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Stellingen 

Als wiskunde een wetenschap is die niet de waarneembare werkelijkheid 
betreft, dan is discussie over wiskundige resultaten overbodig. 

De filosofie of de wetenschap in het algemeen heeft niet tot taak de wereld 
te veranderen, maar haar te analyseren. 
(Antithese op Marx) 

3. Een poffertjespan is niet alleen een culinair instrument, maar ook een handig 
hulpmiddel om te demonstreren wat Globale Optimalisering is. Het ontbreken 
ervan in de Angelsaksische cultuur is een tekortkoming. 

4. Het is onwaarschijnlijk dat stochastische globale optimaliseringsmethoden 
zullen worden bedacht, waarvan de verwachte rekentijd polynomiaal toe­
neemt in het aantal variabelen van het op te lossen probleem. 
(Dit proefschrift) 

5. Bij de stochastische globale optimaliseringsmethoden bestaat er een karakte­
ristieke functie die voldoende informatie bevat om optimaal te kiezen tussen 
globaal en lokaal zoeken. 
(Dit proefschrift) 

6. Zoeken naar waarheid is een black-box globaal optimaliseringsprobleem. 
(Karl Popper n Global Optimization) 

7. Gebruik van de uitdrukking "we analyse an algorithm" in plaats van "we 
propose an algorithm" in wetenschappelijke artikelen over mathematische 
besliskunde bevordert objectieve wetenschapsbeoefening. 

8. Socialisme is een overwinning op de menselijke natuur. 

9. De rijkdom van de westerse wereld is gebaseerd op mondiale uitbuiting. 

10. Het feit dat de cycloop uit de Odyssee de woorden oûôeiç (niemand) en 
'Oôuaaeoç (Odysseus) verwart, kan er op duiden dat cyclopen hardhorend 
zijn. 
(Odyssee, Homerus) 

11. Preferentie van carnaval boven 11-steden door Brabanders is een voorbeeld 
van risicomijdend gedrag. 

E.M.T. Hendrix 
Global Optimization at Work 
Wageningen, 23 juni 1998 
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was a stimulating friend. Colleagues at other universities, Delft and Groningen were 
backup for difficult mathematical questions. I am grateful to people from the Global 
Optimization community and Walter Stortelder with whom I discussed the results 
and who read parts of the work. I thank the crew of the Department of Mathematics 
in Trier for their hospitality. 

The (former) Department of Mathematics in Wageningen provided me with a 
pleasant working environment. My nearest neighbours lend me their ear and their 
blackboard to have it covered with ellipses and spheres. The ladies at the secretariat 
translated pencil written notes into readable formulae and Frits Claassen took over 
my work when I was consuming time on the book. 

In the last years, Paul van Beek, Edwin Romeijn, Adrie Beulens and Theo Hendriks 
took the role of supervisor. During the last months, Bill Baritompa, Guus Boender 
and Gerard Bot went through the complete final text. Paulien C. Wijnker designed 
the cover. 

Finally I thank my family, friends and relatives for their patience (also during the 
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Chapter 1. Position of this study 

1.1. Introduction 

In this work we study the position of global optimization (GLOP) methods as a 
Decision Support tool for complex practical problems. Global optimization methods 
are algorithms with the purpose to find the global optimum of a real valued 
continuous function over a feasible set, in situations where there exist several so-
called local (not global) optima. Until recently most literature on global 
optimization focused on theoretical properties of problems and methods. The 
question in this book is, what global optimization can offer to a group of potential 
users. At one side there exists literature on global optimization, which mainly 
focuses on theoretical achievements of the methods, see Handbook on Global 
Optimization (Horst and Pardalos, 1995). At the other side there are potential users. 
This book, GLOP at Work, should help the potential user in the direction of 
actually applying Global Optimization methods. The target group of this study uses 
mathematical modelling for research or practical decision problems, though it does 
not consist of experts in optimization. In this study, stimulated by experience at the 
Agricultural University, cases were used of the following not mutually exclusive 
categories of modellers (and their typical models) and potential users of global 
optimization methods. The categories are elaborated in Section 1.2: 

- Researchers in agricultural and environmental studies 
- Designers using mathematical models to describe their designs 
- OR decision scientists of environmental and agricultural planning problems. 
The categories do not cover the group of all potential users, but have in common 
that all the users apply mathematical modelling and optimization to get a better 
understanding of a practical problem, an object system. 

The main question is: 
Given a potential user with an arbitrary global optimization problem, which 
route can be taken in the GLOP forest to find solutions of the problem? 

This book intends to bridge the gap between the potential users and literature on the 
theoretical achievements of global optimization algorithms. The distance between a 
modeller and the literature on global optimization is, in general, large. The purpose 
of this book is to be helpful in looking for solution methods when one tries to solve 
practical global optimization problems. 

A side question is: 
How can the user influence the search process of solution methods given the 
knowledge of the user of the underlying problem and which information 
becoming available during the search is useful for steering the search 
process? 

From these first questions we will follow the idea on science according to the great 
20th century philosopher Karl Popper (1902-1994); "we start with a problem". By 
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further analyzing one problem, we get better insight and arrive at the next problem. 
New challenging questions are found when we proceed along the path of finding 
appropriate methods for potential users. 

Figure 1.1 outlines the object of study; the interaction between modeller and global 
optimization algorithmic toolbox. The arrows in Figure 1.1 do not intend to represent 
consecutive steps which are undertaken, but distinguish the information streams 
which may occur when solving an optimization problem. 

Arrow a. Central element in Figure 1.1 is the modeller. He has formulated a 
mathematical model of a part of the observable world of interests to him, his object 
system. The scope of our study is indicated by the dotted box in Figure 1.1. The art 
of mathematical modelling is a very interesting subject which is mainly left outside 
the scope of our study. Let us only remark that in general a mathematical model is 
considered 'good', when it describes the image of the object system in the head of 
the model well, it 'fits reality'. Furthermore, it is common in operations research 
that a modeller has already particular solution methods in mind when formulating 
the model, so that mathematical structures are put into the model. We abstract from 
this effect and assume the model to be given and predefined by the modeller. As in 
the general loop in the methodology of OR (see e.g. Winston, 1994), the modeller 
may want to revise his model after having studied the optimization problem. We 
will restrict ourselves to the process of looking for solution methods for a given so 
called derived optimization problem only. 

gl 

„.. 'fy,,.... u, * 

^ Math, structure 

properties 

:g2 

Stoch. 

Figure 1.1: View on elements in this study 
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Arrow b. represents the idea that the model which is primarily constructed to 
describe and analyze reality is considered as an optimization problem. In Section 
1.3 this topic is discussed in more detail. Depending on the derived optimization 
problem, the modeller has become a potential user of global optimization methods. 
The generic global optimization problem formulation which we consider is: 

min J{x), xe XcR" , (1.1) 

in which f(x) is a real valued continuous function and x varies in a continuous way 
in a feasible set X. One can call the problem a general Nonlinear Programming 
formulation. However, methods in nonlinear optimization in general aim at finding 
a (local) optimum giving a starting point. Global optimization aims at finding the 
global optimum in a so called multi-extremal problem: there exist several local (not 
global) optima. The relation with problems where x takes integer values, integer 
programming, is discussed in Chapter 3 and may help the reader to get a better 
understanding of global optimization. 

The next step is to look for solution procedures for the derived optimization 
problem. Ignorant of the existence of multiple optima in general one tries to 
generate (local) solutions with nonlinear programming software. Often the occur­
rence of various optima, discovered when trying various starting points, is con­
sidered a mistake. 

Arrow c. When several optima are discovered, the recognition of certain mathemat­
ical structures explains the occurrence of multiple optima. This is illustrated in 
Chapters 2 and 4 by several cases. The study on the mathematical structures in the 
optimization problem (possibly inherited from the model) may also take place 
before looking for an appropriate solution method. When general purpose nonlinear 
programming software is easily available, it is a good idea to start generating 
optima in order to scan the feasible space and to get a better insight in the behav­
iour of the model. 

Arrow d. represents the interaction between the optimization problem and the 
algorithms. First of all one should get the optimization problem in the format the 
implemented algorithm requires, or the other way around, implement an algorithm 
which fits the way the model has been implemented. All algorithms require the 
evaluation of the objective function and possibly constraint functions. The number 
of function evaluations is a common performance indicator to assess the efficiency 
of algorithms. 

Arrow e. The traditional literature on global optimization in general focuses on 
arrow e, the derivation of properties given assumptions about the mathematical 
problem structure. Therefore terminology referring to the structure occurs such as 
bilinear programming, concave programming, Lipschitz optimization etc. (Chapter 
2). The results in the literature typically consist of theorems and experiments with 
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test problems. To quote the mathematician P. Erdös, "A mathematician is a device 
for turning coffee into theorems". Specific algorithms are derived for the toolbox 
and are studied further given assumptions on the problems, which leads to math­
ematical properties on the behaviour of the algorithms. 

Arrow f. Given the recognized mathematical structure, the user may go into the 
analysis of the problem and the properties, study literature, and exploit the structure 
to derive or select specific optimization algorithms to solve his problem. The choice 
for algorithms does not only depend on the most refined exploitation of the 
structure, but is often driven by the availability of methods in the environment of 
the user. The appearance of electronic means such as e-mail, public domain 
software and the world wide web has enlarged the direct environment of a 
researcher, leading to a larger availability of algorithms. See Pinter (1996b) for an 
overview of existing implementations of methods in global optimization software. 

In our work a global classification of methods is used, elaborated in Section 
1.5 and sketched in Figure 1.1. In this view, the methods which require a certain 
mathematical structure are called deterministic and the other methods which are 
often based on random generation of feasible points and nonlinear local 
optimization routines are called stochastic methods. This global classification is 
used to divide this work into two parts. One part (Chapters 2, 3 and 4) mainly 
discusses how information on the mathematical structures can be used by determin­
istic methods and the second part (Chapters 5 and 6) illustrates optimization 
problems which typically only can be handled by stochastic methods and discusses 
particular specific problems for this class. The concluding Chapter 7 provides 
guidelines for the target user groups, derived from the results and illustrations in the 
remainder of the book. 

Arrows g. The arrows gl and g2 represent the information between user and global 
optimization method during the execution of a search algorithm. On one hand the 
user, when coinciding with the modeller, may have knowledge (gl) about promising 
areas to find optima, the number of optima, bounds on function values and on 
decision variables. This information can be used to speed up the search process. On 
the other hand, the algorithms generate information (g2) about function values, local 
optima of the optimization problem and on the success of the algorithm itself. This 
information is useful to interact in the algorithm e.g. by changing bounds or 
changing parameters of the selected (by arrow f) algorithm. The information in the 
arrows g is typically value information, i.e. it depends on the instance. In the 
discussion of cases and examples within this book, it will be studied which 
information is useful to speed up the algorithms. 

In Chapter 2 the mathematical structures, recognised in literature to be useful, are 
given and examples show, how these structures may be recognized (arrow c) and 
explain the multi-extremality of the corresponding optimization problems. 
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In Chapter 3 the relation between traditional global optimization (continuous 
variables) and integer programming is discussed. It is not only interesting to see 
how problem formulations (arrow b) can be translated into the other class, but also 
the solution approaches and the way of analyzing properties (arrow e) is similar. 

Chapter 4 is devoted to three larger cases where we elaborate the whole route of 
problem formulation, deriving properties and constructing specific algorithms 
(arrows b, c, e and f). The cases serve as examples for potential users attempting to 
solve similar problems. Moreover, some simple examples are given as in introduc­
tion to the branch-and-bound concept. 

Chapter 5 starts with practical examples of models for which the mathematical 
structure of the corresponding optimization problem can be considered hidden. Each 
function evaluation implies running a larger model using numerical integration or 
Monte Carlo simulation. In the discussion how to solve these problems using 
stochastic approaches, focus is on the information which is useful to speed up the 
search process (arrows gl and g2). Most literature on stochastic methods aims at the 
globality property; in the long run (in limit) the optimum is reached. In a practical 
situation the user requires answers in a finite period. Therefore, the concept of rules 
to control the search in a finite amount of time is discussed in Chapter 5. 

A separate Chapter 6 is devoted to a specific subclass of parameter estimation 
problems and possible useful information generated by the stochastic methods for 
this class. 

The remainder of Chapter 1 is used to elaborate on various elements of Figure 1.1. 
In Section 1.2 focus is on the target user groups. In Section 1.3 we elaborate a 
general view on the use of modelling and optimization by the user groups. In 
Section 1.4 the question on the interaction between users and global optimization 
methods is studied. In Section 1.5 the global division of the methods in the two 
classes is discussed. 
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1.2. Target user groups 

The group of potential users of global optimization algorithms under study here, is 
characterised by persons applying mathematical models for research. The cases in 
this book are based on experience of modellers from the following three typical 
groups. The way of approaching optimization problems described in this book is of 
course also applicable in other scientific directions. 

A. Researcher in agricultural and environmental sciences 
In general, the researcher has knowledge of an object system such as vegetation 
growth, pig growth, river pollution, microbiological contamination of food etc. To 
get a better understanding of the object system, mathematical models from chemis­
try, biology and physics are used. These models range from statistical models to 
complex models based on a set of differential equations. Tools from statistics, 
continuous simulation and optimization are available in packages and libraries to 
analyze a model. Typically, a model run implies numerical integration and examin­
ation of several output variables. Optimization in this context can be used to 
discover extremes of the model, to estimate parameters and to find out experimental 
designs for measurements. The researcher is in general not an expert in optimizati­
on. In this book some typical problems which may be crossed with respect to 
optimization by this group are mentioned and some remedies are given. 

B. Designers using mathematical models 
In design problems there are design parameters which can be controlled on the one 
hand and properties, criteria describing the quality of a design on the other. 
Mathematical models are used to describe the relations between those two elements. 
Again, models can consist of simple physical equations from literature or based on 
simple regression. They can also be more complex based on differential equations 
to describe, for example, the resistance of a ship. The models are applied to what 
we will call the evaluation step; given a design, the properties are calculated. 
Finding the 'best' design often leads to a multicriteria problem; the score on all 
properties of the design should be high. Nonlinear programming in general and 
global optimization in particular may be applied to find optima of multicriteria 
functions. 

C. OR practitioner in environmental and agricultural planning 
The OR practitioner studies management problems; calculation models are devel­
oped to support decisions in for instance agrologistics, reservoir management and 
farm management. Numerous publications exist on the path from practical problems 
to building models (Williams, 1990 and Bloemhof et al., 1995). We will not go into 
detail on the modelling itself. Optimization is very popular for this group and linear 
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programming and combinatorial optimization have been applied successfully leading 
to further development of decision support systems. Global optimization has not yet 
reached this level. A separate chapter (Chapter 3) is devoted to the relation between 
the common techniques of linear and combinatorial optimization on the one hand 
and nonlinear and global optimization on the other. 

A major question in this study is how and where the user may discover a global 
optimization problem and what the global optimization toolbox has to offer. This 
study is more directed towards the mathematical structure of the models which 
leads to choices of global optimization methods than towards the target user groups. 
We believe that the typical model structure does not depend so much on the target 
user group, as will become clear from examples and cases throughout this study. In 
Section 1.3 a view on the use of optimization by the modellers of the various target 
user groups is presented. 
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1.3. Optimization and mathematical modelling 

The modeller uses his domain knowledge to derive by abstraction a mathematical 
model of an object system. The mapping from object to model is not unique. 

The modeller can choose between several types of models. 
Implicitly a choice is made of that part of the domain knowledge which is 
taken into the model. 

In the next stage a modeller will use simulation and sensitivity analysis, or possibly 
optimization to confront outcomes of the model with the domain knowledge in his 
head, his view on reality, thus getting a better understanding of the object system. 
We will not go into detail on the art of mathematical modelling in general. Let us 
only remark that in general a mathematical model is considered 'good', when it 
describes the image of the object system in the head of the model well, it 'fits 
reality' related to the problem at hand. 

The central issue is to have a closer look at possibilities of global 
optimization in this context. A view is presented on several elements which always 
can be found in models, independent of their complexity or form. The derivation of 
an optimization problem (arrow b in Figure 1.1) is discussed. 

The first element is the structure of the model which has been selected and 
developed by the modeller. As mentioned before, the model can be more or 
less complex and often linearity is an important aspect. 
Input of the model consists of technical parameters such as the Bernoulli 
constant, ability of the soil to contain water, and data such as rainfall, sales, 
location of potential depots. The data may be varying, may have a stochastic 
nature. 
Via calculation the model, possibly with the aid of some internal variables, 
arrives at values for the output variables z such as predicted discharge of a 
river, properties of a product, total amount of labour needed. 

A first step in the direction 
of an optimization problem 
appears (arrow b) when the 
modeller decides which 
inputs of the model are seen 
as controllable, decision 
variables x. That are the 
variables he wants to vary 
such as parameters to be 
estimated, design parameters, 
number of hectares etc, in 
order to study the behaviour 
of the model given by the 
values of the output vari­
ables. 
The output of the model is confronted with targets such as data from measurements 

Techn. Par.-

Data 

MODEL 

structure 

-Output z 

Decisions x 

Figure 1.2: View on 
model 

elements in a mathematical 
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on the output variables, requirements on the properties, amount of labour available 
etc. This confrontation can be formalised by building a criterion, objective function 
or formulating restrictions in which the modeller states what is 'good' and what is 
'bad'. 

We assume an objective function ƒ to be minimized has been derived from 
the model leading to an optimization problem in which the decision variables can 
be varied in a continuous way. Optimization is nothing more than varying the deci­
sion variables such that the desired values of the output variables formalised by a 
criterion function and constraints are finally reached. This idea applies for the 
parameter estimation problem, the design problem as well as for the management 
problem as far as mathematical models are used. 

The researcher (group A) modelling the discharge (output) of a river uses data on 
rainfall and wind velocity. For calibration purposes he may want to find good 
values for the resistance parameters of the bottom, such that the predicted discharge 
fits well measured values. 
A designer (group B) of a ship is confronted with technical specifications of the 
ship such as the volume of various compartments. Numerous technical parameters 
describe the strength of various parts of the ship. Outcomes may be the stability and 
resistance of the ship, which the designer wants to optimize. 
The decision scientist (group C) in charge of finding a good plan for a location 
allocation problem is confronted with data on the location of customers and their 
demand for facilities from a distribution centre and the possible locations of these 
centra. A technical number may be the costs of one kilometre of transportation. The 
outcome (z) consists of the costs and number of centra implied by the location-
allocation plan x. 

A derived optimization problem asks for optimization algorithms which can be 
found in mathematical programming and optimization literature. The choice of the 
optimization algorithm depends on the structure of the problem, as far as this is 
known. When there is a linear input-output relation between z and x the logical 
choice is to apply linear programming, which has been done since the first applica­
tions in 1947. When the choice given by the decision variables has to be made from 
discrete alternatives, combinatorial optimization will be applied. In this work focus 
is on nonlinear programming, i.e. the x variables can be varied continuously 
between lower and upper bounds and the output can be seen as possibly nonlinear 
functions, z=gi(x), on the decision variables. Some of the functions appear in re­
striction form, some are combined in an objective function ƒ. In many situations no 
analytical expression is available for the nonlinear functions g„ as the result z, of the 
model calculation is derived by numerical integration or even Monte Carlo simula­
tion (Chapter 5). 
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1.4. Interaction between users and GLOP methods 

The user follows a path from object system via modelling to methods for analysis 
of the mathematical model. In this context we view GLOP methods as search 
methods rather than solution methods. GLOP methods try to find the global 
optimum of the mathematical optimization problem in an acceptable amount of 
calculation time. General nonlinear programming techniques search for a (local) 
optimum given a starting point. The search process done by the GLOP methods 
returns much more information which can be used to gain a better understanding of 
the practical problem. Moreover, this information might be used by the modeller, to 
interfere in the search process interactively. At the other side, the user has a better 
understanding of the practical problem, object system, and mathematical model 
which can be used to influence, improve and speed up the search process done by 
the GLOP method. This information from his domain knowledge can consist of 

gl) value information, e.g. promising areas of the feasible set, bounds on the 
function values. In optimization literature this is called instance dependent 
information. 

c) information on the special mathematical structure of the model, e.g. the 
mathematical model is a concave quadratic programming problem (Chapter 
2). This is called structure dependent information. 

The information generated by running a GLOP method (g2) is typically value 
information. This can consist of graphical information and numerical indicators 
which are presented in Chapter 5. The user can combine both types of information 
to get a better understanding of the practical problem and to influence the search 
process by 

selection of the GLOP method used, 
interfering interactively during running a method, for instance change or set 
bounds on criterion value or decision variables. 

The question is, which information is useful for which intersection of the set of 
mathematical problems versus the set of GLOP methods. We do not intend to give 
a complete elaboration of this question. Instead ideas and views will be derived 
from practical examples on this topic. Nevertheless following the literature on 
global optimization, a global division is made between methods based on determi­
nistic methods, which in general require a lot of information on the structure of a 
model, and the group of methods which is based on random search and local 
(nonlinear) optimization, which requires much less information from the user for the 
search process. 
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1.5. Global Classification of methods and problems 

In this Section the global division which is used throughout this study is discussed. 
Starting point for the optimization problem is the model developed by the user and 
his further domain knowledge. In general the user might not be aware of the multi-
extremal character of the derived optimization problem. For finding optima, 
nonlinear programming algorithms, implemented in routines such as 
GAMS/MINOS, GRG and Lancelot for problems with constraints are used. For an 
overview on optimization software see e.g. More and Wright (1993). Often routines 
from libraries, numerical recipes, but also solvers provided in spreadsheet programs 
are used when only bounds on the variables exist in the model. The appearance of 
standard solvers in spreadsheet programs makes nonlinear programming very easily 
accessible for modellers. Such routines can be called local optimization routines; 
given a starting point a local optimum is returned. The analysis to find out whether 
there are multiple optima is done in general by trying various starting points. In this 
way the user can discover that there are multiple optima. The methods were already 
divided into two classes: 

Deterministic methods require a certain mathematical structure, 
Stochastic methods are based on the random generation of feasible points 
and nonlinear local optimization routines and require no specific structure. 

A more profound discussion on the classification of methods may be found in Torn 
and Zilinskas (1989). The question in this work is simply where someone with a 
practical problem should start looking given his information on the problem to be 
solved. The stochastic methods are considered more general purpose, they require 
no further information and will work whenever an appropriate implementation is 
available. The deterministic methods aim at a guarantee to find the global optimum 
in a finite number of steps. It is not only the question if they should be used, but 
also whether they can be used given the possibility to obtain the information on the 
structure of the problem by analysis (arrow c in Figure 1.1). 

Information on the special structure gives that the model may potentially 
have multiple optima. Value information such as negative eigenvalues of the 
Hessean1 indicate that there exists more than one optimum. In order to do this 
analysis the user needs insight in the structure or values of the model. At least the 
analytical expressions of object function and constraints should be available. This 
may not always be the case. At this point the global division in problems can be 
made. 
I. Analytical expressions available. Special structure can be obtained. 
II. Oracle structure: No analytical expressions available. 

1 Many people write Hessian, but in our opinion this does not honour the 
German mathematician Ludwig Otto Hesse (1811-1874) and it is not consequent 
(compare e.g. Boolean). 
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I. Analytical expressions available 

Concerning models of type I, we typically think of practical problems such as high 
dimensional planning problems applied by OR decision scientists, with several 
restrictions of the same type. The resulting problems are similar to Linear Program­
ming problems such as quadratic or bilinear programming problems. Besides those 
problems, we can think of lower dimensional technical design problems applied by 
a designer. In Chapters 2 and 4 several examples are given. 

For such problems the user can continue treating the model with nonlinear 
programming codes, local searches, such as GAMS/MINOS using several starting 
values. When he adds more information on the special mathematical structure, 
global optimization methods are available (Horst and Tuy, 1990) based on branch-
and-bound and approximation which contain a guarantee that the global optimum 
is delivered in a 'finite number of steps'. The special structures are discussed in 
Chapter 2 and contain, among others, the concave, fractional, quadratic, bilinear and 
Lipschitzian structure. Even the analytical expressions can be used directly by 
interval methods (Hansen (1992) or Kearfott (1997)) in a branch-and-bound frame­
work. For the user as a practical problem solver however, 'finite number of steps' 
guarantee may imply thousands of days and gigabytes of computer memory; the 
guarantee may not be reached for a given practical problem. The user can put in 
specific value information such as bounds on the function value, on the Lipschitz 
constant or on the second derivative. Some methods even require those data. In 
Chapter 2 and 4 properties of applying such methods are given and illustrated. 

The Branch-and-Bound approaches in global optimization are similar to 
approaches used in combinatorial optimization, which are in general much better 
known to our target groups. Therefore, in Chapter 3 relations between nonlinear and 
linear and between integer programming and global optimization are discussed from 
a theoretical as well as practical viewpoint. 

Chapter 6 specifically deals with another type of practical problems. It concerns 
parameter estimation in nonlinear regression models applied by target user group A, 
the researcher in agricultural and environmental sciences. The least squares prob­
lems of those model calibration problems have a particular structure for which 
specific local optimization algorithms have been developed (e.g. the DUD method 
and Marquardt method), which are included into statistical packages such as SAS 
and SPSS and can be found in algorithmic libraries. For the application of global 
optimization the structure of the problems can in general not be used. When 
analytical expressions are available at least interval arithmetic methods can be 
applied (Csendes, 1988). The local optima are a source of information to the model 
builder. One optimum may correspond to a very good fit to the data for one group 
of output variables, whereas another optimum may represent a good fit of another 
group of output variables. Furthermore the size of so called level sets is directly 
related to the idea of confidence regions for estimated parameter values in a 
statistical sense. Those ideas are developed further in Chapter 6. 
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II. Oracle structure 

In many practical parameter estimation problems, the calculation of the 'goodness 
of fit' criterion for the calibration of descriptive physical, chemical, biological, eco­
logical models implies the solution of a set of differential equations. This means 
there is no analytical (closed form) expression of the criterion function to be mini­
mized. To evaluate the function means giving parameter values to a subroutine and 
after some time (seconds or even minutes) receiving the function value. This is the 
meaning of type II of problems, the Oracle structure. Another type of practical 
problems with this structure originate from design problems, which imply the 
calculation of a set of differential equations at each function evaluation. It is not 
only numerical integration which blows up the calculation time of one model run. 
Often the simulation over time periods in a difference equation context requires 
computing time. Chapter 5 contains an example of a decision problem on water 
reservoir management, decomposed in such a way, that every function evaluation 
implies the calculation of the consequence of a decision rule over years given 
hydraulic data. Other practical examples are given in Chapter 5. 

These problems of type II have in common that for the problems solved, in general 
the dimension of decision vector x is less than 10. The deterministic GLOP methods 
cannot be used for this type of problems, because the possibly useful special 
structure of the model is hidden. On the other hand, the user may have value 
information on, for example, promising areas and the roughness of the criterion 
function due to his understanding of the practical problem. This information and the 
information revealed by the search process can be of help to control the search 
process and choosing between methods based on local optimization and global 
searches based on random search techniques. In Chapter 5 and 6 properties of 
applying such methods to practical problems are given. 
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Resuming, the remaining contents of this work is built up as follows. 
Chapter 2 outlines and illustrates mathematical structures which can be recognised 
and then used by deterministic global optimization algorithms. 
Chapter 3 gives the theoretical and practical relation between integer programming 
and global optimization starting with a view on the relation between nonlinear and 
linear programming. 
Chapter 4 elaborates several cases. It discusses and illustrates the information which 
can be used to choose or develop specific deterministic methods and shows the 
information returned by the methods. 
Chapter 5 gives several small examples, cases which are appropriate to be treated 
by stochastic global optimization methods. Some specific problems from the 
viewpoint of the methods are discussed. 
Chapter 6 focuses on the topic of parameter estimation from the viewpoint of 
stochastic methods. 
Chapter 7 results in guidelines which are derived from the six previous chapters. 
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Chapter 2. Model structures required by deterministic GLOP methods 

2.1. Introduction 

Chapter 1 and Figure 2.1 show us that when we start looking for deterministic 
solution methods, roughly two sides can be distinguished. One side is the toolbox of 
algorithms and the other side the user with his derived optimization problem. The 
algorithms in the toolbox of deterministic methods demand a certain mathematical 
structure. At the other side, a certain structure in the model is given or has to be 
discovered (arrow c). 

First, in Section 2.2 a review is given on the terminology about the informa­
tion on mathematical structures which can be exploited by deterministic methods. In 
the following Sections the other side is highlighted by showing how examples 
derived from practical problems reveal their mathematical structure. In Chapter 4 
some cases are elaborated which demonstrate how deterministic methods can be 
used to solve practical problems. 

Figure 2.1: Focus on the mathematical structure and useful properties 

At the toolbox side, from the early times of mathematical programming, the 
problem of finding the global optimum of a particular mathematical programming 
problem has been a challenge. Special structures (to be introduced in Section 2.2), 
such as quadratic, concave, bilinear structures, have been used for mathematical 
analysis and for the construction of specific algorithms. In 1990 the book 'Global 



16 2.1. Introduction 

Optimization, deterministic approaches' (Horst and Tuy, 1990) appeared, which 
gives an overview with many references of the developments achieved. In 1991 the 
Journal of Global Optimization appeared, which gives the opportunity to follow 
further developments of specific algorithms. It goes too far to mention all literature 
which appeared in the field. Nevertheless, it is worthwhile to mention the appear­
ance of another summary in 1995, 'the Handbook on Global Optimization' (ed. 
Horst and Pardalos, 1995), which includes more than deterministic approaches only. 
Further monographs are appearing in the series 'Nonconvex Optimization and its 
Applications' of Kluwer. All these works give the opportunity to follow the side of 
the theoretical achievements. In Section 2.2 we only give a brief summary of the 
main topics and further refer to these works. 

A user may be attracted by the guarantee character of deteministic methods. How 
should the modeller with his derived practical optimization problem formulation 
start looking (recognition) for a useful mathematical structure? The multi-extre-
mality of the problem is discovered and he is looking for approaches to get good 
solutions in reasonable calculation time. If he consults an expert or theoretic 
literature on global optimization we may arrive at the story of the hammer and the 
nail. When someone has a hammer (methodology) he is inclined to see nails every­
where. The problem for the owner (modeller) of a screw (specific optimization 
problem) however, is to start looking for a screwdriver, which is most appropriate 
to handle the screw. The modeller does not immediately start with the knowledge of 
the specific mathematical structure (screw in this analogy) of his problem when he 
is ignorant of the relevance of the difference between structures (screw and nail). 

The eyes of a quadratic programming thinker will be inclined to see quad­
ratic optimization problems everywhere. A specific optimization problem which can 
be written in quadratic form, often also can be formulated in other ways, such as a 
bilinear or fractional programming problem. The starting model may be formulated 
as a screw. By seeing it as a nail, a hammer can do a good job, but might not be as 
efficient as the driver. This means that in the process of selecting an algorithm and 
interacting during the execution of an algorithm, one can make more or less use of 
all the information which is in the mathematical optimization problem. Section 2.2 
gives a global overview on the available technology, toolbox, and corresponding 
mathematical structure required by it. 

We first give a summary of the terminology and most important properties of 
a mathematical structure referring for further information to the references given. In 
Sections 2.3, 2.4 and 2.5 examples follow of cases which show a structure which is 
useful for deterministic approaches. In Chapter 4 the use of those structures is 
elaborated. In Section 2.6 an excursion to a subtopic is made. In our experience we 
came across modellers who thought that their model was multi-extremal due to the 
structure of the model. It appeared that the existence of multiple optima was due to 
a symmetry in the translation from model to object system (arrow a in Figure 1.1); 
there is more than one solution of the model representing the same object. Some 
examples are given in Section 2.6 to help modellers to recognise this pitfall. 
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2.2. Some mathematical structures in multi-extremal problems 

When the modeller starts analyzing the model and possibly finds multiple optima, 
typical mathematical structures might appear which explain the multi-extremality of 
the problem. A brief summary is given here of the terminology without extensive 
use of references and mathematical details. A complete mathematical description 
can be found in the handbook on Global Optimization (ed. Horst and Pardalos, 
1995) and in Horst and Tuy (1990). 

The problem to be solved by the modeller is assumed to consist of an 
objective function ƒ to be minimized and possibly some (less than or equal) 
inequality constraints. The constraints and the objective function can be exchanged 
and/or transformed. This is not relevant here. The generic global optimization 
problem formulation which we consider is: 

minfix),xeXc:W, (1.1) 

in which ƒ(*) is a real valued continuous function and x varies in a continuous way 
in a feasible set X. In a practical situation the set X is often compact, i.e. bounded 
and closed. In the traditional literature on Global Optimization, the mathematical 
structures are enumerated and properties derived. We are especially interested in 
how the user may recognise (arrow c) the structure from his problem formulation. 
In order to recognise a useful structure the problem should be of type I., analytical 
expressions available. Problems of type II., Oracle structure, cannot be used to 
derive useful mathematical structures for deterministic GLOP methods. We further­
more make a distinction which cannot be found in literature on global optimization. 
For the user it is important how to recognise the structures. Therefore the structures 
are divided here into two groups. Given the explicit mathematical expression of the 
problem formulation, the groups are: 

A: structure can only be derived by analysis of the mathematical expressions 
B: structure is recognisable directly from the mathematical expressions. 

A. Analysis necessary to reveal the mathematical structure 
The following structures may be found, after an analysis of the mathematical 
expressions in the derived optimization problem, . 

Concave functions 
A popular expression in global optimization is nonconvex optimization. This refers 
directly to an important property of convexity: 

If ƒ is a convex function and X is a convex set, there is only (at most) one 
local and global minimum. 

The most common structure of multi-extremal problems is therefore nonconvexity. 
The other way around; minimizing a nonconvex objective function ƒ, does not 
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\ f ( x ) 

necessarily imply multi-extremality (the existence of multiple optima) but may 
explain the occurrence. One could call concavity an extreme form of nonconvexity. 
A property used by deterministic methods is the following. 

If ƒ is a concave function and X is compact, the local minimum points 
coincide with extreme points of X. 

Figure 2.2 illustrates this 
property for the concave 
function f(x) = 4-x2 on the 
feasible set X= [-1,2]. The 
extreme points of the inter­
val are the minimum points. 
When in general the feasible 
set is a polytope, then in a 
worst case situation, every 
vertex may correspond to a 
local minimum. Algorithms 
exist to perform an efficient 
so called vertex enumeration. 
The problem of minimizing 
a concave objective function 
on a closed convex feasible 
set is called concave programming. Figure 2.2 also shows the possibility to con­
struct a so-called affine underestimating function (p(;t), based on the definition of 
concave functions. Given two iterates xk and x„ the function value for every convex 
combination of the iterates, x = Xxk + (l-A,)*, is underestimated by 

<p(x) 

Figure 2.2: Concave function^*) and affine 
minorant <p(x) 

f(x) =f(hct + (l-X)xi) > Xfk + (!">•)ƒ/ = <pto, 0 < X < 1. (2.1) 

For the example of Figure 2.2 this can be derived as follows. 
Let xk = 2 and x, = - 1 , so an arbitrary point x in the interval is a convex combina­
tion of the extreme points: x = Xxk + (l-tyx, = 2X - (1-A.) =» X=(x+l)/3. 
Now the affine function <p(x) = Xft2) + (1-X)f(-1) = 3(1-X) = 2-x underestimates 
fix) on the interval [-1,2]. 

The minorant (p(x) can be used to derive lower bounds of the minimum objective 
function value on a bounded set. An example of an algorithm exploiting this 
concavity property is given in Section 4.4. 

Concavity of the objective function from a given practical model formulation 
may be hard to identify. Concavity occurs for instance in situations of economies of 
scale. In cases where ƒ is two times differentiable it can be checked whether the 
eigenvalues of the Hessean are all non-positive. 

If the eigenvalues of the Hessean of ƒ are all non-positive on X, ƒ is a 
concave function on X. 

This property may be hard to check. The eigenvalues, representing the second 
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derivatives, give a measure how concave the function is. Notice that the affine 
underestimator (p(x) does not require the value information of the eigenvalues. This 
is a strong point of the structure. Notice furthermore that the underestimation 
becomes worse, less tight, when ƒ is more concave, the second order derivatives are 
more negative. Concavity is a basis for many algorithms and other structures. 

Differentiable convex functions (d.c.-functions) 
When the function ƒ can be written as the difference of two convex functions, 
ƒ(•*) = / iW - /2(*)> it c a n De called a d.c.-function. For many people the word 
'differentiable' is confusing as it has nothing to do with differentiation of the func­
tion. Figure 2.3 shows the function f{x) = 3/(6+4x) - x2, which has two minima on 
the interval [-1,1]. Many 
discussions of this structure 
in the literature on global 

6 f(x) 

DÇ minorant 

DC2 minorant 

optimization start with the 
statement "almost every ' 
function can be expressed as 
the difference of two convex 
functions". Splitting the 
function in a difference of 
two convex functions is 
called a d.c.-decomposition. 
For the example function a 
logical choice is to consider 
f(x) as the difference of 
ƒ,(*) = 3/(6+4JC) and Figure 2.3: Two convex minorants of a d.c. function 
f2(x) = x2 (decomposition 
DC, ). The construction of a convex underestimating function of ƒ proceeds as 
follows. The concave part, -f2(x), is underestimated by an affine underestimating 
function (p2(x) based on (2.1) and added to the convex part ƒ,. In this way a convex 
underestimating function ƒ, + (p2 appears, which can be used to derive lower bounds 
of the objective function on bounded sets. For the example function now q>2(x)=-l 
underestimates -f2{x) = -x2 resulting in the convex minorant of decomposition DC, 
in Figure 2.3. The decomposition is not unique. Let us imagine that the user did not 
recognise the obvious decomposition of the example function, but only discovered 
that it is not convex and the second derivative is bounded below by a value of -8. 
Now a decomposition can be constructed by adding a convex function with a 
second derivative of 8 and subtracting it again: fx{x) = f(x) + Ax1 and f2{x) = Ax1. 
The resulting convex minorant f(x) + Ax2 -A depicted in Figure 2.3 as minorant DC2, 
is much worse, less tight than the first one. 

This exercise teaches us several things. Indeed, nearly every function can be written 
as a d.c. function by adding and subtracting a strong convex function. The condition 
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that the second derivative is bounded below is sufficient. For practical algorithmic 
development this statement is not useful. At first sight the minorant construction 
uses no value information. However, first a d.c.-decomposition has to be discovered. 
If the lower bound on the second derivative is used, value information is necessary. 

Another related structure is the so called concept of reverse convex programming, 
minimizing a convex function on a convex set intersected by one reverse convex 
constraint i.e. the constraint defines the complement of a convex set. A d.c.-function 
on a convex set X can be transformed to a reverse convex structure by defining the 
problem: 

min z +fi(x), z ^ - f2(x), x e X. 

The dimension of the problem increases by one as one variable, z, is added. For the 
example of Figure 2.3 (and the first decomposition) the transformation leads to 
reverse convex program: 

min z + 3/(6+4x), z > - x2, x e [-1,1] 

Both structures require the same type of solution approaches. 
For further theoretical results on d.c.-programming consult the overview by Tuy 
(1995). 

Lipschitz continuous functions 
A function ƒ is called a Lipschitz continuous function on X when the slope of the 
function is bounded. More formally, there exists a scalar L such that 

\f(xj - f{x2)\ < L || xx - x21| VXl,x2eX. (2.2) 

We will discuss this structure in more detail as it is used in Chapter 4, to derive a 
specific algorithm. 
The determination of the Lipschitz continuity of a given function ƒ, in contrast to 
concavity, is not very hard. As long as discontinuities, or 'infinite derivatives' do 
not occur, e.g. when ƒ is smooth on X, the function is also Lipschitz continuous. 
The relation with derivatives (slopes) is given by 

\f{x.) -fix,)\ 
L > .,' I (2.3) 

so that L can be estimated by the maximum of || V/(x) ||. The surveys on Lipschitz 
optimization, see Hansen and Jaumard (1995) and Pinter (1996a), stress the 
generality of the Lipschitz continuity assumption; it applies for nearly every 
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practical problem. 
The weak point is that in order to exploit the structure, value information is 

necessary; the value of the Lipschitz constant is required for algorithmic use. Notice 
that (2.2) also applies for any overestimate of the Lipschitz constant L. Finding such 
an overestimate is in general as difficult as the original optimization problem. In the 
test functions illustrating the performance of Lipschitz optimization algorithms, 
trigonometric functions are often used so that estimates of the Lipschitz constant 
can be derived easily. As will be shown, the structure provides a guarantee that the 
global optimum cannot be missed; it will be found in the end. We emphasise here 
that this guarantee does not apply when an overestimate of L is not available such 
as for Oracle functions (section 1.5), in contrast to what is suggested in Pinter 
(1996a). 

Consider the case where one tries to find the global minimum ƒ* with a predefined 
accuracy e. In this case one can construct a grid in X, such that for points xl and x2 

in the grid ||x, - x2 \\ < E/L. By evaluating all points in the grid a best point is found 
of which the function value deviates less than the accuracy e from the optimum/*. 
A large impact on the study 
on Lipschitz optimization is 
perhaps the formulation of 
an algorithm by Danilin and 
Piyavskii (1967) and (inde­
pendently) Shubert (1972), 
also called the saw tooth 
cover algorithm. Although it 
was formulated to minimize 
univariate functions, it has 
stimulated multidimensional 
elaborations, as will be 
illustrated in Chapter 4. 
Given former iterations xk, fk, 
the core of the algorithm is 
based on the relation 

a = min f, 

• min (p(x) 

Figure 2.4: Saw tooth cover algorithm 

ƒ(*) >fk - L X - xt (2.4) 

In Figure 2.4 the area under the cone f3 - L \x - x3\\ cannot contain the global 
minimum, as the function is above this underestimating function. By combining the 
cones of all iterates xk, fk, intersecting the area above the cones, the saw tooth 
minorant <p(x) appears (the dotted line in Figure 2.4), 

(p(x) = max [fk 
k 

\). (2.5) 



22 2.2. Mathematical structures 

The function fix) lies everywhere above the minorant q>(x), so that the global 
minimum of fix) is above the minimum ß of cp(x). Moreover the global minimum 
lies below the best function value a which has been found. By taking as the new 
iterate a minimum point of y(x), the algorithm converges to the global minimum ƒ* 
which is enclosed by an upper bound a = mint fk and a lower bound ß = min, (p(x). 

The algorithm can be considered from a branch-and-bound point of view; the 
area of the epigraph of <p(x) above level a can be cut away, as it cannot contain the 
global minimum. The area below the graph of (p(x) has already been excluded due 
to (2.4). Only the shaded areas in Figure 2.4 can contain the global minimum. As 
the global optimum is not cut away, the available value of an overestimate of the 
Lipschitz constant gives the guarantee that (in the end) the global minimum is 
approximated. 

Breiman and Cutler (1989) use the same type of underestimation for the case where 
a bound K on the second derivative is available; so K > \f"(x)\ x e X or more 
general (in higher dimensions) overestimates the largest absolute eigenvalue of the 
Hessean. The analogy of (2.4) is given by 

f(x)>fk+f'k(x-xk)-^K(x-xlf 

for a function of one variable and in general 

fix) >fk + VfWx - xk) - 4- K || x - xk ||
2 . (2.6) 

Similar to (2.4) the underestimating function (p(x) can be taken as the maximum 
over k of the parabolas (2.6). The determination of lower bound ß and upper bound 
a can be done similar to the Danilin-Piyavskii-Shubert algorithm. In a multidimen­
sional situation the Breiman-Cutler algorithm has some advantageous geometric 
properties, which go too far to discuss here. 

The determination of an upper bound K on the second derivative has the 
same drawback as finding an overestimate of the Lipschitz constant in a practical 
situation; it requires analysis to obtain an overestimate from the mathematical 
expressions in the problem formulation. Notice that larger overestimates of either L 
or K, lead to less tight lower bounds on the function to be minimized and therefore 
influences the efficiency of algorithms negatively. 

It is worthwhile to discuss some geometric observations due to Baritompa and 
Cutler (1994) and Baritompa (1994). Consider the point of view that the area under 
the cones (figure 2.3) or parabolas of (2.6) can be thrown away as it cannot contain 
the global minimum. Baritompa shows that it is not necessary to have global 
overestimates of either Lipschitz constant L or second derivative K. If one would 
know the local behaviour around the global minimum point x*, in general better 
information is available to cut away larger areas. If a value K* would be available 
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such that 

f(x)<f + \K*\\x-x'\\2 , xeX (2.7) 

(the gradient in x* is the zero vector), then the area under the collection of para­
bolas 

<p(jc) = max <fk - 1 K*\\x - xkf) (2.8) 
k 2 

cannot contain the global minimum (see Baritompa, 1994). Notice that (p(x) in (2.8) 
is not necessarily an underestimating function of ƒ. A similar idea would be to run 
the Danilin-Piyavskii-Shubert algorithm not with the Lipschitz constant L defined 
by the maximum of (2.2) over xv x2 e X, but by using the parameter (not necessar­
ily the Lipschitz constant) 

L * = max ÏQ ÎL < L. (2.9) 
x e X 

The saw tooth cover with slope L* of Figure 2.3 in this case is not necessarily an 
underestimating function everywhere, but also does not cut away the global 
minimum. 

The saw-tooth-cover idea illustrated the elegance of deterministic methods; the 
global optimum is approximated in a finite number of steps. The practical conse­
quence of the methods outlined here is that it is necessary to have value information 
on the slopes or second derivative either globally or locally around the global 
optimum (Baritompa). Concave programming does not require this value informa­
tion as such, but may require more analysis to discover concavity or, in case of 
d.c.-programming, to construct a d.c.-decomposition. For the second group of 
mathematical structures mentioned in literature, it is much easier to obtain value 
information. 

B. Structure recognisable from the mathematical expressions in the problem 
formulation 
For the structures in group A discussed above, analysis of the mathematical express­
ions is required for the recognition. The mathematical structures in group B, given 
the optimization problem formulation, are not difficult to recognise so that the 
possible occurrence of multiple optima is easily explained. By reformulating the 
model one structure often can be transformed to another, indicating the interdepen­
dence of the structures. The structures of group A, as discussed above, can be 
recognised in specific structures of group B; group A is more general. This shows 
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that the structures are not mutually exclusive. In literature, during the discussion of 
a class of functions (structure), one often tries to stress the relevance of studying the 
class by demonstrating how other structures fall into the same class of functions. 

