
Global Optimization at Work

CENTRALE LANDBOUWCATALOQUS

0000 0921 7361

Promotoren: dr. P. van Beek
Hoogleraar in de Operationele Analyse

ir. A.J.M. Beulens
Hoogleraar in de Toegepaste Informatiekunde

Global Optimization at Work

Eligius Maria Theodorus Hendrix

Proefschrift
ter verkrijging van de graad van doctor

op gezag van de rector magnificus
van de Landbouwuniversiteit Wageningen,

dr. C.M. Karssen,
in het openbaar te verdedigen

op dinsdag 23 juni 1998
des namiddags te 13.30 uur in de Aula.

ISBN 90-5485-874-5
©1998, E.M.T. Hendrix
Cover: Paulien C. Wijnker

BIBLIOTHEEK
LANDBOUWUNIVERSITEIT

WAGENTNGEN

^oîa»', WM

Stellingen

Als wiskunde een wetenschap is die niet de waarneembare werkelijkheid
betreft, dan is discussie over wiskundige resultaten overbodig.

De filosofie of de wetenschap in het algemeen heeft niet tot taak de wereld
te veranderen, maar haar te analyseren.
(Antithese op Marx)

3. Een poffertjespan is niet alleen een culinair instrument, maar ook een handig
hulpmiddel om te demonstreren wat Globale Optimalisering is. Het ontbreken
ervan in de Angelsaksische cultuur is een tekortkoming.

4. Het is onwaarschijnlijk dat stochastische globale optimaliseringsmethoden
zullen worden bedacht, waarvan de verwachte rekentijd polynomiaal toe­
neemt in het aantal variabelen van het op te lossen probleem.
(Dit proefschrift)

5. Bij de stochastische globale optimaliseringsmethoden bestaat er een karakte­
ristieke functie die voldoende informatie bevat om optimaal te kiezen tussen
globaal en lokaal zoeken.
(Dit proefschrift)

6. Zoeken naar waarheid is een black-box globaal optimaliseringsprobleem.
(Karl Popper n Global Optimization)

7. Gebruik van de uitdrukking "we analyse an algorithm" in plaats van "we
propose an algorithm" in wetenschappelijke artikelen over mathematische
besliskunde bevordert objectieve wetenschapsbeoefening.

8. Socialisme is een overwinning op de menselijke natuur.

9. De rijkdom van de westerse wereld is gebaseerd op mondiale uitbuiting.

10. Het feit dat de cycloop uit de Odyssee de woorden oûôeiç (niemand) en
'Oôuaaeoç (Odysseus) verwart, kan er op duiden dat cyclopen hardhorend
zijn.
(Odyssee, Homerus)

11. Preferentie van carnaval boven 11-steden door Brabanders is een voorbeeld
van risicomijdend gedrag.

E.M.T. Hendrix
Global Optimization at Work
Wageningen, 23 juni 1998

Preface

The study on Global Optimization which finally resulted in this book, started in
1989 and was inspired by the work of Janos Pinter on methods and by Peter
Janssen who showed me the relevance for environmental models. Many people
stimulated and encouraged me since. Researchers from companies presented their
interesting practical problems; among others Quaker Chemical, Unilever Research,
Stork Veco, Philips CFT and ABC fodders contributed in pleasant cooperation.
Many people from research institutes did not get tired of my stories and provided
me with more practical puzzles. Among these were RIZA, PR, IBN-DLO, (former)
GLW, RIVM, IMAG-DLO and ATO-DLO. Many researchers within Wageningen
Agricultural University delivered interesting optimization problems. With Sipko
Mous, Huub Scholten, Olivier Klepper and Jacqueline Bloemhof I worked on
common papers.

Students contributed; I kept them busy with Global Optimization problems and they
kept me thinking by posing new questions. Carmen Mecking and Henriette de
Blank contributed to papers. Jaap Roosma did most of the programming work and
was a stimulating friend. Colleagues at other universities, Delft and Groningen were
backup for difficult mathematical questions. I am grateful to people from the Global
Optimization community and Walter Stortelder with whom I discussed the results
and who read parts of the work. I thank the crew of the Department of Mathematics
in Trier for their hospitality.

The (former) Department of Mathematics in Wageningen provided me with a
pleasant working environment. My nearest neighbours lend me their ear and their
blackboard to have it covered with ellipses and spheres. The ladies at the secretariat
translated pencil written notes into readable formulae and Frits Claassen took over
my work when I was consuming time on the book.

In the last years, Paul van Beek, Edwin Romeijn, Adrie Beulens and Theo Hendriks
took the role of supervisor. During the last months, Bill Baritompa, Guus Boender
and Gerard Bot went through the complete final text. Paulien C. Wijnker designed
the cover.

Finally I thank my family, friends and relatives for their patience (also during the
running exercises). They had to cope with my local optima, both up and down.

Contents

1. Position of this study 1
1.1. Introduction 1
1.2. Target user groups 6
1.3. Optimization and mathematical modelling 8
1.4. Interaction between users and GLOP methods 10
1.5. Global Classification of methods and problems 11

2. Model structures required by deterministic GLOP methods 15
2.1. Introduction 15
2.2. Some mathematical structures in multi-extremal problems 17
2.3. An example of concave programming 27
2.4. The pooling problem, a bilinear model 29
2.5. Factorial and quadratic regression models 32
2.6. Alternative solutions due to symmetry in the model formulation . . . 35

2.6.1. Introduction 35
2.6.2. Learning of neural nets as parameter estimation 35
2.6.3. The continuous facility location problem 39

2.7. Concluding remarks 42

3. Relation between multi-extremal and integer programming 43
3.1. Introduction 43
3.2. Problems handled by piecewise linear programming 49

3.2.1. Introduction 49
3.2.2. Piecewise linear approximations in convex programming . . 49
3.2.3. Sequentially applying Piecewise LP for convex functions . . 52
3.2.4. Piecewise linear programming and nonconvex functions . . . 56

3.3. Similarity in algorithms 59
3.4. A maximum distance problem 64
3.5. A minimum volume hyperrectangle problem 68
3.6. An investment problem in nature conservation 73
3.7. Concluding remarks 78
Appendices 79

4. Analyzing models and developing specific deterministic
solution procedures: some cases 81
4.1. Introduction 81
4.2. The nutrient problem 82

4.2.1. Introduction 82
4.2.2. Model formulation 83
4.2.3. Analysis of the model 86
4.2.4. Classical solution approaches 90

4.3. Quadratic design problems ; 93
4.3.1. Problem formulation 93
4.3.2 Analysis and solution approaches 96

4.4. Application of branch-and-bound 99
4.4.1. Introduction 99
4.4.2. The branch-and-bound procedure 99
4.4.3. A branch-and-bound method for the nutrient problem 109
4.4.4. Branch-and-bound in a DSS for mixture product design . . . 114

4.5. Finding robust solutions for product design problems 120
4.5.1. Introduction 120
4.5.2. Mathematical formulation of robustness 121
4.5.3. Mathematical structure in the model 128
4.5.4. Solution approaches to find robust designs 133

4.6. Concluding remarks 140
Appendices 142

5. Methods requiring no special model structure 147
5.1. Introduction 147
5.2. The design of a continuous sugar centrifugal screen 152
5.3. Dynamic decision making in water management 154
5.4. Multiple source river pollution management 158
5.5. A DSS for minimizing a continuous function under box constraints . 160
5.6. A limited solution time 165

5.6.1. Introduction 165
5.6.2. Box constrained GOP with a limited solution time 165
5.6.3. Multi-singlestart 167
5.6.4. Performance criteria for the BCB problem 170
5.6.5. Analysis of random search methods for the BCB problem . 173
5.6.6. Conclusions 177

5.7. Concluding remarks 178

in

6. Some topics in parameter estimation 181
6.1. Introduction 181

6.1.1. Formalisation of the parameter estimation problem 183
6.1.2. The Jacobian and finding the minimum 185
6.1.3. The Jacobian and reliability 187
6.1.4. The Jacobian and optimal experimental design 188
6.1.5. Cases 189

6.2. Finding infinitely many optima 192
6.2.1. Introduction into the problem 192
6.2.2. Search strategies 195
6.2.3. Numerical illustration 197
6.2.4. Conclusions 199

6.3. Level sets and uniform covering 201
6.3.1. Uniform covering 201
6.3.2. Algorithms 202
6.3.3. Analysis on the complexity of the algorithms 206
6.3.4. Numerical illustration 212
6.3.5. Conclusions 217

7. Major Conclusions, GLOP at work 219
7.1. The problem 219
7.2. The deterministic methods approach 222
7.3. The stochastic methods approach 226

References 229

Summary 239

Samenvatting 243

About the author 248

IV

Chapter 1. Position of this study

1.1. Introduction

In this work we study the position of global optimization (GLOP) methods as a
Decision Support tool for complex practical problems. Global optimization methods
are algorithms with the purpose to find the global optimum of a real valued
continuous function over a feasible set, in situations where there exist several so-
called local (not global) optima. Until recently most literature on global
optimization focused on theoretical properties of problems and methods. The
question in this book is, what global optimization can offer to a group of potential
users. At one side there exists literature on global optimization, which mainly
focuses on theoretical achievements of the methods, see Handbook on Global
Optimization (Horst and Pardalos, 1995). At the other side there are potential users.
This book, GLOP at Work, should help the potential user in the direction of
actually applying Global Optimization methods. The target group of this study uses
mathematical modelling for research or practical decision problems, though it does
not consist of experts in optimization. In this study, stimulated by experience at the
Agricultural University, cases were used of the following not mutually exclusive
categories of modellers (and their typical models) and potential users of global
optimization methods. The categories are elaborated in Section 1.2:

- Researchers in agricultural and environmental studies
- Designers using mathematical models to describe their designs
- OR decision scientists of environmental and agricultural planning problems.
The categories do not cover the group of all potential users, but have in common
that all the users apply mathematical modelling and optimization to get a better
understanding of a practical problem, an object system.

The main question is:
Given a potential user with an arbitrary global optimization problem, which
route can be taken in the GLOP forest to find solutions of the problem?

This book intends to bridge the gap between the potential users and literature on the
theoretical achievements of global optimization algorithms. The distance between a
modeller and the literature on global optimization is, in general, large. The purpose
of this book is to be helpful in looking for solution methods when one tries to solve
practical global optimization problems.

A side question is:
How can the user influence the search process of solution methods given the
knowledge of the user of the underlying problem and which information
becoming available during the search is useful for steering the search
process?

From these first questions we will follow the idea on science according to the great
20th century philosopher Karl Popper (1902-1994); "we start with a problem". By

2 1.1. Introduction

further analyzing one problem, we get better insight and arrive at the next problem.
New challenging questions are found when we proceed along the path of finding
appropriate methods for potential users.

Figure 1.1 outlines the object of study; the interaction between modeller and global
optimization algorithmic toolbox. The arrows in Figure 1.1 do not intend to represent
consecutive steps which are undertaken, but distinguish the information streams
which may occur when solving an optimization problem.

Arrow a. Central element in Figure 1.1 is the modeller. He has formulated a
mathematical model of a part of the observable world of interests to him, his object
system. The scope of our study is indicated by the dotted box in Figure 1.1. The art
of mathematical modelling is a very interesting subject which is mainly left outside
the scope of our study. Let us only remark that in general a mathematical model is
considered 'good', when it describes the image of the object system in the head of
the model well, it 'fits reality'. Furthermore, it is common in operations research
that a modeller has already particular solution methods in mind when formulating
the model, so that mathematical structures are put into the model. We abstract from
this effect and assume the model to be given and predefined by the modeller. As in
the general loop in the methodology of OR (see e.g. Winston, 1994), the modeller
may want to revise his model after having studied the optimization problem. We
will restrict ourselves to the process of looking for solution methods for a given so
called derived optimization problem only.

gl

„.. 'fy,,.... u, *

^ Math, structure

properties

:g2

Stoch.

Figure 1.1: View on elements in this study

Chapter 1. Position of this study 3

Arrow b. represents the idea that the model which is primarily constructed to
describe and analyze reality is considered as an optimization problem. In Section
1.3 this topic is discussed in more detail. Depending on the derived optimization
problem, the modeller has become a potential user of global optimization methods.
The generic global optimization problem formulation which we consider is:

min J{x), xe XcR" , (1.1)

in which f(x) is a real valued continuous function and x varies in a continuous way
in a feasible set X. One can call the problem a general Nonlinear Programming
formulation. However, methods in nonlinear optimization in general aim at finding
a (local) optimum giving a starting point. Global optimization aims at finding the
global optimum in a so called multi-extremal problem: there exist several local (not
global) optima. The relation with problems where x takes integer values, integer
programming, is discussed in Chapter 3 and may help the reader to get a better
understanding of global optimization.

The next step is to look for solution procedures for the derived optimization
problem. Ignorant of the existence of multiple optima in general one tries to
generate (local) solutions with nonlinear programming software. Often the occur­
rence of various optima, discovered when trying various starting points, is con­
sidered a mistake.

Arrow c. When several optima are discovered, the recognition of certain mathemat­
ical structures explains the occurrence of multiple optima. This is illustrated in
Chapters 2 and 4 by several cases. The study on the mathematical structures in the
optimization problem (possibly inherited from the model) may also take place
before looking for an appropriate solution method. When general purpose nonlinear
programming software is easily available, it is a good idea to start generating
optima in order to scan the feasible space and to get a better insight in the behav­
iour of the model.

Arrow d. represents the interaction between the optimization problem and the
algorithms. First of all one should get the optimization problem in the format the
implemented algorithm requires, or the other way around, implement an algorithm
which fits the way the model has been implemented. All algorithms require the
evaluation of the objective function and possibly constraint functions. The number
of function evaluations is a common performance indicator to assess the efficiency
of algorithms.

Arrow e. The traditional literature on global optimization in general focuses on
arrow e, the derivation of properties given assumptions about the mathematical
problem structure. Therefore terminology referring to the structure occurs such as
bilinear programming, concave programming, Lipschitz optimization etc. (Chapter
2). The results in the literature typically consist of theorems and experiments with

4 1.1. Introduction

test problems. To quote the mathematician P. Erdös, "A mathematician is a device
for turning coffee into theorems". Specific algorithms are derived for the toolbox
and are studied further given assumptions on the problems, which leads to math­
ematical properties on the behaviour of the algorithms.

Arrow f. Given the recognized mathematical structure, the user may go into the
analysis of the problem and the properties, study literature, and exploit the structure
to derive or select specific optimization algorithms to solve his problem. The choice
for algorithms does not only depend on the most refined exploitation of the
structure, but is often driven by the availability of methods in the environment of
the user. The appearance of electronic means such as e-mail, public domain
software and the world wide web has enlarged the direct environment of a
researcher, leading to a larger availability of algorithms. See Pinter (1996b) for an
overview of existing implementations of methods in global optimization software.

In our work a global classification of methods is used, elaborated in Section
1.5 and sketched in Figure 1.1. In this view, the methods which require a certain
mathematical structure are called deterministic and the other methods which are
often based on random generation of feasible points and nonlinear local
optimization routines are called stochastic methods. This global classification is
used to divide this work into two parts. One part (Chapters 2, 3 and 4) mainly
discusses how information on the mathematical structures can be used by determin­
istic methods and the second part (Chapters 5 and 6) illustrates optimization
problems which typically only can be handled by stochastic methods and discusses
particular specific problems for this class. The concluding Chapter 7 provides
guidelines for the target user groups, derived from the results and illustrations in the
remainder of the book.

Arrows g. The arrows gl and g2 represent the information between user and global
optimization method during the execution of a search algorithm. On one hand the
user, when coinciding with the modeller, may have knowledge (gl) about promising
areas to find optima, the number of optima, bounds on function values and on
decision variables. This information can be used to speed up the search process. On
the other hand, the algorithms generate information (g2) about function values, local
optima of the optimization problem and on the success of the algorithm itself. This
information is useful to interact in the algorithm e.g. by changing bounds or
changing parameters of the selected (by arrow f) algorithm. The information in the
arrows g is typically value information, i.e. it depends on the instance. In the
discussion of cases and examples within this book, it will be studied which
information is useful to speed up the algorithms.

In Chapter 2 the mathematical structures, recognised in literature to be useful, are
given and examples show, how these structures may be recognized (arrow c) and
explain the multi-extremality of the corresponding optimization problems.

Chapter 1. Position of this study 5

In Chapter 3 the relation between traditional global optimization (continuous
variables) and integer programming is discussed. It is not only interesting to see
how problem formulations (arrow b) can be translated into the other class, but also
the solution approaches and the way of analyzing properties (arrow e) is similar.

Chapter 4 is devoted to three larger cases where we elaborate the whole route of
problem formulation, deriving properties and constructing specific algorithms
(arrows b, c, e and f). The cases serve as examples for potential users attempting to
solve similar problems. Moreover, some simple examples are given as in introduc­
tion to the branch-and-bound concept.

Chapter 5 starts with practical examples of models for which the mathematical
structure of the corresponding optimization problem can be considered hidden. Each
function evaluation implies running a larger model using numerical integration or
Monte Carlo simulation. In the discussion how to solve these problems using
stochastic approaches, focus is on the information which is useful to speed up the
search process (arrows gl and g2). Most literature on stochastic methods aims at the
globality property; in the long run (in limit) the optimum is reached. In a practical
situation the user requires answers in a finite period. Therefore, the concept of rules
to control the search in a finite amount of time is discussed in Chapter 5.

A separate Chapter 6 is devoted to a specific subclass of parameter estimation
problems and possible useful information generated by the stochastic methods for
this class.

The remainder of Chapter 1 is used to elaborate on various elements of Figure 1.1.
In Section 1.2 focus is on the target user groups. In Section 1.3 we elaborate a
general view on the use of modelling and optimization by the user groups. In
Section 1.4 the question on the interaction between users and global optimization
methods is studied. In Section 1.5 the global division of the methods in the two
classes is discussed.

6

1.2. Target user groups

The group of potential users of global optimization algorithms under study here, is
characterised by persons applying mathematical models for research. The cases in
this book are based on experience of modellers from the following three typical
groups. The way of approaching optimization problems described in this book is of
course also applicable in other scientific directions.

A. Researcher in agricultural and environmental sciences
In general, the researcher has knowledge of an object system such as vegetation
growth, pig growth, river pollution, microbiological contamination of food etc. To
get a better understanding of the object system, mathematical models from chemis­
try, biology and physics are used. These models range from statistical models to
complex models based on a set of differential equations. Tools from statistics,
continuous simulation and optimization are available in packages and libraries to
analyze a model. Typically, a model run implies numerical integration and examin­
ation of several output variables. Optimization in this context can be used to
discover extremes of the model, to estimate parameters and to find out experimental
designs for measurements. The researcher is in general not an expert in optimizati­
on. In this book some typical problems which may be crossed with respect to
optimization by this group are mentioned and some remedies are given.

B. Designers using mathematical models
In design problems there are design parameters which can be controlled on the one
hand and properties, criteria describing the quality of a design on the other.
Mathematical models are used to describe the relations between those two elements.
Again, models can consist of simple physical equations from literature or based on
simple regression. They can also be more complex based on differential equations
to describe, for example, the resistance of a ship. The models are applied to what
we will call the evaluation step; given a design, the properties are calculated.
Finding the 'best' design often leads to a multicriteria problem; the score on all
properties of the design should be high. Nonlinear programming in general and
global optimization in particular may be applied to find optima of multicriteria
functions.

C. OR practitioner in environmental and agricultural planning
The OR practitioner studies management problems; calculation models are devel­
oped to support decisions in for instance agrologistics, reservoir management and
farm management. Numerous publications exist on the path from practical problems
to building models (Williams, 1990 and Bloemhof et al., 1995). We will not go into
detail on the modelling itself. Optimization is very popular for this group and linear

Chapter 1. Position of this study 7

programming and combinatorial optimization have been applied successfully leading
to further development of decision support systems. Global optimization has not yet
reached this level. A separate chapter (Chapter 3) is devoted to the relation between
the common techniques of linear and combinatorial optimization on the one hand
and nonlinear and global optimization on the other.

A major question in this study is how and where the user may discover a global
optimization problem and what the global optimization toolbox has to offer. This
study is more directed towards the mathematical structure of the models which
leads to choices of global optimization methods than towards the target user groups.
We believe that the typical model structure does not depend so much on the target
user group, as will become clear from examples and cases throughout this study. In
Section 1.3 a view on the use of optimization by the modellers of the various target
user groups is presented.

8

1.3. Optimization and mathematical modelling

The modeller uses his domain knowledge to derive by abstraction a mathematical
model of an object system. The mapping from object to model is not unique.

The modeller can choose between several types of models.
Implicitly a choice is made of that part of the domain knowledge which is
taken into the model.

In the next stage a modeller will use simulation and sensitivity analysis, or possibly
optimization to confront outcomes of the model with the domain knowledge in his
head, his view on reality, thus getting a better understanding of the object system.
We will not go into detail on the art of mathematical modelling in general. Let us
only remark that in general a mathematical model is considered 'good', when it
describes the image of the object system in the head of the model well, it 'fits
reality' related to the problem at hand.

The central issue is to have a closer look at possibilities of global
optimization in this context. A view is presented on several elements which always
can be found in models, independent of their complexity or form. The derivation of
an optimization problem (arrow b in Figure 1.1) is discussed.

The first element is the structure of the model which has been selected and
developed by the modeller. As mentioned before, the model can be more or
less complex and often linearity is an important aspect.
Input of the model consists of technical parameters such as the Bernoulli
constant, ability of the soil to contain water, and data such as rainfall, sales,
location of potential depots. The data may be varying, may have a stochastic
nature.
Via calculation the model, possibly with the aid of some internal variables,
arrives at values for the output variables z such as predicted discharge of a
river, properties of a product, total amount of labour needed.

A first step in the direction
of an optimization problem
appears (arrow b) when the
modeller decides which
inputs of the model are seen
as controllable, decision
variables x. That are the
variables he wants to vary
such as parameters to be
estimated, design parameters,
number of hectares etc, in
order to study the behaviour
of the model given by the
values of the output vari­
ables.
The output of the model is confronted with targets such as data from measurements

Techn. Par.-

Data

MODEL

structure

-Output z

Decisions x

Figure 1.2: View on
model

elements in a mathematical

Chapter 1. Position of this study 9

on the output variables, requirements on the properties, amount of labour available
etc. This confrontation can be formalised by building a criterion, objective function
or formulating restrictions in which the modeller states what is 'good' and what is
'bad'.

We assume an objective function ƒ to be minimized has been derived from
the model leading to an optimization problem in which the decision variables can
be varied in a continuous way. Optimization is nothing more than varying the deci­
sion variables such that the desired values of the output variables formalised by a
criterion function and constraints are finally reached. This idea applies for the
parameter estimation problem, the design problem as well as for the management
problem as far as mathematical models are used.

The researcher (group A) modelling the discharge (output) of a river uses data on
rainfall and wind velocity. For calibration purposes he may want to find good
values for the resistance parameters of the bottom, such that the predicted discharge
fits well measured values.
A designer (group B) of a ship is confronted with technical specifications of the
ship such as the volume of various compartments. Numerous technical parameters
describe the strength of various parts of the ship. Outcomes may be the stability and
resistance of the ship, which the designer wants to optimize.
The decision scientist (group C) in charge of finding a good plan for a location
allocation problem is confronted with data on the location of customers and their
demand for facilities from a distribution centre and the possible locations of these
centra. A technical number may be the costs of one kilometre of transportation. The
outcome (z) consists of the costs and number of centra implied by the location-
allocation plan x.

A derived optimization problem asks for optimization algorithms which can be
found in mathematical programming and optimization literature. The choice of the
optimization algorithm depends on the structure of the problem, as far as this is
known. When there is a linear input-output relation between z and x the logical
choice is to apply linear programming, which has been done since the first applica­
tions in 1947. When the choice given by the decision variables has to be made from
discrete alternatives, combinatorial optimization will be applied. In this work focus
is on nonlinear programming, i.e. the x variables can be varied continuously
between lower and upper bounds and the output can be seen as possibly nonlinear
functions, z=gi(x), on the decision variables. Some of the functions appear in re­
striction form, some are combined in an objective function ƒ. In many situations no
analytical expression is available for the nonlinear functions g„ as the result z, of the
model calculation is derived by numerical integration or even Monte Carlo simula­
tion (Chapter 5).

10

1.4. Interaction between users and GLOP methods

The user follows a path from object system via modelling to methods for analysis
of the mathematical model. In this context we view GLOP methods as search
methods rather than solution methods. GLOP methods try to find the global
optimum of the mathematical optimization problem in an acceptable amount of
calculation time. General nonlinear programming techniques search for a (local)
optimum given a starting point. The search process done by the GLOP methods
returns much more information which can be used to gain a better understanding of
the practical problem. Moreover, this information might be used by the modeller, to
interfere in the search process interactively. At the other side, the user has a better
understanding of the practical problem, object system, and mathematical model
which can be used to influence, improve and speed up the search process done by
the GLOP method. This information from his domain knowledge can consist of

gl) value information, e.g. promising areas of the feasible set, bounds on the
function values. In optimization literature this is called instance dependent
information.

c) information on the special mathematical structure of the model, e.g. the
mathematical model is a concave quadratic programming problem (Chapter
2). This is called structure dependent information.

The information generated by running a GLOP method (g2) is typically value
information. This can consist of graphical information and numerical indicators
which are presented in Chapter 5. The user can combine both types of information
to get a better understanding of the practical problem and to influence the search
process by

selection of the GLOP method used,
interfering interactively during running a method, for instance change or set
bounds on criterion value or decision variables.

The question is, which information is useful for which intersection of the set of
mathematical problems versus the set of GLOP methods. We do not intend to give
a complete elaboration of this question. Instead ideas and views will be derived
from practical examples on this topic. Nevertheless following the literature on
global optimization, a global division is made between methods based on determi­
nistic methods, which in general require a lot of information on the structure of a
model, and the group of methods which is based on random search and local
(nonlinear) optimization, which requires much less information from the user for the
search process.

11

1.5. Global Classification of methods and problems

In this Section the global division which is used throughout this study is discussed.
Starting point for the optimization problem is the model developed by the user and
his further domain knowledge. In general the user might not be aware of the multi-
extremal character of the derived optimization problem. For finding optima,
nonlinear programming algorithms, implemented in routines such as
GAMS/MINOS, GRG and Lancelot for problems with constraints are used. For an
overview on optimization software see e.g. More and Wright (1993). Often routines
from libraries, numerical recipes, but also solvers provided in spreadsheet programs
are used when only bounds on the variables exist in the model. The appearance of
standard solvers in spreadsheet programs makes nonlinear programming very easily
accessible for modellers. Such routines can be called local optimization routines;
given a starting point a local optimum is returned. The analysis to find out whether
there are multiple optima is done in general by trying various starting points. In this
way the user can discover that there are multiple optima. The methods were already
divided into two classes:

Deterministic methods require a certain mathematical structure,
Stochastic methods are based on the random generation of feasible points
and nonlinear local optimization routines and require no specific structure.

A more profound discussion on the classification of methods may be found in Torn
and Zilinskas (1989). The question in this work is simply where someone with a
practical problem should start looking given his information on the problem to be
solved. The stochastic methods are considered more general purpose, they require
no further information and will work whenever an appropriate implementation is
available. The deterministic methods aim at a guarantee to find the global optimum
in a finite number of steps. It is not only the question if they should be used, but
also whether they can be used given the possibility to obtain the information on the
structure of the problem by analysis (arrow c in Figure 1.1).

Information on the special structure gives that the model may potentially
have multiple optima. Value information such as negative eigenvalues of the
Hessean1 indicate that there exists more than one optimum. In order to do this
analysis the user needs insight in the structure or values of the model. At least the
analytical expressions of object function and constraints should be available. This
may not always be the case. At this point the global division in problems can be
made.
I. Analytical expressions available. Special structure can be obtained.
II. Oracle structure: No analytical expressions available.

1 Many people write Hessian, but in our opinion this does not honour the
German mathematician Ludwig Otto Hesse (1811-1874) and it is not consequent
(compare e.g. Boolean).

12 7.5. Global classification

I. Analytical expressions available

Concerning models of type I, we typically think of practical problems such as high
dimensional planning problems applied by OR decision scientists, with several
restrictions of the same type. The resulting problems are similar to Linear Program­
ming problems such as quadratic or bilinear programming problems. Besides those
problems, we can think of lower dimensional technical design problems applied by
a designer. In Chapters 2 and 4 several examples are given.

For such problems the user can continue treating the model with nonlinear
programming codes, local searches, such as GAMS/MINOS using several starting
values. When he adds more information on the special mathematical structure,
global optimization methods are available (Horst and Tuy, 1990) based on branch-
and-bound and approximation which contain a guarantee that the global optimum
is delivered in a 'finite number of steps'. The special structures are discussed in
Chapter 2 and contain, among others, the concave, fractional, quadratic, bilinear and
Lipschitzian structure. Even the analytical expressions can be used directly by
interval methods (Hansen (1992) or Kearfott (1997)) in a branch-and-bound frame­
work. For the user as a practical problem solver however, 'finite number of steps'
guarantee may imply thousands of days and gigabytes of computer memory; the
guarantee may not be reached for a given practical problem. The user can put in
specific value information such as bounds on the function value, on the Lipschitz
constant or on the second derivative. Some methods even require those data. In
Chapter 2 and 4 properties of applying such methods are given and illustrated.

The Branch-and-Bound approaches in global optimization are similar to
approaches used in combinatorial optimization, which are in general much better
known to our target groups. Therefore, in Chapter 3 relations between nonlinear and
linear and between integer programming and global optimization are discussed from
a theoretical as well as practical viewpoint.

Chapter 6 specifically deals with another type of practical problems. It concerns
parameter estimation in nonlinear regression models applied by target user group A,
the researcher in agricultural and environmental sciences. The least squares prob­
lems of those model calibration problems have a particular structure for which
specific local optimization algorithms have been developed (e.g. the DUD method
and Marquardt method), which are included into statistical packages such as SAS
and SPSS and can be found in algorithmic libraries. For the application of global
optimization the structure of the problems can in general not be used. When
analytical expressions are available at least interval arithmetic methods can be
applied (Csendes, 1988). The local optima are a source of information to the model
builder. One optimum may correspond to a very good fit to the data for one group
of output variables, whereas another optimum may represent a good fit of another
group of output variables. Furthermore the size of so called level sets is directly
related to the idea of confidence regions for estimated parameter values in a
statistical sense. Those ideas are developed further in Chapter 6.

Chapter J. Position of this study 13

II. Oracle structure

In many practical parameter estimation problems, the calculation of the 'goodness
of fit' criterion for the calibration of descriptive physical, chemical, biological, eco­
logical models implies the solution of a set of differential equations. This means
there is no analytical (closed form) expression of the criterion function to be mini­
mized. To evaluate the function means giving parameter values to a subroutine and
after some time (seconds or even minutes) receiving the function value. This is the
meaning of type II of problems, the Oracle structure. Another type of practical
problems with this structure originate from design problems, which imply the
calculation of a set of differential equations at each function evaluation. It is not
only numerical integration which blows up the calculation time of one model run.
Often the simulation over time periods in a difference equation context requires
computing time. Chapter 5 contains an example of a decision problem on water
reservoir management, decomposed in such a way, that every function evaluation
implies the calculation of the consequence of a decision rule over years given
hydraulic data. Other practical examples are given in Chapter 5.

These problems of type II have in common that for the problems solved, in general
the dimension of decision vector x is less than 10. The deterministic GLOP methods
cannot be used for this type of problems, because the possibly useful special
structure of the model is hidden. On the other hand, the user may have value
information on, for example, promising areas and the roughness of the criterion
function due to his understanding of the practical problem. This information and the
information revealed by the search process can be of help to control the search
process and choosing between methods based on local optimization and global
searches based on random search techniques. In Chapter 5 and 6 properties of
applying such methods to practical problems are given.

14 1.5. Global classification

Resuming, the remaining contents of this work is built up as follows.
Chapter 2 outlines and illustrates mathematical structures which can be recognised
and then used by deterministic global optimization algorithms.
Chapter 3 gives the theoretical and practical relation between integer programming
and global optimization starting with a view on the relation between nonlinear and
linear programming.
Chapter 4 elaborates several cases. It discusses and illustrates the information which
can be used to choose or develop specific deterministic methods and shows the
information returned by the methods.
Chapter 5 gives several small examples, cases which are appropriate to be treated
by stochastic global optimization methods. Some specific problems from the
viewpoint of the methods are discussed.
Chapter 6 focuses on the topic of parameter estimation from the viewpoint of
stochastic methods.
Chapter 7 results in guidelines which are derived from the six previous chapters.

15

Chapter 2. Model structures required by deterministic GLOP methods

2.1. Introduction

Chapter 1 and Figure 2.1 show us that when we start looking for deterministic
solution methods, roughly two sides can be distinguished. One side is the toolbox of
algorithms and the other side the user with his derived optimization problem. The
algorithms in the toolbox of deterministic methods demand a certain mathematical
structure. At the other side, a certain structure in the model is given or has to be
discovered (arrow c).

First, in Section 2.2 a review is given on the terminology about the informa­
tion on mathematical structures which can be exploited by deterministic methods. In
the following Sections the other side is highlighted by showing how examples
derived from practical problems reveal their mathematical structure. In Chapter 4
some cases are elaborated which demonstrate how deterministic methods can be
used to solve practical problems.

Figure 2.1: Focus on the mathematical structure and useful properties

At the toolbox side, from the early times of mathematical programming, the
problem of finding the global optimum of a particular mathematical programming
problem has been a challenge. Special structures (to be introduced in Section 2.2),
such as quadratic, concave, bilinear structures, have been used for mathematical
analysis and for the construction of specific algorithms. In 1990 the book 'Global

16 2.1. Introduction

Optimization, deterministic approaches' (Horst and Tuy, 1990) appeared, which
gives an overview with many references of the developments achieved. In 1991 the
Journal of Global Optimization appeared, which gives the opportunity to follow
further developments of specific algorithms. It goes too far to mention all literature
which appeared in the field. Nevertheless, it is worthwhile to mention the appear­
ance of another summary in 1995, 'the Handbook on Global Optimization' (ed.
Horst and Pardalos, 1995), which includes more than deterministic approaches only.
Further monographs are appearing in the series 'Nonconvex Optimization and its
Applications' of Kluwer. All these works give the opportunity to follow the side of
the theoretical achievements. In Section 2.2 we only give a brief summary of the
main topics and further refer to these works.

A user may be attracted by the guarantee character of deteministic methods. How
should the modeller with his derived practical optimization problem formulation
start looking (recognition) for a useful mathematical structure? The multi-extre-
mality of the problem is discovered and he is looking for approaches to get good
solutions in reasonable calculation time. If he consults an expert or theoretic
literature on global optimization we may arrive at the story of the hammer and the
nail. When someone has a hammer (methodology) he is inclined to see nails every­
where. The problem for the owner (modeller) of a screw (specific optimization
problem) however, is to start looking for a screwdriver, which is most appropriate
to handle the screw. The modeller does not immediately start with the knowledge of
the specific mathematical structure (screw in this analogy) of his problem when he
is ignorant of the relevance of the difference between structures (screw and nail).

The eyes of a quadratic programming thinker will be inclined to see quad­
ratic optimization problems everywhere. A specific optimization problem which can
be written in quadratic form, often also can be formulated in other ways, such as a
bilinear or fractional programming problem. The starting model may be formulated
as a screw. By seeing it as a nail, a hammer can do a good job, but might not be as
efficient as the driver. This means that in the process of selecting an algorithm and
interacting during the execution of an algorithm, one can make more or less use of
all the information which is in the mathematical optimization problem. Section 2.2
gives a global overview on the available technology, toolbox, and corresponding
mathematical structure required by it.

We first give a summary of the terminology and most important properties of
a mathematical structure referring for further information to the references given. In
Sections 2.3, 2.4 and 2.5 examples follow of cases which show a structure which is
useful for deterministic approaches. In Chapter 4 the use of those structures is
elaborated. In Section 2.6 an excursion to a subtopic is made. In our experience we
came across modellers who thought that their model was multi-extremal due to the
structure of the model. It appeared that the existence of multiple optima was due to
a symmetry in the translation from model to object system (arrow a in Figure 1.1);
there is more than one solution of the model representing the same object. Some
examples are given in Section 2.6 to help modellers to recognise this pitfall.

17

2.2. Some mathematical structures in multi-extremal problems

When the modeller starts analyzing the model and possibly finds multiple optima,
typical mathematical structures might appear which explain the multi-extremality of
the problem. A brief summary is given here of the terminology without extensive
use of references and mathematical details. A complete mathematical description
can be found in the handbook on Global Optimization (ed. Horst and Pardalos,
1995) and in Horst and Tuy (1990).

The problem to be solved by the modeller is assumed to consist of an
objective function ƒ to be minimized and possibly some (less than or equal)
inequality constraints. The constraints and the objective function can be exchanged
and/or transformed. This is not relevant here. The generic global optimization
problem formulation which we consider is:

minfix),xeXc:W, (1.1)

in which ƒ(*) is a real valued continuous function and x varies in a continuous way
in a feasible set X. In a practical situation the set X is often compact, i.e. bounded
and closed. In the traditional literature on Global Optimization, the mathematical
structures are enumerated and properties derived. We are especially interested in
how the user may recognise (arrow c) the structure from his problem formulation.
In order to recognise a useful structure the problem should be of type I., analytical
expressions available. Problems of type II., Oracle structure, cannot be used to
derive useful mathematical structures for deterministic GLOP methods. We further­
more make a distinction which cannot be found in literature on global optimization.
For the user it is important how to recognise the structures. Therefore the structures
are divided here into two groups. Given the explicit mathematical expression of the
problem formulation, the groups are:

A: structure can only be derived by analysis of the mathematical expressions
B: structure is recognisable directly from the mathematical expressions.

A. Analysis necessary to reveal the mathematical structure
The following structures may be found, after an analysis of the mathematical
expressions in the derived optimization problem, .

Concave functions
A popular expression in global optimization is nonconvex optimization. This refers
directly to an important property of convexity:

If ƒ is a convex function and X is a convex set, there is only (at most) one
local and global minimum.

The most common structure of multi-extremal problems is therefore nonconvexity.
The other way around; minimizing a nonconvex objective function ƒ, does not

18 2.2. Mathematical structures

\ f (x)

necessarily imply multi-extremality (the existence of multiple optima) but may
explain the occurrence. One could call concavity an extreme form of nonconvexity.
A property used by deterministic methods is the following.

If ƒ is a concave function and X is compact, the local minimum points
coincide with extreme points of X.

Figure 2.2 illustrates this
property for the concave
function f(x) = 4-x2 on the
feasible set X= [-1,2]. The
extreme points of the inter­
val are the minimum points.
When in general the feasible
set is a polytope, then in a
worst case situation, every
vertex may correspond to a
local minimum. Algorithms
exist to perform an efficient
so called vertex enumeration.
The problem of minimizing
a concave objective function
on a closed convex feasible
set is called concave programming. Figure 2.2 also shows the possibility to con­
struct a so-called affine underestimating function (p(;t), based on the definition of
concave functions. Given two iterates xk and x„ the function value for every convex
combination of the iterates, x = Xxk + (l-A,)*, is underestimated by

<p(x)

Figure 2.2: Concave function^*) and affine
minorant <p(x)

f(x) =f(hct + (l-X)xi) > Xfk + (!">•)ƒ/ = <pto, 0 < X < 1. (2.1)

For the example of Figure 2.2 this can be derived as follows.
Let xk = 2 and x, = - 1 , so an arbitrary point x in the interval is a convex combina­
tion of the extreme points: x = Xxk + (l-tyx, = 2X - (1-A.) =» X=(x+l)/3.
Now the affine function <p(x) = Xft2) + (1-X)f(-1) = 3(1-X) = 2-x underestimates
fix) on the interval [-1,2].

The minorant (p(x) can be used to derive lower bounds of the minimum objective
function value on a bounded set. An example of an algorithm exploiting this
concavity property is given in Section 4.4.

Concavity of the objective function from a given practical model formulation
may be hard to identify. Concavity occurs for instance in situations of economies of
scale. In cases where ƒ is two times differentiable it can be checked whether the
eigenvalues of the Hessean are all non-positive.

If the eigenvalues of the Hessean of ƒ are all non-positive on X, ƒ is a
concave function on X.

This property may be hard to check. The eigenvalues, representing the second

Chapter 2. Model structures for GLOP 19

derivatives, give a measure how concave the function is. Notice that the affine
underestimator (p(x) does not require the value information of the eigenvalues. This
is a strong point of the structure. Notice furthermore that the underestimation
becomes worse, less tight, when ƒ is more concave, the second order derivatives are
more negative. Concavity is a basis for many algorithms and other structures.

Differentiable convex functions (d.c.-functions)
When the function ƒ can be written as the difference of two convex functions,
ƒ(•*) = / iW - /2(*)> it c a n De called a d.c.-function. For many people the word
'differentiable' is confusing as it has nothing to do with differentiation of the func­
tion. Figure 2.3 shows the function f{x) = 3/(6+4x) - x2, which has two minima on
the interval [-1,1]. Many
discussions of this structure
in the literature on global

6 f(x)

DÇ minorant

DC2 minorant

optimization start with the
statement "almost every '
function can be expressed as
the difference of two convex
functions". Splitting the
function in a difference of
two convex functions is
called a d.c.-decomposition.
For the example function a
logical choice is to consider
f(x) as the difference of
ƒ,(*) = 3/(6+4JC) and Figure 2.3: Two convex minorants of a d.c. function
f2(x) = x2 (decomposition
DC,). The construction of a convex underestimating function of ƒ proceeds as
follows. The concave part, -f2(x), is underestimated by an affine underestimating
function (p2(x) based on (2.1) and added to the convex part ƒ,. In this way a convex
underestimating function ƒ, + (p2 appears, which can be used to derive lower bounds
of the objective function on bounded sets. For the example function now q>2(x)=-l
underestimates -f2{x) = -x2 resulting in the convex minorant of decomposition DC,
in Figure 2.3. The decomposition is not unique. Let us imagine that the user did not
recognise the obvious decomposition of the example function, but only discovered
that it is not convex and the second derivative is bounded below by a value of -8.
Now a decomposition can be constructed by adding a convex function with a
second derivative of 8 and subtracting it again: fx{x) = f(x) + Ax1 and f2{x) = Ax1.
The resulting convex minorant f(x) + Ax2 -A depicted in Figure 2.3 as minorant DC2,
is much worse, less tight than the first one.

This exercise teaches us several things. Indeed, nearly every function can be written
as a d.c. function by adding and subtracting a strong convex function. The condition

20 2.2. Mathematical structures

that the second derivative is bounded below is sufficient. For practical algorithmic
development this statement is not useful. At first sight the minorant construction
uses no value information. However, first a d.c.-decomposition has to be discovered.
If the lower bound on the second derivative is used, value information is necessary.

Another related structure is the so called concept of reverse convex programming,
minimizing a convex function on a convex set intersected by one reverse convex
constraint i.e. the constraint defines the complement of a convex set. A d.c.-function
on a convex set X can be transformed to a reverse convex structure by defining the
problem:

min z +fi(x), z ^ - f2(x), x e X.

The dimension of the problem increases by one as one variable, z, is added. For the
example of Figure 2.3 (and the first decomposition) the transformation leads to
reverse convex program:

min z + 3/(6+4x), z > - x2, x e [-1,1]

Both structures require the same type of solution approaches.
For further theoretical results on d.c.-programming consult the overview by Tuy
(1995).

Lipschitz continuous functions
A function ƒ is called a Lipschitz continuous function on X when the slope of the
function is bounded. More formally, there exists a scalar L such that

\f(xj - f{x2)\ < L || xx - x21| VXl,x2eX. (2.2)

We will discuss this structure in more detail as it is used in Chapter 4, to derive a
specific algorithm.
The determination of the Lipschitz continuity of a given function ƒ, in contrast to
concavity, is not very hard. As long as discontinuities, or 'infinite derivatives' do
not occur, e.g. when ƒ is smooth on X, the function is also Lipschitz continuous.
The relation with derivatives (slopes) is given by

\f{x.) -fix,)\
L > .,' I (2.3)

so that L can be estimated by the maximum of || V/(x) ||. The surveys on Lipschitz
optimization, see Hansen and Jaumard (1995) and Pinter (1996a), stress the
generality of the Lipschitz continuity assumption; it applies for nearly every

Chapter 2. Model structures for GLOP 21

practical problem.
The weak point is that in order to exploit the structure, value information is

necessary; the value of the Lipschitz constant is required for algorithmic use. Notice
that (2.2) also applies for any overestimate of the Lipschitz constant L. Finding such
an overestimate is in general as difficult as the original optimization problem. In the
test functions illustrating the performance of Lipschitz optimization algorithms,
trigonometric functions are often used so that estimates of the Lipschitz constant
can be derived easily. As will be shown, the structure provides a guarantee that the
global optimum cannot be missed; it will be found in the end. We emphasise here
that this guarantee does not apply when an overestimate of L is not available such
as for Oracle functions (section 1.5), in contrast to what is suggested in Pinter
(1996a).

Consider the case where one tries to find the global minimum ƒ* with a predefined
accuracy e. In this case one can construct a grid in X, such that for points xl and x2

in the grid ||x, - x2 \\ < E/L. By evaluating all points in the grid a best point is found
of which the function value deviates less than the accuracy e from the optimum/*.
A large impact on the study
on Lipschitz optimization is
perhaps the formulation of
an algorithm by Danilin and
Piyavskii (1967) and (inde­
pendently) Shubert (1972),
also called the saw tooth
cover algorithm. Although it
was formulated to minimize
univariate functions, it has
stimulated multidimensional
elaborations, as will be
illustrated in Chapter 4.
Given former iterations xk, fk,
the core of the algorithm is
based on the relation

a = min f,

• min (p(x)

Figure 2.4: Saw tooth cover algorithm

ƒ(*) >fk - L X - xt (2.4)

In Figure 2.4 the area under the cone f3 - L \x - x3\\ cannot contain the global
minimum, as the function is above this underestimating function. By combining the
cones of all iterates xk, fk, intersecting the area above the cones, the saw tooth
minorant <p(x) appears (the dotted line in Figure 2.4),

(p(x) = max [fk
k

\). (2.5)

22 2.2. Mathematical structures

The function fix) lies everywhere above the minorant q>(x), so that the global
minimum of fix) is above the minimum ß of cp(x). Moreover the global minimum
lies below the best function value a which has been found. By taking as the new
iterate a minimum point of y(x), the algorithm converges to the global minimum ƒ*
which is enclosed by an upper bound a = mint fk and a lower bound ß = min, (p(x).

The algorithm can be considered from a branch-and-bound point of view; the
area of the epigraph of <p(x) above level a can be cut away, as it cannot contain the
global minimum. The area below the graph of (p(x) has already been excluded due
to (2.4). Only the shaded areas in Figure 2.4 can contain the global minimum. As
the global optimum is not cut away, the available value of an overestimate of the
Lipschitz constant gives the guarantee that (in the end) the global minimum is
approximated.

Breiman and Cutler (1989) use the same type of underestimation for the case where
a bound K on the second derivative is available; so K > \f"(x)\ x e X or more
general (in higher dimensions) overestimates the largest absolute eigenvalue of the
Hessean. The analogy of (2.4) is given by

f(x)>fk+f'k(x-xk)-^K(x-xlf

for a function of one variable and in general

fix) >fk + VfWx - xk) - 4- K || x - xk ||
2 . (2.6)

Similar to (2.4) the underestimating function (p(x) can be taken as the maximum
over k of the parabolas (2.6). The determination of lower bound ß and upper bound
a can be done similar to the Danilin-Piyavskii-Shubert algorithm. In a multidimen­
sional situation the Breiman-Cutler algorithm has some advantageous geometric
properties, which go too far to discuss here.

The determination of an upper bound K on the second derivative has the
same drawback as finding an overestimate of the Lipschitz constant in a practical
situation; it requires analysis to obtain an overestimate from the mathematical
expressions in the problem formulation. Notice that larger overestimates of either L
or K, lead to less tight lower bounds on the function to be minimized and therefore
influences the efficiency of algorithms negatively.

It is worthwhile to discuss some geometric observations due to Baritompa and
Cutler (1994) and Baritompa (1994). Consider the point of view that the area under
the cones (figure 2.3) or parabolas of (2.6) can be thrown away as it cannot contain
the global minimum. Baritompa shows that it is not necessary to have global
overestimates of either Lipschitz constant L or second derivative K. If one would
know the local behaviour around the global minimum point x*, in general better
information is available to cut away larger areas. If a value K* would be available

Chapter 2. Model structures for GLOP 23

such that

f(x)<f + \K*\\x-x'\\2 , xeX (2.7)

(the gradient in x* is the zero vector), then the area under the collection of para­
bolas

<p(jc) = max <fk - 1 K*\\x - xkf) (2.8)
k 2

cannot contain the global minimum (see Baritompa, 1994). Notice that (p(x) in (2.8)
is not necessarily an underestimating function of ƒ. A similar idea would be to run
the Danilin-Piyavskii-Shubert algorithm not with the Lipschitz constant L defined
by the maximum of (2.2) over xv x2 e X, but by using the parameter (not necessar­
ily the Lipschitz constant)

L * = max ÏQ ÎL < L. (2.9)
x e X

The saw tooth cover with slope L* of Figure 2.3 in this case is not necessarily an
underestimating function everywhere, but also does not cut away the global
minimum.

