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Stellingen 

1. Gewoonlijk leiden statistici vanuit een model en een optimaliteitscriterium de optimale techniek 
af. In technieken die niet op die manier tot stand gekomen zijn, wordt het inzicht vergroot door 
te zoeken naar een bijbehorend optimaal model. 

Dit proefschrift. 

2. Een benadering van een statistische techniek is soms redelijker dan de statistische techniek zelf. 
Besag, J. (1986). On the statistical analysis of dirty pictures (with discussion). J. R. Statist. 
Soc. B 48: 259-302. 
Dit proefschrift. 

3. Hoofdcomponentenanalyse en correspondentie-analyse verschillen in metriek. Achter dit ver-
schil gaat een verschil in model schuil. 

Dit proefschrift. 

4. Partiele kleinste-kwadratenregressie en Procrustes-analyse benadrukken respectievelijk de va-
riabelen en de objecten in een singuliere-waardenontbinding van de matrix van covarianties 
tussen de variabelen in de ene configuratie van objecten en die in de andere. 

Aastveit, A. H. & Martens, H. (1986). ANOVA interactions interpreted by Partial Least 
Squares regression. Biometrics 42: 829-844. 
Sibson, R. (1978). Studies in the robustness of multidimensional scaling: procrustes sta­
tistics. J. R. Statist. Soc. B 40: 234-238. 

5. Expertsystemen kunnen een kader bieden voor groei van kennis over levensgemeenschappen. 

6. Net als variantie is de diversiteit van een levensgemeenschap een eigenschap van de tweede orde 
en dus moeilijker te schatten dan dichtheden van aparte soorten. 

7. Het promotiereglement van de Landbouwuniversiteit sluit met de eis dat stellingen vatbaar 
moeten zijn voor bestrijding wiskundige stellingen uit. 

8. Modelbouwers zijn optimisten, statistici pessimisten. 

9. „Was sind das fur Zeiten, wo 
Ein gesprach uber Baume fast ein Verbrechen ist 
Weil es ein Schweigen uber so viele Untaten einschliesst." 

Brecht's dichtregels zijn ook van toepassing op wetenschappelijke kontakten met Zuidafrika-
nen. 

Brecht, B. (1973). An die Nachgeborenen (1938). In: Svendborger Gedichte, Suhrkamp. 

10. Sport is betaalde arbeid of het afreageren daarvan. 

Cajo J. F. ter Braak 
„Unimodal models to relate species to environment" 
Wageningen, 16 november 1987 
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Samenvatting 

Bij de theoretische onderbouwing van natuurbeheer en milieu-effect-rapportage moeten de gevolgen 
worden getaxeerd van milieu-ingrepen op levensgemeenschappen. Kennis over de relatie tussen milieuva-
riabelen en het voorkomen van soorten is daarbij onontbeerlijk. Ecologen proberen die relaties te achter-
halen door op verschillende monsterplekken soorten te inventariseren (op aan/ afwezigheid of abundantie) 
en tevens huns inziens relevante milieuvariabelen te meten. Het onderzoek, dat tot dit proefschrift heeft 
geleid, richtte zich op het ontrafelen van de vereiste veronderstellingen van statistische methoden, die vaak 
door ecologen worden toegepast en op het ontwikkelen van een nieuwe techniek. 

Vanuit klassiek statistisch oogpunt zijn soortgegevens moeilijk te verwerken: 
- er zijn veel soorten bij betrokken (10-500); 
- heel wat soorten komen maar op weinig plekken voor, dus de gegevens zitten vol nullen; 
- verbanden tussen soorten en milieuvariabelen zijn vaak niet rechtlijnig, maar eentoppig: een plant 

bijvoorbeeld groeit bij voorkeur onder een voor die soort optimale vochtconditie en wordt zowel op 
drogere als op nattere monsterplekken minder aangetroffen. Een wiskundig model voor een eentoppig 
verband is het Gaussische responsiemodel. 

Klassieke methoden als lineaire regressie, hoofdcomponentenanalyse en canonische correlatie-analyse 
kunnen niet zinnig worden gebruikt, omdat ze van rechtlijnige verbanden uitgaan. Een van de methoden, 
waar ecologen wel mee werken, is correspondentie-analyse. Het inzicht in het achterliggende responsie­
model hiervan liet tot voor kort te wensen over. Via correspondentie-analyse wordt een ordening in soorten 
en monsterplekken aangebracht (ordinatie) om de structuur in de gegevens te laten zien. De ordening wordt 
vervolgens aan de milieuvariabelen gekoppeld. Het is een indirecte methode om relaties op te sporen, ofwel 
een methode voor indirecte gradienten-analyse. 

Correspondentie-analyse werd omstreeks 1935 ontwikkeld, maar staat bij ecologen pas in de belang-
stelling sinds 1973. Toen leidde M. O. Hill de techniek opnieuw af als het herhaald toepassen van gewogen 
middelen - een methode waar ecologen al sinds 1930 mee vertrouwd zijn. Gewogen middelen heeft het 
voordeel van de eenvoud bij toepassing op ecologische gegevens. Deze techniek kan voor twee verschillende 
doelstellingen worden gebruikt. Ten eerste kan het optimum van een soort voor een milieuvariabele ermee 
geschat worden. Ten tweede kan bij bekende optima de waarde van een milieuvariabele op een monsterplek 
worden geschat (calibratie) aan de hand van de soortensamenstelling (dit is ook de methode die Ellenberg 
aanbeveelt voor gebruik van zijn milieu-indicatiegetallen). 

In hoofdstuk 2 wordt het schatten van optima met gewogen middelen vergeleken met de resultaten van 
niet-lineaire regressie op basis van het Gaussische responsiemodel. Onder bepaalde voorwaarden blijken 
deze twee methoden precies overeen te komen. In andere gevallen schat men door gewogen middelen het 
optimum onzuiver en verdient niet-lineaire regressie de voorkeur. Bovendien kunnen met niet-lineaire 
regressie responsiemodellen met meer dan een milieuvariabele worden aangepast. In hoofdstuk 3 wordt 
het schatten van de waarde van een milieuvariabele via gewogen middelen afgezet tegen calibratie op basis 
van het Gaussische responsiemodel. Ook hier blijken de technieken soms equivalent te zijn. Hoofdstuk 
4 gaat in op correspondentie-analyse. Er wordt aangetoond, dat correspondentie-analyse onder bepaalde 
voorwaarden een benadering geeft van ordinatie op basis van het Gaussische responsiemodel, wat qua 
rekentechniek veel ingewikkelder is. 

Indirecte methoden voor het opsporen van relaties hebben een belangrijk nadeel. Een aantal milieuva­
riabelen kan de soortensamenstelling zo sterk beiinvloeden, dat het effect van andere interessante milieu­
variabelen niet meer te achterhalen is. Alleen directe methoden als niet-lineaire regressie ondervangen dit 
probleem, maar niet-lineaire regressie met veel soorten en milieuvariabelen is zeer bewerkelijk. In hoofd­
stuk 5 wordt een veel eenvoudiger directe methode voorgesteld, canonische correspondentie-analyse. In 
hoofdstuk 6 blijkt canonische correspondentie-analyse een multivariate uitbreiding van gewogen middelen 
te zijn. De resultaten kunnen grafisch weergegeven worden. In hoofdstuk 7 wordt een uitbreiding met 
covariabelen besproken, wat leidt tot partiele canonische correspondentie-analyse. Er wordt tevens op 
gewezen dat Gaussische modellen en canonische correspondentie-analyse kunnen worden toegepast op 
afhankelijkheidstabellen. 

Hoofdstuk 8 beschrijft onderzoek om ecologische amplitudes van planten ten opzichte van de vocht-
schaal van Ellenberg te bepalen op basis van alleen soortgegevens. Hoe consequent de vochtindicatie-
getallen zijn is ook onderzocht. Hoofdstuk 9 tenslotte geeft een overzicht van gradienten-analyse. Er is 
een computerprogramma ontwikkeld, CANOCO, waarmee het merendeel van de behandelde technieken 
kan worden uitgevoerd. 
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Voorwoord 

Dit p roe f sch r i f t i s voortgekomen u i t mijn werkzaamheden a l s consulterend 
s t a t i s t i c u s voor het R i j k s i n s t i t u u t voor Natuurbeheer (RIN). Herman van Dam 
en Paul Opdam waren daar de e e r s t en d ie mij advies vroegen over o r d i n a t i e en 
c l u s t e r - a n a l y s e . Via het WAFLO^project en de SWNBL-studies brachten Rien 
Reijnen, Jaap Wiertz, Niek Gremraen, Geert van Wirdura en Douwe van Dam me in 
contact met m i l i e u - i n d i c a t i e - g e t a l l e n van hogere p l an ten . Hun vragen en op-
merkingen, en ook d ie van Hans van Biezen, hebben me bi jzonder g e lnsp i r ee rd . 
Later vormde ook het EKOOr-project van P i e t Verdonschot een s t imulans . De 
d i r e c t i e s van het RIN, het voormalige IWIS-TNO en het ITI^TNO ben ik zeer 
e r k en t e l i j k voor de ruimte en v r i j h e i d d ie ik heb gekregen om d i t onderzoek 
vorm t e geven. Ik wil h iervoor met name danken de heren J.C.A. Zaat (IWIS-
TNO) en i r . A.A.M. Jansen (Groep Landbouwwiskunde) en d r . A.J. Wiggers, d r . 
R.A. P r i n s , d r . A.B.J. Sepers en d r . C.H. Gast ( a l i en van het RIN). 

Tijdens een confe ren t ie over s t a t i s t i s c h e ecologie in 1978 t e Parma kwam 
ik in contac t met Rob Hengeveld en Bas Kooijman. Mede van hen heb ik geleerd 
hoe be langr i jk unimodale modellen z i j n voor de eco logie en hoe moe i l i jk o r d i ­
n a t i e dan i s . T i jdens mijn s t ud i e j a a r (1979/1980) in Newcastle upon Tyne 
l ee rde ik Colin P ren t i ce kennen. Hij werd mijn goeroe zonder wie ik d i t on­
derzoek n i e t t o t een goed einde had kunnen brengen. Mijn bezoek in 1980 aan 
Mark H i l l in Bangor heef t g ro te invloed gehad. I+c was toen, mede door het 
contact met p rofessor Corsten, zeer gecharmeerd van de e l egan t i e van de 
hoofdcomponenten-analyse-biplot . Mark sprak z i j n mispr i jzen u i t over de t o e -
passing h iervan in de e co log ie , maar kon mij n i e t d u ide l i j k maken wat het 
model was achter z i j n "detrended correspondence a n a l y s i s " . In 1981, t e rug in 
Nederland, nam ik deel aan de PAO^cursus "Niet-^l ineaire mu l t i v a r i a t e analyse" 
t e Leiden waarbij ik kennis maakte met het werk van Albert G i f i . Hoewel 
" n i e t - l i n e a i r " v ee l a l "monotoon" betekende, heb ik veel aan de cursus gehad. 
Het werk van Willem Heiser daar in over ontvouwing ging wel u i t van unimodale 
modellen. Pas l a t e r heb ik ingezien hoe nauw mijn eigen werk a an s l u i t b i j de 
hoofdstukken 6 en 8 van z i j n p r o e f s ch r i f t . Willem merkte ook de g ro te over-
eenkomst op tussen canonische correspondent ie^analyse en Abby I s r a e l s ' redun-
dan t ie -ana lyse voor nominale va r i abe len . Willem en Abby, h a r t e l i j k dank voor 
de vele z innige d i s cu s s i e s ! 

Een bi jzonder s t imulerende invloed hebben ook Onno van Tongeren, Rob 
Jongman en Caspar Looman gehad. Bedankt voor de goede samenwerking t i j d ens en 
na de PAO-cursussen "Numerieke methoden voor de verwerking van ecologische 
gegevens". 

Ik dank ook mijn c o l l e g a ' s op he t Staringgebouw voor de p r e t t i g e contac-
t en . Zonder de s e c r e t a r i S l e ondersteuning door Mary Mij l ing en Joke van de 
Peppel en de t echnische ondersteuning door Martha de Vries zou d i t onderzoek 
a l l e en maar b i j een idee gebleven z i j n . De mensen van de t ekenafde l ing en de 
fo toafde l ing van het ICW wil ik h a r t e l i j k danken voor het t eken- en fotowerk 
dat ze tussen de bedri jven door voor me hebben gedaan. De b ib l io theek en het 
rekencentrum van het Staringgebouw verleenden u i t s tekende s e rv i c e ! 

De afbeelding op het voorkaft van d i t p r oe f s ch r i f t i s gemaakt door Eiko 
Kondo met de Sumi-e s ch i lde r t echn iek en d ie van het a ch te rkaf t door Frank 
Arnoldussen. Hiervoor mijn h a r t e l i j k e dank. 

Een p roe f sch r i f t i s pas een p roe f sch r i f t a l s het onderworpen i s aan het 
k r i t i s c h e oog van een promotor. Professor Corsten wil ik bi jzonder bedanken 
voor a l l e aandacht d ie h i j aan d i t p roe f sch r i f t heeft bes teed . 
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Chapter 1. GENERAL INTRODUCTION 

In t roduct ion 

In the l a s t decades, many people have become aware of the human p o t en t i a l t o 
cause environmental change both on a l oca l s c a l e ( e . g . , a temperature 
i nc rease in a r i ve r by a power-plant) and on a g lobal s ca l e ( e . g . , a c id r a i n , 
COp increase by burning f o s s i l f u e l s ) . To a s ses s the impact of environmental 
change on b io log ica l communities, one needs t o know the r e l a t i o n s between 
environmental v a r i ab l e s and the occurrence of s p ec i e s . Such knowledge i s 
i nd ispensable a l so for na ture management. 

Eco log i s t s attempt t o acqu i re knowledge about species-environment 
r e l a t i o n s from data on b io log ica l communities and t h e i r environment. 
Typ ica l ly , s evera l s i t e s a r e s e l ec t ed and at each s i t e the occurrence or 
abundance of each species of a taxonomic group i s recorded and environmental 
v a r i ab l e s t h a t e co log i s t s be l i eve t o be important , a r e measured. So the data 
c ons i s t of two s e t s : data on the occurrence or abundance of severa l spec ies 
a t s i t e s and da ta on s evera l environmental v a r i a b l e s measured a t t h e same 
s i t e s . A " s i t e " i s the bas ic sampling un i t separa ted i n space or t ime from 
o ther s i t e s , e . g . a quadrat , a woodlot or a l i g h t t r a p . The design of 
eco logica l f i e l d s t ud i e s i s d iscussed by Green- (1979) and Jager and Looman 
(1987). The design of impact s t ud i e s in the s t r i c t sense i s reviewed by 
Stewart-Oaten e t a l (1986). 

This t h e s i s dea ls with methods for the s t a t i s t i c a l a na lys i s of 
eco logica l da ta on spec ies and environmental v a r i a b l e s . Such data have 
severa l f ea tu res t ha t make them spec ia l in a s t a t i s t i c a l sense: 
1 . the number of s pec ies i s l a rge (10 ^ 500), 
2. the da ta a r e e i t h e r b inary (presence/absence of a spec ies a t a s i t e ) 

o r , i f they are q u a n t i t a t i v e , they conta in many zero va lues fo r s i t e s 
at which a spec ies i s absen t . Measures of abundance, l i k e dens i ty of 
animals or r e l a t i v e cover of p l a n t s , a re h ighly v a r i ab l e and always show 
a skew d i s t r i b u t i o n . 

3 . Rela t ionships between species and quan t i t a t i v e environmental v a r i ab l e s 
a re genera l ly non l inear . Species abundance or p r obab i l i t y of occurrence 
i s of ten a unimodal function of the environmental v a r i a b l e s . 

The importance of unimodal r e l a t i on sh i p s between.species and environment 
has been r e a l i z ed s ince the beginning of t h i s c en tury . For example, 
She l fo rd ' s law of t o l e rance (1919: in Odum, 1971) s t a t e s t h a t a s pec ies not 
only r equ i r e s a c e r t a i n minimum amount of a r esource (as in L i eb i g ' s law) but 
a l so t h a t spec ies do not t o l e r a t e more than a c e r t a i n maximum amount of t he 
r e sou rce . Hesse (1924: in Thienemann, 1950) s t a t ed a more general law: each 
spec ies t h r i ve s best a t a p a r t i c u l a r optimum value of an environmental 
v a r i ab l e and cannot survive when the value i s e i t h e r too low or t oo h igh . In 
t he i n t roduc t ion t o a s tudy of t he r e l a t i o n s h i p between some Orthoptera 
species and mois tu re , Gause (1930: p . 307) s t a t e d t ha t " the law of Gauss i s 
the bas i s of eco logica l cu rves" , but a l so t h a t "we must not fo rge t t h a t 
f a c t o r s e x i s t (such as compet i t ion, for i n s t ance ) which produce changes i n 
d i f f e r en t s e c t i ons of the curve of d i s t r i b u t i on (Du R ie tz , ' 2 1 ) . " This 
warning s t i l l holds (Austin, 1980). In l a t e r work, Gause became more 
i n t e r e s t e d in competit ion and developed h i s p r i n c i p l e of competi t ive 
exclusion (Gause, 1931*). 

Whittaker (1956, 1967) a l s o s t r e s s ed t ha t spec ies genera l ly show 
unimodal r e l a t i o n s h i p s with environmental v a r i a b l e s . Gauch and Whittaker 



(1972) popularized the Gaussian curve as an attractively simple model for 
unimodal relationships. The formula of the Gaussian curve (Fig. 1) is 

Ey< \ <*r"k> , 't£ (D 

with y l k the abundance of species k at s i t e 1 ( 1 = 1 n; k = 1, . . . . m) 
and Eyik i s the expected abundance, 

Xĵ  the value of environmental variable x at s i t e i , 
ck the maximum of the curve for species k, 
uk the optimum of species k, i . e . the value of x for which the maximum 

i s at tained, 
t k the tolerance of species, which i s a measure of curve breadth or 

ecological amplitude. 

environmental variable (x) 

Fig. 1 The Gaussian response curve for the abundance value (y) of a species 
against an environmental variable (x). (u = optimum or mode; t = 
tolerance; c = maximum.) 

Gauch and Chase (1974) developed an algorithm to estimate the species 
parameters (c k , uk , t k ) by nonlinear least-squares regression. By doing so, 
they made explici t that the Gaussian curve of Eq. (1) represents a response 
function, not a probability distr ibution. The species i s considered to 
respond to the environmental variable: in the terminology of regression, the 
abundance of a species i s the response variable and the environmental 
variable i s the explanatory variable. An example of "Gaussian regression" i s 
given by Westman (1980). 

I t should be noted chat a unimodal curve may appear monotonic if only a 
limited range of the environmental variable is sampled. In such cases, the 
estimates of the parameters of Eq. (1) are ill-determined; in par t icular , the 
optimum cannot be estimated well, and a monotonic s t a t i s t i c a l model (e .g. 
f i t t ing a s traight l ine) i s more appropriate. Unimodal relationships become 
vis ible when a sufficient range of the environmental variable(s) is 
considered. However, if the data are collected over a sufficient range of 
environments for species to show unimodal (or more complex) relationships 
with environmental variables, i t i s clearly inappropriate to analyse these 
relationships by standard s t a t i s t i c a l methods that assume l inear 
relationships such as multiple linear regression (without squared terms in 



the environmental variables) (Montgomery and Peck, 1982), principal 
components analysis (Jolliffe, 1986), factor analysis (Lawley and Maxwell, 
1971), redundancy analysis (van den Wollenberg, 1977), canonical correlation 
analysis (Gittins, 1985) and LISREL models (Joreskog and Sorbom, 1981). With 
multiple regression, unimodal models can be fitted by including squared terms 
in the environmental variables in the regression equation (e.g. Alderdice, 
1972; Forsythe and Loucks, 1972), but multiple regression is unattractive in 
this context because the response variable (the abundance of a species) often 
has a skew distribution which cannot be transformed to symmetry because of 
the many zero values. 

Ecologists have therefore used and adapted non-standard techniques to 
analyse their data (see e.g. Greig^-Smith, 1983). Most conspicuously, 
ordination and cluster analysis have become very popular as reflected in the 
recent text books by Green (1979), Gauch (1982), Greig^Smith (1983), Legendre 
and Legendre (1983), Pielou (1981), Kershaw and Looney (1985), Digby and 
Kempton (1987) and Jongman et al (1987). These techniques are commonly used 
to reduce the multi- species data to a few ordination axes or a few 
relatively homogenous clusters. The ordination axes or clusters are then 
interpreted in the light of whatever is known about the species and the 
environment. This interpretation arises in an informal way, if explicit 
environmental data are lacking, or in a formal statistical way, if 
environmental data were collected. If many environmental variables were 
measured, ordination or cluster analysis are sometimes applied to the 
environmental data as well and the results are compared with the ordination 
or cluster analysis of the species data (see e.g. Wiens and Rotenberry, 1981 ; 
Bates and Brown, 1981; Holder-Franklin and Wuest, 1983; Earle et al, 1986). 
In this way the whole analysis becomes rather complicated. Species are 
related to environment in an indirect manner, hence Whittaker's (1967) term 
"indirect gradient analysis". Whittaker contrasted this with direct gradient 
analysis, which is similar to what statisticians call regression - i.e., the 
abundance of each species is described in relation to environmental 
variables. 

Among the possible ordination techniques, ecologists most often use 
either principal components analysis, with various forms of prior 
transformation of the species data (NoyMeir et al, 1975), or reciprocal 
averaging (alias correspondence analysis). Multidimensional scaling has also 
received attention, mainly in comparative studies of ordination techniques. 
Principal components analysis was the earlier technique to be used in 
ecology, with an application by Goodall (1954) but since Hill (1973) 
introduced reciprocal averaging to ecologists, reciprocal averaging has 
gained markedly in popularity over principal components analysis. Hill and 
Gauch (1980) later introduced detrended correspondence analysis as an 
improved form of reciprocal averaging, and this method has in recent years 
become possibly the most popular technique of all. This may be so partly 
because an efficient computer program (DECORANA) became available (Hill, 
1979), but also because the new technique proved exceptionally effective for 
simulated data generated with the Gaussian model (Hill and Gauch, 1980). 

In their 1980 paper, Hill and Gauch based the improvements made in 
detrended correspondence analysis on a "species packing model", that is a 
model in which the species have Gaussian curves which equispaced optima, 
equal maxima and equal tolerances (Fig. 2 ) . But the rationale for this model 
is difficult to follow -^ partly because mathematics is avoided -<•> and the 
Gaussian model appears to come out of thin air. Neither the 1980 paper, nor 
Hill's other papers (Hill, 1973, 1974), explain why correspondence analysis 
is suited for the analysis of data that follow the Gaussian model. The same 
is true of other rationales for correspondence analysis, most of which 



Fig. 2 Species packing model: Gaussian logi t curves of the probability (p) 
that a species occurs at a s i t e , against environmental variable x. 
The curves shown have equispaced optima, equal tolerances and equal 
maximum probabilit ies of occurrence (pmax 
x at a particular s i t e . 

= 0 . 5 ) . i s the value of 

concern categorical data (Nishisato, 1980; Gifi, 1981; Greenacre, 1984; 
Tenenhaus and Young, 1985). This thesis resulted from an attempt to 
understand the properties of correspondence analysis in terms of a unimodal 
model since th is would provide a rat ionale for ecologists ' use of 
correspondence analysis in indirect gradient analysis. I then began to 
explore methods that r e la te species directly to environment - methods l ike 
l inear regression or canonical correlation analysis, but then in a form 
appropriate for the analysis of unimodal relat ionships. 

Structure of the thesis 

2. Calibration 

Four main types of s t a t i s t i c a l problems are dealt with in th is thes is . Each 
type i s specified for the Gaussian curve of Eq. (1) , as follows (Table 1): 
1. Regression n where parameters of a species are estimated from data of the 

corresponding species and of the environmental variable; so 
for species k, c k , uk , t k are estimated from ( y ^ ) and (xĵ ) 
[ i = 1, . . . . n ] . 
where the value of an environmental variable at a s i t e i s 
estimated from data of species and parameters of species; so 
for s i t e i , x, i s estimated from (y^k) and (c k , uk , t k ) 
[k = 1, . . . , m]. Calibration i s here a type of multi->species 
bio-assay. An example i s the calibration of pH to 
reconstruct past changes in pH in lakes from fossi l diatoms 
found in successive s t r a t a of the bottom sediment 
(Battarbee, 1981). [The way in which the term calibration i s 
used in th is thesis i s somewhat narrow; more usually, the 
estimation of the species parameters from a t raining set i s 
included.] 

3. Ordination n where the parameters of species and the values of s i tes are 
estimated from data of the species; so, for a l l s i t es and 
species, x, 
. . . . n; k = 1 . 

uk and t k are estimated from (y<k) [ i = 1, 



4. Constrained ordination ^ in which the values of the s i t es are not free 
parameters as in ordination, but are constrained to be a 
l inear combination of environmental variables. Here, the 
parameters of species and the coefficients of the l inear 
combination are estimated from the data of the species and 
the environmental variables. 

Ecologists have developed much simpler methods than nonlinear regression and 
cal ibrat ion. For both problems they invented heuris t ical ly the method of 
weighted averaging. I t i s shown in th is thesis tha t , under simplifying 
circumstances, the method of weighted averaging gives efficient estimates of 
the optimum (uk) of a Gaussian curve, in the regression context (Chapter 2), 
and of xi in the calibration context (Chapter 3) . The l a t e r chapters build 
further on these r e su l t s . By applying the method of weighted averaging both 
ways and in an i t e ra t ive fashion, Hill (1973) derived "reciprocal averaging", 
a l ias correspondence analysis. When Hill invented reciprocal averaging, 
correspondence analysis was already in existence, but was seldomly applied to 
ecological data. In chapter H, correspondence analysis i s shown to give an 
approximate solution to ordination on the basis of the Gaussian model. In the 
same way, canonical correspondence analysis i s derived as an approximate 
solution to constrained ordination (Chapter 5 ) . Canonical correspondence 
analysis sa t is f ies ecologists ' desire for a simple, robust method to r e la te 
species to environmental variables, if the relationships are assumed to be 
unimodal. In Chapter 6, canonical correspondence analysis i s shown to be a 
multivariate extension of weighted averaging. In Chapter 7, the case i s 
considered where the environmental variables are divided in a set of 
variables-of-interest and a set of covariables, leading to part ial canonical 
correspondence analysis. I t i s also shown that constrained ordination can be 
seen as a form of constrained regression. Chapter 8 i s a case study of a 
rather special estimation problem (Table 1). The concluding chapter 9 gives a 
synthesis of l inear and unimodal methods to r e l a t e species to environment. 

The remainder of th is GENERAL INTRODUCTION gives a sketch of the context 
in which the chapters of th is thesis were written. This i s done for each of 
the main types of s t a t i s t i c a l problems jus t distinguished. 

Table 1: Types of problems studied in the chapters of th is thesis and the 
unknown parameters that are to be estimated, with special reference 
to the parameters of the Gaussian curve (1). 

s i t e values 

Type of problem jx^) 

species para* heurist ic method 
meters 

{ok ,uk , tk} Chapter 

regression 

calibration 

ordination 

constrained 
ordination 

known 

unknown 

unknown 

linear combination 
of environmental 
variables 

unknown 

known 

unknown 

unknown 

weighted averaging 

weighted averaging 

correspondence 
analysis 

canonical corres­
pondence analysis 

2 

3 

4 

5,6,7 

unnamed unknown u k known; 
c k , t k unknown 

weighted averaging 



Regression 

Suppose a researcher wants to investigate whether diatoms are good indicators 
of the acidity (pH) of lakes, with the aim to reconstruct, subsequently, pH 
from fossil diatoms found in successive strata of the bottom sediment. A 
sample of n lakes is selected. For each lake, some material is taken from the 
upper layer of the sediment and pH is measured. 
In the laboratory, a slide for use under the microscope is made from the 
material sampled and the species (or taxa) that are present in the slide are 
identified. For simplicity, suppose that only presence/absence of species is 
recorded. The survey so results in the presences and absences of, say, m 
species in the n lakes ("sites"). Let yik = 1 or 0 depending on whether 
species k is present or absent in lake i, respectively (i = 1,...,n; 
k = 1,...,m). For typical data, most of the species will have a relative 
frequency in the sample below 0.05, and only very few species will reach 
0.3. 

The first step is to describe the relationship of the probability of 
occurrence (p) of each species against pH. What comes to mind is to carry out 
logit regression of the data of each particular species on pH, for example by 
the model 

lo8 (l^) = b0 + V + b 2 x 2 (2) 

where p i s shorthand for Ey^k, x i s pH and bg, b1 and b2 are regression 
coefficients, a t r i p l e for each species. The quadratic term i s included 
because the relationship can be non-monotonic. By deviance t e s t s , i t can be 
tested whether b2 » 0, or whether b. = b2 = 0. If b, - b2 = 0, then the 
species i s not an indicator for pH. If b2 < 0, then the curve has an optimum; 
if the maximum of the curve i s small, the curve resembles the Gaussian curve 
and, therefore, i s termed the Gaussian logit curve, in Chapter 2. 

Logit regression i s a recent development (Cox, 1970). I t was not widely 
available before the introduction of the generalized linear model (Nelder and 
Wedderburn, 1972). Ecologists have used and developed other methods. One such 
method i s to divide pH in K classes, to crosstabulate the species 
presence/absence and pH-classes in a 2 x K table, and to calculate a 
chi-squared s t a t i s t i c , or an "information" s t a t i s t i c (Guillerm, 1971 ; 
Kwakernaak, 1984) which i s related to the Cutest (a deviance t e s t ) . I will 
not discuss th is method further. In th i s thes is , I am interested in variation 
along continuous variables, termed gradients by ecologists. Another simple 
method i s at the center of th is thes is . From the time of Gause (1930) t i l l 
today (Charles, 1985), many ecologists have analysed their data by the method 
of weighted averaging. In t h i s method, the relationship of species with an 
environmental variable i s characterized by the weighted average 
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In t h i s thes is , Eqs. (3) and (4) are considered as "simple-minded" estimates 
of the optimum and tolerance of the Gaussian ( logit) curve, and their 
s t a t i s t i c a l properties are studied. Weighted averaging i s used both for 
presence/absence data and for abundance data. For presence-absence data the 
method reduces to the calculation of the mean and standard deviation of the 
environmental variable for those s i t e s in which the species i s present. An 
intui t ive rat ionale i s as follows. With pH as the environmental variable, a 
species with a particular optimum for pH will be present most frequently at 
s i tes with pH close to i t s optimum. So an in tui t ively reasonable estimate of 
the optimum i s to take the average of pH of s i t e s in which the species i s 
present. 

In s t a t i s t i c s , means and standard deviations estimate the expectation 
and standard deviation of probability d is t r ibut ions. With some imagination, 
the values of x where the species i s present can be considered to derive from 
a d is tr ibution. The distribution concerned can be obtained by factoring i t s 
density, f ( . ) , by 

f (species i s present at x) = g(x) p(species is present x) (5) 

where g(x) represents the probability density function of the environmental 
variable x in the population sampled and p ( . |x ) i s a conditional density. 
Because the response, y, i s binary (1/0), 

p(species is present x) = E(y x) (6) 

which shows that p ( . x) i s a response function, denoted by uk(x) for species 
k in Chapter 3. The weighted average (Eq. (3)) i s an unbiased estimator of 
the expectation of the distribution with density f ( . ) . But, what i s of 
in terest i s a parameter of the response function pk(x) , for example, the 
centroid of uk(x), / x uk(x)dx// uk(x)dx, or the optimum of iik(x). If g(x) i s 
constant (x has a uniform d is t r ibut ion) , the centroid of uk(x) coincides with 
the expectation of the distr ibution with density f ( . ) . If Uk(x) i s symmetric, 
for example, the Gaussian logit curve, then the centroid coincides with the 
optimum. So, the weighted average i s an unbiased estimator of the optimum, if 
x has a uniform distribution and the response function i s symmetric. 

In Chapter 2, the weighted average i s compared by simulation and real 
data with the estimator of the optimum obtained from logi t regression. In the 
simulations, the data were generated from Eq. (2) , the Gaussian logi t curve. 
The distr ibution of the environmental variable, the number of s i t es sampled 
and the maximum probability of occurrence were varied in the simulations. For 
equispaced values of x i , the weighted average and the regression estimator 
for the optimum resulted in almost identical values and are therefore equally 
eff icient . The resul ts also showed that the weighted average i s a reasonable 
efficient estimator of the optimum, if the distr ibution of the environmental 
variable i s uniform, or if the species has few occurrences and a small 
tolerance. The simulations thus confirmed for small samples what was expected 
from the asymptotic theory given in Chapter 3 and Chapter 4. In large samples 
in which the distr ibution of the environmental variables i s not uniform, 
weighted averaging may however give estimates with nonnegligible b ias . 

Logit regession has several advantages over weighted averaging by 
allowing 
- approximate s t a t i s t i c a l t es t s to be carried out, 
- approximate confidence intervals for the optimum to be constructed, 
- quantitative predictions, 
- other shapes of curve to be fitted, e.g. by fitting splines, 
- joint analysis of the effects of several environmental variables. 



This research was a stimulus for Barendregt et al (1985) to develop their 
ICHORS model. This model i s a set of logi t regression equations re la t ing the 
probability of occurrence of water plants to water chemistry variables, 
f i t ted to data from 800 samples from polders in the Vecht-region. The 
equations are used to evaluate the possible effects of changes in water 
management for these polders (see also Barendregt et a l , 1986). The equations 
were f i t t ed by a s tepwise regression procedure in which the square of each 
variable considered was added to the model. 

However, re lat ing species to environment by multiple logit regression i s 
not without problems. Outliers form a serious problem (Looraan, 1985). If 
interaction effects of environmental variables are to be considered, the 
number of parameters in the models becomes large. The parameters are l ikely 
to become ill-determined. The number of parameters can be reduced by f i t t ing 
a hierarchy of models and by deciding by s t a t i s t i c a l t e s t s whether a simpler 
model i s s t i l l acceptable. This i s however a rather complicated procedure, 
often leading to qualitatively different models for different species 
(Looman, 1985). I t will depend on the context whether such a complex 
procedure i s worthwile. The experiences of Looman (1985) with multiple logi t 
regression were an important stimulus to me to search for a simpler direct 
method to r e la te species to environment (Chapters 5_7). 

Calibration 

The example of the previous section i s continued. After having described the 
relationship of diatom species with pH, the researcher wants to produce 
estimates of the pH in the past from fossil diatom remains. He/she takes a 
core from the sediment, s p l i t s the core into thin sections and identif ies 
which species are present in each section. In addition, the sections are 
dated by methods analogous to the '"Crmethod. The only problem considered 
here i s how to estimate pH from the presences and absences of the species. I t 
i s a nonlinear multivariate calibration problem. The notation used i s the 
same as in the previous section, but i t should be noted that the s i t es now 
refer to thin sections of a core and that the values {x^} are unkowns. 

Nonlinear multivariate calibration has not received much attention in 
the s t a t i s t i c a l l i t e r a tu r e . The approach proposed in Chapter 3 i s based on 
extra "-admittedly unreal is t ic- assumptions. 
1. The parameters of the response curve of each of the species are 

determined with great precision, so that they can be considered as known 
constants, 

2. the responses of the species, given pH, are independent. 

With these assumptions, the pH can be estimated from the presences and 
absences of the species by the maximum likelihood method. Here, the 
likelihood i s maximized numerically. 

In vegetation science, Ellenberg (1948) developed a much simpler method 
to estimate the value of an environmental variable at a s i t e from the plant 
species that grow there. The method i s based on "indicator values" of species 
with respect to the environmental variable. Ellenberg (1948) did not give a 
precise definition of "indicator value", but, in tu i t ive ly , i t i s the optimum 
(= the value most preferred by the species). So, the weighted average in Eq. 
(2) can be considered as an estimator of the indicator value. In Ellenberg's 
method, the value of an environmental variable i s estimated by the weighted 
average of indicator values of species growing at the s i t e ; in our notation, 
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So i t i s a weighted averaging method, but " the o ther way round" compared t o 
Eq. ( 3 ) . For presence-absence d a t a , t he method reduces t o averaging of optima 
of species t ha t a re p r e sen t . An i n t u i t i v e r a t i o n a l e i s as fo l lows. 
In a s i t e with a p a r t i c u l a r pH, spec ies with an optimum c lose t o t ha t pH wi l l 
be p resent most f r equen t ly . So, an i n t u i t i v e l y r easonable es t imate of pH i s 
t o t ake the average of optima for pH of the spec ies p r e sen t . E l l enbe rg ' s 
method was proposed independently by Whittaker (1948: in Gauch, 1982), Pant le 
and Buck (1955) and continues t o r e ce ive i n t e r e s t ( e . g . von Tumpling, 1966; 
Durwen, 1982, Gauch, 1982, Backer e t a l , 1983, Melman et a l , 1985, Sladecek, 
1986). 

Chapter 3 i s a bold at tempt t o r econs t ruc t the model t ha t E l lenberg 
(1948) may have had in mind when he proposed weighted averaging of i nd i ca to r 
values as a c a l i b r a t i o n method. This i s done by i nve s t i ga t i ng with which 
model the method has a t t r a c t i v e s t a t i s t i c a l p r o p e r t i e s , namely consis tency 
and e f f i c i ency . I t turned out t h a t , for presencer-.absence d a t a , the Gaussian 
l o g i t curve i s t he only response model under which the weighted average can 
achieve a symptot ica l ly an e f f i c iency of 1 compared t o the maximum l i ke l i hood 
e s t ima to r . Unit e f f i c iency i s a c t u a l l y achieved with a spec ies packing model 
(Fig. 2 ) , i n which the Gaussian l o g i t curves of the spec ies have equispaced 
optima, equal maxima and equal t o l e r ance s . For abundances t h a t a re 
Po issonian , the Gaussian curve has t h i s p roper ty . So chapter 3 shows t ha t the 
Gaussian l o g i t model has a more than casual r e l a t i o n t o t he method of 
weighted averaging . In the context of r eg r e s s ion , weighted averaging can a l so 
achieve un i t e f f ic iency (Chapter 2 ) , but t he t h eo r e t i c a l a n a l y s i s i s c a r r i ed 
out for c a l i b r a t i o n because then only a s i n g l e parameter i s involved. 

In the example, a simple method t o i n fe r pH from diatoms i s thus t o 
e s t imate the optima from a t r a i n i n g s e t by Eq. (3) and t o use Eq. (7) t o 
produce e s t imates of pH for t h i n s ec t i ons of the co re . ( I n t h i s approach, 
averages a r e taken twice , so t h a t t he range of pH i s shrunken. This defect 
can be r epa i red by l i n e a r r e s c a l i ng on the bas i s of a s imple l i n e a r 
r eg ress ion of pH on x^ in the t r a i n i n g s e t . ) Using counts of diatoms, Ter 
Braak and Van Dam ( in prep. ) compared t h i s method with the maximum l i k e l i hood 
method. They found t h a t t he maximum l i ke l i hood method performed only s l i g h t l y 
b e t t e r than weighted averaging as judged by the mean squared p r ed i c t i on e r r o r 
in a t e s t s e t . 

Ca l ib ra t ion by weighted averaging^-appliedntwice i s the n a tu ra l end-point 
of a h i s t o r i c a l development t h a t s t a r t e d with Imbrie and Kipp (1971). To 
r econs t ruc t pas t sea-^surface temperature from Foraminifera , Imbrie and Kipp 
(1971) considered applying i nverse r eg r e s s i on t o a t r a i n i n g da ta s e t , i . e . 
r eg re s s ion of temperature on the abundances of the s p e c i e s . But t h i s method 
was considered i nappropr ia t e as the abundances of spec ies showed 
m u l t i c o l l i n e a r i t y . So, they decided t o reduce the abundances of the spec ies 
t o a few axes by p r inc ipa l components a na ly s i s and t o r eg r e s s temperature on 
these axes ( t h i s i s termed p r i nc ipa l components r eg res s ion ; J o l l i f f e , 1986). 
The r e s u l t i n g equat ion was used for r e cons t ruc t i on . Roux (1979) produced 
b e t t e r e s t imates of t emperature , a t l e a s t in the t r a i n i ng s e t , by r ep l ac ing 
p r i nc ipa l components ana lys i s by correspondence a n a l y s i s . 
By r ea r rang ing spec ies and s i t e s in the da ta matr ix in order of t h e i r scores 
on the f i r s t a x i s of correspondence a n a l y s i s , he obta ined a matrix with l a rge 



abundance values near the p r i nc ipa l "diagonal" of the matr ix and small values 
e lsewhere. Such mat r ices a r i s e when r e l a t i o n s h i p s a re unimodal. 

Gasse and Tekaia (1983) were concerned about the f ac t t h a t only pa r t of 
t he information on the r e l a t i o n s h i p of spec ies t o x i s r e t a i ned in the f i r s t 
few axes of the correspondence a n a l y s i s . They suggested the following 
improvement i n t h e i r a t tempt t o es t imate pH from diatoms. They divided pH 
i n t o four c l a s se s and, nex t , appl ied correspondence a na l y s i s t o a s pec ies -by-
c l a s s da ta mat r ix , each en t ry of which conta ins the t o t a l abundance of a 
spec ies in s i t e s with a pH of the corresponding c l a s s . The f i n a l c a l i b r a t i on 
equat ion was obtained by a mu l t i p l e r eg re s s ion of pH on the axes of the 
correspondence a n a l y s i s . Despite i t s complexity, the method i s c lo se ly 
r e l a t e d t o weighted averagingnappl ied- twice . Both methods a r e s pec i a l cases 
of canonical correspondence ana ly s i s (Chapter 5 ) . The main d i f fe rence i s 
t h a t , i n t he method of Gasse and Tekaia (1983), pH i s d ivided in c l a s s e s 
whereas pH i s t r e a t ed as a q uan t i t a t i ve v a r i ab l e in weighted averaging-
app l i ed - tw ice . 

Ordination 

With o rd ina t i on , one en t e r s t he realm of exp lo ra t ive da ta a n a l y s i s . I f one 
has not measured any environmental v a r i ab l e , one can s t i l l at tempt t o 
cons t ruc t a l a t e n t v a r i ab l e t h a t exp la ins the abundances of t he spec ies 
observed a t the s i t e s by way of the Gaussian model. Ordination i s then a 
method t o de tec t a simple s t r u c t u r e i n the da t a , or a method t o reduce the 
d imensional i ty of the data (from m to 1 or 2 ) . 

Gauch et a l (197*0 f i t t e d Gaussian curves t o vegeta t ion data by the 
l e a s t - squa r e s method. However, the l e a s t - s qua r e s method i s not very 
a t t r a c t i v e because abundances tend t o have a very skew d i s t r i b u t i o n . In a 
paper t h a t remained l a rge ly unnot iced, Kooijman (1977a) f i t t e d Gaussian 
curves by t he maximum l i ke l i hood method under the assumption t ha t t he 
abundances were independent Poissonian counts . Kooijman (1977a) was the f i r s t 
t o f i t t he two-dimensional Gaussian model i n which spec ies have Gaussian 
response sur faces aga ins t two l a t e n t v a r i a b l e s . The computer programs 
developed by Kooijman (1976b) were w r i t t en in APL, which l im i t ed t h e i r u se . 
An a pp l i c a t i on i s descr ibed in Kooijman and Hengeveld (1979). A recent 
overview of one-dimensional Gaussian o rd ina t i on , inc luding a lgor i thms , i s 
given by Ihm and van Groenewoud (1984). 

Gaussian o rd ina t ion has not become popular among e co l og i s t s because of 
i t s computational complexity and i t s s t rong and e x p l i c i t assumptions. H i l l 
(1973) developed a s impler method with the same aim: r e c ip roca l averaging, 
a l i a s correpondence a n a l y s i s . H i l l (1973) i s one of t he many independent 
inventors and r e inven to r s of correspondence ana ly s i s (Tenenhaus and Young, 
1985). H i l l suggested the technique as a n a tu ra l ex tens ion of t he method of 
weighted averaging, known t o him v ia Whi t t ake r ' s (1956) paper . I f Eqs. (3) 
and (7) a r e appl ied a l t e r n a t e l y t o a da ta matrix { y ^ } . the values of (uk) 
and (x>) converge t o the f i r s t n on t r i v i a l a x i s of correpondence ana lys i s 
(H i l l , 1973; Chapter 4 and Chapter 9 ) . Under s impl i fying c ond i t i on s , t h i s 
f i r s t a x i s i s an approximation t o the l a t e n t v a r i ab l e of Gaussian o rd ina t ion 
as es t imated by maximum l i ke l i hood (Chapter 4 ) . The condi t ions needed a r e a 
combination of those needed in Chapter 2 and 3 for the weighted average t o be 
an e f f i c i e n t es t imator of uk and of x* , r e s p e c t i v e l y . This r e s u l t s holds t r ue 
for presence/absence da ta and abundance data t ha t follow the Poisson 
d i s t r i b u t i o n . 

Independently, Ihm and van Groenewoud (1984) compared correspondence 
ana lys i s and Gaussian o rd ina t ion . They defined a v a r i an t of the Gaussian 
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model t ha t i s a t t r a c t i v e i f s i t e s vary in " s i z e " , so t ha t only r e l a t i v e 
abundance values a r e meaningful. I s h a l l d i scuss t h i s v a r i a n t i n some d e t a i l 
as i t provides an i n t e r e s t i n g l i nk with the a na l y s i s of contingency t a b l e s by 
correspondence a n a l y s i s . Their model (Equation 3.2.1 of the paper) i s (with 
t k = t ) 

" - (x, r- U k ) 2 / t £ 
Ey i k - r i C k e * x K K (8) 

Compared with Eq. ( 2 ) , r^ i s an ex t r a parameter, which accounts for the s i z e 
of s i t e i . The model i s useful for compositional data a l so ; r , then accounts 
for the constant-sum cons t r a in t (Dawid, 1982; t e r Braak, 1987). By expanding 
the quadra t i c term in Eq. (8) and assuming t k = t , Ihm and van Groenewoud 
(1984: s ec t ion 5.1) obta in 

* * u u x , / t 2 

Ey i k - rt ck e k * (9) 

with r^ = r^ exp(~— x | / t 2 ) and ck = c k exp(~— u k / t 2 ) , and by using a f i r s t 
order Taylor expani ion, z 

Ey i k - r* c*(1 • u k X i / t 2 ) (10) 

A simple estimate of r̂  ck is yi+y+k/y++, so that, with t=1 and yik replacing 
Ey,k, we obtain 

yik = ̂ d + V i ) (1D 
• 

This i s the r e c on s t i t u t i o n formula (of order 1) of correspondence a na l y s i s 
(Chapter 4 : Eq. ( 2 . 4 ) ) . So the model of Eq. (8) i s shown t o resemble the 
"model" of correspondence a n a l y s i s . The e s t imat ion equations a re s im i l a r t o o , 
as shown by Goodman (1981); Eq. (9) i s Goodman's RC-model for two-way 
contingency t a b l e s . The s i m i l a r i t y can a l so be shown by extending the 
a na ly s i s of Chapter 4 . Eq. (8) can be r ew r i t t e n in a form s imi l a r t o Eq. 
(3.1) of Chapter 4, namely 

log Ey.k = *. + ak , i ( X i - u k ) 2 / t 2 (12) 

where $, = log r, and ak = log ck. Under Poisson sampling, Eqs. (3.2) and 
(3-3) of Chapter 4 are then the maximum likelihood equations for uk and xi 

(with uik = Ey<k). The appoximations made in Chapter 4 are valid for this 
model too and lead to the transition formulae of correspondence analysis. The 
equality of Eqs. (8) and (9), for tk = t, is the solution of the apparent 
paradox, noted in Chapter 4, that both a unimodal model and a (generalized) 
bilinear model stand at the basis of correspondence analysis. In chapter 7, a 
multidimensional form of Eqs. (9) and (12) are considered, which - when 
approximated - reduces to multiple correspondence analysis. Chapter 7 so 
provides a link between multiple correspondence analysis and a loglinear 
model for contingency tables. The loglinear model contains main effects and 
multiplicative terms. Van der Heijden and de Leeuw (1985) and van der Heijden 
(1987) use correspondence analysis to analyse the residuals of an additive 
loglinear model. Such an analysis is an approximation to a loglinear model 
with both additive and multiplicative terms (van der Heijden and Worsley, 
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1986). Gabriel (1978) considered a linear (not loglinear) model with both 
additive and multiplicative terms. 

The possibility of analysing unimodal relationships with correspondence 
analysis was first noted by Mosteller (1948 in Torgerson 1958: p. 338). 
Mosteller showed that Guttman's principal components analysis of categorical 
data (Torgerson, 1958) could also be used to analyse point items (binary 
observations with unimodal "trace lines" with respect to the latent 
variable). Heiser (1981) proved that correspondence analysis has interesting 
properties for ordering sites when relationships are unimodal (see also 
Heiser, 1986). 

Since the introduction of correspondence analysis, ecologists have been 
concerned about the arch effect. This is the phenomenon that the second axis 
of correspondence analysis is a quadratic function of the first axis (Hill, 
1974; Gauch, 1982). By careful mathematical analysis, Schriever (1983) 
established when the arch occurs. A qualitative explanation that can be 
understood by ecologists is given in Chapter 8 (section IV C); see also 
Jongman et al (1987: section 5.2.3) and the discussion of Chapter 7. Although 
the explanation makes clear that the arch is sometimes an artifact of the 
method, the debate will continue whether it is always an artifact (Pielou 
1984; Heiser, 1986, 1987; van Rijckevorsel, 1987). In detrended 
correspondence analysis (Hill and Gauch, 1980) the arch is removed by a 
modification of the reciprocal averaging algorithm. In simulations (Chapter 
4 ) , this modification was shown to improve the approximation to two-
dimensional Gaussian ordination. The modification may occasionally lead to 
new artifacts (Minchin, 1987), which led me to develop a simpler alternative 
method of detrending (Chapter 9). The new method of detrending by polynomials 
is incorporated in the computer program CAN0C0 (ter Braak, 1987). 

Rival approaches to ordination on the basis of a unimodal model are 
maximum likelihood Gaussian ordination (Ihm and van Groenewoud, 1984), 
unfolding (Heiser, 1987) and multidimensional scaling (Prentice, 1977; Faith 
et al, 1987; Minchin, 1987). In nonmetric unfolding, the model does not need 
to be Gaussian, but must still be symmetric (Heiser, 1987). The 
multidimensional scaling approach appears to allow even more complex models 
when used with an appropriate measure of similarity (Faith et al, 1987). 
These rival approaches are computationally far more demanding than detrended 
correspondence analysis, and require good starting values. Such values can be 
derived from detrended correspondence analysis (Chapter 4). 

Constrained ordination 

Ordination is also popular among ecologists even when environmental variables 
have been measured. The approach is then to interpret the ordination axes 
(estimates of latent variables) in terms of the environmental variables - an 
indirect way of relating species to environment. 

There is a problem with this indirect approach. Ordination of species 
data is not designed to detect the effect on the species of any environmental 
variable at all. So the effect of a variable one is particularly interested 
in can be poorly represented in the ordination or even be missed completely. 
This problem can be overcome by using regression instead of ordination. 
Building non-linear models by regression is demanding in time and 
computation, when the effects of several environmental variables on a set of 
species are of interest (see the section on regression). A considerable 
simplification is possible if species react to the same linear combination of 
environmental variables, according to a common response model. Such a model 
is the Gaussian ordination model in which the latent variable is constrained 
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to be a linear combination of environmental variables, 

x i = b o + j , Yu (13) 

where z^ is the value of environmental variable j at site i and bQ, b^...bQ 

are parameters. By inserting Eq. (13) in Eq. (1), we obtain the model of 
canonical Gaussian ordination (Chapter 5) 

"- (b0 + L b . z ^ - uk)
2/tj! 

Eyik = ck e * ° J J ̂  k k (14) 

which i s , of course, j us t a particular non-\Linear regression model. Under the 
same simplifying conditions as in the precious section, the model reduces to 
canonical correspondence analysis (Chapter 5 ) , a constrained form of 
correspondence analysis. 

When I wrote chapter 5, I chose the adjective "canonical" because of the 
re la t ion of the technique with canonical correlation analysis, which i s the 
standard l inear method of relat ing two sets of variables (here, species and 
environmental variables) . I t turns out that the l inear method of redundancy 
analysis (van den Wollenberg, 1977) i s even more closely related (Chapter 9) . 
Fortunately, "canonical" i s s t i l l an apt adjective for another reason. I t i s 
shown in Chapter 7 that Eq. (14) i s the (one-dimensional) canonical form of a 
particular nonlinear regression model. 

