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STELLINGEN 

1. Betrouwbaarheidsintervallen bij resultaten van punttellingen aan 
slijpplaten kunnen niet direct worden afgeleid van het aantal 
waarnemingen, wanneer deze waarnemingen op een grid zijn 
verzameld en ruimtelijk zijn gecorrelleerd. 

van der Plas, L. and A.C. Tobi. 1965. A chart for judging 
the reliability of point counting results. American Journal 
of Science 263: 87-90. 
Dit proefschrift. 

2. Generalisatie van fijn-gelaagde gronden tot functionele lagen (mits 
zorgvuldig gedaan op basis van functionele eigenschappen) 
vereenvoudigt de simulatie van waterstroming zonder groot 
kwaliteitsverlies ten opzichte van een volledig gediscretiseerd 
profiel. 

Dit proefschrift. 

3. Egalisatie van het bodemoppervlak hoeft niet te leiden tot het 
afvlakken van de door variogrammen beschreven ruimtelijke 
structuur van aan de profielopbouw gerelateerde variabelen. 

Dit proefschrift. 

4. Bij de huidige hoge bemestingsnivo's is variabiliteit van de 
beschikbaarheid van bodemvocht een belangrijke oorzaak van 
ruimtelijk varierende oogstopbrengsten. 

Dit proefschrift. 

5. Het verdient aanbeveling om voorschriften voor maximale 
bemestingsnivo's niet te baseren op het al dan niet overschrijden 
van een normwaarde voor de uitspoeling, maar op de kans dat 
deze normwaarde wordt overschreden, zodat rekening kan worden 
gehouden met ruimtelijke variabiliteit. 

6. Bij het bepalen van lokatie-specifieke bemestingsadviezen voor 
stikstof, zoals bij "Soil Specific Farming", wordt onvoldoende 
gerealiseerd dat de reactie van de gewasopbrengst op het 
stikstofaanbod ook lokatie-specifiek is. 

7. Bij de evaluate van het effect van een lager bemestingsadvies op 
gewasopbrengsten en stikstofuitspoeling dient rekening te worden 
gehouden met naijlingseffecten ten gevolge van de huidige, hoge 
stikstofbemesting. 

Neeteson, J J. 1989. Effect of reduced fertilizer application 
rates on yield and nitrogen recovery of sugar beet and 
potatoes. Neth. J. of Agric. Sci. 37: 227-236. 
Dit proefschrift. 



8. Bij het opzetten van bemestingsproeven zonder rekening te houden 
met de natuurlijke variabiliteit van de bodem, zijn duplo's vaak 
geen duplo's. 

9. Als alle Kretenzers leugenaars waren, zou niemand dat weten. 

10. It hinders to be drunk while executing a random walk. 

11. In de ruimtelijke wetenschappen is het modelleren van de 
ruimtelijke verdeling van een variabele van grotere praktische 
relevantie dan het schatten van populatieparameters. 

De Gruijter, J J. en CJF. ter Braak. 1990. Model-free 
estimation from spatial samples: a reappraisal of classical 
sampling theory. Math. Geol. 22(4): 407-415. 

12. Het berekenen van ruimtelijke overschrijdingskansen met behulp 
van een door (Co-)Kriging geexpandeerde set gegevens moet 
worden afgeraden, omdat bij deze expansie verlies van variance 
optreedt. 

Dit proefschrift. 

Stellingen behorend bij het proefschrift 'Spatial variability of soil 
structure and its impact on transport processes and some associated land 
qualities'. Peter A. Finke, Wageningen, 22 September 1992. 



ABSTRACT 

This thesis treats the impact of soil spatial variability on spatial variability of simulated 
land qualities. A sequence of procedures that were done to determine this impact is 
described in chapters 2 and 3. The subchapters correspond to seven manuscripts that either 
have appeared in or have been submitted to peer-reviewed journals. 

In chapter 2 attention is paid to methods to inventory spatial variability of soil 
characteristics related to the structure of the soil. A method was developed to construct 
confidence intervals to point count results in case of spatial dependency of the point 
observations on a soil thin section. It was concluded, that confidence intervals obtained 
following the traditional method by assuming all observations independent, will be much 
narrower than those where spatial dependency structure is taken into account. 

Two other papers in chapter 2 describe a method to translate soil profile descriptions into 
soil physical input data for computer models that simulate solute flow. The concept of 
functional layers is introduced. A functional layer is a combination of soil layers showing 
comparable soil physical behaviour related to water flow. The functional layer approach 
was tested and accepted for examples of disturbed and thinly stratified soils by calculating 
functional properties of the layer under defined hydrological conditions. When functional 
layers are established, mapping the thickness, starting depth and type of functional layers 
provides spatial information about soil physical characteristics. In one paper in chapter 2 
the number of necessary observations in this mapping procedure is optimized by 
application of geostatistical methods and a sequential sampling test. 

In chapter three the impact of variability of the structure of the soil on variability of crop 
yields and nitrate leaching is investigated. One paper describes a field scale empirical 
study where barley grain yield variability is correlated to variability of soil characteristics 
and simulated transpiration deficits. Simulation model inputs were obtained using the 
functional layer approach described in chapter 2. Regression functions based on simulated 
transpiration deficits only could explain 43% of the variance in yields, which suggested 
that variability of transpiration may be an important factor causing yield variability. This 
hypothesis was tested in a next paper in which remote sensing estimates of the leaf area 
index were used to obtain estimates of the potential transpiration with a high spatial 
accuracy. Incorporating space- and time series of the leaf area index into a crop growth 
model resulted in a prediction of yield variability that could explain 39% of measured 
variability. Variability of plant-available water, expressed by the actual transpiration, is an 
important factor causing yield variability. 