The saw-tooth-cover idea illustrated the elegance of deterministic methods; the
global optimum is approximated in a finite number of steps. The practical conse­
quence of the methods outlined here is that it is necessary to have value information
on the slopes or second derivative either globally or locally around the global
optimum (Baritompa). Concave programming does not require this value informa­
tion as such, but may require more analysis to discover concavity or, in case of
d.c.-programming, to construct a d.c.-decomposition. For the second group of
mathematical structures mentioned in literature, it is much easier to obtain value
information.

B. Structure recognisable from the mathematical expressions in the problem
formulation
For the structures in group A discussed above, analysis of the mathematical express­
ions is required for the recognition. The mathematical structures in group B, given
the optimization problem formulation, are not difficult to recognise so that the
possible occurrence of multiple optima is easily explained. By reformulating the
model one structure often can be transformed to another, indicating the interdepen­
dence of the structures. The structures of group A, as discussed above, can be
recognised in specific structures of group B; group A is more general. This shows

24 2.2. Mathematical structures

that the structures are not mutually exclusive. In literature, during the discussion of
a class of functions (structure), one often tries to stress the relevance of studying the
class by demonstrating how other structures fall into the same class of functions.

Quadratic functions
Much attention in literature on mathematical optimization is devoted to quadratic
functions. The objective function ƒ is quadratic, if it can be written as

fix) = x'Qx + d'x + c.
It is not difficult to recognise quadratic functions in a given model structure, as only
linear terms and products of two decision variables occur in he model description.
The matrix Q is a symmetric matrix which defines the convexity of the function is
in each direction. Eigenvectors corresponding to positive eigenvalues define the
directions in which ƒ is convex, negative eigenvalues give the concavity (negative
second derivatives) of the function in the direction of the corresponding eigenvec­
tors. Depending on the occurrence of positive and negative eigenvalues of Q, the
function can be either concave (all eigenvalues negative), convex (all positive) or
indefinite (positive as well as negative eigenvalues).

A global property is that an indefinite function can be regarded as a
differentiable convex function, by splitting the function in a convex and
concave part.

In contrast to the general concave problem much more value information is
available from the matrix Q, vector b and scalar c.

The derivatives of the quadratic function are linear.
This property gives the possibility to derive a Lipschitz constant on a bounded set
relatively easily. This property is used in Chapter 4. A bound on the second
derivative can be directly extracted from the eigenvalues of Q.
Quadratic programming problems, ƒ is minimized on a polyhedral set X, have the
following property, due to the linearity of the derivatives.

The Karush-Kuhn-Tucker conditions for the local optima of quadratic
programming are a special case of the so called Linear Complementarity
Problem, which is often discussed in optimization literature.

This property is used further in Section 4.5 for the derivation of a specific
algorithm. A relation of concave quadratic programming with integer programming
is discussed in Chapter 3. For an overview of quadratic functions in global
optimization we refer to Pardalos and Rosen (1987).

Bilinear functions
For bilinear functions the vector of decision variables can be partitioned into two
groups (x,v) and the function can be written in the form

fix,y) = c'x + x'Qy + d'y ,
in which Q is not necessarily a square matrix. The function is linear whenever
either the decision variables x or the decision variables y are fixed. Actually the

Chapter 2. Model structures for GLOP 25

function becomes affine in one group of variables when the other group is fixed; bi-
affine would be a better name, nevertheless the general term bilinear is used in
literature. An example is the function

fix,y) = 2-2x-y + xy
On the interval 0<x<4 , 0<y<3 this function has a minimum of -1 for (x,y) = (0,3)
and a minimum of -6 for (x,y) = (4,0).

Several properties of bilinear functions are:
Bilinearity can be regarded as a special case of quadratic functions.
The optimum is attained at the boundary of the feasible set.

A specific way of constructing a lower bound is based on the observation in Al-
Khayyal (1990, 1992) that xy for lx < x < u* , F < y <uy can be underestimated by

xy>lxy + Fx-lxF
xy > u*y + uyx — wV'.

For our example with lx=0, w*=4, F=0 and uy=3 this means that

xy > 3x
xy>4y -12.

So the function <pQc,y) = max{ 3x , Ay -12} is a minorant of xy on 0<x<4 , 0<y<3.

The appearance of a bilinear structure will be discussed in Section 2.4. In Chapter 4
a practical case containing a bilinear structure is discussed and a specific algorithm
is derived after analyzing the properties of the structure.
An extension of the bilinear structure is the idea of biconvex functions; i.e. the
function is convex whenever one of the sets of variables is fixed. An extensive
discussion of this topic can be found in Al-Khayyal (1992).

Multiplicative functions
A function is called a multiplicative function when it consists of a multiplication of
convex functions. Besides the multiplication of two variables, as in bilinear
programming, higher order terms may occur. A multiplicative function consists of a
product of several affine or convex functions. It may not be hard to recognise this
structure in a practical model formulation. As it is not used further in the examples
of this work we do not go into detail on the mathematical properties, but refer to an
overview due to Konno and Kuno (1995).

26 2.2. Mathematical structures

Fractional or rational functions
A function ƒ is called fractional or rational when it can be written as one ratio or
the sum of several ratios of two functions, fx) = g(x)/h(x). The ratio of two affine
functions got most attention in literature. Depending on the structure of the func­
tions g and h, the terminology of linear fractional programming, quadratic fractional
programming and concave fractional programming is applied. A basic property
which we will use in Chapter 4 due to Dinkelbach (1967) is the following.
Let the function q>(x) be defined as (p(x)= {g{x) - Xhix)}.

If X', the (global) minimum of fix), is used as the parameter in the function
<p(x), then the minimumpoint of <p (with objective value zero) corresponds to
a global minimumpoint off.

For an overview on the topic of fractional programming, we refer to Schaible
(1995) and the extensive bibliography therein.

General functions with a given explicit mathematical expression
We have assumed that the explicit expression of an objective function ƒ is available
of the given derived optimization problem, the problem is of type I. If not any of
the structures mentioned above is used then there is a possibility to apply the so
called technique of interval arithmetic. The function ƒ is considered on a closed
hyperrectangle, an interval. In the theory of interval arithmetic, the function is
regarded as built up by several mathematical operations, which each have their own
so called inclusion function to determine the range of the function values on the
interval. By combining those inclusion functions, finally a range is calculated in
where the function values on the interval are situated. Better, sharper inclusion
functions give tighter upper and lower bounds. For an overview we refer to Hansen
(1992), the survey of Ratscheck and Rokne (1995) and to Kearfott (1997).

In the literature on deterministic global optimization these mathematical structures
have been analyzed and used for algorithmic development. When a potential user
would like to make a choice for the algorithm to be applied, it is necessary first try
to recognise several of the structures mentioned here, in the mathematical formula­
tion of the model. Some examples are given in the following sections of problems
containing a certain structure. The mathematical structure explains the possible
multi-extremal character of the problem to be solved. The construction of a specific
algorithm can be started after analyzing the model. This may require some effort, as
will be illustrated in Chapter 4.

We have seen in this section how properties of structures can be used to
derive bounds on the function value. The sketch of the Danilin-Piyavskii-Shubert
algorithm shows how this may lead to a guarantee that the global optimum is
approximated in the end. The essential property of all the structures is that the
objective function value (and that of constraint functions) can be bounded on a set.

27

2.3. An example of concave programming

A simple instance is discussed of a global optimization problem which by Tuy et al.
(1996) has been called a concave production-transportation problem. It illustrates
two aspects. First it shows how a user may discover the existence of multiple
optima applying standard nonlinear optimization software. Second, the existence of
multiple optima is explained by one of the mathematical structures, concavity,
which has been described in Section 2.2.

We use a simple example whose solutions can be calculated by hand. A plan
has to be developed for the transportation of biomass from 6 supply units i=l,..,6 to
two processing centres j=A,B and for the throughput of those centres. The through­
put costs are assumed to be concave due to economies of scale and are modelled
here by a square root function. The transportation costs are assumed to be linear.

min {10(VrPAWrPB) + EEcgXq]

XiA + XiB — "i

EiXy=TPj
TPj > 0, x„ > 0

;=i,..,6
j=A,B
j=A,B *=1,..,6

Variable xtj describes the total transportation from supply unit i to centre j and
variable 7P, describes the total throughput through centre j . The data on the supply
S, by the units and on the transportation costs c(> from unit i to centre j are given in
Table 2.1.

Table 2.1: Transportation costs and biomass supply by the units

units
->

A

B

s,

1

1

1

10

2

1

2

30

3

1

2

10

4

2

1

20

5

2

1

10

6

1

1

20

When throughput costs are neglected, it is cheapest to transport from units 2 and 3
to centre A and from 4 and 5 to centre B. For units 1 and 6 there is no difference
in transportation costs to A or B. When throughput costs are included the extreme
(concave optimization) global optimum corresponds to using only centre A,
resulting in a total costs of 230 (=130 + loVlOO).

Standard nonlinear programming codes will not directly find the global
optimum. A survey on mathematical programming software, 'Optimization Software
Guide' (More and Wright, 1994) gives several routines for nonlinear optimization.
We use the GINO software and GAMS/MINOS here. The GINO software (see
Liebman et al., 1985) uses a so called reduced gradient procedure (see Lasdon and

28 2.3. A concave programming example

Waren, 1978). The starting values of the variables are in general set to zero. After
running the solver, optimization procedure, the software returns the following plan
with total costs of 238.4 (=100 + 10^70 +10^30).

Table 2.2: Plan generated by GINO. Starting values all zero.

units-»

A

B

1

10

2

30

3

10

4

20

5

10

6

20

TP

70

30

The GAMS program (see Brooke et al. 1988) makes it possible to enter the
problem in the MINOS solver (routine) which also applies among others a reduced
gradient approach (Murtagh and Saunders, 1978). The MINOS solver gives more
error messages than GINO on the fact that the objective function is not
differentiable at the starting value of zero. After giving starting values to the
throughput variables, TPA = TPB = 1, MINOS returns the following solution with an
objective value of 241.4. (=100 + 10V50 +10V50)

Table 2.3: Plan generated by MINOS. Starting values TPA = TPB=1, *, =0.

units—»

A

B

1

10

2

30

3

10

4

20

5

10

6

20

TP

50

50

This corresponds to another local optimum. A starting value of TPA = 100, returns
the global optimum and some warnings on the nondifferentiability of the objective
function in the optimum.

For this simple example it is not extremely difficult to identify the global optimum.
However, for a larger instance of the same problem with external data or for the
same problem as a part of a larger problem, it will not be directly clear where the
optimum can be found. Information on the structure of the problem tells us that it is
a concave optimization problem and nondifferentiable for a part of the feasible
region. Special global optimization algorithms may now be developed for the
problem. The development of a specific algorithm for the problem described here
can be found in Tuy et al. (1996). The algorithm described in that paper is similar
to the Branch-and-Bound approaches used for Mixed Integer Linear Programming
(MILP). In fact, it is common in Operational Research to approximate the problem
with a fixed charge variant (location-allocation problem) or approximate the costs
with piecewise linear programming, which leads to an MILP formulation. This will
be worked out in Section 3.2.

29

2.4. The pooling problem, a bilinear model

Another example showing a specific mathematical structure, namely bilinearity, is
due to the pooling problem, which got much attention in literature due to its
relevance in petroleum industry. The first significant applications of mathematical
programming (especially Linear Programming) were to oil refinery, food processing
and steel manufacturing planning, see Dantzig (1963) for a discussion of these early
applications and Bodington and Baker (1990) for a history of applications in the
petroleum industry. Nonlinearities arise in refining, petrochemical and other process
manufacturing models due to a variety of factors. An important factor is the need to
model properties or qualities of product flows as well as the flows themselves.
We start with a simple blending problem where the relations can be described
linearly. By adding the restriction on combining several products in one tank or
pool, nonlinear relationships are introduced to capture pool qualities.

In our oil refinery example, crudes A, B and C are bought and blended to products
R and S which are sold. We consider one quality item, such as the sulphur content,
to describe the quality of raw materials, intermediate products and endproducts. The
parameters ga, qb, qc describe the quality of the crudes A, B and C, and the parame­
ters qr and qs give maxima (requirements) on the quality of the products R and S.
The prices of crudes and products pt i = a, b, c, r and s, are given. The decision
variables za, zb and zc give the amount of crudes bought, zr and zs the amount of
product sold and the variable Xy gives the amount of crude i blended in product j .
Now the corresponding blending problem is given as follows.

max {przr + p$zr-paza -pbzb-pczc]

Component balance:
Xar Xa& — ^a

-*br + Xbs * Zb

Xa + Xcs — Zc

XK + xbt + * c r = Z r
xas "*" -*bs ' **cs — ^5

Product quality constraints:

^ a r + tfb^br + tfc^cr^&Zr

tfa*as + ^bXbs + OcXci<qsZs

Figure 2.5: The classic blending problem

Upper and lower bounds on crudes and products:

Lr < zr < Ur etc.
i = a, b, c Xij>0 J = r,s

30 2.4. The pooling problem

The blending problem described thus far is linear. The pooling problem (Haverly,
1978) now appears, when in the classical blending problem only one tank or pool is
used to store streams A and B. This combined storage (the pool) may be due to
storage capacity restrictions. The quality q0 of the stream out of the pool is now a
variable, not predetermined by the data. Let yr and ys be the streams from the pool
to the products R and S. The model is changed in the following way.

Component balance:

XCI + xcs zc

za + zb = yr + ys

yT + xa = zr

y» **" * c s — zs

Product quality constraints:

<loy, + <lcXcr^<lrZr
%ys + <lc testis Zs

The pool quality definition
which is added describes
that the sulphur stream
which goes into the tank,
pool, equals the outgoing
stream:

Figure 2.6: Blending with combined storage, the
Haverly pooling problem

^za + qbzb = q0(yr + yc).

This pooling equation and the quality constraints cause an inherent nonlinearity in
the otherwise linear model. The problem is possibly multi-extremal; nonlinear
programming codes, as outlined in Section 2.3., may fail to find the global opti­
mum. Solving the problem got much attention in algorithmic development, e.g.
Haverly (1978), Lasdon et al. (1979), Foulds et al. (1990) and Floudas and Aggar-
wal (1990). The structure of the problem is known and has been used to develop
specific algorithms. The equation describing the pool quality can be called bilinear;
a product of two variables occurs next to linear terms. The equation can also be
called a quadratic restriction. Moreover, when the equation is divided by yr + yc, the
problem becomes a special case of fractional programming.

The attention in literature is due to the relevance of the pooling problem in petro­
leum industry. The (multi)blending problem is also well known in the agricultural
context of fodder production. Raw materials are bought and mixed to a final
product with pre-specified quality requirements. The same type of nonlinearity also
occurs in environmental planning models, when a model describes flows of products

Chapter 2. Model structures for GLOP 31

and waste. The combination of describing measures, storage and changes in concen­
trations of nutrients (polluting materials) may lead to the pooling property. This will
be discussed in Chapter 4.

32

2.5. Factorial and quadratic regression models

Regression analysis is a technique which is very popular in scientific research and
in design. Very often it is a starting point for the identification of relations between
inputs and outputs of a system. In a first attempt one tries to verify a linear relation
between output y, called regressand or dependent variable, and the input vector x,
called regressor, factor or independent variable. A so called linear regression
function is used:

y = ßfl + ßl*l + ß^2 + - + fan

For the estimation of the coefficients ß̂ and the check how good the function 'fits
reality', either data from the past can be used or experiments can be designed to
create new data for the output and input variables. The data for the regression can
be based on a design of a computer experiment which uses a simulation model to
generate the data on input and output. The generation of regression relations out of
experiments of a relative large simulation model is called metamodelling and is
discussed in Kleijnen and van Groenendaal (1988). The regression model is called a
metamodel, because it models the input-output behaviour of the underlying simula­
tion model. In theory about design, the word response surface methodology is more
popular and promoted among others by Taguchi (see e.g. Taguchi et al., 1989).

The regression functions based on either historic data, special field experiments or
computer experiments can be used in an optimization context. As long as the
regression function is linear in the parameters ß, and in the input variables xp linear
programming can be applied. The optimization becomes more complicated when
interaction between the input variables is introduced in the regression function.
Interaction means that the effect of an input variable depends on the values of
another input variable. This is usually introduced by allowing so called two-factor
interaction, i.e. multiplications of two input variables in the regression function. An
example of such a factorial regression model is

y = ßo + ßl*l + ß^2 + ßl2*l*2 •

The introduction of multiplications also implies possible multi-extremality, when the
functions are used in an optimization context. Consider for example the
minimization of y = 2 - 2xl - x2 + x{x2 with 0<x{<4 and 0<x2<3. This problem has
two minima: y = -1 for x = (0,3) and y = -6 for x = (4,0).

A further extension in regression analysis is the inclusion of quadratic terms which
results in a complete second order Taylor series approximation of the relation one
intends to find. In two dimensions the quadratic regression function is:

y = ß0 + ßl*l + ß2*2 + ßl2*l*2 + ßll*l + ß224

Chapter 2. Model structures for GLOP 33

Notice that in regression terms this is called linear regression, as the function is
linear in the parameters ß. When these functions are used in an optimization
context, it depends on the second order derivatives ß,y whether the function is
convex and consequently whether it may have only one or multiple optima.
We were involved in several studies which included the approach of fitting linear
and quadratic models and using the models for optimization.

An example from our experience in using optimization combined with regression in
optimal control can be found in de Blank et al. (1997). A method is described for
the optimization of the pelleting process of animal feed which is based on data of
batch runs in the past. For the generation of an advice on the control variables for a
new batch, first batches are selected from a database, which have been produced
under the same circumstances such as outside temperature, fibre content of the
production material, etc. Those data are used to fit linear regression relations
between output, i.e. quality indicators, energy consumption and productivity, and the
control variables as regressors. Those relations are used in a linear programming
problem to create an advice on the values of the control variables. By preselecting
the data, linear models can be used and for the optimization the problem of having
multiple optima is avoided.

Another example is due to a study on the feasibility of an introduction of a new
crop in the Netherlands for the production of fibres. A research group had the task
to find optimal production circumstances. A set of experiments was planned to
measure the production and the quality under different circumstances given by
settings of temperature, chemical control etc. The resulting quadratic regression
functions were not all concave or convex; nevertheless the resulting optimization
problem had one, relatively 'wide', local optimum. Like in the response surface
method it would be wise to perform new experiments in the neighbourhood of the
optimum found.

Another application, which has been described in Hendrix and Pinter (1991) and in
Hendrix et al. (1993), originates from a design department of a lubricant factory.
Experiments are done to find the relation between quality y and input variables x
describing the production circumstances and the composition of the mixture. Given
the derived regression models, the optimization question was to find a product
which meets predefined requirements formulated as y,(;c)<fe,. Moreover, technical
restrictions on the design variables x are given. Possible optimization formulations
involve the minimization of

fix) = max {y,(*)-fc,}
i

or the minimization of

34 2.5. Regression models

M = Z max {y/M-biß}.
i

When all quadratic relations y,(;c) are convex, the objective functions imply the
minimization of a convex nondifferentiable function; there is one local optimum. In
general the regression functions v/x) will not be convex, so that we need global
optimization techniques to solve the problem. This case is used in Chapter 4 to
discuss global optimization approaches to solve the resulting optimization problem.
The same methodology of fitting quadratic models appeared to be common at a
design department of a large firm in electronic industry. In a special project
tolerances of the designs were studied such that finally robust products are pro­
duced. Some results are shown in Section 4.5.

The use and construction of factorial and quadratic regression models occurs
frequently in research and development. When the models are applied in an
optimization context, an optimization problem appears which is possibly multi-
extremal containing a specific mathematical structure given the underlying quadratic
relations. In Chapter 4 it is illustrated how this structure can be applied for the
construction of specific algorithms.

35

2.6. Alternative solutions due to symmetry in the model formulation

2.6.1. Introduction

It has been shown so far how by analyzing the model, particular mathematical
structures may be detected. This work focuses on how to exploit the structure and
information of the model. In this section it will be shown how the existence of
multiple optima may not be caused by the mathematical structure of the model, but
by the translation from object system to model. The translation is represented by
arrow a in Figure 1.1. The user who after finding multiple optima starts analyzing
the problem formulation should keep in mind the following pitfall. Symmetry in the
model formulation may cause several solutions of the model to represent the same
object in the 'real world', object system. The solutions can be exchanged and have
equal objective function values. Simple examples can be found in integer program­
ming, when ordering of points has no special meaning for the solution.

Consider a discrete optimal design problem in which four experimental points
should be selected from a predefined set S of candidate points, / fi\
S = {1, 4, 7, 10, 11, 17} (e.g. Rasch et al., 1997). This problem has L = 15
feasible solutions. When binary decision variables in an optimization
problem are defined as

xk: Candidate point selected as design point number k,

there are several solutions of the optimization problem with the same practical
meaning. Because the ordering of the points is not important, solution (4,7,11,17) is
the same as solution (11,7,17,4), both representing the set of points {4,7,11,17}.

Another simple example is due to the travelling salesman problem: Given n
cities, find that permutation of the numbers 1, 2, ..., n which represents a tour with
minimum costs. When the begin and end point of the tour is not fixed, solution 1,
3, 2, 5, 4 represents the same tour as solution 5, 4, 1, 3, 2.

This property of the possibility to exchange points, leading to solutions
which have the same practical meaning, does not refer directly to the mathematical
structures which are summarized in Section 2.2. However, in the construction of an
algorithm to find a solution of the problem a modeller should make use of this
property. In the following sections some practical nonlinear programming problems
will be discussed which have the symmetry property.

2.6.2. Learning of neural nets as parameter estimation

The use of a neural net as a model to translate input into output is quite in fashion.
It is doubtless that neural nets have been successfully applied in pattern recognition
tasks. In literature on Artificial Intelligence a massive terminology has been

36 2.6. Symmetry

introduced around this subject. Here, the learning of neural nets is discussed from
the viewpoint of parameter estimation in which the terminology of AI is avoided.
An introduction in the OR literature can be found for example in Masson and Wang
(1990). For the interested reader we refer to other introductory texts from the same
period, such as Beale and Jackson (1990) and Eberhart and Dobbins (1990).

It is the task of a neural net to translate input x into output v. Therefore a
neural net can be considered a model in the sense of Figure 1.2. Parameters, formed
by so called weights and biasses, are used to tune the net, which can be seen as a
large regression function. We quote a colleague, Dr. Zwietering: "A neural net is
often an euphemism for fitting with too many parameters". The tuning of the
parameters, called learning in the appropriate terminology, can be considered a
parameter estimation problem. In Chapter 6 some other topics on this subject will
be discussed. In this section, the appearance of multiple optima of a goodness of fit
criterion in the parameter space of the neural net is discussed.

To start with the analysis, the net is considered as a directed graph with arcs
and nodes. Every node represents a function which is a part of the total model. The
output v of a node is a function of the
weighted input z = Zw,*, and the so
called bias w0. So a node in the network
has weights (on the input arcs) and a bias
as corresponding parameters. The input z
is transformed to output y by a so called
transformation function. Usually the
sigmoid or logistic transformation func­
tion is used:

Figure 2.7: One node of a neural net

v = 1/(1 + exp(w0 - z)).

For the analysis, only this function will be used. This means that every individual
node corresponds to a logistic regression function. The difference with the applica­

tion of such functions in growth
models and in logit models is that
the nodes are connected by arcs
in a network. Therefore, the total
net represents a large regression
function. The parameters w, can
be estimated to describe relations
as revealed by data as good as
possible. For the illustration of the
analysis a very small net is used
as given in Figure 2.8. It consists
of two so called hidden nodes //,
and H2 and one output node y.
Each node represents a logistic

Figure 2.8: Small neural net with two inputs,
one output and two hidden nodes

Chapter 2. Model structures for GLOP 37

transformation function with three parameters, two on the incoming arcs and one
bias. Parameters w,, vv2, ..., w6 correspond to weights on arcs and w7, w8 and w9 are
biasses of the hidden and output node. The corresponding regression function is
given by:

w. w
y = 1/[1 + exp(w9 -

 5. - 1)].
1 + exp(w7 - w,*, - vv^j) 1 + exp(w8 - wyx1 - w ^)

The net is confronted with data. Usually the index p of "pattern" is used in the
appropriate terminology. Input data xp and output tp (target) are said to be "fed to
the network to train it". From a regression point of view, one wants the parameters
w, to take values such that the predicted yp(xp,w) fits well the output observations tp

according to a goodness of fit criterion such as

fiw) = Z(yp- tpf ,
p

in which yp is the regression function calculated for xp and the weights w. A usual
way to train the net is by using a so called back propagation method. In order not
to go too deep into the subject, only the assessment of the values for the weights on
the arcs between hidden and output node is considered here. In Figure 2.4 those are
the weights vv5 and w6. Input xp leads to input zp into node y which finally leads to
an output yp which is compared with the target tp. For the sigmoid transformation
function the back propagation method will lead to the following updating rule for
the weights between hidden and output node:

Aw,. = tl(f, -yp)zipyp{\ -yp).

In this rule r\ is a parameter and zip represents the input in node y corresponding to
weight i. It has been shown in e.g. Hung and Denton (1990), that feeding a
complete batch of data to this rule corresponds to updating the weights according to
the descent gradient of f(w). This is outlined here.
Classic nonlinear programming learns that in the corresponding terminology:

dw. P p p dWj

For the logistic transformation:

-J- = ziByJ<1 -yJ-
jw.
9v., - » ' ^ - JP'

Since the weights in the back propagation method are changed proportionally to

40 2.6. Symmetry

location space. Moreover, the symmetry property holds; i.e. exchanging two vectors
Pj and pk (in fact the indices of the vectors) represents the same solution of the real
system and thus has the same objective value. Given a solution of the vectors
p„..,pn, the indices of the locations can be presented in any order, representing the
same solution. So, when n facilities are to be located, then there are n\ equivalent
variants of the same solution.

The same property propagates to extensions of this base variant of the problem. One
variant of the facility location problem can be formulated by adding capacities
(capacitated plant location) on the throughput of the facilities:

Y.X.. < capj j = l,...,n.
i

The calculation of the objective ftp) for a set of location vectors p now requires
solving a transportation problem. When the given capacities cap, differ (and are
restrictive), the possibility to exchange the (indices of the) locations becomes less.
When the capacities are all the same, the indices can be ordered again in any order,
representing the same solution.

A second variant is to introduce concave throughput costs as shown in Section 2.3.
The variable TPj and the definition

TXij = TPj j = l,...,n
i

are added to the original problem together with a (throughput or production) cost
function on variable TPj, e.g. a square root function. Now the problem can be
considered from the joint decision space of location vectors pj and throughput
variables TPj with a corresponding objective function fijj, TP), which, when evalu­
ated, requires the solution of a transportation problem. It is useful to introduce a
penalty function for nonfeasibility of the transportation problem i.e. when the total
supply ZS, exceeds the throughput Z7P-. The concavity which is in general used to
express economies of scale in the throughput costs, adds the effect of multiple
optima due to concavity, as illustrated in Section 2.3. When the cost function is
equal for every facility, the locations (in fact the indices) of a solution can be
exchanged, without changing the practical meaning of it.

The general problem was studied in a special project at Wageningen Agricultural
University. Global optimization algorithms were used in the location (and through­
put) part of the decision space of all three variants of the problem. Considering the
problem from the joint space means that at every function evaluation, calculation of
flj>,TP), either an allocation or a transportation problem was solved. It is not
difficult to construct worst case instances of the problems, which are extremely
difficult to solve, even for a small number of facilities.

Chapter 2. Model structures for GLOP 41

Figure 2.10: Location and sizes of the 'customers' and
corresponding weighted barycentre

For testing the approaches on a realistic problem, data were taken from a larger
study on environmental problems caused by manure in The Netherlands, see de Mol
and van Beek (1991), which focused on opening facilities (from a candidate set of
locations), transportation from surplus areas to shortage areas and on export to
diminish the surplus of manure. For this case we took the data on locations of
groups of farmers from the area with surplus. The locations for the facilities could
be chosen freely in con­
trast with the fixed candi­
date locations. A group i
of farmers wants to trans­
port a surplus 5, to one of
the facilities j which has
to be set up. Figure 2.10
illustrates the situation
with one depot. In Figure
2.10 the size of the
spheres represents the size
of the supply at location /.
The optimal situation with
one facility corresponds to
calculating a weighted
barycentre of the locations dt. In Figure 2.11 a solution is shown of a problem
instance with n = 4 facilities with given capacities. The solution was generated by

applying among others the
controlled random search
method of Price (1979),
which is discussed further
in Section 6.3. Many
methods could be used to
try to solve the problem.
The figure illustrates the
symmetry: indices of the
locations can be
exchanged. Moreover it
shows that graphical
information can be fed
back to the user of an
algorithm. As in vehicle

routing problems, the interaction between algorithms which can evaluate many
solutions very quickly, and the user who has graphical insight may be very useful to
speed up the solution process. In this particular example, one could think of select­
ing starting points for a local search in an attempt to avoid local optima. We have
seen here that the exchangeability of the indices due to symmetry in a problem
leads to multiple optimal points which graphically have the same interpretation.

Figure 2.11: Solution of a problem with given
capacities

42

2.7. Concluding remarks

In Section 2.2. a summary has been given of the mathematical structures which are
distinguished in literature as being useful for the choice and development of special
(deterministic) algorithms. Some examples have been discussed of models from
practical problems and where mathematical structures can be recognised.

The facility location model with concave throughput costs illustrated how
widely used local search nonlinear programming software may fail to find
the global optimum starting from default starting values.
The pooling problem showed how a description of quality within a flow
planning model may lead to bilinear model constructions. This kind of
descriptions are not only useful in the classic oil refinery models, but also
relevant for environmental planning problems, as will be discussed in
Chapter 4.
The discussion on the use of metamodels and response surface modelling
shows how multiple optima in a very simple way of modelling may appear
when factorial and quadratic regression is used. This also leads to one of the
mathematical structures, viz. quadratic programming, which got much
attention in the global optimization literature.

Section 2.6. shows that it is useful, first to have a look at the practical meaning of
various optima of an optimization problem. Two examples are given where
symmetry in the model formulation plays a role; the estimation of parameters in a
neural network and the continuous facility location problem. They show that several
optima may have the same meaning in the object system which has been modelled
and thus have the same objective value. After the discovery of the multi-extremal
character of the optimization problem one can first have a look at the practical
interpretation of the solutions before starting looking for mathematical structures to
explain the existence of multiple optima and which can be used further in determin­
istic global optimization algorithms.

In Chapter 4 the exploitation of the mathematical structure for the development of
algorithms is worked out for cases containing elements of the examples shown in
this chapter. First, in Chapter 3 a link will be made between global optimization
and integer programming. Algorithms in integer programming are in general better
known to our target groups and help to understand the algorithms in Chapter 4.

43

Chapter 3. Relation between multi-extremal and integer programming

3.1. Introduction

Focus in this chapter is on the relation between integer programming, which is
generally known by our target groups, and global optimization. There are several
reasons to have a better look at similarities between the two fields, combinatorial
and global optimization.

1. From a theoretical point of view a relation between the two fields is emphasized
in literature on global optimization, to discuss the complexity of global
optimization; global optimization is "at least as difficult as integer programming". If
there would exist an algorithm which can solve global optimization problems in
polynomial time, we would be able to solve combinatorial problems in polynomial
time. This relation which is proven in literature is illustrated in this section by some
notes and an illustrative example. In Section 3.5. an example is given, derived from
a practical problem, which illustrates that no matter how we consider the problem,
from a continuous viewpoint or from a combinatorial viewpoint, it remains very
hard to solve it.

2. On the other hand, there are many implemented and elaborate algorithms in
integer programming, which can be applied to solve variants of global optimization
problems; there exist multi-extremal models which are suited to be solved by using
integer programming techniques. One of the early methods to solve nonlinear
programming is to approximate a problem by piecewise linear programming. For
nonconvex optimization this requires the use of binary variables and integer
programming algorithms. This link between nonlinear and linear programming will
be discussed in Section 3.2. In Section 3.4. a practical example is discussed of a
global optimization problem which was approximated by an MILP formulation and
solved via integer programming techniques.

3. There is a strong similarity in algorithms of combinatorial optimization and
algorithms of global optimization. Knowledge of algorithms in one group can help
to understand algorithms in the other group. Moreover, it is our opinion that the
algorithms can be globally divided in a similar way. This will be discussed in
Section 3.3.

4. Considering an integer programming problem from a continuous viewpoint may
help to analyze the existence of many optima. Ideas from stochastic global
optimization can be applied to find good solutions of integer problems. An example
of a practical decision problem which can be viewed in this way, is discussed in
Section 3.6.

We start here by discussing the complexity considerations which can be found in

44 3.1. Introduction and complexity

any introductory text on global optimization. This is followed by a discussion of a
well known problem, the so called Quadratic Assignment Problem, to illustrate the
complexity relation. Consider the following binary programming formulation.

minfix) , x, e {0,1} i = \,...,n . (3.1)

The real valued function ƒ has a minimum on the compact set defined by the
integrality constraints. Without loss of generality we left out other constraints in (1).
Integer problem (3.1) is equivalent with the following problem (i.e. the set of global
optimal solutions is the same):

min {fix) + Mx\e-x)}, 0 < x, < 1 i = \,...,n. (3.2)

An early publication is Raghavachari (1969), but we were assured that the relation
is one century older. In (3.2), vector e is the vector with all elements 1. The penalty
M forces the fractional variables xt to take a binary value; M should be sufficiently
big. Another formulation analogous to (3.2) (continuous and equivalent) is the
following:

min [/(x)-MZbc,. -0.51}, 0<xt< 1 i = l,...,n. (3.3)

Without going too much into detail on the topic of complexity we can say that hard
combinatorial optimization problems, so called NP hard problems, are believed to
have no polynomial time algorithms (see e.g. Aarts and Lenstra, 1997). This means
that the calculation time to solve those problems (worst case variants) grows more
than polynomial with the dimension n, which is also the case for generic problem
(3.1). If we could be able to develop algorithms which solve general multi-extremal
problems within a calculation time which grows polynomially in the dimension n,
then we would be able to solve (3.2) and (3.3) in polynomial time and thus also
(3.1). In our experience we encountered modellers who did reformulate a problem
of the form (3.1) towards (3.2) with the aim to obtain an easier to solve problem
and thus constructed an unsolvable global optimization problem with, in general,
many optima.

These complexity issues and the transformation are illustrated by discussing the so
called Quadratic Assignment Problem (QAP). This illustration is based on the
discussion of this subject in Horst et al. (1995). We will use an example here. Let
us assume that a department of 20 persons gets a new building with 20 rooms. To
prevent a fight over the new rooms the manager decides to formulate a quantitative
model to support the decision on which person gets which room. The binary
decision variable is formulated as:

Xi/, person i gets yes/no room j .

Chapter 3. GLOP and IP 45

One of the objectives of the manager is to get a clustering of persons which
cooperate a lot, have much interaction. For all 190 pairs of rooms he measures the
distance dß and for all 190 pairs of persons he measures the amount of interaction
or information between the persons aik. Indices i and k stand for persons and j and I
for rooms. With this information he creates weighted interaction coefficients
Qiju = aik x4'- ^ e t u s a s s u m e m a t a l s o preference or suitability indicators ctj exist.

The result is a variant of the so-called Quadratic Assignment Problem:

20 20 20 20 20 20

min fix) = E E c x + E E E E qiJklxxkl
i= 1 j= 1 i= \ j= l k=l 1=1

E x.. = 1 j= 1.....20 (QAP)

E x. = 1 i = 1.....20
•j

X..S {0,1} ij= 1.....20.

This problem is known in literature to be hard to solve; it is a so called NP-
complete problem. The feasible set in the QAP problem mentioned here defines 20!
possible assignments. No algorithm exists which solves the problem in a calculation
time which grows polynomially with the number of persons and rooms.

We consider the problem from a mathematical viewpoint. When the elements xi} are
stored in a vector x with 202 = 400 elements, the objective function can be written
as:

fix) = cTx + xTQx .

The matrix Q contains 400x400 = 160,000 elements qijU. In a realistic situation the
distance between rooms is symmetric dß = dtj and dä = 0. A similar reasoning
applies for the stream of information aik so that there are in fact at most 190x190 =
36,100 unique nonzero elements in Q.

We have seen in Chapter 2 that the convexity of fix), determined by matrix
Q, tells us something about multi-extremality of the objective function in global
optimization. Let us therefore consider the continuous (nonlinear programming)
variant called CQAP of QAP. Variable xtJ is the fraction of the working time that
person i is in room j . The integrality constraint is replaced by 0 < xtj < 1. Some
extreme, nonrealistic instances show the complexity of the two associated problem.

Extreme case 1: Let ƒ be convex. A simple analysis can be done when we consider
the nonrealistic situation where all values c^ and qijkl are zero apart from all 400

46 3.1. Introduction and complexity

diagonal values qm which are taken positive and equal. In this case the unique
solution of CQAP is given by x{j = 1/20 for all i and j . The solution gives a value of
1/400 for all products xtj xv and results in an optimal objective value of qm. General
nonlinear programming routines will find this unique solution. Every feasible
(integer) solution of QAP contains 20 assignments and results totally in 20 values
of 1 for the products x^Xy giving an objective value of 2 0x^ . This illustrates that
relaxing the integrality constraints to generate an approximation of the solution of
QAP by solving CQAP, may result in a bad approximation.

Extreme case 2: The opposite occurs when ƒ is concave and all values ctj and qijkl

are zero apart from all 400 diagonal values qm which are taken negative and equal.
In this case all 20! feasible assignments of QAP are global optima of CQAP; we
have created a washing board with 20! holes. As we are dealing with concave
minimization, the optimum can be found at the extremes of the feasible set. The
optimal solution will not take fractional values, as the vertices of the feasible area
are integral. A general nonlinear programming algorithm will find one of the global
optimal points. By adding a small slope to this washing board, having different
values for the suitability indicators cip the result is a CQAP problem with numerous
local optima. Local nonlinear optimization routines will only identify one of the
optima given a starting point.

For extreme case 2, the combinatorial QAP and global optimization CQAP are
equivalent, have the same solution set and both are very hard to solve. For extreme
case 1, the CQAP problem is easy to solve, but its optimum is far from the
optimum of the QAP problem. Approximating one problem with the other has no
use.

Pardalos (see Horst et al., 1995) shows that any QAP problem has an equivalent
CQAP problem, which appears by a transformation which is similar to the relation
between (1) to (2). According to this idea the objective function of the CQAP
variant is made concave (concave quadratic programming) by adding to fix) the
term —jdLLx^y. When a is chosen greater than the largest eigenvalue of the Hes-
sean 2Q of fix), then f(x) becomes concave. Minimizing a concave function over a
polytope implies that the optima can be found at the vertices of the feasible set.
This means that the optima take a binary value and thus are solutions of QAP. The
modification of the objective function by adding —j-ocEZx̂ , gives that for all integer
solutions the objective value decreases by yCi(20)2. In this way the modified CQAP
problem is equivalent, has the same solution set, to the QAP problem. If we would
be able to develop algorithms which solve concave quadratic programming prob­
lems in polynomial time, we could solve the general quadratic assignment problem
and with that all problems which are called NP-complete in polynomial time.

To complete the discussion on the QAP problem, we will finish with the Mixed
Integer Linear Programming (MILP) variant which we frequently observed to be

Chapter 3. GLOP and IP 47

used by OR practitioners to treat the problem. The QAP problem can be trans­
formed to an MILP equivalent by introducing variables zijU to describe and replace
the interaction XyXu. Notice that for the 20 person problem this are at most 160,000
variables zijkl.

20 20 20 20 20 20

min fix) = E E c * + E E E E q z
i = i j = i ; = l j = l k = l / = l

E x.. = 1 j = 1.....20 (MILP-QAP)
I

E x.. = 1 i = 1,...,20
•J

j

x.. € {0,1} ij = 1,...,20.

In addition, the link between the assignment variables xtj and the interaction
variables zijkl has to be established by adding constraints:

Zijki ^xy and zm<xu if qijkl < 0 (3.4)
and

Ziju Z xu + % - ! i f ?,;/*; > 0- (3-5)

Of course the variable ziJki can be left out when qijkl = 0. In this formulation the
variable zijU

 c a n be defined fractional between 0 and 1. Another often used variant
in which the two linking constraints (3.4) are replaced by zijU ^ {xtj + xkl)/2, requires
ziJU to be integral too.

The solution methods for MILP problems are often based on a Branch-and-Bound
approach, which is discussed further in Section 3.3. The bounds are based on a so-
called LP relaxation, leaving out the integrality constraints. This is sometimes called
by researchers the "cross your fingers approach" as one hopes te generate an integer
solution automatically. Unfortunately this happens very seldom for the MILP-QAP
formulation making the QAP problem hard to solve.

Let us consider some extreme cases again. For an instance with all qijk, = 0,
the problem becomes the general assignment problem, for which the LP solution is
integral automatically. Apparently the hard part of the problem is the quadratic,
interaction part. For extreme case 1, all values of qm equal and positive, the
relations (3.5) apply. All nonintegral solutions with xtj < 1/2, give optimal LP
solutions with an objective value of zero. This is even more far from the optimal
objective 20x#,Ä of every feasible (integer) assignement, than the optimal correspon­
ding CQAP solution. This is not a very hopeful observation for the "cross your
fingers" approach. For extreme case 2, where (3.4) applies and one tries to maxi­
mize the quadratic variables zw, the optimal LP bound coincides with the optimal
QAP objective.

48 3.1. Introduction and complexity

The QAP problem has been used here to do some experimental thinking on
complexity issues. The QAP problem is known in literature to be hard to solve, it
is so called NP-complete. It has been shown that there is an equivalent concave
quadratic programming variant to emphasize the message:

If we could solve global optimization problems in polynomial time, we could
solve difficult combinatorial problems.

Relaxing the integrality of the QAP problem results in the CQAP problem, which
has in general multiple optima. We have shown a worst case with n\ optima and a
"best" case with one optimum. The analysis of the "best" case teaches us that there
may be a large gap between the optimal CQAP problem and the corresponding
(same parameters) QAP problems. The LP relaxation of the MILP variant of the
QAP problem is not equivalent to the CQAP problem. It also showed that the
bound generated by an LP relaxation of the MILP problem may deviate largely
from the optimal value. As will be discussed in Section 3.3, this makes a problem
hard to solve by a Branch-and-Bound approach.

49

3.2. Problems handled by piecewise linear programming

3.2.1. Introduction

Not every practical nonconvex optimization problem is doomed to be unsolvable. In
this section it will be discussed how ideas from Linear Programming and Integer
Programming may be applied in solving problems with some additional nonlinearity
in a further linear model. From the early start of linear programming, mathema­
ticians have been interested in including nonlinearities in linear models. We quote
the well known remark "But we all know the world is nonlinear", after the first
major lecture in 1948 of Dantzig on the subject of linear programming (Dantzig,
1991). The models are linear but one wants to include a nonlinear function fix)
which is a function of one variable.

In textbooks on linear programming besides the terminology 'piecewise
linear programming' (resulting, more correctly, in a piecewise affine function) the
expression separable programming is used. In this way one expresses that the func­
tion fix) consists of a sum of nonlinear functions in one variable. We will show that
the same concept can also be applied for functions of several variables. The
advantage of approximating nonlinear programming problems by linear or, as will
be discussed, mixed integer programming problems is that there exist many
standard solution routines for these problems.

It will be discussed how nonlinearities can be included in a Linear Program­
ming formulation by Piecewise Linear Programming (PWLP). First, a convex
programming formulation with nonlinear functions of one and several variables is
considered in 3.2.2. Consecutively the idea of performing PWLP iteratively
(Sequential Piecewise Linear Programming, SPLP) to save calculation time and
computer memory, is shown in 3.2.3. Then the treatment of non-convex program­
ming by including binary variables in the Linear Programming formulation is
discussed in 3.2.4. In Section 3.3 we proceed by discussing the corresponding
solution approaches.

3.2.2. Piecewise linear approximations in convex programming

In textbooks on mathematical programming several formulations can be found under
the name Piecewise Linear Programming (PWLP) or separable programming. We
will discuss one way of including a function of one variable into an LP problem.
Let the one-dimensional function fiy): R —> R be defined on an interval [/,«]. In the
interval the interpolation points Yx - I, Y2, ..., YN = u and the corresponding function
values fiY{), ..., fiYN) are defined. Now interpolation variables Xh sometimes called
non-negative weightings, are added to the LP problem with the restrictions

2 X, Y, = y

XÀ,= 1 , ^ > 0 .

50 3.2. Piecewise linear programming

The last constraint is called the convexity row as a convex combination is taken of
the interpolation points.

Figure 3.1: Piecewise approximation of f(y)=y2

For example the approximation of fly) = y2 on [0,3] can look as follows. Take as
interpolation points Yx = 0, Y2 = 0.5, Y3= 1.5 and 74 = 3:

0.5k, + I.5X3 +3À4 = y
0.25^2 + 2.25^3 + 9A.4 = cp
À] + Ki + Ag + A4 = 1 , Ài,Â2,A.3,À4 >0 .

The linear programming variable (p is now implicitly a piecewise linear approxima­
tion (p(v) of fly) on the interval [l,u] when at most two adjacent Ä., take a positive
value. This happens automatically when we deal with a convex programming
problem i.e. fly) is convex and minimized or occurs in an appropriate way in a
constraint. The choice of the interpolation points Yt is also a topic mentioned in
handbooks. If one wants a good approximation the distance between the points can
be chosen bigger on parts where fly) is nearly linear than on parts where fly) is very
curved.

Approximating nonlinear convex functions of several variables
As pointed out in Williams (1990) and Hendrix (1990), the approximation idea by
interpolation is not limited to functions of one variable. Therefore the expression

Chapter 3. GLOP and IP 51

- * Y „

*Y„

*Y„

- * Y „

*Y„

*YB

* Y„

*Y„

*Y„

*\

*Y„

»X,

*Y„

*Y„

*x,
*x,

separable programming for the idea of PWLP is not appropriate. Consider the
function of two variables fiy): R2 —> R on the box constraints
lk < yk < uk, k = 1, 2, defining a two dimensional interval. A not necessarily
equidistant grid with interpolation points Ytj, i = 1, ..., Nltj = 1, ..., N2 is defined.

The corresponding PWLP formulation is as follows:

m-u,;>o.
Theoretically this approach
can be extended to include
functions of more than two
variables f. R* -> R in the
LP formulation. The number
of indices K grows corre­
spondingly. An important
observation is that the num­
ber of interpolation points,
when Â is taken fixed,
grows exponentially with the
dimension K of the function
which is approximated. A
practical relevance of this
remark is due to the implicit
appearance of approxima­
tions in farm management (see Hendrix, 1990) and land use models. This statement

is elaborated here. In farm
models usually the main
variable, called activity x,
denotes the part of an area
which is used or cultivated
with a certain crop which is
treated in a certain way. One
index is used to describe the
crop. Other indices may be
used to describe the level of
a certain input such as ferti­
lizer, use of pesticide and
cattle density per hectare.
For a number of values of
an input (index), coefficients
are generated. If for example

Figure 3.2: Interpolation points in approximating
functions of several variables

yield

0 10 20 30 40 50 60 70 80 90 100

fertilizer kg/ha
Figure 3.3: Nonlinear relation in farm management

52 3.2. Piecewise linear programming

the optimal outcome represents 2 hectare maize with a fertilizer level of 100 and 3
hectares of maize with fertilizer level of 150, the outcome can be interpreted as an
approximation of an average fertilizer use of 130 per hectare. In this way the
variables x can be interpreted as the weightings Xy. It is not uncommon in large
studies (see e.g. Rabbinge and van Latesteijn, 1992), to use large crop growth
simulation models to generate LP coefficients for several (Nk in fact) input levels
for several (K) inputs. The number of activities and required coefficients grows
exponentially with the number of inputs K which is included in the model.

3.2.3. Sequentially applying Piecewise LP for convex functions

The inclusion of a nonlinear function f(y) into an LP problem by adding its
piecewise linear programming approximation <p(y) to the LP problem, may lead to
an enormous increase in the size of the LP problem due to the number of interpola­
tion points. In Hendrix (1990) it has been suggested to reduce the initial number of
interpolation points for the construction of (p(y), by iteratively calculating the LP
problem with an updated set of interpolation points. This is called Sequential
Piecewise Linear Programming. This idea is elaborated here.

In nonlinear programming the so called linesearch, looking for the optimum
over a line, is often done by so called interval reduction techniques. The purpose
is to bracket a minimum point over a line by an interval that shrinks in size
iteratively. Two points are taken in the interior of the interval and their function
values are used to cut away a part of the interval in which the minimum cannot be
situated. A similar interval
reduction approach can be
used in PWLP. Let us con­
sider a univariate function
f(y) on the interval [Y^YJ.
Instead of using a large set
of interpolation points, the
approximation cp(y) is con­
structed by adding two
points in the interior so that
there are four interpolation

points, y, < Y2 < Y3 < Y4 like
in figure 3.4. The optimal
value v which has been
found by the LP problem
can now be used to shrink

12

11

10

U)9

8

7

IS

5

4

3

i) 2

1

-

.
-
-

' , _ 1 ^ ^

<p<y>

/ /

4 f II t I 11 11 / i / / / / fl—

/%)

Y2

Figure 3.4: Interval reduction in iterative PWLP

the interval and to bracket a minimum point y* of the original problem. The shaded
area between Y3 and Y4 does not contain the optimum and can be discarded.
Analogously to the usual rules in interval reduction one can apply the rule:

If y> Y2 then replace [YitY4] by [Y2,YJ else
if y < y3 then replace [Y^YJ by [y„iy.