Quadratic functions 
Much attention in literature on mathematical optimization is devoted to quadratic 
functions. The objective function ƒ is quadratic, if it can be written as 

fix) = x'Qx + d'x + c. 
It is not difficult to recognise quadratic functions in a given model structure, as only 
linear terms and products of two decision variables occur in he model description. 
The matrix Q is a symmetric matrix which defines the convexity of the function is 
in each direction. Eigenvectors corresponding to positive eigenvalues define the 
directions in which ƒ is convex, negative eigenvalues give the concavity (negative 
second derivatives) of the function in the direction of the corresponding eigenvec­
tors. Depending on the occurrence of positive and negative eigenvalues of Q, the 
function can be either concave (all eigenvalues negative), convex (all positive) or 
indefinite (positive as well as negative eigenvalues). 

A global property is that an indefinite function can be regarded as a 
differentiable convex function, by splitting the function in a convex and 
concave part. 

In contrast to the general concave problem much more value information is 
available from the matrix Q, vector b and scalar c. 

The derivatives of the quadratic function are linear. 
This property gives the possibility to derive a Lipschitz constant on a bounded set 
relatively easily. This property is used in Chapter 4. A bound on the second 
derivative can be directly extracted from the eigenvalues of Q. 
Quadratic programming problems, ƒ is minimized on a polyhedral set X, have the 
following property, due to the linearity of the derivatives. 

The Karush-Kuhn-Tucker conditions for the local optima of quadratic 
programming are a special case of the so called Linear Complementarity 
Problem, which is often discussed in optimization literature. 

This property is used further in Section 4.5 for the derivation of a specific 
algorithm. A relation of concave quadratic programming with integer programming 
is discussed in Chapter 3. For an overview of quadratic functions in global 
optimization we refer to Pardalos and Rosen (1987). 

Bilinear functions 
For bilinear functions the vector of decision variables can be partitioned into two 
groups (x,v) and the function can be written in the form 

fix,y) = c'x + x'Qy + d'y , 
in which Q is not necessarily a square matrix. The function is linear whenever 
either the decision variables x or the decision variables y are fixed. Actually the 
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function becomes affine in one group of variables when the other group is fixed; bi-
affine would be a better name, nevertheless the general term bilinear is used in 
literature. An example is the function 

fix,y) = 2-2x-y + xy 
On the interval 0<x<4 , 0<y<3 this function has a minimum of -1 for (x,y) = (0,3) 
and a minimum of -6 for (x,y) = (4,0). 

Several properties of bilinear functions are: 
Bilinearity can be regarded as a special case of quadratic functions. 
The optimum is attained at the boundary of the feasible set. 

A specific way of constructing a lower bound is based on the observation in Al-
Khayyal (1990, 1992) that xy for lx < x < u* , F < y <uy can be underestimated by 

xy>lxy + Fx-lxF 
xy > u*y + uyx — wV'. 

For our example with lx=0, w*=4, F=0 and uy=3 this means that 

xy > 3x 
xy>4y -12. 

So the function <pQc,y) = max{ 3x , Ay -12} is a minorant of xy on 0<x<4 , 0<y<3. 

The appearance of a bilinear structure will be discussed in Section 2.4. In Chapter 4 
a practical case containing a bilinear structure is discussed and a specific algorithm 
is derived after analyzing the properties of the structure. 
An extension of the bilinear structure is the idea of biconvex functions; i.e. the 
function is convex whenever one of the sets of variables is fixed. An extensive 
discussion of this topic can be found in Al-Khayyal (1992). 

Multiplicative functions 
A function is called a multiplicative function when it consists of a multiplication of 
convex functions. Besides the multiplication of two variables, as in bilinear 
programming, higher order terms may occur. A multiplicative function consists of a 
product of several affine or convex functions. It may not be hard to recognise this 
structure in a practical model formulation. As it is not used further in the examples 
of this work we do not go into detail on the mathematical properties, but refer to an 
overview due to Konno and Kuno (1995). 
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Fractional or rational functions 
A function ƒ is called fractional or rational when it can be written as one ratio or 
the sum of several ratios of two functions, fx) = g(x)/h(x). The ratio of two affine 
functions got most attention in literature. Depending on the structure of the func­
tions g and h, the terminology of linear fractional programming, quadratic fractional 
programming and concave fractional programming is applied. A basic property 
which we will use in Chapter 4 due to Dinkelbach (1967) is the following. 
Let the function q>(x) be defined as (p(x)= {g{x) - Xhix)}. 

If X', the (global) minimum of fix), is used as the parameter in the function 
<p(x), then the minimumpoint of <p (with objective value zero) corresponds to 
a global minimumpoint off. 

For an overview on the topic of fractional programming, we refer to Schaible 
(1995) and the extensive bibliography therein. 

General functions with a given explicit mathematical expression 
We have assumed that the explicit expression of an objective function ƒ is available 
of the given derived optimization problem, the problem is of type I. If not any of 
the structures mentioned above is used then there is a possibility to apply the so 
called technique of interval arithmetic. The function ƒ is considered on a closed 
hyperrectangle, an interval. In the theory of interval arithmetic, the function is 
regarded as built up by several mathematical operations, which each have their own 
so called inclusion function to determine the range of the function values on the 
interval. By combining those inclusion functions, finally a range is calculated in 
where the function values on the interval are situated. Better, sharper inclusion 
functions give tighter upper and lower bounds. For an overview we refer to Hansen 
(1992), the survey of Ratscheck and Rokne (1995) and to Kearfott (1997). 

In the literature on deterministic global optimization these mathematical structures 
have been analyzed and used for algorithmic development. When a potential user 
would like to make a choice for the algorithm to be applied, it is necessary first try 
to recognise several of the structures mentioned here, in the mathematical formula­
tion of the model. Some examples are given in the following sections of problems 
containing a certain structure. The mathematical structure explains the possible 
multi-extremal character of the problem to be solved. The construction of a specific 
algorithm can be started after analyzing the model. This may require some effort, as 
will be illustrated in Chapter 4. 

We have seen in this section how properties of structures can be used to 
derive bounds on the function value. The sketch of the Danilin-Piyavskii-Shubert 
algorithm shows how this may lead to a guarantee that the global optimum is 
approximated in the end. The essential property of all the structures is that the 
objective function value (and that of constraint functions) can be bounded on a set. 
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2.3. An example of concave programming 

A simple instance is discussed of a global optimization problem which by Tuy et al. 
(1996) has been called a concave production-transportation problem. It illustrates 
two aspects. First it shows how a user may discover the existence of multiple 
optima applying standard nonlinear optimization software. Second, the existence of 
multiple optima is explained by one of the mathematical structures, concavity, 
which has been described in Section 2.2. 

We use a simple example whose solutions can be calculated by hand. A plan 
has to be developed for the transportation of biomass from 6 supply units i=l,..,6 to 
two processing centres j=A,B and for the throughput of those centres. The through­
put costs are assumed to be concave due to economies of scale and are modelled 
here by a square root function. The transportation costs are assumed to be linear. 

min {10(VrPAWrPB) + EEcgXq] 

XiA + XiB — "i 

EiXy=TPj 
TPj > 0, x„ > 0 

;=i,..,6 
j=A,B 
j=A,B *=1,..,6 

Variable xtj describes the total transportation from supply unit i to centre j and 
variable 7P, describes the total throughput through centre j . The data on the supply 
S, by the units and on the transportation costs c(> from unit i to centre j are given in 
Table 2.1. 

Table 2.1: Transportation costs and biomass supply by the units 

units 
-> 

A 

B 

s, 

1 

1 

1 

10 

2 

1 

2 

30 

3 

1 

2 

10 

4 

2 

1 

20 

5 

2 

1 

10 

6 

1 

1 

20 

When throughput costs are neglected, it is cheapest to transport from units 2 and 3 
to centre A and from 4 and 5 to centre B. For units 1 and 6 there is no difference 
in transportation costs to A or B. When throughput costs are included the extreme 
(concave optimization) global optimum corresponds to using only centre A, 
resulting in a total costs of 230 (=130 + loVlOO). 

Standard nonlinear programming codes will not directly find the global 
optimum. A survey on mathematical programming software, 'Optimization Software 
Guide' (More and Wright, 1994) gives several routines for nonlinear optimization. 
We use the GINO software and GAMS/MINOS here. The GINO software (see 
Liebman et al., 1985) uses a so called reduced gradient procedure (see Lasdon and 
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Waren, 1978). The starting values of the variables are in general set to zero. After 
running the solver, optimization procedure, the software returns the following plan 
with total costs of 238.4 (=100 + 10^70 +10^30). 

Table 2.2: Plan generated by GINO. Starting values all zero. 

units-» 

A 

B 

1 

10 

2 

30 

3 

10 

4 

20 

5 

10 

6 

20 

TP 

70 

30 

The GAMS program (see Brooke et al. 1988) makes it possible to enter the 
problem in the MINOS solver (routine) which also applies among others a reduced 
gradient approach (Murtagh and Saunders, 1978). The MINOS solver gives more 
error messages than GINO on the fact that the objective function is not 
differentiable at the starting value of zero. After giving starting values to the 
throughput variables, TPA = TPB = 1, MINOS returns the following solution with an 
objective value of 241.4. (=100 + 10V50 +10V50) 

Table 2.3: Plan generated by MINOS. Starting values TPA = TPB=1, *, =0. 

units—» 

A 

B 

1 

10 

2 

30 

3 

10 

4 

20 

5 

10 

6 

20 

TP 

50 

50 

This corresponds to another local optimum. A starting value of TPA = 100, returns 
the global optimum and some warnings on the nondifferentiability of the objective 
function in the optimum. 

For this simple example it is not extremely difficult to identify the global optimum. 
However, for a larger instance of the same problem with external data or for the 
same problem as a part of a larger problem, it will not be directly clear where the 
optimum can be found. Information on the structure of the problem tells us that it is 
a concave optimization problem and nondifferentiable for a part of the feasible 
region. Special global optimization algorithms may now be developed for the 
problem. The development of a specific algorithm for the problem described here 
can be found in Tuy et al. (1996). The algorithm described in that paper is similar 
to the Branch-and-Bound approaches used for Mixed Integer Linear Programming 
(MILP). In fact, it is common in Operational Research to approximate the problem 
with a fixed charge variant (location-allocation problem) or approximate the costs 
with piecewise linear programming, which leads to an MILP formulation. This will 
be worked out in Section 3.2. 
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2.4. The pooling problem, a bilinear model 

Another example showing a specific mathematical structure, namely bilinearity, is 
due to the pooling problem, which got much attention in literature due to its 
relevance in petroleum industry. The first significant applications of mathematical 
programming (especially Linear Programming) were to oil refinery, food processing 
and steel manufacturing planning, see Dantzig (1963) for a discussion of these early 
applications and Bodington and Baker (1990) for a history of applications in the 
petroleum industry. Nonlinearities arise in refining, petrochemical and other process 
manufacturing models due to a variety of factors. An important factor is the need to 
model properties or qualities of product flows as well as the flows themselves. 
We start with a simple blending problem where the relations can be described 
linearly. By adding the restriction on combining several products in one tank or 
pool, nonlinear relationships are introduced to capture pool qualities. 

In our oil refinery example, crudes A, B and C are bought and blended to products 
R and S which are sold. We consider one quality item, such as the sulphur content, 
to describe the quality of raw materials, intermediate products and endproducts. The 
parameters ga, qb, qc describe the quality of the crudes A, B and C, and the parame­
ters qr and qs give maxima (requirements) on the quality of the products R and S. 
The prices of crudes and products pt i = a, b, c, r and s, are given. The decision 
variables za, zb and zc give the amount of crudes bought, zr and zs the amount of 
product sold and the variable Xy gives the amount of crude i blended in product j . 
Now the corresponding blending problem is given as follows. 

max {przr + p$zr-paza -pbzb-pczc] 

Component balance: 
Xar Xa& — ^a 

-*br + Xbs * Zb 

Xa + Xcs — Zc 

XK + xbt + * c r = Z r 
xas "*" -*bs ' **cs — ^5 

Product quality constraints: 

^ a r + tfb^br + tfc^cr^&Zr 

tfa*as + ^bXbs + OcXci<qsZs 

Figure 2.5: The classic blending problem 

Upper and lower bounds on crudes and products: 

Lr < zr < Ur etc. 
i = a, b, c Xij>0 J = r,s 



30 2.4. The pooling problem 

The blending problem described thus far is linear. The pooling problem (Haverly, 
1978) now appears, when in the classical blending problem only one tank or pool is 
used to store streams A and B. This combined storage (the pool) may be due to 
storage capacity restrictions. The quality q0 of the stream out of the pool is now a 
variable, not predetermined by the data. Let yr and ys be the streams from the pool 
to the products R and S. The model is changed in the following way. 

Component balance: 

XCI + xcs zc 

za + zb = yr + ys 

yT + xa = zr 

y» **" * c s — zs 

Product quality constraints: 

<loy, + <lcXcr^<lrZr 
%ys + <lc testis Zs 

The pool quality definition 
which is added describes 
that the sulphur stream 
which goes into the tank, 
pool, equals the outgoing 
stream: 

Figure 2.6: Blending with combined storage, the 
Haverly pooling problem 

^za + qbzb = q0(yr + yc). 

This pooling equation and the quality constraints cause an inherent nonlinearity in 
the otherwise linear model. The problem is possibly multi-extremal; nonlinear 
programming codes, as outlined in Section 2.3., may fail to find the global opti­
mum. Solving the problem got much attention in algorithmic development, e.g. 
Haverly (1978), Lasdon et al. (1979), Foulds et al. (1990) and Floudas and Aggar-
wal (1990). The structure of the problem is known and has been used to develop 
specific algorithms. The equation describing the pool quality can be called bilinear; 
a product of two variables occurs next to linear terms. The equation can also be 
called a quadratic restriction. Moreover, when the equation is divided by yr + yc, the 
problem becomes a special case of fractional programming. 

The attention in literature is due to the relevance of the pooling problem in petro­
leum industry. The (multi)blending problem is also well known in the agricultural 
context of fodder production. Raw materials are bought and mixed to a final 
product with pre-specified quality requirements. The same type of nonlinearity also 
occurs in environmental planning models, when a model describes flows of products 
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and waste. The combination of describing measures, storage and changes in concen­
trations of nutrients (polluting materials) may lead to the pooling property. This will 
be discussed in Chapter 4. 
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2.5. Factorial and quadratic regression models 

Regression analysis is a technique which is very popular in scientific research and 
in design. Very often it is a starting point for the identification of relations between 
inputs and outputs of a system. In a first attempt one tries to verify a linear relation 
between output y, called regressand or dependent variable, and the input vector x, 
called regressor, factor or independent variable. A so called linear regression 
function is used: 

y = ßfl + ßl*l + ß^2 + - + fan 

For the estimation of the coefficients ß̂  and the check how good the function 'fits 
reality', either data from the past can be used or experiments can be designed to 
create new data for the output and input variables. The data for the regression can 
be based on a design of a computer experiment which uses a simulation model to 
generate the data on input and output. The generation of regression relations out of 
experiments of a relative large simulation model is called metamodelling and is 
discussed in Kleijnen and van Groenendaal (1988). The regression model is called a 
metamodel, because it models the input-output behaviour of the underlying simula­
tion model. In theory about design, the word response surface methodology is more 
popular and promoted among others by Taguchi (see e.g. Taguchi et al., 1989). 

The regression functions based on either historic data, special field experiments or 
computer experiments can be used in an optimization context. As long as the 
regression function is linear in the parameters ß, and in the input variables xp linear 
programming can be applied. The optimization becomes more complicated when 
interaction between the input variables is introduced in the regression function. 
Interaction means that the effect of an input variable depends on the values of 
another input variable. This is usually introduced by allowing so called two-factor 
interaction, i.e. multiplications of two input variables in the regression function. An 
example of such a factorial regression model is 

y = ßo + ßl*l + ß^2 + ßl2*l*2 • 

The introduction of multiplications also implies possible multi-extremality, when the 
functions are used in an optimization context. Consider for example the 
minimization of y = 2 - 2xl - x2 + x{x2 with 0<x{<4 and 0<x2<3. This problem has 
two minima: y = -1 for x = (0,3) and y = -6 for x = (4,0). 

A further extension in regression analysis is the inclusion of quadratic terms which 
results in a complete second order Taylor series approximation of the relation one 
intends to find. In two dimensions the quadratic regression function is: 

y = ß0 + ßl*l + ß2*2 + ßl2*l*2 + ßll*l + ß224 
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Notice that in regression terms this is called linear regression, as the function is 
linear in the parameters ß. When these functions are used in an optimization 
context, it depends on the second order derivatives ß,y whether the function is 
convex and consequently whether it may have only one or multiple optima. 
We were involved in several studies which included the approach of fitting linear 
and quadratic models and using the models for optimization. 

An example from our experience in using optimization combined with regression in 
optimal control can be found in de Blank et al. (1997). A method is described for 
the optimization of the pelleting process of animal feed which is based on data of 
batch runs in the past. For the generation of an advice on the control variables for a 
new batch, first batches are selected from a database, which have been produced 
under the same circumstances such as outside temperature, fibre content of the 
production material, etc. Those data are used to fit linear regression relations 
between output, i.e. quality indicators, energy consumption and productivity, and the 
control variables as regressors. Those relations are used in a linear programming 
problem to create an advice on the values of the control variables. By preselecting 
the data, linear models can be used and for the optimization the problem of having 
multiple optima is avoided. 

Another example is due to a study on the feasibility of an introduction of a new 
crop in the Netherlands for the production of fibres. A research group had the task 
to find optimal production circumstances. A set of experiments was planned to 
measure the production and the quality under different circumstances given by 
settings of temperature, chemical control etc. The resulting quadratic regression 
functions were not all concave or convex; nevertheless the resulting optimization 
problem had one, relatively 'wide', local optimum. Like in the response surface 
method it would be wise to perform new experiments in the neighbourhood of the 
optimum found. 

Another application, which has been described in Hendrix and Pinter (1991) and in 
Hendrix et al. (1993), originates from a design department of a lubricant factory. 
Experiments are done to find the relation between quality y and input variables x 
describing the production circumstances and the composition of the mixture. Given 
the derived regression models, the optimization question was to find a product 
which meets predefined requirements formulated as y,(;c)<fe,. Moreover, technical 
restrictions on the design variables x are given. Possible optimization formulations 
involve the minimization of 

fix) = max {y,(*)-fc,} 
i 

or the minimization of 
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M = Z max {y/M-biß}. 
i 

When all quadratic relations y,(;c) are convex, the objective functions imply the 
minimization of a convex nondifferentiable function; there is one local optimum. In 
general the regression functions v/x) will not be convex, so that we need global 
optimization techniques to solve the problem. This case is used in Chapter 4 to 
discuss global optimization approaches to solve the resulting optimization problem. 
The same methodology of fitting quadratic models appeared to be common at a 
design department of a large firm in electronic industry. In a special project 
tolerances of the designs were studied such that finally robust products are pro­
duced. Some results are shown in Section 4.5. 

The use and construction of factorial and quadratic regression models occurs 
frequently in research and development. When the models are applied in an 
optimization context, an optimization problem appears which is possibly multi-
extremal containing a specific mathematical structure given the underlying quadratic 
relations. In Chapter 4 it is illustrated how this structure can be applied for the 
construction of specific algorithms. 
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2.6. Alternative solutions due to symmetry in the model formulation 

2.6.1. Introduction 

It has been shown so far how by analyzing the model, particular mathematical 
structures may be detected. This work focuses on how to exploit the structure and 
information of the model. In this section it will be shown how the existence of 
multiple optima may not be caused by the mathematical structure of the model, but 
by the translation from object system to model. The translation is represented by 
arrow a in Figure 1.1. The user who after finding multiple optima starts analyzing 
the problem formulation should keep in mind the following pitfall. Symmetry in the 
model formulation may cause several solutions of the model to represent the same 
object in the 'real world', object system. The solutions can be exchanged and have 
equal objective function values. Simple examples can be found in integer program­
ming, when ordering of points has no special meaning for the solution. 

Consider a discrete optimal design problem in which four experimental points 
should be selected from a predefined set S of candidate points, / fi\ 
S = {1, 4, 7, 10, 11, 17} (e.g. Rasch et al., 1997). This problem has L = 15 
feasible solutions. When binary decision variables in an optimization 
problem are defined as 

xk: Candidate point selected as design point number k, 

there are several solutions of the optimization problem with the same practical 
meaning. Because the ordering of the points is not important, solution (4,7,11,17) is 
the same as solution (11,7,17,4), both representing the set of points {4,7,11,17}. 

Another simple example is due to the travelling salesman problem: Given n 
cities, find that permutation of the numbers 1, 2, ..., n which represents a tour with 
minimum costs. When the begin and end point of the tour is not fixed, solution 1, 
3, 2, 5, 4 represents the same tour as solution 5, 4, 1, 3, 2. 

This property of the possibility to exchange points, leading to solutions 
which have the same practical meaning, does not refer directly to the mathematical 
structures which are summarized in Section 2.2. However, in the construction of an 
algorithm to find a solution of the problem a modeller should make use of this 
property. In the following sections some practical nonlinear programming problems 
will be discussed which have the symmetry property. 

2.6.2. Learning of neural nets as parameter estimation 

The use of a neural net as a model to translate input into output is quite in fashion. 
It is doubtless that neural nets have been successfully applied in pattern recognition 
tasks. In literature on Artificial Intelligence a massive terminology has been 
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introduced around this subject. Here, the learning of neural nets is discussed from 
the viewpoint of parameter estimation in which the terminology of AI is avoided. 
An introduction in the OR literature can be found for example in Masson and Wang 
(1990). For the interested reader we refer to other introductory texts from the same 
period, such as Beale and Jackson (1990) and Eberhart and Dobbins (1990). 

It is the task of a neural net to translate input x into output v. Therefore a 
neural net can be considered a model in the sense of Figure 1.2. Parameters, formed 
by so called weights and biasses, are used to tune the net, which can be seen as a 
large regression function. We quote a colleague, Dr. Zwietering: "A neural net is 
often an euphemism for fitting with too many parameters". The tuning of the 
parameters, called learning in the appropriate terminology, can be considered a 
parameter estimation problem. In Chapter 6 some other topics on this subject will 
be discussed. In this section, the appearance of multiple optima of a goodness of fit 
criterion in the parameter space of the neural net is discussed. 

To start with the analysis, the net is considered as a directed graph with arcs 
and nodes. Every node represents a function which is a part of the total model. The 
output v of a node is a function of the 
weighted input z = Zw,*, and the so 
called bias w0. So a node in the network 
has weights (on the input arcs) and a bias 
as corresponding parameters. The input z 
is transformed to output y by a so called 
transformation function. Usually the 
sigmoid or logistic transformation func­
tion is used: 

Figure 2.7: One node of a neural net 

v = 1/(1 + exp(w0 - z)). 

For the analysis, only this function will be used. This means that every individual 
node corresponds to a logistic regression function. The difference with the applica­

tion of such functions in growth 
models and in logit models is that 
the nodes are connected by arcs 
in a network. Therefore, the total 
net represents a large regression 
function. The parameters w, can 
be estimated to describe relations 
as revealed by data as good as 
possible. For the illustration of the 
analysis a very small net is used 
as given in Figure 2.8. It consists 
of two so called hidden nodes //, 
and H2 and one output node y. 
Each node represents a logistic 

Figure 2.8: Small neural net with two inputs, 
one output and two hidden nodes 
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transformation function with three parameters, two on the incoming arcs and one 
bias. Parameters w,, vv2, ..., w6 correspond to weights on arcs and w7, w8 and w9 are 
biasses of the hidden and output node. The corresponding regression function is 
given by: 

w. w 
y = 1/[1 + exp(w9 -

 5. - 1 )]. 
1 + exp(w7 - w,*, - vv^j) 1 + exp(w8 - wyx1 - w ^ ) 

The net is confronted with data. Usually the index p of "pattern" is used in the 
appropriate terminology. Input data xp and output tp (target) are said to be "fed to 
the network to train it". From a regression point of view, one wants the parameters 
w, to take values such that the predicted yp(xp,w) fits well the output observations tp 

according to a goodness of fit criterion such as 

fiw) = Z(yp- tpf , 
p 

in which yp is the regression function calculated for xp and the weights w. A usual 
way to train the net is by using a so called back propagation method. In order not 
to go too deep into the subject, only the assessment of the values for the weights on 
the arcs between hidden and output node is considered here. In Figure 2.4 those are 
the weights vv5 and w6. Input xp leads to input zp into node y which finally leads to 
an output yp which is compared with the target tp. For the sigmoid transformation 
function the back propagation method will lead to the following updating rule for 
the weights between hidden and output node: 

Aw,. = tl(f, -yp)zipyp{\ -yp). 

In this rule r\ is a parameter and zip represents the input in node y corresponding to 
weight i. It has been shown in e.g. Hung and Denton (1990), that feeding a 
complete batch of data to this rule corresponds to updating the weights according to 
the descent gradient of f(w). This is outlined here. 
Classic nonlinear programming learns that in the corresponding terminology: 

dw. P p p dWj 

For the logistic transformation: 

-J- = ziByJ<1 -yJ-
jw. 
9v., - » ' ^ - JP' 

Since the weights in the back propagation method are changed proportionally to 



40 2.6. Symmetry 

location space. Moreover, the symmetry property holds; i.e. exchanging two vectors 
Pj and pk (in fact the indices of the vectors) represents the same solution of the real 
system and thus has the same objective value. Given a solution of the vectors 
p„..,pn, the indices of the locations can be presented in any order, representing the 
same solution. So, when n facilities are to be located, then there are n\ equivalent 
variants of the same solution. 

The same property propagates to extensions of this base variant of the problem. One 
variant of the facility location problem can be formulated by adding capacities 
(capacitated plant location) on the throughput of the facilities: 

Y.X.. < capj j = l,...,n. 
i 

The calculation of the objective ftp) for a set of location vectors p now requires 
solving a transportation problem. When the given capacities cap, differ (and are 
restrictive), the possibility to exchange the (indices of the) locations becomes less. 
When the capacities are all the same, the indices can be ordered again in any order, 
representing the same solution. 

A second variant is to introduce concave throughput costs as shown in Section 2.3. 
The variable TPj and the definition 

TXij = TPj j = l,...,n 
i 

are added to the original problem together with a (throughput or production) cost 
function on variable TPj, e.g. a square root function. Now the problem can be 
considered from the joint decision space of location vectors pj and throughput 
variables TPj with a corresponding objective function fijj, TP), which, when evalu­
ated, requires the solution of a transportation problem. It is useful to introduce a 
penalty function for nonfeasibility of the transportation problem i.e. when the total 
supply ZS, exceeds the throughput Z7P-. The concavity which is in general used to 
express economies of scale in the throughput costs, adds the effect of multiple 
optima due to concavity, as illustrated in Section 2.3. When the cost function is 
equal for every facility, the locations (in fact the indices) of a solution can be 
exchanged, without changing the practical meaning of it. 

The general problem was studied in a special project at Wageningen Agricultural 
University. Global optimization algorithms were used in the location (and through­
put) part of the decision space of all three variants of the problem. Considering the 
problem from the joint space means that at every function evaluation, calculation of 
flj>,TP), either an allocation or a transportation problem was solved. It is not 
difficult to construct worst case instances of the problems, which are extremely 
difficult to solve, even for a small number of facilities. 
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Figure 2.10: Location and sizes of the 'customers' and 
corresponding weighted barycentre 

For testing the approaches on a realistic problem, data were taken from a larger 
study on environmental problems caused by manure in The Netherlands, see de Mol 
and van Beek (1991), which focused on opening facilities (from a candidate set of 
locations), transportation from surplus areas to shortage areas and on export to 
diminish the surplus of manure. For this case we took the data on locations of 
groups of farmers from the area with surplus. The locations for the facilities could 
be chosen freely in con­
trast with the fixed candi­
date locations. A group i 
of farmers wants to trans­
port a surplus 5, to one of 
the facilities j which has 
to be set up. Figure 2.10 
illustrates the situation 
with one depot. In Figure 
2.10 the size of the 
spheres represents the size 
of the supply at location /. 
The optimal situation with 
one facility corresponds to 
calculating a weighted 
barycentre of the locations dt. In Figure 2.11 a solution is shown of a problem 
instance with n = 4 facilities with given capacities. The solution was generated by 

applying among others the 
controlled random search 
method of Price (1979), 
which is discussed further 
in Section 6.3. Many 
methods could be used to 
try to solve the problem. 
The figure illustrates the 
symmetry: indices of the 
locations can be 
exchanged. Moreover it 
shows that graphical 
information can be fed 
back to the user of an 
algorithm. As in vehicle 

routing problems, the interaction between algorithms which can evaluate many 
solutions very quickly, and the user who has graphical insight may be very useful to 
speed up the solution process. In this particular example, one could think of select­
ing starting points for a local search in an attempt to avoid local optima. We have 
seen here that the exchangeability of the indices due to symmetry in a problem 
leads to multiple optimal points which graphically have the same interpretation. 

Figure 2.11: Solution of a problem with given 
capacities 
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2.7. Concluding remarks 

In Section 2.2. a summary has been given of the mathematical structures which are 
distinguished in literature as being useful for the choice and development of special 
(deterministic) algorithms. Some examples have been discussed of models from 
practical problems and where mathematical structures can be recognised. 

The facility location model with concave throughput costs illustrated how 
widely used local search nonlinear programming software may fail to find 
the global optimum starting from default starting values. 
The pooling problem showed how a description of quality within a flow 
planning model may lead to bilinear model constructions. This kind of 
descriptions are not only useful in the classic oil refinery models, but also 
relevant for environmental planning problems, as will be discussed in 
Chapter 4. 
The discussion on the use of metamodels and response surface modelling 
shows how multiple optima in a very simple way of modelling may appear 
when factorial and quadratic regression is used. This also leads to one of the 
mathematical structures, viz. quadratic programming, which got much 
attention in the global optimization literature. 

Section 2.6. shows that it is useful, first to have a look at the practical meaning of 
various optima of an optimization problem. Two examples are given where 
symmetry in the model formulation plays a role; the estimation of parameters in a 
neural network and the continuous facility location problem. They show that several 
optima may have the same meaning in the object system which has been modelled 
and thus have the same objective value. After the discovery of the multi-extremal 
character of the optimization problem one can first have a look at the practical 
interpretation of the solutions before starting looking for mathematical structures to 
explain the existence of multiple optima and which can be used further in determin­
istic global optimization algorithms. 

In Chapter 4 the exploitation of the mathematical structure for the development of 
algorithms is worked out for cases containing elements of the examples shown in 
this chapter. First, in Chapter 3 a link will be made between global optimization 
and integer programming. Algorithms in integer programming are in general better 
known to our target groups and help to understand the algorithms in Chapter 4. 
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Chapter 3. Relation between multi-extremal and integer programming 

3.1. Introduction 

Focus in this chapter is on the relation between integer programming, which is 
generally known by our target groups, and global optimization. There are several 
reasons to have a better look at similarities between the two fields, combinatorial 
and global optimization. 

1. From a theoretical point of view a relation between the two fields is emphasized 
in literature on global optimization, to discuss the complexity of global 
optimization; global optimization is "at least as difficult as integer programming". If 
there would exist an algorithm which can solve global optimization problems in 
polynomial time, we would be able to solve combinatorial problems in polynomial 
time. This relation which is proven in literature is illustrated in this section by some 
notes and an illustrative example. In Section 3.5. an example is given, derived from 
a practical problem, which illustrates that no matter how we consider the problem, 
from a continuous viewpoint or from a combinatorial viewpoint, it remains very 
hard to solve it. 

2. On the other hand, there are many implemented and elaborate algorithms in 
integer programming, which can be applied to solve variants of global optimization 
problems; there exist multi-extremal models which are suited to be solved by using 
integer programming techniques. One of the early methods to solve nonlinear 
programming is to approximate a problem by piecewise linear programming. For 
nonconvex optimization this requires the use of binary variables and integer 
programming algorithms. This link between nonlinear and linear programming will 
be discussed in Section 3.2. In Section 3.4. a practical example is discussed of a 
global optimization problem which was approximated by an MILP formulation and 
solved via integer programming techniques. 

3. There is a strong similarity in algorithms of combinatorial optimization and 
algorithms of global optimization. Knowledge of algorithms in one group can help 
to understand algorithms in the other group. Moreover, it is our opinion that the 
algorithms can be globally divided in a similar way. This will be discussed in 
Section 3.3. 

4. Considering an integer programming problem from a continuous viewpoint may 
help to analyze the existence of many optima. Ideas from stochastic global 
optimization can be applied to find good solutions of integer problems. An example 
of a practical decision problem which can be viewed in this way, is discussed in 
Section 3.6. 

We start here by discussing the complexity considerations which can be found in 
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any introductory text on global optimization. This is followed by a discussion of a 
well known problem, the so called Quadratic Assignment Problem, to illustrate the 
complexity relation. Consider the following binary programming formulation. 

minfix) , x, e {0,1} i = \,...,n . (3.1) 

The real valued function ƒ has a minimum on the compact set defined by the 
integrality constraints. Without loss of generality we left out other constraints in (1). 
Integer problem (3.1) is equivalent with the following problem (i.e. the set of global 
optimal solutions is the same): 

min {fix) + Mx\e-x)}, 0 < x, < 1 i = \,...,n. (3.2) 

An early publication is Raghavachari (1969), but we were assured that the relation 
is one century older. In (3.2), vector e is the vector with all elements 1. The penalty 
M forces the fractional variables xt to take a binary value; M should be sufficiently 
big. Another formulation analogous to (3.2) (continuous and equivalent) is the 
following: 

min [/(x)-MZbc,. -0.51}, 0<xt< 1 i = l,...,n. (3.3) 

Without going too much into detail on the topic of complexity we can say that hard 
combinatorial optimization problems, so called NP hard problems, are believed to 
have no polynomial time algorithms (see e.g. Aarts and Lenstra, 1997). This means 
that the calculation time to solve those problems (worst case variants) grows more 
than polynomial with the dimension n, which is also the case for generic problem 
(3.1). If we could be able to develop algorithms which solve general multi-extremal 
problems within a calculation time which grows polynomially in the dimension n, 
then we would be able to solve (3.2) and (3.3) in polynomial time and thus also 
(3.1). In our experience we encountered modellers who did reformulate a problem 
of the form (3.1) towards (3.2) with the aim to obtain an easier to solve problem 
and thus constructed an unsolvable global optimization problem with, in general, 
many optima. 

These complexity issues and the transformation are illustrated by discussing the so 
called Quadratic Assignment Problem (QAP). This illustration is based on the 
discussion of this subject in Horst et al. (1995). We will use an example here. Let 
us assume that a department of 20 persons gets a new building with 20 rooms. To 
prevent a fight over the new rooms the manager decides to formulate a quantitative 
model to support the decision on which person gets which room. The binary 
decision variable is formulated as: 

Xi/, person i gets yes/no room j . 
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One of the objectives of the manager is to get a clustering of persons which 
cooperate a lot, have much interaction. For all 190 pairs of rooms he measures the 
distance dß and for all 190 pairs of persons he measures the amount of interaction 
or information between the persons aik. Indices i and k stand for persons and j and I 
for rooms. With this information he creates weighted interaction coefficients 
Qiju = aik x4'- ^ e t u s a s s u m e m a t a l s o preference or suitability indicators ctj exist. 

The result is a variant of the so-called Quadratic Assignment Problem: 

20 20 20 20 20 20 

min fix) = E E c x + E E E E qiJklxxkl 
i= 1 j= 1 i= \ j= l k=l 1=1 

E x.. = 1 j= 1.....20 (QAP) 

E x. = 1 i = 1.....20 
•j 

X..S {0,1} ij= 1.....20. 

This problem is known in literature to be hard to solve; it is a so called NP-
complete problem. The feasible set in the QAP problem mentioned here defines 20! 
possible assignments. No algorithm exists which solves the problem in a calculation 
time which grows polynomially with the number of persons and rooms. 

We consider the problem from a mathematical viewpoint. When the elements xi} are 
stored in a vector x with 202 = 400 elements, the objective function can be written 
as: 

fix) = cTx + xTQx . 

The matrix Q contains 400x400 = 160,000 elements qijU. In a realistic situation the 
distance between rooms is symmetric dß = dtj and dä = 0. A similar reasoning 
applies for the stream of information aik so that there are in fact at most 190x190 = 
36,100 unique nonzero elements in Q. 

We have seen in Chapter 2 that the convexity of fix), determined by matrix 
Q, tells us something about multi-extremality of the objective function in global 
optimization. Let us therefore consider the continuous (nonlinear programming) 
variant called CQAP of QAP. Variable xtJ is the fraction of the working time that 
person i is in room j . The integrality constraint is replaced by 0 < xtj < 1. Some 
extreme, nonrealistic instances show the complexity of the two associated problem. 

Extreme case 1: Let ƒ be convex. A simple analysis can be done when we consider 
the nonrealistic situation where all values c^ and qijkl are zero apart from all 400 
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diagonal values qm which are taken positive and equal. In this case the unique 
solution of CQAP is given by x{j = 1/20 for all i and j . The solution gives a value of 
1/400 for all products xtj xv and results in an optimal objective value of qm. General 
nonlinear programming routines will find this unique solution. Every feasible 
(integer) solution of QAP contains 20 assignments and results totally in 20 values 
of 1 for the products x^Xy giving an objective value of 2 0x^ . This illustrates that 
relaxing the integrality constraints to generate an approximation of the solution of 
QAP by solving CQAP, may result in a bad approximation. 

Extreme case 2: The opposite occurs when ƒ is concave and all values ctj and qijkl 

are zero apart from all 400 diagonal values qm which are taken negative and equal. 
In this case all 20! feasible assignments of QAP are global optima of CQAP; we 
have created a washing board with 20! holes. As we are dealing with concave 
minimization, the optimum can be found at the extremes of the feasible set. The 
optimal solution will not take fractional values, as the vertices of the feasible area 
are integral. A general nonlinear programming algorithm will find one of the global 
optimal points. By adding a small slope to this washing board, having different 
values for the suitability indicators cip the result is a CQAP problem with numerous 
local optima. Local nonlinear optimization routines will only identify one of the 
optima given a starting point. 

For extreme case 2, the combinatorial QAP and global optimization CQAP are 
equivalent, have the same solution set and both are very hard to solve. For extreme 
case 1, the CQAP problem is easy to solve, but its optimum is far from the 
optimum of the QAP problem. Approximating one problem with the other has no 
use. 

Pardalos (see Horst et al., 1995) shows that any QAP problem has an equivalent 
CQAP problem, which appears by a transformation which is similar to the relation 
between (1) to (2). According to this idea the objective function of the CQAP 
variant is made concave (concave quadratic programming) by adding to fix) the 
term —jdLLx^y. When a is chosen greater than the largest eigenvalue of the Hes-
sean 2Q of fix), then f(x) becomes concave. Minimizing a concave function over a 
polytope implies that the optima can be found at the vertices of the feasible set. 
This means that the optima take a binary value and thus are solutions of QAP. The 
modification of the objective function by adding —j-ocEZx̂ , gives that for all integer 
solutions the objective value decreases by yCi(20)2. In this way the modified CQAP 
problem is equivalent, has the same solution set, to the QAP problem. If we would 
be able to develop algorithms which solve concave quadratic programming prob­
lems in polynomial time, we could solve the general quadratic assignment problem 
and with that all problems which are called NP-complete in polynomial time. 

To complete the discussion on the QAP problem, we will finish with the Mixed 
Integer Linear Programming (MILP) variant which we frequently observed to be 
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used by OR practitioners to treat the problem. The QAP problem can be trans­
formed to an MILP equivalent by introducing variables zijU to describe and replace 
the interaction XyXu. Notice that for the 20 person problem this are at most 160,000 
variables zijkl. 

20 20 20 20 20 20 

min fix) = E E c * + E E E E q z 
i = i j = i ; = l j = l k = l / = l 

E x.. = 1 j = 1.....20 (MILP-QAP) 
I 

E x.. = 1 i = 1,...,20 
•J 

j 

x.. € {0,1} ij = 1,...,20. 

In addition, the link between the assignment variables xtj and the interaction 
variables zijkl has to be established by adding constraints: 

Zijki ^xy and zm<xu if qijkl < 0 (3.4) 
and 

Ziju Z xu + % - ! i f ?,;/*; > 0- (3-5) 

Of course the variable ziJki can be left out when qijkl = 0. In this formulation the 
variable zijU

 c a n be defined fractional between 0 and 1. Another often used variant 
in which the two linking constraints (3.4) are replaced by zijU ^ {xtj + xkl)/2, requires 
ziJU to be integral too. 

The solution methods for MILP problems are often based on a Branch-and-Bound 
approach, which is discussed further in Section 3.3. The bounds are based on a so-
called LP relaxation, leaving out the integrality constraints. This is sometimes called 
by researchers the "cross your fingers approach" as one hopes te generate an integer 
solution automatically. Unfortunately this happens very seldom for the MILP-QAP 
formulation making the QAP problem hard to solve. 

Let us consider some extreme cases again. For an instance with all qijk, = 0, 
the problem becomes the general assignment problem, for which the LP solution is 
integral automatically. Apparently the hard part of the problem is the quadratic, 
interaction part. For extreme case 1, all values of qm equal and positive, the 
relations (3.5) apply. All nonintegral solutions with xtj < 1/2, give optimal LP 
solutions with an objective value of zero. This is even more far from the optimal 
objective 20x#,Ä of every feasible (integer) assignement, than the optimal correspon­
ding CQAP solution. This is not a very hopeful observation for the "cross your 
fingers" approach. For extreme case 2, where (3.4) applies and one tries to maxi­
mize the quadratic variables zw, the optimal LP bound coincides with the optimal 
QAP objective. 
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The QAP problem has been used here to do some experimental thinking on 
complexity issues. The QAP problem is known in literature to be hard to solve, it 
is so called NP-complete. It has been shown that there is an equivalent concave 
quadratic programming variant to emphasize the message: 

If we could solve global optimization problems in polynomial time, we could 
solve difficult combinatorial problems. 

Relaxing the integrality of the QAP problem results in the CQAP problem, which 
has in general multiple optima. We have shown a worst case with n\ optima and a 
"best" case with one optimum. The analysis of the "best" case teaches us that there 
may be a large gap between the optimal CQAP problem and the corresponding 
(same parameters) QAP problems. The LP relaxation of the MILP variant of the 
QAP problem is not equivalent to the CQAP problem. It also showed that the 
bound generated by an LP relaxation of the MILP problem may deviate largely 
from the optimal value. As will be discussed in Section 3.3, this makes a problem 
hard to solve by a Branch-and-Bound approach. 
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3.2. Problems handled by piecewise linear programming 

3.2.1. Introduction 

Not every practical nonconvex optimization problem is doomed to be unsolvable. In 
this section it will be discussed how ideas from Linear Programming and Integer 
Programming may be applied in solving problems with some additional nonlinearity 
in a further linear model. From the early start of linear programming, mathema­
ticians have been interested in including nonlinearities in linear models. We quote 
the well known remark "But we all know the world is nonlinear", after the first 
major lecture in 1948 of Dantzig on the subject of linear programming (Dantzig, 
1991). The models are linear but one wants to include a nonlinear function fix) 
which is a function of one variable. 

In textbooks on linear programming besides the terminology 'piecewise 
linear programming' (resulting, more correctly, in a piecewise affine function) the 
expression separable programming is used. In this way one expresses that the func­
tion fix) consists of a sum of nonlinear functions in one variable. We will show that 
the same concept can also be applied for functions of several variables. The 
advantage of approximating nonlinear programming problems by linear or, as will 
be discussed, mixed integer programming problems is that there exist many 
standard solution routines for these problems. 

It will be discussed how nonlinearities can be included in a Linear Program­
ming formulation by Piecewise Linear Programming (PWLP). First, a convex 
programming formulation with nonlinear functions of one and several variables is 
considered in 3.2.2. Consecutively the idea of performing PWLP iteratively 
(Sequential Piecewise Linear Programming, SPLP) to save calculation time and 
computer memory, is shown in 3.2.3. Then the treatment of non-convex program­
ming by including binary variables in the Linear Programming formulation is 
discussed in 3.2.4. In Section 3.3 we proceed by discussing the corresponding 
solution approaches. 

3.2.2. Piecewise linear approximations in convex programming 

In textbooks on mathematical programming several formulations can be found under 
the name Piecewise Linear Programming (PWLP) or separable programming. We 
will discuss one way of including a function of one variable into an LP problem. 
Let the one-dimensional function fiy): R —> R be defined on an interval [/,«]. In the 
interval the interpolation points Yx - I, Y2, ..., YN = u and the corresponding function 
values fiY{), ..., fiYN) are defined. Now interpolation variables Xh sometimes called 
non-negative weightings, are added to the LP problem with the restrictions 

2 X, Y, = y 

XÀ,= 1 , ^ > 0 . 
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The last constraint is called the convexity row as a convex combination is taken of 
the interpolation points. 

Figure 3.1: Piecewise approximation of f(y)=y2 

For example the approximation of fly) = y2 on [0,3] can look as follows. Take as 
interpolation points Yx = 0, Y2 = 0.5, Y3= 1.5 and 74 = 3: 

0.5k, + I.5X3 +3À4 = y 
0.25^2 + 2.25^3 + 9A.4 = cp 
À] + Ki + Ag + A4 = 1 , Ài,Â2,A.3,À4 >0 . 

The linear programming variable (p is now implicitly a piecewise linear approxima­
tion (p(v) of fly) on the interval [l,u] when at most two adjacent Ä., take a positive 
value. This happens automatically when we deal with a convex programming 
problem i.e. fly) is convex and minimized or occurs in an appropriate way in a 
constraint. The choice of the interpolation points Yt is also a topic mentioned in 
handbooks. If one wants a good approximation the distance between the points can 
be chosen bigger on parts where fly) is nearly linear than on parts where fly) is very 
curved. 

Approximating nonlinear convex functions of several variables 
As pointed out in Williams (1990) and Hendrix (1990), the approximation idea by 
interpolation is not limited to functions of one variable. Therefore the expression 
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separable programming for the idea of PWLP is not appropriate. Consider the 
function of two variables fiy): R2 —> R on the box constraints 
lk < yk < uk, k = 1, 2, defining a two dimensional interval. A not necessarily 
equidistant grid with interpolation points Ytj, i = 1, ..., Nltj = 1, ..., N2 is defined. 

