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Stellingen 

1. Als intensief beheerde, ontwaterde veengraslanden worden omgezet in 

extensief beheerde, natte graslanden zal de methaanemissie uit deze 

graslanden aanzienlijk toenemen. 
Dit proefschrift. 

2. Bij onderzoek naar broeikasgasemissies is de toepassing van geostatistische 

technieken op perceelsniveau niet zinvol, omdat variogrammen van 

broeikasgasemissies binnen een dag sterk kunnen veranderen. 
Dit proefschrift. 

3. In Nederland is het effect van stikstof bemesting en het verschil tussen 

beweiden en maaien op methaanemissie uit graslanden te verwaarlozen. 
Dit proefschrift. 

4. Ontwatering is het enige instrument op het gebied van graslandbeheer 

waarmee methaanemissie uit graslanden in Nederland verminderd kan worden. 
Dit proefschrift. 

5. Recente schattingen van methaanemissies (Van Amstel et al., 1993) 

veronderstellen dat ontwaterde veengraslanden een belangrijke bron van 

methaan zijn; deze graslanden nemen echter methaan op. 
Van Amstel AR, Swart RJ, Krol MS, Beek JP, Bouwman AF & van der Hoek KW (1993) 

Methane, the other greenhouse gas. Research and policy in the Netherlands. National 

institute of public health and environmental protection, Bilthoven. 

Dit proefschrift. 

6. Een deel van het energieverbruik bij dierlijke produktie moet als energiewaarde 

aan dierlijke mest toegekend worden, omdat dierlijke mest een waardevolle 

bron van nutriënten en organische stof voor de bemesting van bouw- en 

grasland is. 

7. De huidige schadedrempels voor bestrijding van emelten in grasland zijn te 

laag. Bij deze aantallen emelten zijn de kosten van bestrijding gemiddeld ƒ50,-

per ha hoger dan het verlies door schade. 



8. Indien onze maatschappij van het landbouw/bedrijfsleven natuurontwikkeling 

verlangt, zal zij ook bereid moeten zijn om de landbouwers financieel te 

compenseren. 

9. Een uitkering op basis van de Wet Arbeidsongeschiktheidsverzekering 

Zelfstandigen (WAZ) zou gebaseerd moeten zijn op kosten voor vervanging in 

plaats van op inkomensderving. 

10. Agenda 2000, het voorstel van de Europese Commissie voor overgang van 

prijsondersteuning naar inkomenssteun, leidt tot een vermindering van 

bedrijfsontwikkeling in de landbouw. 

11. Meer geld voor de gezondheidszorg is van levensbelang. 

12. Ecologische melkveehouderij en weidevogelbeheer vormen geen optimale 

combinatie. 

13. Door de invoering van MINAS is optimalisering van bemesting van grasland en 

maïs op gewasniveau niet langer voldoende, maar dient optimalisering op 

bedrijfsniveau plaats te vinden. 

14. Het geloof nu is de zekerheid der dingen, die men hoopt, en het bewijs der 

dingen, die men niet ziet. 
Hebreeën 11:1. 

Stellingen behorende bij het proefschrift "Methane emissions from grasslands" 

van Agnes van den Pol-van Dasselaar, Wageningen, 16 september 1998. 
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Voorwoord 

Velen hebben op de een of andere wijze bijgedragen aan het werk, dat beschreven 

is in dit proefschrift, en daar ben ik hen allen zeer dankbaar voor! Enkele mensen wil 

ik toch even met name noemen. 

Als eerste mijn promotor prof. Oene Oenema. Beste Oene, jij wist mij door jouw 

adviezen, suggesties en ideeën altijd te inspireren. Ik heb het erg prettig gevonden 

dat je mij volop de vrijheid gaf en tegelijkertijd snel en adequaat reageerde bij vragen 

van mijn kant. Een betere begeleiding kon ik mij niet wensen! 

Mijn co-promotor, dr. Rien van Beusichem, verdient ook een bijzonder woord 

van dank. Beste Rien, dankzij jouw inzet hoefde ik me niet druk te maken over 

allerlei administratieve en financiële zaken rondom het project. Je suggesties ter 

verbetering van de inhoud van dit proefschrift heb ik als waardevol ervaren. 

Een groot deel van mijn tijd heb ik in het veld doorgebracht. Mijn dank gaat uit naar 

degenen die mij toestemming verleenden om op diverse plaatsen te gaan meten: 

proefbedrijf Zegveld, de natuurterreinen Nieuwkoopse Plassen en Wolfheze van de 

Vereniging Natuurmonumenten en de Bovenbuurtse Weilanden van de toenmalige 

vakgroep Agronomie (met dank aan Jan Neuteboom). 

Vele mensen hebben mij geholpen met veldwerk, waarvoor hartelijk dank. Mijn 

dank gaat in het bijzonder uit naar de heer Alta, beheerder van het natuurterrein 

Nieuwkoopse Plassen, die er drie jaar lang voor zorgde dat ik altijd een boot tot mijn 

beschikking had om naar de proefvelden te varen. Verder bedank ik de 

medewerkers van proefbedrijf Zegveld, de heer Aandeweg (beheerder van het 

gebied Wolfheze) en al die mensen die één of meer dagen geholpen hebben met 

het veldwerk op de Nieuwkoopse Plassen. Er waren zelfs mensen (Aline, Gerrit), die 

een nacht meegingen! Meten bij vorst was erg leuk: op de schaats, met Gerrit en 

een slee! Vermeldenswaardig is ook de 36-uursmeting, die uiteindelijk maar een 

12-uursmeting werd door de combinatie onweer, hevige regenval en watergevoelige 

apparatuur. De terugtocht in het donker over de Nieuwkoopse Plassen tegen de 

wind en de regen in, met Arie Brader voor in de boot, was bijzonder! 

Met veel plezier kijk ik ook terug op de meetweek in Fallköping in Zweden met 

Oene Oenema, Wim Corré, Roel Vriesema (AB-DLO Haren), en een busje waar echt 

niet meer in kon. Deze meetweek was onderdeel van een EG-project, waarin 

onderzoekers van diverse landen participeerden. Dear Wim, Anders, Âsa, Per, 



Alfred, Leif, and Oene, thanks for the pleasant cooperation and discussions during 

and after the Sweden field campaign of May 1996, which resulted in the paper 

presented in Chapter 6. 

Na een dag veldwerk kwam ik altijd met een hele serie spuiten gevuld met lucht 

terug op de vakgroep. Om deze te analyseren heb ik heel wat uurtjes achter de 

gaschromatograaf doorgebracht bij Jaap Nelemans en Willeke van Tintelen in het 

lab. Jaap en Willeke, bedankt voor de gezelligheid en hulp in het lab, en ook voor de 

koffie op Duivendaal! 

I gratefully acknowledge the work done by students H. de Wit (NL), K. McCallum and 

Michael Dent (UK), Rowan Sturgess and Mike Brooks (UK), and A. Hernandez 

Villaró (S). Dear Heleen, Kevin and Michael, Rowan and Mike, and Anna, you 

contributed to the work presented in Chapter 7 and 8. But also, we had lots of fun, 

and I really hope to meet you again some day! 

Mijn project was in de periode 1993-1995 onderdeel van het "geïntegreerde 

grasland-methaan-project" en in de periode 1995-1997 van het "geïntegreerde 

grasland-lachgas-methaan-project". Dr. Peter Leffelaar was projectleider van het 

laatste project. Beste Peter, bedankt voor alle energie die je in het project gestopt 

hebt om de voortgang ervan te verzekeren. Zonder jou was het project mogelijk al 

gestopt in 1995 en had dit proefschrift er niet gelegen. 

In beide projecten heb ik prettig samengewerkt met Reinoud Segers, Cor 

Langeveld, Herman Heipieper en Serve Kengen. Met name Reinoud heeft een grote 

bijdrage geleverd aan mijn gedachtengang rondom methaan. Beste Reinoud, van 

harte bedankt voor het gebruik van je "methaanbibliotheek". Als ik over een bepaald 

aspect van methaan wat wilde weten, kwam je altijd wel met een kopie van een of 

ander artikel. 

Alle collega's van Bodemkunde en plantenvoeding wil ik bedanken voor de 

gezelligheid en interesse. Vooral van Gerard Velthof heb ik veel nuttige tips 

gekregen. Ook heb ik veel opgestoken in het discussiegroepje van de CT. de Wit 

onderzoeksschool Produktie Ecologie, waar mijn project toe behoorde. 

Familie, vrienden, collega's, bedankt voor jullie belangstelling! Al met al was het een 

leuke en boeiende tijd, niet in het minst dankzij Gerrit. Lieve Gerrit, bedankt voor je 

onvoorwaardelijke steun, hulp en vertrouwen! 

Agnes 



ABSTRACT 

Van den Pol-van Dasselaar A (1998) Methane emissions from grasslands. 

Ph.D. thesis, Wageningen Agricultural University, Wageningen, the Netherlands, 

179 pages. 

This study aims to provide insight into the major factors that contribute to net 

methane (CH4) emissions from grasslands, and to provide quantitative data on net 

CH4 emissions from typical grasslands with a range of soil wetness and N input in 

the Netherlands. CH4 emissions from grasslands were measured with vented closed 

flux chambers at a number of sites in the period 1994-1997. Furthermore, several 

incubation experiments were carried out. 

Wet grasslands with low N input on peat soil were considerable sources of CH4. 

They emitted 80-200 kg CH4 ha"1 yr"1. Main determining factors for temporal 

variability of CH4 emissions from these grasslands were ground water level and soil 

temperature. Main determining factors for spatial variability were CH4 production 

capacity and aboveground biomass of sedges. Fractionation of wet peat soils into 

different size and density fractions indicated that recentjy died plant material is a 

major substrate for methanogens. 

Intensively managed grasslands with a range of N input on drained peat soils 

consumed 0.1 to 0.3 kg atmospheric CH4 ha"1 yr"1. Spatial dependence of 

greenhouse gas emissions from drained peat soils showed differences between sites 

and also between succeeding days. Extensively managed grasslands with low N 

input on relatively dry sandy soil consumed 1.1 kg CH4 ha"1 yr'1. Temporal variability 

of CH4 uptake by these grasslands was related to differences in soil temperature and 

soil moisture content. 

It is concluded that grassland management, other than drainage, is not an 

option to mitigate net CH4 emissions from grasslands in the Netherlands. The effects 

of N fertilisation, withholding N fertilisation, grazing versus mowing and stocking 

density on net CH4 emissions were negligible or small. Thus far, CH4 emissions from 

grasslands in the Netherlands were not well-documented. The present study 

estimates that national net CH4 uptake by grasslands (excluding wet grasslands) is 

0.5 Gg CH4 yr"1. Wet soils, which occupy only 0.5% of the total surface area, emit 

5-10 Gg CH4 yr"1. Estimates of CH4 emissions in the Netherlands should be adjusted 

to put straight the role of grasslands in the national CH4 budget. 
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Chapter 1 

GENERAL INTRODUCTION 

The greenhouse effect 

Radiatively active gases, the so-called greenhouse gases, are transparent for 

incoming short-wave radiation from the sun. They however trap part of the outgoing 

infra-red radiation from the earth's surface, thereby causing a heating of the 

atmosphere. This is the so-called greenhouse effect. Without a greenhouse effect, 

temperature on earth would be about 33 °C lower than the present temperature 

(IPCC, 1995a), which would make life in its present form impossible. 

The concentration of greenhouse gases in the atmosphere has been increasing 

since pre-industrial times, mainly due to human activities. This increase gives 

concern, because it may cause additional global warming due to an enhanced 

greenhouse effect. Climate change may be a serious threat. Some characteristics of 

the important greenhouse gases carbon dioxide (CO2), methane (CH4), and nitrous 

oxide (N20) are shown in Table 1.1. Halocarbons, methylchloroform and carbon 

tetrachloride also contribute to greenhouse gas radiative forcing (IPCC, 1995a). 

Table 1.1. Characteristics of key greenhouse gases (IPCC, 1995a). 

CC^ CFÙ thO 

Pre-industrial concentration, ppmvu 

Concentration in 1992, ppmv 

Concentration increase 

over 1980s, % yr"1 

Atmospheric life-time, yr 

Global Warming Potential2' 

Contribution to greenhouse gas 

radiative forcing, % 62 20 4 

'' ppmv = parts per million by volume. 
2) Global Warming Potential: cumulative radiative forcing over 100 years, caused by 

a unit mass of gas emitted now (expressed relative to CO2). 

280 
355 

0.4 

50-200 

1 

0.70 

1.71 

0.8 

12-17 

24.5 

0.28 

0.31 

0.25 

120 

320 
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Since the first reports of possible global warming (late 1980s), greenhouse gases 

have been the subject of many research topics. However, the uncertainties regarding 

the enhanced greenhouse effect are still large. The temperature of the earth has 

been increasing in the last decades, but it is very difficult to distinguish between 

temperature increase due to an enhanced greenhouse effect and temperature 

increase due to climate variability. The general consensus has been summarised in 

the second assessment report of the Intergovernmental Panel on Climate Change: 

"the balance of evidence suggests a discernible human influence on global climate" 

(IPCC, 1995b). Further on, estimates of the magnitude of sources and sinks of 

greenhouse gases are still highly variable (e.g. Table 1.2). Finally, controlling factors 

and the effects of these factors on sources and sinks of greenhouse gases are not 

fully understood. It is especially important to understand the impact of human 

activities, as these may be adjusted to reduce the hazards of enhanced global 

warming. 

Global CH4emissions 

CH4 is an important greenhouse gas. The estimated contribution of CH4 to the 

anticipated enhanced greenhouse effect is 20% (IPCC, 1995a). According to IPCC 

(1995a), global CH4 source strength equals 535 Tg CH4 yr"1 (Table 1.2). Natural 

wetlands are the biggest CH4 source. Global CH4 sink strength is estimated to be 

515 Tg CH4 yr"1. The main removal process for CH4 is the reaction with hydroxyl 

radicals (OH) in the atmosphere. Atmospheric CH4 increase is estimated to be 37 Tg 

CH4 yr"1. This implicates that there is a difference between estimated total identified 

sources and estimated implied total sources (Table 1.2). The increase in 

atmospheric CH4 concentration is thought to be related to a rise in the human 

population and the accompanying activities, e.g. oil and gas production and 

distribution, coal production, animal husbandry, wetland rice production, biomass 

burning and landfills. 
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Table 1.2. Estimated sources and sinks of CH4 in Tg CH4 yr"1 (1 Tg = 1012 g) (IPCC, 

1995a). 

Estimate Range 

Sources 

Wetlands 

Fossil fuel related 

Enteric fermentation 

Rice paddies 

Biomass burning 

Landfills 

Animal waste 

Domestic sewage 

Termites 

Oceans 

Other natural 

Total identified sources 

Sinks 

Troposphere 

Stratosphere 

Soils 

Total sinks 

Atmospheric increase 37 35-40 

Implied total sources 552 465-640 

(atmospheric increase + total sinks) 

115 
100 

85 

60 

40 

40 

25 

25 

20 

10 

15 

535 

445 

40 

30 

515 

55-150 

70-120 

65-100 

20-100 

20-80 

20-70 

20-30 

15-80 

10-50 

5-50 

10-40 

410-660 

360-530 

32-48 

15-45 

430-600 
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CH4 dynamics in soils 

CH4 production 

Methanogenesis may occur in soils when organic matter is degraded under 

anaerobic conditions, in the absence of electron acceptors other than CO2 

(Oremland, 1988). It is a microbial process, in which methanogens produce CH4, 

either in anaerobic soil layers below the ground water level or in anaerobic microsites 

above the ground water level. CH4 production is thought to occur primarily via two 

pathways: aceticlastic methanogenesis (CH3COO" + H+ -» CH4 + C02), which is the 

predominant pathway, and CO2 reduction or hydrogenotrophic methanogenesis (CO2 

+ 4H2 -> CH4 + 2H20). Main factors influencing the rate of CH4 production are 

aeration of the soil, presence of alternative electron acceptors, like NO3", Mn4*, Fe3+, 

and S04
2", type and amount of available organic matter and size and activity of the 

methanogenic population (Conrad, 1989; Oremland, 1988; Segers, 1998). 

CH4 consumption 

Under aerobic conditions both CH4 that has been produced in anaerobic parts of the 

soil and atmospheric CH4 can be oxidised. Two kinds of CH4 oxidising activity can be 

distinguished: low affinity (at high CH4 concentrations) and high affinity (at low, 

atmospheric CH4 concentrations). High affinity CH4 oxidisers are poorly identified. 

Next to methanotrophs also nitrifiers may oxidise CH4 (Bédard & Knowles, 1989). 

Probably, the contribution of nitrifiers to atmospheric CH4 consumption is small 

(Hütsch et al., 1993, Schnell & King, 1994). In this thesis, all CH4 oxidisers are 

generally referred to as methanotrophs. Main factors influencing the rate of CH4 

oxidation are 0 2 and CH4 concentration in the soil and size and activity of the 

methanotrophic population (Segers, 1998). 

CH4 emissions 

The contribution of soils to the global CH4 balance is significant: 14-47% of the total 

source (i.e. wetlands and rice paddies) and 3-9% of the total sink (IPCC, 1995a). Net 

CH4 emissions, i.e. the resultant of CH4 exchanges between soil and atmosphere, 

encompasses the processes CH4 production, CH4 oxidation, and CH4 transport. CH4 
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transport in the soil can take place via diffusion, ebullition, and via the vascular 

system of plants (e.g. Schimel, 1995). 

Determining factors for CH4 emissions from soils 

Determining factors for CH4 emissions from soils can be split up into environmental 

factors and management factors. Important environmental factors are ground water 

level and soil temperature (Bartlett & Harriss, 1993). Soil temperature affects CH4 

production and CH4 consumption. Ground water level roughly indicates the transition 

zone between aerobiosis and anaerobiosis in the soil. Soil moisture content of the 

unsaturated soil and precipitation may also be important as they influence the degree 

of anaerobiosis in the unsaturated soil. Further on, vegetation characteristics may be 

important (Bubier et al., 1995b; Schimel, 1995; Whiting & Chanton, 1993), since 

plant material may serve as substrate for methanogens and CH4 may be transported 

via the vascular system of plants. Important management factors may be drainage 

(e.g. Martikainen et al., 1992; Roulet et al., 1993), since drainage affects the ground 

water level, and nitrogen (N) fertilisation (Hütsch et al., 1994; Mosier et al., 1991; 

Steudler et al., 1989; Willison et al., 1995). N fertilisation may decrease CH4 

consumption, either caused by an immediate inhibition^ methanotrophy (short-term 

effect) or by a change in the composition and size of the microbial community due to 

repeated fertiliser N application (long-term effect). It is not known whether there is an 

effect of grazing versus mowing. 

CH4 emissions from soils in the Netherlands 

Estimates of CH4 emissions in the Netherlands have been first compiled by Van den 

Born et al. (1991), and have been updated by Van Amstel et al. (1993). CH4 

emissions from wet organic soils and drained organic soils were estimated to be 80-

200 and 10-200 mg CH4 m"2d"1, respectively. These estimates were based on 

research at organic soils in other countries (e.g. Aselmann & Crutzen, 1989; Moore & 

Knowles, 1989). In general, drained soils are considered to be a net sink for 

atmospheric CH4 (e.g. Hütsch et al., 1994; Minami et al., 1994; Mosier et al., 1991). 

Total national CH4 source strength was estimated at 1227 Gg CH4 yr'1 (1 Gg = 109 g) 

with a contribution of 10-27 Gg CH4 yr"1 from wet organic soils and 32-89 Gg CH4 yr"1 

from drained organic soils (Van Amstel et al., 1993). Van Amstel et al. (1993) 
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estimated net CH4 uptake by forests at 2.0 Gg CH4 yr"1. Net CH4 uptake by 

grasslands and arable land were not considered separately. Net CH4 uptake by 

arable land is usually much smaller than net CH4 uptake by grasslands (e.g. Ambus 

& Christensen, 1995; Glenn et al., 1993; Hütsch et al., 1994). 

About one-third of the soil surface in the Netherlands is occupied by 

grasslands. Thus far, CH4 emissions from these grasslands are poorly quantified. 

Grasslands in the Netherlands have certain aspects, which distinguish them from 

grasslands in other countries. More than 95% of the grasslands is intensively 

managed and drained, but they have a relatively shallow ground water table. Further 

more, grassland management in the Netherlands is characterised by large N inputs 

(300-500 kg N ha"1 yr"1) via N fertilisers, animal excreta and atmospheric N 

deposition, which may reduce CH4 consumption (e.g. Hütsch et al., 1994; Steudler et 

al., 1989). Unfertilised grasslands still have a total N input of 30-50 kg N ha"1 yr"1 via 

atmospheric deposition. Furthermore, about 30% of the grassland area is situated on 

peat soils. Peat soils have a high CH4 emitting potential (Bartlett & Harriss, 1993), 

because they may be anoxic at shallow depth and have high organic matter 

contents. Thus far, it is not known whether intensively managed grasslands on 

drained peat soil are a source or a sink of CH4. Insight into possible CH4 uptake by 

soils is relevant. Although the uptake of CH4 by aerobic soils is thought to represent 

only 3 to 9 % of total global CH4 sinks, it is a CH4 sink that is directly under the 

influence of human activity, and as such a CH4 sink that can possibly be managed. 

Next to grasslands on drained soils, a small part of the grasslands in the 

Netherlands is classified as wet grasslands. They may emit considerable amounts of 

CH4 (e.g. Bartlett & Harriss, 1993). Although the area of wet grasslands is small, 

insight into CH4 emissions from these grasslands is relevant, since (i) wetlands 

contribute significantly to national and global CH4 budgets and (ii) the government in 

the Netherlands intends to convert part of the agricultural used, drained grasslands 

on peat soil into wet grasslands. 

Aims of this thesis 

The major aims of this thesis are: 
(i) To provide insight into the major factors that contribute to net CH4 emissions from 

grasslands. More information on determining environmental and management 
factors is needed to investigate the possibilities of reducing CH4 emissions. 
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Furthermore, such information can be used in simulation models, that aim at 

gaining quantitative insight in the underlying processes of CH4 emissions, which 

may help to judge the reliability of extrapolations (e.g. Segers & Leffelaar, 1996). 

Special emphasis is put on the effect of soil wetness and N fertilisation, since they 

can both be managed. In the Netherlands, soil wetness can be influenced via the 

water level in ditches. Since large variability of net CH4 emissions is a common 

phenomenon, special attention is paid to temporal and spatial variability, both in 

long-term and short-term field experiments, 

(ii) To provide quantitative data on net CH4 emissions from typical grasslands with a 

range of soil wetness and N input in the Netherlands. Special emphasis is put on 

defining the limits of net CH4 emissions. 

Set-up of the study 

Field experiments 

Field experiments form the main part of this study. Field monitoring provides the 

most realistic estimates of CH4 emissions, since the variability in both environmental 

and management factors is incorporated. Furthermore, the impact of possible 

determining factors for CH4 emissions can most realistically be measured in the field. 

To provide realistic estimates of annual CH4 emissions, monitoring should be done 

for a year at least, and for several years in situations where large interannual 

differences are expected. Net CH4 emissions and possible determining factors of 

CH4 emissions were measured in the period 1994-1997 at grasslands with a range of 

soil wetness and N input: 

(i) "Nieuwkoopse Plassen", the Netherlands, wet peat soils with low N input. 

To explore maximum CH4 emissions from grasslands in the Netherlands, 

measurements were carried out in the nature preserve "Nieuwkoopse Plassen". 

"Nieuwkoopse Plassen" includes good representatives of wet grasslands. It is a 

former peat mining and agricultural area with narrow grassland and reed fields, 

surrounded by ditches. Ground water level is kept near the surface. The sites 

can be classified as minerotrophic peat soils (fens), 

(ii) Zegveld, the Netherlands, drained peat soils with both low and high N input. 

About 30% of the grassland area in the Netherlands is situated on drained peat 

soils and intensively managed. To examine whether these grasslands are a 

8 
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source or a sink of CH4, measurements were carried out at the experimental 

farm Zegveld. Zegveld is a good representative of intensively managed 

grasslands on peat soil. There were several treatments available: relatively high 

and relatively low ground water level, grazing and mowing, N fertilisation and 

withholding of N fertilisation. 

(iii) Fallköping, Sweden, drained peat soils with moderate N input. 

Large variability of CH4 emissions is a common phenomenon. Spatial variability 

of greenhouse gases and possible determinants were studied in co-operation 

with researchers from several EU-countries during a field campaign at 

Fallköping. Fallköping is a good representative of agriculturally used grasslands 

on drained peat soil in north-western Europe. 

(iv) Gelderland, the Netherlands, relatively dry sandy soils with low N input. 

Grasslands on relatively dry soils may consume significant amounts of CH4. 

However, uptake of atmospheric CH4 may also be restricted due to human 

influences like N input. To explore the maximum uptake of atmospheric CH4 by 

grasslands in the Netherlands, measurements were carried out at Wolfheze 

and Bovenbuurtse Weilanden, relatively dry sandy soils with a low soil fertility 

status in the province Gelderland. 

Incubation experiments 

To unravel some confounding effects from the field experiments, several 

experiments were carried out under controlled conditions. Potential CH4 production 

and CH4 consumption were determined in incubation experiments with soil samples 

from different depths. To improve our understanding of CH4 emissions from wet peat 

soils, CH4 production capacity was studied for individual soil fractions obtained by a 

physical soil fractionation method. The main determining environmental factors of 

CH4 consumption capacity, i.e. soil moisture content and soil temperature, often are 

interrelated in the field. The separate effect of these factors was assessed in 

incubation experiments. 

Methodology of flux measurements 

In the field experiments, CH4 emissions between soil and atmosphere were 

measured with vented closed flux chambers (Hutchinson & Mosier, 1981; Mosier, 

1989). Flux gradient techniques were not considered as plots were small. The use of 
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flux chambers in measuring CH4 emissions has several advantages and 

disadvantages (e.g. Mosier, 1989; Velthof, 1997). Main advantages of the use of flux 

chambers are (i) small-scale differences can be studied, (ii) small fluxes can be 

measured, (iii) flux chambers are easy in use, and (iv) construction of flux chambers 

is relatively simple and inexpensive. There are however also disadvantages. Firstly, 

disturbances by inserting the chamber into the soil may release CH4 trapped by the 

soil. This can be minimised by using flux chambers with sharp edges, by carefully 

inserting them into the soil and/or using boardwalks and permanently installed 

frames at sites with a soft top soil. Furthermore, build-up of high CH4 concentrations 

in flux chambers may decrease CH4 emissions from the soil; this problem can be 

minimised by adapting the time of flux chamber closure to the anticipated CH4 

emission. Differences in pressure and/or temperature between the flux chamber and 

the atmosphere may also be a problem; this can be minimised by using vented 

chambers and covering these chambers with an insulating sheet. 

Outline of this thesis 

In Chapters 2, 3, and 4, CH4 emissions from wet grasslands on peat soil in a nature 

preserve are studied. In Chapter 2, a simple regression model of CH4 emissions is 

presented, with ground water level and soil temperature as independent variables. In 

Chapter 3, the determinants of spatial variability of CH4 emissions are evaluated. In 

Chapter 4, CH4 production and C mineralisation capacities are presented for 

individual soil fractions obtained by a physical fractionation method. 

In Chapters 5 and 6, CH4 emissions from intensively managed grasslands on 

drained peat soil are studied. In Chapter 5, the effect of grassland management on 

CH4 emissions is presented. In Chapter 6, results from a measurement campaign, 

investigating spatial variability of greenhouse gas emissions and determining factors, 

are presented and analysed using geostatistics. 

In Chapter 7, CH4 emissions from grasslands on sandy soils are studied. 

Furthermore, the effect of soil moisture content and temperature on CH4 oxidation is 

investigated. In Chapter 8, the effects of N input and grazing on CH4 uptake by 

extensively and intensively managed grasslands on peat and sandy soils in the 

Netherlands are presented. Finally, Chapter 9 gives an overview and general 

discussion of all results. 
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Methane emissions from wet grasslands on 

peat soil in a nature preserve 

Van den Pol-van Dasselaar A, van Beusichem ML & Oenema O (1998) 

Biogeochemistry, in press 
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Chapter 2 

METHANE EMISSIONS FROM WET GRASSLANDS ON PEAT SOIL IN A NATURE 
PRESERVE 

Abstract 

The area of wet grasslands on peat soil in the Netherlands is slowly increasing at the 

expense of drained, agriculturally used grasslands. This study aimed (i) to assess 

the contribution of wet grasslands on peat soil to CH4 emissions, and (ii) to explain 

differences among sites and between years in order to improve our understanding of 

controlling factors. For these purposes, a field study was conducted in the period 

1994-1996 in the nature preserve "Nieuwkoopse Plassen", which is a former peat 

mining and agricultural area. Net CH4 emissions were measured weekly to monthly 

with vented closed flux chambers at three representative sites, and at ditches near 

these sites. Three-years average of CH4 emissions was 79 kg CH4 ha"1 yr"1 for Drie 

Berken Zudde, 133 for Koole, and 204 for Brampjesgat. Ditches near the sites 

emitted 42-225 kg CH4 ha"1 yr"1. The time course of CH4 emissions for all 

experimental sites and years was fit with a multiple linear regression model with 

ground water level and soil temperature as independent variables. Lowering or 

raising the ground water level by 5 cm could decrease or increase CH4 emissions by 

30-50%. Therefore, ground water level management of these grasslands should be 

done with care. 

Introduction 

CH4 is one of the most important greenhouse gases. Methanogenesis occurs 

wherever organic matter is decomposed under anaerobic conditions, in the absence 

of electron acceptors other than CO2. Under aerobic conditions CH4 can be oxidised 

by methanotrophs. Net CH4 exchanges between the soil and the atmosphere are the 

result of the biogeochemical processes: CH4 production and CH4 consumption, and 

CH4 transport. Transport can take place via diffusion, ebullition, and via the vascular 

system of plants. Important environmental factors determining CH4 emissions from 

soils are vegetation, temperature and ground water level (e.g. Bartlett & Harriss, 

1993; Bubier et al., 1995b; Kettunen et al., 1996; Whiting & Chanton, 1993). 

Vegetation may serve as a conduit for CH4 and O2 transport, and as a substrate for 

methanogens. Soil temperature affects the kinetics of both microbial CH4 production 

14 
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and consumption. Ground water level acts as a border between anaerobic and 

aerobic layers in the soil. 

