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Stellingen

10.

. Gewoonlijk leiden statistici vanuit cen model en een optimaliteitscriterium de optimale techniek

af. In technieken die niet op die manier tot stand gekomen zijn, wordt het inzicht vergroot door
te zoeken naar een bijbehorend optimaal model.
Dit proefschrift.

. Een benadering van een statistische techniek is soms redelijker dan de statistische techniek zelf,

Besag, J. (1986). On the statistical analysis of dirty pictures (with discussion). J. R. Statist.
Soc. B 48: 259-302.
Dit proefschrift.

. Hoofdcomponentenanalyse en correspondentie-analyse verschillen in metriek. Achter dit ver-

schil gaat een verschil in model schuil.
Dit proefschrift.

. Partiéle kleinste-kwadratenregressie en Procrustes-analyse benadrukken respectievelijk de va-

riabelen en de objecten in één singuliere-waardenontbinding van de matrix van covarianties
tussen de variabelen in de ene configuratie van objecten en die in de andere.
Aagtveit, A, H. & Martens, H. (1986). ANOVA interactions interpreted by Partial Least
Squares regression. Biometrics 42: 829-844.
Sibson, R. (1978). Studies in the robustness of multidimensional scaling: procrustes sta-
tistics. J. R. Statist. Soc. B 40: 234-238,

. Expertsystemen kunnen een kader bieden voor groei van kennis over levensgemeenschappen.

. Net als variantie is de diversiteit van cen levensgemeenschap cen eigenschap van de tweede orde

en dus moeilijker te schatten dan dichtheden van aparte soorten.

. Het promotiereglement van de Landbouwuniversiteit sluit met de eis dat stellingen vatbaar

mocten zijn voor bestrijding wiskundige stellingen uit.

. Modelbouwers zijn optimisten, statistici pessimisten.

. ,,Was sind das fiir Zeiten, wo

Ein gespréch iiber Biume fast ein Verbrechen ist
Weil es ein Schweigen Uber so viele Untaten einschliesst.”

Brecht’s dichtregels zijn ook van toepassing op wetenschappelijke kontakten met Zuidafrika-
nen.
Brecht, B. (1973). An die Nachgeborenen (1938). In: Svendborger Gedichte, Suhrkamp.

Sport is betaalde arbeid of het afreageren daarvan.

Cajo J. F. ter Braak
»Unimodal models to relate species to environment™
Wageningen, 16 november 1987
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Samenvatting

Bij de theoretische onderbouwing van natuurbeheer en milieu-effect-rapportage moeten de gevolgen
worden getaxeerd van milieu-ingrepen op levensgemeenschappen. Kennis over de relatie tussen milieuva-
riabelen en het voorkomen van soorten is daarbij onontbeerlijk. Ecologen proberen die relaties te achter-
halen door op verschillende monsterplekken soorten te inventariseren (op aan/ afwezigheid of abundantie)
en tevens huns inziens relevante milieuvariabelen te meten. Het onderzoek, dat tot dit proefschrift heeft
geleid, richtte zich op het ontrafelen van de vereiste veronderstellingen van statistische methoden, die vaak
door ecologen worden toegepast en op het ontwikkelen van een nieuwe techniek.

Vanuit klassiek statistisch oogpunt zijn soortgegevens moeilijk te verwerken:

- er zijn veel soorten bij betrokken (10-500);

- heel wat soorten komen maar op weinig plekken voor, dus de gegevens zitten vol nullen;

- verbanden tussen soorten en milicuvariabelen zijn vaak niet rechtlijnig, maar ééntoppig: ecen plant
bijvoorbeeld groeit bij voorkeur onder ¢en voor dic soort optimale vochtconditie en wordt zowel op
drogere als ap nattere monsterplekken minder aangetroffen. Een wiskundig model voor een eentoppig
verband is het Gaussische responsiemodel.