The corresponding PWLP formulation is as follows: 

m-u,;>o. 
Theoretically this approach 
can be extended to include 
functions of more than two 
variables f. R* -> R in the 
LP formulation. The number 
of indices K grows corre­
spondingly. An important 
observation is that the num­
ber of interpolation points, 
when Â  is taken fixed, 
grows exponentially with the 
dimension K of the function 
which is approximated. A 
practical relevance of this 
remark is due to the implicit 
appearance of approxima­
tions in farm management (see Hendrix, 1990) and land use models. This statement 

is elaborated here. In farm 
models usually the main 
variable, called activity x, 
denotes the part of an area 
which is used or cultivated 
with a certain crop which is 
treated in a certain way. One 
index is used to describe the 
crop. Other indices may be 
used to describe the level of 
a certain input such as ferti­
lizer, use of pesticide and 
cattle density per hectare. 
For a number of values of 
an input (index), coefficients 
are generated. If for example 

Figure 3.2: Interpolation points in approximating 
functions of several variables 

yield 

0 10 20 30 40 50 60 70 80 90 100 

fertilizer kg/ha 
Figure 3.3: Nonlinear relation in farm management 
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the optimal outcome represents 2 hectare maize with a fertilizer level of 100 and 3 
hectares of maize with fertilizer level of 150, the outcome can be interpreted as an 
approximation of an average fertilizer use of 130 per hectare. In this way the 
variables x can be interpreted as the weightings Xy. It is not uncommon in large 
studies (see e.g. Rabbinge and van Latesteijn, 1992), to use large crop growth 
simulation models to generate LP coefficients for several (Nk in fact) input levels 
for several (K) inputs. The number of activities and required coefficients grows 
exponentially with the number of inputs K which is included in the model. 

3.2.3. Sequentially applying Piecewise LP for convex functions 

The inclusion of a nonlinear function f(y) into an LP problem by adding its 
piecewise linear programming approximation <p(y) to the LP problem, may lead to 
an enormous increase in the size of the LP problem due to the number of interpola­
tion points. In Hendrix (1990) it has been suggested to reduce the initial number of 
interpolation points for the construction of (p(y), by iteratively calculating the LP 
problem with an updated set of interpolation points. This is called Sequential 
Piecewise Linear Programming. This idea is elaborated here. 

In nonlinear programming the so called linesearch, looking for the optimum 
over a line, is often done by so called interval reduction techniques. The purpose 
is to bracket a minimum point over a line by an interval that shrinks in size 
iteratively. Two points are taken in the interior of the interval and their function 
values are used to cut away a part of the interval in which the minimum cannot be 
situated. A similar interval 
reduction approach can be 
used in PWLP. Let us con­
sider a univariate function 
f(y) on the interval [Y^YJ. 
Instead of using a large set 
of interpolation points, the 
approximation cp(y) is con­
structed by adding two 
points in the interior so that 
there are four interpolation 

points, y, < Y2 < Y3 < Y4 like 
in figure 3.4. The optimal 
value v which has been 
found by the LP problem 
can now be used to shrink 
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Figure 3.4: Interval reduction in iterative PWLP 

the interval and to bracket a minimum point y* of the original problem. The shaded 
area between Y3 and Y4 does not contain the optimum and can be discarded. 
Analogously to the usual rules in interval reduction one can apply the rule: 

If y> Y2 then replace [YitY4] by [Y2,YJ else 
if y < y3 then replace [Y^YJ by [y„iy. 
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In the next iteration a new point can be added or two new interpolation points can 
be generated in the interior of the new interval and the procedure can be repeated 
until y* has been approximated with a predefined tolerance. In this way, at every 
iteration the same LP problem is run; only the data differ. The same approach can 
be taken when the nonlinear function concerns y e RK. For every index k, one can 
take 4 points and follow the procedure such that this requires in total 4K interpola­
tion points at every iteration. In this way it is not necessary to run a hugh LP 
problem with many interpolation points, but one can iteratively solve a smaller 
problem of the same size to approximate the solution of the problem. 

Of course one should be certain that this procedure is valid, converges to the 
optimum. Can the optimum y* be located in the part of the interval which is thrown 
away? We will show that the procedure is correct when f(y) is a convex function 
on lY^yj. Unfortunately, this proof is not very straightforward and requires some 
additional formalisation and introduction of symbols and definitions. We try to 
sketch the idea for the interested reader. 

The formalisation also provides some space to generalise the discussion. The 
idea of including the nonlinear function f(y) in an LP problem is generalised to 
including f(y) in a general convex programming problem. 
Consider problem P: 

P: mm{g(x)+f(y)\(x,y)<=X} 

in which g(x): R" -» R convex, f(y): R -» R convex and X c R"+1 convex. The 
optimal solution of P is denoted by x*, y*. One can associate the minimization of 
g{x) with a relatively easy to solve problem, such as the LP problem and the 
function f(y) with a function for which the evaluation is difficult, for instance it 
requires experiments. One wants to evaluate ƒ as few as possible or, in the PWLP 
context, we want to generate as few interpolation points as possible. 
We assume that P has feasible solutions for all y e [y^yj. The question raised is 
what will happen when f(y) is approximated by a piecewise linear function <p(y). 
Given are the interpolation points y, < Y2 < y3 < y4 and the piecewise linear 
approximation (p(y) of f(y) on the interval lYj.yj; so in general q>(y) = X A.,/(y,) and 
cp(y) coincides at the interpolation points, <p(y;) =f(Y^), i = 1,2,3,4. 

Problem P is approximated by problem Q: 

Q: min { g(x) + (p(y) I (x,y) e X } 

The optimal solution of Q is denoted by x, y. 
The idea to be analyzed is to approximate P iteratively by Q and to shrink the 
initial interval according to the interval reduction methods for functions of one 
variable. 
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Interval reduction scheme for iterative piecewise linear programming 

0. Given an initial interval [YUY4] and a stopping tolerance for the final 
interval. 

1. Generate the interpolation points Y2 and y3, for instance with the golden 
section rule and construct (p. Solve Q giving an optimal point y. 

2. a. If y is an interior point such that Yt < y< YM for a value 
of i = 1,2,3 then replace [Y{, Y4] by [Y{, YM]. 

b. lfy = Yi replace [F„ F4] by [F„ Y2]. 
\fy_=Y2 replace [7,, Y4] by [Yv y j . 
Ify = y3 replace [F,, y4] by [y2, yj-
If y = y4 replace [y„ y4] by [y3, y j . 

3. If the interval [Yu y4] fulfils the stopping criteria, STOP, else go to 1. 

An analogous scheme can be formulated for yeR*\ which implies the use of 4K 

interpolation points at every iteration. 

The question is whether the scheme is valid; will it converge to the optimum y*? 
Interval reduction techniques bracket the minimum correctly when there is one 
minimum on the interval. This is the case when the function to be minimized is 
convex. Now there are two problems when we relate this to our interval reduction 
scheme: 

i. One has to show that we are minimizing a convex function on the interval 
[Ylt y j . 

ii. One has to show that the minimumpoint y found by the approximation is in 
the same subinterval as minimumpoint y*. This is not hard for step 2.b, 
where the two points coincide, but unfortunately not straightforward for step 
2.a. The fact that y* is in the same interval as y has to be proven. 

i. We start with the convexity question i. The function we are actually minimizing 
appears when we fix variable y and minimize over variable x. Let us call this 
function 

V(y) = min{g{x)+fly)\xeX(y)} 

in which X(y) is set X with a fixed value of y (so it is convex). One assumption told 
us that for every y in the interval a feasible point x exists. So we have to show that 
T(y) is a convex function. We first split ^(y) in fly), which was assumed to be 
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convex and the function 

n(y) = min{ g(x) I x e X(y) }, 

so that ^(y) = n(y)+f(y). Function n(y) is a generalisation of the perturbation 
function which is used in convex analysis, see Bazaraa et al. (1993). For this 
function the convexity can be proven. The proof and a more precise formulation of 
the theorem are provided in Appendix 3.A. 

Theorem 3.1. (Appendix 3.A) Given all assumptions on problem P, function n(y) is 
convex on [Y{, 7J. 

As 7t(y) is convex also ¥(y) = n(y)+fiy) is convex for any convex function ßy). 
This shows that the interval reduction procedure reduces the interval correctly; y* 
cannot be situated in the subinterval which is thrown away. This is only valid if in 
2.a. v* can be found in the same interval as v. This is investigated now. 

ii. This needs some elaboration of the properties of the approximation of fy) by 
(p(y) and consequently of approximating P by Q. 
The functions ^(y) = n(y)+fly) and S(y) = 7t(y)+(p(y) are both convex and coincide 
at the interpolation points Y,, i = 1,2,3,4. 5(y) is a convex majorant of ¥(y), 
E(y)>*F(y) for ye[y,, Y4]. Note that S(y) in contrast to (p(y) is not necessarily 
piecewise linear (with the same interpolation points); this causes y to be an interior 
point in case 2.a. We have to show now that if S(y) has a minimum point y in the 
interior of an interval, then *¥(y) also has a minimum point y* in the same interval. 
This is done by theorem 3.2. 

Theorem 3.2. 
Given two convex functions \|/(y), £(y) : [a,b]c=R —» R, £(y)>\|/(y) and two points 
y„ y2 e [a,b] such that yx<y2, \|/(y,) = Ç(y,) and \|/(y2) = Ç(y2). 
If £(y) has a minimumpoint in the interior of \yx, y2] then \|f(y) also has a minimum-
point y * e [y^l 

The proof can be found in Appendix 3.A. 

The theorems 3.1 and 3.2 have answered the questions i. and ii. If fix) is convex, 
the procedure as outlined in the interval reduction scheme for iterative piecewise 
linear programming, is valid in the sense that the minimum of P is not thrown away 
when iteratively approximated by Q. Convergence can be forced by choosing the 
interpolation points Y2 and Y3 correctly. In this way 

nonlinear programming problems can sometimes be solved by iteratively 
running LP models, for which there exist well known routines. 
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3.2.4. Piecewise linear programming and nonconvex functions 

After the discussion of the relation between linear programming and the 
minimization of convex functions let us return to the central theme of this work on 
nonconvex optimization. A variant of Hotellings remark could be: "We all know the 
world is not always convex". The question is how to include nonconvex nonlinear 
functions in an LP problem. The problem is that the approximation of fly) by cp(jy) 
is now frustrated, as not two adjacent interpolation variables are selected. This can 
be derived from the simple example in figure 1. Consider again the approximation 
of fly) = y2 on [0,3] by q>: 

0 . 5 ^ + 1.5̂ 3 + 3A,4 = y (3.6) 
0.25 A, + 2.25À, + 9A.4 = (p (3.7) 
A., + A, + A, + X4 = 1, X^KK ^0. (3.8) 

Given a fixed value of y = 1, the minimization of (p given equations (6) and (8) 
(convex optimization) results in the optimal values of A^=l/2 and A.3=l/2 and an 
approximation of fll) with (p=0.25*0.5+2.25*0.5=1.25. This approximation is as 
good as possible given the interpolation points. Nonconvex optimization includes 
the maximization of a convex function (this is called concave programming) and 
leads to extreme choices. The corresponding maximization of (p given a fixed value 
of y=l gives an optimal solution of A.,=2/3 and A.4=l/3 and an approximation of fll) 
with q>=9* 1/3=3. This bad approximation is caused by the choice of extreme and 
not adjacent interpolation points by the LP formulation. 

As nonconvex optimization leads to multiple optima, one would expect 
(given the message of this chapter), that there is a relation with integer program­
ming. This was indeed found by Dantzig (1960). In order to force the LP formula­
tion to select at most two positive adjacent interpolation points he introduced the 
well known 8-formulation (see Dantzig, 1960). Binary variables 8„ i= l,...,N-l are 
used to describe whether the solution y can be found (yes/no) in the interval 
[y,,y,+1]. By linking the 8, variables to the A.,- variables only two neighbouring 
variables A.,, take a positive value when an integer solution of the MILP problem has 
been found. For the example of figure 1 this requires the addition of the following 
restrictions to equations (6), (7) and (8): 

A,, <8 , 
Â  < 8, + 82 

A3 < 82 + 83 
A.4<83 

8, + 82 + 83 = 1 

and 8, binary i=l,..,3. 

As only one binary variable 8 gets a value of 1, at most two adjacent interpolation 
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variables X will get a positive value. The equivalence between integer programming 
and global optimization as introduced is that solving the MILP formulation means 
looking globally over the feasible set to find the global solution of (p(v). The 
solution method requires a global search over the domain. In Section 3.3, a specific 
algorithm is outlined and an example of the 5-formulation is given and solved in 
different ways. 

Approximating nonconvex functions of several variables 
The extension of the 5-formulation to the approximation of a multidimensional 
function f(y): E2 -> R on the box-constrained region lk < yk < uk , k = 1,2 is not 
straightforward. The point is that we first need to define the concept of adjacent 
points in a multidimensional space. 
Let us observe that the optimization of q> under the constraints (3.6) and (3.8) leads 
to at most two interpolation variables to be positive. This is no coincidence. In LP 
the number of basic variables (potentially nonzero) in the optimum solution equals 
the number of constraints. If we extend this observation to a two-dimensional space, 

ZZXyY^y (3.9) 
Z E V / d y = <p (3.10) 
2 U - 1 , \ > 0 , (3.11) 

the optimization of (p in (3.10), given values for the vector y, leads to an LP 
problem with three equalities, namely two equalities (3.9) and one in (3.11). The LP 
solution will select at most three positive interpolation variables. In general, for a 
AT-dimensional space the LP approximation will interpolate the most profitable K+l 
points; the best simplex for the optimization. 

For the 8-formulation, one should define the concept of adjacent K+l points. 
Let us elaborate this in two dimensions (K=2). One possibility, discussed by 
Williams (1990), adds interpolation variables u, for the y,-axis and variables v, for 
the y2-axis to (3.9), (3.10) and (3.11) in the following way: 

j 

v. = E ^ 7 = 1,-,AT2 . 
» 

Those variables can be used to describe the interpolation between the values on the 
y,-axis and y2-axis which correspond with the interpolation grid (figure 3.2). Now 
the 5-formulation can be applied for the u, and v, variables separately to force 
interpolation of adjacent values on both axes. 

From a simplicial point of view, one can define directly what are considered 
adjacent points and subdivide the interpolation space in simplices. A binary 
variable 8 can now be connected with each simplex. We use an example to 
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illustrate the simplicial subdivision and corresponding ô-formulation. Moreover, it 
shows that it is neither necessary to use a grid nor a rectangular domain of y. A 
simplicial partition of the domain with a corresponding list of interpolation points is 
sufficient, though the coding and bookkeeping may be cumbersome. We partition 
the rectangular domain lk < yk < uk, k = 1,2, in four equal simplices using the 
vertices and barycentre as five interpolation points (two-dimensional vectors). 
The vectors 

r. = ,Y2 = 
( \ 

U2 

\ J 

• * 3 = • n = 
( \ fl 

and Y5 = 
(/, + ",)/2 

(/, + ",)/2 

> 

define the interpolation vectors and the variables 5, correspond to the four simplices 
which only contain three (adjacent) interpolation points. Now the corresponding Ô-
formulation to approximate a nonlinear nonconvex function on this box is given by: 

I X, Yt = y 
X?i,./(r;) = (p 
Z A., = 1 
A,, < 8, + 82 

2̂ < 82 + 63 

X3 < 5, + 64 
A,4 < 53 + ô4 

A,5 < 5, + ô2 + 83 + ô4 

ô, + ô2 + ô3 + 54 = 1 

6, binary i = 1,2,3,4 
\ > 0 1 = 1,2,3,4,5. 

* Y, 

S3 

« 4 

Y, 
' *Y, 

yi 
Il Ul 

Figure 3.5: Simplicial partition in 8-formulation 

The use of a simplicial division requires a list to describe for every interpolation 
point in which simplices it occurs as a vertex. One of the simplices will finally be 
selected and contains the global optimum of (p. The same idea of subdividing a 
domain in subsets can be found in the branch-and-bound methods of deterministic 
global optimization. 

Linear programming is the most applied technique of convex optimization. From 
the early days, it has been tried to include nonlinear optimization functions in the 
model formulation. For some types of problems such an approach might be 
succesful. We have seen that extension to the inclusion of nonconvex funcions is 
not straightforward. One cannot solve (complex) multi-extremal optimization by 
simple convex programming. The 5-formulation shows how integer programming 
can be added in an attempt to solve nonconvex (global) optimization problems. If 
one could solve integer programming problems in reasonable time, also many types 
of global optimization problems could be solved easily. The solution approaches of 
both classes are discussed in Section 3.3. 
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3.3. Similarity in algorithms 

The similarity in algorithms between the two fields, combinatorial optimization 
techniques at one side and global optimization techniques at the other side is 
interesting. We more or less assume the reader to be familiar with ideas from 
combinatorial optimization and do not intend to give a summary on either groups 
but just refer to literature on the subject; the Handbook on Global Optimization 
(Horst and Pardalos, 1995) and Combinatorial Optimization, Algorithms and 
Complexity (Papadimitriou and Steiglitz, 1982). 

The GLOP methods can be globally divided into two categories (Chapter 1): 
One group based on deterministic methods (see Horst and Tuy, 1990), GD, using as 
much information on structure as possible and the other group based on stochastic 
methods and (nonlinear optimization) local searches (see Torn and Zilinskas, 1989), 
GL. The same categories can globally also be found in integer programming. 

In combinatorial optimization one group of algorithms is based on enumer­
ation, the name Polyhedral Techniques is sometimes used. For convenience we will 
call those methods Integer-Deterministic, ID. Other methods are based on the idea 
to obtain a good approximation of the optimum in reasonable calculation time using 
what is called heuristics, random search and local search. Let us name those 
methods Integer-Local, IL. 

Table 3.1: Categories of algorithms. 

fields 

Global Opt. 

Integer Pr. 

Determ. 

GD 

ID 

Loc. 
Stoch. 

GL 

IL 
IL versus GL 
Heuristics to construct good but not necessarily optimal solutions have been used 
for a long time in integer programming. Random search methods have become 
more popular in combinatorial optimization with the appearance of fast computing 
power in the last decades. Methods as simulated annealing and genetic algorithms 
are based on a random generation of many candidate solutions. The idea of local 
searches to find improvements of feasible solutions (improvement heuristics) also 
has become popular in integer programming, see Aarts and Lenstra (1997). How­
ever, unlike the nonlinear programming problems where there exists a natural way 
to define a neighbourhood of a solution, for every integer programming problem 
this concept has to be worked out and is often not unique. Nonlinear programming 
local searches are based on identifying, by simple function (or gradient) evaluations 
in the neighbourhood of the current iterate, a promising (descent) direction. For 
integer programming problems one has to look at the structure of the problem and 
define neighbouring solutions. For many combinatorial problems, local searches 
have been defined, see Lawler et al. (1985). The most famous example is the 
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function f{JPj) = lOVrP, can for instance be approximated by the line 0.62T, + 40. 
The fixed charge model includes a binary variable FIj to model the decision 
whether (yes/no) a location will be used. The throughput costs are approximated by 
(?(TPj) = 0.6TPj + 40FIj and a constraint TPj < 100 FIj is added. Calculating the 
optimal transportation plan with this approximation results in the global optimum of 
the original problem with costs 230 and TPA = 100 and TPB - 0. the results are so 
good, because the approximation around the global optimum is correct. In general 
this optimum is not priori known and one looks for an approximation which fits the 
original problem as good as possible over the total feasible domain. 

This can be done using the 5-formulation over the range [0,100] in which the values 
of TPj are situated. Using as interpolation points: 

Yk 

AYÙ 

0 

0 

4 

20 

16 

40 

36 

60 

64 

80 

100 

100 

gives the following approximation with the 5-formulation: 

min{ I Ç j + Ï I CijXy} 

i = l,....6 
j = A,B 

4kq + I6A.3, + 36À4, + 64À5j + I00"k6j = TPj 
20X\j + 4OÀ3, + 60X4, + W\5j + \WK6j = (f>, 

Su + 52;. + S,,. + bv + à5j=l 
Xjj, TPp Xkj > 0 8kj binary 

k = 2,3,4,5 

j = A,B 
j = A,B 
j = A,B 

j = A,B 
j = A,B 
j = A,B 

The LP solution without integrality constraints on the S variables, which is the LP 
relaxation in the first node of the branch-and-bound tree, corresponds with the plan 
of Table 2.2, i.e. TPA = 70 and TPB = 30. The selected positive interpolation 
variables are typically not adjacent, but taken as the extremes (concave program­
ming), XlA = 0.3, ÀM = 0.7 and A,1B = 0.7, X6B = 0.3 which results in an objective 
value of 200. The real costs of the plan of Table 2.2 amount to 238.4. After 
calculating 15 nodes the branch-and-bound procedure reaches the optimum in which 
TPA = 100 and TPB = 0, so that X6A = XlB-l. 
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Special ordered sets 
We discuss another type of branching here, which was specifically developed for 
these kind of MILP approximations by Beale (see Beale and Tomlin, 1969). The set 
of binary variables {8,,...,SW} with the constraint X8, = 1 is called a special ordered 
set of type 1, SOS,, when there is a certain ordering like in our case by the 
corresponding interpolation points. Beale suggested to perform the branching not on 
posing integrality constraints on one branching variable, but to generate subprob-
lems in the following way. One variable (index) 6r is selected. Two new subprob-
lems, nodes, appear by adding for one node the restriction 8, +...+ 8r = 0 and for 
the other one 8r+1 +...+ dN = 0. This branching rule defines a branching tree with a 
depth of approximately 2log(JV) and can be applied successfully with various rules 
for choosing the splitting point (index) in the set. 

The ordered set ideas have been implemented in the Sciconic software, which 
has been used intensively in agricultural research in the Netherlands in the eighties. 
It also contains the so called SOS2 concept (Beale and Tomlin, 1969) for piecewise 
linear programming. This concept does not use the binary variables 8, of the 8-
formulation, but branches directly on the interpolation variables A,,. As only (at 
most) two adjacent variables are allowed to be positive, the two new subproblems, 
nodes, are defined by using a branching variable Xr and imposing for one of the 
problems the additional constraint XQ +...+ Xr_t = 0 and for the other Xr+1 +...+ XN = 
0. The concept of SOS2 sets has also been developed for nonconvex functions of 
several variables (see Beale, 1980) for the case of Figure 3.2. In contrast to the 
algorithm for functions of one variable, it never has been implemented in Sciconic 
for several variables. 

With this automatic branching procedure and an automatic routine for 
selecting interpolation points the user only had to provide the one dimensional 
function and a range for the argument. In this sense the Sciconic software was one 
of the first packages on nonlinear optimization and on global optimization. Notice 
that this works for one particular class of functions, i.e. one dimensional functions 
embedded in an LP environment. Note further that the global optimum of the 
approximation cp is found and not necessarily that of the original problem. As 
choosing interpolation points implies a kind of grid search, it is still possible to 
miss the global optimum. 

Algorithms in both fields can be divided in stochastic (local search) and determin­
istic methods. Stochastic methods using (integer) local searches need specific 
problem dependent formulations for the neighbourhood concept. In deterministic 
methods the concepts of cuts and Branch-and-Bound appear in both fields. In fact 
one of the early implementations (Sciconic) to solve nonconvex problems via 
piecewise linear programming and Branch-and-Bound, can be called one of the 
early global optimization software packages. 
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3.4. A maximum distance problem 

As in Section 3.2, it is shown here how integer programming can sometimes be 
used to approach global optimization problems with a particular structure. The 
equivalence with integer programming implies that also the complexity of this class 
of problems is related, as will be shown. A specific property which is used, is the 
convexity of a distance function. This causes the maximization of a distance to be a 
case of concave programming, which (see Section 2.2.) in general leads to multiple 
optima which are attained at the boundary of the feasible region. 

The particular problem which is discussed here, originates from the applica­
tion of multi-objective programming in land use planning. An example which 
describes land use options for the European Community can be found in Rabbinge 
and Van Latesteijn (1992). In this context, variables Xj describe the use of an area in 
a certain region for a particular crop or land use option. Criteria variables zk 

describe the various objectives and are used in a multi-objective framework. It is 
not necessary to go into detail on the numerous methods for multi-objective 
programming here, of which the so called Interactive Multiple Goal method is 
popular in land use modelling. What is important is that finally an optimal (for the 
decision maker) plan x* with corresponding objective vector z* is selected. 

The question under discussion originates from robustness and reliability 
studies on the plans that are generated. One idea is to have a close look on the size 
or extremes of the set of optimal or 'near optimal' solutions. This is similar to the 
robustness and level set discussions in Sections 4.5. and 6.3. respectively. An 
approach could be to have a careful look at the reduced costs of the variables xj 
which are not taken into the plan. Due to the existence of several objectives this 
may be rather complicated. Therefore the specific question was derived to look for 
a plan which is as different as possible in the space of the land use plans x, but 
similar in the objective space of z. The given plan x*, z* is used as a reference 
plan. The conceptual mathematical formulation is the following. 

max D, (x,x*) 
D2 (z,z*) < e 
Cx = z 
Ax<b 
l<x<u 

in which matrix C is K to n, A is m to n, b is an m-vector, / and u are given vectors 
of dimension n and e is a given scalar. We are dealing with two distance functions. 

Distance in the restrictions. 
The feasible set is convex, as also the distance function D2 is convex. When the 
Euclidean distance function is used for D2, the first inequality is quadratic. In our 
applications we used the maximum relative difference 
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DJz,z') = max J J _ , 

which came closest to the perception of the modeller. Moreover, this can easily be 
implemented in an LP environment. 

Distance in the objective. 
When the distance function in the objective is taken to be Euclidean, the problem 
becomes a concave quadratic programming problem which has been extensively 
discussed in literature, e.g. Horst et al. (1995). Methods to solve such problems are 
given in Horst and Tuy (1990) and are outlined in Chapter 4. A variant for the 
distance function which gave the desirable result for our application, was the use of 
the one-norm, the sum of the absolute deviations from x*. No weights were used, as 
all activities in the model have the same dimension (area): 

Dl (x,x*) = Z | x-xj | . 

In general LP, variables d* and d~ can be introduced to describe a positive or 
negative deviation x-xj. For the implementation in an MILP environment, binary 
variables are necessary now. Variable 8; describes whether a deviation xj-xj is 
positive, d* or negative, d'j. In fact the binary variables describe the choice between 
the local optima of the maximum distance problem. A general MILP formulation is 
given as follows: 

max D = X d] + d~ 
xj-Xj + d+j-d'j=0 7=1,.. . ,« 
dr < (xj - /,) 6, 7=1,. . . , n 
d*j < (uj - xJXl-àj) 7=l , . . . ,n 
-e < (zt - zf)lzt < e it = 1,..., K 

Cx = z 
Ax<b 
l<x<u 
d+j,d'j>0, 5; binary j=\,...,n 

At first sight, the approach requires an high amount, n, of binary variables. How­
ever, 8, is not needed when xj is either on its lower bound lp or on its upper bound 
Uj. This applies for most of the variables in an optimal plan. 

To illustrate the approach, a small example is presented. Let a multi-objective 
problem be given as follows. 
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Multi-objective formulation: 

max z, = 25 + 5.x, 
max z2 = 20 + xx + 5x2 

xx + x2<& 
-xx + x2 < 2 
0 < jt, < 5 
0 < x2 < 4 

In the applications the problem stems from, the two objectives would have an 
economic and environmental interpretation. Those objectives are in general conflict­
ing. In the example some constants are present in the objective functions, which is 
in general also the case in the applications. Let us assume that the decision maker 
selected as an optimal plan x* = (5,3) with corresponding objective values 
z* = (50,40). 

Now the corresponding maximum distance problem can be formulated. Notice first 
that xj attains a value at its upper bound. Only for the second index a binary 
variable will be introduced. 

Corresponding maximum 
distance formulation: 

max D = dx + d2 + d~2 

5 - xx - d\ = 0 
3 - x2 + d\ -d2 =0 
d2 < 3 82 

d\ < (l-82) 
z, - 50 < 50 e 
50 - z, < 50 e 
40 - z2 < 40 e 
z2 - 40 < 40 e 
Z) - 25 + 5̂ [ 
z2 = 20 + x, + 5x2 

jc, + x2 < 8 
-X! + x2 < 2 
0 < X, < 5 
0 < x2 < 4 
d\, d2, d\ > 0, 82 binary 
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Figure 3.6: Maximizing the distance from x=(5,3) 

The formulation given here contains quite some redundant constraints, which can be 
left out to improve the efficiency when solving a realistic case. For illustrative 
purposes the 'most distant' plan x(e) is calculated for several values of e. In Figure 
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3.6 the so called e-level set of the second distance function is depicted. The results 
can be found in Table 3.1. 

Table 3.1: Solutions of the maximum distance problem for varying values of e. 

e 
0% 

5% 

10% 

15% 

20% 

Zi 

50.0 

47.5 

45.0 

42.5 

40.0 

z2 

40.0 

42.0 

44.0 

43.5 

32.0 

* i 

5.0 

4.5 

4.0 

3.5 

3.0 

x2 

3.0 

3.5 

4.0 

4.0 

1.8 

D 

0.0 

1.0 

2.0 

2.5 

3.2 

S2 

0/1 

0 

0 

0 

1 

The binary variable 82 shows here the choice between two local optima of the 
maximum distance problem. When the number of binary variables increases, there 
may be very many corresponding optima and thus the solution process by branch-
and-bound may require a long time. In this problem the modeller cannot oversee all 
local optima and in general there is no guess where the global optimum is located 
or a guess of a bound on the objective function. For the illustration of the complex­
ity a worst case example of the maximum distance problem can be found in 
literature. 
Consider the problem 

max f(x) = Z (*,. - e)2 

1 < x, < 1 i •= \,...,n. 

For a given small value of e, this problem not only has 2" local optima but also a 
multiple of Kuhn-Tucker points. However, as already outlined in the introduction of 
Section 3.1, the complexity result not necessarily tells us something about the 
solvability of practical cases. For real instances of the land use model with thou­
sands of variables, and consequently implying hundreds of binary variables for the 
corresponding maximum distance problem, it was possible to generate 'near 
optimal' solutions very distant from the reference plan by the suggested approach. 
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3.5. A minimum volume hyperrectangle problem 

In this section a particular problem is discussed which illustrates again the complex­
ity link between global optimization and combinatorial optimization as discussed in 
Section 3.1. Unlike the former sections it does not provide a suggestion to use 
techniques from integer programming in global optimization. 

The particular problem is a mathematical puzzle, with practical relevance 
originating among others from parameter bounding problems as outlined by Walter 
and Piet-Lahanier (1990) and with particular relevance to the algorithm suggested 
by Keesman (1990). The complexity of finding an optimal solution contrasts with 
the simplicity of its formulation. Given is a set of points X = {*,,...,%} c W. The 
question is to find an enclosing hyper­
rectangle with minimum volume around 
the points of which the axes are free to 
be chosen (Keesman, 1992). 

Mathematically this can be trans­
lated into finding an orthonormal 
matrix (ai,...,an) such that the objective 

n {v; = (max a'x - min afx)} 

is minimized. Notice first that only the R 3J. T h e m i n i m u m v o l u m e 

points m the convex hull of X are of hyperrectangle problem 
interest. The others can be left out. 
However, this observation does not 
reduce the complexity of the problem. Notice further that if the corresponding 
polytope defined by the convex hull of X is not full dimensional ( the points are 
situated in a lower dimensional plane), the optimal objective value is zero as one of 
the v, takes a value of zero. 

A problem similar to the minimum volume hyperrectangle problem, is to find 
an enclosing or an inscribed ellipsoid, as discussed for example by Khachiyan and 
Todd (1993). The enclosing minimum volume ellipsoid problem can be formulated 
as finding a positive definite matrix and a centre of the ellipsoid, such that it 
contains a given set of points or a polytope. A problem which is easier from a 
complexity point of view is to calculate a minimal sphere around a polytope or 
given set of points, e.g. Konno et al. (1994) or Botkin and Turova-Botkina (1992). 
The topic on finding an inscribed sphere in a polytope can be found in Chapter 4. 

From a nonlinear (non-differentiable) point of view, the minimal enclosing sphere 
problem can be formulated as finding the central vector c, such that the 
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sphere enclosing a set of points X is minimal: 

min max || c - x. ||. 

69 

The corresponding centre c is called the Chebychev centre of the corresponding 
polyhedron. It can be shown that the optimum c must be a convex combination of a 
subset of affine independent points of X (see Botkin and Botkina-Turova, 1992) 
which are so called active with respect to c. The corresponding points are called 
active, because they are situated at the largest distance from c. 

With a combinatorial view, one can construct an algorithm which generates 
all affine independent subsets of X, takes c as the average of those points and 
checks the points in the subset to be active in comparing the distance of the other 
points from c. This combinatorial view on the "min-max" problem does not imply a 
large complexity of the minimal sphere problem. Analogously, the solution of LP 
problems does not require the generation of all basic solutions. Botkin formulated 
an algorithm analogous to the simplex method, which pushes the centre c in the 
right (descent) direction of the current active points until it is in the convex hull of 
the active points and thus is optimal. 

A similar approach will be 
shown here for a part of the minimum 
volume hyperrectangle problem. How­
ever, in contrast to the minimal sphere 
problem, the approach ends up in local 
optima. Let us first illustrate the multi-
extremal character of the objective 
function TIv,. The requirement of the 
orthonormality of the matrix of axes of 
the hyperrectangle, implies the degree 
of freedom in choosing the matrix to be „. „ , , . 
/ iw> T * j - • *i.- i- Figure 3.8: Rectangles enclosing a set 

n(n-\)l2. In two dimensions this can be r • 
oi points 

Figure 3.9: Volume of the rectangle as a 
function of angle a of axis a, 

illustrated by using as one parameter 
the angle of the first vector. The multi-
extremal character of the objective for 
an instance with only four points is 
shown in Figures 3.8 and 3.9. In the 
corresponding simple instance the set 
X = {(2,3), (4,4), (4,2), (6,2)} is 
enclosed by rectangles defined bij the 
angle a of the first axis &v This means 
that vector a, = (cos a, sin a). Notice 
that case a=0 represents the same situ­
ation as a=90, because the position of 
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the two axes switches. This phenomenon has been discussed in Section 2.6. 

In a bad case instance for example when an increasing number of points is scattered 
over the boundary of an ellipse, the number of local optima in the parameter space 
increases correspondingly. For a further analysis, the problem is considered now 
from the viewpoint of an iterative procedure. 

«-steps procedure 

0. 

1. 

2. 

3. 

i = 1 

v, = min (max a'x - min a'x) 
1 ' j i j 

m = i J J 

in which a, is bound to be on the orthoplement of the formerly 
generated vectors a1,...,aj_1. 

if i < n then i: = i• + 1 and go to 1 

calculate the objective flv,. 

15 30 45 60 75 90 105 120 135 ISO 16S 

Figure 3.10: Objective v, of the first sub-
problem as function of angle a 

The subproblem in step 1 is already 
multi-extremal as can also be derived 
from the example in Figures 3.8 and 
3.9. In Figure 3.10. the objective func­
tion of the first subproblem has been 
depicted for the small example. It can 
be shown that the optimal values of v, 
are nondecreasing in the iterations. 

To simplify the analysis we will focus 
on the subproblem when i = 1. So the 
vector a with \\a\\ = 1 should be found 
which defines the planes a'x = b* and a'x = b' with b + = max a'x andb ' = min a'x 

j J 

such that v = b*-b' is minimized i.e. the planes are as close as possible. The 
subproblem can be seen as an orthogonal regression in which the infinite norm is 
used as a criterion. 

Analogous to the minimal sphere problem a set of active points is defined, which 
are now divided over the "upper plane" and "lower plane". Let set /+ contain the 
(indices of) the subset of X such that a'xj = b+ for jel+ and let I~ be defined 
correspondingly. Notice that by considering the vector -a, the position of upper and 
lower plane switches, but the same situation is represented. 
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It will be shown that for a local optimal vector a at least n + 1 affine independent 
vectors JC- are active. From a combinatorial point of view one can select n + 1 
(affine independent) points out of the (convex hull of the) K points in set X and 
divide the points in 2"-l ways into two groups /+ and I~. Now vector a and the 
upper and lower plane can be constructed. If the two planes sandwich all other 
points we have a local optimum with an objective value of b*-b~. By enumerating 
all selections and divisions, requiring an enormous amount of calculation time, one 
can select the best of the local optima to be the global optimum. In contrast to the 
minimal sphere problem, there are several selections of n + 1 points (and divisions 
in two subsets) which correspond to an enclosure of the points and thus to a local 
optimum in the parameter space of a. 

In order to discuss the construction of the planes and the active status of n + 1 
points, the sets B* and B~ are introduced. Given a vector a and the corresponding 
sets P and /", set B* is defined as the linear space spanned by the vectors Xj - x\ in 
which je r and x\ the first vector (corresponding to the first index) in /+. Let Br 
analogously be defined. So vector a is orthogonal to B* and Br. When 
| /+ | + \l~\ = n + 1, so that dim(ZT) + dim(ZT) = n - 1, vector a is defined 

uniquely and, as will be discussed, local optimal with respect to the subproblem. 
When | r | + 11~ | < n + 1, the objective can be improved by changing vector a. In 
this way a local optimization procedure is defined. For an arbitrary starting vector 
a, it may be valid that | /+ | + | V | = 1 and the corresponding sets B* and Br are 
empty. The procedure stops when dim(Z?+) + dim(ZT) = n - 1 and there are n + 1 
affine independent active points. For the objective function 

v(a) = max a'*. - mina'x. 
j J 

a descent direction d is constructed such that vector a + Xd remains orthogonal to 
^andf i " . 

Let vector q be defines as xk - x„ kel+ and fe/", so that v(a) = a'qNa'a, which is 
also valid when a does not have a unitary length. By taking the steepest descent 
direction 

d= _.— 
la7^ 

1 (a'q Ï 
-2-a - q 
a a 

V J we have a direction in which the objective decreases. Now d should be projected on 
the orthoplements of B* and B~ so that the active set stays active. If there are 
already n + 1 active points, the projection reduces d to the zero vector, because d is 
already orthogonal to vector a. Going in the direction of d reduces the objective 
function in the following way: 
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v(a + Kd) = —_ ^ , 

/ l + X2 

which is monotonously decreasing in A as dq is positive and q'd is negative. Now 
A, can be increased until one of the inactive points Xj (a'x, < a'xj < dxk) becomes 
active. When ct(xk - xj) < 0 then xs comes into the "upper plane", this means j 
comes into / \ for that values of A,; of A. such that 

a'(xk - Xj) + A^V* - Xj) = 0 

so 

A 
d(xk - x}) 

d'{xk - x) 

Analogously Xj hits the lower plane when d'(xk - xj) > 0 for 

a'(x. - x) 
X.= v -v 

d'(xt - X) 

By determining all A, and taking the smallest value the next point to become active 
can be identified and the procedure can be repeated until n + 1 affine independent 
active points have been determined. 

This procedure defines a local search which arrives at a local optimum of the 
subproblem given a starting vector. As starting vectors for instance eigenvectors of 
the dispersion matrix QQ', in which Q = [*,,...,%], can be used (Keesman, 1992). A 
laborious algorithm has been outlined here to create a local optimum for the 
minimum volume hyper-rectangle problem. The problem illustrates the relation 
between difficult "unbeaten" global optimization problems and the combinatorial 
difficulty of choosing the right active points. 
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3.6. An investment problem in nature conservation 

In this section a management problem is discussed, which illustrates how a combi­
natorial problem when it is analysed by a continuous global optimization view, 
reveals a high multi-extremal structure. Moreover, as pointed out in Section 3.3., it 
shows how ideas from global optimization algorithms, based on random and local 
search, can be used in an integer programming environment. 

The background of the decision problem originates from government managers 
which take decisions on investing funds for the support of rare species in nature 
conservation. Species such as the badger in the Netherlands are considered that live 
on certain spots, so called patches. Because the animal travels, migrates from one 
patch to another there are dangers when crossing a road and encountering a barrier 
such as creaks, which it cannot cross. To improve the living condition of the total 
population which lives in a patchy habitat, investments can be done in "infrastruc­
ture" such as tunnels and bridges which decreases the death rate of the animals. 

The question to environmental scientists is to support these decisions with the aid of 
models. One type of population dynamics model is considered here, which is based 
on Adler and Neurnberger (1994). First the model is presented followed by an 
analysis of various decision problems which can be derived. In the population 
model K is the number of patches. The reproduction and migration (number of 
animals leaving the patch in one time period) is assumed to be proportional to the 
number of animals living in a patch with a reproduction rate r and a migration rate 
d respectively. 

The model can be written as: 

A: 

AT , = rN., + (1 - d)N., + dZX.N., 

in which 

Nit: number of animals living in patch i at period t, 
Xj/. so called connectivity between i and j . 

The connectivity is defined as the fraction of the animals migrating from patch i, 
which survive and arrive at patchy', so that T,Xj<\. We will assume that Xtf = \}i. 
The population growth is the largest eigenvalue of a matrix with r-d+\ on the 
diagonal and the connectivity A.ff as other elements. So the eigenvalue is that of the 
connectivity matrix A (zeros on the diagonal) plus r-d+l. The investments have the 
purpose to improve the connectivity. As r-d+l is not influenced by the investment, 
the largest eigenvalue of A can be taken as a criterion to judge a particular invest­
ment plan. It has been shown by Adler and Neurnberger (1994) by numerical 
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experiments with a large simulation model that the maximum eigenvalue is a good 
criterion to describe the growth of the population. Moreover they show that the 
maximum eigenvalue can be approximated by a parameter u. To facilitate the 
definition of this parameter, the so called immigration potential 5, is introduced: 

S = EX... 
1 'j 

j 

Now n is defined as 

Es,2 E(E\,)2 

u = ES. E D L 
y 

The investment problem with criterion (a is analyzed here from a global 
optimization viewpoint and a combinatorial viewpoint. First the relation between 
investment and connectivity is taken from a continuous (GLOP) point of view. Let 
Xjj be the amount of the money invested in connectivity A.,-,. The function fip 

describing the relation between connectivity Xtj and investment xtj is an increasing 
function and in a practical environment may be hard to estimate. The total amount 
of money which can be spend for an investment plan is assumed to be constrained 
by a budget. The continuous problem (P) is now given by: 

max \i (A) 

h=Mxv> i = l , . . . , /-l j = 2,...,K 
A,, = Xy i,j = 1, ..., K (P) 
K j - \ 

E E x < Budget. 
; = 2 i = i 

First, according to the ideas of Section 2.2, the problem is analyzed to reveal an 
underlying structure. As can be observed, the objectfunction is fractional in Xtj. The 
denominator of the ratio is linear, whereas the numerator is convex in A,f>. This gives 
the tendency of the objective function to be multi-extremal (see Schaible, 1995). 
When the functions ftj are taken affine with equal derivative: 

fix.) = Xti + ax.., 

this can easily be seen. The increase of the denominator of u by an investment plan 
is now fixed (full use of the budget), leaving a convex quadratic objective function. 

As a consequence (section 2.2) the optimal plan will be an extreme point of 
the feasible set. This means that it is not a good idea to base algorithms for finding 
the global optimum on derivative information, as is usually done in nonlinear 
programming. The partial derivatives of the objective are given by: 
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3u _ 3u <*K 
dxkl dlkl dxu 

where 

3M _ 9
 s, + 5* _ - *# = 2 

BXU E S,. (E5,.)2 

in which Xu = Xlk is accounted for. 
Marginally seen, additional investments best take place in a connection 

between patches which already have a large immigration potential 5,. However, the 
pattern of "the best connected" patches changes completely when first a large 
investment is done around a poorly connected patch. In this case a derivative driven 
algorithm will run to another local optimum. This means that nonlinear program­
ming local searches will return different local optima depending on the starting 
point as illustrated in the simple example in Section 2.3. In a more practical 
context, this effect is mitigated slightly, because the functions ƒ, will be concave. 

Deterministic approaches in global optimization (Horst and Tuy, 1990), as 
outlined for some practical problems in Chapter 4, can be developed for the 
investment problem. In fact the investment problem is very similar to the quadratic 
assignment problem (section 3.1) in complexity and from the combinatorial 
optimization point of view. 

Integer point of view 
The investments usually take place in an integer mode; a number of tunnels and 
bridges is constructed which are selected from a group of candidate projects. In 
general one project influences various connectivities. It is assumed here that Xy 
represents the number of projects to improve Xy only, to simplify the analysis. So 
the decision variables in problem (P) are restricted to take integer values. The 
budget restriction is translated such that a predefined number n of projects will be 
executed. When investments can take place in all N = K(K-\)I2 trajects simply all 

' tf+n-O 

) 
feasible investment plans can be enumerated and evaluated to select the 

best one. Also in this context it might be possible to construct Branch-and-Bound 
algorithms to speed up the enumeration. 

For a similar problem originating from design of experiments Rasch et al. 
(1997) discuss various algorithms. In the design problem n measurement points 
have to be selected out of N candidate points. The bounding in a Branch-and-Bound 
context can simply be based on a monotonicity observation: more measurements, 
experiments improves the statistical criterion. Notice that for the investment 
problem this may not be true (see derivative). There may be investments which, 
when they are added to the plan, lead to a worse objective function value. 
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As pointed out in Section 3.3., approaches of combinatorial optimization techniques 
can be applied now which are similar to ideas from global optimization methods 
which are based on local searches and random search (Chapter 5). For many 
combinatorial problems, local searches have been defined, see Lawler et al. (1985) 
and Aarts and Lenstra (1997). The most famous example is the travelling salesman 
problem. A given tour may be changed by exchanging two (or more) cities in the 
tour. The exchanging operation defines an environment in mathematical sense of a 
feasible solution and therefore also gives an interpretation of the terminology of 
local search and local optimum; a local optimum is a feasible solution which cannot 
be improved by performing the corresponding exchange operation. The same ideas 
can be applied for the investment problem. Some algorithms were implemented and 
tested on a small case study in the south of The Netherlands for a limited area 
where the badger lives. 

Possible structure of a random search algorithm 

Giver 

For q 

endo 

n: number of investments in the plan 
N: K(K-\)I2: number of connections which 
(in a practical case less connections will be 
L: number of plans to be generated 

= 1 to L do 
set all Xjj = 0 
For p:= 1 to « do 

generate one of the connections i,j 
xu: =xiJ+l 

endo 
evaluate the generated plan 

can be improved 
distinguished) 

Notice that not all feasible investment plans have the same probability to be 
generated in this way. Plans with high investments in one connection have a higher 
probability of occurring than plans with a high diversification. A simple experiment 
with test instances comparing the frequency distribution of the objective value of 
the random generated set of plans and the distribution of the plans generated by 
enumeration (every plan occurs once) gives a large similarity. Apparently the bias 
does not affect the objective space. 
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In practical decision support a good heuristic is to present the best plans which are 
generated, let say the top ten, to the decision maker. The best plans can also be 
used as starting points for a local search. There are various ways of constructing a 
local search. One possibility is outlined here. 

Local search outline 

Give a starting plan x (in which some xy > 0 and some xtj = 0). 
Repeat 

perform all possible exchanges by lowering one xtj with xtj > 0 by 
one unit and increasing another. Evaluate the resulting plan. 
If the criterion value of the best exchange plan is better than the 
current value, perform the exchange. 