Wetlands are mainly situated on peat soil (Bartlett & Harriss, 1993). They have 

the potential of emitting large amounts of CH4, since they are mainly anaerobic. On a 

global scale, wetlands contribute between 10 and 28% to total CH4 sources (IPCC, 

1995a). Approximately half of the total surface area of the Netherlands has been 

wetland for some time during the last 3000 years. Especially during the last few 

centuries the area of wetlands has decreased drastically. Most of it has been 

transformed into agricultural land. At present, less than 1% of the total surface area 

is wetland. However, this area is increasing, due to the policy of the government of 

the Netherlands to withdraw intensively managed, drained grasslands from 

agriculture and turn them into wet grasslands. Thus far, CH4 emissions from wet 

grasslands in the Netherlands had not been quantified. 

The aim of our study was (i) to assess the contribution of wet grasslands on 

peat soil to CH4 emissions, and (ii) to explain differences among sites and between 

years in order to improve our understanding of possible controlling factors. For these 

purposes, a three-year field study was conducted at wet grasslands in the nature 

preserve "Nieuwkoopse Plassen". Net CH4 emissions, CH4 concentrations in the soil 

profile, ground water levels and soil temperatures were measured. We hypothesised 

(i) that the wet grasslands would emit considerable amounts of CH4, and (ii) that 

differences in CH4 emissions among sites and between years would mainly depend 

on differences in ground water level and soil temperature. 

Materials and methods 

Site description 

"Nieuwkoopse Plassen" is a nature preserve located in the major peat area of the 

western part of the Netherlands (52°08'N, 4°48'E). During several centuries, the 

"Nieuwkoopse Plassen" area has been used for peat mining and agriculture. Since 

some decades, it is a nature preserve with narrow (30-80 m wide) grassland and 

reed fields, surrounded by ditches. Ground water level is kept near the surface via 

water level of the ditches. The area can be characterised as a fen, i.e. a 

minerotrophic peat soil, due to the influence of surface water. Measurements were 

done at three grassland sites spread over the area, Drie Berken Zudde, Koole and 
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Brampjesgat (Table 2.1), which could only be reached by boat, and at ditches near 

these sites. The sites form a good representative of the wet, nutrient-poor grassland 

sites in the area. They were chosen to cover a range of ground water levels and 

vegetation types. Drie Berken Zudde and Koole have not been fertilised for more 

than 20 years. Brampjesgat still receives every second year farm yard manure (about 

5 ton dry matter ha'1). The sites are high in organic matter and low in nitrogen and 

phosphorus. The pH is low, especially at Drie Berken Zudde. The vegetation of the 

sites is dominated by grasses (mainly Agrostis canina L, Anthoxanthum odoratum L. 

and Molinia caerulea (L.) Moench), mosses (Sphagnum spp., Polytrichum spp.), 

rushes {Juncus spp.), sedges (Carex spp.), and reed (Phragmites australis (Cav.) 

Trin. ex Steudel). Rushes, sedges and reed may transport CH4 directly from 

anaerobic layers to the atmosphere via their aerenchymatous tissues. The sites are 

mown once or twice every year in the period July to September. Typical yields are 3-

5 ton dry matter ha'1 yr'1. 

Table 2.1. Mean ground water level (GWL) and ranges in the years 1994-1996, soil 

characteristics of the 0-20 cm layer, and vegetation types of the sites Drie Berken 

Zudde (DBZ), Koole and Brampjesgat. 

GWL, cm, mean 

ranges 

Loss-on-ignition (%) 

Total nitrogen (g kg"1) 

Total phosphorus (g kg"1) 

pH-H20 

Vegetation type, in % of total dry 

matter above 5 cm, average of 

harvest 1994 and 1995 

Grasses 

Mosses 

Rushes 

Sedges 

Reed 

Remainder 

DBZ 

-18 

-36 to -7 

94 

15 

0.6 

3.5 

55 

31 

4 

2 

3 

5 

Koole 

-9 

-35 to 3 

78 

16 

0.9 

4.9 

8 

57 

17 

16 

0 

2 

Brampjesgat 

-11 

-25 to -1 

69 

16 

1.5 

5.3 

23 

21 

17 

11 

24 

4 
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Monitoring net CH4 emissions, ground water levels and soil temperatures 

Net CH4 emissions were measured weekly to monthly from January 1994 to October 

1996 with six vented closed flux chambers (Hutchinson & Mosier, 1981; Mosier, 

1989) per site. To prevent artificially induced fluxes due to the very soft top soil, 

wooden boardwalks were installed. Circular, steel frames (I.D. 25 cm, height 30 cm) 

were permanently installed into the soil to a depth of about 25 cm. During 

measurements, circular, PVC flux chambers (I.D. 25 cm, height 25 to 77 cm 

depending on the height of the vegetation) were placed on top of the frames. 

Preliminary measurements showed that size of the flux chambers did not affect 

calculated CH4 emissions. Flux chambers were closed by a PVC lid and covered with 

insulating sheets to prevent temperature changes within the chamber. 

Net CH4 emissions from ditches near the sites were measured biweekly to 

monthly from October 1994 to November 1995 with three to six flux chambers, i.e. 

one or two per ditch. These circular, PVC flux chambers were connected to a floating 

tray and carefully placed on the water. Measurements could only be carried out when 

there was not much wind. 

To examine diurnal variability, CH4 emissions were measured several times 

during 31 October 1994 and 24 July 1995. On 28 September and 3 October 1996, 

CH4 emissions were measured in the coldest and warmest period of the day (just 

before sunrise between 4.30 and 6.30 h, and between 13.00 and 15.00 h). 

At each site and at each measurement, ground water level was recorded from 

water level readings in perforated pipes (I.D. 4 cm) with the peat surface as 

reference point. Ambient temperature and soil temperatures at 0, 2, 5, 10, 20, 30, 

40, and 50 cm depth were also recorded. 

CH4 concentrations in flux chambers are expected to follow a linear increase or 

decrease and finally level off (Mosier, 1989). We measured in the linear phase. Four 

gas samples were taken with glass syringes at regular time intervals (10 to 20 

minutes) from the headspace of the chambers. Gas samples were analysed for CH4 

within 24 h by gas chromatography using a flame ionisation detector (coefficient of 

variation: 0.08%). A standard CH4 concentration of 2.0 uL L"1 (± 5%) was used for 

calibration. Net CH4 emissions were calculated from linear regression of the time 

course of CH4 concentration in the headspace of the chambers. Mean annual CH4 

emissions, ground water levels and soil temperatures were estimated by trapezoidal 

integration over time. Data for November and December 1996 were taken from the 

average of the corresponding periods in 1994 and 1995. CH4 emissions followed a 
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skewed distribution and were transformed to a near-normal distribution by In-

transforming the data. Simple and multiple linear regression analyses were 

performed with In-transformed CH4 emissions as dependent variable, and ground 

water level and soil temperatures at several depths as independent variables. 

Monitoring CH4 concentrations in the soil profile 

CH4 concentrations in the soil profile were measured weekly to monthly at Drie 

Berken Zudde from January to July 1995 and at Koole from September 1994 to 

November 1995. Perforated PVC pipes (I.D. 5 cm) were permanently installed in the 

soil in an area of about 0.1 m2 about three months before the start of the 

measurements. The end of each pipe consisted of a small perforated compartment 

of 10 cm height. Pipes of different lengths with compartments at 0-10, 20-30, 30-40, 

and 40-50 cm at Drie Berken Zudde, and at 0-10, 10-20, 20-30, 30-40, and 95-105 

cm at Koole were used. The holes in the compartments allowed water and air from 

the surrounding soil to enter. CH4 concentrations in the compartments were 

assumed to be in equilibrium with CH4 concentrations in the surrounding soil. Each 

compartment had two polythene tubes going from the compartment to the soil 

surface. Gas samples were taken via the tubes with glass syringes, and analysed for 

CH4 by gas chromatography. Whenever ground water level reached a certain 

compartment of the pipe, water samples were taken and injected into incubation 

bottles. The bottles were shaken vigorously to degas the water. Subsamples from 

the headspace of the bottles were taken through rubber septa and analysed for CH4. 

As the solubility of CH4 in water is low, amount of dissolved CH4 in the water was 

neglected. CH4 concentrations in the soil profile were converted to mg m3 using an 

average peat porosity of 0.95, as found by Liblik et al. (1997). CHU storage (mg m"2) 

was determined by integrating CH4 concentrations of the upper 40 cm of the peat 

profile. 

Results 

Weather and ground water level 

Average air temperature was 10.6 °C in 1994, 10.4 in 1995 and 8.6 in 1996 (long-

term average is 9.4 °C). Annual precipitation was 903 mm in 1994, 739 in 1995 and 
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597 in 1996 (long-term average is 792 mm). Fig. 2.1 shows the time course of soil 

temperatures at 5, 20, and 50 cm depth at the site Koole. The time course of soil 

temperatures at Drie Berken Zudde and Brampjesgat was similar (not shown). Drie 

Berken Zudde had the lowest ground water level (Fig. 2.2). Ground water levels 

generally decreased in summer. 

Net CH4 emissions 

All three sites were sources of CH4 (Fig. 2.3). Differences among sites and between 

years were quite large. Mean net CH4 emissions from ditches near the sites were 

highest in summer (Fig. 2.4). 

Results on diurnal variability are based on few observations. On 28 September 

and 3 October 1996, day-time net CH4 emissions were 52 and 59% of night-time net 

CH4 emissions. On 31 October 1994 and 24 July 1995, no clear pattern of CH4 

emissions was found during the day. 

Annual net CH4 emissions 

At Drie Berken Zudde and Koole, mean annual net CH4 emissions were highest in 

1994, and at Brampjesgat in 1995 (Table 2.2). At all three sites, CH4 emissions were 

low in 1996. The relatively high standard deviations indicate a high spatial variability 

of CH4 emissions within sites. Drie Berken Zudde showed the lowest mean annual 

net CH4 emissions and Brampjesgat the highest. CH4 emissions from ditches 

however were lowest near Brampjesgat and highest near Drie Berken Zudde (Table 

2.2). Emissions from ditches were never measured in situations of disturbances like 

heavy wind or passing boats, in which mixing of ditch water and release of CH4 from 

CH4-rich bottom water may occur. Emissions were thus underestimated. 

Underestimation may have been smallest at the ditch near Drie Berken Zudde, which 

was best protected against wind and is located in a rather remote area where no 

boats pass. 
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Fig. 2.1. Time course of soil temperatures (°C) at 5, 20, and 50 cm depth at the site 

Koole. 
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Berken Zudde (DBZ), Koole, and Brampjesgat. 
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(see next page). Each data point represents the average of six measurements. 
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Table 2.2. Mean annual net CH4 emissions (kg CH4 ha'1 yr'1 ± SD) of six flux 

chambers at Drie Berken Zudde (DBZ), Koole and Brampjesgat, and for ditches near 

the sites. Mean annual ground water level (cm below the surface) is given in 

brackets. 

DBZ Koole Brampjesgat 

224+ÏÖ7 (9 cm) 

278±220 (12 cm) 

111±51 (13 cm) 

204±160 (11cm) 

Ditches 225 73 42 

1994 

1995 

1996 

1994-1996 

96±91 

83±98 

60±68 

79±88 

(16 cm) 

(18 cm) 

(21 cm) 

(18 cm) 

182±122 

111±111 

107*110 

133±120 

(7 cm) 

(10 cm) 

(11 cm) 

(9 cm) 

CH4 emissions in relation to ground water level and soil temperatures 

Simple linear regression analyses of each of the individual data from the three sites 

showed that In-transformed mean net CH4 emissions were related to soil 

temperatures (r2 of 0.27-0.33; n=183). The relation with only ground water level was 

poor (z2 of 0.01 ; n=183). The best model obtained with multiple linear regression 

analyses included both soil temperature and ground water level (z2 of 0.54; n=183) 

(see Fig. 2.3): 

\n(Yt) = 1.75 + 0.20*T20,t-0.075*GWL, (2.1) 

t =time, d; 

Y, = net CH4 emissions at time t, mg CH4 m"2 d"1; 

T20,t = soil temperature at 20 cm depth at time t, °C; 

GWLt = ground water level at time t, cm below the surface. 

Linear regression analyses were also carried out with In-transformed mean annual 

net CH4 emissions as dependent variable, i.e. for each year and for each site, and 

mean annual ground water level and soil temperatures as independent variables. 

The best model included ground water level (r2 of 0.57; n=Q): 
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ln( Y,) = 5.87 - 0.08*GWL, (2.2) 

t = time, year; 

Y, = annual net CH4 emissions at time t, kg CH4 ha'1 yr"1; 

GWLt = annual ground water level at time f, cm below the surface. 

CH4 concentrations in the soil profile 

CH4 concentrations in the soil (Fig. 2.5) increased from ambient at the surface to 

about 3000 mg m"3 in deeper layers. Ground water level influenced the CH4 

concentration profile. CH4 concentrations in soil layers above the ground water table 

were near ambient. A considerable increase was found immediately below the 

ground water level. This indicates a net flux of CH4 from the saturated peat into the 

unsaturated zone. Calculated CH4 storage is dependent on the depth to which CH4 

concentrations are integrated. CH4 storage (±SD) in the upper 40 cm of the soil 

profile was 120±155 mg m'2 at Drie Berken Zudde and 209±124 mg m'2 at Koole. At 

Drie Berken Zudde, CH4 storage was on average 258 mg m"2 in winter and 11 in 

summer. At Koole, however, there was no clear seasonal pattern, probably due to 

the relatively high ground water level throughout the year (Fig. 2.2). Turnover time of 

CH4, i.e. storage to emission ratio, was on average 5-6 days for both sites. 

Discussion 

CH4 emissions 

In a review, Bartlett & Harriss (1993) arrive for wetlands in the latitudes 45-60°N at a 

mean estimate of 87 mg CH4 m"2 d"1 during the emission period (standard error of 

mean: 18, range: 0-664), this is equivalent to 131 kg CH4 ha"1 yr"1 (winter fluxes were 

assumed to be zero). More recent studies (e.g. Bubier et al., 1993; Martikainen et al., 

1995; Suyker et al., 1996) yielded similar CH4 emissions. CH4 emissions from our 

grasslands were in the same range (60-280 kg CH4 ha"1 yr"1, Table 2.2). Differences 

among the three sites could largely be attributed to ground water level differences. 
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a) Drie Berken Zudde 
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Fig. 2.5. Time course of In-transformed CH4 concentration (mg m" ) in different soil 

layers (cm below the surface) at a) Drie Berken Zudde, and b) Koole, and ground 

water level (GWL) (cm below the surface). 
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However, Brampjesgat showed higher CH4 emissions than Koole whilst the annual 

mean ground water level was almost similar. This might be explained by other 

differences among the sites, for example in vegetation and in pH (Table 2.1) (Van 

den Pol-van Dasselaar et al., 1998c). 

In the "Nieuwkoopse Plassen" area, fields are surrounded by ditches. CH4 

emissions from these ditches ranged from 0-425 mg CH4 m"2 d"1, which is similar to 

the CH4 emissions from ditches of drained bogs and fens in Ontario, Canada (5-400 

mg CH4 m"2 d"1) as found by Roulet & Moore (1995). Emissions from ditches seemed 

to be related to temperature with the highest emissions occurring in summer (Fig. 

2.4). We expect that the major CH4 transport mechanism in ditches was diffusion 

and convection for low emissions and ebullition for high emissions. This was 

supported by an often occurring non-linear increase in CH4 concentration in the 

headspace of the chamber in summer, indicating the escape of CH4 bubbles to the 

headspace between two measurements. Further on, bubbles were frequently seen in 

summer. 

Temporal variability of CH4 emissions 

Interannual variability 

Interannual variability of CH4 emissions (Table 2.2) was related to differences in 

ground water level (Equation 2.2). Moore & Roulet (1993) and Liblik et al. (1997) 

found a strong relationship between the logarithm of the average seasonal CH4 flux 

and average seasonal water table depth for wetland sites in Canada. Our results 

support this relationship. Furthermore, our results confirm that the relationship 

between CH4 emissions and ground water level is not only present in summer, but 

during the whole year. The latter is important in estimating annual emissions. The 

existence of large differences between years implies that monitoring of CH4 

emissions should be done for at least several years to obtain a reliable estimate of 

emissions from a particular area. If extrapolation of measurements is needed, 

special attention should be paid to ground water level and soil temperature. This is 

especially important during the growth period, as the highest CH4 emission rates may 

occur in that period. 

Seasonal variability 

We found a strong seasonal variability with high emissions in summer and low 

emissions in winter (Fig. 2.3). We hypothesised that differences in CH4 emissions 
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would mainly depend on differences in ground water level and soil temperature. This 

was true (Equation 2.1, ? of 0.54; n=183), but still a large part of the temporal 

variability of CH4 emissions could not be explained. Although this is found often (e.g. 

Frolking & Crill, 1994; Rouse et al., 1995), in some studies a larger part of the 

variability could be explained (e.g. Dise et al., 1993; Suyker et al., 1996). However, 

our regression model fitted the time course of CH4 emissions for all three sites and 

all three years (Fig. 2.3), even though there were relatively large differences among 

sites and between years. Therefore, we conclude that both ground water level and 

soil temperature have a large influence on CH4 emissions. 

Temperature may affect the microbial CH4 producing and consuming processes 

instantaneously, while ground water level may have both short- and long-term effects 

controlling methanogenic and methanotrophic populations within a site. A decrease 

of CH4 production due to a decrease of ground water level may be caused by an 

increase of electron acceptors, such as oxygen, nitrate and sulphate (Freeman et al., 

1994), by a decrease of available methanogenic substrates, as well as by a 

reduction in the population of methanogenic bacteria (Shannon & White, 1994). 

Often, there appears to be a hysteresis effect, i.e. CH4 emissions are greater on the 

falling than rising water table limbs, for a set water table depth (e.g. Moore & Dalva, 

1993). For our sites, a hysteresis effect could not be detected. According to Shannon 

& White (1994), a substantial drop of the water table may cause lower CH4 

emissions for at least a year following the return of saturated conditions. This would 

suggest that the relatively dry conditions of 1995 and 1996 might affect CH4 

emissions of coming years. 

Diurnal variability 

Our CH4 emission estimates (Fig. 2.3 and 2.4, Table 2.2) are based on 

measurements during the day. However, CH4 emissions may fluctuate within a time 

scale of hours. This may be caused by changes in e.g. temperature, which may 

affect both methanogenesis and methanotrophy and radiation, which may affect 

plant-mediated CH4 transport and substrate availability for methanogens through 

affecting plant photosynthesis and subsequent carbon translocation to roots (Mikkelä 

et al., 1995). The magnitude of diurnal variability of CH4 emissions from wetlands is 

inconsistent. For example, Suyker et al. (1996) showed that CH4 emissions from a 

fen were higher during day-time than during night-time, «linger et al. (1994) could not 

detect diurnal variability of CH4 emissions from peatlands. Mikkelä et al. (1995) found 

no significant differences between CH4 emissions during day and night for sites with 
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high ground water levels. For sites with low ground water levels however (5-30 cm 

below the surface), they found higher emissions during the night than during the day. 

They speculate that this may be caused by diurnal variability of CH4 oxidation due to 

temperature changes in the top layer, and hardly any diurnal variability of CH4 

production, occurring in the deeper layers. Our few data on variability of CH4 

emissions during the day suggest that we might have underestimated CH4 

emissions, as CH4 emissions were higher during night-time than during day-time. 

However, this is based on too little information to draw any firm conclusions. Possible 

effects of measurement time during the day may be excluded, as the measurement 

chronology was changed at every measurement date. 

Effect of climate and land use changes on CH4 emissions 

In the Netherlands, about 3% of the peat area is similar to the "Nieuwkoopse 

Plassen" area. The greater part of peat soils is drained and agriculturally utilised. 

Intensively managed and drained grasslands on these peat soils are a small sink of 

CH4 with an annual consumption of 0.1 to 0.3 kg atmospheric CH4 ha*1 yr'1 (Van den 

Pol-van Dasselaar et al., 1997). The government of the Netherlands intends to 

convert part of the intensively managed grasslands on peat soil from agriculture into 

more natural ecosystems. The ground water level of these grasslands will than be 

raised again, and both fertilisation and dry matter yield will be reduced. Eventually, 

these grasslands will be comparable to grasslands in the "Nieuwkoopse Plassen" 

area with estimated mean annual net CH4 emissions of 60-280 kg CH4 ha"1 yr"1. 

Therefore, this policy may lead to increased CH4 emissions. 

Both soil temperature and ground water level have a large influence on CH4 

emissions. If, as a consequence of increased greenhouse gas emissions, 

temperatures on earth will increase, then CH4 emissions will also increase, unless, 

as a consequence of a warmer climate, ground water level will drop simultaneously. 

According to Equation 2.1, the effect of changes in soil temperature might be 

considerable: an increase of soil temperature at 20 cm depth by 2 °C would cause 

CH4 emissions to increase by 50%, assuming that all other factors remain constant. 

In the nature preserve "Nieuwkoopse Plassen", ground water level is 

maintained on a higher level than in the surrounding agriculturally used areas. It is 

possible to manage the ground water level via the water level in the ditches. 

Changes in ground water level management will affect CH4 emissions. If, for 

example, ground water level is maintained 5 cm above the present level, then CH4 
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emissions may increase by 45-50% (according to Equation 2.1 and 2.2). If however, 

ground water level drops 5 cm, CH4 emissions may decrease by 30%. The largest 

impact will be achieved in summer, when CH4 emissions are high. As the impact of 

ground water level on CH4 emissions may be considerable, ground water level 

management of wet grasslands should be done with care. 
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Chapter 3. 

DETERMINANTS OF SPATIAL VARIABILITY OF METHANE EMISSIONS FROM 
WET GRASSLANDS ON PEAT SOIL 

Abstract 

Methane (CH4) emissions from soils, representing the consequence of CH4 

production, CH4 consumption and CH4 transport, are poorly characterised and show 

a large spatial variability. This study aimed to assess the determinants of field-scale 

spatial variability of CH4 emissions from wet grasslands on peat soil. Mean CH4 

emission rates of a three-year experiment at 18 plots distributed over three sites in 

the nature preserve "Nieuwkoopse Plassen" on peat soil in the Netherlands were 

related to CH4 production and CH4 consumption capacities of soil layers, and to soil 

and vegetation characteristics. Spatial variability of CH4 emissions and possible 

determining factors was high. Annual CH4 emissions ranged from 30 to 370 kg CH4 

ha"1 yr'1. Coefficients of variation (CV) of CH4 emissions were on average 37% 

among sites and 83% within sites. Most important determinants of spatial variability 

were CH4 production capacity (average: 211 ng CH4 g"1 dry soil h"1; CV: 131%) and 

aboveground biomass of sedges (Carex spp.) (average: 0.45 g dm"2; CV: 127%) 

(P<0.01). Sedges may affect CH4 emissions by stimulating CH4 transport from 

anaerobic layers to the surface via their vascular system and/or by serving as 

substrate for methanogens. For extrapolation of CH4 emissions to larger areas, best 

results will be obtained by using factors that are easy to determine, like vegetation. 

Introduction 

Methane (CH4) emissions from soils have been measured extensively, both from 

large areas using micrometeorological measurement techniques and small areas 

using flux chamber measurements. All these studies show high spatial variability of 

CH4 emissions, both among and within sites (e.g. Bartlett & Harriss, 1993; Bubier et 

al., 1993; Shurpali & Verma, 1998; Van den Pol-van Dasselaar et al., 1998b; 

Waddington & Roulet, 1996). CH4 emissions may vary an order of magnitude within 

several metres. 

CH4 emissions from the soil to the atmosphere are the result of the 

biogeochemical processes: CH4 production and CH4 consumption, and CH4 
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transport. Each of these processes is influenced by a multitude of factors (e.g. 

Segers, 1998). CH4 production is a strict anaerobic microbial process, in which 

methanogenic micro-organisms reduce organic matter in the absence of other 

electron acceptors. CH4 production is influenced (i) by the aeration of the soil, as 

methanogenic micro-organisms require anoxic conditions to produce CH4, (ii) by the 

presence of alternative electron acceptors, like nitrate and sulphate, (iii) by type and 

amount of available organic matter, and (iv) by the size of the methanogenic 

population. CH4 consumption is an aerobic microbial process, in which CH4 is 

oxidised by methanotrophs. It is influenced by the CH4 and O2 concentration in the 

soil, and by the size of the methanotrophic population. CH4 transport in the soil can 

take place via diffusion, ebullition and plants. If CH4, produced in anaerobic layers of 

the soil, is transported via diffusion, a considerable part of the CH4 can be oxidised 

again in aerobic layers of the soil before it reaches the atmosphere. Transport via 

ebullition, i.e. via bubbles, and transport via plants limits the possibility of CH4 

oxidation in aerobic layers. Therefore, these types of CH4 transport greatly facilitate 

CH4 emissions. 

Even though the mechanisms of CH4 production, CH4 consumption, and CH4 

transport are qualitatively reasonably well understood, quantification of determinants 

of spatial variability of CH4 emissions is poor. For extrapolation of results from a 

particular plot or field to a larger area, we need quantitative insight of the 

dependence of CH4 emissions on environmental factors under a wide range of 

conditions. Possible determinants of spatial variability are related to the scale at 

which these determinants dominate (Klinger et al., 1994). For example, on 

microscale, important determinants of CH4 emissions may be soil aeration, 

methanogenesis, and methanotrophy. On the scale of an individual field, important 

determinants may be plant growth and fluctuations in ground water table and soil 

temperature. 

Our study aimed to assess the determinants of spatial variability of CH4 

emissions on field-scale. We studied CH4 production and CH4 consumption 

capacities of soil layers, and soil and vegetation characteristics of 18 plots at wet 

grasslands in the nature preserve "Nieuwkoopse Plassen" on peat soil in the 

Netherlands. CH4 emissions from these 18 plots had been measured for three years 

(Van den Pol-van Dasselaar et al., 1998b). We also included additional plots to 

investigate the relation between CH4 emissions and the occurrence of individual 

plant species, as vegetation composition is thought to be one of the main factors 

influencing CH4 emissions. 
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Materials and methods 

Site description and main plots 

The experimental site has been described in detail elsewhere (Van den Pol-van 

Dasselaar et al., 1998b). In brief, in the period 1994 -1996, we have measured CH4 

emissions from 18 main plots spread over three representative wet grasslands in the 

"Nieuwkoopse Plassen" area in the Netherlands with vented closed flux chambers. 

"Nieuwkoopse Plassen" is a nature preserve with narrow (30-80 m wide) grassland 

and reed fields, surrounded by ditches. Ground water level is kept near the surface 

via the water level in the ditches. Distances between the three sites, i.e. Drie Berken 

Zudde, Koole and Brampjesgat, were approximately two kilometres. Distances 

between plots within a site were about two metres. 

Detailed study of main plots 

In October 1996, soil of each of the main plots was sampled. Ground water levels 

were then 11.5 cm below the surface at Drie Berken Zudde, 2.5 cm above the 

surface at Koole and 7 cm below the surface at Brampjesgat. Soil pH-H20 was 

measured in-situ in the field. Soil samples were stored at 4 °C and processed the 

next day. We studied the top layer of recently died plant material, and the layers 0-5 

cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, and 40-50 cm of the soil. 

We determined total aboveground biomass, and aboveground biomass per 

vegetation type, i.e. grasses, sedges, rushes, reed, mosses, and remainder. For soil 

layers up to 30 cm, we determined dry bulk density, and for Drie Berken Zudde and 

Brampjesgat also biomass of roots, after wet-sieving with a mesh size of 2 mm. 

Each soil layer was analysed (according to Houba et al., 1995) for soil moisture 

content (gravimetrically after drying at 105 °C for 24 h), loss-on-ignition (550 °C for 

2 h), total carbon content (850 °C for 2 h), total nitrogen and phosphorus content 

(both spectrophotometrically measured in digests obtained after treating a soil 

sample with H2S04-salicylic acid-H2C>2-Se). For Brampjesgat, we determined 

dissolved organic carbon by extraction with 0.1 /WCaCI2. 

Per soil layer, 25 g field-moist soil was incubated in a 580 ml glass bottle at 20 

°C both anaerobically (N2) and aerobically (air + 100 uL L'1 CH4) to determine 

respective ChU production and CH4 consumption capacity. For Drie Berken Zudde 

and Koole, also both anaerobic and aerobic C02 production capacities were 
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determined. For each bottle, a time series of CH4 and CO2 concentration in the 

headspace was obtained by sampling the headspaces of the bottles daily for three to 

five days. CH4 concentrations were determined either by a gas Chromatograph (PU 

4400), using a flame ionisation detector, or by a photo-acoustic infra-red absorption 

gas analyser (Brüel & Kjaer 1300). There were no significant differences between 

results obtained with the gas Chromatograph and the gas analyser, at the high 

concentrations found. CO2 concentrations were determined by the gas analyser. 

Additional plots 

In July 1995, 18 additional plots were selected at Koole to assess the effect of 

individual plant species on spatial variability of CH4 emissions. We measured CH4 

emissions from each plot with PVC flux chambers (I.D. 20 cm, height 16 cm). Four 

gas samples were taken with glass syringes at regular time intervals (10 to 20 

minutes) from the headspace of the chambers. They were analysed for CH4 within 

24 h after collection by gas chromatography using a flame ionisation detector. 

Furthermore, total aboveground biomass, and aboveground biomass per individual 

species were assessed for each plot. 

Data acquisition 

Annual net CH4 emissions from the main plots were estimated by trapezoidal 

integration of CH4 emissions over time (Van den Pol-van Dasselaar et al., 1998b). 

CH4 production capacity (ug CH4 g"1 dry soil h"1) was calculated from linear 

regression of the time course of CH4 concentration in the headspace of the bottles. 

CH4 consumption capacity (ug CH4 g"1 dry soil h"1) was calculated using the first-

order rate constant and an initial CH4 concentration of 100 uL L"1. Net CH4 emissions 

from the additional plots were calculated from linear regression of the time course of 

CH4 concentration in the headspace of the chambers. 

Simple linear regression analyses were carried out with CH4 emissions as 

dependent variable, and soil and vegetation characteristics as independent 

variables. Regression analyses were performed for each individual soil layer and for 

combinations of soil layers. Best results were obtained by using the average values 

of the layer 0-20 cm depth (including top layer) as independent variables. These 

results are presented here. For each individual site (n=6), the effect of a certain 

variable was considered significant for /2>0.53 (P<0.05) and highly significant for 
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z^O.78 (P<0.01). For all sites and in the experiment with additional plots (n=18), the 

effect was considered significant for z^O.16 (P<0.05) and highly significant for 

^>0.29(P<0.01). 