Two papers in chapter three describe how a combined solute flow and crop growth 
model was used to evaluate the spatial varying effect of fertilizing scenarios. The spatial 
interpolation method Disjunctive Kriging was used to translate spatial variability of 
simulated nitrate leaching into maps of the probability that a threshold leaching 
concentration is exceeded. It was also investigated, whether the number of simulations 
could be minimized using Disjunctive CoKriging and available spatial information. It was 
concluded, that different soil units within one agricultural field showed a different leaching 
response and crop yield response to identical fertilizer treatments, and that yield variability 
will increase when fertilizer levels approach the level for maximal production. 
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CHAPTER 1 

GENERAL INTRODUCTION 



GENERAL INTRODUCTION 

Currently, environmental pollution is recognized as a major problem (Briggs and Wilson, 
1987, Ministerie van VROM, 1989). Legislation is being developed to minimize the input 
to the environment of substances that are poisonous to humans (dioxines, heavy metals), 
that cause acidic precipitation (ammonia-gas) or that cause water pollution (nitrates, 
biocides) and eutrofiation (phosphates). 

Agricultural practices are identified as possible sources of these substances (Anderson et 
al., 1985; van Breemen et al., 1982; Hallberg, 1986), because high level inputs of 
fertilizers and biocides onto the soil profile are reported to lead to losses to (ground)water 
and atmosphere by surface-runoff, volatilization or leaching. In order to successfully 
implement alternative management schemes that result in less pollution, the range of 
effects of different management schemes have to be investigated by scenario analysis. 
Scenario-analysis should be carried out at the scale at which agricultural management 
operates, which is at farm and field level, because it is the management that can be 
influenced by legislation. Knowing the effects of management schemes on the field-scale 
is therefore the most approprate basis for evaluation of scenarios. Many processes that 
govern transport, transformation and storage of possible pollutants, take place in the soil 
and are influenced by soil properties. Since soil properties are variable in space and time, 
scenario analysis should take into account field variability of relevant soil properties. 
Processes in the soil leading to leaching or volatilization may be very complex when 
chemical transformations take place, which is the case with biocides, nitrogen etc. When 
also the spatial and temporal variation is to be included in the analysis, only by 
application of computer simulation models scenarios can be analyzed quantitatively 
(Petach and Wagenet, 1988). 

In this thesis, attention is paid to procedures ranging from characterizing soil heterogeneity 
to scenario analyses by computer simulations. Soil variability is not seen as a nuisance, 
but as a crucial soil property, enabling realistic field scale scenario-analysis. 

In several studies reported in this thesis, (geo-) statistical methods were used for various 
purposes: 
(1) In the inventory studies, statistical methods were used and developed to optimize 

the number of samples (Burgess and Webster, 1980; Finke et al., 1992) and to 
construct confidence intervals in case of spatially dependent observations (Finke et 
al., 1991). 

(2) In studies analyzing the impact of soil variability on transport processes and crop 
yields, (geo-) statistics were used to transform data to equal space scales (Finke 
and Goense, 1992; Finke, 1992a), to analyze fertilizing scenarios in terms of 
probabilities (Finke, 1992b) and to minimize the number of simulations in 
scenario-analyses (Finke and Stein, 1992). 

In the characterization of soil variability, soil structure was regarded as a key variable, 
because flow of water and nutrients in the soil is strongly related to soil structure. Soil 
structure is defined as "the physical constitution of a soil material as expressed by the size, 
shape and arrangement of the solid particles and voids, including both the primary 
particles to form compound particles and the compound particles themselves" (Brewer, 
1964). 



Several studies have been made on how to characterize soil structure variability at 
different scales and degrees of heterogeneity. Studies also have been made on how to 
translate this variability to input for simulation models that describe water and solute flow. 
These studies are reported in chapter 2. 

In subchapter 2.1 (Finke et al., 1991), a new method is presented to characterize 
structure-related micromorphologic features in a thin section in case of spatially dependent 
point observations on these features. Spatial dependency structure is used to construct 
confidence intervals to estimated probabilities of illuviation ferri-argillans, pores and ferric 
nodules (van der Plas and Tobi, 1965). 

Subchapter 2.2 (Finke et al., 1992) reports on an investigation on disturbed soils. Soil 
layers formed by pedogenesis or disturbance, encountered in a soil survey of a sandy area, 
were translated into a number of functional layers. Functional layers are soil layers that 
have proven to show comparable behaviour from place to place (Bouma and van Lanen, 
1986; WSsten and van Genuchten, 1988). An attractive property of functional layers, is 
that the thickness and the depth at which they occur can be mapped efficiently. They are 
used throughout this thesis to generate soil hydraulic characteristics from soil profile 
descriptions for use in simulation models. Furthermore, in subchapter 2.2 a comparison is 
made between two sampling methods. One method applies model-based statistics (de 
Gruijter and ter Braak, 1990; SSmdal, 1978), using semivariograms to determine an 
optimal grid mesh in the mapping survey (Burgess and Webster, 1980). Another method 
applies design-based statistics (de Gruijter and ter Braak, 1990; Sarndal, 1978) to evaluate 
and minimize the number of observations that have to be made in a survey to obtain a 
representative dataset (Stein et al., 1989; Wald, 1947). Both methods are combined in a 
procedure that aimes at minimizing sampling costs while maximizing the value of the 
samples for interpolation purposes. 

Subchapter 2.3 (Finke and Bosma, 1993) describes into more detail the procedure to 
derive functional layers from soil profile descriptions. The soil structure of a 
heterogeneous, thinly stratified marine soil was explicitly used to obtain layers that are 
non-homogeneous but still recognizeable by their over-all structure, which enables the 
functional layers to be mapped in a conventional soil survey. Simulation techniques were 
used to obtain functional hydrological properties for these layers, describing the behaviour 
of these layers during periods of prolongued infiltration and strong evapotranspiration 
(Wosten et al., 1986). These properties were thereafter used to make a functional 
distinction between layers, based on their behaviour. This paper offers a novel approach to 
the problem how to obtain basic simulation data in fine-layered soils. 