Chapter 3. GLOP and IP 53

In the next iteration a new point can be added or two new interpolation points can
be generated in the interior of the new interval and the procedure can be repeated
until y* has been approximated with a predefined tolerance. In this way, at every
iteration the same LP problem is run; only the data differ. The same approach can
be taken when the nonlinear function concerns y e RK. For every index k, one can
take 4 points and follow the procedure such that this requires in total 4K interpola­
tion points at every iteration. In this way it is not necessary to run a hugh LP
problem with many interpolation points, but one can iteratively solve a smaller
problem of the same size to approximate the solution of the problem.

Of course one should be certain that this procedure is valid, converges to the
optimum. Can the optimum y* be located in the part of the interval which is thrown
away? We will show that the procedure is correct when f(y) is a convex function
on lY^yj. Unfortunately, this proof is not very straightforward and requires some
additional formalisation and introduction of symbols and definitions. We try to
sketch the idea for the interested reader.

The formalisation also provides some space to generalise the discussion. The
idea of including the nonlinear function f(y) in an LP problem is generalised to
including f(y) in a general convex programming problem.
Consider problem P:

P: mm{g(x)+f(y)\(x,y)<=X}

in which g(x): R" -» R convex, f(y): R -» R convex and X c R"+1 convex. The
optimal solution of P is denoted by x*, y*. One can associate the minimization of
g{x) with a relatively easy to solve problem, such as the LP problem and the
function f(y) with a function for which the evaluation is difficult, for instance it
requires experiments. One wants to evaluate ƒ as few as possible or, in the PWLP
context, we want to generate as few interpolation points as possible.
We assume that P has feasible solutions for all y e [y^yj. The question raised is
what will happen when f(y) is approximated by a piecewise linear function <p(y).
Given are the interpolation points y, < Y2 < y3 < y4 and the piecewise linear
approximation (p(y) of f(y) on the interval lYj.yj; so in general q>(y) = X A.,/(y,) and
cp(y) coincides at the interpolation points, <p(y;) =f(Y^), i = 1,2,3,4.

Problem P is approximated by problem Q:

Q: min { g(x) + (p(y) I (x,y) e X }

The optimal solution of Q is denoted by x, y.
The idea to be analyzed is to approximate P iteratively by Q and to shrink the
initial interval according to the interval reduction methods for functions of one
variable.

54 3.2. Piecewise linear programming

Interval reduction scheme for iterative piecewise linear programming

0. Given an initial interval [YUY4] and a stopping tolerance for the final
interval.

1. Generate the interpolation points Y2 and y3, for instance with the golden
section rule and construct (p. Solve Q giving an optimal point y.

2. a. If y is an interior point such that Yt < y< YM for a value
of i = 1,2,3 then replace [Y{, Y4] by [Y{, YM].

b. lfy = Yi replace [F„ F4] by [F„ Y2].
\fy_=Y2 replace [7,, Y4] by [Yv y j .
Ify = y3 replace [F,, y4] by [y2, yj-
If y = y4 replace [y„ y4] by [y3, y j .

3. If the interval [Yu y4] fulfils the stopping criteria, STOP, else go to 1.

An analogous scheme can be formulated for yeR*\ which implies the use of 4K

interpolation points at every iteration.

The question is whether the scheme is valid; will it converge to the optimum y*?
Interval reduction techniques bracket the minimum correctly when there is one
minimum on the interval. This is the case when the function to be minimized is
convex. Now there are two problems when we relate this to our interval reduction
scheme:

i. One has to show that we are minimizing a convex function on the interval
[Ylt y j .

ii. One has to show that the minimumpoint y found by the approximation is in
the same subinterval as minimumpoint y*. This is not hard for step 2.b,
where the two points coincide, but unfortunately not straightforward for step
2.a. The fact that y* is in the same interval as y has to be proven.

i. We start with the convexity question i. The function we are actually minimizing
appears when we fix variable y and minimize over variable x. Let us call this
function

V(y) = min{g{x)+fly)\xeX(y)}

in which X(y) is set X with a fixed value of y (so it is convex). One assumption told
us that for every y in the interval a feasible point x exists. So we have to show that
T(y) is a convex function. We first split ^(y) in fly), which was assumed to be

Chapter 3. GLOP and IP 55

convex and the function

n(y) = min{ g(x) I x e X(y) },

so that ^(y) = n(y)+f(y). Function n(y) is a generalisation of the perturbation
function which is used in convex analysis, see Bazaraa et al. (1993). For this
function the convexity can be proven. The proof and a more precise formulation of
the theorem are provided in Appendix 3.A.

Theorem 3.1. (Appendix 3.A) Given all assumptions on problem P, function n(y) is
convex on [Y{, 7J.

As 7t(y) is convex also ¥(y) = n(y)+fiy) is convex for any convex function ßy).
This shows that the interval reduction procedure reduces the interval correctly; y*
cannot be situated in the subinterval which is thrown away. This is only valid if in
2.a. v* can be found in the same interval as v. This is investigated now.

ii. This needs some elaboration of the properties of the approximation of fy) by
(p(y) and consequently of approximating P by Q.
The functions ^(y) = n(y)+fly) and S(y) = 7t(y)+(p(y) are both convex and coincide
at the interpolation points Y,, i = 1,2,3,4. 5(y) is a convex majorant of ¥(y),
E(y)>*F(y) for ye[y,, Y4]. Note that S(y) in contrast to (p(y) is not necessarily
piecewise linear (with the same interpolation points); this causes y to be an interior
point in case 2.a. We have to show now that if S(y) has a minimum point y in the
interior of an interval, then *¥(y) also has a minimum point y* in the same interval.
This is done by theorem 3.2.

Theorem 3.2.
Given two convex functions \|/(y), £(y) : [a,b]c=R —» R, £(y)>\|/(y) and two points
y„ y2 e [a,b] such that yx<y2, \|/(y,) = Ç(y,) and \|/(y2) = Ç(y2).
If £(y) has a minimumpoint in the interior of \yx, y2] then \|f(y) also has a minimum-
point y * e [y^l

The proof can be found in Appendix 3.A.

The theorems 3.1 and 3.2 have answered the questions i. and ii. If fix) is convex,
the procedure as outlined in the interval reduction scheme for iterative piecewise
linear programming, is valid in the sense that the minimum of P is not thrown away
when iteratively approximated by Q. Convergence can be forced by choosing the
interpolation points Y2 and Y3 correctly. In this way

nonlinear programming problems can sometimes be solved by iteratively
running LP models, for which there exist well known routines.

56 3.2. Piecewise linear programming

3.2.4. Piecewise linear programming and nonconvex functions

After the discussion of the relation between linear programming and the
minimization of convex functions let us return to the central theme of this work on
nonconvex optimization. A variant of Hotellings remark could be: "We all know the
world is not always convex". The question is how to include nonconvex nonlinear
functions in an LP problem. The problem is that the approximation of fly) by cp(jy)
is now frustrated, as not two adjacent interpolation variables are selected. This can
be derived from the simple example in figure 1. Consider again the approximation
of fly) = y2 on [0,3] by q>:

0 . 5 ^ + 1.5̂ 3 + 3A,4 = y (3.6)
0.25 A, + 2.25À, + 9A.4 = (p (3.7)
A., + A, + A, + X4 = 1, X^KK ^0. (3.8)

Given a fixed value of y = 1, the minimization of (p given equations (6) and (8)
(convex optimization) results in the optimal values of A^=l/2 and A.3=l/2 and an
approximation of fll) with (p=0.25*0.5+2.25*0.5=1.25. This approximation is as
good as possible given the interpolation points. Nonconvex optimization includes
the maximization of a convex function (this is called concave programming) and
leads to extreme choices. The corresponding maximization of (p given a fixed value
of y=l gives an optimal solution of A.,=2/3 and A.4=l/3 and an approximation of fll)
with q>=9* 1/3=3. This bad approximation is caused by the choice of extreme and
not adjacent interpolation points by the LP formulation.

As nonconvex optimization leads to multiple optima, one would expect
(given the message of this chapter), that there is a relation with integer program­
ming. This was indeed found by Dantzig (1960). In order to force the LP formula­
tion to select at most two positive adjacent interpolation points he introduced the
well known 8-formulation (see Dantzig, 1960). Binary variables 8„ i= l,...,N-l are
used to describe whether the solution y can be found (yes/no) in the interval
[y,,y,+1]. By linking the 8, variables to the A.,- variables only two neighbouring
variables A.,, take a positive value when an integer solution of the MILP problem has
been found. For the example of figure 1 this requires the addition of the following
restrictions to equations (6), (7) and (8):

A,, <8 ,
Â < 8, + 82

A3 < 82 + 83
A.4<83

8, + 82 + 83 = 1

and 8, binary i=l,..,3.

As only one binary variable 8 gets a value of 1, at most two adjacent interpolation

Chapter 3. GLOP and IP 57

variables X will get a positive value. The equivalence between integer programming
and global optimization as introduced is that solving the MILP formulation means
looking globally over the feasible set to find the global solution of (p(v). The
solution method requires a global search over the domain. In Section 3.3, a specific
algorithm is outlined and an example of the 5-formulation is given and solved in
different ways.

Approximating nonconvex functions of several variables
The extension of the 5-formulation to the approximation of a multidimensional
function f(y): E2 -> R on the box-constrained region lk < yk < uk , k = 1,2 is not
straightforward. The point is that we first need to define the concept of adjacent
points in a multidimensional space.
Let us observe that the optimization of q> under the constraints (3.6) and (3.8) leads
to at most two interpolation variables to be positive. This is no coincidence. In LP
the number of basic variables (potentially nonzero) in the optimum solution equals
the number of constraints. If we extend this observation to a two-dimensional space,

ZZXyY^y (3.9)
Z E V / d y = <p (3.10)
2 U - 1 , \ > 0 , (3.11)

the optimization of (p in (3.10), given values for the vector y, leads to an LP
problem with three equalities, namely two equalities (3.9) and one in (3.11). The LP
solution will select at most three positive interpolation variables. In general, for a
AT-dimensional space the LP approximation will interpolate the most profitable K+l
points; the best simplex for the optimization.

For the 8-formulation, one should define the concept of adjacent K+l points.
Let us elaborate this in two dimensions (K=2). One possibility, discussed by
Williams (1990), adds interpolation variables u, for the y,-axis and variables v, for
the y2-axis to (3.9), (3.10) and (3.11) in the following way:

j

v. = E ^ 7 = 1,-,AT2 .
»

Those variables can be used to describe the interpolation between the values on the
y,-axis and y2-axis which correspond with the interpolation grid (figure 3.2). Now
the 5-formulation can be applied for the u, and v, variables separately to force
interpolation of adjacent values on both axes.

From a simplicial point of view, one can define directly what are considered
adjacent points and subdivide the interpolation space in simplices. A binary
variable 8 can now be connected with each simplex. We use an example to

58 3.2. Piecewise linear programming

illustrate the simplicial subdivision and corresponding ô-formulation. Moreover, it
shows that it is neither necessary to use a grid nor a rectangular domain of y. A
simplicial partition of the domain with a corresponding list of interpolation points is
sufficient, though the coding and bookkeeping may be cumbersome. We partition
the rectangular domain lk < yk < uk, k = 1,2, in four equal simplices using the
vertices and barycentre as five interpolation points (two-dimensional vectors).
The vectors

r. = ,Y2 =
(\

U2

\ J

• * 3 = • n =
(\ fl

and Y5 =
(/, + ",)/2

(/, + ",)/2

>

define the interpolation vectors and the variables 5, correspond to the four simplices
which only contain three (adjacent) interpolation points. Now the corresponding Ô-
formulation to approximate a nonlinear nonconvex function on this box is given by:

I X, Yt = y
X?i,./(r;) = (p
Z A., = 1
A,, < 8, + 82

2̂ < 82 + 63

X3 < 5, + 64
A,4 < 53 + ô4

A,5 < 5, + ô2 + 83 + ô4

ô, + ô2 + ô3 + 54 = 1

6, binary i = 1,2,3,4
\ > 0 1 = 1,2,3,4,5.

* Y,

S3

« 4

Y,
' *Y,

yi
Il Ul

Figure 3.5: Simplicial partition in 8-formulation

The use of a simplicial division requires a list to describe for every interpolation
point in which simplices it occurs as a vertex. One of the simplices will finally be
selected and contains the global optimum of (p. The same idea of subdividing a
domain in subsets can be found in the branch-and-bound methods of deterministic
global optimization.

Linear programming is the most applied technique of convex optimization. From
the early days, it has been tried to include nonlinear optimization functions in the
model formulation. For some types of problems such an approach might be
succesful. We have seen that extension to the inclusion of nonconvex funcions is
not straightforward. One cannot solve (complex) multi-extremal optimization by
simple convex programming. The 5-formulation shows how integer programming
can be added in an attempt to solve nonconvex (global) optimization problems. If
one could solve integer programming problems in reasonable time, also many types
of global optimization problems could be solved easily. The solution approaches of
both classes are discussed in Section 3.3.

59

3.3. Similarity in algorithms

The similarity in algorithms between the two fields, combinatorial optimization
techniques at one side and global optimization techniques at the other side is
interesting. We more or less assume the reader to be familiar with ideas from
combinatorial optimization and do not intend to give a summary on either groups
but just refer to literature on the subject; the Handbook on Global Optimization
(Horst and Pardalos, 1995) and Combinatorial Optimization, Algorithms and
Complexity (Papadimitriou and Steiglitz, 1982).

The GLOP methods can be globally divided into two categories (Chapter 1):
One group based on deterministic methods (see Horst and Tuy, 1990), GD, using as
much information on structure as possible and the other group based on stochastic
methods and (nonlinear optimization) local searches (see Torn and Zilinskas, 1989),
GL. The same categories can globally also be found in integer programming.

In combinatorial optimization one group of algorithms is based on enumer­
ation, the name Polyhedral Techniques is sometimes used. For convenience we will
call those methods Integer-Deterministic, ID. Other methods are based on the idea
to obtain a good approximation of the optimum in reasonable calculation time using
what is called heuristics, random search and local search. Let us name those
methods Integer-Local, IL.

Table 3.1: Categories of algorithms.

fields

Global Opt.

Integer Pr.

Determ.

GD

ID

Loc.
Stoch.

GL

IL
IL versus GL
Heuristics to construct good but not necessarily optimal solutions have been used
for a long time in integer programming. Random search methods have become
more popular in combinatorial optimization with the appearance of fast computing
power in the last decades. Methods as simulated annealing and genetic algorithms
are based on a random generation of many candidate solutions. The idea of local
searches to find improvements of feasible solutions (improvement heuristics) also
has become popular in integer programming, see Aarts and Lenstra (1997). How­
ever, unlike the nonlinear programming problems where there exists a natural way
to define a neighbourhood of a solution, for every integer programming problem
this concept has to be worked out and is often not unique. Nonlinear programming
local searches are based on identifying, by simple function (or gradient) evaluations
in the neighbourhood of the current iterate, a promising (descent) direction. For
integer programming problems one has to look at the structure of the problem and
define neighbouring solutions. For many combinatorial problems, local searches
have been defined, see Lawler et al. (1985). The most famous example is the

62 3.3. Similarity in algorithms

function f{JPj) = lOVrP, can for instance be approximated by the line 0.62T, + 40.
The fixed charge model includes a binary variable FIj to model the decision
whether (yes/no) a location will be used. The throughput costs are approximated by
(?(TPj) = 0.6TPj + 40FIj and a constraint TPj < 100 FIj is added. Calculating the
optimal transportation plan with this approximation results in the global optimum of
the original problem with costs 230 and TPA = 100 and TPB - 0. the results are so
good, because the approximation around the global optimum is correct. In general
this optimum is not priori known and one looks for an approximation which fits the
original problem as good as possible over the total feasible domain.

This can be done using the 5-formulation over the range [0,100] in which the values
of TPj are situated. Using as interpolation points:

Yk

AYÙ

0

0

4

20

16

40

36

60

64

80

100

100

gives the following approximation with the 5-formulation:

min{ I Ç j + Ï I CijXy}

i = l,....6
j = A,B

4kq + I6A.3, + 36À4, + 64À5j + I00"k6j = TPj
20X\j + 4OÀ3, + 60X4, + W\5j + \WK6j = (f>,

Su + 52;. + S,,. + bv + à5j=l
Xjj, TPp Xkj > 0 8kj binary

k = 2,3,4,5

j = A,B
j = A,B
j = A,B

j = A,B
j = A,B
j = A,B

The LP solution without integrality constraints on the S variables, which is the LP
relaxation in the first node of the branch-and-bound tree, corresponds with the plan
of Table 2.2, i.e. TPA = 70 and TPB = 30. The selected positive interpolation
variables are typically not adjacent, but taken as the extremes (concave program­
ming), XlA = 0.3, ÀM = 0.7 and A,1B = 0.7, X6B = 0.3 which results in an objective
value of 200. The real costs of the plan of Table 2.2 amount to 238.4. After
calculating 15 nodes the branch-and-bound procedure reaches the optimum in which
TPA = 100 and TPB = 0, so that X6A = XlB-l.

Chapter 3. GLOP and IP 63

Special ordered sets
We discuss another type of branching here, which was specifically developed for
these kind of MILP approximations by Beale (see Beale and Tomlin, 1969). The set
of binary variables {8,,...,SW} with the constraint X8, = 1 is called a special ordered
set of type 1, SOS,, when there is a certain ordering like in our case by the
corresponding interpolation points. Beale suggested to perform the branching not on
posing integrality constraints on one branching variable, but to generate subprob-
lems in the following way. One variable (index) 6r is selected. Two new subprob-
lems, nodes, appear by adding for one node the restriction 8, +...+ 8r = 0 and for
the other one 8r+1 +...+ dN = 0. This branching rule defines a branching tree with a
depth of approximately 2log(JV) and can be applied successfully with various rules
for choosing the splitting point (index) in the set.

The ordered set ideas have been implemented in the Sciconic software, which
has been used intensively in agricultural research in the Netherlands in the eighties.
It also contains the so called SOS2 concept (Beale and Tomlin, 1969) for piecewise
linear programming. This concept does not use the binary variables 8, of the 8-
formulation, but branches directly on the interpolation variables A,,. As only (at
most) two adjacent variables are allowed to be positive, the two new subproblems,
nodes, are defined by using a branching variable Xr and imposing for one of the
problems the additional constraint XQ +...+ Xr_t = 0 and for the other Xr+1 +...+ XN =
0. The concept of SOS2 sets has also been developed for nonconvex functions of
several variables (see Beale, 1980) for the case of Figure 3.2. In contrast to the
algorithm for functions of one variable, it never has been implemented in Sciconic
for several variables.

With this automatic branching procedure and an automatic routine for
selecting interpolation points the user only had to provide the one dimensional
function and a range for the argument. In this sense the Sciconic software was one
of the first packages on nonlinear optimization and on global optimization. Notice
that this works for one particular class of functions, i.e. one dimensional functions
embedded in an LP environment. Note further that the global optimum of the
approximation cp is found and not necessarily that of the original problem. As
choosing interpolation points implies a kind of grid search, it is still possible to
miss the global optimum.

Algorithms in both fields can be divided in stochastic (local search) and determin­
istic methods. Stochastic methods using (integer) local searches need specific
problem dependent formulations for the neighbourhood concept. In deterministic
methods the concepts of cuts and Branch-and-Bound appear in both fields. In fact
one of the early implementations (Sciconic) to solve nonconvex problems via
piecewise linear programming and Branch-and-Bound, can be called one of the
early global optimization software packages.

64

3.4. A maximum distance problem

As in Section 3.2, it is shown here how integer programming can sometimes be
used to approach global optimization problems with a particular structure. The
equivalence with integer programming implies that also the complexity of this class
of problems is related, as will be shown. A specific property which is used, is the
convexity of a distance function. This causes the maximization of a distance to be a
case of concave programming, which (see Section 2.2.) in general leads to multiple
optima which are attained at the boundary of the feasible region.

The particular problem which is discussed here, originates from the applica­
tion of multi-objective programming in land use planning. An example which
describes land use options for the European Community can be found in Rabbinge
and Van Latesteijn (1992). In this context, variables Xj describe the use of an area in
a certain region for a particular crop or land use option. Criteria variables zk

describe the various objectives and are used in a multi-objective framework. It is
not necessary to go into detail on the numerous methods for multi-objective
programming here, of which the so called Interactive Multiple Goal method is
popular in land use modelling. What is important is that finally an optimal (for the
decision maker) plan x* with corresponding objective vector z* is selected.

The question under discussion originates from robustness and reliability
studies on the plans that are generated. One idea is to have a close look on the size
or extremes of the set of optimal or 'near optimal' solutions. This is similar to the
robustness and level set discussions in Sections 4.5. and 6.3. respectively. An
approach could be to have a careful look at the reduced costs of the variables xj
which are not taken into the plan. Due to the existence of several objectives this
may be rather complicated. Therefore the specific question was derived to look for
a plan which is as different as possible in the space of the land use plans x, but
similar in the objective space of z. The given plan x*, z* is used as a reference
plan. The conceptual mathematical formulation is the following.

max D, (x,x*)
D2 (z,z*) < e
Cx = z
Ax<b
l<x<u

in which matrix C is K to n, A is m to n, b is an m-vector, / and u are given vectors
of dimension n and e is a given scalar. We are dealing with two distance functions.

Distance in the restrictions.
The feasible set is convex, as also the distance function D2 is convex. When the
Euclidean distance function is used for D2, the first inequality is quadratic. In our
applications we used the maximum relative difference

Chapter 3. GLOP and IP 65

DJz,z') = max J J _ ,

which came closest to the perception of the modeller. Moreover, this can easily be
implemented in an LP environment.

Distance in the objective.
When the distance function in the objective is taken to be Euclidean, the problem
becomes a concave quadratic programming problem which has been extensively
discussed in literature, e.g. Horst et al. (1995). Methods to solve such problems are
given in Horst and Tuy (1990) and are outlined in Chapter 4. A variant for the
distance function which gave the desirable result for our application, was the use of
the one-norm, the sum of the absolute deviations from x*. No weights were used, as
all activities in the model have the same dimension (area):

Dl (x,x*) = Z | x-xj | .

In general LP, variables d* and d~ can be introduced to describe a positive or
negative deviation x-xj. For the implementation in an MILP environment, binary
variables are necessary now. Variable 8; describes whether a deviation xj-xj is
positive, d* or negative, d'j. In fact the binary variables describe the choice between
the local optima of the maximum distance problem. A general MILP formulation is
given as follows:

max D = X d] + d~
xj-Xj + d+j-d'j=0 7=1,.. . ,«
dr < (xj - /,) 6, 7=1,. . . , n
d*j < (uj - xJXl-àj) 7=l , . . . ,n
-e < (zt - zf)lzt < e it = 1,..., K

Cx = z
Ax<b
l<x<u
d+j,d'j>0, 5; binary j=\,...,n

At first sight, the approach requires an high amount, n, of binary variables. How­
ever, 8, is not needed when xj is either on its lower bound lp or on its upper bound
Uj. This applies for most of the variables in an optimal plan.

To illustrate the approach, a small example is presented. Let a multi-objective
problem be given as follows.

66 3.4. A maximum distance problem

Multi-objective formulation:

max z, = 25 + 5.x,
max z2 = 20 + xx + 5x2

xx + x2<&
-xx + x2 < 2
0 < jt, < 5
0 < x2 < 4

In the applications the problem stems from, the two objectives would have an
economic and environmental interpretation. Those objectives are in general conflict­
ing. In the example some constants are present in the objective functions, which is
in general also the case in the applications. Let us assume that the decision maker
selected as an optimal plan x* = (5,3) with corresponding objective values
z* = (50,40).

Now the corresponding maximum distance problem can be formulated. Notice first
that xj attains a value at its upper bound. Only for the second index a binary
variable will be introduced.

Corresponding maximum
distance formulation:

max D = dx + d2 + d~2

5 - xx - d\ = 0
3 - x2 + d\ -d2 =0
d2 < 3 82

d\ < (l-82)
z, - 50 < 50 e
50 - z, < 50 e
40 - z2 < 40 e
z2 - 40 < 40 e
Z) - 25 + 5̂ [
z2 = 20 + x, + 5x2

jc, + x2 < 8
-X! + x2 < 2
0 < X, < 5
0 < x2 < 4
d\, d2, d\ > 0, 82 binary

$ $ $ ^ ^

Ä
" / '•' Ä
' x %

-,D=3.2

°F?

^^^^^^s-
^^^^^^^^§^ '\

1
ÉHÜ

20%

Figure 3.6: Maximizing the distance from x=(5,3)

The formulation given here contains quite some redundant constraints, which can be
left out to improve the efficiency when solving a realistic case. For illustrative
purposes the 'most distant' plan x(e) is calculated for several values of e. In Figure

Chapter 3. GLOP and IP 67

3.6 the so called e-level set of the second distance function is depicted. The results
can be found in Table 3.1.

Table 3.1: Solutions of the maximum distance problem for varying values of e.

e
0%

5%

10%

15%

20%

Zi

50.0

47.5

45.0

42.5

40.0

z2

40.0

42.0

44.0

43.5

32.0

* i

5.0

4.5

4.0

3.5

3.0

x2

3.0

3.5

4.0

4.0

1.8

D

0.0

1.0

2.0

2.5

3.2

S2

0/1

0

0

0

1

The binary variable 82 shows here the choice between two local optima of the
maximum distance problem. When the number of binary variables increases, there
may be very many corresponding optima and thus the solution process by branch-
and-bound may require a long time. In this problem the modeller cannot oversee all
local optima and in general there is no guess where the global optimum is located
or a guess of a bound on the objective function. For the illustration of the complex­
ity a worst case example of the maximum distance problem can be found in
literature.
Consider the problem

max f(x) = Z (*,. - e)2

1 < x, < 1 i •= \,...,n.

For a given small value of e, this problem not only has 2" local optima but also a
multiple of Kuhn-Tucker points. However, as already outlined in the introduction of
Section 3.1, the complexity result not necessarily tells us something about the
solvability of practical cases. For real instances of the land use model with thou­
sands of variables, and consequently implying hundreds of binary variables for the
corresponding maximum distance problem, it was possible to generate 'near
optimal' solutions very distant from the reference plan by the suggested approach.

68

3.5. A minimum volume hyperrectangle problem

In this section a particular problem is discussed which illustrates again the complex­
ity link between global optimization and combinatorial optimization as discussed in
Section 3.1. Unlike the former sections it does not provide a suggestion to use
techniques from integer programming in global optimization.

The particular problem is a mathematical puzzle, with practical relevance
originating among others from parameter bounding problems as outlined by Walter
and Piet-Lahanier (1990) and with particular relevance to the algorithm suggested
by Keesman (1990). The complexity of finding an optimal solution contrasts with
the simplicity of its formulation. Given is a set of points X = {*,,...,%} c W. The
question is to find an enclosing hyper­
rectangle with minimum volume around
the points of which the axes are free to
be chosen (Keesman, 1992).

Mathematically this can be trans­
lated into finding an orthonormal
matrix (ai,...,an) such that the objective

n {v; = (max a'x - min afx)}

is minimized. Notice first that only the R 3J. T h e m i n i m u m v o l u m e

points m the convex hull of X are of hyperrectangle problem
interest. The others can be left out.
However, this observation does not
reduce the complexity of the problem. Notice further that if the corresponding
polytope defined by the convex hull of X is not full dimensional (the points are
situated in a lower dimensional plane), the optimal objective value is zero as one of
the v, takes a value of zero.

A problem similar to the minimum volume hyperrectangle problem, is to find
an enclosing or an inscribed ellipsoid, as discussed for example by Khachiyan and
Todd (1993). The enclosing minimum volume ellipsoid problem can be formulated
as finding a positive definite matrix and a centre of the ellipsoid, such that it
contains a given set of points or a polytope. A problem which is easier from a
complexity point of view is to calculate a minimal sphere around a polytope or
given set of points, e.g. Konno et al. (1994) or Botkin and Turova-Botkina (1992).
The topic on finding an inscribed sphere in a polytope can be found in Chapter 4.

From a nonlinear (non-differentiable) point of view, the minimal enclosing sphere
problem can be formulated as finding the central vector c, such that the

Chapter 3. GLOP and IP

sphere enclosing a set of points X is minimal:

min max || c - x. ||.

69

The corresponding centre c is called the Chebychev centre of the corresponding
polyhedron. It can be shown that the optimum c must be a convex combination of a
subset of affine independent points of X (see Botkin and Botkina-Turova, 1992)
which are so called active with respect to c. The corresponding points are called
active, because they are situated at the largest distance from c.

With a combinatorial view, one can construct an algorithm which generates
all affine independent subsets of X, takes c as the average of those points and
checks the points in the subset to be active in comparing the distance of the other
points from c. This combinatorial view on the "min-max" problem does not imply a
large complexity of the minimal sphere problem. Analogously, the solution of LP
problems does not require the generation of all basic solutions. Botkin formulated
an algorithm analogous to the simplex method, which pushes the centre c in the
right (descent) direction of the current active points until it is in the convex hull of
the active points and thus is optimal.

A similar approach will be
shown here for a part of the minimum
volume hyperrectangle problem. How­
ever, in contrast to the minimal sphere
problem, the approach ends up in local
optima. Let us first illustrate the multi-
extremal character of the objective
function TIv,. The requirement of the
orthonormality of the matrix of axes of
the hyperrectangle, implies the degree
of freedom in choosing the matrix to be „. „ , , .
/ iw> T * j - • *i.- i- Figure 3.8: Rectangles enclosing a set

n(n-\)l2. In two dimensions this can be r •
oi points

Figure 3.9: Volume of the rectangle as a
function of angle a of axis a,

illustrated by using as one parameter
the angle of the first vector. The multi-
extremal character of the objective for
an instance with only four points is
shown in Figures 3.8 and 3.9. In the
corresponding simple instance the set
X = {(2,3), (4,4), (4,2), (6,2)} is
enclosed by rectangles defined bij the
angle a of the first axis &v This means
that vector a, = (cos a, sin a). Notice
that case a=0 represents the same situ­
ation as a=90, because the position of

70 3.5. A minimum volume hyperrectangle

the two axes switches. This phenomenon has been discussed in Section 2.6.

In a bad case instance for example when an increasing number of points is scattered
over the boundary of an ellipse, the number of local optima in the parameter space
increases correspondingly. For a further analysis, the problem is considered now
from the viewpoint of an iterative procedure.

«-steps procedure

0.

1.

2.

3.

i = 1

v, = min (max a'x - min a'x)
1 ' j i j

m = i J J

in which a, is bound to be on the orthoplement of the formerly
generated vectors a1,...,aj_1.

if i < n then i: = i• + 1 and go to 1

calculate the objective flv,.

15 30 45 60 75 90 105 120 135 ISO 16S

Figure 3.10: Objective v, of the first sub-
problem as function of angle a

The subproblem in step 1 is already
multi-extremal as can also be derived
from the example in Figures 3.8 and
3.9. In Figure 3.10. the objective func­
tion of the first subproblem has been
depicted for the small example. It can
be shown that the optimal values of v,
are nondecreasing in the iterations.

To simplify the analysis we will focus
on the subproblem when i = 1. So the
vector a with \\a\\ = 1 should be found
which defines the planes a'x = b* and a'x = b' with b + = max a'x andb ' = min a'x

j J

such that v = b*-b' is minimized i.e. the planes are as close as possible. The
subproblem can be seen as an orthogonal regression in which the infinite norm is
used as a criterion.

Analogous to the minimal sphere problem a set of active points is defined, which
are now divided over the "upper plane" and "lower plane". Let set /+ contain the
(indices of) the subset of X such that a'xj = b+ for jel+ and let I~ be defined
correspondingly. Notice that by considering the vector -a, the position of upper and
lower plane switches, but the same situation is represented.

Chapter 3. GLOP and IP 71

It will be shown that for a local optimal vector a at least n + 1 affine independent
vectors JC- are active. From a combinatorial point of view one can select n + 1
(affine independent) points out of the (convex hull of the) K points in set X and
divide the points in 2"-l ways into two groups /+ and I~. Now vector a and the
upper and lower plane can be constructed. If the two planes sandwich all other
points we have a local optimum with an objective value of b*-b~. By enumerating
all selections and divisions, requiring an enormous amount of calculation time, one
can select the best of the local optima to be the global optimum. In contrast to the
minimal sphere problem, there are several selections of n + 1 points (and divisions
in two subsets) which correspond to an enclosure of the points and thus to a local
optimum in the parameter space of a.

In order to discuss the construction of the planes and the active status of n + 1
points, the sets B* and B~ are introduced. Given a vector a and the corresponding
sets P and /", set B* is defined as the linear space spanned by the vectors Xj - x\ in
which je r and x\ the first vector (corresponding to the first index) in /+. Let Br
analogously be defined. So vector a is orthogonal to B* and Br. When
| /+ | + \l~\ = n + 1, so that dim(ZT) + dim(ZT) = n - 1, vector a is defined

uniquely and, as will be discussed, local optimal with respect to the subproblem.
When | r | + 11~ | < n + 1, the objective can be improved by changing vector a. In
this way a local optimization procedure is defined. For an arbitrary starting vector
a, it may be valid that | /+ | + | V | = 1 and the corresponding sets B* and Br are
empty. The procedure stops when dim(Z?+) + dim(ZT) = n - 1 and there are n + 1
affine independent active points. For the objective function

v(a) = max a'*. - mina'x.
j J

a descent direction d is constructed such that vector a + Xd remains orthogonal to
^andf i " .

Let vector q be defines as xk - x„ kel+ and fe/", so that v(a) = a'qNa'a, which is
also valid when a does not have a unitary length. By taking the steepest descent
direction

d= _.—
la7^

1 (a'q Ï
-2-a - q
a a

V J we have a direction in which the objective decreases. Now d should be projected on
the orthoplements of B* and B~ so that the active set stays active. If there are
already n + 1 active points, the projection reduces d to the zero vector, because d is
already orthogonal to vector a. Going in the direction of d reduces the objective
function in the following way:

72 3.5. A minimum volume hyperrectangle

v(a + Kd) = —_ ^ ,

/ l + X2

which is monotonously decreasing in A as dq is positive and q'd is negative. Now
A, can be increased until one of the inactive points Xj (a'x, < a'xj < dxk) becomes
active. When ct(xk - xj) < 0 then xs comes into the "upper plane", this means j
comes into / \ for that values of A,; of A. such that

a'(xk - Xj) + A^V* - Xj) = 0

so

A
d(xk - x})

d'{xk - x)

Analogously Xj hits the lower plane when d'(xk - xj) > 0 for

a'(x. - x)
X.= v -v

d'(xt - X)

By determining all A, and taking the smallest value the next point to become active
can be identified and the procedure can be repeated until n + 1 affine independent
active points have been determined.

This procedure defines a local search which arrives at a local optimum of the
subproblem given a starting vector. As starting vectors for instance eigenvectors of
the dispersion matrix QQ', in which Q = [*,,...,%], can be used (Keesman, 1992). A
laborious algorithm has been outlined here to create a local optimum for the
minimum volume hyper-rectangle problem. The problem illustrates the relation
between difficult "unbeaten" global optimization problems and the combinatorial
difficulty of choosing the right active points.

73

3.6. An investment problem in nature conservation

In this section a management problem is discussed, which illustrates how a combi­
natorial problem when it is analysed by a continuous global optimization view,
reveals a high multi-extremal structure. Moreover, as pointed out in Section 3.3., it
shows how ideas from global optimization algorithms, based on random and local
search, can be used in an integer programming environment.

The background of the decision problem originates from government managers
which take decisions on investing funds for the support of rare species in nature
conservation. Species such as the badger in the Netherlands are considered that live
on certain spots, so called patches. Because the animal travels, migrates from one
patch to another there are dangers when crossing a road and encountering a barrier
such as creaks, which it cannot cross. To improve the living condition of the total
population which lives in a patchy habitat, investments can be done in "infrastruc­
ture" such as tunnels and bridges which decreases the death rate of the animals.

The question to environmental scientists is to support these decisions with the aid of
models. One type of population dynamics model is considered here, which is based
on Adler and Neurnberger (1994). First the model is presented followed by an
analysis of various decision problems which can be derived. In the population
model K is the number of patches. The reproduction and migration (number of
animals leaving the patch in one time period) is assumed to be proportional to the
number of animals living in a patch with a reproduction rate r and a migration rate
d respectively.

The model can be written as:

A:

AT , = rN., + (1 - d)N., + dZX.N.,

in which

Nit: number of animals living in patch i at period t,
Xj/. so called connectivity between i and j .

The connectivity is defined as the fraction of the animals migrating from patch i,
which survive and arrive at patchy', so that T,Xj<\. We will assume that Xtf = \}i.
The population growth is the largest eigenvalue of a matrix with r-d+\ on the
diagonal and the connectivity A.ff as other elements. So the eigenvalue is that of the
connectivity matrix A (zeros on the diagonal) plus r-d+l. The investments have the
purpose to improve the connectivity. As r-d+l is not influenced by the investment,
the largest eigenvalue of A can be taken as a criterion to judge a particular invest­
ment plan. It has been shown by Adler and Neurnberger (1994) by numerical

74 3.6. An investment problem

experiments with a large simulation model that the maximum eigenvalue is a good
criterion to describe the growth of the population. Moreover they show that the
maximum eigenvalue can be approximated by a parameter u. To facilitate the
definition of this parameter, the so called immigration potential 5, is introduced:

S = EX...
1 'j

j

Now n is defined as

Es,2 E(E\,)2

u = ES. E D L
y

The investment problem with criterion (a is analyzed here from a global
optimization viewpoint and a combinatorial viewpoint. First the relation between
investment and connectivity is taken from a continuous (GLOP) point of view. Let
Xjj be the amount of the money invested in connectivity A.,-,. The function fip

describing the relation between connectivity Xtj and investment xtj is an increasing
function and in a practical environment may be hard to estimate. The total amount
of money which can be spend for an investment plan is assumed to be constrained
by a budget. The continuous problem (P) is now given by:

max \i (A)

h=Mxv> i = l , . . . , /-l j = 2,...,K
A,, = Xy i,j = 1, ..., K (P)
K j - \

E E x < Budget.
; = 2 i = i

First, according to the ideas of Section 2.2, the problem is analyzed to reveal an
underlying structure. As can be observed, the objectfunction is fractional in Xtj. The
denominator of the ratio is linear, whereas the numerator is convex in A,f>. This gives
the tendency of the objective function to be multi-extremal (see Schaible, 1995).
When the functions ftj are taken affine with equal derivative:

fix.) = Xti + ax..,

this can easily be seen. The increase of the denominator of u by an investment plan
is now fixed (full use of the budget), leaving a convex quadratic objective function.

As a consequence (section 2.2) the optimal plan will be an extreme point of
the feasible set. This means that it is not a good idea to base algorithms for finding
the global optimum on derivative information, as is usually done in nonlinear
programming. The partial derivatives of the objective are given by:

Chapter 3. GLOP and IP 75

3u _ 3u <*K
dxkl dlkl dxu

where

3M _ 9
 s, + 5* _ - *# = 2

BXU E S,. (E5,.)2

in which Xu = Xlk is accounted for.
Marginally seen, additional investments best take place in a connection

between patches which already have a large immigration potential 5,. However, the
pattern of "the best connected" patches changes completely when first a large
investment is done around a poorly connected patch. In this case a derivative driven
algorithm will run to another local optimum. This means that nonlinear program­
ming local searches will return different local optima depending on the starting
point as illustrated in the simple example in Section 2.3. In a more practical
context, this effect is mitigated slightly, because the functions ƒ, will be concave.

Deterministic approaches in global optimization (Horst and Tuy, 1990), as
outlined for some practical problems in Chapter 4, can be developed for the
investment problem. In fact the investment problem is very similar to the quadratic
assignment problem (section 3.1) in complexity and from the combinatorial
optimization point of view.

Integer point of view
The investments usually take place in an integer mode; a number of tunnels and
bridges is constructed which are selected from a group of candidate projects. In
general one project influences various connectivities. It is assumed here that Xy
represents the number of projects to improve Xy only, to simplify the analysis. So
the decision variables in problem (P) are restricted to take integer values. The
budget restriction is translated such that a predefined number n of projects will be
executed. When investments can take place in all N = K(K-\)I2 trajects simply all

' tf+n-O

)
feasible investment plans can be enumerated and evaluated to select the

best one. Also in this context it might be possible to construct Branch-and-Bound
algorithms to speed up the enumeration.

For a similar problem originating from design of experiments Rasch et al.
(1997) discuss various algorithms. In the design problem n measurement points
have to be selected out of N candidate points. The bounding in a Branch-and-Bound
context can simply be based on a monotonicity observation: more measurements,
experiments improves the statistical criterion. Notice that for the investment
problem this may not be true (see derivative). There may be investments which,
when they are added to the plan, lead to a worse objective function value.

76 3.6. An investment problem

As pointed out in Section 3.3., approaches of combinatorial optimization techniques
can be applied now which are similar to ideas from global optimization methods
which are based on local searches and random search (Chapter 5). For many
combinatorial problems, local searches have been defined, see Lawler et al. (1985)
and Aarts and Lenstra (1997). The most famous example is the travelling salesman
problem. A given tour may be changed by exchanging two (or more) cities in the
tour. The exchanging operation defines an environment in mathematical sense of a
feasible solution and therefore also gives an interpretation of the terminology of
local search and local optimum; a local optimum is a feasible solution which cannot
be improved by performing the corresponding exchange operation. The same ideas
can be applied for the investment problem. Some algorithms were implemented and
tested on a small case study in the south of The Netherlands for a limited area
where the badger lives.

Possible structure of a random search algorithm

Giver

For q

endo

n: number of investments in the plan
N: K(K-\)I2: number of connections which
(in a practical case less connections will be
L: number of plans to be generated

= 1 to L do
set all Xjj = 0
For p:= 1 to « do

generate one of the connections i,j
xu: =xiJ+l

endo
evaluate the generated plan

can be improved
distinguished)

Notice that not all feasible investment plans have the same probability to be
generated in this way. Plans with high investments in one connection have a higher
probability of occurring than plans with a high diversification. A simple experiment
with test instances comparing the frequency distribution of the objective value of
the random generated set of plans and the distribution of the plans generated by
enumeration (every plan occurs once) gives a large similarity. Apparently the bias
does not affect the objective space.

Chapter 3. GLOP and IP 11

In practical decision support a good heuristic is to present the best plans which are
generated, let say the top ten, to the decision maker. The best plans can also be
used as starting points for a local search. There are various ways of constructing a
local search. One possibility is outlined here.

Local search outline

Give a starting plan x (in which some xy > 0 and some xtj = 0).
Repeat

perform all possible exchanges by lowering one xtj with xtj > 0 by
one unit and increasing another. Evaluate the resulting plan.
If the criterion value of the best exchange plan is better than the
current value, perform the exchange.

Until no improvement can be found.

By performing a simple random search and local searches as outlined here, the
optimal solution of the test cases could be found in much less calculation time than
by plain enumeration of all feasible plans. This illustrates how ideas of random
search, local search and multistart (Chapter 5), which have been successfully
applied in global optimization can be applied for complex combinatorial decision
problems. The drawback of the random search based methods is of course that there
is no guarantee that the global optimum is reached. On the other hand, a group of
different local optima can be generated which provide the decision maker with
several alternative "good" plans. Moreover, the explicit or implicit (Branch-and-
Bound) enumeration may for practical instances require an unrealistic amount of
calculation time and computer memory as will be discussed in Chapter 4.

78

3.7. Concluding remarks

We have seen four aspects on the relation between combinatorial optimization and
global optimization. First of all, the exercises with the Quadratic Assignment
Problem have shown how an integer problem can be translated to a global
optimization problem. This means that the theoretical complexity is related between
the two fields. If general purpose algorithms in global optimization would appear
which can solve problems in polynomial time (in the dimension of the problem),
one would be able to solve problems from integer programming which are known
to be hard to solve. This indicates it will be impossible to construct such
algorithms.

Secondly, the application of piecewise linear programming for nonconvex program­
ming and the maximum distance problem have shown, that despite the theoretical
complexity relation, practical problems may be solved by an integer programming
technique.

A third aspect is the similarity in classification of the algorithms. Algorithms in
both fields can be divided in stochastic and deterministic methods. Stochastic
methods using (integer) local searches need specific problem dependent formula­
tions for the neighbourhood concept. It has been shown by the investment problem
for infrastructure in nature conservation, how such a neighbourhood can be defined
and how corresponding algorithms can be used based on the idea of local searches.
In deterministic methods the concepts of cuts and Branch-and-Bound appear in both
fields. In fact one of the early implementations (Sciconic) to solve nonconvex
problems via piecewise linear programming and Branch-and-Bound, can be called
one of the early global optimization software packages.

The fourth aspect is that we can analyze an integer problem with the eyes of
deterministic global optimization. The investment problem in Section 3.6. showed
how a gradient way of thinking, add the investment which is most profitable (add-
heuristic), will lead to local optima. The underlying maximization of a convex
objective was the apparent reason. The same appeared in the analysis of the
Quadratic Assignment Problem. Given negative interaction coefficients, the problem
tends to concave maximization, so that nor the continuous variant, not the LP
relaxation of the MILP formulation will result in integer solutions; the 'cross your
fingers' strategy will not work. In this way analysis of the problem (using the
structure of the problem) can help the same way in integer as in global optimization
for the selection of algorithms.

79

Appendices

Appendix 3.A.

Theorem 3.1. Given problem P: min { g{x) +f(y) I (x,y) e X } with
g(x): W -* R convex,/(y): [a,è]cR -> R convex, X c R"+1 convex and let P have
feasible solutions for all values of v e [a,b].
Function 7t(v) = min{ g(x) I x € X(y) }, with X(y) set X when the value of y is
fixed, is convex on [a,b].

Proof
Given any two points v,, v2 e [a,&] and corresponding vectors
*! € X(y,) and x2 e X(y2) such that 7t(y,) = g(jc,) and n(y2) = g(x2).
For any value of A. e (0,1) applies: X(xlt y{) + (1-A,)(JC2, y2) € X so that
Tuci + (l-X)x2 is a feasible point of X(ky{ + (1-A.)y2) with a corresponding function
value of g(kxi + (1-A,)x2).
In this way A,n(y,) + (l-X)n(y2) = AgOc,) + (l-X)g(x2) > g(Kxi+(l-X)x2) >
min {g(x)\ x e X(^y,+(1-A.)y2) } = n(Ay, + (l-^)y2).
So n is convex on [a,b]. D

Theorem 3.2.
Given two convex functions \|/(y), £(y) : [a,è]cR —» R, £(y)>\|/(y) and two points
yx, y2 e [a,b] such that y,<y2, \|/(y,) = Ç(y,) and \)/(y2) = Ç(y2).
If Ç(y) has a minimumpoint in the interior of [y„ y2] then \|/(y) also has a minimum-
point y* e [y^yj.

Proof_
Point y is a minimumpoint, so that ^(y)<^(y:) = V|/(y,).
Suppose \|/ has no minimumpoint in the interval [y^y^ so that without loss of
generality it can be assumed that \\r has a minimumpoint y*<y{ and
v]/(y*)<v|/(y,).
Then there exists a X e (0,1) so that y, = Ay* + (1-A,)y.
Given that \|/(y) < Ç(y) < Ç(y,) = V|/(y!) and by convexity of \\f this implies that
\|/(y,) = \|/(Xy* + (1-À)y) < htfy*) + (l-X)vG) < totf*) + (l-A-M*) = ¥(v,)-
This shows that y*<y! cannot be valid. The same reasoning applies for y*>y2, so
that at least one minimumpoint y* of \\f should be located in the interval [y^ y2]. D

81

Chapter 4. Analyzing models and developing specific deterministic
solution procedures: some cases

4.1. Introduction

In Chapter 2 it has been discussed which mathematical structures are useful for the
development and choice of specific deterministic global optimization methods.
Furthermore, it has been shown with practical examples how mathematical struc­
tures can be recognised and how they explain the occurrence of multiple optima. In
Chapter 3, one step further has been worked out, namely actually solving problems
exploiting their structure. This was done by applying integer programming tech­
niques which are similar to deterministic global optimization methods.
In this chapter some a

larger cases are worked
out. We follow the
complete route from
formulation of models
(arrow a), analysis of
their mathematical
structure (arrows c and
e) and the construction
of specific deterministic
global optimization
methods (arrow f).
We start with the dis­
cussion of the so called
nutrient problem which
is similar to the pooling
problem discussed in Section 2.4. This is a high dimensional problem close to linear
programming, but hard to solve. In this chapter we further focus on the (quadratic)
design problem which is in general not larger than ten dimensional. Although multi-
extremal, deterministic methods may reach the level of being implemented in a
Decision Support System for this problem, as will be shown.

ĵGlobal% optimization
^algorithmic toolbox

^Det.JI Stoch.