The idea of constrained ordination may be new to ecology, but has 
already been around for some time in psychometry (see de Leeuw and Heiser, 
1980). Heiser (1981 : sections 8.3 and 8.4) proposed a constrained unfolding 
model closely related to the model of canonical correspondence analysis. 
Imposing constraints on the solution of correspondence analysis i s not new 
either as i t i s the basis of the Gifi system of multivariate analysis of 
nominal and ordinal variables (Gifi, 1981 ; de Leeuw, 1984). Even the type of 
equations for solving canonical correspondence analysis are not new; I s raels 
(1984) derived the same eigenvalue equations in his redundancy analysis of 
qualitative variables (see also I s rae ls , 1987 and Lauro and d'Ambra, 1984). 
Yet canonical correspondence analysis i s new, because i t was not clear in 
advance that these developments were useful in re la t ing species to 
environmental variables according to a unimodal model. In chapter 7 a 
Gaussian model i s proposed that takes into account the effects of 
covariables; th is i s the natural endpoint of the general approach in t h i s 
thes i s , i . e . the approximation of complicated Gaussian models by 
correspondence analysis techniques. 

I hope th i s thesis will encourage ecologists to go beyond exploratory 
ordination, data analysts to understand the l imitations of correspondence 
analysis techniques, and s t a t i s t i c i ans to bridge the gap between 
correspondence analysis techniques and nonlinear regression models. 

References 

Alderdice, D.F., 1972. Factor combinations responses of marine poikilotherms to 
environmental factors acting in concert. Pages 1659-1722 in: 0. Kinne 
(edi tor) : Marine ecology, vol 1, part 3 . , Wiley, New York. 

Austin, M.P., 1980. Searching for a model for use in vegetation analysis. 
Vegetatio 42: 11-21. 

13 



Barendregt, A., J .T . de Smidt & M.J. Wassen, 1985. Re la t i e s tussen 
mi l ieufaktoren en water- en moerasplanten in de Vechtstreek en de omgeving 
van Groet . I n t e r f a c u l t a i r e Vakgroep Milieukunde, RU Ut rech t . 

Barendregt, A., M.J. Wassen, J .T . de Smidt & E. Lippe, 1986. Ingreep-ef fec t 
voorspe l l ing voor waterbeheer . Landschap 1: 4 ln55. 

Bates, J.W. & D.H. Brown, 1981. Epiphyte d i f f e r e n t i a t i o n between Quercus 
pe t r aea and Fraxinus exce l s io r t r e e s in a maritime a rea of South-West 
England. Vegetat io 4 8 : 61-70. 

Ba t t a rbee , R.W., 1984. Diatom ana ly s i s and the a c i d i f i c a t i o n of l a k e s . 
Phi losophical Transac t ions of t he Royal Soc ie ty of London 305: ^51 -477. 

Booker, R., I . Kowarik & R. Bornkamm, 1983. Untersuchungen zur Anordnung der 
Zeigerwerte nach E l lenberg . Verhandlungen der Gese l l schaf t fur Okologie 
11 : 35-56. 

Char les , D.F. , 1985. Re la t ionships between surface sediment diatom assemblages 
and lakewater c h a r a c t e r i s t i c s in Adirondack l a k e s . Ecology 66 : 994-1011. 

Cox, D.R., 1970. The a na l y s i s of binary d a t a . Chapman and Ha l l , London. 
Dawid, A.P. , 1982. Discussion t o "The s t a t i s t i c a l a na ly s i s of compositional 

data" by J . A i tch ison . Journal of the Royal S t a t i s t i c a l Socie ty s e r i e s B 
44 : 162-163. 

de Leeuw, J . , 1984. The GIFI system of nonl inear mu l t i v a r i a t e a n a l y s i s . Pages 
415-424 i n : E. Diday et a l e d s . ) . Data Analysis and Informat ics 3 , 
North-Holland, Amsterdam. 

Digby, P.G.N. & R.A. Kempton, 1987. Mu l t i va r i a t e a n a l y s i s of eco logica l 
communities. Chapman and Ha l l , London. 

Durwen, K . - J . , 1982. Zur Nutzung von Zeigerwerten und a r t s pez i f i s chen Merkmalen 
der Gefaszpflanzen Mi t te leuropas fur Zwecke der Landschaftsoekologie und -
planung mit H i l f e der EDV - Voraussetzungen, I n s t rumenta l . en , Methoden und 
MOglichkeiten. A rbe i t sbe r i ch te des Lehrs tuh ls Landschaftsoekologie, MDnster 
5 : 1*138. 

Ea r l e , J .C . , H.C. Dutchie & D.A. Scruton, 1986. Analysis of the phytoplankton 
composition of 95 Labrador l a k e s , with s pec i a l r e f e rence t o n a tu ra l and 
anthropogenic a c i d i f i c a t i o n . Canadian Journal of F i she r i e s and Aquatic 
Science 43 : 1804-1811. 

E l lenberg , H., 1948. Unkrautgesel lschaf ten a l s Mass fur den Sauregrad, d ie 
Verdichtung und andere Eigenschaften des Ackerbodens. Ber iehte Uber 
Landtechnik, Kuratorium fur Technik und Bauwesen in der Landwirtschaft 4 : 
130-146. 

F a i t h , D.P. , P.R. Minchin & L. Belbin, 1987. Compositional d i s s i m i l a r i t y as a 
robus t measure of eco logica l d i s t ance . Vegetat io 69 : 57-68. 

Forsy the , W.L. & O.L. Loucks, 1972. A t ransformat ion for spec ies response t o 
h a b i t a t f a c t o r s . Ecology 53 : 111241119. 

Gabr ie l , K.R., 1978. Least squares approximation of matr ices by add i t i ve and 
m u l t i p l i c a t i v e models. Journal of t he Royal S t a t i s t i c a l Soc ie ty , S e r i e s B 
40:. 186-196. 

Gasse, F . , & F. Tekaia, 1983. Transfer funct ions for e s t imat ing pa leoecologica l 
condi t ions (pH) from East African diatoms. Hydrobiologia 103, 85-90. 

Gauch, H.G., 1982. Mu l t i va r i a t e a na ly s i s in community ecology. Cambridge 
Univers i ty P r e s s , Cambridge. 

Gauch, H.G., & R.H. Whit taker , 1972. Coenocline s imula t ion . Ecology 53, 
446-451. 

Gauch, H.G., G.B. Chase & R.H. Whit taker , 1974. Ordinations of vege ta t ion 
samples by Gaussian spec ies d i s t r i b u t i o n s . Ecology 5 5 : 1382-1390. 

Gause, G.F., 1930. S tudies on the ecology of the Or thoptera . Ecology 11 : 
307-325. 

Gause, G.F. , 1934. The s t r ugg l e for e x i s t ence . Williams and Wilkin, Bal t imore. 

14 



Gif i , A., 1981. Nonlinear mu l t i v a r i a t e a n a l y s i s . DSWO-press, Leiden. 
G i t t i n s , R, 1985. Canonical a n a l y s i s . A review with a pp l i c a t i on s in ecology. 

Spr inger-Ver lag , Be r l in . 
Goodall, D.W., 1951. Objective methods for the c l a s s i f i c a t i o n of vege ta t ion . 

I I I . An essay i n the use of f ac to r a n a l y s i s . Aus t r a l i an Journal of Botany 
1 : 39-63. 

Goodman, L.A., 1981. Associat ion models and canonical c o r r e l a t i on in the 
ana lys i s of c r o s s - c l a s s i f i c a t i o n s having ordered c a t ego r i e s . Journal of 
the American S t a t i s t i c a l Associat ion 76: 320—33^. 

Green, R. H., 1979. Sampling design and s t a t i s t i c a l methods for environmental 
b i o l o g i s t s . Wiley, New York. 

Greenacre, M.J. , 1984. Theory and app l i ca t ions of correspondence a n a l y s i s . 
Academic P ress , London. 

Grelg-Smith, P . , 1983. Quant i t a t ive P lant Ecology. 3rd e d i t i o n . Blackwell 
S c i e n t i f i c Pub l i ca t ions , Oxford. 

Guillerm, J . L . , 1971. Calcul de 1 ' information fournie par un p r o f i l 6cologique 
et va leur i n d i c a t r i c e des especes. Oecologia Plantarum 6: 209-225. 

He ise r , W.J., 1981. Unfolding a n a l y s i s of proximity d a t a . Thes i s . Univers i ty of 
Leiden, Leiden. 

Heiser , W.J., 1986. Undesired n on l i n e a r i t i e s in nonl inear mu l t i v a r i a t e 
a n a l y s i s . Pages 455-469 i n : E. Diday et a l . ( e d i t o r s ) : Data a na ly s i s and 
Informat ics 4. North Holland, Amsterdam. 

Heiser , W.J. , 1987. J o i n t o rd ina t ion of spec ies and s i t e s : the unfolding 
technique. In: New developments in numerical ecology. (P. Legendre and L. 
Legendre, e d s . ) , Spr inger-Verlag, Be r l i n , in p r e s s . 

H i l l , M.O., 1973. Reciprocal averaging: an e igenvector method of o r d ina t i on . 
Journal of Ecology 61 : 237-249. 

H i l l , M.O., 1974. Correspondence a na ly s i s : a neglected mu l t i v a r i a t e method. 
Applied S t a t i s t i c s 23 : 340-354. 

H i l l , M.O., 1979. DECORANA - A FORTRAN program for detrended correspondence 
ana ly s i s and r e c ip roca l averaging. Ecology and Sys temat ics . Cornell 
Un ive r s i ty , I t haca , New York. 

H i l l , M.O. & H.G. Gauch, 1980. Detrended correspondence a na l y s i s , an improved 
o rd ina t ion t echnique . Vegetat io 42: 47~58. 

Holder-Frankl in , M.A. & L .J . Wuest, 1983. Population dynamics of aqua t i c 
b a c t e r i a in r e l a t i o n t o environmental change as measured by f ac to r 
a n a l y s i s . Journal of Microbiological Methods 1: 209-227. 

Ihm, P. & H. van Groenewoud, 1984. Correspondence ana ly s i s and Gaussian 
o rd ina t ion . C0MPSTAT l e c tu r e s 3 : 5-60. 

Imbrie, J . & N.G. Kipp, 1971. A new micropaleontological method for 
q uan t i t a t i v e paleocl imatology: app l i ca t i on t o a l a t e P l e i s tocene Caribbean 
core. Pages 71H81 in : K.K. Thurekian ( e d . ) : The l a t e Cenozoic g l a c i a l 
ages . Yale Univers i ty P ress , New Haven. 

I s r a S l s , A.Z., 1984. Redundancy ana ly s i s for q u a l i t a t i v e v a r i a b l e s . 
Psychometrika 49: 331-346. 

I s r a S l s , A.Z., 1987. Eigenvalue techniques for q u a l i t a t i v e d a t a . Thes i s . 
Un ivers i ty of Leiden, Leiden. 

J age r , J .C . & C.W.N. Looman, 1987. Data Co l l ec t ion . Chapter 2 i n : R.H.G. 
Jongman, C . J .F . t e r Braak & 0. F. R. van Tongeren ( e d s . ) : Data Analysis in 
Community and Landscape Ecology, Pudoc, Wageningen. 

Jongman, R.H.G., C . J .F . t e r Braak & O.F.R. van Tongeren, 1987. Data a n a l y s i s in 
community and landscape ecology. Pudoc, Wageningen. 

J o l l i f f e , I . T . , 1986. P r i nc ipa l Component Analys is . Spr inger-Verlag, Be r l i n . 

15 



Joreskog, K.G. & D. Sorbom, 1981. LISREL: Analys is of l i n e a r s t r u c t u r a l 
r e l a t i o n sh i p s by the method of maximum l i k e l i hood . I n t e r n a t i ona l 
Educational S e rv i ce s , Chicago. 

Kershaw, K.A. & J.H.H. Looney, 1985. Quan t i t a t ive and dynamic p lan t ecology. 
3rd e d i t i o n . Edward Arnold, London. 

Kooijman, S.A.L.M., 1977a. Species abundance with optimum r e l a t i o n s t o 
environmental f a c t o r s . Annals of System Research 6 : 123-138. 

Kooijman, S.A.L.M., 1977b. Inference about d i spe r sa l p a t t e r n s . Thes i s . 
Univers i ty of Leiden, Leiden. 

Kooijman, S.A.L.M. & R. Hengeveld, 1979. The d e sc r i p t i on of a non- l inear 
r e l a t i o n s h i p between some carbid b ee t l e s and environmental f a c t o r s . Pages 
635-647 in : "Contemporary Quan t i t a t ive Ecology and Related Econometrics." 
(G.P. P a t i l and M.L. Rossenzweig, e d s . ) : I n t e r n . Co-operative Publ. House, 
Fa i r l and , Maryland. 

Kwakernaak, C , 1984. Information appl ied in eco log ica l land c l a s s i f i c a t i o n . 
Pages 59-66 i n : J . Brandt & P. Agger ( e d s . ) : Methodology in landscape 
eco log ica l r esearch and p lanning. Vol. I l l ; theme I I I : Methodology of Data 
Analys is . Roskilde Un ive r s i t e t s f o r l ag GeoRue, Roski lde . 

Lauro, N. & L. D'Ambra, 1984. L 'analyse non symetrique des correspondences. 
Pages 433^-446 i n : E. Diday et a l ( e d s . ) . Data Analysis and Informat ics 3, 
North-Holland, Amsterdam. 

Lawley, D.M. & A.E. Maxwell, 1971. Factor Analysis as a S t a t i s t i c a l Method. 2nd 
e d i t i on , Butterworth, London. 

Legendre, L. & P. Legendre, 1983. Numerical Ecology. E lsevier S c i e n t i f i c 
Publ ishing Company, Amsterdam. 

Looman, C.W.N., 1985. Responsies van s l oo tp l an t en op s t andp laa t s f ac to ren : 
u i twerking van een methode. Rapport Studiecommissie Waterbeheer Natuur, Bos 
en Landschap, Postbus 20020, 3502 LA Utrecht . 

Melman, Th.C.P. , P.H.M.A. Clausman, H.A.U. de Haes, 1985. Voedselr i jkdom-indi-
c a t i e van g ras landen. Vergel i jk ing en t o e t s i ng van d r i e methoden voor het 
bepalen van de voedse l r i j kdonr ind ica t i e van g r a s l andvege t a t i e s . Centrum 
voor Milieukunde .-, Mededeling 19, Leiden. 

Minchin, P. R., 1987. An eva lua t ion of t he r e l a t i v e robus tness of t echniques for 
eco logica l o rd ina t i on . Vegetat io 69: 89-107. 

Montgomery, D.C. & E.A. Peck, 1982. I n t roduc t ion t o l i n e a r r eg re s s ion a n a l y s i s . 
Wiley, New York. 

Nelder, J.A. & R.W.M. Wedderburn, 1972. Generalized l i n e a r models. Journal of 
t he Royal S t a t i s t i c a l Soc ie ty , S e r i e s A 135: 370-384. 

N i sh i s a t o , S . , 1980. Analysis of c a t ego r i ca l da ta : dual s ca l ing and i t s 
a pp l i c a t i on s . Toronto Univers i ty P ress , Toronto. 

Noy-Meir, I . , D. Walker & W.T. Will iams, 1975. Data t ransformat ions in 
eco log ica l o rd ina t i on . I I . On the meaning of da ta s t anda rd i za t i on . Journal 
of Ecology 63 : 7 79^00 . 

Odum, E .P . , 1971. Fundamentals of Ecology. 3rd e d i t i o n . W.B. Saunders Company, 
Ph i l ade lph ia . 

P an t l e , R. & H. Buck, 1955. Die b io logische Ueberwachung der Gewasser und d ie 
Dars te l lung der Ergebnisse . Gas- und Wasserfach 96: 604. 

P i e lou , E.C. , 1984. The i n t e r p r e t a t i o n of eco logica l da t a . A primer on 
c l a s s i f i c a t i o n and o r d i na t i on . Wiley, New York. 

P r en t i c e , I .C . , 1977. Non-tmetric o rd ina t ion methods in ecology. Journal of 
Ecology 65: 85-94. 

Roux, M., 1979. Est imation des palSoclimats d ' apres l ' e c o l o g i e des 
fo ramin i fe res . Les Cahiers de l 'Analyse des Donn6es 4 : 61-79. 

16 



Schr iever , B .F . , 1983- Scal ing of order-dependent c a t ego r i c a l v a r i ab l e s with 
correspondence a n a l y s i s . I n t e r n a t i ona l S t a t i s t i c a l Review 51 : 225-238. 

Sladecek, V., 1986. Diatoms as i nd i c a t o r s of o rganic p o l l u t i o n . Acta 
hydroehim. hydrobio l . 14: 555-566. 

Stewart-Oaten, A., W.W. Murdoch & K.P. Parker , 1986. Environmental impact 
assessment: "pseudorepl ica t ion" i n time? Ecology 67 : 929-940. 

Tenenhaus, M. & F.W. Young, 1985. An ana ly s i s and s yn the s i s of mu l t ip l e 
correspondence a n a l y s i s , optimal s c a l i ng , dual s c a l i ng , homogeneity 
a na ly s i s and o ther methods for quantifying c a t ego r i c a l mu l t i v a r i a t e d a t a . 
Psychometrika 50: 91-119. 

t e r Braak, C . J . F . , 1987. CANOCO - a FORTRAN program fo r canonical community 
o rd ina t ion by [ p a r t i a l ] [ de t r ended ] [ c anon i c a l ] correspondence a n a l y s i s , 
p r i n c i p a l components a na ly s i s and redundancy a n a l y s i s (vers ion 2 . 1 ) . TNO 
I n s t i t u t e of Applied Computer Sc ience , Wageningen. 

Thienemann, A., 1950. Verbrei tungsgeschichte der SOszwassert ierwelt Europas. E. 
Schweizerbar t ' sche Verlagsbuchhandlung, S t u t t g a r t . 

Torgerson, W.S., 1958. Theory and methods of s c a l i n g . Wiley, New York, 460 pp . 
van der Heijden, P.G.M. & J . de Leeuw, 1985. Correspondence ana lys i s used 

complementary t o l og l i nea r a n a l y s i s . Psychometrika 50: 429-447. 
van der Heijden, P.G.M. & K.J . Worsley, 1986. Comment on " Correspondence 

a na l y s i s used complementary t o l o g l i n e a r - a n a l y s i s . PRM 86-01, Dept. of 
Psychology, Leiden, Psychometrika, t o appear , 

van R l jckevorse l , J . , 1987. The app l i ca t i on of fuzzy coding and horseshoes i n 
mu l t ip le correspondence a n a l y s i s . DWSO-press, Leiden, 

van den Wollenberg, A.L., 1977. Redundancy a n a l y s i s . An a l t e r n a t i v e fo r 
canonical c o r r e l a t i on a n a l y s i s . Psychometrika 42 : 207"219. 

von TUmpling, W., 1966. Ueber d ie s t a t i s t i s c h e S i che rhe i t soz io log ischer 
Methoden in der b iologischen Gew'asser ana lyse . Limnologica (Ber l in) 4 : 
235-244. 

Westman, W.E., 1980. Gaussian a n a l y s i s : i den t i fy ing environmental f a c t o r s 
inf luencing bel l^shaped spec ies d i s t r i b u t i o n s . Ecology 61 : 733 -739. 

Whit taker , R.H., 1956. Vegetation of the Great Smoky Mountains. Ecological 
Monographs 26: 1^80. 

Whit taker , R.H., 1967. Gradient ana lys i s of v ege ta t ion . B iological Reviews of 
the Cambridge Phi losophical Society 49: 207-264. 

Wiens, J.A. & J .T . Rotenberry, 1981. Habitat a s soc i a t i ons and community 
s t r u c t u r e of b i r d s in shrubsteppe environments. Ecological Monographs 51 : 
2 1 - 4 1 . 

17 



Weighted averaging, logistic regression and the Gaussian response model* 

Cajo J. F. ter Break' & Caspar W. N. Looman2 ** 
1 Institute TNO for Mathematics, Information Processing and Statistics, P.O. Box 100, 6700 AC Wageningen, 
The Netherlands;2 Research Institute for Nature Management, P.O. Box 46, 3956 ZR Leersum, The Nether­
lands 

Keywords: Amplitude, Direct gradient analysis, Gaussian response curve, Logistic regression, Indicator value, 
Optimum, Tolerance, Unimodal response curve, Weighted average 

Abstract 

The indicator value and ecological amplitude of a species with respect to a quantitative environmental vari­
able can be estimated from data on species occurrence and environment. A simple weighted averaging (WA) 
method for estimating these parameters is compared by simulation with the more elaborate method of Gaus­
sian logistic regression (GLR), a form of the generalized linear model which fits a Gaussian-like species re­
sponse curve to presence-absence data. The indicator value and the ecological amplitude are expressed by 
two parameters of this curve, termed the optimum and the tolerance, respectively. When a species is rare and 
has a narrow ecological amplitude - or when the distribution of quadrats along the environmental variable 
is reasonably even over the species' range, and the number of quadrats is small - then WA is shown to ap­
proach GLR in efficiency. Otherwise WA may give misleading results. GLR is therefore preferred as a practi­
cal method for summarizing species' distributions along environmental gradients. Formulas are given to cal­
culate species optima and tolerances (with their standard errors), and a confidence interval for the optimum 
from the GLR output of standard statistical packages. 

Introduction 

If the relationships between species occurrences 
and values of a quantitative environmental variable 
conform to bell-shaped curves, then each species' 
curve can conveniently be summarized by an indi­
cator value and an ecological amplitude (Ellenberg, 
1979, 1982). The indicator values can subsequently 
be used to predict values of an environmental varia­
ble from species composition, simply by averaging 
the indicator values of species that are present 
(Ellenberg, 1979). The average indicator value can 
be weighted, to take account of differences in spe-

* Nomenclature follows Heukels-van der Meijden (1983). 
** We would like to thank Drs I. C. Prentice, N. J. M. Grem-
men and J. A. Hoekstra for comments on the paper. We are 
grateful to Ir. Th. A. de Boer (CABO, Wageningen) for permis­
sion to use the data of the first example. 

cies abundance and in ecological amplitude 
(Goff & Cottam, 1967; Ter Braak & Barendregt, in 
press). Weighted averaging can also be used to esti­
mate the indicator values themselves (de Lange, 
1972; Salden, 1978). Values of the environmental 
variable are averaged over the samples in which a 
species occurs. (The average can be weighted by 
species abundance, but we consider only presence-
absence data.) Weighted averaging is the basis of 
the ordination technique known as reciprocal aver­
aging (Hill, 1973) and is implicit in Gasse & 
Tekaia's (1983) algorithm to establish a transfer 
function for estimating paleo-environmental condi­
tions (pH) from fossil diatom assemblages. Horn-
strom (1981) used medians, instead of averages, in 
a similar context. But there is a problem with aver­
aging, or taking medians: namely that the result 
can depend on the distribution of the quadrats 
along the environmental variable. When the distri-

Vegetatio65, 3-11 (1986). 
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bution is uneven, all weighted averaging methods 
may potentially give misleading results (Greig-
Smith, 1983, p. 130). 

The estimation of indicator values is fundamen­
tally a regression problem. Indicator values and 
ecological amplitudes can be estimated from 
presence-absence data by logistic regression, with a 
second-order polynomial in the environmental 
variable as linear predictor. This procedure, termed 
Gaussian logistic regression (GLR), fits a curve 
related to the Gaussian species response curve 
(Austin, 1980) but adapted for presence-absence 
data. The indicator value is then the 'optimum' 
(mode) of the curve. Logistic regression is a Gener­
alized Linear Modelling technique (GLIM), and is 
the equivalent for presence-absence data of ordi­
nary multiple and polynomial regression (Dobson, 
1983; McCullagh & Nelder, 1983). Austin, Cun­
ningham & Fleming (1984) showed the usefulness 
of GLM and GLR in their study of the occurrence 
of a range of eucalypt species in relation to temper­
ature, rainfall, radiation and geology. There is no 
good evidence for the exact shape of a species re­
sponse curve; we shall show that GLR is a practical 
method. 

We compare the performance of weighted aver­
aging and logistic regression, using stimulation and 
practical examples. We know from theory that 
logistic regression must give more accurate esti­
mates of species' optima in large datasets in which 
the number of presences is not too small and for 
which the logistic model holds. But is logistic re­
gression also worthwhile when the number of pres­
ences is small, say 10 or 20? There is no advantage 
in using an elaborate technique where a much sim­
pler one would be equally good. Our simulations 
give some idea about the conditions under which 
weighted averaging compares reasonably well with 
logistic regression; but they also show that GLR is 
more generally applicable. Our results are also rele­
vant in choosing between reciprocal averaging and 
Gaussian ordination (Ter Braak, in press). 

Logistic regression 

The 'presence-absence response curve' of a spe­
cies describes the probability, p(x), that the species 
occurs (in a quadrat of fixed size) as a function of 
an environmental variable x. Whittaker (1956), and 

others since, have observed that species typically 
show unimodal (bell-shaped) response curves. The 
'Gaussian response curve' (Austin, 1980) is a simple 
bell-shaped curve in which the logarithm of abun­
dance is a quadratic function of the environmental 
variable. Presence-absence data are more conve­
niently modelled with the Gaussian logit curve, in 
which the logit-transform of probability (Cox, 
1970) is a quadratic function, (Fig. 1): 

1 r P M . u u 
log [- —] = b0 + b,x+b2x

2 = a-
\-p(x 

Vi (x-u)2/t2 (1) 

where u is the species optimum or indicator value 
(the value of x with highest probability of occur­
rence) and t is its tolerance (a measure of ecological 
amplitude). The parameter a is related to the maxi­
mum value ofp(x), which we shall ca\lpmax. When 
pmax is small the shape of p(x) is almost identical 
to that of a Gaussian curve; when pmax is close to 
1 the Gaussian logit curve is flatter near the opti­
mum (Fig. 1). The parameters bo, bi and b2 do not 
have a natural ecological meaning, but they can 
easily be estimated using logistic regression which 
is available in standard statistical packages includ­
ing GENSTAT (Alvey et ai, 1977), GLIM (Baker & 
Nelder, 1978), BMDP (Nixon, 1981) and SAS (Barr 
et at., 1982), and interpretable parameters can be 
obtained from them as follows: 

optimum u=-b\/(2b2) 
tolerance t=\/\l(-2b2) 
maximum probability pmax=P(u) = 

l/{\ + exp(-b0-blu-b2u
2)} 

(2) 

Fig. 1. Gaussian logit curves with «=0, (=1 andp„„ = 0.1 (a), 
0.5 (b), 0.8 (c) and 0.95 (d) and a linear logit curve (e) (x: value 
for the environmental variable, p(x): probability of finding this 
species at a value x). 
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(These formulas assume bi <0. If 62>0 the curve 
has a minimum instead of a maximum). Table 1 
gives a sample program in GLIM (Baker & Nelder, 
1978) for artificial data and Figure 2 shows the 
fitted curve. The sample program shows that this 
procedure of GLR is a special case of the General­
ized Linear Model (see Dobson, 1983 for an in­
troduction): (1) response variable is a //O-variable, 
y, containing the presences and absences of the spe­
cies in the quadrats; (2) error distribution is the 
binomial distribution with total /, also termed the 
Bernoulli distribution; (3) link function is the Iogit-
transform, which links the expected value of y (i.e. 
the probability of occurrence) to (4) the linear 

Table 1. Sample program for Gaussian logistic regression in 
GLIM, with output for artificial data (S.E.: standard error of es­
timate). The program does not provide the estimates for pmaxI 

u and t automatically; these estimates were computed by use of 
Eqs. (2), (A.l) and (A.2). 

PROGRAM 

9 9 9 9 

SUNIT 
SDATA 
SREAD 
20 0 
33 0 
46 0 
60 1 

SCALCULATE 
SCALCULATE 
SYVARIATE 
SERROR 
SLINK 
$FIT 
SDISPLAY 

23 
36 
50 
70 

0 
0 
1 
1 

26 
40 
53 
80 

16' 
X Y2 

0 30 0 
0 43 0 
1 56 0 
0 90 0 

TOTAL = 1 
XQUAD = X*X 
YJ 

BINOMIAL TOTAL 
LOGIT4 

X + XQUAD' 
E %<• 

S.E. 

CONSTANT (bo) 
X (6,) 
XQUAD (Aj) 

/>««« 
u 

( 

- 55 . 5 
1.86 

- 0 .015 
0.90 

62 
5.8 

34.5 
1.15 
0.009 

-
3.3 
1.8 

Comments 
1 16 data values. 
2 (xit y) being read. 
3 The response variable is y containing independent 1/0 data. 
4 Link function is the logit-transform. 
s x and x2 are the explanatory variables to be fitted. 
6 Displays the parameter estimates b0, b\, b2 with standard er-

°£:-°-

Fig. 2. Gaussian logit curve fitted by logistic regression to the 
artificial data (o) of Table 1. 

predictor specified in the FIT-statement. In GLR 
the linear predictor is a quadratic polynomial in x. 
The user does not need to provide initial values for 
the parameters. The approximate standard errors 
of the estimated optimum and tolerance can be de­
rived frd'm the variances and covariances of b\ and 
bi that are provided as options by the statistical 
packages. A confidence interval for the optimum 
can also be calculated. Details of these additional 
calculations are given in the Appendix. 

The optimum cannot be estimated well if it lies 
outside or near the edge of the sampled range. In 
such cases the response curve is said to be truncated 
and bi in Eq. (1) could be set to zero; the effect is 
to fit a sigmoid curve, termed the linear logit curve 
(Fig. 1). Whether this simplification is acceptable 
statistically can be seen by a one-sided significance 
test on the value of b2, in which b2 divided by its 
standard error is compared with the Student /-dis­
tribution with n-3 degrees of freedom (n is the 
number of quadrats). If the null hypothesis (bi > 0) 
is rejected in favour of the alternative hypothesis 
(bi <0), then the optimum is said to be significant. 

A more general approach to statistical testing in 
GLIM is to compare the residual deviance of a mod­
el with that of an extended model (Austin et al, 
1984; Dobson, 1983). The additional terms in the 
model are significant when the difference in re­
sidual deviance is larger than the critical value of a 
chi-square distribution with k degrees of freedom, 
k being the number of additional parameters. (The 
residual deviance is defined by - 2 log-likelihood 
and takes a similar role as the residual sum of 
squares in ordinary multiple regression). For exam­
ple, to test the overall significance of GLR we also 
fit the model with both b\ and bi in Eq. (1) set to 
zero and we compare the difference in residual devi-
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ance with a chi-square with 2 degrees of freedom. 
The tests described in this paper are approximate; 
they are valid when the number of quadrats is large. 

Weighted averaging 

The weighted average for presence-absence data 
is simply the mean of the x-values over those quad­
rats in which the species occurs. Figure 3 shows 
how the weighted average depends on the distribu­
tion of sampled quadrats. Highly uneven distribu­
tions can even scramble the order of the weighted 
averages for different species (Fig. 3c). Truncation 

is an extreme form of uneven distribution, because 
the response curve is then not sampled over the 
whole range where the species can occur. Only in 
the special case of an even or uniform distribution 
over the whole range does the weighted average re­
liably estimate the optimum. The sample standard 
deviation (SD) of the x-values of those quadrats in 
which the species occurs is a simplistic estimate of 
ecological amplitude. Assuming the Gaussian logit 
response curve (1) and an even distribution of the 
quadrats, SD overestimates the tolerance /; the dif­
ference between the expected SD and t depends on 
the value of pmax, but is less than 12% when pmax 

is less than 0.5 (Looman, unpublished manuscript). 

20 ..N 

10 . 

A B 
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(b) 
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(c) 

Design of simulations 

Presence-absence data were generated using a 
Gaussian logit response curve with u and t arbitrar­
ily set to 0 and 1, respectively. We further need to 
specify pmax, the number of quadrats per dataset 
and the distribution of the quadrats along the gra­
dient. Table 2 shows the tested combinations and, 
for each combination, the expected number of 
presences per dataset. In case 1 of the distributions 
the x-values of the quadrats are equispaced on the 
interval from - 5 to 5. In all the other cases the 
jr-values are random. In cases 2-5 their distribu­
tion is uniform with different degrees of trunca­
tion, negligible in case 2, asymmetric in cases 3 and 
4 and symmetric in case 5. Another six cases were 
run with pmax = 0.5 and 125 quadrats only (Ta­
ble 3). In case 6 (Table 3) the curve is unevenly 
sampled with on average three times more quadrats 
in the interval [1, 5] than in the interval [-5, 1], but 

quadrats: 

without A or B 

with A 

with B 

Fig. 3. The response curves of imaginary species A and B (a), 
the occurrence of these species in 80 samples, distributed evenly 
(b) or unevenly (c) along the environmental gradient. The 
weighted averages are indicated with arrows. The two sampling 
designs yield weighted averages that are in reversed order (p: 
probability of occurrence, N: number of quadrats, x: environ­
mental variable). 

Table 2. Expected number of occurrences per dataset in the 
simulations specified by maximum probability of occurrence 
(/W,)« number of quadrats and distribution of quadrats (case). 
(Ufa, bj: uniform distribution of quadrats on the interval a to 
b). 

c 
A 

s 
E 

Pmn 

no. of QUADRATS 

1 EQUAL SPACING 
2 U[- S, 5] 
3 Ui-1,51 
4 U[ 0, 5] 
5 Ul-1, 1] 

0.1 

375 

10 
10 
13 
10 
32 

0.5 

65 

10 
10 
13 
10 
30 

0.9 

25 

10 
10 
12 
10 
22 

0.5 

125 

19 
19 
25 
19 
57 

0.9 

50 

19 
19 
23 
19 
44 

22 



with quadrats uniform within both intervals. 
Case 7 consists of quadrats uniformly distributed 
in the interval [ -2, 5] but with quadrats from the 
interval [-1.5, 0.5] removed, giving a case with 
moderate truncation and an internal gap. For the 
remaining cases (8-11) we used normal (Gaussian) 
distributions of quadrats with different means and 
standard deviations; case 8 gives symmetric and 
cases 9 and 10 asymmetric truncation. In case 11 
the curve is sampled over a short range with 95% 
of the quadrats in the interval [-0.5, 1.5]. 

Weighted averaging (WA) and Gaussian logistic 
regression (GLR) were obtained for each dataset 
using GENSTAT (Alvey et al, 1977). For each com­
bination in Tables 2 and 3 we simulated 100 data-
sets and summarized the results as means, medians 
and standard deviations of the weighted average 
and GLR-estimates calculated for each dataset. In 
cases where no optimum could be calculated 
(bi > 0), we treated the regression estimates as miss­
ing values. Estimated optima are also unreliable 
when bi is negative but close to zero; we therefore 
discarded simulations in which the estimated opti­
mum lay more than ten times the tolerance outside 
the sampled interval. We also calculated means and 
standard deviations of the regression estimates over 
the cases in which the optimum was significant at 
the 10%-level. This selection summarizes the sig­
nificantly non-monotone curves. No such selection 
was applied to weighted averaging, because in prac­
tice the weighted average is calculated irrespective 
of such evidence for unimodality. The efficiency of 
the weighted average with respect to the regression 
estimate for the optimum was then expressed as 
MSE(GLR)/MSE(WA) where MSE is the mean 
squared error, i.e. variance plus squared bias. 

Comparison of WA and GLR 

Equal spacing and uniform distribution without 
truncation 

WA is as efficient as GLR when the x-values are 
equispaced (case 1). However, when thex-values are 
randomly distributed on a large interval (case 2), 
the efficiency of the weighted average is less. The 
efficiencies calculated from the runs of case 2 with, 
on average, 10 occurrences per simulated dataset 
(Table 2) were 1.0, 0.84 and 0.54 for pmax = 0.l, 

Fig. 4. The efficiency (ordinate) of weighted averaging with re­
spect to Gaussian logistic regression to estimate the optimum for 
uniformly distributed quadrats without truncation (case 2, Ta­
ble 2) decreases with increasing maximum probability of occur­
rence (abscissa). 

0.5 and 0.9, respectively, in agreement with theoret­
ical values (Fig. 4) derived by Ter Braak & Baren-
dregt (in press). The variance of the regression esti­
mate in the simulation was slightly (<10%) larger 
than its theoretical value of f2/(no. of occurrences) 
(cf. Ter Braak & Barendregt, in press), with the ex­
ception of the runs with only 25 quadrats (Table 2) 
where the difference was 50%. 

Effect of distribution of quadrats 

Table 3 summarizes the results of cases with 
125 quadrats andpmDX = 0.5 and confirms that WA 
is sensitive to the distribution of the quadrats along 
the gradient, showing significant bias (/-test, 
P<0.05) in 7 cases. The optimum could not be 
estimated by GLR in 1% of the simulated datasets 
of Table 3, except in the cases 4 and 11 where this 
percentage was about 15%. GLR removes the bias 
of WA when the truncation is not too severe 
(cases 6-10). When it is severe (cases 3, 4 and 11) 
the regression estimate of the optimum shows a 
large bias in the opposite direction, but this bias is 
small in a statistical sense, as the standard error is 
high. The medians of the estimates show small bias 
in the same direction as WA. When the estimated 
curves are first tested for unimodality against 
monotonicity at the 10%-level, the remaining opti­
ma (u-sig) show selection bias; they are biased be­
cause an optimum is more likely to be significant 
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Table 3. Weighted averaging and Gaussian logistic regression compared on simulated datasets with eleven distributions of 
125 quadrats along the environmental variable. Shown are means ± standard deviations and medians (md), multiplied by 100. The 
entries in the table must be compared with the true values: 0 for u, 100 for t, 50 for pmax, 112 for SD. The cases are explained in the 
text, m: average number of occurrences; N-sig: number out of 100 datasets showing a significant optimum and summarized under 
the headings u-sig and t-sig; N a±b: normal distribution of quadrats with mean a and standard deviation b). For further symbols 
see text and Table 2. 

CASE 

1 EQUAL SPACING 
2 U[-S, 51 
3 Ul-1,51 
4 U[ 0, 51 
5 Uf-1, 11 
6 UNEVEN 
7 GAP 
SN0 ±2 
9 N 2 ±2 

10 N 3 ±2 
11 N0.5±0.5 

m 

19 
19 
25 
19 
58 
15 
15 
33 
22 
14 
55 

WA 

2±21 
3 ±28 

39 ±14 
91 ±14 

1± 8 
51 ± 33 
80 ±29 

1±19 
50± 19 
72 ± 24 
44± 6 

u 

2 ± 21 
3± 25 

- 2 2 ± 76 
- 8 8 ±403 

- 3 ± 1 1 6 
6 ± 30 
3± 35 
0 ± 22 

- 2 ± 37 
0 ± 62 

- 7 0 ±488 

md-u 

0 
2 
0 

33 
2 
7 
1 
1 
4 
9 

14 

u-sig 

2±21 
3 ±25 
3±31 

60±21 
2±11 
6 ± 3 0 
2±35 
0 ± 2 2 
0 ± 3 2 

11 ± 40 
27 ±18 

SD 

108 ±16 
111±16 
86± 11 
63±11 
55 ± 3 

114±21 
106 ±29 
98± 11 
97 ±14 
91 ± 1 8 
45 ± 4 

/ 

94 ± 
99 ± 

104 ± 
104 ± 
120± 
94 ± 
93 ± 
99 ± 
99 ± 
94 ± 

133± 

16 
16 
31 
67 
80 
17 
22 
15 
21 
28 
54 

md-t 

91 
98 
98 
80 
89 
95 
93 

100 
96 
91 
90 

t-sig 

94 ±16 
99 ±16 
96 ±19 
71 ±16 
67 ± 8 
94 ±17 
93 ±22 
99±15 
99 ±20 
91 ±21 
66±11 

Pmw, 

52 ± 10 
51 ± 10 
53 ± 8 
57 ±19 
54± 7 
54± 13 
55± 13 
51± 7 
51± 8 
54 ± 12 
55± 13 

N-sig 

100 
100 
84 
52 
30 

100 
98 

100 
99 
94 
34 

when it lies inside than when it lies outside the sam­
pled interval. This bias is less than with WA. The 
efficiency of WA compared to GLR after the sig­
nificance test lies between 0.2 and 0.6 except in the 
cases 1 and 2 and the unnatural cases S and 8 in 
which the quadrats lie symmetrically with respect 
to the true optimum. 

The sampled SD underestimated the true SD in 
cases 3,4, 5 and 11 with severe truncation (Table 3). 
Overestimation was never pronounced. GLR esti­
mated the tolerance well; the bias shown in Table 3 
is not significant (P>0.05). The median of the esti­
mated tolerance is slightly biased downwards. After 
the significance test for unimodality the bias is 
downwards, but less than with the sample SD. GLR 
slightly overestimates the maximum probability 
with and without selection, the mean and median 
of the estimates being close together. WA provides 
no estimate for this probability.. The remaining 
simulations of the cases 1 - 5 (Table 2) showed 
qualitatively similar features as reported here for 
pmax = 0.5 and 125 quadrats. 

The effect of number of quadrats 

The efficiency of WA can be expected to decrease 
to zero with increasing numbers of quadrats in 
those cases in which WA is biased. This is because 
estimates by GLR are consistent, i.e. the bias in the 
estimates becomes smaller as the number of quad­
rats increases, and the variances become negligible 

with respect to the bias in WA. However, in our 
simulations with only 10-13 occurrences per data-
set (Table 2) the variances are appreciable; conse­
quently the efficiencies for estimating the opti­
mum, after the significance test, were high (>0.9 in 
10 out of the 12 simulations). Even 375 samples are 
not enough to get markedly better estimates with 
GLR than with WA, when pm a x = 0.1! 

Standard errors and confidence interval 

First, the standard errors found in the simula­
tions are compared with the approximate standard 
errors provided by GLR for each estimated opti­
mum and tolerance (see Appendix for the formulas 
used). The latter standard errors showed often a 
skew distribution with large outliers. As a result the 
average and the median of the estimated standard 
errors differed enormously, the average being much 
higher and the median slightly lower than the 
standard error found by simulation. Clearly the es­
timated optimum or tolerance is unreliable when 
the estimated standard error is huge, but when it is 
low, it may be over optimistic about the precision 
achieved. Secondly, in 1 085 ( = 40%) of all simula­
tions a 95%-confidence interval could be calculat­
ed (see Appendix). The true optimum lay outside 
the 95%-confidence interval in 3.9% of these 
1 085 simulations, hence the interval gives higher 
confidence than its nominal value of 95%. 
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Examples with real data 

The first real dataset concerns soil acidity (pH) 
and the occurrences of 15 species in 100 meadow 
samples, selected at random from the study of 
Kruijne et al. (1967). Figure 5 shows the fitted 
Gaussian logit curves for seven contrasting species. 
The Spearman rank correlation between the opti­
ma as estimated by GLR and the weighted averages 
was 0.93. (The optima for two species for which 6i 
was positive, but non-significantly different from 
zero, were set to + oo or - oo, depending on wheth­
er the value of b\ in the fit or the linear logit curve 
was positive or negative, respectively). However, the 
range of the weighted averages was much smaller 
than the range of the estimated optima (1.0 against 
more than 4.0 pH-units). A 90%-confidence inter­
val for the optimum could be calculated for five 
species. For one of these species (Bellis perennis) 
the weighted average lies outside this confidence in­
terval. 

In the second example we used a much larger set 
of data, taken from Reijnen et al. (1981) and 
Gremmen et al. (1983). This dataset concerns the 
relation between species occurrence and soil mois­
ture supply capacity in the Pleistocene part of 
West-Brabant (The Netherlands) with sandy to 
loamy soils. The distribution of soil moisture sup­
ply capacity in the 994 samples was markedly 

Number of sites in each class 

Fig. 5. Probability of occurrence of seven contrasting species in 
relation to soil acidity (pH) in meadows, as fitted with logistic 
regression. The curves can be identified by the code near their 
optimum indicated by dotted lines. The species arranged in or­
der of their optima are: Agrostis canina (AC); Stellaria grami-
nea (SG); Alopecurus geniculates (AG); Planlago major (PM); 
Bellis perennis (BP); Hordeum secalinum (HS); Glechoma 
hederacea (GH). 

skewed, with many more 'wet' than 'dry' samples. 
For 121 of the 221 species that occurred in more 
than five samples, a 90%-confidence interval for 
the optimum could be calculated. The weighted 
average lies outside this interval for about half (65) 
of these species, always being on the wetter side of 
the confidence interval. Although pmax was less 
than 0.1 for about 75% of the species, WA is un­
reliable for estimating indicator values in this large 
dataset. 

Discussion 

WA disregards species absences. Ashby (1936) 
pointed out that disregarding species absences may 
lead to erroneous conclusions, for instance that 
telegraph poles show an optimal pH-value (see 
Greig-Smith, 1983, p. 130). This effect is due to the 
distribution of quadrats. Nevertheless, WA is still 
being.used (see Introduction), perhaps because of 
its simplicity. Our simulations provide a better rea­
son; they suggest that WA performs reasonably well 
when the distribution of the quadrats along the en­
vironmental variable is not too uneven and when 
the response curve is not severely truncated. For 
rare species (species with low maximum probability 
of occurrence and/or narrow tolerance) WA is 
nearly as efficient as GLR in most situations. This 
result is irrespective of the distribution of the quad­
rats, provided the variance of the estimated opti­
mum is large compared to the potential bias of the 
weighted average. In other cases WA can give mis­
leading results. It is therefore safest always to use 
GLR. 

To estimate optima and tolerances of species, the 
optima should ideally lie well within the range of 
environmental values of the samples. Further sam­
pling considerations are provided by Mohler (1983). 
Attention should also be paid to confounding vari­
ables, i.e. variables that are influential and show a 
relation with the variable under consideration (see 
e.g. Breslow & Day, 1980). Ignoring confounding 
variables may give, for example, spuriously bimo-
dal response curves (Austin et al., 1984). The real 
power of logistic regression lies in the simultaneous 
analysis of the effect of several environmental vari­
ables, including potentially confounding variables 
(see Appendix). The Gaussian logit response curve 
is then just a convenient starting point in the proc­
ess of model building. 
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Appendix 

Standard errors for estimated u and t; confidence interval 
for u. 

Denote the variance of the estimates of b\ and b2 in mode! (1) 
by Vn and v22 and their covariance by v]2. Using Taylor expan­
sion we obtain that the variance of the estimated optimum and 
tolerance are approximately 

var(u) = (vn+4MVi2 + 4H2V22)/(4&2) 

var(f) = v22/(-8&2) 

(A.1) 

(A.2) 

An approximate 100(1- a>%-confidence interval for the opti­
mum is derived from Fiellers theorem (see Finney, 1964, 
p. 27-29). Let ta be the ordinary Student /-deviate at chosen 
probability level a and with n-3 degrees of freedom (n is the 
number of quadrats). For example, ta = 2.00 for a 
95%-confidence interval and 63 quadrats. Calculate 
g=(tivi2)/b

22 and 

D=4bl var(M)-g(v,i-v?2/v22) (A.3) 

i W , uupvtT = [u+Vi g v,2/v„±V4 ta^D)/b2\/(\-g) (A.4) 

where the symbol ± is used to indicate addition and sub stfac­
tion in order to obtain the lower and upper limits of the confi­
dence interval, respectively. If b2 is not significantly different 
from zero (g>l), then the confidence interval is of infinite 
length and, taken alone, the data must be regarded as valueless 
for estimating the optimum. 

If model (1) is extended with another explanatory variable z 
to, for example (Austin et al., 1984: Table 2) 

log [p/(l -/>)] = bo + bix+b2x
2 + Ciz+c2z

2 (A.5) 

then the coefficients bo, b\, b2, ct and c2 can, again, be estimat­
ed with the mentioned statistical packages, together with vari­
ances and covariances. This model can easily be summarized by 
optima and tolerances with respect to x and z, because there is 
no interaction term, like x.z, in the model. To calculate the confi­
dence interval for the optimum of respect to x (or z) from this 
model, the given formulas are still valid, apart from the number 
of degrees of freedom in ta which must now be n-5. 
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ABSTRACT 

A common bioassay problem in applied ecology is to estimate values of an environmen­
tal variable from species incidence or abundance data. An example is the problem of 
reconstructing past changes in acidity (pH) in lakes from diatom assemblages found in 
successive strata of the bottom sediment. The method of weighted averaging is based on 
indicator values, the indicator value of a species being, intuitively, the value of the 
environmental variable most preferred by that species. Indicator values of all species 
present in a site are averaged to give an estimate of the value of the environmental variable 
at the site. The average is weighted by species abundances, if known, with absent species 
having zero weight. Using field data, several authors have compiled lists of indicator values 
of species for various environmental variables for use in weighted averaging, e.g. pH 
indicator values of diatom species. In this paper the properties of the method of weighted 
averaging are studied, starting from the idea that indicator values are parameters of 
response curves that describe the expected abundance of each species in relation to the 
environmental variable. In practice the response curves must be estimated by regression 
methods, but here they are assumed to be known in advance. Conditions are derived under 
which the weighted average is a consistent and efficient estimator for the value of an 
environmental variable at a site. Because weighted averaging is central to the ordination 
technique known as reciprocal averaging or correspondence analysis, the conditions also 
define models that are implicitly invoked when reciprocal averaging is used in ecological 
ordination studies. 

1. INTRODUCTION 

Plant species need particular environmental conditions for regeneration, 
establishment, and growth. It should therefore be possible to infer the 
environmental conditions at a site from the species that occur there. This 
type of bioassay has become popular [3, 6, 9,19] with the publication of lists 
of indicator values of species with respect to various environmental variables. 
For example, Ellenberg [8] has published indicator values of Central European 
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FIG. 1. Gaussian logit response curves of the probability P = nk(x) that a species (k) 
occurs at a site, against environmental variable x. Two sets of species are displayed, each 
with r = l and optima with spacing t/ = l, having maximum probabilities of .5 and .9. 
respectively. x0 is the value of x at a particular site. 

plants with respect to site variables including soil moisture, pH, and nitrogen 
level. Ellenberg based the indicator values on his field observations of the 
conditions under which particular species occurred and, to a lesser extent, on 
laboratory experiments. For example, a plant species may prefer a particular 
soil moisture content, and not grow at all in places where the soil is either too 
dry and too wet. Intuitively, the indicator value is then the value most 
preferred by a species (cf. Figure 1). Ellenberg [8] did not give a precise 
definition of "indicator value." However, Ellenberg [7, 8] did describe a 
method to predict the value Of an environmental variable: the method 
consists simply of averaging indicator values for the plant species that are 
present. For quantitative data, the average is weighted by species abundance, 
with absent species carrying zero weight. This method has been applied to 
vascular plants [12,17, 21, 23, 25], to diatoms [20], and to aquatic organisms 
and the biological evaluation of water quality [19]. 

It might be thought easier to measure environmental variables at a site 
than to infer their values from the species that grow there. But often it is not. 
For example, total values over time may be required; repeated measurements 
are costly, while plants automatically integrate environmental conditions over 
time. This is one of the ideas behind biological evaluation of water quality 
and biomonitoring in general. There are also situations where it is impossible 
to measure environmental variables by direct means, whereas a biological 
record does exist. An example is the reconstruction of past changes in acidity 
(pH) in lakes, from diatom assemblages found in successive strata of the 
bottom sediment; this technique is an important tool in acid rain research. 
Most researchers in this area use the indicator values for acidity of diatom 
species as compiled by Hustedt in the 1930s [2]. A more sophisticated 
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method, yet to be implemented, is to build firstly a (nonlinear) regression 
model from data on species occurrences and present pH in lakes, which 
yields for each species an estimated response curve for the probability of 
occurrence versus pH; and secondly to use these response curves for the 
calibration of pH from species data, for example by maximum likelihood 
estimation. Here the indicator value of a species is just a parameter of the 
response curve of that species, the mode of the curve being one possible 
definition of the indicator value. 

In this paper we study the properties of weighted averaging of indicator 
values to estimate the value of a continuous environmental variable at a site. 
We do this by seeking conditions under which weighted averaging compares 
favorably with methods based on explicit response curves. We use assump­
tions (Section 2) that idealize the real world, among others that a single 
environmental variable determines the species composition at a site and that 
the response curves of the species with respect to this variable are already 
known. Certainly, weighted averaging is of little value if it has undesirable 
properties under ideal assumptions. On the other hand, there is no advantage 
in using an elaborate technique if a simpler one would be equally good. We 
answer two questions: 

(1) How should indicator values of species be defined in terms of re­
sponse curves to ensure that the weighted average is a consistent estimator? 
(The weighted average is called consistent if it converges in probability to the 
true value of the environmental variable as the number of species available 
increases.) 

(2) What should the response curves look like to ensure that the weighted 
average is an efficient estimator? (An estimator is called efficient if its mean 
squared error is minimum.) 

2. WEIGHTED AVERAGING AND RESPONSE CURVES: 
DEFINITIONS 

Let x denote a quantitative environmental variable, and x0 the value of 
this variable at a particular site. We want to estimate this value x0 by 
checking which species (out of a large number) are present at that site or, 
more generally, the abundance of each species. Let Yk be the abundance 
(Y t »0 )o f the kth species (fc = l, 2,3,...), and let uk be its indicator value, 
usually taken from a published list of indicator values. To estimate x0, 
ecologists commonly use the weighted average [7-9] 

L J*"* 
* 
En ' 
k 

(2.1) 
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where summations are over all species. To make sense, i W A and hence the 
values for uk must have the same dimension as x. The indicator values are 
therefore location parameters on x. 