Results 

Spatial variability of CH4 emissions, soil and vegetation characteristics 

We found high spatial variability of CH4 emissions from the main plots, both among 

and within sites (Fig. 3.1). Coefficient of variation among sites was on average 37% 

(32% in 1994, 55% in 1995 and 25% in 1996; calculated using mean annual net CH4 

emissions from each individual site). Coefficient of variation within sites was on 

average 83% (107% for Drie Berken Zudde, 84% for Koole and 58% for 

Brampjesgat; calculated using annual net CH4 emissions from individual plots within 

a site). High-emission-plots remained high-emission-plots and low-emission-plots 

remained low-emission-plots throughout the measurement period (not shown). The 

time course of coefficients of variation within a site (not shown) indicated that spatial 

variability of CH4 emissions was rather constant throughout the year. 

Results of vegetation and soil analyses (means of the upper 20 cm of the 

profile) of the main plots showed a high variability (Table 3.1). Highest CH4 

production and CH4 consumption capacities were found in the upper layers (Fig. 3.2). 
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Fig. 3.1. Mean annual net CH4 emissions (kg CH4 ha"1 yr"1 ± SD) (avg. of 1994, 1995 

and 1996) from plots at the sites Drie Berken Zudde (DBZ), Koole and Brampjesgat. 
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a) CH4 production cap., pg CH4 g'1 dry soil h' 
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Fig. 3.2. a) CH4 production capacity (ug CH4 g"1 dry soil h"1) and b) CH4 consumption 

capacity (ug CH4 g"1 dry soil h"1, initial CH4 concentration of 100 uL L"1) in different 

soil layers of the sites Drie Berken Zudde (DBZ), Koole and Brampjesgat (layer 

above 0 cm is top layer of recently died plant material) at incubation at 20 °C. 

38 



^Determinants of spatial variability of CH4 emissions from wet grasslands 

Determinants of spatial variability of CH4 emissions 

In the experiment with additional plots, studying the effect of individual plant species 

on spatial variability of CH4 emissions, CH4 emissions were best related to Juncus 

spp. (P<0.01) (Fig. 3.3). Correlations with other aerenchymatous plant species, like 

Carex spp. were not significant, but this may have been due to the limited amount of 

Carex present. Total aboveground biomass also showed a significant relation with 

CH4 emissions (P<0.05). Since relations between individual plant species and CH4 

emissions were in general poor, we decided to determine biomass per vegetation 

type in our detailed study of the main plots, instead of per individual species. 
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Fig. 3.3. Coefficients of determination (z2) of simple linear regression analyses 

between CH4 emissions (mg CH4 m"2 d'1) at the site Koole and aboveground biomass 

of several plant species (g dm"2). Light bars indicate a positive and dark bars a 

negative relationship. 
J = Juncus spp.; bio = total aboveground biomass; Po = Polytrichum spp.; die = 
Dicotylédones; Ac = Agrostis canina L ; M= Molinia caerulea (L.) Moench; Ao = 
Anthoxanthum odoratum L; yt = young tree species; Sp = Sphagnum spp.; Cx = 
Carex spp.; Pe = Potentilla erecta (L.) Räuschel. 

39 



Chapter 3_ 

For the main plots, mean annual CH4 emissions were positively related to CH4 

production and CH4 consumption capacities (P<0.05), except for CH4 consumption 

capacity at Drie Berken Zudde. CH4 production capacity was positively related to CH4 

consumption capacity (P<0.05) (not shown). 

Main determinants of CH4 emissions differed among sites (Fig. 3.4). At Drie 

Berken Zudde, CH4 emissions were best correlated with the aboveground biomass of 

rushes and with CH4 production capacity (P<0.01). At Koole, CH4 emissions were 

best correlated with CH4 consumption and CH4 production capacities (P<0.01). 

Furthermore, both aerobic CO2 production capacity and aboveground biomass of 

sedges were positively correlated with CH4 emissions (P<0.05). The significant 

relation between CH4 emissions and aerobic CO2 production capacity suggests the 

importance of metabolisable organic matter in the top soil. At Brampjesgat, CH4 

emissions were best correlated with CH4 consumption capacity and aboveground 

biomass of sedges (P<0.01). Other important factors were CH4 production capacity, 

total aboveground biomass and aboveground biomass of reed (P<0.05). 

Combination of all sites (Fig. 3.5) shows that CH4 emissions were positively 

related to CH4 production capacity, aboveground biomass of sedges (P<0.01), CH4 

consumption capacity and pH (P<0.05), and negatively to aboveground biomass of 

mosses (P<0.05). The main determinant of spatial variability of CH4 emissions, other 

than CH4 production or CH4 consumption capacity, was aboveground biomass of 

sedges (r2 of 0.60, n=18): 

Y = 67 + 32 * biomasssedges (3.1) 

Y = mean annual CH4 emission, kg CH4 ha"1 yr"1; 

biomasssedges = aboveground biomass of sedges, g dm"2. 
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Fig. 3.4. Coefficients of determination (?) of simple linear regression analyses 

between mean annual net CH4 emissions (kg CH4 ha"1 yr"1) and several variables at 

the sites a) Drie Berken Zudde (DBZ) (n=6), b) Koole (n=6), and c) Brampjesgat 

(n=6) (see next page). All soil characteristics are means of the upper 20 cm of the 

soil profile. Light bars indicate a positive and dark bars a negative relationship. 

ae = aerobic CO2 production capacity, mg CO2 g'1 dry soil h"1; an = anaerobic CO2 
production capacity, mg CO2 g" dry soil h"1; bd = dry bulk density, mg cm'3; bio = 
total aboveground biomass, g dm" ; co = CH4 consumption capacity, ug CH4 g'1 dry 
soil h'1; doc = dissolved organic carbon, mg kg"1 dry soil; gr = grasses, g dm"2; loi = 
loss-on-ignition, % of dry matter; mo = mosses, g dm'2; N = total nitrogen, g kg'1; P = 
total phosphorus, g kg"1; pH= pH; pr= CH4 production capacity, ug CH4 g" dry soil 
h"1; re = reed, g dm"2; ro = roots, mg cm"3; ru = rushes, g dm"2; se = sedges, g dm'2. 
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c) Brampjesgat 
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Fig. 3.4. c) Coefficients of determination 

(r2) of simple linear regression analyses 

between mean annual net CH4 emissions 

(kg CH4 ha"1 yr'1) and several variables at 

the site Brampjesgat (n=6) (see also 

previous page). 

Fig. 3.5. Coefficients of determination (r2) of 

simple linear regression analyses between 

mean annual net CH4 emissions (kg CH4 

ha"1 yr"1) from the three sites (n=18) and 

several variables. All soil characteristics are 

means of the upper 20 cm of the soil profile. 

Light bars indicate a positive and dark bars 

a negative relationship. Abbreviations are 

explained in Fig. 3.4. 

pr 

se 

CO 

pH 

P 

gr 

ru 

bio 

N 

1 

] 

] 

1 

loi 1 

bd \m 

mo 

1 

P< 

- , 

three sites 

1 
1 

P<0.01 

1.05 

1 1 

0.00 0.25 0.50 0.75 1. 
.2 

00 

42 



.Determinants of spatial variability of CH4 emissions from wet grasslands 

Discussion 

Spatial variability of CH4 emissions 

Large spatial variability of CH4 emissions from wetland systems is a common 

phenomenon (e.g. Bartlett & Harriss, 1993; Bubier et al., 1993; Waddington & 

Roulet, 1996; Fig. 3.1). However, quantification of determinants of spatial variability 

of CH4 emissions is poor. So far, CH4 emission measurements over several years 

had not been combined with a detailed study of the plots including incubation 

experiments, soil and vegetation analyses. Three years of measuring CH4 emissions 

from 18 main plots showed that the impact of variables may be rather stable 

throughout the year as plots with a relative high emission always showed a relative 

high emission and plots with a relative low emission always showed a relative low 

emission. 

CH4 production and CH4 consumption capacity 

CH4 production and CH4 consumption capacity were highly variable (Table 3.1, Fig. 

3.2). We found that CH4 emissions were significantly related to both CH4 production 

capacity and CH4 consumption capacity (Fig. 3.4 and 3.5). Therefore, CH4 

production and consumption capacities may serve as predictors of CH4 emissions. 

The significant relation between CH4 emissions and CH4 consumption capacity may 

be explained by the significant relation between CH4 production capacity and CH4 

consumption capacity. The latter may be explained by the dependence of CH4 

consumption capacity on CH4 concentration in the soil. 

Methanogenesis contributes to C mineralisation, thus CH4 production capacity 

may be positively related to CO2 production capacity (Moore & Dalva, 1997; Schimel, 

1995; Yavitt & Lang, 1990). CO2 production capacity is an estimate of total microbial 

activity, while CH4 production capacity is an estimate of the activity of methanogens. 

We found a significant positive relation between CH4 production capacity and CO2 

production capacity at Koole. We also found that the variability of CH4 production 

capacity was larger than the variability of CO2 production capacity (Table 3.1). This 

indicates that methanogens make higher demands on quality of their substrates than 

the combined total microbial biomass. 

If we assume that methanogenesis produces 1 mole of CH4 and 1 mole of CO2, 

which is true when methanogenesis proceeds via acetate fermentation and no 
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accumulation of fermentation products occur, then carbon mineralisation via 

methanogenesis was only about 1% of total anaerobic carbon mineralisation in the 

top layers and 5 to 10% in the deeper layers. The increase in the contribution of 

methanogenesis to carbon mineralisation with depth may have been caused by 

increasing anaerobiosis in the field with depth, and an accompanying relative 

increase in the size of the methanogenic population. In a review of CH4 production, 

Segers (1998) found that for peat samples the ratio anaerobic C mineralisation to 

CHU production may vary as much as two or three orders of magnitude. 

Oxygen accelerates decomposition of dead plant material. The increase in CO2 

production rates under aerobic compared with anaerobic conditions (Table 3.1) 

indicates the importance of water table and anaerobism in slowing decomposition 

rates. Peats which are more decomposed contain less relatively fresh plant material 

for methanogens and may yield lower CH4 emissions. 

Soil characteristics 

Organic matter has been reported to be a good predictor of CH4 production capacity 

in peatlands, with highest CH4 emissions where organic matter is relatively labile and 

lowest CH4 emissions where organic matter is relatively recalcitrant (Yavitt & Lang, 

1990). Crazier et al., (1995) and Yavitt & Lang (1990) found a significant relation 

between loss-on-ignition and CH4 emissions. In our sites, loss-on-ignition was high, 

and therefore it may not have been a limiting factor for CH4 production. Schimel 

(1995) believes that soil organic matter is the main substrate for methanogens, while 

others believe that recently died plant material is the main substrate (e.g. Chanton et 

al., 1995; Whiting & Chanton, 1993). Chanton et al. (1995) suggest that the main 

source of organic matter for methanogens is recently fixed organic compounds, most 

likely dissolved organic compounds produced from the decay of recently produced 

litter, roots and root exudation products. In correspondence with this, we found a 

better relationship between dissolved organic carbon and CH4 emissions than 

between loss-on-ignition and CH4 emissions at Brampjesgat. Unfortunately, 

dissolved organic carbon was not measured at the other two sites. 

In incubation experiments, Wang et al. (1993) showed that CH4 emissions were 

highest around neutral pH. Dunfield et al. (1993) found that both CH4 production and 

CH4 consumption capacities were optimal at about 2 pH units higher than the native 

peat pH in acidic peats (pH<5) and 0-1 pH units higher in the more alkaline peats. 

They suggested that methanogens and methanotrophs are only partially adapted to 
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acidic conditions. Jugsujinda et al. (1996) showed that soil pH was the dominant 

variable which influenced organic matter decomposition, low soil Eh conditions and 

subsequent CH4 production in flooded acid sulfate soils. In their experiments, soils 

with pH below 6.1 produced no significant quantities of CH4. Even though the pH of 

our plots was much lower, especially at Drie Berken Zudde (Table 3.1), the plots 

showed significant CH4 production and CH4 emission. We found a significant positive 

relation between CH4 emissions and pH, but only at the combination of the three 

sites (Fig. 3.5). Ranges of pH at individual sites were probably too low to detect any 

effects. 

Vegetation 

Correlation between CH4 emissions and plant biomass has been found in several 

studies (e.g. Chanton et al., 1993; Whiting & Chanton, 1993). Plant biomass may 

affect CH4 emissions, as organic material from plants may serve as substrate for 

methanogens. Especially roots may influence CH4 production through supply of 

organic matter at depth via root decay and root exudation. Furthermore, plant 

species with aerenchymatous tissues may directly transport CH4 from the anaerobic 

zone of the soil to the atmosphere (e.g. Schimel, 1995), thereby protecting it against 

oxidation. The effect of plants may however be ambiguous, as plants may also 

transport O2 to deeper layers, leading to increased CH4 oxidation. Plant communities 

may also control CH4 fluxes in peatland ecosystems through indirect effects on the 

water table (e.g. Bubieretal., 1995a; Bubieretal., 1995b). 

In our study, vegetation analysis yielded good results in describing spatial 

variability of CH4 emissions. CH4 emissions from the additional plots were best 

related to Juncus spp. (Fig. 3.3). CH4 emissions from the main plots were 

significantly related (P<0.01) to aboveground biomass of sedges (Equation 3.1; Fig. 

3.5). Strong correlations between sedge biomass and CH4 emissions have been 

observed before (e.g. Klinger et al., 1994; Whiting & Chanton, 1992). Torn & Chapin 

(1993) suggested that sedges are highly effective in CH4 transport not only because 

they provide a conduit to the soil surface, but also because their large root surface 

and air-filled aerenchyma provide both an effective collection system and rapid 

diffusion path. Further on, due to the large root system of sedges, which may 

penetrate to more than 2 m depth (Saarinen, 1996), sedges may stimulate CH4 

production by serving as a substrate for methanogens. 
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Vegetation is affected by management and environmental factors like ground water 

level, nutrient status and climate. These factors each have their influence on CH4 

emissions. Therefore, it has been suggested (e.g. Bubier et al., 1995b) that 

vegetation may have predictive value for CH4 emissions. The use of vegetation in 

predicting CH4 emissions has many advantages: (i) it is much easier to determine the 

vegetation type of a certain area than to measure all the individual factors; (ii) 

vegetation composition is rather stable throughout the year, while environmental 

factors may show considerable temporal variability; and (iii) vegetation may be 

remotely sensed. 

Extrapolation 

Our results show that spatial variability of CH4 emissions can be described by 

vegetation and soil characteristics. The effect of these variables on CH4 emissions 

was mainly according to what we expected, although relations were often weak (Fig. 

3.4 and 3.5). This may be explained by the relatively small number of measurements 

per site (n=6), which may be too small to reveal possible relationships. The relative 

importance of influencing factors may vary independently and on different spatial 

scales. Probably factors, which influence CH4 production, are the primary factors 

associated with spatial variability of CH4 emissions. If conditions are favourable for 

CH4 production, then secondary factors like temperature and CH4 transport ways 

become important. 

We found that determinants of spatial variability of CH4 emissions differed 

among sites. Most important influencing factors were CH4 production capacity and 

aboveground biomass of sedges (Fig. 3.5). For extrapolation to larger areas, best 

results will be obtained by using factors which are easy to determine, like vegetation. 

When vegetation is used to predict CH4 emissions, the most important factors 

influencing CH4 emissions are considered to be also the most important ones 

influencing species distribution and biomass density. At the same time, vegetation 

also affects determinants of CH4 emissions like ground water level. However, since 

vegetation is affected by several hydrological and physiological parameters, which 

also affect the processes CH4 production, CH4 consumption and CH4 transport, 

vegetation can be a good predictor of CH4 emissions. 
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METHANE PRODUCTION AND CARBON MINERALISATION OF SIZE AND 

DENSITY FRACTIONS OF PEAT SOILS 

Abstract 

For the purpose of characterisation of soil organic matter breakdown, soil organic 

matter is often divided into different fractions, each with its own decomposition rate. 

Thus far, no attempts had been made to quantify methane (CH4) production capacity 

of individual soil fractions. This study aimed to improve our understanding of CH4 

emissions from peat soils by studying CH4 production capacity of individual soil 

fractions in coherence with carbon (C) mineralisation capacity. Samples from two wet 

grasslands on peat soil (0-60 cm) were fractionated into different size and density 

fractions using sieves and Ludox, an aqueous colloidal dispersion of silica particles, 

respectively. The individual fractions were rather similar with respect to C 

mineralisation capacity and C/N ratio, but not with respect to CH4 production 

capacity. We found that significant CH4 production only occurred for fractions with a 

large particle size. Furthermore, CH4 production capacity strongly decreased with 

depth. This indicates that in the wet peat soils recently-died plant material is a major 

substrate for methanogens. 

Introduction 

Methane (CH4) is a greenhouse gas, which may contribute to the enhanced 

greenhouse effect. CH4 emissions from wetlands contribute between 10 and 28% of 

total global CH4 sources (IPCC, 1995a). Estimates of CH4 emissions from soils and 

estimates of the effect of management and climatic factors on CH4 emissions from 

soils have a high uncertainty, since the controls of the underlying processes CH4 

production, CH4 consumption and CH4 transport are not well-known. While flux 

measurements are clearly required to obtain reliable estimates of CH4 emissions, it 

may be equally important to study the mechanisms of the subsequent processes 

production, consumption and transport. This study aimed to improve our 

understanding of CH4 emissions from soils by studying CH4 production capacity in 

coherence with carbon (C) mineralisation capacity. 
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CH4 production may occur wherever organic matter is degraded under anaerobic 

conditions. It is generally accepted that CH4 production, which is part of total C 

mineralisation, is influenced by both quality and quantity of organic matter present 

(e.g. Crazier et al., 1995; Schimel, 1995; Whiting & Chanton, 1993; Yavitt & Lang, 

1990). However, the relationship between CH4 production and total C mineralisation 

is highly variable. For example, the ratio of anaerobic C mineralisation to CH4 

production in peat samples may vary as much as two or three orders of magnitude 

(Segers, 1998). Furthermore, the source of methanogenic substrates is uncertain. 

Some believe that soil organic matter is the main substrate for methanogens (e.g. 

Schimel, 1995), while others believe that recently died or fresh plant material (either 

the current or the previous year's production) is the main substrate (e.g. Whiting & 

Chanton, 1993). 

In simulation models, soil organic matter is often divided into several fractions 

each with its own decomposition rate, for example easily decomposable material, 

which merely consists of recently died plant material, and material more resistant to 

decomposition (e.g. Jenkinson & Rayner, 1977; Van Veen & Paul, 1981). However, 

this division is often arbitrary and not based on direct determinations. During the last 

decades, several attempts have been made to find a useful physical way to divide 

soil organic matter (e.g. Cambardella & Elliott, 1993; Meijboom et al., 1995; 

Skjemstad et al., 1986; Tiessen & Stewart, 1983). 

In this study, we used a modified version of the size and density fractionation 

method of Meijboom et al. (1995) to divide peat soils into different fractions, because 

it is, unlike the majority of other physical fractionation methods, a fast, cheap and 

non-toxic method, that does not alter the characteristics of the organic matter 

fractions. Methane production capacity and C mineralisation capacity were assessed 

for each individual fraction. C mineralisation capacities of individual size and density 

fractions have been measured before (e.g. Hassink, 1995b), but thus far no attempts 

have been made to quantify CH4 production capacity of individual fractions. 

The concept behind size and density fractionation assumes that soil organic 

matter can be divided into pools differing in structure and function. The coarse, light 

fractions will consist of relatively young material, which is not yet associated with soil 

material, while the fine, heavy fractions will consist of relatively old material, which is 

associated with soil. The coarse, light fractions will have the highest decomposition 

rate. We hypothesise that CH4 production capacity is linearly related to C 

mineralisation capacity and that fractions with relatively young material have the 

highest CH4 production capacity. We selected two wet peat soils to fractionate, 
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because they have a potentially high CH4 production capacity, and thus far the 

method of Meijboom et al. (1995) had not been used for peat soils. The method has 

been proven useful for clay, sandy and loamy soils. 

Materials and methods 

Site description and soil sampling 

Soil samples were taken from two wet grasslands, Koole and Drie Berken Zudde, on 

peat soil in the "Nieuwkoopse Plassen" area in the Netherlands. During several 

centuries this area has been used for peat mining and agriculture. At present, it is a 

nature preserve with narrow grassland and reed fields, surrounded by ditches. Our 

sites can be classified as fens, i.e. minerotrophic peat soils. Vegetation is dominated 

by grasses, mosses, sedges, rushes and reed, and is mown once every year. Mean 

annual ground water level is 9 cm below the surface at Koole and 18 cm below the 

surface at Drie Berken Zudde, and pH-h^O in the layer 0-20 cm is 4.9 at Koole and 

3.5 at Drie Berken Zudde. In 1994-1996, mean annual net CH4 emissions were 

133±120 kg CH4 ha"1 yr"1 at Koole and 79±88 kg CH4 ha"1 yr"1 at Drie Berken Zudde 

(Van den Pol-van Dasselaar et al., 1998b). 

From each site, three cores were taken along a transect perpendicular to the 

ditch on 30 November 1995. Immediately after coring a profile of redox potential was 

determined (Fig. 4.1). Soil temperature was 5°C at 10 cm depth. Ground water level 

was 3.5 cm below the surface at Koole, and 17.5 cm below the surface at Drie 

Berken Zudde. Vegetation of the soil cores was removed. The soil cores were 

subsampled in the layers 0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, and 

40-60 cm, and stored for about a month at 4°C in the dark, until fractionation. 

Size and density fractionation 

Size and density fractionation of soil samples was carried out according to the 

method of Meijboom et al. (1995) with some modifications: we used an additional 

mesh sieve of 2 mm, and a different density of Ludox. In brief, carefully 

homogenised field-moist soil samples (500 g) were wet-sieved over a 2 mm, a 
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Fig. 4.1. Redox potential (mV) at several depths (cm below the surface) of Koole and 

Drie Berken Zudde. 

250 um and a 150 um mesh sieve. The material present on the 250 and 150 urn 

sieve was fractionated in Ludox TM, which is an aqueous colloidal dispersion of silica 

particles. The material was placed in Ludox with a density of 1.20 g cm"3 and was 

stirred. In this way, the material was separated into a floatable or light fraction, and 

into a sinking or heavy fraction. The density of 1.20 g cm"3 was chosen as an 

intermediate between 1.0 (approximately the density of fresh plant material; 

Meijboom et al., 1995) and 1.37 (approximately the maximum density of Ludox). 

Finally, six fractions were obtained: 

>2.0 mm; 

0.25-2.0 mm-L(ight); 

0.25-2.0 mm-H(eavy); 

150-250 um-L(ight); 

150-250 um-H(eavy); 

<150 urn. 

For one soil core per site, the fraction <150 urn was further subdivided into 20-150 

urn and <20 urn. Each fraction was analysed for loss-on-ignition at 550°C. C and N 
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contents were determined by total C and N analysers (Carlo Erba NA1500) after 

combustion at 1020°C. 

C mineralisation capacity 

C mineralisation capacity was measured by incubating moist samples aerobically at 

20°C in 1.5-1 airtight jars containing a vial of 10 ml 0.5 M NaOH. At the sampling 

dates, the trapped CO2 was measured after precipitation of the carbonate with 

excess BaCfe. A flush in CO2 production was observed during the first 10 days, 

probably caused by the disturbance of the soil. The period between 10 and 20 days 

after the start of the incubation was used to calculate the C mineralisation rate. 

We believe that for our peat soils aerobic C mineralisation capacity is a rather 

good estimate of anaerobic C mineralisation capacity, since previous incubation 

experiments showed that the ratio aerobic C mineralisation capacity to anaerobic C 

mineralisation capacity was about 1.30 at the site Drie Berken Zudde and about 1.0 

at Koole (Van den Pol-van Dasselaar et al., 1998c). 

CH4 production capacity 

Anaerobic incubation experiments (N2-atmosphere, 20°C) were performed to 

determine CH4 production capacity. After a pre-incubation period of several days, the 

individual fractions were incubated in 580 ml glass bottles. Gas samples from the 

headspaces of the bottles were taken on average once a week for four weeks, and 

analysed for CH4 by gas chromatography using a flame ionisation detector 

(coefficient of variation: 0.08%). CH4 production capacity was calculated by linear 

regression on the time course of CH4 concentration in the headspace of the bottles. 

Statistics 

Statistical differences were tested with an analysis of variance procedure (ANOVA) 

(Genstat, 1993) with factors of site (Koole, Drie Berken Zudde), layer (0-5, 5-10, 10-

20, 20-30, 30-40, and 40-60 cm), and fraction (>2.0 mm, 0.25-2.0 mm-L, 0.25-2.0 

mm-H, 150-250 um-L, 150-250 um-H, and <150 urn) (P=0.05). 
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Results 

Size and density fractionation 

Both sites were high in organic matter (Table 4.1). Total amount of C was higher at 

Drie Berken Zudde than at Koole (P<0.05). The amount of C decreased with depth to 

about 10-30 cm, and increased again in deeper soil layers. However, differences 

Table 4.1. Amount of C in individual soil layers (g C kg' dry soil), and amount of C in 

individual size and density fractions (g C kg'1 dry soil ± SD) (L = light fraction, H = 

heavy fraction) (n=3) at Koole and Drie Berken Zudde (DBZ). 

0-5 5-10 10-20 20-30 30-40 40-60 0-60 

Individual soil layers 

Koole 299±96 276+29 275±65 306+97 328±62 384+44 327+54 

DBZ 415±7 41318 397±33 360+66 379±48 397+4 389+14 

Individual fractions 

Koole 

>2.0 m m 

0.25-2.0 mm-L 

0.25-2.0 mm-H 

150-250 um-L 

150-250 um-H 

<150 urn 

DBZ 

>2.0 m m 

0.25-2.0 mm-L 

0.25-2.0 mm-H 

150-250 um-L 

150-250 um-H 

<150 urn 

145±132 

23+4 

19±27 

8±2 

8±4 

96±27 

276+89 

21±13 

4±5 

8±7 

12+10 

94+55 

108151 

26111 

17+12 

5+1 

8+6 

111+12 

242+27 

33116 

4+2 

813 

11+4 

115117 

53142 

35126 

23115 

412 

1614 

144131 

217132 

2116 

1019 

5+1 

16112 

129126 

83187 

49132 

27118 

817 

1614 

124142 

109+65 

54118 

30127 

10110 

2918 

95123 

230189 2101108 

2419 

7+10 

1014 

1412 

76117 

37120 

614 

1413 

1918 

94129 

181140 

51117 

29123 

1116 

24115 

87130 

191154 

62134 

30120 

914 

2618 

7911 

122148 

4418 

26117 

814 

2014 

107 

220155 

34+19 

1217 

911 

1717 

96116 
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between layers were not significant. The fraction >2.0 mm was the major contributor 

to total C (P<0.05). It consists mainly of dead plant material, in which plant parts are 

still recognisable. The fraction <150 urn was the second most important contributor 

to total C (P<0.05). In soil samples where the fraction <150 urn was subdivided, we 

found that the contribution of the fraction 20-150 urn to total C was higher than the 

contribution of the fraction <20 urn (at Koole two times higher, and at Drie Berken 

Zudde five times higher) (not shown). The two size fractions which had been divided 

in a light and a heavy part showed contrasting results. In the size fraction 0.25-2.0 

mm most C was found in the light part (P<0.05). In the size fraction 150-250 urn 

most C was found in the heavy part, but differences between the light and the heavy 

part were not significant (P<0.05). Ash content was rather low for all fractions 

(<40%). C/N ratio (Fig. 4.2) was higher at Drie Berken Zudde than at Koole, due to a 

higher C content in the samples of Drie Berken Zudde (P<0.05). N contents of all 

fractions at both sites were in the range of 1.7-1.9%. C/N ratio was highest for the 

fraction >2.0 mm (P<0.05). C/N ratios of light fractions were slightly higher than C/N 

ratios of heavy fractions (P<0.05). 

C mineralisation capacity 

All fractions showed C mineralisation capacity (Fig. 4.3). In the top layers, C 

mineralisation capacity was highest for the fraction >2.0 mm. In the deeper layers, 

there was no difference in C mineralisation capacity between individual fractions 

(P<0.05). 

The contribution of individual fractions to total C mineralisation capacity is 

presented in Table 4.2. The layer 0-5 cm showed the largest contribution to total C 

mineralisation capacity (P<0.05). For the individual fractions, the fraction >2.0 mm 

contributed most to C mineralisation capacity (P<0.05). The light part of the size 

fraction 0.25-2.0 mm contributed more to total C mineralisation capacity than the 

heavy part of the size fraction 0.25-2.0 mm (P<0.05). In contrast, for the size fraction 

150-250 urn the heavy part contributed more than the light part, but differences 

between the contribution of the heavy part and the light part were not significant 

(P<0.05). 
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Fig. 4.2. C/N ratio of size and density fractions at several depths (cm below the 

surface) of a) Koole and b) Drie Berken Zudde (L = light fraction, H = heavy fraction). 
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Fig. 4.3. C mineralisation capacity (|xg CO2-C g"1 C d"1) of size and density fractions 

at several depths (cm below the surface) of a) Koole and b) Drie Berken Zudde (L = 

light fraction, H = heavy fraction). 
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Table 4.2. C mineralisation capacity of individual soil layers (% of total C 

mineralisation capacity of the layer 0-60 cm depth), and C mineralisation capacity of 

individual size and density fractions (% of total C mineralisation capacity of individual 

soil layers) (L = light fraction, H = heavy fraction) (n=3) at Koole and Drie Berken 

Zudde (DBZ). 
0-5 5-10 10-20 20-30 30-40 40-60 0-60 

Individual soil layers 

Koole 

DBZ 

Individual fractions 

Koole 

>2.0 mm 

0.25-2.0 mm-L 

0.25-2.0 mm-H 

150-250 um-L 

150-250 um-H 

<150 urn 

DBZ 

>2.0 mm 

0.25-2.0 mm-L 

0.25-2.0 mm-H 

150-250 um-L 

150-250 um-H 

<150 urn 

39 

40 

55 

10 

9 

2 

3 

22 

76 

6 

0 

1 

2 

13 

19 

23 

53 

13 

5 

2 

5 

23 

66 

11 

0 

2 

3 

18 

12 

17 

38 

16 

5 

1 

7 

34 

65 

6 

2 

1 

4 

22 

10 

7 

33 

18 

9 

2 

6 

32 

63 

9 

2 

2 

3 

20 

10 

7 

33 

16 

8 

3 

9 

32 

59 

12 

1 

4 

4 

21 

11 

5 

39 

18 

7 

2 

6 

28 

45 

17 

6 

2 

8 

22 

100 

100 

43 

15 

7 

2 

5 

28 

65 

10 

2 

2 

4 

19 

CH4 production capacity 

Both between fractions and between layers, differences in CH4 production capacity 

were larger than differences in C mineralisation capacity. The fraction >2.0 mm 

showed the highest CH4 production capacity (P<0.05). CH4 production capacity 

strongly decreased with depth (Fig. 4.4, note the log-scale). Unfortunately, there was 
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Fig. 4.4. Ln-transformed CH4 production capacity (ng CH4-C g*1 C d"1) of size and 

density fractions at several depths (cm below the surface) of a) Koole and b) Drie 

Berken Zudde (L = light fraction, H = heavy fraction). 
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not enough material available to assess CH4 production capacity of some fractions of 

the layers 0-5 and 5-10 cm of Drie Berken Zudde: 0.25-2.0 mm-H, 150-250 urn-l

and 150-250 um-H. 