The inventory of variability of soil characteristics like soil structure is seldom a goal in 
itself. The effect that field-scale variability has on landqualities and on crop yields, 
however, can be useful knowledge to anyone that is interested in the implications of soil 
management. In this thesis, some field-scale studies are described that link soil variability 
to some landqualities and to crop yields. These studies are reported in chapter 3. 
Landqualities investigated are moisture availability, nitrogen availability and nitrogen 
leaching hazard. 



In subchapter 3.1 (Finke and Goense, 1992), a field study is presented, in which the 
observed barley grain yield variability is linked directly to soil variability by multiple 
regression techniques. Yield variability was also linked to the landquality "moisture 
availability", by dynamic simulation of the transpiration deficit throughout the growing 
season on a large number of locations in the field. In these simulations, model input was 
generated based on profile descriptions and the functional layers. 

A transpiration deficit develops during a growing season when the soil can no longer 
satisfy demand by the plant, which is defined by potential transpiration. The actual 
transpiration may thus vary over a field when soil hydraulic properties vary sufficiently. 
However, also the potential transpiration may vary over a field, when the transpiring plant 
area varies by location. This area can be quantified by the leaf area index. In subchapter 
3.2 (Finke, 1992a) remote sensing techniques were applied to estimate the leaf area index 
variation in space during the growing season. This space-time variation was used as input 
data for a computer model which dynamically simulated water flow, nitrogen dynamics 
and potato tuber dry matter production. The objective was to improve the explanation of 
the amount of variability in final yields. The strength of such a combination of the 
independent estimation of the leaf area index by remote sensing and computer simulation 
of dry matter production is, that stress caused by water- and nitrogen deficiencies can be 
identified. Also, these stress factors can be located in space, which enables corrective 
location-specific management such as irrigation and fertilization. 

To allow simulation of the effect of different management scenarios, a simulation model 
as described in subchapter 3.2 is not suitable, because the leaf area index is input into the 
model. The model has been adapted therefore to simulate the leaf area index as a function 
of climatic data (temperaturesum) and soil dependent factors (availability of water and 
nitrogen in the rooted zone). After calibration, model performance has been tested by 
comparing simulated leaf area indexes and simulated crop yields to measurements. 

The spatially variable impact of different fertilizing scenarios on simulated nitrate 
leaching and crop yields is reported in subchapter 3.3 (Finke, 1992b). Effects of soil 
specific farming (Robert, 1988) and field specific farming for several types and levels of 
nitrogen application were evaluated for a Dutch agricultural field. In a first scenario-
analysis, the impact of application of animal slurry was simulated. Nitrate leaching in the 
year following an application, expressed as a probability of exceeding a critical value, was 
used to optimize the amount of manure. In a second scenario-analysis, anorganic nitrogen-
fertilization levels were optimized, and the effect of implemention of soil-specific 
fertilization on crop production and nitrate leaching was evaluated. A novel approach in 
this study is that the evaluation of scenarios is not only based on simulation outcomes, but 
also on the probability that these outcomes exceed a critical level, in this case a critical 
nitrate-concentration in the leaching water. This probability is based on spatial variation of 
simulation results as well as the results themselves. 

Subchapter 3.4 (Finke and Stein, 1992) elaborates on the geostatistical method of 
disjunctive kriging which was used in subchapter 3.3 to construct the probability of 
exceeding some selected threshold value. The spatial variation of the property of interest is 
used in disjunctive kriging to estimate this probability. Another item in this study was to 
apply cokriging to allow optimization of the number of computer simulations in the 
scenario analysis. 
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RELIABILITY OF POINT COUNTS OF PEDOLOGICAL PROPERTIES ON THIN 
SECTIONS 
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ABSTRACT 

Point counting of pedological properties on thin sections always starts from the following 
assumptions: (i) neighbouring counts are spatially independent and (ii) thin sections are 
representative for the soil horizon under study. We checked the first assumption for some 
thin section for the following properties: ferric nodules, pores and illuviation ferri-
argillans. By using geostatistical methods we find more or less independent observations 
for two of the three properties that are investigated in this paper with respect to the 
sampling distance. For one property, i.e. illuviation ferri-argillans, neighbouring 
observations appeared to be dependent. In the case of dependent observations, a 
methodology is presented to estimate an equivalent number of independent observations 
from the sample size and the spatial correlation structure of the observations. A nomogram 
is presented that yields 95% confidence intervals of estimated probabilities. 

KEY WORDS: point counting, micromorphology, binomial distribution, spatial dependency, equivalent 
numbers. 

INTRODUCTION 

Thin sections are often studied by soil scientists in order to improve their understanding of 
pedological processes. Many pedologists look at thin sections in a qualitative sense, but 
they may also feel the need to quantify the observations. Usually (Daniels et al., 1968; 
Miicher et al., 1972; Murphy and Kemp, 1984), a number of point observations is 
performed on several pedological properties, whereby each observation is properly 
classified in a binary sense. That is, a property is observed or not observed. 

The reliability of the results obtained by point counting has been discussed before. Van 
der Plas and Tobi (1965) gave a nomogram that yields confidence limits to estimated 
probabilities to observe some property, given the sample size. Their nomogram is based on 
the normal approximation of the binomial distribution. Here we will give a substitute for 
the nomogram supplied in Van der Plas and Tobi (1965). Figure 1 is reproduced from 
Pearson and Hartley (1970), and gives two-sided 95% confidence intervals for the 
binomial distribution. The same reference also contains a nomogram for two-sided 99% 
confidence intervals. As it is not based on the normal approximation, it will yield 
asymmetric confidence intervals, particularly for small or large values of p. 