To be a potential indicator, a species must show a distinct relation to the 
indicated environmental variable x. We define the relations between species 
and the environmental variable by a statistical response model with a 
response curve nk(x), a known function of x, for each species k. itk(x0) 
specifies the expectation of the value Yk observed at the site with value x0 for 
x. The observational data will be assumed to be independent random 
variables with variances depending on the expectations only. The variance of 
Yk is therefore a known function vk(x) — v*(p.k(x)). For presence-absence 
data Yk is a Bernoulli variable and nk(xa) is the probability that the /cth 
species is present at a site with x = x0. Then v*(p) = /i(l — n). For counts, 
the data may be assumed to have a Poisson distribution so that o*(/i) = fi, 
whereas for continuous quantitative data with constant coefficient of varia­
tion [«*(fi) = qi2] the data could have a Gamma distribution. 

We consider response curves that form a location family, i.e. have identi­
cal (but arbitrary) shape and different positions along the real line. Formally, 
Hk(x) = p(x - uk) for some function /»(•) that is almost everywhere continu­
ous, and with location parameters for which we take the indicator values 
{ uk }. It follows that vk(x) = v(x - uk), where [>(•) is the variance function 
corresponding to ji(-). We use asymptotics in which the number of species 
available for the estimation of x0 increases indefinitely in such a way that the 
indicator values become increasingly densely spaced on every finite interval. 

3. CONSISTENCY AND THE DEFINITION OF INDICATOR VALUE 

Whether the weighted average is a "good" estimator depends on (1) the 
shape of the response curves, (2) the definition of indicator value, and (3) the 
distribution of the indicator values along the environmental variable. In this 
section we reverse the reasoning: we require that the weighted average be a 
consistent estimator of x0, and from that requirement we derive conditions 
on the response curves, a definition of indicator value, and conditions on the 
distribution of the indicator values. 

We express the number of indicator values at the point x by \[Hx(x)-
Hx(x-0)], where X is the average number of indicator values per unit 
length, Hx(x - 0 ) = limvT;( Hx(y), and Hx() is a nondecreasing right-con­
tinuous stepfunction [in the terminology of measure theory, Hx() is the 
distribution function of a discrete measure]. We suppose that for A -»oo 
ffx() converges to a distribution function with bounded and continuous 
derivative h(-). h(-) is the limiting density function of the indicator values. 
Now, xWA = T/R, where T= \-lT.kYkuk and R = \-lEkYk. It follows that 
T has expectation \~1'Lkukn(x0 - uk) = fup(x0 — u)dHx(u), which for 
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61 

I up(x0 — u)h(u) du = x0fn(u)h(x0 - u) du- Iun(u)h(x0- u) du 

(3.1) 

Moreover, var(7")-»0 (X->oo) if and only if }x2v(x)dx exists; then T 
converges in probability to (3.1). Similarly, R — X -1E t>* converges in prob­
ability to fii(u)h(x0 - u) du > 0. Therefore T/R converges to x0 if and only 
if fufi(u)h(x0 — u)du = 0. The latter condition should hold for every value 
of JC0; this condition may be fulfilled if the function A (A:) is constant, i.e. if 
the indicator values are evenly distributed. For particular /i( •), certain almost 
periodic functions h( •) might do as well, but we believe these functions to be 
of no practical importance. For some f i() , e.g. the Gaussian curve [1, 9], 
constant />(•) is a necessary condition. If h(x) = c, we get /«fi(u)du = 0: 
the centroid of fi(-) must be equal to zero. Consequently, the centroid of 
Hk(x) = p(x - uk) must be equal to uk, or rephrasing, the indicator values 
must be the centroids of their response curves, 

jxiik(x) dx 
(3.2) 

This definition of indicator value is necessary for the weighted average to be 
consistent. Note that defined in this way, the indicator value of a unimodal 
response curve is only equal to the most preferred value (mode or optimum) 
if the curve is symmetric. Note also that we had to assume in the derivation 
that both integrals in (3.2), and jx2v(x)dx, exist. The weighted average is 
inconsistent for response curves that do not satisfy these conditions, e.g. 
monotone increasing or decreasing functions. The weighted average is also 
inconsistent for data with a constant variance function. 

In conclusion, the weighted average is a consistent estimator of x0 (for 
X -» oo) provided (1) the three aforementioned conditions cu integrals of the 
response and variance curve hold, (2) the indicator values are centroids of 
the response curves, and (3) the indicator values are evenly distributed along 
the real line. Using central limit theorems and laws of large numbers valid for 
independent but nonidentically distributed random quantities [5], it follows 
that the weighted average is then asymptotically normal with variance [11, 
Equation (10.17), p. 247] 

* -*o) °*(*o) 
(3.3) 

EP*(*O) 
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4. THE MAXIMUM LIKELIHOOD APPROACH 

When response curves can be expressed in parametric form, x0 can be 
estimated by the method of maximum likelihood [4]. Maximum likelihood 
estimators are often good estimators in large samples: under mild conditions 
they are consistent and asymptotically normal with minimal variance [4, 5]. 
These assertions hold for our applications; the proof thereof goes along 
similar lines as in the standard case of independent and identically distrib­
uted random variables. Maximum likelihood is more widely applicable than 
weighted averaging. 

For Bernoulli, Poisson, or Gamma random variables the maximum likeli­
hood estimator is the solution for x0 of the maximum likelihood equation 
[14] 

SlogL p'k(x0)[Yk-pk(x0)] 
-j. L 7—\ -0, (4.1) 

8x0 k vk(x0) 

where ii'k(x0) denotes the derivative of nk(x) with respect to x, evaluated at 
x0. Often the solution of (4.1) can only be obtained by numerical methods. 
The asymptotic variance of the maximum likelihood estimator is, as usual, 
the inverse of the information [4] and equals 

y (M'*(*O)}2 

* B * ( * O ) 
(4.2) 

When the distribution of Yk is not fully specified, Equation (4.1) is a 
quasi-likelihood equation, which often gives estimators with good asymptotic 
properties [14]. This extension of (4.1) and (4.2) is important when count 
data are overdispersed with variance proportional to the mean. 

5. EFFICIENCY AND SHAPE 

For large numbers of species maximum likelihood will in genera' be more 
efficient than weighted averaging, but the latter method is much easier to use. 
It is therefore of interest to investigate whether there exists a shape of the 
response curves for which weighted averaging achieves, in terms of mean 
squared error, asymptotically unit efficiency with respect to maximum likeli­
hood. With the species packing model [13, 22] in view, we adopt the location 
family of Section 2 with equispaced indicator values. In this situation both 
methods are consistent. It is therefore sufficient to compare the variances 
(3.3) and (4.2) for spacing d -» 0. It is proved in the Appendix that, 
asymptotically, uML < uWA with equality if and only if 

, , . (*-»*)"*(*) , , n 
/»*(*) 7i (51) 
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for t a nonzero constant. The differential equation (5.1) has a solution of the 
form 

1 ( X - UL) 

/ ( * * ( * ) ) - « - 2 1 - ^ r t L . (5-2) 

where the function / (•) depends on the variance function. The curves in (5.2) 
form a generalized linear model [14,16], and the function / ( • ) is precisely the 
"natural" link function of such a model: the logistic function /(fi) = 
log[/t/(l - /i)] for Bernoulli variables, the logarithmic function f(p) = log ft 
for Poisson variables, and the inverse function /( / i) = - 1/fi (and a < 0) for 
Gamma variables. In (5.2) the parameter a is the maximum of / (•) attained 
at the indicator value, mode, or optimum uk, and /, termed the tolerance, is a 
measure of curve width. For Poisson variables (5.2) is precisely the Gaussian 
response curve that is frequently invoked in plant ecological studies [1, 9]. 

For presence-absence data we propose to term (5.2) the Gaussian logit 
response curve (Figure 1). Its formula is 

exp{a-K*-K t)
2A2) 

M*) = i - ^777 • <5-3 ) 

l + exp{a-\(x-uk) /t2) 

Instead of a we may use the parameter pmax =1 / (1+ e~°), the maximum 
probability of occurrence. If pmax -» 0, \ik (x) approaches the Gaussian curve. 
Thus for many rare species, the two models are effectively the same. Using 
(3.3) and (4.2), we found numerically that for Bernoulli variables and 
Gaussian rather than Gaussian logit curves, the efficiency (WML/^WA) °f 
weighted averaging decreased from 1.0 to 0.8 when pmax was increased from 
near zero to 0.9. 

The maximum likelihood variance (4.2) can be simplified by substitution 
of (5.1), which gives 

I 

L("*-*o) 2 «i t (*o) . (5.4) 
k 

Because of the equal spacing of the indicator values, 

E ( " * - *o ) 2 e* ( *o ) " ! ' 2 £ f t t ( * o ) - (5-5) 
A k 

For integrals the approximation (5.5) is an equality, as follows from (5.1) and 
integration by parts. Numerical calculations showed that the approxima­
tion in (5.5) is quite good, provided the indicator values are equispaced 
on a "large" interval / around x0 with spacing less than /, where / = 
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{ u | n(x0 - u) > S, u e R} for small 5. With (5.5) we obtain 

t2 

U M L = V 7 T ( 5 ' 6 ) 
LM*(*O) 

A 

Substitution of (5.5) in (3.3) gives the same result for vv/A. A sample-based 
version of (5.6) is t2/T,kYk. 

We carried out a simulation study in which presence-absence data were 
generated according to the model (5.3) with t = 1, equispaced optima (d < 1: 
d = \, G.5, 0:25, 0.12, 0.06, or 0.03) on the interval ( -5,5) and maximum 
probability either .1 or .5 or .9. The minimum number of species was 
therefore 10. x0 was always chosen close to the center of the interval, 
between 0 and d/2. The simulations were constrained to give at least two 
species occurrences per sample. In each case 1000 samples were generated. 
For each sample x0 was estimated by weighted averaging and by maximum 
likelihood. All cases showed an efficiency in terms of mean squared error of 
1.00, even when only 10 species were positioned on the interval. In most 
cases the mean squared error of both SWA and xML exceeded the theoretical 
variance (5.6), but the excess was less than 12% when the average number of 
species occurrences per sample was larger than 5. 

6. VARYING SPACING, MAXIMA, AND TOLERANCES 

For the "optimal" response curves (5.2) the weighted average still has 
asymptotically unit efficiency when the species can be divided into sets such 
that within each set the species have equal maxima and equispaced optima 
with spacing less than t (Figure 1). An important example arises when the 
species are divided into sets on the basis of their response to another 
environmental variable. The result follows from (5.5): for each set of species 
(5.5) holds and can be substituted for each set in (3.3) and (5.4), which leads 
to (5.6) in both cSses. However, this trick does not carry through when the 
tolerance varies between species, because substitution of (5.5) now involves 
different tolerances for different sets. As a result the efficiency can drop 
considerably when the tolerance varies. For example, with two tolerances 
differing by a factor of two, the efficiency drops to ca. 0.6 in the logistic 
model with maximum probability of occurrence .5. Full efficiency can then 
be retained by using a tolerance-weighted version of the weighted average, 

Ykuk I Yk 

*WAT = L — — / L -j • ( 6 1 ) 

In (6.1) good indicator species get more weight than bad ones, an intuitively 
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reasonable idea used already by Zelinka and Marvan [24], The results of this 
section suggest that equality of tolerances is a more critical assumption in the 
weighted average (2.1) than equality of maxima and equal spacing. 

7. RANDOM INDICATOR VALUES AND RANDOM RESPONSE 
CURVES 

The shapes of response curves may vary between species. In this section 
we mimic this variability by assuming that response curves arise from a 
"superpopulation" model consisting of three parts: 

(1) A Poisson point process P that generates indicator values {uk} on the 
real line with intensity function \h(x) [X > 0 and h(x) > 0 for every x]. 

(2) A stochastic process S that generates shapes M(x) for response 
curves, independently for any indicator value uk generated by P. Any 
realization of M(x) is a bounded, nonnegative continuous function on the 
real line such that x2M(x) and x2V(x) eLL(-oo,oo), where K( ) is the 
variance function corresponding to M ( ) , and jxM(x) dx = 0. Expectation 
and variance with respect to S are denoted by Es and vars. 

(3) A translation of M(x) over uk: Mk(x) = M(x - uk). 

The model will be termed the translation model. It is proved in the 
Appendix that the weighted average is consistent (X-»oo)ifA(;t)—1. Then 
P is a homogeneous Poisson process, and the indicator values are said to be 
randomly spaced. The asymptotic variances are then 

j(u-x0)
2Es{V(u)+M2(u)}du 

^JEsM(u) du 
(7.1) 

and 

xJEs\-nuT)du (7.2) 

respectively. «WA is always strictly greater than uML. For the response curves 
(5.2) (process S degenerate) and random spacing, the efficiency of weighted 
averaging increases to unity when the maximum of n(-) decreases to 0, as 
shown in Figure 2 for logistic / ( •) . To obtain the variances in the case of 
equal instead of random spacing between the indicator values, M2(u) in 
(7.1) must be replaced by vars{ M(u)}, whereas (7.2) remains the same. In 
this case uML < uWA with equality if and only if the response curves are 
nonrandom and satisfy (5.2). 
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FIG. 2. The efficiency of weighted averaging with respect to maximum likelihood 
against the maximum probability of occurrence (pmax) for Gaussian logit curves with 
randomly spaced optima and equal maxima and tolerances [eff = vML/vWA = (t/r)2]. 

To simplify (7.1) for Bernoulli variables we define the commonness a and 
the standard deviation T of the expected response curve j i ( x ) = Es{M(x)} 

by 

--jn(x)dx and 
]x2fi(x) dx 

(7.3) 

From (7.1) we obtain [cf. (5.6)] 

T 
(7.4) 

An unbiased estimator for t is the usual sample variance of 
the indicator values of the species present at the site. It is only in this special 
case that the indicator values might be considered as independent "samples" 
from a probability distribution. 
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Simulations, as in Section 5, with Gaussian logit curves (5.3), but with 
random, instead of equispaced, optima showed calculated efficiencies that 
agreed with the asymptotic efficiencies shown in Figure 2. The mean squared 
errors exceeded the theoretical variances (5.6) and (7.4), the convergence to 
the theoretical variances being slower than in Section 5. For random optima 
the excess was less than about 15% when the average number of species 
occurrences per sample was larger than 10. 

8. DISCUSSION 

This paper shows that a method proposed and used by community 
ecologists, namely weighted averaging, performs well under a model advo­
cated by evolutionary ecologists, namely the species packing model [13]. This 
model is based on the idea that competing species evolve to occupy maxi­
mally separated niches with respect to a limiting resource. This idea applies 
as well to the occurrence of competing species along habitat variables [22]. 
Response curves should therefore have minimal overlap; hence, equally 
spaced indicator values. It should be noted that our asymptotic theory 
ignores another consequence of this model, namely that there exists a limiting 
similarity beyond which competing species cannot coexist. The minimal 
spacing derived by MacArthur and Levins [13] is about equal to the standard 
deviation of the response curves. But direct gradient analyses often show 
much closer spacings than that [9, 22]. Moreover, in lists of indicator values 
such as Ellenberg [8], the values coincide for many species. Of course, many 
species are coexisting without seriously competing. 

Our results suggest that the distribution of the indicator values along the 
indicated variable should be even. But for Ellenberg's [8] list with about 2000 
plant species the indicator values show uneven and markedly skew distribu­
tions [6, Figure 11]. A change of scale of the environmental variables could 
alleviate this problem. However, such a change modifies the response curves 
as well as their centroids. If the indicator values are centroids on the present 
scale, a nonlinear change of scale would destroy this desirable property. An 
alternative estimator is obtained by replacing Yk with Yk/h(uk) in (2.1). 
This estimator can be shown to be consistent under the model of Section 7. 
However, when the species packing model does hold in a part, say A, of a 
mu/ttdimensional habitat space, possibly uneven marginal distributions of 
indicator values do not destroy the attractive properties of the usual weighted 
average (2.1). More specifically, when the indicator values are regularly 
spaced and the value x0 of the site lies well within A (i.e., there is a subset B 
of A such that B= {u|>i(x0-u) > 8, x 0 e R " , u e R " } for small 8), then 
for decreasing spacing along all n environmental variables: 

(1) The weighted average is consistent if each indicator value is the 
centroid of the response curve that is obtained after integration of 
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the corresponding response surface over the remaining n - 1 dimensions, and 
the integrals, defined in Section 3, of the "marginal" response curve exist. 

(2) The weighted average has asymptotically unit efficiency with respect 
to maximum likelihood if the response surfaces are the multivariate extension 
of (5.2), namely 

/ ( M * ( * l . * 2 . • • • . * „ ) ) 

l / ( ^ i - " * i ) 2 , ( ^ 2 - « < c 2 ) 2 , (x„-uka)
2\ 

— 2 — £ — + — i f — + - + — j j — • <"> 

where xt, x2,..., x„ are the variables of a n-dimensional habitat space, uk • 
and tj are the optimum and tolerance of the k-ih species with respect to x, 
and / ( • ) is as in Section 5. [With maximum likelihood based on (8.1) the 
values of x1, x2,..., x„ at the site are estimated jointly.] 

The first assertion can easily be verified. The second assertion follows from 
Section 6: for fixed, but unknown values of x1,x2,...,xn the species have 
different maxima with respect to x,, but can be divided into sets of species 
with equal maxima because of the regular spacing in multidimensional 
habitat space. 

Weighted averaging ignores species that are absent, whereas the maximum 
likelihood method uses the response curves of all species. In maximum 
likelihood, absent species do potentially provide information on the environ­
ment. This paper shows that this information is negligible under the (multidi­
mensional) species packing model. Another, more informal model under 
which absent species do not add much information arises when the maximum 
probability of occurrence is close to zero. Then, the probability of absence is 
close to unity—irrespective of the value of the environmental variable—and 
hence cannot strongly influence the likelihood (see also Figure 2). The 
probability of occurrence of a species, given the value of a factor, will be 
small in practice for most species, just because in most sites with that value 
the species will be absent due to other, unfavorable factors (cf. the effect of 
neglecting other variables in a multidimensional species packing model). 
Absences therefore often indicate little. 

Weighted averaging is central to the algorithm of the ordination technique 
known as reciprocal averaging or correspondence analysis. Reciprocal aver­
aging is commonly used in ecological ordination studies to analyse data on 
the incidence or abundance of species in samples [9]. The first few ordination 
axes are often interpreted as latent variables and are presumed to relate to 
underlying habitat variables. The results of this paper can be extended to 
provide a theoretical basis of the model that is implicitly invoked when 
reciprocal averaging is used. Under the conditions of the species packing 
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model it can be shown that reciprocal averaging approximates the maximum 
likelihood solution of Gaussian-like response models in one latent variable. 
The stochastic model of Section 7 is an explicit formulation of the model that 
is used by Hill and Gauch [10] to scale the axes of (detrended) correspon­
dence analysis. 

APPENDIX 

Proof of (5.1). We prove that 

//»(*) dx 

fx2v{x)dxj{[p.'(x)f/v{x)}dx 
<1 (Al) 

with equality iff j»'(x)= - xv(x)/t2. The left hand side in (Al) is the 
asymptotic (d->0) efficiency UML/"WA» because""summations in (3.3) and 
(4.2) approach integrals for d -» 0, and after translation, x0 = 0. We use the 
Cauchy-Schwartz inequality 

jp(x)q(x) dxj<jp2(x) dxjq2(x) dx (A2) 

for arbitrary functions p(x) and q(x)e L2(-oo,oo). Equality in (A2) holds 
iff p(x) = cq(x) with c a constant. By setting 

p{x) = x{v{x) and g( *) = - ===- (A3) 

and assuming that xp(x) -* 0 for x -» + oo, so that 

jxn'(x)dx = - jii(x) dx, (A4) 

we obtain (Al) with equality iff xv(x) = cii'(x), from which (5.1) follows 
with c = - t2. The condition c < 0 arises from the assumption above (A4). 

Outline proof of (7.1). Expectations and (co)variances are required of 
R = EA Vj and T=>'LkYkuk. These are calculated by dividing the real line into 
small intervals with midpoints u(/1 (;' = ..., - 2 , —1,0,1,2,...) and width A. 
The expectations correspond to the formulae in Section 3 with ji(u) replaced 
by \EsM(u); hence iW A is consistent if h(x) is constant. We show the 
derivation of the variances for xa = 0 and h(x)=l. Repeated use is made of 
the decomposition of the variance as the sum of two components: (a) the 
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average conditional variance, and (b) the variance of the conditional average 
[18, Equation (2b.3.6), p. 97]. Species with indicator values that lie in the ;'th 
interval contribute to var(.R) an amount 

c,• - AA[ES{ V(u(n)} +vars{ A/(« („)} + £ | { M( « ,„)}] , (A5) 

and to var(T) an amount u^c,. The last two terms in (A5) can be combined 
to give E{ A / 2 (H ( 1 ) ) } . The total variance can be obtained by summing over 
all intervals, because the data from different intervals are independent, due to 
the properties of the Poisson process. Replacing sums by integrals gives, with 
g(u) = Es{V(u)+M2(u)}, 

vai(R)=\(g(u)du, 

vai(T)=\ju2g(u)du, (A6) 

cov(R,T)=\jug(u)du. 

Because u2M(u) and u2V(u) e £'(-00,00), we have var(7y\), var(R/X), 
and cov(/?/X, T/X) -» 0 for X -• 00; this and Taylor expansion of T/R [11, 
Equation (10.17), p. 247] yield (7.1). 

Outline proof of (7.2). Let x denote the maximum likelihood estimator, 
Dv the first x derivative of the log likelihood (4.1) evaluated at y, and / the 
total information evaluated at x0. Without confusion, the symbol x will now 
be used for x0. A first order Taylor expansion of Ds in x0 gives [4, Chapter 
9.2, Equation (19)] 

Di-Dx-(St-x)I. (A7) 

Equating (A7) to zero, as in (4.1), and solving for x — x shows that, 
asymptotically (X -»00), 

vai(x) = — . (A8) 

Conditionally on S and P, the expectation of Dx is equal to zero and its 
variance is the inverse of (4.2). Unconditionally, the variance of Dx is 
therefore equal to the quantity between square brackets in (7.2). The total 
information is the expectation over S and P of the conditional information. 
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This expectation is equal to the variance of Dx; hence, from (A8) we obtain 
(7.2). 

We would like to thank Drs. I. C. Prentice, M. O. Hill, and J. A. Hoekstra 
for valuable comments. Drs. T. A. B. Snijders and M. J. M. Jansen contributed 
to Section 3. 
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SUMMARY 

Correspondence analysis is commonly used by ecologists to analyze data on the incidence or 
abundance of species in samples. The first few axes are interpreted as latent variables and are presumed 
to relate to underlying environmental variables. In this paper correspondence analysis is shown to 
approximate the maximum likelihood solution of explicit unimodal response models in one latent 
variable. These models are logistic-linear for presence/absence data and loglinear for Poisson counts, 
with predictors that are quadratic in the latent variable. The approximation is best when the maxima 
and tolerances (widths) of the response curves are equal and the species' optima and the sample 
values of the latent variable are equally spaced. It is still fairly good for uniformly distributed optima 
and sample values, as shown by simulation. For the models extended to two latent variables, the 
approximation is often bad because of the horseshoe effect in correspondence analysis, but improves 
considerably in the simulations when this effect is removed as it is in detrended correspondence 
analysis. 

1. Introduction 

Correspondence analysis is a multivariate technique primarily developed for the analysis 
of contingency table data (Nishisato, 1980; Greenacre, 1984). However, in ecology and 
archaeology, correspondence analysis is commonly applied to incidence or abundance 
matrices (Gauch, 1982). In ecology these matrices typically record the presence/absence or 
abundance of species in samples, e.g., plant species in quadrats or animal species in areas. 
Such matrices are not transformed to m-way contingency tables "on the grounds that the 
data are essentially asymmetric and the absences indicate little" (Hill, 1974). Clearly a 
different rationale is needed for the application of correspondence analysis to incidence or 
abundance data. A pertinent result concerns so-called Petrie matrices (a Petrie matrix is an 
incidence matrix which has a block of consecutive l's in every row and in every column, 
the block of the first row starting in the first column and the block of the last row ending 
in the last column). The result says that if a matrix can be rearranged to a Petrie matrix by 
a permutation of rows and columns, then this permutation is generated by the first nontrivial 
solution of correspondence analysis (see Hill, 1974). 

Hill (1973) introduced correspondence analysis to ecology, under the name of "reciprocal 
averaging." He suggested the technique as a natural extension of the method of weighted 
averaging used in Whittaker's (1956) "direct gradient analysis." Whittaker, among others, 
observed that species typically show unimodal (bell-shaped) response curves with respect 
to environmental gradients. For example, a plant species may prefer a particular soil 
moisture content, and not grow at all in places where the soil is either too dry or too wet. 

Key words: Correspondence analysis; Detrended correspondence analysis; Dual scaling; Ecology; 
Generalized linear models; Joint plot; Reciprocal averaging; Species packing model; Unfolding; 
Unimodal response model. 
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Each species is therefore largely confined to a specific interval along an environmental 
variable. The value most preferred by a species was termed its "indicator value" or optimum. 
In Whittaker's method, the indicator value of a species is estimated by taking the average 
of the values of the environmental variable in those samples in which the species occurs. 
(For quantitative data, the average is weighted by species abundance.) Conversely, with 
known indicator values of species, weighted averaging is used to estimate the value of an 
environmental variable in a sample from the species that it contained [see e.g., Kovacs 
(1969) for an application]. Hill (1973) showed that if iterated, this process of "reciprocal 
averaging" converges to a solution independent of initial indicator values, namely the first 
nontrivial axis of correspondence analysis (see also Greenacre, 1984, §4.2). Hill's method 
therefore amounts to arranging samples and species along a latent variable, an activity 
Whittaker (1967) termed "indirect gradient analysis." After such analysis, attempts are 
made to identify the latent variable by comparison with known variation in the environment 
(Gauch, 1982). The Petrie matrix provides a deterministic example of a response model 
wherein the response curves are (weakly) unimodal "block functions." Unimodal models 
also play an important role in unfolding theory (Coombs, 1964). 

In this paper, correspondence analysis is regarded as an estimation method for latent 
variable models and is compared with maximum likelihood under parametric unimodal 
response models with respect to one or two latent variables. The models considered are 
loglinear and logistic-linear models with predictors that are quadratic in the latent vari­
able^). Ter Braak and Barendregt (in press) showed that these are the only models with 
Poisson and binomial error, respectively, for which the weighted average of indicator values 
can achieve unit asymptotic efficiency with respect to maximum likelihood. The compari­
son gives some idea about the model that is implicitly invoked when correspondence 
analysis is applied to incidence or abundance data. This comparison is important because 
the maximum likelihood approach may be computationally too demanding for the numbers 
of species and samples commonly encountered in ecological research. Moreover, when the 
maximum likelihood approach is considered worthwhile, the results suggest that good 
initial estimates can be derived from correspondence analysis or, for two latent variables, 
from detrended correspondence analysis (Hill and Gauch, 1980). 

2. Correspondence Analysis 

Nishisato (1980) takes the.wew that correspondence analysis, alias dual scaling, assigns real 
numbers or "scores" to rows and columns of a table so as to optimize a particular criterion. 
Consider a species-by-sample matrix Y = [yki\ (k = 1 , . . . , m; i = 1 , . . . , n) of nonnegative 
real numbers, denoting the presence/absence (yki = 1 or 0) or count of individuals of each 
of m species in n samples. Let u = [uk] (k= 1 , . . . , m) and x = [JCJ (/' = 1 , . . . , n) contain 
the scores for species (rows) and samples (columns), respectively. In correspondence analysis 
these scores are chosen so that the weighted sum of squares of the sample scores is 
maximum with respect to the weighted sum of squares of the sample scores within species, 
i.e., the criterion maximized is 

D2 = I y+i(Xl - zf/l I yd* - ukf, (2.1) 
i k i 

where z = £/ y+iXi/y++ and the subscript + denotes summation over that subscript. 
Maximization of D2 will give each species a score close to the scores of those samples in 
which it is abundant. (An alternative interpretation of this criterion is given in Section 4.3.) 
With the Lagrange method of multipliers and the sample scores centred so that z = 0, we 
obtain after some rearrangement the transition formulae of correspondence analysis (with 
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« = 0): 

A'-x, = I ykiukly,i (i - 1, . . . , n), (2.2) 
k 

yuk = l yuxjy^ (k=\,...,m\ (2.3) 

where X is a real number (0 « X «s 1). The extra parameter a governs the scaling of the 
species scores and the sample scores with respect to one another. There are three choices 
of a in common usage, namely a = 0, 1, or 5. Criterion (2.1) leads to a = 0. With a = 0, 
the species scores Uk are weighted averages of the sample scores x, [equation (2.3)] and the 
sample scores are proportional to the weighted averages of the species scores [equation 
(2.2)]. With a = 1, the role of species and samples is interchanged, also in the criterion 
being maximized. The third choice, a = 3, is a compromise in that it treats species and 
sample scores in a symmetric way. 

The transition formulae have more than one solution. All solutions can be obtained 
from the singular value decomposition of R~'/2 YCT1/2 (see Hill, 1974) with R = diag(y*+) 
and C = diag( y+l). When the left and right normalized singular vectors in this decomposition 
are denoted by qs and r„ corresponding to singular value ps = Vx̂  (s = 0, 1,2,...), then 
the solutions are us = pJR"1/2qJyi/+ and xs = C~l/2isyl'+. The solutions are the "axes" of 
correspondence analysis and \s is termed the eigenvalue of the 5th axis. The maximum 
singular value is always 1, corresponding to the trivial solution in which all sample and 
species scores equal 1. The first nontrivial solution (s = 1) is orthogonal to the trivial 
solution, hence satisfies the previously applied centering z = 0, and maximizes the criterion 
D2 with u = iii, x = xi, and D2 = 1/(1 - X,). Moreover, the singular value decomposition 
implies that the species and sample scores, u and x, approximate the data in a weighted 
least squares sense by the bilinear model (see Nishisato, 1980) 

yki — eu . , .. 
~ ukXi (2.4) 

eu 

with ek, = yk+y+i/y++, the expectation under the assumption of row/column independence 
in contingency tables. 

3. A Unimodal Response Model 

From now on the species-by-sample matrix Y will be assumed to consist either of counts 
yki that are independent Poisson variables with expected value nkh or of presence/absence 
(1/0) data that are independent Bernoulli variables with probability nu that the /cth species 
is present in the /th sample. The models assumed for jiki are loglinear and logistic-linear 
models (Nelder and Wedderburn, 1972) in which the linear predictor is a quadratic 
polynomial in the latent variable x. It is convenient to write these models in the form 

link(Wl) = ak - k*, - Uk)2/tl, (3.1) 

where link is the logarithmic function for counts and the logistic function for the 1/0 data. 
In (3.1) the parameters for the kth species are'a*, the maximum on log or logit scale; uk, 
the mode or optimum (i.e., the value of x for which the maximum is attained); and tk, the 
tolerance, a measure of ecological amplitude. The value of the latent variable in the i'th 
sample is x,, which is treated as a fixed incidental parameter. Figure 1 displays an example 
for 1/0 data. The loglinear model is precisely the "Gaussian" response curve that is put 
forward by ecologists as an ideal for species responses along a gradient [see Austin (1976) 
and Gauch (1982) for reviews]. 

47 



862 Biometrics, December 1985 

Figure 1. Unimodal response curves (3.1) for the probability (P) of occurrence along a latent variable 
(x), fitted by correspondence analysis to Table 2. The species optima and sample points are indicated 
by ticks below and above the abscissa. The length of a tick is proportional to the number of sample 
points. The numbers below the optima correspond to row numbers in Table 2. The horizontal bar 

is 1 tolerance unit. 

The arbitrariness in the scale of the latent variable can be resolved, for example by 
centering as in correspondence analysis (£, y+,x, = 0) and by setting the mean square of 
the tolerances to unity (£* ti/m = 1), so that the latent variable can be measured in (mean) 
tolerance units. Then, the maximum likelihood equations for the parameters x = [jcj 
" - ' . , n) and u = [uk] (k= ],..., m) become, after some rearrangement, (/'=!,. 

x, = I 
tl i If-

k Ik 

V (x, - Ukhki 

? tl I 
,yki 

uk = Z yuXi/yk* - 2 (x, - uk)fiki/yk+ 

(3.2) 

(3.3) 

These (implicit) equations could be simplified further by using the maximum likelihood 
equations for the parameters a = [ak] {k = 1, ...., m), but for the comparison with 
correspondence analysis, (3.2) and (3.3) are sufficient. 

4. Theoretical Comparisons 

Hill's approach to correspondence analysis makes plausible that the species scores and 
sample scores in Section 2 play a role similar to the species optima and sample values in 
Section 3; that is why similar symbols are used in Sections 2 and 3. Our aim is to show 
that the terms between square brackets in (3.2) and (3.3) are negligible in certain cases, so 
that the maximum likelihood equations reduce effectively to the transitional formulae (2.2) 
and (2.3) of correspondence analysis. These cases are as follows: either iik, is small or ju, is 
symmetric around x, and around uk. 

48 



Correspondence Analysis and Unimodal Models 863 

4.1 Equations for the Sample Scores 

For the comparison of the estimation equations (2.2) and (3.2), let us first assume that x is 
a manifest environmental variable, and that the species' tolerances are equal (tk = t = 1). 
With known species' optima and maxima, a missing value of the environmental variable 
in a sample can be estimated by using (3.1) as calibration relation. The naive estimator is 
the weighted average (2.2) with a = 1. The maximum likelihood equation (3.2) would give 
the same result when the term between square brackets is negligible, e.g., if for all species 
the maximum of w, as a function of x is close to 0 (ak —» —<*>). This case may have some 
practical relevance, as it implies very sparse matrices, which are not uncommon in ecology. 

A more interesting case arises when \iki is symmetric around Xi. This happens under the 
species packing model (MacArthur and Levins, 1967). This is an ecological model based 
on the idea that during evolution species evolve to occupy maximally separated niches with 
respect to a limiting resource. Christiansen and Fenchel (1977, Chap. 3) provide a lucid 
introduction. With x the resource, maximally separated niches mean minimal overlap 
between the response curves and thus, for a given number of species on a fixed-length 
interval and equal maxima, equal spacing between the optima (apart from edge effects). If 
in this situation (i) the interval is longer than, say, 10 tolerance units, (ii) the spacing 
between the optima on this interval is closer than ca. 1 and (iii) the sample value *, is well 
within this interval, then the term between square brackets is negligible because of the 
symmetry in the model (3.1). Simulations showed that under the stated conditions the 
weighted average has, in terms of mean squared error, an efficiency of 1.00 with respect to 
the maximum likelihood estimator (with an uninformative prior for x,). Moreover, Ter 
Braak and Barendregt (in press) showed that the asymptotic efficiency is unity when the 
spacing decreases to 0 on an interval of increasing length and that in the class of response 
curves that form a location family on x, the models considered here are the only models 
with this property. 

The weighted average still has approximately unit efficiency when the species maxima 
and optima vary in a cyclic pattern along the environmental variable, i.e., when the species 
can be divided into sets so that within each set the species have equal maxima and equally-
spaced optima with spacing less than 1 tolerance unit. However, the efficiency may drop 
considerably when the tolerance varies. For example, with two tolerances differing by a 
factor 2, the efficiency drops to ca. .6 in the logistic model with maximum probability of 
occurrence .5. In that case the term between square brackets still vanishes, but what remains 
is not a simple weighted average. If the tolerances are known a priori, then the weighted 
average should be applied to yk,/tk, instead of to yki, in order to retain high efficiency. 

More realistically, let us assume a superpopulation of response curves in which (i) the 
optima are independently and uniformly distributed on an interval (cf. Whittaker, Levin, 
and Root, 1973), (ii) the species maxima are either constant or random variables indepen­
dent of the species optima, and (iii) the tolerances are equal. In this superpopulation the 
numerator of the term in square brackets in (3.2) vanishes in expected value, provided the 
sample value x, is, again, well within the interval on which the optima are uniformly 
distributed. Because expectation is involved now, neglecting the term in square brackets 
makes weighted averaging less efficient with respect to maximum likelihood. In the logistic 
model with equal maxima, the asymptotic efficiencies are .96, .79, and .50 when the 
maximum probability of occurrence is. 1, .5, and .9, respectively (Ter Braak and Barendregt, 
in press). 

With a = 1, the difference between the correspondence analysis equation (2.2) and the 
maximum likelihood equation (3.2) for latent x is the term between square brackets. The 
above comparisons for manifest x indicate in which situations neglecting this term does 
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not affect the solution too much. Note that equation (2.2) does not involve the species 
maxima and, further, that for equation (2.2) to be efficient for all samples, the sampled 
interval should be amply contained in the interval of the optima. With the choice a = 1 
the latter condition is pre-assumed. 

4.2 Equations for the Species Optima 

When the sample values are known a priori, estimation of the optima is a regression 
problem. From the symmetry between sample values and species optima in model (3.1) 
when the maxima and tolerances are equal, we deduce that the results of the previous 
section carry over to those species whose optima lie well within the sampled interval. For 
those species the weighted average is therefore asymptotically fully efficient with respect to 
the maximum likelihood estimator of the optimum, when the sample points are equally 
spaced with spacing less than 1 tolerance unit, and has a somewhat lower efficiency when 
the sample points are independently and uniformly distributed over the sampled interval 
(Ter Braak and Looman, in press). (That the maximum and the tolerance are to be 
estimated as well does not matter, because for these species the estimator for the optimum 
has under the stated conditions negligible correlation with the estimators for the maximum 
and the tolerance.) However, for species whose optima lie near the edge of, or even outside, 
the sampled interval, the weighted average is biased toward the center of the sampled 
interval, because these species' response curves are truncated. For example, the weighted 
average always gives a value inside the sampled interval, whereas the true optimum may 
lie outside this interval. This is where the eigenvalue X of correspondence analysis comes 
in. With a = 1 as in the previous section, equation (2.3) can be rewritten as 

Uk = 2 ykiXi/yk+ - (X - \)uk. (4.1) 

The term (X - \)uk can be considered as an overall correction term for the bias, or, 
alternatively, as a crude approximation to the term between square brackets in the 
maximum likelihood equation (3.3). The first nontrivial solution to the transition formulae 
has an eigenvalue X closest to 1 and is therefore the solution where the least correction is 
required. This must be the solution with the longest underlying gradient, because the edge 
effects that cause the bias decrease with increasing length of the sampled interval. Although 
the correction term acts in the right direction, it overcorrects for optima well within the 
sampled interval and still undercorrects for optima on the edge of or outside the sampled 
interval. This observation explains the "compression of the first axis' ends relative to the 
axis middle" (Gauch, 1982) in correspondence analysis. 

4.3 Scaling of the Correspondence Analysis Solution 

The choice of a in the transition formulae (2.2) and (2.3) affects the scaling of the species 
scores with respect to the sample scores. If the sampling interval is contained well within 
the interval of the species optima, then a should naturally be 1 (§4.1). If the converse 
applies, then a should be 0. In practice, the intervals may coincide or may only partly 
overlap. The choice of a is then arbitrary and should be decided upon by other means (see 
§6.2). 

The standardization of the sample scores also requires attention. Commonly the disper­
sion s2 of the sample scores, s2 = X, y+ixj/y++, is set equal to the eigenvalue X, so that 
differences between sample scores approximate "chi-squared distances" between samples 
(see, e.g., Greenacre, 1984, p. 82). In the maximum likelihood approach (§3), the mean 
squared tolerance is set to unity. Assuming the loglinear model and the species packing 
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model, Hill (1979) estimated the mean squared tolerance by Xk 1/ yki(xt - uk)
2/y++ and 

standardized the correspondence analysis solution so that this estimator becomes 1. Hill's 
standardization gives as dispersion of the sample scores 1/(1 - X) for a = 0 (see §2) and 
X/(l - X) for a = 1. Under the species packing model an alternative interpretation of 
criterion (2.1) is therefore that correspondence analysis maximizes the dispersion of the 
sample scores, subject to maintaining species response curves with unit mean squared 
tolerances. (By contrast, principal component analysis maximizes the variance of the 
sample scores subject to the condition that the sample scores are a normalized linear 
combination of the species' abundances.) 

4.4 Conclusion 

In conclusion, the transition formulae of correspondence analysis approximate the maxi­
mum likelihood equations for model (3.1). For equally-spaced optima and sample points, 
and equal maxima and tolerances, correspondence analysis uses a rough approximation to 
correct for edge effects. For uniformly distributed optima and sample points a second kind 
of approximation is involved, namely that the expectation is taken with respect to these 
uniform distributions over these parts of the maximum likelihood equations that do not 
depend on the data yki. The equality of the species maxima does not appear to be a crucial 
assumption. For unequal and unknown tolerances the approximation is worse, because the 
transition formulae then need to be weighted as well by the tolerances, which is not done 
in correspondence analysis. 

5. Two Latent Variables 

5.1 A Unimodal Model 

The obvious extension of model (3.1) with equal tolerances to two latent variables is 

link(M*,) = ak - \(xn - uk{? - fan - uk2f- (5.1) 

The maximum likelihood equations for xi, x2, and Ui, u2 are analogous to (3.2) and (3.3) 
and nothing new arises in the comparison with the transition formulae. However, the edge 
effects due to truncation are likely to be more severe in two dimensions. First, there is 
more edge; second, the bias of the weighted average for, say, uk\ will in general depend not 
only on uki but also, through nki, on uk2. Approximating this bias by (X, - l)w*i is thus 
dubious; yet only with such approximations do the maximum likelihood equations reduce 
to the transition formulae of correspondence analysis. 

5.2 Detrended Correspondence Analysis 

Hill and Gauch (1980) developed detrended correspondence analysis as a heuristic modi­
fication of correspondence analysis, designed to correct two major "faults": (i) that the ends 
of the first axis are often compressed relative to the axis middle (see §4.2); (ii) that the 
scores of the second axis frequently show a systematic, often quadratic relation with those 
of the first axis. The latter fault, known as the horseshoe or arch effect, can be proven to 
occur for certain matrices (Hill, 1974, Proposition 8; Schriever, 1983). 

Hill and Gauch (1980) adopt the species packing model to remedy the compression 
problem. The "species turnover rate" (assumed constant) can be estimated at a point along 
the gradient by the dispersion of the scores of the species present in a sample at that point. 
Hill and Gauch therefore try to equalize the mean within-sample dispersion of the species 
scores at all points along the axis by rescaling the species scores [see Hill (1979) for the 
details]. Thereafter the sample scores are simply derived by weighted averaging. 
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The horseshoe effect is considered by Hill and Gauch (1980) as "a mathematical artifact, 
corresponding to no real structure in the data." They eliminate the horseshoe by "defend­
ing." Detrending intends to assure that, at any point along the first axis, the mean value of 
the sample scores on the subsequent axes is approximately 0. To this end the first axis is 
divided into a number of segments and within each segment the sample scores on axis 2 
are adjusted by centering them to zero mean. The program by Hill (1979) uses running 
segments for this purpose. This process of detrending is built into the reciprocal averaging 
algorithm that generates the normal correspondence analysis solution, and replaces the 
usual orthogonalization procedure. Subsequent axes are derived similarly by detrending 
with respect to each of the existing axes. 

Detrended correspondence analysis has been tested on data sets simulated under the 
Gaussian response model in one to four dimensions and was found to recover the structure 
of the data well (Hill and Gauch, 1980; Gauch, Whittaker, and Singer, 1981). 

6. Numerical Comparisons 

6.1 Introduction 

The theoretical comparisons described so far are approximate and are supplemented in this 
section by numerical comparisons, using simulated data sets and one real data set. The 
performance of correspondence analysis is judged by correlations of the sample scores with 
the real values and by log-likelihood. 

6.2 Methods 

Data were simulated under the response models (3.1) and (5.1) in one and two dimensions, 
respectively, using unit tolerance and equal maxima. The optima and sample points were 
drawn in each simulation independently from a uniform distribution on an interval and 
rectangle with prechosen length and sides, respectively. Ecologists refer to such simulations 
as coenocline and coenoplane simulations [see Gauch (1982)]. The simulations were 
constrained to give at least three occurrences in each sample and at least three occurrences 
per species, to ensure that all parameters could be estimated. 

Subroutines from Hill (1979) were used to calculate the (detrended) correspondence 
analysis solution for the species optima and sample scores with a = 1 and Hill's (1979) 
standardization (§4.3). With these scores and t = 1 the species maxima were estimated by 
maximum likelihood, analytically in case of Poisson counts (Kooijman, 1977), and nu­
merically in case of 1/0 data. For this solution the likelihood was calculated. In this simple 
approach the choice of a is arbitrary, but influences the likelihood. In a second approach 
this problem was solved by calculating for each species the regression of the species' 
responses on the sample scores. This is easy because models (3.1) and (5.1) are generalized 
linear models (Nelder and Wedderburn, 1972). The tolerances were kept fixed to 1 in the 
regressions. 

The maximum likelihood solution was derived by alternating "regressions" to estimate 
the species parameters and "calibrations" to estimate the sample parameters, the latter 
being centred and, in two dimensions, rotated to principal axes in each iteration (Kooijman, 
1977). Thus, regression and calibration replace the simple weighted averages in the two-
way averaging algorithm to derive the correspondence analysis solution. In each regression 
step and each calibration step the Gauss-Newton method was used with Gallant's (1975) 
chopping rule for stepshortening, and a primitive method that prevented parameters from 
iterating to infinity. As usual, it cannot be guaranteed that the overall maximum of the 
likelihood is found, but the algorithm is at least hill climbing. This optimization method is 
akin to the EM algorithm (Dempster, Laird, and Rubin, 1977), the difference being that 
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with the EM algorithm it is assumed that the incidental parameters are random, whereas 
in this paper they are treated as fixed parameters. EM maximizes therefore a marginal 
likelihood (Bock and Aitkin, 1981), whereas here the joint likelihood is maximized. The 
(detrended) correspondence analysis solutions and also, when available, the true parameter 
values provided the initial parameter values. 

6.3 Simulation Results 

Table 1 summarizes simulations of incidence matrices (A-E) and matrices with counts 
(F-I), the former simulated from the logistic response curves (3.1), the latter from the 
loglinear response surfaces (5.1), all with unit tolerance. The maximum probability of 
occurrence is .7 in A, B, and C, and .5 in D and E. The maximum count is either 5 (F, G, 
H) or 1 (I). 

Table 2 shows an example of B in which the length of the sampled interval is 5 tolerance 
units and Figure 1 displays its correspondence analysis solution. Although some of the 
species scores are out of order, the correlation of the scores of samples and of species with 
the true values is over .9 and the deviance is even lower than under the true parameter 
values. Table 1 shows that in all simulations correspondence analysis performed well for 
the first dimension, but in simulations F-I, badly for the second dimension. Detrended 
correspondence analysis is comparable to correspondence analysis in one dimension 
(A-E), but far superior in two dimensions (F-I). 

Table 1 
Results of simulations of the models (3.1) and (5 A) with unit tolerance, for 1/0 data in one 

dimension (A-E) and for Poisson counts in two dimensions (F-I). Shown are average values of at 
least four simulations (first axis 1, then axis 2, if appropriate). 

Simulation 

No. of species 
No. of samples 

Range of u 
Range of x 

Value of a 

No. of par. 
df 
Eigenvalues (x 
CA 
DCA 

Deviances 
Null model 
True par. 
CA 
DCA 
CA + REGR 
DCA + REGR 
M L 

A 

30 
20 
12 
10 
1 

79 
521 

100) 
90 
90 

634 
327 
308 
292 
264 
279 
217 

B 

10 
50 
6 
5 
1 

69 
431 

50 
50 

654 
483 
458 
445 
441 
423 
417 

C 

30 
50 
5 
4 
1 

109 
1391 

38 
38 

1941 
1556 
1506 
1533 
1475 
1495 
1440 

D 

30 
50 
5 
4 
0 

109 
1391 

52 
52 

1641 
1396 
1289 
1324 
1280 
1309 
1259 

Correlation with true sample scores (x 100) 
CA 
DCA 
ML 

98 
98 
99 

90 
90 
86 

95 
96 
94 

95 
91 
92 

E 

30 
50 
3 
2 
0 

109 
1391 

18 
18 

1936 
1883 
1778 
1789 
1758 
1781 
1739 

67 
51 
67 

F 

40 
50 

10; 5 
8; 4 

1.6 
218 

1782 

88; 63 
88; 45 

3448 
836 

1696 
1010 
1167 
775 
648 

97; 57 
98; 83 
99; 95 

G 

40 
50 

5; 5 
4; 4 

1.6 
218 

1782 

61;49 
61; 39 

4316 
1377 
1708 
1433 
1320 
1255 
1170 

— 
— 
— 

H 

40 
50 

7; 4 
6; 3 

1.6 

218 
1782 

77; 44 
77; 34 

4000 
1225 
1958 
1194 
1374 
1070 
994 

98; 64 
99; 91 
99; 93 

I 

40 
50 

7; 4 
6; 3 

0 

218 
1782 

81; 57 
81; 44 

1477 
856 
907 
681 
754 
642 
598 

96; 53 
96; 77 
96; 77 

No. = number; u = species optima; x = sample scores; par. = parameters; df= degrees of freedom; CA = 
correspondence analysis; DCA = detrended correspondence analysis; (D)CA + REGR = (D)CA followed by 
regression on (D)CA sample scores; ML = maximum likelihood. 

—: Meaningless. 
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Table 2 
Incidence matrix simulated from unimodal response curves (3.1) under condition B in Table 1, The 

species (rows) and samples (columns) are arranged in increasing order of the true optima and 
sample values, respectively. 

111111111101 10010101000001000100000000000000000000 
11101111100111111100110010010000000000000000000000 
11000001100101101111111100100000110000000000000000 
01110011111011001011101101010111101011000000000000 
1 1 1 1 1 1 10010011110111100111010010110000000010000000 
001 10001011101101011110111110111011111011000000000 
00010101011000011111011111001000101111101100111000 
00000000000000011010000100100011111101111111111111 
00000000000010100000111001001101100110111011111111 
00000000000000000000000000001000101001011101001111 

In two dimensions each solution of correspondence analysis showed the horseshoe, most 
in F and H, least in G and I. The lower the maximum of the response curves, the better 
correspondence analysis (D vs C and I vs H), in accordance with the theory. The simulations 
also confirm the observation of Hill and Gauch (1980) that correspondence analysis works 
more satisfactorily with square sampling regions as compared to rectangular regions (G vs 
F, H). In order to determine whether the success of detrended correspondence analysis is 
due to the rescaling of the axes or to the detrending, some tests were done with rescaling, 
but without detrending. These tests showed a slight, but unimportant improvement over 
the results of correspondence analysis. The success of detrended correspondence analysis is 
therefore mainly due to the detrending. 

The eigenvalues showed little variation between simulations of the same type; for 
example, in A and F the standard deviations were below 0.05. 

The estimates of the species optima can be improved by regressing each species response 
on the sample scores, as can be seen from the drop in the deviance (Table 1) and the 
increase in correlation with the true optima (not shown). The deviance after regression on 
the sample scores from detrended correspondence analysis was in nearly all simulations 
less than the deviance under the true parameters. 

The maximum likelihood solution has, by definition, the lowest deviance, but does not 
always give the highest correlation with the true sample scores. Of the three sets of initial 
values used to derive the maximum likelihood solution, the true values and the values 
from detrended correspondence analysis gave nearly identical solutions. Starting from the 
correspondence analysis solution, the maximization procedure frequently became trapped 
in a local maximum in simulations F-I. 

For statistical tests and confidence regions it is tempting to assume that deviances are 
chi-squared distributed. This assumption is risky in this context because the number of 
parameters increases with the number of observations. Indeed, the true parameter values 
lie outside the usual 95% confidence region in 34% of the 29 simulations of the one-
dimensional model and in 12% of the 24 simulations of the two-dimensional model. 

6.4 A Real Data Set 

The real data set, taken from Van der Aart and Smeenk-Enserink (1975), concerns the 
distribution of twelve wolfspiders (Lycosidae) in a dune area and consists of their accu­
mulated catches in 100 samples. The maximum count in the data is 189, far higher than 
in the simulations, but zeroes are as equally abundant as in the simulations. Correspondence 
analysis was applied to these data, giving .65 and .42 for the first two eigenvalues. The 
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sample scores of the second axis showed a clear quadratic trend with respect to those of the 
first axis. Removing this trend, detrended correspondence analysis resulted in a second 
eigenvalue of .09. This small value indicates that the second axis is unimportant for these 
data, which agrees with the results of Kooijman (1977), who fitted one- and two-dimensional 
Gaussian response models to these data by maximum likelihood. 

Table 3 shows the results of loglinear regressions of the catches of the wolfspiders on the 
sample scores of the first axis of detrended correspondence analysis. When a quadratic 
term was added to the model, the deviance decreased considerably for nine of the twelve 
spider species. Their fitted curves are all unimodal (see Figure 2). The rescaling of the axis 
in detrended correspondence analysis appears advantageous for these data, as the quadratic 
fit with respect to the first axis of the usual correspondence analysis resulted in a 50% 
higher deviance. The full maximum likelihood solution (with equal tolerances) gave a 
deviance of 4890, 30% lower than the deviance of the quadratic model in Table 3, Yet the 
sample scores as estimated by maximum likelihood showed a high correlation (.95) with 
those of detrended correspondence analysis. 