Figure 4.1 : Route for applying deterministic methods

For all cases discussed in this chapter, traditional optimization tools, may not give
the answer, as will be illustrated. Deterministic global optimization methods
guarantee the solution, but require quite some effort in analyzing the problems and
constructing specific algorithms. A first step is the recognition (arrow c) of the
special structure of the problem, which explains its multi-extremal behaviour. We
will start with this topic in Sections 4.2. and 4.3. In Section 4.4. specific determin­
istic global optimization algorithms are developed. As the reader may be less
familiar with the concept of branch-and-bound procedures for global optimization,
illustrations are elaborated to give a flavour of the method. In Section 4.5. finally, a
more detailed discussion takes place on the topic of finding robust solutions.

82

4.2. The nutrient problem

4.2.1. Introduction

In Section 2.4 the pooling problem has been discussed. It has been shown how
including joint storage in the classical linear blending problem leads to bilinearity in
the model formulation. The general similarity in bilinear models, is the appearance
of flows which are combined and the description of concentrations which is
included in the model. When there is a chain of activities on flows (quantity) of
products, such as happens in environmental planning, the modelling of polluting
material (quality) may lead to balance equations which are bilinear.

One of the simplest examples is to consider a dynamic sequence of decisions
such as in reservoir management. We consider a simple reservoir system with given
inflow f, in period t and decision variables x, and /, (state variable) describing the
the release and storage of water respectively in period t. A simple mass balance
equation describes that the amount of water stored at the end of a period equals the
amount of water at the beginning plus the inflow minus the release in that period:

ƒ, = ƒ,_,+ƒ,-*„ (4.1)

which is linear and can be applied in a Dynamic Programming context. When the
model is extended to describe the quality of the water with a concentration (of salt
for example), bilinear balances are included in the mathematical structure. Let (p, be
the given concentration of inflow f, and let variable q, describe the concentration in
the reservoir. Again a balance equation describes how the amount of salt at the end
of the period equals the amount at the beginning minus the outflow of salt plus the
inflow. The new concentration q, is determined by:

q,I, = q,-xV,-x-xu + <9,f,- (4.2)

The resulting concentration q, depends directly on the release decisions xr The
classical linear blending problem uses concentrations and is not bilinear. So it is not
the modelling of concentrations alone, but also the additional description of
consecutive decisions on flows of materials which are combined, causing bilinearity
in environmental models.

The remainder of this paragraph will be devoted to the nutrient problem which is an
extension of another classical model, namely the farm management problem. The
discussion is based on Bloemhof-Ruwaard and Hendrix (1993, 1996). First the
formulation of the model is discussed. Then the mathematical structure is thorough­
ly analyzed by comparing the model with the pooling problem, considering the
problem as a bilinear problem, examining its multimodal structure and analyzing the
boundary characteristic of the solution. Furthermore, it is shown that classical

Chapter 4. Deterministic solution procedures 83

nonlinear programming heuristics may not lead to the global optimum. In Section
4.4. a specific branch-and-bound method will be developed, based on the mathemat­
ical structure revealed here.

4.2.2. Model formulation

A popular method in farm management and land use planning is linear program­
ming (LP). It has shown to be very useful in finding a profit maximizing combina­
tion of farm activities that is feasible with respect to a set of fixed farm constraints.
Inputs for a dairy farm are fertilizer, labour, fodder etc., and saleable outputs are
milk, maize or meat. Dairy cows do not only deliver milk, but also produce a large
amount of manure that has to be disposed of at some cost. However, this manure
(containing useful nutrients) can also be applied for fertilizing the meadow,
replacing expensive inorganic fertilizers. Nowadays, the treatment of manure for
fertilizing land is an important political issue and a subject of many scientific
studies in the Netherlands. The government regulates the use of manure for
fertilizing by setting standards per hectare for each type of land use. The amount of
manure to be used for this purpose depends on the land use, which is a decision
variable in the model.

Linear farm management models can be used to determine a profit maximizing
combination of farm activities that is feasible with respect to a set of fixed farm
constraints (Hazell and Norton 1986, Williams 1990). The variable xt represents the
level of activity i, denoted by the number of hectares. The set of activities
i = l, ..., n (also the index j will be used) defines the possibilities in the farm
organisation, such as the amount of cattle treated and fed in a particular way. The
vector x gives the combination of activities chosen to be the farm plan. Each
activity has a profit y; (sales minus input costs) and some constraint parameters such
as cattle density, amount of labour needed, milk production per hectare, and amount
of fodder needed. The constraint parameters build the matrix A, also known as the
technology set of the farm model. The set of feasible farm plans is determined by
the vector of bounds b, representing e.g. total land, available labour and allowable
milk production (European milk quota).
The traditional farm management model formulation is:

max y'x
Ax<b
x>0 .

The extended model covers on the one hand decisions on the farm plan with
corresponding amounts of manure produced and demands for fertilizing. On the
other hand, it covers decisions on the use of manure for fertilizing purposes.
Choices in the farm plan determine the possibilities for the application of manure.
Figure 4.2 outlines the situation.

84 4.2. The nutrient problem

area, fodder

fertilizer, labour ,etc. farm management

*i y
2 y 3

milk
meat
maize ,etc.

output

manure produced

disposal

manure tank

Figure 4.2: Schematic view on the nutrient problem

We assume that all manure of the cattle arrives in one manure tank. The manure in
the tank can be used to fertilize the land thus reducing the amount of inorganic
fertilizer that has to be bought and applied on the meadow. Furthermore, the re-use
of manure saves disposal costs. Disposal costs arise due to manure excess rules in
the intensive livestock sector. The variable y, is introduced to model the decision on
the use of the manure for fertilizing the meadow going with farm activity i:

y,: fraction of produced manure used on the land with activity i

No more manure can be applied on the land than has been produced, and thus y, is
restricted by the following constraint:

£ y , < l

The cost saving of using the manure produced by activity j , instead of disposing it,
is given by the parameter 8,. This cost saving is higher when the manure contains
more of the useful nutrients that the land requires, and also when the prices of the
replaced inorganic fertilizer are high. The parameter qjk represents the amount of
nutrient k produced in the manure of activity j . The index k represents all relevant
nutrients, viz. nitrate, phosphate and potassium. In agreement with the approach of
the farm management model, qjk is given in kilogram per hectare. The total amount
of nutrient k in the manure is given by T,qkx.. The government will set standards

Chapter 4. Deterministic solution procedures 85

(parameter dik) for the utilization of nutrient k per hectare land use of activity i, due
to large environmental problems connected with the increased use of nutrients in the
intensive livestock sector. The amount of nutrient k applied for activity i should not
exceed the environmental standards:

y . x E . o . < d.x. i = 1, ..., n k = 1, ..., K

The left-hand side of these nutrient constraints represents the amount of nutrient k
(in kilograms) which is applied on land of activity i by using manure as fertilizer.
Notice that by modelling the treatment of manure in this way, the model looses its
linearity. The nutrient problem formulation is:

max T,y.x. + EVDSJC

Ax<b
Ey,. < 1
dutxi - y£j%xj * °
* , , y , > 0

i = 1, ..., n
i= 1, ..., n

k=l, ...,K

(4.3)
(4.4)
(4.5)
(4.6)
(4.7)

Let us summarize the notation.

Indices
i,j : indices for the farm activities
k : index for the nutrients

Parameters
y, : profit per hectare of farm activity i minus the costs of disposing all produced

manure and buying inorganic fertilizer
8j : costs of disposing the produced manure and buying inorganic fertilizer for

activity j (is saved when Xy, is positive)
technology set of the farm model
bounds on available scarce resources
content of nutrient k in manure from farm activity j (kg/ha)
environmental standards for the utilization of nutrient k for farm activity i
(kg/ha)

A
b
lik

dit

Decision variables
jc, : number of hectares used for farm activity i
y, : fraction of total produced manure used on land with activity i

To illustrate the formulations, ideas and solution methods in this paragraph, we use
a simple example with two possible farm activities (1 and 2) and environmental
rules for three nutrients. The numbers in this example are arbitrary and have no
resemblance with real data.

86 4.2. The nutrient problem

The model formulation for this example is

max {20A:, + 10x2 + (y, + y2)(70x, + 95*2)} (4.8)
x{ + x2 < 10 (4.9)
x, + 1.5x2 < 12 (4.10)
y ,+ y 2 ^ i (4.11)
y,^, + 5x2) < *, ; y2(x1 + 5x2) ^ JC2 (4.12)
y,^*, + x2) < 5xl ; y2(4x, + x2) < 4x2 (4.13)
>i(*i + *2) ^ *i ; ̂ Ui + ̂ 2) ^ *2 (4.14)
*i. *2. yi. y2 ^ 0 (4.15)

The constraints (4.9) and (4.10) define the feasible set of the classical farm plan
(e.g. upper bounds for the acreage and the production of milk). Constraint (4.11)
defines that no more manure can be applied than is available. The nutrient con­
straints (4.12), (4.13) and (4.14) represent the environmental regulations for
fertilizing. In this example, constraint (4.12) dominates constraints (4.13) and (4.14),
i.e. for non-negative variables (4.13) and (4.14) are redundant due to (4.12).
Specific characteristics can be derived for data instances with this property (the one-
nutrient problems).

4.2.3. Analysis of the model

Pooling property

The nonlinearity in (4.3) and (4.6) is caused by the use of one manure tank to store
the manure of various activities. The bilinearity in the constraints is called the
pooling property as introduced in Section 2.4. The nutrient problem has the same
characteristics as the pooling problem because it is linear whenever either the
decision vector x or y is fixed. However, the pooling problem has fixed bounds on
the concentrations of the final product, whereas in the nutrient problem the concen­
trations may vary and the use of the end product is bounded by the input, i.e. the
farm plan. One could say that the output (concentrations) is cyclically connected
with the input (the farm plan), see Figure 4.2. The pooling problem as described in
Foulds et al. (1990) has a linear objective function with bilinear balance restrictions
whereas the nutrient problem has a bilinear objective function and bilinear con­
straints.

The nutrient problem as a bilinear problem

The roots of bilinear programming can be found in Nash (1951), who introduced
game problems involving two players. Each player must select a mixed strategy
from fixed sets of strategies open to each, given knowledge of the payoff based on
selected strategies. These problems can be treated by solving a bilinear program.

Chapter 4. Deterministic solution procedures 87

A bilinear program is

min f(x,y) = c'x + x'Ay + d'y
(x,y)sn

The objective is a function of two groups of variables. The problem is linear
(actually affine) in one group of variables if the other group is fixed, and vice
versa, over the feasible region Q. Bilinear problems are interesting from a research
point of view, because of the numerous applied problems that can be formulated as
bilinear programs (dynamic Markovian assignment problems, multi-commodity
network flow problems, quadratic concave minimization problems).

In the first model formulation, the feasible set Q for x and y is the cartesian product
X x Y, where

X := {x: B{x <bx,x> 0}
Y := {y: By < b2, y > 0}

Global optimization algorithms to solve these traditional bilinear programs (TBP)
have been developed e.g. by Falk (1973) and Sherali and Shetty (1980). These
algorithms guarantee finite convergence for all instances. The key property of the
traditional model, used in almost all methods, is that the feasible region is expressed
as the cartesian product of two polyhedra. This structure ensures the existence of an
extreme-point global solution (Falk, 1973).

Al-Khayyal (1990) relaxed this assumption by considering the feasible set

ß := {(x,y): Cx + Dy < b, x > 0, y > 0}

in the jointly constrained program (JCBP). In this case, interaction in the con­
straints between the x and y decision variables is allowed.

A further extension of the model is to include bilinear constraints, which results in
the generalized bilinear program (GBP):

min cQx + x'A$ + d0y
(x.y)en

with

Q:= {(x,y):CpX + x'Aj + d'py < bpVp, Cx + Dy < b, x>0, y>0}.

The nutrient problem now becomes a special case of (GBP) where constraints (4.4)
and (4.5) represent the linear parts and constraints (4.6) the bilinear part. Note that
for this special case the jointly constrained part of the (GBP) reduces to the
cartesian product X x Y, where

88 4.2. The nutrient problem

X:= [x: Ax < b, x > 0} and Y := {y:Ey.<l, y >0}.

The objective function of a generalized bilinear problem is a bi-ajfine function, that
is affine for x and y for fixed y and * respectively. The feasible set Q is a
bipolyhedron, i.e. a polyhedron in x and y for fixed y and x respectively. A general
way to analyze such a bilinear problem is to fix x and y successively, iteratively
leading to an LP problem in either y or x. We will elaborate further on this succes­
sive LP approach. First the problem is considered in another decomposed way.

The nutrient problem as a two step problem, a specific property

The mathematical structure of the nutrient problem makes it possible to analyze the
problem from the following point of view. For every x, the optimal y can be
calculated. Given this optimal value for y (in terms of x variables), we only have to
solve a maximization problem in the x variables. The branch-and-bound algorithm
in Section 4.4. uses this feature.

For convenience, we introduce 5 as the sum of the y variables, and S(x) as the
optimal fraction of the produced manure, applied on the land given farm plan x.
Now, the nutrient problem in x variables is:

max (y + S(x) x ô)'x
X

Ax<b
x>0

The objective function is monotonously increasing in 5 since Ô is strictly positive.
The objective value (4.3) corresponding to the maximization problem is denoted as
z(x, S(x)); it depends on x directly as well as on the optimal fraction S(x) which is

T^ dkx.
applied. In general, the expression S(x) is equivalent to L. min-=J_!—

If only one nutrient constraint is active, the expression for S(x) is much easier. For
x. + x2

the example, the sum S(x) can be expressed as , since (4.12) is the only
xt + 5x2

active constraint. This expression can be substituted in the objective function. For
the resulting nonlinear problem, the first-order Karush-Kuhn-Tucker conditions can
be analyzed. The global maximum is x' = (10,0) with corresponding optimal value
(1,0) for the y variables and an objective value of 900. Figure 4.3 gives the graphi­
cal representation of the model for this example. The example shows that it is
interesting to examine the boundary of the feasible region of the variables JC„ ..., xn

in particular, since all local optima can be found there. Moreover, Al-Khayyal and
Falk (1983) show that jointly constrained bilinear problems always have boundary
solutions.

Chapter 4. Deterministic solution procedures

Boundary solutions

89

z=707.7

z=712

jz=900

In this paragraph, we ana­
lyze the existence of bound­
ary solutions for the nutrient
problem. The property of
boundary solutions can be
used explicitly in branch-
and-bound methods as will
be outlined in Section 4.4,
since this characteristic can x2

reduce the computation time
of these algorithms. Figure 4.3: Graphical representation of the nutrient

problem in x
We first consider the one-
nutrient problem, where one nutrient constraint (say k') makes the other nutrient

d...x.
constraint redundant. For this simplification, the optimal value for y,(x) is _ J—!_ .

2->q...x.
J^jk j

d'x Therefore, S(x):= T,y(x) can be written as , and the objective function (1) can
q'x

be replaced by min-(•/.* + x'5d'
q'x

1) = min x'Cx

q'x
with C = -yq' - 8d'.

The feasible region X = {x: Ax < b ; x>0] is compact.

Theorem 4.1 If the matrix C has at least one negative eigenvalue, the optimal
solution x* can be found on the boundary of the feasible region X.

The proof of this theorem is by indirect demonstration and is based on the existence
of a direction in which the objective is concave. If x* is an interior point then it is
always possible to obtain a better function value in the neighbourhood of x*. So, x*
cannot be a minimum point. More details on this proof can be found in Bloemhof-
Ruwaard and Hendrix (1993) or alternatively in Pardalos (1986).

In general, matrix C in the one-nutrient problem has such a negative eigenvalue. As
the vectors d, q and Ô are positive, it is sufficient to have at least one positive
element of the vector y if the corresponding ^-element has a strictly positive value.
So, at least one farm plan should have a positive contribution, which is not a severe
assumption.

We can generalize this result to the general nutrient problem. First, Al-Khayyal and
Falk (1983) show that the solution must be on the boundary of the X x Y space.

90 4.2. The nutrient problem

Theorem 4.2 (Al-Khayyal and Falk, 1983) If an optimal solution exists to the
(GBP) problem, at least one optimal solution will be on the boundary of the
bipolyhedral feasible set.

This theorem states that some optimal solution (x, y') of the nutrient problem is
found on the boundary of Q. This solution is not necessarily an extreme point (Al-
Khayyal, 1990). For the nutrient problem, theorem 4.3 shows that (x, y) is on the
boundary of X.

Theorem 4.3 Given the nutrient problem defined by (4.3) - (4.7), and
X := {x e W : Ax < b; x > 0} is a compact set. Then the solution (x*, y*) of the
nutrient problem is found on the boundary ofX.

Proof:
Given the optimal y* for a (GBP) problem, (x*, y') is a solution of a linear program­
ming problem in x only. Let (NUP(x | y*)) denote the nutrient problem given a fixed
value y* for y. Constraints (4.6) define a cone
K := {x € W: (dike{ - y*qkfx > 0, / = 1, ..., n, k = 1, ..., K], with e, the i'h unit
vector. The solution (**, y*) can be found at a vertex of the feasible set of
(NUP(x | y*)) consisting of X n K. Apart from the origin, K does not contain a
vertex. If x' is not the origin, then it is not a vertex of K, so the solution is found on
the boundary of X.

4.2.4. Classical solution approaches

Successive linear programming approach

One promising heuristic to solve a bilinear programming problem is successive
linear programming. Starting with any x° e X, find y° that optimizes the objective
function over Y, then find xl that optimizes the objective function over X, and so on
until the objective does not improve between two successive optimizations.

If the feasible set ß is a cartesian product X x Y, with X and Y convex sets and the
objective function is differentiable and convex over X x Y, then any limit point to
this alternating procedure globally solves the problem (Wendell and Hurter, 1976).
If the objective function is allowed to be biconvex, every limit point is a Karush-
Kuhn-Tucker point (Konno, 1976), but necessary conditions are needed for a limit
point to be a local optimal point of the biconvex problem. However, the (GBP)
problem does not have these characteristics. Therefore, the approach by successive
linear programming can be very disappointing, as is illustrated by the nutrient
problem.

Chapter 4. Deterministic solution procedures 91

First note the following observations for the nutrient problem:

For any fixed y1 e Yin step t, the LP-problem in the variables x is
equivalent to

z(NUP(x \y ')) = max (y + S 'S)'* (4.16)
d&ZMxtf, i=l,...,n (4.17)
Ax < b (4.18)
x > 0 (4.19)

For any fixed x! e X in step t, the LP-problem in the variables y is equivalent
to

z(NUP(y \x')) = max (5 = Ey;) (4.20)
yfà*) < 4*| i = l',...,/i * = l,...,tf (4.21)
S < 1 (4.22)
y > 0 (4.23)

A feasible solution for the y-variables can be found for any given x e X. The
reverse statement does not necessarily hold.

The successive linear programming procedure for the nutrient problem is described
as follows:

Successive Linear Programming Algorithm

Step 1
Step 2

Step 3

Step 4

Start with any feasible y°, t = 1.
Given / " ' (with corresponding value for S'"1), find x? that minimizes
z(NUP(x \y '"')) over the feasible region for x.
Given xf find ƒ that minimizes z(NUP(y \x ')) over the feasible
region for y.
If 1/ - y_1l < e then STOP else t:= t + 1 and go to Step 2.

For the example, the successive linear programming algorithm stops after at most
two iterations. The LP solution x* = xx is a point on the boundary of X. Only for the
starting vector y° = (1,0), the successive linear programming method finds the
global maximum x* = (10,0). This example illustrates that the successive linear
programming approach may be very disappointing for the nutrient problem.

92

Nonlinear programming: local search

4.2. The nutrient problem

Perhaps the most common method to solve problems like the nutrient problem is to
apply standard nonlinear programming software. As illustrated by Figure 4.3, the
nutrient problem may contain many local optima. One could try to discover the
global optimum by starting a nonlinear programming local search from various
starting points. An overview of global optimization methods, based on local
searches, can be found in Torn and Zilinskas (1989). One of the known packages
for solving constrained nonlinear programming is GAMS/MINOS which was also
used in Section 2.3 to experiment with a concave programming model. Implementa­
tion of the example in this package (MINOS 5.3) gives the different local optima
for various starting points (Table 4.1):

Table 4.1: Solutions local search

*1

0.0
3.0
3.0

starting point

x2

0.0
3.0
0.0

y\

0.0
0.2
0.0

y2

0.0
0.2
0.0

* i

10
6
0

local

X-y

0
4
8

optimum

y\ y2

1.00 0.00
0.23 0.15
0.00 0.20

objective

900.0
707.7
712.0

Starting point (0,0,0.2,0.2) did not converge to a local optimum, but stayed at the
starting point. In the approach of using various starting points, at least one of the
points should be situated in the region of attraction of the global optimum, which is
hard to verify.

The traditional optimization methods, which in general are applied first, deliver
local optima, or worse, no optima. They cannot avoid the pitfall created by the
problem. Here is where global optimization methods can help. Following the route
towards deterministic methods, requires use of the special properties of the math­
ematical structure of the problem. In Section 4.4. this is elaborated in the construc­
tion of a specific heuristic for the nutrient problem.

93

4.3. Quadratic design problems

4.3.1. Problem formulation

In many situations with respect to the design of products, mathematical models are
used to describe the properties of a product to be designed. Our observations are
based on experience in design departments of several companies. Abstracting from
all kinds of practical technical details, one can say that a model (in the sense of
Figure 1.2) calculates (or predicts) the consequences in terms of a vector of prop­
erties v of the values from a vector x of design parameters. Often a graphical
presentation is used to describe the resulting design.

In this context the n-vector x represents the design parameters or factor
variables of the product and the model, or function y(x), describes the properties
represented by an m-vector y. Because this study concerns nonlinear optimization, it
is first of all assumed that y(x) is a continuous function. Another assumption is the
ability of x to vary in a continuous way within a so called experimental region X,
whereas in practical design problems the values for the parameters are sometimes
selected from a given finite set. For the algorithms we developed, the region X was
taken to be a polytope, but in most cases it consists of lower and upper bounds on
the design parameters. In a technological context it is common to use an expression
about a relation y(x) like "the relation is valid on this range".

The words "experimental region" originates from cases in which the function y(x) is
derived from (computer) experiments. As indicated in Section 2.5, it is common to
use linear, factorial and quadratic regression functions as a first description y(x) of
measured properties of a set of experiments, which are taken from an experimental
region described by a polytope or simple box constraints. Many of the observations
in this section do not only apply for quadratic relations, but are general for the
design problem. Now the designer aims to find the designs fulfilling target values
for properties within the experimental region.

In the definition of the design problem, we restrict ourselves to the inequality form.
The designer formulates target values on the quality of the product by setting lower
or upper bounds blt and but on the properties yt(x). Now the design problem is to
find a product x in experimental region X which fulfils the requirements on the
properties. To facilitate the mathematical analysis the slack function g^x) is
introduced as either

gt(x) = biij - y^x) when there is an upper bound requirement
or gj(x) = y^x) - blj when the quality is described by a lower bound.

Two sided requirements imply the introduction of more slack functions. To facilitate
the discussion (without loss of generality), index i is used both for requirements as
for properties.

94 4.3. Quadratic design problems

Numerous ways in formulating design problems exist, see Taguchi et al. (1989). In
order to focus on inequalities we do not define an objective function on the
properties which is usually included in these problems. This results in a product
design problem mathematically formulated as "find an element of FnX", with
F:= {x e W \ gt{x) > 0, i = 1, ..., m}. As formulated in Section 2.5, an objective
(penalty) function can be constructed to define an equivalent optimization problem.
By maximizing over X for instance

or

f[x) = mingix)

^) = Emin{g,.(x),0}

(4.24)

(4.25)

a solution is sought of the inequality problem. Some remarks on the mathematical
characteristics of these functions will be made when we discuss the analysis of the
problem.

For the design problem, an additional complicating factor is when the value of
parameter x represents the component as a fraction of a mixture product, as in the
classical blending problem, in mixing and processing industries. This will be called
the mixture design problem, which can be found in Hendrix and Pinter (1991) and
Hendrix et al. (1996). Besides the restrictions of X and F, the possible mixtures are
bound to be on the unit simplex S = {x e W | E-JC- = 1, JC,- > 0}. In 4.4 a specific
algorithm is presented for the quadratic mixture design problem.

We were involved in setting up a Decision Support System for the design depart­
ment of a chemical company. To give a flavour of the information the user can give
and obtains, the input screen and output screen are sketched in Tables 4.2 and 4.3
respectively. As in the discussion of the nutrient problem a simple illustrative
example, the rum-coke example, is used. The design parameters Xj represent the rate
of coke, rum and ice in a glass of drink and the properties y, and y2 describe the
taste and colour of the product.

Table 4.2: Sketch of the input screen of the product design problem,
rum-coke example

Parameter

coke
rum
ice

L

0.0
0.0
0.0

U

0.75
1.00
0.90

property

taste
colour

bl

-2.0
0.1

bu

-1.0
0.4

In an experimental setting, where the relations yt(x) are found by regression on
experiments, default values exist for lower and upper bounds on the design parame-

Chapter 4. Deterministic solution procedures 95

ters Lj < Xj < Ur The quadratic functions describing the properties in our example
are:

y^x) = - 2 + &X[+ 8;c2 - 32x^2
y2(x) = 4 - 12*i - 4x3 + 4x{x3 + IOJC? + 2x\.

The initial values for the bounds on the properties can be taken as the lowest and
highest values found in the experiments. Those do not necessarily equal the minima
and maxima of y,(*) on the experimental region X. Now the user can iteratively set
bounds on the design parameters and formulate requirements by setting target
bounds on the properties. For the example it will be assumed that upper bounds
but - - 1 and bu2 = 0.4 have been formulated as requirements on the properties
yt{x). The user can feed the input to a solver which tries to find solutions of the
inequality problem.

Experience learns that it is a good heuristic to present the best, let say ten solutions
which have been found. The ranking of the "best" can be done with respect to a
score function defined by (4.24), (4.25) or any other multi-criteria function. In
Table 4.3 an example is reported of an infeasible solution with a score based on
(4.25).

Table 4.3: Sketch of the report screen of the product design problem,
rum-coke example.

solution 9

score -1.125

parameter value property value slack

coke
rum
ice

0.25
0.25
0.50

taste
colour

0.000
0.625

-1.000
-0.125

For the simple example the solution space can be represented in a figure.
The slack functions are:

gX*) = 1-0 — &c, — 8x2 + 32JC,^2

g2(x) - -3.6 + 12JC, + 4x3 - 4AT,A:3 10;c? - 2x\.

Because the example is a mixture design problem (xt+x2+Xy=l), a projection of the
simplex S on the JC„ x2 plane is generated. In Figure 4.4 vertex xp represents a
product consisting for 100% of component p, p = 1,2,3. The area in which the
feasible products are situated is given by F. The problem of maximizing (4.25) over
S has a local optimum in xioc = (0.125, 0, 0.875), /(xloc) = -0.725, and of course a
global optimum (= 0) for all elements of F n S.

96 4.3. Quadratic design problems

In practical mixture design,
an additional complication is
the appearance of variables
Xj which do not represent
components of the mixture
but additional process vari­
ables, such as temperature
and mixing speed. Another
important aspect is that the
mixing industry is typically
interested in stable solutions,
as irregularities, fluctuations
may appear during the pro­
duction process. Mathema­
tically, this means that a
subset of F n D(n5) with a
given volume e should be looked for or alternatively an interior point located at a
given distance from the boundary of F is sought. This is discussed in Section 4.5.

Figure 4.4: The feasible set F of the rum-coke
example

4.3.2 Analysis and solution approaches

Having outlined the design problem, we will now have a look at possible solution
approaches and an analysis of the mathematical problem.

Grid search
One of the simplest approaches to solve the problem is doing a grid search over the
experimental region X. This engineering approach requires no assumptions on the
function y,(x) and is often applied in a first attempt to find a solution. We also
implemented a version of this method to have a reference which easily can be
explained to users. Mixture design problems need a special treatment; an equidistant
grid on x,, x2 in Figure 4.4 with different step sizes for x, and x2 does not neces­
sarily result in an equidistant grid for x3 = l-xl-x2. For the general problem, a do-
loop testing gt(x) on being positive or negative can be cut off if for one of the
properties (indices) a negative slack has appeared. This means that ordering the
indices towards their expected difficulty may speed up the search, as it needs less
function evaluations.

An obvious drawback of the method is the possibility to miss, step over, a
feasible solution of F n X. Another drawback is the relatively high number of
evaluations, although not expensive when quadratic functions are used. Given K
steps in every dimension, the method requires fC points to be tested on their
feasibility (worst case). For practical problems the dimension is in general low,
n < 10, but the computational effort increases quickly when the stepsizes are
reduced (K becomes larger). One can have the user following the search process by

Chapter 4. Deterministic solution procedures 97

counting down the number of points which (maximum) still have to be generated
and by depicting the best score values found, such that the user can interact in the
search process. Because of the appearance of fast computer power the simple grid
search approach is possibly effective; it worked for all test cases we had. However,
many evaluations are done in areas which are not interesting and the user should
exclude by changing bounds.

In the theoretical field, Manas (1968) proposed a grid search approach for
solving indefinite quadratic programming problems. Making use of the property that
the functions gt(x) are quadratic, a minimum size for the grid can be identified on
the observation that a Lipschitz constant is available. We will not go into detail on
this topic.

Local search
The easiest use of the mathematical structure of the problem under consideration is
the observation that (4.24) and (4.25) are (nonsmooth) continuous functions. By
applying local searches from possibly random starting points, the iterates walk
uphill to look for positive slacks and thus feasible products. We implemented a
local search method based on Powell's method (see Powell, 1964) to find the
maximum of (4.25). For the mixture design problem a penalty function was
composed. A method of generating random starting points and doing local searches
(this is called multistart), required much less function evaluations than plain grid
search and appeared more effective in looking for interior solutions of F when
(4.24) was used.

A drawback of the multistart approach is that there is no guarantee to find
the global optimum. If after some calculation time no solution of the inequality
problem has been found, it is not certain whether there exists one. The approach of
combining random search and local searches will be discussed further in Chapter 5.
It is useful however in the context of design problems to elaborate on the ideas of
random search methods.

Methods based on the generation of random numbers such as Pure Random
Search, Genetic Algorithms and Simulated Annealing, which start to be popular in
the world of modelling based design, are successful when the number of optima is
really big, as will be discussed in Chapter 5. Doing many local searches on a
washing board is not very effective. A statement in Chapter 5 is that one can better
perform a global search (random search), rough exploitation of the feasible set,
before starting a local search. When the number of optima is limited on the
contrary, one can better put energy in tracking the local optima by performing local
searches. The practical design problem under consideration here has a limited
number of optima in terms of (4.24) and (4.25). The number of optima, and
components of F n X, was limited (<3) for all practical cases we had (around 10).
By analyzing the model, bounds can be found on the number of possible optima.

When all functions gt(x) are concave, there is only one local and global
optimum of (4.24) and (4.25) and the area F n X consists of one compartment,
because the problem is equivalent to convex minimization. For the worst case, g,{x)

98 4.3. Quadratic design problems

is convex on a polytope X; every vertex may be a local optimum. In the common
case where X is defined by box constraints and g,(x) are quadratic, the number of
optima of #,(*) ls bounded to be 2P, where p is the number of positive eigenvalues
of the Hessean of #,(*) (see Pardalos and Rosen, 1987). Notice that the design
problem contains m slack functions g,{x).

Quadratic functions
A further analysis of quadratic functions g(x) = x'Qx + d'x + c, shows one may
consider an indefinite objective x'Qx as a separable function by decomposing Q in
Q = UDU', in which D is the diagonal matrix with eigenvalues and U consist of n
orthonormal eigenvectors. On a polytope the convex part of the quadratic function
may be overestimated, creating the possibility of constructing bounds. Another
overestimation can be based on the Lipschitz continuity of the function. On a
bounded set the "maximum derivative" || Vg,(*) || is bounded. For the algorithm in
Section 4.4.3, we will make use of this property. Another mathematical structure
which is related to quadratic functions is bilinearity. The quadratic term x'Qx may
be replaced by x'Qy with the linear restriction x = v. The dimension is multiplied in
this way and the mathematical consequences as discussed in Section 2.2. and with
respect to the nutrient problem are valid.

This analysis learns how one can look with various pairs of glasses or tools (the so-
called hammer-nail story in Chapter 1) to the same mathematical problem. We have
seen how traditional heuristics such as grid search, random search and multistart
may be effective, but give no guarantee on the (lack of) existence of a feasible
solution for the problem. The deterministic methods based on branch-and-bound
provide this guarantee with a corresponding price on computational effort and
computer memory, as will be discussed in 4.4.

Moreover, the application of standard nonlinear programming is not straightforward,
as nondifferentiable functions are optimized. At least the analysis has shown that:

the number of possible optima is limited compared to the nutrient problem,
value information due to the quadratic structure is available for the derivation
of bounds.

99

4.4. Application of branch-and-bound

4.4.1. Introduction

The analysis of the mathematical structure of models and optimization problems as
in Sections 4.2. and 4.3. can be used to develop and select specific deterministic
optimization algorithms. An overview on the toolbox of possible approaches, such
as outer approximation, cutting planes, inner approximation and branch-and-bound
can be found in literature on the subject. For instance Horst and Tuy (1990) give a
large overview and in "Introduction to Global Optimization" (Horst et al., 1995) a
didactic introduction is given. In this Section a sketch will be given on the structure
of the branch-and-bound approach, the most applied technique for deterministic
global optimization.

Figure 4.5: Using the properties to construct specific algorithms

As discussed in Chapter 3, the users in the target groups may be more or less
familiar with the branch-and-bound approach for Mixed Integer Linear Program­
ming (MILP). Therefore, first some similarities are indicated, before an example
algorithm is presented. This is followed by some simple numerical examples in
which the reader may follow the steps of the algorithm. After this sketch of the
branch-and-bound approach, in 4.4.3 and 4.4.4 specific algorithms for the Nutrient
problem and Quadratic Mixture Design problem are discussed.

100 4.4. Application of branch-and-bound

4.4.2. The branch-and-bound procedure

In the branch-and-bound method the feasible set is relaxed and subsequently
partitioned in more and more refined parts (branching) over which lower and upper
bounds of the minimum objective function value can be determined (bounding).
Parts of the feasible set with lower bounds exceeding the best upper bound found at
a certain stage of the algorithm are deleted from further consideration (pruning),
since clearly these parts of the domain do not contain the optimum.

We discuss some similar elements in the branch-and-bound approach for
global optimization (GLOP) and MILP. In both methods we start with a set C,
enclosing the feasible set X of the optimization problem (minimization is assumed).
For MILP, set C, arises from relaxing the integrality constraints. At every iteration
the branch-and-bound method has a list A of subsets (partition sets) Ck of C,. The
method stops when the list is empty and starts with C, as the first element. For
every set Ck in A, a lower bound z[is determined of the minimum objective
function value on Ck. For MILP this bound is usually based on the continuous LP
solution over Ck. As will be shown, for global optimization exist numerous ways of
calculating lower bounds.

At every stage, there also exists a global upper bound zu of the minimum
objective function value over the total feasible set defined by the objective value of
the best feasible solution found thus far. The bounding (pruning) operation
concerns the deletion of all sets Ck in the list with z[> zu. Besides this rule for
deleting subsets from list A, a subset can be removed when it does not contain a
feasible solution. For MILP this is verified when running a continuous LP problem
for the determination of the lower bound. However, as will be shown in 4.4.4, for
the GLOP-variant it is not always easy to perform this so called 'deletion by
infeasibility' step.

The branching concerns the further refinement of the partition. Although in
the GLOP-variant every subset may be divided in several new subsets for any group
of subsets on the list simultaneously, we restrict ourselves to a binary search tree
variant as in MILP. This means that one of the subsets is selected to be split in two
new subsets. In the referred literature, other strategies can be found. For the MILP-
variant, in general the two new subsets are constructed by adding two bounds on a
variable which got a nonintegral value in the continuous solution. In global
optimization there exist several ways for splitting a subset in two or more subsets.

The selection rule which determines the subset to be split next, influences
the performance of the algorithm. One can select the subset with the lowest value
for its lower bound (most promising) or for instance the subset with the largest size
(relatively unexploited). Considering the binary way of searching, with the corre­
sponding data structures, one can look for a depth first search or a breadth first
search. The target is to obtain sharp bounds zu soon, such that large parts of the
search tree (of domain C,) can be pruned. The selection rule is one of the elements
of the algorithm where a user can influence the performance. Software for MILP
problems in general contain features to monitor the search and parameters can be

Chapter 4. Deterministic solution procedures 101

set to influence the search. There are several reasons to remove subsets Ck from the
list, or alternatively, not to put them on the list in the first place.

Ck cannot contain any feasible solution.
Ck cannot contain the optimal solution as z[> zu.
Ck has been selected to be split.
It has no use to split Ck any more. This happens for example for MILP
problems when the continuous LP solution over Ck has integral values and in
global optimization this may happen when the size of the partition set has
become smaller than a predefined accuracy e.

Outline of a branch-and-bound algorithm

0. Given accuracy e, A = 0 .
Determine a set Ct enclosing the feasible set X, C,z>X .

1. Determine a lower bound z[on C,.
Determine a feasible point xl e ClrOC.
If there exists no feasible point STOP

else zu := ƒ(*'), put C, on list A, r := 1.
endif.

2. If list A is empty STOP.
3. Take (selection rule) a subset C from list A and split it into two new

subsets Cr+I and Cr+2.
4. Determine lower bounds z'+1 and z'+2.
5. For p := r+1 to r+2 do

If C' r\ X contains no feasible point zL := °° endif.
Uzl,<zu

then calculate a feasible point tf and fp = fix?).
if/, < zu

then zv := fp and remove all Ck from
L with z[> zu.

endif
if | z'p - z

u | < e
then save xF as an approximation of the optimum
else add Cp to list A
endif

endif
endo

6. r := r + 2, go to step 2.

In step 3 the subset with the most promising (lowest) lower bound z'k is chosen,
defining the selection rule. In this scheme, the selected subset is split into two new

102 4.4. Application of branch-and-bound

subsets, thus defining a binary tree. This specific way of splitting is not necessary
in global optimization. The selected set Ck can be partitioned in any number of
subsets. Index r represents the number of subsets which have been generated. Note
that r does not give the number of subsets on the list. The global bound zv is
updated, every time a better feasible solution is found.

After a successful search, list A will be empty and a guarantee is given that either
the global optimum has been found or that there exists no feasible solution. When
the search is not successful the size of list A keeps increasing and fills up the
available computer memory, despite possible use of efficient data structures.
Therefore it is important to obtain good bounds. Various ways of deriving bounds
will be illustrated in this section. Furthermore, it is important to inform the user on
the course of the algorithm by showing e.g. zv and the number of subsets in list A.

Examples
A somewhat more specified algorithm is outlined at this point for the determination
of a global optimum for the general (nonconvex) quadratic programming problem.

min{/(x) = x'Qx + d'x + c}
xe X
with X given by {x e R" | Ax < b, x > 0} a polytope (bounded).

As partition sets (hyper)rectangles Ck are used, defined by the two extreme corners
fk and u*k i.e. Fjk < Xj <Wjk,j= 1, ..., n. Initially the global upper bound z" can be put
on infinity or given the objective function value of a feasible solution X which can
be found by LP. For the illustration, two ways of calculating a lower bound z'k are
given and elaborated for small numerical examples.

Lower bound 1
The first lower bound is based on the core of concave minimization and can be
applied when fix) is concave (see Chapter 2). It uses directly the definition of
concave functions:

f(x) =Mv, +(l-?l)v2) > A/Cv.) + (l - ^ v 2) .

Many observations in Horst and Tuy (1990) are based on this so called affine
underestimating function. Calculate the function values f = /(v,) for all vertices
Vj, i = l, ..., 2", of Ck. Solve the following LP problem bij minimizing over x and Xt

z[:= min X F, À,
ZX,v, = x
EX,. = 1
A, > 0, i = 1, ..., 2"
xe X

Chapter 4. Deterministic solution procedures 103

Lower bound 2
The second lower bound is based on the equivalence of general indefinite quadratic
programming with bilinear programming as discussed in Al-Khayyal (1990, 1992).
The quadratic term x'Qx is equivalent with

x'y, y = Qx-

The used observation is that xy for / * < x < u' ,P < y < uy can be underestimated
by (Al-Khayyal, 1990):

xy>Py + Px-lxP
xy > u*y + uyx — uxuy.

To use this underestimating technique, the bounds P and uy of y = Qx have to be
determined given F < x < u*. This is not very hard. For every component y, = Z^t,
the lower bound Pt can be determined by

P, = Z q0 /(?,)

= / / if qij<o
with I(q.) = ,

V I = u,x if q.. > 0
Analogously

"/ = 2 qv I (-qv)
j

can be determined. Now the second way of calculating a lower bound can be
derived. Given rectangle Ck with corresponding bounds f, u*. Determine the bounds
P and u' of y = Qx for x e Ck.
Solve the LP problem

z[:= min {Zw,- + d'x + c)
Wj > Pjyj + PJXJ - lxP

Wj > u'yj + rfxj - rftf

y = Qx
x e X n Ck.

j=h-
j=h-

., n

., n

This lower bound calculation exploits the mathematical structure of bilinearity
whereas lower bound 1 exploits the concavity. A more sophisticated use of the
quadratic structure is given in Pardalos et al. (1987) by the separation of convex
and concave parts of the objective via an eigenvalue decomposition of Q. The
concave part is underestimated by an affine minorant as in lower bound 1 and the
convex part is left unchanged. This results in a convex quadratic programming
problem describing a convex envelope of fix) on a subset which can be solved by
nonlinear programming solvers like MINOS.

104 4.4. Application of branch-and-bound

Illustrative problem (CQP)
First a concave quadratic programming problem (CQP) is given.

min{f(x)=-(x1-l)
2-x2

2}
xe X

X is given by

-x, + 8x, < 11
M -r u.v2

x, + 4x, < 1

Figure 4.6: Example {CQP) of a concave quadratic
program

6xl + 4x2 < 17
0 < x, < 25
0 < x, < 2

Some contour lines and the
feasible area are depicted in
Figure 4.6. Problem (CQP)
has 4 local optima in the
points (0, 1.375), (1, 1.5), (2, 1.25) and (2.5, 0.5). Moreover, points (0, 0), (1, 0)
and (2.5, 0) are Kuhn-Tucker points which are no local optima.

Now the outlined branch-and-bound method can be used with the lower bound 1.
The branching is performed by bisecting the rectangles over their longest edge. The
starting rectangle C, is defined by f = (0, 0), u" = (2.5, 2). For the accuracy
e = 0.05 is taken. The resulting course of the algorithm is given in Table 4.4. The
first column indicates the generated subset. The second column gives the parent, the
subset which has been split. Point x* is a feasible solution (if it exists) resulting
from the lower bound calculation. Its function value can be used to improve the
global upper bound zu.

Table 4.4: Course of the branch-and-bound algorithm for CQP.

k

1
2
3
4
5
6
7
8
9
10
11
12
13

Par

1
1
3
3
2
2
7
7
8
8
5
5

n
(0,0)
(0,0)
(1.25, 0)
(1.25,0)
(1.25, 1)
(0,0)
(0,1)
(0,1)
(0.625, 1)
(0,1)
(0, 1.5)
(1.25, 1)
(1.875, 1)

«ft

(2.5, 2)
(1-25, 2)
(2.5, 2)
(2.5, 1)
(2.5, 2)
(1.25, 1)
(1-25, 2)
(0.625, 2)
(1.125, 2)
(0.625,1.5)
(0.625, 2)
(1.875, 2)
(2.5, 2)

**

(1, 1-5)
(0, 1.375)
(2, 1.25)
(2.5, 0.5)
(2, 1.25)
(0,1)
(0, 1.375)
(0, 1.375)

(1. 1-5)
(0, 1.375)

Inf
(1.875, 1.28)
(2, 1.25)

4
-4.5
-3.75
-3.875
-2.75
-3.125
- 2
-3.125
-3.125
-2.59
-2.9375

-
-2.62
-2.81

Â

-2.25
-2.89
-2.56

-
-2.56

-
-2.89
-2.89

-
-2.89

-
-
-

zu

-2.25
-2.89
-2.89
-2.89
-2.89
-2.89
-2.89
-2.89
-2.89
-2.89
-2.89
-2.89
-2.89

L

(U
-

{2,3)

{2~5}

-
{5,7}

-
{5,8}

-
{5}
-
0

Chapter 4. Deterministic solution procedures 105

It can be observed from Table 4.4 that for the second subset the global optimum
x* = (0, 1.375) has already been found, leading to the sharpest upper bound. The
further iterations only serve as a verification of the optimality of x*. This feature
can often also be found when running a branch-and-bound algorithm for MILP. The
bounding is successful for subsets 4, 6, 9, 12 and 13 where z[> zu- Subset 11
appeared to be infeasible. In subset 10 finally x* was recognised as being a global
minimum point as | z[0-z

u I <e. In Figure 4.7, the final partition and location of
generated points JC* are depicted.

3 X ,

Figure 4.7: Final partition of the branch-and-bound method for the (CQP) problem

106 4.4. Application of branch-and-bound

1=(0,0) 1
u=(2.5, 2)
x=(l , 1.5)
zl= -4.5
f= -2.25
zu= -2.25

1=(0,0) 2
u=(1.25, 2)
x=(0, 1.375)
zl= -3.75
f= -2.89
zu - > -2.89

;l=(l-25, 0)
:u=(2.5,2)
x=(2, 1.25)

:zl= -3.875
:f=-2.56
jzu=-2.89

1=(0,0) 6
u=(l-25, 1)
x=(0, 1)
zl= -2 > zu

1=(0, 1) 7
u=(l-25,2)
x=(0, 1.375)
zl= -3.125
f= -2.89
zu= -2.89

l= (l -25 ,0)4
u=(2.5, 1)
x=(2.5, 0.5) j

z l= -2 .75>zu i

l=(l-25, 1)5
u=(2.5, 2)
x=(2, 1.25)
zl=-3.125
f= -2.56
zu= -2.89

1=(0, 1) 8
u=(.625, 2)
x=(0,1.375)
zl=-3.125
f= -2.89
zu= -2.89

1=(.625,1) 9
u=(1.25, 2)
x=(l , 1.5)

zl= -2.59> zu

l= (l . 25 , i)12 ;
u=(1.875,l) :
x=(1.88,1.28);

z l= -2 . 62>zu !

1=(1.88,1)13
u=(2.5, 2)
x=(2, 1.25)

;zl=-2.81 > z u

: 1=(0,1) 10:
: u=(-625,1.5):
: x=(0,1.375) :
: zl=-2.9375 j

I Izl-zul < 0.05 ;

: 1=(0,1.5) 1 1 :
: u=(.625, 2) !

! Infeasible

Figure 4.8: Branch-and-bound tree for the (CQP) problem

Chapter 4. Deterministic solution procedures 107

Illustrative problem (IQP)
The second numerical example is an indefinite quadratic programming (IQP) pro­
blem for which lower bound 1 cannot be applied.

min{ßix) = (x-l)2-(*2-l)2}
xe X

X is given by

je, - x2 < 1
4;c, — x2 ^ — 2
0 < jc, < 3
0 < x2 < 4

12: 9: 4';

• / ' / ,•-

P j :

-4 \ \'

-9
"......-12"""---. '"--.. '•

Figure 4.9: Contour lines and feasible set of (IQP)

Some contour lines and the
feasible set of (IQP) are
given in Figure 4.9. The
problem has two local mini­
mum points, namely (1,0) and (1, 4) (the global one). The outlined branch-and-
bound method is used again with the lower bound 2. The calculation of the bounds
for the y variable is extremely simple for (IQP) as y, = x{ and y2 = -x2. For the
accuracy again e = 0.05 is used. The starting subset C, is defined by l\ = (0, 0),
u\ = (3, 4). The course of the algorithm is given in Table 4.5. The final partition is
depicted in Figure 4.10.

Table 4.5: Course of the branch-and-bound algorithm for IQP.

k

1
2
3
4
5
6
7
8
9
10
11
12
13

Par

1
1
3
3
4
4
7
7
9
9
11
11

n
(0,0)
(0,0)
(0,2)
(0,2)
(1.5, 2)
(0,2)
(0,3)
(0,3)
(0.75, 3)
(0.75, 3)
(0.75, 3.5)
(0.75, 3.5)
(1.125,3.5)

«i
(3.4)
(3.2)
(3.4)
(1.5, 4)
(3.4)
(1.5, 3)
(1-5, 4)
(0.75, 4)
(1.5,4)
(1.5, 3.5)
(1.5,4)
(1.125,4)
(1-5,4)

x*

(1.5,4)
(1.5,0.5)
(1.5, 4)
(0.75, 4)
(2,4)
(0.75, 3)
(0.75, 4)
(0.75, 4)
(1.125,4)
(1.125, 3)
(1.125,4)
(0.94, 4)
(1.125,4)

4
-H
-3
-11
-9.5
-5
-4.5
-9.5
-8.94
-9.125
-6.375
-9.125
-9.03
-8.98

Â

-8.75
-

-8.75
-8.94

-
-

-8.94
-8.94
-8.98

-
-8.98
-8.98

-

zv

-8.75
-8.75
-8.75
-8.94
-8.94
-8.94
-8.94
-8.94
-8.98
-8.98
-8.98
-8.99
-8.99

L

{1}
-

{3}

{4}
-

{7}
-

{9}
-

{11}
-
0

Finally xn = (0.94, 4) is taken as an approximation of the global optimum, as
! Zi2 - z"\<£ at this stage. This happens once more during the iterations, because
| Zg - z" | <e, so that xs is temporarily saved as an estimation of the optimum. For
this numerical example the selection rule appears to be not important, as list A only

108 4.4. Application of branch-and-bound

contains one subset during the iterations.