Klassicke methoden als lineaire regressie, hoofdcomponentenanalyse en canonische correlatie-analyse
kunnen niet zinnig worden gebruikt, omdat ze van rechtlijnige verbanden uitgaan. Eén van de methoden,
waar ecologen wel mee werken, is correspondentie-analyse. Het inzicht in het achterliggende responsie-
model hiervan liet tot voor kort te wensen over. Via correspondentie-analyse wordt een ordening in soorten
en monsterplekken aangebracht (ordinatie) om de structuur in de gegevens te laten zien. De ordening wordt
vervolgens aan de milieuvariabelen gekoppeld. Het is eent indirecte methode om relaties op te sporen, ofwel
een methode voor indirecte gradiénten-analyse,

Correspondentie-analyse werd omstrecks 1935 ontwikkeld, maar staat bij ecologen pas in de belang-
stelling sinds 1973, Toen leidde M. O. Hill de technick opnicuw af als het herhaald toepassen van gewogen
middelen - een methode waar ecologen al sinds 1930 mee vertrouwd zijn. Gewogen middelen heeft het
voordeel van de cenvoud bij toepassing op ecologische gegevens. Deze techniek kan voor twee verschillende
doelstellingen worden gebruikt, Ten eerste kan het optimum van ¢en soort voor ¢cen milicuvariabele ermee
geschat worden. Ten tweede kan bij bekende optima de waarde van een milieuvariabele op een monsterplek
worden geschat (calibratie) aan de hand van de soortensamenstelling (dit is ook de methode die Ellenberg
aanbeveelt voor gebruik van zijn milieu-indicatiegetallen).

In hoofdstuk 2 wordt het schatten van optima met gewogen middelen vergeleken met de resultaten van
niet-lineaire regressie op basis van het Gaussische responsicmodel. Onder bepaalde voorwaarden blijken
deze twee methoden precies overeen te komen. In andere gevallen schat men door gewogen middelen het
optimum onzuiver en verdient nict-lineaire regressie de voorkeur. Bovendien kunnen met nict-lincaire
regressie responsiemodellen met meer dan é&n milieuvariabele worden aangepast. In hoofdstuk 3 wordt
het schatten van de waarde van een milieuvariabele via gewogen middelen afgezet tegen calibratic op basis
van het Gaussische responsiemodel. Ook hier blijken de technicken soms equivalent te zijn, Hoofdstuk
4 gaat in op correspondentie-analyse. Er wordt aangetoond, dat correspondentie-analyse onder bepaalde
voorwaarden een benadering geeft van ordinatie op basis van het Gaussische responsiemodel, wat qua
rekentechnick veel ingewikkelder is.

Indirecte methoden voor het opsporen van relaties hebben een belangrijk nadeel. Een aantal milieuva-
riabelen kan de soortensamenstelling zo sterk beinvloeden, dat het effect van andere interessante milieu-
variabelen niet meer te achterhalen is. Alleen directe methoden als mict-lincaire regressic ondervangen dit
probleem, maar niet-lineaire regressie met veel soorten en milicuvariabelen is zeer bewerkelijk. In hoofd-
stuk $ wordt een veel eenvoudiger directe methode voorgesteld, canonische correspondentie-analyse. In
hoofdstuk 6 blijkt canonische correspondentie-analyse een multivariate vitbreiding van gewogen middelen
te zijn. De resultaten kunnen grafisch weergegeven worden. In hoofdstuk 7 wordt een uitbreiding met
covariabelen besproken, wat leidt tot partiéle canonische correspondentie-analyse. Er wordt tevens op
gewezen dat Gaussische modellen en canonische correspondentie-analyse kunnen worden toegepast op
afhankelijkheidstabellen,

Hoofdstuk 8§ beschrijft onderzoek om ecologische amplitudes van planten ten opzichte van de vocht-
schaal van Ellenberg te bepalen op basis van alleen soortgegevens. Hoe consequent de vochtindicatie-
getallen zijn is ook onderzocht. Hoofdstuk 9 tenslotte geeft een overzicht van gradiénten-analyse, Er is
een computerprogramma ontwikkeld, CANQCO, waarmee het merendeel van de behandelde technieken
kan worden uitgevoerd.
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Voorweord