Van der Aart and Smeenk-Enserink (1975) also characterized the vegetation and the soil 
around 28 of the 100 pitfall traps. They state, "The sites were selected in such a way that 
as many biotope types as possible were represented." Interpreting the first axis of detrended 
correspondence analysis as a latent variable, we can therefore attempt to relate this latent 
variable to the measured environmental variables. A multiple regression of the first axis' 
scores on the logarithms of the variables soil water content, percentage of bare sand, and 
percentage cover by mosses accounted for 90% of the variance. All three variables contrib­
uted to this regression, as judged by / tests on the regression coefficients. The first axis can 
therefore be interpreted as a composite gradient of soil moisture and openness of the 
habitat. A possible explanation for these results is that wolfspiders require an open habitat 
for hunting purposes but, on the other hand, require moisture to avoid desiccation. Each 
species balances these conflicting requirements in its own way and is therefore largely 
confined to a specific interval along the composite gradient of soil moisture and openness. 
Other factors related to soil moisture or openness cannot be excluded to be operational. 

Table 3 
Loglinear regressions of catches of wolfspiders (k) on the sample scores (x,) of the first axis of 

detrended correspondence analysis. Given are the deviance of the null model and the decreases in 
deviance when the loglinear model is extended successively with a linear (bk\x) and a quadratic term 
(bk2x

2). Provided bk2 < 0, the quadratic model fits Gaussian response curves with unequal tolerances 
[equation (3.1)]. The spiders are arranged in order of the species score of the first axis. 

k 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Model: log «-,• = 
Wolfspider 
Pardosa lugubris 
Zora spinimana 
Pardosa nigriceps 
Trochosa terricola 
Pardosa pullata 
Arclosa luleliana 
Aulonia albimana 
Alopecosa cuneata 
Pardosa monlicola 
Alopecosa accenluata 
Alopecosa fabrilis 
Arclosa perita 
Total 

Deviance 
bu, 

1494 
935 

3109 
3671 
4504 
315 
958 

1396 
4103 
856 
864 
340 

22545 

Successive decrease 

+ buX/ 

1159 
245 
388 

1033 
427 

18 
93 
57 

130 
329 
693 
254 

4826 

in deviance 

+ bk2x
2 

11 
341 

1490 
1743 
2570 

149 
488 
696 

3023 
202 
24 
3 

10740 

55 



870 Biometrics, December 1985 

9 

Figure 2. Unimodal response curves (3.1) for the expected number (/*) of wolfspiders along the first 
axis of detrended correspondence analysis (x), fitted by loglinear regression (Table 3, last column). 
The curves are labelled by the species identification numbers of Table 3. The sample points are 
indicated by ticks below the abscissa (length proportional to number). Data from Van der Aart and 

Smeenk-Enserink (1975). 

7. Discussion 

Both the unimodal model (3.1) with tk = t and the bilinear model (2.4) stand at the basis 
of correspondence analysis. The clue to this apparent paradox is data transformation. In 
linear regression, data transformation can be used to linearize monotone relationships. In 
multivariate analysis, data transformation can also be used to linearize nonmonotone 
relationships. Correspondence analysis is not the only example. Kooijman (1977) showed 
that principal component analysis recovers exactly the parameters of equal tolerance 
Gaussian curves and surfaces from error-free data when the data matrix is centered by rows 
and by columns after log transformation. Aitchison (1983) proposed this transformation to 
overcome the difficulty of the constant-sum constraint in principal component analysis of 
compositional data. He notices that "the nonlinearity of the logarithmic function opens up 
the possibility of coping with curvature in data sets ...," but does not refer to the Gaussian 
or unimodal response model. [His Figure 2(b) clearly shows the unimodal response of 
constituent F along the first principal component.] Ihm and Van Groenewoud (1975) used 
a different transformation to analyze Gaussian response curves by principal component 
analysis. Their method requires the same assumptions as correspondence analysis about 
the distribution of the optima and the sample points. 

Four conditions (equal tolerances, equal or independent maxima, and equally-spaced or 
uniformly distributed optima and sample points) are needed to show that (detrended) 
correspondence analysis provides an approximate solution to the unimodal models (3.1) 
and (5.1). How realistic are these assumptions in practice and how robust is correspondence 
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analysis to violations of the assumptions? Some checks on the assumptions are possible, 
e.g., by regressing each species' responses on the derived sample scores, allowing the 
tolerances and maxima to vary among species, and I suggest that this should be done 
routinely, if only to determine the goodness-of-fit of the model for descriptive purposes. 
Ihm and Van Groenewoud (1975) and Kooijman (1977) reported that the optima and 
sample values as estimated by their methods are fairly robust against unequal tolerances, 
as did Hill and Gauch (1980) for detrended correspondence analysis. The four conditions 
are not needed in the maximum likelihood approach, taken by Gauch, Chase, and 
Whittaker (1974) for normal data, Kooijman (1977) for Poisson data, and Goodall and 
Johnson (1982) for presence/absence data. Yet, the maximum likelihood approach is 
applied seldom in ecological research because of its computational complexity and the lack 
of reliable and flexible software (Gauch, 1982). Another reason might be that correspon­
dence analysis appears to be "nonparametric." However, this paper reveals its close 
connection with "Gaussian" response curves with equal tolerances. 

Commonly high values in the data matrix are downweighted in correspondence analysis 
by, for example, a prior square root transformation. However, when the variance is 
proportional to the mean, transformation is not required (Wedderburn, 1974). Overdisper-
sion then inflates the mean deviance, not necessarily implying lack of fit. When the type 
of dispersion or lack of fit is allowed to vary between species, all problems of common 
factor analysis are lurking in the way. 

Principal component analysis and correspondence analysis are rival methods for dimen­
sionality reduction for abundance data (Gauch, Whittaker, and Wentworth, 1977; Greig-
Smith, 1983), both allowing "major features" of the data to be visualized in joint plots of 
species and sample scores. The geometrical interpretation of a principal component plot is 
based on the bilinear model, as stressed by Gabriel (1971), who termed the plot a biplot. 
The value of a variable, as approximated by the biplot, changes linearly across the plot. 
Correspondence analysis therefore gives a biplot of the transformed data values (2.4). 
However, in terms of the original data Y the joint plot of correspondence analysis is not a 
biplot, because the model for the original data is unimodal rather than bilinear. The original 
value of a variable, as approximated by a correspondence analysis plot, is maximum at this 
variable's point in the plot and decreases with distance from that point, disregarding for a 
moment the fact that (detrended) correspondence analysis provides only an approximate 
solution to the unimodal models (3.1) and (5.1). We may interpret the correspondence 
analysis plot more informally as Benzecri et al. (1973) do. Their centroid principle (le 
principe barycentrique) is simply the transition formulae interpreted geometrically. Multi­
dimensional unfolding provides the same kind of plot (Carroll, 1972). 

Although principal component analysis and correspondence analysis model and display 
multivariate data in different ways, the resulting plots of the sample scores are sometimes 
similar. This happens when all unimodal surfaces are truncated to monotone surfaces over 
the region actually sampled, the monotone surfaces being approximated by planes in 
principal component analysis. In such cases the correspondence analysis solution with 
a = 1 shows some species points close to the centroid of the sample points, whereas the 
other species' points fall outside the region where the sample points lie. 
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RESUME 

L'analyse des correspondances est couramment utilisee par les ecologistes pour analyser des donnees 
de presence/absence ou d'abondance d'especes. Les tout premiers axes sont interpretes en termes de 
variables sous-jacentes conditionnant la distribution des especes. On fait l'hypothese que ces variables 
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sont liees aux variables de milieu non explicitees. Dans cet article, on montre qu'en utilisant Panalyse 
des correspondances, on obtient une solution approchee de la solution donnee par la technique du 
maximum de vraisemblance dans le cas de modeles de reponse unimodale a une variable sous-jacente. 
Les modeles utilises sont des modeles logistiques-lineaires en ce qui concerne les donnees de presence/ 
absence et log-lineaires pour des abondances suivant des lois de Poisson, les estimateurs etant des 
fonctions quadratiques de la variable sous-jacente. On obtient une approximation de meilleure qualite 
lorsque, d'une part, les maximum et les amplitudes (tolerances des especes aux conditions de milieu) 
des courbes de reponse des especes ont memes valeurs et que, d'autre part, les valeurs de la variable 
sous-jacente correspondant aux optimum de chaque espece et aux pointes d'echantillonnage sont 
regulierement reparties. L'approximation demeure satisfaisante pour des optimum et des valeurs 
correspondant aux echantillons distribues uniformement, ainsi que le montre la simulation. Pour des 
modeles a 2 variables sous-jacentes, l'approximation est souvent mauvaise en raison de la presence 
d'un effet Guttman. L'approximation est de bien meilleure qualite lorsque Ton realise des simulations 
apres avoir retire cet effet, ce qui se produit lorsqu'on utilise une technique d'analyse des correspond­
ances qui efface la tendance centrale du phenomene etudie. 
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Abstract. A new multivariate analysis technique, developed to relate community composition to 
known variation in the environment, is described. The technique is an extension of correspondence 
analysis (reciprocal averaging), a popular ordination technique that extracts continuous axes of vari­
ation from species occurrence or abundance data. Such ordination axes are typically interpreted with 
the help of external knowledge and data on environmental variables; this two-step approach (ordination 
followed by environmental gradient identification) is termed indirect gradient analysis. In the new 
technique, called canonical correspondence analysis, ordination axes are chosen in the light of known 
environmental variables by imposing the extra restriction that the axes be linear combinations of 
environmental variables. In this way community variation can be directly related to environmental 
variation. The environmental variables may be quantitative or nominal. As many axes can be extracted 
as there are environmental variables. The method of detrending can be incorporated in the technique 
to remove arch effects. 

(Detrended) canonical correspondence analysis is an efficient ordination technique when species 
have bell-shaped response curves or surfaces with respect to environmental gradients, and is therefore 
more appropriate for analyzing data on community composition and environmental variables than 
canonical correlation analysis. The new technique leads to an ordination diagram in which points 
represent species and sites, and vectors represent environmental variables. Such a diagram shows the 
patterns of variation in community composition that can be explained best by the environmental 
variables and also visualizes approximately the "centers" of the species distributions along each of 
the environmental variables. Such diagrams effectively summarized relationships between community 
and environment for data sets on hunting spiders, dyke vegetation, and algae along a pollution gradient. 

Key words: biplot; canonical correlation analysis; canonical correspondence analysis; detrended 
correspondence analysis; Gaussian model; gradient analysis; ordination; reciprocal averaging; regres­
sion; species-environment relations; unfolding; weighted averaging. 

INTRODUCTION 

Problems in community ecology often require the 
inferring of species-environment relationships from 
community composition data and associated habitat 
measurements. Typical data for such problems consist 
of two sets: data on the occurrence or abundance of a 
number of species at a series of sites, and data on a 
number of environmental variables measured at the 
same sites. (A "site" is the basic sampling unit, sepa­
rated in space or time from other sites, e.g., a quadrat, 
a woodlot, a light trap, or a plankton sample.) When 
the data are collected over a sufficient habitat range for 
species to show nonlinear, nonmonotonic relationships 
with environmental variables, it is inappropriate to 
summarize these relationships by correlation coeffi­
cients or to analyze the data by techniques that are 
based on correlation coefficients, such as canonical cor­
relation analysis (Gauch and Wentworth 1976, Gittins 
1985). An alternative, two-step approach has become 
popular: (1) extract from the species data the dominant 
pattern of variation in community composition by an 
ordination technique, such as (detrended) correspon-

1 Manuscript received 18 March 1985; revised 12 Novem­
ber 1985; accepted 22 January 1986. 

dence analysis, and (2) attempt to relate this pattern 
(i.e., the first few ordination axes) to the environmental 
variables (Gauch 1982a). The particular merit of de-
trended correspondence analysis in this context is that 
it removes nonlinear dependencies between axes (Hill 
and Gauch 1980) and has been shown to be an efficient 
technique to extract one or more ordination axes ("gra­
dients") such that species show unimodal (bell-shaped) 
response curves or surfaces with respect to these axes 
(Ter Braak 1985ft). The axes can be thought of as hy­
pothetical environmental gradients, which are subse­
quently interpreted in terms of measured environmen­
tal variables in the second step of the analysis. This 
two-step approach is essentially Whittaker's (1967) in­
direct gradient analysis. 

What can be inferred from indirect gradient analysis? 
If the measured environmental variables relate strong­
ly to the first few ordination axes, they can "account 
for" (i.e., they are sufficient to predict) the main part 
of the variation in the species composition. If the en­
vironmental variables do not relate strongly to the first 
few axes, they cannot account for the main part of the 
variation, but they may still account for some of the 
remaining variation—which can be substantial. Fur­
ther, it is nontrivial to detect by indirect gradient anal-
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ysis the effects on community composition of a subset 
of environmental variables in which one is particularly 
interested (Carleton 1984). These limitations can only 
be overcome by methods of direct gradient analysis, 
in which species occurrences are related directly to en­
vironmental variables (Gauch 1982a). Methods of di­
rect gradient analysis in current use consider essentially 
one species at a time. Simple methods involve plotting 
species abundance against a single environmental vari­
able, or isopleths in a space of two environmental vari­
ables (Whittaker 1967). More elaborate methods use 
(generalized linear) regression methods (Austin et al. 
1984, Bartlein et al. 1986) and are useful in studying 
simultaneously the effect of more than one environ­
mental variable. Regression methods allow fitted re­
sponse surfaces to assume a wide variety of shapes. 
However, when the number of species is large, separate 
regression analysis for each species may be impractical. 
Moreover, separate analyses cannot be combined eas­
ily to get an overview of how community composition 
varies with the environment (in particular, when the 
number of environmental variables exceeds two or 
three), and a multivariate method (based on a common 
response model) is required. 

In this paper a multivariate direct gradient analysis 
technique is developed, whereby a set of species is 
related directly to a set of environmental variables. The 
new technique identifies an environmental basis for 
community ordination by detecting the patterns of 
variation in community composition that can be ex­
plained best by the environmental variables. In the 
resulting ordination diagram, species and sites are rep­
resented by points and environmental variables are 
represented by arrows. Such a diagram shows the main 
pattern of variation in community composition as ac­
counted for by the environmental variables, and also 
shows, in an approximate way, the distributions of the 
species along each environmental variable. The tech­
nique thus combines aspects of regular ordination with 
aspects of direct gradient analysis. The rationale of the 
technique is derived from a species packing model 
wherein species are assumed to have Gaussian (bell-
shaped) response surfaces with respect to compound 
environmental gradients. These gradients are assumed 
to be linear combinations of the environmental vari­
ables. The new technique is called canonical corre­
spondence analysis, because it is a correspondence 
analysis technique in which the axes are chosen in the 
light of the environmental variables. Examples dem­
onstrate that canonical correspondence analysis allows 
a quick appraisal of how community composition var­
ies with the environment. 

THEORY 

Data and model 

Suppose a survey of n sites lists the abundances or 
occurrences (presence scored as 1, absence as 0) of m 

species and the values of q environmental variables 
(q < n). Let y,k be the abundance or presence/absence 
(1/0) of species k (ylk > 0), and z# the value of envi­
ronmental variable j at site i. 

The first step in indirect gradient analysis is to sum­
marize the main variation in the species data by or­
dination. The method of Gaussian ordination (Gauch 
et al. 1974) does this by constructing an axis such that 
the species data optimally fit Gaussian response curves 
along this axis. Then the response model for the species 
is the bell-shaped function 

E(y,k) = ckexp[</2(x, - uky/tk
2], (1) 

where E(ylk) denotes the expected (average) value of 
ylk at site;' that has score x, on the ordination axis. The 
parameters for species k are ck, the maximum of that 
species' response curve; uk, the mode or optimum (i.e., 
the value of x for which the maximum is attained); 
and tk, the tolerance, a measure of ecological ampli­
tude. Ter Braak (19856) showed that correspondence 
analysis approximates the maximum likelihood solu­
tion of Gaussian ordination, if the sampling distribu­
tion of the species abundances is Poisson, and if: 

CI) the species' tolerances are equal (tk = t, k = 1, 
. . . , m), 

C2) the species' maxima are equal (ck = c, k = 1, 
. . . , m), 

C3) the species' optima {uk} are homogeneously dis­
tributed over an interval A that is large com­
pared to t, 

C4) the site scores {*,} are homogeneously distrib­
uted over a large interval B that is contained 
in A. 

(The wording "homogeneously distributed" is used to 
cover either of two cases, namely (1) that the scores 
are equispaced, with spacing small compared to t, or 
(2) that the scores are drawn randomly from a uniform 
distribution.) Conditions C1-C3 imply a species pack­
ing model (Whittaker et al. 1973) with respect to the 
ordination axis. The species scores resulting from a 
correspondence analysis actually estimate the optima 
of the species in this model. Ter Braak (19856) pro­
vided a similar rationale for correspondence analysis 
of presence-absence data. Conditions CI and C2 are 
not likely to hold in most natural communities, but 
the usefulness of correspondence analysis in practice 
relies on its robustness against violations of these con­
ditions (Hill and Gauch 1980). 

The second step of indirect gradient analysis is to 
relate the ordination axis to the environmental vari­
ables, for example graphically, or by calculating cor­
relation coefficients, or by multiple regression (see 
Montgomery and Peck 1982) of the site scores on the 
environmental variables 

; b0 + 2 bjzu> (2) 
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where b0 is the intercept and 6, is the regression coef­
ficient for environmental variable / Note that the 
species optima uk and sites scores x, are estimated from 
the species data first; the regression coefficients bt are 
estimated next, keeping x, (and uk) fixed. The species 
data are thus indirectly related to the environmental 
variables, via the ordination axis. 

The technique proposed in this paper simultaneously 
estimates the species optima, the regression coefficients 
and, hence, the site scores by using the model described 
by Eq. 1, in conjunction with Eq. 2. Simultaneous es­
timation turns the technique into a direct gradient anal­
ysis method. In principle the method of maximum 
likelihood could be used to obtain the estimates. This 
analysis could be called Gaussian canonical ordination. 
It requires excessively heavy computation. The com­
putational task can, however, be alleviated consider­
ably if conditions C1-C4 hold. The reasoning that led 
from Gaussian ordination to correspondence analysis, 
now leads to the transition formulae of canonical cor­
respondence analysis (see Appendix): 

X"* - 2 ytkX/y+, 

x,* = 2 yuVk/yi* 

b = (Z'RZ)"'Z'IU:* 

(3) 

(4) 

(5) 

x = zb, (6) 

where y+k and y,+ are species and site totals, respec­
tively, R is a diagonal n x « matrix with y /+ as the (;', 
0-th element; z = {z,-,} is an n x (q + 1) matrix con­
taining the environmental data and a column of ones; 
and b, x and x* are column-vectors: b =; (60, b, 
*«)', x = (x„ . . . , x„)', and x* = (x,*, . . . , *„*)'. The 
transition formulae define an eigenvector problem (see 
Appendix) that is akin to the eigenvector problem posed 
by canonical correlation analysis, X in Eq. 3 being the 
eigenvalue. As in correspondence analysis, the equa­
tions have a trivial solution in which all site and spe­
cies scores are equal and X = 1; this trivial solution 
can either be disregarded or be excluded by requiring 
tha t the site scores are centered to zero mean, 
i.e., SJ^+JCJ = 0. 

Algorithm: reciprocal averaging and regression 

The transition formulae can be solved by the follow­
ing iteration algorithm of reciprocal averaging and 
multiple regression. 

51) Start with arbitrary, but unequal, initial site 
scores. 

52) Calculate species scores by weighted averaging 
of the site scores (Eq. 3 with X = 1). 

53) Calculate new site scores by weighted averaging 
of the species scores (Eq. 4). 

54) Obtain regression coefficients by weighted mul­

tiple regression of the site scores on the envi­
ronmental variables (Eq. 5). The weights are the 
site totals (y,+). 

55) Calculate new site scores by Eq. 6 or, equiva-
lently, Eq. 2. The new site scores are in fact the 
fitted values of the regression of the previous 
step. 

56) Center and standardize the site scores such that 
Sitt+JC, = 0 and 2^,+x,2 = 1. (7) 

57) Stop on convergence, i.e., when the new site 
scores are sufficiently close to the site scores of 
the previous iteration; otherwise go to S2. 

This procedure is akin to the reciprocal averaging 
algorithm of correspondence analysis, but steps S4 and 
S5 are additional. The new technique is a correspon­
dence analysis technique with restrictions (S4 and S5) 
on the site scores (cf. De Leeuw 1984). The final regres­
sion coefficients will be called canonical coefficients, 
and the multiple correlation coefficient of the final 
regression will be called the species-environment cor­
relation. The species-environment correlation is a 
measure of how well the extracted variation in com­
munity composition can be explained by the environ­
mental variables and is equal to the correlation be­
tween the site scores {x,*}, which are weighted mean 
species scores (calculated by Eq. 4), and the site scores 
{JC,}, which are a linear combination of the environ­
mental variables (calculated by Eq. 2 or Eq. 6). This 
equality requires the assumption that sites are weighted 
proportional to y,+, as in steps S4 and S6, and this 
weighting of sites is assumed in the calculation of means, 
variances, and correlations throughout the paper. 

The standardization of the site scores in S6 is con­
venient in the algorithm, but it has more meaning eco­
logically to rescale the solution according to Eq. A. 8 
of the Appendix, as proposed by Hill (1979). Then, the 
tolerance of the fitted Gaussian response curves is (on 
average) about 1 unit, and a species' response curve 
can be expected to rise and decline over an interval of 
about 4 units. 

More than one dimension and detrending 

Second and additional axes can be extracted as in 
correspondence analysis by adding to the algorithm, 
after S5, a step that makes the trial site scores uncor-
related with the previous axes. The two-dimensional 
solution is intended to fit bivariate Gaussian response 
surfaces to the species data (Ter Braak 19856) but often 
gives a bad fit because of the arch effect, an approxi­
mately quadratic dependence between the scores of the 
first two axes. This effect crops up whenever a short 
gradient is dominated by a long gradient (Gauch 1982a). 
The modifications of correspondence analysis that led 
to detrended correspondence analysis (Hill and Gauch 
1980) can also be incorporated in canonical corre­
spondence analysis; the rationale for detrending is the 
same. Detrending removes the arch effect and im-
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Pardlugu 
FALLEN TWIGS A 

WATER CONTENT 

COVER HERBS 

FIG. 1. The distribution of 12 species of hunting spiders caught in pitfall traps in a Dutch dune area. Canonical corre­
spondence analysis (CCA) ordination diagram with pitfall traps (O), hunting spiders (A), and environmental variables (arrows); 
first axis is horizontal, second axis vertical. Shown also are the projections of the spider points labelled Arct peri, Alop fabr, 
Alop acce, and Pard mont onto the trajectory of the arrow of bare sand; the order of the projection points indicates the 
approximate ranking of the centers of the distributions of these spiders along the variable "percentage bare sand," Arclosa 
perita being found in habitats with the highest percentages of bare sand. The spider species are: Alop acce = Alopecosa 
accentuata, Alop cune = Alopecosa cuneata, Alop fabr = Alopecosa fabrilis, Arct lute = Arctosa lutetiana, Arct peri = Arctosa 
perita, Aulo albi = Aulonia albimana, Pard lugu = Pardosa lugubris, Pard mont = Pardosa monticola, Pard nigr = Pardosa 
nigriceps, Pard pull = Pardosa pullata, Troc terr = Trochosa terricola, Zora spin = Zora spinimana. The environmental 
variables are: Water Content = percentage of soil dry mass, Bare Sand = percentage cover of bare sand, Fallen Twigs = 
percentage cover of fallen leaves and twigs, Cover Moss = percentage cover of the moss layer, Cover Herbs = percentage 
cover of the herb layer, and Light Ren = reflection of the soil surface with cloudless sky. 

proves the fit to the Gaussian model considerably in 
simulations where the true site and species scores are 
homogeneously distributed in a rectangle (the exten­
sion to two dimensions of conditions C3 and C4; Ter 
Braak 19856). Detrending, however, also attempts to 
impose such a homogeneous distribution of scores on 
the data where none exists. The computer program 
CANOCO (Ter Braak 1985a) will also perform de-
trended canonical correspondence analysis. For a com­
parison of the detrended analysis with the non-detrend-
ed analysis, see Tests on Real Data. 

Canonical coefficients and intraset correlations 

For interpreting the ordination axes one can use the 
canonical coefficients and the intraset correlations. The 
canonical coefficients define the ordination axes as linear 
combinations of the environmental variables through 
Eq. 2, and the intraset correlations are the correlation 
coefficients between the environmental variables and 
these ordination axes. (The term intraset is used here 
to distinguish these correlations from the interset cor­
relations between the environmental variables and the 
site scores {x*} that are derived from the species data.) 
For the rest of the analysis it is assumed that the en­
vironmental variables have been standardized to zero 
mean and unit variance prior to the analysis. This stan­

dardization removes arbitrariness in the units of mea­
surement of the environmental variables and makes 
the canonical coefficients comparable to each other, 
but does not influence other aspects of the analysis. 

By looking at the signs and relative magnitudes of 
the intraset correlations and of the canonical coeffi­
cients so standardized, we may infer the relative im­
portance of each environmental variable for predicting 
the community composition. The canonical coeffi­
cients give the same information as the intraset cor­
relations in the special case that the environmental 
variables are mutually uncorrelated, but may provide 
rather different information when the environmental 
variables are correlated with each other, as they usually 
are in field data. Both a canonical coefficient and an 
intraset correlation coefficient relate to the rate of change 
in community composition per unit change in the cor­
responding environmental variable, but in the former 
case it is assumed that other environmental variables 
are being held constant, whereas in the latter case the 
other environmental variables are assumed to covary 
with that one environmental variable in the particular 
way they do in the data set. When the environmental 
variables are strongly correlated with each other—for 
example, simply because the number of environmental 
variables approaches the number of sites—the effects 

63 



October 1986 CANONICAL CORRESPONDENCE ANALYSIS 1171 

of different environmental variables on community 
composition cannot be separated out and, consequent­
ly, the canonical coefficients are unstable. This is the 
multicollinearity problem, well known to occur in mul­
tiple regression analysis (see Montgomery and Peck 
1982). When this problem arises (the program CAN-
OCO [Ter Braak 1985a] provides statistics to help de­
tect it) one should abstain from attempts to interpret 
the canonical coefficients. Fortunately, the intraset cor­
relations do not suffer from this problem and can still 
be used for interpretation purposes. One can also re­
move environmental variables from the analysis, keep­
ing at least one variable per set of strongly correlated 
environmental variables; the eigenvalues and species-
environment correlations will usually decrease only 
slightly. If the eigenvalues and species-environment 
correlations drop considerably, one has removed too 
many (or the wrong) variables. 

In contrast to canonical correlation analysis, canon­
ical correspondence analysis is not hampered by mul­
ticollinearity in the species data; the number of species 
is therefore allowed to exceed the number of sites. 

Ordination diagram 

The solution of canonical correspondence analysis 
can be displayed in an ordination diagram with sites 
and species represented by points, and environmental 
variables represented by arrows (see Fig. 1). The species 
and site points jointly represent the dominant patterns 
in community composition insofar as these can be ex­
plained by the environmental variables, and the species 
points and the arrows of the environmental variables 
jointly reflect the species' distributions along each of 
the environmental variables. For example, .when an 
arrow refers to "water content," the diagram allows us 
to infer—by rules explained in the following para­
graphs—which species largely occur in the wettest sites, 
which in the driest sites, and which in sites with in­
termediate moisture values. We shall limit the discus­
sion to two-dimensional diagrams because these are 
the most convenient to visualize. The rules for con­
struction and interpretation of higher-dimensional or­
dination diagrams are the same. 

For the diagram to represent the approximate com­
munity composition at the sites, we must plot species 
scores and site scores that are weighted mean species 
scores, as in Hill's (1979) program DECORANA. Be­
cause each site point then lies at the centroid of the 
species points that occur at that site, one may infer 
from the diagram which species are likely to be present 
at a particular site. Also, insofar as canonical corre­
spondence analysis is a good approximation to the fit­
ting of Gaussian response surfaces, the species points 
are approximately the optima of these surfaces; hence 
the abundance or probability of occurrence of a species 
decreases with distance from its location in the dia­
gram. 

At which values of an environmental variable a 

species occurred in the data can conveniently be sum­
marized by the weighted average. The weighted av­
erage of a species distribution (k) with respect to an 
environmental variable (/') is defined as the average of 
the values of that environmental variable at those sites 
at which that species occurs, the weighting of each site 
being proportional to species abundance, i.e., 

2«» = 2 yikZi/y+i (8) 

The weighted average indicates the "center" of a species' 
distribution along an environmental variable (Ter Braak 
and Looman 1986), and differences in weighted av­
erages between species indicate differences in their dis­
tributions along that environmental variable. The or­
dination diagram of canonical correspondence analysis 
can be supplemented by arrows for the environmental 
variables to give a graphical summary of the weighted 
averages of all species with respect to all environmental 
variables. 

The arrows for the environmental variables must be 
added in the following way. The position of the head 
of the arrow for an environmental variable depends on 
the eigenvalues of the axes and the intraset correlations 
of that environmental variable with the axes (see Ap­
pendix). The coordinate of the head of the arrow on 
axis s must be [X,( 1 — X,)]'" times the intraset correlation 
of the environmental variable with axis s, where \s is 
the eigenvalue of axis J and it is assumed that the 
species scores are standardized according to Appendix 
Eq. A. 8, as before. By connecting the origin of the plot 
(the centroid of the site points) with each of the arrow­
heads, we obtain the arrows representing the variables 
(Fig. 1). How to construct such a diagram from a de-
trended canonical correspondence analysis is described 
in the Appendix. Only the directions and relative lengths 
convey information, so one can increase or reduce the 
lengths of all arrows to fit conveniently in the ordi­
nation diagram. 

The ordination diagram so constructed allows the 
following interpretation. Each arrow determines a di­
rection or axis in the diagram, obtained by extending 
the arrow in both directions (in your mind or on paper). 
From each species point we must drop a perpendicular 
to this axis. Fig. 1 shows an example. The arrow for 
water content has been extended (the axis happens to 
coincide with the arrow for bare sand) and perpendic­
ulars have been dropped to this axis from four species 
points. The endpoints indicate the relative positions 
of the centers of the species distributions along the 
water content axis or, more precisely, they indicate in 
an approximate way the relative value of the weighted 
average of each species with respect to water content. 
From Fig. 1 we thus infer that Arctosa perita has the 
lowest weighted average with respect to water content 
(i.e., it largely occurs at the driest sites), Alopecosafa-
brilis the second lowest value, and so on to Arctosa 
lutetiana, which is inferred to have the highest weight-
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TABLE 1. Comparison of the results of ordinations by de-
trended correspondence analysis (DCA), canonical corre­
spondence analysis (CCA), and detrended canonical cor­
respondence analysis (DCCA) of hunting spider data (see 
Fig. 1): eigenvalues and species-environment correlation 
coefficients for the first three axes. 

tributions differ along that environmental variable. Im­
portant environmental variables therefore tend to be 
represented by longer arrows than less important en­
vironmental variables. 

Axis 

DCA 
CCA 
DCCA 

DCA 
CCA 
DCCA 

1 

0.58 
0.53 
0.53 

0.96 
0.96 
0.97 

2 3 

Eigenvalues 
0.16 0.02 
0.21 0.06 
0.13 0.02 

Correlation coefficients 
0.92 0.88 
0.93 0.64 
0.94 0.90 

ed average (i.e., to occur largely at the wettest sites). 
In general, the approximate ranking of the weighted 
averages for a particular environmental variable can 
be seen easily from the order of the endpoints of the 
perpendiculars of the species along the axis for that 
variable. Further, the weighted averages are approxi­
mated in the diagram as deviations from the grand 
mean of each environmental variable, the grand mean 
being represented by the origin of the plot. A second 
useful rule for interpreting the diagram is therefore that 
the inferred weighted average is higher than average if 
the endpoint of a species lies on the same side of the 
origin as the head of an arrow does, and is lower than 
average if the origin lies between the endpoint and the 
head of the arrow. 

These rules for interpreting the joint plot of species 
points and environmental arrows are identical to the 
rules for interpreting a biplot (Gabriel 1971). Biplots 
have been used so far primarily in connection with 
principal components analysis (Ter Braak 1983), but 
a biplot is essentially just a joint plot of two kinds of 
entities that allows a particular kind of quantitative 
interpretation (Gabriel 1981, Ter Braak 1983). The 
joint plot of species and environmental variables is, in 
fact, a biplot. This biplot provides a weighted least 
squares approximation of the weighted averages of the 
species with respect to the environmental variables (see 
Appendix). The measure of goodness of fit, 100 x (\, + 
X2)/(sum of all eigenvalues), expresses the percentage 
variance of the weighted averages accounted for by the 
two-dimensional diagram. In interpreting percentages 
of variance accounted for, it must be kept in mind that 
the goal is not 100%, because part of the total variance 
is due to noise in the data (cf. Gauch 19826). Even an 
ordination diagram that explains only a low percentage 
may be quite informative. 

Finally, the length of an arrow representing an en­
vironmental variable is equal to the rate of change in 
the weighted average as inferred from the biplot, and 
is therefore a measure of how much the species dis-

Relation of canonical correspondence analysis 
with weighted averaging ordination and 

discriminant analysis 

Canonical correspondence analysis generalizes two 
existing techniques for direct gradient analysis. When 
a single quantitative environmental variable is consid­
ered, it reduces to weighted averaging ordination (Gauch 
1982a), because x, in Eq. 1 is then simply the value of 
this variable at site i, and fitting this model simplifies 
under condition C4 to weighted averaging (cf. Ter Braak 
and Looman 1986). With two quantitative environ­
mental variables, the technique represents the same 
information in a two-dimensional diagram as weighted 
averaging ordination with respect to these variables, 
although the variables are not necessarily displayed as 
orthogonal directions in the ordination diagram. With 
a single nominal environmental variable, canonical 
correspondence analysis is a variant of discriminant 
analysis (canonical variate analysis) that is appropriate 
to a unimodal response model, and which can be ob­
tained more simply from a correspondence analysis of 
a two-way table of species by (classes of) the nominal 
variable (Greenacre 1984: section 7.1). The cells of the 
table must contain the total abundances of each of the 
species in each of the classes. In the resulting ordination 
diagram the classes are represented by points. This 
equivalence suggests that it can be more natural to 
represent nominal environmental variables by points 
instead of arrows. The point for a class of a nominal 
environmental variable must be located at the centroid 
(the weighted average) of the sites belonging to that 
class. Classes consisting of sites with high values for a 
species will then tend to lie close to that species' point. 
Gasse and Tekaia (1983) applied this technique to es­
tablish a transfer function for estimating paleo-envi-
ronmental conditions from diatom assemblages. 

TABLE 2. Hunting spider abundance data from Fig. 1: ca­
nonical coefficients and the intraset correlations of envi­
ronmental variables with the first two axes of canonical 
correspondence analysis (CCA). The environmental vari­
ables were standardized to unit variance after log-transfor­
mation. For a description of variables, see Fig. 1 legend. 

variable 

Water Content 
Bare Sand 
Fallen Twigs 
Cover Moss 
Cover Herbs 
Light Refl 

Canonical 
coefficients 

1 

-0.51 
0.33 

-0.14 
0.05 

-0.28 
0.27 

2 

-0.41 
-0.10 

0.37 
-0.27 
-0.15 
-0.03 

Correlation 
coefficients 

1 

-0.93 
0.73 

-0.43 
0.69 

-0.32 
0.64 

2 

-0.08 
0.06 
0.78 

-0.30 
-0.78 
-0.59 

65 



October 1986 CANONICAL CORRESPONDENCE ANALYSIS 1173 

TABLE 3. Hunting spider abundance data, with species (rows) and sites (columns) arranged in order of the scores for the 
first axis of canonical correspondence analysis (CCA). Site numbers correspond to those of Van der Aart and Smeenk-
Enserink (1975: Table 4). The species abundance data have been transformed by taking square roots; the integer part is 
shown, a blank denoting absence of the species and 9 denoting >80 individuals captured. For this table, the range of each 
environmental variable was divided into 10 equal-sized classes (denoted by 0-9) after the data were transformed. Abbre­
viations and a description of the biological system are given in legend of Fig. 1. 

Species 

Arct lute 
Pard lugu 
Zora spin 
Pard nigr 
Pard pull 
Aulo albi 
Tree terr 
Alop cune 
Pard m o m 
Alop acce 
Alop fabr 
Arct peri 

15 

2 
1 

5 

Environmental variable 

Water Content 
Bare Sand 
Cover Moss 
Light Ren 
Fallen Twigs 
Cover Herbs 

9 
0 
1 
1 
9 
5 

19 

3 
1 
1 

4 
1 

7 
0 
3 
0 
9 
2 

20 

3 
1 

4 
1 

8 
0 
1 
0 
9 
0 

16 

2 
2 
1 

5 
1 

8 
0 
1 
0 
9 
0 

17 

1 
1 

4 

9 
0 
1 
2 
9 
5 

18 

2 

5 
1 

8 
0 
0 
2 
9 
5 

2 

1 
3 
3 
6 
5 
8 
1 
1 

8 
0 
2 
3 
3 
9 

8 

7 
1 
1 
1 
2 
5 
3 
1 

6 
0 
2 
1 
9 
6 

21 

4 
1 

1 

4 
1 
1 

7 
0 
1 
0 
9 
2 

5 

1 
1 
4 
9 
8 
3 
9 
4 
1 
1 

8 
0 
0 
5 
0 
9 

6 

2 

5 
5 
4 
2 
7 
2 
3 

9 
5 
5 
1 
7 
6 

14 

1 
1 
5 
3 
8 
2 
9 
1 
3 

8 
0 
4 
2 
0 
9 

Site numbers 

4 

1 
1 
5 
5 
9 
4 
9 
2 
2 
1 

6 
0 
5 
6 
0 
9 

7 

3 
1 
4 
9 
9 
4 
9 
2 
5 
1 

8 
0 
1 
5 
0 
9 

13 

1 
1 
4 
7 
8 
4 
9 
6 
4 
1 
1 

9 
3 
1 
7 
3 
9 

3 

1 
1 
1 
4 
6 
3 
8 
4 
5 
3 
1 

6 
0 
5 
8 
0 
9 

1 

2 
3 
6 
2 
7 
3 
7 
5 

5 
0 
7 
8 
0 
9 

9 

1 
1 

1 
1 
5 
1 

5 
0 
9 
7 
0 
6 

12 

1 
2 

3 
3 
9 
4 

5 
0 
8 
8 
0 
8 

25 

1 
2 
2 

1 
4 
1 
3 
3 
3 

3 
7 
2 
5 
0 
8 

11 

1 
1 
2 
1 
9 
3 
1 

4 
0 
9 
8 
0 
7 

10 28 

1 

4 
1 
1 

4 
8 
7 
8 
0 
5 

1 

2 
3 
3 
1 

0 
7 
8 
8 
0 
6 

23 

1 

1 

2 
4 
3 
2 

0 
6 
9 
9 
0 
6 

22 

1 

1 
2 
4 
1 

1 
7 
9 
8 
0 
0 

27 

1 
5 
3 
2 

0 
5 
8 
8 
0 
6 

24 

1 
3 
4 
2 

2 
7 
9 
9 
0 
5 

26 

1 

1 
2 
4 

0 
9 
4 
9 
0 
2 

TESTS ON REAL DATA 

Hunting spider data 

The first data set, taken from Van der Aart and 
Smeenk-Enserink (1975), concerns the distributions of 
12 species of hunting spiders (Fig. 1) in a Dutch dune 
area, in relation to environmental data. The species 
data are the numbers of individuals of each species 
caught in pitfall traps over a period of 60 wk. Twenty-
six environmental variables were measured at 28 of 
the pitfall traps. This number of variables is too large 
to sort out their independent effects on community 
composition. Eighteen variables were removed on a 
priori grounds, and two more variaBles were removed 
because they were strongly correlated with one of the 
remaining six variables (Fig. 1). The species data were 
transformed by taking square roots to down-weight 
high abundances; the environmental data were trans­
formed by taking logarithms, as in the original paper. 

The ordinations by detrended correspondence anal­
ysis (DCA), canonical correspondence analysis (CCA), 
and detrended canonical correspondence analysis 
(DCCA) are very similar for these data. The first ei­
genvalue of CCA is only slightly lower than the first 
eigenvalue of DCA, and the species-environment cor­
relations of the first three axes are all high (Table 1). 
Apparently the measured environmental variables are 
sufficient to explain the major variation among the 
spider catches. From Table 2 we infer that the first axis 
is a moisture gradient, on which the drier sites have a 
high percentage of bare sand or of moss. The corre­
lations of the second axis show a contrast between sites 

with a high cover of leaves and twigs and sites with a 
well-developed herb and moss layer. 

From the species and site points in the CCA ordi­
nation diagram (Fig. 1) we infer, for example, that 
Arctosa perita and Alopecosa fabrilis reached their 
maximum abundance in the six pitfall traps repre­
sented on the right-hand side of the diagram, that Par-
dosa monticola had maximum abundance in the pitfall 
traps shown in the middle, and that Pardosa lugubris 
was most abundant in the cluster of pitfall traps rep­
resented in the top-left of the diagram. These inferences 
from the diagram largely agree with the data (cf. Table 
3). 

The arrows for environmental variables in Fig. 1 
account, in conjunction with the species points, for 
87% of the variance in the weighted averages of the 12 
spiders with respect to the six environmental variables, 
the sum of all eigenvalues being 0.85. For example, 
projecting the spider points on the axis of percentage 
bare sand shows that Arctosa perita and Alopecosa fa­
brilis were mainly found in habitats with the highest 
percentages of bare sand, Alopecosa accentuata and 
Pardosa monticola in habitats with intermediate bare 
sand percentages, and the species on the left-hand side 
of the diagram in habitats with the lowest percentages 
of bare sand. "For Ar. perita, Al. fabrilis, Al. accentuata, 
and P. monticola, the same ranking applies with respect 
to the cover of the moss layer. The ranking is more or 
less the reverse with respect to soil water content. Arc­
tosa lutetiana, Pardosa pullala, Pardosa nigriceps, Au-
lonia albimana, and Pardosa monticola occurred in 
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TABLE 4. Comparison of the results of ordinations by de-
trended correspondence analysis (DCA), canonical corre­
spondence analysis (CCA), and detrended canonical cor­
respondence analysis (DCCA) of dyke vegetation data (see 
Fig. 2): eigenvalues and species-environment correlation 
coefficients for the first four axes. 

DCA 
CCA 
DCCA 

DCA 
CCA 
DCCA 

1 

0.34 
0.20 
0.20 

0.52 
0.82 
0.83 

Axis 

2 3 

Eigenvalues 
0.25 0.22 
0.13 0.12 
0.12 0.09 

Correlation coefficients 
0.40 0.58 
0.81 0.80 
0.81 0.76 

4 

0.19 
0.07 
0.05 

0.22 
0.77 
0.66 

habitats with a well-developed herb layer. Pardosa lu-
gubris occupies an aberrant position in the diagram, 
being the single spider species that occurred mainly in 
habitats with a high cover of fallen leaves and twigs 
(i.e., in woods). Trochosa terricola, Zora spinimana, 
and Alopecosa cuneata occupy an intermediate posi­
tion between the woody and grassier sites. Van der Aart 
and Smeenk-Enserink (1975) gave a similar descrip­
tion, but the CCA ordination diagram tells the main 
story at a glance. The DCCA ordination diagram pro­
vided essentially the same information. The main 
structure in the data is also clear from Table 3, where 
species and sites are reordered according to their scores 
on the first CCA axis. The species data show a diagonal 
band; soil water content decreases along the first axis, 
whereas percentage bare sand, cover of moss, and light 
reflection increase along this axis. 

Dyke vegetation 

De Lange (1972) studied the occurrences of mac-
rophytes in dykes in the Netherlands in relation to 
electrical conductivity, phosphate and chloride con­
centration in the water, and soil type (clay, peaty soil, 
sand). A total of 125 fresh water dykes (conductivity 
< 126 mS/m) were selected, with in total 133 plant 
species. Conductivity data were transformed by taking 
logarithms, because of a skewed distribution, and chlo­
ride concentration was transformed to chloride ratio 

(the share of chloride ions in the electrical conductivity; 
G. Van Wirdum, personal communication). The nom­
inal variable "soil type" (with three classes) was dealt 
with, as in multiple regression (see Montgomery and 
Peck 1982: chapter 6), by defining two dummy envi­
ronmental variables "peat" and "sand." (The variable 
"peat" takes the value 1 when a dyke has soil type 
"peat" and the value 0 otherwise. The variable "sand" 
is defined analogously. A dyke in clay thus scores the 
value 0 on each of the two variables. The canonical 
coefficient of "peat" then measures the difference in 
expected site scores between peaty and clay soils. Other 
choices of dummy variables could have been used 
equivalently, e.g., "clay" and "sand.") 

Table 4 shows that the environmental variables are 
poorly related to the first four species axes of DCA. 
But by choosing the axes in the light of the environ­
mental variables, by applying CCA or DCCA, the 
species-environment correlations increase consider­
ably. The interpretation of the axes is unambiguous 
(Table 5): the first axis is defined by conductivity and 
phosphate, the second by the chloride ratio and soil 
type; the soil types further differentiate on the third 
and fourth axes. CCA and DCCA do not differ much 
for this data set. On the CCA ordination diagram (Fig. 
2) the dykes are not displayed because the diagram 
would have been too crowded; the undisplayed dykes 
all lie in the open center region of Fig. 2. Fig. 2 accounts 
for 56% of the variance and shows that the weighted 
averages of the species with respect to conductivity and 
phosphate result in similar rankings; this similarity 
cannot be explained by the correlation between these 
variables in the data set, because this correlation is 
only 0.44. In contrast, the ranking with respect to chlo­
ride ratio is different. The soil types are also represented 
by arrows (Fig. 2). Species whose distribution is the 
most restricted to peaty soils lie somewhat to the top-
left-hand corner of the diagram. Analogously, species 
with a distribution mainly on clay tend to lie somewhat 
to the bottom-right-hand corner of the diagram. 

The eigenvalues (Table 4) show that the extracted 
gradients are quite short (cf. Gauch and Stone 1979). 
The scores (optima) of most species therefore lie out­
side the center region where the sites lie, and the prob­
ability of occurrence of such species simply increases 

TABLE 5. Dyke vegetation data from Fig. 2: canonical coefficients and intraset correlations, as in Table 2. For a description 
of variables see Fig. 2 legend. 

variable 

EC 
Phosphate 
Chloride Ratio 
Clay 
Peat* 
Sand* 

1 

0.27 
0.30 
0.01 
0 

-0.09 
0.01 

Canonical coefficients 

2 

0.03 
0.01 
0.30 
0 
0.44 

-0.30 

3 

-0.02 
0.16 

-0.09 
0 
0.78 
0.58 

4 

0.10 
-0.15 

0.09 
0 

-0.03 
0.99 

1 

0.83 
0.86 
0.14 
0.27 

-0.38 
0.13 

Correlation coefficients 

2 

0.17 
-0.08 

0.86 
-0.21 

0.49 
-0.40 

3 

-0.25 
0.30 

-0.30 
-0.89 

0.72 
0.40 

4 

0.20 
-0.21 

0.29 
-0.31 
-0.17 

0.78 

* Not standardized to unit variance. 
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Nymp alba 

Pote palu 
Ranu ling 

^Lyco euro 
Acor cala' 

Alop geni 

Schi gela 

Cata aqua 

Zann palu 

Pota perf 

A 
Call obtu 

Ranu aqua 

Vero anag 

Call hamu 

PHOSPHATE 

Cera subm 

Bide trip 

FIG. 2. Dyke vegetation data: CCA ordination diagram with plant species (A) and environmental variables (arrows); first 
axis is horizontal, second axis vertical. Species with positions near the center and some other species elsewhere are not shown 
because the diagram would have become too crowded. The plant species shown are: Acor cala = Acorus calamus, Alop geni = 
Alopecurus geniculates, Azol fili = Azolla filiculoides, Bide trip = Bidens tripartita, Call hamu = Callitriche hamulata, Call 
herm = Callitriche hermophroditica, Call obtu = Callitriche obtusangula, Cata aqua = Catabrosa aquatica, Cera subm = 
Ceratophyllum submersum, Cole -sp = Coleochaete sp., Lyco euro = Lycopus europaeus, Meny trif = Menyanthes trifoliata, 
Nuph lu;s = Nuphar lutea (submerged form), Nymp alba = Nymphaea alba, Pota acut = Potamogeton acutifolius, Pota cris = 
Potamogeton crispus, Pota *dec = Potamogeton decipiens, Pota perf = Potamogetonperfoliatus, Pote palu = Potentillapalustris, 
Ranu aqua = Ranunculus aquatilis s.L, Ranu flam = Ranunculus flammula, Ranu ling = Ranunculus lingua, Ranu seel = 
Ranunculus sceleratus, Schi gela — Schizochlamys gelatinosa, Scir man = Scirpus maritimus, Stra al;s = Stratiotes aloides 
(submerged form), Trib bomb - Tribonema bombycinum, Vero anag = Veronica anagallis-aquatica, Vero cate = Veronica 
catenata, Wolf arrh = Wolffia arrhiza, Zann palu = Zannichellia palustris. The environmental variables are: EC = electrical 
conductivity, Phosphate = orthophosphate concentration, Chloride ratio = share of chloride ions in the electrical conductivity, 
and Clay, Peat, Sand (=type of soil surrounding the dyke). 

or decreases monotonically along the gradients actually 
sampled, instead of being unimodal as required (see 
Theory). Condition C4 is clearly violated in this data 
set; nevertheless CCA worked well. 

Algae along a pollution gradient 

Fricke and Steubing (1984) sampled 25 sites in rivu­
lets near the Ederstausee (Western Germany), recorded 
the abundances of 34 algae on a scale from 0 to 5, and 
measured seven environmental variables (Fig. 3), six 
of which (all but °D) were transformed by taking log­
arithms in our analysis because of skewed distribu­
tions. The first axis of DCA and that of CCA nearly 
coincided (Table 6), being a clear pollution gradient: 
positive correlations with ammonium, phosphate, bi­
ological oxygen demand (BOD5), and electrical con­
ductivity, and a negative correlation with oxygen (Ta­
ble 7). Although the ordination diagram of CCA (Fig. 

TABLE 6. Comparison of the results of ordinations by de-
trended correspondence analysis (DCA), canonical corre­
spondence analysis (CCA), and detrended canonical cor­
respondence analysis (DCCA) of data on algae along a 
pollution gradient; eigenvalues and species-environment 
correlation coefficients for the first three axes. 

Axis 

DCA 
CCA 
DCCA 

DCA 
CCA 
DCCA 

1 

0.70 
0.67 
0.67 

0.97 
0.98 
0.98 

2 3 

Eigenvalues 
0.17 0.09 
0.14 0.10 
0.08 0.05 

Correlation coefficients 
0.50 0.67 
0.72 0.89 
0.80 0.79 
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FIG. 3. Algae along a pollution gradient: CCA ordination diagram with algae (A), sites (O), and environmental variables 
(arrows); first axis is horizontal, second axis vertical. The algae are: Amph oval = Amphora ovalis, Audi viol = Audionella 
violacea, Batr moni = Batrachospermum moniliforme, Calo sili = Caloneis silicula. Clad frac = Cladophora fracta, Clad 
glom = Cladophora glomerata, Clos moni = Closterium moniliferum, Clos leib = Closterium leibneinii, Cyma sole = Cy-
matopleura solea, Cymb pros = Cymbella prostata, Diat hiem = Diatoma hiemale mesodon, Diat vulg = Diatoma vulgare. 
Frag capu = Fragilaria capucina, Frag vire = Fragilaria virescens, Gyro atte = Gyrosigma attenuatum, Hant amph = Hantzschia 
amphioxis, Melo van = Melosira varians. Men circ = Meridion circulare, Micr quad = Microspora quadrata, Navi cryp = 
Navicula cryptocephala, Navi radi = Navicula radiosa, Nizs pale = Nizschia palea, Nitz sigm = Nitzschia sigmoidea, Osci 
limo = Oscillatoria limosa, Phor fove = Phormidiumfoveolarum, Phor inun = Phormidlum inundatum, Pinn viri = Pinnularia 
viridis, Rhoi curv = Rhoicophenia curvata, Seen quad = Scenedesmus quadricauda, Stau ance = Stauroneis anceps, Stig tenu = 
Stigeoclonium tenue, Syne ulna = Synedra ulna, Ulot zona = Ulotrix zonula, Zoog rami = Zoogloea ramigera. The environ­
mental variables are: Oxygen = oxygen concentration, BOD5 = biological oxygen demand, Ammonium = ammonium 
concentration, Phosphate = orthophosphate concentration, Calcium = calcium concentration, °D = German standard measure 
for the total concentration of calcium and magnesium, and EC = electrical conductivity. 