Until no improvement can be found. 

By performing a simple random search and local searches as outlined here, the 
optimal solution of the test cases could be found in much less calculation time than 
by plain enumeration of all feasible plans. This illustrates how ideas of random 
search, local search and multistart (Chapter 5), which have been successfully 
applied in global optimization can be applied for complex combinatorial decision 
problems. The drawback of the random search based methods is of course that there 
is no guarantee that the global optimum is reached. On the other hand, a group of 
different local optima can be generated which provide the decision maker with 
several alternative "good" plans. Moreover, the explicit or implicit (Branch-and-
Bound) enumeration may for practical instances require an unrealistic amount of 
calculation time and computer memory as will be discussed in Chapter 4. 
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3.7. Concluding remarks 

We have seen four aspects on the relation between combinatorial optimization and 
global optimization. First of all, the exercises with the Quadratic Assignment 
Problem have shown how an integer problem can be translated to a global 
optimization problem. This means that the theoretical complexity is related between 
the two fields. If general purpose algorithms in global optimization would appear 
which can solve problems in polynomial time (in the dimension of the problem), 
one would be able to solve problems from integer programming which are known 
to be hard to solve. This indicates it will be impossible to construct such 
algorithms. 

Secondly, the application of piecewise linear programming for nonconvex program­
ming and the maximum distance problem have shown, that despite the theoretical 
complexity relation, practical problems may be solved by an integer programming 
technique. 

A third aspect is the similarity in classification of the algorithms. Algorithms in 
both fields can be divided in stochastic and deterministic methods. Stochastic 
methods using (integer) local searches need specific problem dependent formula­
tions for the neighbourhood concept. It has been shown by the investment problem 
for infrastructure in nature conservation, how such a neighbourhood can be defined 
and how corresponding algorithms can be used based on the idea of local searches. 
In deterministic methods the concepts of cuts and Branch-and-Bound appear in both 
fields. In fact one of the early implementations (Sciconic) to solve nonconvex 
problems via piecewise linear programming and Branch-and-Bound, can be called 
one of the early global optimization software packages. 

The fourth aspect is that we can analyze an integer problem with the eyes of 
deterministic global optimization. The investment problem in Section 3.6. showed 
how a gradient way of thinking, add the investment which is most profitable (add-
heuristic), will lead to local optima. The underlying maximization of a convex 
objective was the apparent reason. The same appeared in the analysis of the 
Quadratic Assignment Problem. Given negative interaction coefficients, the problem 
tends to concave maximization, so that nor the continuous variant, not the LP 
relaxation of the MILP formulation will result in integer solutions; the 'cross your 
fingers' strategy will not work. In this way analysis of the problem (using the 
structure of the problem) can help the same way in integer as in global optimization 
for the selection of algorithms. 
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Appendices 

Appendix 3.A. 

Theorem 3.1. Given problem P: min { g{x) +f(y) I (x,y) e X } with 
g(x): W -* R convex,/(y): [a,è]cR -> R convex, X c R"+1 convex and let P have 
feasible solutions for all values of v e [a,b]. 
Function 7t(v) = min{ g(x) I x € X(y) }, with X(y) set X when the value of y is 
fixed, is convex on [a,b]. 

Proof 
Given any two points v,, v2 e [a,&] and corresponding vectors 
*! € X(y,) and x2 e X(y2) such that 7t(y,) = g(jc,) and n(y2) = g(x2). 
For any value of A. e (0,1) applies: X(xlt y{) + (1-A,)(JC2, y2) € X so that 
Tuci + (l-X)x2 is a feasible point of X(ky{ + (1-A.)y2) with a corresponding function 
value of g(kxi + (1-A,)x2). 
In this way A,n(y,) + (l-X)n(y2) = AgOc,) + (l-X)g(x2) > g(Kxi+(l-X)x2) > 
min {g(x)\ x e X(^y,+(1-A.)y2) } = n(Ay, + (l-^)y2). 
So n is convex on [a,b]. D 

Theorem 3.2. 
Given two convex functions \|/(y), £(y) : [a,è]cR —» R, £(y)>\|/(y) and two points 
yx, y2 e [a,b] such that y,<y2, \|/(y,) = Ç(y,) and \)/(y2) = Ç(y2). 
If Ç(y) has a minimumpoint in the interior of [y„ y2] then \|/(y) also has a minimum-
point y* e [y^yj. 

Proof_ 
Point y is a minimumpoint, so that ^(y)<^(y:) = V|/(y,). 
Suppose \|/ has no minimumpoint in the interval [y^y^ so that without loss of 
generality it can be assumed that \\r has a minimumpoint y*<y{ and 
v]/(y*)<v|/(y,). 
Then there exists a X e (0,1) so that y, = Ay* + (1-A,)y. 
Given that \|/(y) < Ç(y) < Ç(y,) = V|/(y!) and by convexity of \\f this implies that 
\|/(y,) = \|/(Xy* + (1-À)y) < htfy*) + (l-X)vG) < totf*) + (l-A-M*) = ¥(v,)-
This shows that y*<y! cannot be valid. The same reasoning applies for y*>y2, so 
that at least one minimumpoint y* of \\f should be located in the interval [y^ y2]. D 
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Chapter 4. Analyzing models and developing specific deterministic 
solution procedures: some cases 

4.1. Introduction 

In Chapter 2 it has been discussed which mathematical structures are useful for the 
development and choice of specific deterministic global optimization methods. 
Furthermore, it has been shown with practical examples how mathematical struc­
tures can be recognised and how they explain the occurrence of multiple optima. In 
Chapter 3, one step further has been worked out, namely actually solving problems 
exploiting their structure. This was done by applying integer programming tech­
niques which are similar to deterministic global optimization methods. 
In this chapter some a 

larger cases are worked 
out. We follow the 
complete route from 
formulation of models 
(arrow a), analysis of 
their mathematical 
structure (arrows c and 
e) and the construction 
of specific deterministic 
global optimization 
methods (arrow f). 
We start with the dis­
cussion of the so called 
nutrient problem which 
is similar to the pooling 
problem discussed in Section 2.4. This is a high dimensional problem close to linear 
programming, but hard to solve. In this chapter we further focus on the (quadratic) 
design problem which is in general not larger than ten dimensional. Although multi-
extremal, deterministic methods may reach the level of being implemented in a 
Decision Support System for this problem, as will be shown. 

ĵGlobal% optimization 
^algorithmic toolbox 

^Det.JI Stoch. 

Figure 4.1 : Route for applying deterministic methods 

For all cases discussed in this chapter, traditional optimization tools, may not give 
the answer, as will be illustrated. Deterministic global optimization methods 
guarantee the solution, but require quite some effort in analyzing the problems and 
constructing specific algorithms. A first step is the recognition (arrow c) of the 
special structure of the problem, which explains its multi-extremal behaviour. We 
will start with this topic in Sections 4.2. and 4.3. In Section 4.4. specific determin­
istic global optimization algorithms are developed. As the reader may be less 
familiar with the concept of branch-and-bound procedures for global optimization, 
illustrations are elaborated to give a flavour of the method. In Section 4.5. finally, a 
more detailed discussion takes place on the topic of finding robust solutions. 
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4.2. The nutrient problem 

4.2.1. Introduction 

In Section 2.4 the pooling problem has been discussed. It has been shown how 
including joint storage in the classical linear blending problem leads to bilinearity in 
the model formulation. The general similarity in bilinear models, is the appearance 
of flows which are combined and the description of concentrations which is 
included in the model. When there is a chain of activities on flows (quantity) of 
products, such as happens in environmental planning, the modelling of polluting 
material (quality) may lead to balance equations which are bilinear. 

One of the simplest examples is to consider a dynamic sequence of decisions 
such as in reservoir management. We consider a simple reservoir system with given 
inflow f, in period t and decision variables x, and /, (state variable) describing the 
the release and storage of water respectively in period t. A simple mass balance 
equation describes that the amount of water stored at the end of a period equals the 
amount of water at the beginning plus the inflow minus the release in that period: 

ƒ, = ƒ,_,+ƒ,-*„ (4.1) 

which is linear and can be applied in a Dynamic Programming context. When the 
model is extended to describe the quality of the water with a concentration (of salt 
for example), bilinear balances are included in the mathematical structure. Let (p, be 
the given concentration of inflow f, and let variable q, describe the concentration in 
the reservoir. Again a balance equation describes how the amount of salt at the end 
of the period equals the amount at the beginning minus the outflow of salt plus the 
inflow. The new concentration q, is determined by: 

q,I, = q,-xV,-x-xu + <9,f,- (4.2) 

The resulting concentration q, depends directly on the release decisions xr The 
classical linear blending problem uses concentrations and is not bilinear. So it is not 
the modelling of concentrations alone, but also the additional description of 
consecutive decisions on flows of materials which are combined, causing bilinearity 
in environmental models. 

The remainder of this paragraph will be devoted to the nutrient problem which is an 
extension of another classical model, namely the farm management problem. The 
discussion is based on Bloemhof-Ruwaard and Hendrix (1993, 1996). First the 
formulation of the model is discussed. Then the mathematical structure is thorough­
ly analyzed by comparing the model with the pooling problem, considering the 
problem as a bilinear problem, examining its multimodal structure and analyzing the 
boundary characteristic of the solution. Furthermore, it is shown that classical 
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nonlinear programming heuristics may not lead to the global optimum. In Section 
4.4. a specific branch-and-bound method will be developed, based on the mathemat­
ical structure revealed here. 

4.2.2. Model formulation 

A popular method in farm management and land use planning is linear program­
ming (LP). It has shown to be very useful in finding a profit maximizing combina­
tion of farm activities that is feasible with respect to a set of fixed farm constraints. 
Inputs for a dairy farm are fertilizer, labour, fodder etc., and saleable outputs are 
milk, maize or meat. Dairy cows do not only deliver milk, but also produce a large 
amount of manure that has to be disposed of at some cost. However, this manure 
(containing useful nutrients) can also be applied for fertilizing the meadow, 
replacing expensive inorganic fertilizers. Nowadays, the treatment of manure for 
fertilizing land is an important political issue and a subject of many scientific 
studies in the Netherlands. The government regulates the use of manure for 
fertilizing by setting standards per hectare for each type of land use. The amount of 
manure to be used for this purpose depends on the land use, which is a decision 
variable in the model. 

Linear farm management models can be used to determine a profit maximizing 
combination of farm activities that is feasible with respect to a set of fixed farm 
constraints (Hazell and Norton 1986, Williams 1990). The variable xt represents the 
level of activity i, denoted by the number of hectares. The set of activities 
i = l, ..., n (also the index j will be used) defines the possibilities in the farm 
organisation, such as the amount of cattle treated and fed in a particular way. The 
vector x gives the combination of activities chosen to be the farm plan. Each 
activity has a profit y; (sales minus input costs) and some constraint parameters such 
as cattle density, amount of labour needed, milk production per hectare, and amount 
of fodder needed. The constraint parameters build the matrix A, also known as the 
technology set of the farm model. The set of feasible farm plans is determined by 
the vector of bounds b, representing e.g. total land, available labour and allowable 
milk production (European milk quota). 
The traditional farm management model formulation is: 

max y'x 
Ax<b 
x>0 . 

The extended model covers on the one hand decisions on the farm plan with 
corresponding amounts of manure produced and demands for fertilizing. On the 
other hand, it covers decisions on the use of manure for fertilizing purposes. 
Choices in the farm plan determine the possibilities for the application of manure. 
Figure 4.2 outlines the situation. 
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manure tank 

Figure 4.2: Schematic view on the nutrient problem 

We assume that all manure of the cattle arrives in one manure tank. The manure in 
the tank can be used to fertilize the land thus reducing the amount of inorganic 
fertilizer that has to be bought and applied on the meadow. Furthermore, the re-use 
of manure saves disposal costs. Disposal costs arise due to manure excess rules in 
the intensive livestock sector. The variable y, is introduced to model the decision on 
the use of the manure for fertilizing the meadow going with farm activity i: 

y,: fraction of produced manure used on the land with activity i 

No more manure can be applied on the land than has been produced, and thus y, is 
restricted by the following constraint: 

£ y , < l 

The cost saving of using the manure produced by activity j , instead of disposing it, 
is given by the parameter 8,. This cost saving is higher when the manure contains 
more of the useful nutrients that the land requires, and also when the prices of the 
replaced inorganic fertilizer are high. The parameter qjk represents the amount of 
nutrient k produced in the manure of activity j . The index k represents all relevant 
nutrients, viz. nitrate, phosphate and potassium. In agreement with the approach of 
the farm management model, qjk is given in kilogram per hectare. The total amount 
of nutrient k in the manure is given by T,qkx.. The government will set standards 
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(parameter dik) for the utilization of nutrient k per hectare land use of activity i, due 
to large environmental problems connected with the increased use of nutrients in the 
intensive livestock sector. The amount of nutrient k applied for activity i should not 
exceed the environmental standards: 

y . x E . o . < d.x. i = 1, ..., n k = 1, ..., K 

The left-hand side of these nutrient constraints represents the amount of nutrient k 
(in kilograms) which is applied on land of activity i by using manure as fertilizer. 
Notice that by modelling the treatment of manure in this way, the model looses its 
linearity. The nutrient problem formulation is: 

max T,y.x. + EVDSJC 

Ax<b 
Ey,. < 1 
dutxi - y£j%xj * ° 
* , , y , > 0 

i = 1, ..., n 
i= 1, ..., n 

k=l, ...,K 

(4.3) 
(4.4) 
(4.5) 
(4.6) 
(4.7) 

Let us summarize the notation. 

Indices 
i,j : indices for the farm activities 
k : index for the nutrients 

Parameters 
y, : profit per hectare of farm activity i minus the costs of disposing all produced 

manure and buying inorganic fertilizer 
8j : costs of disposing the produced manure and buying inorganic fertilizer for 

activity j (is saved when Xy, is positive) 
technology set of the farm model 
bounds on available scarce resources 
content of nutrient k in manure from farm activity j (kg/ha) 
environmental standards for the utilization of nutrient k for farm activity i 
(kg/ha) 

A 
b 
lik 

dit 

Decision variables 
jc, : number of hectares used for farm activity i 
y, : fraction of total produced manure used on land with activity i 

To illustrate the formulations, ideas and solution methods in this paragraph, we use 
a simple example with two possible farm activities (1 and 2) and environmental 
rules for three nutrients. The numbers in this example are arbitrary and have no 
resemblance with real data. 
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The model formulation for this example is 

max {20A:, + 10x2 + (y, + y2)(70x, + 95*2)} (4.8) 
x{ + x2 < 10 (4.9) 
x, + 1.5x2 < 12 (4.10) 
y ,+ y 2 ^ i (4.11) 
y,^, + 5x2) < *, ; y2(x1 + 5x2) ^ JC2 (4.12) 
y,^*, + x2) < 5xl ; y2(4x, + x2) < 4x2 (4.13) 
>i(*i + *2) ^ *i ; ̂ Ui + ̂ 2) ^ *2 (4.14) 
*i. *2. yi. y2 ^ 0 (4.15) 

The constraints (4.9) and (4.10) define the feasible set of the classical farm plan 
(e.g. upper bounds for the acreage and the production of milk). Constraint (4.11) 
defines that no more manure can be applied than is available. The nutrient con­
straints (4.12), (4.13) and (4.14) represent the environmental regulations for 
fertilizing. In this example, constraint (4.12) dominates constraints (4.13) and (4.14), 
i.e. for non-negative variables (4.13) and (4.14) are redundant due to (4.12). 
Specific characteristics can be derived for data instances with this property (the one-
nutrient problems). 

4.2.3. Analysis of the model 

Pooling property 

The nonlinearity in (4.3) and (4.6) is caused by the use of one manure tank to store 
the manure of various activities. The bilinearity in the constraints is called the 
pooling property as introduced in Section 2.4. The nutrient problem has the same 
characteristics as the pooling problem because it is linear whenever either the 
decision vector x or y is fixed. However, the pooling problem has fixed bounds on 
the concentrations of the final product, whereas in the nutrient problem the concen­
trations may vary and the use of the end product is bounded by the input, i.e. the 
farm plan. One could say that the output (concentrations) is cyclically connected 
with the input (the farm plan), see Figure 4.2. The pooling problem as described in 
Foulds et al. (1990) has a linear objective function with bilinear balance restrictions 
whereas the nutrient problem has a bilinear objective function and bilinear con­
straints. 

The nutrient problem as a bilinear problem 

The roots of bilinear programming can be found in Nash (1951), who introduced 
game problems involving two players. Each player must select a mixed strategy 
from fixed sets of strategies open to each, given knowledge of the payoff based on 
selected strategies. These problems can be treated by solving a bilinear program. 
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A bilinear program is 

min f(x,y) = c'x + x'Ay + d'y 
(x,y)sn 

The objective is a function of two groups of variables. The problem is linear 
(actually affine) in one group of variables if the other group is fixed, and vice 
versa, over the feasible region Q. Bilinear problems are interesting from a research 
point of view, because of the numerous applied problems that can be formulated as 
bilinear programs (dynamic Markovian assignment problems, multi-commodity 
network flow problems, quadratic concave minimization problems). 

In the first model formulation, the feasible set Q for x and y is the cartesian product 
X x Y, where 

X := {x: B{x <bx,x> 0} 
Y := {y: By < b2, y > 0} 

Global optimization algorithms to solve these traditional bilinear programs (TBP) 
have been developed e.g. by Falk (1973) and Sherali and Shetty (1980). These 
algorithms guarantee finite convergence for all instances. The key property of the 
traditional model, used in almost all methods, is that the feasible region is expressed 
as the cartesian product of two polyhedra. This structure ensures the existence of an 
extreme-point global solution (Falk, 1973). 

Al-Khayyal (1990) relaxed this assumption by considering the feasible set 

ß := {(x,y): Cx + Dy < b, x > 0, y > 0} 

in the jointly constrained program (JCBP). In this case, interaction in the con­
straints between the x and y decision variables is allowed. 

A further extension of the model is to include bilinear constraints, which results in 
the generalized bilinear program (GBP): 

min cQx + x'A$ + d0y 
(x.y)en 

with 

Q:= {(x,y):CpX + x'Aj + d'py < bpVp, Cx + Dy < b, x>0, y>0}. 

The nutrient problem now becomes a special case of (GBP) where constraints (4.4) 
and (4.5) represent the linear parts and constraints (4.6) the bilinear part. Note that 
for this special case the jointly constrained part of the (GBP) reduces to the 
cartesian product X x Y, where 
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X:= [x: Ax < b, x > 0} and Y := {y:Ey.<l, y >0}. 

The objective function of a generalized bilinear problem is a bi-ajfine function, that 
is affine for x and y for fixed y and * respectively. The feasible set Q is a 
bipolyhedron, i.e. a polyhedron in x and y for fixed y and x respectively. A general 
way to analyze such a bilinear problem is to fix x and y successively, iteratively 
leading to an LP problem in either y or x. We will elaborate further on this succes­
sive LP approach. First the problem is considered in another decomposed way. 

The nutrient problem as a two step problem, a specific property 

The mathematical structure of the nutrient problem makes it possible to analyze the 
problem from the following point of view. For every x, the optimal y can be 
calculated. Given this optimal value for y (in terms of x variables), we only have to 
solve a maximization problem in the x variables. The branch-and-bound algorithm 
in Section 4.4. uses this feature. 

For convenience, we introduce 5 as the sum of the y variables, and S(x) as the 
optimal fraction of the produced manure, applied on the land given farm plan x. 
Now, the nutrient problem in x variables is: 

max (y + S(x) x ô)'x 
X 

Ax<b 
x>0 

The objective function is monotonously increasing in 5 since Ô is strictly positive. 
The objective value (4.3) corresponding to the maximization problem is denoted as 
z(x, S(x)); it depends on x directly as well as on the optimal fraction S(x) which is 

T^ dkx. 
applied. In general, the expression S(x) is equivalent to L. min-=J_!— 

If only one nutrient constraint is active, the expression for S(x) is much easier. For 
x. + x2 

the example, the sum S(x) can be expressed as , since (4.12) is the only 
xt + 5x2 

active constraint. This expression can be substituted in the objective function. For 
the resulting nonlinear problem, the first-order Karush-Kuhn-Tucker conditions can 
be analyzed. The global maximum is x' = (10,0) with corresponding optimal value 
(1,0) for the y variables and an objective value of 900. Figure 4.3 gives the graphi­
cal representation of the model for this example. The example shows that it is 
interesting to examine the boundary of the feasible region of the variables JC„ ..., xn 

in particular, since all local optima can be found there. Moreover, Al-Khayyal and 
Falk (1983) show that jointly constrained bilinear problems always have boundary 
solutions. 
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Boundary solutions 

89 

z=707.7 

z=712 

jz=900 

In this paragraph, we ana­
lyze the existence of bound­
ary solutions for the nutrient 
problem. The property of 
boundary solutions can be 
used explicitly in branch-
and-bound methods as will 
be outlined in Section 4.4, 
since this characteristic can x2 

reduce the computation time 
of these algorithms. Figure 4.3: Graphical representation of the nutrient 

problem in x 
We first consider the one-
nutrient problem, where one nutrient constraint (say k') makes the other nutrient 

d...x. 
constraint redundant. For this simplification, the optimal value for y,(x) is _ J—!_ . 

2->q...x. 
J^jk j 

d'x Therefore, S(x):= T,y(x) can be written as , and the objective function (1) can 
q'x 

be replaced by min-(•/.* + x'5d' 
q'x 

1) = min x'Cx 

q'x 
with C = -yq' - 8d'. 

The feasible region X = {x: Ax < b ; x>0] is compact. 

Theorem 4.1 If the matrix C has at least one negative eigenvalue, the optimal 
solution x* can be found on the boundary of the feasible region X. 

The proof of this theorem is by indirect demonstration and is based on the existence 
of a direction in which the objective is concave. If x* is an interior point then it is 
always possible to obtain a better function value in the neighbourhood of x*. So, x* 
cannot be a minimum point. More details on this proof can be found in Bloemhof-
Ruwaard and Hendrix (1993) or alternatively in Pardalos (1986). 

In general, matrix C in the one-nutrient problem has such a negative eigenvalue. As 
the vectors d, q and Ô are positive, it is sufficient to have at least one positive 
element of the vector y if the corresponding ^-element has a strictly positive value. 
So, at least one farm plan should have a positive contribution, which is not a severe 
assumption. 

We can generalize this result to the general nutrient problem. First, Al-Khayyal and 
Falk (1983) show that the solution must be on the boundary of the X x Y space. 
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Theorem 4.2 (Al-Khayyal and Falk, 1983) If an optimal solution exists to the 
(GBP) problem, at least one optimal solution will be on the boundary of the 
bipolyhedral feasible set. 

This theorem states that some optimal solution (x, y') of the nutrient problem is 
found on the boundary of Q. This solution is not necessarily an extreme point (Al-
Khayyal, 1990). For the nutrient problem, theorem 4.3 shows that (x, y) is on the 
boundary of X. 

Theorem 4.3 Given the nutrient problem defined by (4.3) - (4.7), and 
X := {x e W : Ax < b; x > 0} is a compact set. Then the solution (x*, y*) of the 
nutrient problem is found on the boundary ofX. 

Proof: 
Given the optimal y* for a (GBP) problem, (x*, y') is a solution of a linear program­
ming problem in x only. Let (NUP(x | y*)) denote the nutrient problem given a fixed 
value y* for y. Constraints (4.6) define a cone 
K := {x € W: (dike{ - y*qkfx > 0, / = 1, ..., n, k = 1, ..., K], with e, the i'h unit 
vector. The solution (**, y*) can be found at a vertex of the feasible set of 
(NUP(x | y*)) consisting of X n K. Apart from the origin, K does not contain a 
vertex. If x' is not the origin, then it is not a vertex of K, so the solution is found on 
the boundary of X. 

4.2.4. Classical solution approaches 

Successive linear programming approach 

One promising heuristic to solve a bilinear programming problem is successive 
linear programming. Starting with any x° e X, find y° that optimizes the objective 
function over Y, then find xl that optimizes the objective function over X, and so on 
until the objective does not improve between two successive optimizations. 

If the feasible set ß is a cartesian product X x Y, with X and Y convex sets and the 
objective function is differentiable and convex over X x Y, then any limit point to 
this alternating procedure globally solves the problem (Wendell and Hurter, 1976). 
If the objective function is allowed to be biconvex, every limit point is a Karush-
Kuhn-Tucker point (Konno, 1976), but necessary conditions are needed for a limit 
point to be a local optimal point of the biconvex problem. However, the (GBP) 
problem does not have these characteristics. Therefore, the approach by successive 
linear programming can be very disappointing, as is illustrated by the nutrient 
problem. 
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First note the following observations for the nutrient problem: 

For any fixed y1 e Yin step t, the LP-problem in the variables x is 
equivalent to 

z(NUP(x \y ' )) = max (y + S 'S)'* (4.16) 
d&ZMxtf, i=l,...,n (4.17) 
Ax < b (4.18) 
x > 0 (4.19) 

For any fixed x! e X in step t, the LP-problem in the variables y is equivalent 
to 

z(NUP(y \x' )) = max (5 = Ey; ) (4.20) 
yfà*) < 4*| i = l',...,/i * = l,...,tf (4.21) 
S < 1 (4.22) 
y > 0 (4.23) 

A feasible solution for the y-variables can be found for any given x e X. The 
reverse statement does not necessarily hold. 

The successive linear programming procedure for the nutrient problem is described 
as follows: 

Successive Linear Programming Algorithm 

Step 1 
Step 2 

Step 3 

Step 4 

Start with any feasible y°, t = 1. 
Given / " ' (with corresponding value for S'"1), find x? that minimizes 
z(NUP(x \y '"' )) over the feasible region for x. 
Given xf find ƒ that minimizes z(NUP(y \x ' )) over the feasible 
region for y. 
If 1/ - y_1l < e then STOP else t:= t + 1 and go to Step 2. 

For the example, the successive linear programming algorithm stops after at most 
two iterations. The LP solution x* = xx is a point on the boundary of X. Only for the 
starting vector y° = (1,0), the successive linear programming method finds the 
global maximum x* = (10,0). This example illustrates that the successive linear 
programming approach may be very disappointing for the nutrient problem. 
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Nonlinear programming: local search 

4.2. The nutrient problem 

Perhaps the most common method to solve problems like the nutrient problem is to 
apply standard nonlinear programming software. As illustrated by Figure 4.3, the 
nutrient problem may contain many local optima. One could try to discover the 
global optimum by starting a nonlinear programming local search from various 
starting points. An overview of global optimization methods, based on local 
searches, can be found in Torn and Zilinskas (1989). One of the known packages 
for solving constrained nonlinear programming is GAMS/MINOS which was also 
used in Section 2.3 to experiment with a concave programming model. Implementa­
tion of the example in this package (MINOS 5.3) gives the different local optima 
for various starting points (Table 4.1): 

Table 4.1: Solutions local search 

*1 

0.0 
3.0 
3.0 

starting point 

x2 

0.0 
3.0 
0.0 

y\ 

0.0 
0.2 
0.0 

y2 

0.0 
0.2 
0.0 

* i 

10 
6 
0 

local 

X-y 

0 
4 
8 

optimum 

y\ y2 

1.00 0.00 
0.23 0.15 
0.00 0.20 

objective 

900.0 
707.7 
712.0 

Starting point (0,0,0.2,0.2) did not converge to a local optimum, but stayed at the 
starting point. In the approach of using various starting points, at least one of the 
points should be situated in the region of attraction of the global optimum, which is 
hard to verify. 

The traditional optimization methods, which in general are applied first, deliver 
local optima, or worse, no optima. They cannot avoid the pitfall created by the 
problem. Here is where global optimization methods can help. Following the route 
towards deterministic methods, requires use of the special properties of the math­
ematical structure of the problem. In Section 4.4. this is elaborated in the construc­
tion of a specific heuristic for the nutrient problem. 
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4.3. Quadratic design problems 

4.3.1. Problem formulation 

In many situations with respect to the design of products, mathematical models are 
used to describe the properties of a product to be designed. Our observations are 
based on experience in design departments of several companies. Abstracting from 
all kinds of practical technical details, one can say that a model (in the sense of 
Figure 1.2) calculates (or predicts) the consequences in terms of a vector of prop­
erties v of the values from a vector x of design parameters. Often a graphical 
presentation is used to describe the resulting design. 

In this context the n-vector x represents the design parameters or factor 
variables of the product and the model, or function y(x), describes the properties 
represented by an m-vector y. Because this study concerns nonlinear optimization, it 
is first of all assumed that y(x) is a continuous function. Another assumption is the 
ability of x to vary in a continuous way within a so called experimental region X, 
whereas in practical design problems the values for the parameters are sometimes 
selected from a given finite set. For the algorithms we developed, the region X was 
taken to be a polytope, but in most cases it consists of lower and upper bounds on 
the design parameters. In a technological context it is common to use an expression 
about a relation y(x) like "the relation is valid on this range". 

The words "experimental region" originates from cases in which the function y(x) is 
derived from (computer) experiments. As indicated in Section 2.5, it is common to 
use linear, factorial and quadratic regression functions as a first description y(x) of 
measured properties of a set of experiments, which are taken from an experimental 
region described by a polytope or simple box constraints. Many of the observations 
in this section do not only apply for quadratic relations, but are general for the 
design problem. Now the designer aims to find the designs fulfilling target values 
for properties within the experimental region. 

In the definition of the design problem, we restrict ourselves to the inequality form. 
The designer formulates target values on the quality of the product by setting lower 
or upper bounds blt and but on the properties yt(x). Now the design problem is to 
find a product x in experimental region X which fulfils the requirements on the 
properties. To facilitate the mathematical analysis the slack function g^x) is 
introduced as either 

gt(x) = biij - y^x) when there is an upper bound requirement 
or gj(x) = y^x) - blj when the quality is described by a lower bound. 

Two sided requirements imply the introduction of more slack functions. To facilitate 
the discussion (without loss of generality), index i is used both for requirements as 
for properties. 
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Numerous ways in formulating design problems exist, see Taguchi et al. (1989). In 
order to focus on inequalities we do not define an objective function on the 
properties which is usually included in these problems. This results in a product 
design problem mathematically formulated as "find an element of FnX", with 
F:= {x e W \ gt{x) > 0, i = 1, ..., m}. As formulated in Section 2.5, an objective 
(penalty) function can be constructed to define an equivalent optimization problem. 
By maximizing over X for instance 

or 

f[x) = mingix) 

^ ) = Emin{g,.(x),0} 

(4.24) 

(4.25) 

a solution is sought of the inequality problem. Some remarks on the mathematical 
characteristics of these functions will be made when we discuss the analysis of the 
problem. 

For the design problem, an additional complicating factor is when the value of 
parameter x represents the component as a fraction of a mixture product, as in the 
classical blending problem, in mixing and processing industries. This will be called 
the mixture design problem, which can be found in Hendrix and Pinter (1991) and 
Hendrix et al. (1996). Besides the restrictions of X and F, the possible mixtures are 
bound to be on the unit simplex S = {x e W | E-JC- = 1, JC,- > 0}. In 4.4 a specific 
algorithm is presented for the quadratic mixture design problem. 

We were involved in setting up a Decision Support System for the design depart­
ment of a chemical company. To give a flavour of the information the user can give 
and obtains, the input screen and output screen are sketched in Tables 4.2 and 4.3 
respectively. As in the discussion of the nutrient problem a simple illustrative 
example, the rum-coke example, is used. The design parameters Xj represent the rate 
of coke, rum and ice in a glass of drink and the properties y, and y2 describe the 
taste and colour of the product. 

Table 4.2: Sketch of the input screen of the product design problem, 
rum-coke example 

Parameter 

coke 
rum 
ice 

L 

0.0 
0.0 
0.0 

U 

0.75 
1.00 
0.90 

property 

taste 
colour 

bl 

-2.0 
0.1 

bu 

-1.0 
0.4 

In an experimental setting, where the relations yt(x) are found by regression on 
experiments, default values exist for lower and upper bounds on the design parame-
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ters Lj < Xj < Ur The quadratic functions describing the properties in our example 
are: 

y^x) = - 2 + &X[ + 8;c2 - 32x^2 
y2(x) = 4 - 12*i - 4x3 + 4x{x3 + IOJC? + 2x\. 

The initial values for the bounds on the properties can be taken as the lowest and 
highest values found in the experiments. Those do not necessarily equal the minima 
and maxima of y,(*) on the experimental region X. Now the user can iteratively set 
bounds on the design parameters and formulate requirements by setting target 
bounds on the properties. For the example it will be assumed that upper bounds 
but - - 1 and bu2 = 0.4 have been formulated as requirements on the properties 
yt{x). The user can feed the input to a solver which tries to find solutions of the 
inequality problem. 

Experience learns that it is a good heuristic to present the best, let say ten solutions 
which have been found. The ranking of the "best" can be done with respect to a 
score function defined by (4.24), (4.25) or any other multi-criteria function. In 
Table 4.3 an example is reported of an infeasible solution with a score based on 
(4.25). 

Table 4.3: Sketch of the report screen of the product design problem, 
rum-coke example. 

solution 9 

score -1.125 

parameter value property value slack 

coke 
rum 
ice 

0.25 
0.25 
0.50 

taste 
colour 

0.000 
0.625 

-1.000 
-0.125 

For the simple example the solution space can be represented in a figure. 
The slack functions are: 

gX*) = 1-0 — &c, — 8x2 + 32JC,^2 

g2(x) - -3.6 + 12JC, + 4x3 - 4AT,A:3 10;c? - 2x\. 

Because the example is a mixture design problem (xt+x2+Xy=l), a projection of the 
simplex S on the JC„ x2 plane is generated. In Figure 4.4 vertex xp represents a 
product consisting for 100% of component p, p = 1,2,3. The area in which the 
feasible products are situated is given by F. The problem of maximizing (4.25) over 
S has a local optimum in xioc = (0.125, 0, 0.875), /(xloc) = -0.725, and of course a 
global optimum (= 0) for all elements of F n S. 
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In practical mixture design, 
an additional complication is 
the appearance of variables 
Xj which do not represent 
components of the mixture 
but additional process vari­
ables, such as temperature 
and mixing speed. Another 
important aspect is that the 
mixing industry is typically 
interested in stable solutions, 
as irregularities, fluctuations 
may appear during the pro­
duction process. Mathema­
tically, this means that a 
subset of F n D(n5) with a 
given volume e should be looked for or alternatively an interior point located at a 
given distance from the boundary of F is sought. This is discussed in Section 4.5. 

Figure 4.4: The feasible set F of the rum-coke 
example 

4.3.2 Analysis and solution approaches 

Having outlined the design problem, we will now have a look at possible solution 
approaches and an analysis of the mathematical problem. 

Grid search 
One of the simplest approaches to solve the problem is doing a grid search over the 
experimental region X. This engineering approach requires no assumptions on the 
function y,(x) and is often applied in a first attempt to find a solution. We also 
implemented a version of this method to have a reference which easily can be 
explained to users. Mixture design problems need a special treatment; an equidistant 
grid on x,, x2 in Figure 4.4 with different step sizes for x, and x2 does not neces­
sarily result in an equidistant grid for x3 = l-xl-x2. For the general problem, a do-
loop testing gt(x) on being positive or negative can be cut off if for one of the 
properties (indices) a negative slack has appeared. This means that ordering the 
indices towards their expected difficulty may speed up the search, as it needs less 
function evaluations. 

An obvious drawback of the method is the possibility to miss, step over, a 
feasible solution of F n X. Another drawback is the relatively high number of 
evaluations, although not expensive when quadratic functions are used. Given K 
steps in every dimension, the method requires fC points to be tested on their 
feasibility (worst case). For practical problems the dimension is in general low, 
n < 10, but the computational effort increases quickly when the stepsizes are 
reduced (K becomes larger). One can have the user following the search process by 
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counting down the number of points which (maximum) still have to be generated 
and by depicting the best score values found, such that the user can interact in the 
search process. Because of the appearance of fast computer power the simple grid 
search approach is possibly effective; it worked for all test cases we had. However, 
many evaluations are done in areas which are not interesting and the user should 
exclude by changing bounds. 

In the theoretical field, Manas (1968) proposed a grid search approach for 
solving indefinite quadratic programming problems. Making use of the property that 
the functions gt(x) are quadratic, a minimum size for the grid can be identified on 
the observation that a Lipschitz constant is available. We will not go into detail on 
this topic. 

Local search 
The easiest use of the mathematical structure of the problem under consideration is 
the observation that (4.24) and (4.25) are (nonsmooth) continuous functions. By 
applying local searches from possibly random starting points, the iterates walk 
uphill to look for positive slacks and thus feasible products. We implemented a 
local search method based on Powell's method (see Powell, 1964) to find the 
maximum of (4.25). For the mixture design problem a penalty function was 
composed. A method of generating random starting points and doing local searches 
(this is called multistart), required much less function evaluations than plain grid 
search and appeared more effective in looking for interior solutions of F when 
(4.24) was used. 

A drawback of the multistart approach is that there is no guarantee to find 
the global optimum. If after some calculation time no solution of the inequality 
problem has been found, it is not certain whether there exists one. The approach of 
combining random search and local searches will be discussed further in Chapter 5. 
It is useful however in the context of design problems to elaborate on the ideas of 
random search methods. 

Methods based on the generation of random numbers such as Pure Random 
Search, Genetic Algorithms and Simulated Annealing, which start to be popular in 
the world of modelling based design, are successful when the number of optima is 
really big, as will be discussed in Chapter 5. Doing many local searches on a 
washing board is not very effective. A statement in Chapter 5 is that one can better 
perform a global search (random search), rough exploitation of the feasible set, 
before starting a local search. When the number of optima is limited on the 
contrary, one can better put energy in tracking the local optima by performing local 
searches. The practical design problem under consideration here has a limited 
number of optima in terms of (4.24) and (4.25). The number of optima, and 
components of F n X, was limited (<3) for all practical cases we had (around 10). 
By analyzing the model, bounds can be found on the number of possible optima. 

When all functions gt(x) are concave, there is only one local and global 
optimum of (4.24) and (4.25) and the area F n X consists of one compartment, 
because the problem is equivalent to convex minimization. For the worst case, g,{x) 
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is convex on a polytope X; every vertex may be a local optimum. In the common 
case where X is defined by box constraints and g,(x) are quadratic, the number of 
optima of #,(*) ls bounded to be 2P, where p is the number of positive eigenvalues 
of the Hessean of #,(*) ( see Pardalos and Rosen, 1987). Notice that the design 
problem contains m slack functions g,{x). 

Quadratic functions 
A further analysis of quadratic functions g(x) = x'Qx + d'x + c, shows one may 
consider an indefinite objective x'Qx as a separable function by decomposing Q in 
Q = UDU', in which D is the diagonal matrix with eigenvalues and U consist of n 
orthonormal eigenvectors. On a polytope the convex part of the quadratic function 
may be overestimated, creating the possibility of constructing bounds. Another 
overestimation can be based on the Lipschitz continuity of the function. On a 
bounded set the "maximum derivative" || Vg,(*) || is bounded. For the algorithm in 
Section 4.4.3, we will make use of this property. Another mathematical structure 
which is related to quadratic functions is bilinearity. The quadratic term x'Qx may 
be replaced by x'Qy with the linear restriction x = v. The dimension is multiplied in 
this way and the mathematical consequences as discussed in Section 2.2. and with 
respect to the nutrient problem are valid. 

This analysis learns how one can look with various pairs of glasses or tools (the so-
called hammer-nail story in Chapter 1) to the same mathematical problem. We have 
seen how traditional heuristics such as grid search, random search and multistart 
may be effective, but give no guarantee on the (lack of) existence of a feasible 
solution for the problem. The deterministic methods based on branch-and-bound 
provide this guarantee with a corresponding price on computational effort and 
computer memory, as will be discussed in 4.4. 

Moreover, the application of standard nonlinear programming is not straightforward, 
as nondifferentiable functions are optimized. At least the analysis has shown that: 

the number of possible optima is limited compared to the nutrient problem, 
value information due to the quadratic structure is available for the derivation 
of bounds. 
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4.4. Application of branch-and-bound 

4.4.1. Introduction 

The analysis of the mathematical structure of models and optimization problems as 
in Sections 4.2. and 4.3. can be used to develop and select specific deterministic 
optimization algorithms. An overview on the toolbox of possible approaches, such 
as outer approximation, cutting planes, inner approximation and branch-and-bound 
can be found in literature on the subject. For instance Horst and Tuy (1990) give a 
large overview and in "Introduction to Global Optimization" (Horst et al., 1995) a 
didactic introduction is given. In this Section a sketch will be given on the structure 
of the branch-and-bound approach, the most applied technique for deterministic 
global optimization. 

Figure 4.5: Using the properties to construct specific algorithms 

As discussed in Chapter 3, the users in the target groups may be more or less 
familiar with the branch-and-bound approach for Mixed Integer Linear Program­
ming (MILP). Therefore, first some similarities are indicated, before an example 
algorithm is presented. This is followed by some simple numerical examples in 
which the reader may follow the steps of the algorithm. After this sketch of the 
branch-and-bound approach, in 4.4.3 and 4.4.4 specific algorithms for the Nutrient 
problem and Quadratic Mixture Design problem are discussed. 
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4.4.2. The branch-and-bound procedure 

In the branch-and-bound method the feasible set is relaxed and subsequently 
partitioned in more and more refined parts (branching) over which lower and upper 
bounds of the minimum objective function value can be determined (bounding). 
Parts of the feasible set with lower bounds exceeding the best upper bound found at 
a certain stage of the algorithm are deleted from further consideration (pruning), 
since clearly these parts of the domain do not contain the optimum. 

We discuss some similar elements in the branch-and-bound approach for 
global optimization (GLOP) and MILP. In both methods we start with a set C, 
enclosing the feasible set X of the optimization problem (minimization is assumed). 
For MILP, set C, arises from relaxing the integrality constraints. At every iteration 
the branch-and-bound method has a list A of subsets (partition sets) Ck of C,. The 
method stops when the list is empty and starts with C, as the first element. For 
every set Ck in A, a lower bound z[ is determined of the minimum objective 
function value on Ck. For MILP this bound is usually based on the continuous LP 
solution over Ck. As will be shown, for global optimization exist numerous ways of 
calculating lower bounds. 

At every stage, there also exists a global upper bound zu of the minimum 
objective function value over the total feasible set defined by the objective value of 
the best feasible solution found thus far. The bounding (pruning) operation 
concerns the deletion of all sets Ck in the list with z[ > zu. Besides this rule for 
deleting subsets from list A, a subset can be removed when it does not contain a 
feasible solution. For MILP this is verified when running a continuous LP problem 
for the determination of the lower bound. However, as will be shown in 4.4.4, for 
the GLOP-variant it is not always easy to perform this so called 'deletion by 
infeasibility' step. 

The branching concerns the further refinement of the partition. Although in 
the GLOP-variant every subset may be divided in several new subsets for any group 
of subsets on the list simultaneously, we restrict ourselves to a binary search tree 
variant as in MILP. This means that one of the subsets is selected to be split in two 
new subsets. In the referred literature, other strategies can be found. For the MILP-
variant, in general the two new subsets are constructed by adding two bounds on a 
variable which got a nonintegral value in the continuous solution. In global 
optimization there exist several ways for splitting a subset in two or more subsets. 

The selection rule which determines the subset to be split next, influences 
the performance of the algorithm. One can select the subset with the lowest value 
for its lower bound (most promising) or for instance the subset with the largest size 
(relatively unexploited). Considering the binary way of searching, with the corre­
sponding data structures, one can look for a depth first search or a breadth first 
search. The target is to obtain sharp bounds zu soon, such that large parts of the 
search tree (of domain C,) can be pruned. The selection rule is one of the elements 
of the algorithm where a user can influence the performance. Software for MILP 
problems in general contain features to monitor the search and parameters can be 
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set to influence the search. There are several reasons to remove subsets Ck from the 
list, or alternatively, not to put them on the list in the first place. 

Ck cannot contain any feasible solution. 
Ck cannot contain the optimal solution as z[ > zu. 
Ck has been selected to be split. 
It has no use to split Ck any more. This happens for example for MILP 
problems when the continuous LP solution over Ck has integral values and in 
global optimization this may happen when the size of the partition set has 
become smaller than a predefined accuracy e. 

Outline of a branch-and-bound algorithm 

0. Given accuracy e, A = 0 . 
Determine a set Ct enclosing the feasible set X, C,z>X . 

1. Determine a lower bound z[ on C,. 
Determine a feasible point xl e ClrOC. 
If there exists no feasible point STOP 

else zu := ƒ(*'), put C, on list A, r := 1. 
endif. 

2. If list A is empty STOP. 
3. Take (selection rule) a subset C from list A and split it into two new 

subsets Cr+I and Cr+2. 
4. Determine lower bounds z'+1 and z'+2. 
5. For p := r+1 to r+2 do 

If C' r\ X contains no feasible point zL := °° endif. 
Uzl,<zu 

then calculate a feasible point tf and fp = fix?). 
if/, < zu 

then zv := fp and remove all Ck from 
L with z[ > zu. 

endif 
if | z'p - z

u | < e 
then save xF as an approximation of the optimum 
else add Cp to list A 
endif 

endif 
endo 

6. r := r + 2, go to step 2. 

In step 3 the subset with the most promising (lowest) lower bound z'k is chosen, 
defining the selection rule. In this scheme, the selected subset is split into two new 
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subsets, thus defining a binary tree. This specific way of splitting is not necessary 
in global optimization. The selected set Ck can be partitioned in any number of 
subsets. Index r represents the number of subsets which have been generated. Note 
that r does not give the number of subsets on the list. The global bound zv is 
updated, every time a better feasible solution is found. 

After a successful search, list A will be empty and a guarantee is given that either 
the global optimum has been found or that there exists no feasible solution. When 
the search is not successful the size of list A keeps increasing and fills up the 
available computer memory, despite possible use of efficient data structures. 
Therefore it is important to obtain good bounds. Various ways of deriving bounds 
will be illustrated in this section. Furthermore, it is important to inform the user on 
the course of the algorithm by showing e.g. zv and the number of subsets in list A. 

Examples 
A somewhat more specified algorithm is outlined at this point for the determination 
of a global optimum for the general (nonconvex) quadratic programming problem. 

min{/(x) = x'Qx + d'x + c} 
xe X 
with X given by {x e R" | Ax < b, x > 0} a polytope (bounded). 

As partition sets (hyper)rectangles Ck are used, defined by the two extreme corners 
fk and u*k i.e. Fjk < Xj <Wjk,j= 1, ..., n. Initially the global upper bound z" can be put 
on infinity or given the objective function value of a feasible solution X which can 
be found by LP. For the illustration, two ways of calculating a lower bound z'k are 
given and elaborated for small numerical examples. 