The layer 0-5 cm showed the largest contribution to total CH4 production 

capacity (P<0.05) (Table 4.3). For the individual fractions, the fraction >2.0 mm 

contributed most to CH4 production capacity (P<0.05). The light part of the size 

fraction 0.25-2.0 mm contributed more to total CH4 production capacity than the 

Table 4.3. CH4 production capacity of individual soil layers (% of total CH4 production 

capacity of the layer 0-60 cm depth), and CH4 production capacity of individual size 

and density fractions (% of total CH4 production capacity of individual soil layers) (L = 

light fraction, H = heavy fraction) (n=3) at Koole and Drie Berken Zudde (DBZ). 

(H> 5-10 10-20 20-30 30-40 40-60 (M5Ô 

Individual soil layers 

Koole 64 28 4 3 0 1 100 

DBZ 72 14 13 1 0 0 100 

Individual fractions 

Koole 

>2.0 mm 

0.25-2.0 mm-L 

0.25-2.0 mm-H 

150-250 um-L 

150-250 um-H 

<150 urn 

DBZ 

>2.0 mm 

0.25-2.0 mm-L 

0.25-2.0 mm-H 

150-250 Mm-L 

150-250 um-H 

<150 urn 

80 

7 

1 

0 

0 

13 

92 

3 

n.d.1) 

n.d. 

n.d. 

6 

99 

0 

0 

0 

0 

0 

90 

10 

n.d. 

n.d. 

n.d. 

1 

93 

0 

4 

0 

0 

2 

97 

0 

0 

0 

0 

3 

93 

1 

3 

0 

0 

3 

91 

0 

0 

0 

0 

8 

60 

8 

9 

0 

3 

20 

85 

2 

1 

2 

2 

7 

77 

4 

5 

0 

2 

12 

29 

46 

2 

1 

8 

14 

86 

4 

1 

0 

0 

8 

92 

3 

0 

0 

0 

5 
v n.d. = not determined 
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heavy part (P<0.05). For the size fraction 150-250 urn, differences between the light 

and the heavy part were not significant (P<0.05). 

Discussion 

C content of size and density fractions 

The peat soils were, as expected, high in organic matter and low in ash content. Ash 

contents of light fractions were lower than ash contents of heavy fractions (P<0.05) 

(not shown), indicating a separation of mineral-free plant remainders and more 

humified complexed soil organic matter. Differences were however smaller than 

found by Meijboom et al. (1995) for sandy, loamy and clayey soils. Furthermore, 

Hassink (1995a) found that C/N ratios of light fractions were higher than C/N ratios of 

heavy fractions for sandy, loamy and clayey soils. Although at our peat soils, C/N 

ratios of light fractions were significantly higher than C/N ratios of heavy fractions 

(Fig. 4.2), differences were smaller than found by Hassink (1995a). The relatively 

small differences in ash content and C/N ratios compared to sandy, loamy and 

clayey soils are probably a characteristic feature of peat soils. Either the 

decomposition process in peat soils did not lead to organic matter fractions differing 

in C/N ratio, or the fractionation method cannot discriminate between the possible 

fractions, or both. This suggests that the fractionation method of Meijboom et al. 

(1995) has less functional value for peat soils than for sandy, loamy and clayey soils, 

since the different fractions are more alike. 

Variability of C/N ratio (Fig. 4.2) and amount of C in different size and density 

fractions (Table 4.1) with depth was surprisingly small. The absence of clear patterns 

with depth in amounts of C in the various size and density fractions again may 

suggest that the fractionation method has little functional value for peat soils, 

because visual differences and also C mineralisation capacities (Fig. 4.3) showed 

clear depth-related patterns. Alternatively, the diagenetically introduced variations in 

organic matter fractionation with depth may be masked by the variation introduced by 

the accretion of different vegetation types. Further studies are needed to single this 

out. 

We expect that the vegetation of our wet peat soils has always been dominated 

by C3 plants. This was confirmed by results of relative C isotope composition 
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(13C/12C, expressed as S13C) of individual fractions of one soil core (Dörsch, pers. 

com.). C3 and C4 plants have significantly different 513C values, with mean values of 

-26 and -12%o, respectively (Bender, 1968). The ô13C value of our fractions ranged 

from -29 to -25%o. Differences in 813C between size and density fractions and 

between soil layers were small. Fractions 0.25-2.0 mm-H and >2.0 mm showed a 

somewhat higher 513C than the other fractions (Dörsch, pers. com.). These small 

differences may be attributed to differences in the composition of individual fractions. 

Carbohydrate, lignin, cellulose, lipids, etc. can have different Ô13C values. Therefore, 

differences in accumulation of these components in size and density fractions can 

influence the isotopic composition of the fractions (Golchin et al., 1995). 

Furthermore, microbial degradation may affect S13C values. It has been 

demonstrated that micro-organisms utilise 12C in preference to 13C, leading to a slight 
13C enrichment of the residual substrate. In many soils under C3 vegetation, 

increasing values of 513C with depth have been observed (e.g. Balesdent et al., 

1993). In contrast, 813C values of our peat soils did not change or even slightly 

decreased with depth. This may be a typical feature of C accumulating soils 

(Balesdent et al., 1993). 

C mineralisation capacity 

As expected, the fraction >2.0 mm, i.e. the fraction with recently died plant material, 

showed the highest C mineralisation capacity (Fig. 4.3, Table 4.2). Hassink (1995b) 

found for sandy, loamy and clayey soils, that C mineralisation capacity decreased in 

the order light fractions, heavy fractions, other fractions. Hassink (1995b) suggested 

that decomposition rate constants of individual fractions are not dependent on soil 

type. Our results show that this hypothesis does not hold for peat soils, since we 

found no significant differences between C mineralisation capacities of light and 

heavy parts of the particle size fraction 150-250 um. 

CH4 production capacity 

We hypothesised that the fractions with relatively young material would have the 

highest CH4 production capacity. Indeed, highest CH4 production capacity was found 

in the fraction >2.0 mm (Fig. 4.4, note the log-scale). Furthermore, this fraction was 
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by far the biggest contributor to total CH4 production capacity (Table 4.3). This is 

caused by both the relatively large amount of C in this fraction, and the high CH4 

production capacity per unit of C, especially in the top layers. 

The main substrate for methanogens is thought to be either recently died plant 

material (e.g. Chanton et al., 1995; Whiting & Chanton, 1993) or soil organic matter 

(e.g. Schimel, 1995). Charman et al. (1994) suggested that at depth methanogens 

use an additional C source other than the adjacent peat because CH4 at depth was 

younger of age than the surrounding peat. This additional C source may be dissolved 

organic C, either from root exudates or transported from the surface by water 

movement. Our results show that CH4 production capacity is highest for fractions 

with a large particle size, and that CH4 production capacity decreases with depth. 

This indicates that in our peat soils recently died plant material is a major substrate 

for methanogens. Plant material may be transported to deep layers via the root 

system. For example, Saarinen (1996) found living roots of Carex, one of the 

dominant species at our experimental sites, down to a depth of 230 cm. The 

identification of type and location of substrates for CH4 production can improve 

explanatory models of CH4 emissions and reduce the uncertainties of CH4 emission 

estimates. 

CH4 production in relation to C mineralisation 

CH4 production capacity and C mineralisation capacity decreased with depth (Fig. 

4.3 and 4.4), while the amount of organic matter did not (Table 4.1), indicating that 

the characteristics of organic matter change with depth. In the top layers, organic 

matter consists of recently died plant material that is relatively easy decomposable, 

while in the deeper layers organic matter will consist of plant parts that are rather 

resistant to decomposition, like stems of rushes and reed. In the field, these plant 

parts were still recognisable. 

C mineralisation capacity is a measure of total microbial activity, while CH4 

production capacity is an estimate of the activity of methanogens. We hypothesised 

that CH4 production capacity is linearly related to C mineralisation capacity. We 

found, however, that differences between CH4 production capacities of individual 

fractions were much larger than differences between C mineralisation capacity of 

individual fractions (Fig. 4.3 and 4.4). Furthermore, the decrease with depth was 

much sharper for CH4 production capacity than for C mineralisation capacity. This 

suggests that methanogens make higher demands on quality of their substrates than 
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the combined total microbial biomass. The relatively small differences in C 

mineralisation capacities of individual fractions suggest that the fractionation method 

of Meijboom et al. (1995) has little functional value for C mineralisation of peat soils. 

However, the differences in CH4 production capacity of individual fractions suggest 

that the fractionation method may have functional value for CH4 production of peat 

soils. 
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EFFECTS OF GRASSLAND MANAGEMENT ON THE EMISSION OF METHANE 
FROM INTENSIVELY MANAGED GRASSLANDS ON PEAT SOIL 

Abstract 

Methane (CH4) is the most important greenhouse gas next to CO2 and as such it 

contributes to the enhanced greenhouse effect. Peat soils are often considered as 

sources of CH4. Grasslands on the other hand are generally considered to be a net 

sink for atmospheric CH4. The aim of this study was twofold: (i) to quantify the net 

CH4 emission of intensively managed grasslands on peat soil in the Netherlands; 

and (ii) to assess the effects of grassland management, i.e. drainage, nitrogen (N) 

fertilisation, and grazing versus mowing, on CH4 emission rates. Net CH4 emissions 

were measured weekly or biweekly for one year with vented closed flux chambers at 

two sites, one with a mean ground water level of 22 cm below surface and one with a 

mean ground water level of 42 cm. On each site there were three treatments: 

mowing without N application, mowing with N application, and grazing with N 

application. The dominating species was perennial ryegrass (Lolium perenne L). Net 

CH4 emissions were low, in general in the range of -0.2 to 0.2 mg CH4 m'2 d"1. In the 

relatively warm summer of 1994, consumption of atmospheric CH4 peaked at 0.4 mg 

m"2 d"1. On an annual basis, the sites were net consumers of atmospheric CH4. 

However, the consumption was small: 0.31 to 0.08 kg CH4 ha'1 yr'1. Effect of mean 

ground water level was significant, but small. There were no significant effects of 

withholding N fertilisation for some years and grazing versus mowing on net CH4 

emissions. We conclude that grassland management of intensively managed 

grasslands on peat soil is not a suitable tool for reducing net CH4 emissions. 

Introduction 

Methane (CH4) is the most important greenhouse gas next to CO2. It has been 

reported to contribute about 20% to the enhanced greenhouse effect (IPCC, 1995a). 

The concentration in the atmosphere is about 1.8 ppmv (parts per million by volume). 

It has been increasing at a rate of about 1% per year, but recently this increase has 

slowed down somewhat (Khalil & Rasmussen, 1993; Rudolph, 1994). 
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Methanogenesis occurs whenever organic matter is degraded under anaerobic 

conditions, in the absence of electron acceptors other than CO2. Under aerobic 

conditions CH4 can be oxidised by methanotrophs. Net CH4 emissions, that are CH4 

exchanges between soil and atmosphere, are the result of CH4 production, CH4 

consumption, and CH4 transport. Transport can take place via diffusion, ebullition, 

and via the vascular system of plants. Wetlands are an important source of CH4 and 

well-drained soils are an important sink of CH4 (Van Amstel et al., 1993). The 

contribution of soils to the global CH4 balance is significant (14-47% of the total 

source and 3-9% of the total sink) (IPCC, 1995a). 

Grasslands are generally considered to be a net sink for atmospheric CH4 (e.g. 

Hiitsch et al., 1994; Minami et al., 1994; Mosier et al., 1991). It is suggested that the 

CH4 consumption rate depends on environmental conditions and grassland 

management. Most important environmental factors are soil temperature and ground 

water level (Bartlett & Harriss, 1993). Soil temperature affects the kinetics of the 

microbial CH4 production and consumption, while ground water level indicates the 

border between aerobic and anaerobic zones in the soil. Important management 

factors may be drainage, nitrogen (N) fertilisation, and grazing versus mowing. 

Drainage may decrease CH4 emissions (e.g. Martikainen et al., 1992; Roulet et al., 

1993). As the ground water table drops, the aerobic top layer of the soil becomes 

thicker, thereby possibly decreasing CH4 production and increasing CH4 

consumption. Several authors have suggested that N fertilisation may decrease CH4 

consumption (Hütsch et al., 1994; Mosier et al., 1991; Steudleret al., 1989; Willison 

et al., 1995). This is either caused by an immediate inhibition of methanotrophs or by 

a change in the microbial community due to repeated fertiliser N application. Grazing 

versus mowing may affect CH4 emissions through differences in annual supply of 

organic material and N to the soil (Van den Pol-van Dasselaar & Lantinga, 1995). So 

far, there are no experimental data on the effect of grazing versus mowing on CH4 

emissions. 

Peat soils often show net CH4 emission (Bartlett & Harriss, 1993), as they are 

anoxic at shallow depth and have a high organic matter content. In the Netherlands, 

about 30% of the grasslands are situated on peat soils. They are mainly agriculturally 

utilised and intensively managed. They are partially drained, so the oxic top layer is 

much thicker than in undrained peat soils. As a consequence, the sink-source 

balance of these soils for CH4 may be much different than of undrained peat soils. 
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We hypothesise that intensively managed grasslands on peat soil in the Netherlands 

produce CH4 at depth, but this CH4 is in part consumed again in the upper layers. 

The overall-balance would show net CH4 consumption in summer and net production 

in winter, as the result of seasonal changes in soil temperature, ground water level, 

and net precipitation excess. We also hypothesise that (i) drainage would decrease 

CH4 production and increase CH4 consumption; (ii) N fertilisation would decrease 

CH4 consumption; and (iii) mowing would decrease CH4 production compared to 

grazing as the annual supply of organic material to the soil is lower. 

The aim of this study was twofold: (i) to quantify the net CH4 emission of 

intensively managed grasslands on peat soil in the Netherlands; and (ii) to assess 

the effects of grassland management, i.e. drainage, N fertilisation, and grazing 

versus mowing, on CH4 emission rates. For these purposes, a field study was 

conducted at the Regional Research Centre in Zegveld during 1994. Net CH4 

emissions and CH4 concentrations in the soil profile were measured. CH4 production 

and consumption rates in the soil profile were determined in incubation experiments 

in the laboratory. The grasslands in Zegveld are considered to be representative for 

intensively managed grasslands on peat soil in the Netherlands. 

Materials and methods 

Site description 

Zegveld is located in the major peat area of the western part of the Netherlands 

(52°08'N, 4°48'E) (FAO classification: Terric Histosol). Monitoring was done on two 

sites, one with a relatively low mean ground water level (site Bos 6/low) and one with 

a relatively high mean ground water level (site 8B/high). Ground water levels vary 

greatly during the year. The top soil of both sites consists of clayey peat. The 

vegetation consists of only grasses. Perennial ryegrass (Lolium perenne L.) is the 

dominating species (25-55%). Soil characteristics of the sites are given in Table 5.1. 
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Table 5.1. Soil characteristics of the sites Bos 6/low and 8B/high (Van den Pol-van 

Dasselaar & Oenema, 1996; Velthof & Oenema, 1995). 

Ground water level in 1994, cm, mean 

range 
Loss on ignition, %, 0-20 cm 

20-40 cm 

Clay, %, 0-20 cm 

pH-KCI, 0-20 cm 

Total S content, mg kg'1, 0-20 cm 

20-40 cm 

Bos 6/low 

42 

7-73 

45 

70 

29 
4.7 

55 

150 

8B/high 

22 

0-61 

38 

57 

28 

5.0 

60 

90 

Treatments 

The sites at Zegveld were part of the SANS project: System for Adjusted N Supply 

(Vellinga et al., 1996). At both sites we used three different grassland management 

treatments: 

M- : mowing, no N application; 

M+ : mowing, N application; 

G+ : grazing, N application. 

Plot size was 2.8 x 15 m. The treatments were established in spring 1992. Before 

1992, all plots were intensively managed and treated similarly. For both M+ and G+, 

fertiliser N was applied as calcium ammonium nitrate in six dressings, before each 

cut of M+. In 1994, cumulative application rates were 426 kg N ha"1 for site 8B/high 

and 378 kg N ha"1 for site Bos 6/low. The stocking density of the grazed plots was 

adjusted in such a way that the dairy cattle were able to graze the sward in about 

one day. Nitrate and ammonium concentrations in the layers 0-20 cm and 20-40 cm 

of the soil were measured by extraction with 0.01 MCaCl2 on a weekly to three-

weekly basis throughout 1994 for the treatments M- and M+ at both sites and G+ at 

the site 8B/high. 
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Monitoring net CH4 emissions 

Net CH4 emissions were monitored weekly or biweekly from December 1993 until 

January 1995 with vented closed flux chambers (Hutchinson & Mosier, 1981; Mosier, 

1989). Each combination of site and treatment was monitored with two to four flux 

chambers on one or two plots. Circular, stainless steel flux chambers (I.D. 20 cm, 

height 16 cm) were randomly placed on the plots and carefully inserted in the soil to 

a depth of 2 to 4 cm. They were air-tight closed by a stainless steel lid and covered 

with insulating sheets to prevent temperature changes within the chambers. At 

regular time intervals (15 to 30 minutes) four gas samples were taken from the 

headspace of the chambers with glass syringes. 

Monitoring CH4 concentrations in the soil profile 

For the treatment M+ (mowing, N application) at site 8B/high, CH4 concentrations in 

the soil profile were measured every month from March 1994 until December 1994. 

For that purpose, a perforated PVC pipe (I.D. 7 cm, height 50 cm) was installed in 

the soil more than a year before the start of the measurements. Possible effects of 

disturbances due to installation could be excluded at the time of measurements. The 

pipe was divided into five compartments of 10 cm each. The holes in the pipe were 

large enough to allow water and air from the surrounding soil to come into the 

compartments. The soil did not enter the compartments. Each compartment had two 

polythene tubes going from the compartment to the soil surface. CH4 concentrations 

in the compartments were assumed to be in equilibrium with CH4 concentrations in 

the surrounding soil. Gas samples were taken via the tubes with glass syringes. 

Whenever ground water level reached a certain compartment of the pipe, water 

samples were taken and injected into incubation bottles with ambient air. The bottles 

were shaken vigorously to degas the water. Subsamples from the headspace of the 

bottles were taken through rubber septa. 

Incubation experiments 

CH4 production and consumption rates in the soil at various depths were studied in 

incubation experiments. For this purpose, 25 g homogenised field moist soil of the 

layers 0-5, 5-10, 10-20, 20-30, 30-40, and 40-50 cm of treatment M+ of both the 

sites 8B/high and Bos 6/low were placed in incubation bottles of 580 ml. They were 
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incubated at 20 °C, either anaerobically (N2-atmosphere), or aerobically (air-

atmosphere) with concentrations of both 2 and 100 uL L'1 CH4 in the headspace. 

There were three replicates for each combination of soil layer and treatment. Control 

bottles containing no soil were included. The anaerobic incubation experiment lasted 

10 weeks. Gas samples from the headspace of the bottles were taken on average 

twice a week through rubber septa. The aerobic incubation experiment lasted six 

days with a time interval of two days between sampling. 

So/7 data collection 

Soil temperatures were recorded at 0, 2, 5, 10, 20, 30, 40, and 50 cm depth at each 

measurement. Moisture content of the upper 10 cm soil at each site was determined 

gravimetrically after drying at 105 °C for 24 h. Ground water levels were recorded 

from water level readings in 12 perforated pipes (I.D. 4 cm) per site, monthly in 

winter and on a weekly basis during the growing season. 

Analytical procedures 

Gas samples from the field experiments were analysed for CH4 within 24 h by gas 

chromatography using a flame ionisation detector (coefficient of variation: 0.08%). 

Gas samples of the incubation experiments were analysed immediately after 

sampling. A standard concentration of 2.01 uL L'1 CH4 (± 5%) was used for 

calibration. 

Data acquisition 

CH4 concentrations in flux chambers are expected to follow initially a linear increase 

or decrease and finally level off (Mosier, 1989). We aimed to measure in the linear 

phase. CH4 concentrations in the flux chambers never exceeded 3.0 uL L"1. Net CH4 

emissions were calculated by linear regression on the time course of CH4 

concentration in the headspace of the chambers. The coefficient of determination (z2) 

was related to the amount of net CH4 emission, which means that the precision of 

the calculated flux increased with increasing flux. The frequency distribution of all the 

individual data of net CH4 emissions could best be described by a normal 

distribution, so statistical differences could be tested with an analysis of variance 
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procedure. The ANOVA procedure of Statgraphics Plus 7.1 was used with factors of 

date of measurement, site, and treatment (P=0.05). Annual CH4 emissions were 

estimated by trapezoidal integration of the mean CH4 emissions over time. 

In the aerobic incubation experiments, the decrease in CH4 concentration in the 

headspace of the incubation bottles showed typical first-order-kinetics: 

\nYt=\nYo-kt (5.1) 

Y = CH4 concentration in headspace, uL L'1 ; 

f = time, d; 

k = rate constant, d'1. 

The rate constant /cwas used as a characteristic value for CH4 consumption. 

Results 

Weather 

The spring of 1994 was relatively cold and wet. The summer was warm and dry with 

air temperatures above 20 °C. The autumn of 1994 was relatively wet. Total annual 

rainfall in Zegveld (1000 mm) was 200 mm more than average. The time course of 

ground water levels is shown in Fig. 5.1. 

Nitrate and ammonium concentrations 

Nitrate concentrations in the treatments M+ (mowing, N application) and G+ (grazing, 

N application) increased during the growing season. Nitrate concentrations in M-

(mowing, no N application) and ammonium concentrations in all treatments showed 

no clear pattern throughout the year. Average nitrate and ammonium concentrations 

are given in Table 5.2. Note that the N concentrations in M- are still quite high, 

especially for ammonium, although no N had been applied since 1992. 
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-80 

•m— Bos 6/low 

-*— 8B/high 

J ' F ' M ' A ' M ' J ' J ' A ' S ' O ' N ' D 
Month of the year 

1994 

Fig. 5.1. Time course of ground water level (cm below the surface) at sites Bos 6/low 

and 8B/high. 

Table 5.2. Average nitrate and ammonium concentrations (mg N kg"1 dry soil) in the 

layers 0-20 and 20-40 cm of the sites Bos 6/low and 8B/high throughout 1994 (n=28, 

ranges are given in brackets) (M- : mowing, no N application; M+ : mowing, N 

application; G+ : grazing, N application). 

Site 

Bos 6/low 

8B/high 

Treatment 

M-

M+ 

M-

M+ 

G+ 

Nitrate 

0-20 cm 

2.9 (0-12) 

13.9(1-45) 

2.3 (0-6) 

16.4(1-50) 

20.8 (2-47) 

20-40 cm 

1.1 (1-3) 

4.4(1-35) 

1.2 (1-4) 

2.9(1-19) 

6.2(1-33) 

Ammonium 

0-20 cm 

14.9 (2-25) 

16.8 (8-24) 

15.1 (11-22) 

19.4 (8-27) 

22.7(14-34) 

20-40 cm 

14.6 (7-28) 

15.0 (5-28) 

13.1 (7-24) 

11.5 (7-22) 

14.4(10-21) 
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Net CH4 emissions 

Throughout 1994, net CH4 emissions at both sites and all treatments were generally 

in the range of -0.2 to 0.2 mg CH4 m"2 d'1 (negative numbers indicate consumption of 

atmospheric CH4> positive numbers indicate CH4 emission from the soil to the 

atmosphere). In the relatively warm summer of 1994, consumption of atmospheric 

CH4 peaked at about 0.4 mg CH4 m'2 d"1. This may be the result of a low ground 

water level (Fig. 5.1) in combination with high temperatures. 

Fig. 5.2 shows the time course of mean net CH4 emissions at all treatments and 

both sites. It has to be emphasised that CH4 production by cattle is not included in 

these estimates. Standard deviations were generally in the range of 0 to 0.2 mg CH4 

m"2 d"1 for all treatments. Note that in winter 1994/1995 at site Bos 6/low consistent 

differences between the treatments occurred. Treatment M- (mowing, no N 

application) showed atmospheric CH4 consumption, while the other treatments 

showed CH4 emission from the soil to the atmosphere. Throughout the whole year 

and for both sites, net CH4 emission was on average -0.06 mg CH4 m"2 d"1 for 

treatment M- (mowing, no N application), -0.07 for treatment M+ (mowing, N 

application), and -0.03 for treatment G+ (grazing, N application) (standard error: 

0.014). There were no significant effects of N fertilisation and grazing versus mowing 

on net CH4 emissions (P<0.05). 

Fig. 5.3 shows the time course of mean net CH4 emissions at the two sites. The 

differences between site Bos 6/low and site 8B/high were small, but statistically 

significant (P<0.05). Net CH4 emission was on average -0.09 mg CH4 m"2 d"1 for site 

Bos 6/low and -0.02 mg CH4 m'2 d"1 for site 8B/high (standard error: 0.012). 

Annual net CH4 emissions 

In Table 5.3 annual net CH4 emissions are presented. The two sites were net 

consumers of atmospheric CH4, but the consumption was small. CH4 consumption 

was significantly higher at a relatively low mean ground water level than at a 

relatively high mean ground water level. CH4 consumption was also higher for 

mowing than for grazing, but this difference was not significant. 
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--2 j - 1 \ Fig. 5.2. Time course of mean net CH4 emissions (mg CH4 m' d" ) at three different 

treatments (M- : mowing, no N application; M+ : mowing, N application; G+ : grazing, 

N application) and two sites: a) Bos 6/low and b) 8B/high. Each data point is the 

average of two to four measurements. 
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. - 2 j - 1 \ Fig. 5.3. Time course of mean net CH4 emissions (mg CH4 m" d' ) at two sites: Bos 

6/low with a mean ground water level (GWL) of 42 cm, and 8B/high with a mean 

GWL of 22 cm. Each data point is the average of 6 to 12 measurements. 

Table 5.3. Annual net CH4 emissions (kg CH4 ha"1 yr"1) at the sites Bos 6/low and 

8B/high for three different treatments (M- : mowing, no N application; M+ : mowing, N 

application; G+ : grazing, N application) in 1994. 

Treatment Bos 6/low 8B/high 

M-

M+ 

G+ 

0.38 

0.29 

0.27 

-0.08 

-0.22 

0.07 

Average -0.31 -0.08 
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CH4 emissions in relation to environmental factors 

CH4 emissions are often related to soil temperature, soil moisture content, or ground 

water level (Bartlett & Harriss, 1993; Svensson & Sundh, 1992). In Zegveld, the 

highest correlation was found between ground water level and net CH4 emission (A2 = 

0.52) (Fig. 5.4). Soil temperatures were negatively correlated with net CH4 emission 

(? = 0.44 to 0.49). Soil moisture content was positively correlated with net CH4 

emission (r2 = 0.42). Multiple linear regression analyses with a combination of two or 

more factors did not improve r2. Ground water level, soil moisture content, and soil 

temperatures are interrelated. The separate effect of each of these environmental 

factors can not be unravelled. 

Tï 
C\l 

E 
T 

X 
O 
CD 
E 
r 
o 
CO 
w 
E 
CD 

•st-

a: 
o 
<u 

0.3 

0.2 

0.1 

U 

-0.1 

-o.y 

-0.3 

-0.4 

o-¥t\* 

-0.5 

m Bos 6/low 

+ 8B/high 

Y = 0.063 - 0.004*X 
r2= 0.52 

+ + 

10 20 30 40 50 60 
Ground water level, cm below the surface 

70 

Fig. 5.4. Relationship between ground water level (cm below the surface) and mean 

net CH4 emission (mg CH4 m"2 d"1) at Bos 6/low and 8B/high. Each data point is the 

average of 6 to 12 measurements. 
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CH4 concentrations in the soil 

Fig. 5.5 presents the time course of CH4 concentrations in the soil of M+ (mowing, N 

application) at site 8B/high. From April until July, CH4 concentrations decreased from 

ambient at the surface to about 1 u.L L'1 in the layer 10-30 cm, indicating 

consumption of atmospheric CH4. In the deeper soil layers CH4 concentrations 

increased. During the rest of the year, CH4 concentrations increased with depth, but 

remained rather low in all layers. Concentrations above ambient in deep soil layers 

indicate the presence of a CH4 source. 
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Fig. 5.5. Time course of CH4 concentration (\iL L'1) in different soil layers of 

treatment M+ (mowing, N application) at site 8B/high. The horizontal line indicates 

ambient CH4 concentration. 

Incubation experiments 

During anaerobic incubation, significant CH4 production was observed in the upper 

10 cm of site 8B/high, with the upper 5 cm being most active, and in the upper 5 cm 

of site Bos 6/low (Fig. 5.6). Production of CH4 started after an initial lag phase of 20 

to 40 days. Soil from depths of more than 10 cm did not yield increases in CH4 
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concentration in the headspace during an incubation time of 70 days. 

During aerobic incubation, decrease in CH4 concentration appeared to obey 

first-order kinetics. The rate constant k of Equation 5.1 can be used as a 

characteristic value for CH4 consumption. Table 5.4 shows these rate constants 

normalised to dry weight of incubated soil for aerobic incubation with 100 uL L'1 CH4. 

Results of incubation with 2 uL L'1 (not shown) followed a similar pattern. CH4 

consumption was observed in all layers of the soil, with the highest activity in the 

layers 5-20 cm for Bos 6/low and 10-30 cm for 8B/high. 
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Fig. 5.6. CH4 production (umol CH4 g"1 dry soil) in time for the layers 0-5 cm of 

treatment M+ (mowing, N application) of sites Bos 6/low and 8B/high, and 5-10 cm of 

M+ of site 8B/high during anaerobic incubation at 20 °C. 

Discussion 

So far, it was unknown whether intensively managed grasslands on peat soil in the 

Netherlands emitted CH4 to the atmosphere or consumed atmospheric CH4. Our first 

aim was therefore to quantify net CH4 emissions from these peat soils. Table 5.3 
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Table 5.4. CH4 consumption (d1 g"1 dry soil) for different soil layers (cm below the 

surface) of the treatment M+ (mowing, N application) at sites Bos 6/low and 8B/high 

during aerobic incubation at 20 °C. 