When counting on thin sections, if the samples are spatially independent one samples 
from the binomial distribution in order to estimate the probability of observing a certain 
property. Denote the estimate of p by p. Then the following holds: 

15 
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Figure 1 Twosided 95% confidence intervals for estimated probabilities based on the 
binominal distribution. The numbers printed along the curves indicate the sample size n. If 
for a given value of the abcissa cln, pA and pB are the ordinates read from (or 
interpolated between) the appropriate lower and upper curves, then Pr{pA<=p<=Pi}>=l-
2a. Reproduced from Pearson and Hartley (1970). 
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(1) wirC5)=(100-jJ)j5/n 

where var(p) : estimated variance of p, n : total number of observations (point counts). 
According to Van der Plas and Tobi (1965) a 95% confidence interval of the probability p 
can be constructed as: 

(2) p-2s<p<p+2s 

where s : estimated standard deviation of p. 
Van der Plas and Tobi (1965) themselves mention several restrictions to the use of their 

nomogram. Firstly, they mention that one thin section might not be representative for a 
given soil section (see also Murphy, 1983). In such case, several thin sections may be 
analysed. As pointed out by Murphy (1983) and Mc Keague et al. (1980), there may also 
be a significant operational error, caused by misidentification and other inaccuracies. 
Secondly, observations are assumed to be independent. Because of this they state, that the 
"point distance chosen should be larger than the largest grain fraction that is to be 
included in the analysis". As we now know from geostatistics, however, spatial 
dependence is often exercised over multiple length scales (see for instance Joumel and 
Huijbregts, 1978). This implies that, in the context of point counting, the distance beyond 
which properties are independent, will generally be much longer than the dimensions of 
the studied properties. In our opinion, when counting on thin sections, one should strive to 
have independent observations. Only in that case one can easily construct confidence 
intervals. 

The objectives of this paper are: 

(i) to estimate for some particular soil properties the distance beyond which 
observations may be considered to be independent, and to compare these distances 
with the length dimensions of the properties involved; and 

(ii) to present a method for estimating the equivalent number of independent 
observations, n^, when observations are dependent. Then, Figure 1 can still be 
used, however, with n^ instead of n. 

In this paper we will not pay attention to the operator error, and we will assume that the 
thin section is representative for the soil horizon to which it belongs. Also we will confine 
ourselves to systematic sampling, because of its ease of implementation, although a 
stratified sampling design is usually more efficient (Bellhouse, 1981). 

GEOSTATISTICAL CONCEPTS 

When studying the degree of dependency between observations on a particular property 
made at several locations, use can be made of the theory of geostatistics. For a thorough 
background to the field, reference is made to Journel and Huijbregts (1978), Ripley (1981) 
and Davis (1986). Here we will apply the geostatistical concept of the "semi-variogram", 
which expresses the dependency between observations as a function of the mutual 
distance. 

When n observations have been made at a mutual distance h, the semi-variance y can be 
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estimated by: 

"(A) 

(3) YW=£ (Z(x)-Z(x^hyfK2n(h)) 
1=1 

where Z(Xj) is the observed value at location jq. 
If semi-variances are calculated for different values of h, the results can be plotted in the 

form of an experimental semi-variogram. A model can be fitted to the discrete points in 
the semi-variogram, for instance, the exponential model (Journel and Huijbregts, 1978): 

, « , « fC+a(l-exp(-«i)) ifh*0 
(4) Y ( * H „ , / I ( 1 

[ 0 if h=0 
where C + a : maximum semi-variance ("sill"), C : semi-variance at h close to 0, b : 
parameter related to the "range". 

In case of dependency of neighbouring observations, the semi-variogram exhibits a 
(slow) rise to some limiting value, the so called "sill". The distance at which the sill is 
reached, is called the "range". Observations at mutual distances exceeding the range may 
be considered to be spatially independent. At the origin the semi-variogram may show a 
discontinuity due to small-scale variability and/or measurement errors. 

If observations are dependent, it is intuitivily clear, that there is some loss of 
information, meaning that the equivalent number of independent observations is less than 
the actual sample size. When n dependent samples are taken, the equivalent number of 
observations, n^, is given by (Barnes, 1988): 

(5) n« ,=V e x p ( 1 _ n«! /M ) 

where neff is an heuristic estimate of the effective number of uncorrelated samples, 
estimated as: 

(6) n^VR-'l 

where R is the sample-to-sample correlation matrix, and 1 is a vector of ones. The 
correlation coefficient in Eq. (6) can be estimated from the fitted variogram model as 
(Journel and Huijbregts, 1978): 

(7) r(A)=l-Y(/r)/(Oa) 

Thus by fitting a semi-variogram model to the estimated semi-variances, the equivalent 
number of observations can be conveniently estimated by Eqs. (5) and (6), upon inserting 
values of r(h) as estimated by Eq. (7). 

METHODS 

Counts have been performed on one vertical thin section considered representative for the 
Bt2-argillic horizon in a pedon classified as an Ultic Palexeralf (Soil Survey Staff, 1970). 
All counts have been performed by one person. Properties considered in this study were 
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ferric nodules, illuviation ferri-argillans, and pores. A Leitz Orthoplan polarisation 
microscope with a magnification of about 80 times has been used. At this magnification, 
the objects to be counted were easily recognizable. The counted properties, their 
dimensions, and a "characteristic dimension" are presented in Table 1. 

Table 1 Counted properties with their dimensions and characteristic dimension. 

Property Dimension Characteristic 

Ferric nodules 
llluvation ferri-

argillans 
Pores 

Diameter Length 

mm 
0.030-2.0 0.030-2.0 

0.005-0.1 0.005-2.0 
0.050-4.0 0.050-4.0 

dimension 

0.5 

0.4 
0.4 

The characteristic dimension is based on a visual impression and should be understood as 
being the maximum length scale of the property in most cases. So consider it to be a 
visual expert guess of, say, the 99% point of the distribution of lengths. Thus, it yields a 
quick estimate of the minimum sampling distance. 

From Table 1 it can be concluded that 0.5 mm is a reasonable guess for the minimum 
sampling distance. Given the dimensions of the thin section studied, about 45*70 mm, this 
yielded 11390 observations. 