Dit proefschrift is voortgekomen uit mijn werkzaamheden als consulterend
gtatisticus voor het Rijksinstituut voor Natuurbeheer (RIN). Herman van Dam
en Paul Opdam waren daar de eersten die mij advies vroegen over ordinatie en
cluster-analyse. Via het WAFLO~project en de SWNBL-studies brachten Rien
Reijnen, Jaap Wiertz, Niek Gremmen, Geert van Wirdum en Douwe van Dam me in
contact met milieu-indicatie-getallen van hogere planten. Hun vragen en op-
merkingen, en ook die van Hans van Biezen, hebben me bijzonder gelInspireerd.
Later vormde ook het EKQO~project van Piet Verdonschot een stimulans., De
directies van het RIN, het vocormalige IWIS-TNO en het ITI~TNO ben ik zeer
erkentelijk voor de ruimte en vrijheid die ik heb gekregen om dit onderzoek
vorm te geven. Ik wil hiervoor met name danken de heren J.C.A. Zaat {IWIS-
TNO) en ir. A.A.M. Jansen (Groep Landbouwwiskunde} en dr. A.J. Wiggers, dr.
R.A. Prins, dr. A./B.J. Sepers en dr. C.H. Gast (allen van het RIN).

Tijdens een conferentie over statistische ecologie in 1978 te Parma kwam
ik in contact met Rob Hengeveld en Bas Xooijman. Mede van hen heb ik geleerd
hoe belangrijk unimodale modellen zijn voor de ecologie en hoe moeilijk ordi-
natie dan is. Tijdens mijn studiejaar (1979/1%30) in Newcastle upon Tyne
leerde ik Colin Prentice kennen. Hij werd mijn goeroe zonder wie ik dit on-
derzoek niet tot een goed einde had kunnen brengen. Mijn bezoek in 1980 azan
Mark Hill in Bangor heeft grote invloed gehad. K was toen, mede door het
contact met professor Corsten, zeer gecharmeerd van de elegantie van de
hoofdecomponenten—-analyse~biplot. Mark sprak zijn misprijzen uit over de toe-
passing hiervan in de ecologie, maar kon mlj niet duidelijk maken wat het
model was achter zijn "detrended correspondence analysis". In 1981, terug in
Nederland, nam ik deel aan de PAO~cursus "Niet-lineaire multivariate analyse"
te Leiden waarbij ik kennis maakte met het werk van Albert Gifl. Hoewel
"niet-lineair" veelal "monotoon" betekende, heb 1k veel aan de cursus gehad.
Het werk van Willem Heiser daarin over ontvouwing ging wel uit van unimodale
modellen., Pas later heb 1k ingezien hoe nauw mijn eigen werk aansluit bij de
hoofdstukken 6 en 8 van zijn proefschrift. Willem merkte ook de grote over-—
eenkomat, op tussen canonische correspondentiermanalyse en Abby Israéls' redun-
dantie—analyse voor nominale varlabelen. Willem en Abby, hartelijk dank voor
de vele zinnige discussies!

Een bijzonder stimulerende invloed hebben ock Onne van Tongeren, Rob
Jongman en Caspar Looman gehad. Bedankt voor de goede samenwerking tijdens en
na de PAO-cursussen "Numerieke methoden voor de verwerking van ecologische
gegevens”.

Ik dank ook mijn c¢ollega’s op het Staringgebouw voor de prettige contaer
ten, Zonder de secretari®le ondersteuning door Mary Mijiing en Joke van de
Peppel en de technische ondersteuning door Martha de Vries zou dit onderzoek
alleen maar bij een idee gebleven zijn. De mensen van de tekenafdeling en de
fotoafdeling van het ICW wil ik hartelijk danken vcoor het teken— en fotowerk
dat ze tussen de bedrijven door voor me hebben gedaan. De bibliotheek en het
rekencentrum van het Staringgebouw verleenden uitatekende service!