Layer CH4 consumption 

Bos 6/low 8B/high 

CH5 

5-10 

10-20 

20-30 

30-40 

40-50 
n'n.d. = not determined 

shows that the sites in Zegveld were net consumers of atmospheric CH4. However, 

the consumption was small: 0.31 to 0.08 kg CH4 ha"1 yr'1. Table 5.5 provides an 

overview of literature data on CH4 emissions from drained soils. Our results fall within 

the range of these CH4 emissions. 

The anaerobic incubation experiments showed that only the top layer of the soil 

was capable of producing significant amounts of CH4 after prolonged periods of 

anaerobiosis (Fig. 5.6). In comparable incubation experiments, Kengen & Stams 

(1995) studied CH4 production at Bos 6/low to a depth of 120 cm and at 8B/high to a 

depth of 70 cm throughout 1994. They also found no CH4 formation in the deeper 

layers, even after an incubation period of 120 days. They concluded that the 

methanogenic potential of drained grasslands on peat soil is low. The deeper layers 

are anoxic, but probably restricted in their supply of methanogenic substrates, 

whereas the top soil has a potential methanogenic capacity, but requires a prolonged 

wet period to generate methanogenic conditions. In the field, complete anaerobiosis 

of the top soil for several weeks may occur only in winter and high CH4 production is 

thus not to be expected. Although CH4 production in the deeper layers is negligibly 

small, Fig. 5.5 shows increasing CH4 concentrations at depth. We believe that this 

CH4 originates from an 'old source', from which it is slowly diffusing to the surface. 

The upward diffusing CH4 is nearly completely oxidised in the top soil before it can 

reach the surface. We speculate that this 'old source' might be organic layers which 

are still capable of producing small quantities of CH4, or CH4 dissolved in the pore 

waters, produced by the peat a long time ago. 
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The aerobic incubation experiments showed a subsurface maximum in CH4 

consumption at a depth of 5-20 cm for Bos 6/low and 10-30 cm for 8B/high. This 

phenomenon has been found earlier (e.g. Dunfield et al., 1995; Koschorreck & 

Conrad, 1993; Roulet et al., 1993). It was also found in comparable aerobic 

incubation experiments of Heipieper & de Bont (1995) with soil from Zegveld taken 

throughout 1994. Fig. 5.5 shows that from April until July CH4 concentrations in the 

soil decreased with increasing depth up to 30 cm, indicating atmospheric CH4 

consumption. A subsurface minimum of CH4 concentration is consistent with a 

subsurface maximum of CH4 consumption. Apparently, the oxidisers switch from 

Table 5.5. Net CH4 emissions (mg CH4 m"2 d"1) from drained soils and soils with a 

natural low ground water level (negative numbers indicate consumption of 

atmospheric CH4, positive numbers indicate CH4 emission from the soil to the 

atmosphere). 

Site description 

Drained peat soil, 

grass, Canada 

Loam grassland soil in winter, 

UK, poorly drained 

well drained 

Drained peat soils, Finland 

Net CH4 emissions 

-0.45 

-0.1 

-0.7 

-0.7 to 30 

Reference 

Glenn et al., 1993 

Jarvisetal., 1994 

Martikainen et al., 1995; 

Martikainen et al., 1992 

Temperate grassland, Japan -1.0 toO Minami et al., 1994 

Shortgrass prairie soils, USA -0.8 to-0.1 Mosier et al., 1991 

Drained peatlands, Canada -0.4 to 0.1 

Intensively managed grasslands -0.4 to 0.2 

on peat soil, the Netherlands 

Roulet et al., 1993 

This paper, Fig. 5.3 
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atmospheric CH4 to CH4 diffusing from the deeper soil layers at some depth in the 

soil. Careful evaluation of our dataset suggested this to occur between 20 and 30 cm 

depth. For drained peat soils in Canada, this depth varied between 25 and 35 cm 

(Roulet et al., 1993). 

The second aim of this study was to assess the effects of grassland 

management on CH4 emission rates. We studied the effects of drainage, N 

fertilisation, and grazing versus mowing. Drainage generally decreases CH4 

emissions from peat soils. As the ground water table drops, the aerobic top layer of 

the soil becomes thicker. Conditions become less favourable for CH4 production and 

more favourable for CH4 consumption. Indeed, temporal variation in net CH4 

emissions in Zegveld could best be explained by ground water level (Fig. 5.4) rather 

than temperature or soil moisture content. Differences between drained and 

undrained sites are most distinct if the undrained sites have a ground water level 

close to the surface (e.g. Martikainen et al., 1992; Roulet et al., 1993). Site 8B/high 

with a mean ground water level of 22 cm showed a higher consumption of 

atmospheric CH4 than site Bos 6/low with a mean ground water level of 42 cm. Part 

of the differences between the two sites was related to differences in CH4 production 

and consumption rates as observed in the laboratory. The incubation experiments 

showed that on treatment M+ of 8B/high CH4 production was higher and 

consumption lower compared to M+ of Bos 6/low, especially in the top layer (Fig. 5.6 

and Table 5.4). Although the differences in CH4 emissions between Bos 6/low and 

8B/high were significant, they were small (Table 5.3). Therefore, we conclude that on 

intensively managed grasslands on peat soil the effect of mean ground water level in 

the range of 20 to 40 cm below surface on CH4 emissions is small. 

Fertiliser N application, especially ammonium, may decrease CH4 consumption 

(Dunfield & Knowles, 1995; Hütsch et al., 1994; King & Schnell, 1994; Mosier et al., 

1991 ; Steudler et al., 1989; Willison et al., 1995). This is either caused by an 

immediate inhibition of methanotrophs, e.g. by ammonium or nitrite, or by a change 

in the microbial community due to repeated fertiliser N application. In our study, there 

were no significant differences in net CH4 emission between the fertilised and 

unfertilised treatments at the two sites. This could be due to the relatively short 

period without N fertilisation, since the treatments started only in 1992. Ammonium 

concentrations in the treatments without N fertilisation were still high compared to the 

fertilised treatments (Table 5.2). Interesting to notice is that in winter 1994/1995, 

treatment M- (mowing, no N application) at site Bos 6/low showed consumption of 

atmospheric CH4, while the other treatments showed CH4 emission from the soil to 
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the atmosphere (Fig. 5.2). Possibly the methanotrophs slowly started to recover. We 

conclude that on intensively managed grasslands on peat soil the effect of 

withholding N fertilisation for some years on CH4 emissions is negligible. 

We hypothesised that mowing would decrease CH4 production compared to 

grazing as the annual supply of organic material to the soil is lower on mown 

grassland than on grazed grassland (Van den Pol-van Dasselaar & Lantinga, 1995). 

Table 5.3 shows that on the mown treatments net CH4 emission was slightly lower 

than on the grazed treatments. However, there were no significant differences 

between the mown and grazed treatments at the two sites. We conclude that on 

intensively managed grasslands on peat soil the effect of grazing versus mowing on 

CH4 emissions is negligibly small. It has to be emphasised that CH4 production by 

cattle is not included in these estimates. 

Our results indicate that the effect of variations in management of intensively 

managed grasslands on peat soil on CH4 emissions is negligible or small. Moreover, 

net CH4 emissions from these grasslands are low (Table 5.3). Therefore, we 

conclude that grassland management of intensively managed grasslands on peat 

soil is not a suitable tool for reducing net CH4 emissions. 
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SPATIAL VARIABILITY OF METHANE, NITROUS OXIDE, AND CARBON DIOXIDE 

EMISSIONS FROM DRAINED GRASSLANDS 

Abstract 

Emissions of CH4, N20, and CO2 from soils are the result of a number of biological 

and physical processes, each influenced by several environmental and management 

factors exhibiting spatial variability. This study aimed to assess the spatial variability 

and spatial dependence of CH4, N2O, and CO2 emissions and their underlying soil 

processes and properties from grasslands on drained peat soil. Emissions and 

possible controlling factors were measured at a field location in Sweden. 

Measurements were done on two adjacent sites on peat soil on two successive days 

for each site. Spatial variability was analysed with trend analysis and variograms. 

Both sites consumed small amounts of atmospheric CH4, i.e. 0.03 and 0.05 mg CH4 

m"2 d"\ and emitted N20 and C02, i.e. 5 to 19 mg N20 m"2 d"1 and 4 to 6 g C02 m"2 

d"1. Spatial variability of emissions was high with coefficients of variation of 50 to 

1400%. Emissions either showed a spatial trend or were spatially dependent with 

ranges of spatial dependence of 50 to >200 m. However, spatial dependence of 

emissions showed differences between sites and short-term temporal variability. 

Variograms of emissions and soil processes, which are partly biological in nature and 

have a high degree of inherent variability, should be interpreted with care. 

Introduction 

Emissions of CH4, N20, and C02 from peat soils result from various biological and 

physical processes, which in turn are influenced by several environmental and 

management factors. For example, CH4 emissions result from CH4 production, CH4 

oxidation and CH4 transport, which are influenced by factors like ground water level, 

soil temperature, diffusion rates of CH4 and 0 2 in the soil, drainage, and fertilisation 

(Bartlett & Harriss, 1993; King, 1992; Willison et al., 1995). Each of these processes 

and factors has its own temporal and spatial variability. Some are distributed 

uniformly, while others are not. Some will interact in a multiplicative manner to create 

skewed frequency distributions. Spatial variability of soil variables will directly 

influence CH4, N20, and CO2 emissions from soils, and occurs at scales of 
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centimetres to kilometres. Description of spatial variability of soil variables should 

improve the description of the spatial distribution of emissions. 

The most important factor regulating CH4 emissions from peat soil is the 

distribution of O2 in the top layer of the soil (King, 1992). Aerobic soil conditions 

suppress methanogenic processes in favour of methanotrophic processes. 

Differences in water level may therefore determine to a large extent spatial variability 

of CH4 emissions. The most important factors regulating N2O emissions include the 

distributions of 02, N and organic matter in the soil (Martikainen et al., 1993). The 

most important factors regulating CO2 emissions include the distributions of O2 and 

organic matter (Bouwman, 1990). As the distribution of O2 in the top layer of the soil 

is one of the main regulating factors for CH4, N2O, and CO2 emissions, and drained 

peat soils have a non-uniform distribution of O2 due to the presence of drainage 

pipes, spatial variability of emissions should be high on drained peat soils. 

Spatial variability contains systematic and random components. In standard 

statistics, the variability around the mean is assumed to be random and spatially 

independent. However, variability of soil variables often contains a spatially 

dependent component, i.e. the variability can be described as a function of spatial 

separation. We studied spatial variability using both a statistical and a geostatistical 

approach. First, trend surfaces were fitted through the data to check for any non-

stationarity. Next, for data without a trend, geostatistics was applied. Geostatistics, 

i.e. the theory of regionalised variables, models the spatial dependence of spatially 

distributed variables (e.g. Trangmar et al., 1985). Geostatistical techniques are 

currently widely applied by soil scientists, e.g. in analysing spatial variability of 

nutrient contents (Borges & Mallarino, 1997; Boyer et al., 1996) and hydraulic 

properties (Mallants et al., 1996). Priemé et al. (1996) used geostatistics in studying 

spatial variability of CH4 emissions and Velthof et al. (1996) in studying spatial 

variability of N2O emissions. So far, analysis of spatial variability of CH4, N2O, and 

CO2 emissions has not been combined with analysis of spatial variability of 

controlling factors in one study. As such it is unclear whether these controlling factors 

display spatial variability at scales similar to emissions. 

Our study aimed to assess the spatial variability and spatial dependence of 

CH4, N2O, and CO2 emissions and their underlying soil processes and properties 

from grasslands on drained peat soil. Emissions and possible controlling factors 

were measured at a field location in Sweden. Possible controlling factors included 

several soil processes (CH4 production, CH4 oxidation, N20 production, 

denitrification, and CO2 production) and soil properties (soil moisture content, loss-
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on-ignition, N03 and NH4 content, and ground water level). 

We hypothesised that both the magnitude of spatial variability of emissions and 

the range of spatial dependence of emissions are related to the magnitude of spatial 

variability and the range of spatial dependence of governing soil processes and soil 

properties. Measurements were done on two adjacent sites, one fertilised with 90 kg 

N ha"1 yr"1 and one with 115 kg N ha"1 yr"1, and on two successive days for each site. 

Materials and methods 

Site description 

The field location was on permanent grassland on peat soil (FAO classification: 

Terric Histosol) near Fallköping, Sweden (58°20'N, 13°30'E). We studied two sites: 

Field 1 (45 m wide and 265 m long) and Field 2 (110 m wide and 110 m long). For 

the last 7 yr, Field 1 has received annually 115 kg N, 17.5 kg P and 62.5 kg K ha"1, 

and Field 2 has received 90 kg N, 17.5 kg P and 62.5 kg K ha"1. Both fields have 

been grazed by cattle every summer. Cattle manure collected in the winter period 

has been spread on the fields during the growing season. Soil pH varied between 7.0 

and 7.5. In Field 1, two drainage pipes in length were present. In Field 2, two 

drainage pipes in length and three drainage pipes in width were present. Average 

drainage depth was 1 m, average drainage distance was 26 and 43 m for drainage 

pipes in length and width respectively. Our field measurements were conducted after 

a very cold winter and started just after the soil had thawed. Field 2 had not been 

fertilised yet and Field 1 had received 30 kg N ha"1. 

Experimental set-up 

Field 1 was studied on 13 and 14 May, 1996. It was divided into 102 (6 x 17) grids of 

7.5 by 15 m. Field 2 was studied on 15 and 16 May. This field was divided into 100 

(10x10) grids of 10 by 10 m. Each second measurement day, all grids were moved: 

7.5 m in y direction on Field 1 and 5 m in both xand y direction on Field 2. All 

measurements were done in the centre of the grids on an area of about 0.03 m2, 

between 8.00 and 16.00 h. 
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CH4, N2O, and CO2 emissions 

Net CH4, N20, and CO2 emissions were measured with vented closed flux chambers 

(I.D. 20 cm, height 16 cm) (Mosier, 1989). For each grid a separate flux chamber 

was used. Flux chambers were constructed either of stainless steel or polyvinyl 

chloride, implying that for CO2 we measured emission from the soil and dark 

respiration of the grass. Flux chambers were closed for approximately 1 h. Previous 

experiments at the site showed that closure of flux chambers for this period would 

ensure detectable fluxes with minimal numbers of gas samples taken. Two gas 

samples per flux chamber were taken, at to and fend, in vials and analysed for CH4, 

N20, and CO2 by gas chromatography (Varian 3400, Varian Associates, Sunnyvale, 

CA) using an electron capture detector and a flame ionisation detector. By use of a 

Ni catalyst, CO2 was converted to CH4 before detection. By taking only two gas 

samples per flux chamber, a maximum number of flux chambers per day could be 

measured. 

Soil processes 

After flux measurements two soil cores (I.D. 4.7 cm, depth 20 cm) were taken in the 

centre of 102, 100 and 40 flux chambers on 13, 15, and 16 May, respectively, and 

incubated in the field in 1-L glass jars, closed with a polyacetale lid with rubber septa. 

One soil core was incubated under air for measurements of N2O and C02 

production. The other soil core was incubated under air with 5% acetylene for 

denitrification measurements (Ryden et al., 1987). N2O and CO2 accumulation were 

measured after about 24 h with a photoacoustic infrared absorption gas analyser 

(Brüel&Kjaer1300). 

The soil cores from the incubation under air were thoroughly mixed in the field 

immediately after incubation and subsampled for soil analyses and determination of 

CH4 oxidation and CH4 production. After transport, soil samples were stored at 4 °C. 

Aerobic and anaerobic incubation experiments started respectively 1 day and 1 week 

after soil sampling. CH4 oxidation was measured under ambient CH4 concentrations 

in aerobic incubation experiments. CH4 production was measured in anaerobic 

incubation experiments (N2-atmosphere). Gas samples were analysed for CH4 by 

gas chromatography (Varian 3400 and PU 4400, Unicam Ltd., Cambridge, UK) using 

a flame ionisation detector. 
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Soil properties 

The ground water level of Field 2 was recorded in the flux chambers of 15 May. Soil 

was analysed for soil moisture content (percentage of field-moist soil, gravimetrically 

after drying at 105 °C for 24 h), loss-on-ignition (at 550 °C), N03 and NH4 contents 

(by extraction with 0.01 MCaCI2). 

Data acquisition, statistics and geostatistics 

Net CH4, N2O, and CO2 emissions were calculated using the concentration in the 

headspace of the chambers at fo and fend. CH4 oxidation was calculated assuming 

first-order kinetics. N2O production, denitrification and CO2 production rates were 

calculated using the measured concentrations and the incubated area. Prior to 

statistical analyses, variables that followed a skewed distribution were transformed to 

a near-normal distribution by lognormally transforming the data. Simple and multiple 

linear regression analyses with (In-transformed) emissions as well as soil processes 

as dependent variables and In-transformed soil processes and properties as 

independent variables were carried out to assess possible relations between 

emissions, soil processes and properties. Differences between the different sites and 

measurement dates were determined by an analysis of variance with factors of site 

and measurement date (P=0.05). Spatial variability of emissions, soil processes and 

properties was analysed with statistics and geostatistics (e.g. Trangmar et al., 1985). 

First, for CH4, N2O, and CO2 emissions the relation with the xand y coordinates of 

the measurement locations was determined with the trend surface model: 

Emission = ßo + ßix + ß2y + ß^ + ß&y + ßsy2 (6.1 ) 

with regression coefficients ßoto ßs. The presence of a trend is elucidated by 

significance of any of the parameters ßi to ßs, whereas ßo models the intercept. In 

the absence of a trend, the degree of spatial dependence was modelled with 

variograms. A variogram y(h) describes the variance of the squared difference of a 

spatial variable between pairs of points at distance h. Variograms were constructed, 

assuming direction independent (isotropic) spatial variation, by: 
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7(h) = ̂ y £ {Z ( * , ) - Z(x, + A)} (6.2) 

in which for each distance approximately equal to h, N(h) is the number of pairs of 

observations at this distance and Zfa) and Zfc+h) represent the values of the spatial 

variable Zat two positions separated by h. To the values thus obtained a variogram 

model was fit. We distinguish between transitive and intransitive models. A transitive 

variogram model increases with distance between sample points to a more or less 

constant value (the sill, which equals the sample variance as determined in standard 

statistics) at a separation distance, called the range of spatial dependence. An 

intransitive variogram model keeps increasing with the distance of sample 

separation. Many variograms show a nugget variance, i.e. a non-zero value as the 

distance tends to zero. It represents variability not accounted for, either because of 

microscale variability, which can not be detected at the scale of sampling, or 

because of measurement errors. In the absence of spatial dependence, i.e. in cases 

of large point-to-point variation at short distances, the variogram will show a pure 

nugget effect. Variograms were fit to a linear or a spherical model using weighted 

least squares approximation (McBratney & Webster, 1986). 

Results 

Weather conditions 

Weather data were obtained from a weather station about 200 m from the sites. It 

was relatively warm on 13 and 14 May, while 15 and 16 May were relatively cold. It 

was mainly dry, except for some heavy rainfall during a thunderstorm on 14 May. Air 

temperature, photosynthetic active radiation and rainfall are shown in Fig. 6.1. 

CH4, N20, and C02 emissions 

Both sites were small sinks of CH4 and sources of N20 and C02 (Table 6.1). 

Consumption of atmospheric CH4 was larger at Field 2 than at Field 1. N20 and C02 

emissions were larger at Field 1. Differences between emissions from Fields 1 and 2 

were significant (P<0.05). Emissions were not significantly affected by measurement 

time during the day, probably due to rather constant weather conditions on each day. 
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25 
air temperature, C 

PAR/100, pmol m'2 

rainfall, mm 

13 May 14 May 15 May 16 May 

Fig. 6.1. Time course of air temperature (°C), photosynthetic active radiation (PAR) 

((imol m'2) and rainfall (mm). 

This is very important, as it allowed us to combine all data from a particular day for 

statistics and geostatistics. The standard deviation of emissions was high compared 

with the mean, indicating a high spatial variability, especially for CH4 and N20 

emissions (Table 6.1). Frequency distributions of C02 and ChU emissions could be 

described by a normal distribution, frequency distributions of N2O emissions by a 

lognormal distribution. 

Trend surface analysis revealed trends in CH4 emissions at 13 and 15 May, in 

In-transformed N2O emissions at 13, 15, and 16 May and in CO2 emissions at 14 and 

15 May (Table 6.2). Trends could be totally different on succeeding days on the 

same site, such as those for In-transformed N2O emissions on 15 and 16 May. Also 

notice the low coefficients of determination, which ranged from 0.16 to 0.32. For 

emissions without a trend, geostatistics was applied to analyse spatially dependent 

components of spatial variability. CH4 emissions were spatially dependent for 

distances smaller than about 50 m on 14 May. On 16 May, they were spatially 

dependent throughout the whole site (Fig. 6.2a and 6.2b). Lognormally transformed 

N20 emissions were spatially dependent throughout the whole site on 14 May 
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(Fig. 6.2c). CO2 emissions were spatially dependent for distances smaller than about 

55 and 75 m on 13 and 16 May, respectively (Fig. 6.2d and 6.2e). All variograms 

showed a positive nugget effect. Two results were remarkable: the change from a 

stationary emission on one day to a non-stationary emission on the succeeding day 

on the same site, and secondly the difference in variograms between sites. 

Differences in both variance and shape of the variogram occurred. 

Table 6.1. Summary statistics of CH4, N2O, and CO2 emissions: average, median, 

standard deviation, minimum, maximum, and coefficient of variation. 

CH4. ma 

13 May 

14 May 

15 May 

16 May 

Field 1 

Field 2 

NPO. ma 

13 May 

14 May 

15 May 

16 May 

Field 1 

Field 2 

CH„ m'2 d"1 

NPO m"2 d"1 

CO?, a CO? m'2 d"1 

13 May 

14 May 

15 May 

16 May 

Field 1 

Field 2 

Avg. 

-0.072 

0.022 

-0.065 

-0.042 

-0.025 

-0.054 

21.7 

16.1 

4.9 

5.3 

18.9 

5.1 

5.2 

6.1 

3.8 

3.2 

5.6 

3.5 

Median 

-0.060 

-0.024 

-0.048 

-0.052 

6.4 

5.2 

0.2 

0.1 

5.0 

5.8 

3.8 

3.2 

SD 

0.209 

0.316 

0.134 

0.113 

36.3 

34.2 

16.7 

26.0 

2.6 

3.1 

2.2 

1.5 

Min. 

-0.814 

-0.754 

-0.529 

-0.379 

-2.5 

-2.2 

-0.2 

-0.4 

-0.4 

-1.5 

-0.0 

-0.0 

Max. 

0.830 

1.728 

0.504 

0.472 

181 

266 

148 

247 

11.6 

16.8 

10.3 

8.6 

CV, % 

-291 

1424 

-206 

-267 

167 

212 

341 

493 

50 

51 

58 

48 
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Table 6.2. Significant regression coefficients of Equation (6.1), and coefficients of 

determination (r2), for CH4 emissions, In-transformed N20 emissions, and CO2 

emissions. 

Jo Ji J J JA JS 7~ 

CH4 emissions, ma CH4 m'2 d'1 

13 May 1.5E-1 -3.2E-3* 9.0E-6* 0.21 

15 May 1.4E-2 -5.7E-3** 6.0E-5** 3.2E-5* 0.24 

Ln-transformed (N?Q emissions + 5). ma N?Q m~2 d"1 

13 May 2.2 

15 May 1.4 2.7E-2** 

16 May 1.8 

COg emissions, a COg m'2 d"1 

14 May 8.1 -5.8E-2* 

15 May 4.2 

7 Significant at the 0.05 and 0.01 levels of probability, respectively. 

1.7E-3 
2.5E-4 

2.3E-4 
-2.2E-4 

-1.7E-4 

-5.8E-4 

1.4E-4* 

0.32 
0.24 

0.23 

0.22 

0.16 

So/7 processes and properties 

Soil characteristics of both sites are given in Table 6.3. Mean CH4 oxidation capacity 

was larger and mean CH4 production capacity was smaller at Field 1 than at Field 2. 

Mean N2O production, denitrification, and CO2 production were higher at Field 1. 

Differences between soil processes and soil properties of Fields 1 and 2 were 

significant (P<0.05), except for NH4 content. Simple and multiple linear regression 

analyses showed that CH4, N20, and CO2 emissions were essentially unrelated to 

soil processes determined in the various incubation experiments (r2 < 0.01-0.05). 

Furthermore, emissions were very poorly related to soil properties {? = 0.03-0.35). 

The best model with CH4 emissions as dependent variable, for example, included 
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Fig. 6.2. Variogram of a) CH4 emissions from Field 1, b) CH4 emissions from Field 2, 

c) In-transformed N20 emissions from Field 1, d) CO2 emissions from Field 1, and e) 

C02 emissions from Field 2: variance y(h) vs. distance h (m). 
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only ground water level (z2 = 0.19). However, soil processes, as determined in the 

various incubation experiments, were better related to soil properties (r2 = 0.20-0.61). 

The best model with ChU oxidation as a dependent variable included both loss-on-

ignition and soil moisture content (z2 = 0.50). The best model with In-transformed CHU 

production as dependent variable included only loss-on-ignition (z2 = 0.20). The best 

model with CO2 production as dependent variable included both ground water level 

and soil moisture content (z2 = 0.61). Soil processes and properties showed spatial 

dependence (Fig. 6.3 and 6.4). 

Table 6.3. Averages and coefficients of variation of soil processes and properties as 
determined in soil cores of the 0 to 20-cm layer, and ground water level. 

Field 2 

Avg. CV, % 

Soil processes 

CH4 oxidation, ug CH4 kg'1 dry soil d"1 

CH4 production, ug CH4 kg"1 dry soil d 

N2O production, mg N m"2 d"1 

Denitrification, mg N m'2 d'1 

CO2 production, g CO2 m'2 d"1 

Soil properties 

Soil moisture content, % 

Loss-on-ignition, % 

NO3, mg kg'1 dry soil 

NH4, mg kg"1 dry soil 

Ground water level, cm below surface n.d.1) n.d. 

1-1 

Field 1 

Avg. 

15 

10 

28 

45 

23 

57 

37 

75 

20 

CV, % 

42 

388 

146 

113 

35 

10 

37 

52 

28 

8 
74 

8 

9 

18 

59 

38 

44 

18 

28 

68 
160 

58 

58 

35 

9 

33 
34 

33 

48 

n n.d. = not determined. 
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Fig. 6.3. Variogram of a) CH4 oxidation, b) In-transformed CH4 production, c) In-

transformed N20 production, d) In-transformed denitrification, and e) C 0 2 production: 

variance y(h) vs. distance h (m). 
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Discussion 

Spatial variability 

Spatial variability of CH4, N2O, and CO2 emissions is generally high. For example, 

Ambus & Christensen (1995) found coefficients of variation of 166 to 1787% for CH4 

and 106 to 617% for N20. Coefficients of variation were also high in our experiments, 

especially for CH4 and N20 (Table 6.1). Emissions, soil processes, and properties 

(Tables 6.1 and 6.3) differed significantly between the two sites (P<0.05), but a real 

comparison is difficult to make as measurements on Fields 1 and 2 were carried out 

on different days. 

We hypothesised that spatial variability of CH4, N20, and C02 emissions would 

be related to spatial variability of soil processes and properties. Even though a large 

number of measurements were available and anticipated main controlling factors 

were included, relations between emissions and soil processes or soil properties 

were generally poor. A reason for this might be that the emissions were measured on 

an area of about 300 cm2 while the soil processes and properties were determined 

using soil cores with a surface area of approximately 17.5 cm2, which were taken 

from the centre of the flux chambers. The volume of the soil cores may not have fully 

represented the spatial and temporal distribution of the soil processes and properties 

that control emissions. This is to some extent supported by the relatively better 

relation of soil processes, as determined in soil cores, with soil properties (r2 = 0.20-

0.61). Furthermore, soil processes and properties were measured in the upper 20 cm 

of the soil while emission rates integrate the activity of the whole soil profile. 

Christensen et al. (1996) found the main N20 producing layers just above the ground 

water at a depth of 1 m. If the main producing layers are found at depth, then 

properties in the upper 20 cm will not explain emission rates. Another reason for the 

poor relationships might be that determination of soil variables in bulk samples does 

not accurately represent the integrated effect of multiplicate interactions of factors in 

soil microsites controlling emissions. A poor relation between emissions and soil 

variables is often found (e;g. Ambus & Christensen, 1995; Velthof et al., 1996). Due 

to the poor relations, it was not possible to describe spatial variability of emissions as 

a function of spatial variability of soil processes or properties. 
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Spatial dependence 

Little is known about spatial dependence of greenhouse gas emissions. Priemé et al. 

(1996) found spatial dependence of CH4 emissions from two forest soils to occur 

only at distances smaller than about 10 to 12 m. In our study, however, the range of 

spatial dependence of CH4 emissions was larger (Fig. 6.2a and 6.2b). This may be 

due to the much more heterogeneous distribution of controlling soil variables in the 

forest soil, due to the presence of trees, compared with our drained grassland soil. 

Velthof et al. (1996) found N20 emissions from a slightly sloping, poorly drained clay 

soil to be spatially dependent throughout their whole measurement area, i.e. 10 m2, 

on mown grassland. However, on intensively grazed grassland they found no spatial 

dependence. In our study the range of spatial dependence of N20 emissions was 

larger (Fig. 6.2c). Our sites had been under grazing for several years, but as the 

growing season had just started, no cattle had grazed the sites yet. Grazing might 

decrease spatial dependence of N20 emissions, as it will probably increase random 

variation due to dung and urine causing an uneven distribution of N in the soil. The 

work of White et al. (1987) also gave some evidence for this. They showed that 

variograms of NO3 were best fitted to nugget models under grazing and to linear 

models when there had been no grazing for a period of 14 months. For our sites, this 

may imply that N20 emissions may become less spatially dependent as soon as 

grazing starts. 

We hypothesised that spatial dependence of CH4, N20, and C02 emissions 

would be related to spatial dependence of soil processes and properties. Situations 

where the range of spatial dependence of emissions and the range of spatial 

dependence of soil variables is approximately the same indicate that several 

processes controlling spatial variability work at the same scale. Surface trend 

analysis revealed trends in several variables (Table 6.2). These variables may be 

analysed with more advanced methods (e.g. Kitanidis, 1983; Kitanidis & Lane, 1985), 

but that would fall beyond the scope of this study. However, we did compare the 

variograms of the stationary emissions with the variograms of soil processes and 

properties. We found that it was not possible to describe spatial dependence of 

emissions as a function of spatial dependence of soil processes or properties. Our 

results show that good relations between spatial dependence of soil variables may 

exist. For example, on 15 May, ground water level and NO3 content, the main 

controlling factors for N20 emissions, were spatially dependent for distances 

<30-55 m, the same as N20 production and denitrification (Fig. 6.3 and 6.4). Where 
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emissions were spatially dependent throughout the whole site (i.e. showed a regional 

trend), and anticipated controlling factors showed a range of spatial dependence, 

emissions must be affected by large-scale factors. Soil type may very well have been 

one of these factors. Although the whole site was classified as peat soil, it was not 

uniform, as we observed differences in clay and peat contents of the soil (data not 

shown). 