RESULTS AND DISCUSSION 

The estimated probabilities p (which can be regarded as estimates of volume contributions) 
and their 95% confidence intervals, based on Fig. 1 as well as on the nomogram in Van 
der Plas and Tobi (1965) are given in Table 2. 

Table 2 Estimated probabilities p of observing a 
certain property and 95% confidence intervals. 

Property p(%) 95% confidence interval 

Ferric nodules 
llluvation ferri-

argillans 
Pores 

2.05 

4.64 
8.63 

1.1-3.1 

3.6-5.6 
7.6-9.6 

Both Fig. 1 and the nomogram are not easy to read for this combination of sample size 
and probability, but they both suggest the confidence interval to be 2% wide. These 
confidence intervals are based on the assumption that all observations are independent. 

In order to check the assumption of independence, semi-variograms have been estimated 
in the usual way for a single realization (Journel and Huijbregts, 1978). These are 
presented in Fig. 2. For mutual distances in excess of half the maximum distance occuring 
within the thin section, the semi-variogram can only be very inaccurately estimated 
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Figure 2 Semi-variograms for Ferric nodules (A), llluviation ferri-argillans (B), and 
Pores (C). 

(Journel and Huijbregts, 1978). Here only mutual distances smaller than half the smallest 
length of the thin section have been considered. Thus, the semi-variogram has been plotted 
for mutual distances less than 20 mm. The semi-variograms indicate that spatial 
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dependence is very weak or absent for ferric nodules and pores, since the range 
approximately equals the mesh width (0.5 mm). For illuvation ferri-argillans there is a 
definite, though weak, spatial dependence. 

EXAMPLE 

To illustrate the procedure presented in this paper, an example is given, using the point 
counting results on illuviation ferri-argillans. The estimated volume contribution of 
illuviation ferri-argillans is p = 4.64 % (Table 2). If this estimate was based on n=1000 
observations, Fig. 1 would yield a 95% confidence interval of 3.5%<=p<=6.5% when 
observations would be regarded as independent. The equivalent number of independent 
observations, calculated using Eqs. (5), (6) and (7), would be 11^=65. 

Because of the slow decay of the correlation function, the decrease in equivalent number 
is quite drastic. Using n,, instead of n would yield a 95% confidence interval of 
1.5%<=p<=14.0% The greater width of this interval shows the magnitude of the 
uncertainty introduced by regarding all observations independent. 

CONCLUSIONS 

When analysing point counts from thin sections one always starts from the following 
assumptions: 

(1) neighbouring counts are independent; 
(2) the thin section which is studied is representative for a given soil horizon or rock 

section. 

We confined ourselves to commenting on the first assumption. The representiviness of 
various thin sections for a given soil horizon will be the subject of a further investigation. 

The practical rule by Van der Plas and Tobi (1965) that "the point distance chosen 
should be larger than the largest grain fraction to be included in the analysis" does result 
in approximately independent observations. Still, the drop in equivalent sample size 
because of dependence of observations can be very substantial, as is seen with the 
illuviation ferri-argillans. Thus, confidence intervals obtained by using Fig. 1 will 
generally yield a too optimistic view. In case a considerable dependence is expected or 
feared, it might be useful to check the validity of the assumption of independence. This 
can be done by estimating semi-variances, and comparing the mesh-width with the range 
of the fitted variogram. If observations are dependent, an equivalent number of 
independent observations can be calculated. This equivalent number can then be used to 
calculate confidence intervals by using the provided nomogram (Fig. 1). 
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ABSTRACT 

Spatial variation of soil profiles disturbed by levelling was inventoried on a field scale to 
obtain representative data for simulation purposes. Depth of occurrence, thickness and 
morphology of functional layers, which are different pedogenetic horizons with 
comparable soil physical properties, were considered to be regionalized variables. The 
layers served as carriers of physical information, such as water retention and hydraulic 
conductivity characteristics and organic matter content. An impression of the variability 
within each layer was obtained by six fold sampling. Spatial variability, expressed by 
variations in thickness of functional layers, was inventoried in a two step soil survey. 

First, semi-variograms were constructed using data obtained following a nested sampling 
scheme supplemented by a nugget estimation procedure. Variograms were used to evaluate 
cost/quality ratios at varying potential grid sampling densities, using the root of the 
prediction error variance (RPEV) as a measure to compare quality of interpolations. Based 
on these evaluations and a sequential sampling test, a grid mesh of 12 m was chosen. 

Second, a grid soil survey and an independent quality test were done, in which root 
mean square errors (RMSE) on test points were compared with RPEV. The RPEV to 
RMSE ratios varied between 0.7 and 1.1 for the sampled grid mesh, and had comparable 
values for other grid meshes. Estimations on test points by an hypothesized spatial mean 
based on 26 measurements by a sequential sampling method, produced RMSE-values not 
significantly different from RMSE-values from kriging interpolations. However, sequential 
sampling required 26 observations whereas kriging required 153, a saving of 83%. 

INTRODUCTION 

In the Netherlands a considerable area of agricultural land consists of disturbed soils, due 
to strong human impact on the landscape extending over several centuries. Usually these 
soils no longer have their original micro- and mesorelief, so physiographic features cannot 
be used during mapping. Pedological horizons may be mixed due to the disturbance. 

The case study presented deals with a detailed soil survey on a field scale in a leveled 
landscape originally showing strong microrelief. The area studied is located on Pleistocene 
coversands near the margin of ice-pushed ridges and has a low topographic position. The 
purpose of the ongoing research is the prediction on a field scale of water fluxes and, 
more specifically, of N03 leaching as a function of N-inputs, climate and soil, using a 
simulation model. To predict both average and extreme fluxes and leaching in field plots, 
knowledge about spatial variation of relevant soil properties is essential. 

