boundary point(s) with the lowest value of 

Q. Thus, the role played by the potential </>o in Section 5.2 is taken over here 

by the function Q. The potential 4>o w a s expressed explicitly in terms of the 

drift vector and the diffusion matrix by (5.2.76). Except in some special cases, 

no such explicit expression exists for Q. In practice this function is obtained 

through numerical integration of the eikonal equation by the ray method [37]. 

Such an integration scheme may include the transport equation as well in order 

to determine w. 

The method described in the present section is powerful in the sense that it 

can be applied to a large class of problems in arbitrary dimension. However, the 

asymptotics to the stationary forward equation (2.1) are not (yet) supported 

by a solid mathematical background. The asymptotic method described above 

is related to an asymptotic method used frequently in geometrical optics and 

diffraction theory. For the latter method a more or less extensive literature 

exists, see for example the publications of Keller and coworkers [7,30] and 

Ludwig [36], and the more recent work of Duistermaat [13], Maslov [39], Maslov 

and Fedoriuk [40], etc.. For the former method, i.e. the asymptotic method 

to the partial differential equations related to exit problems, the literature is 

limited, see for example Cohen and Lewis [8], Ludwig [37] and a more recent 

paper of Brannan [6]. 

For the expected exit time the following formula has been derived [41]: 

T(X) ~ ^ *MQ(y*)M r! _ e x p [ _ 6 V ) k _ , , | / e ] } , ( 5.3.5û) 
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in which: 

Hx(x0) = det\7^-(x0)\ , (5.3.56) 
{VXiUXj ) i,j = l,2 n 

H7(y*) = det i^-(y*)\ , (5.3.5c) 

where xo is the deterministic equilibrium point and y* is the unique (by as­

sumption, for other cases see the literature) point on dD with the lowest value 

ofQ. 

Now that we have obtained expressions for the expected exit time for a 

diffusion across the flow in Section 4 and for diffusions against the flow in 

Section 5, it is interesting to compare them in their dependence on the small 

parameter e. For the former type of diffusion this dependence is algebraic, 

while for the latter it is exponential. Thus, the persistence of diffusions against 

the flow is much greater than of diffusions across the flow. 

In the stochastic systems under consideration the deterministic flow was 

directed inward at the boundary of the domain. Other systems, in which the 

deterministic flow at the boundary coincides with the boundary, have been 

analysed in [42] and [43]. In the first paper there are no critical points of the 

deterministic system located on this boundary, whereas in the second paper 

there are. 

Above we studied exit problems using formal asymptotic methods. The 

same subject has been studied by Ventcel and Freidlin [17,58], Friedman [18] 

and others from a probabilistic point of view. Rigorous mathematical methods 

have been used by Day [11,12], Evans and Ishii [15], Kamin [27,28] and others. 

The stochastic systems that we considered had a continuous domain. In 

chemistry, physics, biology and other areas one meets processes with a discon­

tinuous domain, for example birth or birth-death processes. For these pro­

cesses, asymptotic methods that resemble the method described in this subsec­

tion have been presented in [32,33,34,44]. 

6. Some applicat ions 

Exit models have many applications. We mention only a few of them. 

There are applications in population genetics, see for example Crow and Kimura 

[10], who describe the change in gene frequency of biological populations by 

means of a stochastic diffusion model. Exit from a domain here corresponds 
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to the fixation of a gene. See also Maruyama [38] and Gillespie [20]. An­

other application in biology is the description of the dynamics of stochastic 

populations. In such applications, exit corresponds to extinction of a species. 

Examples can be found in Goel and Richter-Dyn [21], Ludwig [37], May [45], 

Nisbet and Gurney [49], Roozen [51,52], Rough garden [54]. Other applications 

are in mechanics and reliability theory. Many mechanical systems near equilib­

rium behave essentially like the diffusion across the flow model or the diffusion 

against the flow model that we studied in this paper. The stochastic domain 

can be chosen as the domain in which the system is known to function prop­

erly. Exit may correspond to break down of the system. The expected exit 

time is a measure for the reliability of the system. See for example Grasman 

[22], Katz and Schuss [29], Roozen [53]. For an application of an exit model 

to the dynamics of the atmospheric circulation, see de Swart and Grasman 

[57]. The expected exit times predict lifetimes of alternative circulation types. 

Other applications of exit models can be found in the literature. 
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STOCHASTIC STABILITY OF T H E LOADED STIFF R O D 

H. Roozen 

Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

A stiff rod, held in a vertical position by an elastic hinge, is subjected to a load 

consisting of a deterministic and a small stochastic component, both acting in fixed 

directions. The rod is slightly damped and carries out small oscillations around an 

equilibrium position. Above a critical energy level, the mechanical system of which 

the rod forms a part, may get damaged. At some time, an accumulation of stochastic 

effects can lead to an excess of this critical energy level. In this paper we derive various 

statistical expressions related to the time needed to reach the critical energy level. 