Lower bound 1 
The first lower bound is based on the core of concave minimization and can be 
applied when fix) is concave (see Chapter 2). It uses directly the definition of 
concave functions: 

f(x) =Mv, +(l-?l)v2) > A/Cv.) + ( l - ^ v 2 ) . 

Many observations in Horst and Tuy (1990) are based on this so called affine 
underestimating function. Calculate the function values f = /(v,) for all vertices 
Vj, i = l, ..., 2", of Ck. Solve the following LP problem bij minimizing over x and Xt 

z[ := min X F, À, 
ZX,v, = x 
EX,. = 1 
A, > 0, i = 1, ..., 2" 
xe X 
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Lower bound 2 
The second lower bound is based on the equivalence of general indefinite quadratic 
programming with bilinear programming as discussed in Al-Khayyal (1990, 1992). 
The quadratic term x'Qx is equivalent with 

x'y, y = Qx-

The used observation is that xy for / * < x < u' ,P < y < uy can be underestimated 
by (Al-Khayyal, 1990): 

xy>Py + Px-lxP 
xy > u*y + uyx — uxuy. 

To use this underestimating technique, the bounds P and uy of y = Qx have to be 
determined given F < x < u*. This is not very hard. For every component y, = Z^t, 
the lower bound Pt can be determined by 

P, = Z q0 /(?,) 

= / / if qij<o 
with I(q.) = , 

V I = u,x if q.. > 0 
Analogously 

"/ = 2 qv I (-qv) 
j 

can be determined. Now the second way of calculating a lower bound can be 
derived. Given rectangle Ck with corresponding bounds f, u*. Determine the bounds 
P and u' of y = Qx for x e Ck. 
Solve the LP problem 

z[ := min {Zw,- + d'x + c) 
Wj > Pjyj + PJXJ - lxP 

Wj > u'yj + rfxj - rftf 

y = Qx 
x e X n Ck. 

j=h-
j=h-

., n 

., n 

This lower bound calculation exploits the mathematical structure of bilinearity 
whereas lower bound 1 exploits the concavity. A more sophisticated use of the 
quadratic structure is given in Pardalos et al. (1987) by the separation of convex 
and concave parts of the objective via an eigenvalue decomposition of Q. The 
concave part is underestimated by an affine minorant as in lower bound 1 and the 
convex part is left unchanged. This results in a convex quadratic programming 
problem describing a convex envelope of fix) on a subset which can be solved by 
nonlinear programming solvers like MINOS. 
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Illustrative problem (CQP) 
First a concave quadratic programming problem (CQP) is given. 

min{f(x)=-(x1-l)
2-x2

2} 
xe X 

X is given by 

-x, + 8x, < 11 
M -r u.v2 

x, + 4x, < 1 

Figure 4.6: Example {CQP) of a concave quadratic 
program 

6xl + 4x2 < 17 
0 < x, < 25 
0 < x, < 2 

Some contour lines and the 
feasible area are depicted in 
Figure 4.6. Problem (CQP) 
has 4 local optima in the 
points (0, 1.375), (1, 1.5), (2, 1.25) and (2.5, 0.5). Moreover, points (0, 0), (1, 0) 
and (2.5, 0) are Kuhn-Tucker points which are no local optima. 

Now the outlined branch-and-bound method can be used with the lower bound 1. 
The branching is performed by bisecting the rectangles over their longest edge. The 
starting rectangle C, is defined by f = (0, 0), u" = (2.5, 2). For the accuracy 
e = 0.05 is taken. The resulting course of the algorithm is given in Table 4.4. The 
first column indicates the generated subset. The second column gives the parent, the 
subset which has been split. Point x* is a feasible solution (if it exists) resulting 
from the lower bound calculation. Its function value can be used to improve the 
global upper bound zu. 

Table 4.4: Course of the branch-and-bound algorithm for CQP. 

k 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Par 

1 
1 
3 
3 
2 
2 
7 
7 
8 
8 
5 
5 

n 
(0,0) 
(0,0) 
(1.25, 0) 
(1.25,0) 
(1.25, 1) 
(0,0) 
(0,1) 
(0,1) 
(0.625, 1) 
(0,1) 
(0, 1.5) 
(1.25, 1) 
(1.875, 1) 

«ft 

(2.5, 2) 
(1-25, 2) 
(2.5, 2) 
(2.5, 1) 
(2.5, 2) 
(1.25, 1) 
(1-25, 2) 
(0.625, 2) 
(1.125, 2) 
(0.625,1.5) 
(0.625, 2) 
(1.875, 2) 
(2.5, 2) 

** 

(1, 1-5) 
(0, 1.375) 
(2, 1.25) 
(2.5, 0.5) 
(2, 1.25) 
(0,1) 
(0, 1.375) 
(0, 1.375) 

(1. 1-5) 
(0, 1.375) 

Inf 
(1.875, 1.28) 
(2, 1.25) 

4 
-4.5 
-3.75 
-3.875 
-2.75 
-3.125 
- 2 
-3.125 
-3.125 
-2.59 
-2.9375 

-
-2.62 
-2.81 

Â 

-2.25 
-2.89 
-2.56 

-
-2.56 

-
-2.89 
-2.89 

-
-2.89 

-
-
-

zu 

-2.25 
-2.89 
-2.89 
-2.89 
-2.89 
-2.89 
-2.89 
-2.89 
-2.89 
-2.89 
-2.89 
-2.89 
-2.89 

L 

(U 
-

{2,3) 

{2~5} 

-
{5,7} 

-
{5,8} 

-
{5} 
-
0 
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It can be observed from Table 4.4 that for the second subset the global optimum 
x* = (0, 1.375) has already been found, leading to the sharpest upper bound. The 
further iterations only serve as a verification of the optimality of x*. This feature 
can often also be found when running a branch-and-bound algorithm for MILP. The 
bounding is successful for subsets 4, 6, 9, 12 and 13 where z[ > zu- Subset 11 
appeared to be infeasible. In subset 10 finally x* was recognised as being a global 
minimum point as | z[0-z

u I <e. In Figure 4.7, the final partition and location of 
generated points JC* are depicted. 

3 X , 

Figure 4.7: Final partition of the branch-and-bound method for the (CQP) problem 
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1=(0,0) 1 
u=(2.5, 2) 
x=( l , 1.5) 
zl= -4.5 
f= -2.25 
zu= -2.25 

1=(0,0) 2 
u=(1.25, 2) 
x=(0, 1.375) 
zl= -3.75 
f= -2.89 
zu - > -2.89 

;l=(l-25, 0) 
:u=(2.5,2) 
x=(2, 1.25) 

:zl= -3.875 
:f=-2.56 
jzu=-2.89 

1=(0,0) 6 
u=(l-25, 1) 
x=(0, 1) 
zl= -2 > zu 

1=(0, 1) 7 
u=(l-25,2) 
x=(0, 1.375) 
zl= -3.125 
f= -2.89 
zu= -2.89 

l= ( l -25 ,0 )4 
u=(2.5, 1) 
x=(2.5, 0.5) j 

z l= -2 .75>zu i 

l=(l-25, 1 )5 
u=(2.5, 2) 
x=(2, 1.25) 
zl=-3.125 
f= -2.56 
zu= -2.89 

1=(0, 1) 8 
u=(.625, 2) 
x=(0,1.375) 
zl=-3.125 
f= -2.89 
zu= -2.89 

1=(.625,1) 9 
u=(1.25, 2) 
x=( l , 1.5) 

zl= -2.59> zu 

l= ( l . 25 , i )12 ; 
u=(1.875,l) : 
x=(1.88,1.28); 

z l= -2 . 62>zu ! 

1=(1.88,1)13 
u=(2.5, 2) 
x=(2, 1.25) 

;zl=-2.81 > z u 

: 1=(0,1) 10: 
: u=(-625,1.5): 
: x=(0,1.375) : 
: zl=-2.9375 j 

I Izl-zul < 0.05 ; 

: 1=(0,1.5) 1 1 : 
: u=(.625, 2) ! 

! Infeasible 

Figure 4.8: Branch-and-bound tree for the (CQP) problem 
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Illustrative problem (IQP) 
The second numerical example is an indefinite quadratic programming (IQP) pro­
blem for which lower bound 1 cannot be applied. 

min{ßix) = (x-l)2-(*2-l)2} 
xe X 

X is given by 

je, - x2 < 1 
4;c, — x2 ^ — 2 
0 < jc, < 3 
0 < x2 < 4 

12: 9: 4'; 

• / ' / ,•-

P j : 

-4 \ \' 

-9 
"......-12"""---. '"--.. '• 

Figure 4.9: Contour lines and feasible set of (IQP) 

Some contour lines and the 
feasible set of (IQP) are 
given in Figure 4.9. The 
problem has two local mini­
mum points, namely (1,0) and (1, 4) (the global one). The outlined branch-and-
bound method is used again with the lower bound 2. The calculation of the bounds 
for the y variable is extremely simple for (IQP) as y, = x{ and y2 = -x2. For the 
accuracy again e = 0.05 is used. The starting subset C, is defined by l\ = (0, 0), 
u\ = (3, 4). The course of the algorithm is given in Table 4.5. The final partition is 
depicted in Figure 4.10. 

Table 4.5: Course of the branch-and-bound algorithm for IQP. 

k 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Par 

1 
1 
3 
3 
4 
4 
7 
7 
9 
9 
11 
11 

n 
(0,0) 
(0,0) 
(0,2) 
(0,2) 
(1.5, 2) 
(0,2) 
(0,3) 
(0,3) 
(0.75, 3) 
(0.75, 3) 
(0.75, 3.5) 
(0.75, 3.5) 
(1.125,3.5) 

«i 
(3.4) 
(3.2) 
(3.4) 
(1.5, 4) 
(3.4) 
(1.5, 3) 
(1-5, 4) 
(0.75, 4) 
(1.5,4) 
(1.5, 3.5) 
(1.5,4) 
(1.125,4) 
(1-5,4) 

x* 

(1.5,4) 
(1.5,0.5) 
(1.5, 4) 
(0.75, 4) 
(2,4) 
(0.75, 3) 
(0.75, 4) 
(0.75, 4) 
(1.125,4) 
(1.125, 3) 
(1.125,4) 
(0.94, 4) 
(1.125,4) 

4 
-H 
-3 
-11 
-9.5 
-5 
-4.5 
-9.5 
-8.94 
-9.125 
-6.375 
-9.125 
-9.03 
-8.98 

Â 

-8.75 
-

-8.75 
-8.94 

-
-

-8.94 
-8.94 
-8.98 

-
-8.98 
-8.98 

-

zv 

-8.75 
-8.75 
-8.75 
-8.94 
-8.94 
-8.94 
-8.94 
-8.94 
-8.98 
-8.98 
-8.98 
-8.99 
-8.99 

L 

{1} 
-

{3} 

{4} 
-

{7} 
-

{9} 
-

{11} 
-
0 

Finally xn = (0.94, 4) is taken as an approximation of the global optimum, as 
! Zi2 - z"\<£ at this stage. This happens once more during the iterations, because 
| Zg - z" | <e, so that xs is temporarily saved as an estimation of the optimum. For 
this numerical example the selection rule appears to be not important, as list A only 
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contains one subset during the iterations. 

0 1 2 3 

Figure 4.10: Partition for the (JQP) problem after 6 iterations 

Implementation aspects 
One of the problems, which does not follow from the simple examples, of imple­
menting a branch-and-bound algorithm in a computer program is that information 
concerning the partition sets has to be kept in the computer memory. This can be 
done by maintaining a list of subsets and a list of points generated, but special data 
structures based e.g. on vertices or edges are also possible. The problem is that the 
program should not run out of memory, before a solution has been found. In 
branch-and-bound methods efficient use can be made of the fact that memory can 
be "recycled" if partition sets are deleted from further consideration. This can be 
done e.g. by applying linked list structures. Numerical aspects which are for 
instance important when dealing with differential equations, play a minor role in 
branch-and-bound. Good handling of required memory by storing the appropriate 
part of the tree on hard disk can speed up the search, but does not solve the overall 
capacity problem. 

In this section the working of the branch-and-bound approach has been sketched 
and illustrated. In the following sections specific algorithms are derived for the 
Nutrient problem and the Quadratic Mixture Design problem. 
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4.4.3. A branch-and-bound method for the nutrient problem 

Section 4.2.4. showed that traditional optimization methods may not lead to the 
solution of the nutrient problem. We now follow arrow f of Figure 4.1. and use the 
properties derived by the analysis of the mathematical structures in 4.2.3. to 
construct a specific branch-and-bound scheme for the problem, similar to the 
illustrations in 4.4.2. In the analysis the following appeared: 

The nutrient problem is a special case of generalized bilinear programming. 
The nutrient problem has solutions on the boundary of the feasible x-space X. 
The nutrient problem can be considered in a decomposed (two step) way. 

A first consideration for a modeller who wants to solve the problem is to have a 
look at literature on specific methods for bilinear programming. Falk (1973) 
developed the first branch-and-bound procedure for the traditional bilinear program. 
It guarantees convergence to an exact solution in a finite number of steps. Bounds 
are obtained by solving linear programming relaxations and branching is accom­
plished by holding individual variables out of the basis for each branch when using 
the simplex method to solve the subproblems. Al-Khayyal and Falk (1983) develop 
a branch-and-bound algorithm for the (JCBP) problem. The algorithm branches into 
four nodes based on a partition of the parent node's rectangular set 
C = {(x,y): P < x < ux, P < y < uy) and bounding is achieved by minimizing the 
convex envelope of the objective function over the subset of the feasible region, 
intersected with the p'h partition set. The same can be done for the (GBP) problem 
(Al-Khayyal, 1992). 

For the nutrient problem it is not necessary to make use of the general 
bilinear approach. Analogous to the (IQP) example of Section 4.4.2, partition sets 
can be defined on the X-space, not in the X x 7-space as in Al-Khayyal (1992). The 
first ingredient of the algorithm is the definition of the partition sets. 

Partition sets 
Subset Cp: [Ip, up] is defined as the p-th block, hyperrectangle, created in the 
branching tree (the vectors / and u have the same dimension as x). Because the 
optima can be found on the boundary, each partition set that does not intersect with 
the boundary of X can be deleted. To check this, it is not necessary to run a linear 
program. An algorithm to check whether box C:[l, u] is interior with respect to 
polyhedron X={xe W \ Ax<b} (A includes the nonnegativity constraints) is given in 
Bloemhof-Ruwaard and Hendrix (1996). Let I{a^ analogously to the lower bound 
calculation in 4.4.2 be defined as 

\u. if a.. > 0 
1(a) = \ / ., » n v ' / /. if a.. < 0 

i- J 'i 

Now the algorithm works as follows. 
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Interior check algorithm 

4.4. Application of branch-and-bound 

0. 

1. 

2. 

i := 1 

Ifl,.a,/(a,y)>fc,. 
else i := i+l 
endif. 

STOP; box is not interior 

If / := n+l STOP; box is interior 
else go to step 1 
endif. 

Calculation of the bound 
A following ingredient of the algorithm is the construction of the bound. As the 
nutrient problem is a maximization problem, we are looking for an upper bound of 
the objective z on Cp n X. In the decomposition view of the analysis it has been 
shown that given a feasible solution xpeX, Sp = S(xp) can be determined by 

solving an LP problem, S(xp) = z(NUP(y \xp))= min ' * — 

The relevant observation in the analysis is that the objective z(x, S) is monotonie in 
5. Therefore using an overestimate ap of the maximum of S(x) over Cp n X results 
in an overestimating LP problem with objective z(x, a p) > z(x, S(x)). 

The maximum of S(x) over Cp n X is not easy to derive, so the task is to 
find a good upper bound op for S{x) that is easy to obtain. 
The upper bound derivation of the maximum value for 5 in (the feasible part of) 
each box C is as follows: 

maxS(;c) = max 
x<=CrX x^CnX 

mm 
d.x. 

ik i 

< max min 
œ C . k 

< max 

dkX 

q'x 

min-
d.x. 

ik i 

qkx 

< min max 
dk'x 

qkx 

d'x 
So we choose ap: = min{l, min max{——}}• 

k xscp qk'x 

First, a fractional programming problem has to be solved for each k. Appendix 4.A 
describes a solution method for such a problem, the threshold algorithm. It is easy 
to determine Gp once the optimal solution for each fractional programming problem 
is found. 
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Having formulated ingredients as partition sets, interior check and upper bound 
calculation, now a branch-and-bound algorithm is constructed analogous to the 
outline in 4.4.2. Notice that we are dealing with a maximisation problem, so that 
there is a global lower bound zL and there are local upper bounds z"p. 

Branch-and-bound algorithm for the nutrient problem 

0. Given tolerance 8, r := 1, A := 0 
Determine a box C,:[/,, u{\ => X 

1. Calculate a1. 
z" = max z(x,&). 

xeX 

Denote xl as the corresponding maximum point. 
Initiate zL as zL := z(xl, S1). 

2. Bisect the box under consideration over the longest edge into Cr+1, Cr+2, 
r := r+2. For both boxes perform step 3. 

3. Perform the interior check. 
If the box is interior, stop analyzing the box, endif. 
Determine ap. 
Calculate z"p := max z(x,(f); xp is the corresponding maximum point. 

xe Xr\Cp 

If the box has no feasible solution, stop analyzing it, endif. 
If z"p > zL then 

determine z'p := z(xp, Sp)> (function value of a feasible point) 
if z'p > zL then 
z1 := z'p and save x p as approximation of the optimum. 
endif. 
Add Cp to the list of boxes. 

endif. 

4. Delete all boxes from the list with z"p < zL-
IfA = 0 STOP. 

Take box C„ from the list with the highest upper bound zp. 
If | zu

p - z
L \ < e STOP. 

else go to step 2. 
endif. 

The algorithm starts with the smallest rectangular box C, that includes 
X := {x: Ax < b; x > 0} as a whole. In step 1, the value of a' is obtained using the 
threshold algorithm of Appendix 4.A. A global upper bound to z(x, S(x)), z", is 
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found by maximizing 
z(x, a1) over X. For this 
solution x\ we calculate the 
optimal y and the correspon­
ding 5(A:') solving the linear 
programming problem 
NUP(y\x]) and the first 
lower bound zL = z(x\ S(x1)) 
is found. At each iteration, 
there is a list A of boxes Cp. 
One of them is split by 
dividing the box into two 
parts of equal volume over 
the longest edge (bisection). 
This creates two new boxes 
(step 2). For each of these 
boxes Cp it is checked 
whether the box is totally 
interior with respect to X. If 
it is, it is discarded and we 
proceed with another box. If 

the box is not interior, we continue with step 3. An upper bound z"p := z(xp, a p) is 
calculated, based on the upper bound a p obtained from the threshold algorithm 
described in Appendix 4.A. A feasible solution (xp, Sp) is obtained by solving the 
simple LP problem NUP(y | xp), which results in a the objective value of a feasible 
solution, a local lower bound z'p '•= z(xp, Sp). If this lower bound is better than the 
global lower bound z1, then z1 := z'p and the solution xp is saved. In step 4 the list of 
boxes is checked: If the upper bound zp of some Cp is below the new lower bound 
zL, there is no reason to analyze this box Cp further, so this box can be neglected. 

We select a new box for further division by means of the highest upper 
bound z"p (step 5). During the branch-and-bound process, the gap between upper and 
lower bound, \z"p - z

L\, is decreasing. The algorithm stops as soon as this gap is 
less than a preset tolerance e, or if the list of boxes is empty. In order to guarantee 
convergence of the overestimate c p to the maximum of S(x) and to speed up the 
algorithm, boxes that are too small may also be discarded. Application of the 
branch-and-bound procedure to the example in 4.2.2 leads to the following result. 
After 15 iterations, the point jcbesI = (9.75, 0.25) gives the best lower bound 
z1 = 855. The best upper bound is z" = 919, so these bounds enclose the optimum 
value z = 900 at (10,0). Only three small partition sets in the neighbourhood of 
x' = (10,0) remain on the list (see Figure 4.11). 

Figure 4.11: Partition after 15 iterations 

The branch-and-bound approach gives a guarantee that the optimum is approxi­
mated. However, just as the pooling problem the nutrient problem is high dimen­
sional, so that in a worst case situation it may be practically impossible to reach this 
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guarantee, as the computer memory fills up with boxes. Here is where the user can 
interact (arrow gl). It is not hard to generate a "good feasible solution" of the 
nutrient problem. The objective value can be used as a lower bound £ on the opti­
mum. The branch-and bound algorithm is continuing to verify whether the good 
feasible solution is indeed optimal. The user can interact by deleting boxes which, 
he thinks, will not contain the global optimum. 



114 4.4. Application of branch-and-bound 

AAA. Branch-and-bound in a DSS for mixture product design 

In 4.3 the design problem has been introduced as finding a feasible point of a set of 
inequalities #,(•*) > 0, i = l,...,m. Some mathematical properties were given of 
quadratic functions gt(x), which can be used to develop a specific branch-and-bound 
method. In this section simplicial subsets are used in a branch-and-bound frame, 
which is a natural choice when considering mixture design problems. The use of 
simplicial sets is a variation on the application of rectangular partition sets used in 
the earlier sections. First the partition sets and outline of the algorithm are discus­
sed. This is followed by a discussion on the implemented upper bound and alternati­
ve ways of generating upper bounds. Finally some remarks on implementation 
aspects and performance are given. 

The problem to be solved consists of identifying mixture products, each 
represented by a vector x e R", which meet certain requirements. The set of 
possible mixtures is mathematically defined by the unit simplex 
S = {x € R" I IjCj = 1, Xj > 0}, in which the variable Xj expresses the fraction of 
components j in product x. Note that set S lies in the n-\ dimensional hyperplane 
given by Ixj = 1. 

Partition sets 
As the first ingredient for the branch-and-bound algorithm, subsets Ck, being 
simplices (having n vertices) are distinguished. The points which are generated by 
the algorithm are denoted by xpk, p = l,...,n and represent the vertices of a simplex 
Ck. In general one point appears as a vertex of several partition sets. The implemen­
tation requires special data structures to store and link the list of points and subsets. 
The information obtained in the n vertices of Ck is used to calculate upper bounds 
tlk for the function values of g, on Ck. In contrast to the treatment of the nutrient 
problem, the information is not used to derive a global bound 4 (compare the 
algorithm for the nutrient problem), as the global bound is defined by zero. Namely, 
when an upper bound fik < 0, simplex Ck cannot contain any feasible product and 
therefore can be discarded. The upper bounds can also be used in the selection rule 
to decide on which subset is to be split further. 

The algorithm is summarized in the scheme. Let us devote some words to various 
steps. A new point is generated when one of the subsets is split. Because there is no 
update of the global £ - 0, as in the earlier presented branch-and-bound schemes, 
the partition sets remain on the list A until they are selected for further refinement 
in step 3. The practical interest in robust solutions can be implemented by not 
putting a newly generated subset on the list when its size is too small, the diameter 
6(Q) is smaller than a preset tolerance; (5(Ct) < e). In this case the algorithm either 
finds a feasible solution or gives the guarantee that no robust feasible composition 
exists. In a worst case solution the algorithm may require an exponential number of 
iterations (in n) to verify that all subsets are smaller than e. 
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Branch-and-bound algorithm for the mixture design problem 

0. C, := S , r := 1 , A := 0 

1. If one of the vertices xpl p=l,..,n is feasible (gfapl)>0, i=l,...,m) 
STOP; solution found endif. 

Determine upper bounds z", (z", > g fa), x e C,). 
If z"n >0,i = l,...,m, then put C, on list A. 

2. If A = 0 STOP; no feasible composition exists. 

3. Take that Ck from list A with the highest value for £ z"k and split it into 
i 

two parts Cr+1 and Cr+2 of equal volume over the longest edge. Evaluate 
xmw, the midpoint of the longest edge of Ck. 
If «Anew) ^ 0 , / = \,...,m, 

STOP; a solution has been found 
endif. 

4. For both new subsets k := r+\ to r+2 do 
Determine upper bounds z"k. 
If tik > 0, i = l,...,m, put Ck on list A 
(The corresponding new product xaew is saved as one of the vertices xpk) 
endif 
endo. 

5. r := r+2, go to step 2. 

Let us remark that the algorithm can be modified in such a way that it is not 
necessary to calculate all upper bounds at every iteration. The check in step 4 for 
every property i, can be interpreted as the question: is it possible that Ck contains a 
vector x for which gfa) > 0? To answer this question, it is not necessary to 
determine the upper bound z"k, if for one of the vertices xpk of Ck holds gf,xpk) > 0. 
The algorithm easily can be modified so that in such situations the upper bound is 
not calculated. Note that - as a consequence - the selection criterion in step 3 should 
be changed accordingly. In the implemented version it was also checked in step 4, 
whether a partition set is completely out of the bounds (Ct £ X). This can be done 
by checking whether all vertices of Ck are at one side of the bounds (or linear 
restriction). 

Before illustrating the way the algorithm proceeds, the various ways of calculating 
an upper bound for quadratic properties g fa) are discussed. 
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Upper bound calculation 
The mathematical structure as shown in earlier sections gives that bounds can be 
generated from a quadratic, bilinear and Lipschitzian point of view. Let us first 
consider the Lipschitzian point of view as described in Hendrix and Pinter (1991). 
Let again xpk denote the vertices of Ck, p = l,...,n. The value of fik can be based on 
the following relations: 

gf,x) < g,.(xM) + Lik \\x-xpk\\,xe Ck, p = 1,...,«. (4.26) 

In (4.26) Lik is the Lipschitz-constant of g, on Ck. The Lipschitz-constant Lik can be 
(over)estimated by solving 

L, = max ||V*,(;c) ||. (4.27) 
«sC, 

As the function g, are quadratic, problem (4.27) means the maximization of a 
convex function over a polyhedron; hence it can be solved by simply evaluating 
|| V g,{x) || at every vertex xpk. Note that the estimate of L can be made sharper, by 
projecting first the gradient Vg((jc) on the hyperplane of S. By convexity of 
||x - xpk\\, in the implemented algorithm the upper bound fik, based on (4.26) and 
(4.27) is: 

zik = min{g(.(^ ) + Lik max \\xvk - xpk\\] (4.28) 
P v*p 

{xvk being the vertices of Ck, different from xpk). 
We shall discuss some alternative ways to determine an upper bound. 

In Lipschitzian global optimization on interval (box) regions, Pinter (1986, 1988) 
uses rectangular subsets [lk,uk], for which the information available is based on the 
"lower-left" vertex lk and the "upper-right" vertex uk. His approach can be termed a 
diagonal extension of known univariate methods e.g. of the Danilin-Piyavskii-
Shubert method (cf. the references). The selection of the subset to be refined (cf. 
step 3) is based on the (rectangular subset) selector function: 

(gA) + s,(«*))/2 + AlU*-"J-

For an upper bound used in step 4 of the algorithm (elimination), Pinter uses the 
expression 

mm{gi(lk), g,("*)} + Li||lk -uk\\. 

Applying directly this idea to the simplicial algorithm given above would lead to 
the upper bound: 
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zik
u = min {gJLxJ} + Lik5(Ck), (4.29) 

p 

where ô(Ct) = max {||xvk - xpk || : v * p} is the diameter of Ck. 
Observe that this would yield a more crude estimate than the upper bound 

given by (4.28); on the other hand, (4.29) requires somewhat less calculation per 
iteration than (4.28). For practical implementations several interior points of Ck can 
be additionally evaluated and included into the estimations (4.28) or (4.29), usually 
improving the bounds. 

The sharpest upper bound given all information of (4.26) can be found by 
solving explicitly the following problem (for convenience leaving out index k): 

maximize {z} 
subject to 
xe C 
zZg/LxJ + LMx-xJ p=\,...,n. (4.30) 

Meewella and Mayne (1988) approximate (4.30) by a piecewise linear problem 
replacing || • || by the infinite norm. They apply further rectangular subsets Ck 

storing all 2"-vertices. In every iteration they solve 2"-problems. 
The «-dimensional variant of (4.30), in which Ck is defined by n+1 vertices, 

defines the problem of finding the highest point of a "turned around pommes-frites 
bag" and was studied a.o. by Mladineo (1986). The maximum point xt of (4.30) in 
most cases can be found by solving n linear equations given by (leaving out k 
again): 

x + x. g.(x ) - six.) 
(xp - x)'x = (xp - xy[-L—L + *>)>> *A fr, - *,)L P#, 

2 2L..\\x - x,\\ 
ik " p t " 

in which x, - argmh\ {g,{xp)}, xp the vertices of simplex Ck, p = 1, ..., n+l. Solving 
(4.30) is less laborious, if regular simplices are used. Relations for this can be found 
in the bracketing procedures and geometrical observations of Wood (1992) and 
Baritompa (1993). 

Besides the Lipschitzian property which has been elaborated thus far, one can make 
use directly of the quadratic structure of gt(x). If the Hessean g, is negative semi-
definite, the maximum of g^x) over Ck can be found by a local search algorithm; 
there is one global optimum. In the situation where ß, is positive semi-definite, an 
affine over estimation based on Horst (1986) can be used, as has been illustrated in 
4.4.2. The possibility of ß, to be indefinite makes the problem of finding a valid 
upper bound more complex. A possible approach is to "make" g;(x) concave by 
replacing jx'Qpc by yMilMI2' in which |a, is the most negative eigenvalue of Qt. An 
overestimating concave function Qik can be found in the following way. 
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Let Xk be the n by n matrix with the vertices of Ck as columns. The majorant: 

e * = ß;^ + *M,-|X|2 

can be found by solving ßl7t = (X~k
l)hk, in which the n-vector hk gives the difference 

between gfjc) and the concave function u,||x||2 in the vertices of Ck: 

Kk = gtepi) - M.ll^l2 • 

The majorant Qik(x) equals #,(*) in the vertices of Ck, further on, it is concave. The 
upper bound can then be calculated by determining the maximum of Qik over Ck. 
This way of determining the upper bound requires the solution of an unimodal 
optimization problem at every iteration. 

A more sophisticated elaboration of the convex-concave splitting of a 
quadratic function based on an eigenvalue decomposition has been mentioned 
several times in this work and is due to Pardalos et al. (1985). Another idea which 
has been elaborated and illustrated in earlier sections is due to the bilinear view (see 
Al-Khayyal, 1990). 

Illustration 
We will illustrate the per­
formance of the algorithm 
based on upper bound calcu­
lation (4.28) now and dis­
cuss some implementation 
aspects. Application of the 
branch-and-bound algorithm 
to the rum-coke example 
(4.1.3) results in a partition 
of S as is indicated in Figure 
4.12. After 29 iterations, 26 
points have been evaluated, 
a feasible point in F is found 
and two subsets have been 
deleted. The feasible point found is x* = (0.5, 0.375, 0.125) with "acceptable" 
properties expressed by y,(x') = -1 and y2(x*) = 0.281. 

An implementation aspect for the mixture design routine is that by the symmetry 
of the partition, a generated point may be used as a splitting point several times, as 
can be seen in Figure 4.12. It is important that such a point is evaluated only once 
and will not be added again to the list of points, which occupies most of the 
memory. Applying this simple idea, only a single new point which is not already 
part of the search information, is to be evaluated at every iteration cycle. 

Figure 4.12: Partition after 29 iterations for the 
rum-coke example 
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According to our numerical experience, the algorithm suggested can solve problems 
with a few variables (say, up to n = 5) in several hundred iteration steps. This will 
be illustrated by the following example. 

Example 
We consider a test problem originating from a practical application with n = 3 
components and m = 5 properties. The coefficients of y,(*) can be found in Appen­
dix 4.B. Assume that the following requirements are given for the properties: 
y, < 1.496, y2 > .92, y3 < 10, y4 > 179, y5 < 85. 
Applying the branch-and-bound algorithm, a feasible solution is found after 80 new 
points have been generated. The solution found is given by (the components sum to 
100%): 

x = (37.5, 43.75, 18.75) and y(x) = (1.48, .921, 9.114, 180.77, -42.81) 
Naturally, it is possible to generate more feasible points by not terminating the 
algorithm. For the problem given, this action required 100 points to be evaluated 
additionally, in order to find 10 more feasible points. Note that it can be more easy 
to carry out an "exhaustive" search say, in a ball around the first solution found to 
estimate how large one of the connected components of the set S n F is (is 
discussed in 6.3). The fact that the number of iterations becomes larger, if the 
maximum of (4.25) is a small negative number, can be illustrated by modifying the 
above example as follows: 

Let 0 < y, < 85, y2 > .963; the other requirements are left unchanged. The 
algorithm needs 56 iterations to conclude that the problem does not have a solution. 
If the problem is "near to feasibility" e.g. y2 > .94, then concluding that there is no 
solution needs 157 iterations; if y2 > .93, the "no solution" conclusion requires 239 
iterations. Having these simple examples in mind, it may be intuitively clear that 
such "bad" cases can be very hard to solve by branch-and-bound techniques in 
higher dimensions. 

In a decision support environment it is useful to provide the user with information 
on the performance of the algorithm. Compared to the solution approaches as 
discussed in 4.3.2, the elegance of the branch-and-bound approach is the guarantee 
character. After a successful finish, the existence of a feasible solution for the 
design problem is identified. The drawback of the illustrated approach is its need 
for computer memory. Therefore it is useful to inform the user on the number of 
subsets and points kept in memory. Other indicators are the objective in terms of 
(4.24) or (4.25) of the least-worst product which has been found thus far and the 
largest sum of the upper bounds (step 3) which is diminishing during the iterations. 
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4.5. Finding robust solutions for product design problems 

4.5.1. Introduction 

The product design problem, formulated as finding a point in a feasible area defined 
by inequalities, was introduced in earlier paragraphs. We now focus further on the 
ideas introduced at the practice of generating a DSS for finding robust solutions of 
the design problems. First the notion of robust solutions of design problems is 
discussed. We have to be precise with this definition as it concerns the variation in 
the decision variables and not the variation in the external data, which is common 
in literature on optimal control. Therefore, a mathematical description of the 
problem is provided subsequently. Now again the mathematical structures can be 
used on linear and quadratic functions to derive specific algorithms. Topics on 
linear and quadratic properties are discussed separately as well as the topic of 
finding robust mixture products ( see 4.3.2). 

Let us first reintroduce the concepts of the product design problem in mathematical 
terms. The vector xe K" is called a product with factor variables or components Xj. 
This product should be situated in the so called experimental area given by the 
polytope X, which represents the technical possibilities for the values of the 
variables Xj. A convenient concept is the range Rj of the variable xjt defined as the 
difference between the upper and lower bound of xr The properties of a product x 
are formalised by the functions y,(x), i=l,..,m. In this chapter the product design 
problem is assumed to be formulated in the inequality form: find a product x in the 
experimental area X fulfilling m requirements on the properties of the form y,(;c)<è„ 
i=l,..,m. Let the slack functions #,(*) De defined as g fa) = bryfa), i=l,..,m, then 
F:={XBW I gfa)>0, i'=l,..,m} represents the set of products meeting all require­
ments on the properties. 

The terminology of design problems and robust solutions can be found 
in Parkinson et al. (1990). They distinguish in their paper strictly between control­
lable (design variables, factor variables) and uncontrollable (external) parameters. 
When there is variation in the uncontrollable parameters, there exists a probability 
that the design may appear to be infeasible. In this section we concentrate on 
variation in the controllable variables. After the feasible design x has been found, it 
appears that due to fluctuations in the production, the realised product might not 
alwys be feasible, may not fulfil the requirements. 

The research question on this topic originates from a practical problem in 
chemical industry, in which it appeared that the tolerance of equipment used for the 
production made it hard to produce a recipe (design) exactly. An analogous problem 
may be found in Kristindottir et al. (1993) who describe the design of laminates in 
aircraft industry, which also can only be produced with given tolerances. A further 
investigation was stimulated by our contribution to a project on the design of 
electronic circuits for an electronics company. The calculated values for parameters 
such as the capacity of a capacitor and value for the resistance of an included 
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resistor, are in practice varying between ranges when the circuit is assembled. This 
means that a part of the production might not fulfil the requirements on the 
performance exactly. By taking into account the variations one can obtain a kind of 
'confidence optimization'. Other key-words which are used in this context are: 
reliability, risk analysis and tolerance optimization. 

In this section methods are developed to find designs which still lead to 
products meeting all requirements although during production small deviations are 
made from the recipe. The words 'deviation' and 'small' are formalized mathemat­
ically. Robustness of a design is defined as the (maximum) size of the deviation 
from this design that can be made in such a way that the product still meets all 
requirements on the properties. If the products under consideration are so called 
mixture designs (the sum of the components equals 1), the concept of robustness 
needs a special mathematical treatment. 

This concept of robustness is related to (but differs from) the probabilistic 
concept which one can find in risk analysis such as in environmental engineering 
(another target user group). When designing environmental systems, e.g. a waste 
water treatment plant, one is interested in the probability that it fails to perform 
correctly. The design parameter is seen as an average of a random variable, see 
Bjerager (1988) and Liu and Der Kiureghian (1991). One is interested in the 
probability that a model output exceeds a critical value. The analogy of our term 
infeasible area is called the failure zone, or failure area. Computation of this 
probability is identical to integration of the joint density function of all stochastic 
parameters over that region of the stochastic parameter space where a criterion is 
exceeded. The analogy of this concept in product design is that one tries to 
minimize the number of products which do not fulfil the requirements when one 
design is produced frequently, such as in electronics industry. The robustness 
concept we formulated, differs slightly from this probabilistic idea. The similarity in 
the two concepts is worked out when the mathematical translation is discussed. 

In the following section the idea of robustness and the problem of finding the 
most robust solution is introduced and formalized in a mathematical way. To clarify 
the ideas, examples in R2 are given. Further topics are the consequences of the 
robustness concept for the mixture design problem, the possibility to solve large 
problems when the properties are linear (affine) functions and the difficulty of the 
idea when having quadratic properties. 

4.5.2. Mathematical formulation of robustness 

The vague term 'small deviation from the design' means that not design x is 
produced, but a product with a certain deviation in one or more factor variables Xj. 
A design x has a certain robustness, if this deviation does not lead to an infeasible 
product; a vector outside set F. 

Let deW be a vector with length 1, ||c/||=l, representing a possible direction 
of the deviation and T represent the size of the deviation, then x+Td should be 
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situated in set F. The robustness T(x) of a feasible design xeXnF is formulated as: 
max {T} 
gi{x+Td) > 0 i=l,..,m (4.31) 
for all \\d\\<l 

The problem of finding the feasible design with the largest robustness can be 
formulated as: max T(x) (4.32) 

xeXnF 
The choice of the norm of vector d determines the form of the area in which the 
deviations are allowed to take place. Three cases will be considered. The robustness 
corresponding to: 

a) the 1-norm, 

b) the infinite norm, 

c) the 2-norm, 

Ml ,=2, \dj 

\d\\„=maXj | 

IdL^Z-d2 

I *•* II 2 J j 

a) Consider the 1-norm, Ml,=^ dj\ . The value of the maximum deviation T, 
of a factor variable Xj can be determined, such that x±TfjE F. The vector e, is the 
j-th unit vector. For the linear (or in general convex) case, the value r=min^ 7} will 
be called the one-component robustness or the 1-norm robustness, because it 
focuses on deviations in one design variable Xj at a time. The value T is the 
maximum deviation possible in all directions d with | |Û?||,<1. The example illus­
trates the robustness of a feasible point. The vertices x±Tjej should be in F. 

Example problem P 
Given the linear 
problem P: 

design 

Let X=W 
yx = -2x, - 3x2 

v2= 3x2 

v3 = 5xt + 5x2 

<-0.6 
<0.45 
< 1.5 

Let set F be the feasible 
region of problem P. A 
feasible point of this prob­
lem is ;t=(0.14, 0.13). The 
deviations which are allowed 
to occur in the factor vari­
ables, x, respectively x2, 
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T(x)=0.020 

\5x1+5x2=1.5 

^ X T=0.020 

\ — T= 0.035 *%. 

T= 0.033 

\ 3x2=0.45 
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\ \ ^ 
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X1 

0.2 0.24 0.28 

Figure 4.13: The 1-norm robustness T(x)=0.020 of 
the feasible point x=(0.14, 0.13) while the product remains an 

element of F, are given in 
Figure 4.13. The 1-norm robustness T(x)=0.020 of x is equal to the minimum of 
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X= (0.150, 0.125) 

.5x1+5x2=1.5 

3x2=0.45 

these deviations. The feasible point with the best 1-norm robustness is the solution 
of problem (4.33): 

max {T} 
xeXr^F (4.33) 
g,{x+Td)>0 i=\,..,m 
for all ||d||i<l 

The solution of problem 
(4.33) is the feasible product 
with the largest 45° rotated 
square (in M2) around x 
which is subset of F. For 
problem P this is product 
x=(0.150, 0.125). 
The 1-norm robustness for 
this feasible point is 0.025 
(see Figure 4.14). 

Figure 4.14: The feasible point x=(0.150, 
with the best 1-norm robustness T(;t)=0.025 

0.125) 

A variant of the 1-norm robustness is the scaled one norm robustness in which the 
ranges Rj are used as weights: | |d| |=£| d-|//?,-. The feasible point with the best 
scaled robustness is the solution of problem (4.34): 

max [T] 
xeXnF 
giix+Td) > 0 f=l,„,m 

(4.34) 

for all d with Z d, /Rj<\ 

X= (0.127, 0.138) 

\5x1+5x2=1.5 

3x2=0.45 

The optimal solution of (4.34) for problem P is the feasible product with the largest 
area around it, which is 
completely part of the feas­
ible area. The shape of this 
area is a rhomb. Suppose the 
range /?, of xy is twice as big 
as the range R2 of jc2,then the 
allowed deviation in the 
direction of x, is twice the 
allowed deviation in the 
direction of jt2. The feasible 
point JC=(0.127, 0.138) has 
the largest robustness in set 
F (see Figure 4.15). 

X I 

Figure 4.15: The feasible point x=(0.127, 0.138) 
with the best scaled 1-norm robustness 
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b) If the infinite norm: ||*/||„=max;- \d{\ is considered, the robustness T(x) 
corresponds to the largest square (hypercube) around x. Consequence of this choice 
is that deviations may take place in all variables simultaneously and the components 
dj of the vector of change d can vary between -1 and 1. The corresponding maxi­
mum value of T will be called the simultaneous or °°-norm robustness of x. For the 
linear case the whole area defined by x+Td, 
are element of F. 
The feasible point with the 
best oo-norm robustness is 
the solution of problem 
(4.35): 

max {T} 
xeXnF (4.35) 
g,{x+Td) > 0 i=l,..,m 
for all ||d|L<l 

The optimal solution of 
(4.35) for problem P is 
x=(0.135, 0.135); 
the feasible point with the 
largest square around it, 
which is subset of F 
(see Figure 4.16). 

\d <1 is subset of F if its 2" vertices 

X= (0.135,0.135) 

3x2=0.45 

0.12 0.16 

x1 

Figure 4.16: The feasible point x=(0.135, 0.135) 
with the best infinite norm robustness T(x)=0.010 

If not the oo-norm is used, but a scaled variant \\d\\ =max; | dj \ IRj, the robustness 
corresponds to the largest (hyper)rectangle around x. The ratio of the lengths of the 
sides of the rectangle depends on the ratio of the ranges /?; of the factor variables. 
Kristindottir et al. (1993) use the same concept of tolerance around a given design. 
By interval arithmetic they construct a hyperrectangle around a given design in 
which all points are feasible. They allow different deviations 7} for every factor 
variable *-, whereas we focus on one (global) maximum deviation T which applies 
in every direction. 

c) If the 2-norm: || d || 2=Vx/ df is considered, the robustness T(x) corresponds to 
the largest circle around x. The feasible point with the best Euclidean or 2-norm ro­
bustness is the solution of problem (4.36): 

max {T} 
xeXnF 
gfr+Td&i i=\,..,m 
for all \\d\\£\ 

(4.36) 

The optimal solution of (4.36) for problem P is ;c=(0.142, 0.130); the feasible 
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product with the largest 
circle around it which is 
subset of area F (see Figure 
4.17). Problem (4.36) is 
known in literature as the 
inscribed sphere problem 
and is related to the so 
called weighted distance 
problem in flexible program­
ming (de Vet, 1980). The 
general problem of finding 
the maximum volume of a 
body with a given shape 
within a given set, is called 
the design centring problem 
(Horst and Tuy, 1990). 

Figure 4.17: The feasible point ;t=(0.142, 0.130) 
with the best Euclidean robustness T(x)=0.020 

If not the 2-norm is used but the scaled variant ||d||=Vx/(d
,
j /Rj)2 the robustness 

corresponds to the largest ellipse around x. The idea of finding the largest ellipse 
relates to the probabilistic view on robustness and reliability. Each parameter Xj, can 
be seen as the average of a stochastic variate with variance G1. Often the inaccur­
acies, deviations in the individual design variables can been seen as independent. In 
the design of electronic circuits, the deviation of one resistor from the average has 
nothing to do with another resistor, which can be from a completely different 
source. When the distribution of the mistakes, errors, is assumed to be normally 
distributed, the confidence region is an ellipsoid. When the deviates are independent 
the axes of the ellipsoid coincide with the Euclidean axes and the size is propor­
tional to I/o,. Using I/o, as weights in (4.36) leads to a reliability optimization in 
the sense that we are looking for the maximum volume confidence region enclosed 
by set F: 

I J M E / ^ / O / (4.37) 

Note that the corresponding probability mass is smaller than the integration of the 
joint density function over the total feasible area, as in general, there will be some 
volume left which is in F and which is not a part of the ellipsoid. So by using 
(4.37) in (4.36) a lower bound is optimized of the probability that good (feasible) 
products are produced. 

The first implementations of optimizing the robustness with (4.31) and (4.32) in 
chemical industry were successful. Practical solutions were obtained with a safe­
guard against inaccuracies in the production process. The practical errors have a 
kind of uniform behaviour; application of the infinite norm and Euclidean norm 
were appropriate. In electronics industry however, the inaccuracies are due to 
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tolerances in the assembled components and tend to be proportional to the size of 
the design value (e.g. resistance and capacity): 

Oj = rjXj. (4.38) 

This so called proportional tolerance property, complicates the search for robust 
products with (4.37) even more. We will discuss some mathematical properties in 
the following sections. 