Characteristics assumed to be relevant were soil texture, structure, macroporosity and 
organic matter content. These influence the shape of retention and conductivity 
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characteristics and values of N-transformation coefficients. 
Spatial variability of these characteristics was modelled using functional layers as 

carriers of information (Wosten et al., 1985). A Junctional layer was defined as a layer 
having a unique combination of texture, structure and organic matter content, resulting in 
characteristic retentivity and conductivity curves. A functional layer may consist of one or 
more genetic soil horizons or soil layers. Following this approach, variability of a 
characteristic between locations depends on: (i) spatial variability of the thickness of the 
functional layers; and (ii) intrinsic variability of the properties of each functional layer. 
Intrinsic variability, the qualitatively characterized variation within a stratum, in this case 
a functional layer, is minimized by combining only those horizons into a functional layer 
that have similar characteristics, as measured at several locations. However, considerable 
intrinsic variability may remain, for instance in the case of a disturbed layer containing 
fragments of different origin. Such a layer was analysed in this study for its intrinsic 
variability in morphology and soil physical characteristics. 

The purpose of this study was to determine the number and spacing of observations 
needed to make predictions of the thickness of each functional layer at a desired level of 
precision relative to the compartment thickness (5 cm) of the simulation model to be used. 
Compartment thickness is the vertical depth increment used by the simulation model to 
simulate flow and redistribution of water and solutes by finite differencing techniques. 
When this level can be reached at reasonable sampling costs, simulations on both sampled 
and interpolated locations could lead to a reliable simulation map. If this level of precision 
cannot be realized, only simulations on sampled locations are feasible. In this case, a 
sufficiently large number of observations would have to be made to obtain a data set 
accurately representing the spatial variation occurring within the fields studied. 

MATERIALS AND METHODS 

Soils 

In the study area, disturbed soils are present (Fig. 1). Generally, below a well 
homogenized plow layer, a layer was found that showed strong variation in morphology. 
Differences in morphology reflectioned different contributions of A, B and C-horizon 
material to this layer from place to place. Below this disturbed layer, a Bs, (locally) BC, 
C, Cg sequence or a Cg-horizon occurred. From these sequences, Entic Haplorthods (Fig. 
1) and Aquic Udipsamments could be reconstructed as the soils most likely to have been 
present before disturbance (Soil Survey Staff, 1975). This is confirmed by de Bakker and 
Schelling (1986). Disturbing activities in the past have been in chronological order: 

(1) Levelling. The toplayer of higher grounds was removed, whereby the profile was 
truncated down to the Bs-horizon (Functional Layer 3). The material thus obtained 
was deposited on top of the lower grounds, forming a layer consisting of fragments 
of A, B- and C material (Functional Layer 2). 

(2) Plowing. The upper 30 cm of the profile was plowed regularly, whereby 
morphological differences still recognizeable in layer 2 were smoothed out and 
Functional Layer 1 was formed. 
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Figure 1 Soil profile and functional layer codes. Codes 
refer to Table 1. 

Soil Physical Measurements 

Hydraulic conductivity at and near saturation was measured on undisturbed soil columns 
in the field using a ring infiltrometer with a horizontal area of 700 cm2. In each 
infiltrometer, tensiometers were installed at two depths to measure the vertical hydraulic 
head gradient. To measure saturated hydraulic conductivity (K-sat), the soil surface was 
prepared and water was applied at zero head using a mariotte device. At unit hydraulic 
head gradient, hydraulic conductivity is proportional to the infiltration rate. Unsaturated 
conductivity at hydraulic heads in the range between 0 and -4 kPa was determined by 
applying crusts of hydraulic cement on the soil surface in the ring infiltrometer and 
measuring infiltration rates at unit head gradient (Bouma et al., 1983). Unsaturated 
conductivities at higher suctions (to -100 kPa) were determined on undisturbed 300 cm3 

samples (taken from the infiltrometer sample), using the one-step outflow method 
(Doering, 1965; Kool et al., 1985). 
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Water retention characteristics were determined using one-step outflow data on 
undisturbed 300 cm3 samples and by measuring moisture release in pressure extractors on 
disturbed samples. 

Functional layers were defined by grouping pedological horizons together that showed 
comparable physical behaviour, according to functional properties described by Wosten et 
al. (1986). 

Sampling 

Sampling took place in a number of consecutive steps: 

(1) Soil profile descriptions were colected by augering, following a nested sampling 
scheme (Webster, 1977). The area was stratified into six equally sized fields, 
corresponding to the six experimental fields receiving different treatments. Three 
equally large areas of 360 m2 were located at random within each field. Within 
each area, two clusters of 2 augerings each, having fixed mutual orientations and 
distances of 8 m were located (Fig. 2). The distance between two samples within 
one cluster was 2 m. 
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Figure 2 Locations of nested sampling augerings and pits for nugget measurements. 

(2) From the resulting 72 profile descriptions, a number of functional layers were 
derived in an iterative process including preliminary definition, measurement of 
water retention and hydraulic conductivity characteristics, determining functional 
properties, and redefinition. 

(3) Estimations were made of short range- and nugget variances, which can be helpful 
when choosing the variogram model most appropriate for the study area and the 
scale of perception. For the estimation of the short range and nugget-variances of 
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the thicknesses of the various functional layers, a separate sampling procedure was 
followed. Six pits were dug at randomly chosen locations, one within each field 
(Fig. 2). The thickness of each functional layer was measured at 5 cm horizontal 
intervals in each pit. Averaged semi-variances at a lag of 5 cm were considered as 
nugget, 5 cm being the diameter of the auger used in de nested - and regular grid 
sampling. The maximal lag covered by the pits was 1 m. 

(4) Construction of variograms for the thickness of each functional layer by fitting 
transition models (Journel and Huijbregts, 1978) to pit- and augering data. The 
most appropriate model for each functional layer was selected on a minimal sum-
of-squares criterion. 

(5) Collection of soil profile descriptions on a regular grid, the mesh of the grid being 
derived in a procedure described below. 

