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STELLINGEN 

1. Betrouwbaarheidsintervallen bij resultaten van punttellingen aan 
slijpplaten kunnen niet direct worden afgeleid van het aantal 
waarnemingen, wanneer deze waarnemingen op een grid zijn 
verzameld en ruimtelijk zijn gecorrelleerd. 

van der Plas, L. and A.C. Tobi. 1965. A chart for judging 
the reliability of point counting results. American Journal 
of Science 263: 87-90. 
Dit proefschrift. 

2. Generalisatie van fijn-gelaagde gronden tot functionele lagen (mits 
zorgvuldig gedaan op basis van functionele eigenschappen) 
vereenvoudigt de simulatie van waterstroming zonder groot 
kwaliteitsverlies ten opzichte van een volledig gediscretiseerd 
profiel. 

Dit proefschrift. 

3. Egalisatie van het bodemoppervlak hoeft niet te leiden tot het 
afvlakken van de door variogrammen beschreven ruimtelijke 
structuur van aan de profielopbouw gerelateerde variabelen. 

Dit proefschrift. 

4. Bij de huidige hoge bemestingsnivo's is variabiliteit van de 
beschikbaarheid van bodemvocht een belangrijke oorzaak van 
ruimtelijk varierende oogstopbrengsten. 

Dit proefschrift. 

5. Het verdient aanbeveling om voorschriften voor maximale 
bemestingsnivo's niet te baseren op het al dan niet overschrijden 
van een normwaarde voor de uitspoeling, maar op de kans dat 
deze normwaarde wordt overschreden, zodat rekening kan worden 
gehouden met ruimtelijke variabiliteit. 

6. Bij het bepalen van lokatie-specifieke bemestingsadviezen voor 
stikstof, zoals bij "Soil Specific Farming", wordt onvoldoende 
gerealiseerd dat de reactie van de gewasopbrengst op het 
stikstofaanbod ook lokatie-specifiek is. 

7. Bij de evaluate van het effect van een lager bemestingsadvies op 
gewasopbrengsten en stikstofuitspoeling dient rekening te worden 
gehouden met naijlingseffecten ten gevolge van de huidige, hoge 
stikstofbemesting. 

Neeteson, J J. 1989. Effect of reduced fertilizer application 
rates on yield and nitrogen recovery of sugar beet and 
potatoes. Neth. J. of Agric. Sci. 37: 227-236. 
Dit proefschrift. 



8. Bij het opzetten van bemestingsproeven zonder rekening te houden 
met de natuurlijke variabiliteit van de bodem, zijn duplo's vaak 
geen duplo's. 

9. Als alle Kretenzers leugenaars waren, zou niemand dat weten. 

10. It hinders to be drunk while executing a random walk. 

11. In de ruimtelijke wetenschappen is het modelleren van de 
ruimtelijke verdeling van een variabele van grotere praktische 
relevantie dan het schatten van populatieparameters. 

De Gruijter, J J. en CJF. ter Braak. 1990. Model-free 
estimation from spatial samples: a reappraisal of classical 
sampling theory. Math. Geol. 22(4): 407-415. 

12. Het berekenen van ruimtelijke overschrijdingskansen met behulp 
van een door (Co-)Kriging geexpandeerde set gegevens moet 
worden afgeraden, omdat bij deze expansie verlies van variance 
optreedt. 

Dit proefschrift. 

Stellingen behorend bij het proefschrift 'Spatial variability of soil 
structure and its impact on transport processes and some associated land 
qualities'. Peter A. Finke, Wageningen, 22 September 1992. 



ABSTRACT 

This thesis treats the impact of soil spatial variability on spatial variability of simulated 
land qualities. A sequence of procedures that were done to determine this impact is 
described in chapters 2 and 3. The subchapters correspond to seven manuscripts that either 
have appeared in or have been submitted to peer-reviewed journals. 

In chapter 2 attention is paid to methods to inventory spatial variability of soil 
characteristics related to the structure of the soil. A method was developed to construct 
confidence intervals to point count results in case of spatial dependency of the point 
observations on a soil thin section. It was concluded, that confidence intervals obtained 
following the traditional method by assuming all observations independent, will be much 
narrower than those where spatial dependency structure is taken into account. 

Two other papers in chapter 2 describe a method to translate soil profile descriptions into 
soil physical input data for computer models that simulate solute flow. The concept of 
functional layers is introduced. A functional layer is a combination of soil layers showing 
comparable soil physical behaviour related to water flow. The functional layer approach 
was tested and accepted for examples of disturbed and thinly stratified soils by calculating 
functional properties of the layer under defined hydrological conditions. When functional 
layers are established, mapping the thickness, starting depth and type of functional layers 
provides spatial information about soil physical characteristics. In one paper in chapter 2 
the number of necessary observations in this mapping procedure is optimized by 
application of geostatistical methods and a sequential sampling test. 

In chapter three the impact of variability of the structure of the soil on variability of crop 
yields and nitrate leaching is investigated. One paper describes a field scale empirical 
study where barley grain yield variability is correlated to variability of soil characteristics 
and simulated transpiration deficits. Simulation model inputs were obtained using the 
functional layer approach described in chapter 2. Regression functions based on simulated 
transpiration deficits only could explain 43% of the variance in yields, which suggested 
that variability of transpiration may be an important factor causing yield variability. This 
hypothesis was tested in a next paper in which remote sensing estimates of the leaf area 
index were used to obtain estimates of the potential transpiration with a high spatial 
accuracy. Incorporating space- and time series of the leaf area index into a crop growth 
model resulted in a prediction of yield variability that could explain 39% of measured 
variability. Variability of plant-available water, expressed by the actual transpiration, is an 
important factor causing yield variability. 

Two papers in chapter three describe how a combined solute flow and crop growth 
model was used to evaluate the spatial varying effect of fertilizing scenarios. The spatial 
interpolation method Disjunctive Kriging was used to translate spatial variability of 
simulated nitrate leaching into maps of the probability that a threshold leaching 
concentration is exceeded. It was also investigated, whether the number of simulations 
could be minimized using Disjunctive CoKriging and available spatial information. It was 
concluded, that different soil units within one agricultural field showed a different leaching 
response and crop yield response to identical fertilizer treatments, and that yield variability 
will increase when fertilizer levels approach the level for maximal production. 
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CHAPTER 1 

GENERAL INTRODUCTION 



GENERAL INTRODUCTION 

Currently, environmental pollution is recognized as a major problem (Briggs and Wilson, 
1987, Ministerie van VROM, 1989). Legislation is being developed to minimize the input 
to the environment of substances that are poisonous to humans (dioxines, heavy metals), 
that cause acidic precipitation (ammonia-gas) or that cause water pollution (nitrates, 
biocides) and eutrofiation (phosphates). 

Agricultural practices are identified as possible sources of these substances (Anderson et 
al., 1985; van Breemen et al., 1982; Hallberg, 1986), because high level inputs of 
fertilizers and biocides onto the soil profile are reported to lead to losses to (ground)water 
and atmosphere by surface-runoff, volatilization or leaching. In order to successfully 
implement alternative management schemes that result in less pollution, the range of 
effects of different management schemes have to be investigated by scenario analysis. 
Scenario-analysis should be carried out at the scale at which agricultural management 
operates, which is at farm and field level, because it is the management that can be 
influenced by legislation. Knowing the effects of management schemes on the field-scale 
is therefore the most approprate basis for evaluation of scenarios. Many processes that 
govern transport, transformation and storage of possible pollutants, take place in the soil 
and are influenced by soil properties. Since soil properties are variable in space and time, 
scenario analysis should take into account field variability of relevant soil properties. 
Processes in the soil leading to leaching or volatilization may be very complex when 
chemical transformations take place, which is the case with biocides, nitrogen etc. When 
also the spatial and temporal variation is to be included in the analysis, only by 
application of computer simulation models scenarios can be analyzed quantitatively 
(Petach and Wagenet, 1988). 

In this thesis, attention is paid to procedures ranging from characterizing soil heterogeneity 
to scenario analyses by computer simulations. Soil variability is not seen as a nuisance, 
but as a crucial soil property, enabling realistic field scale scenario-analysis. 

In several studies reported in this thesis, (geo-) statistical methods were used for various 
purposes: 
(1) In the inventory studies, statistical methods were used and developed to optimize 

the number of samples (Burgess and Webster, 1980; Finke et al., 1992) and to 
construct confidence intervals in case of spatially dependent observations (Finke et 
al., 1991). 

(2) In studies analyzing the impact of soil variability on transport processes and crop 
yields, (geo-) statistics were used to transform data to equal space scales (Finke 
and Goense, 1992; Finke, 1992a), to analyze fertilizing scenarios in terms of 
probabilities (Finke, 1992b) and to minimize the number of simulations in 
scenario-analyses (Finke and Stein, 1992). 

In the characterization of soil variability, soil structure was regarded as a key variable, 
because flow of water and nutrients in the soil is strongly related to soil structure. Soil 
structure is defined as "the physical constitution of a soil material as expressed by the size, 
shape and arrangement of the solid particles and voids, including both the primary 
particles to form compound particles and the compound particles themselves" (Brewer, 
1964). 



Several studies have been made on how to characterize soil structure variability at 
different scales and degrees of heterogeneity. Studies also have been made on how to 
translate this variability to input for simulation models that describe water and solute flow. 
These studies are reported in chapter 2. 

In subchapter 2.1 (Finke et al., 1991), a new method is presented to characterize 
structure-related micromorphologic features in a thin section in case of spatially dependent 
point observations on these features. Spatial dependency structure is used to construct 
confidence intervals to estimated probabilities of illuviation ferri-argillans, pores and ferric 
nodules (van der Plas and Tobi, 1965). 

Subchapter 2.2 (Finke et al., 1992) reports on an investigation on disturbed soils. Soil 
layers formed by pedogenesis or disturbance, encountered in a soil survey of a sandy area, 
were translated into a number of functional layers. Functional layers are soil layers that 
have proven to show comparable behaviour from place to place (Bouma and van Lanen, 
1986; WSsten and van Genuchten, 1988). An attractive property of functional layers, is 
that the thickness and the depth at which they occur can be mapped efficiently. They are 
used throughout this thesis to generate soil hydraulic characteristics from soil profile 
descriptions for use in simulation models. Furthermore, in subchapter 2.2 a comparison is 
made between two sampling methods. One method applies model-based statistics (de 
Gruijter and ter Braak, 1990; SSmdal, 1978), using semivariograms to determine an 
optimal grid mesh in the mapping survey (Burgess and Webster, 1980). Another method 
applies design-based statistics (de Gruijter and ter Braak, 1990; Sarndal, 1978) to evaluate 
and minimize the number of observations that have to be made in a survey to obtain a 
representative dataset (Stein et al., 1989; Wald, 1947). Both methods are combined in a 
procedure that aimes at minimizing sampling costs while maximizing the value of the 
samples for interpolation purposes. 

Subchapter 2.3 (Finke and Bosma, 1993) describes into more detail the procedure to 
derive functional layers from soil profile descriptions. The soil structure of a 
heterogeneous, thinly stratified marine soil was explicitly used to obtain layers that are 
non-homogeneous but still recognizeable by their over-all structure, which enables the 
functional layers to be mapped in a conventional soil survey. Simulation techniques were 
used to obtain functional hydrological properties for these layers, describing the behaviour 
of these layers during periods of prolongued infiltration and strong evapotranspiration 
(Wosten et al., 1986). These properties were thereafter used to make a functional 
distinction between layers, based on their behaviour. This paper offers a novel approach to 
the problem how to obtain basic simulation data in fine-layered soils. 

The inventory of variability of soil characteristics like soil structure is seldom a goal in 
itself. The effect that field-scale variability has on landqualities and on crop yields, 
however, can be useful knowledge to anyone that is interested in the implications of soil 
management. In this thesis, some field-scale studies are described that link soil variability 
to some landqualities and to crop yields. These studies are reported in chapter 3. 
Landqualities investigated are moisture availability, nitrogen availability and nitrogen 
leaching hazard. 



In subchapter 3.1 (Finke and Goense, 1992), a field study is presented, in which the 
observed barley grain yield variability is linked directly to soil variability by multiple 
regression techniques. Yield variability was also linked to the landquality "moisture 
availability", by dynamic simulation of the transpiration deficit throughout the growing 
season on a large number of locations in the field. In these simulations, model input was 
generated based on profile descriptions and the functional layers. 

A transpiration deficit develops during a growing season when the soil can no longer 
satisfy demand by the plant, which is defined by potential transpiration. The actual 
transpiration may thus vary over a field when soil hydraulic properties vary sufficiently. 
However, also the potential transpiration may vary over a field, when the transpiring plant 
area varies by location. This area can be quantified by the leaf area index. In subchapter 
3.2 (Finke, 1992a) remote sensing techniques were applied to estimate the leaf area index 
variation in space during the growing season. This space-time variation was used as input 
data for a computer model which dynamically simulated water flow, nitrogen dynamics 
and potato tuber dry matter production. The objective was to improve the explanation of 
the amount of variability in final yields. The strength of such a combination of the 
independent estimation of the leaf area index by remote sensing and computer simulation 
of dry matter production is, that stress caused by water- and nitrogen deficiencies can be 
identified. Also, these stress factors can be located in space, which enables corrective 
location-specific management such as irrigation and fertilization. 

To allow simulation of the effect of different management scenarios, a simulation model 
as described in subchapter 3.2 is not suitable, because the leaf area index is input into the 
model. The model has been adapted therefore to simulate the leaf area index as a function 
of climatic data (temperaturesum) and soil dependent factors (availability of water and 
nitrogen in the rooted zone). After calibration, model performance has been tested by 
comparing simulated leaf area indexes and simulated crop yields to measurements. 

The spatially variable impact of different fertilizing scenarios on simulated nitrate 
leaching and crop yields is reported in subchapter 3.3 (Finke, 1992b). Effects of soil 
specific farming (Robert, 1988) and field specific farming for several types and levels of 
nitrogen application were evaluated for a Dutch agricultural field. In a first scenario-
analysis, the impact of application of animal slurry was simulated. Nitrate leaching in the 
year following an application, expressed as a probability of exceeding a critical value, was 
used to optimize the amount of manure. In a second scenario-analysis, anorganic nitrogen-
fertilization levels were optimized, and the effect of implemention of soil-specific 
fertilization on crop production and nitrate leaching was evaluated. A novel approach in 
this study is that the evaluation of scenarios is not only based on simulation outcomes, but 
also on the probability that these outcomes exceed a critical level, in this case a critical 
nitrate-concentration in the leaching water. This probability is based on spatial variation of 
simulation results as well as the results themselves. 

Subchapter 3.4 (Finke and Stein, 1992) elaborates on the geostatistical method of 
disjunctive kriging which was used in subchapter 3.3 to construct the probability of 
exceeding some selected threshold value. The spatial variation of the property of interest is 
used in disjunctive kriging to estimate this probability. Another item in this study was to 
apply cokriging to allow optimization of the number of computer simulations in the 
scenario analysis. 
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RELIABILITY OF POINT COUNTS OF PEDOLOGICAL PROPERTIES ON THIN 
SECTIONS 
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ABSTRACT 

Point counting of pedological properties on thin sections always starts from the following 
assumptions: (i) neighbouring counts are spatially independent and (ii) thin sections are 
representative for the soil horizon under study. We checked the first assumption for some 
thin section for the following properties: ferric nodules, pores and illuviation ferri-
argillans. By using geostatistical methods we find more or less independent observations 
for two of the three properties that are investigated in this paper with respect to the 
sampling distance. For one property, i.e. illuviation ferri-argillans, neighbouring 
observations appeared to be dependent. In the case of dependent observations, a 
methodology is presented to estimate an equivalent number of independent observations 
from the sample size and the spatial correlation structure of the observations. A nomogram 
is presented that yields 95% confidence intervals of estimated probabilities. 

KEY WORDS: point counting, micromorphology, binomial distribution, spatial dependency, equivalent 
numbers. 

INTRODUCTION 

Thin sections are often studied by soil scientists in order to improve their understanding of 
pedological processes. Many pedologists look at thin sections in a qualitative sense, but 
they may also feel the need to quantify the observations. Usually (Daniels et al., 1968; 
Miicher et al., 1972; Murphy and Kemp, 1984), a number of point observations is 
performed on several pedological properties, whereby each observation is properly 
classified in a binary sense. That is, a property is observed or not observed. 

The reliability of the results obtained by point counting has been discussed before. Van 
der Plas and Tobi (1965) gave a nomogram that yields confidence limits to estimated 
probabilities to observe some property, given the sample size. Their nomogram is based on 
the normal approximation of the binomial distribution. Here we will give a substitute for 
the nomogram supplied in Van der Plas and Tobi (1965). Figure 1 is reproduced from 
Pearson and Hartley (1970), and gives two-sided 95% confidence intervals for the 
binomial distribution. The same reference also contains a nomogram for two-sided 99% 
confidence intervals. As it is not based on the normal approximation, it will yield 
asymmetric confidence intervals, particularly for small or large values of p. 

When counting on thin sections, if the samples are spatially independent one samples 
from the binomial distribution in order to estimate the probability of observing a certain 
property. Denote the estimate of p by p. Then the following holds: 

15 
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Figure 1 Twosided 95% confidence intervals for estimated probabilities based on the 
binominal distribution. The numbers printed along the curves indicate the sample size n. If 
for a given value of the abcissa cln, pA and pB are the ordinates read from (or 
interpolated between) the appropriate lower and upper curves, then Pr{pA<=p<=Pi}>=l-
2a. Reproduced from Pearson and Hartley (1970). 
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(1) wirC5)=(100-jJ)j5/n 

where var(p) : estimated variance of p, n : total number of observations (point counts). 
According to Van der Plas and Tobi (1965) a 95% confidence interval of the probability p 
can be constructed as: 

(2) p-2s<p<p+2s 

where s : estimated standard deviation of p. 
Van der Plas and Tobi (1965) themselves mention several restrictions to the use of their 

nomogram. Firstly, they mention that one thin section might not be representative for a 
given soil section (see also Murphy, 1983). In such case, several thin sections may be 
analysed. As pointed out by Murphy (1983) and Mc Keague et al. (1980), there may also 
be a significant operational error, caused by misidentification and other inaccuracies. 
Secondly, observations are assumed to be independent. Because of this they state, that the 
"point distance chosen should be larger than the largest grain fraction that is to be 
included in the analysis". As we now know from geostatistics, however, spatial 
dependence is often exercised over multiple length scales (see for instance Joumel and 
Huijbregts, 1978). This implies that, in the context of point counting, the distance beyond 
which properties are independent, will generally be much longer than the dimensions of 
the studied properties. In our opinion, when counting on thin sections, one should strive to 
have independent observations. Only in that case one can easily construct confidence 
intervals. 

The objectives of this paper are: 

(i) to estimate for some particular soil properties the distance beyond which 
observations may be considered to be independent, and to compare these distances 
with the length dimensions of the properties involved; and 

(ii) to present a method for estimating the equivalent number of independent 
observations, n^, when observations are dependent. Then, Figure 1 can still be 
used, however, with n^ instead of n. 

In this paper we will not pay attention to the operator error, and we will assume that the 
thin section is representative for the soil horizon to which it belongs. Also we will confine 
ourselves to systematic sampling, because of its ease of implementation, although a 
stratified sampling design is usually more efficient (Bellhouse, 1981). 

GEOSTATISTICAL CONCEPTS 

When studying the degree of dependency between observations on a particular property 
made at several locations, use can be made of the theory of geostatistics. For a thorough 
background to the field, reference is made to Journel and Huijbregts (1978), Ripley (1981) 
and Davis (1986). Here we will apply the geostatistical concept of the "semi-variogram", 
which expresses the dependency between observations as a function of the mutual 
distance. 

When n observations have been made at a mutual distance h, the semi-variance y can be 
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estimated by: 

"(A) 

(3) YW=£ (Z(x)-Z(x^hyfK2n(h)) 
1=1 

where Z(Xj) is the observed value at location jq. 
If semi-variances are calculated for different values of h, the results can be plotted in the 

form of an experimental semi-variogram. A model can be fitted to the discrete points in 
the semi-variogram, for instance, the exponential model (Journel and Huijbregts, 1978): 

, « , « fC+a(l-exp(-«i)) ifh*0 
(4) Y ( * H „ , / I ( 1 

[ 0 if h=0 
where C + a : maximum semi-variance ("sill"), C : semi-variance at h close to 0, b : 
parameter related to the "range". 

In case of dependency of neighbouring observations, the semi-variogram exhibits a 
(slow) rise to some limiting value, the so called "sill". The distance at which the sill is 
reached, is called the "range". Observations at mutual distances exceeding the range may 
be considered to be spatially independent. At the origin the semi-variogram may show a 
discontinuity due to small-scale variability and/or measurement errors. 

If observations are dependent, it is intuitivily clear, that there is some loss of 
information, meaning that the equivalent number of independent observations is less than 
the actual sample size. When n dependent samples are taken, the equivalent number of 
observations, n^, is given by (Barnes, 1988): 

(5) n« ,=V e x p ( 1 _ n«! /M ) 

where neff is an heuristic estimate of the effective number of uncorrelated samples, 
estimated as: 

(6) n^VR-'l 

where R is the sample-to-sample correlation matrix, and 1 is a vector of ones. The 
correlation coefficient in Eq. (6) can be estimated from the fitted variogram model as 
(Journel and Huijbregts, 1978): 

(7) r(A)=l-Y(/r)/(Oa) 

Thus by fitting a semi-variogram model to the estimated semi-variances, the equivalent 
number of observations can be conveniently estimated by Eqs. (5) and (6), upon inserting 
values of r(h) as estimated by Eq. (7). 

METHODS 

Counts have been performed on one vertical thin section considered representative for the 
Bt2-argillic horizon in a pedon classified as an Ultic Palexeralf (Soil Survey Staff, 1970). 
All counts have been performed by one person. Properties considered in this study were 
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ferric nodules, illuviation ferri-argillans, and pores. A Leitz Orthoplan polarisation 
microscope with a magnification of about 80 times has been used. At this magnification, 
the objects to be counted were easily recognizable. The counted properties, their 
dimensions, and a "characteristic dimension" are presented in Table 1. 

Table 1 Counted properties with their dimensions and characteristic dimension. 