De afbeelding op het voorkaft van dit proefschrift is gemaakt door Eiko
Kondo met de Sumi-& schildertechniek en die van het achterkaft door Frank
Arnoldussen. Hiervoor mijn hartelijke dank.

Een proefschrift is pas een proefschrift als het onderworpen is aan het
kritische oog van een promotor. Professcor Corsten wil 1k bijzonder bedanken
voor alle aandacht die hij aan dit proefschrift heeff{ besteed.

Tenslotte wil ik ledereen bedanken die aan de totstandkoming van dit
preoefachrift heeft bijgedragen, maar niet met name is genoemd.
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Chapter 1. GENERAL INTRODUCTION
Introduction

In the last decades, many people have become aware of the human potential to
cause envirommental change both on a local scale (e.g., a temperature
inerease in a river by a power-plant) and on a global scale (e.g., acid rain,
002 increase by burning fossil fuels). To assess the impact of environmental
change on biological communities, one needs to know the relations between
environmental variables and the occurrence of species. Such knowledge is
indigpenaable also for nature management.

Ecologists attempt to acquire knowledge about specilesrenviromment
relations from data on biclogical communities and thelr environment,
Typically, several sites are selected and at each site the occurrence or
abundance of each species of a taxoncmic group is recorded and environmental
variables that ecologists believe to be important, are measured. S0 the data
conasist of two sets: data on the occcurrence or abundance of several specles
at sites and data on several environmental variables measured at the same
sites. A "site" is the basic sampling unit separated in space or time from
other sites, e.g. a quadrat, a woodlot or a light trap. The design of
ecological field studies is discussed by Greerr (1979) and Jager and Locman
{1987). The design of impact atudies in the strict sense is reviewed by
Stewart-Oaten et al (1986}.

This thesis deals with methods for the statistical analysis of
ecoclogical data on species and environmental variables. Such data have
saveral features that make them special in a statistical sense:

1. the number of species is large (10 = 500),

2. the data are either binary {(presence’/absence of a species at a site}
or, if they are quantitative, they contain many zero values for sites
at which a species is absent. Measures of abundance, like density of
animals or relative cover of plants, are highly varfable and always show
a skew distribution.

3. Relationships between species and quantitative environmental variables
are generally nonlinear. Specles abundance or probability of occurrence
is often a unimedal function of the environmental variables.

The importance of unimodal relationships between species and enviromment
has been realized since the beginning of this century. For example,
Shelford's law of tolerance (1919: in Odum, 1971) states that a species not
only requires a certain minimum amount of a resource (as in Liebig's law) but
also that species do not tolerate more than a certain maximum amount of the
resource. Hesse (1924: in Thienemann, 1950) stated a more general law: each
species thrives best at a particular optimum value of an environmental
variable and cannot survive when the value is either too low or too high. In
the introduction to a study of the relationship between some Orthoptera
species and moisture, Gause (1930: p, 307) stated that "the law of Gauss is
the basis of ecological curves", but alsc that "we must not forget that
factors exist (such as competition, for inatance) which produce changes in
different sections of the curve of distribution (Du Rietz, '21)." This
warning still holds (Austin, 1980)., In later work, Gause became more
interested in competition and developed his principle of competitive
exclusion (Gause, 1934).