Many of the variables exhibited a relatively high nugget variance, indicating that 

non-spatial variability was high compared with spatial variability. If the variables 

would have been studied in greater detail, heterogeneity that was defined as non-

spatial variability may have been found to contain a spatial component. We expect 

that in our study the nugget variance represents both variance due to measurement 

error and due to microvariability of emissions. 

Bramley & White (1991) suggested that in the case of soil physical properties, 

which are not expected to vary markedly with time, the variogram is not only readily 

reproducible, but can also be transferred between sampling areas of similar soil type 

and topography. We also found some evidence for this. Variograms of the physical 

soil properties soil moisture content and loss-on-ignition were almost identical for the 

two sites (Fig. 6.4a and 6.4b). 

Variograms of emissions 

Emissions were mainly spatially dependent. This implies that a certain precision of 

an emission estimate for a site may be reached with minimal sampling by the use of 

kriging. Kriging is a technique of making optimal, unbiased estimates of regionalised 

variables at unsampled locations using variograms and initial sets of data values 

(Trangmar et al., 1985). However, there are at least two serious limitations to this 

technique in the case of emissions. First, variograms from one site cannot always be 

applied to another, as the shape of the variogram may differ between sites. Second, 

spatial dependence of emissions may show short-term temporal variability, which is 

either shown by different variograms on succeeding days or by a change from a 

stationary emission on one day to a non-stationary emission on the succeeding day 

(Fig. 6.2, Table 6.2). The differences in spatial dependence between two successive 

days of measurement on the same site could not be ascribed to measurement order 

during a day as emissions were not significantly affected by time of measurement. 

Large changes in spatial variability of a variable in short periods suggest that main 

controlling factors of this variable are highly dynamic or the variable is highly 
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sensitive to slight changes of the controlling factors. Water level of the soil might be 

one of those controlling factors for emissions. It may display day-to-day variability, 

which might have a relatively large effect on emissions due to a change in the 

anaerobic/aerobic ratio in the soil. Bramley & White (1991) already suggested that 

geostatistical analysis of biological properties may cause problems, due to changes 

of variance with time. However, they used a time period of several months to a year 

between their observations. Ryel et al. (1996) discovered differences in variograms 

of NO3, NH4, and soil moisture contents of a soil during a growing season. Our 

results show that spatial dependence of emissions may change during even much 

smaller time periods of a day. It appears that variograms of emissions and soil 

processes, which are partly biological in nature and have a high degree of inherent 

variability, should be interpreted with care. 
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EFFECTS OF SOIL MOISTURE CONTENT AND TEMPERATURE ON METHANE 

UPTAKE BY GRASSLANDS ON SANDY SOILS 

Abstract 

Aerobic grasslands may consume significant amounts of atmospheric methane 

(CH4). We aimed (i) to assess the spatial and temporal variability of CH4 uptake by 

grasslands on aerobic sandy soils, and (ii) to explain the variability in CH4 uptake by 

differences in soil moisture content and temperature. Net CH4 emissions were 

measured with vented closed flux chambers at two sites with low N input on sandy 

soils in the Netherlands: (i) Wolfheze, a heather grassland, and (ii) Bovenbuurtse 

Weilanden, a grassland which is mown twice a year. Spatial variability of net CH4 

emissions was analysed using geostatistics. In incubation experiments, the effects of 

soil moisture content and temperature on CH4 consumption capacity were assessed. 

Temporal variability of net CH4 emissions at Wolfheze was related to 

differences in soil temperature (/* of 0.57) and soil moisture content (A2 of 0.73). CH4 

uptake was highest at high soil temperatures and intermediate soil moisture 

contents. Spatial variability of net CH4 emissions was high, both at Wolfheze and at 

Bovenbuurtse Weilanden. Incubation experiments showed that, at soil moisture 

contents lower than 5% (w/w), CH4 consumption was completely inhibited, probably 

due to physiological water stress of methanotrophs. At soil moisture contents higher 

than 50% (w/w), CH4 consumption was greatly reduced, probably due to the slow 

down of diffusive CH4 and O2 transport in the soil, which may have resulted in 

decreased CH4 oxidation and possibly some CH4 production. Optimum soil moisture 

contents for CH4 consumption were in the range of 20 to 35% (w/w), as prevailing in 

the field. The sensitivity of CH4 consumption to soil moisture content may result in 

short-term variability of CH4 uptake in response to precipitation and 

évapotranspiration, as well as in long-term variability due to changing precipitation 

patterns as a result of climate change. 

Introduction 

Increased concentrations of methane (CH4) and other greenhouse gases in the 

atmosphere may contribute to climate change (IPCC, 1995a). In soils, CH4 can be 
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formed under anaerobic conditions by methanogens. Under aerobic conditions, both 

CH4 that has been produced in anaerobic parts of the soil and atmospheric CH4 can 

be oxidised by methanotrophs (Segers, 1998). Aerobic grasslands may consume 

significant amounts of atmospheric CH4. CH4 uptake generally ranges from 0 to 1 mg 

CH4 m"2 d"1 (e.g. Dobbie et al., 1996; Jarvis et al., 1994; Mosier et al., 1991 ; Van den 

Pol-van Dasselaar et al., 1997). 

Major determining factors for both temporal and spatial variability of CH4 uptake 

are grassland management and environmental conditions (e.g. Czepiel et al., 1995; 

Hütsch et al., 1994; Mosier et al., 1991). The most important environmental factors 

are ground water level and soil moisture content as they determine the proportion of 

anaerobic/aerobic sites in the soil. Soil moisture also acts as a diffusion barrier for 

methanotrophic micro-organisms. Furthermore, temperature is important, as CH4 

oxidation is a microbial process (Czepiel et al., 1995; Dobbie et al., 1996; Van den 

Pol-van Dasselaar et al., 1997). 

Within a field, spatial variability of CH4 uptake is most likely related to small-

scale heterogeneity in soil conditions, e.g. in soil moisture content. Variability 

between fields is probably related to differences in grassland management, soil 

characteristics and climate (Czepiel et al., 1995; Dobbie et al., 1996; Hütsch et al., 

1994; Mosier et al., 1991). Climate change, for example changes in rainfall 

distribution and temperature, may affect CH4 uptake capacity of grasslands. A 

decrease in wetness and an increase in temperature will probably increase CH4 

uptake rates. However, the relationships between soil moisture, soil temperature and 

CH4 uptake rates are complex (Dobbie et al., 1996; Van den Pol-van Dasselaar et 

al., 1997). 

We aimed (i) to assess the spatial and temporal variability of CH4 uptake by 

grasslands on aerobic sandy soils, and (ii) to explain the variability in CH4 uptake by 

differences in soil moisture content and temperature, in order to improve our 

understanding of determining factors. We studied the relationships between soil 

moisture content, soil temperature and CH4 uptake rates using two approaches. 

Firstly, CH4 uptake rates measured in the field were related to soil moisture content 

and temperature, using both statistical and geostatistical methods. Secondly, 

relationships between CH4 consumption capacity and soil moisture and temperature 

were studied in incubation experiments. We hypothesised (i) that at both low and 

high soil moisture contents, CH4 consumption is small, due to microbial stress, 

diffusion limitation and/or CH4 production, and (ii) that CH4 consumption is larger at 

high temperatures than at low temperatures, as CH4 oxidation is a microbial process. 
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Materials and methods 

Site description 

Experiments have been carried out at two sites in the centre of the Netherlands in 

the province Gelderland. They were selected for their low N input, since N input may 

reduce net atmospheric CH4 uptake (Hütsch et al., 1994; Mosier et al., 1991; 

Steudler et al., 1989; Willison et al., 1995). 

1. Wolfheze. Heather grassland on dry sandy soil, situated in a nature preserve. The 

site has not been fertilised for several centuries. In summer, few cattle graze the 

area. N input via atmospheric deposition is estimated at 40 kg N ha"1 yr"1 (Erisman & 

Draaijers, 1995). Dry bulk density was 1.09 g cm'3 in the layer 0-5 cm and loss-on-

ignition (at 550 °C) was 7.3% in the layer 0-20 cm. Ground water is at least 3 m 

below the surface. The vegetation is dominated by grasses (Deschampsia flexuosa 

(L.) Trin., Molinia caerulea (L.) Moench), heather (Ericaca tetralix L), and mosses. 

2. Bovenbuurtse Weilanden. Poorly drained grassland on sandy soil. Until 1972, the 

site received about 200 kg N ha*1 yr"1. Several grazing and mowing treatments were 

established in 1972. We studied a treatment, which is mown twice a year and 

received 50 kg N ha"1 yr"1 in the period 1972-1985 and no N application since 1986. 

N input via atmospheric deposition is estimated at 45 kg N ha"1 yr"1 (Erisman & 

Draaijers, 1995). Dry bulk density was 1.20 g cm"3 in the layer 0-5 cm and loss-on-

ignition (at 550 °C) was 4.7% in the layer 0-20 cm. The vegetation is dominated by 

grasses (Agrostis spp., Arrhenatherum elatius (L) Beauv. ex J. & C. Presl, 

Anthoxanthum odoratum L, Festuca rubra L, Holcus spp., Lolium perenne L, Poa 

trivialisL.). 

Field experiments 

Experimental set-up 

At Wolfheze, net CH4 emissions were measured with vented closed flux chambers 

(Hutchinson & Mosier, 1981 ; Mosier, 1989) weekly to monthly from March 1996 to 

March 1997 with 12 to 24 flux chambers per measurement date. The circular, 

stainless steel flux chambers (I.D. 20 cm, height 16 cm) were located at random in 
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the field and carefully inserted in the soil to a depth of 2 to 4 cm. Thereafter, flux 

chambers were closed by a stainless steel lid and covered with insulating sheets to 

prevent temperature changes within the chambers. At regular time intervals (20 to 40 

minutes) four gas samples were taken from the headspace of the chambers with 

glass syringes. They were transported to the laboratory and analysed for CH4 within 

24 h by injecting them manually into a gas Chromatograph (PU 4400, Unicam 

Limited, Porapak R column, nitrogen as carrier gas) using a flame ionisation detector 

(coefficient of variation: 0.08%). A standard CH4 concentration of 2.0 ul_ L"1 (±5%) 

was used for calibration. Net CH4 emissions were calculated from linear regression 

of the time course of CH4 concentration in the headspace of the chambers. Annual 

mean net CH4 emission was estimated by trapezoidal integration of mean net CH4 

emissions over time. At each measurement date, soil temperatures were recorded at 

0, 10, 20, 30, 40, and 50 cm depth. Soil moisture content of the upper 10 cm was 

determined gravimetrically after drying at 105 °C for 24 h. Percentage ground cover 

by vegetation types (grasses, heather, mosses, bare ground) was recorded for each 

individual flux chamber. 

Two measurement campaigns were carried out to study spatial variability, using 

the same equipment as described above. At Bovenbuurtse Weilanden, net CH4 

emissions and soil moisture content were measured in 60 flux chambers in a total 

area of 30 by 45 m in May 1995. Thirty of these flux chambers were placed in small 

drainage trenches. These trenches were 5 to 10 cm lower than the grassland. They 

occupy about 5% of the total surface area of Bovenbuurtse Weilanden. The second 

measurement campaign was carried out at Wolfheze in June 1996. The field was 

divided into 100 (10x10) grids of 9 by 9 m. Net CH4 emissions, soil moisture content 

and dry bulk density were measured in the centre of each grid. 

Statistics and geostatistics 

Simple and multiple regression analyses were performed with net CH4 emissions as 

dependent variable and soil temperature at the various depths, soil moisture content, 

dry bulk density and percentage ground cover by different vegetation types as 

independent variables. 

Spatial variability of net CH4 emissions in the measurement campaigns was 

analysed using geostatistics. Spatial variability contains systematic and random 

components. In standard statistics, the variability around the mean is assumed to be 

random and spatially independent. However, variability of soil variables often 

contains a spatially dependent component, i.e. the variability can be described as a 
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function of spatial separation. Geostatistics, i.e. the theory of regionalised variables, 

takes into account both the systematic and random characteristics, and models the 

spatial dependence of spatially distributed variables (e.g. Trangmar et al., 1985). 

Geostatistical techniques are currently widely applied by soil scientists, e.g. in 

analysing spatial variability of nutrient contents (Borges & Mallarino, 1997) and 

hydraulic properties (Mallants et al., 1996). The degree of spatial dependence was 

determined with variograms. A variogram y{h) describes the variance of the squared 

difference of a spatial variable between pairs of points at distance h. Variograms 

were constructed, assuming isotropic (i.e. direction independent) spatial variation, by: 

Y{h) = 2mh)^Z(Xi)'Z{Xi+h^ (7-1) 

in which for each distance approximately equal to h, N(h) is the number of pairs of 

observations at this distance and Z(x,) and Z(x,+h) represent the value of the spatial 

variable Zat two positions separated by h. Many variograms show a nugget 

variance, i.e. a non-zero value as the distance tends to zero. It represents variability 

not accounted for, either because of microscale variability, which can not be detected 

at the scale of sampling, or because of measurement errors. In the absence of 

spatial dependence, i.e. in cases of large point-to-point variation at short distances, 

the variogram will show a pure nugget effect. 

Incubation experiments 

Experimental set-up 

Incubation experiments were carried out to assess the effect of soil moisture content 

and temperature on CH4 consumption capacity of soil samples. The effect of soil 

moisture content on CH4 consumption capacity was assessed on samples from 

Bovenbuurtse Weilanden and from Wolfheze. Soil of the top 10 cm of the profile was 

incubated at 20 °C with an initial CH4 concentration of about 2 \iL L"1. Soil moisture 

content was adjusted, either by gently air-drying or adding water, to create a range of 

soil moisture contents from 0 to 70% (g H20 g"1 dry soil). At the end of the 

experiment the actual soil moisture contents were determined. 
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The effect of temperature on CH4 consumption capacity was studied on samples 

from Bovenbuurtse Weilanden. Soil of the top 10 cm was incubated at 4, 12, and 20 

°C with an initial CH4 concentration of about 2 (0.L L"1. The moisture content of the 

collected soil was 23% (w/w); via air-drying or adding water, soil moisture contents of 

18% and 47% (w/w) were also created. There were five replicates per treatment. 

Analytical procedures and data acquisition 

About 20 to 50 g (dry weight) homogenised soil was placed in incubation bottles of 

580 ml and incubated aerobically. Preliminary experiments showed that the total 

weight of incubated soil per bottle did not affect CH4 consumption capacity per unit of 

weight (data not shown). Control bottles containing no soil were included. Gas 

samples from the headspaces of the bottles were taken through rubber septa. 

Immediately after sampling, gas samples were analysed for CH4 using a gas 

Chromatograph (described above). Incubation lasted two to four days in which on 

average five samples were taken. The decrease in CH4 concentration in the 

headspaces of the incubation bottles showed typical first-order-kinetics (r2 > 0.98) 

(Hütschetal., 1993): 

In V, = In Vb-W (7.2) 

Y = CH4 concentration in headspace, u.L L"1; 

t = time, d; 

k = rate constant, d"1 

The rate constant k was normalised to dry weight (d1 g"1 dry soil) and used as a 

characteristic value for CH4 consumption capacity. Large values of k indicate high 

CH4 consumption capacities. 

Results 

Field experiments 

At Wolfheze, temporal variability of net CH4 emissions was relatively high, with 

highest CH4 uptake in spring and summer (Fig. 7.1). Spatial variability was large 
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Fig. 7.1. Time course of mean net ChU emissions (mg CHU m'2 d"1 ± SD) from 

heather grassland at Wolfheze. Negative numbers indicate net consumption of 

atmospheric CH4, positive numbers indicate net CH4 production. Each data point is 

the average of 12 to 24 measurements. 

throughout the year; coefficients of variation ranged from 40 to 400%. On an annual 

basis, grasslands at Wolfheze were a net sink of 1.1 ±0.1 kg CH4 ha"1 yr"1 (±SE). 

Simple linear regression analyses with net CH4 emission as the dependent variable 

and soil temperature as the independent variable showed that net CH4 emission was 

best related to soil temperature at the surface (r2 = 0.57) (Fig. 7.2). For soil moisture 

contents higher than 20% (w/w), the relation between soil moisture content and net 

CH4 emission was best fitted with a linear regression model. If all available data 

points were included, however, the relation was best fitted with a non-linear 

regression model (z2 = 0.73) (Fig. 7.3). 

During the measurement campaign at Bovenbuurtse Weilanden, net CH4 

emissions (±SD) were on average -0.06±0.42 mg CH4 m"2 d'1 at a soil moisture 

content (±SD) of 32±4% (w/w) (trenches excluded). In the trenches, which occupy 
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Fig. 7.2. Relationship between soil temperature at the surface (°C) and mean net 

CH4 emissions (mg CH4 m'2 d'1) from heather grassland at Wolfheze. Each data 

point is the average of 12 to 24 measurements. Dashed line is best fit (r2 = 0.57), 

obtained via linear regression analysis. 
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Fig. 7.3. Relationship between soil moisture content (%, w/w) and mean net CH4 

emissions (mg CH4 m"2 d"1) from heather grassland at Wolfheze. Each data point is 

the average of 12 to 24 measurements. Dashed line is best fit (z2 = 0.73), obtained 

via non-linear regression analysis. 
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about 5% of the total surface area, net CH4 emissions were on average 0.23±0.67 

mg CH4 m'2 d"1 at a soil moisture content of 39±5% (w/w). Even though this suggests 

a clear effect of soil moisture content on net CH4 emission, the relationship between 

net CH4 emission and soil moisture content of individual flux chambers was poor (r2 = 

0.03). 

During the measurement campaign at Wolfheze, CH4 uptake (±SD) was on 

average 0.65±0.44 mg CH4 m"2 d"1. Soil moisture content (±SD) was 22±5% (w/w). 

Analysis of spatial variability using geostatistics revealed a periodic component in the 

variogram of net CH4 emissions (Fig. 7.4a). Soil moisture content showed spatial 

dependence throughout the whole site (Fig. 7.4b). Dry bulk density did not show 

clear spatial dependence (Fig. 7.4c). All variograms showed a positive nugget effect. 

Multiple linear regression analyses with net CH4 emission as the dependent variable 
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Fig. 7.4. Variogram of a) net CH4 emissions, b) soil moisture content, and c) dry bulk 

density of heather grasslands at Wolfheze: variance y{h) versus distance h (m) (see 

Equation 7.1). 
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and soil moisture content and dry bulk density of each individual flux chamber as the 

independent variables, showed that relationships were poor (z2 = 0.01-0.05). This 

may have been due to the small range of soil moisture contents and dry bulk 

densities found in the field. 

Vegetation type was neither significantly related to net CH4 emission at 

Wolfheze nor to net CH4 emission at Bovenbuurtse Weilanden, although there was a 

tendency of atmospheric CH4 uptake to increase in the order heather, grasses, 

mosses and no vegetation (not shown). This might be due to facilitation of CH4 

diffusion into the soil. 

Incubation experiments 

There was a distinct effect of soil moisture content on CH4 consumption capacity of 

soil samples from Bovenbuurtse Weilanden and from Wolfheze (Fig. 7.5). At soil 

moisture contents lower than 5% (w/w), CH4 consumption capacity was completely 

inhibited. Optimum soil moisture contents ranged from 22.5 to 37.5% (w/w) for 

Bovenbuurtse Weilanden and from 17.5 to 27.5% (w/w) for Wolfheze. At soil 

moisture contents higher than 50% (w/w), CH4 consumption capacity was greatly 

reduced. CH4 consumption capacity was higher in soil samples from Wolfheze than 

in soil samples from Bovenbuurtse Weilanden. 

The effect of soil temperature on CH4 consumption capacity of soil samples 

from Bovenbuurtse Weilanden is shown in Fig. 7.6. An increase in temperature from 

4 to 12 °C more than doubled CH4 consumption capacity. The effect of a further 

increase to 20 °C was smaller, especially at high soil moisture contents. 

Discussion 

Spatial and temporal variability of CH4 uptake 

Variability of soil variables can often be described as a function of spatial separation 

(e.g. Trangmar et al., 1985). Little is known about spatial dependence of net CH4 

emissions. Priemé et al. (1996) found spatial dependence of net CH4 emissions from 

two forest soils to occur at distances smaller than about 10-12 m. Van den Pol-van 

Dasselaar et al. (1998a) found that the range of spatial dependence of net CH4 

emissions varied from 50 to more than 100 m on drained grasslands on peat soil, 
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Fig. 7.5. Effect of soil moisture content (%, w/w) on normalised rate constants of CH4 

consumption capacity (d'1 g'1 dry soil) (see Equation 7.2) of the 0-10 cm layer of 

Bovenbuurtse Weilanden (BW) and of Wolfheze. 
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Fig. 7.6. Effect of temperature (°C) on normalised rate constants of CHU 

consumption capacity (d'1 g'1 dry soil ± SE) (see Equation 7.2) of the 0-10 cm layer 

of Bovenbuurtse Weilanden for different soil moisture contents (SMC) (%, w/w). 

Each data point is the average of five measurements. 
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possibly due to a rather homogeneous distribution of determining soil variables in the 

intensively managed grassland soil. Van den Pol-van Dasselaar et ai. (1998a) 

showed that spatial dependence of emissions may change with time, such as within 

a day. Therefore, variograms of emissions should be interpreted with care. The 

variogram of net CH4 emission in the measurement campaign at Wolfheze (Fig. 

7.4a) reveals a periodic component. However, it is not possible to give a plausible 

reason for the occurrence of this periodic component. The variograms of net CH4 

emission, soil moisture content, and dry bulk density (Fig. 7.4) exhibited a relatively 

high nugget variance, indicating that non-spatial variability was high compared with 

spatial variability. If the variables would have been studied in greater detail, 

heterogeneity that was defined as non-spatial variability may have been found to 

contain a spatial component. We expect that in our study the nugget variance 

represents both variance due to measurement errors and due to microvariability of 

the variables. 

Spatial variability of net CH4 emissions was not related to differences in soil 

conditions like soil moisture content or dry bulk density, nor to differences in 

vegetation type. This may be due to small ranges of these variables. Furthermore, 

net CH4 emission integrates the activity of the whole soil profile while soil moisture 

content and dry bulk density were determined only in the upper 10 cm of the soil. 

Temporal variability of net CH4 emissions at Wolfheze (Fig. 7.1) was related to 

differences in soil temperature and soil moisture content (Fig. 7.2 and 7.3). It must 

be noted however that high temperatures often coincided with low soil moisture 

contents, and vice versa. Hence, it is not clear whether the relationships shown in 

Fig. 7.2 and 7.3 are a direct effect of temperature or of soil moisture content, or a 

combined effect of both temperature and soil moisture content. 

Effect of soil moisture content 

An important factor determining CH4 uptake is gas transport resistance, which is 

influenced by soil wetness and structure. The effect of soil moisture content has 

been studied in many recent incubation experiments (e.g. Adamsen & King, 1993; 

Dunfield et al., 1995; Koschorreck & Conrad, 1993; Nesbit & Breitenbeck, 1992; 

Schnell & King, 1996; Whalen & Reeburgh, 1996) and field experiments (e.g. Castro 

et al., 1994; Castro et al., 1995; Koschorreck & Conrad, 1993; Striegl et al., 1992). 

Both at low and high soil moisture contents, CH4 consumption capacity may be 

suppressed, either by physiological water stress of methanotrophs or by restriction of 
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diffusive CH4 and O2 transport. The optimum soil water content for CH4 uptake 

reflects the balance between gas transport rates and physiological water stress. An 

increasing soil moisture content may also decrease net atmospheric CH4 uptake, 

due to increased CH4 production as a result of an increasing proportion of anaerobic 

sites (Yavitt et al., 1995). Czepiel et al. (1995) suggested that CH4 oxidation is 

influenced by both soil moisture content and organic matter content, with differences 

in organic matter content explaining the spatial variability of CH4 oxidation at 

optimum soil moisture contents. We found a clear effect of soil moisture content on 

CH4 consumption capacity (Fig. 7.5). Optimum soil moisture contents for CH4 

consumption were in the same range as the prevailing field soil moisture contents. 

This means that methanotrophs are adapted to the field situation. The lower CH4 

consumption capacity of soil samples from Bovenbuurtse Weilanden compared to 

soil samples from Wolfheze (Fig. 7.5) may have been due to a higher N turnover rate 

at Bovenbuurtse Weilanden (Van den Pol-van Dasselaar et al., 1998e), since it has 

been suggested that a high N turnover rate decreases CH4 uptake (Mosier et al., 

1991). 

Effect of temperature 

It has been reported that the temperature dependence of CH4 oxidation is smaller 

than that of many other biological processes like carbon dioxide production and CH4 

production (Dunfield et al., 1993; King & Adamsen, 1992). This can be explained by 

the fact that CH4 oxidation is often limited by CH4 diffusion, which is a physical 

process. The optimum temperature for CH4 oxidation is lower than the optimum 

temperature for CH4 production (Nesbit & Breitenbeck, 1992). According to Dunfield 

et al. (1993), the optimum temperature for CH4 oxidation is 20-25 °C. Castro et al. 

(1995) found in their field experiments that soil temperature is an important controller 

of CH4 uptake at temperatures between 5 and 10 °C, but not at temperatures 

between 10 and 20 °C. In agreement with this, we found that the effect of 

temperature on CH4 consumption capacity was more pronounced between 4 and 12 

°C than between 12 and 18 °C (Fig. 7.6). 

Climate change 

CH4 uptake is restricted at low and high soil moisture contents (Fig. 7.3 and 7.5), and 

at low temperatures (Fig. 7.2 and 7.6). If, as a consequence of increased 

120 



_CH4 uptake by grasslands on sandy soils 

greenhouse gas emissions, temperatures on earth will increase, then CH4 uptake 

may also increase, unless, as a consequence of a warmer climate, soil moisture 

content decreases drastically. Further on, the sensitivity of CH4 consumption to soil 

moisture content may result in short-term variability of CH4 uptake in response to 

precipitation and évapotranspiration, as well as in long-term variability due to 

changing precipitation patterns as a result of climate change. 
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Chapter 8 

Effects of nitrogen input and grazing on methane fluxes of extensively and 
intensively managed grasslands in the Netherlands 

Abstract 

Generally, grasslands are considered as a sink of atmospheric methane (CH4), and 

nitrogen (N) input as a reducing factor for CH4 uptake. We aimed to assess the 

short- and long-term effects of a wide range of N inputs, and of grazing versus 

mowing, on CH4 uptake by grasslands in the Netherlands. These grasslands are 

mostly intensively managed with a total N input via fertilisation and atmospheric 

deposition in the range of 300-500 kg N ha'1 yr"1. Net CH4 emissions were measured 

with vented closed flux chambers at four contrasting sites, which were chosen to 

represent a range of N inputs. There were no significant effects of grazing versus 

mowing, stocking density, and withholding N fertilisation for three to nine years, on 

net CH4 emissions. When ground water level was close to the soil surface, injection 

of cattle slurry resulted in significant net CH4 production. Highest atmospheric CH4 

uptake was found at the site with the lowest N input and the lowest ground water 

level, with an annual CH4 uptake of 1.1 kg CH4 ha"1 yr"1. This is assumed to be the 

upper limit of CH4 uptake by grasslands in the Netherlands. We conclude that 

grasslands in the Netherlands are a net sink of CH4 with an estimated CH4 uptake of 

0.5 Gg CH4 yr"1. At the current rates of total N input, the overall effect of N 

fertilisation on net CH4 emissions from grasslands is small or negligible. 

Introduction 

The atmospheric methane (CH4) concentration is increasing, which is of concern as it 

may contribute to global warming. Methane (CH4) is the most important greenhouse 

gas next to CO2. It has been reported to contribute about 20% to the enhanced 

greenhouse effect (IPCC, 1995a). CH4 can be formed in soils wherever organic 

matter is degraded by micro-organisms under anaerobic conditions. Under aerobic 

conditions, the soil may be a sink where methanotrophic micro-organisms oxidise 

either atmospheric CH4, or CH4 that has been produced in anaerobic parts of the 

soil. On a global scale, soils contribute 3 to 9% to the total sink strength for 

atmospheric CH4 (IPCC, 1995a). 
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Grasslands are generally considered as sinks of CH4. The net uptake rate depends 

on environmental conditions, like ground water level, soil moisture content, 

temperature, and grassland management (Czepiel et al., 1995; Dunfield et al., 1995; 

Van den Pol-van Dasselaar et al., 1998d). The carbon (C) and nitrogen (N) dynamics 

of grazed grasslands differ from that of mown grasslands, but whether this difference 

causes a difference in CH4 flux has not yet been demonstrated. Several authors 

have observed that N fertilisation decreases CH4 uptake by soil. This is caused either 

by an immediate inhibition of methanotrophy (short-term effect) or by a change in the 

composition and size of the microbial community due to repeated fertiliser N 

application (long-term effect). The decrease of CH4 uptake by soil may be associated 

with (i) ammonium (Dunfield & Knowles, 1995; Hütsch et al., 1994; King & Schnell, 

1994; Willison et al., 1995), (ii) nitrite (Dunfield & Knowles, 1995; King & Schnell, 

1994), and (iii) high N turnover rates (i.e. mineralisation and nitrification) (Hütsch et 

al., 1993; Mosier et al., 1991). Understanding of the mechanisms of decreasing CH4 

consumption capacity due to N fertilisation is limited, because the knowledge of the 

underlying microbiology is poor (Roslev et al., 1997). 

Most grasslands in the Netherlands are intensively managed with a total N input 

via fertilisation and atmospheric deposition in the range of 300-500 kg N ha'1 yr"1. 

High N inputs commenced after 1950 following a rapid intensification of livestock 

farming and industry. Unfertilised and extensively managed grasslands have a total 

N input of about 30-50 kg N ha'1 yr'1 via atmospheric deposition of NHy and Nox 

(Erisman & Draaijers, 1995). 

We aimed to assess the short- and long-term effects of a wide range of N 

inputs, and of grazing versus mowing, on CH4 uptake by grasslands in the 

Netherlands. We investigated the effects of withholding N fertilisation, application of 

different types of mineral N fertilisers, and application of cattle slurry. Net CH4 

emissions were measured at four contrasting sites, which were chosen to represent 

a range of N inputs. We hypothesised (i) that N fertilisation reduces net CH4 uptake 

in the short-, and (ii) the long-term, causing differences in net CH4 uptake between 

sites with different N inputs, (iii) that withholding of N fertilisation increases net CH4 

uptake, and (iv) that grazing decreases net CH4 uptake compared to mowing, as the 

annual amount of C and N applied to the soil is larger under grazing than under 

mowing (Van den Pol-van Dasselaar& Lantinga, 1995). 
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Materials and methods 

Site description 

Field experiments have been carried out at four sites in the Netherlands. 