0 1 2 3

Figure 4.10: Partition for the (JQP) problem after 6 iterations

Implementation aspects
One of the problems, which does not follow from the simple examples, of imple­
menting a branch-and-bound algorithm in a computer program is that information
concerning the partition sets has to be kept in the computer memory. This can be
done by maintaining a list of subsets and a list of points generated, but special data
structures based e.g. on vertices or edges are also possible. The problem is that the
program should not run out of memory, before a solution has been found. In
branch-and-bound methods efficient use can be made of the fact that memory can
be "recycled" if partition sets are deleted from further consideration. This can be
done e.g. by applying linked list structures. Numerical aspects which are for
instance important when dealing with differential equations, play a minor role in
branch-and-bound. Good handling of required memory by storing the appropriate
part of the tree on hard disk can speed up the search, but does not solve the overall
capacity problem.

In this section the working of the branch-and-bound approach has been sketched
and illustrated. In the following sections specific algorithms are derived for the
Nutrient problem and the Quadratic Mixture Design problem.

Chapter 4. Deterministic solution procedures 109

4.4.3. A branch-and-bound method for the nutrient problem

Section 4.2.4. showed that traditional optimization methods may not lead to the
solution of the nutrient problem. We now follow arrow f of Figure 4.1. and use the
properties derived by the analysis of the mathematical structures in 4.2.3. to
construct a specific branch-and-bound scheme for the problem, similar to the
illustrations in 4.4.2. In the analysis the following appeared:

The nutrient problem is a special case of generalized bilinear programming.
The nutrient problem has solutions on the boundary of the feasible x-space X.
The nutrient problem can be considered in a decomposed (two step) way.

A first consideration for a modeller who wants to solve the problem is to have a
look at literature on specific methods for bilinear programming. Falk (1973)
developed the first branch-and-bound procedure for the traditional bilinear program.
It guarantees convergence to an exact solution in a finite number of steps. Bounds
are obtained by solving linear programming relaxations and branching is accom­
plished by holding individual variables out of the basis for each branch when using
the simplex method to solve the subproblems. Al-Khayyal and Falk (1983) develop
a branch-and-bound algorithm for the (JCBP) problem. The algorithm branches into
four nodes based on a partition of the parent node's rectangular set
C = {(x,y): P < x < ux, P < y < uy) and bounding is achieved by minimizing the
convex envelope of the objective function over the subset of the feasible region,
intersected with the p'h partition set. The same can be done for the (GBP) problem
(Al-Khayyal, 1992).

For the nutrient problem it is not necessary to make use of the general
bilinear approach. Analogous to the (IQP) example of Section 4.4.2, partition sets
can be defined on the X-space, not in the X x 7-space as in Al-Khayyal (1992). The
first ingredient of the algorithm is the definition of the partition sets.

Partition sets
Subset Cp: [Ip, up] is defined as the p-th block, hyperrectangle, created in the
branching tree (the vectors / and u have the same dimension as x). Because the
optima can be found on the boundary, each partition set that does not intersect with
the boundary of X can be deleted. To check this, it is not necessary to run a linear
program. An algorithm to check whether box C:[l, u] is interior with respect to
polyhedron X={xe W \ Ax<b} (A includes the nonnegativity constraints) is given in
Bloemhof-Ruwaard and Hendrix (1996). Let I{a^ analogously to the lower bound
calculation in 4.4.2 be defined as

\u. if a.. > 0
1(a) = \ / ., » n v ' / /. if a.. < 0

i- J 'i

Now the algorithm works as follows.

110

Interior check algorithm

4.4. Application of branch-and-bound

0.

1.

2.

i := 1

Ifl,.a,/(a,y)>fc,.
else i := i+l
endif.

STOP; box is not interior

If / := n+l STOP; box is interior
else go to step 1
endif.

Calculation of the bound
A following ingredient of the algorithm is the construction of the bound. As the
nutrient problem is a maximization problem, we are looking for an upper bound of
the objective z on Cp n X. In the decomposition view of the analysis it has been
shown that given a feasible solution xpeX, Sp = S(xp) can be determined by

solving an LP problem, S(xp) = z(NUP(y \xp))= min ' * —

The relevant observation in the analysis is that the objective z(x, S) is monotonie in
5. Therefore using an overestimate ap of the maximum of S(x) over Cp n X results
in an overestimating LP problem with objective z(x, a p) > z(x, S(x)).

The maximum of S(x) over Cp n X is not easy to derive, so the task is to
find a good upper bound op for S{x) that is easy to obtain.
The upper bound derivation of the maximum value for 5 in (the feasible part of)
each box C is as follows:

maxS(;c) = max
x<=CrX x^CnX

mm
d.x.

ik i

< max min
œ C . k

< max

dkX

q'x

min-
d.x.

ik i

qkx

< min max
dk'x

qkx

d'x
So we choose ap: = min{l, min max{——}}•

k xscp qk'x

First, a fractional programming problem has to be solved for each k. Appendix 4.A
describes a solution method for such a problem, the threshold algorithm. It is easy
to determine Gp once the optimal solution for each fractional programming problem
is found.

Chapter 4. Deterministic solution procedures 111

Having formulated ingredients as partition sets, interior check and upper bound
calculation, now a branch-and-bound algorithm is constructed analogous to the
outline in 4.4.2. Notice that we are dealing with a maximisation problem, so that
there is a global lower bound zL and there are local upper bounds z"p.

Branch-and-bound algorithm for the nutrient problem

0. Given tolerance 8, r := 1, A := 0
Determine a box C,:[/,, u{\ => X

1. Calculate a1.
z" = max z(x,&).

xeX

Denote xl as the corresponding maximum point.
Initiate zL as zL := z(xl, S1).

2. Bisect the box under consideration over the longest edge into Cr+1, Cr+2,
r := r+2. For both boxes perform step 3.

3. Perform the interior check.
If the box is interior, stop analyzing the box, endif.
Determine ap.
Calculate z"p := max z(x,(f); xp is the corresponding maximum point.

xe Xr\Cp

If the box has no feasible solution, stop analyzing it, endif.
If z"p > zL then

determine z'p := z(xp, Sp)> (function value of a feasible point)
if z'p > zL then
z1 := z'p and save x p as approximation of the optimum.
endif.
Add Cp to the list of boxes.

endif.

4. Delete all boxes from the list with z"p < zL-
IfA = 0 STOP.

Take box C„ from the list with the highest upper bound zp.
If | zu

p - z
L \ < e STOP.

else go to step 2.
endif.

The algorithm starts with the smallest rectangular box C, that includes
X := {x: Ax < b; x > 0} as a whole. In step 1, the value of a' is obtained using the
threshold algorithm of Appendix 4.A. A global upper bound to z(x, S(x)), z", is

112 4.4. Application of branch-and-bound

found by maximizing
z(x, a1) over X. For this
solution x\ we calculate the
optimal y and the correspon­
ding 5(A:') solving the linear
programming problem
NUP(y\x]) and the first
lower bound zL = z(x\ S(x1))
is found. At each iteration,
there is a list A of boxes Cp.
One of them is split by
dividing the box into two
parts of equal volume over
the longest edge (bisection).
This creates two new boxes
(step 2). For each of these
boxes Cp it is checked
whether the box is totally
interior with respect to X. If
it is, it is discarded and we
proceed with another box. If

the box is not interior, we continue with step 3. An upper bound z"p := z(xp, a p) is
calculated, based on the upper bound a p obtained from the threshold algorithm
described in Appendix 4.A. A feasible solution (xp, Sp) is obtained by solving the
simple LP problem NUP(y | xp), which results in a the objective value of a feasible
solution, a local lower bound z'p '•= z(xp, Sp). If this lower bound is better than the
global lower bound z1, then z1 := z'p and the solution xp is saved. In step 4 the list of
boxes is checked: If the upper bound zp of some Cp is below the new lower bound
zL, there is no reason to analyze this box Cp further, so this box can be neglected.

We select a new box for further division by means of the highest upper
bound z"p (step 5). During the branch-and-bound process, the gap between upper and
lower bound, \z"p - z

L\, is decreasing. The algorithm stops as soon as this gap is
less than a preset tolerance e, or if the list of boxes is empty. In order to guarantee
convergence of the overestimate c p to the maximum of S(x) and to speed up the
algorithm, boxes that are too small may also be discarded. Application of the
branch-and-bound procedure to the example in 4.2.2 leads to the following result.
After 15 iterations, the point jcbesI = (9.75, 0.25) gives the best lower bound
z1 = 855. The best upper bound is z" = 919, so these bounds enclose the optimum
value z = 900 at (10,0). Only three small partition sets in the neighbourhood of
x' = (10,0) remain on the list (see Figure 4.11).

Figure 4.11: Partition after 15 iterations

The branch-and-bound approach gives a guarantee that the optimum is approxi­
mated. However, just as the pooling problem the nutrient problem is high dimen­
sional, so that in a worst case situation it may be practically impossible to reach this

Chapter 4. Deterministic solution procedures 113

guarantee, as the computer memory fills up with boxes. Here is where the user can
interact (arrow gl). It is not hard to generate a "good feasible solution" of the
nutrient problem. The objective value can be used as a lower bound £ on the opti­
mum. The branch-and bound algorithm is continuing to verify whether the good
feasible solution is indeed optimal. The user can interact by deleting boxes which,
he thinks, will not contain the global optimum.

114 4.4. Application of branch-and-bound

AAA. Branch-and-bound in a DSS for mixture product design

In 4.3 the design problem has been introduced as finding a feasible point of a set of
inequalities #,(•*) > 0, i = l,...,m. Some mathematical properties were given of
quadratic functions gt(x), which can be used to develop a specific branch-and-bound
method. In this section simplicial subsets are used in a branch-and-bound frame,
which is a natural choice when considering mixture design problems. The use of
simplicial sets is a variation on the application of rectangular partition sets used in
the earlier sections. First the partition sets and outline of the algorithm are discus­
sed. This is followed by a discussion on the implemented upper bound and alternati­
ve ways of generating upper bounds. Finally some remarks on implementation
aspects and performance are given.

The problem to be solved consists of identifying mixture products, each
represented by a vector x e R", which meet certain requirements. The set of
possible mixtures is mathematically defined by the unit simplex
S = {x € R" I IjCj = 1, Xj > 0}, in which the variable Xj expresses the fraction of
components j in product x. Note that set S lies in the n-\ dimensional hyperplane
given by Ixj = 1.

Partition sets
As the first ingredient for the branch-and-bound algorithm, subsets Ck, being
simplices (having n vertices) are distinguished. The points which are generated by
the algorithm are denoted by xpk, p = l,...,n and represent the vertices of a simplex
Ck. In general one point appears as a vertex of several partition sets. The implemen­
tation requires special data structures to store and link the list of points and subsets.
The information obtained in the n vertices of Ck is used to calculate upper bounds
tlk for the function values of g, on Ck. In contrast to the treatment of the nutrient
problem, the information is not used to derive a global bound 4 (compare the
algorithm for the nutrient problem), as the global bound is defined by zero. Namely,
when an upper bound fik < 0, simplex Ck cannot contain any feasible product and
therefore can be discarded. The upper bounds can also be used in the selection rule
to decide on which subset is to be split further.

The algorithm is summarized in the scheme. Let us devote some words to various
steps. A new point is generated when one of the subsets is split. Because there is no
update of the global £ - 0, as in the earlier presented branch-and-bound schemes,
the partition sets remain on the list A until they are selected for further refinement
in step 3. The practical interest in robust solutions can be implemented by not
putting a newly generated subset on the list when its size is too small, the diameter
6(Q) is smaller than a preset tolerance; (5(Ct) < e). In this case the algorithm either
finds a feasible solution or gives the guarantee that no robust feasible composition
exists. In a worst case solution the algorithm may require an exponential number of
iterations (in n) to verify that all subsets are smaller than e.

Chapter 4. Deterministic solution procedures 115

Branch-and-bound algorithm for the mixture design problem

0. C, := S , r := 1 , A := 0

1. If one of the vertices xpl p=l,..,n is feasible (gfapl)>0, i=l,...,m)
STOP; solution found endif.

Determine upper bounds z", (z", > g fa), x e C,).
If z"n >0,i = l,...,m, then put C, on list A.

2. If A = 0 STOP; no feasible composition exists.

3. Take that Ck from list A with the highest value for £ z"k and split it into
i

two parts Cr+1 and Cr+2 of equal volume over the longest edge. Evaluate
xmw, the midpoint of the longest edge of Ck.
If «Anew) ^ 0 , / = \,...,m,

STOP; a solution has been found
endif.

4. For both new subsets k := r+\ to r+2 do
Determine upper bounds z"k.
If tik > 0, i = l,...,m, put Ck on list A
(The corresponding new product xaew is saved as one of the vertices xpk)
endif
endo.

5. r := r+2, go to step 2.

Let us remark that the algorithm can be modified in such a way that it is not
necessary to calculate all upper bounds at every iteration. The check in step 4 for
every property i, can be interpreted as the question: is it possible that Ck contains a
vector x for which gfa) > 0? To answer this question, it is not necessary to
determine the upper bound z"k, if for one of the vertices xpk of Ck holds gf,xpk) > 0.
The algorithm easily can be modified so that in such situations the upper bound is
not calculated. Note that - as a consequence - the selection criterion in step 3 should
be changed accordingly. In the implemented version it was also checked in step 4,
whether a partition set is completely out of the bounds (Ct £ X). This can be done
by checking whether all vertices of Ck are at one side of the bounds (or linear
restriction).

Before illustrating the way the algorithm proceeds, the various ways of calculating
an upper bound for quadratic properties g fa) are discussed.

116 4.4. Application of branch-and-bound

Upper bound calculation
The mathematical structure as shown in earlier sections gives that bounds can be
generated from a quadratic, bilinear and Lipschitzian point of view. Let us first
consider the Lipschitzian point of view as described in Hendrix and Pinter (1991).
Let again xpk denote the vertices of Ck, p = l,...,n. The value of fik can be based on
the following relations:

gf,x) < g,.(xM) + Lik \\x-xpk\\,xe Ck, p = 1,...,«. (4.26)

In (4.26) Lik is the Lipschitz-constant of g, on Ck. The Lipschitz-constant Lik can be
(over)estimated by solving

L, = max ||V*,(;c) ||. (4.27)
«sC,

As the function g, are quadratic, problem (4.27) means the maximization of a
convex function over a polyhedron; hence it can be solved by simply evaluating
|| V g,{x) || at every vertex xpk. Note that the estimate of L can be made sharper, by
projecting first the gradient Vg((jc) on the hyperplane of S. By convexity of
||x - xpk\\, in the implemented algorithm the upper bound fik, based on (4.26) and
(4.27) is:

zik = min{g(.(^) + Lik max \\xvk - xpk\\] (4.28)
P v*p

{xvk being the vertices of Ck, different from xpk).
We shall discuss some alternative ways to determine an upper bound.

In Lipschitzian global optimization on interval (box) regions, Pinter (1986, 1988)
uses rectangular subsets [lk,uk], for which the information available is based on the
"lower-left" vertex lk and the "upper-right" vertex uk. His approach can be termed a
diagonal extension of known univariate methods e.g. of the Danilin-Piyavskii-
Shubert method (cf. the references). The selection of the subset to be refined (cf.
step 3) is based on the (rectangular subset) selector function:

(gA) + s,(«*))/2 + AlU*-"J-

For an upper bound used in step 4 of the algorithm (elimination), Pinter uses the
expression

mm{gi(lk), g,("*)} + Li||lk -uk\\.

Applying directly this idea to the simplicial algorithm given above would lead to
the upper bound:

Chapter 4. Deterministic solution procedures 117

zik
u = min {gJLxJ} + Lik5(Ck), (4.29)

p

where ô(Ct) = max {||xvk - xpk || : v * p} is the diameter of Ck.
Observe that this would yield a more crude estimate than the upper bound

given by (4.28); on the other hand, (4.29) requires somewhat less calculation per
iteration than (4.28). For practical implementations several interior points of Ck can
be additionally evaluated and included into the estimations (4.28) or (4.29), usually
improving the bounds.

The sharpest upper bound given all information of (4.26) can be found by
solving explicitly the following problem (for convenience leaving out index k):

maximize {z}
subject to
xe C
zZg/LxJ + LMx-xJ p=\,...,n. (4.30)

Meewella and Mayne (1988) approximate (4.30) by a piecewise linear problem
replacing || • || by the infinite norm. They apply further rectangular subsets Ck

storing all 2"-vertices. In every iteration they solve 2"-problems.
The «-dimensional variant of (4.30), in which Ck is defined by n+1 vertices,

defines the problem of finding the highest point of a "turned around pommes-frites
bag" and was studied a.o. by Mladineo (1986). The maximum point xt of (4.30) in
most cases can be found by solving n linear equations given by (leaving out k
again):

x + x. g.(x) - six.)
(xp - x)'x = (xp - xy[-L—L + *>)>> *A fr, - *,)L P#,

2 2L..\\x - x,\\
ik " p t "

in which x, - argmh\ {g,{xp)}, xp the vertices of simplex Ck, p = 1, ..., n+l. Solving
(4.30) is less laborious, if regular simplices are used. Relations for this can be found
in the bracketing procedures and geometrical observations of Wood (1992) and
Baritompa (1993).

Besides the Lipschitzian property which has been elaborated thus far, one can make
use directly of the quadratic structure of gt(x). If the Hessean g, is negative semi-
definite, the maximum of g^x) over Ck can be found by a local search algorithm;
there is one global optimum. In the situation where ß, is positive semi-definite, an
affine over estimation based on Horst (1986) can be used, as has been illustrated in
4.4.2. The possibility of ß, to be indefinite makes the problem of finding a valid
upper bound more complex. A possible approach is to "make" g;(x) concave by
replacing jx'Qpc by yMilMI2' in which |a, is the most negative eigenvalue of Qt. An
overestimating concave function Qik can be found in the following way.

118 4.4. Application of branch-and-bound

Let Xk be the n by n matrix with the vertices of Ck as columns. The majorant:

e * = ß;^ + *M,-|X|2

can be found by solving ßl7t = (X~k
l)hk, in which the n-vector hk gives the difference

between gfjc) and the concave function u,||x||2 in the vertices of Ck:

Kk = gtepi) - M.ll^l2 •

The majorant Qik(x) equals #,(*) in the vertices of Ck, further on, it is concave. The
upper bound can then be calculated by determining the maximum of Qik over Ck.
This way of determining the upper bound requires the solution of an unimodal
optimization problem at every iteration.

A more sophisticated elaboration of the convex-concave splitting of a
quadratic function based on an eigenvalue decomposition has been mentioned
several times in this work and is due to Pardalos et al. (1985). Another idea which
has been elaborated and illustrated in earlier sections is due to the bilinear view (see
Al-Khayyal, 1990).

Illustration
We will illustrate the per­
formance of the algorithm
based on upper bound calcu­
lation (4.28) now and dis­
cuss some implementation
aspects. Application of the
branch-and-bound algorithm
to the rum-coke example
(4.1.3) results in a partition
of S as is indicated in Figure
4.12. After 29 iterations, 26
points have been evaluated,
a feasible point in F is found
and two subsets have been
deleted. The feasible point found is x* = (0.5, 0.375, 0.125) with "acceptable"
properties expressed by y,(x') = -1 and y2(x*) = 0.281.

An implementation aspect for the mixture design routine is that by the symmetry
of the partition, a generated point may be used as a splitting point several times, as
can be seen in Figure 4.12. It is important that such a point is evaluated only once
and will not be added again to the list of points, which occupies most of the
memory. Applying this simple idea, only a single new point which is not already
part of the search information, is to be evaluated at every iteration cycle.

Figure 4.12: Partition after 29 iterations for the
rum-coke example

Chapter 4. Deterministic solution procedures 119

According to our numerical experience, the algorithm suggested can solve problems
with a few variables (say, up to n = 5) in several hundred iteration steps. This will
be illustrated by the following example.

Example
We consider a test problem originating from a practical application with n = 3
components and m = 5 properties. The coefficients of y,(*) can be found in Appen­
dix 4.B. Assume that the following requirements are given for the properties:
y, < 1.496, y2 > .92, y3 < 10, y4 > 179, y5 < 85.
Applying the branch-and-bound algorithm, a feasible solution is found after 80 new
points have been generated. The solution found is given by (the components sum to
100%):

x = (37.5, 43.75, 18.75) and y(x) = (1.48, .921, 9.114, 180.77, -42.81)
Naturally, it is possible to generate more feasible points by not terminating the
algorithm. For the problem given, this action required 100 points to be evaluated
additionally, in order to find 10 more feasible points. Note that it can be more easy
to carry out an "exhaustive" search say, in a ball around the first solution found to
estimate how large one of the connected components of the set S n F is (is
discussed in 6.3). The fact that the number of iterations becomes larger, if the
maximum of (4.25) is a small negative number, can be illustrated by modifying the
above example as follows:

Let 0 < y, < 85, y2 > .963; the other requirements are left unchanged. The
algorithm needs 56 iterations to conclude that the problem does not have a solution.
If the problem is "near to feasibility" e.g. y2 > .94, then concluding that there is no
solution needs 157 iterations; if y2 > .93, the "no solution" conclusion requires 239
iterations. Having these simple examples in mind, it may be intuitively clear that
such "bad" cases can be very hard to solve by branch-and-bound techniques in
higher dimensions.

In a decision support environment it is useful to provide the user with information
on the performance of the algorithm. Compared to the solution approaches as
discussed in 4.3.2, the elegance of the branch-and-bound approach is the guarantee
character. After a successful finish, the existence of a feasible solution for the
design problem is identified. The drawback of the illustrated approach is its need
for computer memory. Therefore it is useful to inform the user on the number of
subsets and points kept in memory. Other indicators are the objective in terms of
(4.24) or (4.25) of the least-worst product which has been found thus far and the
largest sum of the upper bounds (step 3) which is diminishing during the iterations.

120

4.5. Finding robust solutions for product design problems

4.5.1. Introduction

The product design problem, formulated as finding a point in a feasible area defined
by inequalities, was introduced in earlier paragraphs. We now focus further on the
ideas introduced at the practice of generating a DSS for finding robust solutions of
the design problems. First the notion of robust solutions of design problems is
discussed. We have to be precise with this definition as it concerns the variation in
the decision variables and not the variation in the external data, which is common
in literature on optimal control. Therefore, a mathematical description of the
problem is provided subsequently. Now again the mathematical structures can be
used on linear and quadratic functions to derive specific algorithms. Topics on
linear and quadratic properties are discussed separately as well as the topic of
finding robust mixture products (see 4.3.2).

Let us first reintroduce the concepts of the product design problem in mathematical
terms. The vector xe K" is called a product with factor variables or components Xj.
This product should be situated in the so called experimental area given by the
polytope X, which represents the technical possibilities for the values of the
variables Xj. A convenient concept is the range Rj of the variable xjt defined as the
difference between the upper and lower bound of xr The properties of a product x
are formalised by the functions y,(x), i=l,..,m. In this chapter the product design
problem is assumed to be formulated in the inequality form: find a product x in the
experimental area X fulfilling m requirements on the properties of the form y,(;c)<è„
i=l,..,m. Let the slack functions #,(*) De defined as g fa) = bryfa), i=l,..,m, then
F:={XBW I gfa)>0, i'=l,..,m} represents the set of products meeting all require­
ments on the properties.

The terminology of design problems and robust solutions can be found
in Parkinson et al. (1990). They distinguish in their paper strictly between control­
lable (design variables, factor variables) and uncontrollable (external) parameters.
When there is variation in the uncontrollable parameters, there exists a probability
that the design may appear to be infeasible. In this section we concentrate on
variation in the controllable variables. After the feasible design x has been found, it
appears that due to fluctuations in the production, the realised product might not
alwys be feasible, may not fulfil the requirements.

The research question on this topic originates from a practical problem in
chemical industry, in which it appeared that the tolerance of equipment used for the
production made it hard to produce a recipe (design) exactly. An analogous problem
may be found in Kristindottir et al. (1993) who describe the design of laminates in
aircraft industry, which also can only be produced with given tolerances. A further
investigation was stimulated by our contribution to a project on the design of
electronic circuits for an electronics company. The calculated values for parameters
such as the capacity of a capacitor and value for the resistance of an included

Chapter 4. Deterministic solution procedures 121

resistor, are in practice varying between ranges when the circuit is assembled. This
means that a part of the production might not fulfil the requirements on the
performance exactly. By taking into account the variations one can obtain a kind of
'confidence optimization'. Other key-words which are used in this context are:
reliability, risk analysis and tolerance optimization.

In this section methods are developed to find designs which still lead to
products meeting all requirements although during production small deviations are
made from the recipe. The words 'deviation' and 'small' are formalized mathemat­
ically. Robustness of a design is defined as the (maximum) size of the deviation
from this design that can be made in such a way that the product still meets all
requirements on the properties. If the products under consideration are so called
mixture designs (the sum of the components equals 1), the concept of robustness
needs a special mathematical treatment.

This concept of robustness is related to (but differs from) the probabilistic
concept which one can find in risk analysis such as in environmental engineering
(another target user group). When designing environmental systems, e.g. a waste
water treatment plant, one is interested in the probability that it fails to perform
correctly. The design parameter is seen as an average of a random variable, see
Bjerager (1988) and Liu and Der Kiureghian (1991). One is interested in the
probability that a model output exceeds a critical value. The analogy of our term
infeasible area is called the failure zone, or failure area. Computation of this
probability is identical to integration of the joint density function of all stochastic
parameters over that region of the stochastic parameter space where a criterion is
exceeded. The analogy of this concept in product design is that one tries to
minimize the number of products which do not fulfil the requirements when one
design is produced frequently, such as in electronics industry. The robustness
concept we formulated, differs slightly from this probabilistic idea. The similarity in
the two concepts is worked out when the mathematical translation is discussed.

In the following section the idea of robustness and the problem of finding the
most robust solution is introduced and formalized in a mathematical way. To clarify
the ideas, examples in R2 are given. Further topics are the consequences of the
robustness concept for the mixture design problem, the possibility to solve large
problems when the properties are linear (affine) functions and the difficulty of the
idea when having quadratic properties.

4.5.2. Mathematical formulation of robustness

The vague term 'small deviation from the design' means that not design x is
produced, but a product with a certain deviation in one or more factor variables Xj.
A design x has a certain robustness, if this deviation does not lead to an infeasible
product; a vector outside set F.

Let deW be a vector with length 1, ||c/||=l, representing a possible direction
of the deviation and T represent the size of the deviation, then x+Td should be

122 4.5. Robust solutions

situated in set F. The robustness T(x) of a feasible design xeXnF is formulated as:
max {T}
gi{x+Td) > 0 i=l,..,m (4.31)
for all \\d\\<l

The problem of finding the feasible design with the largest robustness can be
formulated as: max T(x) (4.32)

xeXnF
The choice of the norm of vector d determines the form of the area in which the
deviations are allowed to take place. Three cases will be considered. The robustness
corresponding to:

a) the 1-norm,

b) the infinite norm,

c) the 2-norm,

Ml ,=2, \dj

\d\\„=maXj |

IdL^Z-d2

I *•* II 2 J j

a) Consider the 1-norm, Ml,=^ dj\ . The value of the maximum deviation T,
of a factor variable Xj can be determined, such that x±TfjE F. The vector e, is the
j-th unit vector. For the linear (or in general convex) case, the value r=min^ 7} will
be called the one-component robustness or the 1-norm robustness, because it
focuses on deviations in one design variable Xj at a time. The value T is the
maximum deviation possible in all directions d with | |Û?||,<1. The example illus­
trates the robustness of a feasible point. The vertices x±Tjej should be in F.

Example problem P
Given the linear
problem P:

design

Let X=W
yx = -2x, - 3x2

v2= 3x2

v3 = 5xt + 5x2

<-0.6
<0.45
< 1.5

Let set F be the feasible
region of problem P. A
feasible point of this prob­
lem is ;t=(0.14, 0.13). The
deviations which are allowed
to occur in the factor vari­
ables, x, respectively x2,

0.3

0.28

0.26

024

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02-

0

• \ ^

X= (0.140, 0.130)

T(x)=0.020

\5x1+5x2=1.5

^ X T=0.020

\ — T= 0.035 *%.

T= 0.033

\ 3x2=0.45

X X
^ v \ .

\ \ ^
2x1+3x2=0.6\\

0.12 0.16

X1

0.2 0.24 0.28

Figure 4.13: The 1-norm robustness T(x)=0.020 of
the feasible point x=(0.14, 0.13) while the product remains an

element of F, are given in
Figure 4.13. The 1-norm robustness T(x)=0.020 of x is equal to the minimum of

Chapter 4. Deterministic solution procedures 123

X= (0.150, 0.125)

.5x1+5x2=1.5

3x2=0.45

these deviations. The feasible point with the best 1-norm robustness is the solution
of problem (4.33):

max {T}
xeXr^F (4.33)
g,{x+Td)>0 i=\,..,m
for all ||d||i<l

The solution of problem
(4.33) is the feasible product
with the largest 45° rotated
square (in M2) around x
which is subset of F. For
problem P this is product
x=(0.150, 0.125).
The 1-norm robustness for
this feasible point is 0.025
(see Figure 4.14).

Figure 4.14: The feasible point x=(0.150,
with the best 1-norm robustness T(;t)=0.025

0.125)

A variant of the 1-norm robustness is the scaled one norm robustness in which the
ranges Rj are used as weights: | |d| |=£| d-|//?,-. The feasible point with the best
scaled robustness is the solution of problem (4.34):

max [T]
xeXnF
giix+Td) > 0 f=l,„,m

(4.34)

for all d with Z d, /Rj<\

X= (0.127, 0.138)

\5x1+5x2=1.5

3x2=0.45

The optimal solution of (4.34) for problem P is the feasible product with the largest
area around it, which is
completely part of the feas­
ible area. The shape of this
area is a rhomb. Suppose the
range /?, of xy is twice as big
as the range R2 of jc2,then the
allowed deviation in the
direction of x, is twice the
allowed deviation in the
direction of jt2. The feasible
point JC=(0.127, 0.138) has
the largest robustness in set
F (see Figure 4.15).

X I

Figure 4.15: The feasible point x=(0.127, 0.138)
with the best scaled 1-norm robustness

124 4.5. Robust solutions

b) If the infinite norm: ||*/||„=max;- \d{\ is considered, the robustness T(x)
corresponds to the largest square (hypercube) around x. Consequence of this choice
is that deviations may take place in all variables simultaneously and the components
dj of the vector of change d can vary between -1 and 1. The corresponding maxi­
mum value of T will be called the simultaneous or °°-norm robustness of x. For the
linear case the whole area defined by x+Td,
are element of F.
The feasible point with the
best oo-norm robustness is
the solution of problem
(4.35):

max {T}
xeXnF (4.35)
g,{x+Td) > 0 i=l,..,m
for all ||d|L<l

The optimal solution of
(4.35) for problem P is
x=(0.135, 0.135);
the feasible point with the
largest square around it,
which is subset of F
(see Figure 4.16).

\d <1 is subset of F if its 2" vertices

X= (0.135,0.135)

3x2=0.45

0.12 0.16

x1

Figure 4.16: The feasible point x=(0.135, 0.135)
with the best infinite norm robustness T(x)=0.010

If not the oo-norm is used, but a scaled variant \\d\\ =max; | dj \ IRj, the robustness
corresponds to the largest (hyper)rectangle around x. The ratio of the lengths of the
sides of the rectangle depends on the ratio of the ranges /?; of the factor variables.
Kristindottir et al. (1993) use the same concept of tolerance around a given design.
By interval arithmetic they construct a hyperrectangle around a given design in
which all points are feasible. They allow different deviations 7} for every factor
variable *-, whereas we focus on one (global) maximum deviation T which applies
in every direction.

c) If the 2-norm: || d || 2=Vx/ df is considered, the robustness T(x) corresponds to
the largest circle around x. The feasible point with the best Euclidean or 2-norm ro­
bustness is the solution of problem (4.36):

max {T}
xeXnF
gfr+Td&i i=\,..,m
for all \\d\\£\

(4.36)

The optimal solution of (4.36) for problem P is ;c=(0.142, 0.130); the feasible

Chapter 4. Deterministic solution procedures 125

product with the largest
circle around it which is
subset of area F (see Figure
4.17). Problem (4.36) is
known in literature as the
inscribed sphere problem
and is related to the so
called weighted distance
problem in flexible program­
ming (de Vet, 1980). The
general problem of finding
the maximum volume of a
body with a given shape
within a given set, is called
the design centring problem
(Horst and Tuy, 1990).

Figure 4.17: The feasible point ;t=(0.142, 0.130)
with the best Euclidean robustness T(x)=0.020

If not the 2-norm is used but the scaled variant ||d||=Vx/(d
,
j /Rj)2 the robustness

corresponds to the largest ellipse around x. The idea of finding the largest ellipse
relates to the probabilistic view on robustness and reliability. Each parameter Xj, can
be seen as the average of a stochastic variate with variance G1. Often the inaccur­
acies, deviations in the individual design variables can been seen as independent. In
the design of electronic circuits, the deviation of one resistor from the average has
nothing to do with another resistor, which can be from a completely different
source. When the distribution of the mistakes, errors, is assumed to be normally
distributed, the confidence region is an ellipsoid. When the deviates are independent
the axes of the ellipsoid coincide with the Euclidean axes and the size is propor­
tional to I/o,. Using I/o, as weights in (4.36) leads to a reliability optimization in
the sense that we are looking for the maximum volume confidence region enclosed
by set F:

I J M E / ^ / O / (4.37)

Note that the corresponding probability mass is smaller than the integration of the
joint density function over the total feasible area, as in general, there will be some
volume left which is in F and which is not a part of the ellipsoid. So by using
(4.37) in (4.36) a lower bound is optimized of the probability that good (feasible)
products are produced.

The first implementations of optimizing the robustness with (4.31) and (4.32) in
chemical industry were successful. Practical solutions were obtained with a safe­
guard against inaccuracies in the production process. The practical errors have a
kind of uniform behaviour; application of the infinite norm and Euclidean norm
were appropriate. In electronics industry however, the inaccuracies are due to

126 4.5. Robust solutions

tolerances in the assembled components and tend to be proportional to the size of
the design value (e.g. resistance and capacity):

Oj = rjXj. (4.38)

This so called proportional tolerance property, complicates the search for robust
products with (4.37) even more. We will discuss some mathematical properties in
the following sections.

Another topic is the mathematical treatment of the concept of robust products for
mixture designs. For a mixture design the condition lxj=l holds. In the practical
chemical problem, which stimulated this research, it appeared that tolerances in the
production process made it hardly possible to produce the designed mixture exactly.
If deviations in the production process occur in the non-mixture case, it has to be
checked if the changed product x+Td still fulfils the requirements on the properties.
However in the mixture design case x+Td probably does not satisfy Hxj+Td)=l. For
the mixture design problem the properties y, are in fact defined on the ratio's x/Lxj.
So for the linear case, a deviation Axj in one of the components Xj does not only
have a direct effect ĉ Ax,- on property i, but also an indirect effect on all properties
(including i), since the value of Hxj will change. This will be illustrated with an
adaptation of example problem P. The problem is adapted such that one extra factor
variable x3 and an extra restriction Zx, =1 is added. This results in mixture design
problem P':

Example problem P'
y, = -2xx - 3x2 < -0.6
y2 = 3x2 <0.45 (P')
y3 = 5*! + 5x2 < 1.5
JCj + x2 + x3 = 1

The point ;c=(0.14, 0.13, 0.73) is a feasible design of problem P'. If a deviation in
the dosage of x2 in positive direction (an overdose) of 0.03 occurs, the changed
product will be: (;c+0.03e2) and the properties are defined on (x+0.03e2)/(1.03) =
(0.136, 0.155, 0.708). The robustness T(x) of design x is defined as the (maximum)
size of the deviations that can occur in such a way that the product still meets all
requirements on the properties. The deviations in the factor variables which are
allowed to occur, considering the design x of problem P' are given in Table 4.6.
The 1-norm robustness of a solution is equal to the maximum deviation which is
allowed to occur in every direction x-. For x of problem P' the robustness T(x) is
equal to 0.024 (see Table 4.6).

Chapter 4. Deterministic solution procedures 127

Table 4.6: Allowed deviations in the factor variables for JC=(0.14, 0.13, 0.73)

component

max. dev. in
pos. direction

max. dev. in
neg. direction

X\

0.024

0.029

x2

0.043

0.050

x3

0.117

0.100

If in the case of a mixture design problem deviations from the design during
production occur, the changed product still fulfils the requirements if:

gi{<ix+Td)l{\+TLd)) >0, i=l,..,m.

Let set G be defined as:

G:={jceR"| g,(x/lxj)>0, i=\,..,m) = {JCGR" | g^x/e'x)^), i=l,..,m]

with e'=(l,l,..,l).
The changed product x+Td has to be an element of set G. Robustness T(x) of a
mixture design can analogous to definition (1) be defined. Let xeXr\G, 5JC=1 be a
feasible mixture design. T(x) is defined as:

max{r}
g£(x+Td)/(.l+TLdj)) >0, i=l,..,m
\\d\\<l.

(4.39)

The robustness T(x) is the size of the largest area (corresponding to the chosen
norm) around JC which still fits in G. The solution with the best robustness can
analogously to definition (2) be found by solving:

Max T(x)
xeXnG
L*=l

(4.40)

Analogously to the nonmixture case, for the 1-norm, oo-norm and Euclidean norm
robustness the corresponding norms should be used in (4.39) and (4.40).

First the mathematical structure of the derived problems is analyzed for the cases
where the properties y, are linear and quadratic functions. Those functions are
interesting when the design problem has been derived by quadratic regression
models as discussed in 2.5 and 4.3.2. This is followed by a discussion of possible
solution approaches.

130 4.5. Robust solutions

Summarizing theorem
Let ||c?||p= (Ljdf)Up in definition (4.31). The solution with the best /7-norm robust­
ness can be found by solving LP problem:

max {T}
xeX
Ax + g = b
gi/ÇLJdfyi">T i=\,..,m
with q = pl{p-\)

Theorems 4.4 and 4.5 are a limit situation for the limit pl\ and p—>°° and are
proven on the bases of the feasibility of the vertices of the area defined by ||rf||<l.
The proof of the summarizing theorem is based on the explicit expression which is
available for the point of contact z,. This is shown in Appendix 4.C.

The theorems show that it is possible to formulate and solve even large linear
design problems including the robustness concept. Moreover the theorems demon­
strate that robustness seen as tolerance in the controllable parameters leads to
including weighted slacks in the model formulation. When there is variation,
uncertainty in an uncontrollable parameter such as bt, the slack variables in general
also play a central role, which can be observed in literature on stochastic program­
ming (See Kail and Wallace 1994).

It has also be shown in Hendrix et al. (1993, 1996) how the linear problems do not
become more complicated when considering the mixture design case. Analogous
theorems can be derived for the linear mixture design problem. For the linear design
problem the requirements on the (linear) properties imply that G defines a cone:

G:={xeW \A(x/e'x)<b] = {xeW j (bfi-a^xeO, i=l,..,m}.

So finding the solution with the maximum robustness can be seen as: finding the
largest area (depending on the chosen norm), which still fits in cone G, with its
centre satisfying lx-=l. Theorems 4.4, 4.5 and 4.6 can simply be extended for the
mixture design problem resulting in the following theorems (see Hendrix et
al.,1996), which are proven in Appendix 4.C.

in (4.39). The solution with the best 1-norm robustness can

(P4)

i=l,..,m

Theorem 4.7
Let J | ,=X,- | dj

be found by solving LP
max {T}
xeX
IXj= 1
Ax + g = I
gi/maxj |

in (4.39). 1
problem P4:

>

V.I ^T

Chapter 4. Deterministic solution procedures 131

Theorem 4.8
Let ||*/||„=max- j dj | in definition (4.39). The solution with the best °°-norm

robustness can be found by solving LP problem P5:
max {T}
x<zX (P5)
Zxj= 1
Ax + g = b
ft/Z; \aij-bi\

Theorem 4.9
Let

robustness
||J||2=VZ,^,2 in

> T i= l , .

definition
can be found by solving LP

max [T]
xeX
lXj= 1

,m

(4.39). The
problem P6:

solution with the best 2-norm

(P6)

Ax + g = b
m

The results show that including robustness in a linear mixture design, can simply be
solved by weighting the slacks in a correct way. It is possible to solve large mixture
design problems including the robustness criterion. The same does not apply for the
quadratic design problem.

Robust products and nonconvex properties

In Sections 2.5 and 4.3 it has been shown that in practical applications often quad­
ratic functions for the prop­
erties are used, because it is 1

common to use quadratic
regression models to estab­
lish the relations between
design and properties. The
robustness problem becomes
harder to solve when the
properties y,-(jt) and the cor­
responding slack functions
gi(x) are nonconvex func­
tions.

In Section 4.3.2, it has been
discussed and illustrated that
the design problem with
quadratic properties is

Figure 4.18: Multiple local optima of the maximum
robustness problem

134 4.5. Robust solutions

is not more complicated. Considering a transformed space with variables Xj = Xj /cr;,
the inequality SflyOc, < bt becomes Xo, atjâj < b{. To formalise further, the matrix
D(x) = diag(a), the diagonal matrix with the tolerance vector on the diagonal, is
introduced. The robustness problem with the weighted norm (4.44) becomes a
problem with the standard Euclidean norm in the transformed space with

Âx < b, A = D(x)A, x = D~l(x)x.

This means that theorem 4.6 applies in the transformed space. So the robustness of
a point is given by

b.-âx b.-cijX
T(x) = min ' ' = min . ' (4.45)

. ïâ,l i V£.(aA) 2

The idea of transforming the space is used further in the derivation of algorithms.

For fixed tolerances the most robust product (linear properties) can be found by
linear programming. A base algorithm is derived now for this relatively simple case,
which will be extended for more complex cases. First, it is useful to introduce the
concept of active constraints. In the discussion of the minimum volume hyperrec-
tangle problem (section 3.5), the idea was used to call those points active which are
responsible for building the volume and which are touched by the hyperrectangle.
The same thing can be done for the maximum sphere problem given by (4.45). The
(index) set of active constraints I(x) is given by those constraints which are touched
by the sphere around x:

T(x) = \\x-Zj\\, i e I(x)

where z, are the points where the sphere or ellipse touches requirement i.
More robust solutions can be found by "walking away" from the active constraints.
In this way an improving direction dk can be constructed and by linesearch a better
product can be found. There are several points to take into account when construct­
ing such an algorithm.

- The iterate xk can reach the boundary of the experimental region X. The
search direction should be adapted.

- At a certain moment the gradients Vg,(;ct) of the active constraints I(xk) can
form n+l affine independent vectors. This means that xk is "pushed in all
directions simultaneously" and has reached an equilibrium.

For a practical algorithm both points should be considered for the construction of
stopping criteria. We will leave out those details in the outline of a base algorithm.
A base algorithm is presented intended for linear properties and fixed tolerances.

Chapter 4. Deterministic solution procedures

Base algorithm linear properties, fixed tolerances

135

0.
1.
2.

3.

4.

Define stopping criteria, k := 1
Find a feasible *, (LP)
Determine T(xk) and Ik = I(xk)

dk:= E - a , / | û , |
i e / .

A» := argmaxx T(xk+Xdk)
xk+l : = ** + *"lPk

Check stopping criteria
Either STOP or k := k+l and go
to step 2.

The structure of the algorithm is a general way of constructing nonlinear program­
ming codes and will converge to the global optimum for this simple case, when
implemented correctly. An improving direction dk can be constructed by taking any
convex combination of the gradients -a, which push the iterate away from the
active constraints (border and affine independence considerations left out). In the
base algorithm they are simply added. The algorithm is not useful for the base case
itself (linear properties, fixed tolerances) as such, because that case can also be
solved by LP.

Linear properties, proportional tolerances
Looking for the most robust point becomes more complicated when the tolerances
are proportional, a, = rjXp as occurs in electronics industry. The determination of
the robustness of a product itself is still relatively easy when the properties are
linear; (4.45) becomes (4.46).

T(x) = min. -a,x
VE.(/-jc.a..)2 (4.46)

In the base algorithm the directions away from the active constraints should be
adapted to account for the search for smaller parameter values (U,l is smaller),
because their tolerance is also smaller. Mathematically this can be derived from the
tolerance Tt(x) with respect to an active constraint i:

Tf,x) =
bratx

VE.(rjc.a..)2

136 4.5. Robust solutions

Before finding an improving direction, we return to a question which has not been
analyzed: Does Tt(x) or T(x) possibly contain multiple optima? At first sight, one
would think so as there are implicitly two objectives when maximizing Tt{x):

One is looking for products far away from the boundary g,{x)=0 (numerator),
One is looking for small products, which have low variation (denominator).

However, it is impossible to construct an instance of the robustness problem with
linear properties, proportional tolerance and several optima.

To explain this one has to go into the theory of fractional programming
(Chapter 2 and Schaible, 1995). The fractional function Tt(x) has a linear numerator
and convex denominator. This leads to a so called quasiconcave function which
contains one global maximum. The minimum of a set of quasiconcave functions
(4.46) is again quasiconcave (see e.g. Bazaraa et al., 1993). This implies that when
we follow the gradient in the base algorithm we will end up in the global maxi­
mum.

An improving direction with respect to i can be found by following the gradients
V7X**) of the active constraints i € Ik. The gradient VTjOc*) consists of the partial
derivatives dTfaydXj which are proportional to

-a.^irxa.)2 + a.rfx.T{x))
yv v j j 'y •] J j v "

(4.47)

Compared to the derivative -atj of the base case (fixed tolerances), following the
derivative tends to a reduction of the values Xj for that components j with a larger
tolerance factor r;. To find the most robust solution, the search direction dk in the
base algorithm is adapted.

Algorithm linear properties, proportional tolerances

0.
1.
2.

3.

4.

Define stopping criteria, k := 1
Find a feasible xl (LP)
Determine T(xk) and Ik = I(xk)

dk:= E V7X*t)

Xk := argmaxx T(xk+Xdk)
xk+\ : = xk + *-lßk

Check stopping criteria
Either STOP or k := k+l and go
to step 2.

Chapter 4. Deterministic solution procedures 137

Quadratic properties
The search for robust solutions when considering quadratic properties concerns
several difficulties.

Finding an initial solution in step 1 of the algorithm. As discussed in 4.3.2, it
may be hard to find a feasible solution of the design problem.
The determination of T(xk) is not straightforward.
Specific improving directions for step 2 have to be derived.

Let us first consider the determination of the robustness for a given product x. As
given by (4.41) we are looking for the point z„ where the sphere or ellipsoid with
centre x "touches" the surface g^z) = z'Qtz + d'z + c = 0.
Again a transformation can be used to show that the problem with nonuniform
tolerances is equivalent to a problem with uniform tolerances, the maximum sphere
problem. Let again D(x) = diag(a). Now the ellipsoid problem

min||x-z||
g{z) = z'Qz + d'z + c = 0 (4.48)

with IMI = V£(x./a.)2

can be transformed to a problem which searches the maximum sphere around the
origin which touches a quadratic surface.
Let z = D-lz - D-]x, then

g(z) = z'Qz + d'z + c
with

Q = DQD
d = IDQx + Dd
c = x'Qx + d'x + c.

Problem (4.48) is now equivalent to the maximum sphere problem (4.49):

minllzl
z'Qz + d'z + c = 0 (4.49)

with \\x\\ = -iYLxj , the Euclidean distance.

In this way, it is sufficient to focus on finding a solution of (4.49).
The Karush-Kuhn-Tucker conditions (4.43) are for the specific case (4.49)
equivalent to the set (4.50):

z = -uVs(z) (4.50)
g(z) = 0

in which (a is a Lagrange multiplier.

138 4.5. Robust solutions

An algorithm to obtain a solution of (4.50), closest to the origin, is given as
follows.

Core of the algorithm to determine T(x)

0.
1.
2.

3.

4.

Give a stepsize y and a tolerance e, k := 1
Find an initial solution zk such that g(zk) = 0
Go into the direction -Vg(zt):

Pk := Zk -instel)
Find the zero point Xk of g(kpk) = 0,

Z*+l : = ^*P*

If k*+1-zj < e STOP
else k := £+1 and go to step 2
endif

The procedure is depicted in
Figure 4.21. Only the main
steps are given; some safe­
guards are needed to treat
worst cases. For instance the
determination of Xk in step 3
is in general relatively easy
as g(z) is quadratic, g(0) > 0
(x is a feasible product) and
g(pk) < 0 in general. The
smallest of the two solutions
for Xk can be chosen. A
safeguard is needed when
there is no solution (then
g(Pk) > 0).

for Figure 4.2 i: Algorithm for solving the maximum
sphere problem, quadratic properties

There are several alternatives possible for an algorithm to find a solution of (4.50).
In the literature on "structural reliability" we found the following approach deve­
loped by Hasofer and Und (1974) and Rackwitz and Fiessler (1978), the HLRF-
approach, see also for an overview Liu and Der Kiureghian (1991). In this
approach, not a fixed stepsize y is chosen, but a linesearch is performed in the
direction

rf.=
IM2 Zk - Vg(zk)

which is the projection of the steepest descent on the orthoplement of zk. Now pk in

Chapter 4. Deterministic solution procedures 139

step 1 of the algorithm corresponds to the line minimum mina g(zk+adk). The HRLF
approach aims at finding the point closest to the origin of a general nonlinear
surface. Every function evaluation may require a considerable amount of calculation
time (Chapter 5). It is therefore surprising that a crude grid search is suggested in
their approach to find an optimal value for a.