Property Dimension Characteristic 

Ferric nodules 
llluvation ferri-

argillans 
Pores 

Diameter Length 

mm 
0.030-2.0 0.030-2.0 

0.005-0.1 0.005-2.0 
0.050-4.0 0.050-4.0 

dimension 

0.5 

0.4 
0.4 

The characteristic dimension is based on a visual impression and should be understood as 
being the maximum length scale of the property in most cases. So consider it to be a 
visual expert guess of, say, the 99% point of the distribution of lengths. Thus, it yields a 
quick estimate of the minimum sampling distance. 

From Table 1 it can be concluded that 0.5 mm is a reasonable guess for the minimum 
sampling distance. Given the dimensions of the thin section studied, about 45*70 mm, this 
yielded 11390 observations. 

RESULTS AND DISCUSSION 

The estimated probabilities p (which can be regarded as estimates of volume contributions) 
and their 95% confidence intervals, based on Fig. 1 as well as on the nomogram in Van 
der Plas and Tobi (1965) are given in Table 2. 

Table 2 Estimated probabilities p of observing a 
certain property and 95% confidence intervals. 

Property p(%) 95% confidence interval 

Ferric nodules 
llluvation ferri-

argillans 
Pores 

2.05 

4.64 
8.63 

1.1-3.1 

3.6-5.6 
7.6-9.6 

Both Fig. 1 and the nomogram are not easy to read for this combination of sample size 
and probability, but they both suggest the confidence interval to be 2% wide. These 
confidence intervals are based on the assumption that all observations are independent. 

In order to check the assumption of independence, semi-variograms have been estimated 
in the usual way for a single realization (Journel and Huijbregts, 1978). These are 
presented in Fig. 2. For mutual distances in excess of half the maximum distance occuring 
within the thin section, the semi-variogram can only be very inaccurately estimated 
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Figure 2 Semi-variograms for Ferric nodules (A), llluviation ferri-argillans (B), and 
Pores (C). 

(Journel and Huijbregts, 1978). Here only mutual distances smaller than half the smallest 
length of the thin section have been considered. Thus, the semi-variogram has been plotted 
for mutual distances less than 20 mm. The semi-variograms indicate that spatial 
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dependence is very weak or absent for ferric nodules and pores, since the range 
approximately equals the mesh width (0.5 mm). For illuvation ferri-argillans there is a 
definite, though weak, spatial dependence. 

EXAMPLE 

To illustrate the procedure presented in this paper, an example is given, using the point 
counting results on illuviation ferri-argillans. The estimated volume contribution of 
illuviation ferri-argillans is p = 4.64 % (Table 2). If this estimate was based on n=1000 
observations, Fig. 1 would yield a 95% confidence interval of 3.5%<=p<=6.5% when 
observations would be regarded as independent. The equivalent number of independent 
observations, calculated using Eqs. (5), (6) and (7), would be 11^=65. 

Because of the slow decay of the correlation function, the decrease in equivalent number 
is quite drastic. Using n,, instead of n would yield a 95% confidence interval of 
1.5%<=p<=14.0% The greater width of this interval shows the magnitude of the 
uncertainty introduced by regarding all observations independent. 

CONCLUSIONS 

When analysing point counts from thin sections one always starts from the following 
assumptions: 

(1) neighbouring counts are independent; 
(2) the thin section which is studied is representative for a given soil horizon or rock 

section. 

We confined ourselves to commenting on the first assumption. The representiviness of 
various thin sections for a given soil horizon will be the subject of a further investigation. 

The practical rule by Van der Plas and Tobi (1965) that "the point distance chosen 
should be larger than the largest grain fraction to be included in the analysis" does result 
in approximately independent observations. Still, the drop in equivalent sample size 
because of dependence of observations can be very substantial, as is seen with the 
illuviation ferri-argillans. Thus, confidence intervals obtained by using Fig. 1 will 
generally yield a too optimistic view. In case a considerable dependence is expected or 
feared, it might be useful to check the validity of the assumption of independence. This 
can be done by estimating semi-variances, and comparing the mesh-width with the range 
of the fitted variogram. If observations are dependent, an equivalent number of 
independent observations can be calculated. This equivalent number can then be used to 
calculate confidence intervals by using the provided nomogram (Fig. 1). 
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ABSTRACT 

Spatial variation of soil profiles disturbed by levelling was inventoried on a field scale to 
obtain representative data for simulation purposes. Depth of occurrence, thickness and 
morphology of functional layers, which are different pedogenetic horizons with 
comparable soil physical properties, were considered to be regionalized variables. The 
layers served as carriers of physical information, such as water retention and hydraulic 
conductivity characteristics and organic matter content. An impression of the variability 
within each layer was obtained by six fold sampling. Spatial variability, expressed by 
variations in thickness of functional layers, was inventoried in a two step soil survey. 

First, semi-variograms were constructed using data obtained following a nested sampling 
scheme supplemented by a nugget estimation procedure. Variograms were used to evaluate 
cost/quality ratios at varying potential grid sampling densities, using the root of the 
prediction error variance (RPEV) as a measure to compare quality of interpolations. Based 
on these evaluations and a sequential sampling test, a grid mesh of 12 m was chosen. 

Second, a grid soil survey and an independent quality test were done, in which root 
mean square errors (RMSE) on test points were compared with RPEV. The RPEV to 
RMSE ratios varied between 0.7 and 1.1 for the sampled grid mesh, and had comparable 
values for other grid meshes. Estimations on test points by an hypothesized spatial mean 
based on 26 measurements by a sequential sampling method, produced RMSE-values not 
significantly different from RMSE-values from kriging interpolations. However, sequential 
sampling required 26 observations whereas kriging required 153, a saving of 83%. 

INTRODUCTION 

In the Netherlands a considerable area of agricultural land consists of disturbed soils, due 
to strong human impact on the landscape extending over several centuries. Usually these 
soils no longer have their original micro- and mesorelief, so physiographic features cannot 
be used during mapping. Pedological horizons may be mixed due to the disturbance. 

The case study presented deals with a detailed soil survey on a field scale in a leveled 
landscape originally showing strong microrelief. The area studied is located on Pleistocene 
coversands near the margin of ice-pushed ridges and has a low topographic position. The 
purpose of the ongoing research is the prediction on a field scale of water fluxes and, 
more specifically, of N03 leaching as a function of N-inputs, climate and soil, using a 
simulation model. To predict both average and extreme fluxes and leaching in field plots, 
knowledge about spatial variation of relevant soil properties is essential. 

Characteristics assumed to be relevant were soil texture, structure, macroporosity and 
organic matter content. These influence the shape of retention and conductivity 

25 



characteristics and values of N-transformation coefficients. 
Spatial variability of these characteristics was modelled using functional layers as 

carriers of information (Wosten et al., 1985). A Junctional layer was defined as a layer 
having a unique combination of texture, structure and organic matter content, resulting in 
characteristic retentivity and conductivity curves. A functional layer may consist of one or 
more genetic soil horizons or soil layers. Following this approach, variability of a 
characteristic between locations depends on: (i) spatial variability of the thickness of the 
functional layers; and (ii) intrinsic variability of the properties of each functional layer. 
Intrinsic variability, the qualitatively characterized variation within a stratum, in this case 
a functional layer, is minimized by combining only those horizons into a functional layer 
that have similar characteristics, as measured at several locations. However, considerable 
intrinsic variability may remain, for instance in the case of a disturbed layer containing 
fragments of different origin. Such a layer was analysed in this study for its intrinsic 
variability in morphology and soil physical characteristics. 

The purpose of this study was to determine the number and spacing of observations 
needed to make predictions of the thickness of each functional layer at a desired level of 
precision relative to the compartment thickness (5 cm) of the simulation model to be used. 
Compartment thickness is the vertical depth increment used by the simulation model to 
simulate flow and redistribution of water and solutes by finite differencing techniques. 
When this level can be reached at reasonable sampling costs, simulations on both sampled 
and interpolated locations could lead to a reliable simulation map. If this level of precision 
cannot be realized, only simulations on sampled locations are feasible. In this case, a 
sufficiently large number of observations would have to be made to obtain a data set 
accurately representing the spatial variation occurring within the fields studied. 

MATERIALS AND METHODS 

Soils 

In the study area, disturbed soils are present (Fig. 1). Generally, below a well 
homogenized plow layer, a layer was found that showed strong variation in morphology. 
Differences in morphology reflectioned different contributions of A, B and C-horizon 
material to this layer from place to place. Below this disturbed layer, a Bs, (locally) BC, 
C, Cg sequence or a Cg-horizon occurred. From these sequences, Entic Haplorthods (Fig. 
1) and Aquic Udipsamments could be reconstructed as the soils most likely to have been 
present before disturbance (Soil Survey Staff, 1975). This is confirmed by de Bakker and 
Schelling (1986). Disturbing activities in the past have been in chronological order: 

(1) Levelling. The toplayer of higher grounds was removed, whereby the profile was 
truncated down to the Bs-horizon (Functional Layer 3). The material thus obtained 
was deposited on top of the lower grounds, forming a layer consisting of fragments 
of A, B- and C material (Functional Layer 2). 

(2) Plowing. The upper 30 cm of the profile was plowed regularly, whereby 
morphological differences still recognizeable in layer 2 were smoothed out and 
Functional Layer 1 was formed. 

26 



Figure 1 Soil profile and functional layer codes. Codes 
refer to Table 1. 

Soil Physical Measurements 

Hydraulic conductivity at and near saturation was measured on undisturbed soil columns 
in the field using a ring infiltrometer with a horizontal area of 700 cm2. In each 
infiltrometer, tensiometers were installed at two depths to measure the vertical hydraulic 
head gradient. To measure saturated hydraulic conductivity (K-sat), the soil surface was 
prepared and water was applied at zero head using a mariotte device. At unit hydraulic 
head gradient, hydraulic conductivity is proportional to the infiltration rate. Unsaturated 
conductivity at hydraulic heads in the range between 0 and -4 kPa was determined by 
applying crusts of hydraulic cement on the soil surface in the ring infiltrometer and 
measuring infiltration rates at unit head gradient (Bouma et al., 1983). Unsaturated 
conductivities at higher suctions (to -100 kPa) were determined on undisturbed 300 cm3 

samples (taken from the infiltrometer sample), using the one-step outflow method 
(Doering, 1965; Kool et al., 1985). 
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Water retention characteristics were determined using one-step outflow data on 
undisturbed 300 cm3 samples and by measuring moisture release in pressure extractors on 
disturbed samples. 

Functional layers were defined by grouping pedological horizons together that showed 
comparable physical behaviour, according to functional properties described by Wosten et 
al. (1986). 

Sampling 

Sampling took place in a number of consecutive steps: 

(1) Soil profile descriptions were colected by augering, following a nested sampling 
scheme (Webster, 1977). The area was stratified into six equally sized fields, 
corresponding to the six experimental fields receiving different treatments. Three 
equally large areas of 360 m2 were located at random within each field. Within 
each area, two clusters of 2 augerings each, having fixed mutual orientations and 
distances of 8 m were located (Fig. 2). The distance between two samples within 
one cluster was 2 m. 
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Figure 2 Locations of nested sampling augerings and pits for nugget measurements. 

(2) From the resulting 72 profile descriptions, a number of functional layers were 
derived in an iterative process including preliminary definition, measurement of 
water retention and hydraulic conductivity characteristics, determining functional 
properties, and redefinition. 

(3) Estimations were made of short range- and nugget variances, which can be helpful 
when choosing the variogram model most appropriate for the study area and the 
scale of perception. For the estimation of the short range and nugget-variances of 
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the thicknesses of the various functional layers, a separate sampling procedure was 
followed. Six pits were dug at randomly chosen locations, one within each field 
(Fig. 2). The thickness of each functional layer was measured at 5 cm horizontal 
intervals in each pit. Averaged semi-variances at a lag of 5 cm were considered as 
nugget, 5 cm being the diameter of the auger used in de nested - and regular grid 
sampling. The maximal lag covered by the pits was 1 m. 

(4) Construction of variograms for the thickness of each functional layer by fitting 
transition models (Journel and Huijbregts, 1978) to pit- and augering data. The 
most appropriate model for each functional layer was selected on a minimal sum-
of-squares criterion. 

(5) Collection of soil profile descriptions on a regular grid, the mesh of the grid being 
derived in a procedure described below. 

Quality Criterion 

Determination of the spatial distribution of the thickness of the functional layers was to be 
based on sampling on a rectangular grid. In order to obtain a relation between sampling 
costs and quality of interpolation maps produced by kriging, this quality was calculated as 
a function of the grid mesh and the variograms, in a way indicated by Burgess and 
Webster (1980). A brief description of the underlying concepts is given below. For a more 
detailed derivation of formulae given, see Corsten (1989) and Stein et al. (1988). 

In the absence of a trend, the value j>(x„) of a regionalized variable y(x) in an unvisited 
location XQ is predicted by a stochastic predictor t (bold-face italic type denotes stochastic 
variables, bold denotes vectors): 

(1) t=ii+g0
TG1(y-(»lm)) 

where p is the overall mean, go the n-vector of the semi-variances between point x0 and n 
observation points, G the n*n-matrix of the semi-variances between observation points, y a 
stochastic vector pointing to the observations and 1„ is an n-vector of elements one only. 

The variance of the prediction error (the kriging error) is given by 

(2) VAR(t-y(x<)) ^G^-xJiljGX) 

where xa is the number defined as xa = 1 - gj G'1 1„ and superscript T indicates a 
transposed vector. 

As is clear from eq. 2, the prediction error variance depends on the variograms and the 
data configuration only, and not on the actual observations. This makes the prediction 
error variance a valuable tool in evaluating the quality of an interpolation for varying grid 
meshes. Gridpoint to gridpoint distances and gridpoint to interpolation point distances are 
a function of this mesh. In this study, the interpolation point x„ was located at a maximal 
average distance from the eight nearest grid locations, which is the most unfavorable place 
to predict to, except for a location near the border of the area. The prediction error 
variance was determined for meshes between 1 and 50 m. 

Under the assumption that variograms are known, the root of the prediction error 
variance (RPEV) can be used to construct an approximately 95 % confidence interval t +/-
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2 RPEV. A confidence interval that was narrow relative to the compartment thickness used 
in the simulation model (5 cm) was considered appropriate in this study, leading to a 
quality criterion of RPEV-values < 1.25 cm for each one of the four functional layer 
thicknesses. The grid mesh associated with this quality criterion determined the sampling 
costs and thus the economic feasibility. 

Sequential Sampling 

If quality criteria discussed above cannot be met, the purpose of sampling would become 
collection of a data set describing the spatial variation of thicknesses of functional layers. 
To describe variation, an accurate estimate of the mean is essential. Sequential sampling 
(Wald, 1947; Stein et al., 1989) can be used to stop sampling whenever a sufficiendy 
accurate estimate of the mean is reached, and hence to minimize the number of 
observations. 

The sequential sampling procedure was designed to decide after each additional 
observation whether sampling should continue. Observations must be stochastically 
independent. Sampling can stop when a hypothesis H„: u = u„ is accepted or is rejected, 
where p0 is the hypothesized mean. Sampling must continue when HQ remains unproven. If 
H0 is rejected, a new hypothesis must be formulated. Testing H„ is performed by 
calculating a likelihood ratio, given by Stein et al. (1989), and comparing this statistic to 
an acceptance level cc/(l-a) and a rejection level (l-a)/oc, where a is the probability to 
decide incorrectly for H„. In this study a was set equal to 0.05. 

Quality Test 

After the grid with the chosen mesh was sampled, 40 additional augerings were made at 
random locations to obtain an independent measure of the quality of interpolations by 
kriging. The root mean square error (RMSE) of predictions versus measurements was 
compared to the root prediction error variance by calculating their ratio. When this ratio 
equals 1, the predicted interpolation quality agrees with the actual quality. Ratios differing 
from 1 indicate errors in the estimation of the variograms, or unfavorable data 
configurations resulting in long lags to prediction points, as may be the case when these 
points are located near the border of an area. RMSE-values were also used to determine 
whether a less dense grid would lead to a significant loss in interpolation quality, and to 
determine whether kriging performed better than estimations by horizontal trend surfaces. 
Significance was tested using the t-test on difference with paired observations. 

RESULTS AND DISCUSSION 

Functional Layers 

Functional layers derived from profile descriptions collected in the first sampling step are 
described in Table 1. Characteristic retentivity and conductivity relations and zones of one 
standard deviation are presented in Fig. 3. These zones from the retentivity curves do not 
overlap in most cases, which points to relevant differences between the functional layers. 
Functional Layers 1 and 2 show comparable conductivity relations with overlapping zones, 
whereas both Functional Layers 3 and 4 differ strongly from the rest. The strong 
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morphological variation in the layer containing disturbed material did not result in wider 
one standard deviation zones. Average morphological composition of Functional Layer 2 
and standard deviations are presented in Table 2. It was concluded, that, for simulation 
purposes, the functional layers identified in this study may serve as carriers of physical 
information when these characteristics are measured elsewhere in identical layers (see also 
Wbsten et al., 1990). In case of presence of a disturbed layer, the functional layer concept 
still applies. 

Table 1 Description of functional layers, relation to horizons and some soil characteristics 

layer 

1 

2 

3 

4 

description 

recent 
plow layer 

disturbed by 
plowing & 
levelling 

undisturbed 
Spodic 

coversand 

horizons 

1Ap 

2Abp, 
2ABbp, 
2BCbp 

2Bsb, 
2BCb 

2C, 
2Cg 

texture structure 
grade 

loamy weak 
sand 

loamy structure-
sand less 
to sand 

sand structure­
less 

sand structure­
less 

organic-
matter 

% 
3-4 

2-4 

1-2 

0-1 

K-sat 
av. 

cm/d 
123 

64 

119 

147 

CV 

% 
19 

65 

39 

41 

Table 2 Morphological composition Functional 
Layer 2, based on data from grid soil survey. 

origin 
of material 

average 
volume 

standard 
deviation 

A-horizon 
B/BC-horizon 
C-horizon 

% 
61 
28 
11 

% 
22 
20 
16 

Spatial Variability 

Variograms of four regionalized variables, the thickness of Functional Layers 1 to 3 and 
the depth to Functional Layer 4 are presented in Fig. 4. These variograms are based on the 
nested sampling data and on data from the soil pits where nugget variance was 
determinated. The thicknesses of the plow layer (Functional Layer 1) and Functional Layer 
3 show no spatial structure except at very small lags (ranges of variograms are 1.5 and 1 
m respectivily). This is most likely due to the nature of the disturbance that has affected 
these layers: plowing and truncation respectivily. The thickness of layer 2 and depth to 
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Figure 3 Retention (a) and hydraulic conductivity (b) curves of functional layer 1 to 4. 
Horizontal bars show zones of 1 standard deviation. 

layer 4 show a clear spatial structure. Since layer 4 has been little affected by the levelling 
activities in the past, its depth relative to the -levelled- soil surface could be expected to 
show spatial structure. The thickness of layer 2 is a reflection of the former surface relief, 
because deeper depressions received more infill than shallower depressions. This results in 
a clear spatial structure in the thickness of Functional Layer 2. It was concluded, that 
disturbance by levelling does not necessarily lead to absence of spatial structure for the 
type of variables used in this study. 

Relations found between the root of the prediction error variance of the four regionalized 
variables and the mesh of a potential sampling grid are visualized in Fig. 5. 
RPEV-values exceeded the criterion, set at 1.25 cm, at grid meshes of 1 m, which would 
correspond to more than 22000 observations in the area studied. It was concluded, that 
accurate predictions would not be economically feasible here, and that sampling should 
aim at collecting a representative data set. 

Sequential Sampling 

The results of the sequential sampling procedure, presented in Fig. 6, indicated that 
hypothesized mean values valuable for the whole study area could be accepted after 26 
randomly located, spatially independent observations. Hypothesized mean values based on 
the first 4 measurements were revised for the variables thickness of Layer 2 and thickness 
of Layer 3 after 10 additional measurements. A newly formulated hypothesized mean (Hx) 
of the thickness of Layer 3, based on 8 measurements, was accepted after 5 additional 
measurements. The hypothesized mean thickness of Layer 2 was revised and rejected 
several times, until H2: u layer 2 = 1 1 cm, based on 20 samples was accepted after 6 
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Figure 4 Variograms of thicknesses (a, b, c) or depth to (d) functional layers. 

additional samples. Since the study area was divided into 6 experimental fields, it was 
concluded that 26 augerings should be made on each field. This would correspond to 156 
augerings. A grid mesh of 12 m across the whole study area was chosen. At this grid 
mesh, the 153 observations to be made were known from the variograms to be spatially 
independent, as their distances exceeded the ranges of the variograms. 

Quality of Predicted Values 

The RMSE between predicted and measured values and the ratio RPEV/RMSE are 
presented in Table 3. In general, the RPEV yielded a slightly more optimistic estimate of 
the average interpolation quality than the RMSE. Ratios varied between 0.7 and 1.1, 
indicating a reasonably good agreement between predicted and actual quality. By data 
reduction, RMSE-values were also calculated for grid meshes of 24 and 36 m. The RPEV 
to RMSE ratios for these grid meshes are comparable. A grid mesh of 24 m performed as 
well as a grid mesh of 12 m. A grid mesh of 36 m performed significantly (at 95% 
confidence) worse for the variables thickness of Layer 3 and depth to Layer 4. 

Because of spatial independence of the grid observations, kriging predictions were not 
expected to be better than point estimates based on averaged values obtained from the 
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Table 3 RMSE-values and RPEVIRMSE-ratios for interpolations to an independent 
test set. RMSE marked with * differ significantly from RMSE with kriging (mesh 12 
m.) fi are based on sequential sampling procedure. 

Estimation 
method 

kriging 
mesh=12 m. 

kriging 
mesh=24 m. 

kriging 
mesh=36 m. 

hypothesized 
mean 

no. of 
observ. 

153 

45 

18 

26 

error 
statistic 

RMSE (cm) 
RPEV/RMSE 

RMSE (cm) 
RPEV/RMSE 

RMSE (cm) 
RPEV/RMSE 

RMSE (cm) 
Mem) 
no. obs. 

thickness of / depth to 
1 2 3 

7 
0.8 

7 
0.8 

6 
0.9 

7 
28 
10 

11 
1.1 

11 
1.3 

12 
1.3 

8 
11 
26 

14 
0.7 

13 
0.8 

19* 
0.5 

13 
16 
13 

layer 
4 

16 
0.8 

16 
1.0 

23* 
0.7 

12 
55 
26 
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2 

HO: thickness layer 2 = 19 cm 

HO: thickness layer 3 = 3 cm 

H1: thickness layer 3 = 1 6 cm 
HO: thickness layer 1 = 28 cm 
H2: thickness layer 2 = 11 cm 

5 10 
No. of additional samples 

Figure 6 Sequential sampling test results. H0-hypotheses are based on 4 observations; H, 
on 8 observations and H2 on 20 observations. 

sequential sampling procedure. The RMSE-values, calculated using hypothesized mean 
values from the sequential sampling procedure and measured values, did not significantly 
differ from those of kriging. The sequential sampling procedure however needed 26 
random observations, whereas kriging used 153 grid observations, a reduction of 83 % 
(Table 3). 