Characteristics of these sites are shown in Table 8.1. 

1. Wolfheze. Heather grassland on dry sandy soil, situated in a nature preserve. The 

vegetation is dominated by grasses, heather and mosses. Ground water is at least 3 

m below the surface. The site has not been fertilised for several centuries. In 

summer, few cattle graze the area to maintain the grassland. N input via atmospheric 

deposition is estimated at 40 kg N ha'1 yr'1 (Erisman & Draaijers, 1995). 

2. Bovenbuurtse Weilanden. Poorly drained grassland on sandy soil. The vegetation 

is dominated by grasses. N input via atmospheric deposition is estimated at 45 kg N 

ha'1 yr'1 (Erisman & Draaijers, 1995). Between 1950 and 1972, the site received 

about 200 kg N ha'1 yr"1 via fertilisation. Different treatments were established in 

1972: 

G|0W: grazing with low stocking density, about 3 animals ha'1, no mineral N 

application; 

Ghigh: grazing with high stocking density, about 4.5 animals ha"1, no mineral N 

application; 

M-: mowing twice a year, N application of 50 kg N ha'1 yr"1 as calcium 

ammonium nitrate in the period 1972-1985, no N application since 1986; 

M+: mowing twice a year, N application of 50 kg N ha'1 yr"1 as calcium 

ammonium nitrate. 

3. Wildekamp. Poorly drained grassland on sandy soil with a total N input via 

fertilisation and atmospheric deposition of about 400-500 kg N ha"1 yr"1. The 

vegetation is dominated by grasses. Three treatments were investigated: 

CaNi: fertilisation with calcium nitrate, 80 kg N ha"1 cut"1; 

AmSu: fertilisation with ammonium sulphate, 80 kg N ha"1 cut"1; 

Slur: fertilisation with cattle slurry, injected with a sod-injector to a depth of 5 

cm, 15 m3 ha"1 cut"1, which was equal to a mineral N application rate of 

about 45 kg N ha'1 cut'1. In the Netherlands, animal manure must be 

injected into the soil in order to reduce ammonia volatilisation. 
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4. Zegveld. Grassland on intensively managed and moderately drained peat soil with 

both high and low N inputs. The vegetation is dominated by grasses. There were two 

sites: 

Z|0W: relatively low mean ground water level of 42 cm below soil surface in the 

experimental year 1994; 

Zhigh: relatively high mean ground water level of 22 cm below surface in 1994. 

On both sites, there were three treatments: 

M- : mowing, withholding N fertilisation since 1992 (before 1992 about 400 kg 

fertiliser N ha"1 yr"1 was applied as calcium ammonium nitrate); 

M+ : mowing, N application; 

G+ : grazing, N application. 

In 1994, cumulative N application rates for both M+ and G+ were 378 kg N ha"1 yr"1 

for site Z|0W and 426 kg N ha"1 yr"1 for site Zhigh. Fertiliser N was applied as calcium 

ammonium nitrate. Input via atmospheric deposition is estimated at 35 kg N ha"1 yr"1 

(Erisman & Draaijers, 1995). 

Monitoring net CH4 emissions in the field 

Net CH4 emissions were measured with vented closed flux chambers (Hutchinson & 

Mosier, 1981; Mosier, 1989). At Wolfheze, net CH4 emissions were measured 

weekly to monthly from March 1996 to March 1997 with 12 to 24 flux chambers. At 

Bovenbuurtse Weilanden, net CH4 emissions were measured three to four times in 

the period 6 May to 5 July 1994 with four to six flux chambers per treatment, and 

three to five times in the period 20 January to 28 February 1995 with six to 12 flux 

chambers per treatment. At Wildekamp, net CH4 emissions were measured during 

29 days following fertiliser application on 30 May 1994, with four flux chambers per 

treatment. At Zegveld, net CH4 emissions were measured weekly to biweekly from 

December 1993 to January 1995 with six to 12 flux chambers per site (two to four 

flux chambers per treatment). At the start of the measurements, circular, stainless 

steel flux chambers (I.D. 20 cm, height 16 cm) were carefully inserted in the soil to a 

depth of 2 to 4 cm at all sites, except treatment Slur at Wildekamp. For this treatment 

rectangular flux chambers were used (length 80 cm, width 20 cm, height 16 cm) to 

cover a representative fraction of grassland with and without injected slurry per flux 

chamber. Flux chambers were closed by a stainless steel lid and covered with 

insulating sheets to prevent temperature changes within the chambers. At regular 

time intervals (20 to 40 minutes), four gas samples were taken from the headspace 
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of the chambers with glass syringes. At each measurement date, soil temperatures 

were recorded at 0, 10, 20, 30, 40, and 50 cm depth. Soil moisture content of the 

upper 10 cm was determined gravimetrically after drying at 105 °C for 24 h. 

Incubation experiments 

The effect of N fertilisation and grazing versus mowing on CH4 consumption capacity 

was studied in an incubation experiment with field moist soil samples from different 

depths of Bovenbuurtse Weilanden. About 25 g (dry weight) homogenised soil of the 

layers 0-5, 5-10, 10-20, and 20-30 cm depth was incubated aerobically in bottles of 

580 ml at 20 °C with an initial CH4 concentration of about 80 uL L"1. There were three 

replicates per soil layer. Control bottles containing no soil were included. Gas 

samples from the headspace of the bottles were taken through rubber septa. 

Incubation lasted one week in which four gas samples were taken. 

Analytical procedures and data acquisition 

Gas samples from the field experiments were analysed for CH4 within 24 h by gas 

chromatography (PU 4400, Unicam Limited) using a flame ionisation detector 

(coefficient of variation: 0.08%). A standard CH4 concentration of 2.0 u,L L"1 (±5%) 

was used for calibration. Gas samples of the incubation experiments were analysed 

for CH4 immediately after sampling. 

In the incubation experiments, the decrease in CH4 concentration in the 

headspace of the incubation bottles showed typical first-order-kinetics: 

In Y,= \r\Yo-kt (8.1) 

Y = CH4 concentration in headspace, uL L"1; 

f = time, d; 

k = rate constant, d'1 

The rate constant k was normalised to dry weight (d'1 g"1 dry soil) and used to 

characterise GH4 consumption capacity. 

Net CH4 emissions were calculated for the field experiments from linear 

regression of the time course of CH4 concentration in the headspace of the flux 
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chambers. Annual mean net CH4 emissions were estimated by trapezoidal 

integration of mean net CH4 emissions over time. Statistical differences between 

treatments were tested with an analysis of variance procedure (ANOVA) with factor 

treatment (P=0.05). 

Results 

Net CH4 emissions 

Net CH4 emissions from grasslands at Wolfheze and Zegveld throughout the year 

are shown in Table 8.2. On average, Wolfheze was a net sink of CH4 with an annual 

mean uptake of 1.1 kg CH4 ha'1 yr"1. At Zegveld, differences in CH4 emissions 

between sites were significant (P<0.05). The site with a relatively low ground water 

level (Ziow) consumed on average 0.3 kg CH4 ha'1 yr"1, while the site with a relatively 

high ground water level (Zwgh) consumed on average 0.1 kg CH4 ha'1 yr"1. There were 

no significant differences in net CH4 emissions between the treatments. Temporal 

and spatial variability of net CH4 emissions at Zegveld and Wolfheze are discussed 

by Van den Pol-van Dasselaar et al. (1997) and Van den Pol-van Dasselaar et al. 

(1998d), respectively. 

Net CH4 emissions at Bovenbuurtse Weilanden are shown in Table 8.2. On 

average, treatment M+ was a small sink, while the other treatments were small 

sources of CH4. Soil moisture content was on average 37% (w/w) at the mowing 

treatments and 43% at the grazing treatments, both in summer and winter. Soil 

temperature of the upper 5 cm was on average 18 °C in summer and 7.5 °C in 

winter. Spatial variability of net CH4 emissions was high, especially at the grazing 

treatments. Often, one or two high net CH4 production values and several low net 

CH4 consumption values were found. There were no significant differences in net 

CH4 emissions between different treatments, or between the two measurement 

periods. 
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Effect of type of fertiliser application 

Type of fertilisation, i.e. mineral fertiliser or cattle slurry, markedly influenced net CH4 

emissions between soil and atmosphere at Wildekamp (Fig. 8.1). Mean net CH4 

emissions (± SE) were 0.02±0.06 mg CH4 m'2 d"1 for CaNi (fertilisation with calcium 

nitrate), -0.09±0.05 for AmSu (fertilisation with ammonium sulphate) and 7.76±2.29 

for Slur (fertilisation with cattle slurry, injected with a sod-injector). There were no 

significant differences between the two mineral fertiliser treatments. However, net 

CH4 emissions were significantly different for the treatment with cattle slurry 

compared to the mineral fertiliser treatments (P<0.05). Treatment Slur showed net 

CH4 production during the experimental period. The time course of net CH4 

production followed the time course of ground water level with a delay of three to four 

days (Fig. 8.1). During the first two weeks of the experimental period, soil 

temperature at 5 cm depth was about 15 °C. In the last two weeks, it gradually 

increased to 23 °C. Net uptake of CH4 for all treatments at the end of the 

experimental period coincided with a low ground water level and high soil 

temperatures. 

Effect of withholding N fertilisation and grazing versus mowing 

Within sites, the effect of withholding N fertilisation for three years (comparison of 

treatments M- and M+ at Zegveld) or nine years (comparison of treatments M- and 

M+ at Bovenbuurtse Weilanden) on net CH4 emissions was not significant (P<0.05) 

(Table 8.2). Furthermore, the incubation experiments with soil samples from 

Bovenbuurtse Weilanden showed no differences in CH4 consumption capacities of 

soil samples from treatments M- and M+ (P<0.05). The average profile of CH4 

consumption capacity of all treatments at Bovenbuurtse Weilanden showed a 

subsurface maximum at 10-20 cm depth (Fig. 8.2). 

At Bovenbuurtse Weilanden, the effect of grazing versus mowing (comparison 

of M and G) and stocking density (comparison of G|0W and Ghigh) on net CH4 

emissions was not significant (P<0.05) (Table 8.2). Furthermore, at Zegveld the 

effect of grazing versus mowing (comparison of M+ and G+) on net CH4 emissions 

was not significant (P<0.05) (Table 8.2). 
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Fig. 8.1. Mean net CH4 emissions (mg CH4 m"2 d"1 ± SE) after N application via 

ammonium sulphate (AmSu), calcium nitrate (CaNi) and cattle slurry injected into the 

soil (SLur), and ground water level (GWL) (cm below the surface) at Wildekamp. 

Each data point is the average of four measurements. 
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0 0.002 0.004 0.006 

CH4 consumption capacity, d'1 g'1 dry soil 

Fig. 8.2. Mean normalised rate constants of CH4 consumption capacity (d"1 g"1 dry 

soil ± SE) of soil samples from different layers (cm below the surface) at 

Bovenbuurtse Weilanden, determination in aerobic incubations at 20 °C. 

Discussion 

Net CH4 uptake 

Temperate grassland soils, especially when they are well-drained and thus mainly 

aerobic, are generally a sink for atmospheric CH4 with an average uptake of 0-1 mg 

CH4 m"2 d'1 (Dobbie et al., 1996; Jarvis et al., 1994; Kruse & Iversen, 1995; Mosier et 

al., 1991). Our results fit in this range (Table 8.2). However, several sites sometimes 

acted as a source instead of a sink. This may have been due to relatively high 

ground water levels and soil moisture contents, which will have created anaerobic 

microsites near the soil surface. These anaerobic microsites may have produced 

CH4, thus decreasing the sink function of the soil. 

The incubation experiments with soil samples from Bovenbuurtse Weilanden 

showed a subsurface maximum in CH4 consumption capacity at 10-20 cm depth 
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(Fig. 8.2). This phenomenon has been found earlier (e.g. Dunfield et al., 1995; 

Koschorreck & Conrad, 1993; Schnell & King, 1996; Van den Pol-van Dasselaar et 

al., 1997). It might be caused by outcompetition of methanotrophic bacteria by other, 

better adapted organisms in the top soil (Koschorreck & Conrad, 1993). Alternatively, 

methanotrophs could be sensitive to moisture changes, and so may be unable to 

survive in the top soil (Schnell & King, 1996). The latter hypothesis is supported by 

results from Nesbit & Breitenbeck (1992), who showed that methanotrophic activity 

of completely air-dried soils did not recover after rewetting. 

Effect of N fertiliser type 

At Wildekamp, we tested the effect of N fertiliser type on net CH4 emissions. Net CH4 

emissions after N application via ammonium sulphate were not significantly different 

from net CH4 emissions after N application via calcium nitrate, even though 

ammonium is often associated with a decrease in CH4 uptake (Dunfield & Knowles, 

1995; Hütsch et al., 1994; King & Schnell, 1994; Willison et al., 1995). This may have 

been due to conditions being favourable for CH4 production during the first weeks. 

Net CH4 emissions from the injected slurry treatment were significantly higher than 

from the mineral fertiliser treatments (Fig. 8.1). The net CH4 production from the 

slurry treatment is probably caused by a combination of wet soil, application of easily 

decomposable organic material and anaerobic conditions in the slurry itself. When 

ground water level dropped at the end of the measurement period, the slurry 

treatment became a small net sink of CH4. It has been shown that farm yard manure 

may stimulate CH4 consumption capacity by increasing the microbial biomass 

(Willison et al., 1996). Hütsch et al. (1993) showed that application of farm yard 

manure did not have a significant long-term effect on CH4 consumption capacity of 

soils. Probably, application of organic manure does not affect the long-term CH4 

consumption capacity of the soil. 

Effect of N input 

N input, especially in form of ammonium, and high N turnover rates may decrease 

CH4 uptake (e.g. Hütsch et al., 1994; Mosier et al., 1991 ; Willison et al., 1995), either 

by an immediate inhibition of methanotrophy (short-term effect) or by a change in the 

composition and size of the microbial community due to repeated fertiliser N 

application (long-term effect). 
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We did not find any significant short-term effects of N fertilisation on net CH4 

emissions. At Zegveld, there was no significant effect of withholding N fertilisation for 

three years. At Bovenbuurtse Weilanden, we also found no significant effect of 

withholding N fertilisation, even though the period without N fertilisation at M- was 

nine years and before that period only 50 kg N ha"1 yr"1 was applied. However, 

combination of data from Wolfheze and Zegveld, the two sites with year-round 

measurements, suggest that there might be a significant long-term effect of N input 

causing differences in annual mean net CHU emissions (Fig. 8.3). This could however 

also be partly due to differences in moisture content, since Wolfheze, the site with 

the highest ChU uptake, does not only have the lowest N input, but also the lowest 

ground water level. Ground water level and soil moisture content were found to be 

important determining factors for temporal variability of net CHU emissions from 

Zegveld and Wolfheze (Van den Pol-van Dasselaar et al., 1997; Van den Pol-van 

Dasselaar et al., 1998d). Whatever the precise cause, our data indicate that the 

overall effect of N fertilisation on net ChU emissions from grasslands is small or 

negligible at the current rates of N input in the Netherlands. 

« Wolfheze 

mZlow.M-

tZhigh.M-

xZlow.M+ 

aZhigh.M+ 

mZlow.G+ 

+ Zhigh.G+ 

0 100 200 300 400 500 600 

Ninput, kg Nha'1 yr'1 

Fig. 8.3. Relationship between estimated mean annual N input (kg N ha"1 yr'1) and 

mean annual net CH4 emissions (kg CHU ha"1 yr"1 ± SE). 
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„Effects of N input and grazing on CH4 fluxes 

Grazing versus mowing may affect CH4 uptake through differences in annual supply 

of C and N to the soil (Van den Pol-van Dasselaar & Lantinga, 1995). At Zegveld, the 

effect of grazing versus mowing on net CH4 emissions was not significant. This may 

have been due to the relatively short period of three years in which different 

treatments had been present. However, also at Bovenbuurtse Weilanden, the effect 

of grazing versus mowing and stocking density on net CH4 emissions was not 

significant, despite the fact that treatments were established more than 20 years 

before. Spatial variability was often higher at the grazing treatments than at the 

mowing treatments (Table 8.2), probably as a result of cattle excreta creating a 

heterogeneous pattern of methanogenesis and methanotrophy in the soil. On spots 

with fresh dung, conditions are favourable for methanogenesis (high organic matter 

content and low oxygen content). Methanogenesis causes relatively high CH4 

concentrations in the soil, which may stimulate methanotrophs. Increased 

methanotrophy may still continue when methanogenesis has decreased. Clearly, 

these factors contribute to a large spatial variability of CH4 emissions from grazed 

grasslands. However, our data indicate that the overall effect of grazing on net CH4 

emissions from grasslands is negligible. It has to be emphasised that CH4 production 

by cattle themselves is not taken into account in these estimates. 

CH4 uptake by grasslands in the Netherlands 

About 30% of the total surface area in the Netherlands is occupied by intensively 

managed grasslands, amounting to 1,050,000 ha. Recent estimates of national CH4 

emissions (Van Amstel et al., 1993; Van den Born et al., 1991) did not consider 

grasslands as a sink of CH4. By contrast, drained organic soils, which are mainly 

used as grasslands, have been estimated to be a net CH4 source of 32-89 Gg CH4 

yr"1 (35-700 kg CH4 ha"1 yr'1) (Van Amstel et al., 1993). Van Amstel et al. (1993) 

based their estimates on research at organic soils in other countries (Aselmann & 

Crutzen, 1989; Moore & Knowles, 1989). However, our year-round measurements at 

Zegveld show that drained organic soils in the Netherlands are a net sink of CH4 with 

an annual mean net CH4 uptake of 0.1 to 0.3 kg CH4 ha"1 yr"1 (see also Van den Pol-

van Dasselaar et al., 1997). We consider 0.1 kg CH4 ha"1 yr"1, which is the mean 

annual CH4 uptake at site Zhigh, the site with the relatively high ground water level, as 

the lower limit of CH4 uptake by intensively managed grasslands in the Netherlands, 
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because conditions of this site are least favourable for CH4 uptake, as follows: (i) 

peat soil, which has the potential of emitting CH4 as it has a high organic matter 

content and is largely anaerobic due to the high ground water level, (ii) intensive 

management with high N fertilisation and a high N turnover rate. The net uptake of 

1.1 kg CH4 ha"1 yr"1 at Wolfheze may be the upper limit of CH4 uptake by grasslands 

in the Netherlands, because conditions at this site are most favourable for CH4 

uptake: (i) prevailing optimal soil moisture contents for CH4 uptake (Van den Pol-van 

Dasselaar et al., 1998d), (ii) extensive management with no N fertilisation during past 

centuries and a low N turnover rate. We conclude that grasslands in the Netherlands 

(excluding wetlands/undrained peatlands that occupy only 0.5% of the total surface 

area) are a net sink of CH4 with an estimated CH4 uptake of 0.5 Gg CH4 yr"1. 

Estimates of CH4 emissions in the Netherlands need to take account of the role of 

grasslands in the national CH4 budget. 
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GENERAL DISCUSSION 

Introduction 

The major aims of this thesis are (i) to provide insight into the major factors that 

contribute to net CH4 emissions from grasslands, and (ii) to provide quantitative data 

on net CH4 emissions from typical grasslands with a range of soil wetness and N 

input in the Netherlands. Monitoring of CH4 emissions and possible determining 

factors was done at several sites: wet peat soils with low N input (Chapters 2, 3 and 

4), drained peat soils with low to high N input (Chapters 5, 6 and 8), and relatively dry 

sandy soils with low N input (Chapters 7 and 8). In this final chapter, main findings of 

this study are discussed. 

Until this study, 

- Determining factors of CH4 emissions from grasslands in the Netherlands had not 

been assessed experimentally; 

- Measurements of CH4 emissions from grasslands with a range of soil wetness and 

N input in the Netherlands were not available; 

- No attempts had been made to quantify CH4 production capacities of individual soil 

fractions; 

- It was unknown whether agriculturally used grasslands on drained peat soil were a 

source or a sink of CH4; 

- It was not clear whether emissions of greenhouse gases from grasslands were 

spatially dependent; 

- The effect of grazing versus mowing on net CH4 emissions was not known; 

- Short-term and long-term effects of a wide range of N input on CH4 uptake by 

grasslands with on average high N input were not known. 

Determining factors for CH4 emissions 

Determining factors for CH4 emissions from grasslands can be split up into 

environmental factors and management factors. Important environmental factors 

examined in this thesis are: soil organic matter, ground water level, soil moisture 

content, temperature, pH, and vegetation. Important management factors examined 

in this thesis are: drainage, N fertilisation and grazing versus mowing. 
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Environmental factors 

Soil organic matter 

CH4 production is influenced by both quality and quantity of organic matter present 

(e.g. Crozier et al., 1995; Schimel, 1995; Whiting & Chanton, 1993; Yavitt & Lang, 

1990). If metabolisable carbon and micro-organisms are abundant, carbon turnover, 

methanogenesis and methanotrophy will be stimulated. Methanogenesis may be 

positively related to C mineralisation. However, C mineralisation is not a good 

predictor of methanogenesis, since relations between C mineralisation and 

methanogenesis may be highly variable (Segers, 1998; Chapter 3, Chapter 4). 

Some researchers believe that soil organic matter is the main substrate for 

methanogens (e.g. Schimel et al., 1995), while others believe that fresh plant 

material is the main substrate (e.g. Chanton et al., 1995; Whiting & Chanton, 1993). 

In Chapter 4, we showed for wet peat soils that CH4 production capacity was highest 

for soil fractions with a large particle size, and that CH4 production capacity 

decreased with soil depth. This indicates that the major substrate for methanogens in 

wet peat soils is recently died plant material. Probably, this also accounts for drained 

peat soils, since only the top layer of these soils is capable of producing significant 

amounts of CH4 (Chapter 5). 

Ground water level 

Ground water level is one of the main influencing factors of CH4 emissions (e.g. 

Bartlett & Harriss, 1993; Moore & Roulet, 1993). Ground water level roughly indicates 

the transition zone between anaerobic (potential CH4 producing) and aerobic 

(potential CH4 consuming) layers in the soil. Significant CH4 emissions occur only 

when mean ground water level is near the surface. Below the ground water level of 

peat soils, significant CH4 accumulation may occur (e.g. Dinel et al., 1988; Fig. 2.5; 

Fig. 5.5). When the ground water level drops, this CH4 may be released by 

degassing (e.g. Moore & Dalva, 1993). 

At a relatively low mean ground water level, grasslands act as a CH4 sink. 

Kengen & Stams (1995) suggested that for drained peat soils at least 40 days 

complete anaerobiosis at 15 °C are required before significant CH4 production 

occurs. Further on, only the top layer appeared to be capable of producing significant 

amounts of CH4 (Kengen & Stams, 1995; Chapter 5). In practice this means that 

temporary waterlogging of drained peat soils during autumn and winter has relatively 

little effect on CH4 emissions (Chapter 5). 
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In the Netherlands, ground water level is managed via the water level in the ditches. 

Fig. 9.1 suggests that for peat soils in the Netherlands, the mean ground water level 

where a site turns from a potential source into a potential sink is situated about 20 

cm below the surface. Temporal variations in ground water level may cause a large 

response of CHU emissions, as shown by the relationships between ground water 

level and net CH4 emissions throughout the year (e.g. Equation 2.1, Fig. 5.4). 
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Fig. 9.1. Relationship between mean ground water level (cm below the surface ± SD; 

n = 25 to 65) and mean annual net CH4 emissions from grasslands on peat soil (kg 

CH4 ha"1 yr"1 ± SD; n = 1 to 3) (data from Chapter 2 and 5). 

Soil moisture content 

Both at low and high soil moisture contents, CH4 consumption capacity may be 

suppressed by, respectively, physiological water stress of methanotrophs and 

restriction of diffusive CH4 and O2 gas transport from the atmosphere to the soil (e.g. 

Castro et al., 1995; Czepiel et al., 1995; Schnell & King, 1996). In incubation 

experiments with soil samples from two sandy soils (Chapter 7), CH4 consumption 

capacity was completely inhibited at soil moisture contents lower than 5% (w/w). 

Optimum soil moisture contents ranged from 20 to 35%. At soil moisture contents 
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higher than 50%, CH4 consumption capacity was greatly reduced (Fig. 7.5). The 

importance of soil moisture content in the field is illustrated in Fig. 9.2 (note that the 

soils of Fig. 9.2 have different bulk densities). At high soil moisture contents in the 

field, net atmospheric CH4 uptake may also be decreased due to CH4 production as 

a result of an increased proportion of anaerobic sites in the soil (Yavitt et al., 1995). 
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Fig. 9.2. Relationship between soil moisture content (%, w/w) and net CH4 emissions 

(mg CH4 m'2 d"1) from grasslands on drained peat soils (data from Chapter 5) and 

relatively dry sandy soil (data from Chapter 7). 

Temperature 

Soil temperature is one of the main influencing factors of CH4 emissions (Bartlett & 

Harriss, 1993; Castro et al., 1995; Dunfield et al., 1993; Chapter 2; Chapter 5; 

Chapter 7), since both CH4 production and CH4 consumption are microbiological 

processes. The importance of soil temperature for CH4 emissions from both wet 

grasslands and drained or dry grasslands is illustrated in Fig. 9.3. 

High temperatures may have a considerable impact on CH4 emissions, as 

shown in an experiment under controlled conditions in the greenhouse with soil 

columns from intensively managed grasslands on peat soil (unpublished data, 
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Van den Pol-van Dasselaar). Even though in the field these soils were a net sink of 

CH4 (Chapter 5), the soil columns were able to produce significant amounts of CH4 

within a few days (1-10 mg CH4 m'2 d"1) when kept at temperatures in the range of 

20-30 °C. The rapid production of CH4 may have been caused by a more 

pronounced stimulation of methanogenesis compared to methanotrophy, since the 

temperature dependence of CH4 production is larger than the temperature 

dependence of CH4 consumption (Dunfield et al., 1993; King & Adamsen, 1992). 

pH 

CH4 production, CH4 consumption, and thus CH4 emissions may be reduced at low 

pH (Dunfield et al., 1993; Hütsch et al., 1994; Syamsul Arif et al., 1996; Chapter 3). 

However, the effect of pH can be highly variable. In Chapter 3 for example, wet 

grasslands with a low pH (3.5 to 5.5) showed significant CH4 production and CH4 

emissions. The highly variable effect of pH may be due to different strains, for 

example acid-tolerant methanogenic bacteria (Williams & Crawford, 1985). It remains 

to be examined whether at the wet grasslands of Chapter 3 different strains were 

involved in methanogenesis. The results suggest, however, that pH is not a reliable 

factor for predicting CH emissions. 

Vegetation 

Vegetation may affect CH4 emissions from wet grasslands (e.g. Bubier et al., 1995b; 

Chanton et al., 1993; Whiting & Chanton, 1993; Chapter 3; Fig. 9.4). Firstly, the 

organic material from plants may serve as substrate for methanogens. Secondly, 

plant species with aerenchymatous tissues may transport CH4 and O2 in the soil. 

Correlations between sedge biomass and net CH4 emissions have often been found 

(e.g. Klinger et al., 1994; Torn & Chapin, 1993; Whiting & Chanton, 1992; Chapter 

3). 
The effects of vegetation on net CH4 emissions from relatively dry grasslands 

are not well documented. In Chapter 7, there were some indications that atmospheric 

CH4 uptake increased slightly in the order heather, grasses, mosses and no 

vegetation as dominant ground cover. This might be due to facilitation of CH4 

transport into the soil. However, the effect of vegetation type was not significant. 
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Aboveground biomass of sedges, g dm -2 

Fig. 9.4. Relationship between sedge biomass (g dm" ) and mean annual net CH4 

emissions (kg CH4 ha"1 yr"1) (data from Chapter 3). 

Management factors 

Drainage 

In the majority of grasslands in the Netherlands, ground water level can be managed 

via the water level in the surrounding ditches. Drainage decreases CH4 emissions. 

As the ground water level drops, the degree of aerobiosis in the soil will increase. 

Conditions become less favourable for CH4 production and more favourable for CH4 

consumption. Differences between drained and undrained sites are most distinct if 

the undrained sites have a ground water level close to the surface (e.g. Martikainen 

etal., 1992; Rouletetal., 1993; Chapter 2, Chapter 5). 

N fertilisation 

Most grasslands in the Netherlands are intensively managed. This management is 

characterised by large N inputs via N fertilisers and animal excreta. High nitrate 

concentrations in the soil may reduce or completely inhibit CH4 production, since 
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nitrate may serve as an alternative electron acceptor. Furthermore, N input, 

especially in the form of ammonium, may reduce CH4 consumption. 

The effect of N input on atmospheric CH4 uptake has been described in detail 

in Chapter 8. In short, N input may reduce CH4 consumption either by an immediate 

inhibition of methanotrophs or by a change in the microbial community due to 

repeated fertiliser N application. The decrease of CH4 consumption may be 

associated with ammonium, nitrite, and high N turnover rates (e.g. King & Schnell, 

1994; Mosier et al., 1991). It has been suggested that organic manure does not 

significantly affect long-term CH4 consumption capacity of the soil, even in situations 

where manure contains much of its N in the ammonium form (Hütsch et al., 1993; 

Willison et al., 1996). However, the understanding of the mechanisms of a 

decreasing CH4 consumption capacity due to N fertilisation is still limited, because 

knowledge of underlying microbiology is poor (e.g. Roslev et al., 1997). 

Fertilisation with cattle slurry, injected with a sod-injector to a depth of 5 cm, 

resulted in significant CH4 production for about one month (Chapter 8). This was 

probably caused by a combination of wet soil, application of easily decomposable 

organic material and anaerobic conditions in the slurry itself. Short-term effects of 

mineral N fertilisation were not found (Chapter 8). Furthermore, withholding N 

fertilisation for three years did not significantly affect CH4 emissions from intensively 

managed grasslands on peat soil with a high N turnover rate (Chapter 5). Also, 

withholding N fertilisation for three to nine years did not significantly affect CH4 

emissions from extensively managed grasslands on sandy soil with a low N turnover 

rate (Chapter 8). However, combination of data from Chapters 5, 7, and 8 (Fig. 9.5) 

suggests that there might be a significant long-term effect of N input on CH4 

emissions. This may, however, also have been partly caused by differences in soil 

moisture content and/or ground water level, since mean ground water level was 

much higher at the drained peat soils compared to the dry sandy soil. In conclusion, 

at the current rates of N input in the Netherlands, the overall net effect of N 

fertilisation on net CH4 emissions from grasslands is small or negligible. 