The suggested transformation and algorithm (or any alternative) gives the possibility
to calculate the robustness T(x) for quadratic properties for the weighted Euclidean
distance case. Let us now return to the outer loop of the base algorithm to find the
most robust design. Figure 4.18 illustrated that one can only aim at finding a local
solution of (4.32). In the framework of the base algorithm, improving directions for
step 2 have to be constructed to push the iterate away from the active constraints.
Following the line from linear to quadratic design, the properties when having
requirements a'x < b can be approximated by using the tangent hyperplane
V*(z,)'(zr*) > 0.

For fixed tolerances simply a, in step 2 of the base algorithm can be replaced by
Vg(z*).

For proportional tolerances the derivatives (4.47) in the gradient Vr;(xt) in the
algorithm for linear properties and proportional tolerances are replaced by dT,{x)/dxj
which is proportional to:

£ (r / A) ' + Vs(2,)'(z-^)f (\y-|i(z,)

;

(4.51)

Although (4.51) seems very complicated it is relatively easy to calculate, as we are
dealing with quadratic functions. In a computer implementation the points of contact
Z; are available from the algorithm which solves (4.50) and the approximation of the
hyperplane can be substituted in the subroutine which evaluates (4.47) to derive a
search direction.

The algorithm was implemented and used for several design problems in a elec­
tronics industry leading to local optima for the robust design problem. Further
analysis learns that worst cases can be constructed which frustrate the performance
of the algorithm. The approach outlined here represents a specific local search
procedure which can be used given various starting points. The structures of
quadratic and linear properties and of the proportional tolerance model are fully
exploited.

140

4.6. Concluding remarks

In this chapter several cases have been discussed to show the complete route of
model formulation, analysis and construction of algorithms. Focus was on applying
the Branch-and-Bound method. Several points can be concluded from the viewpoint
of the potential user.

Analysis of the expressions is required for the discovery of useful mathema­
tical structures (Chapter 2).
The elegance of the techniques is the guarantee that we are certain about the
global optimality of the optimum when it has been discovered and verified.
The methods are hard to implement. Thorough use should be made of special
data structures to store the necessary information in memory.

The last point refers to the difficulty that in Branch-and-Bound methods (including
integer programming) the computer memory may fill up, before the guarantee has
been reached. In a practical computer implementation there are several instruments
to reduce this problem.

Classical instruments in Branch-and-Bound (arrows gl and g2) are that we
should keep track of the memory occupation by the number of subsets and
that the selection rule can be influenced and alternative bounds can be
generated.
Another decision in the implementation is the trade-off which information to
keep in memory and which to recalculate several times.
A technical solution is to make clever decisions on which part of the Branch-
and-Bound tree to store temporarily on hard disk and which part to keep
directly available. This does not solve the overall capacity problem, but may
speed up the search.
A specific Global optimization feature is to make good use of special data
structures linking subset information to information on evaluated points.

Cases
The nutrient problem is an example of a high dimensional problem for which a
branch-and-bound approach with rectangular subsets has been outlined and illus­
trated. The problem is hard to solve in practice as one may not have sufficient
storage capacity and/or time to get to the global optimum and to verify it. The
similar so-called pooling problem has been a challenge for many researchers and
despite the relevance for petrochemie industry, remains hard to solve. The nutrient
problem also shows how analysis of a given problem can lead to many useful
properties:

boundary solutions of the problem
successive LP is very unsuccessful
standard NLP leads to many local not global optima.

Chapter 4. Deterministic solution procedures 141

The (quadratic) design problem can also be handled by a branch-and-bound
procedure to guarantee the (non) existence of feasible designs. The quadratic and
Lipschitzian structure contain value information for the derivation of bounds. The
way the problem has been formulated requires no update from a global lower
bound; when all slacks are positive a feasible solution has been found. The perform­
ance of the procedure can only be influenced by changing the selection rule, which
subset is to be split next. This is similar to branch-and-bound procedures for integer
programming. The information during the execution can be the lowest bound, and
the number of subsets and points to be held in memory, to follow the storage in
computer memory. For the final information we advise to show the best let say ten
products which have been found. The algorithm has been built into a Decision
Support System in combination with local search (traditional) algorithms.

A solution is often understood to be robust, when it remains "good" in uncertain
situations due to uncertainty in data or changing circumstances. We discussed it in
the context of product design, where robustness is defined as a measure of the error
one can make from the solution such that the solution (product) is still acceptable.
Looking for the most robust product is looking for that point which is as far away
as possible from the boundaries of the feasible (acceptable) area. For the solution
procedures, we had a look at the appearance of the problem in practice, where
boundaries are given by linear and quadratic surfaces, properties of the product.

For linear boundaries, finding the most robust solution is a Linear Program­
ming problem and thus rather easy.
For quadratic properties the development of specific algorithms is required.
The user still should interact in delivering good starting designs, probably
generated by the DSS of the design problem.

142

Appendices
Appendix 4.A

d'x
For each nutrient k the fractional programming problem max cp (x): = k has

»cc, * qk'x

to be solved, where the demand and supply vectors (d and q) are strictly positive.

A well-known approach to solve fractional programming problems (FP): max ^
xeX g(x)

is to consider the global optimization problem (GP): max.xsX{f(x) - Xg(x)} where
Xe R (Pardalos and Phillips, 1991). The fundamental result which relates the (GP)
problem to the (FP) problem is

Theorem (Dinkelbach, 1967) x* solves the fractional programming problem (FP) if

and only ifx* solves the global optimization problem (GP) with constant X,* =
g(x')'

d'x*
For our fractional programming problems, according to this theorem, * = _J

qkx

For this constant X*k the global optimization problem is the linear programming
problem

max £ (4 - XUik)xi •
«c.

If (dik-)Ckqik) < 0 then it is optimal to decrease x, as far as possible, (x* = lip) and if
(dik-X*kqik) > 0 then it is optimal to increase xt as far as possible (x* = uip).

So X: =

/. if _ i<x ;

1 u. if JL > x;

9*

For each k, *k can be seen as the threshold value, which determines in which corner
of the box Cp the value x is obtained. An algorithm to find this x* is described
below:

Chapter 4. Deterministic solution procedures 143

Threshold Algorithm

Step 1 Fix all x, at lip and calculate the objective value (p*.
Initiate (p* as q>t.

Step 2 Renumber all x„ such that _ ü < - Ü < ... < J±.
Ilk Ilk 4mk

Pick up the first element of the sorted vector x.
Step 3 Put the chosen element x-t on its upper bound uip and calculate the

new q>k.
If cp* exceeds cp* then go to Step 4
else put the chosen element back to its lower bound lip and STOP:
(Pt is the optimum.

Step 4 Replace (p̂ by the new q>t and take the next element of the x vector,
go to Step 3.

Appendix 4.B

The test example for the mixture design problem is based on the following data.
The property y, is calculated as:

yfx) = c, + ditxx + di2x2 + di3x3

in which Xj = Xj - 0.5.

The data that are used are given by the following Table:

property
J C, 4l 4z ^3 9il2 *13 to_

1 1.495 -0.006 -0.024 0.050 -0.002 0.017 -0.021
2 0.951 -0.014 -0.048 0.108 -0.001 -0.004 0.006
3 15.986 4.729 -16.657 -8.974 -10.174 -21.977 -86.952
4 178.708 -0.687 12.800 -7.347 0.241 -4.947 -3.967
5 52.002 -5.217 -201.326 192.989 -6.180 337.106 1030.228

Qui 1,22 Ins

1 0.001 0.008 -0.021
2 0.004 0.001 -0.014
3 20.605 32.003 -81.278
4 -0.766 -0.528 7.822
5 116.750 -67.424 -845.215

152

5.2. The design of a continuous sugar centrifugal screen

The first practical example is taken from a project in cooperation with a metallurgie
firm which among others produces screens for sugar refiners. In the sense of
Section 1.3 (Figure 1.2) a mathematical model has been constructed to describe the
behaviour and performance of the process of separating sugar from molasses in a
continuous sugar centrifugal. An optimization model has been derived (arrow b)
from the model by distinguishing the parameters which can be influenced and the
criteria to be optimized.

We first give a flavour of
the mathematical model. The
continuous centrifugal works
as follows (Figure 5.2). The
fluid (molasses) including
the sugar crystals streams
into the middle of the rota­
ting basket. By the centrifu­
gal force and the angle of
the basket, the fluid streams

sugar

molasses

sugar

molasses

Figure 5.2: Continuous sugar centrifugal

uphill. The fluid goes through the slots in the screen whereas the crystals continue
their way uphill loosing all fluid which is still sticking on the material. Finally the
crystals are catched at the top of the basket. The constructed model describes the
stream of the fluid from the start, down in the basket, until the end, top of the
screen. The flux of the fluid through the screen does not only depend on the
geometry of the slots, but also on the centrifugal force and height of the fluid film
on a certain position. Reversely, the height depends on how quick the fluid goes
through the screen, so how fast the height profile decreases. Without going into
detail, this interrelation can be described by a set of differential equations which can
be solved numerically. Other, simpler, relations were found to describe the strength
of the screen, as wear is a big problem.

In this way a model exists in the sense of Figure 1.2, which given technical data
such as the size and angle of the basket, revolutions per second, the stream into the
refiner, the viscosity of the material, the shape of the slots and the slot grid pattern,
calculates the behaviour described by the fluid profile and the strength of the
screen. Now an optimization problem is derived, by selecting at one side that
parameters which can be influenced by the firm producing the screens, and at the
other side the criteria that one intends to optimize. A part of the parametrization of
the pattern is given in Figure 5.3. Another parameter was among others the thick­
ness of the screen. Two criteria were formulated; one to describe the strength of the
screen and one to measure the dryness of the resulting sugar crystals. There are
several ways to combine the two criteria in a multicriteria approach as described in
4.3. Actually we are looking for several designs on the Pareto set describing screens

Chapter 5. Stochastic approaches 153

which are strong and deliver dry sugar
crystals when used in the refiner.

The prototype DSS to be described in
Section 5.5. was used to perform local
searches, to generate random points to
be used in a global search, monitor the
location of the local optima etc. Notice
that every function evaluation requires
invoking the subroutine which performs
the numerical calculation of the Figure 5.3:
differential equations describing the
performance of the separating process.
Closed form expressions are not available.

Parametrization
grid pattern

of the slot

Several designs were generated that were predicted to perform better than existing
screens. The use of a mathematical model in this design context is very useful,
because it is extremely difficult to do real life experiments. The approach followed
here, lead to an advisory system to make statements on what screens to use in
which situation. Furthermore it lead to insights for the design department which
generated and tested a few new designs for the screens.

The optimization is a typical case where the user can apply his knowledge about the
domain, the process of filtering sugar, during the execution of the algorithms.
Parameters can be fixed, bounds can be changed, the global search can be influ­
enced, local optimization can be stopped etc. In our experience, graphical informa­
tion is also very useful. At one window, one can view the performance in the
parameter space and at other windows one can monitor the predicted performance
of a design which is evaluated.

154

5.3. Dynamic decision making in water management

The problems in this section involve sequential decision making. The performance,
objective function, not only depends on the sequence of decisions, but also on
fluctuating data over a given time period, often considered as a stochastic variable.
The calculation of the objective typically requires the simulation of the behaviour of
a system over a long period.

In the first example operating rules have to be derived for pumping water in a
higher situated lake in the Netherlands. In general the rainfall exceeds the evapor­
ation and the seepage. In summer however, water has to be pumped from lower
areas and is treated to maintain a water level above the minimum with a good water
quality. Not only the pumping, but certainly also the treatment to get out phosphate
costs money. The treatment installation performs better when the stream is constant,
so that the pumps should not be switched off and on too frequently. The behaviour
of the system is given by equation

/, = min{/,_, + £, + x„ Max} (5.3)

with /,: water level of the lake
£,: natural inflow i.e. rainfall - seepage - evaporation
xt: amount of water pumped into the lake.

When the water level reaches its maximum (Max), the superfluous water streams
downwards through a canal system towards sea. For the case we studied, two
pumps were planned to be installed, so that *, only takes values in {0, B, 25},
where B is the capacity of one pump. Decisions are taken on a daily basis. In water
management, it is common practice to derive so-called operating rules, decision
strategies including parameters. A decision rule instructs on what decision to make
in which situation. An
example is rule (5.4) with
parameters ß, and ß2.
For

/, < ß, x, = IB
ß, < I, < ß2 xt = B (5.4)

7,>ß2 *(= 0.

Given weather data of a
certain period now the re­
sulting behaviour of a se­
quence of decisions x, can be
evaluated by measuring
performance indicators such
as the amount of water

-target level

'jan feb aug sep oct DOV dec '

Figure 5.4: Strategy to rule the pumping

Chapter 5. Stochastic approaches 155

pumped JJX, and the number of switches of the pumps Z | x,-xt_x \ IB. Assessment of
appropriate values for the parameters ßj and ß2 is a black-box optimization problem
in the sense of Figure 5.1. For every parameter set, the model (5.3) with strategy
(5.4) can be simulated with weather data (rainfall and evaporation) of a certain time
period. Some 20 years of data on open water evaporation and rainfall were avail­
able. The performance can be measured leading to one (multi-) objective function
value. At every iteration the global optimization algorithm delivers a proposal for
the parameter vector ß, the model simulates the performance and after some time
returns an objective function value /(ß).

One possibility is to create a stochastic model of the weather data and
resulting £, and to use the model to "generate" more years by Monte Carlo simula­
tion, i.e. simulation using (pseudo) random numbers. In this way, it is possible to
extend the simulation run over many years. The model run can be made arbitrary
long. Notice that in our context it is useful for every parameter proposal to use the
same set of random numbers (seed), otherwise the objective function/(ß) becomes a
random variate.

Various strategies as variants of (5.4) can be formulated taking into account
for instance the level of £,, the increase in water level etc. with several parameters.
The approach of optimizing the parameters by iteratively invoking Monte Carlo
simulation remains the same. As can be derived from Figure 5.4, due to seasonal
influences the underlying stochastic process is not stationary, so that decision rules
such as (5.4) are too rigid. Actually the parameters should depend on time. In this
specific case Stochastic Dynamic Programming can be used to optimize expected
values of the criteria. The result is a so called operating Table. It tells exactly what
actions should be undertaken in which situation in what period. Stochastic program­
ming using hydraulic data is very popular in water management, reservoir planning
(see e.g. Butcher, 1971). In multireservoir systems however, the state variables /, in
(5.3) are linked, which makes the application of Dynamic Programming very
complicated. See for instance Kularathna (1992), who described the application for
a large system in Sri Lanka.
Before elaborating further on the topic of multiple reservoir systems, first two other
areas in which parametrized decision strategies play a role are mentioned.

In Management Science and Logistics a well known application is that of Stochastic
Inventory Control. Equation (5.3) reads as follows (see Hax and Candea, 1984).

ƒ,: level of inventory
xt: amount produced or ordered
Ç,: (negative) demand, considered stochastic.

Criteria that play a role are inventory costs, production costs and backordering or
out of stock costs. Depending on the construction of the parametrized decision rule
similar to (5.4) names are used such as (B,0-policy or (s,S)-policy. In the context
of optimizing oracle functions the optimization of the parameters can be carried out

156 5.3. Dynamic decisions

in the same way as in the water management problem. Given the data over the past,
it can be evaluated how the system would have performed if the parameters would
have had a certain value. This way of approaching the problem is not very common
in inventory control. Usually assumptions are made about the (stationary) probabil­
ity distribution of the demand and criteria are matched in such a way that by
integrating over the distribution function explicit (closed form) expressions can be
derived of how the objective function (expected criterion) depends on the parame­
ters, thus leading to a simpler to solve optimization problem.

A totally other field where we came across the idea of parametrized strategies, is
the financial world of the stock exchange. By making assumptions on the underly­
ing stochastic processes of the stock price and an analysis of the price of options,
researcher have been able to derive a so called optimal hedging strategy (see Black
and Scholes, 1973). This strategy defines how much money an investor should put
into various funds, stocks and options, in order to have a risk free portfolio. To
keep the portfolio risk free, an investor should adapt the ratio continuously. In
practice however, transaction costs are involved in selling and buying stocks and
options, so that changing the portfolio continuously is infinitely expensive. We
carried out a simulation study to evaluate various parametrized strategies on when
to change the portfolio depending on state variables such as the deviation from the
ideal portfolio and the expiration time of the options. The criteria are the risk
involved, the expected final value of the portfolio and the expected transaction
costs. To make accurate estimates, long simulation runs are necessary to evaluate
only one set of parameters.

In all examples, there is a dynamic decision situation with a state variable, water
level, inventory level and stockprice, and a decision strategy with parameters.

We return now to multiple reservoir systems which implies state variables /„ for
every reservoir /. We discuss a study on a seven reservoir system in Northern
Tunesia due to Milutin and Bogardi (1996) (see Figure 5.5). For every reservoir i,
equation (5.3) defines the water volume /„ given stochastic river inflow ^, and
release (decision) xir Operating strategies can be derived on a monthly basis taking
into account the stochasticity of the river inflows for which 44 year data are
available. As can be observed in Figure 5.5, there are six demand centres supplied
by more than one reservoir. This means that the demand djt (demand centre j , month
0 partly has to be fulfilled by a fraction of the release xit, when reservoir i delivers
to centre j . The decomposition approach chosen by Milutin and Bogardi is to use a
fixed release distribution ytj among groups of reservoirs towards their common
demand. The demand of water DiJt of centre j from reservoir / is taken as

Dy, = Jij dj,

where y&- is thought to be fixed over the year, meaning that Z, Dijt = djt and E, ytj,= 1,

Chapter 5. Stochastic approaches 157

the summation with respect to
that reservoirs which deliver
water to centre j . Given a dis­
tribution Yy, an operating rule
can be derived for every reser­
voir to fulfil total water
demand X, A,,- The approach is
to apply simple operating rules
and to simulate their perfor­
mance over a 44 year period of
monthly inflow data. The ob­
jective is to minimize the
expected value of the annual
sum of squared deviations
between releases and corres­
ponding demand for water. The
restriction that the distributions
sum to unity, such as in the
mixture design problem (4.3),
can be dealt with in a penalty
form. Optimization of the rela­
tive contributions y^ involves
iteratively calling a larger pro­
gram (subroutine), which simu­
lates the performance of opera­
ting strategies.

reservoir

water transfer

diversion weir

Figure 5.5:

© demand centre

sea

Seven reservoir system in Tunesia.
Source: Milutin and Bogardi, 1996

Milutin and Bogardi applied
genetic algorithms which can
be seen as a random search to
generate good distributions.
Later on we used local searches
in a multistart way, leading to several local optimal distributions. The user typically
has a direct interpretation of the decision variables and can influence the search by
fixing parameters and changing bounds. He can also increase the number of random
points to scan the feasible area before starting a local search.

The cases in this section have shown optimization problems where evaluation of the
objective function involves running a dynamic model with data either from a given
time period in the past or from (extended) Monte Carlo simulation. The explicit
dependence of objective function on parameters to be optimized is therefore hidden.
A user, due to his knowledge of the modelled domain, may have a direct interpre­
tation of the parameter values and can interact during the search for the global
optimum.

158

5.4. Multiple source river pollution management

A combination of a continuous model description as in the sugar centrifugal case
and a Monte Carlo simulation as in the water management problem can be found in
Boon et al. (1989). They describe the so called waste load allocation problem, i.e.
design of a system for wastewater treatment in a multiple source pollution of a
river. The situation is sketched in Figure 5.6 (Pinter, 1996a). There are several
pollution sources along the river, locations where discharges of untreated (domestic)
wastewater take place. The pollution is expressed in levels of BOD (Biochemical
Oxygen Demand), which can be used directly as a measure for the oxygen demand
in the receiving stream. The management question is to design a cost effective
allocation of treatment capacities such that water quality standards on oxygen are
met. For the details we refer to Boon et al. (1989) and Pinter (1996a) and the
numerous references therein.
For our purpose, it is suffi­
cient to know that there are
decision variables xt descri­
bing the site specific treat­
ment efficiency, BOD-load
removal capacity, at site i,
which can vary between pre- t t
specified technological rj-i re­
bounds. There are convex
cost functions C, (JC,-) descri­
bing the costs of construc­
ting and operating a treat­
ment installation with
removal capacity x, at site i. Figure 5.6: Multiple point-source pollution sites

along a river. Source: Pinter, 1996a

So far the problem is simple
and straightforward and has been solved in water quality engineering for many
years, see Thomann and Mueller (1987). The quality determination requires
following the quality development of Dissolved Oxygen (DO) interacting with the
development of the Biochemical Oxygen Demand (BOD) along the river. This
development can be described by classical water quality models consisting of a set
of differential equations derived from mass balances. For the equations concerning
one river section, analytical expressions can be derived to calculate the lower peak,
minimum, of the oxygen (DO) level. However, the purpose is to stay above the DO
water quality standards in all river sections of interest i (Pinter, 1996a, uses the
same index). The interrelation between the sections complicates the calculation of
all lower levels, i.e. the minimum DO level may not be reached in one section,
before the water flows into another. Moreover, the development of the DO level
also depends on all kinds of factors which vary in practice such as water tempera­
ture, streamflow etc.

Chapter 5. Stochastic approaches 159

Now Boon et al. (1989) want to design a system which performs well in 'nearly all
situations' (robust design) and therefore include a stochastic criterion:
The joint probability of satisfying a minimum DO target level in all river sections.
This water quality criterion in a probabilistic sense, can be estimated by using
Monte Carlo simulation. Probability distributions for the fluctuating (input) parame­
ters are derived and Monte Carlo simulation is used to measure the probability of
exceedence of the minimum oxygen standards in the various river sections. This
defines the reliability criterion next to the costs of a design.

Pinter (1996a) uses global optimization algorithms to generate Pareto optimal
points (minimum costs, maximum reliability) of the design. Every function evalu­
ation requires running the continuous model for many Monte Carlo simulations,
which implies quite some calculation time. In a joint project of Wageningen
university and the water institute VITUKI in Hungary the methodology was applied
successfully to a case of the Zala river in Hungary, see Boon et al. (1989).

Again the cases illustrate the oracle character of an objective function. Calculation
of differential equations and Monte Carlo simulation are used for every function
evaluation. Also here the user has more knowledge on the domain which can be
used for deriving bounds on the criterion functions and indicating promising areas.
In this example there is a monotonicity consideration; a higher removal rate leads to
a higher reliability and to higher costs. The maximum reliability is reached using
the most expensive design. The "weak" river sections where the standards are
exceeded very often can be spotted to derive which efficiencies can be expected to
be high in the optimum. In this way the domain knowledge can be used to interact
during execution of the algorithms.

160

5.5. A DSS for minimizing a continuous function under box constraints

In the former sections, we have seen how optimization problems can be derived
from descriptive models such that the corresponding function evaluations are
relatively expensive and the underlying expression is implicit. In this section we are
discussing some experience with a prototype DSS, called BOP (Bounded
Optimization), which was used to examine the search process for the optimum of
some practical optimization problems where a function fix) is minimized under box
constraints, i.e. lower and upper bounds on the parameter vector x. Some notes are
given on the implementation aspects and, what mainly interests us, some experience
is given on what might be useful information for the user (arrow g2) and what
might be useful instruments (arrow gl) with which the user can influence the search
process. The indicators and instruments are summarized at the end of this section.

;<^fionsxiat;-

V/ffiy////// . model output';
lodel programs^ •

Dùt.dàt:
I

The idea of the implementa­
tion is outlined in Figure
5.7. The derived objective i^ÄM;—-
function f(x) is represented
by a separate program
(func.bat in Figutre 5.7). In
some applications only the
executable of the model used
by the optimization problem Lt*stf.<jat :-
is available due to confiden­
tiality. Therefore we choose
to use files as an interface
between search program and
objective function (arrow d
in Figure 5.1). The in.dat file contains suggested values of the decision vector x and
after the evaluation program func.bat has been run, the resulting objective value is
written in the file out.dat. In this way there are no further software requirements on
the problem to be optimized. Furthermore, the construction puts emphasis on the
black-box character of the objective; the optimization routine has no structural
information on the problem to be solved.

result.dat ^

Figure 5.7: Outline of file interactions around BOP

Some of the information the user directs towards the search process is more of a
general nonlinear optimization nature (local search) whereas other information has a
more global character. The options.dat file may contain the (initial) tolerances for
the local search routine. In the implementation we used a variant of Powells'
method (Powell, 1964) adapted for the box constraints. Search directions are
projected on the boundary when this is approached too close. In the linesearch
routines, initially small steps are used to find an interval, bracketing a line mini­
mum. This has a global optimization purpose; we try not to miss, rush over, a small
but deep minimum. Another global optimization adaptation is that it is checked

Chapter 5. Stochastic approaches 161

during the local search if the iterate is close to an optimum already found. This
requires some additional checking time, but saves function evaluations which we
assumed to be the expensive part of the calculation. A typical other global
optimization information topic is to put a random seed number in the options file to
start the random generator. Possibly the options file may contain directions for the
final report. The information in this options file is considered fixed during the
search process. The tolerances are in general used in criteria which are relative e.g.
to the ranges in which the variables vary and therefore need no updating when
implemented properly.

An important feature is the ability of the user to STOP and RESUME the search
process. In BOP this was done by hitting any key. Note that it may still take some
time for the program to stop, as it may be in the middle of the process of evaluating
the function. Not only may the user want to change some parameters during the
search process, but he may also want to examine the results graphically. Often a
user may want to keep track of the progress by examining the results of the
suggested parameter values for his model, translate the values back to the world the
model represents, e.g. the fluid profile in the sugar screen design problem. This can
be done either in a separate window continuously, but also by stopping the search
and running some graphical programs. Notice that the optimization may lead to
remarkable results for the user. Often the user has already carried out many runs
with the underlying simulation model using realistic values for the input parameters.
The feasible set defined by the bounds given by the user may not only contain
realistic combinations, points. The optimization looks into all corners of the feasible
space in order to detect points which lead to good objective function values.

Therefore the other important feature is the ability to set and change bounds
during the search or to fix some parameters. For global optimization the user during
the search may adapt his intuition about where to find the best local optima, the
most promising areas, and may also change the bounds then. This may require some
bookkeeping, as one may not want to throw away all points which have been
evaluated and optima which have been found in areas that are temporarily not
considered any further. The bounds.dat file can be used to give initial values for the
bounds, give the names of the parameters for the translation in the direction of the
user and may possibly contain initial values of the parameters as a starting point for
a local search.

For the output information it is first of all useful to keep track of the best point
which has been found sofar and its function value during the search, the so called
record value. By storing this solution in a separate file bestf.dat, this point does not
get lost when the system breaks down due to a failure in the execution of the
func.bat program which runs the model. The final report in the result.dat file can
contain various topics. By many users it was considered a good idea to list the best
let say 10 points which have been found. In global optimization all optima can be
reported and the number of times that they are detected. This information should be

162 5.5. A DSS for BOP

f(x)

0.002 •

0.748

/
: :: ; * *
i *

*:

y* ,-' i ,-' .-' 'x

4 io
length

Best found: 0.078
current value: 0.627

thickness
40

nr of evaluations: 127
in current local search: 3

Figure 5.8: Sketch of the
screen of BOP

graphical information

available somewhere during the search for the user to adapt his search strategy.
First the graphical interface
is discussed now before
going into detail on how the
user may influence the
search further. The graphical
interface of the BOP proto­
type DSS is outlined in
Figure 5.8. A three dimen­
sional picture is drawn of
the search space. Two axes
are used to project the para­
meter (decision) space in
two dimensions, putting two
variables at the axes, in the
figure referring to the design
problem of Section 5.2. The
third axis is used to record the function value corresponding to given parameter
values. Points in this plot represent function evaluations. Local optima which have
been detected are represented by a number. The scaling of the objective axis is not
straightforward. One can use the minimum and maximum value which have been
found. In general we used the minima and maxima of let say the 50 best points
which have been evaluated. Of course the user can adjust this. Notice furthermore
that due to graphical reasons the objective axis is turned around (maximization
graphically).

Now the user can scan through the decision space by changing the parame­
ters at the axes. For instance the user can suspect that the function is monotonie in
one of the variables, so that he decides to fix its value. There is also a limited
possibility to discover patterns in the location of the optima. If the optima are on a
line in the plane of two variables, this can be discovered. However if the points are
in a higher dimensional plane or line not orthogonal to the parameter axes, this
might not be discovered. Another pattern is due to symmetry in the optima (Section
2.6), when the variables are interchangeable. This also may be discovered.

There are several indicators possible around the graphical interface with respect to
the progress of the (global) search process and several instruments to influence the
process. One piece of information is a tabular form of all optima which have been
detected and the number of times they have been discovered. Another piece is the
number of function evaluations which have been performed. This gives rise to two
other indicators: an estimate of the amount of function evaluations per local search
and an estimate of the calculation time per function evaluation. This last one might
not be straightforward. We came across an application where the time of a function
evaluation depended on the objective function value; for a bad function value the
underlying computer program did not need all calculation steps.

Chapter 5. Stochastic approaches 163

This kind of indicators are useful in the context of a limited solution time; the user
wants to start up the program and observe the results the next morning. One
suggestion by a user was to derive from theory a confidence figure; what is the
probability that the global optimum has been reached. In fact in the theory on
stochastic global optimization this has been considered from the opposite point of
view: Given a probability, when can we stop sampling further, the so called
stopping rules.

To give an example of such stopping rule analysis, we mention an early
result due to Karnopp (1963). If we consider a pure random search strategy, the
probability after having generated N points that a better point will be found with
sampling N, points additionally, is P = Nj/(N+N,). At first sight this is a remarkable
result, as it does not depend on the function which is minimized. The result can be
derived by analyzing extreme value distributions as will be studied in Section 5.6.
In a limited time situation one knows the remaining number of function evaluations
N,, and with that the probability to reach a better point. However, it does not give a
probability that the global optimum actually has been reached. For a multistart
strategy this kind of analysis has been done by Betro en Schoen (1987) and
Boender and Rinnooy Kan (1987). In their approach a priori distribution of the
number of optima and the size of the regions of attraction of the optima is given
and adapted during performing the local searches. The adapted probability distributi­
ons result in estimates of the probability that a new local optimum is discovered or
that a better point will be found. Schoen as well as Boender use the probability to
derive stopping rules. Our user was interested in the idea to obtain a kind of
certainty estimate, the probability itself, that the optimum is reached after a night of
calculation, a probabilistic statement about the best point which has been found.
Notice that when the number of evaluations or local searches is low (expensive
function evaluations), the probability will depend much on the initially assumed
prior distribution.

As one of the main instrument for influencing the local versus global search we
used the number of generated random points before a local search is started from
the best point of this sample. This basic approach is called Multi-singlestart and is
analyzed further in 5.6. When there are many local (not global) optima, the user can
put more effort in global search instead of spending all "ammunition" of function
evaluations on detecting local optima and thus spend more energy on global scan­
ning. Another possible approach is to switch to other methods. One could switch
towards simulated annealing or other adaptive search methods which, as outlined in
5.1, are more or less combinations of global and local search.

In a multistart environment, clustering is a useful approach and an option for
influencing the search, see e.g. Timmer (1984). This can be implemented such that
when a random point is generated it only serves as a starting point for a local
search, if it is not 'too close' to a cluster of points around a local optimum. This is
called Simple Linkage. One parameter in this way of looking for the optimum is the
critical distance which decides on what is 'close to'.

164 5.5. A DSS for BOP

The last option mentioned here is the possibility to change the local search method.
Direct search methods such as that of Neider and Mead (1965) are known to be
able to handle nonsmooth objective values. If the nonsmooth character of the
function was not already clear from the way the objective has been constructed, it is
only discovered during running the search process by a bad convergence perform­
ance of methods based on iterative linesearch.

Let us summarize the information between user and search process as mentioned in
this section.

gl information: from user towards search process
general for nonlinear optimization

-stop and resume
-tolerances for the local search
-choice of local search method
-setting bounds and fixing parameters
-deliver a starting point
-instructions for the report

global optimization
-trade-off between local and global search
-random seed
-influence clustering

g2 information: from search process towards user
-graphical information on the decision space
-current function value
-best function value found sofar
-number of evaluations in the current local phase
-graphical information from the user model
-number of optima found
-number of times an optimum has been detected
-estimate of the time of one function evaluation
-estimate number of function evaluations for one local search
-"confidence figure": indicator on how certain the optimum has been
reached

An interesting question is now how the user may adapt the main instrument in
global optimization, the choice between local and global search, given the informa­
tion which is generated by the search process. In a situation where the user orders
his computer to search in the feasible area, walks out his office and when he returns
in the morning wants to have obtained some good answers, good heuristics would
be welcome. This question will be discussed in Section 5.6, where we further
analyze the efficiency of possible decision rules for a situation where the calculation
time is considered limited.

165

5.6. A limited solution time

5.6.1. Introduction

The box constrained global optimization problem, which is to find the global
optimum of a real valued, in general multimodal objective function over a hyperrec-
tangle XŒR", has been studied by many researchers. An efficient and often applied
approach is to perform a local search from points derived from a random sample
from a probability distribution over X. Attention has been paid to the derivation of
stopping rules to determine the sample size. In many practical situations the
function evaluations necessary for the optimization can be rather time consuming
e.g. it may need minutes, as a special subroutine or program has to be run to
determine the function value. This has been illustrated by the problems in 5.2, 5.3
and 5.4. In such a case it is not uncommon that with a given amount of calculation
time e.g. a night or a weekend, one wants to reach a point in X with a function
value as low as possible. The limited time to find a good solution can also be found
in cases such as power station decisions, where the decision time is restricted. In
this section we introduce for this case the term Box Constrained global optimization
problem with a given Budget of function evaluations, BCB problem for short. In
5.6.3 the Multi-singlestart method is presented and possible strategies within this
method are discussed. In 5.6.4 criteria are introduced to measure the performance of
solution methods for the problem class. The criteria are numerically illustrated for
various methods and instances of the BCB problem. In 5.6.5 an analysis can be
found on the performance of random search methods for the BCB problem. This is
followed by a discussion of the results and conclusions in 5.6.6. The analysis of this
section can be found in Hendrix and Roosma (1996).

5.6.2. Box constrained GOP with a limited solution time

In many applications in engineering one wants to find the minimum of a real valued
function ƒ over a region X defined by lower and upper bounds on the variables. (X
can be called a closed hyperrectangle or a box.)

min fix) (BCP)
xzX

It will be assumed that fix) is a real valued possibly multi-extremal continuous
oracle function for which no derivatives or other global information such as a
Lipschitz constant or concavity properties are available. Evaluating the function is
similar to presenting parameter values to a black-box, possibly implemented in a
subprogram, which calculates the function as a criterion on the parameters.
Zhigljavsky (1991) introduced a classification on global optimization problems
based on the prior information on the problem. In this classification the BCP
problem is classified as type a), it is only known that ƒ is continuous.

166 5.6. Limited solution time

In technical oriented literature, pragmatic approaches can be found to solve the
problem. See e.g. Pronzato et al. (1984), Bohachevsky et al. (1986), Brazil and
Krajevski (1987). In Mathematical Programming literature, analyses on various
global optimization methods are presented. An overview on global optimization
methods can be found in Torn and Zilinskas (1989). Most methods are based on the
idea of globally exploring the feasible area (global search) e.g. by generating points
in the feasible area, and performing local searches to arrive possibly (hopefully) at
the global optimum. In Section 5.1 among others the following elements were
distinguished:

Generating random points
If the target is to discover all optima, the purpose is to try to get starting
points for the local search in every region of attraction. Following the idea
that the region of attraction close to the global optimum contains the lowest
function values, one can also only start a local search from the best point
found during the global search. This idea will specifically be explored in this
section.

Local search
The purpose is to get a local optimum from a "good" starting point.

Clustering
By clustering random generated points, a part of the local minimum structure
can be discovered and one can save a number of function evaluations by
only starting a local search once for each cluster.

Focus of this section is on the practical case, where there exists a budget for the
computer time. Given this budget the search method should result in a function
value (and corresponding point in X) as low as possible. It is assumed that the
budget in computer time translates directly to a budget B on the number of function
evaluations during the search process, i.e. every function evaluation requires the
same calculation time. This problem will be called the box constrained global
optimization problem with a given budget on function evaluations, the BCB
problem. We concentrate on the combination of generating random points (global
search) and local search, because these elements exist in the core of many methods.
The solution method for this problem allocates budgets to local searches and to
generating random points. A framework of this allocation is presented in the next
section.

Chapter 5. Stochastic approaches 167

5.6.3. Multi-singlestart

In the literature on random search based methods the following approaches have
been analyzed.

-Pure Random Search (PRS) (see e.g. Zabinsky and Smith, 1992): Generate a
number N of random points from a uniform probability distribution over X and
evaluate them. The lowest point is an approximation of the global optimum.
PRS

1. Generate and evaluate random points in X
2. Determine the best value yr and incumbent minimizer xr

Random search methods have been studied, among others, by Zabinsky and Smith
(1992), Zhigljavsky (1991), Romeijn (1992) and Klepper and Hendrix (1994),
focusing mostly on adaptation of the distribution function over X.

-Singlestart (SIS): Generate and evaluate random points over X and start one local
search from the lowest point found.
SIS

1. Generate and evaluate random points in X
2. Determine the best value yr and incumbent minimizer xr

3. Start a local search with starting point xr

-Multistart (MUS): At every iteration, a random point is generated in X as a starting
point for a local search.
MUS

Do for t=\ to N
1. Generate a random point x, in X
2. Start a local search with starting point xt

In Boender and Rinnooy Kan (1987) and Betro and Schoen (1987) studies can be
found on when to stop the multistart process given some criteria on the trade-off
between reliability and computational effort.

When we have a budget on the number of function evaluations, as in the BCB
problem class, the application of the SIS method would consume as many function
evaluations as possible for the global search, whereas the MUS method allocates the
budget towards local searches. The success of both methods depends on the instance
of the BCB problem, which a priori is unknown. For an instance of the BCB
problem with a few local optima and sufficient budget to perform some local
searches, it may happen that multistart proves to be the best strategy. For a problem
with many local optima which are much different from the global optimum, it may
be better to perform one local search from the best of a long list of random points,
than to spend all "ammunition" on identifying local optima. The existence of many

168 5.6. Limited solution time

local optima may occur in practical cases due to numerical effects e.g. when an
evaluation involves the numerical integration (fitting of continuous models) or
inversion of a matrix (optimal design of experiments).

The message is that, if the surface of f is "rough", so that there are many
local optima, then more effort should be put into global search, conversely if there
are only a few optima, then more of the budget can be allocated to local searches.
Due to the character of the BCB problem, this function structure is of course
unknown when the search starts. During the search process more of the structure is
revealed and the allocation of budget to local searches and global search can be
adapted. Here we get to the idea of multi singlestart (MSIS), where the number of
random points to be evaluated depends on the structure revealed during the search.

MSIS
0. t=\
1. Generate and evaluate N, random points on X.
2. Identify the best point x, out of the N, points.
3. Perform a local search with starting point x, .
4. If budget is left, t=t+\ and go to 1.

At every stage t in step 1, the number of random points N, is chosen before the next
local search is performed from the best of those points (if enough budget B, is left).
So more or less effort can be put into the global search.

The number of function evaluations F, necessary to perform one local search
does not only depend on tolerances, but also on the starting point and the function
under consideration. Thus, F, can be considered as a random variable. During the
search, estimates of (the expected value of) F, become available. Note that F, tends
to decrease when N, increases, due to the fact that part of the local search work is
taken over by the random search.
As a variant of the decision parameter A', we introduce the parameter Kr

Kt: number of local searches (iterations) intended to be performed before the budget
is exhausted.

If the part of the budget which is not used for local searches is equally divided over
the intended iterations the number of random points N, can be derived from :

N, = (B, - F, - FM -...-F,+KA)/K, .

A uniform estimate F for the expected number of function evaluations for a local
search reduces the formula to:

N, = B,IK,-F

The maximum number of local searches that can be performed is estimated by

Chapter 5. Stochastic approaches 169

Kmax, = [B,/F] . At every decision stage t, K, is chosen between 1 and Kmax, . The
SIS method corresponds to K,=\ and MUS can be approximated by choosing
K,=Kmaxr

We now define a MSIS strategy as a choice rule to determine N, (or K, alternative­
ly) at every iteration from the information generated by the previous iterations.
At step 1 of the algorithm among others the following information is available:

B, : budget left
Nloc, : number of different local optima found
t-\: number of local searches performed sofar
F: expected (estimate) number of function evaluations necessary for one local

search
Kmax,: [B,/F]

Now, various strategies can be constructed. If we follow the general idea described
above, then if many optima are found, K, should be tending to 1, which means the
pure SIS strategy. If the prior expectation is the existence of many local optima, the
corresponding strategy is to have AT,=1. One problem is that there is no good
estimate for F, when no local searches have been performed. Another approach is to
start with the hypothesis that there exists only one local optimum. At the first and
second iteration a local search with one random starting point (N{=N2=l) can be
performed. If the local optima found are equal, the hypothesis still holds and one
can proceed with multistart in an attempt to check the hypothesis by discovering
other local optima. If they are not equal, there are apparently multiple optima and,
in an attempt to detect the region of attraction of the global optimum, N, can be
increased. Another possibility is to base the choice of Nt on an estimate of the
number of undetected local optima, see e.g. Boender and Rinnooy Kan (1987). To
illustrate the idea of MSIS strategies we introduce the following rule (Hendrix and
Roosma, 1996) which is called ß heuristic (as depending on the parameter ß>0) :

(Kmax - \){Nloct - 1)
Kt = Kmax, - - Î '- -

(Nloc, - 1) + ß M (5-5)

Nloc.

The parameter ß weights the relative number of different optima found compared to
the number of local searches performed. When r-l/Moc,—»°°, the rule approximates
pure multistart (K,-^>Kmax,) in an attempt to discover new optima. If every local
search results in a new local optimum, the rule tends to singlestart, K,-*l.

After the introduction of the BCB problem and possible solution methods there is a
need to establish performance criteria.

170 5.6. Limited solution time

5.6.4. Performance criteria for the BCB problem

In the OR literature it is common to use the number of function evaluations used
and the indicator whether the global optimum has been found, as a performance
criterion for global optimization methods. For the BCB problem the objective is to
reach a point as good as possible given budget B, hopefully it is the global opti­
mum. So the best function value found is the criterion. The score on these classical
criteria does not only depend on the local search method, tolerances and stopping
criteria, but in random search techniques also on the random series used. To filter
out this random effect, the expected values for those classical criteria are suggested
in this book to be applied as criteria for the BCB problem.

PG(B): the probability of a search method reaching the global optimum within
budget B.

ER(B): expectation of the record value found with budget B.

The possibility to analyze the behaviour of algorithms with respect to the criteria is
limited. In general, estimates for these criteria for various search strategies on test
functions can be determined by Monte Carlo simulation. Only for multistart the
probability of reaching the global optimum can also be approximated analytically by
the following idea. Let D* be the region of attraction of the global optimum and let
V=V(D*)/V(X) be its relative size. Let F be the average number of function evalu­
ations necessary to perform one local search (which is itself stochastic) and B the
budget. The number of local searches that can be executed is [B/F]. This makes the
probability of reaching the global minimum, as given in (5.2), at least

PG(B) = 1 - (l-v)[B//n (5.6).

The PG(B) and ER(B) criteria are illustrated here for various instances of the BCB
problem. Monte Carlo simulations are done to estimate the score on the two criteria
for the ß-heuristic (5.5) for some values of ß and for the MUS and SIS strategy.
For the ß-heuristic we choose NX=N2=\. This implies that for low budgets the
heuristic performs exactly the same as MUS. For SIS an estimate should be
available for the number of function evaluations necessary for one local search.

Test functions for which the number of local optima varies can be found e.g.
in Torn and Zilinskas (1989). To see any difference, test functions with many
optima are of interest. Therefore the Rastrigin function (50 optima), the Shekel
functions (5,7 or 10 optima) and the Goldstein-Price function are taken from this
reference.

For the local optimization a variant of Powell's method (Powell, 1964),
adapted for the box constraints, is used. In the linesearch initially small steps are
taken in an attempt not to miss the nearest optimum. The stopping criterion is
defined on the progress in function value. Moreover, after every linesearch it is
checked whether the iterate is close to an optimum already found. The tolerance of

Chapter 5. Stochastic approaches 171

PG(B)

being close to an optimum is
taken as 1 percent of the
componentwise range of the
variables. This check speeds
up the search process, and
causes F, to decrease when
the iterations proceed.

The estimation of the
criteria PG{B) and ER(B) is
done by running the random
search many times with
various random series for
fixed values of the budget B.
For lower values of B, the
fluctuation of the criteria is
larger, does more depend on
the random series, than for
higher values of the budget
where the probability PG(B)
approaches 1. Therefore more replications were done (10,000) for small values of B
than for large values of B (200). As a numerical illustration we applied MUS to the
Rastrigin test function (See Torn and Zilinskas 1989). The relative size of the
region of attraction D* for the local optimizer used was v=0.0346. In Figure 5.9 the
theoretical smooth curve of (5.6) is confronted with two curves that were found by
Monte Carlo simulation.

0.6 0.8 1 1.2 1.4
function evaluations (thousands)

Figure 5.9: Probability to reach the optimum for
multistart

PG<B) ,n The performance of MUS,
SIS and the ß-heuristic have
been estimated by Monte
Carlo simulation for the
Rastrigin test function. The
results are given by Figure
5.10 and Figure 5.11.

The results illustrate the idea
of the criteria. Given an
instance of the BCB prob­
lem, every solution method
has its PG(B) and ER(B)
curve. For the five solution
methods (MSIS strategies)
for which the curve has been
approximated, the ß-heuristic

with a value of ß = 10 performs the best for this test function. This illustrates how

0.6 0.8 1 1.2 1.4 1.6
function evaluations (thousands)

BUDGET

Figure 5.10: Results of criterion PG(B) for the Ras­
trigin function for various strategies

172 5.6. Limited solution time

the criteria introduced can be used to judge on search strategies for the BCB prob­
lem: A particular method is better than another for a certain instance of the BCB
problem, if its PG(B) curve is higher or its ER(B) curve is lower. In Figure 5.11 we
see that from the five stra­
tegies, the ß=10 rule has the
best expected value for the
best function value found.
The objective function value
of the global minimum is -2.

ER(B)
-1.81
-1.82
-1.83
-1.84
-1.85
-1.86
-1.87
-1.88
-1.89
-1.9

-1.91
-1.92
-1.93
-1.94
-1.95
-1.96
-1.97

What determines the success
of generating random points
in the context of increasing
the probability that the glo­
bal optimum is detected? We
first illustrate the difference
in efficiency of generating
points by two extreme
numerical examples. In 5.6.5
we will try to analyze this
extreme difference. Figures
5.12 and 5.13 give the performance, according to the PG{B) criterion, of the five

strategies for the Shekel-5
PG(B)

0.5 0.7
function evaluations (thousands)

BUDGET

Figure 5.11: Results of criterion ER(B) for the Ras-
trigin function for various strategies

0.9 -

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

o -

/
/'

, , • • '

f /

S I S ^

-y£^~^""

r z ^ ^ '
-" M U S

1,10
0.1

function and the Goldstein-
Price function respectively.
The results show that gene­
rating many random points
is efficient for the Goldstein-
Price function, whereas it
apparently is not efficient for
the Shekel-5 test function.
This illustration leads to the
question whether there exists
a MSIS strategy, or more
generally a method, which
performs better for all
instances of the BCB prob­
lem for all values of the
budget. To formalise this
question we define the con­
cept of dominating methods.

A method is called PG-Dominating if for all instances of the BCB problem, PG(B)
is higher than (or equals) PG(B) of all other methods for all values of budget B.

100 200
function evaluations

400

BUDGET

Figure 5.12: Results of criterion PG(B) for the
Goldstein-Price function for various
strategies

Chapter 5. Stochastic approaches

5.6.5. Analysis of random search methods for the BCB problem

173

Can a dominating method
exist for the BCB problem?
To answer this question we
first analyze for which cases
it is profitable to put more
effort in global search than
is done by multistart. As
mentioned in 5.6.2, the
objective of generating ran­
dom points (or increasing N)
is to increase the probability
that the starting point of the
local search is situated in D*.
We use the following nota­
tion.
The relative size of a level
set S(y) is defined as

MÜ0 = V(S(y))/V(X).

PG(B)

MUS

^ w 0.1

0.4 0.6 0.8
function evaluations (thousands)

BUDGET

Figure 5.13: Results of criterion PG(B) for the
Shekel-5 function for various strategies

When x is uniformly distributed over X, y = fix) is a random variable with cumulat­
ive distribution function ia(y) = P[/(x) < y} and probability density function u'(v).
By performing a random search with N points the probability density function
MN'(yr) of the record value yr (lowest function value found) is

MN'(yr) = Nu'(vr)(l - MOV))""1 .