Whittaker {1956, 1967) also stressed that species generally show
unimodal relationships with environmental variables. Gauch and Whittaker



(1972) popularized the Gausslian ocurve as an attractively simple model for
unimodal relationships, The formula of the Gaussian curve {Fig. 1) is

1
e (xgeu,)2/el
Eyik = °k e 2 1% k (1)

with y,; the abundance of species k at site i (f =1, ..., n; k =1, ..., m)

and Eyik is the expected abundance,

Xy the value of environmental variable x at site i,

Q¢ the maximum of the curve for species k,

uy the optimum of species k, i.e. the value of x for which the maximum
is attained,

t.k the tolerance of species, which 1s a measure of curve breadth or
ecological amplitudge.

abundance value (y)

}-t—--l

| L

clhbe—————

environmental variable {x)

Fig. 1 The Gaussian response curve for the abundance value (y) of a specles
against an environmental variable (x). (u = optimum or mede; t =
tolerance; ¢ = maximum.)

Gauch and Chase (197U) developed an algorithm to estimate the species
parametera (o, uy, t,} by nonlinear leastmsquares regression. By doing so,
they made expEicit that the Gaussian curve of Eq. {1) represents a reaponse
function, not a probabllity distribution. The species is considered to
respond to the envirommental variable: in the terminology of regression, the
abundance of a species is the response variable and the environmental .
variable is the explanatory variable. An example of "Gaussian regression" is
given by Westman (1980).

It should be noted that a unimodal curve may appear monotonic if oniy a
limited range of the environmental variable is sampled. In such cases, the
estimates of the parameters of Eq. (1) are iilndetermined; in particular, the
optimum cannot be estimated well, and a monotonic statistical model (e.g.
fitting a atraight line) is more appropriate., Unimodal relationships become
visible when a sufficient range of the envirommental variable(s) is
considered. However, if the data are collected over a sufficient range of
enviromments for species to show unimodal (or more complex) relationships
with environmental variables, it is clearly inappropriate to analyse these
relationships by standard statistical methods that assume linear
relatjonships such as multiple linear regression (without squared terms in



the environmental variables) (Montgomery and FPeck, 1982), principal
components analysis (Jolliffe, 1986), factor analysis (Lawley and Maxwell,
1971), redundancy analysis (van den Wollenberg, 1977), canonical correlation
analysis (Gittins, 1985) and LISREL models {J@reskog and S®rbom, 1981). With
multiple regreaaion, unimodal models can be fitted by including squared terms
in the environmental varizbles in the regression equation (e.g. Alderdice,
1972; Forsythe and Loucks, 1972), but multiple regression is unattractive in
this context because the response variable (the abundance of a species) often
has a skew distribution which cannot be transformed to symmetry because of
the many zero values.

Ecologists have therefore used and adapted non-standard techniques to
analyse their data (see e.g. Greig-Smith, 1983). Most conspicuously,
ordination and cluster analysis have become very popular as reflected in the
recent text books by Green (1979), Gauch {1982), Greig=Smith (1983), Legendre
and Legendre (1983}, Pielou (1984), Kershaw and Looney (1985), Digby and
Kempton {1987) and Jongman et al (1987). These techniques are commonly used
£0 reduce the multi- species data to a few ordination axes or a few
relatively homogenous clusters. The c¢rdination axes or clusters are then
interpreted in the light of whatever is known about the species and the
environment, This interpretation arises in an informal way, if explicit
environmental data are lacking, or in a formal statistical way, if
environmental data were collected. If many environmental variables were
measured, ordination or eluster analysis are sometimes applied to the
environmental data as well and the results are compared with the ordination
or cluster analysis of the species data (see e.g. Wiens and Rotenberry, 1981;
Bates and Brown, 1981; Holder-Franklin and Wuest, 1983; Earle et al, 1986).
In this way the whole analysis becomes rather complicated. Species are
related to environment in an indirect manner, hence Whittaker's (1967) term
"indirect gradient anaiysis". Whittaker contrasted this with direct gradient
analysis, which is similar to what statisticlians call regresasion -~ i.e., the
abundance of each species is described in relation to environmental
variables.