Grazing versus mowing 

Before this study, the effect of grazing versus mowing on CH4 emissions from 

grasslands was not well documented. Grazing versus mowing may affect CH4 

emissions as the annual supply of C and N to the soil is higher on grazed grassland 

than on mown grassland (Van den Pol-van Dasselaar & Lantinga, 1995). However, 

grazing during three years did not significantly affect net CH4 emissions compared to 
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mowing at intensively managed grasslands on peat soil with a high N turnover rate 

(Chapter 5). Also, at extensively managed grasslands on sandy soil with a low N 

turnover rate, grazing during more than 20 years did not significantly affect net CHU 

emissions compared to mowing (Chapter 8). Furthermore, at these extensively 

managed grasslands, the effect of stocking density was not significant. It has to be 

emphasised that CH4 production by cattle themselves is not included in the 

estimates. CH4 production from cattle faeces dropped in the field is, however, 

included. In conclusion, the overall net effect of grazing on net CH4 emissions from 

grasslands is negligible. 
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Fig. 9.5. Relationship between estimated mean annual N input (kg N ha"1 yr"1) and 

mean annual net CH4 emissions from drained peat soils and dry sandy soil (kg CH4 

ha"1 yr"1 ± SE) (data from Chapter 5 and 7, based on Fig. 8.3). 
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Options to mitigate CH4 emissions from grasslands 

Grassland management 

The major determining factor of CH4 emissions with respect to grassland 

management is ground water level. Ground water level can be managed via ditches, 

which are present at the majority of the grasslands in the Netherlands. To minimise 

CH4 emissions, mean ground water level should be kept below about 20 cm 

(Fig. 9.1). In grasslands with a mean ground water level close to the surface, a 

considerable decrease of CH4 emissions may be possible by drainage. However, the 

ground water level of these wet grasslands is often kept high to maintain a particular 

natural ecosystem. Also, drainage may affect emissions of other greenhouse gases. 

In developing mitigation policies, these effects should be taken into account. 

The possible impact of grassland management on CH4 emissions from 

agriculturally used grasslands is rather limited. The effects of N fertilisation, 

withholding N fertilisation, grazing versus mowing and stocking density on CH4 

emissions were negligible or small (Chapter 5, Chapter 8). Moreover, net CH4 

emissions from these grasslands were low. In conclusion, grassland management 

other than drainage is not an option to mitigate net CH4 emissions from grasslands. 

Land use change 

A few centuries ago, a large part of the Netherlands consisted of wetlands. Large 

areas of these wetlands have been drained and are utilised for agricultural purposes. 

This type of land use change will have decreased CH4 emissions considerably due to 

a lowering of the ground water level. 

At present, the most important type of land use change with respect to CH4 

emissions from grasslands is the conversion of intensively managed grasslands 

(which predominantly have a low atmospheric CH4 uptake of 0.1 to 0.3 kg CH4 ha"1 

yr"1, Chapter 5) to nature preserves. The effect of this type of land use change 

depends on the characteristics of the nature preserve. 

If grasslands are converted into 'dry' nature preserves with a low ground water 

level, the effect on CH4 emissions will be relatively small. Uptake of atmospheric CH4 

may eventually show a small increase (e.g. to about 1 kg CH4 ha"1 yr"1, Chapter 7). 

However, it has been reported that diminished capacity for CH4 consumption is 

typically persistent with slow recovery times (e.g. Hiitsch et al., 1994; King, 1997; 
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Nesbit & Breitenbeck, 1992; Mosier et al., 1996). 

The effect of conversion of intensively managed grasslands into 'wet' nature 

preserves with a high ground water level may be considerable. The government of 

the Netherlands intends to convert part of the intensively managed grasslands from 

agriculture into ecosystems with a high ground water level. Eventually, these 

grasslands will be comparable to the wet grasslands of Chapter 2 with an estimated 

mean annual net CH4 emission of 80-200 kg CH4 ha"1 yr"1. A small CH4 sink will thus 

be turned into a large CH4 source. 

Variability of CH4 emissions 

Temporal and spatial variability 

Large variability, both temporal and spatial, of net CH4 emissions from soils is a 

common phenomenon (e.g. Ambus & Christensen, 1995; Bartlett & Harriss, 1993; 

Bianchi et al., 1996; Waddington & Roulet, 1996; this thesis). Determinants of 

variability are related to the temporal and spatial scale at which these determinants 

dominate (Klinger et al., 1994) (Fig. 9.6). 

In situations of net CH4 production, most important determining factors of net 

CH4 emissions will be those that create conditions favourable for methanogenesis. 

Once these conditions have been established, factors like soil temperature and CH4 

transport will become important (e.g. Morrissey & Livingston, 1992). In situations of 

net CH4 consumption, an important determining factor will be soil moisture content 

(King, 1997). 

Due to the complexity of CH4 dynamics in soils, simulation models can be a 

useful tool for estimating CH4 emissions and studying the effect of environmental and 

management factors on these emissions. In coherence with this study, Segers 

(Wageningen Agricultural University, former Department of Theoretical Production 

Ecology) has developed process based models of CH4 production, consumption and 

transport in wetlands. In these models, CH4 emissions are explained from weather, 

soil and vegetation data via the underlying processes, thus improving insight in the 

temporal and spatial variability of CH4 emissions. However, predictive power of these 

models may be restricted, since quantitative knowledge about the gas transport 

system and the carbon supply by plants is scarce (Segers, 1998; Segers & Kengen, 

1998; Segers & Leffelaar, 1995; Segers & Leffelaar, 1996). 
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TEMPORAL: 

SECOND MINUTE HOUR DAY WEEK MONTH YEAR CENTURY 
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Fig. 9.6. Determinants of CH4 emissions in relation to their temporal and spatial 

scales. 
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Spatial dependence 

Spatial variability of soil factors often contains a spatial dependent component., i.e. 

the variability can be described as a function of spatial separation. If a factor is 

spatially dependent, then its value at unsampled locations may be estimated by the 

use of a technique called kriging (see Trangmar et al., 1985; Chapter 6). 

Before this study, little was known about spatial dependence of CH4 emissions. 

Priemé et al. (1996) found spatial dependence of net CH4 emissions from two forest 

soils to occur at distances smaller than about 10-12 metres. In this thesis, the range 

of spatial dependence of net CH4 emissions varied from 50 to more than 100 metres 

at intensively managed grasslands on peat soils (Chapter 6). This relatively large 

range of spatial dependence was possibly due to a relatively homogeneous 

distribution of determining soil variables. In contrast, at extensively managed 

grasslands on sandy soil spatial dependence of net CH4 emissions was not clearly 

present (Chapter 7). This indicates that net CH4 emissions from these grasslands 

exhibited a relatively heterogeneous pattern. 

Spatial dependence of emissions should be interpreted with care, since it was 

found to differ between sites, and also between succeeding days (Chapter 6). The 

existence of short-term temporal variability of spatial dependence of emissions 

implies that emissions can not realistically be estimated by the use of kriging. 

Quantification of CH4 emissions from grasslands in the Netherlands 

Thus far, CH4 emissions from grasslands in the Netherlands were not well-

documented (Van Amstel et al., 1993). To obtain realistic estimates of CH4 

emissions, measurements should cover at least one and preferably more years, 

since there may be large interannual variability (e.g. Mosier et al., 1996; Chapter 2). 

Monitoring of emissions over a long period of time is, however, not common practice, 

since it is very time consuming. 

CH4 emissions have been measured in a period of more than three years at 

grasslands in the Netherlands with a range of soil wetness and N input. Grasslands 

on wet peat soils with a mean ground water level ranging from 0.1 to 0.2 m below the 

surface and an annual N input of 30-50 kg N ha"1 yr"1 emitted 80-200 kg CH4 ha"1 yr'1. 

Ditches near these grasslands emitted 40-225 kg CH4 ha"1 yr"1 (Chapter 2). 

Intensively managed grasslands on drained peat soils with a mean ground water 
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level ranging from 0.2 to 0.4 m below the surface and an annual N input ranging from 

35 to 460 kg N ha"1 yr"1 consumed 0.1-0.3 kg atmospheric CH4 ha"1 yr"1 (Chapter 5). 

An extensively managed grassland on relatively dry sandy soil with a mean ground 

water level more than 3 m below the surface and an annual N input of 40 kg N ha"1 

yr"1 consumed on average 1.1 kg atmospheric CH4 ha"1 yr"1 (Chapter 7). Incidental 

measurements showed that intensively managed grasslands on drained peat soil in 

Sweden were net sinks of CH4 (average net CH4 emission: -0.04 mg CH4 m"2 d"1; 

range: -0.03 to -0.05) (Chapter 6). Extensively managed grasslands on sandy soils in 

the Netherlands were small net sources of CH4 (average net CH4 emission: 0.14 mg 

CH4 m'2 d"1; range -0.22 to 0.91) (Chapter 8). However, this was probably related to 

wet conditions during the measurement period. 

The fact that even intensively managed grasslands on peat soil with a relatively 

high ground water level and high N input (Chapter 5, Chapter 6) are on average net 

sinks of CH4 may suggest that all intensively managed grasslands are net sinks of 

CH4. Only grasslands with an annual mean ground water level close to the surface 

(<20 cm; Fig. 9.1) may be a source of CH4. 

The role of soils in the national CH4 budget 

Thus far, grasslands on mineral soils were not considered as a CH4 sink in national 

CH4 budgets (Van Amstel et al., 1993). By contrast, drained peat soils, which are 

mainly used as grasslands, were considered a CH4 source. Results presented in this 

thesis show that estimates of CH4 emissions in the Netherlands should be adjusted 

to put straight the role of grasslands in the national CH4 budget. 

Net CH4 uptake by grasslands in the Netherlands (excluding wetlands / 

undrained peatlands that occupy only 0.5% of the total surface area) is estimated at 

0.5 Gg CH4 yr"1 (Chapter 8). Wetlands/undrarned peatlands emit 80-200 kg CH4 ha"1 

yr"1 (Chapter 2). Clayey soils have not been studied. CH4 uptake by clayey soils 

might be smaller than CH4 uptake by sandy soils (Boeckx et al., 1997; Born et al., 

1990), but this was not taken into account in our estimates. Net CH4 uptake by 

arable land is usually much smaller than net CH4 uptake by grasslands (e.g. Ambus 

& Christensen, 1995; Glenn et al., 1993; Hütsch et al., 1994); therefore CH4 uptake 

by arable land in the Netherlands is considered negligible. Net CH4 uptake by forests 

is estimated at 2.0 Gg CH4 yr"1 (Van Amstel et al., 1993). 
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Van Amstel et al. (1993) estimated total national CH4 source strength at 1227 Gg 

CH4 yr"1. The contribution of soils was on average 70 Gg CH4 yr'1. Based on the 

updated CH4 emission estimates from soils (Table 9.1), total national CH4 source 

strength is estimated at 1165 Gg CH4 yr'1. 

Table 9.1. Update of CH4 emission estimates from soils in the Netherlands. 

Van Amstel et al. (1993) This thesis 
kgCH4ha"1yr"1 GgCH4yr"1 kg CH4 ha'1 yr'1 GgCH4yr"1 

Wet soils 
Drained grasslands 

Forest soils 

300 to 750 
35 to 750 

10 to 27 
32 to 89 

-2.0 

80 to 200 
D.1 to-1.1 

5 to 10 
-0.5 

-2.0 

Main findings of this study 

Results presented in this thesis contribute to understanding of national and global 

CH4 emissions. CH4 emissions from grasslands in the Netherlands with a range of 

soil wetness and N input have been quantified. Ground water level management of 

grasslands on wet peat soils with a ground water level ranging from 0 to 20 cm below 

the surface is a critical factor, since the impact of ground water level on CH4 

emissions from these grasslands may be considerable (Chapter 2). Variability of CH4 

emissions from grasslands on wet peat soils is mainly due to differences in ground 

water level, soil temperature, CH4 production capacity, vegetation type and plant 

biomass (Chapters 2 and 3). CH4 production capacities of individual soil fractions 

showed that recently died plant material is a major substrate for methanogens in wet 

peat soils (Chapter 4). 

Intensively managed grasslands on drained peat soils are small net sinks of 

CH4 (Chapter 5). Spatial dependence of greenhouse gas emissions may differ 

between sites, and also between succeeding days (Chapter 6). Variability of net CH4 

uptake by grasslands is mainly due to differences in ground water level, soil moisture 

content and soil temperature (Chapters 5 and 7). 

The overall net effect of grazing versus mowing on net CH4 emissions from 

grasslands is negligible (Chapter 8). At the current rates of N input in the 
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Netherlands, the overall net effect of N fertilisation on net CH4 emissions from 

grasslands is small or negligible (Chapter 8). Grassland management other than 

drainage is not a suitable tool for reducing net CH4 emissions (Chapter 9). 
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Summary 

Introduction 

Methane (CH4) is an important greenhouse gas. The concentration of greenhouse 

gases in the atmosphere has been increasing since pre-industrial times, mainly due 

to human activities. This increase gives concern, because it may cause global 

warming due to an enhanced greenhouse effect. 

In the soil, CH4 may be produced under anaerobic conditions, and consumed 

under aerobic conditions. Net CH4 emissions, i.e. the resultant of CH4 exchanges 

between soil and atmosphere, encompasses the processes CH4 production, CH4 

consumption, and CH4 transport. If CH4 production exceeds CH4 consumption, the 

soil is a source of CH4; if CH4 consumption exceeds CH4 production, the soil is a sink 

of CH4. The contribution of soils to the global CH4 balance is significant: 14-47% of 

the total source and 3-9% of the total sink (IPCC, 1995a). 

The major aims of this study were to provide insight into the major factors that 

contribute to net CH4 emissions from grasslands, and to provide quantitative data on 

net CH4 emissions from typical grasslands with a range of soil wetness and N input 

in the Netherlands. CH4 emissions from grasslands were measured with flux 

chambers at a number of sites in the period 1994-1997. Furthermore, several 

incubation experiments were carried out. Since large variability of net CH4 emissions 

is a common phenomenon, special attention was paid to temporal and spatial 

variability. 

Wet grasslands with low N input on peat soils 

The area of wet grasslands on peat soil in the Netherlands is small, but slowly 

increasing at the expense of drained, agriculturally used grasslands. Net CH4 

emissions were measured at wet grasslands on peat soil in the nature preserve 

"Nieuwkoopse Plassen", which is a former peat mining and agricultural area with 

narrow grassland and reed fields surrounded by ditches. Ground water level is kept 

near the surface via the water level of the ditches. Mean ground water level is 10-20 

cm below the surface. N input is 30-50 kg N ha"1 yr"1 via atmospheric deposition. 

Measurements were carried out at three sites, Drie Berken Zudde, Koole and 

Brampjesgat, during three years. The sites were considerable sources of CH4 with 
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average CH4 emissions of 79, 133 and 204 kg CH4 ha"1 yr"1, respectively. Ditches 

near the sites emitted 42-225 kg CH4 ha'1 yr"1. The time course of CH4 emissions for 

all experimental sites and years was fit with a multiple linear regression model with 

ground water level and soil temperature as independent variables. Lowering or 

raising the ground water level by 5 cm could decrease or increase CH4 emissions by 

30-50%. Therefore, ground water level management of these grasslands should be 

done with care (Chapter 2). Spatial variability of CH4 emissions was high. Most 

important determinants of spatial variability were CH4 production capacity and 

aboveground biomass of sedges (Carex spp.). Sedges and other plants may affect 

CH4 emissions by stimulating CH4 transport from anaerobic layers in the soil to the 

surface and by serving as substrate for methanogens (Chapter 3). 

In order to improve our understanding of CH4 emissions, wet peat soils were 

fractionated into different size and density fractions. Incubation experiments showed 

that the individual fractions were rather similar with respect to C mineralisation 

capacity and C/N ratio, but not with respect to CH4 production capacity. Significant 

CH4 production only occurred for fractions with a large particle size. Furthermore, 

CH4 production capacity strongly decreased with depth. This indicates that in these 

wet peat soils recently died plant material is a major substrate for methanogens 

(Chapter 4). 

Intensively managed grasslands with a range of N input on drained peat soils 

Peat soils are often considered to have a high CH4 emitting potential, because they 

are anoxic at shallow depth and have high organic matter contents. In the 

Netherlands, the majority of the peat soils is drained. Before this study, it was not 

known whether drained peat soils would be a source or a sink of CH4. Net CH4 

emissions from drained peat soils were measured at grasslands at the experimental 

farm Zegveld with mean ground water levels of 20-40 cm below the surface and an 

annual N input via fertilisation and atmospheric deposition ranging from 35-460 kg N 

ha"1 yr"1. Net CH4 emissions from these grasslands were low; they consumed 0.1 to 

0.3 kg CH4 ha"1 yr"1. Effect of mean ground water level, in the range of 20-40 cm 

below the surface, was significant, but small. There were no significant effects of 

grazing versus mowing and withholding N fertilisation for three years on net CH4 

emissions (Chapter 5). 

In order to assess the spatial variability and spatial dependence of greenhouse 

gas emissions (CH4, N2O, and CO2), and their underlying soil processes and 
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properties, a field campaign was carried out at grasslands on drained peat soil in 

Fallköping, Sweden. Emissions and potential factors controlling CH4 emissions were 

measured on two adjacent sites on two successive days for each site. Spatial 

variability was analysed using geostatistics. Both sites were small sinks of CH4. 

Spatial variability of emissions was high with coefficients of variation of 50 to 1400%. 

Emissions either showed a spatial trend or were spatially dependent. However, 

spatial dependence of emissions showed differences between sites and also 

between succeeding days. This implies that emissions can not realistically be 

estimated by the use of geostatistics (Chapter 6). 

Extensively managed grasslands with low N input on relatively dry soils 

To explore the maximum uptake of atmospheric CH4 by grasslands in the 

Netherlands, net CH4 emissions were measured at extensively managed heather 

grasslands on sandy soil in Wolfheze with a mean ground water level more than 3 m 

below the surface and an annual N input via atmospheric deposition of 40 kg N ha"1 

yr"1. These grasslands consumed 1.1 kg CH4 ha"1 yr"1. Temporal variability of net CH4 

emissions at Wolfheze was related to differences in soil temperature and soil 

moisture content. CH4 uptake was highest at high soil temperatures and intermediate 

soil moisture contents. Incubation experiments showed that at low soil moisture 

contents, CH4 consumption was completely inhibited, probably due to physiological 

water stress of methanotrophs. At high soil moisture contents, CH4 consumption was 

greatly reduced, probably due to the slow down of diffusive CH4 and O2 transport in 

the soil. Optimum soil moisture contents were in the same range as prevailing in the 

field (Chapter 7). 

Determining factors for CH4 emissions 

Important environmental factors determining CH4 emissions are soil organic matter, 

ground water level, soil moisture content, temperature, and vegetation 

characteristics. Ground water level exerts a primary control over CH4 emissions, 

since ground water level forms the transition zone between anaerobic (potential CH4 

producing) and aerobic (potential CH4 consuming) layers in the soil. Therefore, 

drainage of wet grasslands is an important management factor determining CH4 

emissions. At the current rates of N input via fertilisation and atmospheric deposition 

in the Netherlands, the overall net effect of N fertilisation on net CH4 emissions from 
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grasslands is small or negligible. Furthermore, the effects of grazing versus mowing 

and stocking density on net CH4 emissions are negligible (Chapter 8). In conclusion, 

grassland management, other than drainage, is not an option to mitigate net CH4 

emissions from grasslands in the Netherlands. 

Quantification of net CH4 emissions from grasslands in the Netherlands 

Most grasslands in the Netherlands are intensively managed with a total N input via 

fertilisation and atmospheric deposition in the range of 300-500 kg N ha'1 yr"1. Thus 

far, CH4 emissions from grasslands in the Netherlands were not well-documented. 

However, in this study, CH4 emissions from a number of grasslands with a range of 

soil wetness and N input have been quantified. Total net CH4 uptake by grasslands 

in the Netherlands (excluding wet grasslands) is estimated at 0.5 Gg CH4 yr'1. Wet 

soils, which occupy only 0.5% of the total surface area, emit 5-10 Gg CH4 yr"1. 

Estimates of CH4 emissions in the Netherlands should be adjusted to put straight the 

role of grasslands in the national CH4 budget. 
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Inleiding 

Methaan (CH4) is een belangrijk broeikasgas. De concentratie aan broeikasgassen in 

de atmosfeer is sinds de industrialisatie toegenomen. Deze toename geeft reden tot 

bezorgdheid, omdat ze kan leiden tot een stijging van de temperatuur op aarde als 

gevolg van het zogenaamde 'broeikaseffect'. 

Methaan kan in de bodem door micro-organismen onder anaërobe 

omstandigheden geproduceerd en onder aërobe omstandigheden geconsumeerd 

worden. De uitwisseling van methaan tussen bodem en atmosfeer wordt aangeduid 

met netto methaanemissie. Netto methaanemissie is het resultaat van 

methaanproduktie, methaanconsumptie en methaantransport in de bodem. Als de 

methaanproduktie groter is dan de methaanconsumptie, is de bodem een bron van 

methaan; als de produktie kleiner is dan de consumptie, is de bodem een sink van 

methaan. De bodem speelt een belangrijke rol in de methaanbalans: 14-47% van de 

totale bronnen en 3-9% van de totale sinks wordt ingenomen door bodems (IPCC, 

1995a). 

De hoofddoelen van deze studie waren het vergroten van de kennis over de 

factoren die netto methaanemissie uit grasland bepalen en het kwantificeren van de 

netto methaanemissie uit graslanden met verschillende vochttoestanden en 

stikstofaanvoer in Nederland. In de periode 1994-1997 zijn op diverse plaatsen 

methaanemissies gemeten met behulp van fluxkamers. Ook zijn verschillende 

incubatie-experimenten uitgevoerd. Omdat de variabiliteit van de netto 

methaanemissie in het algemeen erg groot is, is ruime aandacht besteed aan zowel 

temporele als ruimtelijke variabiliteit. 

Natte graslanden met een lage stikstofaanvoer op veengronden 

Het oppervlak aan natte graslanden op veengrond in Nederland is klein, maar neemt 

langzaam toe ten koste van ontwaterde, landbouwkundig gebruikte graslanden. In 

het natuurgebied "Nieuwkoopse Plassen" is de netto methaanemissie uit natte 

graslanden op veengrond bepaald. Dit natuurgebied was vroeger een 

veenontginnings- en landbouwgebied. In het gebied worden smalle stroken grasland 

en rietveld afgewisseld met sloten. Via het slootpeil wordt de grondwaterstand hoog 
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gehouden. De grondwaterstand ligt gemiddeld op 10-20 cm onder het 

maaioppervlak. De stikstofaanvoer bedraagt 30-50 kg N ha"1 jr"1 via atmosferische 

stikstofdepositie. Er is gedurende drie jaar op drie locaties gemeten: Drie Berken 

Zudde, Koole en Brampjesgat. Deze graslanden waren aanzienlijke bronnen van 

methaan en stootten gemiddeld 79, 133 en 204 kg CH4 ha"1 jr"1 uit. Sloten rondom de 

graslanden stootten 42-225 kg CH4 ha"1 jr"1 uit. Het verloop van de methaanemissie 

in de tijd kon voor alle velden en jaren beschreven worden met behulp van een 

meervoudig lineair regressiemodel met als verklarende variabelen grondwaterstand 

en bodemtemperatuur. Volgens het model kan een daling of stijging van de 

grondwaterstand met 5 cm een afname of toename van de netto methaanemissie 

met 30-50% tot gevolg hebben. Dit betekent dat bij het beheer van de 

grondwaterstand van deze graslanden voorzichtigheid geboden is (hoofdstuk 2). De 

ruimtelijke variabiliteit van de netto methaanemissie was groot en kon het best 

verklaard worden met behulp van verschillen in methaanproduktiecapaciteit en 

bovengrondse biomassa van zeggen (Carex spp.). Zeggen en andere planten 

kunnen de methaanemissie op tweeërlei wijze beïnvloeden, namelijk door methaan 

van de anaërobe lagen in de bodem naar het oppervlak te transporteren en door te 

fungeren als substraat voor methaanproducerende micro-organismen (hoofdstuk 3). 

Om het inzicht in methaanemissie te vergroten, is de bodem van natte 

veengronden in verschillende fracties gescheiden op basis van verschillen in 

deeltjesgrootte en -dichtheid. Incubatie-experimenten toonden aan dat de 

afzonderlijke fracties zowel een vergelijkbare koolstofmineralisatiecapaciteit als C/N 

verhouding hadden. Er traden echter wel verschillen in methaanproduktiecapaciteit 

tussen de fracties op. Aanzienlijke methaanproduktie trad alleen op bij fracties met 

grote bodemdeeltjes. Verder nam de methaanproduktiecapaciteit sterk af met de 

diepte. Dit wijst erop dat in deze natte veengronden recent gestorven 

plantenmateriaal een belangrijk substraat voor methaanproducerende micro

organismen is (hoofdstuk 4). 

Intensief beheerde graslanden met een lage en een hoge stikstofaanvoer op 

ontwaterde veengronden 

Veengronden zijn in staat om veel methaan te produceren, omdat zij in het algemeen 

op geringe diepte anaëroob zijn en een hoog organische stofgehalte bezitten. In 

Nederland is het merendeel van de veengronden echter ontwaterd. Aan het begin 

van deze studie was het niet duidelijk of ontwaterde veengronden een bron of een 
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sink van methaan zouden zijn. Op ontwaterde veengraslanden van de proefboerderij 

Zegveld met een gemiddelde grondwaterstand van 20-40 cm onder het 

maaioppervlak en een jaarlijkse stikstofaanvoer via bemesting en atmosferische 

stikstof depositie van 35-460 kg N ha"1 jr'1 is de netto methaanemissie gemeten. Deze 

graslanden waren een kleine sink van methaan; ze consumeerden 0,1 tot 0,3 kg CH4 

ha"1 jr"1. De invloed van de grondwaterstand (bij gemiddelde grondwaterstanden van 

20 tot 40 cm onder het maaioppervlak) was significant, maar gering. Beweiding 

versus maaien en het achterwege laten van stikstofbemesting gedurende drie jaar 

had geen significant effect op de netto methaanemissie (hoofdstuk 5). 

Op ontwaterde veengronden in Fallköping, Zweden, is een veldcampagne 

uitgevoerd om de ruimtelijke variabiliteit en de ruimtelijke afhankelijkheid van zowel 

broeikasgasemissies (methaan, lachgas en kooldioxide), als hun onderliggende 

bodemprocessen te bepalen. Metingen zijn verricht op twee graslanden op twee 

aaneengesloten dagen per grasland. De ruimtelijke variabiliteit is geanalyseerd met 

behulp van geostatistiek. Beide graslanden bleken kleine sinks van methaan te zijn. 

De ruimtelijke variabiliteit van de emissies was groot met variatiecoëfficiënten van 

50 tot 1400%. De emissies vertoonden ofwel een ruimtelijke trend of ze waren 

ruimtelijk afhankelijk. Deze ruimtelijke afhankelijkheid was echter verschillend voor 

de verschillende graslanden en op de verschillende dagen. Dit betekent dat het niet 

mogelijk is om met behulp van geostatistiek emissies realistisch te schatten 

(hoofdstuk 6). 

Extensief beheerde graslanden met een lage stikstofaanvoer op relatief droge 

zandgrond 

Om de maximale methaanopname door bodems in Nederland te bepalen, zijn 

metingen verricht op extensief beheerde heidegraslanden op zandgrond in Wolfheze 

met een grondwaterstand dieper dan drie meter onder het maaioppervlak en een 

jaarlijkse stikstofaanvoer via depositie van 40 kg N ha'1 jr"1. Deze graslanden 

consumeerden 1,1 kg CH4 ha"1 jr"1. De temporele variabiliteit van methaanopname in 

Wolfheze was gerelateerd aan verschillen in temperatuur en vochtgehalte van de 

bodem. De methaanopname was het hoogst bij hoge bodemtemperaturen en 

gemiddelde vochtgehaltes. Incubatie-experimenten lieten zien dat bij lage 

vochtgehaltes geen methaanconsumptie optrad, waarschijnlijk door fysiologische 

waterstress van de methaanconsumerende micro-organismen. Bij hoge 

vochtgehaltes was de methaanconsumptie aanzienlijk verminderd, waarschijnlijk 
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doordat diffusie van methaan en zuurstof in de bodem werd bemoeilijkt. De voor 

consumptie optimale vochtgehaltes waren gelijk aan de meest voorkomende 

vochtgehaltes in het veld (hoofdstuk 7). 

Factoren die de netto methaanemissie uit grasland bepalen 

Belangrijke bodem- en klimaatfactoren, van invloed op de netto methaanemissie, zijn 

het organische stofgehalte van de bodem, de grondwaterstand, het vochtgehalte van 

de bodem, de temperatuur en de vegetatie. De grondwaterstand oefent een primaire 

invloed uit op methaanemissie, omdat de grondwaterstand de grens aangeeft tussen 

anaërobe (potentieel methaanproducerende) en aërobe (potentieel 

methaanconsumerende) lagen in de bodem. Dit betekent dat drainage van natte 

graslanden grote invloed heeft op methaanemissies. Het netto effect van 

stikstofbemesting is klein of verwaarloosbaar bij de huidige stikstofaanvoer via 

bemesting en atmosferische stikstofdepositie in Nederland. Verder zijn de effecten 

van beweiding versus maaien en veedichtheid verwaarloosbaar (hoofdstuk 8). Dit 

betekent dat graslandbeheer, met uitzondering van drainage, geen mogelijkheid 

biedt om de netto methaanemissie uit grasland in Nederland te verminderen. 

Kwantificering van de netto methaanemissie uit grasland in Nederland 

De meeste graslanden in Nederland worden intensief beheerd en hebben een totale 

stikstofaanvoer van 300-500 kg N ha"1 jr"1 via bemesting en atmosferische 

stikstofdepositie. Voordat deze studie werd uitgevoerd, was er niet veel bekend over 

de netto methaanemissie uit graslanden in Nederland. Het resultaat van deze studie 

is een kwantificering van de methaanemissies uit verschillende graslanden met 

verschillende vochttoestanden en stikstofaanvoer. De totale netto methaanopname 

door graslanden in Nederland (met uitzondering van natte graslanden) is geschat op 

0,5 kton CH4 jr"1. Natte bodems, die slechts 0,5% van het totale oppervlak innemen, 

stoten naar schatting 5-10 kton CH4 jr"1 uit. De huidige schattingen van 

methaanemissie in Nederland zullen aangepast moeten worden om de rol van 

graslanden in de nationale methaanbalans recht te doen. 
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