The difference between RMSE and RPEV may partially be caused by border effects. The 
RPEV-values are based on interpolation locations surrounded by gridpoints, well away 
from the borders of the area studied. Some of the test-augerings, however, were located 
near these borders, causing lags between gridpoints and the prediction point to be greater 
than normal. This may lead to less accurate predictions and thus RPEV/RMSE ratios 
smaller than 1. For less dense grid meshes this factor may become more important 
Despite possible sources of error, the RPEV/RMSE ratio remained relatively close to 1. 
This indicates that an evaluation of the prediction error variance for different sampling 
grids, which is based on variograms, can give a prediction of the quality of the resulting 
map, which can be used to define the quality of map interpretations. 
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ABSTRACT 

Thinly stratified sedimentary deposits in a heterogeneous field were investigated to obtain 
basic physical data for simulation of water flow. A procedure is described which translates 
a thinly stratified soil profile into a number of functional layers, using functional 
hydrological properties. A functional layer is defined as a combination of one or more soil 
horizons, and should (i) be recognizable during a soil survey using an auger and (ii) show 
significantly different functional hydrological properties when compared to another 
functional layer. This procedure gave 3 easily recognizable functional layers. Sets of 
hydrological characteristics of these 3 functional layers were obtained by physical 
measurements of the soil and by estimation, using textural data for classification into a 
standard Dutch series. 

The performance of several combinations of these sets was tested by comparing 
simulated and measured soil matric potentials for seven plots during one year. The best 
simulation results were obtained if measured soil hydraulic characteristics were used for 
relatively homogeneous functional layers, and if the soil hydraulic characteristics were 
estimated at each location for the most heterogeneous layer. 

KEY WORDS: Layered soils Pedotranfer functions Simulation 

INTRODUCTION 

Most simulation models which describe solute movement in the unsaturated zone are in 
essence one dimensional. The study presented forms part of a research in which the spatial 
variation of landqualities, described as water availability in addition to the availability and 
leaching hazard of nitrogen, is calculated using simulation models. When a reliable 
estimation of the spatial variation of, for example, the annual leaching of nitrates must be 
obtained for an area, multiple model executions must be carried out with the input varying 
according to the spatial variation of the relevant characteristics occurring in that area. A 
method is then needed to obtain these relevant characteristics and their variability. 

The spatial variation of soil hydraulic characteristics (the water retention and hydraulic 
conductivity curves) can only be measured at relatively high cost. Soil characteristics that 
are related to hydraulic characteristics, such as texture, organic matter content and bulk 
density, are much cheaper to collect. Pedotransfer functions (Bouma and Van Lanen, 
1986) that are based on soil characteristics may produce reliable estimations of soil 
hydraulic characteristics (Vereecken et al., 1989; Wosten et al., 1990). The Dutch Staring 
database (Wosten, 1987; Wosten and Van Genuchten, 1988) is an example of a national 
scale soil physical database, in which soil layers are classified into a group according to 
soil texture and the type of soil horizon. The Staring database distinguishes between 
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topsoil layers (A horizons) and subsoil layers (B and C horizons) by organic matter 
content For each group in the Staring database, average soil hydraulic characteristics are 
known, which are based on a large number of measurements (Wosten et al., 1987; 
Wosten, 1987). In the terminology of Bouma and Van Lanen (1986) the Staring database 
is a "class-pedo transfer-function". Soil layers can be used as carriers of physical 
information about the soil if they show significantly different hydrological properties 
compared with other layers and if they show relatively little intrinsic variability (Wosten et 
al., 1990; Finke et al., 1992). These layers will be referred to as "functional layers" in this 
paper. Several soil horizons or sediment layers can be combined into a single functional 
layer if functional hydrological properties are comparable. Functional properties describe 
the behaviour of a soil layer with respect to water flow under defined boundary conditions. 
Differently behaving soil layers should be identified because they are likely to contribute 
to the spatial variation of processes associated with water flow. Functional properties 
considered here are travel time and height of upward flux (Wosten et al., 1986). 

This paper reports about a study in a field where thinly stratified sedimentary deposits 
are present Computer simulation of soil water fluxes in these multi-layered soil profiles 
can become impossible when a finite difference solution is used to solve the Richards 
equation. Long runs and a large computer memory are needed when every thin soil layer 
is to be taken into account. It is also difficult to systematically collect soil profile 
descriptions in the degree of detail required. Purposes of the research reported in this 
paper were: (i) To test if thinly stratified sedimentary deposits present in the study area 
could be generalized into a limited number of significantly different functional layers that 
were also easily recognizable in a regular soil survey; and (ii) to use simulations of the 
soil water regime for the evaluation of measured and estimated soil hydraulic 
characteristics by comparison with in situ measurements of pressure heads during a one 
year period. For comparison purposes, a reference simulation was also carried out for one 
plot, in which all thin soil layers were considered separately. 

MATERIAL AND METHODS 

Soils 

The study area is located in the Wieringermeer polder in the north-west of The 
Netherlands. Soil formation is absent, apart from ripening of the upper profile. Before 
reclamation in 1930, the study area was part of a mud-flat landscape of tidal channels 
separating shoals. The soil material was deposited during the Calais IV/A transgressive 
phase (Pons and Van Oosten, 1974) and shows a range in texture between sand and silty 
clay. The soil is strongly layered, varying from place to place and with depth between a 
few thin (1 mm to 1 cm) silty clay lenses or layers in a sandy matrix to a few thin sandy 
layers in a silty clay loam matrix (Fig. 1). Deposited peat fragments are occasionally 
found in the sandy matrix. The soils were classified as fine-loamy, calcareous, mesic 
Typic Udifluvents. Layered soils such as these occur widely in alluvial areas in temporal 
and tropical regions. 

The thin layers visible in a vertical section (Fig. 1) cannot be recognized from auger 
cores in a soil survey. However, combinations of thin layers (layers 2 and 3 in Fig. 1) can 
be recognized in a soil survey by their marked differences in texture when homogenized. 
It was investigated whether such combinations of thin layers might serve as functional 
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Figure 1 Vertical soil section showing thin layers and lenses. Layer 
numbers are described in Table 2. Dashed lines indicate vertical 
sections where thicknesses of thin layers and lenses were measured. 

Identification of Functional Layers 

To obtain an impression of the variation in soil types and characteristic soil layers in the 
study area, 93 soil profile descriptions were collected. Based on these descriptions, seven 
locations were selected which showed a representative range in soil types and 
characteristic layers for the area. Pits were dug at these locations and detailed profile 
descriptions were made. Detailed soil profile descriptions (Fig. 1) were translated into a 
vertical succession of functional layers following the procedure given in Fig. 2. Two 
successive stages can be distinguished: 

In the first stage, a number of preliminary functional layers were identified in vertical 
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Figure 2 Procedure followed to translate a layered soil profile into functional layers. 

sections. These preliminary functional layers should also be recognizeable when profile 
descriptions are less detailed, to allow compatibility with soil survey data in a later stage. 
The functional properties "Travel time" and "Height of upward flux" (Wosten et a/.,1986) 
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were calculated for each preliminary functional layer using a large number (67) of vertical 
transects sampled in seven soil pits. These calculations, specified in the next section, were 
based on hydraulic characteristics from each single thin soil layer encountered in a vertical 
transect. Hydraulic characteristics were obtained by classifying the texture and type of soil 
horizon of each thin soil layer into the Staring database. The significance of differences 
between preliminary functional layers was tested using a t-test on difference of means of 
calculated functional properties. If differences between preliminary functional layers were 
significant, the second stage was entered. 

In the second stage, the preliminary functional layers were sampled to measure the soil 
hydraulic characteristics. Functional properties were calculated again, using the measured 
hydraulic characteristics. If differences between preliminary functional layers were 
insignificant in a t-test, preliminary functional layer definitions were changed. 

If differences between preliminary functional layers were not significant, the definitions 
were changed. Layers that did not behave differently could then be combined into one new 
preliminary functional layer. In the extreme example, when differences between layers are 
small compared with the variability within the layers, the whole soil profile might 
ultimately be combined into one functional layer. 

Travel Time 

Travel time is the time needed for infiltrating water to pass a soil layer of a certain 
thickness. This functional property describes the behaviour of a soil layer during a 
prolonged moist period as may occur in Dutch winters. In the definition of Wosten et al. 
(1986) it is assumed that all water in the unsaturated zone is mobile, and that flow is 
characterized by piston flow with unit gradient in a semi-infinite porous medium. In a 
layered soil however, the assumption of unit gradient flow will not hold. Travel time was 
calculated as the time needed to displace the total initial water content of the soil profile 
by infiltration water, using a simulation model and assuming piston flow. Initial and 
boundary conditions were: 

(la) 
(lb) 
(1c) 

OzzzL 
QzzzL 

Z = L 

q=I 
K(Q)=I 

dH/dz = l 

f*0 
f=0 
t*0 

(stationary flow) 
(initial 6 -profile) 
(free drainage) 

where q is the vertical downward fluxdensity (m/day) at depth z and time t, I is the 
infiltration rate (m/day), L is the thickness of the preliminary functional layer (m), K is the 
hydraulic conductivity (m/day), 0 is moisture content (m3/m3) at a hydraulic conductivity 
related to I and H is the hydraulic head. 

The constant infiltration I was set to the value of the average yearly precipitation 
surplus, expressed as a daily rate for a winter period of 6 months. For conditions in The 
Netherlands this daily rate is approximated as 1.4* 10'3 m/day. All preliminary functional 
layers were scaled to a thickness L of 30 cm to allow comparison. 
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Height of Upward Flux 

The height of the upward flux is the distance above the groundwater table that still allows 
a defined upward flux density. This functional property describes the behaviour of a soil 
profile during a period without rainfall, when evaporative demand is high. This reflects a 
possible summer situation in a temperate climate in soils with a shallow water-table. It can 
be calculated using Darcy's equation for steady, upward, vertical flow: 

(2) q = -K{Udkldz) 

where dh/dz is the vertical gradient of the soil matric potential (kPa/dm), K is the 
hydraulic conductivity (m/day) and q is the flux density (m/day). Integration of equation 
[2] allows the calculation of the height of the upward flux: 

(3) z„ = -fdhKl+q/K) 

where z„ is the vertical distance between the water table and the depth at which a negative 
pressure head of h„ (kPa) is experienced. 

The height of the upward flux is a profile property, and not a property depending on just 
one layer. This problem was solved by assuming fictional profiles. The lower part of these 
profiles consists of the least limiting soil material present in the study area (a loam with 
18-25 % clay), which is the soil material allowing the largest capillary rise. The upper part 
of the fictional profiles consists of a functional layer scaled to a thickness of 30 cm. The 
effect of each layer is thus calculated with the same soil material in the subsoil. The 
conductivity curve is used to calculate a hydraulic conductivity corresponding to a 
pressure head that is experienced on a certain depth in the profile. Every thin layer within 
the preliminary functional layer has its own conductivity curve. To ensure that every thin 
layer was encountered, small Gh steps were taken while numerically solving integral 
equation [3]. The height of the upward flux was calculated for all layers in the described 
fictional profiles, with a defined upward flux density of 0.002 m/day and a pressure head 
of -50 kPa at the top of the fictional profile. 

Soil Physical Measurements 

Seven undisturbed soil columns with a diameter and height of 20 cm were taken from 
each preliminary functional layer. The hydraulic conductivity at and near saturation was 
measured on these columns using a ring infiltrometer. Tensiometers were installed in each 
infiltrometer at two depths to measure the vertical gradient of the hydraulic head. The 
saturated hydraulic conductivity (K-sat), was measured by applying water at zero head to 
the prepared soil surface using a Mariotte device. At hydraulic head gradient of unity, the 
hydraulic conductivity is proportional to the infiltration rate. The unsaturated conductivity 
at hydraulic heads in the range between 0 and -4 kPa was determined by applying a crust 
of hydraulic cement on to the soil surface in the ring infiltrometer and measuring the 
infiltration rates at unit head gradient at different negative heads with an adjustable 
Mariotte device (Booltink et al., 1991). Unsaturated conductivities at higher suctions (to 
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-100 kPa) were determined on 10-14 undisturbed 300 cm3 samples (two samples taken 
from each infiltrometer sample), using the one-step outflow method (Doering, 1965; Kool 
et al., 1985). Water retention data at pF 3 and 4.2 were determined by measuring the 
moisture release in pressure extractors on disturbed samples. 

Parameters from the Van Genuchten closed form equations (Van Genuchten, 1980), 
describing the conductivity and retentivity relations in relation to pressure heads, were 
derived for each 300 cm3 sample from the water retention data, the measured hydraulic 
conductivities and the outflow curve, using an optimization program described by Kool 
and Parker (1987). 

Validation: Simulations in Layered Soils 

The working hypothesis of this research was, that each thinly stratified soil profile in the 
studied field could be generalized into a number of functional layers. These functional 
layers each had a specific set of hydraulic characteristics, allowing simulation of soil water 
flow at any location where a soil profile description was available. The validation of this 
hypothesis was based on a comparison of simulations and measurements. The soil 
moisture regime was simulated with the model LEACHW (Wagenet and Hutson, 1987). 
Water flow is calculated in LEACHW using a finite difference solution to the soil water 
flow equation 

at az dz 

where 8 is the volumetric water content (m3/m3); t is the time (days); H is the hydraulic 
head (10 kPa, defined as H = h-z, where h is the soil water matric potential and z is the 
depth in cm); K = hydraulic conductivity (cm/day) and U is a sink term representing water 
lost by plant uptake. The relations between K, 0 and h that are required were described 
using the closed form equations proposed by Van Genuchten (1980). 

Discretization of the profile, due to the finite difference solution of eq. 4, requires model 
parameters for each compartment. The Van Genuchten (1980) parameters were obtained 
by the classification of each compartment into a functional layer using the soil profile 
description for the site. Three sets of Van Genuchten parameters were available for each 
functional layer: 
(i) A set based on classification into the Staring database of the texture of the most 
dominant sublayer; 
(ii) A set based on classification into the Staring database of the texture of a homogenized 
sample; 
(iii) A set based on measured soil hydraulic characteristics. 
In the third set, the average conductivity and retentivity characteristic for each functional 
layer was obtained by fitting the parameters of the Van Genuchten closed form functions 
(Van Genuchten, 1980) through a scatter of 0-h and K-h points. These points were 
obtained from the fitted characteristics from the samples classified in that functional layer. 

To test whether the generalization of the soil profile into a vertical sequence of 
functional layers was applicable, three simulation model input scenarios were carried out. 
The scenarios differed with respect to the generation of the soil hydraulic characteristics 
for each functional layer required as model input: 
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-1- using only set (i) based on dominant textures; 
-2- using only set (ii) based on homogenized textures; 
-3- using only set (iii) based on measured characteristics. 
Simulations were performed on seven plots, located in a field where barley was grown. 
The boundary inputs are presented in Figure 3. The simulation period was 1 April 1989 to 
1 April 1990. 

1: precipitation (mm) 

2: potential evapotranspiration (mm) 

3: depth to groundwater (dm) 

40 -

30 -

20 -

10 

100 150 200 

day after April 1 1989 

Figure 3 Boundary inputs for simulation of the soil moisture regime. Depth to 
groundwater in dm, potential evapotranspiration and precipitation in mm. 

Simulated soil matric potentials were compared with the time series of measured matric 
potentials on these plots at depths of 35, 45 and 100 cm. A number of statistical 
parameters often used to describe quality of simulation results (Loague and Green, 1991) 
were used to compare measured versus simulated values. These were maximum error 
(ME), root mean square error (RMSE), coefficient of determination (CD), modelling 
efficiency (EF) and coefficient of residual mass (CRM). 

(5a) ME=MAX"ml(ABS(OrS)) 

n 1/2 _ 

(5b) RMSE^CE^-Ofln) *(100/O) 

(5c) CD = ^(OrO)2/^(SrO) 
«=i i< 
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(5d) EF=<£ (OrP)2-]C (SrOf)/(£ (OrO)2) 
i=l i-1 1=1 

(5e) CRM=(£ O r £ S,)/(£ O,) 
i=l i=l i=l 

where O are observed values and S are simulated values. The ME value is the maximum 
difference between an observed and a simulated value, and indicates the worst case 
performance of a model. The RMSE value indicates how much the simulations are over-
or underestimating measurements, expressed as a percentage of the averaged value of the 
measurements. The CD statistic, which is not equal to the coefficient of determination 
used in classical statistics, describes the ratio between the scatter of simulated values and 
the scatter of measurements. The CD indicates whether the dynamics in measured and 
simulated values agree. The EF value indicates whether the simulations provide a better 
estimate of measurements than the average value of the measurements. If the EF is less 
than 0, the average value of the measurements is a better estimator. The CRM value 
indicates whether simulations tend to overestimate or to underestimate. A negative CRM 
value indicates a tendency to underestimate. As all five statistics describe a different 
aspect of simulation quality, it was decided to select the best performing simulation 
scenario after comparing all five statistics simultanously. 

The over all best performing simulation input scenario was selected by ranking the 
scenario's in order of performance for each depth and statistic separately, and taking the 
average rank as comparative criterion. 

RESULTS AND DISCUSSION 

Functional Layers 

The average values and variability of the functional properties of preliminary and definite 
functional layers are given in Table 1. The mean value of a functional property in a 
preliminary functional layer differed significantly from that of other preliminary functional 
layers in most instances (Table 1). Only the height of upward flux calculated for the 
plough layer (preliminary functional layer 1) was comparable with that of layer 2. It was 
concluded, that the 3 preliminary functional layers should be sampled separately. 

Calculations of functional properties, using the measured soil hydraulic characteristics, 
showed significantly different mean values of travel time and height of upward flux in all 
instances (Table 1). Based on these results, it was concluded, that functional layers 1, 2 
and 3 must be distinguished during the soil survey. Definite functional layers are described 
in Table 2. Generally, the mean values of a functional property for the preliminary and 
definite version of a functional layer are comparable. The variability, expressed by the 
coefficient of variation (Table 1), was slighdy overestimated during the analysis of the 
preliminary functional layers. One exception is the mean height of upward flux for 
preliminary and definite functional layer 1 (the plough layer). The hydraulic characteristics 
based on texture and those based on measurements lead to clearly different values for this 
functional property. Soil texture alone probably cannot explain the soil physical behaviour 
in this plough layer. 
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Table 1 Results from testing the difference of mean values from functional 
properties between preliminary (p) functional layers and definite (d) functional 
layers 1, 2 and 3. Values with asterisk ' differ significantly from values for the 2 
other functional layers at a=0.05 (2-sided). CV is coefficient of variation 

functional 
layer 

P1 
P2 
P3 

d1 
d2 
d3 

obs. 
(n) 

14 
67 
67 

10 
13 
14 

Travel time 
u 

days 
81.49' 
54.89' 
90.98' 

80.33' 
65.58' 
106.08' 

a(n-1) 

days 
5.33 
14.07 
0.38 

5.73 
11.78 
8.64 

CV 

. 
0.07 
0.26 
0.11 

0.07 
0.18 
0.08 

Height of upward flux 
H 

cm 
75.43 
75.86 
47.10' 

37.30' 
75.04' 
54.29" 

o(n-1) 

cm 
12.25 
21.46 
20.53 

17.68 
18.67 
15.94 

CV 

. 
0.16 
0.28 
0.44 

0.47 
0.25 
0.29 

Table 2 Description of functional layers, relation to horizons and some soil characteristics 

functional horizon texture org. bulk Genuchten parameters 
layer when matter dens. K-sat e-res 0-sat a n y 
and description mixed 

% kg/dm3 cm/day crrrVcm3 cm"' 
1 plow Ap loam 2-4 1.44 265 0.00 0.44 0.113 1.147 9.194 

layer to clay loam 

2 sandy loam C1 
layer with 
clay loam 
lenses/layers 

3 silty clay C2 
loam layer 
with sandy 
loam lenses 

sandy 0-1 1.29 23 0.00 0.44 0.020 1.331 0.959 
loam to 
loam 

loam, 0-1 
clay loam, 
silty 
clay loam 

1.09 21 0.10 0.58 0.012 1.328 6.558 

As a result, it can be concluded that both the mean value and variability of the functional 
properties were well estimated by preliminary functional layers 2 and 3. 

Characteristic water retention and hydraulic conductivity curves with confidence zones, 
based on geometrical averages of 10 to 14 individual curves, are presented in Figure 4. 
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moisture content (cm.3/cm.3) 

1 2 3 4 
log-pressure head (mBar) 

log-conductivity (cm/day) 
2 

1 2 3 4 5 
log-pressure head (mBar) 

Figure 4 Characteristic water retention and hydraulic conductivity curves and 1 
standard deviation zones for functional layers I to 3, obtained by geometrically 
averaging 8 to 14 measured curves. 

Simulations 

Results of the statistical comparison between observed and simulated soil matric potentials 
are given in Table 3. 

The simulations based on measured soil hydraulic characteristics (scenario 3) were 
clearly more realistic than simulations based on estimated characteristics (scenarios 1 and 
2). In Figure 5, simulations according to the 3 described scenarios are presented for one of 
the seven plots. Simulations based on scenario 1 and 2 were much dryer during the 
summer than those based on scenario 3. This is predominantly caused by the stronger 
capillary upward flux allowed in functional layer 1 by the estimated hydraulic 
characteristics, relative to the flux allowed by the measured characteristics. This lead to 

49 



much higher actual evaporation rates in for scenarios 1 and 2, and thus to a dry simulation 
of the upper part of the profile. 

In addition to these 3 simulation scenarios, a fourth scenario was defined to determine 
whether the results of scenario 3 could be improved. It was suggested that the functional 
layer having the most heterogeneous morphology (layer 2, see Fig. 1) would show a more 
pronounced spatial variability of the soil hydraulic properties between locations. In 
scenario 4, the plot-specific homogenized texture was used to estimate the hydraulic 
characteristics for functional layer 2, whereas for functional layers 1 and 3 the set based 
on measured characteristics was used. The results are presented in Table 3 and Figure 5. 
Scenario 4 showed a slight improvement relative to scenario 3, considering the 35 cm and 
45 cm statistics (Table 3). 