Another topic is the mathematical treatment of the concept of robust products for 
mixture designs. For a mixture design the condition lxj=l holds. In the practical 
chemical problem, which stimulated this research, it appeared that tolerances in the 
production process made it hardly possible to produce the designed mixture exactly. 
If deviations in the production process occur in the non-mixture case, it has to be 
checked if the changed product x+Td still fulfils the requirements on the properties. 
However in the mixture design case x+Td probably does not satisfy Hxj+Td)=l. For 
the mixture design problem the properties y, are in fact defined on the ratio's x/Lxj. 
So for the linear case, a deviation Axj in one of the components Xj does not only 
have a direct effect ĉ Ax,- on property i, but also an indirect effect on all properties 
(including i), since the value of Hxj will change. This will be illustrated with an 
adaptation of example problem P. The problem is adapted such that one extra factor 
variable x3 and an extra restriction Zx, =1 is added. This results in mixture design 
problem P': 

Example problem P' 
y, = -2xx - 3x2 < -0.6 
y2 = 3x2 <0.45 (P') 
y3 = 5*! + 5x2 < 1.5 
JCj + x2 + x3 = 1 

The point ;c=(0.14, 0.13, 0.73) is a feasible design of problem P'. If a deviation in 
the dosage of x2 in positive direction (an overdose) of 0.03 occurs, the changed 
product will be: (;c+0.03e2) and the properties are defined on (x+0.03e2)/(1.03) = 
(0.136, 0.155, 0.708). The robustness T(x) of design x is defined as the (maximum) 
size of the deviations that can occur in such a way that the product still meets all 
requirements on the properties. The deviations in the factor variables which are 
allowed to occur, considering the design x of problem P' are given in Table 4.6. 
The 1-norm robustness of a solution is equal to the maximum deviation which is 
allowed to occur in every direction x-. For x of problem P' the robustness T(x) is 
equal to 0.024 (see Table 4.6). 
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Table 4.6: Allowed deviations in the factor variables for JC=(0.14, 0.13, 0.73) 

component 

max. dev. in 
pos. direction 

max. dev. in 
neg. direction 

X\ 

0.024 

0.029 

x2 

0.043 

0.050 

x3 

0.117 

0.100 

If in the case of a mixture design problem deviations from the design during 
production occur, the changed product still fulfils the requirements if: 

gi{<ix+Td)l{\+TLd)) >0, i=l,..,m. 

Let set G be defined as: 

G:={jceR"| g,(x/lxj)>0, i=\,..,m) = {JCGR" | g^x/e'x)^), i=l,..,m] 

with e'=(l,l,..,l). 
The changed product x+Td has to be an element of set G. Robustness T(x) of a 
mixture design can analogous to definition (1) be defined. Let xeXr\G, 5JC=1 be a 
feasible mixture design. T(x) is defined as: 

max{r} 
g£(x+Td)/(.l+TLdj)) >0, i=l,..,m 
\\d\\<l. 

(4.39) 

The robustness T(x) is the size of the largest area (corresponding to the chosen 
norm) around JC which still fits in G. The solution with the best robustness can 
analogously to definition (2) be found by solving: 

Max T(x) 
xeXnG 
L*=l 

(4.40) 

Analogously to the nonmixture case, for the 1-norm, oo-norm and Euclidean norm 
robustness the corresponding norms should be used in (4.39) and (4.40). 

First the mathematical structure of the derived problems is analyzed for the cases 
where the properties y, are linear and quadratic functions. Those functions are 
interesting when the design problem has been derived by quadratic regression 
models as discussed in 2.5 and 4.3.2. This is followed by a discussion of possible 
solution approaches. 
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Summarizing theorem 
Let ||c?||p= (Ljdf)Up in definition (4.31). The solution with the best /7-norm robust­
ness can be found by solving LP problem: 

max {T} 
xeX 
Ax + g = b 
gi/ÇLJdfyi">T i=\,..,m 
with q = pl{p-\) 

Theorems 4.4 and 4.5 are a limit situation for the limit pl\ and p—>°° and are 
proven on the bases of the feasibility of the vertices of the area defined by ||rf||<l. 
The proof of the summarizing theorem is based on the explicit expression which is 
available for the point of contact z,. This is shown in Appendix 4.C. 

The theorems show that it is possible to formulate and solve even large linear 
design problems including the robustness concept. Moreover the theorems demon­
strate that robustness seen as tolerance in the controllable parameters leads to 
including weighted slacks in the model formulation. When there is variation, 
uncertainty in an uncontrollable parameter such as bt, the slack variables in general 
also play a central role, which can be observed in literature on stochastic program­
ming (See Kail and Wallace 1994). 

It has also be shown in Hendrix et al. (1993, 1996) how the linear problems do not 
become more complicated when considering the mixture design case. Analogous 
theorems can be derived for the linear mixture design problem. For the linear design 
problem the requirements on the (linear) properties imply that G defines a cone: 

G:={xeW \A(x/e'x)<b] = {xeW j (bfi-a^xeO, i=l,..,m}. 

So finding the solution with the maximum robustness can be seen as: finding the 
largest area (depending on the chosen norm), which still fits in cone G, with its 
centre satisfying lx-=l. Theorems 4.4, 4.5 and 4.6 can simply be extended for the 
mixture design problem resulting in the following theorems (see Hendrix et 
al.,1996), which are proven in Appendix 4.C. 

in (4.39). The solution with the best 1-norm robustness can 

(P4) 

i=l,..,m 

Theorem 4.7 
Let J | ,=X,- | dj 

be found by solving LP 
max {T} 
xeX 
IXj= 1 
Ax + g = I 
gi/maxj | 

in (4.39). 1 
problem P4: 

> 

V.I ^T 
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Theorem 4.8 
Let ||*/||„=max- j dj | in definition (4.39). The solution with the best °°-norm 

robustness can be found by solving LP problem P5: 
max {T} 
x<zX (P5) 
Zxj= 1 
Ax + g = b 
ft/Z; \aij-bi\ 

Theorem 4.9 
Let 

robustness 
||J||2=VZ,^,2 in 

> T i= l , . 

definition 
can be found by solving LP 

max [T] 
xeX 
lXj= 1 

,m 

(4.39). The 
problem P6: 

solution with the best 2-norm 

(P6) 

Ax + g = b 
m 

The results show that including robustness in a linear mixture design, can simply be 
solved by weighting the slacks in a correct way. It is possible to solve large mixture 
design problems including the robustness criterion. The same does not apply for the 
quadratic design problem. 

Robust products and nonconvex properties 

In Sections 2.5 and 4.3 it has been shown that in practical applications often quad­
ratic functions for the prop­
erties are used, because it is 1 

common to use quadratic 
regression models to estab­
lish the relations between 
design and properties. The 
robustness problem becomes 
harder to solve when the 
properties y,-(jt) and the cor­
responding slack functions 
gi(x) are nonconvex func­
tions. 

In Section 4.3.2, it has been 
discussed and illustrated that 
the design problem with 
quadratic properties is 

Figure 4.18: Multiple local optima of the maximum 
robustness problem 
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is not more complicated. Considering a transformed space with variables Xj = Xj /cr;, 
the inequality SflyOc, < bt becomes Xo, atjâj < b{. To formalise further, the matrix 
D(x) = diag(a), the diagonal matrix with the tolerance vector on the diagonal, is 
introduced. The robustness problem with the weighted norm (4.44) becomes a 
problem with the standard Euclidean norm in the transformed space with 

Âx < b, A = D(x)A, x = D~l(x)x. 

This means that theorem 4.6 applies in the transformed space. So the robustness of 
a point is given by 

b.-âx b.-cijX 
T(x) = min ' ' = min . ' (4.45) 

. ïâ,l i V£.(aA ) 2 

The idea of transforming the space is used further in the derivation of algorithms. 

For fixed tolerances the most robust product (linear properties) can be found by 
linear programming. A base algorithm is derived now for this relatively simple case, 
which will be extended for more complex cases. First, it is useful to introduce the 
concept of active constraints. In the discussion of the minimum volume hyperrec-
tangle problem (section 3.5), the idea was used to call those points active which are 
responsible for building the volume and which are touched by the hyperrectangle. 
The same thing can be done for the maximum sphere problem given by (4.45). The 
(index) set of active constraints I(x) is given by those constraints which are touched 
by the sphere around x: 

T(x) = \\x-Zj\\, i e I(x) 

where z, are the points where the sphere or ellipse touches requirement i. 
More robust solutions can be found by "walking away" from the active constraints. 
In this way an improving direction dk can be constructed and by linesearch a better 
product can be found. There are several points to take into account when construct­
ing such an algorithm. 

- The iterate xk can reach the boundary of the experimental region X. The 
search direction should be adapted. 

- At a certain moment the gradients Vg,(;ct) of the active constraints I(xk) can 
form n+l affine independent vectors. This means that xk is "pushed in all 
directions simultaneously" and has reached an equilibrium. 

For a practical algorithm both points should be considered for the construction of 
stopping criteria. We will leave out those details in the outline of a base algorithm. 
A base algorithm is presented intended for linear properties and fixed tolerances. 
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Base algorithm linear properties, fixed tolerances 

135 

0. 
1. 
2. 

3. 

4. 

Define stopping criteria, k := 1 
Find a feasible *, (LP) 
Determine T(xk) and Ik = I(xk) 

dk:= E - a , / | û , | 
i e / . 

A» := argmaxx T(xk+Xdk) 
xk+l : = ** + *"lPk 

Check stopping criteria 
Either STOP or k := k+l and go 
to step 2. 

The structure of the algorithm is a general way of constructing nonlinear program­
ming codes and will converge to the global optimum for this simple case, when 
implemented correctly. An improving direction dk can be constructed by taking any 
convex combination of the gradients -a, which push the iterate away from the 
active constraints (border and affine independence considerations left out). In the 
base algorithm they are simply added. The algorithm is not useful for the base case 
itself (linear properties, fixed tolerances) as such, because that case can also be 
solved by LP. 

Linear properties, proportional tolerances 
Looking for the most robust point becomes more complicated when the tolerances 
are proportional, a, = rjXp as occurs in electronics industry. The determination of 
the robustness of a product itself is still relatively easy when the properties are 
linear; (4.45) becomes (4.46). 

T(x) = min. -a,x 
VE.(/-jc.a..)2 (4.46) 

In the base algorithm the directions away from the active constraints should be 
adapted to account for the search for smaller parameter values (U,l is smaller), 
because their tolerance is also smaller. Mathematically this can be derived from the 
tolerance Tt(x) with respect to an active constraint i: 

Tf,x) = 
bratx 

VE.(rjc.a..)2 
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Before finding an improving direction, we return to a question which has not been 
analyzed: Does Tt(x) or T(x) possibly contain multiple optima? At first sight, one 
would think so as there are implicitly two objectives when maximizing Tt{x): 

One is looking for products far away from the boundary g,{x)=0 (numerator), 
One is looking for small products, which have low variation (denominator). 

However, it is impossible to construct an instance of the robustness problem with 
linear properties, proportional tolerance and several optima. 

To explain this one has to go into the theory of fractional programming 
(Chapter 2 and Schaible, 1995). The fractional function Tt(x) has a linear numerator 
and convex denominator. This leads to a so called quasiconcave function which 
contains one global maximum. The minimum of a set of quasiconcave functions 
(4.46) is again quasiconcave (see e.g. Bazaraa et al., 1993). This implies that when 
we follow the gradient in the base algorithm we will end up in the global maxi­
mum. 

An improving direction with respect to i can be found by following the gradients 
V7X**) of the active constraints i € Ik. The gradient VTjOc*) consists of the partial 
derivatives dTfaydXj which are proportional to 

-a.^irxa.)2 + a.rfx.T{x)) 
yv v j j 'y •] J j v " 

(4.47) 

Compared to the derivative -atj of the base case (fixed tolerances), following the 
derivative tends to a reduction of the values Xj for that components j with a larger 
tolerance factor r;. To find the most robust solution, the search direction dk in the 
base algorithm is adapted. 

Algorithm linear properties, proportional tolerances 

0. 
1. 
2. 

3. 

4. 

Define stopping criteria, k := 1 
Find a feasible xl (LP) 
Determine T(xk) and Ik = I(xk) 

dk:= E V7X*t) 

Xk := argmaxx T(xk+Xdk) 
xk+\ : = xk + *-lßk 

Check stopping criteria 
Either STOP or k := k+l and go 
to step 2. 
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Quadratic properties 
The search for robust solutions when considering quadratic properties concerns 
several difficulties. 

Finding an initial solution in step 1 of the algorithm. As discussed in 4.3.2, it 
may be hard to find a feasible solution of the design problem. 
The determination of T(xk) is not straightforward. 
Specific improving directions for step 2 have to be derived. 

Let us first consider the determination of the robustness for a given product x. As 
given by (4.41) we are looking for the point z„ where the sphere or ellipsoid with 
centre x "touches" the surface g^z) = z'Qtz + d'z + c = 0. 
Again a transformation can be used to show that the problem with nonuniform 
tolerances is equivalent to a problem with uniform tolerances, the maximum sphere 
problem. Let again D(x) = diag(a). Now the ellipsoid problem 

min||x-z|| 
g{z) = z'Qz + d'z + c = 0 (4.48) 

with IMI = V£(x./a.)2 

can be transformed to a problem which searches the maximum sphere around the 
origin which touches a quadratic surface. 
Let z = D-lz - D-]x, then 

g(z) = z'Qz + d'z + c 
with 

Q = DQD 
d = IDQx + Dd 
c = x'Qx + d'x + c. 

Problem (4.48) is now equivalent to the maximum sphere problem (4.49): 

minllzl 
z'Qz + d'z + c = 0 (4.49) 

with \\x\\ = -iYLxj , the Euclidean distance. 

In this way, it is sufficient to focus on finding a solution of (4.49). 
The Karush-Kuhn-Tucker conditions (4.43) are for the specific case (4.49) 
equivalent to the set (4.50): 

z = -uVs(z) (4.50) 
g(z) = 0 

in which (a is a Lagrange multiplier. 
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An algorithm to obtain a solution of (4.50), closest to the origin, is given as 
follows. 

Core of the algorithm to determine T(x) 

0. 
1. 
2. 

3. 

4. 

Give a stepsize y and a tolerance e, k := 1 
Find an initial solution zk such that g(zk) = 0 
Go into the direction -Vg(zt): 

Pk := Zk -instel) 
Find the zero point Xk of g(kpk) = 0, 

Z*+l : = ^*P* 

If k*+1-zj < e STOP 
else k := £+1 and go to step 2 
endif 

The procedure is depicted in 
Figure 4.21. Only the main 
steps are given; some safe­
guards are needed to treat 
worst cases. For instance the 
determination of Xk in step 3 
is in general relatively easy 
as g(z) is quadratic, g(0) > 0 
(x is a feasible product) and 
g(pk) < 0 in general. The 
smallest of the two solutions 
for Xk can be chosen. A 
safeguard is needed when 
there is no solution (then 
g(Pk) > 0). 

for Figure 4.2 i: Algorithm for solving the maximum 
sphere problem, quadratic properties 

There are several alternatives possible for an algorithm to find a solution of (4.50). 
In the literature on "structural reliability" we found the following approach deve­
loped by Hasofer and Und (1974) and Rackwitz and Fiessler (1978), the HLRF-
approach, see also for an overview Liu and Der Kiureghian (1991). In this 
approach, not a fixed stepsize y is chosen, but a linesearch is performed in the 
direction 

rf.= 
IM2 Zk - Vg(zk) 

which is the projection of the steepest descent on the orthoplement of zk. Now pk in 
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step 1 of the algorithm corresponds to the line minimum mina g(zk+adk). The HRLF 
approach aims at finding the point closest to the origin of a general nonlinear 
surface. Every function evaluation may require a considerable amount of calculation 
time (Chapter 5). It is therefore surprising that a crude grid search is suggested in 
their approach to find an optimal value for a. 

The suggested transformation and algorithm (or any alternative) gives the possibility 
to calculate the robustness T(x) for quadratic properties for the weighted Euclidean 
distance case. Let us now return to the outer loop of the base algorithm to find the 
most robust design. Figure 4.18 illustrated that one can only aim at finding a local 
solution of (4.32). In the framework of the base algorithm, improving directions for 
step 2 have to be constructed to push the iterate away from the active constraints. 
Following the line from linear to quadratic design, the properties when having 
requirements a'x < b can be approximated by using the tangent hyperplane 
V*(z,)'(zr*) > 0. 

For fixed tolerances simply a, in step 2 of the base algorithm can be replaced by 
Vg(z*). 

For proportional tolerances the derivatives (4.47) in the gradient Vr;(xt) in the 
algorithm for linear properties and proportional tolerances are replaced by dT,{x)/dxj 
which is proportional to: 

£ ( r / A ) ' + Vs(2,)'(z-^)f (\y-|i(z,) 

; 

(4.51) 

Although (4.51) seems very complicated it is relatively easy to calculate, as we are 
dealing with quadratic functions. In a computer implementation the points of contact 
Z; are available from the algorithm which solves (4.50) and the approximation of the 
hyperplane can be substituted in the subroutine which evaluates (4.47) to derive a 
search direction. 

The algorithm was implemented and used for several design problems in a elec­
tronics industry leading to local optima for the robust design problem. Further 
analysis learns that worst cases can be constructed which frustrate the performance 
of the algorithm. The approach outlined here represents a specific local search 
procedure which can be used given various starting points. The structures of 
quadratic and linear properties and of the proportional tolerance model are fully 
exploited. 
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4.6. Concluding remarks 

In this chapter several cases have been discussed to show the complete route of 
model formulation, analysis and construction of algorithms. Focus was on applying 
the Branch-and-Bound method. Several points can be concluded from the viewpoint 
of the potential user. 

Analysis of the expressions is required for the discovery of useful mathema­
tical structures (Chapter 2). 
The elegance of the techniques is the guarantee that we are certain about the 
global optimality of the optimum when it has been discovered and verified. 
The methods are hard to implement. Thorough use should be made of special 
data structures to store the necessary information in memory. 

The last point refers to the difficulty that in Branch-and-Bound methods (including 
integer programming) the computer memory may fill up, before the guarantee has 
been reached. In a practical computer implementation there are several instruments 
to reduce this problem. 

Classical instruments in Branch-and-Bound (arrows gl and g2) are that we 
should keep track of the memory occupation by the number of subsets and 
that the selection rule can be influenced and alternative bounds can be 
generated. 
Another decision in the implementation is the trade-off which information to 
keep in memory and which to recalculate several times. 
A technical solution is to make clever decisions on which part of the Branch-
and-Bound tree to store temporarily on hard disk and which part to keep 
directly available. This does not solve the overall capacity problem, but may 
speed up the search. 
A specific Global optimization feature is to make good use of special data 
structures linking subset information to information on evaluated points. 

Cases 
The nutrient problem is an example of a high dimensional problem for which a 
branch-and-bound approach with rectangular subsets has been outlined and illus­
trated. The problem is hard to solve in practice as one may not have sufficient 
storage capacity and/or time to get to the global optimum and to verify it. The 
similar so-called pooling problem has been a challenge for many researchers and 
despite the relevance for petrochemie industry, remains hard to solve. The nutrient 
problem also shows how analysis of a given problem can lead to many useful 
properties: 

boundary solutions of the problem 
successive LP is very unsuccessful 
standard NLP leads to many local not global optima. 
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The (quadratic) design problem can also be handled by a branch-and-bound 
procedure to guarantee the (non) existence of feasible designs. The quadratic and 
Lipschitzian structure contain value information for the derivation of bounds. The 
way the problem has been formulated requires no update from a global lower 
bound; when all slacks are positive a feasible solution has been found. The perform­
ance of the procedure can only be influenced by changing the selection rule, which 
subset is to be split next. This is similar to branch-and-bound procedures for integer 
programming. The information during the execution can be the lowest bound, and 
the number of subsets and points to be held in memory, to follow the storage in 
computer memory. For the final information we advise to show the best let say ten 
products which have been found. The algorithm has been built into a Decision 
Support System in combination with local search (traditional) algorithms. 

A solution is often understood to be robust, when it remains "good" in uncertain 
situations due to uncertainty in data or changing circumstances. We discussed it in 
the context of product design, where robustness is defined as a measure of the error 
one can make from the solution such that the solution (product) is still acceptable. 
Looking for the most robust product is looking for that point which is as far away 
as possible from the boundaries of the feasible (acceptable) area. For the solution 
procedures, we had a look at the appearance of the problem in practice, where 
boundaries are given by linear and quadratic surfaces, properties of the product. 

For linear boundaries, finding the most robust solution is a Linear Program­
ming problem and thus rather easy. 
For quadratic properties the development of specific algorithms is required. 
The user still should interact in delivering good starting designs, probably 
generated by the DSS of the design problem. 



142 

Appendices 
Appendix 4.A 

d'x 
For each nutrient k the fractional programming problem max cp (x): = k has 

»cc, * qk'x 

to be solved, where the demand and supply vectors (d and q) are strictly positive. 

A well-known approach to solve fractional programming problems (FP): max ^ 
xeX g(x) 

is to consider the global optimization problem (GP): max.xsX{f(x) - Xg(x)} where 
Xe R (Pardalos and Phillips, 1991). The fundamental result which relates the (GP) 
problem to the (FP) problem is 

Theorem (Dinkelbach, 1967) x* solves the fractional programming problem (FP) if 

and only ifx* solves the global optimization problem (GP) with constant X,* = 
g(x')' 

d'x* 
For our fractional programming problems, according to this theorem, \* = _J 

qkx 

For this constant X*k the global optimization problem is the linear programming 
problem 

max £ ( 4 - XUik)xi • 
«c. 

If (dik-)Ckqik) < 0 then it is optimal to decrease x, as far as possible, (x* = lip) and if 
(dik-X*kqik) > 0 then it is optimal to increase xt as far as possible (x* = uip). 

So X: = 

/. if _ i<x ; 

1 u. if JL > x; 

9* 

For each k, \*k can be seen as the threshold value, which determines in which corner 
of the box Cp the value x is obtained. An algorithm to find this x* is described 
below: 
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Threshold Algorithm 

Step 1 Fix all x, at lip and calculate the objective value (p*. 
Initiate (p* as q>t. 

Step 2 Renumber all x„ such that _ ü < - Ü < ... < J±. 
Ilk Ilk 4mk 

Pick up the first element of the sorted vector x. 
Step 3 Put the chosen element x-t on its upper bound uip and calculate the 

new q>k. 
If cp* exceeds cp* then go to Step 4 
else put the chosen element back to its lower bound lip and STOP: 
(Pt is the optimum. 

Step 4 Replace (p̂  by the new q>t and take the next element of the x vector, 
go to Step 3. 

Appendix 4.B 

The test example for the mixture design problem is based on the following data. 
The property y, is calculated as: 

yfx) = c, + ditxx + di2x2 + di3x3 

in which Xj = Xj - 0.5. 

The data that are used are given by the following Table: 

property 
J C, 4l 4z ^3 9il2 *13 to_ 

1 1.495 -0.006 -0.024 0.050 -0.002 0.017 -0.021 
2 0.951 -0.014 -0.048 0.108 -0.001 -0.004 0.006 
3 15.986 4.729 -16.657 -8.974 -10.174 -21.977 -86.952 
4 178.708 -0.687 12.800 -7.347 0.241 -4.947 -3.967 
5 52.002 -5.217 -201.326 192.989 -6.180 337.106 1030.228 

Qui 1,22 Ins 

1 0.001 0.008 -0.021 
2 0.004 0.001 -0.014 
3 20.605 32.003 -81.278 
4 -0.766 -0.528 7.822 
5 116.750 -67.424 -845.215 
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5.2. The design of a continuous sugar centrifugal screen 

The first practical example is taken from a project in cooperation with a metallurgie 
firm which among others produces screens for sugar refiners. In the sense of 
Section 1.3 (Figure 1.2) a mathematical model has been constructed to describe the 
behaviour and performance of the process of separating sugar from molasses in a 
continuous sugar centrifugal. An optimization model has been derived (arrow b) 
from the model by distinguishing the parameters which can be influenced and the 
criteria to be optimized. 

We first give a flavour of 
the mathematical model. The 
continuous centrifugal works 
as follows (Figure 5.2). The 
fluid (molasses) including 
the sugar crystals streams 
into the middle of the rota­
ting basket. By the centrifu­
gal force and the angle of 
the basket, the fluid streams 

sugar 

molasses 

sugar 

molasses 

Figure 5.2: Continuous sugar centrifugal 

uphill. The fluid goes through the slots in the screen whereas the crystals continue 
their way uphill loosing all fluid which is still sticking on the material. Finally the 
crystals are catched at the top of the basket. The constructed model describes the 
stream of the fluid from the start, down in the basket, until the end, top of the 
screen. The flux of the fluid through the screen does not only depend on the 
geometry of the slots, but also on the centrifugal force and height of the fluid film 
on a certain position. Reversely, the height depends on how quick the fluid goes 
through the screen, so how fast the height profile decreases. Without going into 
detail, this interrelation can be described by a set of differential equations which can 
be solved numerically. Other, simpler, relations were found to describe the strength 
of the screen, as wear is a big problem. 

In this way a model exists in the sense of Figure 1.2, which given technical data 
such as the size and angle of the basket, revolutions per second, the stream into the 
refiner, the viscosity of the material, the shape of the slots and the slot grid pattern, 
calculates the behaviour described by the fluid profile and the strength of the 
screen. Now an optimization problem is derived, by selecting at one side that 
parameters which can be influenced by the firm producing the screens, and at the 
other side the criteria that one intends to optimize. A part of the parametrization of 
the pattern is given in Figure 5.3. Another parameter was among others the thick­
ness of the screen. Two criteria were formulated; one to describe the strength of the 
screen and one to measure the dryness of the resulting sugar crystals. There are 
several ways to combine the two criteria in a multicriteria approach as described in 
4.3. Actually we are looking for several designs on the Pareto set describing screens 
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which are strong and deliver dry sugar 
crystals when used in the refiner. 

The prototype DSS to be described in 
Section 5.5. was used to perform local 
searches, to generate random points to 
be used in a global search, monitor the 
location of the local optima etc. Notice 
that every function evaluation requires 
invoking the subroutine which performs 
the numerical calculation of the Figure 5.3: 
differential equations describing the 
performance of the separating process. 
Closed form expressions are not available. 

Parametrization 
grid pattern 

of the slot 

Several designs were generated that were predicted to perform better than existing 
screens. The use of a mathematical model in this design context is very useful, 
because it is extremely difficult to do real life experiments. The approach followed 
here, lead to an advisory system to make statements on what screens to use in 
which situation. Furthermore it lead to insights for the design department which 
generated and tested a few new designs for the screens. 

The optimization is a typical case where the user can apply his knowledge about the 
domain, the process of filtering sugar, during the execution of the algorithms. 
Parameters can be fixed, bounds can be changed, the global search can be influ­
enced, local optimization can be stopped etc. In our experience, graphical informa­
tion is also very useful. At one window, one can view the performance in the 
parameter space and at other windows one can monitor the predicted performance 
of a design which is evaluated. 
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5.3. Dynamic decision making in water management 

The problems in this section involve sequential decision making. The performance, 
objective function, not only depends on the sequence of decisions, but also on 
fluctuating data over a given time period, often considered as a stochastic variable. 
The calculation of the objective typically requires the simulation of the behaviour of 
a system over a long period. 

In the first example operating rules have to be derived for pumping water in a 
higher situated lake in the Netherlands. In general the rainfall exceeds the evapor­
ation and the seepage. In summer however, water has to be pumped from lower 
areas and is treated to maintain a water level above the minimum with a good water 
quality. Not only the pumping, but certainly also the treatment to get out phosphate 
costs money. The treatment installation performs better when the stream is constant, 
so that the pumps should not be switched off and on too frequently. The behaviour 
of the system is given by equation 

/, = min{/,_, + £, + x„ Max} (5.3) 

with /,: water level of the lake 
£,: natural inflow i.e. rainfall - seepage - evaporation 
xt: amount of water pumped into the lake. 

When the water level reaches its maximum (Max), the superfluous water streams 
downwards through a canal system towards sea. For the case we studied, two 
pumps were planned to be installed, so that *, only takes values in {0, B, 25}, 
where B is the capacity of one pump. Decisions are taken on a daily basis. In water 
management, it is common practice to derive so-called operating rules, decision 
strategies including parameters. A decision rule instructs on what decision to make 
in which situation. An 
example is rule (5.4) with 
parameters ß, and ß2. 
For 

/, < ß, x, = IB 
ß, < I, < ß2 xt = B (5.4) 

7,>ß2 *( = 0. 

Given weather data of a 
certain period now the re­
sulting behaviour of a se­
quence of decisions x, can be 
evaluated by measuring 
performance indicators such 
as the amount of water 

-target level 

'jan feb aug sep oct DOV dec ' 

Figure 5.4: Strategy to rule the pumping 
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pumped JJX, and the number of switches of the pumps Z | x,-xt_x \ IB. Assessment of 
appropriate values for the parameters ßj and ß2 is a black-box optimization problem 
in the sense of Figure 5.1. For every parameter set, the model (5.3) with strategy 
(5.4) can be simulated with weather data (rainfall and evaporation) of a certain time 
period. Some 20 years of data on open water evaporation and rainfall were avail­
able. The performance can be measured leading to one (multi-) objective function 
value. At every iteration the global optimization algorithm delivers a proposal for 
the parameter vector ß, the model simulates the performance and after some time 
returns an objective function value /(ß). 

One possibility is to create a stochastic model of the weather data and 
resulting £, and to use the model to "generate" more years by Monte Carlo simula­
tion, i.e. simulation using (pseudo) random numbers. In this way, it is possible to 
extend the simulation run over many years. The model run can be made arbitrary 
long. Notice that in our context it is useful for every parameter proposal to use the 
same set of random numbers (seed), otherwise the objective function/(ß) becomes a 
random variate. 

Various strategies as variants of (5.4) can be formulated taking into account 
for instance the level of £,, the increase in water level etc. with several parameters. 
The approach of optimizing the parameters by iteratively invoking Monte Carlo 
simulation remains the same. As can be derived from Figure 5.4, due to seasonal 
influences the underlying stochastic process is not stationary, so that decision rules 
such as (5.4) are too rigid. Actually the parameters should depend on time. In this 
specific case Stochastic Dynamic Programming can be used to optimize expected 
values of the criteria. The result is a so called operating Table. It tells exactly what 
actions should be undertaken in which situation in what period. Stochastic program­
ming using hydraulic data is very popular in water management, reservoir planning 
(see e.g. Butcher, 1971). In multireservoir systems however, the state variables /, in 
(5.3) are linked, which makes the application of Dynamic Programming very 
complicated. See for instance Kularathna (1992), who described the application for 
a large system in Sri Lanka. 
Before elaborating further on the topic of multiple reservoir systems, first two other 
areas in which parametrized decision strategies play a role are mentioned. 

In Management Science and Logistics a well known application is that of Stochastic 
Inventory Control. Equation (5.3) reads as follows (see Hax and Candea, 1984). 

ƒ,: level of inventory 
xt: amount produced or ordered 
Ç,: (negative) demand, considered stochastic. 

Criteria that play a role are inventory costs, production costs and backordering or 
out of stock costs. Depending on the construction of the parametrized decision rule 
similar to (5.4) names are used such as (B,0-policy or (s,S)-policy. In the context 
of optimizing oracle functions the optimization of the parameters can be carried out 
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in the same way as in the water management problem. Given the data over the past, 
it can be evaluated how the system would have performed if the parameters would 
have had a certain value. This way of approaching the problem is not very common 
in inventory control. Usually assumptions are made about the (stationary) probabil­
ity distribution of the demand and criteria are matched in such a way that by 
integrating over the distribution function explicit (closed form) expressions can be 
derived of how the objective function (expected criterion) depends on the parame­
ters, thus leading to a simpler to solve optimization problem. 

A totally other field where we came across the idea of parametrized strategies, is 
the financial world of the stock exchange. By making assumptions on the underly­
ing stochastic processes of the stock price and an analysis of the price of options, 
researcher have been able to derive a so called optimal hedging strategy (see Black 
and Scholes, 1973). This strategy defines how much money an investor should put 
into various funds, stocks and options, in order to have a risk free portfolio. To 
keep the portfolio risk free, an investor should adapt the ratio continuously. In 
practice however, transaction costs are involved in selling and buying stocks and 
options, so that changing the portfolio continuously is infinitely expensive. We 
carried out a simulation study to evaluate various parametrized strategies on when 
to change the portfolio depending on state variables such as the deviation from the 
ideal portfolio and the expiration time of the options. The criteria are the risk 
involved, the expected final value of the portfolio and the expected transaction 
costs. To make accurate estimates, long simulation runs are necessary to evaluate 
only one set of parameters. 

In all examples, there is a dynamic decision situation with a state variable, water 
level, inventory level and stockprice, and a decision strategy with parameters. 

We return now to multiple reservoir systems which implies state variables /„ for 
every reservoir /. We discuss a study on a seven reservoir system in Northern 
Tunesia due to Milutin and Bogardi (1996) (see Figure 5.5). For every reservoir i, 
equation (5.3) defines the water volume /„ given stochastic river inflow ^, and 
release (decision) xir Operating strategies can be derived on a monthly basis taking 
into account the stochasticity of the river inflows for which 44 year data are 
available. As can be observed in Figure 5.5, there are six demand centres supplied 
by more than one reservoir. This means that the demand djt (demand centre j , month 
0 partly has to be fulfilled by a fraction of the release xit, when reservoir i delivers 
to centre j . The decomposition approach chosen by Milutin and Bogardi is to use a 
fixed release distribution ytj among groups of reservoirs towards their common 
demand. The demand of water DiJt of centre j from reservoir / is taken as 

Dy, = Jij dj, 

where y&- is thought to be fixed over the year, meaning that Z, Dijt = djt and E, ytj,= 1, 
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the summation with respect to 
that reservoirs which deliver 
water to centre j . Given a dis­
tribution Yy, an operating rule 
can be derived for every reser­
voir to fulfil total water 
demand X, A,,- The approach is 
to apply simple operating rules 
and to simulate their perfor­
mance over a 44 year period of 
monthly inflow data. The ob­
jective is to minimize the 
expected value of the annual 
sum of squared deviations 
between releases and corres­
ponding demand for water. The 
restriction that the distributions 
sum to unity, such as in the 
mixture design problem (4.3), 
can be dealt with in a penalty 
form. Optimization of the rela­
tive contributions y^ involves 
iteratively calling a larger pro­
gram (subroutine), which simu­
lates the performance of opera­
ting strategies. 

reservoir 

water transfer 

diversion weir 

Figure 5.5: 

© demand centre 

sea 

Seven reservoir system in Tunesia. 
Source: Milutin and Bogardi, 1996 

Milutin and Bogardi applied 
genetic algorithms which can 
be seen as a random search to 
generate good distributions. 
Later on we used local searches 
in a multistart way, leading to several local optimal distributions. The user typically 
has a direct interpretation of the decision variables and can influence the search by 
fixing parameters and changing bounds. He can also increase the number of random 
points to scan the feasible area before starting a local search. 

The cases in this section have shown optimization problems where evaluation of the 
objective function involves running a dynamic model with data either from a given 
time period in the past or from (extended) Monte Carlo simulation. The explicit 
dependence of objective function on parameters to be optimized is therefore hidden. 
A user, due to his knowledge of the modelled domain, may have a direct interpre­
tation of the parameter values and can interact during the search for the global 
optimum. 
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5.4. Multiple source river pollution management 

A combination of a continuous model description as in the sugar centrifugal case 
and a Monte Carlo simulation as in the water management problem can be found in 
Boon et al. (1989). They describe the so called waste load allocation problem, i.e. 
design of a system for wastewater treatment in a multiple source pollution of a 
river. The situation is sketched in Figure 5.6 (Pinter, 1996a). There are several 
pollution sources along the river, locations where discharges of untreated (domestic) 
wastewater take place. The pollution is expressed in levels of BOD (Biochemical 
Oxygen Demand), which can be used directly as a measure for the oxygen demand 
in the receiving stream. The management question is to design a cost effective 
allocation of treatment capacities such that water quality standards on oxygen are 
met. For the details we refer to Boon et al. (1989) and Pinter (1996a) and the 
numerous references therein. 
For our purpose, it is suffi­
cient to know that there are 
decision variables xt descri­
bing the site specific treat­
ment efficiency, BOD-load 
removal capacity, at site i, 
which can vary between pre- t t 
specified technological rj-i re­
bounds. There are convex 
cost functions C, (JC,-) descri­
bing the costs of construc­
ting and operating a treat­
ment installation with 
removal capacity x, at site i. Figure 5.6: Multiple point-source pollution sites 

along a river. Source: Pinter, 1996a 

So far the problem is simple 
and straightforward and has been solved in water quality engineering for many 
years, see Thomann and Mueller (1987). The quality determination requires 
following the quality development of Dissolved Oxygen (DO) interacting with the 
development of the Biochemical Oxygen Demand (BOD) along the river. This 
development can be described by classical water quality models consisting of a set 
of differential equations derived from mass balances. For the equations concerning 
one river section, analytical expressions can be derived to calculate the lower peak, 
minimum, of the oxygen (DO) level. However, the purpose is to stay above the DO 
water quality standards in all river sections of interest i (Pinter, 1996a, uses the 
same index). The interrelation between the sections complicates the calculation of 
all lower levels, i.e. the minimum DO level may not be reached in one section, 
before the water flows into another. Moreover, the development of the DO level 
also depends on all kinds of factors which vary in practice such as water tempera­
ture, streamflow etc. 
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Now Boon et al. (1989) want to design a system which performs well in 'nearly all 
situations' (robust design) and therefore include a stochastic criterion: 
The joint probability of satisfying a minimum DO target level in all river sections. 
This water quality criterion in a probabilistic sense, can be estimated by using 
Monte Carlo simulation. Probability distributions for the fluctuating (input) parame­
ters are derived and Monte Carlo simulation is used to measure the probability of 
exceedence of the minimum oxygen standards in the various river sections. This 
defines the reliability criterion next to the costs of a design. 

Pinter (1996a) uses global optimization algorithms to generate Pareto optimal 
points (minimum costs, maximum reliability) of the design. Every function evalu­
ation requires running the continuous model for many Monte Carlo simulations, 
which implies quite some calculation time. In a joint project of Wageningen 
university and the water institute VITUKI in Hungary the methodology was applied 
successfully to a case of the Zala river in Hungary, see Boon et al. (1989). 

Again the cases illustrate the oracle character of an objective function. Calculation 
of differential equations and Monte Carlo simulation are used for every function 
evaluation. Also here the user has more knowledge on the domain which can be 
used for deriving bounds on the criterion functions and indicating promising areas. 
In this example there is a monotonicity consideration; a higher removal rate leads to 
a higher reliability and to higher costs. The maximum reliability is reached using 
the most expensive design. The "weak" river sections where the standards are 
exceeded very often can be spotted to derive which efficiencies can be expected to 
be high in the optimum. In this way the domain knowledge can be used to interact 
during execution of the algorithms. 
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5.5. A DSS for minimizing a continuous function under box constraints 

In the former sections, we have seen how optimization problems can be derived 
from descriptive models such that the corresponding function evaluations are 
relatively expensive and the underlying expression is implicit. In this section we are 
discussing some experience with a prototype DSS, called BOP (Bounded 
Optimization), which was used to examine the search process for the optimum of 
some practical optimization problems where a function fix) is minimized under box 
constraints, i.e. lower and upper bounds on the parameter vector x. Some notes are 
given on the implementation aspects and, what mainly interests us, some experience 
is given on what might be useful information for the user (arrow g2) and what 
might be useful instruments (arrow gl) with which the user can influence the search 
process. The indicators and instruments are summarized at the end of this section. 

;<^fionsxiat;-

V/ffiy////// . model output'; 
lodel programs^ • 

Dùt.dàt: 
I 

The idea of the implementa­
tion is outlined in Figure 
5.7. The derived objective i^ÄM;—-
function f(x) is represented 
by a separate program 
(func.bat in Figutre 5.7). In 
some applications only the 
executable of the model used 
by the optimization problem Lt*stf.<jat :-
is available due to confiden­
tiality. Therefore we choose 
to use files as an interface 
between search program and 
objective function (arrow d 
in Figure 5.1). The in.dat file contains suggested values of the decision vector x and 
after the evaluation program func.bat has been run, the resulting objective value is 
written in the file out.dat. In this way there are no further software requirements on 
the problem to be optimized. Furthermore, the construction puts emphasis on the 
black-box character of the objective; the optimization routine has no structural 
information on the problem to be solved. 

result.dat ^ 

Figure 5.7: Outline of file interactions around BOP 

Some of the information the user directs towards the search process is more of a 
general nonlinear optimization nature (local search) whereas other information has a 
more global character. The options.dat file may contain the (initial) tolerances for 
the local search routine. In the implementation we used a variant of Powells' 
method (Powell, 1964) adapted for the box constraints. Search directions are 
projected on the boundary when this is approached too close. In the linesearch 
routines, initially small steps are used to find an interval, bracketing a line mini­
mum. This has a global optimization purpose; we try not to miss, rush over, a small 
but deep minimum. Another global optimization adaptation is that it is checked 
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during the local search if the iterate is close to an optimum already found. This 
requires some additional checking time, but saves function evaluations which we 
assumed to be the expensive part of the calculation. A typical other global 
optimization information topic is to put a random seed number in the options file to 
start the random generator. Possibly the options file may contain directions for the 
final report. The information in this options file is considered fixed during the 
search process. The tolerances are in general used in criteria which are relative e.g. 
to the ranges in which the variables vary and therefore need no updating when 
implemented properly. 

An important feature is the ability of the user to STOP and RESUME the search 
process. In BOP this was done by hitting any key. Note that it may still take some 
time for the program to stop, as it may be in the middle of the process of evaluating 
the function. Not only may the user want to change some parameters during the 
search process, but he may also want to examine the results graphically. Often a 
user may want to keep track of the progress by examining the results of the 
suggested parameter values for his model, translate the values back to the world the 
model represents, e.g. the fluid profile in the sugar screen design problem. This can 
be done either in a separate window continuously, but also by stopping the search 
and running some graphical programs. Notice that the optimization may lead to 
remarkable results for the user. Often the user has already carried out many runs 
with the underlying simulation model using realistic values for the input parameters. 
The feasible set defined by the bounds given by the user may not only contain 
realistic combinations, points. The optimization looks into all corners of the feasible 
space in order to detect points which lead to good objective function values. 

Therefore the other important feature is the ability to set and change bounds 
during the search or to fix some parameters. For global optimization the user during 
the search may adapt his intuition about where to find the best local optima, the 
most promising areas, and may also change the bounds then. This may require some 
bookkeeping, as one may not want to throw away all points which have been 
evaluated and optima which have been found in areas that are temporarily not 
considered any further. The bounds.dat file can be used to give initial values for the 
bounds, give the names of the parameters for the translation in the direction of the 
user and may possibly contain initial values of the parameters as a starting point for 
a local search. 

For the output information it is first of all useful to keep track of the best point 
which has been found sofar and its function value during the search, the so called 
record value. By storing this solution in a separate file bestf.dat, this point does not 
get lost when the system breaks down due to a failure in the execution of the 
func.bat program which runs the model. The final report in the result.dat file can 
contain various topics. By many users it was considered a good idea to list the best 
let say 10 points which have been found. In global optimization all optima can be 
reported and the number of times that they are detected. This information should be 
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Figure 5.8: Sketch of the 
screen of BOP 

graphical information 

available somewhere during the search for the user to adapt his search strategy. 
First the graphical interface 
is discussed now before 
going into detail on how the 
user may influence the 
search further. The graphical 
interface of the BOP proto­
type DSS is outlined in 
Figure 5.8. A three dimen­
sional picture is drawn of 
the search space. Two axes 
are used to project the para­
meter (decision) space in 
two dimensions, putting two 
variables at the axes, in the 
figure referring to the design 
problem of Section 5.2. The 
third axis is used to record the function value corresponding to given parameter 
values. Points in this plot represent function evaluations. Local optima which have 
been detected are represented by a number. The scaling of the objective axis is not 
straightforward. One can use the minimum and maximum value which have been 
found. In general we used the minima and maxima of let say the 50 best points 
which have been evaluated. Of course the user can adjust this. Notice furthermore 
that due to graphical reasons the objective axis is turned around (maximization 
graphically). 

Now the user can scan through the decision space by changing the parame­
ters at the axes. For instance the user can suspect that the function is monotonie in 
one of the variables, so that he decides to fix its value. There is also a limited 
possibility to discover patterns in the location of the optima. If the optima are on a 
line in the plane of two variables, this can be discovered. However if the points are 
in a higher dimensional plane or line not orthogonal to the parameter axes, this 
might not be discovered. Another pattern is due to symmetry in the optima (Section 
2.6), when the variables are interchangeable. This also may be discovered. 

There are several indicators possible around the graphical interface with respect to 
the progress of the (global) search process and several instruments to influence the 
process. One piece of information is a tabular form of all optima which have been 
detected and the number of times they have been discovered. Another piece is the 
number of function evaluations which have been performed. This gives rise to two 
other indicators: an estimate of the amount of function evaluations per local search 
and an estimate of the calculation time per function evaluation. This last one might 
not be straightforward. We came across an application where the time of a function 
evaluation depended on the objective function value; for a bad function value the 
underlying computer program did not need all calculation steps. 
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This kind of indicators are useful in the context of a limited solution time; the user 
wants to start up the program and observe the results the next morning. One 
suggestion by a user was to derive from theory a confidence figure; what is the 
probability that the global optimum has been reached. In fact in the theory on 
stochastic global optimization this has been considered from the opposite point of 
view: Given a probability, when can we stop sampling further, the so called 
stopping rules. 

To give an example of such stopping rule analysis, we mention an early 
result due to Karnopp (1963). If we consider a pure random search strategy, the 
probability after having generated N points that a better point will be found with 
sampling N, points additionally, is P = Nj/(N+N,). At first sight this is a remarkable 
result, as it does not depend on the function which is minimized. The result can be 
derived by analyzing extreme value distributions as will be studied in Section 5.6. 
In a limited time situation one knows the remaining number of function evaluations 
N,, and with that the probability to reach a better point. However, it does not give a 
probability that the global optimum actually has been reached. For a multistart 
strategy this kind of analysis has been done by Betro en Schoen (1987) and 
Boender and Rinnooy Kan (1987). In their approach a priori distribution of the 
number of optima and the size of the regions of attraction of the optima is given 
and adapted during performing the local searches. The adapted probability distributi­
ons result in estimates of the probability that a new local optimum is discovered or 
that a better point will be found. Schoen as well as Boender use the probability to 
derive stopping rules. Our user was interested in the idea to obtain a kind of 
certainty estimate, the probability itself, that the optimum is reached after a night of 
calculation, a probabilistic statement about the best point which has been found. 
Notice that when the number of evaluations or local searches is low (expensive 
function evaluations), the probability will depend much on the initially assumed 
prior distribution. 