These expressions can be adopted as a measure of the reliability of the mechanical 

system. 

1. I n t roduc t ion 

In their paper [7], Katz and Schuss considered the reliability of elastic 

structures with random loads. The reliability of such structures was treated as 

an exit problem in the theory of stochastic dynamical systems. Starting with 

the simple pendulum, a sequence of models has been considered with increasing 

complexity, viz. the double pendulum, the n-fold pendulum and the elastic 

continuous column. It has been shown that the exit behaviour of these more 

complex pendula is essentially the same as that of the simple pendulum. In this 

paper we will study the simple pendulum (or stiff rod) into more detail than 

was done by Katz and Schuss. In contrast to their approach, in which both 

31 



the deterministic and stochastic loads to the simple pendulum were applied 

vertically, we will allow these loads to act independently from each other, in 

arbitrary fixed directions. 

In Section 2 we will give a description of the stiff rod model and derive 

the stochastic equation in dimensionless form. The deterministic load is of 

order 0(e°), the stochastic load has intensity of order O(e), and the damping 

is of order 0(e), where 0 < t C 1 is a small parameter. In Section 3 we will 

derive the backward equation, valid on the time scale of order 0 ( e _ 1 ) , which 

is needed in the study of the problem of exit from an energy interval. This 

interval, bounded below by zero and above by a critical energy, is scaled to 

the unit interval. In the Sections 4, 5 and 6 we will distinguish three cases, 

according to the magnitude of the angles in which the deterministic and the 

stochastic loads act. The regular case is treated in Section 4, while Sections 5 

and 6 treat two special cases. For each of these cases, we will derive expressions 

for the expected exit time from the unit interval. For some special cases the exit 

time density, the corresponding cumulants and some other related expressions 

will be derived as well. In Section 7 we give some of the results in dimensional 

form. The discussion in Section 8 is directed towards some practical aspects of 

the results obtained. 

2. The model 

An unloaded stiff rod of length /, with mass m at a distance /' from the 

hinge O, and spring constant ft at O, carries out small oscillations around the 

equilibrium position <p — 0. Next a deterministic load Pd is applied to the rod, 

acting under the fixed angle ipd, as indicated in Figure 1. The potential energy 

due to Pd is given by 
2 

-Pdl[l- cos{ip- <pd)] « -Pdl(l -cos<pd -<psm<pd+ —cos<pd), (2.1) 

where we assumed that \<p\ is small so that 

sin (f fa ip, 

cos ip ss 1 — <p~/2. 

The potential energy due to the spring property of the hinge equals 

\,^2C-. (2.3) 
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Figure 1. The loaded stiff rod. 

Differentiating the total potential energy, which is obtained by adding (2.1) and 

(2.3), with respect to ip and equating this to zero we obtain the new equilibrium 

position ipe 

-Pd sin ipd ,_ .. 
fe = —. s . (2.4) 

ßl - Pd cos ipd 

It is assumed that /// ^> \Pd\, so that \<pe\ is small, in agreement with (2.2). 

The arbitrary constant that may be added to the potential energy is chosen 

such that the total potential energy equals zero at ipe. The kinetic energy of 

the rod is given by 

The Lagrange equation of motion reads 

I'2 o9z 
»Z-(j cos <fd — sin (fid 
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To describe a more realistic system, we extend the model with a damping term 

and a stochastic load component: 

I'2 d2z dz (z . \ (z \ ,. . _ 
ml2"d~i2~ + a~dl + fXZ ~ [jcos<P<i-sm<Pd) Pd= [jcos<ps -sm<p,j t(yt)P,. 

(2.7) 

Here £(.) is a Gaussian white noise process and 7 denotes a constant frequency 

(an appropriate choice is the unit frequency), so that jt is a dimensionless 

quantity. Ps has the dimension of a load. Note that the stochastic load com­

ponent is zero for (p — <ps (which is possible only if if, is small). Here <p, is 

the fixed angle under which the stochastic load acts. The damping constant is 

denoted by a. With the abbreviations 

I'' - Pä , o a x 
ra=m-p-, n = n —cosfd, (2.8) 

and the change of variable from z to »/ given by 

Z = 1-Ù™2±, (2.9) 
A* 

where 77 is the deviation from the equilibrium position (2.4), we have 

~ d2n dr) f cosy s Pd sin <pd cos <p, . \ 
rn-de + aTt+tir)=\—rr> Ji BU1*»J ^ t ) p > - (210) 