Extra simulations were also performed with one profile, taking into account the thin 
layering of the profile. The compartment size in the model was reduced to 3 mm, and 
estimated hydraulic characteristics from every thin layer were used. The results are 
presented in Figure 5 as scenario 5. Measured and simulated matric potentials based on 
scenario 5 show only very small differences, especially in the topsoil. Simulations with 
scenario 3 and 4 agree well with this "reference simulation". Scatter plots of simulated and 
measured matric potentials are given in Figure 6. Simulations based on scenarios 1 and 2 
were generally too dry. Simulations based on scenarios 3 and 4 show a more symmetrical 
distribution around the 1:1 line in Figure 6. 

Table 3 Results of statistical comparison between simulated and measured matric 
potentials. Best statistics for depth are indicated with asterisk". N is the number of 
samples, ME is maximum error, RMSE is root mean square error, CD is coefficient of 
determination, EF is modelling efficiency and CRM is coefficient of residual mass. 

Depth Input 

cm 
35 
35 
35 
35 

45 
45 
45 
45 

100 
100 
100 
100 

all 3 
all 3 
all 3 
all 3 

N 
scenario 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

range: 
best: 
108 
108 
108 
108 

98 
98 
98 
98 

97 
97 
97 
97 

303 
303 
303 
303 

Statistic 
ME 

[0;°°> 
0 
3.70 

'3.60 
5.20 
5.00 

2.50 
2.80 
0.40 
0.30 

2.62 
'2.61 
3.10 
3.10 

. 
-
-
-

RMSE 

[0;~> 
0 

1263.74 
1335.82 

'87.15 
91.59 

877.56 
1133.84 

96.01 
'95.96 

107.98 
114.10 
84.83 
'84.33 

. 
-
-
-

CD 

[0;~> 
1 
0.01 
0.01 
1.76 

'1.59 

0.02 
0.01 

'1.73 
1.74 

1.72 
'1.54 
2.79 
2.83 

_ 
-
-
-

EF 

<-~;1] 
1 

-118.48 
-132.50 

0.43 
0.37 

-47.13 
-79.35 

0.42 
0.43 

0.42 
0.35 
0.64 
0.65 

_ 
-
-
-

CRM 

<-ooJoo> 

0 
-3.87 
-4.45 
0.21 
0.17 

-2.44 
-3.93 
0.11 
0.09 

-0.40 
-0.47 
-0.13 
-0.14 

. 
-
-
-

rank 

[1:4] 
1 
2.8 
2.6 
2.2 

'1.8 

3.0 
4.0 
1.8 

"1.2 

2.6 
2.8 

'2.3 
"2.3 

2.8 
3.4 
2.0 
1.8 
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Figure 5 Simulated versus measured soil matric potentials for plot 74 at 35 (a), 45 (b) 
and 100 cm (c) according to scenario 1 to 5. 
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Figure 6 Simulated versus measured soil matric potentials for all 7 plots and 3 depths 
according to scenario I (A) to 4 (D). 

CONCLUSIONS 

In thinly stratified sedimentary deposits, functional layers were successfully identified that 
were recognizable in a regular soil survey and which showed significantly different 
functional properties. Preliminary functional layer definitions in these soils must be based 
on detailed profile descriptions. 

Simulations based on the input of soil hydraulic characteristics for functional layers were 
realistic when compared with measurements and with a reference simulation for one plot, 
considering all the thin soil layers separately. 
Simulations based on soil hydraulic characteristics that were measured on site were more 
realistic than those estimated by class pedotransfer functions. For a layer with a strongly 
varying morphology, slightly better simulation results were obtained when the 
homogenized texture at each location was classified into a class pedotransfer function to 
derive the soil hydraulic characteristics. 
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Netherlands 
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Netherlands. 

SUMMARY 

Field scale variability in the grain yield of barley in 1989 was investigated in 62 field 
plots in a Dutch Polder area, and compared to soil- and simulation type characteristics. 
Total grain mass varied between 3409 and 6019 kg/ha, and grain moisture content between 
13.1 and 14.7 %. Soil profile descriptions and soil characteristics were used as basic input 
data for simulations. Soil water flow was simulated at 119 locations with the LEACHM 
model, for the purpose of quantifying spatial variability in transpiration deficits in the 
growing season. Both soil- and simulation type characteristics were translated from point 
values to spatial averages for the harvested fields, using kriging. Kriged characteristics 
were correlated with yields, and used to construct transfer functions. Simulated 
transpiration deficits during sensitive crop development phases showed negative 
correlations with grain yield. Transfer functions explained at maximum 68.2 % of the 
variance in the yields. 

INTRODUCTION 

Determination and prediction of crop yields is being researched for economic and 
scientific reasons. Theoretical studies (Van Keulen & Wolf 1986) suggest that crop yields 
are determined largely by the potential assimilation rate and may be limited by lack of 
water and nutrients (Van Diepen et al. 1988). Modern agriculture attempts to maximize 
crop yields by removing the risk of water- and nutrient stress through irrigation and 
fertilizing. 

Usually, fertilizer applications are distributed evenly over a field, the amount applied 
being based on an average need. It has been established (Neeteson 1989), that the response 
of yields to plant available nutrients shows small gradients when nutrient levels are nearly 
optimal. In agricultural practice, it is assumed that a fertilizer application corresponding to 
the average need should result in a small variability in yields. However, Church et al. 
(1983) and Gales (1983) report a large variability in crop yields on a field scale and a 
coefficient of variation of 25% was derived from Tits et al. (1989). Knowing the factors 
that cause this variability and, if possible, mapping them, would enable location-specific 
agricultural measures, like for example focusing irrigation on areas where moisture deficits 
are most likely to occur and adding fertilizer according to local need. These measures can 
lead to higher profits per unit area by reducing costs or by increasing yields. 

This paper presents a case study linking the spatial variability from soil survey and 
simulation-type characteristics to the observed variability in crop yields on a field scale. 
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From comparison, causes of the variability in yields were identified. 

MATERIALS AND METHODS 

Soils 

The study area was located in a polder area in the north-western part of the Netherlands. 
Before reclamation in 1930, the site was part of a mud-flat landscape of tidal channels 
separating shoals. One such channel, now filled up, can still be recognized on the soil 
texture map (Fig. 1). 

loam 

loam 

100 

distance (m) 

200 

Figure 1 Soil texture map with sandy loam, loam on clay loam, clay loam on loam and 
clay loam soils. Soil profile descriptions were sampled at * and mineral N was sampled at 
o. Rectangles represent harvested field plots. 

The soil material shows a range in texture between sandy loam and silty clay. The soil is 
strongly layered, varying from place to place and with depth. The variation ranges from a 
few thin (1 mm - 1 cm) silty clay lenses or layers in a sandy matrix to few thin sandy 
layers in a silty clay loam matrix. Apart from ripening of the upper profile part, no 
pedogenesis has occurred since the deposition of the soil material. Soils were classified as 
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Typic Udifluvents (Soil Survey Staff 1975). 

Data Collection 

119 Soil profiles were described by augering on a triangular grid at 16 m intervals (Finke, 
1991) (Fig. 1). Soil textures were determined for all soil layers in each profile in the 
laboratory and by field grading, for the 0-40 cm, 40-80 cm and 80-120 cm depths. All soil 
layers were classified by their texture and organic matter content into one of the units of 
the Staring series (Wosten 1987), which is a national database for Dutch soils, linking 
texture class and organic matter content class to soil physical characteristics. Water 
retention and hydraulic conductivity characteristics derived from this procedure, together 
with the textures on which they were based, are presented in Figure 2. These 
characteristics were used in the simulations described later. 

).0 0.1 0.2 0.3 
VMC (cm.3/cm.3) 

0.0 0.1 0.2 0.3 
VMC <cm.3/cm.3) 

Figure 2 Water retention characteristics (left) and hydraulic conductivity characteristics 
(right) for topsoils (top, b-codes) and subsoils (bottom, o-codes) from the Staring series. 
Codes refer to textural classes indicated in the central figure. Courtesy J.HM. Wosten. 

Mineral nitrogen was determined one month before fertilizing and sowing, by analysing 
soil samples from the layer between the 0 and 60 cm depth at 43 locations on a 
rectangular grid having a mesh of 22 m (Fig. 1). A 22 m rectangular grid was chosen 
instead of the 16 m triangular grid to reduce laboratory costs. For barley, the N fertilizer 
application was calculated using the average mineral N content in the 0 - 60 cm depth. 
The mineral nitrogen content available to the plant at the start of the growing season was 
determined for all 43 sampling locations by adding the amount of N in fertilizer and in the 
soil as mineral N. 

Barley yield was measured by harvesting 62 plots ranging in area from 10 to 47 m2 (Fig. 
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1). The width of each plot was 2.2 m, being the cutting width of the combine harvester, 
the length varied from 4.6 to 21.5 m. Locations were chosen at a minimum distance of 13 
m from the edge of the field and a minimum distance of 2 m from fixed tracks used for 
husbandry practices, thus avoiding yield variations due to edge and husbandry effects. 
Eight smaller plots at mutual distances smaller than 50 m were harvested also to obtain an 
estimate of yield variation at short ranges. The smallest area harvested was still large 
enough to keep mass measurement errors below 1%. Total grain yield was determined on 
each plot, and subsamples were taken to determine the moisture content of the grains. 
Measurements of moisture contents and of plot areas were used to correct total grain yield 
to grain yield at 16% moisture content in kg/ha. 

Simulation of Transpiration Deficit 

Soil water fluxes and, more specifically, transpiration during the growing season were 
simulated for the 119 soil profiles described during the soil survey, using the model 
LEACHM (Wagenet & Hutson 1989). Water flow is calculated in LEACHM using a 
finite-difference solution to the soil-water flow equation 

(i) ^=Amm-U(Ztt) 
at az oz 

where 0 is the volumetric water content (m3/m3), t is time (day), H is hydraulic head (kPa, 
defined as H = h-z, where h is soil water matric potential in dm water, equivalent to kPa, 
and z is depth in dm), K is hydraulic conductivity (cm/day) and U is a sink term 
representing water lost by transpiration (cm). The functions between K, 0 and h that are 
required, were described using the closed-form equations provided by Van Genuchten 
(1980). LEACHM divides potential evapotranspiration into potential evaporation and 
potential transpiration using a crop cover fraction. If actual evaporation falls below 
potential evaporation, the energy not used for evaporation is assumed to cause a 
convective air flow that stimulates transpiration. This is simulated in LEACHM by adding 
the difference between potential and actual evaporation to the transpiration, up to a 
maximum actual:potential transpiration ratio specified by the user of the model. This may 
cause the transpiration deficit to become negative when the soil surface can no longer 
sustain an upward flux equal to the potential evaporation, but the layers in the rooting 
zone can still supply enough moisture for an increased transpiration. 

It is known (Geisler 1980), that the yield of cereals may decrease by stress due to 
moisture deficits during some sensitive plant development phases. Cereals are considered 
sensitive to moisture deficits during the vegetative growing phases and the phase of 
development of inflorescence (Geisler 1980). Moisture deficits during a number of 
development phases as defined by Feekes (1941) were quantified by the simulated 
transpiration deficit during that period, being the difference between potential and actual 
transpiration. A number of development phases were defined in time by dating time of 
sowing, emergence, florescence and harvest and identifying degree of ripening at harvest 
Other development phases were dated using these observations and a decimal code linking 
crop development stage to fraction of growing season passed (Zadoks et al. 1974). 
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Boundary Conditions and Other Input Data 

The upper boundary conditions were satisfied by providing a daily precipitation, corrected 
for evaporation of intercepted water by a relation which calculates the amount of 
intercepted rainfall with precipitation and fractional crop cover as dependent variables; a 
weekly potential evapotranspiration, calculated by correcting evaporation according to 
Penman (1948) with a crop factor varying during the growing season; and a maximum 
actual to potential transpiration ratio. It was assumed that precipitation and potential 
evapotranspiration did not vary within the experimental area, so upper boundary input data 
were the same for all 119 simulation locations. 

The lower boundary condition was satisfied by providing a weekly groundwater depth. 
Groundwater depths, monitored biweekly on seven locations in an adjacent field, show a 
strong correlation to surface altitude in the summer. Surface altitude was therefore used to 
translate the time series of the groundwater depths to the 119 simulation locations. Time 
series of precipitation, potential evapotranspiration and groundwater depth at a monitoring 
location are presented in Figure 3. 

§ 
E 
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day after 1 jan 1989 

Figure 3 Time series of precipitation events (1, mm) and potential evapotranspiration 
(2,mm) represented as daily values, and depth to groundwater (3, dm). 
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Soil hydrological characteristics at 5 cm depth intervals, quantified by the parameters of 
the analytical functions from Van Genuchten (1980), were obtained by classifying each 
depth interval into an element of the Staring series (Wosten 1987), using the soil profile 
descriptions. Simulations started on 1 March 1989 (1 month before sowing) with a soil 
profile in equilibrium with the initial groundwater depth, and ended on 10 August (day of 
harvesting). One simulation was carried out at the monitoring location to investigate 
whether simulation results would be realistic. Simulated and measured matric potentials at 
35 cm depth were compared. 

Statistical Procedures 

Spatial statistics 

This study aimed at a comparison between soil- and simulation characteristics on the one 
hand, and measured yields on the other. However, measured yields are essentially values 
for an area, and the soil and simulation characteristics are point values. Also, field plots 
may not contain point observations. To overcome this problem, point values were 
translated to spatial averages for each of the 62 harvested fields. 

To obtain spatial averages, kriging was applied. In this study, kriging will be regarded as 
a regression procedure (Goldberger 1962; Corsten 1989). In the absence of a trend, 
assuming that the intrinsic hypothesis holds, the best linear unbiased predictor (BLUP) t of 
a variable y in an unvisited location can be formulated as (Stein et al. 1988; Stein & 
Corsten 1991): 

(2) t -A+ftVrV&U 

where p is a model parameter estimated by (1' G'1 l)"1 1' G"1 y; g„ is the n-vector 
containing the semivariance values between n observations and the prediction point; G is 
the n*n matrix containing the semivariance values between the observation points; y is the 
n-vector containg the observations; and ln is the vector of length n containing the elements 
1 only. 

In this study, a discretized form of block-kriging was used, equivalent to "combining 
kriging estimates" in the sense of Journel and Huijbregts (1978, p.321). This was preferred 
to the usual block-kriging (Journel & Huijbregts 1978, p.77), because the fields were 
unequal in size and were not all rectangular. 

The combined kriging estimate T for a field plot was calculated from: 

(3) r=l£*i 

The M prediction locations were situated on a square grid within the field plot. The 
number of prediction locations ranged from 30 to 36, depending on the shape of the field 
plot. 

Semivariograms of soil- and simulation characteristics were obtained by choosing the 
best fitted model among a linear model with sill and an exponential model, using a 
weighted minimal-sum-of-squares criterion between experimental and fitted semivariances. 
The weighting factor was the number of paired observations used to calculate each point 
in the experimental semivariogram. The linear semivariogram model with sill is defined 
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as: 

(4) y(h) 
JC0(1-8(A))+. 

1 C„ +A * ra 

•A*\h\ if hz range 

range if h> range 

and the exponential semivariogram model as: 

(5) Y(ft)=C0(l-8(A))+C(l-exp^) 

where Co is the limit of the semivariogram as h approaches 0 ("nugget variance"); 5(h) is 
1 when h=0 and 0 when h#); A is a parameter describing the slope of the linear model, 
and C is the difference between the nugget and the maximum variance in the exponential 
model; h is the distance between two locations and r is a distance parameter, that is 
related to a distance 3*r (the "range") at which observations become virtually spatially 
independent. 

Transfer Functions 

Measured yields and predicted plot averages (soil- and simulation characteristics) were 
mutually compared by means of the correlation coefficient. By using multiple linear 
regression, transfer functions (Bouma & Van Lanen 1986) were constructed that could 
estimate the yield in 1989 by combinations of soil- and simulation characteristics as 
independent variables. The quality of the transfer functions was described by the 
percentage of variance explained. By application of backward elimination, the number of 
variables used to estimate the yield was reduced until the decrease in the percentage in 
variance explained became significant. Multiple regression, with and without backward 
elimination, was performed using SPSS, version 3.32. 

RESULTS AND DISCUSSION 

Data Collection 

Soil Survey and Yield Measurements 

The soil survey resulted in the soil map (Fig. 1) and in a database containing soil 
characteristics at 119 locations. Parameters of fitted variograms of soil characteristics that 
were used for kriging, are given in Table 1. Grain yields varied between 3409 kg/ha and 
6019 kg/ha at 16% moisture content (Fig. 4), where grain moisture contents varied 
between 13.1 and 14.7%. The mean yield was 4622 kg^a with a coefficient of variation 
of 9.2 %. The difference in crop yields between the harvested fields that had smallest 
areas, which were located close to each other (small values of x- and y-coordinates in Fig. 
4) indicate that a considerable variability existed at short distances. 
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Figure 4 Measured barley grain yields on field plots. 

Simulations 

A comparison between simulated and observed soil matric potentials at an adjacent site 
showed a realistic simulation (Fig. 5). During a rewetting phase in the growing season 
(near day 153), simulated matric potentials were slightly more negative than observed 
values. This may be explained by hysteresis. Because the differences were small, we 
thought that simulations with LEACHM at the 119 locations would yield realistic results 
also. These simulations resulted in a database of simulated transpiration deficits during 
several crop development stages at 119 locations. Parameters of fitted variograms of 
simulation characteristics are given in Table 1. 
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4 0 0 

day after 1 jan 1989 

Figure 5 Simulated (solid line) and measured (triangles) soil matric potentials in the 
rooting zone (35 cm) during 1989 in an adjacent field. Horizontal line indicates growing 
season. 

Table 1 Variogram models fitted to experimental data. TDFXXJC is transpiration deficit at 
Feekes stage XCJC . CC=Clay Content (%); SC=Sand Content (%); l=layer 0-40 cm; 
2=layer 40-80 cm; 3=layer 80-120 cm. 

Variable 

CC1 
SC1 
CC2 
SC2 
CC3 
SC3 
TDF4 
TDF6 
TDF7 
TDF8 
TDF9 
TDF10 
TDF10.1 
TDF10.2 
TDF10.3 
TDF10.4 
TDF10.5 
TDF11.1 
TDF11.2 
TDF11.3 
mineral N 

Variogram 
model 

exponential 
exponential 
exponential 
exponential 
linear/sill 
linear/sill 
linear/sill 
linear/sill 
linear/sill 
linear/sill 
linear/sill 
linear/sill 
pure nugget 
exponential 
linear/sill 
linear/sill 
linear/sill 
exponential 
linear/sill 
exponential 
pure nugget 

CO 

1.57 
21.6 
5.12 
17.0 
0.0 
0.0 
0.000939 
0.000836 
0.000075 
0.000077 
0.001963 
0.002253 
0.001135 
0.0 
0.001223 
0.001423 
0.001550 
0.025130 
0.025403 
0.030200 

26.22 

Variogram 
A 

14.1 
85.9 
10.4 
48.8 
-
-
-
-
-
-
-
-
-

C 

-
-
-
-

0.38 
1.45 
0.00000105 
0.00000021 
0.00000016 
0.00001669 
0.00001819 
0.00000422 

-
0.00168 -
-
-
-

0.00005877 
0.00001490 
0.00002114 

0.00871 -
- 0.00004235 
0.01561 -
- -

r 

m 
21.2 
79.0 
33.3 
64.0 
-
-
-
-
-
-
-
-
-
9.2 

-
-
-
50.0 
-
45.0 
-

range 

m 
-
-
-
-
155.0 
93.1 
45.0 
113.0 
57.7 
33.2 
36.0 
138.0 
-
-
22.8 
34.9 
29.8 
-
30.7 
-
-

R2 

0.97 
0.95 
0.80 
0.88 
0.96 
0.97 
0.06 
0.01 
0.04 
0.82 
0.47 
0.22 
0 
0.51 
0.30 
0.64 
0.46 
0.25 
0.61 
0.52 
0 
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Cumulative transpiration deficits, derived after kriging the 119 point-values to the 62 
harvested areas, are presented in Figure 6. Cumulative transpiration deficits were negative 
between day 140 and 160. Negative deficits occur because the upper soil compartment in 
the simulated soil profile starts to desiccate. The vertical bars in Figure 6 show that 
variation is small when the transpiration deficit increases (after crop development stage 
10.5). During crop development phases 7 to 10.5, transpiration deficits are small, and 
variation is larger. Figure 7 gives a map of the simulated cumulative transpiration deficit 
at harvest date. At harvest, transpiration deficits are largest in the sandy loam soil unit 
(Fig. 1), and smallest in the clay loam soil unit The filled up tidal channel (Fig. 1) can be 
recognized in Fig. 7 by the lower transpiration deficits. 
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Figure 6 Spatial averages and variability of cumulative transpiration deficits on 62 
harvested field plots at several crop development phases according to Feekes. vertical 
bars indicate the coefficient of variation (CV). Number 11.3 is development stage at 
harvest. 

68 



• 8.00-8.50 
8.50-8.75 
8.75-9.00 

9.00-9.25 
9.25-9.50 
9.50-10.00 

200 
200 0 50 100 150 

distance (m) 

Figure 7 Kriged map of cumulative transpiration deficit (mm) at date of harvest. 

Correlating Soil- and Simulation Characteristics to Crop Yields 

Soil Characteristics 

Correlation coefficients of kriged soil characteristics with grain yields are given in Table 
2. Soil texture at depths between 80 and 120 cm showed the strongest correlation with 
grain yields. Large sand contents in this layer are associated with large yields, and large 
clay contents with small yields. Clayey texture in this layer possibly limits the upward 
movement of water, which may cause moisture stress in the rooting zone when 
evapotranspiration demand is large. 

After fertilizing, mineral nitrogen contents in the 0 to 60 cm layer showed a negative 
correlation with grain yields. This was unexpected, since a positive correlation would seem 
more logical. However, a negative correlation may be explained if drought occurs. At 
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locations with more available nitrogen, plants may initially grow faster. In dry periods, the 
greater Leaf Area Index of a bigger plant induces a greater potential transpiration, which 
may lead to a transpiration deficit and to stressed growth. 