Quality Criterion 

Determination of the spatial distribution of the thickness of the functional layers was to be 
based on sampling on a rectangular grid. In order to obtain a relation between sampling 
costs and quality of interpolation maps produced by kriging, this quality was calculated as 
a function of the grid mesh and the variograms, in a way indicated by Burgess and 
Webster (1980). A brief description of the underlying concepts is given below. For a more 
detailed derivation of formulae given, see Corsten (1989) and Stein et al. (1988). 

In the absence of a trend, the value j>(x„) of a regionalized variable y(x) in an unvisited 
location XQ is predicted by a stochastic predictor t (bold-face italic type denotes stochastic 
variables, bold denotes vectors): 

(1) t=ii+g0
TG1(y-(»lm)) 

where p is the overall mean, go the n-vector of the semi-variances between point x0 and n 
observation points, G the n*n-matrix of the semi-variances between observation points, y a 
stochastic vector pointing to the observations and 1„ is an n-vector of elements one only. 

The variance of the prediction error (the kriging error) is given by 

(2) VAR(t-y(x<)) ^G^-xJiljGX) 

where xa is the number defined as xa = 1 - gj G'1 1„ and superscript T indicates a 
transposed vector. 

As is clear from eq. 2, the prediction error variance depends on the variograms and the 
data configuration only, and not on the actual observations. This makes the prediction 
error variance a valuable tool in evaluating the quality of an interpolation for varying grid 
meshes. Gridpoint to gridpoint distances and gridpoint to interpolation point distances are 
a function of this mesh. In this study, the interpolation point x„ was located at a maximal 
average distance from the eight nearest grid locations, which is the most unfavorable place 
to predict to, except for a location near the border of the area. The prediction error 
variance was determined for meshes between 1 and 50 m. 

Under the assumption that variograms are known, the root of the prediction error 
variance (RPEV) can be used to construct an approximately 95 % confidence interval t +/-
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2 RPEV. A confidence interval that was narrow relative to the compartment thickness used 
in the simulation model (5 cm) was considered appropriate in this study, leading to a 
quality criterion of RPEV-values < 1.25 cm for each one of the four functional layer 
thicknesses. The grid mesh associated with this quality criterion determined the sampling 
costs and thus the economic feasibility. 

Sequential Sampling 

If quality criteria discussed above cannot be met, the purpose of sampling would become 
collection of a data set describing the spatial variation of thicknesses of functional layers. 
To describe variation, an accurate estimate of the mean is essential. Sequential sampling 
(Wald, 1947; Stein et al., 1989) can be used to stop sampling whenever a sufficiendy 
accurate estimate of the mean is reached, and hence to minimize the number of 
observations. 

The sequential sampling procedure was designed to decide after each additional 
observation whether sampling should continue. Observations must be stochastically 
independent. Sampling can stop when a hypothesis H„: u = u„ is accepted or is rejected, 
where p0 is the hypothesized mean. Sampling must continue when HQ remains unproven. If 
H0 is rejected, a new hypothesis must be formulated. Testing H„ is performed by 
calculating a likelihood ratio, given by Stein et al. (1989), and comparing this statistic to 
an acceptance level cc/(l-a) and a rejection level (l-a)/oc, where a is the probability to 
decide incorrectly for H„. In this study a was set equal to 0.05. 

Quality Test 

After the grid with the chosen mesh was sampled, 40 additional augerings were made at 
random locations to obtain an independent measure of the quality of interpolations by 
kriging. The root mean square error (RMSE) of predictions versus measurements was 
compared to the root prediction error variance by calculating their ratio. When this ratio 
equals 1, the predicted interpolation quality agrees with the actual quality. Ratios differing 
from 1 indicate errors in the estimation of the variograms, or unfavorable data 
configurations resulting in long lags to prediction points, as may be the case when these 
points are located near the border of an area. RMSE-values were also used to determine 
whether a less dense grid would lead to a significant loss in interpolation quality, and to 
determine whether kriging performed better than estimations by horizontal trend surfaces. 
Significance was tested using the t-test on difference with paired observations. 

RESULTS AND DISCUSSION 

Functional Layers 

Functional layers derived from profile descriptions collected in the first sampling step are 
described in Table 1. Characteristic retentivity and conductivity relations and zones of one 
standard deviation are presented in Fig. 3. These zones from the retentivity curves do not 
overlap in most cases, which points to relevant differences between the functional layers. 
Functional Layers 1 and 2 show comparable conductivity relations with overlapping zones, 
whereas both Functional Layers 3 and 4 differ strongly from the rest. The strong 
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morphological variation in the layer containing disturbed material did not result in wider 
one standard deviation zones. Average morphological composition of Functional Layer 2 
and standard deviations are presented in Table 2. It was concluded, that, for simulation 
purposes, the functional layers identified in this study may serve as carriers of physical 
information when these characteristics are measured elsewhere in identical layers (see also 
Wbsten et al., 1990). In case of presence of a disturbed layer, the functional layer concept 
still applies. 

Table 1 Description of functional layers, relation to horizons and some soil characteristics 

layer 

1 

2 

3 

4 

description 

recent 
plow layer 

disturbed by 
plowing & 
levelling 

undisturbed 
Spodic 

coversand 

horizons 

1Ap 

2Abp, 
2ABbp, 
2BCbp 

2Bsb, 
2BCb 

2C, 
2Cg 

texture structure 
grade 

loamy weak 
sand 

loamy structure-
sand less 
to sand 

sand structure
less 

sand structure
less 

organic-
matter 

% 
3-4 

2-4 

1-2 

0-1 

K-sat 
av. 

cm/d 
123 

64 

119 

147 

CV 

% 
19 

65 

39 

41 

Table 2 Morphological composition Functional 
Layer 2, based on data from grid soil survey. 