3) explains most of the variance (73%), the diagram is 
unsatisfactory because of the arch effect (Gauch 1982a). 
The detrending in DCCA largely removes this effect 
(Fig. 4) and shows that the variation in species com­
position on the second axis is small (A2 = 0.08). This 
variation has surprisingly high correlation with the en­
vironmental variables (Table 6). The canonical coef­
ficients of the second axis (Table 8) suggest that this 

minor component of the variation is related to the ratio 
of ammonium to phosphate. 

In this example the interpretations of the CCA dia­
gram and the DCCA diagram (Figs. 3 and 4) are not 
very different, but in more complicated data sets the 
difference can be large. As in regular ordination, de-
trending is a method to prevent the second axis from 
being obscured by dependence on the first. 

FIG. 4. Algae along a pollution gradient: DCCA ordination diagram. For an explanation of symbols see Fig. 3 legend. 
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TABLE 7. Data on algae along a pollution gradient, from Fig. 
3: canonical coefficients and intraset correlations, as in Ta­
ble 2. For a description of variables see Fig. 3 legend. 

variable 

Oxygen 
BODS 
Ammonium 
Phosphate 
Calcium 
°D 
EC 

Canonical 
coefficients 

1 

-0.47 
0.06 
0.80 

-0.04 
-0.25 
-0.07 

0.28 

2 

0.20 
-0.11 
-0.07 

0.64 
0.28 

-0.10 
-0.27 

Correlation 
coefficients 

1 

-0.81 
0.88 
0.94 
0.83 

-0.19 
-0.44 

0.71 

2 

-0.06 
-0.08 

0.09 
0.51 
0.19 
0.05 

-0.09 

DISCUSSION 

Canonical correspondence analysis provides an in­
tegrated description of species-environment relation­
ships by assuming a response model that is common 
to all species, and the existence of a single set of un­
derlying environmental gradients to which all the species 
respond. The same strong assumption is implicit in all 
ordination techniques. Canonical correspondence 
analysis has the advantage over other techniques in 
that it focuses on the relations between species and 
measured environmental variables and so provides an 
automated interpretation of the ordination axes. 

Canonical correspondence analysis derives theoret­
ical strength from its relation to maximum likelihood 
Gaussian canonical ordination under conditions C l -
C4 and furthermore seems extremely robust in practice 
when these assumptions do not hold. The vital as­
sumption is that the response surfaces of the species 
are unimodal, the Gaussian (bell-shaped) response 
model being the example for which the method's per­
formance is particularly good. For the simpler case 
where species-environment relationships are mono­
tone, the results can still be expected to be adequate 
in a qualitative sense (see Tests on Real Data: Dyke 
Vegetation). The method would not work if a large 
number of species were distributed in a more complex 
way, e.g., bimodally; the restriction to a unimodal model 
is necessary for practical solubility, but as Hill (1977) 
points out, a good choice of environmental variable 
should minimize the number of species with more 
complex distributions. Some care, however, is required 
with the interpretation of the ordination diagram when 
the additional assumptions (C1-C4) do not hold. Species 
in the center of the ordination diagram may then have 
their optima there, but may alternatively be unrelated 
to the axes. Which possibility is most likely can be 
decided upon by tabular rearrangement of the species 
data with respect to each axis, as is done in Table 3 
for the first axis. Further work still needs to be done 
on the statistical significance of eigenvalues, species-
environment correlations, and canonical coefficients. 

As in correspondence analysis, any kind of trans­
formation of the species abundance data may influence 
the results. When the abundance data have a very 

skewed distribution, it is recommended to transform 
them by taking square roots or logarithms. In this way 
we prevent a few high abundance values from unduly 
influencing the analysis. Because the compound en­
vironmental gradients constructed by canonical cor­
respondence analysis are required to be linear com­
binat ions of env i ronmenta l var iables, nonl inear 
transformation of environmental variables can also be 
considered if there is some reason to do so. Prior 
knowledge about the possible impact of the environ­
mental variables on community composition may sug­
gest particular nonlinear transformations and partic­
ular nonlinear combinations, i.e., environmental scalars 
in the sense of Loucks (1962) and Austin et al. (1984). 
The use of environmental scalars can also circumvent 
the multicollinearity problem described in Theory: Ca­
nonical Coefficients. In contrast to the ordination tech­
niques in common use, canonical correspondence anal­
ysis allows one to incorporate existing knowledge about 
species-environment relationships into the analysis and 
thus potentially is a more powerful tool to advance this 
knowledge. 

Canonical correspondence analysis can be used fruit­
fully in combination with (detrended) correspondence 
analysis, as in the examples described. When the so­
lutions do not differ much, we infer that the measured 
environmental variables can account for the main vari­
ation in the species data. When the solutions do differ, 
we infer either that the environmental variables ac­
count for less conspicuous directions of variation in 
the species data (when the correlations between species 
and environment axes are high) or that they cannot 
account for any of the variation (when the correlations 
are small). These possibilities considerably extend the 
analytical power of ordination by allowing comparison 
of results from indirect and direct gradient analysis 
techniques that have a common theoretical basis. Di­
rect and indirect gradient analysis can also be com­
bined in a single analysis to answer such questions as 
"Does the known environmental variation account for 
all the community variation, or is there a substantial 
residual variation?" Suppose we believe two environ­
mental variables govern the species composition in a 

TABLE 8. Data on algae along a pollution gradient, from Fig. 
3: canonical coefficients and intraset correlations in DCCA. 
For a description of variables see Fig. 3 legend. 

variable 

Oxygen 
BOD5 
Ammonium 
Phosphate 
Calcium 
°D 
EC 

Canonical 
coefficients 

1 

-0.37 
0.07 
0.65 
0.10 

-0.22 
-0.06 

0.22 

2 

0.05 
0.21 

-0.60 
0.50 
0.23 

-0.07 
-0.17 

Correlation 
coefficients 

1 

-0.81 
0.88 
0.95 
0.86 

-0.19 
-0.43 

0.70 

2 

0.04 
-0.40 
-0.47 

0.06 
0.37 
0.18 

-0.22 
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region. We may choose two ordination axes in the light 
of these variables, then extract further axes as in de-
trended correspondence analysis by reciprocal aver­
aging and detrending with respect to all previous axes. 
The lengths of the extra axes measure the residual vari­
ation. The program CANOCO (Ter Braak 1985a) has 
an option to do such combined analyses. The same 
option allows analysis of nested data (subplots within 
plots, e.g., yearly vegetation records from several per­
manent plots, or bird records from woodlots in several 
regions). The first axes can be chosen to represent vari­
ation between plots, so that the further axes represent 
variation between subplots. Swaine and Greig-Smith 
(1980) used a variant of principal components analysis 
in this way to obtain an ordination of within-plot vege­
tation change in permanent plots; canonical corre­
spondence analysis could be used for the same purpose 
but is not hampered by the unwarranted assumption 
of a linear relationship between species abundance and 
environment. 
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APPENDIX 
Here canonical correspondence analysis is shown to be (1) 

an approximation to Gaussian canonical ordination, (2) an 
eigenvector technique akin to canonical correlation analysis, 
and (3) a method for weighted least squares approximation 
of weighted averages of species with respect to environmental 
variables. For an explanation of the notation, see Theory. 

The model of Gaussian canonical ordination is Eq. 1 in 
conjunction with Eq. 2 (see Theory), It is assumed that the 
species data are Poisson-distributed counts with E(yik) = nik 
and that the species tolerances are all equal to 1. Then the 
maximum likelihood equations for uk and bj are, after some 
rearrangement, respectively: 
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«* = S y*x/y-n [ s ex. uk)tiik/y+ (A.1) 

2 zJ 2 y^Xi - uk) \ = 2 2 (•*. ~ U*)M* k (A-2> 

Under conditions C1-C4 and Eq. 7, we may use the approx­
imations 

2 & - "*)M,fc * 0 (A.3) 

2 to - utW ~ -**«*y+* (A.4) 

because M* is symmetric about x, and about uk\ the propor­
tionality constant X* comes in because the species* curves are 
the more truncated the more their optima lie towards or be­
yond the edge of the sampling interval (Ter Braak 19856). 
The transition formulae Eqs. 3-6 now follow from Eqs. A. 1 
and A.2 by using Approximations A.3 and A.4 and the equa­
tion X = 1 - X*. 

Starting from Eq. 5 we substitute for x* (Eq. 4), uk (Eq. 3), 
and finally *, (Eq. 6) and obtain 

(S21S1 

where s2i = Z'Y, S,2 

• X s22)b = 0, (A.5) 

Z'RZ and Y = {yik} 
3 lead to 

= v'z, S,I =diag(j'+„>'+2,.. - , y + J , s 2 2 = 
Similarly, successive substitutions in Eq. 

(s12s2r's21 - Xsu)« = 0, (A.6) 

where* —(u, , . . . , um)'. Apart from the particular definitions 
of the matrices in Eqs. A.5 and A.6, these equations are the 
eigenvector equations of canonical correlation analysis, and 
the eigenvalue X lies between 0 and 1 (Gittins 1985). The 
eigenvectors are all uncorrelated; using subscripts r and s for 
different axes we obtain that «r's11«J= 0, bt's22bs= 0 and 
XF'RXS = 0. Algorithms based on Eq. A.5 or Eq. A.6 will in 
general be more efficient than the algorithm developed in 
Theory. 

The first axis of canonical correspondence analysis does not 
maximize the species-environment correlation, i.e., the cor­
relation between x and x*. I have also developed an eigen­
vector technique that maximizes the species-environment 
correlation. This technique requires that the number of species 
is smaller than the number of sites. This requirement is often 
a nuisance in ecological research. As we have seen, the ratio­
nale for canonical correspondence analysis is different: it is, 
under conditions CI-C4, almost a maximum likelihood tech­
nique. 

The weighted averages of the species with respect to the 
environmental variables in Eq. 8 are, in matrix notation, 
w = S, ,- 'Y'Z = Sii_1S|2, where w = {£*,}. We want a least 
squares approximation of w in an ordination diagram. How­
ever, when a species total is low, the weighted average is 

imprecise (cf. Ter Braak and Looman 1986), so that it is not 
worthwhile to approximate that species' weighted averages 
very accurately in the diagram. This consideration suggests 
giving the species weights that are proportional to the species 
totals contained in sH. The result would still depend on the 
scale of measurement of the environmental variables. To make 
the method scale-invariant we use s22

_1 as weights for the 
environmental variables. The desired weighted least squares 
approximation of w follows now from the singular value de­
composition (see for example Greenacre 1984: Appendix A). 

: PA*Q', (A.7) SirwsM-* = s , r% 2s 2 2 -
where p and Q are orthonormal m x q and q x q matrices 
(respectively) and A = diag (X,, . . . , X„). For convenience of 
notation it is assumed here that q < m. This singular value 
decomposition is just another way to solve Eqs. A.5 and A.6 
(see Mardia et al. 1979: chapter 10). With Hill's (1979) scaling 
of site and species scores, namely 

2 yikixt - ukf = y„ , (A.8) 

the coordinates of the species points are the first two columns 
of the matrix 

Mi " A)- (A.9) 

and the coordinates of the points for the environmental vari­
ables are the first two columns of the matrix 

* s22
,/]Q(i - A)* A* = 

1Z'RX(I - A), (A.10) 

where the second equality follows after some algebra, with x 
the matrix whose sth column is x5. In this scaling u'sMu = 
y+Ji - A) - i and X'RX = y++A(i - A)-1. It is easy to verify 
using Eqs. A.7, A.9, and A. 10 that w = UB/. Therefore the 
points for species and environmental variables form a bi-
plot (Gabriel 1971) in the sense that inner products approx­
imate the elements of the matrix w, leading to a two-dimen­
sional approximation w2, say. A measure of goodness of fit 
is (X, + X2)/(sum of all eigenvalues), which is equal to 
trace (Sj ,w2s22-'w2')/trace (s,,w s22~'w') and is, loosely speak­
ing, the percentage variance in the weighted averages ac­
counted for by the biplot. When the environmental variables 
are scaled to zero mean and unit variance (using v,+ as site 
weights), we obtain from Eq. A. 10 that the coordinate of the 
point for environmental variable j on axis J must be [Xj(l -
XJ)]

I/1 times the correlation coefficient of the environmental 
variable with the site scores x,. In detrended canonical cor­
respondence analysis the coordinates of the points for the 
environmental variables are obtained from a multivariate 
regression of w on the first two columns of u, u2 say: 

B, = w's,,u2(u2's,,u2)"' - Z'RX(U2 'S1!U2) -1, (A.ll) 

which reduces to Eq. A. 10 in canonical correspondence anal­
ysis. 
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Abstract 

Canonical correspondence analysis (CCA) is introduced as a multivariate extension of weighted averaging 
ordination, which is a simple method for arranging species along environmental variables. CCA constructs 
those linear combinations of environmental variables, along which the distributions of the species are max­
imally separated. The eigenvalues produced by CCA measure this separation. 

As its name suggests, CCA is also a correspondence analysis technique, but one in which the ordination 
axes are constrained to be linear combinations of environmental variables. The ordination diagram generated 
by CCA visualizes not only a pattern of community variation (as in standard ordination) but also the main 
features of the distributions of species along the environmental variables. Applications demonstrate that 
CCA can be used both for detecting species-environment relations, and for investigating specific questions 
about the response of species to environmental variables. Questions in community ecology that have typically 
been studied by 'indirect' gradient analysis (i.e. ordination followed by external interpretation of the axes) 
can now be answered more directly by CCA. 

Introduction 

Direct gradient analysis relates species presence 
or abundance to environmental variables on the ba­
sis of species and environment data from the same 
set of sample plots (Gauch, 1982). The simplest 
methods of direct gradient analysis involve plotting 
each species' abundance values against values of an 
environmental variable, or drawing isopleths for 
each species in a space of two environmental varia­
bles (Whittaker, 1967). With these simple methods 
one can easily visualize the relation between many 

* Nomenclature follows Heukels-Van der Meijden (1983). Flora 
van Nederland, 20th ed. 
** I would like to thank the authors of the example data sets for 
permission to use their data, Drs M. O. Hill and H. G. Gauch 
for permission to use the code of the program DECORANA, 
and Drs 1. C. Prentice, L. C. A. Corsten, P. F. M. Verdonschot, 
P. W. Goedhart and P. F. G. Vereijken for comments on the 
manuscript. 

species and one or two environmental variables. 
Plant species experience the conditions provided 

by many environmental variables; therefore one 
might wish to analyse their joint effects. Multiple 
regression can be used for that purpose. However, 
despite some successful applications, e.g., Yarran-
ton (1970), Austin (1971) and Forsythe & Loucks 
(1972), ordinary multiple regression has never be­
come popular in vegetation science. Reasons for 
this include: (1) Each species requires separate anal­
ysis, so regression analysis may require an un­
reasonable amount of effort. (2) Vegetation data 
are often qualitative, or when they are quantitative 
the data contain many zero values for the plots at 
which a species is absent. In neither case do the 
data satisfy the assumption of a normal error dis­
tribution that is implicit in ordinary multiple 
regression. (3) Relationships between species and 
environmental variables are generally non-linear. 
Species abundance is often a single-peaked (bell-
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shaped) function of the environmental variables. 
(4) Environmental variables are often highly cor­
related, and so it can be impossible to separate their 
independent effects. Generalized Linear Modelling 
(Austin et al, 1984; Ter Braak & Looman, 1986) 
provides a solution for (2) and (3), but (1) and (4) 
remain. Whenever the number of influential en­
vironmental variables is greater than two or three, 
it becomes difficult to put results for several species 
together so as to obtain an overall graphical sum­
mary of species-environment relationships. 

A simple method is therefore needed to analyze 
and visualize the relationships between many spe­
cies and many environmental variables. Canonical 
correspondence analysis (CCA) is designed to fulfil 
this need. CCA is an eigenvector ordination tech­
nique that also produces a multivariate direct gra­
dient analysis (Ter Braak, 1986). CCA aims to 
visualize (1) a pattern of community variation, as in 
standard ordination, and also (2) the main features 
of species' distributions along the environmental 
variables. 

Ter Braak (1986) derived CCA as a heuristic ap­
proximation to the statistically more rigorous (but 
computationally fraught) technique of Gaussian 
canonical ordination, and also showed CCA's rela­
tion to correspondence analysis (CA), alias recipro­
cal averaging (Hill, 1973). In this paper a simple, al­
ternative derivation of CCA is given starting from 
the method of weighted averaging (WA). 

Theory 

From weighted averaging to canonical correspon­
dence analysis 

Figure la shows an artificial example of single-
peaked response curves for four species along an 
environmental variable (e.g. moisture). Species A 
occurs in drier conditions than species D. Fig. la 
shows presence-absence data for species D: the spe­
cies is present at four of the sites. 

How well does moisture explain the species' 
data? The fit could be formally measured by the 
deviance between the data and the curves, as in 
logistic regression (Ter Braak & Looman, 1986), but 
this idea will not be pursued here. Instead, a simple 
alternative based on the method of weighted aver­
aging (WA) is used. 

TTTT 
A B C D 

moisture 

•»• mw^K m—m m w • £ • » • • • 

T [ [ T 3 * mo is tu re* 
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>.« • *••+ • • r** • • ••"* • • • 

] J [ J best l inear 
B combination 

Fig. J. Artificial example of single peaked response curves of 
four species (A-D) with respect to standardized environmental 
variables showing different degrees of separation of the species 
curves: (a) moisture; (b) a linear combination of moisture and 
phosphate, chosen apriori; (c) the best linear combination of en­
vironmental variables, chosen by CCA. Sites are shown by dots 
at y = 1 if species D is present and at y = 0 if species D is absent. 

For each species a score can be calculated by tak­
ing the weighted average of the moisture values of 
the plots. For abundance data, this score is calculat­
ed as 

" * = . £ yikXj/y+k 
i = l 

(i) 

where uk is the weighted average of the A:-th (out of 
m) species, x, is the (moisture) value of the i'-th (out 
of n) site and y^ is the abundance of species k at site 
i, and y+k is the total abundance of species k. For 
presence-absence data the weighted average is sim­
ply the average of the moisture values of the plots in 
which the species is present. The weighted average 
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gives a first indication of where the species occurs 
along the moisture gradient (see the arrows in 
Fig. la). As a measure of how well moisture explains 
the species data, the dispersion of the weighted aver­
ages is used (see below). If the dispersion is large, 
moisture neatly separates the species curves, and 
moisture explains the species data well. If the disper­
sion is small, then moisture explains less. 

To compare the explanatory power of different 
environmental variables, each environmental varia­
ble must first be standardized to mean 0 and vari­
ance 1. For technical reasons, weighted means and 
variances are used; each environmental variable is 
standardized such that 

. £ yi+xi 
= i 

0 and £ ] yt+x}/y+ + (2) 

where .y,+ is the total abundance at site / and y + + 

the overall total. The dispersion can now be written 
as 

vironmental variable is centered to a weighted mean 
of 0. Although not essential, it will also be con­
venient to standardize the environmental variables 
according to equation (2) so as to make the weights 
(bj) comparable.) 

CCA turns out to be the technique that selects 
the linear combination of environmental variables 
that maximizes the dispersion of the species scores. 
In other words, CCA chooses the optimal weights 
(bj) for the environmental variables. In the Appen­
dix it is shown that these optimal weights are the 
solution of the same eigenvalue equation as the one 
derived by another rationale in Ter Braak (1986), 
and that the first eigenvalue of CCA is actually 
equal to the (maximized) dispersion of species 
scores along the first CCA axis. 

The second and further CCA axes also select lin­
ear combinations of environmental variables that 
maximize the dispersion of the species scores, but 
subject to the constraint of being uncorrected with 
previous CCA axes. In principle, as many axes can 
be extracted as there are environmental variables. 

3 = ic= x
y+kUvy* (3) 

From correspondence analysis to canonical cor­
respondence analysis 

By calculating the dispersion for each environmen­
tal variable one can select the 'best' variable. 

Now suppose that moisture is the 'best' single 
variable in the artificial example. However, someone 
might suggest a better variable, that is a combina­
tion of two others (see, e.g., Loucks, 1962). In the ar­
tificial example a combination of moisture and 
phosphate, namely (3 x moisture + 2 x phos­
phate), is shown to give a larger dispersion than 
moisture alone (Fig. lb); and consequently the 
curves in Fig. lb are narrower, and the presences of 
species D are closer together, than in Fig. la. So it 
can be worthwhile to consider not only the environ­
mental variables separately but also all possible line­
ar combinations of them, i.e. all 'weighted sums' of 
the form 

Xi = bizn + b2zi2 + (4) 

where z,y is the value of they'-th (out of p) environ­
mental variable at site i, and bj is the weight (not 
necessarily positive) belonging to that variable; x, is 
the value of a compound environmental variable at 
site ;'. (It is assumed in equation (4) that each en-

CA also maximizes the dispersion 6 in equation 
(3). But it does so irrespective of any environmental 
variable; that is, CA assigns scores (x,) to sites such 
that the dispersion is absolutely maximum, the 
scores being standardized as in equation (2) 
(Nishisato, 1980). CCA is therefore 'restricted cor­
respondence analysis' in the sense that the site 
scores are restricted to be linear combinations of 
supplied environmental variables. 

A familiar algorithm to carry out CA is the reciprocal averag­
ing algorithm (Hill, 1973). In Ter Braak (1986) this algorithm is 
extended with an additional multiple regression step so as to ob­
tain the CCA solution. In each iteration cycle the trial site scores 
are regressed on the environmental variables (usingyj+/y++ as 
site weights) and the new trial scores are the fitted values of this 
regression. The FORTRAN program CANOCO (Ter Braak, 
1985b) to carry out CCA is in fact just an extension of Hill's 
(1979) program DECORANA.* 

CCA is restricted correspondence analysis, but the restrictions 
become less strict, the more environmental variables are included 
in the analysis. If p > n - l , then there are actually no 
restrictions any more; CCA is then simply CA. The arch effect 
may therefore crop up in CCA as it does in CA (Gauch, 1982). 
The method of detrending (Hill & Gauch, 1980) can be used to 
remove the arch and is available in the computer program 

•The program is available from the author at cost price. 
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Fig. 2. Dune meadow data: CCA ordination diagram with releves (x), plant species ( • ) and environmental variables (arrow); first axis 
horizontally, second axis vertically. For releve numbers see Table 1. Abbreviations are given as underlining in full names in Table 1. The 
c-scale applies to the environmental arrows, the u-scale to species and sites points. Eight infrequent species are not shown because they 
lie outside the range of this diagram. 

CANOCO (Ter Braak, 1985b). But in CCA the arch can be re­
moved more elegantly by dropping superfluous environmental 
variables. Variables that are highly correlated with the 'arched' 
axis (often the second axis) are most likely to be superfluous. 

CA is very susceptible to species-poor sites con­
taining rare species in that it places such aberrant 
sites (and the rare species occurring there) at ex­
treme ends of the first ordination axes (Gauch, 
1982), relegating the major vegetation trends in the 
data to later axes. CCA does not show this 'fault' of 
CA, provided the sites that are aberrant in species 
composition are not so aberrant in terms of the en­
vironmental variables. 

Ordination diagram 

The ordination diagram of CCA displays sites, 

species and environmental variables (Fig. 2). The 
site and species points have the same interpretation 
as in CA. They display variation in species compo­
sition over the sites. The environmental variables 
are represented by arrows (Fig. 2). Loosely speak­
ing, the arrow for an environmental variable points 
in the direction of maximum change of that en­
vironmental variable across the diagram, and its 
length is proportional to the rate of change in this 
direction. Environmental variables with long ar­
rows are more strongly correlated with the ordina­
tion axes than those with short arrows, and so more 
closely related to the pattern of community varia­
tion shown in the ordination diagram. 

Further insight into the ordination diagram of CCA can be 
obtained from yet another characterization of CCA. From equa­
tions (A.5) en (A.6) of the Appendix it follows that CCA is a 
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Fig. 3. Inferred ranking of the species along the variable quantity of manuring based on the biplot interpretation of Fig. 2. For explana­
tion see the Ordination diagram section. 

weighted principal components analysis applied to a matrix of 
species by environmental variables, the (k, y)-th element of 
which is the weighted average of species k with respect to en­
vironmental variable./' (it is here assumed that each environmen­
tal variable is reduced to zero mean). CCA is a weighted analysis 
in the sense that species are given weights proportional to their 
total abundance C+*) a r |d the environmental variables are 
weighted inversely with their covariance matrix. The intuitive 
advantage of the implicit species weights is that a weighted aver­
age for a species is imprecise when its total is low (Ter Braak & 
Looman, 1986) and is thus not worth much attention. Environ­
mental variables are given equal weight irrespective of their vari­
ance or unit of measurement. (This type of weighting is also im­
plicit in discriminant analysis (see Campbell & Atchley, 1981) 
and makes the analysis invariant to nonsingular linear transfor­
mations of the environmental variables). This characterization 
of CCA shows that the joint plot of species and environmental 
variables in the CCA ordination diagram can be interpreted 
similarly to a principal components biplot (Gabriel, 1971; Ter 

Braak, 1983), allowing inference of the approximate values of 
the weighted averages of each of the species with respect to each 
of the environmental variables. 

The most convenient rule for quantitative in­
terpretation of the CCA biplot (Ter Braak, 1986) is 
therefore as follows: each arrow representing an en­
vironmental variable determines a direction or 'axis' 
in the diagram; the species points can be projected 
on to this axis (see Fig. 3). The order of the projec­
tion points corresponds approximately to the rank­
ing of the weighted averages of the species with re­
spect to that environmental variable. The weighted 
average indicates the position of a species' distribu­
tion along an environmental variable (Fig. 1), and 
thus the projection point of a species also indicates 
this position, although approximately. 
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Table 1. Dune meadow data: data table with species (rows) and 
releves (columns of one digit width) arranged in order of their 
scores on the first axis of CCA. Releve numbers are printed ver­
tically. The abundance values, as used in the analysis, are on a 
1 - 9 scale to replace the Braun-Blanquet symbols r, +, 1, 2m, 
2a, 2b, 3, 4, 5. Thickness of the Al horizon is divided into ten 
equal-sized classes (denoted 0-9) . The values 1, 2 and 3 for 
agricultural use refer to hayfield, haypasture and pasture, 
respectively. For further explanation of the environmental vari­
ables see text. 

releves 
1 111 11 11112 

51670217834923894560 

7nfolium pratense 
Achittea /m'/lefolium 
flromus Aordeaceus 
Plantago /anceolata 
Rumtx aceXosa 
Se/lis perennis 
Elymns repens 
Lolium perenne 
K/cia /afhyroides 
Poa pratensis 
^4/7/hoxanthum orforatum 
O'rsium arvense 
Poa fr/vialis 
7>/foIium repens 
Leontodon aurumnalis 
Brachythecium ru/abulum 
./uncus bufonius 
Sagina procumbens 
Alopccurus geniculatus 
//ypochaeris radicala 
Aira praecox 
Salix repens 
Agroslis sfolonifera 
./uncus arficulatus 
Cnenopodium album 
Empetrum nigrum 
Ranunculus yfammula 
£/eocharis palustris 
Cff/Iiergonella cwspidata 
Po/entilla palustris 

thickness AI 
moisture 
quantity of manuring 
agricultural use 
Standard .Farming 
Bio-dynamic Farming 
Z/obby Farming 
Nature Management 

2-52 
212243-2 
2—244 3 
5-553-323 
5_63 22 
2—23—222 
44—4—446 
2766657-2652—4 

1-2-1 
243444413544-24 
4_324—4 4 

2 
6 2 4 5 4 7 — 6 5 5 4 9 4 — 2 -
2-52653-2213322261 — 
3-3335525222223622-2 
2-622-4-62224-23-444 
— 2 443 

2 — 5 2 4 2 2 3 — -
2 — 7 2 3 8 5 5 — 4 -

22 5 
— — — 2 3 

2 3 — 5 
483454-4475 

4_._4._334 
1 

2 
22-2224 
4-4584 

4_33 

40100001211133117930 
11112112122445555555 
24231210044123311131 
12231231122122313231 
01000000011011000010 
00001110000000000000 
10110000000100100000 
00000001100000011101 

The ordination diagrams of CCA and CA also 
share some of the shortcomings of WA (Ter Braak 
& Looman, 1986). The most important practical 
shortcoming is that species that are unrelated to the 

ordination axes tend to be placed in the center of 
the ordination diagram and are not distinguished 
from species that have true optima there. This 
problem can easily be circumvented by looking at 
a species-by-site data table in which species and 
sites are arranged in order of their scores on one of 
the ordination axes (cf. Table 1). 

The CCA ordination diagram is not in any way 
hampered by high correlations between species, or 
between environmental variables. 

Applications 

Exploratory use of the ordination diagram 

Batterink and Wijffels (report) studied the possi­
ble relation between vegetation and management of 
dune meadows on the island Terschelling (The 
Netherlands). 

A subset of their data is analysed here to illustrate the ordina­
tion diagram of CCA. This subset consists of 20 standard plots 
recorded in 1982, and 30 plant species (Table 1). 

Five environmental variables were recorded: (1) thickness of 
the Al horizon, measured in millimeters; (2) moisture content of 
the soil, scored on a five-point scale in a semi-objective manner; 
(3) quantity of manuring, scored on a five-point scale on the ba­
sis of a questionnaire sent to the owners of the meadows; (4) 
agricultural use, a nominal variable with three classes - hay-
field, haypasture and pasture; and (5) type of management, a 
nominal variable with four classes - standard farming, bio-
dynamic farming, hobby farming and nature management. 

CCA cannot directly cope with ordinal variables, like mois­
ture and manuring here. Ordinal variables must either be treated 
as if they were quantitative, or as nominal variables. Here they 
were treated as quantitative. Nominal variables, like type of 
management, must be transformed to dummy variables as 
shown in Table 1. For instance, the dummy variable 'nature 
management' indicates which meadows received that type of 
management. Agricultural use was however treated as a quan­
titative variable (Table 1), because haypasture was considered as 
an intermediate between hayfield and pasture. 

Two values were missing in the environment data. CCA can­
not cope with missing values, so releves with missing values in 
the environment data must be deleted. To avoid deletion, miss­
ing values were replaced here by the mean of the corresponding 
variable over the remaining plots. 

Despite the crude measurement of the environ­
mental variables, they nicely explain the major vari­
ation in the vegetation. The first two eigenvalues of 
CCA (X! = 0.46 and X2 = 0.29) were not much 
reduced in comparison with those of standard CA 
(0.54 and 0.40), and the two-dimensional configura­
tions of species and sites in the ordination diagrams 
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looked similar. The most conspicuous difference 
was that releves 17 and 19 were outliers in CA and 
not so much in CCA (Fig. 2). 

The configurations of species and sites in CCA 
(Fig. 2) must be interpreted as in CA (Ter Braak, 
1985a). For instance, from Fig. 2 Sagina procum-
bens can be expected to have its maximum abun­
dance in the releves close to its point in Fig. 2 (re­
leves 8, 12 and 13) and to be absent in releves far 
from that point. 

Figure 2 accounts for 65% of the variance in the 
weighted averages of the species with respect to 
each of the environmental variables. This percent­
age is calculated as in principal components analy­
sis by taking 100 x (X, + X2)/(X, + . . . + Xp). It 
can be deduced from Fig. 2, for example, that Cir-
sium arvense, Alopecurus geniculatus and Elymus 
repens mainly occur in the highly manured 
meadows, Agrostis stolonifera and Trifolium 
repens in intermediately manured meadows, and 
Ranunculus flammula and Anthoxanthum odora-
tum in little manured meadows (see Fig. 3). The 
other arrows can be interpreted similarly. From 
Fig. 2 it can thus be seen at once which species oc­
cur mainly under wetter conditions (those on the 
right hand side of the diagram) and which ones pre­
fer drier conditions (those on the left hand side of 
the diagram). 

Multi-species trend surface analysis 

CCA can be used to detect spatial gradients in 
vegetation data. A spatial gradient can be specified 
by a linear combination of two orthogonal coor­
dinates, say, the x-coordinate (z,) and y-coordinate 
(z2) of the releves, i.e. by bjz, + b2z2. The stron­
gest spatial gradient in vegetation data might be de­
fined as that combination of z, and z2 that max­
imally separates the spatial distributions of the 
species, and can thus be estimated by taking the x-
and y-coordinates as environmental variables in a 
CCA. Put another way, CCA searches for the direc­
tion of the strongest vegetation zonation (cf. 
Fig. 1). 

Such an analysis was applied to counts of 13 arable weeds in 
summer barley in May 1983 in 96 plots (0.5 xO.5 m) in the ex­
perimental field 'Doeksen' (50 m x 100 m) (B. Post, unpubl). 

The first CCA axis was defined by bt - 0.0261 and b2 = 
0.0117, so that the gradient was estimated to make tan"1 (b2/bx) 
= 1A° with the x-coordinate axis. Further, the first eigenvalue 
was six times the second eigenvalue, which indicated that the 

gradient was a clear one. But, judged on the basis of the value 
of the first eigenvalue (\ = 0.09), the amount of species turno­
ver was quite small (cf. Gauch & Stone, 1979). 

To verify the supposition that the gradient was 
related to moisture, percentage moisture was meas­
ured in the top soil ( 0 - 3 cm) in March 1985 (B. 
Post, unpubl). The strongest gradient in these mois­
ture values had an angle of 34° with the x-
coordinate axis and thus pointed approximately in 
the same direction as the gradient estimated by 
CCA from the 1983 weed data. 

Vegetation succession 

An example of application in a succession study 
on a rising sea-shore is found elsewhere in this vol­
ume (Cramer & Hytteborn, 1987). One of their 
questions was whether the vegetation succession 
tracks the land uplift (ca. 0.5 cm per year) or 
whether it lags behind. 

This question was approached with detrended 
CCA with elevation and year as the 'environmental 
variables', through fitting the compound gradient 
x = b, x elevation + b2 x year. The resulting 
weights were b, = 0.054 and b2 = 0.041. Conse­
quently, the equivalent change in vegetation per year 
is b2 /b, = 0.76 cm. 

An approximate 95%-confidence interval for the change 
ranges from 0.4 cm to 1.1 cm and clearly includes the known 
land rise of ca 0.5 cm per year. The confidence interval was ob­
tained from the standard errors of b[ and b2 in the final regres­
sion within the reciprocal averaging algorithm of CCA by using 
Fieller's theorem (see Finney, 1964, p. 27-29). The interval is 
presumably a little too short as it ignores that the CCA-axis is 
chosen optimally. 

Discussion 

CCA considerably extends the analytical power 
of ecological ordination. Questions like those tack­
led in the applications section above could formerly 
only be investigated by 'indirect gradient analysis', 
i.e. first extracting the ordination axes from the spe­
cies data and subsequently interpreting the major 
axes in relation to environmental data - e.g. by 
regression analysis (Dargie, 1984), trend surface 
analysis (Gittins, 1968) or canonical correlation 
analysis (Carleton, 1984). Such two-step analyses 
ignore the minor axes of variation in community 
composition; yet 'minor' aspects of the variation 
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nlay still be substantial, especially in large data sets, 

and in some problems may be just the variation 

that one is actually interested in because of its rela­

tionship to particular external variables (see Jol-

liffe, 1982). 

CCA works because species tend to have single-

peaked response functions to environmental varia­

bles. When the response functions are simpler (e.g. 

approximately linear), the results can still be ex­

pected to be adequate in a qualitative sense, but it 

might then be advantageous to utilize instead the 

linear counterpart of CCA - redundancy analysis 

(Israels, 1984). The weed data are a case in point. 

Because the number of species is quite small in that 

example, and the number of absences is small as 

well, these data could also be analysed from the be­

ginning by canonical correlation analysis (Gittins, 

1985). But canonical correlation analysis and 

redundancy analysis fail, when species do show 

single-peaked response functions (Gauch & Went-

worth, 1976), i.e. in the case where CCA works 

best. 

Appendix 

(S2,Sn s , ; XS22) b = 0 (A.4) 

with 6 = X (see, for instance, Mardia et at, 1979, theorem 
A.9.2). Eq. (A.4) is the centered version of Eq. (A5) in Ter Braak 
(1986). The latter equation has a trivial solution (X = 1, x = 1„) 
and its nontrivial solutions satisfy Eq. (A.4) and Eq. (2). There­
fore, maximizing 6 leads to the first axis of CCA as defined in 
Ter Braak (1986). Further, maximizing 8 subject to the constraint 
that the second axis is uncorrelated with the first axis (using 
weights yi+, as in Eq. (2)) leads to the second eigenvector of 
(A.4), which is therefore identical to the second axis of CCA as 
defined in Ter Braak (1986), and so on for subsequent axes. 

Let W be a m x p matrix containing the weighted averages of 
the species with respect to the environmental variables, i.e. 

W = S,VV'Z (A.5) 

The weighted principal components analysis of W described in 
the main text follows from the singular value decomposition 

s i w s2-: — S|i S.-) Si- PA'7' Q' (A.6) 

where P and Q are orthonormal m x p and p x p matrices and 
A = diag (X,,..., \p) with Xj>X2> . . . >Xp. For convenience 
of notation it is assumed here that p<m. This singular value 
decomposition is just another way to solve (A.4) (see Mardia et 
ai, 1979, chapter 10). The coordinates of species k in the ordina­
tion diagram are given by the £-th row of the matrix 

Maximizing 5 in Eq. (3) leads to CCA (Ter Braak, 1986) and 
CCA is a weighted principal components analysis applied to a 
matrix of weighted averages. 

Let Y = \yik\ and Z = [ZJJ\ ben x m and n x p matrices con­
taining the species data and environmental data, respectively, and 
let R = dia.g(yl + ,y2+,...,yn+). Each environmental variable is 
centered to a weighted mean of 0, i.e. Z 'Rln = 0, where ln is an 
n-vector containing \'s. Further, let Sn = diagO+1, _K+2,•••, 
y+m)i Si2 = Y'Z, S2, = Z'Y, S22 = Z'RZand let u and b be 
vectors of order m and p, containing the species scores uk and the 
weights bj, respectively. 

By inserting Eq. (4) in Eq. (1) we obtain 

Sn'Y-'Zb = Sfj'S^b (A.l) 

Hence, 

U yU S„ , / 2P(I - A)- (A.7) 

and the coordinates of environmental variable,/' by they-th row 
of the matrix 

B ^ ^ S ^ A ' ^ I - A)* (A.8) 

The pre- and post-multiplication factors involving y + + and 
(I-A) in Eqs. (A.7) and (A.8) are not essential for the biplot; 
they are included to obtain the scaling used in DECORANA 
(Hill, 1979, section 4.5). In Hill's scaling the coordinates of the 
sites are weighted averages of the species coordinates and the 
(weighted) variance of the coordinates of species present at a site 
is equal to 1 on average. Hill's scaling is used in Fig. 2. 

>-;1,u'S11u = y++b'S2lSli%2b (A.2) 

which must be maximized with respect to b, subject to Eq. (2). By 
inserting Eq. (4) in Eq. (2), we obtain b 'Z 'Rl n = 0, which is 
satisfied trivially because of the centering of Z, and 

yl\b'S22b = / (A.3) 

The solution of this maximization problem is known to be the 
first eigenvector of the eigenvalue equation 
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PARTIAL CANONICAL CORRESPONDENCE ANALYSIS 

Cajo J . F . TER BRAAK 

TNO I n s t i t u t e of Applied Computer Science, Box 100, 6700 AC 
Wageningen, The Netherlands 

Canonical correspondence ana ly s i s i s (mul t ip le ) correspondence 
ana lys i s in which the o rd ina t ion axes a r e cons t ra ined t o be l i n e a r 
combinations of e x t e r n a l , explanatory v a r i a b l e s . We consider the 
case where the s e t of explanatory v a r i ab l e s i s subdivided in two 
s e t s , a s e t of covar iables and a s e t of v a r i a b l e s - o f - i n t e r e s t . This 
l eads t o p a r t i a l canonical correspondence a n a l y s i s . I t s o rd ina t ion 
diagram d i sp lays the unimodal r e l a t i on sh i p s between a s e t of 
response va r i ab les and the v a r i a b l e s - o f - i n t e r e s t a f t e r the e f f e c t s 
of the covar iables have been p a r t i a l ed ou t . The d e r i va t i on shows 
t ha t the response data can be incidence da ta , count da t a , 
compositional data or nominal da ta . 

1. INTRODUCTION 

Canonical correspondence a na l y s i s i s a mu l t i v a r i a t e a na ly s i s technique t o 
d isplay unimodal r e l a t i on sh i p s between a s e t of response va r i ab les and a s e t 
of explanatory v a r i ab l e s in a low^dimensional space , c a l l ed an o rd ina t ion 
diagram [20 ,21 ] . Canonical correspondence ana ly s i s has been used in ecology 
as a simple form of cons t ra ined multidimensional unfolding [4 ,10,12] to 
r e l a t e the occurrences or abundances of a number of species to environmental 
v a r i ab l e s [ 22 ] . Applied t o nominal v a r i a b l e s , canonical correspondence 
ana ly s i s i s i d en t i c a l to redundancy a n a l y s i s of q u a l i t a t i v e va r i ab les [ i t ] 
used, for example, t o r e l a t e nominal welfare v a r i ab l e s t o s o c i a l background 
v a r i a b l e s . Here we consider the case where the s e t of explanatory v a r i ab l e s 
i s subdivided in two s e t s , a s e t of p covar iab les and a s e t of q v a r i ab l e s 
in the e f f e c t s of which one i s p a r t i c u l a r l y i n t e r e s t e d . S ta ted in formal ly , 
we want an o rd ina t ion diagram of the unimodal r e l a t i o n s h i p s between the 
response v a r i ab l e s and the q v a r i ab l e s of i n t e r e s t a f t e r e l imina t ing the 
e f f ec t s of the p covar iab les . The ob jec t i s thus t o p a r t i a l out t he e f f ec t s 
of the cova r i ab l e s , hence the name p a r t i a l canonical correspondence 
a n a l y s i s . Ter Braak [20] derived canonical correspondence ana ly s i s as an 
approximation t o canonical Gaussian o rd ina t i on . Here we define p a r t i a l 
canonical Gaussian o rd ina t i on , der ive p a r t i a l canonical correspondence 
ana ly s i s as an approximation and give an example. Our d e r iva t i on s t a r t s from 
a constra ined genera l ized l i n e a r model and shows t h a t t he technique can be 
appl ied t o nominal data (multi-way contingency d a t a ) , composit ional da ta , 
count data and incidence da ta , with q u an t i t a t i v e or q u a l i t a t i v e explanatory 
v a r i a b l e s . Related work on p a r t i a l a na lys i s i s given in [ 3 , 15 , 25 ] . 

2. THEORY 

Let Y and Z be r e a l mat r ices of order nxm and nx(p+q), conta in ing n 
observat ions of m nonnegative response va r i ab les and p+q explanatory 
v a r i a b l e s , r e s p ec t i v e l y . The p+q explanatory v a r i ab l e s a r e subdivided in p 
covariables (including the vector 1 ) and q variables of interest and 
Z = (Z.j, Z2) i s partitioned accordingly. The response variables can be 
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incidences (1/0) or counts of animals or p l an t s in r e g i on s , or f r a c t i ons of 
c on s t i t u en t s in a composition. For nominal v a r i a b l e s , Y i s a mu l t i v a r i a t e 
i nd i ca to r matr ix [7,9J with as many columns as c a t e go r i e s . The elements of a 
matrix B a re denoted by b . ^ , t he j->th column of B by fe^ and the i - t h row of 
B by t>n)> a column vec tor , and a genera l ized i nverse of B by B~. The symbol 
E denotes expec ta t ion . 

We now define p a r t i a l canonical Gaussian o rd ina t ion as a cons t ra ined , 
genera l ized l i n e a r model. 

De f in i t ion : For any i n t ege r r<q, the model of p a r t i a l canonical Gaussian 
o rd ina t ion i s 

link (Ey ik) = ^ + ak - i ( s ( 1 )TJ(k)) , l l ( l (1) ' -u] i {)) (D 

where l i nk i s a n a tu r a l l i nk function (Table 1) [ l 6 : p . 24 ] and M i s 
const ra ined t o 

M = DD' with D - (£ £) (2) 

with F, G and C parameter mat r ices of order pxp, pxr and qxr, 
r e s p e c t i v e l y , and 0 i s a matr ix of order qxp with zeroes ; lir^) i s a 

(p+q)-vector r ep re sen t ing the optimum of response v a r i ab l e k, ak i s a 
s c a l a r r e l a t e d t o t he maximum expected r esponse , and $, i s an 
i n c iden ta l parameter fo r sampling un i t i , which t akes ca re of the 
constant-sum c on s t r a i n t , i f present [ l 6 : p . 106, p . 11)2]. 

Table 1 shows for var ious types of da ta the app ropr i a t e l i nk func t ion , e r ro r 
d i s t r i b u t i o n and $ , . A s t a t i s t i c a l i n t e r p r e t a t i o n of p a r t i a l canonical 
Gaussian o rd ina t ion i s t ha t t he m response v a r i ab l e s ( in Y) a r e explained by 
two s e t s of explanatory v a r i ab l e s ( in Z = (Z . , Zp)) by a genera l ized l i n e a r 
model (GLM) [16] with as p red ic to r a quadra t ic form i n the explanatory 
v a r i a b l e s . I t i s a unimodal r eg ress ion model (F ig . 1) with c o n s t r a i n t s . The 
d i f fe rence with s tandard GLM, which i s appl ied t o each response v a r i ab l e 
s e pa r a t e l y , i s t ha t the parameter matr ix M i s i d e n t i c a l for a l l response 
v a r i ab l e s and t h a t M i s const ra ined t o be p o s i t i v e s emi -de f in i t e of rank at 
most p+r, so as t o allow ah r -dimensional r ep r e s en t a t i on of the p a r t i a l 
e f f ec t s of the q v a r i ab l e s of i n t e r e s t on the response v a r i a b l e s . This 
becomes c l ea r by w r i t i ng t he model as a cons t ra ined o rd ina t ion model. By 
s e t t i n g X.Q) = D'g/ .x and \lru\ - D,u-(i<)> the model i s t ransformed t o the 
canonical form (F ig . 1) 

l i nk (Ey i k ) = ^ + ak - i (x ( i ) - u ( k ) ) ' U ( i ) T j ( k ) ) . (3) 

By t h i s t r ans format ion , the nx(p+q) matrix Z i s t ransformed t o a nx(p+r) 
matrix X, whose l->th row i s *(-n • In terms of v a r i ab les ( the columns of Z 
and X), t he p+q explanatory v a r i ab l e s a r e transformed t o p+r axes of a new 
coordinate system, c a l l ed o rd ina t ion axes , by 

Z ^ g (1 < s < p) (4a) 

x 3 - Z l 8 s + Z 2c 3 (p < s < p+r) (4b) 
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Table 1. Types of response which can be analysed by model (1) which i s the 
b a s i s of p a r t i a l canonical correspondence a na l y s i s (<|> = i nc iden ta l 
parameter , 1 = index of t he L nominal v a r i ab l e s wi th , i n t o t a l m, 
c a t e go r i e s , re f - r e ferences for r e l a t e d models) . 

type of response example l i nk e r ro r r e f 

incidence a r t i f a c t s in graves l o g i t 
picknany^outfofim data 

abundance s pec i e s in r eg ions log 
compositions po l len da ta log 

e l e c t ropho re s i s data 
nominal multiples*choice data log 

Bernoull i 

Poisson 
multinomial 

multinomial 

0 

0 

• l 

* i l 

13,19 
2 
13,19 
13,16 
23 
1,8 

*) i nc luding ex tens ions t o quas i - l i ke l ihood models [ l 6 ] . 

i . e . t he f i r s t p o rd ina t ion axes a re a l i n e a r combination of the p 
covar iables and the l a s t r axes a r e a l i n e a r combination of a l l p+q 
explanatory v a r i a b l e s . Model (3) without the c o n s t r a i n t s in (4) i s the 
Gaussian o rd ina t ion model [6 ,11,19] and conta ins Ihm & Van Groenewoud's [13] 
genera l ized l o g i t model. I f a k = a and <)>, = 0, t he model shows sh i f ted 
s ingle-peakedness [ 1 1 ] . 

In the sequel we focus on the es t imat ion of a . .basis for the column space of 
the matr ix D and on the e s t imat ion of the optima a f t e r t ransformat ion 
Uvk) - ( u k l , u k 2 , . . . . u k ( p + r ) ^ ' # U n d e r t n e assumption t h a t the {y i k } a re 
e i t h e r independent Bernoull i v a r i ab l e s when l i n k ( . ) = l o g i t ( . ) , or 
independent Poisson or multinomial v a r i ab les when l i n k ( . ) = l o g ( . ) (Table 
1 ) , with expec ta t ions defined by ( 1 ) , t he maximum l i k e l i hood equat ions for 
u k a and the elements of D become, a f t e r some rearrangement [20] 

u ks • l i v i k x i s / v
+ k •* \-li ( x i s n u k s ) ( E y i k ) / v

+ J 

z i z i j t E k y i k ^ i s ^ k s ) ] • zi z i j [ E k ( x i s ' - u k s ) E v i k ] 

(5) 

(6) 

for k=1, m; j-1, p+q and s=1, ..., p+r, where y+k = l1 yik. 

We now derive partial canonical correspondence analysis as an approximation 
to Eqs (5)-(6) under the following simplifying conditions: 

C1 . 

C2. 

C3. 

C4. 

the maxima are equal (ak=a, k=1 , ..., m ) , or random and independent of 
the optima U/k \, 
the optima U([<) a r e uniformly distributed over a hypercube A with sides 
parallel to the ordination axes and of length much larger than 1, 
the sampling points 2 Q ) are uniformly distributed over a 'large1 

hypercube B that is contained in A and that has the origin as centroid, 
m and n are large so that the optima and sampling points are densely 
spaced. For nominal variables, the number of classes per variable should 
be large. 

Under these conditions, E y i k is approximately symmetric about x i a and about 

-"ks 
[ - j.* - -

19J, so that we may use the approximations 
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Fig. 1. A uniraodal r e l a t i o n s h i p between a response v a r i ab l e y and two 
r eg r e s so r s (Eq. (3) with p+r = 2 and l i nk = l o g ) . 

lk ( x i s - ' u k s ) E y i k 

h <xis- \s > E v i * -AQu ksy+k 

(7) 

(8) 

The p r opo r t i ona l i t y constant X„ comes in because the uniraodal response 
sur faces a re the more t runca ted the more t h e i r optima l i e towards or beyond 
the edge of t he sampling region [ 19 ,20 ] . Using Approximation (8) and the 
equat ion X„ = 1-A-, we ob ta in from (5) 

As uks = z i=1 v i k x i s / v + k • 

By i n s e r t i ng (4) in (6) and using Approximation (7) we ob ta in 

< z i , R Z i )£ 3 

(Z'RZ)d. 

Z 1 * R * 

Z'Rx, 

(1 < s < p) 

(p < s < p+r ) 

where R = diag ( y i + ) with y i + = Z y l k and jc 

with 

(x 1s ' 

x i s - Ek=i y i k u ks / y i+ 

(9) 

(10) 

( I D 

• Xns) 

(12) 

Equations (4) and (9W12) can be solved in a similar way as the transition 
formulae of canonical correpondence analysis [20]. 

Because Z2 contains the variables of interest, it would be convenient to 
solve for the last r ordination axes without having to extract the first p 
ordination axes. Fortunately, this can be achieved by making the 
partitioning of Z in Z1 and Z2 explicit. By solving (11) for the component £ 
in d.' = (gs,Sg) and using the standard formula for the inverse of a 
partitioned matrix [18,p-33], we obtain for s > p 

Q S = (Z^RZ2)" 22*Rxs, where 

2 2 = (I-Zj)Z2 

(13) 

(14) 

and where the no ta t ion B° i s used t o denote B(B'RB)~B'R, the p ro j ec t ion 
operator on V(B), the column space of B, in the met r ic defined by R. Further 
jcg i s the p ro jec t ion of xg on Z = (Z.|,Z2) as follows from (4b) and (11) , so 
tha t 
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xs •
 ZT*s + z2*s • <15> 

But, in canonical correspondence analysis the last r ordination axes are 
required to be orthogonal to the first p ordination axes [20], so that 

Z?XS - Zfx* = 0 (p < s < p+r) (16) 

because V(Z1) = V(x1, x2, ..., x ). Therefore, 

*s = Z2xs = Z2(Z^RZ2)"2^Rx* = Z 2 Q S (p < s < p+r) . (17) 

The last r ordination axes can thus be obtained from (9), (12), (13) and 
(17). These equations form the transition formulae of partial canonical 
correspondence analysis and define an eigenvalue problem akin to that of 
canonical correspondence analysis [20]. This can be verified by inserting 
consecutively in (13) the equations (12), (9) and (17), giving 

(S21K"'S12 - X S 2 2 ) Q S = 0 (18) 

where S21 = Z^Y, S12 = Y'Z2, S22 = Z^RZ2 and K = diag(y+k) . 