Table 2 Correlations ofkriged soil characteristics 
with barley grain yields on 62 harvested fields. 

soil layer 
characteristic depth 
(% or kg/ha) 

clay content 
sand content 
clay content 
sand content 
clay content 
sand content 
mineral N 

(cm) 

0-40 
0-40 

40-80 
40-80 
80-120 
80-120 
0-60 

barley grain 
mass yield 
(at 16% moisture) 

0.11 
-0.17 
-0.22 
-0.07 
-0.38 
0.36 

-0.32 

moisture 
content 
grains 

0.44 
-0.18 
0.39 

-0.22 
0.27 

-0.16 
0.14 

Simulation Characteristics 

Correlations between kriged simulated transpiration deficits and grain yields are given in 
Table 3. Transpiration deficits during crop development stages 9, 10.1 and 10.4 show the 
strongest (negative) correlations with grain yields, indicating that a positive transpiration 
deficit during these periods is associated with small yields. Correlations between 
transpiration deficits during the ripening phases (11.1 to 11.4) and grain yields are low. 
The barley crop appears to be more sensitive to moisture deficits during its vegetative 
growth and the development of inflorescence than during the ripening phase. This is in 
agreement with the views from crop science (Geisler 1980). For the positive correlation 
between transpiration deficits during the florescence and grain yields, no explanation can 
be given. 

Transfer Functions 

Measured grain yields were compared to yields estimated by multiple linear regression 
using soil- and simulation characteristics as explanatory variables (Table 4). Comparisons 
were made using the percentage of variance explained as the criterion. A pedotransfer 
function, based on all soil characteristics considered in this study, explained 34.2 % of the 
variance in crop yields. Backward regression yielded a pedotransfer function, based on 
clay and sand contents in the 0 - 40 cm layer, and clay contents in the 40-80 cm and 80-
120 cm layers that still explained 33.1 % of the crop yield variation. Comparable 
percentages of variance explained were obtained by regression functions based on 
simulated transpiration deficits. A combination of both soil- and simulation characteristics 
into one transfer function gave a substantial rise in the percentage of variance explained to 
68.2 %. This indicates, that simulation of the transpiration deficit considerably increased 
the degree to which the variability could be explained. The effect of the variability of 
mineral nitrogen contents on Leaf Area Indexes, and thus on variability of potential 
transpiration, cannot be described by the simulation model used. This effect might have 
added substantially to the percentage of variance explained. 

70 



Table 3 Correlations ofkriged transpiration deficits during 
several crop development stages with barley grain yields on 
62 harvested fields. Grains are supposed to be present after 
growth stage 105 (n.r.=not relevant). 

crop description 
development 
stage (Feekes) 

4,5 
6 
7 
8 
9 
10 
10.1 
10.2 
10.3 
10.4 
10.5 
11.1 
11.2 
11.3/.4 

stem growth 

i 
I development 
I of 

barley grain 
mass yield 
(at 16% moisture) 

-0.18 
0.01 

-0.19 
0.09 

-0.37 
0.04 

-0.27 
0.07 

| inflorescence 0.15 

I 
florescence 

ripening 

-0.42 
0.26 

-0.08 
-0.18 
-0.12 

moisture 
content 
grains 

n.r. 
n.r. 
n.r. 
n.r. 
n.r. 
n.r. 
n.r. 
n.r. 
n.r. 
n.r. 
n.r. 
-0.19 
-0.16 
-0.14 

CONCLUSIONS AND RECOMMENDATIONS 

Field scale variability of barley grain yield could be explained partly by pedotransfer 
functions based on soil texture and initial mineral nitrogen content. Another considerable 
part of the variability could be explained by transfer functions based on simulated 
transpiration deficits during sensitive plant development phases. This indicates that the 
spatial variability of transpiration is a major cause of field-scale variability in yields. 

This knowledge may be implemented in a procedure leading to a soil quality map which 
shows areas of relative drought hazard, based on a map of transpiration deficits in a dry 
growing season as presented in Fig. 7. This would give the farmer a tool to prevent local 
drought through selected irrigation, and thus of raising average and total yield at minimal 
costs. 

Variability of mineral nitrogen showed a strong correlation to grain yields, indicating 
that incorporation of nutrient fluxes in simulation models may pay off when yield 
variability is being predicted. 
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Table 4 Results of multiple regression analysis. m.r. = multiple regression; b.e. = 
backward elimination; CC=Clay Content (%); SC=Sand Content (%); MNC=Mineral 
Nitrogen Content (kg N/ha); TDFxxjc=Transpiration Deficit at Feekes stage XXJC; 1-layer 
0-40 cm; 2=layer 40-80 cm; 3=layer 80-120 cm. 

Method 

m.r. 

b.e. 
m.r. 
b.e. 
m.r. 

b.e. 

b.e. 

b.e. 

b.e. 

type 

soil 

soil 
simulation 
simulation 
soil&simulation 

soil&simulation 

soil 

simulation 

soil&simulation 

it variables used for regression -

name 

CC1.CC2, 
MNC 
CC1.SC1, 

CC3.SC1.SC2, 

CC2, CC3 
TDF4/5TOTDF11.4 

variance 
explained 

SC3, 
34.2 
33.1 
43.1 

TDF9, TDF10.4, TDF11.1, TDF11.2 31.6 
CC1.CC2, CC3.SC1.SC2, 
MNC, TDF4/5TOTDF11.4 
SC1.CC3, 

SC3, 
68.2 

SC3, TDF4/5, TDF6, TDF7, 
TDF9, TDF10, TDF10.2, TDF10.3, 
TDF10.4, TDF10.5, TDF11.1 

name 

CC1 
SC1 
CC2 
CC3 
-
TDF9 
TDF10.4 
TDF11.1 
TDF11.2 
-
SC1 
CC3 
SC3 
TDF4/5 
TDF6 
TDF7 
TDF9 
TDF10 
TDF10.2 
TDF10.3 
TDF10.4 
TDF10.5 
TDF11.2 
TDF11.3 
-

coefficient 

44.6 
-16.9 
79.0 

-110.7 
4842.1 

-6986.8 
-11144.2 
-1148.1 
4967.2 

-2739.9 
-225.3 

80.9 
-161.8 

36540.6 
33369.5 
72947.3 

-15353.4 
-8727.5 

-11908.9 
-19499.8 
-24653.4 
-6822.9 
13051.3 
4518.2 
14967.7 

.TDF11.3 65.4 

standard error 

31.54 
23.92 
41.55 
26.36 

2106.43 
2092.98 
3064.65 
1089.19 
2330.14 
5085.66 

41.06 
37.63 
40.25 

13496.28 
12806.23 
22279.45 
3480.26 
4061.06 
3686.77 
5486.05 
6782.80 
5479.79 
3595.76 
2980.81 
12107.94 
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INTEGRATION OF REMOTE SENSING DATA IN THE SIMULATION OF 
SPATIALLY VARIABLE YIELD OF POTATOES 

P.A. FINKE 

Department of Soil Science and Geology, PO. Box 37, 6700 AA Wageningen, The Netherlands 

ABSTRACT 

Field scale variation of final potato tuber yields was measured on 36 plots of 4.5*4.5 sq. 
meters. The average yield was 9014 kg dry matter/ha, and the coefficient of variation was 
10.4%. A model was developed that simulates tuber dry matter production as a function of 
radiation and of water- and nitrogen availability. Water flow and Nitrogen fate were 
simulated satisfactorily. The model was sensitive to changes of the Leaf Area Index (LAI) 
during the growing season. 

If LAI, measured by a remote sensing technique at 5 dates and 76 locations, was used 
for input to the model, 39.2% of the variance of measured final yields could be explained 
by the simulated final yields. Significantly different average yields were measured and 
simulated between two soil units present in the field. Simulations proved, that the spatial 
variation in final dry matter yields was largely caused by variability of moisture 
availability. 

Integration of remote sensed LAI into a model allows the identification of stress factors 
during the growing season, and their spatial coordinates, which can be used for location-
specific land management. 

INTRODUCTION 

Several studies have been published on field-scale variability of crop yields (Church et al., 
1983; Gales, 1983) and on possible causes. Bresler and Dagan (1988a, 1988b) and Dagan 
and Bresler (1988) used a deterministic simulation model to identify soil- and plant related 
factors to which yield variability is sensitive. It was concluded (Dagan and Bresler, 1988) 
that crop yield was sensitive to parameters describing the water retention and hydraulic 
conductivity characteristics. Furthermore, they identified the potential transpiration as a 
sensitive parameter. In the present study, it is attempted to explain field-scale yield 
variability by simulation of the combined effects of variability of soil physical 
characteristics and variability of potential transpiration. The spatial variation of the 
potential transpiration can be estimated by spatial measurements of the leaf area index. 

Applications of remote sensing in evaluating spatially variable soil and crop properties or 
soil cover properties are abundant. High correlations between measured yields and infrared 
reflectance are reported in literature (Aase et al., 1984, Van der Heijden et al., 1989). In 
the near infrared region (700-1300 nm) of the electro-magnetic spectrum, reflectance can 
be considered as a function of the total amount of leaves present, and consequently of the 
Leaf Area Index (LAI). As long as leaves do not turn yellow, accumulated biomass can be 
considered proportional to the LAI. 

Remote sensing may efficiently be used to estimate final yield levels and yield 
variability. However, it does not explain the reasons why local peaks and depressions in 
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yield develop. A combination of regularly measuring the LAI and simulating crop growth 
may reveal these reasons, and may provide a tool to remove stress factors during the 
growing season. 

This paper presents a study where space and time series of remote sensing data were 
integrated in a simulation model describing potato growth as a function of radiation, LAI, 
water availability and nitrogen availability during the growing season. The contribution to 
the simulation quality of the LAI-space and time series obtained by remote sensing, was 
evaluated by comparison to simulations using a relation between soil coverage fraction and 
the LAI from literature. 

MATERIALS AND METHODS 

Study Area 

The study area, a 2.5 ha part of an agricultural field of about 7 ha, is located in the 
Wieringermeer polder in the North-Western part of the Netherlands. Since reclamation in 
1930, the area has been in agricultural use. Soils are thinly stratified, and were classified 
as fine-loamy, calcareous, mesic Typic Udifluvents (Soil Survey Staff, 1975). A strong 
variability in texture in both lateral and vertical directions was encountered during a 
detailed soil survey (Finke, 1991), during which 402 profile descriptions were collected in 
the 7 ha field. A map of the soil texture is presented in Fig. 1. 

• loam 
• clay loam on loam 
• clay loam 

^ • loam on clay loam on loam 
s= measurements of: final yield, anorganic N, LAI 

.'f.^y.'X: soil survey sample points 

. ' ! \ \ k \ \ \ r Calibration of N-model 
1 .£"!".:. " \ # Calibration of water model 

N-treatments 

100 200 
meters 

300 

Figure 1 Soil texture map of the study area on 
which sampling and simulation locations are 
indicated. 

Soil physical characteristics were measured on 7 locations and in twofold for functional 
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soil layers, which are layers that arc easily recognizable in a soil survey, and show 
significantly different hydraulic behaviour. Functional layers were defined using a 
methodology presented elsewhere (Finke et al., 1992; Finke and Bosma, in press). 
Functional layers are used to generate simulation model input data (more specifically, soil 
physical characteristics) from soil profile descriptions. Spatial variation of the thickness, 
depth of occurrence and type of functional layers, which is inventoried during the soil 
survey, allows the location-specific estimation of soil physical characteristics. 

Field Measurements 

During a 3 year period, including the growing season of 1990, soil manic potentials at 
several depths and depth to groundwater were monitored biweekly on 7 locations. Of the 7 
time series thus obtained, 5 were used in this study (Fig. 1). Meteorological data, like 
precipitation, potential evapotranspiration, relative air humidity and global radiation were 
measured daily at the farm (1 km distance). 

Before fertilizing, anorganic nitrogen content was measured in a layer between 0 and 60 
cm depth on 43 locations. These 43 locations were located on a square grid having a mesh 
of 22 meters (Fig. 1). Near 38 of these grid locations, paired observations were made of 
reflections in near-infrared and red wavelengths, using a multi-spectral radiometer. The 
distance between the paired observations was 1 meter. Purpose of the grid sampling with 
replicates at one meter was, to determine the scale at which spatial variation occurs. At 
these locations, also soil coverages were estimated by point counting 100 grid points. 
Observations were made at several dates in the growing season: June 15 and 26, July 4, 
17 and 27. Each remote sensing observation covered a ground area bordered by a circle 
having a diameter of 1 meter, each soil coverage point count covered a square of 1 sq. 
meter. At June 26 and August 13, additional LAI-measurements were made on 16 
locations, whereafter corresponding areas of 1 sq. meter were harvested to determine the 
LAI in the laboratory. 

At the end of the growing season, potato tuber yields were determined on 36 
experimental plots of 4.5*4.5 sq. meters, each plot covering the area of 2 time series of 
LAI-measurements and of 1 anorganic N measurement To test whether 2 major soil units 
present in the field had different yields, a t-test on difference of means was used. 

Remote Sensing Methodology 

When estimating the LAI, it is necessary to estimate first the soil coverage fraction to 
correct for reflection for bare soil. In the visible part of the electromagnetic spectrum, 
roughly 80% of incoming radiation is absorbed and about 10% is reflected by each plant 
leaf layer. In practice, the reflection of the upper leaf layer determines the total reflection 
of the crop in these wavelengths. Since reflections of bare soil and plants contrast 
strongly, reflection percentages in the visible spectrum can be used to estimate the soil 
coverage fraction. In near infrared wavelengths (700-1300 nm), reflectance and 
transmittance of a green leaf are both about 50%, and absorption is of little magnitude 
(Colwell, 1983). Since transmittance is relatively high, also green leaves under the top 
leaves contribute significantly to the total reflectance. Reflection percentages in the near 
infrared spectrum can therefore be used to determine the LAI. 

Clevers (1986) developed a reflection model that expresses measured reflection as the 
combined reflections of plant and soil: 
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(1) r=rv*B+r,*(l-fl) 

where r = total measured reflection (%); rv = reflection (%) of the vegetation; r, = 
reflection (%) of the soil, and B is the apparent soil cover fraction (dimensionless). A 
corrected reflection is calculated by subtracting the contribution of the soil from the 
measured reflection: 

(2) r'=r-rt*(l-B) 

where r' = the corrected reflection percentage. For many soils (Clevers, 1986) the ratio 
between infrared and red reflection is constant, and independent of the moisture content of 
the soil, so 

(3) ^ = C 

By combination of equations 2 (for r^ and rr) and 3, one obtains: 

(4) T'ir-C*rl
T=rir-C*rT 

Since r',, can be expected to be much greater than r'r, and C was found to be close to 
unity, equation 4 can be simplified by removing the C*r'r term. 
A relation between the LAI and r'j, was given by Clevers (1986): 

(5) L 4 / = - - * l n ( l - — ) 

where a is a combination of extinction- and dispersion-coefficients, regarded as a fitting 
parameter, and r..^ is the asymptotic value of the corrected infrared reflection at very large 
LAI. The empirical parameters a and r„M were derived by fitting equation 5 to 
experimental data consisting of measurements of the LAI and corresponding infrared- and 
red- reflections. Fitting was done using the NLIN (non-linear regression) subroutine from 
the SAS-package release 5, SAS Institute Inc.. 

Reflection measurements were made using an hand-held multi-spectral radiometer 
(CROPSCAN, Inc.) attached to a portable microcomputer (Tandy 102 Radio Shack TRS 
80). Wavelengths used were 670 nm (red) and 870 nm (near infrared). 

Translating Measured Data to Equal Space Scales 

One purpose of this study was to compare simulated versus measured final crop yields. 
Measured yields are the result of sampling a plot of 4.5*4.5 sq. meters. Other 
measurements such as soil profile descriptions and anorganic nitrogen content are 
essentially point values, whereas LAI-measurements refer to a smaller area of 0.79 sq. 
meters. To overcome this scale problem, all variables that would serve as input to the 
simulation model, were translated to a spatial average for each harvested field of 4.5*4.5 
sq. meters. 
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To obtain a spatial average within a harvested field, a large number of kriging 
interpolations to points within the relevant area were made, and these interpolations were 
averaged. This kriging method is known as "combining kriging estimates" (Journel and 
Huijbregts, 1978 p.321). It was assumed that taking the spatial average following this 
method would cause no bias in simulation results, so the response of the simulation model 
to variability of input parameters within each harvested field was assumed linear. 

Simulation of Water Flow. Nitrogen Fate and Crop Growth 

Simulation of water flow, Nitrogen transformations and uptake of water and of nitrogen 
compounds by plants was simulated by the LEACHN-model (Hutson and Wagenet, 1991). 
This model was extended to simulate crop growth. 

Water flow is simulated by a numerical solution of the Richards equation: 

at az az 

where 0 is the volumetric water content (m3/m3), K(0) is the hydraulic conductivity 
function dependent on 0 (mm/day), 3H/3z is the hydraulic gradient (mm/mm), A 
represents water extraction by roots, z is depth (mm) and t is time (days). For the 
functions between K, 0 and the matric potential h that are required, the closed form 
equations of Van Genuchten were used (Van Genuchten, 1980). The lower boundary 
condition was satisfied by providing a weekly groundwater depth, translated from a 
monitoring plot in the same field by surface altitude. The upper boundary condition was 
provided by daily potential evapotranspiration and precipitation data. Plant uptake of water 
is a function of the potential transpiration and moisture availability in the rootzone. Daily 
potential transpiration was calculated as follows, according to Belmans et al. (1983): 

(7) rp=£7;*[l-exp( -0.6/)] 

where Tp is potential transpiration (cm/day), ETp is potential evapotranspiration (cm/day, 
input in the model) and I is the Leaf Area Index (mVm2 soil). 

Nitrogen cycling is described in LEACHN according to the concepts and equations of 
Johnsson et al. (1987). Nitrogen cycling pathways are given in Fig. 2. Three organic pools 
of Nitrogen, characterized as a quickly degrading manure and litter pool and a relatively 
stable humus pool are distinguished in the model. Also a urea pool and a mineral 
ammonia and nitrate pool are identified. Mineralization processes, nitrification and 
denitrification are described by first order rate constants. Volatilization is defined as a first 
order process in the surface layer. Rate constants are adjusted for temperature and water 
content effects (Johnsson et al., 1987). For the temperature effect, a Qi0-type response is 
assumed. In LEACHN, ammonium, nitrate and urea can be partially sorbed onto soil 
surfaces through a linear sorption isotherm: 

(8) S=Kd*c 

where c is chemical concentration in the liquid phase (mg/dm3), s is chemical 
concentration in the sorbed phase (mg/kg dry soil) and Kd is the distribution coefficient 
(dm3/kg). Chemical transport is simulated by a numerical solution to the conversion-
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dispersion equation (Wagenet, 1983): 

(9) ^^=±[6IWS%.-qc]-U(zS)±MzS) 
at at az dz 

where p is soil bulk density (kg/dm3), d(0,q) is the effective dispersion coefficient 
(mmVday), q is water flux density (mm/day), <|» is a source/sink term (mg/dm3,day) 
representing gains/losses through transformation and U(z,t) is plant uptake of nitrogen 
(mg/dm3,day). The plant uptake of nitrogen is determined by die transpiration flux and the 
concentration in the compartments of the rootzone. 
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Figure 2 Transformation and fate pathways of nitrogen and carbon 
species, which can be simulated with LEACHN (adapted from 
Johnsson et al. 1987). 

Crop growth, stressed only by limiting water availability, is modelled according to a 
method described by Feddes et a/.(1988). A theoretically possible maximum growth rate 
of dry matter, suffering no water- or nutrient stress, can be expressed as: 

(10) qm=c*[Pa*{l-*^)-Xj 

where q,,, is theoretically possible maximum dry matter growth rate (kg/ha,day), c is 
conversion factor from sugars to starch, Ps, is the photosynthetic rate (kg/ha,day) of a 
standard canopy with a leaf area index of 5, depending on radiation and geographical 
latitude, v is solar radiation extinction factor, I is leaf area index (m2/m2 soil) and %m is 
maintenance respiration (CH20 in kg/ha,day). The water stressed dry matter growth rate as 
a result of the actual transpiration rate is calculated according to Feddes et al. (1988): 

(11) qw=0.5*[W-+-+. 
Ac \ ( * ^ ) 2 - 4 ^ ( l - 0 ] 
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where qw is water stressed dry matter growth rate (kg/ha,day), W is maximum water use 
efficiency (kg.mbar/ha,mm), T is actual transpiration (mm/day), Ae is the average vapour 
pressure deficit of the air (mbar) and ^ is a mathematical parameter. 

Furthermore, growth rate stressed by a limiting nitrogen availability is simulated by 
multiplication of the water stressed growth rate qw by a stress factor S„, calculated from 
(Greenwood et al., 1985; Neeteson et al., 1987): 

(12) S ^ m i n l l , ^ ! ] 

where Sn is the stress factor for the current day, Pw is the actual %N in total dry matter, P0 

is the %N in total dry matter when growth ceases (increasing from 0% at the start of crop 
growth to 0.8% at plant maturity) and PM is the minimum %N in total dry matter to have 
the maximum growth rate. PM is defined as (Greenwood et al., 1985): 

(13) PM=1.35*[l+3*exp(-0.26*W)] 

where W is the total weight of dry matter (kg.lOVha). 

Model Calibration and Evaluation of Model Performance 

The model was calibrated in three successive phases. Generally, calibration was done for a 
number of plots simultaneously, by adjusting the calibration parameter for all plots in the 
same way. Simulation- and measurement-time series were compared statistically and 
graphically. It was assumed, that the calibration parameter did not show spatial variation. 

First, the water flow model was calibrated. For the time period between April 1 and 
September 3 in 1990, simulated and measured soil matric potentials at 35, 45 and 75 cm 
depth were compared at 5 locations. Tuning of the model was done through varying the 
thickness of the rooting zone. 

Second, the nitrogen model was calibrated. Since no time series of N measurements were 
available from the 1990 growing season, the nitrogen model was calibrated on data from 
the hydrological year between April 1, 1989 and April 1, 1990. Simulations and 
measurements of soil mineral N (0-100 cm depth) were compared for 8 locations. These 
locations received various amounts of manure, corresponding to N-additions between 0 
and 300 kg N/ha, and received an anorganic fertilizer gift of 35 kg N/ha. On some plots a 
catch crop was grown. Tuning of the model was done by adjusting the Q,0-factor, the 
nitrification rate factor and the distribution coefficient K,, of ammonia. 