As one of the main instrument for influencing the local versus global search we 
used the number of generated random points before a local search is started from 
the best point of this sample. This basic approach is called Multi-singlestart and is 
analyzed further in 5.6. When there are many local (not global) optima, the user can 
put more effort in global search instead of spending all "ammunition" of function 
evaluations on detecting local optima and thus spend more energy on global scan­
ning. Another possible approach is to switch to other methods. One could switch 
towards simulated annealing or other adaptive search methods which, as outlined in 
5.1, are more or less combinations of global and local search. 

In a multistart environment, clustering is a useful approach and an option for 
influencing the search, see e.g. Timmer (1984). This can be implemented such that 
when a random point is generated it only serves as a starting point for a local 
search, if it is not 'too close' to a cluster of points around a local optimum. This is 
called Simple Linkage. One parameter in this way of looking for the optimum is the 
critical distance which decides on what is 'close to'. 
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The last option mentioned here is the possibility to change the local search method. 
Direct search methods such as that of Neider and Mead (1965) are known to be 
able to handle nonsmooth objective values. If the nonsmooth character of the 
function was not already clear from the way the objective has been constructed, it is 
only discovered during running the search process by a bad convergence perform­
ance of methods based on iterative linesearch. 

Let us summarize the information between user and search process as mentioned in 
this section. 

gl information: from user towards search process 
general for nonlinear optimization 

-stop and resume 
-tolerances for the local search 
-choice of local search method 
-setting bounds and fixing parameters 
-deliver a starting point 
-instructions for the report 

global optimization 
-trade-off between local and global search 
-random seed 
-influence clustering 

g2 information: from search process towards user 
-graphical information on the decision space 
-current function value 
-best function value found sofar 
-number of evaluations in the current local phase 
-graphical information from the user model 
-number of optima found 
-number of times an optimum has been detected 
-estimate of the time of one function evaluation 
-estimate number of function evaluations for one local search 
-"confidence figure": indicator on how certain the optimum has been 
reached 

An interesting question is now how the user may adapt the main instrument in 
global optimization, the choice between local and global search, given the informa­
tion which is generated by the search process. In a situation where the user orders 
his computer to search in the feasible area, walks out his office and when he returns 
in the morning wants to have obtained some good answers, good heuristics would 
be welcome. This question will be discussed in Section 5.6, where we further 
analyze the efficiency of possible decision rules for a situation where the calculation 
time is considered limited. 
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5.6. A limited solution time 

5.6.1. Introduction 

The box constrained global optimization problem, which is to find the global 
optimum of a real valued, in general multimodal objective function over a hyperrec-
tangle XŒR", has been studied by many researchers. An efficient and often applied 
approach is to perform a local search from points derived from a random sample 
from a probability distribution over X. Attention has been paid to the derivation of 
stopping rules to determine the sample size. In many practical situations the 
function evaluations necessary for the optimization can be rather time consuming 
e.g. it may need minutes, as a special subroutine or program has to be run to 
determine the function value. This has been illustrated by the problems in 5.2, 5.3 
and 5.4. In such a case it is not uncommon that with a given amount of calculation 
time e.g. a night or a weekend, one wants to reach a point in X with a function 
value as low as possible. The limited time to find a good solution can also be found 
in cases such as power station decisions, where the decision time is restricted. In 
this section we introduce for this case the term Box Constrained global optimization 
problem with a given Budget of function evaluations, BCB problem for short. In 
5.6.3 the Multi-singlestart method is presented and possible strategies within this 
method are discussed. In 5.6.4 criteria are introduced to measure the performance of 
solution methods for the problem class. The criteria are numerically illustrated for 
various methods and instances of the BCB problem. In 5.6.5 an analysis can be 
found on the performance of random search methods for the BCB problem. This is 
followed by a discussion of the results and conclusions in 5.6.6. The analysis of this 
section can be found in Hendrix and Roosma (1996). 

5.6.2. Box constrained GOP with a limited solution time 

In many applications in engineering one wants to find the minimum of a real valued 
function ƒ over a region X defined by lower and upper bounds on the variables. (X 
can be called a closed hyperrectangle or a box.) 

min fix) (BCP) 
xzX 

It will be assumed that fix) is a real valued possibly multi-extremal continuous 
oracle function for which no derivatives or other global information such as a 
Lipschitz constant or concavity properties are available. Evaluating the function is 
similar to presenting parameter values to a black-box, possibly implemented in a 
subprogram, which calculates the function as a criterion on the parameters. 
Zhigljavsky (1991) introduced a classification on global optimization problems 
based on the prior information on the problem. In this classification the BCP 
problem is classified as type a), it is only known that ƒ is continuous. 
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In technical oriented literature, pragmatic approaches can be found to solve the 
problem. See e.g. Pronzato et al. (1984), Bohachevsky et al. (1986), Brazil and 
Krajevski (1987). In Mathematical Programming literature, analyses on various 
global optimization methods are presented. An overview on global optimization 
methods can be found in Torn and Zilinskas (1989). Most methods are based on the 
idea of globally exploring the feasible area (global search) e.g. by generating points 
in the feasible area, and performing local searches to arrive possibly (hopefully) at 
the global optimum. In Section 5.1 among others the following elements were 
distinguished: 

Generating random points 
If the target is to discover all optima, the purpose is to try to get starting 
points for the local search in every region of attraction. Following the idea 
that the region of attraction close to the global optimum contains the lowest 
function values, one can also only start a local search from the best point 
found during the global search. This idea will specifically be explored in this 
section. 

Local search 
The purpose is to get a local optimum from a "good" starting point. 

Clustering 
By clustering random generated points, a part of the local minimum structure 
can be discovered and one can save a number of function evaluations by 
only starting a local search once for each cluster. 

Focus of this section is on the practical case, where there exists a budget for the 
computer time. Given this budget the search method should result in a function 
value (and corresponding point in X) as low as possible. It is assumed that the 
budget in computer time translates directly to a budget B on the number of function 
evaluations during the search process, i.e. every function evaluation requires the 
same calculation time. This problem will be called the box constrained global 
optimization problem with a given budget on function evaluations, the BCB 
problem. We concentrate on the combination of generating random points (global 
search) and local search, because these elements exist in the core of many methods. 
The solution method for this problem allocates budgets to local searches and to 
generating random points. A framework of this allocation is presented in the next 
section. 
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5.6.3. Multi-singlestart 

In the literature on random search based methods the following approaches have 
been analyzed. 

-Pure Random Search (PRS) (see e.g. Zabinsky and Smith, 1992): Generate a 
number N of random points from a uniform probability distribution over X and 
evaluate them. The lowest point is an approximation of the global optimum. 
PRS 

1. Generate and evaluate random points in X 
2. Determine the best value yr and incumbent minimizer xr 

Random search methods have been studied, among others, by Zabinsky and Smith 
(1992), Zhigljavsky (1991), Romeijn (1992) and Klepper and Hendrix (1994), 
focusing mostly on adaptation of the distribution function over X. 

-Singlestart (SIS): Generate and evaluate random points over X and start one local 
search from the lowest point found. 
SIS 

1. Generate and evaluate random points in X 
2. Determine the best value yr and incumbent minimizer xr 

3. Start a local search with starting point xr 

-Multistart (MUS): At every iteration, a random point is generated in X as a starting 
point for a local search. 
MUS 

Do for t=\ to N 
1. Generate a random point x, in X 
2. Start a local search with starting point xt 

In Boender and Rinnooy Kan (1987) and Betro and Schoen (1987) studies can be 
found on when to stop the multistart process given some criteria on the trade-off 
between reliability and computational effort. 

When we have a budget on the number of function evaluations, as in the BCB 
problem class, the application of the SIS method would consume as many function 
evaluations as possible for the global search, whereas the MUS method allocates the 
budget towards local searches. The success of both methods depends on the instance 
of the BCB problem, which a priori is unknown. For an instance of the BCB 
problem with a few local optima and sufficient budget to perform some local 
searches, it may happen that multistart proves to be the best strategy. For a problem 
with many local optima which are much different from the global optimum, it may 
be better to perform one local search from the best of a long list of random points, 
than to spend all "ammunition" on identifying local optima. The existence of many 
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local optima may occur in practical cases due to numerical effects e.g. when an 
evaluation involves the numerical integration (fitting of continuous models) or 
inversion of a matrix (optimal design of experiments). 

The message is that, if the surface of f is "rough", so that there are many 
local optima, then more effort should be put into global search, conversely if there 
are only a few optima, then more of the budget can be allocated to local searches. 
Due to the character of the BCB problem, this function structure is of course 
unknown when the search starts. During the search process more of the structure is 
revealed and the allocation of budget to local searches and global search can be 
adapted. Here we get to the idea of multi singlestart (MSIS), where the number of 
random points to be evaluated depends on the structure revealed during the search. 

MSIS 
0. t=\ 
1. Generate and evaluate N, random points on X. 
2. Identify the best point x, out of the N, points. 
3. Perform a local search with starting point x, . 
4. If budget is left, t=t+\ and go to 1. 

At every stage t in step 1, the number of random points N, is chosen before the next 
local search is performed from the best of those points (if enough budget B, is left). 
So more or less effort can be put into the global search. 

The number of function evaluations F, necessary to perform one local search 
does not only depend on tolerances, but also on the starting point and the function 
under consideration. Thus, F, can be considered as a random variable. During the 
search, estimates of (the expected value of) F, become available. Note that F, tends 
to decrease when N, increases, due to the fact that part of the local search work is 
taken over by the random search. 
As a variant of the decision parameter A', we introduce the parameter Kr 

Kt: number of local searches (iterations) intended to be performed before the budget 
is exhausted. 

If the part of the budget which is not used for local searches is equally divided over 
the intended iterations the number of random points N, can be derived from : 

N, = (B, - F, - FM -...-F,+KA)/K, . 

A uniform estimate F for the expected number of function evaluations for a local 
search reduces the formula to: 

N, = B,IK,-F 

The maximum number of local searches that can be performed is estimated by 
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Kmax, = [B,/F] . At every decision stage t, K, is chosen between 1 and Kmax, . The 
SIS method corresponds to K,=\ and MUS can be approximated by choosing 
K,=Kmaxr 

We now define a MSIS strategy as a choice rule to determine N, (or K, alternative­
ly) at every iteration from the information generated by the previous iterations. 
At step 1 of the algorithm among others the following information is available: 

B, : budget left 
Nloc, : number of different local optima found 
t-\: number of local searches performed sofar 
F: expected (estimate) number of function evaluations necessary for one local 

search 
Kmax,: [B,/F] 

Now, various strategies can be constructed. If we follow the general idea described 
above, then if many optima are found, K, should be tending to 1, which means the 
pure SIS strategy. If the prior expectation is the existence of many local optima, the 
corresponding strategy is to have AT,=1. One problem is that there is no good 
estimate for F, when no local searches have been performed. Another approach is to 
start with the hypothesis that there exists only one local optimum. At the first and 
second iteration a local search with one random starting point (N{=N2=l) can be 
performed. If the local optima found are equal, the hypothesis still holds and one 
can proceed with multistart in an attempt to check the hypothesis by discovering 
other local optima. If they are not equal, there are apparently multiple optima and, 
in an attempt to detect the region of attraction of the global optimum, N, can be 
increased. Another possibility is to base the choice of Nt on an estimate of the 
number of undetected local optima, see e.g. Boender and Rinnooy Kan (1987). To 
illustrate the idea of MSIS strategies we introduce the following rule (Hendrix and 
Roosma, 1996) which is called ß heuristic (as depending on the parameter ß>0) : 

(Kmax - \){Nloct - 1) 
Kt = Kmax, - - Î '- -

(Nloc, - 1) + ß M (5-5) 

Nloc. 

The parameter ß weights the relative number of different optima found compared to 
the number of local searches performed. When r-l/Moc,—»°°, the rule approximates 
pure multistart (K,-^>Kmax,) in an attempt to discover new optima. If every local 
search results in a new local optimum, the rule tends to singlestart, K,-*l. 

After the introduction of the BCB problem and possible solution methods there is a 
need to establish performance criteria. 
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5.6.4. Performance criteria for the BCB problem 

In the OR literature it is common to use the number of function evaluations used 
and the indicator whether the global optimum has been found, as a performance 
criterion for global optimization methods. For the BCB problem the objective is to 
reach a point as good as possible given budget B, hopefully it is the global opti­
mum. So the best function value found is the criterion. The score on these classical 
criteria does not only depend on the local search method, tolerances and stopping 
criteria, but in random search techniques also on the random series used. To filter 
out this random effect, the expected values for those classical criteria are suggested 
in this book to be applied as criteria for the BCB problem. 

PG(B): the probability of a search method reaching the global optimum within 
budget B. 

ER(B): expectation of the record value found with budget B. 

The possibility to analyze the behaviour of algorithms with respect to the criteria is 
limited. In general, estimates for these criteria for various search strategies on test 
functions can be determined by Monte Carlo simulation. Only for multistart the 
probability of reaching the global optimum can also be approximated analytically by 
the following idea. Let D* be the region of attraction of the global optimum and let 
V=V(D*)/V(X ) be its relative size. Let F be the average number of function evalu­
ations necessary to perform one local search (which is itself stochastic) and B the 
budget. The number of local searches that can be executed is [B/F]. This makes the 
probability of reaching the global minimum, as given in (5.2), at least 

PG(B) = 1 - (l-v)[B//n (5.6). 

The PG(B) and ER(B) criteria are illustrated here for various instances of the BCB 
problem. Monte Carlo simulations are done to estimate the score on the two criteria 
for the ß-heuristic (5.5) for some values of ß and for the MUS and SIS strategy. 
For the ß-heuristic we choose NX=N2=\. This implies that for low budgets the 
heuristic performs exactly the same as MUS. For SIS an estimate should be 
available for the number of function evaluations necessary for one local search. 

Test functions for which the number of local optima varies can be found e.g. 
in Torn and Zilinskas (1989). To see any difference, test functions with many 
optima are of interest. Therefore the Rastrigin function (50 optima), the Shekel 
functions (5,7 or 10 optima) and the Goldstein-Price function are taken from this 
reference. 

For the local optimization a variant of Powell's method (Powell, 1964), 
adapted for the box constraints, is used. In the linesearch initially small steps are 
taken in an attempt not to miss the nearest optimum. The stopping criterion is 
defined on the progress in function value. Moreover, after every linesearch it is 
checked whether the iterate is close to an optimum already found. The tolerance of 
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PG(B) 

being close to an optimum is 
taken as 1 percent of the 
componentwise range of the 
variables. This check speeds 
up the search process, and 
causes F, to decrease when 
the iterations proceed. 

The estimation of the 
criteria PG{B) and ER(B) is 
done by running the random 
search many times with 
various random series for 
fixed values of the budget B. 
For lower values of B, the 
fluctuation of the criteria is 
larger, does more depend on 
the random series, than for 
higher values of the budget 
where the probability PG(B) 
approaches 1. Therefore more replications were done (10,000) for small values of B 
than for large values of B (200). As a numerical illustration we applied MUS to the 
Rastrigin test function (See Torn and Zilinskas 1989). The relative size of the 
region of attraction D* for the local optimizer used was v=0.0346. In Figure 5.9 the 
theoretical smooth curve of (5.6) is confronted with two curves that were found by 
Monte Carlo simulation. 

0.6 0.8 1 1.2 1.4 
function evaluations (thousands) 

Figure 5.9: Probability to reach the optimum for 
multistart 

PG<B) ,n The performance of MUS, 
SIS and the ß-heuristic have 
been estimated by Monte 
Carlo simulation for the 
Rastrigin test function. The 
results are given by Figure 
5.10 and Figure 5.11. 

The results illustrate the idea 
of the criteria. Given an 
instance of the BCB prob­
lem, every solution method 
has its PG(B) and ER(B) 
curve. For the five solution 
methods (MSIS strategies) 
for which the curve has been 
approximated, the ß-heuristic 

with a value of ß = 10 performs the best for this test function. This illustrates how 

0.6 0.8 1 1.2 1.4 1.6 
function evaluations (thousands) 

BUDGET 

Figure 5.10: Results of criterion PG(B) for the Ras­
trigin function for various strategies 
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the criteria introduced can be used to judge on search strategies for the BCB prob­
lem: A particular method is better than another for a certain instance of the BCB 
problem, if its PG(B) curve is higher or its ER(B) curve is lower. In Figure 5.11 we 
see that from the five stra­
tegies, the ß=10 rule has the 
best expected value for the 
best function value found. 
The objective function value 
of the global minimum is -2. 

ER(B) 
-1.81 
-1.82 
-1.83 
-1.84 
-1.85 
-1.86 
-1.87 
-1.88 
-1.89 
-1.9 

-1.91 
-1.92 
-1.93 
-1.94 
-1.95 
-1.96 
-1.97 

What determines the success 
of generating random points 
in the context of increasing 
the probability that the glo­
bal optimum is detected? We 
first illustrate the difference 
in efficiency of generating 
points by two extreme 
numerical examples. In 5.6.5 
we will try to analyze this 
extreme difference. Figures 
5.12 and 5.13 give the performance, according to the PG{B) criterion, of the five 

strategies for the Shekel-5 
PG(B) 

0.5 0.7 
function evaluations (thousands) 

BUDGET 

Figure 5.11: Results of criterion ER(B) for the Ras-
trigin function for various strategies 
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function and the Goldstein-
Price function respectively. 
The results show that gene­
rating many random points 
is efficient for the Goldstein-
Price function, whereas it 
apparently is not efficient for 
the Shekel-5 test function. 
This illustration leads to the 
question whether there exists 
a MSIS strategy, or more 
generally a method, which 
performs better for all 
instances of the BCB prob­
lem for all values of the 
budget. To formalise this 
question we define the con­
cept of dominating methods. 

A method is called PG-Dominating if for all instances of the BCB problem, PG(B) 
is higher than (or equals) PG(B) of all other methods for all values of budget B. 

100 200 
function evaluations 

400 

BUDGET 

Figure 5.12: Results of criterion PG(B) for the 
Goldstein-Price function for various 
strategies 
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Can a dominating method 
exist for the BCB problem? 
To answer this question we 
first analyze for which cases 
it is profitable to put more 
effort in global search than 
is done by multistart. As 
mentioned in 5.6.2, the 
objective of generating ran­
dom points (or increasing N) 
is to increase the probability 
that the starting point of the 
local search is situated in D*. 
We use the following nota­
tion. 
The relative size of a level 
set S(y) is defined as 

MÜ0 = V(S(y))/V(X). 

PG(B) 

MUS 

^ w 0.1 

0.4 0.6 0.8 
function evaluations (thousands) 

BUDGET 

Figure 5.13: Results of criterion PG(B) for the 
Shekel-5 function for various strategies 

When x is uniformly distributed over X, y = fix) is a random variable with cumulat­
ive distribution function ia(y) = P[/(x) < y} and probability density function u'(v). 
By performing a random search with N points the probability density function 
MN'(yr) of the record value yr (lowest function value found) is 

MN'(yr) = Nu'(vr)(l - MOV))""1 . 

The success of a global search depends on the probability that the point xr corre­
sponding to yr is in the right region of attraction, D*. We define 

(pO0 = P { * e D*\fix) = y} 

as the probability that a point x is in the right region of attraction given that x is 
situated at a contour with height y. The efficiency of going deeper into the level 
sets by generating random points depends on the shape of (p(j). If one random 
starting point is used then the probability to reach the global optimum equals the 
relative size v = V(D*)/V(X) of D*: 

y 

v = ƒ cpO) dp(y) (5.7) 
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in which yt = min f(x) and y * = max fix) . 
xeX xeX 

By first generating N points and then starting a local search from the lowest of 
these points, the probability PSN of reaching the global optimum is 

y 

PSN = f <p(y)MN'(y)dy . (5.8) 

Essential in the analysis is that PSN may be worse (lower) than v. This occurs when 
there is a wide relatively deep level set of which a large part does not belong to D*. 
As an example from the standard test functions (see Torn and Zilinskas, 1989) the 
Shekel functions have this characteristic, as we have seen from Figure 5.13. This 
implies that SIS performs very bad versus MUS. The Goldstein-Price function gives 
the opposite result, see Figure 5.12. 

The function (p(v) is apparently very different for those two examples. 
However u(y) also differs for every problem. To make cp(v) more comparable, we 
introduce the following transformation. Let z be a uniformly distributed random 
variable defined as z = |i(y). In other words u~'(z) defines the quantiles of y. Notice 
that the function |a(y) is increasing and not necessarily continuous. The function 
\i~\z) exists. Now equation (5.7) can be written as 

y ' 

v = ƒ (p(y)Ju(v) = ƒ <p(n-'(z))<fe . (5.9) 

Every value of z is "equally probable". We will call the function \|/(z) = (p(|i"'(z)) a 
characteristic function ( not to be confused with the probabilistic meaning), as it 
contains all information to calculate (5.8) and consequently gives the exact informa­
tion on the efficiency of generating random points. Note that \|/(z) approaches 1 
when z goes to 0. Equation (5.8) can be replaced by 

PSN = ƒ V(z)iV(l - z)(N-l)dz . (5.10) 

The characteristic function V|/(z) determines the success of generating random points 
and contains much more information than e.g. the number of optima. It should be 
mentioned that the information of \|/(z) is in general not available, so it cannot be 
applied in an algorithmic framework. It has been introduced for analytic reasons. 
For illustrative purposes the function \|/(z) is approximated numerically by Monte 

file:///i~/z
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Figure 5.14: Characteristic function for the Gold­
stein-Price problem 

Carlo simulation for the two 
extreme example functions. 
In Figure 5.14 and Figure 
5.15 numerical approxima­
tions can be found. 
In limit \|/(z) approaches 1 
when z goes to zero. How­
ever for the Shekel-5 func­
tion this limit is that distant 
that it cannot be observed in 
the numerical estimates. 
Increasing the number of 
random points leads the 
point x, away from the right 
region of attraction D*. For 
the Goldstein-Price function 
generating random points 
improves the probability that 
the global optimum is 

reached. This shows that given the information which becomes available during the 
search, it is impossible to determine a search strategy which performs better than all 
other strategies for all 
instances of the BCB prob­
lem; a PG-dominating 
method does not exist. We 
used the concept of the 
characteristic function to 
show that MUS has to be 
the optimal method over all 
possible MSIS strategies for 
the Shekel-5 problem. This 
strategy is not optimal for 
other instances of the BCB 
problem. z 

Furthermore we have seen 
that knowledge of the char- F i § u r e 5 1 5 : Characteristic function for Shekel-5 
acteristic function, which for 
practical problem solving will be out of the question (given the budget on function 
evaluations), gives by calculating (5.10) how the probability PSN of reaching the 
global optimum changes, when the lowest point x, of a random search with TV, 
points is used as a starting point for a local search. This is illustrated by Figure 5.16 
and 5.17. In those Figures, PS, equals v, the relative size of the region of attraction 
of the global optimum. The well known rule from stochastic methods that PS —» 1 
when N —> °°, applies here, but cannot be derived from Figure 5.17. 

0 0.2 0.4 0.6 0.8 1 
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A less frequently used criterion is to look at the maximum absolute error 
max, | e,.(0) | over the observations. The minimization of squared errors (6.3) has an 
important interpretation in statistics. When assumptions are made such as that the 
measurement errors are independent normally distributed random variables, the 
estimation of 9 by minimizing ßß) of (6.3) corresponds to a so called maximum 
likelihood estimate and probabilistic statements can be made, see e.g. Bates and 
Watts (1988). Parameter estimation by minimizing (6.3) given data on z, and xt is 
called an ordinary least squares approach. 

The formalisation is sufficient to discuss the idea of identifiability. When a linear 
regression function 

z(x, 9) = 9, + 9^ 

is fitted to the data of Figure 6.1, ordinary least squares (but also minimization of 
(6.2)) results in a unique solution, optimal parameter values (9„ 92). There is one 
best line through the points. Consider now the following model which is nonlinear 
in the parameters: 

z(x, 9) = 0,92;t . 

The multiplication of parameters sometimes appears when two linear regression 
relations are combined. This model corresponds with a line through the origin. The 
best line 
z = CONSTANT x x is uniquely defined; the parameterization however is not. All 
parameter values on the hyperbola 9,92 = CONSTANT give the same goodness of fit. 
The set of solutions of the optimization problem is a hyperbola. The parameters are 
non-identifiable, i.e. cannot be determined individually. For the example this is 
relatively easy to see. For large models, analysis is necessary to determine the 
identifiability of the parameters, see Walter (1982) and Mous (1994). 
For the optimization problem this phenomenon is important. Application of a 
multistart strategy will lead to a new (global) optimum at every local search. The 
number of optimal points is infinite. In 6.2 this problem is elaborated further. 

In Section 2.6, the learning of a neural net was considered from a parameter 
estimation point of view. In this problem there is more than one parameter vector 
leading to the same model description. We have shown for this problem that the 
number of global optimal parametrizations is not necessarily infinite, but it grows 
more than exponential with the number of hidden nodes due to an inherent symme­
try in the optimization problem. 

We focus further on the least squares formulation (6.3). The quadratic character has 
been used for the derivation of specific algorithms. Moreover, there is a statistical 
link between the reliability question and (6.3). We will outline both aspects. 
In both aspects the so called Jacobian plays a role. Consider the m measurements 
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(jtj; z, ), i = 1, •••, m and a regression model with parameters 8;, j = 1, ..., n. The 
residuals are e, = z(x,, 6) - z,., i = 1, ..., m. The Jacobian 7(G) of the m functions 
e,(9) is defined as the m by « matrix with partial derivatives as elements: 

9e,.(9)/ae; = 9z0c,,e)/39;. 

For linear regression, the model z(x„ 9) is linear in the parameters 9 and the 
Jacobian is constant. In general, for standard nonlinear regression functions the 
derivatives can be derived analytically. For the logistic regression function (6.1) the 
row i of the Jacobian is given by 

t i 9 / * 9 , 9 ^ 

1 + Q2e^' (1 + %2e**f (1 + %ee>*)2 

Notice that this matrix for some parameter vectors will appear singular, e.g. 9, = 0. 
For complex models where the function z(x, 9) is in fact a routine it is not certain 
whether the derivatives exist at all. The analytical expressions are in general not 
available. Often the Jacobian is approximated numerically for these oracle models. 

6.1.2. The Jacobian and finding the minimum 

The Jacobian plays an important role in algorithms for finding the minimum of 
(6.3) iteratively. Given a trial parameter vector 9 with corresponding residual vector 
e(9) and objective flß) = eT(Q)e(Q), one tries to find a direction d in which the 
function decreases. The function value in the direction d can be approximated by: 

J{Q + d) = eT(Q + d)e(Q + d) 
= (e(9) + J(Q)d)T(e(Q) + J(Q)d) 
= eT(Q)e(Q) + 2 rfr7r(9)e(9) + dTJ\Q)J(Q)d. (6.4) 

The approximation (6.4) is a convex quadratic function in d. The minimum is given 
by the so-called normal equations 

JT(Q)J(Q)d = -/r(9)e(9). (6.5) 

Formula (6.5) results in the so-called Gauss-Newton direction d. A procedure based 
on (6.5) will fail if the matrix 7(9) is (almost) singular. A well known remedy is 
due to the Levenberg-Marquardt method (Marquardt, 1963). This changes (6.5) into 

(7r(9)7(9) + XT)d = -JT(Q)e(Q), (6.6) 

where parameter X is chosen according to a certain strategy and I is the nxn unit 
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matrix. The Gauss-Newton and Levenberg-Marquardt method are available in 
statistical packages which deal with nonlinear regression. 

For complex models, no partial derivatives are available and numerical estimates 
may be expensive to evaluate. The model run may require considerable simulation 
time. For such large models we observed the use of direct search methods such as 
Nelder-Mead (1965) and the method of Powell (1964), to obtain optima of the 
goodness of fit function y(9). In that case no use is made of the quadratic express­
ions in (6.3). 

An intermediate method, exploiting the quadratic structure, but not requiring 
derivative information is the so-called DUD (Doesn't Use Derivatives) method 
(Ralston and Jennrich, 1978), which we will sketch here. An idea is taken from the 
method of Powell, which does not use derivatives to construct search directions, but 
derives new directions from former iterates. The DUD method follows the same line 
of reasoning for the Jacobian. The Jacobian is not approximated numerically at one 
point, but is replaced by an estimate F which is based on n+\ former iterates. The 
error function in (6.4) is approximated by 

e(Q + d) - e(9) + Fd . (6.7) 

Every error function e,(9 + d) i = 1,.., m is approximated by a plane e,(9) + F,d , in 
which F, is row i of F. The matrix F is constructed such that (6.7) is exact for the 
former n iterates. This requires some formalisation. Given the iterates 9,, ..., 9„+, 
and resulting directions dp = Qp - 9„+1, F is constructed such that 

e(Qp) = e(9„+1 + dp) = e(9„+1) + Fdp p = 1, ..., n . (6.8) 

Similar to (6.4) the DUD direction is a solution of 

FTFd = -FTe(Q). 

Geometrically, because matrix F fulfils (6.8), the m planes described by (6.7) go 
exactly through the n + 1 previous values of e(9). The base of the Gauss-Newton 
method, e(Q) + JT(Q)d, describes a tangent hyperplane at 9 of the error surface 
(Ralston and Jennrich, 1978). Due to algebraic operations, it is not necessary to 
calculate F explicitly. The plane (6.7) can be described similar to the way the affine 
minorants were generated in Chapters 2 and 4 and the piecewise approximations in 
Chapter 3. The DUD method can also be found in statistical packages (e.g. SAS). 
At the end of the procedure an estimate of the Jacobian is available. This is 
important for the use of the Jacobian in the reliability question. 
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6.1.3. The Jacobian and reliability 

Often the researcher is interested in the accuracy, precision of the estimated 
parameter values. An intuitive interpretation is that all parameter values with nearly 
the same goodness of fit are as likely or as probable as the optimal parameter 
vector. This intuition is indeed affirmed by statistical theory, see e.g. Bates and 
Watts (1988) and Ross (1990). Assumptions such as the existence of independent 
identically distributed measurement errors leads to the following general asymptotic 
result (number of observations grows to infinity). The Jacobian J at the real value 
of 0 appears in the variance-covariance matrix of the least squares parameter 
estimator ^{ßff1, with o2 the variance of the measurement errors. Notice that the 
expression does not exist, when the Jacobian J is singular. This appears when 8 
cannot be identified. The theoretic covariance matrix leads to a usual construction 
of an ellipsoidal confidence region around the estimated (optimal) parameter vector 
9*: 

(9-9*)r J r(9*) 7(9*)(e-e*) < _ ü _ fiQ') F (n,m-n) , (6.9) 
m-n 

where Fa(n,m-n) is the upper a quantile for Fisher's F-distribution with n and n-m 
degrees of freedom. One expects the true value of 9 to be in this ellipsoidal region. 
Seen from an optimization point of view (6.9) defines a level set of a convex 
quadratic function. The quadratic function is an approximation of flß) -fiQ') so that 
the ellipse approximates in fact the level set 

m -ƒ'<_!!_ƒ• Fa(n,m-n). (6.10) 
m-n 

According to the likelihood method (6.10) gives the region in which with a certain 
confidence the true value of 9 can be found, see among others Donaldson and 
Schnabel (1987). 

Klepper and Hendrix (1994) illustrate with a simple case of logistic 
regression that (6.9) may approximate (6.10) very poorly. The drawback of general 
formula (6.10) over the elliptic asymptotic approach (6.9) is that it is hard to 
represent the set with probable values of the parameters to a researcher. For the 
elliptic description only the elements of the Jacobian, ƒ* and n and m are required. 
How can a possibly banana shaped level set be described efficiently? 

Several papers dealt with this question. A thorough study can be found in 
Donaldson and Schnabel (1987). A general measure to describe the curvature of the 
regression function is sought in their paper. Less curvature, a 'more linear' 
regression function, gives a better approximation of (6.10) by (6.9). Walter and 
Piet-Lahanier (1988) suggest to generate points on the boundary of level set (6.10) 
and to represent (6.10) by interpolations between the points. For nonconvex regions 
this is not a good idea. Klepper and Hendrix (1994) suggest to use a set of random 
generated points in (6.10) and their neighbourhood to represent the level set. An 
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earlier study of Klepper and Rouse (1991) focused on the use of the resulting 
population, cloud of points of the method of Price (Chapter 5, Price, 1979) to 
represent the confidence level set (6.10). The final set of points of the method of 
Price appeared not to lead to a sample of a uniform distribution over the level set. 
This gives rise to a specific question in the field of random search methods: How to 
generate efficiently a set of points from a uniform distribution over a level set? This 
question is elaborated further in Section 6.3. 

6.1.4. The Jacobian and optimal experimental design 

The second optimization question in model validation, namely experimental design, 
also focuses on the asymptotic covariance matrix V(9) = a2(/r(0)7(6))_1 given a 
certain parameter vector 0. We outline the problem briefly here. The aim of obtain­
ing reliable estimates for 9 is translated in getting the variances determined by V(G) 
as low as possible. A smaller variance of an estimator results in an estimate with a 
higher reliability. 

The variance of the measurement error a2 cannot be influenced. The Jacobian 
7(0) which consists of the partial derivatives 3z(A:„0)/98y is not only influenced by 
the choice of the parameters, but also by the choice of the points of measurement xt. 
The question of experimental design is how, given a model z(x,0) and a parameter 
vector 0, the observations *, should be chosen such that the reliability of the 
estimator of 0 is as big as possible. To solve this question, first of all a criterion 
function on the matrix V(0) is necessary, to decide on which matrix is better. Often 
the so called D-criterion, the determinant of the matrix is minimized, but other 
criteria, such as the trace, are also possible. Notice that for the experimental design 
problem, 0 is given and the observations are the decision elements, opposite to the 
parameter estimation problem. A confusing terminology appears when in experi­
mental design a local optimal design expresses the design to be optimal with 
respect to the parameter vector 0. This is a complete other notion of local 
optimality than in global optimization where it denotes optimality with respect to 
the environment of the solution. 

The generation of realistic designs of experiments is a complex optimization 
problem. In a realistic situation there is a budget on a number of experiments which 
can be done. The question on where to sample in the experimental region is a 
continuous optimization problem. The question how many observations to take at 
the measurement points is an integer decision problem. In fact we are dealing with 
a mixed integer-continuous problem. We will give a flavour of the problem without 
going into detail. 

Let us first consider linear regression. In linear regression the Jacobian does 
not depend on the parameter vector. Intuitively one should choose measurement 
points as distant as possible from each other, at the extremes of the experimental 
area, to fix a line or plane and consequently to fix the parameters as much as 
possible. This is indeed what comes out of an analysis of V(9), see e.g. Rasch 
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(1995). For standard nonlinear regression functions, such as the logistic regression 
function (6.1), expressions of elements of the asymptotic covariance matrix are 
available. The determinant of the matrix for logistic regression can be expressed as 
a function on operations on the measurement points *,-. 
For logistic regression the curve is not only determined by its endpoints, but also by 
the infliction point. The optimal design includes measurement points at the 
endpoints and also in the neighbourhood of the infliction point. In Rasch et al. 
(1997), we investigated the optimization problem of selecting measurement points 
which are bound to be selected from a predefined set of candidate points. At each 
measurement point only one observation is allowed. This turns the optimization 
problem into a typical combinatorial optimization problem. How to pick out m 
points out of a larger set such that some criterion on the covariance matrix is 
optimal. 

6.1.5. Cases 

The models of the parameter estimation problem range from linear regression, 
standard nonlinear regression functions to complex models existing of sets of 
differential equations. The application of linear and nonlinear regression functions is 
common in research and for the parameter estimation problem standard methods are 
available which in general lead to global optima. The use of one or a few differen­
tial equations occurs among others in chemistry, food science and physics. The 
parameters often have a physical meaning. Stortelder (1997) describes methods for 
parameter estimation in systems with partial differential equations. Moreover he 
describes a prototype DSS for the estimation problem similar to the BOP prototype 
in Chapter 5. At various research departments and institutes we observed that 
statistical consultants developed their own software to handle parameter estimation 
problems of researchers. 

River flow models 
A description of parameter estimation in large complex models seen from the global 
optimization point of view can be found in Pinter (1996a). He considers large river 
flow and water quality models of which the predictability is of great importance, 
certainly in The Netherlands. Sometimes parameters have no important interpreta­
tion, but are used to fit the data more accurately with the model. Every function 
evaluation, calculating the goodness of fit of a parameter vector, involves simulating 
a large model. 

Runoff models in wastewater treatment 
Similar experience at the Agricultural University can be found in Grum and 
Aalderink (1997). A large model was considered to describe the runoff flow rate 
and concentrations of suspended chemical oxygen demand at the overflow point in 
a sewer system. Six parameters were estimated by comparing the full model simula-
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tion with observation series. The sum of squared errors was minimized using a 
direct search method. At the global optimal parameter vector the Jacobian was 
numerically estimated to create an estimate of the asymptotic covariance matrix. 

A noticeable other achievement of the same group is the attempt to estimate 
parameters of a given black box model of which the simulation time is half an hour. 
The model consists of a program (executable only) provided by another institute, 
which was fit to local data. The estimation problem is an extreme case of the oracle 
type of optimization problems discussed in Chapter 5 and was handled with a 
variant of the BOP prototype. The function evaluations were recorded in a log-file 
so that after a long optimization period one could examine the progress. It may take 
days before some local optima are detected. 

Estimating mass fractions in geology 
Let us in contrast to the oracle example, describe a parameter estimation problem 
with many parameters and an explicit model formulation from geology, in which 
we were involved. Meijer and Buurman (1997) report on a method to explain data 
from soil samples with a case from the soil of a volcano in Costa Rica. For 20 
samples i = 1,...,20 in total 14 properties propik, k = 1,...,14 were measured. A 
common method is to use factor analysis to describe the observations. The 
researchers however, were convinced they would be able to determine the underly­
ing mass fractions of the constituents of the samples by estimating those fractions 
fraCfj and the parameters QJk which explain the properties from the mass fractions 
simultaneously: 

Prop* = E % Hf™»-
j 

Only measurements on the properties are available. In first instance the parameters 
of such a model cannot be identified; by increasing 9^ with a factor and decreasing 
fraCjj with the same factor one can end up with the same prediction of propik. This 
effect disappears by the observing that the fractions sum to unity: 

E frac. = 1 (6.11) 
i 

A second observation is that due to symmetry the indices j can be interchanged; 
after the estimation it is not clear which fractions represent which constituents (iron, 
aluminium, carbon, etc). This structure, mentioned in Section 2.6, causes the model 
to result in the same prediction for various parameter vectors. The researchers added 
so many relations on fixed proportions, maxima and minima that the solution tends 
to be unique and corresponds with their physical interpretation. As 7 constituents 
are distinguished, the resulting optimization problem calculates the goodness of fit 
of 20 x 14 = 280 observations with the aid of 7 x 14 = 98 parameters 6^ and 
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20 x 7 = 140 parameters frac,-,, which due to (6.11) can be reduced by 20. The 
estimation problem is a large scale nonlinear programming problem which can be 
handled with nonlinear programming software. Using various starting points finally 
an optimum was found which fits the data well. The result appeared very encourag­
ing when finally expensive laboratory results of some of the samples appeared with 
the real mass fractions. The measured fractions of the constituents met the estimated 
fractions very well. If the model and parameters Qjk are good, expensive laboratory 
experiments can be replaced by determining mass fractions with the model given 
data of observed properties. Regular factor analysis applies the same type of model. 
The hidden regressors fractj are bound to be orthogonal vectors. The model used 
here delivers nonnegative fractions which apparently can be interpreted very well. 

The geology problem gives the possibility to investigate the identifiability question, 
as the explicit expressions are available. The discussed water quantity models are 
examples where these expressions are possibly not available. It is more difficult to 
generate statements about reliability of the parameters and about identifiability. In 
Sections 6.2 and 6.3 some consequences for oracle problems are discussed. 
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6.2. Finding infinitely many optima. 

6.2.1. Introduction into the problem 

We have seen that in the problem of model calibration, several model outcomes are 
fitted to data. A criterion fiQ), not necessarily differentiable, determines the good­
ness of fit (GOF) for a given set of parameters. One of the phenomena which can 
occur when determining the solution, global minimum of fiQ), is that every local 
search (starting point) results in a new solution vector. It looks as if the parameter 
estimation problem has infinitely many optima. 

It is known that if the minimum is obtained for all points at a lower dimensi­
onal subset in the parameter space, the values of the parameters cannot be identified 
uniquely. See for an extensive discussion on identifiability Mous (1994) and Walter 
(1982). In this section we are looking for an existing optimal parameter vector in 
cases in which some parameters are 'hard to identify'. An example will be given in 
6.2.3. We are not trying to find a mathematical formalization of the concept 'hard 
to identify', but we are looking for practical tools to overcome the problems 
involved. The resulting optimization problem will be called ill-conditioned. The 
terminology has been introduced by Hendrix et al. 1994. As already noted by 
Loehle (1988) and Klepper and Slob (1994), the goodness of fit may be much more 
sensitive to one group of parameters than to another one. The so called level set of 
the response surface (graph of goodness of fit criterion) becomes very narrow in at 
least one direction. 

It is the aim of this section to look for solution approaches when, due to this ill-
conditioning, the local search procedure ends in nonoptimal points. Numerical 
considerations are left out of the analysis. We will switch back to the notation of 
Chapter 5, so that the symbol x will be used as an argument of the function fix) 
which is optimized. Now we are considering nonlinear programming problems for 
which no analytic expression of the gradient may be available. The feasible set X is 
either R" (unconstrained) or contains bounds on the variables. 

min fix) (P) 
x<=X 

The function ƒ is a real valued continuous function. 

Approaches to solve problem (P) can be so called direct search or pattern search 
methods such as grid search, the simplex method, see Neider and Mead (1965), the 
method of Rosenbrock or the method of Hooke and Jeeves, see for an overview e.g. 
Bazaraa et al. (1993). The approaches we will consider are line search methods of 
which the search directions are e.g. the coordinates, based on Powells' method, see 
Powell (1964), or based on a numerical approximation of the gradient. There exist 
many practical problems among others in parameter estimation, for which such 
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methods converge very slowly to the optimum or alternatively converge to a point 
which is not optimal. Adjusting the tolerances which determine the stopping criteria 
does not significantly improve the performance of the optimization procedures. The 
bad behaviour of the algorithms for this particular class of problems is caused by 
ill-conditioning. 

In literature, see e.g. Bazaraa et al. (1993), the phenomenon of ill-conditio­
ning has been discussed to describe that the graph of fix) is very flat in one 
direction and steep in another. This is formalized by the condition number of the 
second derivative matrix (Hessean) of ƒ. In this section we are not looking for an 
extension of this formalization for non-differentiable objective functions, but focus 
on the consequences for the optimization methods. For ill-conditioned problems the 
contours near the optimum tend to lower dimensional surfaces, sets. Such a set can 
be a plane or a manifold. A well known example of this is the parabola which 
determines the banana shaped valley for the Rosenbrock function. A non-
differentiable analogy of the Rosenbrock function is used as an illustration in Figure 
6.2. The global unique mini­
mum is attained at x = (1,1), 
which is situated in a valley 
given by the Rosenbrock 
parabola x2 - x\. l 

A local optimization routine 
L(x) aims at obtaining a 
local optimum of (P) given a 
starting point xseX. The 
practical problem is that L(x) 
due to its finite tolerance 
and stepsizes may terminate 
with a point which is not an 
optimal point of (P). An 
optimal point of (P) is by 
definition optimal in all 
feasible directions. However, 
the line search methods check a point on a finite number of directions. 

Figure 6.2: Surface of flxlrx2) = 10 +(x-iy 

Therefore 
after a point on a very low contour has been reached (very low in the valley), the 
local search procedure may reach its stopping criterion at a point which is not 
optimal. It is quite possible that for every starting point the routine terminates at 
another point, which fulfils the stopping criteria. Therefore it looks as if (P) is a 
multi-extremal problem with an infinite number of optima. 

Definition 
Let L be a local search procedure with a given stopping tolerance, and let (P) be an 
NLP problem. A point p is called a numerical optimal point (NOP) of (P) if there 
exists a starting point XseX such that £(**) = p. 
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Note that the NOP character of a point depends on the local optimization routine L 
and the tolerances used during the search. The local optimal points coincide with a 
NOP point whereas this is not so the other way around. When there is one NOP 
point, it corresponds to the global optimum. The NOP concept is illustrated for the 
test problem in Figure 6.3. The coordinates of ten random points are given in Table 
6.1. They are used as starting points for two local search procedures. In the first 
procedure the method of Powell is used for generating search directions; in the 
second a numerical approximation of the gradient is used. 

Table 6.1 Application of two local search methods on 10 random starting points 
ioTfix^2) = 10 | x2-x\ | +(x,-l)2, 0<X!<2, 0<x2<2 

STARTING POINTS 
*1 *2 

0.92280 0.16448 
0.84802 1.18440 
1.95470 0.97075 
0.79882 0.29644 
1.66906 1.72666 
0.05822 0.21136 
0.56310 0.90307 
1.65135 0.40595 
0.73449 0.86155 
0.53845 0.73095 

ÄW2) 
6.87680 
4.67571 
29.4125 
3.45720 
11.0387 
2.96664 
6.05074 
23.6343 
3.29131 
4.62324 

P. 
Pi 

Pi 
Pt 
Pi 

P* 
Pi 

P» 
P<> 
P\o 

N O P Powells method 
x, x2 fixlrx2) 
0.40411 0.16330 0.35511 
1.08899 1.18589 0.00794 
0.98873 0.97758 0.00025 
0.54441 0.29644 0.20818 
1.31159 1.71981 0.10156 
0.46077 0.21136 0.30024 
0.95031 0.90307 0.00260 
0.63673 0.40595 0.13718 
0.92797 0.86155 0.00935 
0.85489 0.73095 0.02219 

N O P Num. Gradient method 

jr, x 2 A*i*l) 

0.58936 0.34735 0.16863 
1.03694 1.07496 0.00420 
1.08765 1.18299 0.00779 
0.63466 0.40184 0.14303 
1.34877 1.81913 0.12200 
0.11838 0.01400 0.77740 
0.82747 0.68524 0.03513 
0.80767 0.65232 0.03700 
0.87669 0.76815 0.01954 
0.74477 0.55449 0.06710 

7 T 
5 / / 

/ 
/ / 

/ 2 / 

„7 / 

/ 
/ 

/ 
/ 

10 / / 

/ 

In practical parameter esti­
mation one may arrive at 
NOP points that do not 
correspond to local optima. 
One may even have the 
impression that the problem 
is a global optimization 
problem, whereas the fact 
that the local search pro­
cedure stops at different 
points for different starting 
points is due to ill-conditio­
ning. For this class of prob­
lems we suggest some 
search strategies and a par­
ticular algorithm in 6.2.2. In 
6.2.3 these will be worked out for some cases. Numerical considerations are left out 
of the analysis. The ideas are based on Hendrix et al. (1994). 