Among the possible ordination techniques, ecologists most often use
either principal components analysis, with various forms of prior
transformation of the species data (NoymMeir et al, 1975), or reciprocal
averaging (alias correspondence analysis). Multidimensional scaling has also
received attention, mainly in comparative studies of ordination techniquea.
Principal components analysis was the earlier technique to be used In
ecology, with an application by Goodall (1954) but sinece Hill (1973)
intrcoduced reciprocal averaging to ecologiata, reciprocal averaging has
gained markedly in popularity over principal components analysis. Hill and
Gaueh (1980) later introduced detrended correspondence analysis as an
improved form of reciprocal averaging, and this method has in recent years
become possibly the most popular technique of all., This may be so partly
because an efficient computer program (DECORANA) became available (Hili,
1979), but alsoc because the new technique proved exceptionally effective for
simulated data generated with the Gaussian model (HIll and Gauch, 1980C).

In their 1980 paper, Hill and Gauch based the improvements made in
detrended correspondence analysis on a "species packing model"”, that is a
medel in which the species have Gaussian curves which equispaced optima,
equal maxima and equal tolerances (Fig. 2). But the rationale for this model
is difficult to fellow == partly because mathematics is avoided -= and the
Gaussian model appears to come out of thin air, Neither the 1980 paper, nor
Hill's other papers (Hill, 1973, 1974), explain why correspondence analysis
is suited for the analysis of data that folilow the Gaussian model. The same
is true of other rationales for correspondence analysis, most of which
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Fig. 2 Specles packing model: Gaussian logit curves of the probability (p)
that a species occurs at a slte, against environmental variable x.
The curves shown have equispaced optima, equal tolerances and equal
maximum probabjlities of occurrence (pmax = 0.5). Xg is the value of
x at a particular site.

concern categorical data (Nishisato, 1980; Gifi, 1981; Greenacre, 1984;
Tenenhaus and Young, 1985). This thesis resulted from an attempt to
understand the properties of correspondence analysis in terms of a unimodal
model since this would provide a rationale for ecologists'! use of
correspondence analysis in indireet gradient analysis. I then began to
explore methods that relate species directly to enviromment = methods 1ike
linear regression or canonical correlation analysis, but then in a form
appropriate for the analysis of unimodal relationships.

Structure of the thesis

Four main types of statistical problems are dealt with in this thesis. Each

type is specified for the Gaussian curve of Eq. (1), as follows (Table 1):

1. Regression =~ where parameters of a species are estimated from data of the
corresponding species and of the environmental variable; so
for species k, o, uy, t, are estimated from (y;,) and (x;)

i=1, «.., nj.

2. Calibration = where the value of an environmental variable at a site is
eatimated from data of species and parameters of specles; so
for site i, x; 1s estimated from (y;, ) and (ey, u., t,)
[k =1, o0, m]. Calibration is here a Lype o% multi-species
bio—assay. An example is the calibration of pH to
reconstruct past changes in pH in lakes from fossil diatoms
found in successive strata of the bottom sediment
(Battarbee, 1984). [The way in which the term ealibration is
used in this thesis is somewhat narrow; more usually, the
estimation of the species parameters from a training set 1s
included. |

3. Ordination r where the parameters of species and the values of sites are
estimated from data of the specles; so, for all sites and
species, X;, ¢, W, and t, are estimated from (yg,) [1 =1,
seny Ny k=1, ..., M.




Y, Constrained ordination = in which the values of the sites are not free
parameters as in ordination, but are constrained to be a
linear combination of envirommental variables. Here, the
parameters of specles and the coefficients of the llnear
combination are estimated from the data of the species and
the environmental variables.