Suppose the rod is part of a mechanical structure, that functions well as long 

as the energy of the rod is below a critical value R? (recall that the energy 

of the rod takes its minimal value zero, when it is at rest at the equilibrium 

position ipe determined by the deterministic load). With the transformations 

r,*=rh/Ji/R, f =ty/ß/Ä, P*d =Pd/RVÏ, , 0 , , x 
(2.11a) 

P; = Ps/Ry/p, 7* = iy/Ä/ß, 

and the white noise scaling property 

cm = w) = -j=g an, (2.116) 
we obtain the equation of motion in dimensionless variables, denoted by * 

(2.12) 
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We make the following assumptions on the magnitude of the various terms 

P* r R cos <p, , n* • . • J a I 
= Vf. — - = «il «l "d S l n fd + s\n<ps = fc0, r^a. = ek, 

(2.13) 

in which 0 < e < l and fc, fco, &i are O(e0) constants. Equation (2.12) becomes: 

^ + £ t i ) + i ? = > / c ( t i i j - t o ) ^ . (2-14) 

where we suppressed the * of?;* and the dot denotes differentiation with respect 

to t*. Equation (2.14) describes an 0(f) damped oscillation of the stiff rod from 

a load consisting of a deterministic part of 0(c°) and a stochastic part with 

intensity of 0(e). We note that ipd and <pt are arbitrary fixed angles. Equation 

(2.14) can be written as the system 

dn 

dn ( 2 1 5 ) 

-J; = ~(«fcl) + J,) + s/l {km - fco) t. 

3. The backward equation 

The undisturbed (e = 0) system (2.15) is an undamped oscillator, whose 

dynamics are described by closed trajectories around the origin in the (»;,»))-

phase plane. Each trajectory corresponds to an energy level. The energy is 

larger for orbits farther away from the origin. The effect of a nonzero e is that 

the trajectories tend to spiral inwards to approach the origin (as a consequece of 

damping) and exhibit stochastic fluctuations in the ^-direction. The backward 

Kolmogorov equation corresponding to (2.15) reads [10, Ch.5] or [4, Ch.4]: 

du .du . . . . ou e ., , ,2<92u .„ . . 
_ = „ _ _ {(kl] + „ ) _ + _ {kir] _ t o ) _ (3.1) 

We will use this equation with the function «(»/,/*) and with various other 

functions in the place of w, which will be defined later on. The remainder of this 

section applies to all these functions. Equation (3.1) is studied asymptotically 

for small e on a time scale of order e - 1 . With 

t* = t/e, (3.2a) 

u = u° + eu1 + • • •, (3.26) 
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and the transformation (rj, 77) —• (r, 6) denned by 

T)=v2rcos0, r) — V2Ï* sin 0, (3-3) 

we obtain to leading order in e 

implying u° = u°(r,t). Note that r2 is the dimensionless energy of the undis­

turbed (e = 0) system, r G [0,1] and r2 = 1 corresponds to the critical energy. 

To the next order in e an equation is obtained in terms of u° and w1. Terms 

with w1 vanish by integration of this equation with respect to 0 from 0 to 2w 

and the additional assumption that u1 is periodic in 0 with period lit. The 

resulting equation for u° reads 

du° /On \ du° 1 o\d2u° Ou" / o 0 \ ou" ( i\<Ju .„ . . 
-W=(T + a2r) -Er+{ao + <nr j _ - , (3.5a) 

with 
1 1 3 1 

Thus, the description to this order in t includes damping and stochastic effects. 

If, as a consequence of the latter effect, the critical energy r2 = 1 is reached in 

finite time with probability one, starting from r 6 [0,1], the rod is stochastically 

unstable [10]. In that case, the mean exit time from the unit interval at 1 is a 

measure for the stability (reliability) of the rod (and thus an index of reliability). 

Below we will discuss this problem of exit from the unit interval. Several cases 

are distinguished, according to whether ko,k\ are equal or unequal to zero. 

4. The regular case 

Let the regular case be defined by ko ^ 0,&i •£ 0. This case occurs, in 

general, when &o and k\ are chosen arbitrarily. In this case ao > 0, a\ > 0. The 

boundary r = 0 of the unit interval is classified as an entrance boundary, see 

Feller [3], meaning that r — 0 cannot be reached in finite time from the interior 

of the interval, and the interior can be reached in finite time from r = 0. At 

r = 1 an absorbing boundary [4] is adopted. It can be reached in finite time 

from the interior of the interval. On reaching this boundary, absorption occurs, 
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