î / 

/ 

Figure 6.3: Numerical optimal points found by Po­
wells method 
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6.2.2. Search strategies 

The search strategies suggested are based on a one dimensional minimization along 
a curve leading through a set of points found in earlier iterations. We start by 
generating a group of NOP points derived from performing a local search on a set 
of starting points. If all NOP points coincide, it is assumed that the minimum has 
been found. 

If the points do not coincide (and there is one optimal point), they are 
situated in a lower dimensional set. Now we try to generate search directions along 
the surface by taking the difference between NOP points. If a better point is found 
along a direction, the local search procedure is started from this point until a new 
NOP point is found which replaces the worst point in the set. This total procedure 
is called the line improvement step. 

If the lower dimensional surface is a hyperplane, this improvement forces the 
points in the direction of the optimum. It can be checked whether the points are on 
a hyperplane, before applying the improvement steps, in the following way. One 
can create a matrix B with columns bk taken as the difference between the NOP 
points pk and the first point px, bk = pk- pv When the columns bk of matrix B are 
singular, the original points pk are situated in a hyperplane. One can use standard 
algebraic software to check this, but a general spreadsheet also provides an answer 
on the question if BTB is singular, its determinant is zero. 

However, if this not the case, the improvement procedure will lead to a set 
of points which in addition to their NOP character have the property that they are 
optimal over all lines between the points. The set of points found in this way will 
be called a set of line optimal points. The next improvement step is based on 
searching along curves leading through three line optimal points in an attempt to 
search over the curved surface. A parabola can be constructed between every triple 
of points in the set. Again worst points may be discarded when better new points 
are found. Analogously we can introduce the term parabolic optimal points, when 
the line searches over parabolas through every triple of points gives no improve­
ment and the points do not coincide. When the parabolic improvement is successful, 
two points are left over of which the lowest is an approximation of the minimum. 
One can proceed with cubic interpolation to generate cubic-optimal points etc. In 
general, one can use the term trajectory optimal points. An algorithm to generate a 
set of line optimal points is given by the following scheme. 
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Complexity 
To reduce the advertisement character (this conflicts with Popperian science), which 
usually speaks from numerical results such as that of Table 6.7, let us focus on the 
analysis of failure rate and uniformity with the aid of a simple (extreme case) 
numerical experiment. The analysis of Section 6.3.3 is illustrated here by applying 
the UCPR algorithm for generating N=50 points in 5(1.05) for problem f7, a variant 
of Q\, with varying dimension and value for the parameter c. It has been argued 
that parameter c gives a kind of trade-off between effectiveness (uniformity of the 
final sample) and efficiency (number of function evaluations). The uniformity is 
measured by partitioning the parameter space in 4 parts of equal size determined by 
the sign of the two first parameters JC, and x2. By measuring and adding 
(Sample - M?expect j7A«expected for each partition set a statistic appears which 
approximately has a Chi-square distribution. As mentioned before, there are many 
other ways to measure the tendency of the sample to originate from a uniform 
distribution (see Ripley, 1981). An important factor in the analysis of Section 6.3.3 
is the so called failure rate; the number of function evaluations that do not give an 
improvement of the level set divided by the total number of function evaluations. 
We measured those criteria for one run of the UCPR algorithm with values for the 
parameter c of 2, 1.5 and 1.2 for the problem f7 with dimension n of 2, 3 and 4. 
We just consider one run for each case, to be able to have a look at the final 
sample. 

Table 6.8: Results of UCPR for problem f7 with varying dimension and values of c 

Failure rate Number of function 
evaluations 

Uniformity 
(Chi-square stat.) 

n 
c 

2 
1.5 
1.2 

2 

437 
344 
292 

3 

1158 
709 
734 

4 

2809 
1437 
1155 

2 

18% 
8% 
4% 

3 

55% 
28% 
16% 

4 

77% 
55% 
25% 

2 

.88 
10.48 
12.56 

3 

110.96 
16.24 
77.04 

4 

3.28 
.88 
36.08 

It is clear that for lower values of c the failure rate decreases, which causes the total 
number of evaluations that have to be done going down. The drawback is that the 
uniformity of the final set of points grows worse. An extreme example is the case 
with c=1.2 and «=3: In a certain iterations all points generated have negative values 
for x2. The parameter c is too small to give that new points are generated at the 
other side of the axis. 
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6.3.5. Conclusions 

The problem of generating a sample of N points over a level set 5(a) was studied. 
The number of function evaluations necessary to generate N points from a uniform 
distribution over a level set 5(a), is linear in the dimension and N for the theoretical 
ideal algorithm of Pure Adaptive Search (PAS). Like every good ideal, it looks 
impossible to be reached. This impossibility can be derived from considerations on 
complexity of global and integer programming. The same theoretical complexity 
may be reached by a modification of PAS which uses a sample of points called N-
points PAS. The algorithm of Uniform Covering by Probabilistic Rejection (UCPR) 
is a heuristic practical approximation of N-points PAS. For higher dimensions the 
deviation from the ideal becomes bigger. The test results show that UCPR performs 
in general better than other practical alternatives such as Pure Random Search, 
Controlled Random Search and a variant of the Hit and Run algorithm. The 
development of better algorithms, i.e. closer to the ideal, is still a challenge to 
Popperian science. 
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Chapter 7. Major Conclusions, GLOP at work 

7.1. The problem 

If we want global optimization (GLOP) to get to work, roughly two sides can be 
distinguished. Most of the literature aims at one side, namely the mathematics of 
global optimization, i.e. the derivation of properties for special structured 
optimization problems and for specific methods and techniques. This leads to useful 
mathematical results and elegant exercises. To quote the mathematician P. Erdös, 
"A mathematician is a device for turning coffee into theorems". 
The other side is, what a 

people like to call, the appli­
cation side. This is not very 
well defined. In many 
research situations where 
mathematical models are 
used, researchers try to find 
parameter values such that a 
given performance criterion 
is at its best, optimal value. 
When the parameters can be 
varied in a continuous way, 
this defines a so-called Non­
linear Programming Prob­
lem. Methods for Nonlinear 
Programming usually result in local optima, i.e. a solution, parameter values, which 
are the best with respect to values in the neighbourhood of that solution, not 
necessarily the best over the total admissible, feasible set of all possible parameter 
values, solutions. Cooperation between mathematicians and researchers which raised 
global optimization problems from practical problems, in this book called 'the 
modeller' or 'the potential user', has lead to application of GLOP algorithms to 
practical optimization problems. Some of those can be found in this book. 

In this book we started with the question 
Given a potential user with an arbitrary global optimization problem, which route 
can be taken in the GLOP forest to find solutions of the problem? 

Figure 7.1: Two sides in GLOP at work 

The target group of this study uses mathematical modelling for research, though it 
does not consist of experts in optimization. In this study, stimulated by experience 
at the Wageningen Agricultural University, cases were used of the following not 
mutually exclusive categories of modellers (and their typical models) and potential 
users of global optimization methods (Chapter 1): Engineers on agricultural and 
environmental sciences, designers and OR people in agricultural science. Those 
groups are not clearly defined, nor mutually exclusive, but have in common that 
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mathematical modelling is used and there is knowledge of linear programming and 
possibly of combinatorial optimization. The further step of applying global 
optimization for this group requires bridging a large gap between this group and 
existing literature. The numerous examples and cases in this book are taken from 
experience of the target user groups with GLOP and may help to find similarities 
for potential users, but they also illustrate the way problems can be handled by 
GLOP techniques. The cases do not cover all possible applications. For instance 
successful use has been made of GLOP to find optimal crystal structures and 
molecule configurations (see e.g. Bollweg et al., 1997) and applications exist of 
concave programming in logistic planning. This book serves as a guide for the 
target user groups in the forest of global optimization and should help the potential 
user to get to the relevant literature. 

Recognizing Nonlinear Programming 
Our analysis in the dotted box of Figure 7.1 starts when the potential user has 
derived an optimization problem from a possibly descriptive model 

min fix), XGXCW . (1.1) 

Nonlinear programming (NLP) becomes interesting when fix) is a continuous 
function on a robust feasible set X. It is not difficult to recognize an NLP problem. 
Current practice is not that the user starts analyzing (1.1) to determine all useful 
mathematical structures. Either the modeller had already a solution method in mind 
when formulating the problem (hammer-nail story), or he starts by looking for 
methods to generate good solutions of (1.1) by applying a grid search or random 
search over X or proceeding in looking for nonlinear programming routines. Those 
routines generate a local optimum of (1.1) given a starting point. 

Routines are mainly selected on their availability in the direct neighbourhood of the 
user. 

We often observed the use of simple direct search methods in engineering applica­
tions and the use of standard nonlinear programming software such as 
GAMS/MINOS in economic research environments. Nowadays also standard solvers 
in spreadsheet programs are available. 

The generation of local optima has a good and a bad side. When the local 
optima have about the same objective value, they have their interpretation on the 
problem which has been modelled and thus lead to information to the user about 
e.g. alternative good products, good economic policies etc. The bad part is, that if 
only one optimum has been discovered, a user may conclude wrongly that he has 
found the best solution of (1.1). Actually, we namely never know whether really the 
global optimum has been found, unless we have had a better look, analyze the 
problem. Global optimization starts to be interesting when we really want to find 
the best point and when (1.1) has several optima. 
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Major tracks 
For the road to be taken we distinguish two major tracks, the potential user can go 
to solve the problem. One track we called the deterministic track and has been 
discussed in Chapters 2, 3 and 4. The other track we called the stochastic track and 
was discussed in Chapters 5 and 6. The two approaches intend to reach a different 
goal. The deterministic track aims at: 

The global optimum is approximated (found) with certainty in a finite 
number of steps. 

Stochastic methods are understood to contain some stochastic elements and aim at 

Approaching the optimum in a probabilistic sense as effort grows to infinity. 

Both tracks were investigated in this book from the viewpoint of a potential user. 
Which way to follow, first of all depends on the characteristics of the problem to be 
solved. In Chapter 1 we made the following rough distinction. 

I. When the analytic closed form expressions are available of (1.1), they can be 
analyzed, i.e. mathematical structures can be extracted and properties can be 
derived (arrow c and e) to be used for specific methods. A recent statement 
of one of the leading researchers in the application of nonlinear programming 
and modelling languages is that "every practical optimization problem should 
be given in explicit formulae. Only in this way derivatives, bounds and other 
useful properties can be derived" (Drud, 1997). 
For our target group this is simply not the case. Many practical problems not 
fulfilling this statement are given in II. 

II. Oracle or black-box functions do not show mathematical expressions explicit­
ly. The examples in Chapter 5 illustrated how calculating an objective 
function fix) may require the solution of a set of differential equations or 
running a Monte-Carlo simulation with a large model. For those functions in 
general it is not possible to calculate derivatives or to analyze the structure. 
Deterministic methods cannot be applied; the user is committed to nonlinear 
optimization routines combined with stochastic approaches. 

A side question along the way was: 
How can the user influence the search process of solution methods given the 
knowledge of the user of the underlying problem and which information 
becoming available during the search is useful for steering the search 
process? 

In Sections 7.2 and 7.3 remarks and sub-questions can be found for the potential 
user when he follows those tracks. 
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7.2. The deterministic methods approach 

Let us first summarize some remarks on deterministic methods from the potential 
user point of view which came out of the study. 

Analysis of the expressions is required for the discovery of useful mathema­
tical structures. Also interval arithmetic techniques can be applied on the 
mathematical expressions directly. 
The elegance of the techniques is due to the guarantee that when the global 
optimum has been discovered and verified, we are certain about its status. 
The methods are hard to implement. Thorough use should be made of special 
data structures to store the necessary information in memory. 

In Chapter 2 the discovery 
of mathematical structures 
was discussed. In Chapters 3 
and 4, the working of the 
methods was demonstrated. 

Mathematical structures 
In Chapter 2, first for the 
problems in group I, the 
structures were enumerated 
which are useful for deter­
ministic global optimization 
approaches (arrow c). At this 
point we used a partitioning 
from the point of view of 
the problem owner, which is not used in literature. 

Figure 7.2: Emphasis along the deterministic track 

A. 

B. 

There are structures which only can be recognized after analyzing the 
mathematical expressions in (1.1). 
Other structures can be discovered directly from the formulae in (1.1). 

Of course first a structure has to be recognized, before it can be used in an 
algorithm. The use is based on the ability to create bounds on the function value. 
The most global structure is nonconvexity. If namely both flx) and X are convex, 
there do not exist local, non-global optima. Therefore the name nonconvex 
optimization is sometimes used for global optimization. 
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A. Structures found by analysis only. 

-Concavity is not directly recognizable, but a very strong structure. The property is 
sufficient to generate lower bounds of a function on subsets of the domain X, 
without any further information on the function to be minimized. 

-Differentiable1 convex (dc) is a structure which is valid for nearly all practical 
objective functions. The drawback is that it can only be used when a user has found 
a so-called dc-decomposition, a partitioning of the function in a convex and concave 
part. The decomposition is not unique and a bad choice may lead to poor bounds on 
the functions. 

-Lipschitz continuity is another structure which applies for nearly every practical 
problem. To make it working in an algorithmic context, however, the value of a so-
called Lipschitz-constant is needed, which may be as hard to find as the optimum of 
the original problem. For some practical problems the derivation of a Lipschitz-
constant may not be very difficult. 

B. Structures directly recognizable from the expressions 

Some structures are rather elaborated in literature, following the paradigm of 
making assumptions on the function to be minimized for the derivation of properties 
and algorithms as is usual in mathematics of OR. For the user those structures are 
not hard to recognise and literature is easily accessible. In Chapter 2 we mentioned 

quadratic functions 
bilinear functions 
fractional functions 
multiplicative functions. 

As a last global structure we mentioned that the mathematical expressions can be 
used directly in a branch-and-bound context by so-called interval arithmetic 
techniques. As implementations become easily available nowadays, this approach 
may become more popular by users. 

1 The word differentiable concerns the difference of two functions and has 
nothing to do with the existence of derivatives. 
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Construction of Algorithms 
To make a recognized structure useful, algorithms have to be selected, developed 
and implemented in the context of deterministic GLOP methods. In Chapters 3 and 
4 we choose to illustrate the branch-and-bound approaches. The elegance of 
deterministic methods is due to the guarantee that the global optimum is approxi­
mated (found) with certainty in a finite number of steps. Whether we will find and 
verify the global optimum in practice depends on how the implementation of the 
algorithm proceeds. The problem simply can be too difficult to solve. In a branch-
and-bound context this means that the available memory fills up with subsets, 
subproblems which have to be elaborated, refined further in the future. "Finite" may 
be beyond a humans lifetime, it may take too long to traverse the complete branch-
and-bound tree. Global optimization only can do its best. Let us summarize with the 
following statement: 

No global optimization method can guarantee to find and verify the global optimum 
for every practical situation, within a humans lifetime. 

The user can select and implement an algorithm (arrow f) and use his information 
on the problem to influence the search process (arrow gl). 

In Chapter 3 the relation between GLOP and Integer programming (IP) is highligh­
ted for several reasons. 

Sometimes practical GLOP problems can be approximated by IP variants 
and solved by standard Mixed Integer Linear Programming techniques. 
The transformability of GLOP problems to IP problems vice versa shows that 
difficult problems in one class will not change to easy to solve problems in 
the other class. 
The algorithms of GLOP and IP can be classified similarly. 
Analysis of problems, which is common in Global Optimization, can be used 
to understand better the complexity of some IP problems. 

We related the two fields, GLOP and IP, because we assumed that IP is more 
known to our target groups than GLOP. First it was shown how practical problems 
which consist of Linear Programming with one or some nonlinear functions on one 
or several variables can be approximated by the concept of Piecewise Linear 
Programming. Nonconvex functions require the use of Mixed Integer Linear 
Programming (MILP) and a corresponding branch-and-bound approach. The 
maximum distance problem illustrated that sometimes practical instances of 
problems which are known in literature to be 'unsolvable' can be solved by using 
an MILP formulation. 

An advantage of using MILP is that standard routines are available so that it 
is relatively easy to implement and influence algorithms. A drawback of the use of 
Piecewise LP is that seen from a GLOP point of view, only a grid-search is 
performed on a grid in the space of the nonlinear variables, which is not refined 
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during the iterations. 
The equivalence between the two fields not only gives a possibility to solve 
problems from one field in the other, but it also helps to see that a problem remains 
as difficult when it is transformed to the other field. Reformulation of difficult IP 
problems to difficult GLOP problems is not going to lead to easy solution procedu­
res. No magic algorithm is going to solve difficult problems. The minimum volume 
hyperrectangle problem is a notorious problem, no matter from which side it is 
approached. The investment problem in Chapter 3 showed that analysis of the 
structure, as is usual in GLOP, helps to see why an IP problem is difficult. 

In Chapter 4 we had the deterministic GLOP methods to get to work. Two bigger 
cases were worked out. First the branch-and-bound approach is explained with some 
simple cases. 

The nutrient problem in Chapter 4 is an example of a high dimensional problem for 
which a branch-and-bound approach with rectangular subsets has been outlined and 
illustrated. The problem is hard to solve in practice as one may not have sufficient 
storage capacity and/or time to get to the global optimum and to verify it. The 
similar so-called pooling problem has been a challenge for many researchers and 
despite the relevance for petrochemie industry, remains hard to solve. The nutrient 
problem also shows how analysis of a given problem can lead to many useful 
properties: 

boundary solutions of the problem 
successive LP is very unsuccessful 
standard NLP leads to many local not global optima. 

The second case, the quadratic design problem with a dimension lower than 10, 
leads to algorithms which can be implemented in a Decision Support System. The 
guarantee character of deterministic algorithms has been reached. For a potential 
user a relevant question is: "At what price". The necessary work contained analysis 
to find the best way to derive bounds and effort to implement a branch-and-bound 
algorithm efficiently. For the design problem these efforts were worthwhile, because 
the algorithm is run many times. For implementing deterministic algorithms one can 
invest in studying efficient use of memory or consult research groups which have 
experience on implementing branch-and-bound methods. 
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7.3. The stochastic methods approach 

In general the implementa­
tion of stochastic approaches 
requires less effort than that 
of deterministic methods. 
Often the user has already 
selected nonlinear 
optimization routines which 
deliver a local optimum 
given a starting point. The 
implementation of a random 
generator or for instance the 
method of Price, which is 
popular among some groups 
of users, is not very hard. Figure 7.3: Emphasis along the stochastic track 

The main difference with deterministic methods is the final target. The aim is not to 
get a verified global optimum, but to approach the optimum in a stochastic sense as 
effort grows to infinity. Here we get to the practical point again that the user only 
has a lifetime or preferably less to solve the problem. In chapter 5 and 6 not all 
available ideas and methods were highlighted. We paid attention to the following. 

The ideas of Adaptive Random Search which is to modify the distribution from 
which random points are generated such that the global optimum is reached easily, 
were studied in Chapter 6. Practise appears to be far away from ideals we would 
like to reach, namely solving problems in an expected calculation time which grows 
polynomially in the dimension of the problem: 

It is unlikely that stochastic methods will appear solving problems in an expected 
calculation time which is polynomial in the number of variables of the problem. 

The random function approach or sometimes called Bayesian Heuristic approach 
was not elaborated in this book. The idea elegantly tries to extract as much 
information as possible from the function evaluations which already have been 
performed. It does not use a random generator, but proceeds in a deterministic way, 
based on assumptions on a model of the stochastic behaviour of the objective 
function. The implementation on the algorithms is difficult and one needs faith in 
the underlying stochastic model. 

Multistart types of approaches have always been very successful. It concerns the 
generation of random points as starting points of iterative local searches. Combined 
with clustering approaches which aim at not rediscovering the same optimum many 
times, the method has been successfully applied to find the global optimum in 



Chapter 7. Major conclusions 227 

situations where the function can be calculated, evaluated many times. 
A question from practice which was discussed more thoroughly in Chapter 5 is: 

What to do when the available solution time is finite, given the information we have 
on the problem? 

Translated to the solution procedure this means that a limit exists on the number of 
function evaluations the procedure is allowed to do. To analyze this question, it was 
first enumerated which information becomes available during the search process 
(arrow g2) and how the user can influence the running algorithms (arrow gl) . 
Besides possibilities which typically concern the local search, the user can influence 
the optimization problem directly and the main point for global optimization is that 
the user will influence the trade-off between global search and local search. 

As every stochastic GLOP method consists of an heuristic which makes choices 
between global and local search, we arrived at the question: 

Is there a best way to rule the choice between global and local search, given the 
information which becomes available? 

To answer this question we experimented and analyzed with the two-phase appro­
ach, i.e. performing local searches and carrying out global search by generating 
random points. It appeared that there is no best way to choose between local and 
global search. When there is no overall best method we are only left with the task 
to filter out methods which are dominated, are inefficient in some sense. The 
conclusion shows again that mathematical analysis with extreme cases is a strong 
tool to demonstrate that magic algorithms, algorithms which are said in scientific 
journals to be very promising, because they perform well on some test cases, can be 
analyzed and 'falsified' in a Popperian style. 

Let us summarize some of the remarks on stochastic methods from the potential 
user point of view. 

The methods require no mathematical structure on the problem and are 
therefore more generally applicable. 
The methods are relatively easy to implement. 
We are never completely certain that the global optimum has been reached. 
The optimum is approximated in a probabilistic sense when effort increases 
to infinity. 

A specific phenomenon we paid attention to in Chapter 6 is: 
"Every local search leads to a new local optimum". 
We know from parameter estimation that this is a symptom in so called non-
identifiable systems. The minimum is obtained at a lower dimensional surface or 
curve. In that case the points which are found have the same function value, 
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goodness of fit. From the optimization point of view, the symptom can be due to 
so-called ill-conditioning and is in fact an interaction between the local search 
methods and the problem. Some heuristics were given to overcome this problem. In 
Chapter 2 it was already noticed that there may be very many local optima which 
after translation to the meaning of the solution have the same interpretation. This is 
caused by symmetry in the model formulation and does not depend on the local 
search method. 

Good solutions 
There are two side questions of users derived from the general remark: 
"I am not interested in the best (global optimal) solution, but in good points". 
The first question is that of Robust Solutions, introduced in Chapter 4, and the other 
is called Uniform Covering, concerning the generation of points which are nearly as 
good as the optimum, discussed in Chapter 6. 

A solution is often understood to be robust, when it remains "good" in uncertain 
situations due to uncertainty in data or changing circumstances. We discussed it in 
the context of product design, where robustness is defined as a measure of the error 
one can make from the solution such that the solution (product) is still acceptable. 
Looking for the most robust product is looking for that point which is as far away 
as possible from the boundaries of the feasible (acceptable) area. For the solution 
procedures, we had a look at the appearance of the problem in practice, where 
boundaries are given by linear and quadratic surfaces, properties of the product. 

For linear boundaries, finding the most robust solution is a Linear Program­
ming problem and thus rather easy. 
For quadratic properties the development of specific algorithms is required. 

The question of Uniform Covering concerns the desire to have a set of ' suboptimal ' 
points, i.e. points with low function value given an upper level of the function 
value; the points are in a so-called level set. To generate low points, one could run 
a local search many times. However, we want the points not to be concentrated in 
one of the compartments or one sub-area of the level set, we want them to be 
equally, uniformly spread over the region. This is a very difficult problem for which 
we tested and analyzed several approaches in Chapter 6. 

Final result 

Whether an arbitrary problem of a user can be solved by GLOP requires analysis. 
There are many optimization problems which can be solved satisfactorily. Besides 
the selection of algorithms the user has various instruments to steer the process. For 
stochastic methods it mainly concerns the trade-off between local and global search. 
For deterministic methods it includes setting bounds and influencing the selection 
rule in Branch-and-Bound. We hope with this book to have given a tool, a guidance 
to solution procedures and to further literature on the subject. 
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Summary 

In many research situations where mathematical models are used, researchers try to 
find parameter values such that a given performance criterion is at an optimum. If 
the parameters can be varied in a continuous way, this in general defines a so-called 
Nonlinear Programming Problem. Methods for Nonlinear Programming usually 
result in local optima. A local optimum is a solution (parameter values) which is the 
best with respect to values in the neighbourhood of that solution, not necessarily the 
best over the total admissible, feasible set of all possible parameter values, sol­
utions. 

For mathematicians this results in the research question: How to find the 
best, global optimum in situations where several local optima exist?, the field of 
Global Optimization (GLOP). Literature, books and a specific journal, has appeared 
during the last decades on the field. Main focus has been on the mathematical side, 
i.e. given assumptions on the structure of the problems to be solved and specific 
global optimization methods and properties are derived. Cooperation between 
mathematicians and researchers (in this book called 'the modeller' or 'the potential 
user'), who saw global optimization problems in practical problems has lead to 
application of GLOP algorithms to practical optimization problems. Some of those 
can be found in this book. In this book we started with the question: 

Given a potential user with an arbitrary global optimization problem, what 
route can be taken in the GLOP forest to find solutions of the problem? 

From this first question we proceed by raising new questions. In Chapter 1 we 
outline the target group of users we have in mind, i.e. agricultural and environ­
mental engineers, designers and OR workers in agricultural science. These groups 
are not clearly defined, nor mutually exclusive, but have in common that mathemat­
ical modelling is used and there is knowledge of linear programming and possibly 
of combinatorial optimization. 

In general, when modellers are confronted with optimization aspects, the first 
approach is to develop heuristics or to look for standard nonlinear programming 
codes to generate solutions of the optimization problem. During the search for 
solutions, multiple local optima may appear. We distinguished two major tracks for 
the path to be taken from there by the potential user to solve the problem. One 
track is called the deterministic track and is discussed in Chapters 2, 3 and 4. The 
other track is called the stochastic track and is discussed in Chapters 5 and 6. The 
two approaches are intended to reach a different goal. The deterministic track aims 
at: 

The global optimum is approximated (found) with certainty in a finite 
number of steps. 

The stochastic track is understood to contain some stochastic elements and aims at: 
Approaching the optimum in a probabilistic sense as effort grows to infinity. 

Both tracks are investigated in this book from the viewpoint of a potential user 
corresponding to the way of thinking in Popperian science. The final results are new 
challenging problems, questions for further research. A side question along the way 
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is: How can the user influence the search process given the knowledge of the 
underlying problem and the information that becomes available during the search? 

The deterministic approach 
When one starts looking into the deterministic track for a given problem, one runs 
into the requirements which determine a major difference in applicability of the two 
approaches. 

Deterministic methods require the availability of explicit mathematical 
expressions of the functions to be optimized. 

In many practical situations which are also discussed in this book, these expressions 
are not available and deterministic methods cannot be applied. The operations in 
deterministic methods are based on concepts such as Branch-and-Bound and Cutting 
which require bounding of functions and parameters based on so-called mathemat­
ical structures. 

In Chapter 2 we describe these structures and distinguish between those 
which can be derived directly from the expressions, such as quadratic, bilinear and 
fractional functions and other structures which require analysis of the expressions 
such as concave and Lipschitz continuous functions. Examples are given of 
optimization problems revealing their structure. Moreover, we show that symmetry 
in the model formulation may cause models to have more than one extreme. 

In Chapter 3 the relationship between GLOP and Integer Programming (IP) 
is highlighted for several reasons. 

Sometimes practical GLOP problems can be approximated by IP variants and 
solved by standard Mixed Integer Linear Programming (MILP) techniques. 
The algorithms of GLOP and IP can similarly be classified. 
The transformability of GLOP problems to IP problems and vice versa shows 
that difficult problems in one class will not become easier to solve in the 
other. 
Analysis of problems, which is common in Global Optimization, can be used 
to better understand the complexity of some IP problems. 

In Chapter 4 we analyze the use of deterministic methods, demonstrating the 
application of the Branch-and-Bound concept. The following can be stated from the 
point of view of the potential user: 

Analysis of the expressions is required to find useful mathematical structures 
(Chapter 2). It should be noted that also interval arithmetic techniques can be 
applied directly on the expressions. 
The elegance of the techniques is the guarantee that we are certain about the 
global optimality of the optimum, when it has been discovered and verified. 
The methods are hard to implement. Thorough use should be made of special 
data structures to store the necessary information in memory. 

Two cases are elaborated. The quadratic product design problem illustrates how the 
level of Decision Support Systems can be reached for low dimensional problems, 
i.e. the number of variables, components or ingredients, is less than 10. The other 
case, the nutrient problem, shows how by analysis of the problem many useful 



241 

properties can be derived which help to cut away large areas of the feasible space 
where the optimum cannot be situated. However, it also demonstrates the so-called 
Curse of Dimensionality; the problem has so many variables in a realistic situation 
that it is impossible to traverse the complete Branch-and-Bound tree. Therefore it is 
good to see the relativity of the use of deterministic methods: 

No global optimization method can guarantee to find and verify the global 
optimum for every practical situation, within a humans lifetime. 

The stochastic approach 
The stochastic approach is followed in practice for many optimization problems by 
combining the generation of random points with standard nonlinear optimization 
algorithms. The following can be said from the point of view of the potential user. 

The methods require no mathematical structure of the problem and are 
therefore more generally applicable. 
The methods are relatively easy to implement. 
The user is never completely certain that the global optimum has been 
reached. 
The optimum is approximated in a probabilistic sense when effort increases 
to infinity. 

In Chapter 5 much attention is paid to the question what happens when a user 
wants to spend a limited (not infinite) amount of time to the search for the opti­
mum, preferably less than a humans lifetime: 

What to do when the time for solving the problem is finite? 
First we looked at the information which becomes available during the search and 
the instruments with which the user can influence the search. It appeared that 
besides classical instruments which are also available in traditional nonlinear 
programming, the main instrument is to influence the trade-off between global 
(random) and local search (looking for a local optimum). This lead to a new 
question: 

Is there a best way to rule the choice between global and local search, given 
the information which becomes available? 

Analyzing in a mathematical way with extreme cases lead to the comfortable 
conclusion that a best method of choosing between global and local search -thus a 
best global optimization method- does not exist. This is valid for cases where 
further information (more than the information which becomes available during the 
search) on the function to be optimized is not available, called in literature the 
black-box case. The conclusion again shows that mathematical analysis with 
extreme cases is a powerful tool to demonstrate that so-called magic algorithms 
-algorithms which are said in scientific journals to be very promising, because they 
perform well on some test cases- can be analyzed and 'falsified' in the way of 
Popperian thinking. This leads to the conclusion that: 

Magic algorithms which are going to solve all of your problems do not exist. 
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Several side questions derived from the main problem are investigated in this book. 
In Chapter 6 we place the optimization problem in the context of parameter 
estimation. One practical question is raised by the phenomenon 

Every local search leads to a new local optimum. 
We know from parameter estimation that this is a symptom in so called non-
identifiable systems. The minimum is obtained at a lower dimensional surface or 
curve. Some (non-magic) heuristics are discussed to overcome this problem. 
There are two side questions of users derived from the general remark: 

"/ am not interested in the best (GLOP) solution, but in good points". 
The first question is that of Robust Solutions, introduced in Chapter 4, and the other 
is called Uniform Covering, concerning the generation of points which are nearly as 
good as the optimum, discussed in Chapter 6. 

Robust solutions are discussed in the context of product design. The robust­
ness is defined as a measure of the error one can make from the solution so that the 
solution (product) is still acceptable. Looking for the most robust product is looking 
for that point which is as far away as possible from the boundaries of the feasible 
(acceptable) area. For the solution procedures, we had a look at the appearance of 
the problem in practice, where boundaries are given by linear and quadratic 
surfaces, properties of the product. 

For linear boundaries, finding the most robust solution is an LP problem and 
thus rather easy. 
For quadratic properties the development of specific algorithms is required. 

The question of Uniform Covering concerns the desire to have a set of "suboptimal" 
points, i.e. points with low function value (given an upper level of the function 
value); the points are in a so-called level set. To generate "low" points, one could 
run a local search many times. However, we want the points not to be concentrated 
in one of the compartments or one sub-area of the level set, we want them to be 
equally, uniformly spread over the region. This is a very difficult problem for which 
we test and analyze several approaches in Chapter 6. The analysis taught us that: 

It is unlikely that stochastic methods will be proposed which solve problems 
in an expected calculation time, which is polynomial in the number of 
variables of the problem. 

Final result 
Whether an arbitrary problem of a user can be solved by GLOP requires analysis. 
There are many optimization problems which can be solved satisfactorily. Besides 
the selection of algorithms the user has various instruments to steer the process. For 
stochastic methods it mainly concerns the trade-off between local and global search. 
For deterministic methods it includes setting bounds and influencing the selection 
rule in Branch-and-Bound. We hope with this book to have given a tool and a 
guidance to solution procedures. Moreover, it is an introduction to further literature 
on the subject of Global Optimization. 
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Samenvatting 

In veel onderzoeken waarin gebruik wordt gemaakt van wiskundige modellen, 
proberen onderzoekers parameterwaarden te vinden waarbij een criterium een beste, 
optimale, waarde bereikt. Wanneer de waarden vrij gevarieerd kunnen worden, leidt 
dit al snel tot een zogenaamd Niet-Lineair Programmeringsprobleem. Methoden 
voor Niet-Lineaire Programmering (NLP) resulteren in het algemeen in oplossingen, 
parameterwaarden, die het beste zijn in de directe omgeving van de oplossing, maar 
niet noodzakelijkerwijze het beste op het gehele toegelaten gebied van mogelijke 
waarden, zogenaamde lokale optima. Voor wiskundigen geeft dit de onderzoeks­
vraag: Hoe kan het beste, globale optimum worden gevonden, wanneer er sprake is 
van meerdere lokale optima?, het onderwerp van de zogenaamde Globale Optimali­
sering (GLOP). Literatuur bestaande uit boeken en een specifiek tijdschrift op dit 
gebied zijn de laatste decennia verschenen. Nadruk lag daarin vooral op de wiskun­
dige kant; gegeven aannamen ten aanzien van de structuur van op te lossen 
problemen en globale optimaliseringsalgoritmen, worden eigenschappen (theore­
ma's) afgeleid. Samenwerking tussen wiskundigen en onderzoekers die tegen 
optimaliseringsproblemen uit de praktijk aanliepen, in dit boek de potentiële 
gebruikers of modelleurs genoemd, heeft geleid tot toepassing van GLOP algorit­
men. Sommige van deze praktische problemen worden besproken in dit boek. 
Uitgangsvraag in dit boek is: 

Gegeven een potentiële gebruiker met een willekeurig globaal optimalise­
ringsprobleem, welk pad kan worden bewandeld in het "GLOP bos" om te 
komen tot oplossingen van het probleem? 

Vanuit deze vraag ontwikkelt het onderzoek zich door het telkens stellen van 
nieuwe vragen. In hoofdstuk 1 wordt eerst de doelgroep geschetst waaraan we 
denken: Onderzoekers in de landbouw en milieu wetenschappen, ontwerpers en OR 
mensen. Deze groepen zijn niet duidelijk afgebakend en overlappen, maar hebben 
gemeen dat wiskundige modellen worden gebruikt in het onderzoek en dat er kennis 
is over Lineaire Programmering en Combinatorische Optimalisering. 

Wanneer een modelleur optimaliseringsaspecten tegenkomt, is in het alge­
meen de eerste aanpak het ontwikkelen van heuristieken of het zoeken van NLP 
codes voor het genereren van (goede) oplossingen van het optimaliseringsprobleem. 
Tijdens het zoeken kan men tot de ontdekking komen dat er meerdere lokale optima 
zijn. Voor de weg die de potentiële gebruiker kan volgen vanaf dit moment worden 
in dit boek twee aanpakken beschreven. Een aanpak is de deterministische aanpak 
gedoopt en wordt besproken in hoofdstukken 2,3 en 4. De andere wordt de stochas­
tische aanpak genoemd en wordt besproken in hoofdstukken 5 en 6. De twee 
aanpakken verschillen in uitgangspunt. De deterministische aanpak streeft naar: 

Het globale optimum wordt met zekerheid bereikt (benaderd) in een eindig 
aantal stappen. 
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Stochastische methoden bevatten stochastische aspekten en mikken op: 

Het globale optimum wordt op een probabilistische wijze met toenemende 
inspanning benaderd. 

Beide aanpakken worden onderzocht in dit boek vanuit het gezichtspunt van een 
potentiële gebruiker volgens de gedachte van Popper. Het uiteindelijke resultaat zijn 
nieuwe uitdagingen, vragen voor verder onderzoek. Een nevenvraag is: 

Hoe kan de gebruiker gedurende het zoekproces gebruik maken van informa­
tie over het probleem en van informatie die vrijkomt tijdens het zoeken ? 

De deterministische aanpak 

Wanneer de deterministische aanpak wordt bekeken voor een gegeven probleem, 
loopt men al snel tegen een vereiste aan die het verschil in toepasbaarheid van de 
twee aanpakken bepaalt. 

Voor deterministische methoden zijn expliciete wiskundige uitdrukkingen 
nodig van de functie die wordt geoptimaliseerd. 

In vele praktische situaties die men ook in dit boek tegenkomt, zijn deze uitdrukkin­
gen niet beschikbaar. Deterministische methoden kunnen dan niet worden toegepast. 
De methoden zijn gebaseerd op concepten zoals het genereren van sneden en het 
toepassen van Branch-and-Bound welke afschattingen van functies of parameter­
waarden vereisen die weer zijn gebaseerd op wiskundige structuren. 

In hoofdstuk 2 worden deze structuren beschreven, waarbij onderscheid 
wordt gemaakt tussen structuren die direct te herkennen zijn uit de formules, zoals 
kwadratische, bilineaire en fractionele functies en structuren die verdere analyse 
vragen zoals concave en Lipschitz continue functies. Voorbeeldproblemen worden 
besproken met een herkenbare structuur. Verder wordt aangetoond dat symmetrie in 
de modelformulering verantwoordelijk kan zijn voor het bestaan van meerdere 
optima. 
In hoofdstuk 3 wordt de relatie tussen GLOP en Geheeltallige Programmering (IP) 
besproken. Daar zijn verscheidene redenen voor. 

Benadering van praktische GLOP problemen is soms mogelijk met IP 
formuleringen en de oplossing ervan met standaard Gemengd Geheeltallige 
Linaire Programmering technieken. 
Indeling van GLOP en IP algoritmen kan op eenzelfde wijze. 
Het omzetten van problemen uit de GLOP naar de IP klasse en vice-versa 
laat zien dat moeilijke problemen uit een klasse niet tot eenvoudig op te 
lossen problemen reduceren in de andere klasse. 
Analyse van problemen zoals we die kennen uit de GLOP kan worden 
gebruikt om complexiteit van verschillende IP problemen beter te begrijpen. 
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In hoofdstuk 4 wordt de werking van deterministische methoden gedemonstreerd. 
Vanuit het oogpunt van de potentiële gebruiker kan worden opgemerkt: 

Analyse is nodig voor het ontdekken van bruikbare wiskundige structuren 
(hoofdstuk 2). Overigens kunnen ook zogenaamde Interval Methoden worden 
toegepast op de wiskundige uitdrukkingen. 
Voordeel van de aanpak is dat we zeker zijn van de globale optimaliteit van 
het optimum, wanneer dit is gevonden. 
De methoden zijn moeilijk te implementeren en vereisen handig gebruik van 
data structuren om de nodige informatie op te slaan. 

Twee cases worden uitgewerkt. Het kwadratische ontwerp probleem laat zien dat 
het niveau van Beslissing Ondersteunende Systemen kan worden bereikt voor 
relatief laag-dimensionale problemen d.w.z. het aantal variabelen is niet groter dan 
10. De andere case, het nutriënten probleem, laat zien dat een analyse veel nuttige 
eigenschappen afleidt waarmee grote delen van het toegelaten gebied kunnen 
worden geschrapt, omdat het optimum daar niet kan liggen. Het laat echter ook de 
zogenaamde "Curse of Dimensionality" zien: Het probleem heeft in een realistisch 
model zoveel variabelen, dat een methode niet in staat zal zijn de volledige Branch-
and-Bound boom te doorlopen. Daarom is het goed om de relativiteit van determi­
nistische methoden te zien: 

Geen enkel algoritme kan garanderen dat het optimum van een willekeurig 
GLOP probleem is te vinden en te verifiëren binnen een mensenleven. 

De stochastische aanpak 
De stochastische aanpak wordt in de praktijk vaak gevolgd door de combinatie van 
het genereren van toevalsgetallen en standaard niet-lineaire optimaliseringsalgorit­
men. Het volgende kan worden gezegd vanuit het oogpunt van de potentiële 
gebruiker: 

De methoden vragen niet om een bijzondere wiskundige structuur en zijn 
daardoor meer algemeen toepasbaar. 
De methoden kunnen relatief eenvoudig worden geïmplementeerd. 
Het is nooit absoluut zeker dat het globale optimum is bereikt. 
Het optimum wordt bijna zeker benaderd wanneer de inspanning toeneemt tot 
oneindig. 

In hoofdstuk 5 wordt veel aandacht besteed aan de vraag wat een gebruiker het 
beste kan doen wanneer hij een eindige hoeveelheid tijd (liefst minder dan een 
mensenleven) wil besteden aan het zoeken naar het optimum: 

Wat is het beste om te doen wanneer er een beperkte tijd is voor het oplos­
sen van het probleem? 
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Allereerst is er gekeken naar de informatie die vrijkomt gedurende het zoekproces 
en welke knoppen een gebruiker heeft om de zoektocht te beïnvloeden. Er bleek dat 
naast de klassieke middelen die ook gebruikt worden bij traditionele NLP methoden 
de hoofdknop vooral bestaat uit de afweging tussen globaal (met toevalsgetallen) en 
lokaal zoeken. Dit geeft de volgende vraag: 

Bestaat er een beste keuzeregel om de keuze tussen globaal en lokaal zoeken 
te sturen met de informatie die vrijkomt? 

Wiskundige analyse met extreme gevallen leidde tot de rustgevende conclusie dat 
zo'n beste keuzeregel niet kan bestaan. Let wel, dit geldt dan voor gevallen waarbij 
er niet meer informatie beschikbaar is over het probleem dan hetgeen wat vrijkomt 
tijdens het zoeken. In de literatuur worden dit de orakel of black-box gevallen 
genoemd. Dit toont aan dat wiskundige analyse met extreme gevallen een sterk 
instrument is om magische algoritmen, methoden waarvan in wetenschappelijke 
tijdschriften de indruk wordt gewekt dat het een wondermiddel is omdat ze op een 
aantal testvoorbeelden goed scoren, te ontmaskeren ofwel 'falsifiëren' volgens de 
Popperiaanse denkwijze. Wiskunde geeft ons dus een instrument om aan te tonen: 

Wonderalgoritmen die al uw optimaliseringsproblemen oplossen bestaan niet. 

Verschillende nevenvragen afgeleid van de hoofdvraag zijn in dit boek onderzocht. 
In hoofdstuk 6 is het optimaliseringsprobleem in de context bekeken van het 
schatten van parameters. Een praktische vraag ontstaat door het verschijnsel 

Elke lokale minimalisatie leidt tot een nieuw lokaal minimum. 

Bij het schatten van parameters kennen we dit verschijnsel wanneer er sprake is van 
zogenaamde niet-identificeerbare systemen. Het minimum wordt dan eenvoudigweg 
aangenomen door alle punten op een lager dimensionaal oppervlak of een curve. 
Enkele heuristieken (geen wondermiddel!) worden besproken om dit probleem aan 
te pakken. 

Twee andere vragen zijn afgeleid van de algemene opmerking: 

"Ik ben niet geïnteresseerd in de beste (GLOP) oplossing, maar in goede 
punten". 

De eerste vraag betreft de kwestie van zogenaamde robuuste oplossingen (hoofdstuk 
4) en de tweede betreft het genereren van bijna-optimale punten, uniform overdek­
ken genoemd (hoofdstuk 6). 

Robuustheid wordt in de context van het ontwerpen van produkten bekeken en 
gedefinieerd als de fout (afwijking t.o.v. het ontwerp) die tijdens de produktie kan 
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worden gemaakt zonder dat het produkt afgekeurd wordt. Het bepalen van het meest 
robuuste produkt, betekent dus zover mogelijk van de randen van het acceptatie 
gebied af gaan zitten. Voor het bedenken van goede methoden hebben we gekeken 
naar praktijk (uit de smeermiddelen en elektronica industrie) problemen waarbij de 
grenzen van het gebied worden bepaald door lineaire en kwadratische oppervlakten, 
eigenschappen van het produkt. Conclusie: 

Voor lineaire eigenschappen bleek het bepalen van het meest robuuste 
probleem een LP probleem te zijn en dus eenvoudig op te lossen. 
Voor kwadratische problemen dienen specifieke algoritmen te worden 
ontwikkeld. Deze zijn besproken in hoofdstuk 4. 

De kwestie van uniform overdekken vloeit voort uit de wens om een aantal sub-
optimale punten te willen hebben, d.w.z. een aantal punten met lage functiewaarden. 
De punten liggen in een zogenaamde level set, een verzameling met een gegeven 
bovengrens op de functiewaarde. Om deze punten te genereren zou men natuurlijk 
een aantal keer een lokale zoekmethode (NLP) kunnen uitvoeren. We willen echter 
ook dat de punten netjes (uniform) verspreid liggen over de compartimenten van de 
level set, als het ware deze verzameling overdekken en niet dat alle punten op een 
hoopje liggen in een deelgebied. Dit bleek een extreem moeilijk probleem waarvoor 
we in hoofdstuk 6 diverse methoden hebben bekeken. De analyse heeft ons ook het 
volgende geleerd: 

Het is onwaarschijnlijk dat er in de toekomst stochastische methoden zullen 
worden ontwikkeld met een verwachtte oplossingstijd die polynomiaal is in 
het aantal variabelen van het op te lossen probleem. 

Uiteindelijk resultaat 
Het oplossen van een willekeurig probleem door globale optimaliseringsmethoden 
vereist analyse. Zoals geïllustreerd zijn er vele praktische problemen die met behulp 
van globale optimalisering kunnen worden opgelost. Naast de keuze van algoritmen 
heeft een gebruiker ook een aantal instrumenten om het zoekproces te sturen. Bij 
stochastische methoden is dit voornamelijk de keuze tussen lokaal en globaal 
zoeken. Bij deterministische methoden bestaat dit uit het aanleveren van grenzen en 
het beïnvloeden van de keuzeregel bij Branch-and-Bound. We hopen dat dit boek 
een leidraad vormt in de richting van oplossingsmethoden en verdere literatuur over 
globale optimalisering. 
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