Ecologists have developed much simpler methods than nonlinear regression and
calibration. For both problems they invented heuristically the method of
weighted averaging. It ia shown in this thesis that, under simplifying
circumstances, the method of weighted averaging gives efficient estimates of
the optimum (uk) of a Gauasian curve, in the regression context (Chapter 2),
and of Xy in the calibration context (Chapter 3)}. The later chapters build
further on these results. By applying the method of weighted averaging both
ways and in an iterative fashion, Hill {1973) derived "reciprocal averaging",
alias correspondence analysis. When Hill invented reciprocal averaging,
correspondence analysis was already in existence, but was seldomly applied to
ecological data. In chapter 4, correspondence analysis is shown to give an
approximate solution to ordination on the basis of the Gaussian model. In the
same way, canonical correspondence analysis is derived as an approximate
solution to constrained ordination {Chapter 5). Canonical correspondence
analysis satisfies ecologista' desire for a simple, robust method to relate
species to environmental variables, if the relationships are assumed to be
unimodal. In Chapter 6, canonical correspondence analysis 1is shown to be a
multivariate extension of weighted averaging. In Chapter 7, the case ia
considered where the environmental variables are divided in a sest of
variables~of-interest and a set of covariables, leading to partial canconiecal
correspondence analysis. It is also shown that conatrained ordination can be
seen as a form of constrained regression, Chapter 8 is a case study of a
rather special estimation problem (Table 1). The concluding chapter 9 gives a
synthesis of linear and unimodal methods to relate species to environment.

The remainder of this GENERAL INTRODUCTION gives a sketch of the context
in which the chapters of this thesis were written, This is done for each of
the main types of atatistical problems just distinguished.

Table t: Types of problems studied in the chapters of this thesis and the
unknown parameters that are to be estimated, with special reference
to the parameters of the Gaussian curve (1),

site values species paras heuristic method
meters
Type of problem {x] {epiuy by} Chapter
regression known unknown welghted averaging 2
calibration unknown known welghted averaging 3
ordination unknown unknown correspondence Y
analysis
constrained linear combination unknown canonical corres~ 5,6,7
ordination of environmental pondence analysis
variables

unnamed unknown u known; weighted averaging 8

Cpr Ty unknown



Regression

Suppose a researcher wants to investigate whether diatoms are good indicators
of the acidity (pH) of lakes, with the aim to reconstruct, subsequently, pH
from fossil diatoms found in succeasive strata of the bottom sediment. A
sample of n lakes i3 selected. For each lake, some material is taken from the
upper layer of the sediment and pH is measured.

In the laboratory, a slide for use under the microscope is made from the
material sampled and the species (or taxa) that are present in the slide are
identified., For simplicity, suppose that only presence/absence of species is
recorded. The survey so results in the presences and absences of, say, m
species in the n lakes ("sites"). Let y;, = i or 0 depending on whether
species k 1s present or absent in lake i, respectively (i = 1,...,n;
k=1,...,m). For typical data, most of the apecies will have a relative
frequency in the sample bhelow 0.05, and only very few gpecies will reach

3. 3.

The first step is to describe the relationship of the probability of
occurrence (p) of each species against pH. What comes to mind is to carry out
logit regression of the data of each particular species on pH, for example by
the model

108 [T‘g'p'] = bo + b1x + bexz (2)

where p is shorthand for Eyik, x is pH and bgs by and b2 are regression
coefficientsa, a triple for each species, The quadratic term is included
because the relationship can be neon~monotonic. By deviance tests, it can be
tested whether b2 = 0, or whether b1 = b, = 0. If b, = by = 0, then the
spacies is not an indicator for pH. If b2 < 0, then the curve has an optimum;
if the maximum of the curve is small, the curve resembles the Gaussian curve
and, therefore, ia termed the Gaussian logit curve, in Chapter 2,

Logit regression is a recent development (Cox, 1970). It was not widely
available before the introduction of the generalized 1inear model (Nelder and
Wedderburn, 1972)}. Ecologists have used and developed other methods. One such
method is to divide pH in K ¢lasses, to crosstabulate the species
presence/absence and pH=classes in a 2 x K table, and to calculate a
chi-squared statistie, or an "information" statistic (Guillerm, 1971;
Kwakernaak, 1984) which is related to the G-test (a deviance test}. I will
not discuss this method further. In this thesis, I am interested in variation
along continuous variables, termed gradients by ecologists, Another simple
method is at the center of this thesis. From the time of Gause (1930) till
today (Charles, 1985), many ecologists have analysed their data by the method
of weighted averaging. In this method, the relationship of species with an
environmental variabdble is characterized by the weighted average