Third, the potato-growth model was calibrated by comparing measured and simulated 
final dry matter yields in 1990 on 8 locations. Tuning was done by adjusting the 
maximum water use efficiency W. The potato-growth model was tuned twice: once when 
LAI-values estimated by remote sensing measurements were input to the model, and once 
when no LAI measurements were available. 

To evaluate model performance when using or disregarding remote sensing information, 
the calibrated model was run on 36 locations where harvests were done. The quality of 
simulated final dry matter yields of potato tubers was established by direct comparison to 
measurements and by calculating the percentage of variance of measured final yields that 
could be explained by the simulations. 
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RESULTS AND INTERPRETATION 

Potato Yield. Anorganic Nitrogen and Remote Sensing Measurements 

Measured final potato tuber yields varied between 6195 and 11155 kg dry matter/ha. The 
average yield amounted to 9014 kg dry matter/ha, and the coefficient of variation was 
10.4%. Yields in the loam soil unit (Fig. 1) were significantly lower than yields in the 
loam soil unit with a clay loam layer (Table 1). 

Table 1 Results of test that average yields in two soil units differ. Unit A = loamy 
textured soils; unit C = loamy textured soils with a clay loam layer below the plow 
layer; n.r. = not relevant; N = nitrogen availability; n = number of yields in 
smallest soil unit. 

Yields Stress - - Average yield — 
factor Unit A Unit C 

Significance 

measured 
simulated 
simulated 

n.r. 
water 
water, N 

kg/ha 
8555 
8827 
8510 

kg/ha 
9527 
9913 
9880 

-
17 
17 
17 

>0.99 
>0.99 
>0.99 

The average amount of anorganic nitrogen in the layer from 0 to 60 cm before fertilizing 
was 315 kg N/ha, with a coefficient of variation of 32%. These high levels are probably 
due to the strong mineralization in the relatively warm winter of 1989-1990. Before 
planting, an additional gift of 115 kg N was given as anorganic fertilizer. 

Space and time series of the LAI could be estimated from remote sensing measurements 
after the parameters from equation 5 were fitted. The quality of estimated LAI-values 
relative to measurements was good (R2=88.8%), and is presented in figure 3. 

estimated by remote sensing 

Figure 3 Comparison of the LAI estimated by remote sensing 
and directly measured LAI. 
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Spatial structure of the LAI at 5 dates in the growing season is expressed by the 
variograms of fig 4. In all cases, spatial structure could be modelled adequately by simple 
linear or gaussian semivariogram models. Spatial variability of the LAI decreases after 
plants have reached maturity in the last week of June, as appears from the lower values of 
semi-variances after the June 26 measurements. 

semi-variance (-) 

0.30 

0.20 

0.10 -

0.00 
20 40 60 

distance beteen two measurements (m) 

Figure 4 Variograms of the LAI at 5 dates. 

Measured final yields and LAI-estimations by remote sensing, kriged to the harvested 
fields, are moderately to strongly correlated, as appears from table 2. The LAI on 4 July 
showed the strongest correlation. After this date, correlations decrease, presumably because 
leaves start turning yellow, and biomass production goes predominantly to tubers. 

Table 2 Correlation coefficients between LAI-values 
estimated by remote sensing and measured final yields. 

Variable Correlation Significance 

LAI June 15 
LAI June 26 
LAI July 4 
LAI July 17 
LAI July 27 

0.555 
0.610 
0.727 
0.554 
0.514 

> 0.999 
> 0.999 
> 0.999 
> 0.999 
>0.99 

Simulations 

The calibration of the water flow model resulted in good simulations of soil matric 
potentials relative to measurements (R2=73.7%), as indicated in figure 5. Only at wet 
matric potentials between 0 and approximately 3 kPa, simulations are somewhat dryer than 
measurements. Simulated matric potentials agreed best to measurements when the depth of 
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the rooting zone at root maturity was 65 cm, which corresponded well with field 
observations done in an adjacent field, 

simulated 

2.0 

1.6 -

1.0 -

0.5 -

log-matric potentials 

(kPa) 

Figure 5 Calibration results of the water submodel. 

The calibration of the nitrogen model resulted in reasonably good predictions 
(R2=70.5%) of the total anorganic nitrogen content of the upper profile meter (fig. 6). 

simulated 

24 

20 

16 -

12 

8 -

4 -

anorganic N in layer 0-100 cm 

(mgr N/kg dry soil) 

- i 1 1 1 1 1— 
4 8 12 

— i 1 1 — 

16 20 
— i — 
24 

measured 
Figure 6 Calibration results of the nitrogen submodel with respect to 
anorganic nitrogen over the upper profile meter. 

Simulations on 36 harvested plots, using the remote sensing data to obtain LAI-space and 
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time series, are presented in figure 7. Simulated yields in the loam soil unit (Fig. 1) were 
significantly lower than yields in the soil unit with a clay loam layer (Table 1). 
Simulations of potato tuber final dry matter yields could explain 36.2 % of the variance of 
measured yields (table 3). Simulations on the same 36 plots, considering only the effect of 
moisture stress on crop growth, could explain 39.2%. 

simulated LAI measurements available 

-i 1 -

8 10 
measured 

12 

simulated LAI measurements not available 

12 

11 

10 
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<y 
— i — 

. * - • .# Y 

S u 
/ m 

1 1 1 1 

8 10 
measured 

12 

Figure 7 Simulation results of the potato-crop growth model, with and without 
incorporation of remote sensing measurements of the LAI. 
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Table 3 Comparison of simulated to measured tuber dry matter yields in 1990. 

Type of LAI measured by Correlation Percentage of 
stress remote sensing coefficient variance explained 

water yes 0.63 39.2 
water, nitrogen yes 0.60 36.2 
water, nitrogen no 0.14 1.9 

Simulations incorporating the effects of both water- and nitrogen stress performed slightly 
worse than simulations only regarding water stress. This may be due to the high spatial 
variability at short distances of anorganic nitrogen present in the 0-60 cm soil layer at the 
beginning of the growing season. This resulted in relatively inaccurate kriging predictions 
for the 4.5*4.5 sq. meters fields of initial amounts of nitrogen present. Another reason is 
probably, that the distribution of anorganic nitrogen over depth was assumed constant, 
which may not have been the case on all locations. 

It was concluded, that moisture availability was probably the most important source of 
variation in potato tuber yields in 1990. This was not unexpected, since anorganic nitrogen 
levels in the beginning of the growing season were sufficiently high to meet crop demand. 
Knowledge about spatial patterns of moisture availability can be used for soil management 
practices. In figure 8, a map is given in which the week is indicated when the transpiration 
deficit exceeds 2mm. A farmer could use a map such as this one to determine the area for 
irrigation. meters 

400 ̂  Transpiration deficit 
exceeding 2 mm in: 
M week 22 
M week 23 
• week 24 

^ ^ ^ ^ ^ ^ ^ ^ • week 25 
300 ^ ^ ^ ^ ^ ^ 

200 

150 

Figure 8 Kriged map showing the week in which the 
transpiration deficit exceeds 2 mm. 
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In one other series of 36 simulations, the LAI-space and time series were estimated by a 
relation from literature between soil coverage fraction and LAI, where soil coverage was 
monitored in the field. Simulations and measurements of dry matter tuber yields are 
compared in figure 7. Simulation results are not correlated to measurements (1.9% of 
variance explained by simulations). It was concluded, that direct incorporation of remote 
sensed LAI into the model considerably increased the extent to which measured final yield 
variability could be explained. 

CONCLUSIONS 

Three conclusions can be drawn from this study: 
(1) Integration of remote sensing data into simulation modelling can explain a 

considerable part of spatial variability of final crop yields on field scale. It allows 
the determination of the causes of developing yield depressions and their spatial 
coordinates. 

(2) Field scale variability of final crop yield could for a considerable part be explained 
by variability of moisture availability during the growing season. 

(3) Two major soil units found in the study area had significantly different final yields, 
both when yields were measured as when yields were simulated. 

Furthermore, it can be concluded that, when variability of crop production is to be 
simulated on a field scale, a correct estimation of the variability of the potential and actual 
transpiration is essential. Potential transpiration strongly depends on the Leaf Area Index, 
which can be estimated accurately using remote sensing techniques. Actual transpiration is 
also a function of soil hydraulic properties, which indicates, that knowledge about these 
properties and their spatial variation is needed. 
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ABSTRACT 

Soil structure variability was inventoried on a field scale, and translated to basic input data 
for a solute transport and crop production simulation model. After validation of the model, 
it was used to simulate the spatially varying effect of slurry application and N-fertilizing 
scenarios by multiple point-simulations. Feasibility of scenarios was determined by 
comparing nitrate leaching concentrations with current and pursued threshold levels. 
Disjunctive kriging was used to estimate and map the probability that these threshold 
levels were exceeded. 

Emphasis was given to the effect of soil-specific slurry application rates and N-fertilizer 
levels on leaching probabilities and crop yields. Soil specific N-treatments increased field 
yields, because crop response to N, both in slurry and in fertilizer, was soil dependent. 
Also leaching response to N-treatment was soil dependent. 

INTRODUCTION 

Currently, legislation is being developed in the Netherlands to restrict inputs into the 
environment of polluting substances. Agriculture has been identified as a possible source 
of (e.g.) biocides, nitrates and ammonia. In order to make effective laws, possible effects 
of protective measures have to be evaluated by scenario analyses. In agricultural practice, 
management takes place on a field scale at farm level, and since the management can be 
influenced by legislation, scenario analyses should be carried out on the same field scale. 
Management scenarios can be analyzed by using simulation models. Input data should 
reflect field variability. This enables the evaluation of not only the average result of 
implementing a measure, but also its field scale variability. Knowledge about this 
variability allows the effect of an implemented measure to be expressed in terms of a 
probability distribution. Such a distribution can be used to estimate the probability that the 
effect of a measure is violating a statutory threshold value. Spatial variability of a variable 
can be translated into probability density functions by using the spatial prediction method 
Disjunctive Kriging. 

This paper describes two scenario-analyses that were made to optimize the addition of 
organic manure and of anorganic fertilizer on a field scale with respect to nitrogen losses 
to atmosphere and groundwater. Special emphasis was given to the effect these additions 
would have on crop production. Both scenarios that were analyzed explicitly used soil 
structure variability to generate the dynamic soil physical characteristics water retention 
and hydraulic conductivity, and the static characteristics bulkdensity, texture and organic 
matter content. These characteristics were necessary to describe field scale variability of 
water flow and Nitrogen fate by using a simulation model. 
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MATERIALS AND METHODS 

Spatial Variability of Soil Structure 

The area under study is an agricultural field in the Wieringermeer polder in the north­
western part of the Netherlands. Soils were classified as fine-loamy, calcareous, mesic 
Typic Udifluvents (Soil Survey Staff, 1975) and show a highly variable soil structure. Soil 
structure variability was caused by the complex sedimentation history of the area, which 
was part of a mud-flat landscape of tidal channels separating shoals before it was 
reclaimed. 

A problem encountered when the behaviour of these stratified soils is to be simulated, is 
how to discretize the soil profile. Obviously, the thin layers visible in a vertical section 
(Fig. 1) cannot be analyzed separately for the determination of soil physical characteristics, 
and cannot be recognized from auger-cores in a soil survey. However, vertical successions 
of these thin layers can be recognized by their over-all structure and can be analyzed. A 
study was dedicated to whether these generalised layers could serve as functional layers. 

depth (cm) 
0 

layer 1 

layer 2 

layer 3 

10 20 30 40 
horizontal distance (cm) 

[ Z l sandy loam 

loam 

(silty) clay loam 

log-conductivity (cm/day) 
2 

1 2 3 4 5 
log-pressure head (mBar) 

moisture content (cm.3/cm.3) 
0.6 

0 1 2 3 4 5 
log-pressure head (mBar) 

Figure 1 Vertical section showing thinly stratified soil profile and its generalization into 
three functional layers. 

A functional layer is a layer that has functional hydrological properties significantly 
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different from those of other functional layers, and has a low internal variability (Wosten 
et al., 1990; Finke et al., 1992). Functional properties used were (Wosten et al., 1986): 
(1) the travel time during a period of steady infiltration and 
(2) the maximal height above the water table at which a defined upward flux can be 

maintained. 
For the study area, Finke and Bosma (1993) concluded, that soil profiles could 
successfully be generalized into a vertical sequence of three different functional layers, 
which were easily recognizable in a regular soil survey. The properties of different 
functional layers proved to be significantly different, and using the functional layers to 
generate input for a simulation model on a number of test plots resulted in accurate 
simulations. 

The problem of inventorying spatial variability of soil structure was thus reduced to 
mapping the thickness and depth of functional layers. A two-phase soil survey was made. 
In the first phase, a nested sampling scheme was followed (Webster, 1977) during which 
93 profile descriptions were collected with the purpose to quantify variability at both short 
and longer ranges relative to the field scale. Based on variogram analysis and 
interpretation of aerial photographs it was decided to sample a triangular grid with a mesh 
of 16 meters in the second phase of the soil survey (Finke, 1991). The resulting 402 
profile descriptions that were collected, were used to produce a soil map (fig. 2), and were 
translated into as many location-specific inputfiles for computersimulations. 

Model Description 

To perform the scenario analyses, an existing model (LEACHM, Hutson and Wagenet, 
1991) was extended with a potato crop growth submodel. The model simulates water flow, 
nitrogen transformations and - transport and potato crop growth. Water flow is calculated 
using a finite-difference solution to the Richard's equation: 

at az oz 

where 0 is the volumetric water content (m3/m3), t is time (day), H is hydraulic head 
(lOO.Pa), defined as H=h-z, where h is the soil matric potential and z is the depth in cm, 
K is hydraulic conductivity (cm/day) and U is a sink term representing water lost by 
transpiration (cm). Daily potential transpiration was calculated by (Belmans et al., 1983): 

(2) Tp=ETp*[l-exp(-0.6I)] 

where Tp is potential transpiration (cm/day), ETp is potential evapotranspiration (cm/day) 
and I is the leaf area index (m2/m2). The functions between K, 0 and h that are required, 
were described using the closed form equations by Van Genuchten (1980). 

The performance of the water flow submodel, using functional layers to generate the 
hydraulic characteristics, was tested by comparison of measured and simulated matric 
potentials on five plots at three depths (Finke and Bosma, 1993; Finke, 1992). 

Nitrogen cycling is described according to the concepts and equations of Johnsson et al. 
(1987). Three organic nitrogen pools, characterized as a quickly degrading manure and 
litter pool and a relatively stable humus pool, are distinguished in the model. Also a urea 
pool and mineral ammonia and nitrate pools are identified. Mineralization processes, 
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Figure 2 Soil map and simulation locations in scenario analyses. 
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volatilization, nitrification and denitrification are described by first order rate constants, 
volatilization occurring only from the surface layer. Rate constants are adjusted for 
temperature and water content effects (Johnsson et al., 1987). Ammonium, nitrate and urea 
can be partially sorbed onto soil surfaces through a linear sorption isotherm. Chemical 
transport is simulated by a numerical solution to the convection-dispersion equation 
(Wagenet, 1983): 

djQc) ,3(pS)_ 3 (3) ^ i + ^ i = ̂ [8D(6^)|£-«c] 
at at az az 

U(z,t)±Mzj) 

where c is chemical concentration in the liquid phase (mg/dm3), s is chemical 
concentration in the sorbed phase (mg/kg dry soil), p is soil bulk density (kg/dm3), d(8,q) 
is the effective dispersion coefficient (mmVday), q is water flux density (mm/day), <f> is a 
source/sink term (mg/dm\day) representing gains/losses through transformation and u(z,t) 
is plant uptake of nitrogen (mg/dm3,day). The plant uptake of nitrogen is determined by 
the transpiration flux and concentrations in the compartments of the rooted zone. For a 
extensive description of LEACHN, reference is made to Hutson and Wagenet (1991). 

The performance of the nitrogen submodel was tested by comparing measured and 
simulated mineral nitrogen of the upper profile meter on 8 plots receiving various fertilizer 
and organic manure treatments (Finke, 1992). 

Potato crop biomass production is schematized in Fig. 3. 

GLOBAL RADIATION 

Soil Water 

Act. transpiration 

Soil mineral N 

AIR TEMPERATURE 

Figure 3 Processes simulated in the potato growth submodel. Boxes indicate pools, valves 
indicate processes, ellipses indicate auxiliary variables or processes, solid lines indicate 
mass or energy transport and dashed lines indicate information flows. 
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The water stressed dry matter growth rate as a result of the actual transpiration rate is 
calculated according to Feddes et al. (1988): 

(4) 9w=0.5*[W-f-+. 
Ae \ (^)2-4^£(W>] 

In this equation, qm is the maximum dry matter growth rate (depending upon latitude, 
global radiation, the leaf area index and the maintenance respiration), qw is water stressed 
dry matter growth rate (kg/ha,day), W is maximum water use efficiency (kg.mbar/ha,mm), 
T is actual transpiration (mm/day), Ae is the average vapour pressure deficit of the air 
(mbar) and ^ is a mathematical parameter. 

Furthermore, growth rate stressed by a limiting nitrogen availability is simulated by 
multiplication of the water stressed growth rate qw by a stress factor S„, calculated from 
(Greenwood et al., 1985; Neeteson et al., 1987): 

(5) S B = i m n [ l , ^ » ] 

where S„ is the stress factor for the current day, Pw is the actual %N in total dry matter, P0 

is the %N in total dry matter when growth ceases and PM is the minimum %N in total dry 
matter to have the maximum growth rate. 

The plant physiological age, characterized by the temperaturesum since the day of 
emergence, is used to partition the biomass increase to shoots, tubers and roots. 
Occurrence of stress due to limited nitrogen and/or water availability will cause the 
partitioning to be changed in favour of root growth and disfavour of shoot- and tuber 
biomass growth. The leaf area index (LAI) is considered to be a linear function of the 
shoot biomass until a certain temperaturesum is reached, whereafter the LAI becomes a 
monotonously decreasing function of the temperaturesum and the shoot biomass according 
to: 

a*BT 

(6) / -

currtnl 

if IX»<* 
daytmergence 

current 

day**mtrgmce 

daytmergence 

where a is coefficient (ha/kg), b is critical temperaturesum (°C), T is average temperature 
for the current day (°C) and c is a constant (°C). 

The performance of the potato crop growth model was tested by comparison of measured 
(through remote sensing) and simulated leaf area indexes, and by comparison of measured 
versus simulated final tuber yields. 
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Fertilizer Scenarios 

In conventional agriculture in the Netherlands, nitrogen fertilizer additions are high. In 
areas with factory-farming, organic manure applications are reported to cause leaching of 
nitrates to the groundwater. Legislation is being implemented to minimize leaching 
hazards. In order to evaluate the effects on nitrate leaching of different levels of manure 
application and of anorganic fertilizer, two scenario analyses were made. 

The first scenario analysis was made to optimize organic manure additions with respect 
to ammonia volatilization, nitrate leaching and potato tuber yield levels. The simulation 
period comprised a period of 17 months, from April 1 1989 to September 1 1990. In this 
period 3 crops were grown: Spring Barley, followed by a catchcrop (Ryegrass) in the same 
year and by Potatoes in the next spring. A surface application of chicken slurry was 
compared with an incorporation in the upper 15 cm. The application date was set the day 
after the harvest in August of the Barley crop. Both simulations focused on a 
representative profile for each one of the four soil types present in the field. The best type 
of application, leading to the smallest loss of N by volatilization and leaching, was 
thereafter optimized by stepwise adjusting the amount of applied manure until a critical 
leaching concentration (at 80 cm depth) would not be exceeded over the year following 
the application. Each optimization step comprised a series of 82 simulations, spatially 
distributed following a triangular grid with a mesh of 32 m. (Fig. 1). 

The second scenario evaluated 6 variants of anorganic fertilizer application. The variants 
were based on the fertilizer advice obtained from: 

(7) N = N - a*N . 
v ' adv opt mm 

in which Nadv is the advice, Nopt is the optimal amount of nitrogen in the rootable zone 
before planting (evaluated from national trials), a is a crop-dependent factor and Nmin is the 
amount of anorganic nitrogen present in the rootable zone before fertilizing. Variants 1 to 
5 comprised modifications of the real Nadv by factors of 0.25, 0.50, 1.00, 1.50 and 2.00 
respectively, and variant 6 modified Nopt by a factor of 2 (Table 1). 

Table 1 Description of scenarios analyzed. B and P are regular Dutch fertilizer advice 
levels for barley and potatoes respectivily, where B=110-N and P=285-1.1N. b, c and p 
are actual fertilizer gifts for barley, catchcrop and potatoes. N is the amount of mineral 
nitrogen (kg/ha) in layer 0-60 cm before planting. 

Scenario 

Chicken Slurry 

Anorganic N 

Variant No. 
simulations 

1: Surface appl. 
2: incorp.0-15 cm 
3: optimization 
0: initializing run 
1: advice - 75% 
2: advice - 50% 
3: conform advice 
4: advice + 50% 
5: advice +100% 
6: optimal N +100% 

4 
4 
82 
402 
402 
402 
402 
402 
402 
402 

Amount given (kg N/ha) 

300 
300 
250-500 
b=B 
b=0.25B 
b=0.50B 
b=B 
b=1.50B 
b=2.00B 
b=220-N 

c=60 p=P 
c=15 p=0.25P 
c=30 p=0.50P 
c=60 p=P 
c=90 p=1.50P 
c=120 p=2.00P 
c=120 p=570-1.1N 
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Nitrate leaching concentrations in the hydrological year between April 1 1989 and April 
1 1990 were simulated. These loadings were compared with the current (50 mgr 
nitrate/dm3) and with the pursued (25 mgr nitrate/dm3) critical concentration levels in 
leaching water in the Netherlands. Potato dry matter yields were simulated to evaluate the 
effect of changed fertilizing levels on crop production. 

Simulations started with 2 years of fertilizing according to the current advice (variant 0 
in Table 1), with initial nitrogen amounts corresponding to the level observed in the field. 
Thereafter, variants 1 to 6 were simulated, each with a initial nitrogen amount that would 
be present after two years of standard fertilization. This was done to avoid lagged effects 
of the current high fertilizer levels on low input scenarios. A period of 17 months was 
next simulated, assuming the same cropping sequence as in the slurry scenarios. All 
variants were simulated on 402 locations (Fig. 1). 