In summary, part ial canonical correspondence i s a canonical correspondence 
analysis technique whereby p+r orthogonal axes are constructed. The f i r s t p 
axes are l inear combinations of the p covariables only and the subsequent r 
axes are l inear combinations of the p covariables and the q variables of 
in teres t . As the covariables are of less in terest in the analysis, the f i r s t 
p axes are usually ignored. The subsequent r axes are considered as the 
f i r s t r ordination axes of par t ia l canonical correspondence analysis. They 
give a low-dimensional representation of the unimodal relationships 
according to model (1) with constraint (2) between the variables of in terest 
and the response variables after partialing out the effects of the 
covariables. Technically, the only difference with canonical correspondence 
analysis i s that the matrix of explanatory variables i s replaced by the 
matrix Z0 of residuals of a multivariate multiple regression of Z? on Z, 
(14). 

Special cases of part ial canonical correspondence analysis are: 
1. Canonical correspondence analysis [14,20] if Z1 i s a nx1 matrix of 1's 

(a single t r i v i a l covariable only). 
2. Partial correspondence analysis if Z2 i s a nxn identity matrix (no 

variables of in terest) or any arbitrary nx(n-1) matrix of rank n-1 (too 
many variables of interest [21]). 

3. Multiple correspondence analysis [7,9] if Ẑ  and Z2 are as specified in 
1 and 2 above (no explanatory variables or too many of them). 

4. Weighted averaging ordination [6,21] if p = 0 and q = 1 (a single 
variable of i n te res t ) . 

Our definition of par t ial correspondence analysis differs from that by Yanai 
[15]. 

3. ORDINATION DIAGRAM 

As in correspondence analysis, the results can be presented in an ordination 
diagram in which the rows and columns of Y are represented by points at 
locations &r±\ and U ( k ) . To the extent that the analysis approximates the 
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f i t t i n g of Gaussian surfaces ( 1 ) , the po in t s for response va r i ab les a r e 
approximately the optima of t hese su r f aces ; hence, the value of Ey,k 

decreases with the d i s t ance between the po in t s of sampling un i t i and 
response v a r i ab l e k (F ig . 1 ) . The es t imated values a r e , of course , 
condi t iona l on the values of the cova r i ab le s . 

In p a r t i a l canonical correspondence ana ly s i s the o rd ina t ion diagram can be 
supplemented With arrows for the v a r i ab l e s of i n t e r e s t (F ig . 2 ) . This i s 
d o n e i n such a way t h a t , in conjunction with the po in t s for response 
v a r i a b l e s , the arrows give a weighted l e a s t squares approximation of the 
elements of t he mxq matr ix W = IC'Y'Z^. The (k, j ) ~ t h element of W i s t he 
weighted average of response v a r i ab l e k with r e spec t t o v a r i ab l e of i n t e r e s t 
j , a f t e r t h i s v a r i ab l e i s ad jus ted for the covar iab les . In a unimodal model, 
the weighted average i nd i c a t e s the c en t re of a response curve. So the matrix 
W summarizes unimodal r e l a t i o n s h i p s , l i k e a matrix of p a r t i a l c o r r e l a t i o n 
c o e f f i c i en t s summarizes l i n e a r r e l a t i o n s h i p s . In the approximation of W, 
response v a r i ab l e s a re given weights p ropor t iona l t o t h e i r t o t a l y+j^ The 
coordinates of t he supplementary arrows can be obtained by a mu l t i v a r i a t e 
r egess ion of W on U = { u k a } , i . e . by 

C r = W'KU(U'KU)"1. (19) 

The approximation t o W i s then given by the b i l i n e a r model UC^. The p lo t of 
po in t s for response v a r i ab l e s and arrows for v a r i ab l e s of i n t e r e s t i s thus a 
b i p lo t [ 5 ] , termed the species-environment b i p lo t in [ 20 ] . This p lo t i s not 
j u s t supplementary, as i t can be made c en t r a l t o ( p a r t i a l ) canonical 
correspondence a na l y s i s [ 22 ] . 

4 . EXAMPLE 

The example i s taken from H. Smit ( in p r e p . ) . Smit s t ud ied the abundances of 
diatom species in dykes in the province of Zuid Holland (The Ne ther lands ) , 
with s pec i a l r e fe rence t o t he e f f e c t s of water p o l l u t i on . A sample of 402 
dykes was t aken, which contained in t o t a l 330 s p e c i e s . Variables t ha t 
i nd i ca t e po l l u t i on were compounds with phosphorus (P) and n i t rogen (N), and 
b io log ica l oxygen demand (BOD). Apart from v a r i a t i on in p o l l u t i on , the 
sample showed s t rong n a tu r a l v a r i a t i on due t o the season of sampling and due 
t o a g rad ien t from f resh t o b rackish water . This n a tu ra l v a r i a t i on was 
p a r t i a l e d out by speci fy ing a season i nd ica to r v a r i ab l e and the ch lo r ide 
concent ra t ion (CI) as c ova r i ab l e s . P a r t i a l canonical correspondence a na l y s i s 
on diatom spec ies with 24 va r i ab les -»of - in te res t showed a f i r s t a x i s (X^ = 
0.10) t h a t was a c l ea r p o l l u t i on g rad ien t as i nd ica ted by the arrows for P, 
BOD and N in the o rd ina t ion diagram (F ig . 2 ) . The second ax i s (X2

 = 0-05) 
revealed t he importance of o ther n a tu ra l v a r i a t i o n , notably s o i l type and 
dyke width . Species of po l lu ted waters a re r ep resen ted on t he r i g h t hand 
s i de of the diagram (F ig . 2 ) , e . g . Navicula accomoda and N. subrainuscula, 
whereas spec ies of unpolluted waters l i e on the l e f t hand s i d e , e . g . Eunotia 
p e c t i n a l i s . Species in the middle have t h e i r optimum a t in te rmedia te 
po l l u t i on l e v e l s or a r e i nd i f f e r en t [ 20 ] . Which p o s s i b i l i t y i s most l i k e l y 
can be decided upon by p l o t t i n g the abundance values on the o rd ina t ion 
diagram. Despite t h e i r occurrence at high values of P and BOD, two species 
of b rackish wa te rs , Melosira jUrgens i i and Navicula d i s e r t a , a re d isplayed 
on the l e f t hand s i de of the diagram, because b rackish waters n a t u r a l l y have 
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high P- and BOD- v a lues . This i l l u s t r a t e s t h a t F ig . 2 d i sp lays p a r t i a l 
e f f e c t s . 

5. DISCUSSION 

In t h i s paper p a r t i a l canonical correspondence a n a l y s i s i s der ived as an 
approximation t o maximum l i ke l i hood e s t imat ion of a p a r t i c u l a r unimodal 
model. But i t does not maximize a l i k e l i hood . What i s being maximized i s t he 
l e a s t^ squa res c r i t e r i o n of mu l t ip le correspondence a na l y s i s [7 ,11 ,12 ,21 ,24] 
with the add i t i ona l c ons t r a i n t s (a) t ha t the axes a re l i n e a r combinations of 
a l l explanatory v a r i ab l e s and (b) t ha t the axes a r e orthogonal t o the 
cova r i ab l e s . We note t h a t t he o r thogona l i ty c on s t r a i n t s do not follow 
n ece s s a r i l y from the maximum l i ke l i hood approach (see below Eq. ( 1 5 ) ) . They 
a r e not s u f f i c i e n t e i t h e r ; we conjecture t h a t when the Guttman e f fec t [9 ,19] 
crops up, the t r a n s i t i o n formulae have s o lu t i ons c lose t o s o lu t ions of the 
maximum l i ke l i hood equat ions t h a t correspond t o l o ca l maxima. Such s o lu t i ons 
can be excluded by "detrending" [6 ,19,23] or by d e l e t i ng explanatory 
v a r i ab l e s [ 2 l ] . Other l oss^func t ions a re considered in [ 10 , 12 , 17 ] . 

In the dual s c a l i ng approach t o correspondence ana lys i s [ 9 ] , category scores 
form the optimal quan t i f i c a t i on [7] of the corresponding nominal v a r i a b l e s . 
This paper g ives reason t o i n t e r p r e t category scores as optima of underlying 
response curves (termed t r a c e l i n e s in [ 24 ] ) . The p rope r t i e s of c o r r e s ­
pondence a n a l y s i s i n terms of a unimodal model were explored e a r l i e r by 
Torgerson [24 : point i t ems ] , Heiser [10,11] and Ihm & Van Groenewoud [ 1 3 ] . 

For data with a constant^sum cons t r a i n t ($^ ¥ 0 in Table 1 ) , model (1) can 
be r ewr i t t en as 

log (Ey ik) = <|>* + a£ + s ' ( i ) M u*k) (20) 

where $, and ak have absorbed the quadra t ic forms in z ^ and U/k\ in Eq. 
( 1 ) , r e s p e c t i v e l y . Model (20) with p=1 and r=1 i s the q u a l i t a t i v e l o g i s t i c 
r eg r e s s i on model, from which Anderson [1] developed h i s r eg r e s s i on method 
for o rd ina l response va r i ab les (cf. [ 8 ] ) . The r e s u l t s of t h i s paper can be 
used t o show t ha t h i s method can be approximated by canonical correspondence 
a n a l y s i s with o rd ina l c o n s t r a i n t s , as in Gifi [ 7 ] , on the category s c o r e s . 
I t i s s u r p r i s i ng t h a t for nominal and compositional da ta the unimodal 
unfolding model (1) can be reexpressed as a genera l ized b i l i n e a r model 
(20)! 
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PEAT CM 

Eun lun 
A Eun pec 

Mel jur 

• Aph cas . 

WELL 

Ach min 

Ach hun 
Am 

Nav sem 

Nit pal • si A Nav per Navcus 
BOD 

•»- P 

CLAY 

Fig. 2. Ordination diagram of a p a r t i a l canonical correpondence ana ly s i s of 
diatom species (A) in dykes with as explanatory v a r i ab l e s 24 v a r i ab le s -o f -
i n t e r e s t (arrows) and 2 covar iables ( ch lor ide concent ra t ion and season) . The 
diagram i s symmetrically s ca led [23] and shows s e l e c t ed spec ies and 
s tandardized va r i ab l e s and, i n s t ead of i nd iv idua l dykes, c en t ro ids (•) of 
d yke - c lu s t e r s . The v a r i a b l e s - o f - i n t e r e s t shown a r e : BOD = b i o l og i ca l oxygen 
demand, Ca = calcium, Fe » f e r rous compounds, N = Kje ldahl -n i t rogen , 02 = 
oxygen, P = o r tho-phosphate , Si = siliclum-compounds, WIDTH = dyke width, 
and s o i l types (CLAY, PEAT). All v a r i ab l e s except BOD, WIDTH, CLAY and PEAT 
were transformed t o logar i thms because of t h e i r skew d i s t r i b u t i o n . The 
diatoms shown a r e : Ach hun = Achnanthes hungarica, Ach min = A. minutissima, 
Aph cas = Amphora c a s t e l l a t a Giffen, Aph lyb = A. l yb ica , Aph ven = A. 
veneta , Coc pla = Cocconeis p l acen tu l a , Eun lun = Eunotia l u n a r i s , Eun pec = 
E. p e c t i n a l i s , Gei o l i = Gomphoneis olivaceum, Gom par = Gomphonema 
parvulum, Mel j u r = Melosira j i l r gens i i , Nav ace = Navicula accomoda, Nav cus 
= N. cusp ida ta , Nav d i s = N. d i s e r t a , Nav exi - N. e x i l i s , Nav gre = N. 
g r ega r i a , Nav per = N. p e rm i t i s , Nav sem = N. seminulum, Nav sub = N. 
subminuscula, Nit amp = Ni tzschia amphibia, Nit bre = N. bremensis v. 
b runsv igens i s , Nit d i s » N. d i s s i p a t a , Nit pal - N. pa lea , Rho cur = 
Rhoicosphenla cu rva ta . 
(Adapted from H. Smit, province of Zuid Holland, in p rep . ) 
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Abstract 

Two methods for estimating ecological amplitudes of species with respect to Ellenberg's moisture scale are 
discussed, one based on weighted averaging and the other on maximum likelihood. Both methods are applied 
to phytosociological data from the province of Noord-Brabant (The Netherlands), and estimate the range 
of occurrence of species to be about 4 -6 units on the moisture scale. Due to the implicit nature of Ellenberg's 
definition of moisture, it is impossible to improve the indicator values in a statistically sound way on the 
basis of floristic data only. The internal consistency of the Ellenberg indicator values is checked by using 
Gaussian logit regression. For 45 out of the 240 species studied the indicator value is inconsistent with those 
of the other species. The same method is used to estimate the optima and amplitudes of species considered 
moisture-indifferent and of some species not mentioned by Ellenberg. Some of these 'indifferent' species 
show a remarkably narrow amplitude. 

It is concluded that the Ellenberg indicator values for moisture form a reasonably consistent system. 

Introduction 

Ellenberg (1979) summarized the ecology of the 
Central-European vascular plants, by assigning to 
each species indicator values for light, temperature, 
moisture, nitrogen and acidity. 

Ellenberg's indicator values are used to estimate 
the value of any of these environmental factors at 
a particular site by averaging the indicator values 
for this factor of all species present (e.g. Ellenberg, 
1979, 1983; Persson, 1981; Smeets, Werger & 
Tevonderen, 1980; Bocker, Kowarik & Bornkamm, 
1983). Plants often reflect temporally integrated en­
vironmental conditions and are therefore particu­
larly useful indicators when values averaged over 

time are needed. When the value of an environmen­
tal factor in the past is required, the only possible 
approach may be to base it on historical vegetation 
data. 

During the development of a model simulating 
the effects of withdrawal of groundwater on the 
disappearance of plant species (Gremmen et al, 
1985; Reijnen & Wiertz, 1984), we wished to know: 

(1) do Ellenberg's indicator values for moisture 
and nitrogen correctly represent the optima of spe­
cies for these factors in our study area, 

(2) what is the ecological amplitude of each spe­
cies for these factors, including species not men­
tioned by Ellenberg (1979)? 

We will only discuss moisture values here. Clear-

* Nomenclature follows Heukels-Van der Meijden (1983), Flora van Nederland, 20th ed. 
** We would like to thank M. J. S. M. Reijnen and J. Wiertz for the discussions that gave us the idea for this research. We are grateful 
to J. de Bree, C. Hengeveld and the referees for comments on the manuscript. Part of this research was supported by the Commissie 
Grondwaterwet Waterleidingbedrijven, the Keuringsinstituut van Waterleidingartikelen, the Landinrichtingsdienst, Staatsbosbeheer, and 
the Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer. 
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ly, the same reasoning can be applied for other fac­
tors. 

Ellenberg (1979) placed each species on a 
12-point ordinal scale according to its distribution 
with respect to moisture (Table 1). It is not clear 
which characteristic(s) of the moisture regime (e.g. 
groundwater level, soil moisture content, and soil 
moisture deficit) were used in .the definition of 
these classes. In practice the indicator values of 
Ellenberg's 'intuitive* scale seem to work well, how­
ever. 

The implicit nature of Ellenberg's definition of 
moisture makes it impossible to check the correct­
ness of the indicator values against actual measure­
ments. Nevertheless, it is possible to check the 
internal consistency by comparing the indicator 
values of species that occur together: when a spe­
cies mainly occurs together with species with higher 
(lower) indicator values, its indicator value is in 
comparison with those of the other species too low 
(too high). (When species have extreme indicator 
values this intuitive idea needs modification.) Al­
ternatively, the consistency of the Ellenberg mois­
ture values could be checked by studying the distri­
bution of each species with respect to moisture. In 
this approach the moisture value of a site is calcu­
lated by averaging the indicator values of the spe­
cies present. The indicator value of a particular 
species is clearly inconsistent with those of the oth­
er species when it deviates considerably from the 
center of the distribution of this species. This dis­
tribution also contains information on the ecologi­
cal amplitude of the species for moisture. 

In this paper this simple method is developed 

Table 1. Definition of Ellenberg's moisture values (Ellenberg, 
1979). 

1 on extremely dry soils, e.g. bare rocks 
2 in-between 1 and 3 
3 on dry soils 
4 in-between 3 and 5 
5 on fresh soils, i.e. under intermediate conditions 
6 in-between 5 and 7 
7 on moist soils which do not dry out 
8 in-between 7 and 9 
9 on wet, often not well aerated soils 

10 on frequently inundated soils 
11 water plant with leaves mostly in contact with the open 

air 
12 underwater plant, mostly totally immersed in water 
x indifferent 

further and compared with a more sophisticated 
maximum likelihood method, in which the species' 
distributions are modelled by Gaussian logit curves 
(Ter Braak & Looman, 1986). Both methods are ap­
plied to phytosociological (presence/absence) data 
from a diluvial part of The Netherlands to answer 
the questions stated above, the first of which being 
reformulated as: 'are Ellenberg's indicator values 
internally consistent in our study area?'. 

Methods 

Type of response curve 

The relationship between the occurrence of a species and 
moisture may be shown in a presence-absence response curve, 
in which the probability p(x) of occurrence of the species is plot­
ted against moisture (x). Response curves may differ in shape 
and vary in complexity, but the response curves of species with 
respect to environmental variables are usually unimodal (Ellen­
berg, 1983; Whittaker, 1956). In this study we assume a unimo­
dal response curve for each species with respect to moisture. In 
such curves, the width of the curve is proportional to the ecolog­
ical amplitude and the position of its maximum is the indicator 
value. These two concepts lose their meaning in other response 
curves, such as bimodal or sigmoid curves. 

Weighted averaging method 

In the method of weighted averaging the indicator value and 
ecological amplitude of a species are defined as the mean (A/) 
and standard deviation (SD) of the species' response curve. 
Thus, these characteristics are defined as if a response curve p(x) 
were a statistical probability distribution (see Ter Braak & 
Barendregt, 1986). The moisture value of a releve is estimated 
here as the average of Ellenberg's indicator values for moisture 
of all the species present in the releve. Simplistic estimates of a 
species' indicator value and ecological amplitude would then be 
the sample mean and the sample standard deviation, respective­
ly, of the moisture values of all releves containing the species 
(Ter Braak & Looman, 1986). The newly calculated indicator 
values might then be compared with the indicator values given 
by Ellenberg (1979) to provide an informal test on the internal 
consistency of the latter. However, these estimates are too sim­
ple, because they neglect the distribution of the moisture values 
and their results may be misleading (Ter Braak & Looman, 
1986). In an attempt to correct for the distribution of the mois­
ture values, the moisture scale is divided into twelve classes, and 
the number of releves, nj, in each class j is counted. For any 
species a rough estimate of its response curve can then be ob­
tained by calculating the fraction of releves in each class that 
contain the species. These fractions can be displayed in a re­
sponse histogram (Fig. 1). Improved estimates for the indicator 
value and ecological amplitude are then the mean and standard 
deviation of the response histogram. In this study the ecological 
amplitude is estimated in a slightly more subtle way, namely by 
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1 2 3 4 5 6 7 8 9 10 11 12 

mois ture value 

Fig. 1. Response histogram of a species with respect to moisture. 
The bars show the fraction of releves in each moisture class 
which contain the species. 

Fig. 2. Gaussian-logit response curve (p(x) = probability of oc­
currence of the species at value x, p(max) = maximum probabil­
ity of occurrence, x = environmental variable, t = tolerance, u 
= optimum). 

using Ellenberg's indicator value of the species instead of the 
sample mean in the formula for the standard deviation: 

SD2 

i=lnj ' /= 1 W; 
(1) 

where n is the number of releves, .y, = l or 0 depending on 
whether the species is present or absent in releve /, Jt(- is the esti­
mated moisture value and j the class of releve i, n, is the number 
of releves in classy and M0 is Ellenberg's (1979) indicator value 
of the species. The latter is used in equation (1), instead of any 
newly computed indicator value, to avoid underestimation of 
the ecological amplitude. We also used some variants of equa­
tion (1), but the differences in the results did not seem to be of 
practical importance. 

Maximum likelihood method 

Ter Braak & Looman (1986) proposed to model the presence-
absence response curve of a species by the Gaussian logit curve, 
in which the logit-transform of probability is a quadratic func­
tion. According to this model the probability pik that species k 
occurs in releve i is (Fig. 2) 

pik = 1/(1 + ck exp \Vi (x, - ukf/tk]} (2) 

where uk is the optimum (the value of x with highest probability 
of occurrence of species k) and tk is the tolerance (a measure of 
ecological amplitude) of species k and x, is the moisture value 
of releve /'. The maximum probability of occurrence of species 
k is 1/(1 + ck). The Gaussian logit curve is symmetric. Its opti­
mum is therefore identical to its mean. Also, its tolerance is al­
most identical to its standard deviation when the maximum of 
the curve is small (Ter Braak & Looman, 1986). The range of oc­
currence of a species is largely restricted to an interval of length 
At (Fig. 2). 

The idea behind the maximum likelihood method is to fit 
Gaussian logit curves to the releve data. This is done by varying 
the parameter values of the model in order to maximize the 

likelihood. The likelihood of a set of parameter values is defined 
as the probability of collecting the same data when this set of 
values were the true set of parameter values. In the present case 
the likelihood is taken to be the product of p? ( l -p)1 -^ over all 
releves and species, with p=P;k and y=\ or 0 depending on 
whether species k is present or absent in releve /'. Logistic regres­
sion as utilized by Ter Braak & Looman (1986) is a special case 
of the maximum likelihood method, in which the species 
parameters (uk, tk and ck) are estimated from data on species 
occurrence and known values of xr We could apply logistic 
regression here, using the moisture values from the weighted 
averaging method. However, in estimating the tolerances of the 
species it is more natural to assume, as in equation (1), that the 
optima are known, namely, that they are equal to Ellenberg's in­
dicator values. From this assumption maximum likelihood esti­
mates are derived for the moisture values of the releves as well 
as for the tolerances and maxima of the species. The maximum 
likelihood estimates are obtained with an iterative algorithm: 

(1) Start with the moisture values obtained by weighted aver­
aging. 

(2) Estimate the tolerance and maximum of each species 
from that species' data and the current moisture values. 

(3) Estimate a new moisture value for each releve from the 
floristic data, the species' optima and the current values for the 
tolerances and maxima of the species. 

(4) Check whether the moisture values have changed, and if 
so, go back to step (2), otherwise stop. 

In step (2) and step (3) the likelihood is maximized for each 
species and each releve separately and, as a result, the total likeli­
hood increases with each step. Step (2) resembles a Gaussian 
logit regression, but differs in that the optimum is given instead 
of being estimated. Step (3) of the maximum likelihood proce­
dure has the attractive property that species with a small toler­
ance will have a greater effect on the estimation of the moisture 
value of a releve than species with a large tolerance (cf. Ter 
Braak & Barendregt, 1986). 

With the maximum likelihood method one can test statistical­
ly whether a species' optimum as specified by Ellenberg's indica­
tor value is consistent with the indicator values of the other spe­
cies. In this test the likelihood calculated above is compared with 
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a likelihood that is maximized also with respect to the value of 
the species' optimum (cf. Ter Braak & Looman, 1986). When the 
difference in residual deviance ( = - 2 log-likelihood) is larger 
than the critical value of a chi-square distribution with 1 degree 
of freedom, the species' optimum is shown to differ significantly 
from the value specified by Ellenberg (1979) and is therefore in­
consistent with the indicator values of the other species. In prin­
ciple this test can be carried out for each Species in turn. Howev­
er, in the present case, the test is very laborious because of the 
large number of parameters in the model. Because it is unlikely 
that the moisture values of the releves will change much, when 
the second likelihood is maximized, they may just as well be kept 
fixed. Then, the statistical test amounts to comparing a species' 
indicator value with its optimum as estimated by a Gaussian 
logit regression of the data of this particular species on fixed 
moisture values. Instead of testing by deviance, we checked 
whether Ellenberg's indicator value lay within the 
95%-confidence interval for the optimum. The construction of 
this interval is described by Ter Braak & Looman (1986). Such 
intervals were only constructed for species occurring in more 
than five releves. 

Data 

In this study, 1041 releves (all from 1980-1982) 
were used representing the vegetation of the dilu­
vial area in the western part of the province of 
Noord-Brabant, The Netherlands (Gremmen et ai, 
1985) as follows: 323 releves of woodland, 312 
grassland, 250 marsh and ditch vegetation, 94 
heathland and bog, and 62 other types. Quadrat 
size ranged from 4 m2 in bog and grassland to 
200 m2 in woodlands. 

Trees, large shrubs, and species that occurred less than 3 times 
were excluded. A total of 311 species remained, on average 13 per 
releve; 280 of them had been assigned indicator values for mois­
ture (Ellenberg, 1979). Most species have indicator values that 
are in the middle range (5-9). Of the species with more extreme 
moisture values 12% have an indicator value of 4 or less, and 
16% have one above 9. 

Table 2. Comparison of the estimates of the moisture values of 
the releves resulting from the weighted averaging method 
(xWA) and the maximum likelihood method (xML). Entries refer 
to number of releves. 

X W A 
XML 

1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Total 

1 2 3 

1 

0 0 1 

4 

1 

11 
1 
1 

14 

5 

3 
5 

13 
67 
28 

116 

6 

2 
1 

36 
220 
15 

274 

7 

1 
61 

122 
43 
16 

243 

8 

13 
99 

108 
3 

223 

9 

6 
76 
24 
7 

133 

10 

4 
10 
19 

33 

11 

11 
10 

21 

12 

1 
2 

3 

Total 

1 

3 
19 
15 

105 
309 
150 
148 
204 
37 
38 
12 

1041 

Table 3. Comparison of the estimates of the species amplitudes 
from the weighted averaging method (SD, Equation (1)) and the 
maximum likelihood method (/, Equation (2)). Entries refer to 
number of species. 

SD 

t 

0.0-0.5 
0.5-1.0 
1.0-1.5 
1.5-2.0 
2.0-2.5 
2.5-3.0 
3.0-3.5 

>3.5 

Total 

0.0 

0.5 

6 

6 

0.5 

1.0 

30 
30 
18 
1 

1 

80 

1.0 

1.5 

1 
20 
51 
32 
7 
2 
1 
1 

115 

1.5 

2.0 

1 
7 

27 
13 
3 
2 
5 

58 

2.0 

2.5 

4 
2 
4 

2 
1 

13 

2.5 

3.0 

1 
2 

1 

4 

3.0 

3.5 

1 

1 

23.5 

3 

3 

Total 

37 
51 
80 
62 
25 
7 
5 

13 

280 

Results 

The moisture values of the releves estimated by 
the weighted averaging method showed a markedly 
uneven distribution, with many more 'wet' than 
'dry' releves (Table 2). These moisture values were 
strongly correlated (/-=0.94) with those estimated 
by the maximum likelihood method, but as shown 
in Table 2, the estimated values for any single releve 
may differ considerably (30% of the releves 
differed by more than 0.5 unit, and 9% of the re­
leves by more than 1 unit). 

The simplistic estimate of a species' amplitude, 
that is the sample standard deviation (SD) of the 
moisture values of the releves in which the species 
occurs, showed low correlation (0.2) with the more 
subtle estimate of SD by equation (1), which was on 
average 1.3 moisture scale unit. The maximum 
likelihood method tended to result in somewhat 
larger estimates of the amplitude than SD (Ta­
ble 3). Species with indicator values of 11 and 12 
had on average a markedly smaller tolerance than 
other species. This may be so because they are wa­
ter plants. 
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In general the maximum probability of occur­
rence of a species estimated by the maximum likeli­
hood method, was quite small; for only 23 (8%) of 
the species the maximum exceeded 0.50 and for 154 
(55%) it was less than 0.10. Thus, the occurrence of 
most species cannot be predicted with confidence 

from the moisture value of the site alone. 
Figure 3 shows some typical examples of the re­

sponse histograms and Gaussian logit curves fitted 
by the maximum likelihood method and by Gaussi­
an logit regression. 

molilur* v«lu< rnolitur* value 

moisture value moisture valu< moisture value 

Fig. 3. Some examples of response histograms (bars) and estimated response curves. ( - = response curve estimated by the maximum 
likelihood method; = response curve estimated by Gaussian logit regression). F = Ellenberg moisture value, t = tolerance / 
estimated by the maximum likelihood method, SD = ecological amplitude estimated by the weighted averaging method, (a) Heracleum 
sphondylium F = 5; t = 2.1; SD = 1.7(b) Juncus effusus F = 7; f = 1.4; SD = 1.4 (c) Juncus subuliflorus F = 7; t = 1.0; SD = 0.9 
(d) AlopecurusgeniculatusF = 9; t = 5.5; SD = 2.2(e) IrispseudacorusF = 10;/ = 1.8; SD = 1.8(0 Lemna minorF = 11; t = 1.0; 
SD = 1.0. 
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In some cases the mean of the response histo­
gram deviates strongly from the indicator value of 
the species (Fig. 3a, e). In those cases the curve 
fitted by maximum likelihood with the species' in­
dicator value taken as a fixed optimum, also devi­
ates strongly from both the response histogram and 
the curve fitted by Gaussian logit regression. By us­
ing Gaussian logit regression 95%-confidence in­
tervals for the optimum could be constructed for 
175 ( = 73%) of the 240 species occurring in more 
than five releves. For 45 ( = 26%) of these, Ellen-
berg's (1979) indicator value for moisture lay more 
than 0.5 unit outside this confidence interval. The 
extra 0.5 unit was used to allow for the fact that 
Ellenberg (1979) reports whole numbers. Thus for 
instance, an indicator value of 6.45 would be 
reported as 6. The indicator values of these species 
therefore are inconsistent with those of the other 
species. Table 4A gives information on species with 
an extreme deviation ( a 1.7) between the Ellenberg 
moisture value and the estimated optimum. When 
no 95%-confidence interval could be calculated, 
the relationship between moisture and probability 
of occurrence was either non-significant (21 spe­
cies) or sigmoid rather than unimodal (44 species), 
as judged by the deviance test at the 5%-level (cf. 
Ter Braak & Looman, 1986). No great inconsisten­
cies in indicator value could be shown for species 
with a sigmoid relationship, because those with an 
Ellenberg indicator value of less than 7, showed a 
decreasing fitted response curve and those with an 
indicator value of 7 or more showed an increasing 
response curve (cf. Fig. 3f)- It should be noted that 
a nonsignificant relationship or optimum may be 
due to a low frequency of a species in our data set 
and does not necessarily point to inconsistencies in 
Ellenberg's indicator values. 

Gaussian logit regression was also used to check 
whether species Ellenberg (1979) considered in­
different, were also indifferent in our data set. For 
28 of the 38 such species that occurred in 6 or more 
releves, a 95%-confidence interval for the optimum 
could be calculated, and for 14 species the estimat­
ed tolerance was even less than 1.0 unit. Table 4B 
lists the species with the narrowest ecological am­
plitude (r<0.9). 

Our data set contained only three herbaceous 
species not mentioned by Ellenberg (1979) that oc­
curred in more than 5 releves; their indicator values 
were estimated by Gaussian logit regression (Ta­
ble 4C). 

Table 4, Ellenberg moisture value (/-)» estimated optimum, 
95 °7o-confidence interval for the optimum and estimated ampli­
tude (tolerance) of a number of species. A. Species with a large 
discrepancy between Ellenberg moisture value and estimated 
optimum. B. Species with a narrow ecological amplitude, al­
though regarded as indifferent by Ellenberg. C. Species not 
mentioned by Ellenberg. 

Species name 

A. 
Ornithopus perpusillus 
Stellaria graminea 
Alopecurus geniculatus 
Iris pseudacorus 

B. 
Anemone nemorosa 
Melampyrum pratense 
Bellis perennis 
Prunella vulgaris 
Ranunculus acris 
Capsella bursa-pastoris 

C. 
Eleocharis multicaulis 
Epilobium obscurum 
Myosotis laxa 

F 

2 
4 
9 

10 

X 

X 

X 

X 

X 

X 

7 

7 
7 

optimum 

4.1 
6.0 
6.9 
8.2 

6.1 
6.3 
6.6 
7.1 
6.9 
4.6 

9.1 
7.0 
7.8 

interval 

3 .5-
5.0-
6.6-
8.0-

6.0-
4 .6-
6 .3 -
6.8-
6.7-
3.5-

9.0-
6.9-
7 .5-

-4.3 
-6.4 
-7.1 
-8.4 

-6.3 
-7.3 
-6.8 
-7.5 
-7.0 
-5.0 

-9.3 
-7.3 
-8.1 

tolerance 

0.5 
1.4 
1.1 
0.7 

0.2 
0.5 
0.6 
0.6 
0.7 
0.8 

0.3 
0.6 
0.7 

Discussion 

The ordinal scale of Ellenberg's indicator values 

Ellenberg's indicator values are ordinal (strictly 
speaking values 11 and 12 are nominal); from the 
values in Table 1 we may infer which of two species 
prefers wetter conditions, but not the magnitude of 
the difference. But, in the methods applied here, the 
indicator values are treated as if they were quantita­
tive, that is, as if they were measured on an interval 
scale. Durwen (1982) raised objections against such 
a quantitative treatment. In our opinion the ordinal 
nature of Ellenberg's moisture scale is far less im­
portant than the shape of the response curves, 
which should be symmetric (cf. Ter Braak & Baren-
dregt, 1986). In the maximum likelihood method, a 
particular symmetric response curve was assumed 
- although response curves that are monotone by 
truncation, could also be dealt with. This condition 
of symmetry is equally important in the weighted 
averaging method, as mean and standard deviation 
are only useful characteristics for response curves 
that are more or less symmetric. After inspecting 
the response histograms of all species (cf. Fig. 3) we 
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concluded that the assumption of symmetry was 
not unreasonable, except, of course, for species 
with extreme optima. Therefore, we used the mois­
ture indicator values of Ellenberg without transfor­
mation. 

Comparison of the two methods 

The weighted averaging method has three major 
problems. Firstly, as the number of releves in each 
moisture class is not equal (Table 2), the estimates 
of the probability of occurrence in a class are not 
equally precise for all classes. The estimate of SD 
in equation (1) is closely related to the SD of the re­
sponse histogram (Fig. 1), and it would seem 
reasonable to give less weight to classes with rela­
tively few relev6s. However, any such weighting 
policy, would make the estimator for SD again de­
pendent on the distribution of the releves, and thus 
cause bias. 

A second problem is caused by releves of ex­
tremely wet or extremely dry sites. The moisture 
values of these releves will always be too low and 
too high, respectively, because only a few species 
indicate extreme conditions and many more species 
indicate conditions that are less extreme. Just by 
their numbers the probability of species of the lat­
ter group occurring at extreme sites is higher than 
of species indicating extreme conditions. This 
results in a general trend towards more moderate 
moisture values for extreme releves, and this also 
results in a bias in the estimates for SD. Thirdly, the 
response histograms of species with an extreme in­
dicator value will be truncated (cf. Fig. 3f) and it is 
not clear how the SD value of such species should 
be interpreted. The problem is partly one of defini­
tion, that is, when the response curve is truncated 
because more extreme conditions do not exist, it is 
not clear how SD should be defined, and partly one 
of estimation, namely when the response curve is 
truncated because more extreme conditions were 
not sampled, it is not clear how SD should be esti­
mated. We do not know how to solve this problem 
in the weighted averaging method. 

In the maximum likelihood method a specific 
model has to be adopted, in our case the Gaussian 
logit model. This is a disadvantage, since we do not 
really know the correct model. When the model is 
correct, the resulting estimates are better than in 

the weighted averaging method, but when it is in­
correct, the meaning and quality of the estimates 
are unknown. We investigated the goodness-of-fit 
of the Gaussian logit curves obtained from the 
regressions with the usual chi-square test on the ba­
sis of observed and expected numbers of presence 
and absence in the 12 moisture classes. At the 5% 
level 72 species (=27%) showed significant lack-of-
fit. An example is Alopecurus geniculatus 
(Fig. 3d). The response histogram suggests gross 
deviations from the Gaussian logit curve in mois­
ture classes 10 and 11, but these are due to only four 
occurrences. The important deviation is the low fre­
quency of occurrence in moisture class 9. Despite 
the deviations, we believe that for our purpose and 
data the Gaussian logit model is a good com­
promise between model complexity and goodness-
of-fit. 

The problems in the weighted averaging method 
are largely solved automatically in the maximum 
likelihood method, where a truncated response 
curve is assumed to be part of a full Gaussian logit 
curve. However, an unexpected new problem arose, 
namely that the distribution of the moisture values 
of the relevfe showed local minima near integer 
values. 

This artifact (which is not apparent in Table 2) is because the 
Ellenberg (1979) indicator values are all integer values and in our 
method form the optima of the species' response curves. The 
maximum likelihood estimate of the moisture value of a relev^ 
is based both on the species present and the species absent. 
When a species is present, it forces the estimate in the direction 
of the species' indicator value, whereas, when a species is absent, 
it forces the estimate away from the species' indicator value. Ab­
sence of a species usually has far less influence than presence, 
that is, when the maximum probability of occurrence of the spe­
cies is low (Ter Braak & Barendregt, 1986). But the number of 
species absent in a relev6 is large compared to the number of spe­
cies present. If, for instance, the true moisture value of a releve 
is 6.0, all species with an indicator value of 6 that are absent will 
force the estimate away from the value 6.0 and this force cannot 
be counteracted by the presence of a small number of species 
with this same indicator value. The maximum likelihood esti­
mate thus tends to avoid the integer values. We believe that in 
the present study this artifact is not a very serious problem. Be­
cause the average width of the response curves is large as com­
pared to the scale of these irregularities, the fitting of curves will 
still give a reasonable estimate of the species tolerance. 

The maximum likelihood method has the addi­
tional advantage over the weighted averaging meth­
od by giving approximate standard errors of esti­
mates, which makes it possible to test the internal 
consistency of the Ellenberg indicator values. 
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Improving the indicator values by ordination? 

Clausman (1980) attempted to improve indicator 
values by an iterative procedure; he calculated mois­
ture values for the releves from the indicator values 
and then new indicator values from the moisture 
values, and then new moisture values from the new 
indicator values, and so on. This procedure is es­
sentially an ordination method. For example, when 
weighted averaging is used in each calculation, the 
method amounts to reciprocal averaging. By conse­
quence, the original meaning of the indicator 
values may get lost. 

We applied detrended correspondence analysis 
(Hill & Gauch, 1980), to our data and found practi­
cally no correlation between the (initial) moisture 
values of the relevis and the (final) scores on the 
first axis (r=0.01). The first axis turned out to be 
highly correlated (r=0.99) with the nitrogen values 
of the releves, estimated by averaging the Ellenberg 
indicator values for N, whereas the second axis was 
highly correlated (r=0.99) with the moisture 
values. Applied to our data, Clausman's (1980) 
method would have changed the Ellenberg's indica­
tor values for moisture into indicator values for 
nitrogen, which is clearly unwanted! Consequently, 
ordination cannot be used to improve indicator 
values, except in the hypothetical case that it is cer­
tain that the main variation in the species data cor­
responds exactly to the factor one wants to improve 
the indicator values of. Therefore, we kept the indi­
cator values fixed in both our methods and tested 
each species separately to see if its value was consis­
tent with the indicator values of the other species. 

Due to the implicit nature of Eltenberg's defini­
tion of moisture, it is impossible to improve the 
moisture values in a statistically sound way on the 
basis of floristic data only. 

On generalizing the results 

variation in our data. Consequently, the assump­
tion in the maximum likelihood method of inde­
pendence of the species is incorrect. Fortunately, 
nitrogen was practically uncorrelated with mois­
ture, and therefore unlikely to have distorted the 
results to a large extent. The fact that moisture is 
shown to be the second most important environ­
mental variable in our data set also gives some con­
fidence in the results. In different geographical 
regions, the environmental variables that are most 
important for explaining the species distribution 
may differ. Especially when these factors are cor­
related with moisture, the estimates of the ampli­
tude of a species with respect to moisture may dif­
fer because of distortion by these factors. In 
principle, the problem of other influential variables 
can be overcome in the maximum likelihood meth­
od by analysing more than one variable simultane­
ously. We may attempt this in the future. 

Conclusion 

The use of Ellenberg's moisture values on floris­
tic data in estimating site moisture is an example of 
environmental calibration. Ellenberg's method of 
environmental calibration assumes a simple model 
of the responses of plant species to moisture: sym­
metric, unimodal response curves and equal ampli­
tudes. This model does not include interaction ef­
fects of other environmental variables with 
moisture. A more precise calibration system neces­
sarily has to include such interactions. Such a sys­
tem could be derived from actual measurements of 
environmental variables and associated floristic 
data (Ter Braak & Barendregt, 1986), but would 
lose the simplicity and supposed general applicabil­
ity of the Ellenberg system. May our results serve to 
increase the confidence with which Ellenberg's indi­
cator values for moisture are used. 

Our results show the ecological amplitude (SD or 
tolerance) of a species to be about 1.0 to 1.5 units 
on Ellenberg's moisture scale. Consequently, the 
range of a species' occurrence is estimated to be on 
average 4 -6 units. It is difficult to say how these 
results are affected by conditions specific to our 
study area. The detrended correspondence analysis 
showed nitrogen to be the environmental variable 
that is most important for explaining the floristic 
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I. INTRODUCTION 

All species occur in a characteristic, limited range of habitats; and 
within their range, tend to be most abundant around their particular 
environmental optimum. The composition of biotic communities thus changes 
along environmental gradients. Successive species replacements occur as a 
function of variation in the environment, or (analogously) with 
successional time (Pickett, 1980; Peet and Loucks, 1977). The concept of 
niche space partitioning also implies the separation of species along 
"resource gradients" (Tilman, 1982). Gradients do not necessarily have 
physical reality as continua in space or time, but are a useful abstraction 
for explaining the distributions of organisms in space and time (Austin, 
1985). Austin's review explores the interrelationships between niche theory 
and the concepts of ecological continua and gradients. 

Our review concerns data analysis techniques that assist the 
interpretation of community composition in terms of species' responses to 
environmental gradients in the broadest sense. Gradient analysis sensu lato 
includes direct gradient analysis, in which each species' abundance (or 
probability of occurrence) is described as a function of measured 
environmental variables; the converse of direct gradient analysis, whereby 
environmental values are inferred from the species composition of the 
community; and indirect gradient analysis, sensu Whittaker (1967), in which 
community samples are displayed along axes of variation in composition that 
can subsequently be interpreted in terms of environmental gradients. There 
are close relationships among these three types of analysis. Direct 
gradient analysis is a regression problem - fitting curves or surfaces to 
the relation between each species'abundance or probability of occurrence 
(the response variable) and one or more environmental variables (the 
predictor variable(s)) (Austin, 1971). Inferring environmental values from 
species composition when these relationships are known is a calibration 
problem. Indirect gradient analysis is an ordination problem, in which axes 
of variation are derived from the total community data. Ordination axes can 
be considered as latent variables, or hypothetical environmental variables, 
constructed in such a way as to optimize the fit of the species data to a 
particular (linear or unimodal) statistical model of how species abundance 
varies along gradients (Ter Braak, 1985, 1987a). These latent variables are 
constructed without reference to environmental measurements, but they can 
subsequently be compared with actual environmental data if available. To 
these three well-known types of gradient analysis we add a fourth, 
constrained ordination, which has its roots in the psychometric literature 
on multidimensional scaling (Bloxom, 1978; De Leeuw and Heiser, 1980; 
Heiser, 1981). Constrained ordination also constructs axes of variation in 
overall community composition, but does so in such a way as to explicitly 
optimize the fit to supplied environmental data (Ter Braak, 1986a, 1987c). 
Constrained ordination is thus a multivariate generalization of direct 
gradient analysis, combining aspects of regression, calibration and 
ordination. Table 1 gives an arbitrary selection of literature references, 
chosen simply to illustrate the wide range of ecological problems to which 
each of the four types of gradient analysis has been applied; the reader is 
also referred to Gauch (1982), who includes an extensive bibliography, and 
to Gittins (1985). 

Standard statistical methods that assume linear relationships among 
variables exist for all four types of problems (regression, calibration, 
ordination and constrained ordination) but have found only limited 
application in gradient analysis because of the generally non-linear, 
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Table 1. Selected applications of gradient analysis 

taxa environmental variables purpose of study 
Regression 
Alderdlce (1972) marine f ish 
Peet (1978) t rees 
Wiens & Rotenberry (1981) birds 
Austin et a l . (1984) Eucalyptus spp 
Bartlein et a l . (1986) 

s a l in i ty , temperature defining ranges 
elevation, moisture, l a t i tude blogeography 
vegetation s tructure 
climatic indices 

plant pollen types temperature, precipitat ion 

niche characterization 
habitat characterization 
Quaternary palaeoecology 

Calibration 
Chandler (1970) 

Imbrie & Klpp (1971) 

Sladecek (1973) 
Balloch et al. (1976) 

Ellenberg (1979) 

Van Dam et a l . (1981) 
Bocker et a l . (1983) 
Bartlein et a l . (1984) 
Battarbee (1984) 
Charles (1985) 
Atkinson et a l . (1986) 

Ordination* 
Van der Aart & Smeenk-
Enserink (1975) 

benthic macron 
invertebrates 
foraminifera 

water pollution 

sea surface temperature 

organic pollution 
water pollution 

freshwater algae 
benthic macron 
invertebrates 
t e r r e s t r i a l plants soi l moisture, N, pH 

diatoms pH 
t e r r e s t r i a l plants soi l moisture, N, pH 
plant pollen types temperature, precipitation 
diatoms 
diatoms 
beetles 

spiders 

beetles 

PH 
PH 
summer temperature, annual 
range 

water quality management 

palaeoclimatic reconstruction 

ecological monitoring 
ecological monitoring 

bioassay from vegetation 

acid rain effects 
bioassay from vegetation 
palaeoclimatic reconstruction 
acid rain effects 
acid rain effects 
palaeoclimatic reconstruction 

micro^environmental features habitat characterization 

Kooijman & Hengeveld 
(1979) 
Wiens & Rotenberry (1981) birds 
Prodon & Lebreton (1981) birds 

Kalkhoven & Opdam (1984) birds 

lutum content, elevation 

vegetation s tructure 
vegetation s tructure 

habitat characterization 

niche characterization 
niche characterization 

habitat and landscape features habitat characterization 

Macdonaid & Ritchie 
(1986) 

Constrained ordination 
Webb & Bryson (1972) 

Gasse & Tekaia (1983) 

plant pollen type3 vegetation regions 

plant pollen types climate variables, airmass 
frequencies 

diatoms pH classes 

As (1985) beetles vegetation types 
Cramer & Hytteborn (1987) t e r r e s t r i a l plants time, elevation 
Purata (1986) t ropical t rees successional boundary 

conditions 
Willen & Fangstrom (1986) phytoplankton physical/chemical variables 

Quaternary palaeocology 

palaeoclimatic reconstruction 

palaeolimnology 

niche theory 
land uplif t effects 
study of secondary succession 

environmental monitoring 

* [FOOTNOTE] excluding vegetation s tudies , where ordination i s used routinely: see Gauch (1982) 
for a review. 
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non-monotone response of species t o environmental v a r i a b l e s . Ecologis t s have 
independently developed a v a r i e t y of a l t e r n a t i v e t e chn iques . Many of these 
techniques a r e e s s e n t i a l l y h e u r i s t i c , and have a l e s s secure t h e o r e t i c a l 
b a s i s . These h e u r i s t i c techniques can neve r the les s give useful r e s u l t s , and 
can be understood as approximate so lu t ions t o s t a t i s t i c a l problems s imi l a r 
t o those solved by s tandard methods, but formulated in terms of a unimodal 
(Gaussian or s im i l a r ) response model ins tead of a l i n e a r one. We present 
here a theory of g radient a n a l y s i s , in which the h e u r i s t i c techniques a re 
i n t eg ra t ed with r eg r e s s ion , c a l i b r a t i o n , o rd ina t ion and cons t ra ined 
o rd ina t ion as d i s t i n c t , wel l -def ined s t a t i s t i c a l problems. 

The var ious techniques used for each type of problem a re c l a s s i f i e d i n t o 
f ami l ies according t o t h e i r imp l i c i t response model and the method used t o 
e s t imate parameters of the model. We consider t h r e e such fami l ies (Table 2 ) . 
F i r s t we t r e a t the family of s tandard s t a t i s t i c a l techniques based on the 
l i n ea r response model, because these a r e conceptual ly the s imples t and 
provide a b a s i s for what fo l lows, even though t h e i r eco logica l app l i ca t ion 
i s r e s t r i c t e d . Second, we ou t l i n e a family of somewhat more complex 
s t a t i s t i c a l techniques which a r e formal ex tens ions of t he s tandard l i n e a r 
techniques and incorpora te unimodal (Gaussian^l ike) response models 
e x p l i c i t l y . F i na l l y we consider the family of h e u r i s t i c techniques based on 
weighted averaging . These a r e not more complex ,than the s tandard l i n e a r 
t echn iques , but imp l i c i t l y f i t a simple unimodal response model r a t h e r than 
a l i n e a r one. Our t reatment thus un i t es such apparent ly d i s pa r a t e data 
a na ly s i s techniques as l i n e a r r e g r e s s i on , p r i nc ipa l components a n a l y s i s , 
redundancy a n a l y s i s , Gaussian o rd ina t i on , weighted averaging, r e c ip roca l 
averaging, detrended correspondence ana lys i s and canonical correspondence 
a na l y s i s in a s i n g l e t h e o r e t i c a l framework. 

I I . LINEAR MODELS 

Species abundances may seem t o change l i n e a r l y through shor t s ec t ions of 
environmental g r ad i en t s , so a l i n e a r response model may be a r easonable 
b a s i s for analys ing quan t i t a t i v e abundance da ta spanning a narrow range of 
environmental v a r i a t i o n . 

A. Regression 

If a p lo t of t he abundance (y) of a s pec ies aga ins t an environmental 
v a r i ab l e (x) looks l i n e a r , or can e a s i l y be transformed t o l i n e a r i t y , then 
i t i s appropr ia t e t o f i t a s t r a i g h t l i n e by l i n e a r r eg r e s s i on . The formula 
y = a + bx descr ibes the l i n e a r r e l a t i o n , with a the i n t e r c ep t of the l i n e 
on the y -ax i s and b the s lope of t he l i n e , or r eg re s s ion coef f ic ien t (F ig . 
1 ) . Separate r eg ress ions can be c a r r i ed out for each of m s pec i e s . 

We are usual ly most i n t e r e s t e d in how the abundance of each spec ies 
changes with a change in the environmental v a r i a b l e , i . e . in the s lopes 
b k ( the index k r e f e r s t o spec ies k ) . If we f i r s t c en t r e the data - by 
s ub t r ac t i ng the mean of each s p ec i e s ' abundances from the spec ies da ta and 
t he mean of the environmental va lues from the environmental data - the 
i n t e r cep t d i sappea r s . Then i f y k i denotes the centred abundance of species 
k in the i - t h out of n s i t e s , and x^ the cent red environmental value for 
t h a t s i t e , t he response model fo r f i t t i n g the s t r a i g h t l i n e s becomes 

vki " V i + eki ( 1 ) 
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Table 2, C l a s s i f i c a t i on of g radient a na ly s i s techniques by type of problem, 
response model and method of e s t ima t ion . 

linear 
RESPONSE MODEL: 

unimodal 

METHOD OF ESTIMATION: leastfesquares maximum l i ke l i hood weighted averaging 

TYPE OF PROBLEM: 
r eg ress ion mul t ip le r eg re s s ion Gaussian r eg re s s ion weighted averaging 

of s i t e scores (WA) 

c a l i b r a t i o n l i n e a r c a l i b r a t i o n ; Gaussian c a l i b r a t i o n weighted averaging 
" inverse r eg ress ion" of spec ies scores 

(WA) 

ordination principal components Gaussian ordination correspondence ana-
analysis (PCA) lysis (CA); detrenr 

ded correspondence 
analysis (DCA) 

constrained 
ordination 

1) redundancy analysis Gaussian canonical canonical corres^ 
(RDA) 4) ordination pondence analysis 

(CCA); 
detrended CCA 

partial ordi­
na t ion 2) 

p a r t i a l components 
ana lys i s 

p a r t i a l Gaussian 
o rd ina t ion 

p a r t i a l correspon­
dence a na ly s i s ; 
p a r t i a l DCA 

p a r t i a l con? 
s t r a i n ed or* 
d i n a t i o n ^ 

p a r t i a l redundancy 
ana lys i s 

p a r t i a l Gaussian p a r t i a l canonical 
canonical o rd ina t ion correspondence 

a na ly s i s ; p a r t i a l 
detrended CCA 

1) - cons t ra ined mu l t i v a r i a t e r eg ress ion 
2) = o rd ina t ion a f t e r r eg ress ion on covar iables 
3) = cons t ra ined o rd ina t ion a f t e r r eg re s s ion on covar iab les = const ra ined 

p a r t i a l mu l t i v a r i a t e r eg re s s ion 
4) = "reduced*rank r eg r e s s ion" = "PCA of y with r e spec t t o x" 
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where e k i i s an error component with zero mean and variance v k i . The 
standard estimator for the slope in equation (1) i s 

5k " J / k i V ^ <2> 

where s* » J, xf. This i s the least-squares estimator, which i s the best x i=1 i 

l inear unbiased estimator when errors are uncorrelated and homogeneous 
across s i tes (vk i = v k ) . I t i s also the maximum likelihood (ML) estimator 
when the errors are also normally distributed (the maximum likelihood method 
i s a s t a t i s t i c a l method with well-established optimal properties (see e.g. 
Cox and Hinkley, 1974); a ML<-estimator i s the value for which, if i t were 
the true value, the probability of the observed data i s highest). The f i t ted 
l ines can be used to predict the abundances of species in a s i t e with a 
known value of the environmental variable simply by reading off the graph. 