The success of a global search depends on the probability that the point xr corre­
sponding to yr is in the right region of attraction, D*. We define

(pO0 = P { * e D*\fix) = y}

as the probability that a point x is in the right region of attraction given that x is
situated at a contour with height y. The efficiency of going deeper into the level
sets by generating random points depends on the shape of (p(j). If one random
starting point is used then the probability to reach the global optimum equals the
relative size v = V(D*)/V(X) of D*:

y

v = ƒ cpO) dp(y) (5.7)

174 5.6. Limited solution time

in which yt = min f(x) and y * = max fix) .
xeX xeX

By first generating N points and then starting a local search from the lowest of
these points, the probability PSN of reaching the global optimum is

y

PSN = f <p(y)MN'(y)dy . (5.8)

Essential in the analysis is that PSN may be worse (lower) than v. This occurs when
there is a wide relatively deep level set of which a large part does not belong to D*.
As an example from the standard test functions (see Torn and Zilinskas, 1989) the
Shekel functions have this characteristic, as we have seen from Figure 5.13. This
implies that SIS performs very bad versus MUS. The Goldstein-Price function gives
the opposite result, see Figure 5.12.

The function (p(v) is apparently very different for those two examples.
However u(y) also differs for every problem. To make cp(v) more comparable, we
introduce the following transformation. Let z be a uniformly distributed random
variable defined as z = |i(y). In other words u~'(z) defines the quantiles of y. Notice
that the function |a(y) is increasing and not necessarily continuous. The function
\i~\z) exists. Now equation (5.7) can be written as

y '

v = ƒ (p(y)Ju(v) = ƒ <p(n-'(z))<fe . (5.9)

Every value of z is "equally probable". We will call the function \|/(z) = (p(|i"'(z)) a
characteristic function (not to be confused with the probabilistic meaning), as it
contains all information to calculate (5.8) and consequently gives the exact informa­
tion on the efficiency of generating random points. Note that \|/(z) approaches 1
when z goes to 0. Equation (5.8) can be replaced by

PSN = ƒ V(z)iV(l - z)(N-l)dz . (5.10)

The characteristic function V|/(z) determines the success of generating random points
and contains much more information than e.g. the number of optima. It should be
mentioned that the information of \|/(z) is in general not available, so it cannot be
applied in an algorithmic framework. It has been introduced for analytic reasons.
For illustrative purposes the function \|/(z) is approximated numerically by Monte

file:///i~/z

Chapter 5. Stochastic approaches 175

Figure 5.14: Characteristic function for the Gold­
stein-Price problem

Carlo simulation for the two
extreme example functions.
In Figure 5.14 and Figure
5.15 numerical approxima­
tions can be found.
In limit \|/(z) approaches 1
when z goes to zero. How­
ever for the Shekel-5 func­
tion this limit is that distant
that it cannot be observed in
the numerical estimates.
Increasing the number of
random points leads the
point x, away from the right
region of attraction D*. For
the Goldstein-Price function
generating random points
improves the probability that
the global optimum is

reached. This shows that given the information which becomes available during the
search, it is impossible to determine a search strategy which performs better than all
other strategies for all
instances of the BCB prob­
lem; a PG-dominating
method does not exist. We
used the concept of the
characteristic function to
show that MUS has to be
the optimal method over all
possible MSIS strategies for
the Shekel-5 problem. This
strategy is not optimal for
other instances of the BCB
problem. z

Furthermore we have seen
that knowledge of the char- F i § u r e 5 1 5 : Characteristic function for Shekel-5
acteristic function, which for
practical problem solving will be out of the question (given the budget on function
evaluations), gives by calculating (5.10) how the probability PSN of reaching the
global optimum changes, when the lowest point x, of a random search with TV,
points is used as a starting point for a local search. This is illustrated by Figure 5.16
and 5.17. In those Figures, PS, equals v, the relative size of the region of attraction
of the global optimum. The well known rule from stochastic methods that PS —» 1
when N —> °°, applies here, but cannot be derived from Figure 5.17.

0 0.2 0.4 0.6 0.8 1

184 6.1. Introduction

A less frequently used criterion is to look at the maximum absolute error
max, | e,.(0) | over the observations. The minimization of squared errors (6.3) has an
important interpretation in statistics. When assumptions are made such as that the
measurement errors are independent normally distributed random variables, the
estimation of 9 by minimizing ßß) of (6.3) corresponds to a so called maximum
likelihood estimate and probabilistic statements can be made, see e.g. Bates and
Watts (1988). Parameter estimation by minimizing (6.3) given data on z, and xt is
called an ordinary least squares approach.

The formalisation is sufficient to discuss the idea of identifiability. When a linear
regression function

z(x, 9) = 9, + 9^

is fitted to the data of Figure 6.1, ordinary least squares (but also minimization of
(6.2)) results in a unique solution, optimal parameter values (9„ 92). There is one
best line through the points. Consider now the following model which is nonlinear
in the parameters:

z(x, 9) = 0,92;t .

The multiplication of parameters sometimes appears when two linear regression
relations are combined. This model corresponds with a line through the origin. The
best line
z = CONSTANT x x is uniquely defined; the parameterization however is not. All
parameter values on the hyperbola 9,92 = CONSTANT give the same goodness of fit.
The set of solutions of the optimization problem is a hyperbola. The parameters are
non-identifiable, i.e. cannot be determined individually. For the example this is
relatively easy to see. For large models, analysis is necessary to determine the
identifiability of the parameters, see Walter (1982) and Mous (1994).
For the optimization problem this phenomenon is important. Application of a
multistart strategy will lead to a new (global) optimum at every local search. The
number of optimal points is infinite. In 6.2 this problem is elaborated further.

In Section 2.6, the learning of a neural net was considered from a parameter
estimation point of view. In this problem there is more than one parameter vector
leading to the same model description. We have shown for this problem that the
number of global optimal parametrizations is not necessarily infinite, but it grows
more than exponential with the number of hidden nodes due to an inherent symme­
try in the optimization problem.

We focus further on the least squares formulation (6.3). The quadratic character has
been used for the derivation of specific algorithms. Moreover, there is a statistical
link between the reliability question and (6.3). We will outline both aspects.
In both aspects the so called Jacobian plays a role. Consider the m measurements

Chapter 6. Parameter estimation 185

(jtj; z,), i = 1, •••, m and a regression model with parameters 8;, j = 1, ..., n. The
residuals are e, = z(x,, 6) - z,., i = 1, ..., m. The Jacobian 7(G) of the m functions
e,(9) is defined as the m by « matrix with partial derivatives as elements:

9e,.(9)/ae; = 9z0c,,e)/39;.

For linear regression, the model z(x„ 9) is linear in the parameters 9 and the
Jacobian is constant. In general, for standard nonlinear regression functions the
derivatives can be derived analytically. For the logistic regression function (6.1) the
row i of the Jacobian is given by

t i 9 / * 9 , 9 ^

1 + Q2e^' (1 + %2e**f (1 + %ee>*)2

Notice that this matrix for some parameter vectors will appear singular, e.g. 9, = 0.
For complex models where the function z(x, 9) is in fact a routine it is not certain
whether the derivatives exist at all. The analytical expressions are in general not
available. Often the Jacobian is approximated numerically for these oracle models.

6.1.2. The Jacobian and finding the minimum

The Jacobian plays an important role in algorithms for finding the minimum of
(6.3) iteratively. Given a trial parameter vector 9 with corresponding residual vector
e(9) and objective flß) = eT(Q)e(Q), one tries to find a direction d in which the
function decreases. The function value in the direction d can be approximated by:

J{Q + d) = eT(Q + d)e(Q + d)
= (e(9) + J(Q)d)T(e(Q) + J(Q)d)
= eT(Q)e(Q) + 2 rfr7r(9)e(9) + dTJ\Q)J(Q)d. (6.4)

The approximation (6.4) is a convex quadratic function in d. The minimum is given
by the so-called normal equations

JT(Q)J(Q)d = -/r(9)e(9). (6.5)

Formula (6.5) results in the so-called Gauss-Newton direction d. A procedure based
on (6.5) will fail if the matrix 7(9) is (almost) singular. A well known remedy is
due to the Levenberg-Marquardt method (Marquardt, 1963). This changes (6.5) into

(7r(9)7(9) + XT)d = -JT(Q)e(Q), (6.6)

where parameter X is chosen according to a certain strategy and I is the nxn unit

186 6.1. Introduction

matrix. The Gauss-Newton and Levenberg-Marquardt method are available in
statistical packages which deal with nonlinear regression.

For complex models, no partial derivatives are available and numerical estimates
may be expensive to evaluate. The model run may require considerable simulation
time. For such large models we observed the use of direct search methods such as
Nelder-Mead (1965) and the method of Powell (1964), to obtain optima of the
goodness of fit function y(9). In that case no use is made of the quadratic express­
ions in (6.3).

An intermediate method, exploiting the quadratic structure, but not requiring
derivative information is the so-called DUD (Doesn't Use Derivatives) method
(Ralston and Jennrich, 1978), which we will sketch here. An idea is taken from the
method of Powell, which does not use derivatives to construct search directions, but
derives new directions from former iterates. The DUD method follows the same line
of reasoning for the Jacobian. The Jacobian is not approximated numerically at one
point, but is replaced by an estimate F which is based on n+\ former iterates. The
error function in (6.4) is approximated by

e(Q + d) - e(9) + Fd . (6.7)

Every error function e,(9 + d) i = 1,.., m is approximated by a plane e,(9) + F,d , in
which F, is row i of F. The matrix F is constructed such that (6.7) is exact for the
former n iterates. This requires some formalisation. Given the iterates 9,, ..., 9„+,
and resulting directions dp = Qp - 9„+1, F is constructed such that

e(Qp) = e(9„+1 + dp) = e(9„+1) + Fdp p = 1, ..., n . (6.8)

Similar to (6.4) the DUD direction is a solution of

FTFd = -FTe(Q).

Geometrically, because matrix F fulfils (6.8), the m planes described by (6.7) go
exactly through the n + 1 previous values of e(9). The base of the Gauss-Newton
method, e(Q) + JT(Q)d, describes a tangent hyperplane at 9 of the error surface
(Ralston and Jennrich, 1978). Due to algebraic operations, it is not necessary to
calculate F explicitly. The plane (6.7) can be described similar to the way the affine
minorants were generated in Chapters 2 and 4 and the piecewise approximations in
Chapter 3. The DUD method can also be found in statistical packages (e.g. SAS).
At the end of the procedure an estimate of the Jacobian is available. This is
important for the use of the Jacobian in the reliability question.

Chapter 6. Parameter estimation 187

6.1.3. The Jacobian and reliability

Often the researcher is interested in the accuracy, precision of the estimated
parameter values. An intuitive interpretation is that all parameter values with nearly
the same goodness of fit are as likely or as probable as the optimal parameter
vector. This intuition is indeed affirmed by statistical theory, see e.g. Bates and
Watts (1988) and Ross (1990). Assumptions such as the existence of independent
identically distributed measurement errors leads to the following general asymptotic
result (number of observations grows to infinity). The Jacobian J at the real value
of 0 appears in the variance-covariance matrix of the least squares parameter
estimator ^{ßff1, with o2 the variance of the measurement errors. Notice that the
expression does not exist, when the Jacobian J is singular. This appears when 8
cannot be identified. The theoretic covariance matrix leads to a usual construction
of an ellipsoidal confidence region around the estimated (optimal) parameter vector
9*:

(9-9*)r J r(9*) 7(9*)(e-e*) < _ ü _ fiQ') F (n,m-n) , (6.9)
m-n

where Fa(n,m-n) is the upper a quantile for Fisher's F-distribution with n and n-m
degrees of freedom. One expects the true value of 9 to be in this ellipsoidal region.
Seen from an optimization point of view (6.9) defines a level set of a convex
quadratic function. The quadratic function is an approximation of flß) -fiQ') so that
the ellipse approximates in fact the level set

m -ƒ'<_!!_ƒ• Fa(n,m-n). (6.10)
m-n

According to the likelihood method (6.10) gives the region in which with a certain
confidence the true value of 9 can be found, see among others Donaldson and
Schnabel (1987).

Klepper and Hendrix (1994) illustrate with a simple case of logistic
regression that (6.9) may approximate (6.10) very poorly. The drawback of general
formula (6.10) over the elliptic asymptotic approach (6.9) is that it is hard to
represent the set with probable values of the parameters to a researcher. For the
elliptic description only the elements of the Jacobian, ƒ* and n and m are required.
How can a possibly banana shaped level set be described efficiently?

Several papers dealt with this question. A thorough study can be found in
Donaldson and Schnabel (1987). A general measure to describe the curvature of the
regression function is sought in their paper. Less curvature, a 'more linear'
regression function, gives a better approximation of (6.10) by (6.9). Walter and
Piet-Lahanier (1988) suggest to generate points on the boundary of level set (6.10)
and to represent (6.10) by interpolations between the points. For nonconvex regions
this is not a good idea. Klepper and Hendrix (1994) suggest to use a set of random
generated points in (6.10) and their neighbourhood to represent the level set. An

188 6.1. Introduction

earlier study of Klepper and Rouse (1991) focused on the use of the resulting
population, cloud of points of the method of Price (Chapter 5, Price, 1979) to
represent the confidence level set (6.10). The final set of points of the method of
Price appeared not to lead to a sample of a uniform distribution over the level set.
This gives rise to a specific question in the field of random search methods: How to
generate efficiently a set of points from a uniform distribution over a level set? This
question is elaborated further in Section 6.3.

6.1.4. The Jacobian and optimal experimental design

The second optimization question in model validation, namely experimental design,
also focuses on the asymptotic covariance matrix V(9) = a2(/r(0)7(6))_1 given a
certain parameter vector 0. We outline the problem briefly here. The aim of obtain­
ing reliable estimates for 9 is translated in getting the variances determined by V(G)
as low as possible. A smaller variance of an estimator results in an estimate with a
higher reliability.

The variance of the measurement error a2 cannot be influenced. The Jacobian
7(0) which consists of the partial derivatives 3z(A:„0)/98y is not only influenced by
the choice of the parameters, but also by the choice of the points of measurement xt.
The question of experimental design is how, given a model z(x,0) and a parameter
vector 0, the observations *, should be chosen such that the reliability of the
estimator of 0 is as big as possible. To solve this question, first of all a criterion
function on the matrix V(0) is necessary, to decide on which matrix is better. Often
the so called D-criterion, the determinant of the matrix is minimized, but other
criteria, such as the trace, are also possible. Notice that for the experimental design
problem, 0 is given and the observations are the decision elements, opposite to the
parameter estimation problem. A confusing terminology appears when in experi­
mental design a local optimal design expresses the design to be optimal with
respect to the parameter vector 0. This is a complete other notion of local
optimality than in global optimization where it denotes optimality with respect to
the environment of the solution.

The generation of realistic designs of experiments is a complex optimization
problem. In a realistic situation there is a budget on a number of experiments which
can be done. The question on where to sample in the experimental region is a
continuous optimization problem. The question how many observations to take at
the measurement points is an integer decision problem. In fact we are dealing with
a mixed integer-continuous problem. We will give a flavour of the problem without
going into detail.

Let us first consider linear regression. In linear regression the Jacobian does
not depend on the parameter vector. Intuitively one should choose measurement
points as distant as possible from each other, at the extremes of the experimental
area, to fix a line or plane and consequently to fix the parameters as much as
possible. This is indeed what comes out of an analysis of V(9), see e.g. Rasch

Chapter 6. Parameter estimation 189

(1995). For standard nonlinear regression functions, such as the logistic regression
function (6.1), expressions of elements of the asymptotic covariance matrix are
available. The determinant of the matrix for logistic regression can be expressed as
a function on operations on the measurement points *,-.
For logistic regression the curve is not only determined by its endpoints, but also by
the infliction point. The optimal design includes measurement points at the
endpoints and also in the neighbourhood of the infliction point. In Rasch et al.
(1997), we investigated the optimization problem of selecting measurement points
which are bound to be selected from a predefined set of candidate points. At each
measurement point only one observation is allowed. This turns the optimization
problem into a typical combinatorial optimization problem. How to pick out m
points out of a larger set such that some criterion on the covariance matrix is
optimal.

6.1.5. Cases

The models of the parameter estimation problem range from linear regression,
standard nonlinear regression functions to complex models existing of sets of
differential equations. The application of linear and nonlinear regression functions is
common in research and for the parameter estimation problem standard methods are
available which in general lead to global optima. The use of one or a few differen­
tial equations occurs among others in chemistry, food science and physics. The
parameters often have a physical meaning. Stortelder (1997) describes methods for
parameter estimation in systems with partial differential equations. Moreover he
describes a prototype DSS for the estimation problem similar to the BOP prototype
in Chapter 5. At various research departments and institutes we observed that
statistical consultants developed their own software to handle parameter estimation
problems of researchers.

River flow models
A description of parameter estimation in large complex models seen from the global
optimization point of view can be found in Pinter (1996a). He considers large river
flow and water quality models of which the predictability is of great importance,
certainly in The Netherlands. Sometimes parameters have no important interpreta­
tion, but are used to fit the data more accurately with the model. Every function
evaluation, calculating the goodness of fit of a parameter vector, involves simulating
a large model.

Runoff models in wastewater treatment
Similar experience at the Agricultural University can be found in Grum and
Aalderink (1997). A large model was considered to describe the runoff flow rate
and concentrations of suspended chemical oxygen demand at the overflow point in
a sewer system. Six parameters were estimated by comparing the full model simula-

190 6.1. Introduction

tion with observation series. The sum of squared errors was minimized using a
direct search method. At the global optimal parameter vector the Jacobian was
numerically estimated to create an estimate of the asymptotic covariance matrix.

A noticeable other achievement of the same group is the attempt to estimate
parameters of a given black box model of which the simulation time is half an hour.
The model consists of a program (executable only) provided by another institute,
which was fit to local data. The estimation problem is an extreme case of the oracle
type of optimization problems discussed in Chapter 5 and was handled with a
variant of the BOP prototype. The function evaluations were recorded in a log-file
so that after a long optimization period one could examine the progress. It may take
days before some local optima are detected.

Estimating mass fractions in geology
Let us in contrast to the oracle example, describe a parameter estimation problem
with many parameters and an explicit model formulation from geology, in which
we were involved. Meijer and Buurman (1997) report on a method to explain data
from soil samples with a case from the soil of a volcano in Costa Rica. For 20
samples i = 1,...,20 in total 14 properties propik, k = 1,...,14 were measured. A
common method is to use factor analysis to describe the observations. The
researchers however, were convinced they would be able to determine the underly­
ing mass fractions of the constituents of the samples by estimating those fractions
fraCfj and the parameters QJk which explain the properties from the mass fractions
simultaneously:

Prop* = E % Hf™»-
j

Only measurements on the properties are available. In first instance the parameters
of such a model cannot be identified; by increasing 9^ with a factor and decreasing
fraCjj with the same factor one can end up with the same prediction of propik. This
effect disappears by the observing that the fractions sum to unity:

E frac. = 1 (6.11)
i

A second observation is that due to symmetry the indices j can be interchanged;
after the estimation it is not clear which fractions represent which constituents (iron,
aluminium, carbon, etc). This structure, mentioned in Section 2.6, causes the model
to result in the same prediction for various parameter vectors. The researchers added
so many relations on fixed proportions, maxima and minima that the solution tends
to be unique and corresponds with their physical interpretation. As 7 constituents
are distinguished, the resulting optimization problem calculates the goodness of fit
of 20 x 14 = 280 observations with the aid of 7 x 14 = 98 parameters 6^ and

Chapter 6. Parameter estimation 191

20 x 7 = 140 parameters frac,-,, which due to (6.11) can be reduced by 20. The
estimation problem is a large scale nonlinear programming problem which can be
handled with nonlinear programming software. Using various starting points finally
an optimum was found which fits the data well. The result appeared very encourag­
ing when finally expensive laboratory results of some of the samples appeared with
the real mass fractions. The measured fractions of the constituents met the estimated
fractions very well. If the model and parameters Qjk are good, expensive laboratory
experiments can be replaced by determining mass fractions with the model given
data of observed properties. Regular factor analysis applies the same type of model.
The hidden regressors fractj are bound to be orthogonal vectors. The model used
here delivers nonnegative fractions which apparently can be interpreted very well.

The geology problem gives the possibility to investigate the identifiability question,
as the explicit expressions are available. The discussed water quantity models are
examples where these expressions are possibly not available. It is more difficult to
generate statements about reliability of the parameters and about identifiability. In
Sections 6.2 and 6.3 some consequences for oracle problems are discussed.

192

6.2. Finding infinitely many optima.

6.2.1. Introduction into the problem

We have seen that in the problem of model calibration, several model outcomes are
fitted to data. A criterion fiQ), not necessarily differentiable, determines the good­
ness of fit (GOF) for a given set of parameters. One of the phenomena which can
occur when determining the solution, global minimum of fiQ), is that every local
search (starting point) results in a new solution vector. It looks as if the parameter
estimation problem has infinitely many optima.

It is known that if the minimum is obtained for all points at a lower dimensi­
onal subset in the parameter space, the values of the parameters cannot be identified
uniquely. See for an extensive discussion on identifiability Mous (1994) and Walter
(1982). In this section we are looking for an existing optimal parameter vector in
cases in which some parameters are 'hard to identify'. An example will be given in
6.2.3. We are not trying to find a mathematical formalization of the concept 'hard
to identify', but we are looking for practical tools to overcome the problems
involved. The resulting optimization problem will be called ill-conditioned. The
terminology has been introduced by Hendrix et al. 1994. As already noted by
Loehle (1988) and Klepper and Slob (1994), the goodness of fit may be much more
sensitive to one group of parameters than to another one. The so called level set of
the response surface (graph of goodness of fit criterion) becomes very narrow in at
least one direction.

It is the aim of this section to look for solution approaches when, due to this ill-
conditioning, the local search procedure ends in nonoptimal points. Numerical
considerations are left out of the analysis. We will switch back to the notation of
Chapter 5, so that the symbol x will be used as an argument of the function fix)
which is optimized. Now we are considering nonlinear programming problems for
which no analytic expression of the gradient may be available. The feasible set X is
either R" (unconstrained) or contains bounds on the variables.

min fix) (P)
x<=X

The function ƒ is a real valued continuous function.

Approaches to solve problem (P) can be so called direct search or pattern search
methods such as grid search, the simplex method, see Neider and Mead (1965), the
method of Rosenbrock or the method of Hooke and Jeeves, see for an overview e.g.
Bazaraa et al. (1993). The approaches we will consider are line search methods of
which the search directions are e.g. the coordinates, based on Powells' method, see
Powell (1964), or based on a numerical approximation of the gradient. There exist
many practical problems among others in parameter estimation, for which such

Chapter 6. Parameter estimation 193

methods converge very slowly to the optimum or alternatively converge to a point
which is not optimal. Adjusting the tolerances which determine the stopping criteria
does not significantly improve the performance of the optimization procedures. The
bad behaviour of the algorithms for this particular class of problems is caused by
ill-conditioning.

In literature, see e.g. Bazaraa et al. (1993), the phenomenon of ill-conditio­
ning has been discussed to describe that the graph of fix) is very flat in one
direction and steep in another. This is formalized by the condition number of the
second derivative matrix (Hessean) of ƒ. In this section we are not looking for an
extension of this formalization for non-differentiable objective functions, but focus
on the consequences for the optimization methods. For ill-conditioned problems the
contours near the optimum tend to lower dimensional surfaces, sets. Such a set can
be a plane or a manifold. A well known example of this is the parabola which
determines the banana shaped valley for the Rosenbrock function. A non-
differentiable analogy of the Rosenbrock function is used as an illustration in Figure
6.2. The global unique mini­
mum is attained at x = (1,1),
which is situated in a valley
given by the Rosenbrock
parabola x2 - x\. l

A local optimization routine
L(x) aims at obtaining a
local optimum of (P) given a
starting point xseX. The
practical problem is that L(x)
due to its finite tolerance
and stepsizes may terminate
with a point which is not an
optimal point of (P). An
optimal point of (P) is by
definition optimal in all
feasible directions. However,
the line search methods check a point on a finite number of directions.

Figure 6.2: Surface of flxlrx2) = 10 +(x-iy

Therefore
after a point on a very low contour has been reached (very low in the valley), the
local search procedure may reach its stopping criterion at a point which is not
optimal. It is quite possible that for every starting point the routine terminates at
another point, which fulfils the stopping criteria. Therefore it looks as if (P) is a
multi-extremal problem with an infinite number of optima.

Definition
Let L be a local search procedure with a given stopping tolerance, and let (P) be an
NLP problem. A point p is called a numerical optimal point (NOP) of (P) if there
exists a starting point XseX such that £(**) = p.

194 6.2. Infinitely many optima

Note that the NOP character of a point depends on the local optimization routine L
and the tolerances used during the search. The local optimal points coincide with a
NOP point whereas this is not so the other way around. When there is one NOP
point, it corresponds to the global optimum. The NOP concept is illustrated for the
test problem in Figure 6.3. The coordinates of ten random points are given in Table
6.1. They are used as starting points for two local search procedures. In the first
procedure the method of Powell is used for generating search directions; in the
second a numerical approximation of the gradient is used.

Table 6.1 Application of two local search methods on 10 random starting points
ioTfix^2) = 10 | x2-x\ | +(x,-l)2, 0<X!<2, 0<x2<2

STARTING POINTS
*1 *2

0.92280 0.16448
0.84802 1.18440
1.95470 0.97075
0.79882 0.29644
1.66906 1.72666
0.05822 0.21136
0.56310 0.90307
1.65135 0.40595
0.73449 0.86155
0.53845 0.73095

ÄW2)
6.87680
4.67571
29.4125
3.45720
11.0387
2.96664
6.05074
23.6343
3.29131
4.62324

P.
Pi

Pi
Pt
Pi

P*
Pi

P»
P<>
P\o

N O P Powells method
x, x2 fixlrx2)
0.40411 0.16330 0.35511
1.08899 1.18589 0.00794
0.98873 0.97758 0.00025
0.54441 0.29644 0.20818
1.31159 1.71981 0.10156
0.46077 0.21136 0.30024
0.95031 0.90307 0.00260
0.63673 0.40595 0.13718
0.92797 0.86155 0.00935
0.85489 0.73095 0.02219

N O P Num. Gradient method

jr, x 2 A*i*l)

0.58936 0.34735 0.16863
1.03694 1.07496 0.00420
1.08765 1.18299 0.00779
0.63466 0.40184 0.14303
1.34877 1.81913 0.12200
0.11838 0.01400 0.77740
0.82747 0.68524 0.03513
0.80767 0.65232 0.03700
0.87669 0.76815 0.01954
0.74477 0.55449 0.06710

7 T
5 / /

/
/ /

/ 2 /

„7 /

/
/

/
/

10 / /

/

In practical parameter esti­
mation one may arrive at
NOP points that do not
correspond to local optima.
One may even have the
impression that the problem
is a global optimization
problem, whereas the fact
that the local search pro­
cedure stops at different
points for different starting
points is due to ill-conditio­
ning. For this class of prob­
lems we suggest some
search strategies and a par­
ticular algorithm in 6.2.2. In
6.2.3 these will be worked out for some cases. Numerical considerations are left out
of the analysis. The ideas are based on Hendrix et al. (1994).

î /

/

Figure 6.3: Numerical optimal points found by Po­
wells method

Chapter 6. Parameter estimation 195

6.2.2. Search strategies

The search strategies suggested are based on a one dimensional minimization along
a curve leading through a set of points found in earlier iterations. We start by
generating a group of NOP points derived from performing a local search on a set
of starting points. If all NOP points coincide, it is assumed that the minimum has
been found.

If the points do not coincide (and there is one optimal point), they are
situated in a lower dimensional set. Now we try to generate search directions along
the surface by taking the difference between NOP points. If a better point is found
along a direction, the local search procedure is started from this point until a new
NOP point is found which replaces the worst point in the set. This total procedure
is called the line improvement step.

If the lower dimensional surface is a hyperplane, this improvement forces the
points in the direction of the optimum. It can be checked whether the points are on
a hyperplane, before applying the improvement steps, in the following way. One
can create a matrix B with columns bk taken as the difference between the NOP
points pk and the first point px, bk = pk- pv When the columns bk of matrix B are
singular, the original points pk are situated in a hyperplane. One can use standard
algebraic software to check this, but a general spreadsheet also provides an answer
on the question if BTB is singular, its determinant is zero.

However, if this not the case, the improvement procedure will lead to a set
of points which in addition to their NOP character have the property that they are
optimal over all lines between the points. The set of points found in this way will
be called a set of line optimal points. The next improvement step is based on
searching along curves leading through three line optimal points in an attempt to
search over the curved surface. A parabola can be constructed between every triple
of points in the set. Again worst points may be discarded when better new points
are found. Analogously we can introduce the term parabolic optimal points, when
the line searches over parabolas through every triple of points gives no improve­
ment and the points do not coincide. When the parabolic improvement is successful,
two points are left over of which the lowest is an approximation of the minimum.
One can proceed with cubic interpolation to generate cubic-optimal points etc. In
general, one can use the term trajectory optimal points. An algorithm to generate a
set of line optimal points is given by the following scheme.

216 6.3. Uniform covering

Complexity
To reduce the advertisement character (this conflicts with Popperian science), which
usually speaks from numerical results such as that of Table 6.7, let us focus on the
analysis of failure rate and uniformity with the aid of a simple (extreme case)
numerical experiment. The analysis of Section 6.3.3 is illustrated here by applying
the UCPR algorithm for generating N=50 points in 5(1.05) for problem f7, a variant
of Q\, with varying dimension and value for the parameter c. It has been argued
that parameter c gives a kind of trade-off between effectiveness (uniformity of the
final sample) and efficiency (number of function evaluations). The uniformity is
measured by partitioning the parameter space in 4 parts of equal size determined by
the sign of the two first parameters JC, and x2. By measuring and adding
(Sample - M?expect j7A«expected for each partition set a statistic appears which
approximately has a Chi-square distribution. As mentioned before, there are many
other ways to measure the tendency of the sample to originate from a uniform
distribution (see Ripley, 1981). An important factor in the analysis of Section 6.3.3
is the so called failure rate; the number of function evaluations that do not give an
improvement of the level set divided by the total number of function evaluations.
We measured those criteria for one run of the UCPR algorithm with values for the
parameter c of 2, 1.5 and 1.2 for the problem f7 with dimension n of 2, 3 and 4.
We just consider one run for each case, to be able to have a look at the final
sample.

Table 6.8: Results of UCPR for problem f7 with varying dimension and values of c

Failure rate Number of function
evaluations

Uniformity
(Chi-square stat.)

n
c

2
1.5
1.2

2

437
344
292

3

1158
709
734

4

2809
1437
1155

2

18%
8%
4%

3

55%
28%
16%

4

77%
55%
25%

2

.88
10.48
12.56

3

110.96
16.24
77.04

4

3.28
.88
36.08

It is clear that for lower values of c the failure rate decreases, which causes the total
number of evaluations that have to be done going down. The drawback is that the
uniformity of the final set of points grows worse. An extreme example is the case
with c=1.2 and «=3: In a certain iterations all points generated have negative values
for x2. The parameter c is too small to give that new points are generated at the
other side of the axis.

Chapter 6. Parameter estimation 217

6.3.5. Conclusions

The problem of generating a sample of N points over a level set 5(a) was studied.
The number of function evaluations necessary to generate N points from a uniform
distribution over a level set 5(a), is linear in the dimension and N for the theoretical
ideal algorithm of Pure Adaptive Search (PAS). Like every good ideal, it looks
impossible to be reached. This impossibility can be derived from considerations on
complexity of global and integer programming. The same theoretical complexity
may be reached by a modification of PAS which uses a sample of points called N-
points PAS. The algorithm of Uniform Covering by Probabilistic Rejection (UCPR)
is a heuristic practical approximation of N-points PAS. For higher dimensions the
deviation from the ideal becomes bigger. The test results show that UCPR performs
in general better than other practical alternatives such as Pure Random Search,
Controlled Random Search and a variant of the Hit and Run algorithm. The
development of better algorithms, i.e. closer to the ideal, is still a challenge to
Popperian science.

218 6.3. Uniform covering

219

Chapter 7. Major Conclusions, GLOP at work

7.1. The problem

If we want global optimization (GLOP) to get to work, roughly two sides can be
distinguished. Most of the literature aims at one side, namely the mathematics of
global optimization, i.e. the derivation of properties for special structured
optimization problems and for specific methods and techniques. This leads to useful
mathematical results and elegant exercises. To quote the mathematician P. Erdös,
"A mathematician is a device for turning coffee into theorems".
The other side is, what a

people like to call, the appli­
cation side. This is not very
well defined. In many
research situations where
mathematical models are
used, researchers try to find
parameter values such that a
given performance criterion
is at its best, optimal value.
When the parameters can be
varied in a continuous way,
this defines a so-called Non­
linear Programming Prob­
lem. Methods for Nonlinear
Programming usually result in local optima, i.e. a solution, parameter values, which
are the best with respect to values in the neighbourhood of that solution, not
necessarily the best over the total admissible, feasible set of all possible parameter
values, solutions. Cooperation between mathematicians and researchers which raised
global optimization problems from practical problems, in this book called 'the
modeller' or 'the potential user', has lead to application of GLOP algorithms to
practical optimization problems. Some of those can be found in this book.

In this book we started with the question
Given a potential user with an arbitrary global optimization problem, which route
can be taken in the GLOP forest to find solutions of the problem?

Figure 7.1: Two sides in GLOP at work

The target group of this study uses mathematical modelling for research, though it
does not consist of experts in optimization. In this study, stimulated by experience
at the Wageningen Agricultural University, cases were used of the following not
mutually exclusive categories of modellers (and their typical models) and potential
users of global optimization methods (Chapter 1): Engineers on agricultural and
environmental sciences, designers and OR people in agricultural science. Those
groups are not clearly defined, nor mutually exclusive, but have in common that

220 GLOP at work

mathematical modelling is used and there is knowledge of linear programming and
possibly of combinatorial optimization. The further step of applying global
optimization for this group requires bridging a large gap between this group and
existing literature. The numerous examples and cases in this book are taken from
experience of the target user groups with GLOP and may help to find similarities
for potential users, but they also illustrate the way problems can be handled by
GLOP techniques. The cases do not cover all possible applications. For instance
successful use has been made of GLOP to find optimal crystal structures and
molecule configurations (see e.g. Bollweg et al., 1997) and applications exist of
concave programming in logistic planning. This book serves as a guide for the
target user groups in the forest of global optimization and should help the potential
user to get to the relevant literature.

Recognizing Nonlinear Programming
Our analysis in the dotted box of Figure 7.1 starts when the potential user has
derived an optimization problem from a possibly descriptive model

min fix), XGXCW . (1.1)

Nonlinear programming (NLP) becomes interesting when fix) is a continuous
function on a robust feasible set X. It is not difficult to recognize an NLP problem.
Current practice is not that the user starts analyzing (1.1) to determine all useful
mathematical structures. Either the modeller had already a solution method in mind
when formulating the problem (hammer-nail story), or he starts by looking for
methods to generate good solutions of (1.1) by applying a grid search or random
search over X or proceeding in looking for nonlinear programming routines. Those
routines generate a local optimum of (1.1) given a starting point.

Routines are mainly selected on their availability in the direct neighbourhood of the
user.

We often observed the use of simple direct search methods in engineering applica­
tions and the use of standard nonlinear programming software such as
GAMS/MINOS in economic research environments. Nowadays also standard solvers
in spreadsheet programs are available.

The generation of local optima has a good and a bad side. When the local
optima have about the same objective value, they have their interpretation on the
problem which has been modelled and thus lead to information to the user about
e.g. alternative good products, good economic policies etc. The bad part is, that if
only one optimum has been discovered, a user may conclude wrongly that he has
found the best solution of (1.1). Actually, we namely never know whether really the
global optimum has been found, unless we have had a better look, analyze the
problem. Global optimization starts to be interesting when we really want to find
the best point and when (1.1) has several optima.

Chapter 7. Major conclusions 221

Major tracks
For the road to be taken we distinguish two major tracks, the potential user can go
to solve the problem. One track we called the deterministic track and has been
discussed in Chapters 2, 3 and 4. The other track we called the stochastic track and
was discussed in Chapters 5 and 6. The two approaches intend to reach a different
goal. The deterministic track aims at:

The global optimum is approximated (found) with certainty in a finite
number of steps.

Stochastic methods are understood to contain some stochastic elements and aim at

Approaching the optimum in a probabilistic sense as effort grows to infinity.

Both tracks were investigated in this book from the viewpoint of a potential user.
Which way to follow, first of all depends on the characteristics of the problem to be
solved. In Chapter 1 we made the following rough distinction.

I. When the analytic closed form expressions are available of (1.1), they can be
analyzed, i.e. mathematical structures can be extracted and properties can be
derived (arrow c and e) to be used for specific methods. A recent statement
of one of the leading researchers in the application of nonlinear programming
and modelling languages is that "every practical optimization problem should
be given in explicit formulae. Only in this way derivatives, bounds and other
useful properties can be derived" (Drud, 1997).
For our target group this is simply not the case. Many practical problems not
fulfilling this statement are given in II.

II. Oracle or black-box functions do not show mathematical expressions explicit­
ly. The examples in Chapter 5 illustrated how calculating an objective
function fix) may require the solution of a set of differential equations or
running a Monte-Carlo simulation with a large model. For those functions in
general it is not possible to calculate derivatives or to analyze the structure.
Deterministic methods cannot be applied; the user is committed to nonlinear
optimization routines combined with stochastic approaches.

A side question along the way was:
How can the user influence the search process of solution methods given the
knowledge of the user of the underlying problem and which information
becoming available during the search is useful for steering the search
process?

In Sections 7.2 and 7.3 remarks and sub-questions can be found for the potential
user when he follows those tracks.

222 GLOP at work

7.2. The deterministic methods approach

Let us first summarize some remarks on deterministic methods from the potential
user point of view which came out of the study.

Analysis of the expressions is required for the discovery of useful mathema­
tical structures. Also interval arithmetic techniques can be applied on the
mathematical expressions directly.
The elegance of the techniques is due to the guarantee that when the global
optimum has been discovered and verified, we are certain about its status.
The methods are hard to implement. Thorough use should be made of special
data structures to store the necessary information in memory.

In Chapter 2 the discovery
of mathematical structures
was discussed. In Chapters 3
and 4, the working of the
methods was demonstrated.

Mathematical structures
In Chapter 2, first for the
problems in group I, the
structures were enumerated
which are useful for deter­
ministic global optimization
approaches (arrow c). At this
point we used a partitioning
from the point of view of
the problem owner, which is not used in literature.

Figure 7.2: Emphasis along the deterministic track

A.

B.

There are structures which only can be recognized after analyzing the
mathematical expressions in (1.1).
Other structures can be discovered directly from the formulae in (1.1).

Of course first a structure has to be recognized, before it can be used in an
algorithm. The use is based on the ability to create bounds on the function value.
The most global structure is nonconvexity. If namely both flx) and X are convex,
there do not exist local, non-global optima. Therefore the name nonconvex
optimization is sometimes used for global optimization.

Chapter 7. Major conclusions 223

A. Structures found by analysis only.

-Concavity is not directly recognizable, but a very strong structure. The property is
sufficient to generate lower bounds of a function on subsets of the domain X,
without any further information on the function to be minimized.

-Differentiable1 convex (dc) is a structure which is valid for nearly all practical
objective functions. The drawback is that it can only be used when a user has found
a so-called dc-decomposition, a partitioning of the function in a convex and concave
part. The decomposition is not unique and a bad choice may lead to poor bounds on
the functions.

-Lipschitz continuity is another structure which applies for nearly every practical
problem. To make it working in an algorithmic context, however, the value of a so-
called Lipschitz-constant is needed, which may be as hard to find as the optimum of
the original problem. For some practical problems the derivation of a Lipschitz-
constant may not be very difficult.

B. Structures directly recognizable from the expressions

Some structures are rather elaborated in literature, following the paradigm of
making assumptions on the function to be minimized for the derivation of properties
and algorithms as is usual in mathematics of OR. For the user those structures are
not hard to recognise and literature is easily accessible. In Chapter 2 we mentioned

quadratic functions
bilinear functions
fractional functions
multiplicative functions.

As a last global structure we mentioned that the mathematical expressions can be
used directly in a branch-and-bound context by so-called interval arithmetic
techniques. As implementations become easily available nowadays, this approach
may become more popular by users.

1 The word differentiable concerns the difference of two functions and has
nothing to do with the existence of derivatives.

224 GLOP at work

Construction of Algorithms
To make a recognized structure useful, algorithms have to be selected, developed
and implemented in the context of deterministic GLOP methods. In Chapters 3 and
4 we choose to illustrate the branch-and-bound approaches. The elegance of
deterministic methods is due to the guarantee that the global optimum is approxi­
mated (found) with certainty in a finite number of steps. Whether we will find and
verify the global optimum in practice depends on how the implementation of the
algorithm proceeds. The problem simply can be too difficult to solve. In a branch-
and-bound context this means that the available memory fills up with subsets,
subproblems which have to be elaborated, refined further in the future. "Finite" may
be beyond a humans lifetime, it may take too long to traverse the complete branch-
and-bound tree. Global optimization only can do its best. Let us summarize with the
following statement:

No global optimization method can guarantee to find and verify the global optimum
for every practical situation, within a humans lifetime.

The user can select and implement an algorithm (arrow f) and use his information
on the problem to influence the search process (arrow gl).

In Chapter 3 the relation between GLOP and Integer programming (IP) is highligh­
ted for several reasons.

Sometimes practical GLOP problems can be approximated by IP variants
and solved by standard Mixed Integer Linear Programming techniques.
The transformability of GLOP problems to IP problems vice versa shows that
difficult problems in one class will not change to easy to solve problems in
the other class.
The algorithms of GLOP and IP can be classified similarly.
Analysis of problems, which is common in Global Optimization, can be used
to understand better the complexity of some IP problems.

We related the two fields, GLOP and IP, because we assumed that IP is more
known to our target groups than GLOP. First it was shown how practical problems
which consist of Linear Programming with one or some nonlinear functions on one
or several variables can be approximated by the concept of Piecewise Linear
Programming. Nonconvex functions require the use of Mixed Integer Linear
Programming (MILP) and a corresponding branch-and-bound approach. The
maximum distance problem illustrated that sometimes practical instances of
problems which are known in literature to be 'unsolvable' can be solved by using
an MILP formulation.

An advantage of using MILP is that standard routines are available so that it
is relatively easy to implement and influence algorithms. A drawback of the use of
Piecewise LP is that seen from a GLOP point of view, only a grid-search is
performed on a grid in the space of the nonlinear variables, which is not refined

Chapter 7. Major conclusions 225

during the iterations.
The equivalence between the two fields not only gives a possibility to solve
problems from one field in the other, but it also helps to see that a problem remains
as difficult when it is transformed to the other field. Reformulation of difficult IP
problems to difficult GLOP problems is not going to lead to easy solution procedu­
res. No magic algorithm is going to solve difficult problems. The minimum volume
hyperrectangle problem is a notorious problem, no matter from which side it is
approached. The investment problem in Chapter 3 showed that analysis of the
structure, as is usual in GLOP, helps to see why an IP problem is difficult.

In Chapter 4 we had the deterministic GLOP methods to get to work. Two bigger
cases were worked out. First the branch-and-bound approach is explained with some
simple cases.

The nutrient problem in Chapter 4 is an example of a high dimensional problem for
which a branch-and-bound approach with rectangular subsets has been outlined and
illustrated. The problem is hard to solve in practice as one may not have sufficient
storage capacity and/or time to get to the global optimum and to verify it. The
similar so-called pooling problem has been a challenge for many researchers and
despite the relevance for petrochemie industry, remains hard to solve. The nutrient
problem also shows how analysis of a given problem can lead to many useful
properties:

boundary solutions of the problem
successive LP is very unsuccessful
standard NLP leads to many local not global optima.

The second case, the quadratic design problem with a dimension lower than 10,
leads to algorithms which can be implemented in a Decision Support System. The
guarantee character of deterministic algorithms has been reached. For a potential
user a relevant question is: "At what price". The necessary work contained analysis
to find the best way to derive bounds and effort to implement a branch-and-bound
algorithm efficiently. For the design problem these efforts were worthwhile, because
the algorithm is run many times. For implementing deterministic algorithms one can
invest in studying efficient use of memory or consult research groups which have
experience on implementing branch-and-bound methods.

226 GLOP at work

7.3. The stochastic methods approach

In general the implementa­
tion of stochastic approaches
requires less effort than that
of deterministic methods.
Often the user has already
selected nonlinear
optimization routines which
deliver a local optimum
given a starting point. The
implementation of a random
generator or for instance the
method of Price, which is
popular among some groups
of users, is not very hard. Figure 7.3: Emphasis along the stochastic track

The main difference with deterministic methods is the final target. The aim is not to
get a verified global optimum, but to approach the optimum in a stochastic sense as
effort grows to infinity. Here we get to the practical point again that the user only
has a lifetime or preferably less to solve the problem. In chapter 5 and 6 not all
available ideas and methods were highlighted. We paid attention to the following.

The ideas of Adaptive Random Search which is to modify the distribution from
which random points are generated such that the global optimum is reached easily,
were studied in Chapter 6. Practise appears to be far away from ideals we would
like to reach, namely solving problems in an expected calculation time which grows
polynomially in the dimension of the problem:

It is unlikely that stochastic methods will appear solving problems in an expected
calculation time which is polynomial in the number of variables of the problem.

The random function approach or sometimes called Bayesian Heuristic approach
was not elaborated in this book. The idea elegantly tries to extract as much
information as possible from the function evaluations which already have been
performed. It does not use a random generator, but proceeds in a deterministic way,
based on assumptions on a model of the stochastic behaviour of the objective
function. The implementation on the algorithms is difficult and one needs faith in
the underlying stochastic model.

Multistart types of approaches have always been very successful. It concerns the
generation of random points as starting points of iterative local searches. Combined
with clustering approaches which aim at not rediscovering the same optimum many
times, the method has been successfully applied to find the global optimum in

Chapter 7. Major conclusions 227

situations where the function can be calculated, evaluated many times.
A question from practice which was discussed more thoroughly in Chapter 5 is:

What to do when the available solution time is finite, given the information we have
on the problem?

Translated to the solution procedure this means that a limit exists on the number of
function evaluations the procedure is allowed to do. To analyze this question, it was
first enumerated which information becomes available during the search process
(arrow g2) and how the user can influence the running algorithms (arrow gl) .
Besides possibilities which typically concern the local search, the user can influence
the optimization problem directly and the main point for global optimization is that
the user will influence the trade-off between global search and local search.

As every stochastic GLOP method consists of an heuristic which makes choices
between global and local search, we arrived at the question:

Is there a best way to rule the choice between global and local search, given the
information which becomes available?

To answer this question we experimented and analyzed with the two-phase appro­
ach, i.e. performing local searches and carrying out global search by generating
random points. It appeared that there is no best way to choose between local and
global search. When there is no overall best method we are only left with the task
to filter out methods which are dominated, are inefficient in some sense. The
conclusion shows again that mathematical analysis with extreme cases is a strong
tool to demonstrate that magic algorithms, algorithms which are said in scientific
journals to be very promising, because they perform well on some test cases, can be
analyzed and 'falsified' in a Popperian style.

Let us summarize some of the remarks on stochastic methods from the potential
user point of view.

The methods require no mathematical structure on the problem and are
therefore more generally applicable.
The methods are relatively easy to implement.
We are never completely certain that the global optimum has been reached.
The optimum is approximated in a probabilistic sense when effort increases
to infinity.

A specific phenomenon we paid attention to in Chapter 6 is:
"Every local search leads to a new local optimum".
We know from parameter estimation that this is a symptom in so called non-
identifiable systems. The minimum is obtained at a lower dimensional surface or
curve. In that case the points which are found have the same function value,

228 GLOP at work

goodness of fit. From the optimization point of view, the symptom can be due to
so-called ill-conditioning and is in fact an interaction between the local search
methods and the problem. Some heuristics were given to overcome this problem. In
Chapter 2 it was already noticed that there may be very many local optima which
after translation to the meaning of the solution have the same interpretation. This is
caused by symmetry in the model formulation and does not depend on the local
search method.

Good solutions
There are two side questions of users derived from the general remark:
"I am not interested in the best (global optimal) solution, but in good points".
The first question is that of Robust Solutions, introduced in Chapter 4, and the other
is called Uniform Covering, concerning the generation of points which are nearly as
good as the optimum, discussed in Chapter 6.

A solution is often understood to be robust, when it remains "good" in uncertain
situations due to uncertainty in data or changing circumstances. We discussed it in
the context of product design, where robustness is defined as a measure of the error
one can make from the solution such that the solution (product) is still acceptable.
Looking for the most robust product is looking for that point which is as far away
as possible from the boundaries of the feasible (acceptable) area. For the solution
procedures, we had a look at the appearance of the problem in practice, where
boundaries are given by linear and quadratic surfaces, properties of the product.

For linear boundaries, finding the most robust solution is a Linear Program­
ming problem and thus rather easy.
For quadratic properties the development of specific algorithms is required.