After simulating the effect of varying fertilizer levels, also the effect of varying the 
spatial resolution of application was investigated. For variants 0-3, three methods were 
compared, different in the way fertilizing advices are obtained, using eq. 7: 
(1) the advice is based on point-specific N-status; 
(2) the advice is based on the average N-status for the soil unit, 
(3) the advice is based on the field-average N-status. 
Method (3) is the method followed in traditional agricultural practice, method (2) uses 
available soil survey information and method (1) reflects the maximal attainable spatial 
precision. 

Inputs into the simulation model that varied according to spatial variability observed in 
the field, were: 
(1) Thickness and texture of each functional layer: by location; 
(2) Hydraulic characteristics, bulkdensity and organic matter content: by functional 

layer, 
(3) Depth of groundwater in time: translated from a monitoring series from the same 

field to other locations by surface topography. 
Inputs into the simulation model that were supposed not to vary over the field were: 
(1) Initial nitrogen amounts and depth distribution 
(2) Precipitation, air temperature and potential evapotranspiration; 
(3) Nitrogen transformation rate constants (though correction 

for temperature and water content may cause variability in actual rate factors). 

Disjunctive Kriqinq 

The simulated scenarios aimed at minimizing the risk that nitrate loadings into the 
groundwater would exceed a critical value of 50 mgr nitrate/dm3. It is intuitively clear, 
that when this risk is to be estimated at locations where no value is known, it will depend 
on values obtained in the neighbourhood and on the variability. In areas where leaching 
amounts are large, the risk of a leaching that is too high is greater. In areas where 
leaching is highly variable, uncertainty leads also to a greater estimated risk. This risk can 
be evaluated by estimating the probability that the 50 mgr nitrate/dm3 level is exceeded. 

Estimating a probability requires the distribution of the variable "nitrate loading" to be 
known. Because loadings are concentrations, a skew distribution can be expected, since 
negative concentrations cannot occur. This may require, that the actual distribution be 
transformed to a standard normal distribution before probabilities based on the observed 
data can be calculated. The spatial prediction procedure Disjunctive Kriging (DK) aims at 

102 



obtaining an estimator of the conditional probability that a measured variable exceeds a 
cutoff level at an unvisited location, irrespective of its distribution (Yates et al„ 1986; 
Webster and Oliver, 1989). The probability is conditional, because: 
(i) the spatial correlation structure of the variable is taken into account; (ii) the probability 
is conditioned on a set of observations. 
In the application of DK, three assumptions are made: 
(i) The original observations Z(x) must be second order stationary; (ii) A function exists 
that transforms arbitrarily distributed Z(x) to normally distributed Y(x) and that is 
invertible. This assumption has been proven to be always correct (Kim et al., 1977); (iii) 
The function produced by the transform (Y(x)) has a bivariate normal distribution for each 
pair of locations. 

In DK, a function is sought that is invertible, and that can transform values from 
whatever distribution to a standard normal distribution. Such a function can be 
approximated by composing each observation from a number (K) of Hermite polynomials 
with the appropriate coefficients. The prediction of the variable Z(xO) on an unvisited 
point xO is thus expanded to a linear combination of predictions in xO for each one of K 
Hermite polynomials: 

(8) Z^^CJI'JWtjJl 

in which the coefficients Ck were obtained from the observations by Hermite integration 
(Abramowitz and Stegun, 1965); and Hk[Y(xO)], the value for the kth Hermite polynomial 
of the normalized variable Y on location x0, is estimated by weighing Hermite 
polynomials from the same order at n neighbouring observation points by: 

n 

(9) HyYtyl^bJIjmifl 

where the weights b^ are determined by solving the system 

(10) ( P 0 / = I>* (P / J-U,..,II 

in which p^ is the autocorrelation between observations i and j . 
A predictor of the conditional probability of exceeding a cutoff level is evaluated by 

defining an indicatorfunction 0 : 

(11) 8 = 

where yc is the normalized cutoff level (relating to the actual cutoff level z j and Y is the 
normalized variable (relating to Z). The conditional probability of Z(XQ) exceeding zc is 
estimated by the conditional expectation of the indicatorfunction 0yc(Y) in location x„. 
Hereto 0yc(Y(Xo)) is expanded to a series of Hermite polynomials, so that the conditional 
probability is estimated by the sum of the predictions of the Hermite polynomials 
describing 0yc(Y(x„)): 
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(12) PXxJ = 1 - G<yc) +g(yjY; H^WflWm 
i - l 

in which H^, is known; and Hk*(Y(x„)) was estimated during the disjunctive prediction 
procedure; and G(yc) is the cumulative standard normal probability density for yc; and 
g(yc) is the standard normal probability density for yc. 

For a detailed description of the DK procedure, reference is made to Yates et al. (1986). 

RESULTS AND DISCUSSION 

Model performance 

A comparison between simulated and measured characteristics is given in figs 4a-d. 
Simulated soil matric potentials agreed well with measurements (R2 of 0.74) when the soil 
matrix was unsaturated. Near saturation, simulations deviate from measurements, but 
differences are small. Simulated anorganic nitrogen contents in the upper meter were 
simulated reasonably well (R2=0.71), when deviations from measurements (tens of kg 
N/ha) are compared to fertilizer levels (hundreds of kg N/ha). 

4 8 12 16 20 24 
measured 

simulated 

0 0.4 0.6 1.2 1.6 2 2.4 2.8 3.2 
estimated by radiometer measured 

Figure 4 Simulated and measured characteristics of the water submodel (a), the nitrogen 
submodel (b) and the potato production submodel for leaf area indexes (c) and final 
potato yields (d). Two lines parallel to the 1:1 line in (c) indicate one standard deviation 
confidence zones of the LAI estimated by remote sensing. 
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Simulated leaf area indexes are generally simulated well (R2=0.58), since most simulated 
values are found within the l a confidence zone associated with the remote sensing 
estimates (fig. 4c). Simulated final potato yields are compared to measurements in fig 4d. 
The relatively small R2 (0.18) is probably caused by variability in the depth distribution of 
anorganic N at the start of the growing season, which was unknown and therefore assumed 
homogeneous (Finke, 1992). 

Slurry scenarios 

Simulation results at four soil profiles, each representative for one soil unit, are given in 
table 2. In all soil units, a positive response of crop production and plant nitrogen uptake 
occured when slurry was incorporated into the upper 15 cm in the soil. In case of surface 
application, nitrate leaching was slightly lower, but this was more than compensated for by 
the far higher ammonia volatilization. Both crop production and total nitrogen losses to the 
environment were more favourable in case of incorporation. For these reasons, further 
scenario analyses considered slurry applications to be incorporated into the soil. 

Table 2 Simulated nitrogen losses (17 months) and dry matter tuber yields in four 
characteristic soil profiles for surface application (s) and incorporation (i) of 300 
kg N/ha slurry. Soil unit codes refer to figure 2. 

Soil 
unit 

A 
B1 
B2 
C 

NH3-volat. 
kg N/ha 
s i 

193.3 151.6 
193.6 151.9 
192.6 150.9 
194.0 152.5 

N03 -leaching 
kg N/ha 
s 

9.1 
6.7 
6.9 
7.3 

1 

10.3 
7.4 
8.0 
8.0 

Plant uptake 
kg N/ha 
s i 

697.7 701.2 
657.2 679.4 
646.1 664.4 
672.5 696.4 

Yield 
t/ha 
s 

11.3 
10.4 
8.7 
10.8 

1 

12.0 
12.0 
9.5 
12.3 

Simulated effects on nitrate leaching of slurry additions of 500, 400, 300 and 250 kg 
N/ha are presented as leaching probability maps in figure 5. The criterion that "nowhere in 
the field the probability of exceeding the cutoff-leaching concentration may be greater than 
5%" was met with a slurry addition equalling 250 kg N/ha. The important role of the 
catchcrop in minimizing nitrate leaching concentrations is obvious from the leaching 
probability map at 300 kg N/ha slurry addition when no catchcrop is grown (fig. 5e). 
Comparing leaching probability maps with the soil map, shows that soil units A en C (Fig. 
2) are more sensitive to nitrate leaching than soil units Bl and B2. This result was used to 
determine soil specific slurry application rates. If the slurry gift would be 300 kg N/ha for 
soil A, 400 kg N/ha for soils Bl and B2, and 250 for soil C, the leaching criterion would 
still be met, but 21% more slurry could be applied to the whole field, and the crop yield 
for the whole field would increase by 4% (Table 3). 

Simulated potato yield response to the various slurry gifts and its spatial variation is 
presented in figure 6. Slurry additions higher than 250 kg N/ha still showed a positive 
effect on potato yields, but the differences are not large. The photosynthetic maximum was 
not reached by far, indicating that something else than nitrogen deficiency depressed crop 
yields. This cause has been identified as moisture stress (Finke, 1992), and explained why 
the variability in crop yields (fig. 6) was not decreasing when slurry-N additions increased. 
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Figure 5 Maps of the probability (P) that leaching exceeds 50 mg N03-N/dm? at slurry 
applications from 500-250 kg N/ha when a catchcrop is grown (a to d) or not grown (e). 

106 



Different soil units showed a different response to slurry-N (fig. 6). When no catchcrop 
would be grown, not only would leaching drastically increase, but also crop yields would 
be significantly less (Fig. 6). 

Table 3 Comparison of field specific and soil specific maximum amounts of slurry 
not leading to exceedance of the leaching criterium. Soil codes refer to figure 2. 

unit 

A 
B1 
B2 
C 

Field 

% 

23 
19 
8 

50 

soil specific 
level 

t slurry/ha 
29.7 
39.6 
39.6 
24.8 
tonnage 
215.1 

yield 

t dm/ha 
9.4 
9.5 
7.3 
9.2 
tonnage 
65.7 

field specific 
level 

t slurry/ha 
24.8 
24.8 
24.8 
24.8 
tonnage 
177.9 

yield 

t dm/ha 
9.1 
8.4 
6.3 
9.2 
tonnage 
63.1 

CO .c 
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^^^^ 

*> t" 
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T31 

B2 

200 400 
slurry-N (kg N/ha) 
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Figure 6 Simulated average and soil specific crop response in 1990 to slurry additions in 
1989. A, Bl, B2 and C refer to soil units (see Figure 2); solid line connects average crop-
response and zones of 1 standard deviation, dotted lines connect soil-specific responses; 
solid circles represent average yields; closed triangle represents average yield for 
scenario without a catchcrop. 
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Anorganic nitrogen fertilizer scenarios 

Simulated nitrate leaching concentrations did not exceed the criterion based on the current 
threshold concentration of 50 mgrs nitrate-N/dm3. However, the pursued threshold 
concentration of 25 mgrs nitrate-N/dm3 was exceeded in case of scenario variants 0 en 6 
(Table 4). 

Table 4 Percentage of the area not satisfying quality criteria based on 
the probability that a leaching concentration greater than 25 mgr 
nitrate-N/dm3 is exceeded. Variants refer to Table 1. 

Variant 

0 
1 
2 
3 
4 
5 
6 

— 1 
0.50 

% 
66.8 
0 
0 
0 
0 
0 
0 

3robability greater than -
0.25 

% 
94.1 
0 
0 
0 
0 
0 
0 

0.10 

% 
99.0 
0 
0 
0 
0 
0 
0 

0.05 

% 
99.5 
0 
0 
0 
0 
0 
1.4 

0.025 

% 
99.8 
0 
0 
0 
0 
0 
15.5 

Variants 0 and 3 were identical in terms of the way the fertilizer level was calculated (see 
Table 1). The strong difference in probability of leaching between variants 0 and 3 must 
therefore be attributed to a lagged effect of high fertilizer levels in the past, which created 
a pool of (organically bound) nitrogen that was emptied largely during the simulation 
period of variant 0. The high input scenario variant 6 resulted in exceedance of the 
threshold probability of 5% in part of the field, which indicates that this scenario will not 
reduce leaching to the pursued level. Scenario variants 1 to 5 would not violate the 
threshold probability during the simulation period. 

In Figure 7, the average and soil-specific response of potato yield to the fertilizing 
scenario is presented. Scenario variant 0 resulted in clearly higher average yields than 
variant 3, because more anorganic nitrogen is mineralized during the growing season. The 
vertical bars in Fig. 7 indicate, that crop yield becomes more variable when fertilizer gifts 
are higher. This must be attributed to the increasing importance of water-availability as a 
factor that is stressing crop growth. Soil units B2 and, to a lesser extend, Bl show a 
clearly weaker response to N availability, because capillary rise in these soils is limited by 
a thick clay loam layer, causing the actual transpiration to be lower than the potential 
transpiration. 

In case of scenario variant 6, the pursued leaching concentration of 25 mgr/dm3 was 
exceeded only in soil unit C. Soil unit specific fertilizing according to scenario variant 5 
for soil C and according to variant 6 for units A, Bl and B2 would satisfy the leaching 
criterion. This would result in a field yield of 77.0 ton dry matter whereas field-specific 
fertilizing according to scenario variant 5 would produce 70.7 ton dry matter. Soil specific 
fertilizing would thus increase field yields by 9%. 

A comparison of some simulation results of point-specific, soil unit specific and field-
specific fertilizing for variants 0 to 3 (Table 1) is made in Table 5. 
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Figure 7 Simulated average and soil specific crop response in 1990 to fertilizer levels. A, 
Bl, B2 and C refer to soil units (see Figure 2); 0 to 6 refer to fertilizer scenarios (see 
Table 1); solid line connects average crop-response and zones of 1 standard deviation, 
dotted lines connect soil-specific responses; + represent field measurements in 1990. 

Differences between treatments are small or absent. The variability of yields would 
decrease when fertilization would change from field-specific to soil-specific only when 
fertilizer levels are low (variants 1 and 2). Further differences between soil- and field-
specific fertilizing are negligible. The residual amount of anorganic nitrogen after 17 
months is consequently more variable for field-specific fertilizer applications than for 
point-specific applications. This indicates that, on the long run, plot-specific fertilizing 
may produce a less variable nitrogen status than field-specific fertilizing. 

As a result, it is concluded that fertilizing by soil instead of fertilizing by field would not 
have a significant effect on crop yields when it pursues a homogeneous nitrogen 
distribution over the field. When fertilizer levels are obtained from soil specific response 
characterictics (Fig. 7), soil specific fertilizing may result in raising average yields. 
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Table 5 Variability (coefficients of variation) of simulated yields, nitrate leaching 
concentrations and residual anorganic nitrogen after 17 months for plot-specific, soil-
specific and field-specific fertilizing. Variants refer to Table 1. 

Variant 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 

Variable 

yield 

leaching cones 

residual N 

Spatial resolution of application 
plot 
CV 

% 

14.97 
6.41 
7.58 
10.28 

20.65 
68.90 
59.61 
38.63 

6.36 
3.58 
3.95 
5.37 

soil 
CV 

% 

14.84 
6.43 
7.55 
9.87 

20.65 
68.90 
59.61 
38.63 

6.47 
3.63 
4.02 
5.50 

field 
CV 

% 

14.80 
6.47 
7.62 
9.88 

20.65 
68.90 
59.61 
38.63 

6.49 
3.63 
4.02 
5.51 

CONCLUSIONS 

1. Scenario analyses by simulation modelling form an operational tool to evaluate the 
effect of fertilizer management. When simulation model parameters reflect soil 
spatial variability, variability of simulation results can be used to map the 
probability that critical levels are exceeded. A promising tool to determine these 
probabilities is the method of Disjunctive Kriging. 

2. Both leaching response and crop yield response to the slurry application level differ 
by soil unit. Soil specific optimal slurry treatments (optimal in the sense that 
leaching criterion is not exceeded) results in higher total applications and higher 
yields than field specific optimal treatments. 

3. Soil specific nitrogen fertilizer advices did not result in different leaching or crop 
yields when compared to field- or point-specific advices. Soil specific crop 
response curves show that the response to anorganic nitrogen differs by soil type. 

4. Spatial variability of yields increased when nitrogen levels increased. This is 
caused by an increasing variability of the transpiration deficit due to differences in 
foliar growth as governed by water availability. 
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ABSTRACT 

To evaluate the effect of various levels of fertilizer applications, 6 fertilizing scenarios 
were analyzed by computer simulations using a process-based simulation model. In order 
to reduce the total cost of making these calculations, the number of simulations was 
reduced without much loss of accuracy of predicted values by applying Disjunctive 
CoKriging (DCK) to expand a minimum data set. Previously obtained simulation results 
served as covariable. DCK resulted in a reduction of 80% of the original number of 
simulation calculations. This number was sufficient to reach a prediction quality in 50 test 
points satisfying two criteria based on the sample variance. When the conditional 
probability of exceeding a threshold value is to be mapped, an expanded data set is of 
limited use because some variance is lost in the expansion process. 

INTRODUCTION 

Agricultural practices are aiming at maximizing production by satisfying prerequisites for 
optimal plant growth and minimal stress. Examples of such practices are fertilizing and 
application of biocides. Unfortunately, some of these applications are reported to cause 
environmental problems due to leaching (Anderson et al., 1985, Commission of the 
European Communities, 1991). Leaching of fertilizer can occur when plants are not 
efficiently taking up the nutrients or when the demand is smaller than the nutrient status 
plus the application. Also soil physical properties strongly influence the occurrence and 
magnitude of leaching. Leaching may show a strong spatial variation when nutrient status 
or soil physical properties are variable (Dagan and Bresler, 1983). 

Minimization of leaching and maximization of production are possibly conflicting goals, 
because a uniform fertilizer application level that will maximize production on the location 
with the worst nutrient status, may cause leaching on locations with a better nutrient 
status. A possible alternative is location-specific or soil-specific fertilizing instead of the 
usual field-specific fertilizing (Robert, 1988). 

In this study, the spatially varying impact of different scenarios of fertilizer applications 
is estimated by simulating water and solute transport on a large number of discrete points 
in an agricultural field. Note that throughout the text the word simulation is used to 
indicate the application of a process-based computer model which calculates the movement 
of water and nutrients in the unsaturated zone. 

When scenarios are to be compared, results are usually interpreted by comparing the 
mean value to some threshold value (Commission of the European Communities, 1991). In 
this study, the field average leaching concentration would have to be compared to the 
current threshold value of 50 mg NCydm3 or the pursued threshold value of 25 mg 

115 



NOj/dm3. A value of 49 mg/dm3 would be acceptable whereas a value of 51 mg/dm3 

would not. This is not realistic, because uncertainties caused by model inaccuracies and 
spatial variation of the property obscure the sensible use of absolute values. Hence, in this 
study a leaching criterion was formulated as: "Nowhere in the field the probability may be 
greater than 5% that a leaching concentration of 25 mg N(Vdm3 is exceeded". One may 
notice that this criterion is based on a probabilistic approach. 

When scenario results are expressed as probabilities of exceeding a threshold value it 
allows the use of spatial variation of the property for decision making. However, it 
requires intensive sampling and the calculation of a great number of simulations to be able 
to take the spatial variation 
into account. The use of existing spatial information, for instance soil characteristics 
sampled previously, may help to reduce the simulation effort. 

One main purpose of this study is to obtain field scale maps of the probability that the 
nitrate loading into the groundwater exceeds a threshold value of 25 mg nitrate/dm3. In 
order to obtain these, Disjunctive Kriging and Disjunctive CoKriging were used 
(Matheron, 1976; Yates et al., 1986; Yates, 1986, Webster and Oliver, 1989). To niinimize 
the number of simulations, data from a previous simulation served as a covariable. 

SIMULATION MODEL AND FERTILIZING SCENARIOS 

Fertilizing scenarios were compared by simulation of the impact of each scenario on 
nitrate leaching and crop production in 402 soil profiles that were described in a field soil 
survey. To allow a realistic simulation of the spatially varying impact of a fertilizing 
scenario, model input variables showing spatial variation were sampled thoroughly. 
Location-specific soil physical characteristics (bulkdensity and the water retention and 
hydraulic conductivity functions) were generated for each location and depth using the 
available soil profile descriptions. The procedure followed is described in detail by Finke 
and Bosma (1993). Additionally, the texture and organic matter content were input to the 
model. 

The model LEACHN (Wagenet and Hutson, 1989; Hutson and Wagenet, 1991) was used 
for the simulation of water flow and Nitrogen fate. In order to simulate crop production, 
the LEACHN model was extended with a validated crop growth submodel (Finke, 1992). 

The fertilizing scenarios that were analyzed related to the current method to obtain the 
fertilizer level in the Netherlands. The advised fertilizer level is determined by the 
equation: 

where Nadv is the advised nitrogen gift (kg N/ha); and N^ is the crop-specific optimum 
(kg N/ha) as determined in national trials; a is a crop specific factor and Nmill is the 
amount of anorganic nitrogen present in the rootable layer (kg N/ha). To investigate the 
impact of modifications of fertilizer additions on crop production and nitrate leaching, 6 
scenarios were defined (Table 1). Before simulating each scenario, a 2-year period was 
simulated on all 402 locations (scenario S-0 in Table 1). This was done to avoid lagged 
nitrate leaching caused by the current high fertilizing levels which built up a pool of 
potentially teachable nitrogen. 
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Table 1 Description of fertilizer scenarios. N^ and Nop, are 
current advice and optimal levels in kg Nina (see equation I). 

Scenario 

S-0 
S-1 
S-2 
S-3 
S-4 
S-5 
S-6 

Modification relative 
to current situation 

none 
N U * 0.25 
N^'0.50 
none 
Nadv'1-50 
N^'2.00 
1^*2.00 

Number of 
simulations 

402 
optimized 
optimized 
optimized 
optimized 
optimized 
optimized 

These lagged effects would obscure the effect of especially the low-input scenarios S-1 
and S-2, in which only a fraction of the advised level would be applied. In scenario S-3 
the application would equal the advice and in scenarios S-4 and S-5 the actual fertilizer 
gift would be 50% or 100% more than the advice. Scenario S-6 comprises an increase by 
100% of the pursued level of anorganic nitrogen (Nopt). This scenario is most likely to 
cause over-fertilization, because the amount of anorganic nitrogen in the soil is kept 
systematically much higher than the crops theoretically need. Scenarios S-4 and S-5 also 
give more nitrogen than needed, but these scenarios are self-corrective: When the advice 
Nadv is small because NmiB levels are near N^,, which will happen when high fertilizer 
gifts were given in the past, also the modification will be small. 

Scenario S-1 to S-6 comprised a simulation period of 17 months, from April 1, 1989 to 
September 1, 1990. In this period three crops were grown: Spring Barley, a catchcrop 
(Ryegrass) and Potatoes. The variable of interest in this study was the simulated nitrate 
concentration in the leaching water at 80 cm depth during the hydrological year from 
April 1, 1989 to April 1, 1990. Since the processes simulated in scenario S-0 to S-6 are 
the same, and vary only in magnitude, it was expected that simulation outcomes of 
different scenarios would be highly correlated. 