B. Calibration 

We now turn to the inverse problem, calibration. When the relationship 
between the abundances of species and the environmental variable we are 
interested in is known, we can infer values of that environmental variable 
for new sites from the observed species abundances. If we took into account 
the abundance of only a single species, we could simply read off the graph, 
starting from a value on the vertical axis (Fig. 1). However, another 
species may well give a different estimate. We therefore need a good and 
unambigous estimator that combines the information from all m species. In 
terms of Eq. (1), the bk are now assumed to be known and x, is unknown. The 
role of the bk and x. have been interchanged. By interchanging their roles 
in Eq. (2) as well, we obtain 

h - J /kibk / sb (3) 

where sJ = T b£. This i s the least-squares estimator (and also the 
o k -| K 

ML-estimator) when the errors follow a normal distribution and are 
independent and homogeneous across species (vk i = v i ) . 

A problem with equation (3) i s that these conditions are l ikely to be 
unreal is t ic , because effects of other environmental variables can cause 
correlation between the abundances of different species even after the 
effects of the environmental variable of in terest have been removed. 
Further, the residual variance v k i may be different for different species. 
If these conditions do not apply, we also need to take the residual 
correlations and variances into account. (In practice, the residual 
correlations and variances are estimated from the residuals of the 
regressions used for estimating the b k ' s . ) Searching for the maximum of the 
likelihood with respect to XJ then leads to a general weighted least-squares 
problem (Brown 1979, Brown 1982) that can be solved by using standard 
algorithms. 

C. Ordination 

After having fitted a particular environmental variable to the species 
data by regression, we might ask whether another environmental variable 
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environmental variable (x) 

EiS-1-l.i A straight line displays the linear relation between the abundance 
value (y) of a species and an environmental variable (x), fitted to 
artifical data (•). (a = intercept; b = slope or regression 
coefficient). 

Eig.t..2.. A plane displays the linear relation between the abundance value (y) of 
a species and two environmental variables (x. and x 2 ) . fitted to 
artifical data (•). 
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would provide a better f i t . For some species one variable may fit better, 
and for other species another variable. To get an overall impression we 
might judge the goodness^of-fit (explanatory power) of an environmental 
variable by the "total regression sum of squares", the sum over all species 
of the regression sum of squares for each species (the sum of squares of the 
fitted values - see e.g. Montgomery and Peck, 1982). The question then 
arises: what is the best possible f i t that is theoretically obtainable with 
the straight line model of Eq. (1)? 

This question defines an ordination problem, i .e . to construct the 
single "hypothetical environmental variable" that gives the best f i t to the 
species data according to Eq. (1). This hypothetical environmental variable 
is termed the-latent variable, or simply the (first) ordination axis. 
Principal components analysis (PCA) provides the solution to this ordination 
problem. In Eq. (1), x.̂  is then the score of s i te i on the latent variable, 
bk is the slope for species k with respect to the latent variable (also 
called the species loading or species score) and the eigenvalue of the f irst 
PCA axis is equal to the goodness-of-fit, i . e . the total sum of squares of 
the regressions of the species abundances on the latent variable. PCA 
provides the least-squares estimates of the site and species scores: these 
estimates are also ML estimates if the errors are independently and normally 
distributed with constant variance (vki = v). 

PCA is usually performed using a standard computer package, but several 
different algorithms can be used to do the same job. The following 
algorithm, known as the power method (Gourlay and Watson, 1973), shows that 
PCA can be obtained by an alternating sequence of linear regressions and 
calibrations: 

Step 1. Start with some (arbitrary) initial site scores {x,} with zero 
mean. 

Step 2. Calculate new species scores 
Step 3- Calculate new site scores {xi 

bk} by linear regression (Eq. (2)). 
by linear calibration (Eq. (3)). 

Step 4. Remove the arbitrariness in scale by standardizing the s i te scores 
as follows: new x, = old x,/n/s , with sv as defined beneath Eq. 
(2). 

Step 5. Stop on convergence, i .e . when the newly obtained s i te scores are 
close to the site scores of the previous cycle of iteration, else go 
to step 2. 

The final scores obtained in this way do not depend on the initial scores. 

D. Extension to more than one environmental variable 

Species experience the effect of more than one environmental variable 
simultaneously, so more than one variable may be required to account for 
variation in species abundances. 

The joint effect of two environmental variables on a species can be 
analysed by multiple regression (see e.g. Montgomery and Peck, 1982). For 
two environmental variables the linear response model is 

' k i »k + b k 1 x i 1 + bk2xi2 + eki ( l t ) 

with ak the intercept for species k, x^ the value of variable 1 at s i te i 
and bkl the (partial) regression coefficient for the effect on species k. 
For variable 2, x i 2

 ar>d bkg are defined analogously, and ykland ek i are 
defined as before. This model specifies a plane in three dimensions (Fig. 
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2) . Standard computer packages are available to obtain least-squares (ML) 
estimates for the regression coefficients. Multiple regression provides for 
each variable a regression coefficient that takes into account the effect of 
the other variables: hence the term "part ial" regression coefficient. Only 
when the two environmental variables are uncorrelated will the par t ia l 
regression coefficients be identical to the coefficients estimated by 
separate regressions using Eq. (1) . 

The inverse problem, multiple calibration - inferring values of more 
than one environmental variable simultaneously n has been given surprisingly 
l i t t l e at tention in the l i t e r a tu r e . However, Williams (1959) derived the 
necessary formulae from the ML-principle; see also Brown (1982). 

The ordination problem for the two-dimensional l inear model turns out to 
be re la t ively simple, compared with the regression and calibration problems. 
The solution does not need an alternating sequence of multiple regressions 
and cal ibrat ions, because the la tent variables can always be chosen in such 
a way that they are uncorrelated; and if the la tent variables are 
uncorrelated, then the multiple regressions and calibrations reduce to a 
series of separate l inear regressions and cal ibrat ions. PCA provides the 
solution to the l inear ordination problem in any number of dimensions; one 
latent variable i s derived f i r s t , as in the onendimensional case of Eq. (1), 
and the second la tent variable can be obtained next by applying the same 
algorithm again but with one extra step - after step 3, the t r i a l scores are 
made uncorrelated with the f i r s t la tent variable. On denoting x,p simply by 
x , | th is orthogonalization is computed by 

Step 3b: Calculate f = E i XjX^/n, 
Calculate new x, = old x^ -> f x . . . 

(Further la tent variables (ordination axes) may be derived analogously.) 
As in the one-dimensional case, PCA provides the ML^solution to the multi­
dimensional l inear ordination problem if the errors are independently and 
normally distributed with constant variance across species and s i t e s . The 
power algorithm for PCA as described above makes i t s relat ionship to 
regression and calibration clear in a way that the usual textbook treatment, 
in terms of singular value decomposition of inner product matrices, does 
not; i t also f ac i l i t a tes comparison with correspondence analysis, which we 
discuss l a t e r . Jo l l i f fe (1986) reviews the theory and applications of PCA. 

E. The environmental interpretation of ordination axes ( indirect gradient 
analysis) 

In indirect gradient analysis the species data are f i r s t subjected to 
ordination, e .g. using PCA, to find a few major axes of variation ( latent 
variables) with a good f i t to the species data. These axes are then 
interpreted in terms of known variation in the environment, often by using 
graphical methods (Gauch, 1982). A more formal method for the second step in 
indirect gradient analysis would be to calculate correlation coefficients 
between environmental variables and each of the ordination axes. This 
analysis i s similar to performing a multiple regression of each separate 
environmental variable on the axes (Dargie, 1984), because the axes are 
uncorrelated. But the resul t i s s t i l l not an analysis of the combined 
effects of a l l environmental variables. Such a jo int analysis can be carried 
out by multiple regression of each ordination axis on the environmental 
variables, i . e . estimating the coefficients c in the model 

X i = °0 +
 J?1°JziJ ( 5 ) 
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in which xi is the score of site i on that one ordination axis, Zj4 denotes 
the value at site i of the j-th out of q actual environmental variables, and 
ci is the corresponding regression coefficient. (For later reference, the 
error term in Eq. (5) is not shown.) The multiple correlation coefficient R 
measures how well the environmental variables explain the ordination axis. 

F. Constrained ordination (multivariate direct gradient analysis) 

Indirect gradient analysis, as outlined above, is a two-step approach to 
relate species data to environmental variables. A few ordination axes that 
summarize the overall community variation are extracted in the f i rst step; 
then in the second step one may calculate weighted sums (linear 
combinations) of the environmental variables that most closely f i t each of 
these ordination axes. However, the environmental variables that have been 
studied may turn out to be poorly related to the f i rs t few ordination axes, 
yet may be strongly related to other, "residual" directions of variation in 
species composition. Unless the f i rs t few ordination axes explain a very 
high proportion of the variation, this residual variation can be 
substantial, and strong relationships between species and environment can 
potentially be missed. 

In constrained ordination this approach is made more powerful by 
combining the two steps into one. The idea of constrained ordination is to 
search for a few weighted sums of environmental variables that f i t the data 
of all species best, i . e . that give the maximum total regression sum of 
squares. The resulting technique, redundancy analysis (Rao, 1964; Van den 
Wollenberg, 1977), is an ordination analysis in which the axes are 
constrained to be linear combinations of the environmental variables. These 
axes can be found by extending the algorithm of PCA described above with one 
extra step, to be performed directly after step 3 (Ter Braak, 1987a): 

Step 3a: Calculate a multiple regression of the s i te scores {x^} on the 
environmental variables (Eq. (5)), and take as new site scores the 
fitted values of this regression. 

The regression is thus carried out within the iteration algorithm, instead 
of afterwards. On convergence, the coefficients {cA are termed canonical 
coefficients and the multiple correlation coefficient in step 3a can be 
called the species^environment correlation. 

Redundancy analysis is also known as reduced^rank regression (Davies and 
Tso, 1982), PCA of y with respect to x (Robert and Escoufier, 1976) and 
two-̂ block mode C partial least squares (Wold, 1982). I t i s intermediate 
between PCA and separate multiple regressions for each of the species: it is 
a constrained ordination, but i t is also a constrained form of 
(multivariate) multiple regression (Davies and Tso, 1982; IsraSls, 1981). By 
inserting Eq. (5) into Eq. (1), i t can be shown that the 'regression' 
coefficient of species k with respect to environmental variable j takes the 
simple form b^c^. With two ordination axes this form would be, in obvious 
notation, tî  1ci 1 + t3k2ci2- w * t n fcw0 ordination axes, redundancy analysis 
thus uses 2(q+T) parameters to describe the species data, whereas the 
multiple regressions use m(q+1) parameters (cf. Eq. (4)). One of the 
attractive features of redundancy analysis is that i t leads to an ordination 
diagram that simultaneously displays (i) the main pattern of community 
variation as far as this variation can be explained by the environmental 
variables, and (ii) the main pattern in the correlation coefficients between 
the species and each of the environmental variables. We give an example of 
such a diagram later on. 
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environmental variable (x) 

Cigi_3i A Gaussian curve displays a unimodal relation between the abundance 
value (y) of a species and an environmental variable (x). (u = optimum 
or mode; t » tolerance; c = maximum = exp(a)). 

Eigi_ili A Gaussian surface displays a unimodal relation between the abundance 
value (y) of a species and two environmental variables (x1 and x 2 ) . 
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Redundancy a n a l y s i s i s much l e s s well known than canonical c o r r e l a t i on 
ana lys i s (G i t t i n s , 1985), which i s t he s tandard l i n e a r mu l t i v a r i a t e 
technique for r e l a t i n g two s e t s of v a r i ab l e s ( in our c a se , t he s e t of 
spec ies and t he s e t of environmental v a r i a b l e s ) . The most important 
p r a c t i c a l d i f ference i s t ha t redundancy a n a l y s i s can analyse any number of 
spec ies whereas in canonical c o r r e l a t i on a na l y s i s the number of spec ies (m) 
must be l e s s than n-*q; the l a t t e r r e s t r i c t i o n i s often a nu i sance . 

Canonical v a r i a t e s a n a l y s i s , or mu l t ip le d i scr iminant a n a l y s i s , i s 
simply t he s pec i a l case of canonical c o r r e l a t i on a na l y s i s i n which t he 
"environmental" v a r i ab l e s a re a s e r i e s of dummy va r i ab l e s r e f l e c t i n g a 
s i ng l e - f a c t o r c l a s s i f i c a t i o n of the samples. A s imi la r r e s t r i c t i o n on the 
number of s pec ies thus a l so app l i e s t o canonical v a r i a t e s a n a l y s i s . 
Redundancy a n a l y s i s with dummy v a r i ab l e s provides an a l t e r n a t i v e t o 
canonical v a r i a t e s a n a l y s i s , evading t h i s r e s t r i c t i o n . 

I I I . NONLINEAR (GAUSSIAN) METHODS 

A. Unlmodal response models 

Linear methods are appropriate to community analysis only when the 
species data are quantitative abundances (with few zeroes) and the range of 
environmental variation in the sample set is narrow. Alternative analytical 
methods can be derived from unimodal models. 

A unimodal response model for one environmental variable can be obtained 
by adding a quadratic term (x|) to the linear model, changing the response 
curve from a straight line into a parabola. But this quadratic model can 
predict large negative values, whereas species abundances are always zero or 
positive. A simple remedy for the problem of negative values is provided by 
the Gaussian response curve (Gauch and Whittaker, 1972) in which the 
logarithm of species abundance is a quadratic in the environmental 
variable: 

log y = b 0 + b.x + b?x2 

(6A) 
= a - V 2 (x-u)Vt2 

where b 2 < 0 (o therwise the curve would have a minimum ins tead of a mode). 
The c oe f f i c i en t s bQ , b , and b 2 a r e most e a s i l y i n t e r p r e t ed by t ransformat ion 
t o u, t , and a (F ig . 3) -•- u being the s p e c i e s ' optimum ( the value of x a t 
the peak) , t being i t s t o l e r ance (a measure of response breadth or 
eco logica l ampl i tude) , and a being a coe f f i c i en t r e l a t e d t o the height of 
the peak (Ter Braak and Looman, 1986). 

A c lose ly r e l a t e d model can descr ibe spec ies data i n presence-absence 
form. In analysing presence-absence da t a , we want t o r e l a t e p r obab i l i t y of 
occurrence (p) t o environment. P r ob ab i l i t i e s a r e never g r ea t e r than 1, so 
r a t h e r than using Eq. (6A) we use the Gaussian l o g i t model, 

l o g ( v % ) = b0 + b 1 x + b 2 x 2 ( 6 B ) 

which is very similar to the Gaussian model unless the peak probability is 
high (> 0.5); then Eq. (6B) gives a curve that is somewhat flatter on top. 
The coefficients bQ, b-i and bp can be transformed as before into 
coefficients representing the species' optimum, tolerance and maximum 
probability value. 
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Although r e a l eco logica l response curves a r e s t i l l more complex than 
implied by the Gaussian and Gaussian l o g i t models, t hese models a re 
never the less useful in developing s t a t i s t i c a l d e sc r ip t i ve techniques for 
da ta showing mostly unimodal r e sponses , j u s t as l i n e a r models a re useful in 
s t a t i s t i c a l a na ly s i s of data t ha t a re only approximately l i n e a r . 

With two environmental v a r i a b l e s , Eqs. (6A) and (6B) become f u l l 
quadra t i c s with both square and product terms (Alderdice , 1972). For 
example, the Gaussian model becomes 

log y = bQ + b1x1 + b 2 x | + bgX2 + b^x^ + b 5x 1x 2 . (7) 

I f b 2 + b^ < 0, and 4b2b1) *> b l > 0 then Eq. (7) descr ibes a unimodal surface 
with e l l i p s o i d a l contours (F ig . 4 ) . I f one of these condi t ions i s 
not s a t i s f i e d then Eq. (7) descr ibes a su r face with a minimum, or with a 
saddle point ( e . g . Davison, 1983). Provided the surface i s unimodal, i t s 
optimum (u.,, u 2 ) can be c a l cu la t ed from the c oe f f i c i en t s in Eq. (7) by 

u 1 - ( b 5bo -• a b - j b ^ / d 

u 2 = (b5b., - 2b 3b 2 ) /d 
(8) 

where d = 4b2bij - bl. When be 4 0, the optimum with respect to x1, depends 
on the value of x2; the environmental variables are then said to show 
interaction in their effect on the species. In contrast, when be = 0 the 
optimum with respect to x, does not depend on the value of x 2 (no 
interaction) and Eq. (8) simplifies considerably (Ter Braak and Looman, 
1986). 

The unknown parameters of nonlinear response models in the context of 
regression, calibration or ordination can (at least in theory) be estimated 
by the maximum likelihood principle, however difficult this may be in a 
particular situation. Usually iterative methods are required, and initial 
parameter values must be specified. The likelihood function may have local 
maxima, so that different sets of initial parameter values may result in 
different final estimates. It cannot be guaranteed that the global maximum 
has been found. Further, all kinds of numerical problems may occur. However, 
the special cases of Gaussian and Gaussian logit response models do allow 
reasonably practical solutions, which we consider now. 

B. Regression 

The regression problems of fitting Gaussian or Gaussian logit curves are 
relatively straightforward, since these models are special cases of the 
Generalized Linear Model (for details see Austin and Cunningham, 1981; 
Dobson, 1983). If the data are abundances (which may include zeroes), the 
Gaussian model is fitted by specifying a Poisson error distribution and a 
logarithmic link function. If the data are presence^absence, the Gaussian 
logit model is fitted by specifying a Bernoulli error distribution and a 
logit link function. Alternatively, any statistical package that will do 
logit (= logistic) regression can be used to fit the Gaussian logit model 
(Ter Braak and Looman, 1986). No initial estimates are needed and local 
maxima do not arise, so these techniques are quite practical for direct 
gradient analysis. 

The most common complication arises when the optimum for a species is 
estimated well outside the sampled range of environments, or if the fitted 
curve shows a minimum rather than a peak. These conditions suggest that the 
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r eg ress ion i s i l l - de t e rmined and t h a t i t might be b e t t e r t o f i t a monotone 
curve by s e t t i n g bp = 0 in Eqs. ( 6 ) ; a s t a t i s t i c a l t e s t can be used t o 
determine whether t h i s s imp l i f i c a t i on i s accep tab le (Ter Braak and Looman, 
1986). Such cases a re bound t o a r i s e in p r a c t i c e because any given s e t of 
samples w i l l include some species t ha t a r e near the edge of t h e i r r ange . 

C. Ca l ib ra t ion 

The c a l i b r a t i o n problem of i n f e r r i ng environmental values a t s i t e s from 
species da ta and known Gaussian ( l o g i t ) curves by ML (Ter Braak and 
Barendregt, 1986) i s f e a s i b l e by numerical op t imiza t ion , but no easy- to -use 
computer programs a re a va i l ab l e a t p r e s en t . Local maxima may occur i n the 
l i k e l i hood , when the t o l e r ances of t he spec ies a re unequal, and one needs t o 
specify an i n i t i a l e s t ima te . The assumption of independence of species 
responses i s r e qu i r ed , but might not be t enab le in p r a c t i c e ; i t remains t o 
be s tud ied how important t h i s assumption i s . Dependency among species could 
most obviously be caused by the e f f ec t s of a d d i t i o n a l , unconsidered 
environmental v a r i a b l e s , in which case the bes t remedy would be t o i d en t i f y 
these v a r i ab l e s and include them in the a n a l y s i s . 

D. Ordination 

Ordination based on Gaussian ( l o g i t ) curves aims t o cons t ruc t a l a t e n t 
v a r i ab l e such t ha t t hese curves opt imally f i t the spec ies d a t a . This problem 
involves the ML es t imat ion of s i t e scores {xk} and the s p e c i e s ' optima {u k } , 
t o l e rances { t k} and maxima { a k } , usual ly by an a l t e r n a t i n g sequence of 
Gaussian ( l o g i t ) r eg ress ions and c a l i b r a t i o n s . This kind of o rd ina t ion has 
been i nves t iga ted by Gauch, Chase and Whittaker (1974), Kooijman (1977), 
Kooijman and Hengeveld (1979), Goodall and Johnson (1982) and Ihm and Van 
Groenewoud (1975, 1984). The numerical methods r equ i red a re computationally 
demanding; and i n the general c a se , when the t o l e rances of the spec ies a r e 
allowed t o d i f f e r , t he l i ke l i hood funct ion t y p i c a l l y con ta ins many l o ca l 
maxima. 

E. Extension to more than one environmental v a r i ab l e 

The e f f ec t s of two environmental v a r i ab l e s can be modelled by Gaussian 
or Gaussian l o g i t sur faces (see Eq. ( 7 ) ) , which can be f i t t e d by Generalized 
Linear Modelling or by l o g i t r eg ress ion (Austin and Cunningham,1981 ; Austin 
e t a l . , 1984; Ba r t l e i n e t a l . , 1986). I n fe r r ing the values of more than one 
environmental v a r i ab l e s imultaneously on the bas i s of s evera l such response 
surfaces i s a l so pos s ib l e in p r i n c i p l e , but has not been appl ied as f a r as 
we know. 

Kooijman (1977) and Goodall and Johnson (1982) r epor ted numerical 
problems in t h e i r a t tempts t o perform ML o rd ina t ion using two-dimensional 
Gauss ian- l ike models. A simple model with c i r c u l a r contours (b2 = b^ and 
be = 0) may be amenable in p r a c t i c e , e spec i a l ly if b2 i s not allowed t o vary 
among spec ies (Kooijman, 1977). This model i s equ iva len t t o the "unfolding 
model" used by psychologis t s t o analyse preference data (Coombs, 1964; 
Heiser , 1981; Davison, 1983; DeSarbo and Rao, 1984). But with more than two 
l a t e n t v a r i ab l e s the Gaussian ( l o g i t ) model with a second- degree polynomial 
as l i n e a r p r ed ic to r conta ins so many parameters t h a t i t i s l i k e l y t o be 
d i f f i c u l t to get r e l i a b l e es t imates of them, even i f a l l the i n t e r a c t i o n 
terms are dropped. 
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F. Constrained ordination 

The cons t ra ined o rd ina t ion problem fo r Gauss ian- l ike response models i s 
t o cons t ruc t o rd ina t ion axes t ha t a r e a l so l i n e a r combinations of the 
environmental v a r i a b l e s , such t h a t Gaussian ( l o g i t ) su r faces with r e spec t t o 
t hese axes opt imal ly f i t the d a t a . As in redundancy a n a l y s i s ( sec t ion I I F ) , 
t he j o i n t e f f ec t s of t he environmental v a r i ab l e s on the spec ies a re 
"channelled" through a few o rd ina t ion axes which can be considered as 
composite environmental g r ad i en t s in f luencing spec ies composition. 
Ter Braak (1986a) r e f e r s t o t h i s approach as Gaussian canonical o rd ina t i on , 
the word canonical being chosen in analogy with canonical c o r r e l a t i on 
a n a l y s i s . The e s t ima t ion problem i s a c t u a l l y s impler than in unconstrained 
Gaussian o rd ina t i on , and i s more e a s i l y s o lub l e in p r a c t i c e because the 
number of parameters t o be es t imated i s smal ler : i ns tead of n s i t e scores 
one has t o es t imate q canonical c o e f f i c i e n t s . (Meulman and Heiser (1984) 
have appl ied s imi l a r ideas in the context of nonmetric mult idimensional 
s c a l i n g . ) Gaussian canonical o rd ina t ion can a l so be viewed as mu l t i v a r i a t e 
Gaussian r eg res s ion with c on s t r a i n t s on the c o e f f i c i en t s of the polynomial. 
In mu l t i v a r i a t e Gaussian r eg re s s ion each spec ies has i t s own optimum in the 
q-dimensional space formed by the environmental v a r i ab l e s ; the c on s t r a i n t s 
imposed in Gaussian canonical o rd ina t ion amount t o a requirement t h a t these 
optima l i e in a low-dimensional subspace. If the optima l i e c lose t o a p lane 
then t he most important species-environment r e l a t i o n s h i p s can be depic ted 
g raph ica l ly in an o rd ina t ion diagram. 

IV. WEIGHTED AVERAGING METHODS 

Eco log i s t s have developed a l t e r n a t i v e , h e u r i s t i c methods t h a t a r e 
simpler but have e s s e n t i a l l y the same aims as the methods of the previous 
s ec t ion based on Gaussian^type models. Each method in the Gaussian family 
has a counterpar t in the family of h e u r i s t i c methods based on weighted 
averaging (WA). These methods have been used ex t ens ive ly , and even 
r e i n v e n t e d in d i f f e r en t branches of ecology. 

A. Regression 

As a r eg r e s s i on t echnique , WA i s a method of e s t imat ing s p e c i e s ' optima 
with r e spec t t o known environmental v a r i a b l e s . When a spec ies shows a 
unimodal r e l a t i o n s h i p with" environmental v a r i a b l e s , t he s p e c i e s ' presences 
w i l l be concentra ted around the peak of t h i s func t ion . One i n t u i t i v e l y 
r easonable es t imate of t he optimum i s the average of the values of the 
environmental v a r i ab l e over those s i t e s in which the spec ies i s p r e sen t . 
With abundance d a t a , WA app l i e s weights p ropor t iona l t o spec ies abundance; 
absences, s t i l l ca r ry zero weight . The e s t ima te of the optimum for spec ies k 
i s thus 

U k = Jiykixi/yk+ (9) 

where y k i i s from now onwards the abundance (not cent red) or 
presence/absence (1/0) of species k a t s i t e i , y k + i s the spec ies t o t a l 
(y k + = E j y k i ) and x^ i s the value of the environmental v a r i ab l e a t s i t e i . 
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As a follow-up to an investigation of the theoretical properties of t h i s 
estimator (Ter Braak and Barendregt, 1986), Ter Braak and Looman (1986) 
showed by simulation of presence^absence data that WA estimates the optimum 
of a Gaussian logi t curve as efficiently as the ML technique of Gaussian 
logi t regression provided: 

Condition 1a: The s i t e scores {x*} are equally spaced over the whole 
range of occurrence of the species along the environmental 
variable. 

WA also proved to be only a l i t t l e l ess efficient whenever the distribution 
of the environmental variable among the s i t es was reasonably homogeneous 
(rather than s t r i c t l y equally spaced) over the whole range of species 
occurrences, or more generally for species with narrow ecological 
amplitudes. But the estimate of the optimum of a rare species may be 
imprecise, because the standard error of the estimate i s inversely 
proportional to the square root of the number of occurrences. So for 
efficiency, we also need 

Condition 1b: the s i t e scores {x,} are closely spaced in comparison with 
the species' tolerance. 

B. Calibration 

WA i s also used in cal ibration, to estimate environmental' values at 
s i tes from species' optima c which in t h i s context are often called 
indicator values ( 'Zeigerwerte', Ellenberg, 1979) or scores (Whittaker, 
1956). When species replace one another along the environmental variable of 
i n te res t , i . e . have unimodal response functions with optima spread out along 
that variable, then species with optima close to the environmental value of 
a s i t e will naturally tend to be represented at that s i t e . In tui t ively, to 
estimate the environmental value at a s i t e , one can average the optima of 
the species that are present. With abundance data, the corresponding 
intui t ive estimate i s the weighted average, 

*i • J / k i V y + i (10) 

where y+, i s the s i t e to ta l (y+, = ^ k y k l ) . 
Ter Braak and Barendregt (1986) showed that WA estimates the value x^ of 

a s i t e as well as the correponding ML techniques if the species show 
Gaussian curves and Poisson^distributed abundance values (or, for 
presence-absence data, show Gaussian logi t curves), and provided: 

Condition 2a: The species' optima are equally spaced along the 
environmental variable over an interval that extends for a 
sufficient distance in both directions from the true value 
x i ; 

Condition 3: The species have equal tolerances; 
Condition 4: The species have equal maximum values. 

These conditions amount to a "species packing model" wherein the species 
have equal response breadth and equal spacing (Whittaker et a l . , 1973). The 
conditions may be relaxed somewhat (Ter Braak and Barendregt, 1986) without 
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seriously affecting the efficiency of the WA-estimate. When the optima are 
uniformly distributed instead of being equally spaced, the efficiency i s 
s t i l l high if the maximum probabilities of occurrence are small (< 0 .5). The 
species' maximum values may differ, but they must not show a trend along the 
environmental variable (for instance, leading to species- rich samples at 
one end of the gradient and species-poor samples at the other end). The 
efficiency of WA i s worse if the tolerances substantially differ among 
species; a tolerance weighted version of WA, as suggested by Zelinka and 
Marvan (1961) and Goff and Cottam (1967), would be more efficient since i t 
would give greater weight to species of narrower tolerance, which are more 
informative about the environment. 
Under conditions 2a-4 above, the standard error of the estimate of x< i s 
approximately t / / y + i , where t i s the (common) species-tolerance. For the 
weighted average to be practically useful, the number of species encountered 
in a s i t e should therefore not be too small (not less than f ive) . We 
therefore need the extra condition (cf. Section 5 in Ter Braak and 
Barendregt, 1986): 

Condition 2b: The species' optima must be closely spaced in comparison 
with their tolerances. 

An al ternative heurist ic method of calibration is by "inverse 
regression". This i s simply multiple l inear regression of the environmental 
variable on the species abundances (Brown, 1982): the environmental variable 
i s t reated as if i t were the response variable and the species abundances, 
possibly transformed, as predictor variables. The regression coefficients 
can be estimated from the t raining set of species abundances and 
environmental data, the result ing equations being applied directly to infer 
environmental values from further species abundance data. When applied to 
data on percentage composition, e.g pollen spectra or diatom assemblages 
(Bartlein et a l . , 1984; Charles, 1985), the method differs from WA 
calibration only in the way in which the species optima are estimated, since 
the l inear combination of percentage values used to estimate the 
environmental value is by definition a weighted average of the regression 
coefficients. 

C. Ordination 

Hill (1973) turned weighted averaging into an ordination technique by 
applying a l ternating WA regressions and calibrations to a species-by-site 
data table. The algorithm of th is technique of "reciprocal averaging" i s 
similar to that given earl ier for PCA: 

Step 1. Start with a rbi t rary, but unequal, i n i t i a l s i t e scores [x 
u k | by WA (Eq. (9 ) ) . 
by WA (Eq. (10)). 

l ' 
Step 2. Calculate new species scores 
Step 3 . Calculate new s i t e scores {x< 
Step 4. Remove the arbi t rar iness in scale by standardizing the s i t e 

scores by new x, = {old x, <-. z}/s where z = Ejy+^x^/E<y+i and 

s2 = E i y + i ( x i n z ) 2 / ! : i y + i (11) 

Step 5. Stop on convergence, else go to step 2. 

As in PCA, the resul t ing s i t e and species scores do not depend on the 
i n i t i a l scores. The f inal scores produced by th i s reciprocal averaging 
algorithm form the f i r s t eigenvector or ordination axis of correspondence 
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analysis (CA), an eigenvector technique that i s widely used especially in 
the French-language l i t e ra ture (Laurec et a l . , 1979; Hi l l , 1974). As with 
the power algorithm for PCA, the reciprocal averaging algorithm makes clear 
the relationship between CA and regression and calibration - this time, with 
WA regression and cal ibrat ion. The method of standardization chosen in step 
4 i s a rbi t rary, but chosen for l a t e r reference. On convergence, s in step 4 
i s equal to the eigenvalue of the f i r s t axis, and l i es between 0 and 1. 

Correspondence analysis has many applications outside ecology. Nishisato 
(1980), Greenacre (1984) and Gifi (1981) provide a variety of different 
rat ionales for correspondence analysis, each adapted to a particular type of 
application. Heiser (1986) and Ter Braak (1985, 1987c) develop rationales 
for correspondence analysis that are part icularly relevant to ecological 
applications. 

Ter Braak (1985) showed that CA approximates ML Gaussian ( logit) 
ordination under Conditions 1 to 4 l i s ted above, i . e . under jus t these 
conditions for which WA i s as good as ML^regression and ML-calibration. In 
practice CA can never be exactly equivalent to ML ordination, because 
Condition 1a implies that the range of s i t e scores i s broad enough to 
include the ranges of a l l of the species whereas Condition 2a implies that 
there must be species with their optima si tuated beyond the edge of the 
range of s i t e scores. These conditions cannot both be sat isf ied if the range 
of s i t e scores i s f i n i t e . As a r esu l t , CA shows an edge effect: the 3 i te 
scores near the ends of the axes become compressed re la t ive to those in the 
middle (Gauch, 1982). This effect becomes less strong, however, as the range 
of s i t e scores becomes wider and the spacing of the s i t e scores and species 
scores becomes closer re lat ive to the average species' tolerance. 

Conditions 1-4 also disallow "deviant" s i tes and rare species. CA i s 
sensitive to both (Hill , 1974; Feoli and Feoli Chiapella, 1979; Oksanen, 
1983). This sensi t ivi ty may be useful in some applications, but i s a 
nuisance if the aim i s to detect major gradients. Deviant s i tes (and, 
possibly, the r a res t species) should therefore ideally be removed from the 
data before analysis by CA. 

As in PCA, further ordination axes can be extracted in CA by adding an 
extra step after Step 3, making the t r i a l scores on the second axis 
uncorrelated with the (final) scores on the f i r s t axis . (In the calculation 
of f in Step 3b (see section I I D) the s i tes are weighted proportional to 
the s i t e to ta l y + , . This weighting i s implicitly applied from now on.) 
However, there i s a problem with the second and higher axes in CA. The 
problem i s the well-known but hi therto not well-understood "arch effect" 
(Hill , 1974). If the species data come from an underlying one-dimensional 
Gaussian model the scores on the second ordination axis show a parabolic 
("arch") re lat ion with those of the f i r s t axis; if the species data come 
from a two-dimensional Gaussian model in which the t rue s i t e and species 
scores are located homogeneously in a rectangular region in 2D-space (the 
extension to two dimensions of Conditions 1a and 2a), the scores of the 
second ordination axis l i e not in a rectangle but in an arched band (Hill 
and Gauch, 1980). The arch effect arises because the axes are extracted 
sequentially in order of decreasing "variance". Suppose CA has succeeded in 
constructing a f i r s t axis , such that species appear one after the other 
along that axis as in a species packing model. Then a possible second axis 
i s obtained by folding the f i r s t axis in the middle and bringing the ends 
together so that i t i s a superposition of two species packing models, each 
with half the gradient length of the f i r s t axis . This folded axis i s a 
candidate for becoming the second axis , because i t has no l inear correlation 
with the f i r s t CA-axis yet has as much as half the gradient length of the 
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f i r s t axis (Ter Braak, 1987a). The folded axis by i t se l f thus "explains" a 
part of the variation in the species data, even though when taken jo in t ly 
with the f i r s t axis i t contributes nothing. Even if there i s a strong second 
gradient, CA will not associate i t with the second axis if i t separates the 
species less than a folded f i r s t axis . As a resul t of the arch effect, the 
two-dimensional CA-solution i s generally not a good approximation to the 
ML-solution (two-dimensional Gaussian ordination). 

Hill and Gauch (1980) developed detrended correspondence analysis (DCA) 
as a heurist ic modification of CA designed to remedy both the edge effect 
and the arch effect. The edge effect i s removed in DCA by nonlinear 
rescaling of the axis . Assuming a species packing model with randomly 
distributed species' optima, Hill and Gauch (1980) noted that the variance 
of the optima of the species present at a s i t e (the 'wi thin-si te variance') 
i s an estimate of the average response curve breadth of those species (they 
used the standard deviation as a measure of breadth, which i s about equal to 
tolerance as we define i t ) . Because of the edge effect, the species curves 
before rescaling are narrower near the ends of the axis than in the middle, 
and the wi t h in-s i te variance is correspondingly smaller in s i tes near the 
ends of the axis than in s i tes in the middle. The rescaling therefore 
attempts to equalize the within^site variance at a l l points along the 
ordination axis by dividing the axis into small segments, expanding the 
segments with s i t es with small within-site variance, and contracting the 
segments with s i t es with large withinnsite variance. The s i t e scores are 
then calculated as weighted averages of the species scores and the scores 
are standardized such that the wi th imsi te variance i s equal to 1. 

Hill and Gauch (1980) defined the length of the ordination axis to be 
the range of the s i t e scores. This length i s expressed in 'standard-
deviation un i t s ' (SD). The tolerance of the species' curves along the 
rescaled axis are therefore close to 1, and each curve r i ses and f a l l s over 
about H SD. Si tes that differ by 4 SD can thus be expected to have no 
species in common. This interpretation of the length of the ordination axis 
i s extremely useful. Even if nonlinear rescaling i s not used, one can s t i l l 
set the average within-si te variance of the species scores along a CA-axis 
equal to 1 by l inear rescaling (Hil l , 1979), so as to ensure that the length 
of the ordination axis s t i l l has approximately t h i s in terpretat ion. 

The arch effect, a more serious problem in CA, i s removed in DCA by the 
heurist ic method of "detrending-by-segments". This method ensures that at 
any point along the f i r s t ordination axis , the mean value of the s i t e scores 
on subsequent axes i s approximately zero. In order to achieve t h i s , the 
f i r s t axis i s divided into a number of segments and the t r i a l s i t e scores 
are adjusted within each segment by subtracting their mean after some 
smoothing across segments. Detrending^by-segments is bui l t into the 
reciprocal averaging algorithm, and replaces Step 3b. Subsequent axes are 
derived similarly by detrending with respect to each of the existing axes. 

DCA often works remarkably well in practice (Hill and Gauch, 1980; Gauch 
et a l . , 1981). I t has been c r i t i ca l ly evaluated in several recent simulation 
s tudies. Ter Braak (1985) showed that DCA gave a much closer approximation 
to ML Gaussian ordination than CA did, when applied to simulated data based 
on a two-dimensional species packing model in which species have identically 
shaped Gaussian surfaces and the optima and s i t e scores are uniformly 
distributed in a rectangle. This improvement was shown to be mainly due to 
the detrending, not to the nonlinear rescaling of axes. Kenkel and 0rl6ci 
(1986) found that DCA performed substantially better than CA when the two 
major gradients differed in length, but also noted that DCA sometimes 
"collapsed and distorted" CA resul ts when there were (a) few species per 
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s i t e and (b) the g r ad i en t s were long (we be l ieve (a) t o be the r e a l cause of 
the c o l l a p s e ) . Minchin (1987) f u r t he r found t h a t DCA can f l a t t e n out some of 
the v a r i a t i on a s soc ia ted with one of the underlying g r a d i en t s . He a sc r ibed 
t h i s l o s s of information t o an i n s t a b i l i t y in the detrending-by-segraents 
method. Pielou (1984, p . 197) warned t ha t DCA i s "overzealous" in co r r ec t ing 
the "de fec t s" in CA, and "may sometimes l ead t o the unwit t ing d e s t r uc t i on of 
e co log ica l ly meaningful informat ion". Minchin's (1987) r e s u l t s i nd i c a t e some 
of the condi t ions under which such l o s s of information can occur. 

DCA i s popular among p r a c t i c a l f i e l d e c o l o g i s t s , presumably because i t 
provides an e f f ec t i ve approximate s o lu t i on t o the o rd ina t ion problem for a 
unimodal response model in two or more dimensions * given t ha t the da ta a r e 
reasonably r e p r e s en t a t i v e of s e c t i ons of t he major underlying environmental 
g r ad i en t s . Two modif icat ions might i nc rease i t s robustness with r e spec t t o 
the problems i d en t i f i ed by Minchin (1987). F i r s t , nonl inear r e s c a l i ng 
aggravates these problems; s ince the edge e f fec t i s not too s e r i o u s , we 
advise aga ins t the r ou t ine use of nonl inear r e s c a l i ng . Second, the arch 
e f fec t needs t o be removed (as He ise r , 1986, a l s o no ted ) , but t h i s can be 
done by a more s t a b l e , l e s s "zealous" method of de t rending which was a l so 
b r i e f l y mentioned by H i l l and Gauch (1980): namely de t rending-by-
polynomials . Under the one-dimensional Gaussian model, i t can be shown t h a t 
the second CA<-axis i s a quadra t ic funct ion of the f i r s t a x i s , the t h i r d a x i s 
i s a cubic funct ion of t he f i r s t a x i s , and so on ( H i l l , 1974; Iwatsubo, 
1984). Detrending-by-polynoraials can be incorporated i n t o the r e c i p roca l 
averaging a lgori thm by extending s tep 3b such,- t h a t the t r i a l scores a r e not 
only made uncorre la ted with the previous axes , but a re a l s o made 
uncorre la ted with polynomials of the previous axes . The l im i t ed experience 
sofar suggests t ha t detrending up t o four th-order polynomials should be 
adequate. In c on t r a s t with det rendingiby-segments , t he method of de t rend ing-
by-polynomials removes only s p e c i f i c de fec ts of CA tha t a r e now 
t h e o r e t i c a l l y understood. 

D. Constrained o rd ina t ion 

J u s t as CA/DCA i s an approximation t o ML Gaussian o rd ina t i on , so i s 
canonical correspondence a na l y s i s (CCA) an approximation t o ML Gaussian 
canonical o rd ina t ion (Ter Braak, 1986a). CCA i s a modif icat ion of CA in 
which the o rd ina t ion axes a re r e s t r i c t e d t o be weighted sums of the 
environmental v a r i a b l e s , as in Eq. ( 5 ) . CCA can be obtained from CA as 
redundancy a na l y s i s was obtained from PCA. An algori thm can be obtained by 
adding t o the CA algori thm an e x t r a mu l t ip l e r eg r e s s i on s t e p . The only 
d i f ference from Step 3a of redundancy a na l y s i s ( sec t ion I I F) i s t ha t t he 
s i t e s must be weighted i n the r eg re s s ion p ropor t iona l t o t h e i r s i t e t o t a l 
y + i (Ter Braak, 1986a). CCA can a l s o be obtained as the s o lu t i on of an 
eigenvalue problem (Ter Braak, 1986a). I t i s c lo se ly r e l a t e d t o "redundancy 
a na l y s i s for q u a l i t a t i v e v a r i ab l e s " ( I s r a S l s , 1984) but has a d i f f e r en t 
r a t i o n a l e and i s appl ied t o another type of da t a . 

In cons t ra ined o rd ina t ion the c on s t r a i n t s always become l e s s s t r i c t as 
more environmental v a r i ab les a r e inc luded. If q > n-1, then t h e r e a r e no 
r e a l c o n s t r a i n t s , and CA and CCA become equ iva l en t . As in CA the edge e f fec t 
in CCA i s a minor problem tha t i s best l e f t u n t r ea t ed . Detrending may 
sometimes be r equ i red t o remove the arch e f f ec t a i . e . t o prevent CCA from 
s e l e c t i ng weighted sums of environmental v a r i ab l e s t ha t a r e approximately 
polynomials of previous axes . Detrending-bysegments does not work very well 
he re for t echn ica l reasons; detrendingnby-polynomials i s be t ter- founded and 
more appropr ia te (see Appendix and Ter Braak, 1987b). However, the arch 
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recent Drenthe samples 

old Drenthe samples/^ \ 

Eun exi 

axis 1 

old (B + V) samples lJab b i n 

Eun ven 

Fig. 5. 

Biplot based on principal components analysis of diatom assemblages from 
Dutch moorland pools (schematic after from Van Dam et al. 1981). The arrows 
for the six most frequent species and the regions where different categories 
of samples lie jointly display the approximate community compostion in each 
of the regions (old = ca 
Brabant and the Veluwe). 

1920, recent = 1978; B+V = from the province of 
Abbreviations: Eun exi = Eunotia exigua, Eun ten = 

Eunotia tenella, Eun ven = Eunotia veneris, Fru rho = Frustulia rhomboides 
var. saxonica, 
quadriseptata. 

Tab bin = Tabellaria binalis, Tab qua = Tabellaria 
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ef fec t i n CCA can be e l iminated much more e l egan t l y , simply by dropping 
superf luous environmental v a r i ab l e s (Ter Braak, 1987c). Var iables t h a t a re 
h ighly c o r r e l a t ed with the "arched" ax i s (often the second ax i s ) a r e the 
most l i k e l y t o be super f luous . I f the number of environmental v a r i ab l e s i s 
small enough for the r e l a t i o n s h i p of ind iv idual v a r i ab les t o the o rd ina t i on 
axes to be s i g n i f i c a n t , the arch e f f ec t i s not l i k e l y t o occur a t a l l . 

CCA can be s en s i t i v e t o deviant s i t e s , but only when they a r e o u t l i e r s 
with r egard t o both spec ies composition and environment. When r e a l i s t i c a l l y 
few environmental v a r i ab l e s a re inc luded, CCA i s thus more robus t than CA in 
t h i s r e spec t t oo . 

CCA leads t o an o rd ina t ion diagram that s imultaneously d i sp lays (a) the 
main p a t t e r n s of community v a r i a t i o n s , as f a r as these r e f l e c t environmental 
v a r i a t i o n , and (b) the main p a t t e rn in the weighted averages (not 
c o r r e l a t i on s as in redundancy ana ly s i s ) of each of the spec ies with r e spec t 
t o the environmental v a r i ab l e s (Ter Braak, 1986a, 1987c). CCA i s thus 
in te rmedia te between CA and s epa ra te WA c a l cu l a t i on s for each s p e c i e s . 
Geometr ical ly, the s epa ra t e WA ca l cu l a t i ons give each spec ies a point in the 
q-dimensional space of the environmental v a r i a b l e s , which i nd i c a t e s the 
c en t r e of the s p e c i e s ' d i s t r i b u t i o n . CCA at tempts t o provide a low> 
dimensional r e p r e s en t a t i on of these c en t r e s ; CCA i s thus a l so a cons t ra ined 
form of WA, i n which the weighted averages a r e r e s t r i c t e d t o l i e in a 
low-dimensional subspace. 

Like redundancy a n a l y s i s , CCA can be used with dummy "environmental" 
v a r i ab l e s t o provide an o rd ina t ion const ra ined t o show maximum sepa ra t ion 
among pre-def ined groups of samples. This s pec i a l case of CCA i s desc r ibed , 
for example, by Feol i and Orloci (1979) under the name of " ana ly s i s of 
concen t ra t ion" , by Greenacre (1984, s ec t ion 7.1) and by Gasse and Tekaia 
(1983). 

V. ORDINATION DIAGRAMS AND THEIR INTERPRETATION 

The l i n e a r o rd ina t ion techniques (PCA and redundancy ana ly s i s ) and the 
o rd ina t ion techniques based on WA (CA/DCA and CCA) r ep resen t community da ta 
in s u b s t a n t i a l l y d i f f e r en t ways. We focus on two-dimensional o rd ina t ion 
diagrams, as these a r e the e a s i e s t t o cons t ruc t and t o i n spec t , and 
i l l u s t r a t e the i n t e r p r e t a t i o n of each type of diagram with an example. 

A. P r i nc ipa l components: b i p l o t s 

PCA f i t s p lanes t o each s p e c i e s ' abundances i n the space defined by the 
o rd ina t ion axes . The s p e c i e s ' point ( b k l , b k 2 ) may be connected with the 
o r ig in (0 ,0) to give an arrow. Such a diagram, in which s i t e s a r e marked by 
po in t s and species by arrows i s c a l l ed a " b i p lo t " (Gabr ie l , 1971). There i s 
a useful symbolism in t h i s use of arrows: the arrow po in t s i n the d i r e c t i on 
of maximum v a r i a t i on in the s p e c i e s ' abundance, and i t s l ength i s 
p ropor t iona l t o t h i s maximum r a t e of change. Consequently, spec ies on the 
edge of the diagram ( far from the o r i g i n ) a r e the most important; species 
near the c en t re a r e of minor importance. (Ter Braak (1983) provides more 
d e t a i l e d , q u an t i t a t i v e r u l e s for i n t e r p r e t i n g PCA o rd ina t ion diagrams.) 

Van Dam e t a l . (1981) appl ied PCA t o data cons i s t i ng of diatom 
assemblages from 16 Dutch moorland pools , sampled in the I920's and again i n 
1978, t o i n v e s t i g a t e the impact of a c i d i f i c a t i o n on t hese shallow water 
bod ies . Ten Clearwater (non"humic) pools were s i t u a t e d in the province of 
Brabant and on the Veluwe and s i x brownwater (humic) pools i n the province 
of Drenthe. The arrow of Eunotia exigua in the b ip lo t (F ig . 5) i nd i c a t e s 
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Fig. 6. 

J o in t p lo t based on detrended correspondence ana lys i s (DCA) of b i rd spec ies 
communities in the Rhine va l lay near Amerongen, the Netherlands (data from 
Opdam e t a l . , 1984), d i sp lay ing the major v a r i a t i on in b i rd spec ies 
composition across the l andscape. This p lo t shows the DCA-scores (o) of the 
20 most f requent spec ies and the region in which the samples f a l l ( ) . Also 
shown a re optima (A) and l i n e s of equal p robab i l i t y for the 13 species whose 
p robab i l i t y su r faces had c l ea r maxima (as f i t t e d by Gaussian l o g i t 
r e g r e s s i on ) , and arrows r epresen t ing d i r e c t i on s of i nc rease for the seven 
spec ies whose p r obab i l i t y sur faces were monotonic. 
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that t h i s species increases strongly along the f i r s t principal component: E. 
exigua i s abundant in the recent Brabant and Veluwe samples, which l i e on 
the right-hand side of the diagram, and rare in the remaining samples, which 
l i e more to the l e f t . The second axis accounts for some of the difference 
among the old and recent samples from Drenthe. These groups differ in the 
abundances of Frustulia rhomboides var. saxonlca, Tabellaria quadriseptata, 
Eunotia tenella, Tabellaria b ina l i s , and Eunotla veneris, as shown by the 
directions of the arrows for these species in Fig. 5. As E. exigua is 
acidobiontic and the f i r s t principal component i s strongly correlated with 
the sulphate concentration of the 1978 samples, th is component clearly 
depicts the impact of acidification of the moorland pools in Brabant and the 
Veluwe (and to a smaller extent also in Drenthe). Thus Van Dara et a l . (1981) 
used PCA to summarize the changes in diatom composition between the 1920's 
and 1978, and also to show how the nature of the change differed among 
provinces. 

B. Correspondence analysis: jo int plots 

In CA and DCA both s i tes and species are represented by points, and each 
s i t e i s located at the centre of gravity of the species that occur there . 
One may therefore get an idea of the species composition at a particular 
s i t e by looking at "nearby" species points. Also, as far as DCA approximates 
the f i t t i ng of Gaussian ( logit) surfaces, the species points are 
approximately the optima of these surfaces; hence the abundance or 
probability of occurrence of a species decreases with distance from i t s 
location in the diagram (Fig. 4) . 

Fig. 6 i l lus t ra tes th i s interpretation of the species points as optima 
in ordination space. DCA was applied to presence-absence data on 51 bird 
species in 526 contiguous, 100 m x 100 m gr id-cel ls in an area with pastures 
and scattered woodlots in the Rhine valley near Amerongen, the Netherlands 
(Opdam et a l . , 1984). Fig. 6 shows the scores of the 20 most frequent 
species, and the outline of the region in which the gr id-cel ls f a l l (the 
individual gr id-cel ls are not shown, to avoid crowding). Opdam et a l . (1984) 
interpreted the f i r s t axis , of length 5.7 SD, as a gradient from open to 
closed landscape and the second axis , of length 5.5 SD, as a gradient from 
wet to drier habi ta ts . 

To show that the species' scores were indeed close to their optima, we 
also f i t t ed a response surface for each species by logi t regression using 
Eq. (7) with the f i r s t and the second DCA-axes as the predictor variables x. 
and x2 . For 13 of the 20 bird species, the f i t t ed surface had a maximum. For 
each of these species the optimum was calculated by Eq. (8) and plotted in 
Fig. 6, together with the contour within which that bird species occurs with 
more than half of i t s maximum probabili ty. The f i t ted optima of the species 
l i e close to their DCA-scores. 

For the remaining seven species, the f i t t ed surface had a minimum or 
saddle point suggesting that their optima are located well outside the 
sampled range. For these species we f i t ted a "linear" logit surface by 
sett ing bp, bn and bjj in Eq. (7) to zero. The direction of steepest increase 
of each of the f i t t ed surfaces i s indicated in Fig. 6 by an arrow through 
the centroid of the s i t e points; the beginning and end points of each arrow 
correspond to f i t ted probabili t ies of 0.1 and 0.9 respectively. These arrows 
point more^ or- less in the same direction as the DCA-scores of the 
corresponding species. 