origin 
of material 

average 
volume 

standard 
deviation 

A-horizon 
B/BC-horizon 
C-horizon 

% 
61 
28 
11 

% 
22 
20 
16 

Spatial Variability 

Variograms of four regionalized variables, the thickness of Functional Layers 1 to 3 and 
the depth to Functional Layer 4 are presented in Fig. 4. These variograms are based on the 
nested sampling data and on data from the soil pits where nugget variance was 
determinated. The thicknesses of the plow layer (Functional Layer 1) and Functional Layer 
3 show no spatial structure except at very small lags (ranges of variograms are 1.5 and 1 
m respectivily). This is most likely due to the nature of the disturbance that has affected 
these layers: plowing and truncation respectivily. The thickness of layer 2 and depth to 
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Figure 3 Retention (a) and hydraulic conductivity (b) curves of functional layer 1 to 4. 
Horizontal bars show zones of 1 standard deviation. 

layer 4 show a clear spatial structure. Since layer 4 has been little affected by the levelling 
activities in the past, its depth relative to the -levelled- soil surface could be expected to 
show spatial structure. The thickness of layer 2 is a reflection of the former surface relief, 
because deeper depressions received more infill than shallower depressions. This results in 
a clear spatial structure in the thickness of Functional Layer 2. It was concluded, that 
disturbance by levelling does not necessarily lead to absence of spatial structure for the 
type of variables used in this study. 

Relations found between the root of the prediction error variance of the four regionalized 
variables and the mesh of a potential sampling grid are visualized in Fig. 5. 
RPEV-values exceeded the criterion, set at 1.25 cm, at grid meshes of 1 m, which would 
correspond to more than 22000 observations in the area studied. It was concluded, that 
accurate predictions would not be economically feasible here, and that sampling should 
aim at collecting a representative data set. 

Sequential Sampling 

The results of the sequential sampling procedure, presented in Fig. 6, indicated that 
hypothesized mean values valuable for the whole study area could be accepted after 26 
randomly located, spatially independent observations. Hypothesized mean values based on 
the first 4 measurements were revised for the variables thickness of Layer 2 and thickness 
of Layer 3 after 10 additional measurements. A newly formulated hypothesized mean (Hx) 
of the thickness of Layer 3, based on 8 measurements, was accepted after 5 additional 
measurements. The hypothesized mean thickness of Layer 2 was revised and rejected 
several times, until H2: u layer 2 = 1 1 cm, based on 20 samples was accepted after 6 
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Figure 4 Variograms of thicknesses (a, b, c) or depth to (d) functional layers. 

additional samples. Since the study area was divided into 6 experimental fields, it was 
concluded that 26 augerings should be made on each field. This would correspond to 156 
augerings. A grid mesh of 12 m across the whole study area was chosen. At this grid 
mesh, the 153 observations to be made were known from the variograms to be spatially 
independent, as their distances exceeded the ranges of the variograms. 

Quality of Predicted Values 

The RMSE between predicted and measured values and the ratio RPEV/RMSE are 
presented in Table 3. In general, the RPEV yielded a slightly more optimistic estimate of 
the average interpolation quality than the RMSE. Ratios varied between 0.7 and 1.1, 
indicating a reasonably good agreement between predicted and actual quality. By data 
reduction, RMSE-values were also calculated for grid meshes of 24 and 36 m. The RPEV 
to RMSE ratios for these grid meshes are comparable. A grid mesh of 24 m performed as 
well as a grid mesh of 12 m. A grid mesh of 36 m performed significantly (at 95% 
confidence) worse for the variables thickness of Layer 3 and depth to Layer 4. 

Because of spatial independence of the grid observations, kriging predictions were not 
expected to be better than point estimates based on averaged values obtained from the 
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Figure 5 Relations between Prediction Error Variance, the number of grid observations 
and the mesh of a potential sampling grid. 

Table 3 RMSE-values and RPEVIRMSE-ratios for interpolations to an independent 
test set. RMSE marked with * differ significantly from RMSE with kriging (mesh 12 
m.) fi are based on sequential sampling procedure. 

Estimation 
method 

kriging 
mesh=12 m. 

kriging 
mesh=24 m. 

kriging 
mesh=36 m. 

hypothesized 
mean 

no. of 
observ. 

153 

45 

18 

26 

error 
statistic 

RMSE (cm) 
RPEV/RMSE 

RMSE (cm) 
RPEV/RMSE 

RMSE (cm) 
RPEV/RMSE 

RMSE (cm) 
Mem) 
no. obs. 

thickness of / depth to 
1 2 3 

7 
0.8 

7 
0.8 

6 
0.9 

7 
28 
10 

11 
1.1 

11 
1.3 

12 
1.3 

8 
11 
26 

14 
0.7 

13 
0.8 

19* 
0.5 

13 
16 
13 

layer 
4 

16 
0.8 

16 
1.0 

23* 
0.7 

12 
55 
26 
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Figure 6 Sequential sampling test results. H0-hypotheses are based on 4 observations; H, 
on 8 observations and H2 on 20 observations. 

sequential sampling procedure. The RMSE-values, calculated using hypothesized mean 
values from the sequential sampling procedure and measured values, did not significantly 
differ from those of kriging. The sequential sampling procedure however needed 26 
random observations, whereas kriging used 153 grid observations, a reduction of 83 % 
(Table 3). 

The difference between RMSE and RPEV may partially be caused by border effects. The 
RPEV-values are based on interpolation locations surrounded by gridpoints, well away 
from the borders of the area studied. Some of the test-augerings, however, were located 
near these borders, causing lags between gridpoints and the prediction point to be greater 
than normal. This may lead to less accurate predictions and thus RPEV/RMSE ratios 
smaller than 1. For less dense grid meshes this factor may become more important 
Despite possible sources of error, the RPEV/RMSE ratio remained relatively close to 1. 
This indicates that an evaluation of the prediction error variance for different sampling 
grids, which is based on variograms, can give a prediction of the quality of the resulting 
map, which can be used to define the quality of map interpretations. 
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