The question of Uniform Covering concerns the desire to have a set of ' suboptimal '
points, i.e. points with low function value given an upper level of the function
value; the points are in a so-called level set. To generate low points, one could run
a local search many times. However, we want the points not to be concentrated in
one of the compartments or one sub-area of the level set, we want them to be
equally, uniformly spread over the region. This is a very difficult problem for which
we tested and analyzed several approaches in Chapter 6.

Final result

Whether an arbitrary problem of a user can be solved by GLOP requires analysis.
There are many optimization problems which can be solved satisfactorily. Besides
the selection of algorithms the user has various instruments to steer the process. For
stochastic methods it mainly concerns the trade-off between local and global search.
For deterministic methods it includes setting bounds and influencing the selection
rule in Branch-and-Bound. We hope with this book to have given a tool, a guidance
to solution procedures and to further literature on the subject.

229

References

Aardal, K. and van Hoesel, C.P.M. (1996), Polyhedral Techniques in Combinatorial
Optimization, Siatistica Neerlandica, 50, 3-36

Aarts, E.H.L. and Lenstra, J.K. (1997), Local Search Algorithms, Wiley, New York
Adler, F.R. and Nuernberger, B. (1994), Persistence in patchy irregular landscapes,

Theoretical Population Biology, 45, 41-75
Al-Khayyal, F.A. and Falk, J.E. (1983), Jointly Constrained Biconvex Programming,

Mathematics of Operations Research, 8, 273-286
Al-Khayyal, F.A. (1990), Jointly Constrained Bilinear Programs and Related

Problems: An Overview, Computers & Mathematics with Applications, 11,
53-62

Al-Khayyal, F.A. (1992), Generalized Bilinear Programming, Part I, Models,
Applications and Linear Programming Relaxation, European Journal of
Operational Research, 60, 306-314

Baritompa, W. (1993), Customizing Methods for Global Optimization: A Bisection
Viewpoint, Journal of Global Optimization, 3, 193-212

Baritompa, W.P. and Steel, M.A. (1993), Bounds on first hitting times of
directionally-based random sequences, Research Report 94, department of
mathematics and statistics University of Canterbury, Christchurch

Baritompa, W.P. (1994), Accelerations for a variety of global optimization methods,
Journal of Global Optimization, 4, 37-45

Baritompa, W.P. and Cutler, A. (1994), Accelerations for global optimization
covering methods using second derivatives, Journal of Global Optimization,
4, 329-341

Baritompa, W.P., Mladineo, R.H., Wood, G.R., Zabinsky, Z.B. and Zhang Baoping
(1995), Towards Pure Adaptive Search, Journal of Global Optimization, 1,
73-110

Bates, D.M. and Watts, D.G. (1988), Nonlinear regression analysis and its applica­
tions, Wiley, New York

Bazaraa, M.S., Sherali H.D. and Shetty, CM. (1993), Nonlinear Programming,
Wiley, New York

Beale, E.M.L. and Tomlin, J.A. (1969), Special facilities in a general mathematical
programming system for non-convex problems using ordered sets of varia­
bles, in J. Lawrence (Ed.), Proceedings of the 5th International conference
on Operations Research, Tavistock, London

Beale, E.M.L. (1980), Branch and bound methods for numerical optimisation of
non-convex functions, in Barritt, M.M. and Wishart, D. (Eds), COMPSTAT
80: Proceedings in Computational Statistics, 11-20, Physica Verlag, Wien

Beale, R. and Jackson, T. (1990), Neural Computing: an introduction, Adam Hilger,
Bristol

Betro, B. and Schoen, F. (1987), Sequential Stopping Rules for the Multistart
Algorithm in Global Optimization, Mathematical Programming, 38, 271-286

230 References

Bjerager, P. (1988), Probability integration by directional simulation, Journal of
Engeneering Mechanics, 114, 1285-1302

Black, F. and Scholes, M. (1973), The pricing of options and corporate liabilities,
The Journal of Political Economy, 82, 637-659

Blank de, H., Hendrix, E.M.T., Litjens, M.A. and van Maaren, J. (1997), On-line
control and optimisation of the pelleting process of animal feed, J. Sei. Food
Agric, 74, 13-19

Bloemhof-Ruwaard, J.M. and Hendrix, E.M.T. (1993), Generalized Bilinear Pro­
gramming: an application in farm management, Technical Note 9305, Centre
for Environmental Studies Wageningen

Bloemhof-Ruwaard, J.M., van Beek, P., Hordijk, L. and Van Wassenhove, L.N.
(1995), Interactions between operational research and environmental manage­
ment, European Journal of Operational Research, 85, 229-243

Bloemhof-Ruwaard, J.M. and Hendrix, E.M.T. (1996), Generalized Bilinear Pro­
gramming: an application in farm management, European Journal of Opera­
tional Research, 90, 102-114

Bodington, J.E. and Baker, T.E. (1990), A history of mathematical programming in
the petroleum industry, Interfaces, 20, 117-132

Boender C.G.E., Rinnooy Kan A.H.G. (1987), Bayasian Stopping Rules for Multis­
tat Global Optimization Methods, Mathematical Programming, 37, 59-80

Boender, C.G.E. and Romeijn, H.E. (1995), Stochastic methods, in Handbook of
Global Optimization, (ed. R. Horst and P.M. Pardalos), 829-871, Kluwer,
Dordrecht

Bohachevsky, I.O., Johnson, M.E., Stein, M.L. (1986), Generalized Simulating
Annealing for Function Optimization, Technometrics, 28, 209-217

Bollweg, W., Kroll, H. and Maurer, H. (1997), Numerical prediction of crystal
structures by simulated annealing, in: Developments in Global Optimization,
I.M. Bomze, T. Csendes, R. Horst and P.M. Pardalos eds., Kluwer, Dor­
drecht

Boon, J.G., Pinter, J.D. and Solmyódy, L. (1989), A new stochastic approach for
controlling point source river pollution, in: Proceedings of the 3rd scientific
assembly of the International Association for Hydrologie Sciences, IAHS
publication 180, 241-249, IAHS, London

Botkin, N.D. and Turova-Botkina V.L. (1992), An algorithm for finding the
Chebyshev centre of a convex polyhedron, Report 395, Institut für Ange­
wandte Mathematik und Statistik, Universität Würzburg.

Brazil, L.E. and Krajevski W.F. (1987), Optimization of Complex Hydrologie
Models using Random Search Methods, in Engineering Hydrology Procee­
dings, Williamsburg ASCE, 726-731

Breiman, L. and Cutler, A. (1989), A deterministic algorithm for global
optimization, Mathematical Programming, 58, 179-199

Brooke, A., Kendrick, D., and Meeraus, A. (1988), GAMS, A User's Guide, The
Scientific Press, Redwood City

References 231

Butcher, W.S. (1971), Stochastic dynamic programming for optimum reservoir
operation, Water Resources Bulletin, 1, 115-123

Cliff, A.D. and Ord, J.K. (1981), Spatial processes, models and applications, Pion
Ltd, London

Csendes, T. (1988), Nonlinear parameter estimation by global optimization, efficien­
cy and reliability, Acta Cybernetica, 8, 361-370

Danilin, Yu. and Piyavskii, S.A. (1967), An Algoritm for Finding the Absolute
Minimum, Theory of Optimal Decisions, 2, 25-37, Institute of Cybernetics of
the Ukrainian Academy of Sciences (In Russian)

Dantzig, G.B. (1960), On the significance of solving linear programming problems
with some integer variables, Econometrica, 28

Dantzig, G.B. (1963), Linear programming and extensions, Princeton Univ. Press,
Princeton

Dantzig, G.B. (1991), Linear programming, the story about how it began, in History
of Mathematical Programming, eds. J.K. Lenstra et al., North Holland,
Amsterdam

Davis, L. (1991), Handbook of Genetic Algorithms, Nostrand Reinhold, New York
Dennis, J.E. and Schnabel, R.B. (1996), Numerical methods for unconstrained

optimization and nonlinear equations, SIAM, Philadelphia
Dinkelbach, W. (1967), On Nonlinear Fractional Programming, Management

Science, 13, 492-498
Donaldson, J.R. and Schnabel, R.B. (1987), Computational experiencce with

confidence regions and confidence intervals for nonlinear least squares,
Technometrics, 29, 67-82

Drud, A.S. (1997), Interactions between Nonlinear Programming and Modelling
Systems, Lecture at the ISMP, Lausanne, August 1997

Eberhart, R.C. and Dobbins, R.W. (1990), Neural networks PC tools: a practical
guide, Academic Press, San Diego

Falk, J.E. (1973), A Linear Max-Min Problem, Mathematical Programming, 5, 169-
188

Floudas, C.A. and Aggarwal, A. (1990), A decomposition strategy for global
optimum search in the pooling problem, ORSA Journal on Computing, 2(3),
225-235

Foulds, L.R., Haugland D. and Jörnsten, K. (1990), A Bilinear Approach to the
Pooling Problem, Working paper no 90/03 Chr. Michelsen Institute, Centre
for Petroleumeconomics, Bergen, Norway

Gram, M. and Aalderink, H.R. (1997), A statistical approach to urban runoff
pollution modelling, 4th International Conference on Systems Analysis and
Computing in Water Quality Modelling, Quebec, June 1997

Hansen, E. (1992), Global Optimization Using Interval Analysis, Marcel Dekker,
New York

Hansen, P. and Jaumard, B. (1995), Lipschitz optimization, in Handbook of Global
Optimization, (ed. R. Horst and P.M. Pardalos), 407-493, Kluwer, Dordrecht

232 References

Hasofer, A.M. and Lind, N.C. (1974), An exact and invariant second-moment code
format, Journal of Engeneering Mechanics, 100, 111-121

Haverly, C.A. (1978), Studies of the behaviour of recursion for the pooling prob­
lem, ACM SIGMAP Bulletin, 25, 19-28

Hax, A.C. and Candea, D. (1984), Production and Inventory Mangement, Prentice
Hall, New Jersey

Hazell, P.B.R. and Norton, R.D. (1986), Mathematical Programming for Economic
Analysis in Agriculture, Macmillan, New York

Hendrix, E.M.T. (1990), Linking Linear Programming to Simulation Models, some
experiments for cattle husbandry, Proceedings of the 32nd Georgikon
scientific conference on OR and computer science in agriculture, Kesthely
August 1990, 291-295

Hendrix, E.M.T. and Pinter, J.D. (1991), An Application of Lipschitzian Global
Optimization to Product Design, Journal of Global Optimization, 1, 389-401

Hendrix, E.M.T., Mecking, C.J. and Hendriks, Th.H.B. (1993), A Mathematical
Formulation of Finding Robust Solutions for a Product Design Problem,
Technical Note 9302, Department of Mathematics Wageningen

Hendrix, E.M.T., Mous, S.L.J., Roosma, J. and Scholten, H. (1994), Optimality and
search strategies for ill conditioned parameter estimation, Technical Note 94-
14, Department of Mathematics, Wageningen

Hendrix, E.M.T. and Roosma, J. (1996), Global Optimization with a Limited
Solution Time, Journal of Global Optimization, 8, 413-427

Hendrix, E.M.T., Mecking, C.J. and Hendriks, Th.H.B. (1996), Finding robust
solutions for product design problems, European Journal of Operational
Research, 92, 28-36

Horst, R. (1986), A General Class of Branch-and-Bound Methods in Global Optimi­
zation with Some New Approaches for Concave Minimization, Journal of
Optimization Theory and Applications, 51, 271-291

Horst, R. and Tuy, H. (1987), On the Convergence of Global Methods in Multi-
extremal Optimization, Journal of Optimization Theory and Applications, 54,
253-271

Horst, R. and Thoai, Ng.V. (1988), Branch-and-Bound Methods for Solving
Systems of Lipschitzian Equations and Inequalities, Journal of Optimization
Theory and Applications, 58, 139-145

Horst, R. (1988), Deterministic Global Optimization with Partition Sets whose
Feasibility Is Not Known: Application to Concave Minimization, Reverse
Convex Constraints, DC-Programming and Lipschitzian Optimization,
Journal of Optimization Theory and Applications, 58, 11-37

Horst, R. and Tuy, H. (1990), Global Optimization (Deterministic Approaches),
Springer Verlag, Berlin

Horst, R. and Pardalos, P.M. editors (1995), Handbook of Global Optimization,
Kluwer, Dordrecht

Horst, R., Pardalos, P.M. and Thoai, N.V. (1995), Introduction to Global
Optimization, Kluwer, Dordrecht

References 233

Hung, M.S. and Denton, J.W. (1993), Training neural networks with the GRG2
nonlinear optimizer, European Journal of Operational Research, 69, 83-91

Jarvis, R.A. (1975), Adaptive global search by the process of competitive evolution,
IEEE Trans, on Syst., Man and Cybernetics, 75, 297-311

Kail, P. and Wallace, S.W. (1994), Stochastic Programming, Wiley, New York
Karnopp, D.C. (1963), Random search techniques for optimization problems,

Automatica, 1, 111-121
Kearfott, R.B. (1997), Rigorous Global Search: Continuous Problems, Kluwer,

Dordrecht
Keesman, K.J. (1990), Membership-set estimation using random scanning and

principal component analysis, Mathematics and Computers in Simulation, 32,
535-543

Keesman, K.J. (1992), Determination of a minimum-volume orthotopic enclosure of
a finite vector set, MRS report 92-01, Wageningen Agricultural University

Khachiyan, L.G. and Todd, M.J. (1993), On the complexity of approximating the
maximal inscribed ellipsoid for a polytope, Mathematical Programming, 61,
137-159

Kleijnen, J.P.C. and van Groenendaal, W. (1988), Simulation, a statistical perspec­
tive, Wiley, New York etc

Klepper, O. and Rouse, D.I. (1991), A procedure to reduce parameter uncertainty
for complex models by comparison with real system output illustrated on a
potato growth model, Agricultural systems, 36, 375-395

Klepper, O. and Hendrix, E.M.T. (1994), A Method for Robust Calibration of
Ecological Models under Different Types of Uncertainty, Ecological Model­
ling, 74, 161-182

Klepper, O. and Hendrix, E.M.T. (1994), A comparison of algorithms for global
characterization of confidence regions for nonlinear models, Environmental
Toxicology and Chemistry, 13, 1887-1899

Klepper, O. and Slob, W. (1994), Diagnosis of model applicability by identification
of incompatible data sets illustrated on a pharmacokinetic model for dioxins
in mamals, in Predictability and Nonlinear Modelling in Natural Sciences
and Economics, eds. J.Grasman and G. van Straten, Kluwer, 527-540

Konno, H. (1976), A Cutting Plane Algorithm for Solving Bilinear Programs,
Mathematical Programming, 11, 14-27

Konno, H., Yajima, Y. and Ban, A. (1994), Calculating a minimal sphere containing
a polytope defined by a system of linear inequalities, Computational Optimi­
zation and Applications, 3

Konno, H. and Kuno, T. (1995), Multiplicative programming problems, in Hand­
book of Global Optimization, (ed. R. Horst and P.M. Pardalos), 369-405,
Kluwer, Dordrecht

Kristindottir, B.P, Zabinsky, Z.B., Csendes, T. and Tuttle M.E. (1993), Methodol­
ogies for tolerance intervals, Interval Computations, 3, 133-147.

234 References

Kularathna, M.D.U.P. (1992), Application of dynamic programming for the analysis
of complex water resources systems: a case study on the Mahaweli River
Basin Development in Sri Lanka, PhD dissertation, Wageningen Agricultural
University

Kushner, H.J. (1962), A versatile stochastic model of a function of unknown and
time varying form, Journal of Mathematical Analysis and Applications, 5,
150-167

Lasdon, L.S., and Waren, A.D. (1978), Generalized Reduced Gradient Software for
Linearly and Nonlinearly Constrained Problems, in Design and Implementati­
on of Optimization Software, H.J. Greenberg (ed), Sijthoff and Noordhoff,
363-397

Lasdon, L.S., Waren, A.D., Sarkar, S. and Palacios-Gomez, F. (1979), Solving the
pooling problem using generalized reduced gradient and succesive linear
programming methods, SIGMAP Bulletin, 22, 9-15

Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. (1985), The travelling
salesman problem: a guided tour of combinatorial optimization, Wiley, New
York

Liebman, J.S., Schrage, L., Lasdon, L.S. and Waren, A.D. (1985), GINO, General
Interactive Optimizer, Lindo Systems, Chicago

Liu, P-L. and Der Kiureghian, A. (1991), Optimization algorithms for structural
reliability, Structural Safety, 9, 161-177

Loehle, C. (1988), Robust parameter estimation for nonlinear models, Ecological
Modelling, 41, 41-54

Manas, M. (1968), An Algorithm for a Nonconvex Programming Problem, Econ­
omic. Mathem. Obzor, 4, 202-212

Marquardt, D.W. (1963), An algorithm for least squares estimation of nonlinear
parameters, SIAM Journal, 11, 431-441

Masson, E. and Wang, Y.J. (1990), Introduction to computation and learning in
artificial neural networks, European Journal of Operational Research, 47, 1-
28

Meewella, C.C. and Mayne, D.Q. (1988), An Algorithm for Global Optimization of
Lipschitz Continuous Functions, Journal of Optimization Theory and Appli­
cations, 57, 307-322

Meijer, E.L. and Buurman, P. (1997), Factor analysis and direct optimization of the
amounts and properties of volcanic soil components, Geoderma, 80, 129-151

Milutin, D. and Bogardi, J.J. (1996), Application of genetic algorithms to derive the
release distribution within a complex reservoir system, in Hydroinformatics
(A. Müller ed.), A.A. Balkema, Rotterdam

Mladineo, R.H. (1986), An Algorithm for Finding the Global Maximum of a
Multimodal, Multivariate Functions, Mathematical Programming, 34, 188-
200

Mockus, J. (1989), Bayasian approach to global optimization, Kluwer, Dordrecht
Mockus, J., Eddy, W., Mockus, A., Mockus, L. and Reklaitis, G. (1997), Bayasian

Heuristic Approach to Discrete and Global Optimization, Kluwer, Dordrecht

References 235

Mol de, R.M. and van Beek, P. (1991), An OR contribution to the solution of
environmental problems in the Netherlands caused by manure, European
Journal of Operational Research, 52, 16-27

More, J.J. and Wright, S.J. (1993), Optimization Software Guide, Siam, Philadelphia
Mous, S.L.J. (1994), On identification of nonlinear systems, PhD dissertation,

Wageningen Agricultural University
Murtagh, B.A. and Saunders, M.A. (1978), Large Scale Linearly Constrained

Optimization, Mathematical Programming, 14, 41-72
Nash, J.F. (1951), Noncooperative Games, Annals of Mathematics, 54, 286-295
Nash, S.G. (1995), Software Survey NLP, OR/MS Today, 22, 60-71
Neider, J.A. and Mead, R (1965), A simplex method for function minimization, The

Computer Journal, 8, 308-313
Papadimitriou, C.H. and Steiglitz, K. (1982), Combinatorial Optimization:

Algorithms and Complexity, Prentice-Hall Inc., New Jersey
Pardalos, P.M., Glick, J.H. and Rosen, J.B. (1987), Global Minimization of Indefi­

nite Quadratic Problems, Computing, 39, 281-291
Pardalos, P.M. and Rosen J.B. (1987), Constrained Global Optimization: Algorithms

and Applications, Springer, Berlin
Pardalos, P.M. and Phillips, A.T. (1991), Global Optimization of Fractional Pro­

grams, Journal of Global Optimization, 1, 173-182
Parkinson, A., Sorensen, C., Free, J. and Canfield B. (1990), Tolerances and

robustness in engineering design optimization, in Advances in Design
Automation-1990, Vol. 1, ASME Publication No. DE-Vol. 23-1, Proceedings
of ASME Design Automation Conference, Chicago, IL Sept. 16-19, 1990

Patel, N.R., Smith, R. and Zabinsky, Z.B. (1988), Pure adaptive search in Monte
Carlo optimization, Mathematical programming, 43, 317-328

Pinter, J.D. (1986), Extended Univariate Algorithms for n-Dimensional Global
Optimization, Computing, 36, 91-103

Pinter, J.D. (1988), Branch-and-Bound Algorithms for Solving Global Optimization
Problems with Lipschitzian Structure, Optimization, 19, 101-110

Pinter, J.D. and Pesti, G. (1991), Set partition by globally optimized cluster seed
points, European Journal of Operational Research, 51, 127-135

Pinter, J.D. (1996a), Global Optimization in Action; continuous and Lipschitz
optimization: algorithms, implementations and application, Kluwer, Dor­
drecht

Pinter, J.D. (1996b), Continuous global optimization software: a brief review,
Optima, 52, 1-8

Polovinkin, A.J. (1970), Algorithms for the search of the global minimum in the
design of engineering constructions, Automation and Computers 1970, 31-37
(in Russian)

Powell, M.J.D. (1964), An efficient method for finding the minimum of a function
of several variables without calculating derivatives, The Computer Journal, 7,
155-162

236 References

Price, W.L. (1979), A controlled random search procedure for global optimization,
The Computer Journal, 20, 367-370

Pronzato, L., Walter, E., Venot, A., Lebruchec, J.F. (1984), A General Purpose
Global Optimizer: implementation and applications, Mathematics and
Computers in Simulation, 24, 412-422

Rabbinge, R. and van Latesteijn, H.C. (1992), Long term options for land use in the
European Community, Agricultural Systems, 40, 195-210

Rackwitz, R. and Fiessler, B. (1978), Structural reliability under combined load
sequences, Computers and Structures, 9, 489-494

Raghavachari, M. (1969), On connections between zero-one integer programming
and concave programming under linear constraints, Operations Research, 17,
680-684

Ralston, M.L. and Jennrich, I.J. (1978), Dud, a derivative-free algorithm for
nonlinear least squares, Technometrics, 20, 7-14

Rasch, D.A.M.K. (1995), Mathematische Statistik, Joh. Ambrosius Barth, Leipzig
Rasch, D.A.M.K., Hendrix, E.M.T. and Boer, P.J. (1997), Replication-free optimal

designs in regression analysis, Computational Statistics, 12, 19-52
Ratscheck, H. and Rokne, J. (1995), Interval methods, in Handbook of Global

Optimization, (ed. R. Horst and P.M. Pardalos), 751-828, Kluwer, Dordrecht
Rinnooy Kan, A.H.G. and Timmer, G.T. (1987a), Stochastic Global Optimization

Methods: I Clustering Methods, Mathematical Programming, 39, 27-56
Rinnooy Kan, A.H.G. and Timmer, G.T. (1987b), Stochastic Global Optimization

Methods: II Multilevel Methods, Mathematical Programming, 39, 57-58
Ripley, B.D. (1981), Spatial Statistics, Wiley, New York
Romeijn, H.E. (1992), Global Optimization by Random Walk Sampling Methods,

PhD dissertation Erasmus University Rotterdam
Romeijn, H.E., Zabinsky, Z.B., Graesser, D.L. and Neogi, S. (1997), A new

reflection generator for simulated annealing in mixed integer/continuous
global optimization, technical report, Rotterdam School of Management,
Erasmus University Rotterdam

Romero-Morales, D., Carrizosa, E. and Conde, E. (1997), Semi-obnoxious location
models: A global optimization approach, European Journal of Operational
Research, 102, 295-301

Ross, G.J.S. (1990), Nonlinear Estimation, Springer, New York
Schaible, S. (1995), Fractional programming, in Handbook of Global Optimization,

(ed. R. Horst and P.M. Pardalos), 495-608, Kluwer, Dordrecht
Scholten, H., De Hoop, B.J. and Herman, P.M.J. (1990), SENECA 1.2: A simula­

tion Environment for ECological Application (Manual), DIHO, Yerseke,
Ecolmod report EM-4, ISBN 90-9003978-3

Sherali, H.D. and Shetty, CM. (1980), A Finite Convergent Algorithm for Bilinear
Programming Problems using Polar Cuts and Disjunctive Face Cuts, Mathe­
matical Programming, 19, 14-31

Shubert, B.O. (1972), A Sequential Method Seeking the Global Maximum of a
Function, SIAM Journal of Numerical Analysis, 9, 379-388

References Tbl

Smith R.L. (1984), Efficient Monte Carlo procedures for generating points uniform­
ly distributed over bounded regions, Operations Research, 32, 1296-1308

Stortelder, W. (1998), Parameter Estimation in Nonlinear Dynamical Systems PhD
dissertation University of Amsterdam

Taguchi, G., Elsayed, E. and Hsiang, T. (1989), Quality Engineering in Production
Systems, McGraw-Hill.

Tarantola, A. (1987), Inverse Poblem Theory, Elsevier, Amsterdam
Thomann, R.V. and Mueller, I. (1987), Principles of surface water quality model­

ling and control, Harper & Row, New York
Timmer, G.T. (1984), Global optimization: a stochastic approach, PhD dissertation

Erasmus University Rotterdam
Torn, A. and Zilinskas, A. (1989), Global Optimization, Springer, Berlin
Tuy, H. (1995), D.C. Optimization: theory, methods and algorithms, in Handbook of

Global Optimization, (ed. R. Horst and P.M. Pardalos), 149-216, Kluwer,
Dordrecht

Tuy, H., Ghannadan, S., Migdalas, A. and Värband, P. (1996), A strongly poly­
nomial algorithm for a concave production-transportation problem with a
fixed number of nonlinear variables, Mathematical Programming, 72, 229-
258

Vet, R.P. van der (1980), Flexible solutions to systems of linear equalities en
inequalities, Dissertation, Eindhoven Technical University, Eindhoven.

Walter, E. (1982), Identifiability of state space models, Springer, New York
Walter, E. and Piet-Lahanier, H. (1988), Estimation of the parameter uncertainty

resulting from bounded-error data, Mathematical Bioscience, 92, 55-74
Walter, E. and Piet-Lahanier, H. (1990), Estimation of parameter bounds from

bounded-error data: a survey, Mathematics and Computers in Simulation, 32,
449-468

Wendell, R.E. and Hurter, A.P. (1976), Minimization of a Non-Separable Objective
Function Subject to Disjoint Constraints, Operations Research, 24, 643-657

Williams, H.P. (1990), Model Building in Mathematical Programming, Wiley, New
York

Winston, W.L. (1994), Operations Research, applications and algorithms, Duxbury,
Belmont

Wood, G.R. (1992), The Bisection Method in Higher Dimensions, Mathematical
Programming, 55, 319-337

Zabinsky, Z.B. and Smith, R.L. (1992), Pure Adaptive Search in Global
Optimization, Mathematical Programming, 53, 323-338

Zilinskas, A. (1992), A review of statistical methods for global optimization,
Journal of Global Optimization, 2, 145-153

238 References

239

Summary

In many research situations where mathematical models are used, researchers try to
find parameter values such that a given performance criterion is at an optimum. If
the parameters can be varied in a continuous way, this in general defines a so-called
Nonlinear Programming Problem. Methods for Nonlinear Programming usually
result in local optima. A local optimum is a solution (parameter values) which is the
best with respect to values in the neighbourhood of that solution, not necessarily the
best over the total admissible, feasible set of all possible parameter values, sol­
utions.

For mathematicians this results in the research question: How to find the
best, global optimum in situations where several local optima exist?, the field of
Global Optimization (GLOP). Literature, books and a specific journal, has appeared
during the last decades on the field. Main focus has been on the mathematical side,
i.e. given assumptions on the structure of the problems to be solved and specific
global optimization methods and properties are derived. Cooperation between
mathematicians and researchers (in this book called 'the modeller' or 'the potential
user'), who saw global optimization problems in practical problems has lead to
application of GLOP algorithms to practical optimization problems. Some of those
can be found in this book. In this book we started with the question:

Given a potential user with an arbitrary global optimization problem, what
route can be taken in the GLOP forest to find solutions of the problem?

From this first question we proceed by raising new questions. In Chapter 1 we
outline the target group of users we have in mind, i.e. agricultural and environ­
mental engineers, designers and OR workers in agricultural science. These groups
are not clearly defined, nor mutually exclusive, but have in common that mathemat­
ical modelling is used and there is knowledge of linear programming and possibly
of combinatorial optimization.

In general, when modellers are confronted with optimization aspects, the first
approach is to develop heuristics or to look for standard nonlinear programming
codes to generate solutions of the optimization problem. During the search for
solutions, multiple local optima may appear. We distinguished two major tracks for
the path to be taken from there by the potential user to solve the problem. One
track is called the deterministic track and is discussed in Chapters 2, 3 and 4. The
other track is called the stochastic track and is discussed in Chapters 5 and 6. The
two approaches are intended to reach a different goal. The deterministic track aims
at:

The global optimum is approximated (found) with certainty in a finite
number of steps.

The stochastic track is understood to contain some stochastic elements and aims at:
Approaching the optimum in a probabilistic sense as effort grows to infinity.

Both tracks are investigated in this book from the viewpoint of a potential user
corresponding to the way of thinking in Popperian science. The final results are new
challenging problems, questions for further research. A side question along the way

240 Summary

is: How can the user influence the search process given the knowledge of the
underlying problem and the information that becomes available during the search?

The deterministic approach
When one starts looking into the deterministic track for a given problem, one runs
into the requirements which determine a major difference in applicability of the two
approaches.

Deterministic methods require the availability of explicit mathematical
expressions of the functions to be optimized.

In many practical situations which are also discussed in this book, these expressions
are not available and deterministic methods cannot be applied. The operations in
deterministic methods are based on concepts such as Branch-and-Bound and Cutting
which require bounding of functions and parameters based on so-called mathemat­
ical structures.

In Chapter 2 we describe these structures and distinguish between those
which can be derived directly from the expressions, such as quadratic, bilinear and
fractional functions and other structures which require analysis of the expressions
such as concave and Lipschitz continuous functions. Examples are given of
optimization problems revealing their structure. Moreover, we show that symmetry
in the model formulation may cause models to have more than one extreme.

In Chapter 3 the relationship between GLOP and Integer Programming (IP)
is highlighted for several reasons.

Sometimes practical GLOP problems can be approximated by IP variants and
solved by standard Mixed Integer Linear Programming (MILP) techniques.
The algorithms of GLOP and IP can similarly be classified.
The transformability of GLOP problems to IP problems and vice versa shows
that difficult problems in one class will not become easier to solve in the
other.
Analysis of problems, which is common in Global Optimization, can be used
to better understand the complexity of some IP problems.

In Chapter 4 we analyze the use of deterministic methods, demonstrating the
application of the Branch-and-Bound concept. The following can be stated from the
point of view of the potential user:

Analysis of the expressions is required to find useful mathematical structures
(Chapter 2). It should be noted that also interval arithmetic techniques can be
applied directly on the expressions.
The elegance of the techniques is the guarantee that we are certain about the
global optimality of the optimum, when it has been discovered and verified.
The methods are hard to implement. Thorough use should be made of special
data structures to store the necessary information in memory.

Two cases are elaborated. The quadratic product design problem illustrates how the
level of Decision Support Systems can be reached for low dimensional problems,
i.e. the number of variables, components or ingredients, is less than 10. The other
case, the nutrient problem, shows how by analysis of the problem many useful

241

properties can be derived which help to cut away large areas of the feasible space
where the optimum cannot be situated. However, it also demonstrates the so-called
Curse of Dimensionality; the problem has so many variables in a realistic situation
that it is impossible to traverse the complete Branch-and-Bound tree. Therefore it is
good to see the relativity of the use of deterministic methods:

No global optimization method can guarantee to find and verify the global
optimum for every practical situation, within a humans lifetime.

The stochastic approach
The stochastic approach is followed in practice for many optimization problems by
combining the generation of random points with standard nonlinear optimization
algorithms. The following can be said from the point of view of the potential user.

The methods require no mathematical structure of the problem and are
therefore more generally applicable.
The methods are relatively easy to implement.
The user is never completely certain that the global optimum has been
reached.
The optimum is approximated in a probabilistic sense when effort increases
to infinity.

In Chapter 5 much attention is paid to the question what happens when a user
wants to spend a limited (not infinite) amount of time to the search for the opti­
mum, preferably less than a humans lifetime:

What to do when the time for solving the problem is finite?
First we looked at the information which becomes available during the search and
the instruments with which the user can influence the search. It appeared that
besides classical instruments which are also available in traditional nonlinear
programming, the main instrument is to influence the trade-off between global
(random) and local search (looking for a local optimum). This lead to a new
question:

Is there a best way to rule the choice between global and local search, given
the information which becomes available?

Analyzing in a mathematical way with extreme cases lead to the comfortable
conclusion that a best method of choosing between global and local search -thus a
best global optimization method- does not exist. This is valid for cases where
further information (more than the information which becomes available during the
search) on the function to be optimized is not available, called in literature the
black-box case. The conclusion again shows that mathematical analysis with
extreme cases is a powerful tool to demonstrate that so-called magic algorithms
-algorithms which are said in scientific journals to be very promising, because they
perform well on some test cases- can be analyzed and 'falsified' in the way of
Popperian thinking. This leads to the conclusion that:

Magic algorithms which are going to solve all of your problems do not exist.

242 Summary

Several side questions derived from the main problem are investigated in this book.
In Chapter 6 we place the optimization problem in the context of parameter
estimation. One practical question is raised by the phenomenon

Every local search leads to a new local optimum.
We know from parameter estimation that this is a symptom in so called non-
identifiable systems. The minimum is obtained at a lower dimensional surface or
curve. Some (non-magic) heuristics are discussed to overcome this problem.
There are two side questions of users derived from the general remark:

"/ am not interested in the best (GLOP) solution, but in good points".
The first question is that of Robust Solutions, introduced in Chapter 4, and the other
is called Uniform Covering, concerning the generation of points which are nearly as
good as the optimum, discussed in Chapter 6.

Robust solutions are discussed in the context of product design. The robust­
ness is defined as a measure of the error one can make from the solution so that the
solution (product) is still acceptable. Looking for the most robust product is looking
for that point which is as far away as possible from the boundaries of the feasible
(acceptable) area. For the solution procedures, we had a look at the appearance of
the problem in practice, where boundaries are given by linear and quadratic
surfaces, properties of the product.

For linear boundaries, finding the most robust solution is an LP problem and
thus rather easy.
For quadratic properties the development of specific algorithms is required.

The question of Uniform Covering concerns the desire to have a set of "suboptimal"
points, i.e. points with low function value (given an upper level of the function
value); the points are in a so-called level set. To generate "low" points, one could
run a local search many times. However, we want the points not to be concentrated
in one of the compartments or one sub-area of the level set, we want them to be
equally, uniformly spread over the region. This is a very difficult problem for which
we test and analyze several approaches in Chapter 6. The analysis taught us that:

It is unlikely that stochastic methods will be proposed which solve problems
in an expected calculation time, which is polynomial in the number of
variables of the problem.

Final result
Whether an arbitrary problem of a user can be solved by GLOP requires analysis.
There are many optimization problems which can be solved satisfactorily. Besides
the selection of algorithms the user has various instruments to steer the process. For
stochastic methods it mainly concerns the trade-off between local and global search.
For deterministic methods it includes setting bounds and influencing the selection
rule in Branch-and-Bound. We hope with this book to have given a tool and a
guidance to solution procedures. Moreover, it is an introduction to further literature
on the subject of Global Optimization.

243

Samenvatting

In veel onderzoeken waarin gebruik wordt gemaakt van wiskundige modellen,
proberen onderzoekers parameterwaarden te vinden waarbij een criterium een beste,
optimale, waarde bereikt. Wanneer de waarden vrij gevarieerd kunnen worden, leidt
dit al snel tot een zogenaamd Niet-Lineair Programmeringsprobleem. Methoden
voor Niet-Lineaire Programmering (NLP) resulteren in het algemeen in oplossingen,
parameterwaarden, die het beste zijn in de directe omgeving van de oplossing, maar
niet noodzakelijkerwijze het beste op het gehele toegelaten gebied van mogelijke
waarden, zogenaamde lokale optima. Voor wiskundigen geeft dit de onderzoeks­
vraag: Hoe kan het beste, globale optimum worden gevonden, wanneer er sprake is
van meerdere lokale optima?, het onderwerp van de zogenaamde Globale Optimali­
sering (GLOP). Literatuur bestaande uit boeken en een specifiek tijdschrift op dit
gebied zijn de laatste decennia verschenen. Nadruk lag daarin vooral op de wiskun­
dige kant; gegeven aannamen ten aanzien van de structuur van op te lossen
problemen en globale optimaliseringsalgoritmen, worden eigenschappen (theore­
ma's) afgeleid. Samenwerking tussen wiskundigen en onderzoekers die tegen
optimaliseringsproblemen uit de praktijk aanliepen, in dit boek de potentiële
gebruikers of modelleurs genoemd, heeft geleid tot toepassing van GLOP algorit­
men. Sommige van deze praktische problemen worden besproken in dit boek.
Uitgangsvraag in dit boek is:

Gegeven een potentiële gebruiker met een willekeurig globaal optimalise­
ringsprobleem, welk pad kan worden bewandeld in het "GLOP bos" om te
komen tot oplossingen van het probleem?

Vanuit deze vraag ontwikkelt het onderzoek zich door het telkens stellen van
nieuwe vragen. In hoofdstuk 1 wordt eerst de doelgroep geschetst waaraan we
denken: Onderzoekers in de landbouw en milieu wetenschappen, ontwerpers en OR
mensen. Deze groepen zijn niet duidelijk afgebakend en overlappen, maar hebben
gemeen dat wiskundige modellen worden gebruikt in het onderzoek en dat er kennis
is over Lineaire Programmering en Combinatorische Optimalisering.

Wanneer een modelleur optimaliseringsaspecten tegenkomt, is in het alge­
meen de eerste aanpak het ontwikkelen van heuristieken of het zoeken van NLP
codes voor het genereren van (goede) oplossingen van het optimaliseringsprobleem.
Tijdens het zoeken kan men tot de ontdekking komen dat er meerdere lokale optima
zijn. Voor de weg die de potentiële gebruiker kan volgen vanaf dit moment worden
in dit boek twee aanpakken beschreven. Een aanpak is de deterministische aanpak
gedoopt en wordt besproken in hoofdstukken 2,3 en 4. De andere wordt de stochas­
tische aanpak genoemd en wordt besproken in hoofdstukken 5 en 6. De twee
aanpakken verschillen in uitgangspunt. De deterministische aanpak streeft naar:

Het globale optimum wordt met zekerheid bereikt (benaderd) in een eindig
aantal stappen.

244 Samenvatting

Stochastische methoden bevatten stochastische aspekten en mikken op:

Het globale optimum wordt op een probabilistische wijze met toenemende
inspanning benaderd.

Beide aanpakken worden onderzocht in dit boek vanuit het gezichtspunt van een
potentiële gebruiker volgens de gedachte van Popper. Het uiteindelijke resultaat zijn
nieuwe uitdagingen, vragen voor verder onderzoek. Een nevenvraag is:

Hoe kan de gebruiker gedurende het zoekproces gebruik maken van informa­
tie over het probleem en van informatie die vrijkomt tijdens het zoeken ?

De deterministische aanpak

Wanneer de deterministische aanpak wordt bekeken voor een gegeven probleem,
loopt men al snel tegen een vereiste aan die het verschil in toepasbaarheid van de
twee aanpakken bepaalt.

Voor deterministische methoden zijn expliciete wiskundige uitdrukkingen
nodig van de functie die wordt geoptimaliseerd.

In vele praktische situaties die men ook in dit boek tegenkomt, zijn deze uitdrukkin­
gen niet beschikbaar. Deterministische methoden kunnen dan niet worden toegepast.
De methoden zijn gebaseerd op concepten zoals het genereren van sneden en het
toepassen van Branch-and-Bound welke afschattingen van functies of parameter­
waarden vereisen die weer zijn gebaseerd op wiskundige structuren.

In hoofdstuk 2 worden deze structuren beschreven, waarbij onderscheid
wordt gemaakt tussen structuren die direct te herkennen zijn uit de formules, zoals
kwadratische, bilineaire en fractionele functies en structuren die verdere analyse
vragen zoals concave en Lipschitz continue functies. Voorbeeldproblemen worden
besproken met een herkenbare structuur. Verder wordt aangetoond dat symmetrie in
de modelformulering verantwoordelijk kan zijn voor het bestaan van meerdere
optima.
In hoofdstuk 3 wordt de relatie tussen GLOP en Geheeltallige Programmering (IP)
besproken. Daar zijn verscheidene redenen voor.

Benadering van praktische GLOP problemen is soms mogelijk met IP
formuleringen en de oplossing ervan met standaard Gemengd Geheeltallige
Linaire Programmering technieken.
Indeling van GLOP en IP algoritmen kan op eenzelfde wijze.
Het omzetten van problemen uit de GLOP naar de IP klasse en vice-versa
laat zien dat moeilijke problemen uit een klasse niet tot eenvoudig op te
lossen problemen reduceren in de andere klasse.
Analyse van problemen zoals we die kennen uit de GLOP kan worden
gebruikt om complexiteit van verschillende IP problemen beter te begrijpen.

245

In hoofdstuk 4 wordt de werking van deterministische methoden gedemonstreerd.
Vanuit het oogpunt van de potentiële gebruiker kan worden opgemerkt:

Analyse is nodig voor het ontdekken van bruikbare wiskundige structuren
(hoofdstuk 2). Overigens kunnen ook zogenaamde Interval Methoden worden
toegepast op de wiskundige uitdrukkingen.
Voordeel van de aanpak is dat we zeker zijn van de globale optimaliteit van
het optimum, wanneer dit is gevonden.
De methoden zijn moeilijk te implementeren en vereisen handig gebruik van
data structuren om de nodige informatie op te slaan.

Twee cases worden uitgewerkt. Het kwadratische ontwerp probleem laat zien dat
het niveau van Beslissing Ondersteunende Systemen kan worden bereikt voor
relatief laag-dimensionale problemen d.w.z. het aantal variabelen is niet groter dan
10. De andere case, het nutriënten probleem, laat zien dat een analyse veel nuttige
eigenschappen afleidt waarmee grote delen van het toegelaten gebied kunnen
worden geschrapt, omdat het optimum daar niet kan liggen. Het laat echter ook de
zogenaamde "Curse of Dimensionality" zien: Het probleem heeft in een realistisch
model zoveel variabelen, dat een methode niet in staat zal zijn de volledige Branch-
and-Bound boom te doorlopen. Daarom is het goed om de relativiteit van determi­
nistische methoden te zien:

Geen enkel algoritme kan garanderen dat het optimum van een willekeurig
GLOP probleem is te vinden en te verifiëren binnen een mensenleven.

De stochastische aanpak
De stochastische aanpak wordt in de praktijk vaak gevolgd door de combinatie van
het genereren van toevalsgetallen en standaard niet-lineaire optimaliseringsalgorit­
men. Het volgende kan worden gezegd vanuit het oogpunt van de potentiële
gebruiker:

De methoden vragen niet om een bijzondere wiskundige structuur en zijn
daardoor meer algemeen toepasbaar.
De methoden kunnen relatief eenvoudig worden geïmplementeerd.
Het is nooit absoluut zeker dat het globale optimum is bereikt.
Het optimum wordt bijna zeker benaderd wanneer de inspanning toeneemt tot
oneindig.

In hoofdstuk 5 wordt veel aandacht besteed aan de vraag wat een gebruiker het
beste kan doen wanneer hij een eindige hoeveelheid tijd (liefst minder dan een
mensenleven) wil besteden aan het zoeken naar het optimum:

Wat is het beste om te doen wanneer er een beperkte tijd is voor het oplos­
sen van het probleem?

246 Samenvatting

Allereerst is er gekeken naar de informatie die vrijkomt gedurende het zoekproces
en welke knoppen een gebruiker heeft om de zoektocht te beïnvloeden. Er bleek dat
naast de klassieke middelen die ook gebruikt worden bij traditionele NLP methoden
de hoofdknop vooral bestaat uit de afweging tussen globaal (met toevalsgetallen) en
lokaal zoeken. Dit geeft de volgende vraag:

Bestaat er een beste keuzeregel om de keuze tussen globaal en lokaal zoeken
te sturen met de informatie die vrijkomt?

Wiskundige analyse met extreme gevallen leidde tot de rustgevende conclusie dat
zo'n beste keuzeregel niet kan bestaan. Let wel, dit geldt dan voor gevallen waarbij
er niet meer informatie beschikbaar is over het probleem dan hetgeen wat vrijkomt
tijdens het zoeken. In de literatuur worden dit de orakel of black-box gevallen
genoemd. Dit toont aan dat wiskundige analyse met extreme gevallen een sterk
instrument is om magische algoritmen, methoden waarvan in wetenschappelijke
tijdschriften de indruk wordt gewekt dat het een wondermiddel is omdat ze op een
aantal testvoorbeelden goed scoren, te ontmaskeren ofwel 'falsifiëren' volgens de
Popperiaanse denkwijze. Wiskunde geeft ons dus een instrument om aan te tonen:

Wonderalgoritmen die al uw optimaliseringsproblemen oplossen bestaan niet.

Verschillende nevenvragen afgeleid van de hoofdvraag zijn in dit boek onderzocht.
In hoofdstuk 6 is het optimaliseringsprobleem in de context bekeken van het
schatten van parameters. Een praktische vraag ontstaat door het verschijnsel

Elke lokale minimalisatie leidt tot een nieuw lokaal minimum.

Bij het schatten van parameters kennen we dit verschijnsel wanneer er sprake is van
zogenaamde niet-identificeerbare systemen. Het minimum wordt dan eenvoudigweg
aangenomen door alle punten op een lager dimensionaal oppervlak of een curve.
Enkele heuristieken (geen wondermiddel!) worden besproken om dit probleem aan
te pakken.

Twee andere vragen zijn afgeleid van de algemene opmerking:

"Ik ben niet geïnteresseerd in de beste (GLOP) oplossing, maar in goede
punten".

De eerste vraag betreft de kwestie van zogenaamde robuuste oplossingen (hoofdstuk
4) en de tweede betreft het genereren van bijna-optimale punten, uniform overdek­
ken genoemd (hoofdstuk 6).

Robuustheid wordt in de context van het ontwerpen van produkten bekeken en
gedefinieerd als de fout (afwijking t.o.v. het ontwerp) die tijdens de produktie kan

247

worden gemaakt zonder dat het produkt afgekeurd wordt. Het bepalen van het meest
robuuste produkt, betekent dus zover mogelijk van de randen van het acceptatie
gebied af gaan zitten. Voor het bedenken van goede methoden hebben we gekeken
naar praktijk (uit de smeermiddelen en elektronica industrie) problemen waarbij de
grenzen van het gebied worden bepaald door lineaire en kwadratische oppervlakten,
eigenschappen van het produkt. Conclusie:

Voor lineaire eigenschappen bleek het bepalen van het meest robuuste
probleem een LP probleem te zijn en dus eenvoudig op te lossen.
Voor kwadratische problemen dienen specifieke algoritmen te worden
ontwikkeld. Deze zijn besproken in hoofdstuk 4.

De kwestie van uniform overdekken vloeit voort uit de wens om een aantal sub-
optimale punten te willen hebben, d.w.z. een aantal punten met lage functiewaarden.
De punten liggen in een zogenaamde level set, een verzameling met een gegeven
bovengrens op de functiewaarde. Om deze punten te genereren zou men natuurlijk
een aantal keer een lokale zoekmethode (NLP) kunnen uitvoeren. We willen echter
ook dat de punten netjes (uniform) verspreid liggen over de compartimenten van de
level set, als het ware deze verzameling overdekken en niet dat alle punten op een
hoopje liggen in een deelgebied. Dit bleek een extreem moeilijk probleem waarvoor
we in hoofdstuk 6 diverse methoden hebben bekeken. De analyse heeft ons ook het
volgende geleerd:

Het is onwaarschijnlijk dat er in de toekomst stochastische methoden zullen
worden ontwikkeld met een verwachtte oplossingstijd die polynomiaal is in
het aantal variabelen van het op te lossen probleem.

Uiteindelijk resultaat
Het oplossen van een willekeurig probleem door globale optimaliseringsmethoden
vereist analyse. Zoals geïllustreerd zijn er vele praktische problemen die met behulp
van globale optimalisering kunnen worden opgelost. Naast de keuze van algoritmen
heeft een gebruiker ook een aantal instrumenten om het zoekproces te sturen. Bij
stochastische methoden is dit voornamelijk de keuze tussen lokaal en globaal
zoeken. Bij deterministische methoden bestaat dit uit het aanleveren van grenzen en
het beïnvloeden van de keuzeregel bij Branch-and-Bound. We hopen dat dit boek
een leidraad vormt in de richting van oplossingsmethoden en verdere literatuur over
globale optimalisering.

248

About the author

Eligius Maria Theodoras Hendrix was born December 20th, 1962 in Roosendaal as
number 4,/2 in the family of an employee of the Catholic Metal Workers Union
St. Eligius. He completed his secondary education at Gymnasium Bernrode,
Heeswijk, in 1981 and in the same year started to study Econometrics at the
Catholic University of Tilburg. In 1984 he obtained his Bachelor degree in Econo­
metrics and started to work as a teaching assistant first for the section Mathematics
and later for the section Operational Research until 1987.
In 1986 he added subjects on Development Planning at Erasmus University in
Rotterdam to his studies. In 1987 he graduated in Tilburg with a master's thesis
written at the United Nations Industrial Development Organisation in Vienna. In the
same year he moved to the Department of Mathematics at the Agricultural Univer­
sity in Wageningen as a Universitary Lecturer. Eligius Hendrix is a member of the
Mathematical Programming Society, the Dutch Society for Statistics and
Operational Research, the Dutch MZ Club and the Society of Informatics in the
Agricultural Sector.