In contrast to the PCA-diagram, the species points on the edge of the 
DCA-diagram are often rare species, lying there either because they prefer 
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axis 1 

MOISTURE 

Fig. 7. 

Biplot based on redundancy analysis of vegetation with respect to three 
environmental variables (quantity of manure, soil moisture and thickness of 
the A1 horizon) in dune meadows (o) on the island of Terschelling, The 
Netherlands. The arrows for plant species and environmental variables display 
the approximate (linear) correlation coefficients between plant species and 
the environmental variables. Abbreviations: Ach mil = Achillea millefolium, 
Agr sto = Agrostis stolonifera, Alo gen = Alopecurus geniculatus, Ant odo = 
Anthoxanthum odoratum, Bro hor = Bromus hordaceus, Ele pal = Eleocharis 
palustris, Ely rep = Elymus repens, Leo aut = Leontodon autumnalis, Lol per = 
Lolium perenne, Pla Ian = Plantago lanceolata, Poa pra = Poa pratensis, Poa 
tri = Poa trivialis, Rum ace = Rumex acetosa, Sag pro = Sagina procumbens, 
Sal rep = Sallx repens. 

126 



extreme (environmental) conditions or (very often) because their few 
occurrences by chance happen to fall in sites with extreme conditions; one 
cannot decide between these possibilities without additional data. Such 
peripheral species have little influence on the analysis and it is often 
convenient not to display them at all. Further, species near the centre of 
the diagram may be ubiquitous, unrelated to the ordination axes, bimodal, or 
in some other way not fitting a unimodal response model - or they may be 
genuinely specific with a habitat-optimum near the centre of the sampled 
range of habitats. The correct interpretation may be found most easily just 
by plotting the species' abundance in the ordination space. 

C. Redundancy analysis 

In redundancy analysis sites are indicated by points, and both species 
and environmental variables are indicated by arrows whose interpretation is 
similar to that of the arrows in the PCA biplot. The pattern of abundance of 
each species among the sites can be inferred in exactly the same way as in a 
PCA biplot, and so may the direction of variation of each environmental 
variable. One may also get an idea of the correlations between species' 
abundances and environmental variables. Arrows pointing in roughly the same 
direction indicate a high positive correlation, arrows crossing at right 
angles indicate near-zero correlation, and arrows pointing in opposite 
directions indicate high negative correlation. Species and environmental 
variables with long arrows are the most important in the analysis; the 
longer the arrows, the more confident one can be about the inferred 
correlation. (It is assumed here that for the purpose of the ordination 
diagram the environmental variables have been standardized to zero mean and 
unit variance, so as to make the lengths of arrows comparable.) Ter Braak 
(1987a) provides more quantitative rules for interpreting the ordination 
diagrams derived in this way from redundancy analysis. 

The data we use to illustrate redundancy analysis were collected to 
study the relation between the vegetation and management of dune meadows on 
the island of Terschelling, The Netherlands (M. Batterink and G. Wijffels, 
unpublished). Fig. 7 displays the main variation in the vegetation in 
relation to three environmental variables (thickness of the A1 horizon, 
moisture content of the soil and quantity of manuring). The arrows for Poa 
trivialis and Elymus repens make small angles with the arrow for manuring; 
these species are inferred to be positively correlated with manuring. Salix 
repens and Leontodon autumnalis have arrows pointing in directions roughly 
opposite to that of manuring, and are inferred to be negatively correlated 
with manuring. Correlations of species with moisture and thickness of the A1 
horizon can be inferred in a similar way. 

D. Canonical correspondence analysis 

In CCA, since species are assumed to have unimodal response surfaces 
with respect to l inear combinations of the environmental variables, the 
species are logically represented by points (corresponding to their 
approximate optima in the two-dimensional environmental subspace) and the 
environmental variables by arrows indicating, their direction and r a te of 
change through the subspace. 

Purata (1986, and unpublished resul ts) applied CCA to plant species 
abundance data from 40 abandoned cult ivation s i t e s within Mexican tropical 
rain forest . Data were available for 24 of these s i tes on the regrowth age 
(A), the length of the cropping period in the past (C), and the proportion 
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• o Medi 
Bipio • 

• Nelo 

•Vede 
axis 1 (SD) 

Fig . 8. 

Ordination diagram based on canonical correspondence analysis of successional 
plant communities with respect to three environmental variables (regrowth age 
A, length of cropping period C, and extent of forested perimeter F) on 
abandoned cultivation sites within Mexican tropical rain forest (Purata, 1986 
and unpublished). •, sites with environmental data; o, sites added 
"passively" on the basis of floristic composition. The species shown are a 
selection among the 285 included in the analysis. O denotes ruderals, • 
pioneer shrubs, A pioneer trees, A late-secondary canopy trees and * an 
understory palm. Abbreviations: Bipi = Bidens pllosa, Medi = Melampodium 
divaricatum, Nelo = Neurolaena lobata, Vede = Vernonia deppeana, Trmi = Trema 
micrantha, Ceob = Cecropia obtusifolla, Heap = Heliocarpus appendiculatus, 
Trme = Trichospermum mexicanum, Pial = Piper amalago, Romi = Robinsonella 
mirandae. Sala = Sapium lateriflorum, Zake = Zanthoxylum kellermanii, Crni -
Croton nltens, Asme - Astrocaryum mexicanum. 
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of the perimeter that had remained forested (F). These three variables were 
used as environmental variables in CCA. The remaining 16 sites were entered 
as "passive" sites, to be positioned with respect to the CCA axes according 
to their floristic composition in relation to the "active" sites. 

Fig. 8 illustrates the results. The first axis, with length 3-3 SD, was 
interpreted as an indicator of the general trend of secondary succession. 
The direction of the arrow for regrowth age shows that this trend runs 
broadly from right to left. The species' locations are consistent with their 
life history characteristics: the trend of succession runs from ruderals (to 
the right), through pioneer shrubs and trees, to 1 ate^secondary canopy 
dominants and shade-tolerant understory species (to the left). The 
directions of the other two arrows in relation to axis 1 show that a long 
cropping period delays succession, while an extensive forested perimeter 
accelerates succession. Axis 2 (3.0 SD) may (more speculatively) 
differentiate species whose establishment is favoured by the presence of 
mature forest around the site from those that simply require a long time to 
grow. 

Purata (1986) first tried indirect gradient analysis - DCA followed by 
multiple regression of the first DCA axis on the three environmental 
variables - but did not succeed in showing a significant effect of the 
environmental variables. However, their effect expressed on the first CCA 
axis was shown to be significant by using a Monte Carlo permutation test 
(Ter Braak, 1987b). 

CCA also allows the computation of unconstrained, "residual" axes 
summarizing floristic variation that remains after the effect of the 
environmental variables has been taken out. In Purata's study, the 
successive eigenvalues of the first three (constrained) CCA axes were 0.49, 
0.31* and 0.18. (There can be no more constrained axes than environmental 
variables.) The first residual axis gave an eigenvalue of 0.74, showing that 
at least as much floristic variation was not explained by the environmental 
variables. In our experience, terrestrial community data commonly give a 
residual eigenvalue as large as the first constrained eigenvalue, however 
carefully the environmental variables were chosen. Thus DCA and CCA tend to 
give different ordinations, and CCA - as in this example - is more powerful 
in detecting relationships between species composition and environment. 

VI. CHOOSING THE METHOD 

A. Which response model? 

Regression methods can fit response models with a wide variety of 
shapes. The linear and Gaussian-like models are convenient starting points; 
more complex shapes can be fitted by adding further parameters, if the data 
are sufficiently detailed to support it. Other species may be used as 
additional explanatory variables if the specific aim is to detect species 
interactions (Fresco, 1982). The shapes of the response functions may be 
made even more general by applying Box-Cox transformations to the 
explanatory variables (Bartlein et al., 1986) or still more general by 
fitting splines (Smith, 1979). Even with all these modifications, regression 
can still be done with standard packages for Generalized Linear Modelling. 

After species response curves or surfaces have been fitted by 
regression, calibration based on the maximum likelihood principle can be 
used to make inferences about the environment from community data. If the 
surfaces fitted by regression have complex shapes, then calibration by 
numerical maximization of the likelihood may be problematic. But even then, 
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if there are only a few environmental variables involved, the "most likely" 
combination of environmental values can be searched for on a grid across the 
environmental space (Atkinson et al., 1986; Bartlein et al., 1986). So the 
type of response model used in both regression and calibration should 
generally be guided by the characteristics and resolution of the data, and 
inspection of the data should show whether the model being used is adequate 
for the purpose. 

In contrast to regression and calibration, the ordination problem 
requires the simultaneous estimation of large numbers of parameters and 
cannot be solved practically without some constraints on the structure one 
wants to fit. That these constraints may seem unduly restrictive simply 
shows that there are limits to what ordination can achieve. The number of 
ordination axes to be extracted must be small, and the type of response 
model must be restricted, in order to permit a solution. For example, it 
seems necessary to disregard the possibility of bimodal species 
distributions (Hill, 1977). (Certainly bimodal distributions sometimes 
occur, but ordination has to assume that species "on average" have simple 
distributions - otherwise, the problem would be insoluble; the utility of 
ordination techniques depends on them being robust with respect to 
departures from the simple models they are based on.) The Gaussian model 
seems to be of the right order of complexity for ordination of ecological 
data, but the full second^degree model of Eq. (7) is already difficult to 
fit (Kooijman, 1977; Goodall and Johnson, 1982). The Gaussian model with 
circular contour lines and equal species tolerances, i.e. the unfolding 
model, might provide a good compromise between practical solubility and 
realism in ordination. Promising algorithms for unfolding are developed by 
Heiser (1986) and DeSarbo and Rao (1984). DCA provides a reasonably robust 
approximation to ML Gaussian ordination and requires far less computing 
time. Similarly, ML Gaussian canonical ordination is technically feasible 
but CCA provides a practical and robust approximation to it. 

Nonlinear methods are appropriate if a reasonable number of species have 
their optima located within the data set. If the gradient length is reduced 
to less than about 3 SD, the approximations involved in WA become worse and 
ultimately (if the gradient length is less than about 1.5 SD) the methods 
yield poor results because most species are behaving monotonically over the 
observed range. Thus if the community variation is within a narrow range, 
the linear ordination methods *- PCA and redundancy analysis - are 
appropriate. If the community variation is over a wider range, nonlinear 
ordination methods - including DCA and CCA h are appropriate. 

B. Direct or indirect? 

Direct gradient analysis allows one to study the part (large or small) 
of the variation in community composition that can be explained by a 
particular set of environmental variables. In indirect gradient analysis 
attention is first focused on the major pattern of variation in community 
composition; the environmental basis of this pattern is to be established 
later. If the relevant environmental data are to hand, the direct approach 
- either fitting separate response surfaces by regression for each major 
species, or analysing the overall patterns of the species-environment 
relationship by constrained ordination .-! is likely to be more effective than 
the traditional indirect approach. However, indirect gradient analysis does 
have the advantage that no prior hypothesis is needed about what 
environmental variables are relevant. One does not need to measure the 
environmental variables in advance, and one can use informal field knowledge 
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to help interpret the patterns that emerge - hence the emphasis in the 
literature on ordination as a technique for "hypothesis generation", the 
implication being that experimental or more explicit statistical approaches 
can be used for subsequent hypothesis testing. This distinction is not hard 
and fast, but it does draw attention to the strengths and limitations of 
indirect gradient analysis. 

In Section VD, we showed in passing how an indirect gradient analysis 
can be carried out after a direct gradient analysis in order to summarize 
the community variation that remains after known effects have been removed. 
When the known environmental variables are not the prime object of study, 
they are called concomitant variables (Davies and Tso, 1982) or covariables. 
It would be convenient to solve for the residual (unconstrained) axes 
without having to extract all the constrained axes first. Fortunately, this 
is straightforward. In the iterative algorithm for PCA and CA, one simply 
extends step 3b such that the trial scores are not only made uncorrelated 
with any previous axis (if present) but are also made uncorrelated with all 
specified covariables (see Appendix for details.) In this way the effects of 
the covariables are partialled out from the ordination; hence the name 
"partial ordination". The theory of "partial components analysis" and 
"partial correspondence analysis", as we call these extensions of PCA and 
CA, is given by Gabriel (1978, theorem 3) and Ter Braak (1988), 
respectively. Swaine and Greig-Smith (1980) used partial components analysis 
to obtain an ordination of within-plot vegetation change in permanent plots. 
Partial correspondence analysis, or its detrended form, would be more 
appropriate if the gradients were long. 

C. Direct gradient analysis: regression or constrained ordination? 

Whether to use constrained ordination (multivariate direct gradient 
analysis) instead of a series of separate regressions (the t radi t ional type 
of direct gradient analysis) depends on whether or not there i s any 
advantage in analysing a l l the species simultaneously. Both constrained and 
unconstrained ordination assume that the species react to the same composite 
gradients of enviromental variables, while in regression a separate 
composite gradient i s constructed for each species. Regression can therefore 
allow more detailed descriptions and more accurate prediction and 
calibration, if properly carried out (with due regard to i t s s t a t i s t i c a l 
assumptions) and if sufficient data are available. However, ecological data 
that are collected over a large range of habitat variation require 
non-linear models, and building good non-linear models by regression i s 
demanding in time and computation. In CCA the composite gradients are l inear 
combinations of environmental variables and the non-linearity enters through 
a unimodal response model with respect to a few composite gradients, taken 
care of in CCA by the procedure of weighted averaging. Constrained 
ordination i s thus easier to apply, and requires less data, than regression; 
i t provides a summary of the species-environment relationship, and we find 
i t most useful for the exploratory analysis of large data s e t s . 

Constrained ordination can also be carried out after regression, in 
order to r e l a te the residual variation to other environmental variables. 
This type of analysis, called "part ial constrained ordination", i s useful 
when the explanatory (environmental) variables can be subdivided in two 
se t s , a set of covariables - the effects of which are not the prime object 
of study - and a further set nf environmental variables whose effects are of 
particular in teres t . 

For example, in the i l lus t ra t ion of section VC, the study was in i t i a ted 
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to i n v e s t i g a t e d i f fe rences in vege ta t ion among dune meadows t ha t were 
exp lo i ted under d i f f e r en t management regimes (s tandard farming, b i o -
dynamical farming, na tu re management, among o t h e r s ) . Standard CCA showed 
sys temat ic d i f fe rences in vege ta t ion among management regimes. A f u r the r 
quest ion i s then whether these d i f fe rences can be f u l l y accounted for by the 
environmental v a r i a b l e s mois tu re , quan t i ty of manure and t h ickness of t he A1 
hor izon, whose e f f ec t s a re d isplayed in F i g . 7, or whether the v a r i a t i on 
t h a t remains a f t e r f i t t i n g the t h r ee environmental v a r i ab l e s ( th ree 
const ra ined o rd ina t ion axes) i s s y s t emat i ca l ly r e l a t e d t o management 
regimes. This quest ion can be tackled by using p a r t i a l const ra ined 
o rd ina t i on , with the t h r ee environmental v a r i ab les as c ova r i ab l e s , and a 
s e r i e s of dummy v a r i ab l e s (for each of t he management regimes) as the 
variables- 'of winter e s t . 

Technica l ly , p a r t i a l const ra ined o rd ina t i on can be c a r r i ed out by any 
computer program for const ra ined o rd ina t i on . The usual environmental 
v a r i ab les a re r ep laced by the r e s i du a l s obtained by r eg re s s ing each of the 
v a r i ab l e s of i n t e r e s t on the covar iab les (see Appendix). Davies and Tso 
(1982) gave the theory behind p a r t i a l redundancy a n a l y s i s ; Ter Braak (1987b) 
derived p a r t i a l canonical correspondence ana ly s i s as an approximation to 
" p a r t i a l Gaussian canonical o r d ina t i on" . 

P a r t i a l cons t ra ined o rd ina t ion has t he same e s s en t i a l aim as Ca r l e t on ' s 
(1984) r e s idua l o rd ina t i on , i . e . t o determine the v a r i a t i o n in the spec ies 
da ta t h a t i s uniquely a t t r i b u t a b l e t o a p a r t i c u l a r s e t of environmental 
v a r i a b l e s , t ak ing i n t o account the e f f e c t s of o ther (cof-) v a r i a b l e s ; however 
C a r l e t on ' s method i s somewhat l e s s powerful, being based on a p r e - ex i s t i ng 
DCA which may a l ready have removed some of the v a r i a t i on of i n t e r e s t . 
P a r t i a l cons t ra ined o rd ina t ion i s , by c o n t r a s t , a t r u e d i r e c t g rad ien t 
a n a l y s i s technique which seems promising e . g . for the a n a l y s i s of permanent 
p lo t data ( e f f ec t s of t ime, with l o c a t i on and/or environmental da ta as 
c ova r i a b l e s ) , and a v a r i e t y of o ther a pp l i c a t i ons in which e f f e c t s of 
p a r t i c u l a r environmental v a r i ab l e s a r e t o be s o r t ed out from the 
"background" v a r i a t i on imposed by o ther v a r i a b l e s . 

V I I . CONCLUSIONS 

Regression, c a l i b r a t i o n , o rd ina t ion and cons t ra ined o rd ina t ion a r e 
wel l -def ined s t a t i s t i c a l problems with c lose i n t e r r e l a t i o n s h i p s . Regression 
i s t he t oo l fo r i n v e s t i g a t i ng the na tu re of i nd iv idua l s p e c i e s ' response t o 
environment, and c a l i b r a t i o n i s the t oo l for ( l a t e r ) i n f e r r i ng the 
environment from spec ies composition at an i nd iv idua l s i t e . Both t oo l s come 
in var ious degrees of complexity. The s imples t a re l i n e a r and WA r eg ress ion 
and c a l i b r a t i o n . The l i n e a r methods a r e app l i cab l e over shor t ranges of 
environment, where s p ec i e s ' abundance appears t o vary monotonically with 
v a r i a t i o n in the environment. The WA methods a r e app l i cab le over wider 
ranges of environment; WA r eg ress ion i s a crude method t o e s t imate each 
s p e c i e s ' optimum, and WA c a l i b r a t i o n j u s t averages the optima of the spec ies 
t ha t a r e p r e s en t . WA works with presence=»absence d a t a . I f abundances a r e 
a v a i l a b l e , they provide the weights . These WA techniques can be shown t o 
give approximate es t imates of the spec ies optima and environmental values 
when the spec ies response sur faces ( the r e l a t i o n sh i p s between the s p e c i e s ' 
abundance, or p r obab i l i t y of occurrence, and the environmental v a r i ab l e s ) 
a re Gaussian (or for p r o b a b i l i t i e s , GaussianKLogit) i n form. Gaussian 
r eg res s ion and c a l i b r a t i o n a r e a l so p o s s i b l e , but the WA techniques a r e 
simpler and a re approximations t o the Gaussian methods. 

These simple t o o l s a re s u i t a b l e when t h e r e a r e many species of i n t e r e s t 
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and the exact form of the response surface is not critical, and they are 
very easy to use. If the form of the response surfaces _is critical, more 
complex models can be fitted by using Generalized Linear Modelling (for 
regression) and maximum likelihood techniques (for calibration). These more 
complex tools are becoming important in the theoretical study of species-
environment relationships (Austin, 1985) and environmental dynamics 
(Bartlein et al., 1986). Naturally, they require skilled users who are aware 
of their statistical assumptions, limitations and pitfalls. 

Ordination and constrained ordination can be related to the simpler 
methods of regression and calibration. Ordination is the tool for 
exploratory analysis of community data with no prior information about the 
environment. Constrained ordination is the equivalent tool for the analysis 
of community variation in relation to environment. Both implicitly assume a 
common set of environmental variables and a common response model for all of 
the species, (without these simplifying assumptions, they could not work; 
such major simplifications of data can only be achieved at the expense of 
some realism.) The basic ordination techniques are PCA and CA. PCA 
constructs axes that are as close as possible to a linear relationship with 
the species. These axes can be found by a converging sequence of alternating 
linear regressions and calibrations. Each axis after the first is obtained 
by partialling out linear relationships with the previous axis, CA is 
mathematically related to PCA, but has a very different effect. CA axes can 
be found by a converging sequence of WA regressions and calibrations. In CA, 
axes after the first are obtained analogously with PCA; in DCA they are 
obtained by removing all trends, linear or nonlinear, with respect to 
previous axes. CA suffers from the arch effect, which DCA eliminates. DCA is 
a reasonably robust approximation to Gaussian ordination, in which the axes 
are constructed so that the species response curves with respect to the axes 
are Gaussian in form. Gaussian ordination is feasible but not convenient. 
DCA is much more practical. But there are problems with the detrending, and 
the method can break down when the connections between sites are too 
tenuous. Some modifications n including an improved method of detrending -
may improve DCA's robustness; alternatively, some forms of nonmetric 
multidimensional scaling may be more robust (Kenkel and Orloci, 1986; 
Minchin, 1987). 

Constrained ordination methods have the added constraint that the 
ordination axes must be linear combinations of environmental variables. This 
constraint can be implemented as an extra multiple regression step in the 
general iterative ordination algorithm. PCA then becomes redundancy analysis 
(a more practical alternative to canonical correlation), Gaussian ordination 
becomes Gaussian canonical ordination, and CA becomes CCA (Table 2). The 
constraint makes Gaussian canonical ordination somewhat more stable than its 
unconstrained equivalent, but still CCA provides a much more practical 
alternative. All these constrained methods are most powerful if the number 
of environmental variables is small compared to the number of sites. Then 
the constraints are much stronger than in normal ordination, and the common 
problems of ordination (such as the arch effect, the need for detrending and 
the sensitivity to deviant sites) disappear. 

Often, community-environment relationships have been explored by 
"indirect gradient analysis" - ordination, followed by interpretation of the 
axes in terms of environmental variables. But if the environmental data are 
to hand, constrained ordination ("multivariate direct gradient analysis") 
provides a more powerful means to the same end. Hybrid (direct/indirect) 
analyses are also possible. In partial ordination and partial constrained 
ordination, the analysis works on the variation that remains after the 
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effects of particular environmental, spatial or temporal "covariables" have 
been removed. 

The choice between linear and nonlinear ordination methods is not a 
matter of personal preference. Where gradients are short, there are sound 
statistical reasons to use linear methods. Gaussian methods break down, and 
edge effects in CA and related techniques become serious; the representation 
of species as arrows becomes appropriate. As gradient lengths increase, 
linear methods become ineffective (principally through the "horseshoe 
effect", which scrambles the order of samples along the first axis as well 
as creating a meaningless second axis); Gaussian methods become feasible, 
and CA and related techniques become effective. The representation of 
species as points, representing their optima, becomes informative. The range 
1.5 - 3 SD for the first axis represents a "window" over which both PCA and 
CA/DCA, or both redundancy analysis and CCA, can be used to good effect. 
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VIII . APPENDIX 

A general i t e r a t i v e a lgori thm can be used t o ca r ry out the l i n e a r and 
weighted-averaging methods descr ibed in t h i s review. The a lgori thm i s 
e s s e n t i a l l y the one used in the computer program CANOCO (Ter Braak, 1987b). 
I t opera tes on response v a r i a b l e s , each recording the abundance or p resence/ 
absence of a spec ies a t var ious s i t e s , and on two types of explanatory 
v a r i ab l e s : environmental v a r i ab les and cova r i ab l e s . By environmental 
v a r i ab l e s we mean here explanatory v a r i ab l e s of prime i n t e r e s t , in c on t r a s t 
with covar iables which a r e "concomitant" va r i ab les whose e f fec t i s t o be 
removed. When a l l t h r ee types of v a r i ab l e s a re p r e sen t , the algorithm 
descr ibes how t o obta in a p a r t i a l cons t ra ined o rd ina t ion . The o ther l i n e a r 
and WA techniques a re a l l s pec i a l c a ses , obtained by omit t ing various 
i r r e l evan t s t e p s . 

Let Y = [ y k i ] (k » 1, . . . , m; i = 1, . . . , n) be a s p e c i e s - by - s i t e matrix 
containing the observat ions of m species a t n s i t e s ( y k i £ 0) and l e t 
Z1 = [ z1lJ ( 1 = ° p ; i = 1 n ) a n d Z2 = E z 2 j i J ( J = 1 » • • • » q ; 

i = 1, . . . , n) be c ova r i ab l e -by - s i t e and environmental v a r i a b l e - b y - s i t e 
matr ices containing the observat ions of p covar iab les and q environmental 
covar iables a t t he same n s i t e s , r e spec t i v e l y . The f i r s t row of Z«, with 
index 1 = 0, i s a row of 1 ' s , which i s included t o account for the i n t e r cep t 
in Eq. ( 5 ) . Fur ther , denote the spec ies and s i t e scores on the s - t h 
o rd ina t ion by u. = [ u k ] (k = 1 m) and x = [x.jj ( i = 1 n ) , the 
canonical c oe f f i c i en t s of the environmental v a r i ab l e s by g = [c.j] 
( j = 1, . . . , q) and c o l l e c t the s i t e scores on the (s - 1) previous 
o rd ina t i on axes as rows of the matr ix A. I f detrending-by-polynomials i s in 
force (Step A10), then the number of rows of A, sA s ay, i s g r ea te r than s-1 . 
In the a lgori thm we use the ass ign s tatement " := " , for example a := b 
means "a i s assigned the value b " . If the l e f t hand s ide of the assignment 
i s indexed by a s ub s c r i p t , i t i s assumed t ha t the assignment i s made for a l l 
permit ted subsc r ip t va lues : the s ubsc r ip t k w i l l r e fe r t o species 
(k - 1 m), t he s ubsc r ip t i t o s i t e s ( i = 1, . . . , n) and the s ubsc r ip t 
j t o environmental v a r i ab les (j = 1, , q ) . 

Pre l iminary c a l cu l a t i ons 

P1 . Ca lcu la te spec ies t o t a l s { y k + } , s i t e t o t a l s (y+<} and the grand t o t a l 
y + + . If a l i n e a r method i s r equ i r ed , s e t 

rk := 1, uL := 1, ŵ^ := £ (A.1) 

and if a weighted averaging method is required, set 

r. := yk+, wi := y+i, W i := y+i/y++ (A.2) 

P2. S tandardize the environmental v a r i ab l e s to zero mean and uni t v a r i ance . 
For environmental v a r i ab l e j c a l c u l a t e i t s mean z and var iance v 

z := I w i z 2 j i , v := I Wi(z2ji ~ z' (^•'3) 

and s e t z 2 - j i := (z2-n " z ) / ^ v 
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P3. Calculate for each environmental variable j the residuals of the 
multiple regression of the environmental variable on the covariables, 
i . e . 

C* := (Z lWZ l ' )"1Z1W22 j ( A . I ) 

I2j
 : = 5-2J " Z 1 s j ( A , 5 ) 

where z.2j = (z2j1 z2jn)', W = diag (w1, ..., wn) and Q, is the 
(p+1 )-vector of the coefficients of the regression of g2^ on Z.,. Now 
define 22 = [ z ^ ] (j = 1 q, i = 1, .... n). 

Iteration algorithm 

Step AO Start with arbitrary, but unequal site scores x = [xi]. Set 
xi " xi-

Step A1 Derive new species scores from the site scores by 

uk := I v ki x i / r V (A-6) 

Step A2 Derive new s i t e scores x. = [x i ] from the species scores 

x ! : = i yxiuk /wi • ( A - 7 ) 

Step A3 Make x = [x i] uncorrelated with the covariables by calculating 

the residuals of the multiple regression of x on Z1 : 

x* := x* " Z j t Z , ^ ) " 1 ^ ^ * . (A.8) 

• * 

Step AM If q < 3j , set Xj := x* and skip Step A5. 

Step A5 If q > 3j , calculate a multiple regression of x on Z-, 

S := (Z2WZ^)"1Z2Wx*, (A.9) 

and take as new site scores the fitted values: 

x. := Z^c. (A.10) 

Step A6 If s > 0, make x. = [xi] uncorrelated with previous axes by 
calculating the residuals of the multiple regression of x on A: 
x := x - A'(AWA')"1 AWx (A.11) 
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Step A7 Standardize x = [x.] to zero mean and unit variance by 

x := E w*x, , s2 := I w* (x • - x ) 2 , (A.12) 
i i 

x i : = ' x i ~ x ) / s * 

Step A8 Check convergence, i . e . i f 

E w*(x? - x , ) 2 < 10"10 (A.13) 
i 
goto Step A9, e l s e se t x^ := x, and goto Step A1. 

Step A9 Set the eigenvalue X equal t o s in (A. 12) and add x 
new row t o the matrix A. 

Step A10 If detrending-by-polynomials i s r equ i r ed , c a l cu l a t e polynomials 
of x up t o order H and f i r s t order polynomials of 2 with the 
previous o rd ina t ion axes , 

o o 11 
x 2 i : = x i * x 3 i ! = x i * x 4 i : = x i» x ( b ) i : = x i a b i (A.J4) 

where a b i a r e the s i t e scores of a previous o rd ina t ion ax i s 
(b - 1 s - 1 ) . Now perform for each of the ( s+2) -var iab les in 
(A.14) the S teps A3-A6 and add the r e s u l t i n g v a r i ab l e s as new 
va r i ab l e s to the matr ix A. 

Step A11 Set s := s+1 and goto Step AO i f r equ i red and i f f u r the r 
o rd ina t ion axes can be e x t r a c t ed , e l s e s t o p . 

At convergence, the algorithm gives the s o l u t i on with the g r e a t e s t r e a l 
value of \ t o the following t r a n s i t i o n formulae [where R = diag(r-| , . . . , 
rm ) and W = diag (w, w ) and where the no ta t ion B i s used t o denote 
B'(BWB') BW, the p ro jec t ion opera tor on the row space of a matr ix B in the 
met r ic defined by the matr ix w] 

u = R^Yx (A. 15) 

x.* = ( I - Z^)W_1Y'u (A.16) 

c = (22WZ^)"1Z2Wx* (A. 17) 

Xjc = ( I - A°)Z^c. (A.18) 

The wiggle above Z2 i s t he re as a reminder t h a t the o r i g i na l environmental 
v a r i ab l e s were rep laced by r e s i du a l s of a r eg ress ion on Z1 in (A.5) i . e . in 
terms of t he o r i g ina l v a r i ab les 

Z2 = ( I - Z?)Z2 (A.19) 
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Remarks 

1. Note t h a t uk i n the a lgori thm takes the p lace of t>k i n s ec t ion I I . 

2. Special cases of the a lgori thm a r e : cons t ra ined o rd ina t i on : p = 0; 
p a r t i a l o rd ina t ion : q = 0 ; (unconstra ined) o rd ina t ion : p = 0, q = 0 ; 
l i n e a r c a l i b r a t i on and weighted averaging: p = 0, q = 1 ; ( p a r t i a l ) 
mu l t ip le r eg re s s ion : m = 1 . The corresponding t r a n s i t i o n formulae 
fol low from (A.15) " (A.18) with the p roviso t h a t , i f q = 0, Z2 i n 
(A.19) must be replaced by the nxn i d e n t i t y matr ix and general ized 
matr ix inverses a r e used. Note t h a t , i f p = 0, Z1 i s a 1*n matr ix 
containing 1 ' s ; Z1 r enders the c en t r ing of t he spec ies data in the 
l i n e a r methods in s e c t i on I I redundant . 

3 . The s t anda rd i za t i on in P2 removes the a r b i t r a r i n e s s i n the un i t s of 
measurement of the environmental v a r i a b l e s , and makes the canonical 
c oe f f i c i en t s comparable among each o t he r , but does not inf luence the 
values of \ , u. and x t o be obtained in the a lgor i thm. 

4. Step A6 s imp l i f i e s t o s tep 3b of t he main t e x t i f t he rows of A a r e 
W-orthonormal. The s t e p s A3-A6 form a s i ng l e p ro j ec t ion of x on the 
column space of ( I - A )2^ if and only i f A defines a subspace of the 
rowspace of Z^. * s each o rd ina t ion ax i s defines such a subspace, t h i s 
i s t r i v i a l l y so without de t rend ing . The method of de t rending-by-
polynomials as defined in s t ep A10, ensures t h a t A def ines a l s o the 
r e l evan t subspace if de trending i s in f o r ce . The t r a n s i t i o n formulae 
(A.I 5) - (A. 18) def ine an eigenvalue equat ion of which a l l e igenvalues 
a r e r e a l nonnegative (Ter Braak, 1987b). 

5. I f a p a r t i c u l a r s c a l i ng of the b ip lo t or t he j o i n t p l o t i s wanted, the 
o rd ina t ion axes may r equ i r e l i n e a r r e s c a l i n g . With l i n e a r methods one 
can choose between a Euclidean d i s tance b ip lo t and a covariance b i p l o t , 
which focus on the approximate Euclidean d i s tances between s i t e s and 
c o r r e l a t i on s among s p ec i e s , r e spec t ive ly (Ter Braak, 1983). With 
weighted averaging methods i t i s customary t o use the s i t e scores x 
(A.16) and the spec ies scores u. (A.15) to prepare an o rd ina t ion diagram 
a f t e r a l i n e a r r e s c a l i ng so t ha t the average w i t h i n - s i t e var iance of 
t he spec ies s co res i s equal to 1 (cf . s ec t ion IV C), as i s done in 
DECORANA ( H i l l , 1979) and CANOCO (Ter Braak, 1987b). 
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APPENDIX 

Short description of CANOCO (version 2.1) 

Aim 
A common problem in community ecology and ecotoxicology is to discover how a 
multitude of species respond to external factors such as environmental 
variables, ppllutants and management regime. Data are collected on species 
composition and the external variables at a number of points in space and 
time. Statistical methods sofar available to analyse such data either 
assumed linear relationships or were restricted to regression analysis of 
the response of each species separately. To analyse the generally 
non-linear, non monotonic response of a community of species, one had to 
resort to the data-analytic methods of ordination and cluster analysis -
"indirect" methods that are generally less powerful than the "direct" 
statistical method of regression analysis. Recently, regression and 
ordination have been integrated into techniques of multivariate direct 
gradient analysis, called canonical (or constrained) ordination. The use of 
canonical ordination greatly improves the power to detect the specific 
effects one is interested in. One of these techniques, canonical 
correspondence analysis, avoids the assumption of linearity and is able to 
detect unimodal relationships between species and external variables. The 
computer program CANOCO is designed to make these techniques available to 
ecologists studying community responses. CANOCO can carry out most of the 
multivariate techniques described in chapter 9 by using a general iterative 
ordination algorithm. 

Researchers in other fields may find CANOCO useful as well, for 
example, to analyse percentage data/compositional data, nominal data or 
(dis)- similarity data in relation to external explanatory variables. Such 
use is explained in separate sections in the manual (ter Braak, 1987). 
CANOCO is particularly suited if the number of response variables is large 
compared to the number of objects. 

Techniques covered 
1. CANOCO is an extension of DECORANA (Hill, 1979). CANOCO formerly stood 

for canonical correspondence analysis (chapter 5) and included weighted 
averaging, [multiple] correspondence analysis, detrended correspondence 
analysis and canonical correspondence analysis. The program has been 
extended to cover also principal components analysis (PCA) and the 
canonical form of PCA* called redundancy analysis (RDA). Redundancy 
analysis (van den Wollenberg, 1977; Israels, 1984) is also known under 
the names of reduced-rank regression (Davies and Tso, 1982), PCA of y 
with respect to x (Robert and Escoufier, 1976) and mode C partial least 
squares (Wold, 1982). For these linear methods there are options for 
centring/standardization by species and by sites and for the method of 
scaling the species and site scores for use in the biplot. The 
eigenvalues reported in PCA/RDA are fractions of the total variance in 
the species data (percentage variance accounted for). Principal 
coordinates analysis and canonical variate analysis (= linear 
discriminant analysis) are also available. 

2. CANOCO can also carry out "partial" analyses in which the effects of 
particular environmental, spatial or temporal "covariables" are 
eliminated from the ordination. A partial analysis allows one to display 
the residual variation in the species data and to relate the residual 
variation to the variables one is specifically interested in. Partial 
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canonical correspondence ana ly s i s i s the appropr ia t e technique for the 
a na ly s i s of permanent p lo t da ta or for the j o i n t a n a l y s i s of da ta from 
severa l l o c a t i o n s . 

3 . CANOCO allows one t o t e s t s t a t i s t i c a l l y whether the spec ies a r e r e l a t e d 
t o suppl ied environmental v a r i a b l e s . The t e s t provided i s a Monte Carlo 
permutation t e s t (Hope, 1968). The e f fec t of a p a r t i c u l a r environmental 
v a r i ab l e can be t e s t e d a f t e r e l imina t ion of pos s ib l e e f f ec t s of o ther 
(environmental) v a r i ab l e s by speci fy ing the l a t t e r as cova r i ab les . For 
the a na l y s i s of randomizedc-block experiments or data from severa l 
l o c a t i o n s , t h e r e i s an op t ion t o r e s t r i c t the permutation to permutations 
among samples-within^blocks or samples- 'wi t rans locat ions . 

H. CANOCO provides an a l t e r n a t i v e method of de t rending which i s intended t o 
solve the problems repor ted t o occur with the method used in DECORANA. 
CANOCO allows one t o remove polynomial r e l a t i o n s between o rd ina t ion axes 
(up t o order H). Use of the o ld method of detrending by segments (Hi l l 
and Gauch, 1980) in p a r t i a l and canonical ana lyses i s not recommended. 

5 . CANOCO has an op t ion for nonstandard ana lyses . In one p o s s i b i l i t y , t he 
r e c ip roca l averaging a lgori thm i s modified so t h a t a t each i t e r a t i o n t he 
spec ies and/or s i t e scores a r e replaced by r anks . This procedure 
circumvents what i s known as the "deviant sample / rare spec ies problem" in 
correspondence a n a l y s i s . 

Data input 
CANOCO can read spec ies da t a , environmental v a r i ab l e s and covar iab les t h a t 
a r e e i t h e r in Cornell condensed format or in f u l l format. The machine 
r eadable copy of the a na ly s i s can be used again as input for subsequent 
ana lyses . This p o s s i b i l i t y allows one, for example: 

to use p r i nc ipa l components ex t rac ted from environmental data as input 
for a l a t e r canonical a na ly s i s of spec ies da t a , 

- t o e x t r a c t more than four o rd ina t ion axes - simply by supplying the 
e x t r a c t ed o rd ina t ion axes as covar iab les in a subsequent a n a l y s i s . 

Output opt ions 
CANOCO can supply: 
- means, var iances and c o r r e l a t i on s of environmental v a r i a b l e s , 
- e igenva lues , the percentages of var iance accounted for by the b i p lo t of 

species-environment r e l a t i o n s , 
- s cores of spec ies and s i t e s on the o rd ina t ion axes , 

canonical coefficients or regression coefficients of environmental 
va r i ab l e s with a ssoc ia ted t - v a l u e s , 
c o r r e l a t i on s of environmental v a r i ab les with the o rd ina t i on axes , 

- s cores of environmental v a r i a b l e s for cons t ruc t ing the arrows i n the 
species-environment b i p l o t , 

- c en t ro ids (weighted averages) of environmental va r i ab les in the 
o rd ina t ion diagram (for v a r i ab l e s with po s i t i v e v a l ue s ) . In p a r t i c u l a r , 
c l a s ses of nominal environmental v a r i ab les a r e more n a t u r a l l y d isplayed 
by t h e i r c en t ro id in the o rd ina t ion diagram than by arrows. This opt ion 
i s a l so useful for d i splaying the r e s u l t s of a c l u s t e r a n a l y s i s in an 
o rd ina t ion diagram. 

CANOCO al lows i n t e r a c t i v e data a n a l y s i s : r e s u l t s of an a n a l y s i s can be 
d isplayed a t the t e rminal and a f t e r i n spec t ion the a na l y s i s can be pursued, 
for example, 
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- by changing from an indirect gradient analysis to a direct gradient 
analysis, 

- by dropping environmental variables, 
- by reading other environmental variables to be related to the current 

ordination axes or to be used in further canonical analyses, 
- by changing detrending options, 
-> by changing s c a l i ng opt ions of the o rd ina t ion s co r e s . 

P r a c t i c a l information 
CANOCO i s wr i t t en in s tandard FORTRAN 77 and can be suppl ied on 5.25 inch 
d i s k e t t e for IBM-compatible PC 's , on 3.5 inch d i s k e t t e for ATARI-ST PC's or 
Apple Macintosh, on magnetic tape (800/1600 bp i , ASCII-code) or v ia 
BITNET/EARN. On an IBM- compatible PC with 640 Kb, CANOCO can analyse c a . 
750 samples, 600 s p ec i e s , 60 environmental v a r i ab les and 100 c ova r i ab l e s . 
The one-time cos ts a re ca. Dfl 300 for educat ional i n s t i t u t e s and ca. Dfl 
600 for o ther i n s t i t u t e s (p r ices may change without n o t i c e ) . Researchers 
from coun t r i es with va lu ta problems may send in a r eques t for a f ree copy. 
The comprehensive manual w i l l be sent with the program. 
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SUMMARY 

To assess the impact of environmental change on biological communities 
knowledge about species-environment relationships is indispensable. 
Ecologists attempt to uncover the relationships between species and 
environment from data obtained from field surveys. In the survey, species 
are scored on their presence or their abundance at each of several sampling 
sites and environmental variables that ecologists believe to be important 
are measured. 

The research that led to this thesis aimed to unravel the assumptions 
required for the application of statistical methods that are popular among 
ecologists to analyse such data. From a statistical point of view, species 
data are difficult to analyse: 
- there are many species involved (10 - 500), 
- many species occur at a few sites only. So the data contain numerous 

zeroes, 
- relations between species and environmental variables are not linear, but 

unimodal: a plant, for example, preferably grows under for that species 
optimal moisture conditions and is encountered less frequently at drier 
or wetter sites. A mathematical model for a unimodal relationship is the 
Gaussian response model. 

Standard statistical methods such as linear regression, principal components 
analysis and canonical correlation analysis are often inappropriate for 
analysing species data because they are based on linear relationships. One 
of the methods that ecologists use instead is correspondence analysis. This 
thesis contributes to the understanding of the underlying response model. 

With correspondence analysis, species and sites are arranged to 
discover the structure in the data (ordination) and the arrangement is 
subsequently related to environmental variables. It is an indirect method to 
detect relations between species and environment, hence R.H. Whittaker's 
term "indirect gradient analysis". 

Correspondence analysis has been invented around 1935 but did not 
receive interest from ecologists before 1973 when M.O. Hill derived the 
technique once more as the repeated application of "weighted averaging" - a 
method that was familiar to ecologists ever since 1930. Weighted averaging 
has the advantage of being simple to apply. The method can be used for two 
different aims: (1) to estimate the optimum of a species for an 
environmental variable and (2) to estimate the value'of an environmental 
variable at a site from known optima of the species present (calibration). 

In chapter 2, estimating optima by weighted averaging is compared with 
the results of non^linear regression on the basis of the Gaussian response 
model. Under particular conditions, both methods agree precisely. In other 
cases, weighted averaging gives a biased estimate of the optimum and 
non-linear regression is the method to be preferred. An additional advantage 
of non-linear regression is that it can also be used to fit response models 
with more than one environmental variable. In chapter 3, weighted averaging 
to estimate the value of an environmental variable is compared with 
calibration on the basis of the Gaussian response model. Also in this 
context the techniques are sometimes equivalent. Chapter 1 deals with 
correspondence analysis. It is shown that, under particular conditions, 
correspondence analysis approximates ordination on the basis of the Gaussian 
response model, which is computationally much more complicated. 

147 



To detect r e la t ions , indirect methods have an important disadvantage. 
The impact of some environmental variables on the species composition can be 
so large that the impact of other interesting environmental variables may 
f a i l to be detected. This problem can be overcome by using non-linear 
regression, but with many species and environmental variables th i s i s 
laborious. In chapter 5, a simpler "direct" method i s proposed, canonical 
correspondence analysis. In chapter 6, canonical correspondence analysis 
turns out to be a multivariate extension of weighted averaging. The resul ts 
can be displayed graphically. In chapter 7, an extension with "covariables" 
i s discussed, which leads to part ial canonical correspondence analysis. 
Chapter 7 also shows that Gaussian models and, hence, canonical 
correspondence analysis are relevant to the analysis of contingency tables . 

Chapter 8 describes a study to estimate ecological amplitudes of plant 
species with respect to Ellenberg's moisture scale from species data alone. 
The question that i s addressed as well, i s how consequent Ellenberg's 
moisture indicator values are. 

Finally, chapter 9 cross^tabulates various gradient-analysis techniques 
by the type of problem (regression, cal ibrat ion, ordination, e tc . ) and the 
response model (linear or unimodal). Furthermore, improvements are proposed 
for detrended correspondence analysis. A computer program, named CANOCO, is 
written which can perform most of the methods discussed. 
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Samenvatting 

Bij de t h eo r e t i s che onderbouwing van natuurbeheer en m i l i eu -e f fec t - r appor t age 
moeten de gevolgen worden getaxeerd van mi l ieu- ingrepen op 1 evensgemeenschap-
pen. Kennis over de r e l a t i e tussen mi l ieuvar iabe len en net voorkomen van 
soor ten i s daarb i j onon tbee r l i jk . Eoologen proberen d ie r e l a t i e s t e a ch te rha-
len door op ve r sch i l l ende monsterplekken soor ten t e i nven ta r i se ren (op aan/ 
afwezigheid of abundantie) en tevens nuns inz iens r e l evan te mi l ieuvar iabe len 
t e meten. 

Het onderzoek, dat t o t d i t p roe f sch r i f t heef t g e l e i d , r i c h t t e z ich op 
net on t ra fe len van de v e r e i s t e ve ronders te l l ingen van s t a t i s t i s c h e methoden, 
d ie vaak door eoologen worden toegepast en op he t ontwikkelen van een nieuwe 
t echn iek . 

Vanuit k l ass iek s t a t i s t i s c h oogpunt z i j n soortgegevens moei l i jk t e ver -
werken: 
- er z i j n veel soorten b i j betrokken (10 - 500) , 
- heel wat soor ten koraen maar op weinig plekken voor, dus de gegevens z i t t e n 

vol nu l l en , 
- verbanden tussen soor ten en mi l ieuvar iabe len z i j n vaak n i e t r e c h t l i j n i g , 

maar e6ntoppig: een p lant b i jvoorbeeld g roe i t b i j voorkeur onder een voor 
d ie soor t optimale voch tcondi t i e en wordt zowel op drogere a l s op n a t t e r e 
monsterplekken minder aangetroffen. Een wiskundig model voor een 

eentoppig verband i s het Gaussische responsiemodel. 

Klassieke methoden a l s l i n e a i r e r e g r e s s i e , hoofdcomponenten^analyse en cano-
nische c o r r e l a t i e - a n a l y s e kunnen n i e t z innig worden geb ru ik t , omdat ze van 
r e c h t l i j n i g e verbanden u i tgaan . E6n van de methoden, waar ecologen wel mee 
werken, i s co r respondent ie -ana lyse . Het i n z i ch t in het achter l iggende respon­
siemodel h iervan l i e t t o t voor kort t e wensen over. Via cor respondent ie-
analyse wordt een ordening in soor ten en monsterplekken aangebracht (o rd ina-
t i e ) om de s t r u c t uu r in de gegevens t e l a t e n z ien . De ordening wordt ve rvol -
gens aan de mi l ieuvar iabe len gekoppeld. Het i s een i n d i r e c t e methode om rela-1 

t i e s op t e sporen, ofwel een methode voor i n d i r e c t e g rad ien ten-ana lyse . 
Correspondent ie-analyse werd omstreeks 1935 ontwikkeld, maar s t a a t b i j 

ecologen pas in de b e l ang s t e l l i ng s inds 1973. Toen l e idde M.O. H i l l de t e ch ­
niek opnieuw af a l s het herhaald toepassen van gewogen middelen - een methode 
waar ecologen a l s inds 1930 mee vertrouwd z i j n . Gewogen middelen heeft het 
voordeel van de eenvoud b i j toepass ing op ecologische gegevens. Deze techniek 
kan voor twee ve r sch i l l ende d oe l s t e l l i ngen worden gebru ik t . Ten e e r s t e kan 
het optimum van een soor t voor een m i l i euva r i abe l e ermee geschat worden. Ten 
tweede kan b i j bekende optima de waarde van een m i l i euva r i abe le op een mon-
s t e rp l ek worden geschat ( c a l i b r a t i e ) aan de hand van de soor tensamenste l l ing 
( d i t i s ook de methode d ie El lenberg aanbeveel t voor gebruik van z i j n m i l i eu-
i n d i c a t i e g e t a l l e n ) . 

In hoofdstuk 2 wordt het s cha t t en van optima met gewogen middelen verge-
leken met de r e s u l t a t e n van n i e t - l i n e a i r e r e g r e s s i e op ba s i s van he t Gaussi­
sche responsiemodel. Onder bepaalde voorwaarden b l i j ken deze twee methoden 
p rec ie s overeen t e komen. In andere geval len s cha t men door gewogen middelen 
het optimum onzuiver en verd ient n i e t - l i n e a i r e r e g e s s i e de voorkeur. Boven-! 
dien kunnen met n i e t - l i n e a i r e r e g r e s s i e responsiemodellen met meer dan 66n 
m i l l eva r i abe l e worden aangepast . In hoofdstuk 3 wordt het s cha t t en van de 
waarde van een mi l i euvar iabe le v ia gewogen middelen afgezet tegen c a l i b r a t i e 
op b a s i s van het Gaussische responsiemodel. Ook h i e r b l i j ken de technieken 
soms equ iva len t t e z i j n . Hoofdstuk 4 gaat i n op co r respondent ie -ana lyse . Er 
wordt aangetoond, dat cor respondent ie-analyse onder bepaalde voorwaarden een 
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benadering geeft van ordinatie op basis van net Gaussische responsiemodel, 
wat qua rekentechniek veel ingewikkelder i s . 

Indirecte methoden voor het opsporen van r e la t ies hebben een belangrijk 
nadeel. Een aantal milieuvariabelen kan de soortensaraenstelling zo sterk 
belnvloeden, dat het effect van andere interessante milieuvariabelen niet 
meer te achterhalen i s . Alleen directe methoden als n ie t - l inea i re regressie 
ondervangen dit probleem, rnaar n ie t - l ineai re regressie met veel soorten en 
milieuvariabelen i s zeer bewerkelijk. In hoofdstuk 5 wordt een veel eenvoudi-
ger directe methode voorgesteld, canonische correspondent!e-analyse. In 
hoofdstuk 6 b l i jkt canonische correspondent!e-analyse een multivariate u i t -
breiding van gewogen middelen te z i jn. De resultaten kunnen grafisch weerge-
geven worden. In hoofdstuk 7 wordt een uitbreiding met covariabelen bespro-
ken, wat l e id t tot partiSle canonische correspondent!e-analyse. Er wordt 
tevens op gewezen dat Gaussische modellen en canonische correspondentie-
analyse kunnen worden toegepast op afhankelijkheidstabellen. 

Hoofdstuk 8 beschrijft onderzoek om ecologische amplitudes van planten 
ten opzichte van de vochtschaal van Ellenberg t e bepalen op basis van alleen 
soortgegevens. Hoe consequent de vochtindicatie-getallen zijn i s ook onderL 

zocht. 
Hoofdstuk 9 tenslot te geeft een kruisklassif icat ie van mogelijkheden 

voor gradigntensanalyse. Het type probleem (regressie, ca l ibra t ie , ordinatie, 
enz.) en het responsiemodel ( l ineair of unimodaal) zijn hierbij de ingangen. 
Verder worden verbeteringen voorgesteld voor "detrended correspondence analy­
s i s " . Er i s een computerprogramma ontwikkeld, CANOCO, waarmee het merendeel 
van de behandelde technieken kan worden uitgevoerd. 
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Computer techniques are being used increasingly by ecologists to analyze field 
data on plant and animal communities and their environment. 
This book provides a new synthesis of methods that have proven to be most 
useful for such analyses. There are chapters on data collection, regression 
analysis, calibration, ordination, cluster analysis and spatial analysis. 
Examples and excercises (with solutions) complement most chapters. Three 
case studies are also included. Only simple mathematics is used, making the 
methods accessible to most ecologists and geographers. In the selection of 
methods, due attention is paid to the special properties of ecological data: 
- numerous species recorded as present/absent or on a semi-quantitative 

abundance scale 
- the non-linear relationships between species and environmental variables 

that often exist 
- the high inter-correlations among species and among environmental vari­

ables. 

In addition to the more traditional ordination and cluster techniques, this 
is the first textbook to explain to ecologists in an elementary way such powerful 
data-analysis techniques as logit regression (a regression technique appropriate 
for analyzing presence-absence data), canonical correspondence analysis (a 
canonical ordination technique especially designed to relate species commun­
ities to environmental variables and kriging (a sophisticated spatial-interpo­
lation technique). 
Readership The book is primarily directed to post-graduate students in 
ecology, geography and environmental sciences, and to professional ecologists, 
who want to understand better the methods they are already using and are 
eager to learn new, more powerful methods. 
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