SPATIAL STATISTICS 

Disjunctive Kriqinq and Cokriqing 

One main purpose of this study is to obtain field scale maps of the probability that nitrate 
loadings into the groundwater exceed a threshold value of 25 mg nitrate/dm3. The spatial 
prediction procedure Disjunctive Kriging (DK) aims at obtaining an estimator of this 
(conditional) probability at an unvisited location, taking its distribution into account 
(Matheron, 1976; Yates et al„ 1986; Webster and Oliver, 1989). This requires the 
distribution of this variable to be known or to be estimated from available data. Because 
nitrate loadings are concentrations, a skew distribution can occur, since negative concen­
trations do not exist. Also, distributions may be not unimodal, because different soil types 
may show a different sensitivity to nitrogen leaching. This may require a transformation of 
the observed distribution into the standard normal distribution before probabilities at 
unvisited locations can be calculated. When Disjunctive Cokriging (DCK) is applied, 
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observations on a covariable are used as well (Yates, 1986). In DK and DCK the 
probability is conditioned on both the spatial distribution of the variable(s) and on a set of 
n observations, and hence is a conditional probability. It is assumed that the observations 
are obtained from second order stationary random fields. For such fields, it is well-known 
that there always exists a function that transforms any observed distribution into the 
normal distribution (Kim et al., 1977). 

Let n observations z(x,j), i = l,...,n, from the field Z(x) be available on the predictand 
and m observations v(x2j), j = l,...,m on a covariable. Let pi0ja be the autocorrelation 
between the prediction location Xo and the i* observation location of the a* variable (a = 
1,2), and p^y the autocrosscorrelation between the i* and the j " 1 observation locations of 
variable a and 6 (a, 6 = 1,2). In DK and in DCK 5 steps are distinguished to obtain both 
a prediction and the conditional expectation of exceeding a cutoff value in an unvisited 
location x,. 
1. For the two variables, the observations are transformed into standard-normal distri­

buted values. This is usually achieved for each variable by putting the observations 
in ascending order, followed by setting the cumulative probability Q[Z(x,j) < x] 
equal to (i-0.5)/n, where i is the number of observations less than or equal to x. By 
inverting the cumulative standard normal distribution for values thus obtained, 
transformed observations y(x^ equivalent to z(xu) are found, which follow the 
standard normal distribution. Similarly for the second variable, observations u(x2j) 
equivalent to v(x2j) are found, also following the standard normal distribution. 

2. Based on the observed distributions of the observations on the two variables, 
assumed to be valid throughout the study area, the sequences of Hermite 
polynomials Z QHJY] and Z DkHk[U] with coefficients Q and Dk (see Appendix), 
are determined for the predictand and the covariable, respectively, upto a degree K 
that with sufficient precision represents the observed distributions. Values of 
Hermite polynomials Hk[y(xli)] and Hk[u(x2J)] are determined in the observation 
locations. 

3. In order to carry out a DK-prediction at an unvisited location x,,, K predictors at 
this location, each associated with one Hermite polynomial, are determined by 
weighing the values of the Hermite polynomial at the n observation points: 

(2) Himxtf^bJIJYix)] 

The weights bik are determined by solving the linear disjunctive Kriging system: 

(3) Pjl=*A 

in which pk is a vector with elements pi01
k, and 1^ is a matrix with elements pjj,nk. 

In the case of two variables, K predicted values each associated with one Hermite 
polynomial are determined by weighing the values of the Hermite polynomials at 
the n+m neighbouring observation points: 

(4) Hiinx,)]=£ vwgi+E VWVi 
i=i y-i 

The weights b^ and ajk are determined by solving the linear disjunctive Cokriging 
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system: 

<5> fcj 
in which p^k are vectors with elements p10fl\ and the R ^ are matrices with 
elements p ^ , / . 

4. The DK and the DCK predictors are obtained by adding the predictions of the K 
individual Hermite polynomials at x^ 

K 

(6) Z'BlfiQ-'EciP'JWl 
k-0 

using the coefficients Q obtained previously. The prediction error variance for DK 
and DCK are then given by: 

(7) 

4c*=E*!*C** i«4$ 

respectively. Extension of these equations towards more than 1 covariable is 
straightforward. 

5. The conditional probability P that the predicted leaching concentration at location 
Xo exceeds a critical threshold (the cutoff value yc) is estimated: 

where «))(.) is the standard normal density function and <&(.) the standard normal 
distribution function (see Appendix). 

Optimizing the Number of Simulations 

The maximum number of possible simulation points was 402. Simulations on all locations 
would result in a very high computing effort (11.2 CPU-days on a 486-25MHz machine). 
We tried therefore to minimize the number of simulations and use these simulation results 
to complete the data set to n=402. Since values of a presumably highly correlated 
covariable were known on all 402 locations, Disjunctive CoKriging was used in the 
minimization procedure. 

A testset of 50 randomly selected locations was chosen. Scenario S-0 was used to define 
two quality criteria. The 402 results were split in the testset (50 samples) and a set of 
predictand values (352 samples). Interpolated values of nitrate leaching concentrations 
were obtained by Disjunctive Kriging to the 50 test points, and the Mean Variance of 
Prediction Error (MVPE) and the Mean Square Error of Prediction (MSEP) were 
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calculated. Both the MVPE and the MSEP were expressed as a fraction of the sample 
variance at n=352, and these fractions were defined as quality criteria for MVPE and 
MSEP. Relative instead of absolute criteria were set, because leaching values and variance 
levels of scenarios S-l to S-6 were expected to be different. An absolute criterium based 
on scenario S-0 could easily be satisfied by a scenario with a lower mean leaching 
concentration or variance level (the lower input scenarios), whereas it could be impossible 
to satisfy by a scenario with higher mean or variance levels. 

For each scenario, a minimal data set was defined, consisting of 38 simulations, located 
on a triangular grid with a base distance of 48 m. to cover the entire field. On the 50 test 
points simulations were done as well. Exponential and Spherical variogram models were 
fitted to experimental semivariances by a weighted least squares method. Crossvalidation, 
using Ordinary Kriging, was done to choose the best performing model (McBratney and 
Webster, 1986). Disjunctive CoKriging (DCK) predictions were carried out on the 50 test 
points, always using the nearest 12 observations on the predictand and 16 on the 
covariable. The MVPE and MSEP were calculated, expressed as a fraction of the sample 
variance, and compared to the criteria described above. If not both the MVPE and MSEP 
criteria were satisfied, the data set was expanded by performing 10 more simulations, 
randomly chosen from the remainder of available locations. Variograms were fitted and 
validated anew, and the test was repeated. If both criteria were satisfied, it was concluded, 
that the data set could be expanded to n=402 accurately by DCK, using the available 
simulations and the values of the covariable. 

RESULTS AND DISCUSSION 

Interpolation Quality 

Figure 1 shows the variogram and distribution of simulation scenario S-0. An exponential 
variogram model with parameters Nugget=0.8, Sill=1.538 and r=99.5 was chosen to fit the 
data best after crossvalidation. Hermite polynomials of 5 terms could accurately reproduce 
the sample distribution, as the lines in the probability graph pass through the sample 
values. The critical nitrate leaching concentration of 25 mg NOj/dm3 is exceeded in more 
than 60% of the simulated cases. 

semivariancs (mg.2 N/dm.6) 
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Figure 1 Sample and fitted model variograms (a) and sample and hermite transform 
distributions (b) of scenario S-0. Points indicate sample values, lines indicate model 
estimates. 
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In figure 2, variograms and crossvariograms are given for scenarios S-l to S-6, based on 
the minimal data set of 38 samples. In all cases, exponential variograms better fitted the 
data than spherical variograms. As expected, nitrate leaching concentrations obtained with 
these scenarios were highly correlated to those obtained with scenario S-0 (Table 2). 

20 40 60 80 100120 140 0 20 40 60 80 100120 140 

distance lag (m) 

Figure 2 Sample variograms (squares) and crossvariograms (triangles) with scenario S-0 
and fitted models for the minimum data set (n=38). Open markers indicate 30-50 pairs, 
closed markers indicate more than 50 pairs. Graphs a to f indicate scenarios S-l to S-6 
respectivily. 
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Table 2 Correlations between scenarios S-l to S-6 and S-Ofor 
datasizes of 38 to 80 observations. nA. is not determined. 

Data 
size 

38 
50 
60 
70 
80 

S-1 

0.93 
0.90 
0.90 
0.90 
n.d. 

S-2 

0.93 
0.91 
0.92 
0.91 
n.d. 

— Scenario — 
S-3 

0.96 
0.95 
0.95 
0.95 
n.d. 

S-4 

0.98 
0.97 
0.97 
0.97 
n.d. 

S-5 

0.98 
0.98 
0.98 
0.97 
0.97 

S-6 

0.85 
0.84 
0.83 
0.82 
0.80 

n 
(0 n o 

E 

10 12 14 16 18 

Nitrate leaching concentration (mg N03/dm3) 

Figure 3 Sample distributions (dots) and Hermite transform distributions (closed lines) for 
a sample size n of 38. Graphs a to f indicate scenarios S-l to S-6 respectivily. 
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Sample distributions and reconstructed distributions based on 5-term Hermite polynomials 
are given in Figure 3. Sample distributions could be reconstructed well from normalized 
data by 5-term Hermite polynomials. The sample distributions of scenario S-3 (fig. 3c) and 
S-0 (fig. 1) clearly differ. The higher leaching concentrations from S-0 indicate the lagged 
effect of a history of over-fertilization. 

Interpolation of S-0 values to 50 test points yielded a MVPE value of 0.980 and a MSEP 
value of 0.541, where the sample variance was 1.588. By taking the ratios MVPE/variance 
and MSPE/variance, quality criteria were defined as: 
1. MVPE: 0.617*sample variance, and 
2. MSEP: 0.341*sample variance. 

A comparison of interpolated values to the MVPE and MSEP criteria is made in Figure 
4. For scenario S-l, S-2, S-3 and S-4, 70 simulations were sufficient to satisfy both 
criteria, a reduction of 80% relative to the 352 simulations of scenario S-0 (testset not 
counted). Scenario S-5 and S-6 needed 10 more simulations. 

50 70 90 
No. simulations 

MSEP 
critical value 

50 70 
No. simulations 

Figure 4 Quality of interpolations by DCK to 50 test 
points. Critical values are defined in text. 

MVPE-values relative to the critical value of 0.617*sample variance show a tendency of 
steady decrease when the number of simulations increases. Relative MSEP-values tend to 
fluctuate in case of scenarios S-5 and S-6. This is partially caused by the smaller critical 
value (0.341 *<T2

n.,), which makes the value on the Y-scale more sensitive to variations in 
the sample variance. Partially it may also be caused by inaccuracy of the (cross-) 
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variogram models. 

Conditional Probability 

From the sample distributions of scenarios S-l to S-6 (Fig. 3) it is clear that only for S-6 
the leaching criterion may be locally violated, because the tail of the distribution 
approaches the 25 mg NCydm3 threshold. Whether this is identified by Disjunctive 
Kriging depends both on the tail of the distribution and on the prediction value. A larger 
data set results in a wider distribution, because when data are generated by DCK, some 
variance is lost. For S-6, this difference in shape is crucial, because it determines whether 
or not the tail of the distribution exceeds the threshold value of 25 mg NCVdm3. It was 
therefore decided to do simulations on all available locations (n=402) for this specific 
scenario. 

In figure 5, the cumulative probability density graphs are given of scenario S-6, based on 
the complete data set (n=402) and the smaller data set expanded by DCK to n=402. The 
expanded data set evidently exhibits a narrower distribution, indicating that reduction of 
the number of simulations by DCK is not advisable when probabilities of exceedance are 
to be estimated. 

Cumulative probability 

1 

0 10 20 30 40 

Nitrate leaching concentration (mg N03/dm3) 

Figure 5 Cumulative probability graphs of scenario S-6 nitrate leaching 
concentrations based on 402 simulations (1) and on 80 simulations 
expanded to 402 by DCK (2). 

A map of the conditional probability of exceeding the threshold leaching concentration of 
25 mg NOj/dm3 at fertilizer levels corresponding to scenario S-0 and S-6 is given in Fig. 
6. Scenario S-0 results in leaching concentrations clearly exceeding the criterion. The 
leaching criterion is scarcely exceeded in case of scenario S-6. In 1.4% of the field area 
the probability of exceeding the threshold level is higher than 5%, implicating the area 
where the scenario is rejected. A map of scenario S-6 (not shown), whereby the data set 
was expanded to 402 simulations by DCK first, did not show any areas where the leaching 
criterion was exceeded, because of the loss of variance associated with this method. 
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Figure 6 Maps of simulated Nitrate leaching concentrations (isolines) and of the 
probability (P) of exceeding a 25 mg NO^dm3 cutoff level (gray levels). A and B denote 
scenarios S-0 and S-6 respectivily. 

As a result, it was concluded that pursued nitrate leaching concentrations of 25 mg 
NO/dm3 will be violated with high probability for one hydrological year after lowering 
fertilizer gifts because of lagged leaching as a result of a history of over-fertilization 
(scenario S-0). In the first hydrological year, fertilizing according to scenario S-6 will lead 
to a locally too high probability that the pursued level is exceeded. All other scenarios are 
safe in terms of nitrate leaching on the short term. This implies that scenario S-5 would be 
the most attractive to implement, because it will give the highest crop yields. 

CONCLUSIONS 

1. Disjunctive CoKriging with a highly correlated covariable greatly reduced the 
number of simulations in a scenario analysis without loss of prediction quality in 
terms of MSEP and MVPE. 

2. When the cutoff-value is in the tail of the distribution, it is important to estimate 
the distribution function correctly. It is then better to take many samples of the 
predictand than to use a covariable to expand the data set, because variance is lost 
in this process. 
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APPENDIX Hermite polynomials and conditional probability 

Hermite polynomials 

Hermite polynomials H^y) of order k are defined as: 

•J. y» 

(Al) Ht(y) = ( - l ) *e" 2 - ^ ( « ~ 2 ) 
dyk 

It is easily seen that H„(y)=l and H1(y)=y. A simple relation exists between Hk+1(y), Hk(y) 
and H t l(y) for k > 2: H^Cy) = yHk(y) - kHk.,(y). Hermite polynomials are orthogonal with 
respect to the weighting function expC-y2/!) on the interval [ -~H. that is: 

(A2) — = 8 
i!*v/2^ 

with 5jj=0 when i * j and 8—1 when i=j. 
Many functions can be approximated by a finite series of Hermite polynomials: 

{A3) / w = E c A « 

where fitting the coefficients Q is based upon the orthogonality relationship (A2). It may 
be done efficiently by means of Hermite integration (Abramowitz and Stegun, 1965). 

Conditional probability 

An estimator of the conditional probability that a variable at a location x„ exceeds a cutoff 
level z,. is based on the indicator function 0yc(Y) = 1 if Y > yc and 0yc(Y) = 0 if Y < yc, 
where yc is the transformed cutoff level related to the actual cutoff level zc and Y is the 
transformed variable related to Z. The conditional expectation of 0yc in the unvisited 
location x„ is given by: 

(A4) E [0yc(Y(x„)) | Y(Xi)] = P [0yc(Y(Xo))=l | Y(Xj)] 

since 0yc is either 1 or 0. The conditional probability of Z(xo) exceeding z,. is thus 
estimated by the conditional expectation of the indicator function 0yc(Y) in location Xj. 
Now, © (̂YCxo)) can be estimated when it is expanded in Hermite polynomials (Yates et 
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al., 1986) as: 

K 

(AS) e (r(x0»=x;*A(^o)) 

where the Hermite coefficients ftk for order k are determined using the orthogonality 
relations (A2): #0 = l-<£(yc), and ftk=<l,(yc)Hk.i(yc)/k!, where 0(.) is the cumulative standard 
normal probability distribution and <))(.) its probability density function. 

Combination of (A4) with the DK or the DCK predictor gives the conditional probability 
that Y(x„) ^ yc, estimated by the sum of the predictions of the Hermite polynomials that 
describe ©^(YCx,,)): 

(46) P\X() = 1 -GOg +gfyj£ H^iyJHXYWIkl 
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SAMENVATTING 

In dit proefschrift wordt de invloed behandeld van bodemvariabiliteit op de variabiliteit 
van gesimuleerde landkwaliteiten op veldschaal. In hoofdstuk twee en drie worden 
procedures behandeld die werden gevolgd om deze invloed te kunnen vaststellen. In totaal 
zijn in dit proefschrift zeven manuscripten opgenomen, die alle bij internationale, 
gejureerde tijdschriften zijn ingediend dan wel reeds zijn verschenen. 

Hoofdstuk twee besteedt aandacht aan methoden die zijn gehanteerd om de ruimtelijke 
variabiliteit te bemonsteren en aan het beschrijven van aan de bodemstructuur gerelateerde 
bodemkarakteristieken. In een manuscript wordt een nieuwe methode beschreven om 
betrouwbaarheidsintervallen te verbinden aan de resultaten van punttellingen aan 
slijpplaten in het geval dat de waarnemingen ruimtelijk zijn gecorreleerd. 
Betrouwbaarheidsintervallen zoals die worden bepaald met behulp van de traditionele 
methode, waarbij alle waarnemingen onafhankelijk worden verondersteld, zijn aanzienlijk 
smaller dan wanneer de ruimtelijke afhankelijkheidsstructuur bij de bepaling wordt 
betrokken. 

Twee andere manuscripten in hoofdstuk twee beschrijven een methode om 
profielbeschrijvingen te vertalen in bodemfysische invoergegevens voor computermodellen 
die het transport van opgeloste stoffen in de bodem simuleren. Hiertoe wordt het begrip 
functionele laag toegepast. Een functionele laag is een combinatie van lagen of horizonten 
in de bodem die, voor wat betreft hun stromingsgedrag, vergelijkbaar zijn. Deze 
benadering is getest en geaccepteerd voor verstoorde en fijn-gelaagde bodems nadat 
functionele eigenschappen met betrekking tot de waterstroming onder goed gedefinieerde 
hydrologische condities waren berekend. Nadat de functionele lagen zijn gedefinieerd, kan 
de ruimtelijk varierende bodemfysische invoer worden verkregen door het uitkarteren of 
bemonsteren van het type, de dikte en de aanvangsdiepte van de functionele lagen. Een 
van de manuscripten in hoofdstuk twee gaat in op de vraag hoe deze gegevens het meest 
efficient kunnen worden verzameld, lettend op de kwaliteit van interpolaties en op het 
aantal benodigde waarnemingen. Hiertoe worden een geostatistische methode en een 
methode voortkomend uit de klassieke steekproeftheorie als alternatieven vergeleken. 

Hoofdstuk drie behandelt de invloed van de bodemvariabiliteit op variabiliteit van 
gewasopbrengsten en nitraaruitspoeling. In een manuscript wordt een empirische studie 
beschreven, waarin de variabiliteit van de gerstoogst wordt gecorreleerd met de 
variabiliteit van bodemeigenschappen en gesimuleerde transpiratietekorten. 
Regressiefuncties gebaseerd op gesimuleerde transpiratietekorten alleen konden 43% van 
de gerstoogstvariabiliteit verklaren. Dit suggereerde dat de variabiliteit van de transpiratie 
een belangrijke oorzaak van oogstvariabiliteit zou zijn. Deze hypothese werd getest in een 
andere studie. Metingen van de gewasreflectie voor infrarood straling werden gebruikt om 
het bladoppervlak te schatten op een groot aantal locaties en vijf tijdstippen. Deze 
gegevens werden vervolgens gebruikt om de potentiele transpiratie van het gewas locatie-
specifiek te schatten. Door de aldus verkregen bladoppervlaktes in te brengen in een 
gewasgroeimodel werden locatie-specifieke oogstopbrengsten gesimuleerd, welke werden 
vergeleken met metingen. Er Week op deze manier 39% van de oogstvariabiliteit te 
kunnen worden verklaard. Er werd geconcludeerd, dat de variabiliteit van voor de plant 
beschikbaar bodemvocht, uitgedrukt door de actuele transpiratie, een belangrijke bepalende 
factor is voor de oogstvariabiliteit. 

Twee manuscripten in hoofdstuk drie gaan in op het toepassen van een gecombineerd 
stromings- en gewasopbrengstmodel om het ruimtelijk varierend effect van 
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bemestingsscenarios te evalueren. De ruimtelijke interpolatiemethode Disjunctive Kriging 
werd toegepast om de ruimtelijke variabiliteit van gesimuleerde nitraatuitspoeling te 
vertalen in kaarten waarin de kans op overschrijding van een normwaarde is aangegeven. 
Tevens werd onderzocht of door toepassing van Disjunctive CoKriging het aantal 
simulaties kon worden verminderd door reeds aanwezige ruimtelijke informatie te 
gebruiken. Uit de resultaten van de simulaties werd geconcludeerd, dat de verschillende 
bodemeenheden binnen een perceel verschillend reageren op een identieke (kunst-) 
mestgift, zowel voor wat betreft de nitraatuitspoeling als de gewasopbrengst. Ook werd 
geconcludeerd, dat de variabiliteit van de oogst zal toenemen als het bemestingsniveau 
toeneemt. 

130 



CURRICULUM VITAE 

Peter A. Finke werd op 29 november 1960 geboren te Zaandam. Na de lagerc school met 
succes te hebben doorlopen begon hij in 1972 met de middelbare-school opleiding aan het 
St. Michaelcollege te Zaandam, waar hij in 1979 het diploma Atheneum-fi behaalde. In 
datzelfde jaar begon hij met de studie Fysische Geografie aan de Universiteit van 
Amsterdam, waar hij in 1988 cum laude afstudeerde. De doctoraalvakken waren 
Bodeminventarisatie, Bodemvorming en Verwering, Simulatie van Geomorfologische 
Processen en Hoofdstukken uit de Informatica. 

Per 1 juni 1988 trad hij als Assistent In Opleiding in dienst bij de Landbouwuniversiteit 
te Wageningen bij de vakgroep Bodemkunde en Geologie, met als onderzoeksopdracht de 
karakterisering van de bodemstructuur op perceelsnivo ten behoeve van de simulatie van 
nutrientstromen. Een belangrijk deel van dit onderzoek vond plaats in de context van het 
EG-onderzoeksproject 'Nitrate in Soils'. 

In 1991 trouwde hij met Brit Scheeren. Zij hebben een zoon: Tim. 

131 