- ? Yikx
Sl ? (3)
y
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and the weighted standard deviation
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In this thesis, Egs. (3) and (4) are considered as "simple-minded" estimates
of the optimum and tolerance of the Gaussian {logit) curve, and their
statistical properties are studied. Weighted averaging is used both for
presence/absence data and for abundance data. For presence—absence data the
method reduces to the calculation of the mean and standard deviation of the
environmental variable for those sites in which the species 1s present. An
intuitive rationale is as follows. With pH as the envirommental variable, a
apecies with a particular optimum for pH will be present most frequently at
3ites with pH close to its optimum. So an intuitively reasonable estimate of
the optimum is to take the average of pH of sites in which the species is
present.

In statisties, means and standard deviations estimate the expectation
and standard deviation of probability distributions. With some imagination,
the values of x where the species is present can be considered to derive from
a distribution. The distribution concerned can be obtained by factoring its
density, £{.), by

T(species 1s present at x) = g(x) p(specles is present|x) ()

where g (%} represents the probability density function of the envirommental
variable x in the population sampled and p(.rx) is a conditional density.
Because the response, y, is binary (1/0),

plspecies is present,x) = E(y'x) (6)

which shows that p(.|x) is a response function, denoted by uk(x) for species
k in Chapter 3. The weighted average (Eq. (3)) is an unbiased estimator of
the expectation of the distribution with density f£{.). But, what is of
interest is a parameter of the response function uk(x), for example, the
centroid of uk(x), I x uk(x)dx/f uk(x)dx, or the optimum of p,(x). If g(x) is
constant (x has a uniform distribution), the centroid of uk(x colncides with
the expectation of the distributfon with densivy £(.). If y (x) is symmetric,
for example, the Gaussian logit curve, then the centroid coincides with the
optimum. So, the welighted average is an unbiased estimator of the optimum, if
¥ has a uniform distribution and the response function is symmetric.

In Chapter 2, the weighted average is compared by simulation and real
data with the estimator of the optimum obtained from logit regression. In the
simulations, the data were generated from Eq. (2}, the Gaussian logit curve.
The distribution of the environmental variable, the number of sites sampled
and the maximum probability of occurrence were varied in the simulations. For
equispaced values of X4y the weighted average and the regression estimator
for the optimum resulted in almost identical values and are therefore egqually
efficient. The results also showed that the weighted average is a reasonable
efficient estimator of the optimum, if the distribution of the envirormental
variable is uniform, or if the species has few occurrences and a small
tolerance, The simulations thus confirmed Ffor small samples what was expected
from the asymptotic theory given in Chapter 3 and Chapter 4. In large samples
in whic¢h the distribution of the envircnmental variables is not uniform,
weighted averaging may however give estimates with nonnegligible bias.

Logit regession has several advantages over weighted averaging by
allowing
- approximate statistical tests to be carried ocut,

- approximate confidence intervals for the cptimum to be constructed,
- quantitative predietions,

= other shapes of curve to be fitted, e.g. by fitting splines,

= joint analysis of the effects of several environmental varlables.



This research was a stimulus for Barendregt et al (1985) to develop their
ICHORS model. This model i3 a set of logit regression equations relating the
probability of occurrence of water plants to water chemistry variables,
Pitted to data from 800 samples from polders in the Vecht-region. The
equations are used to evaluate the possible effectas of changes in water
management for these polders (see also Barendregt et al, 1986). The equaticns
were fitted by a stepr-wise regression procedure in which the square of each
variable considered was added to the model.

However, relating species to enviromment by multiple logit regression is
not without problems. Qutliers form a seriocus problem {Looman, 1985). If
interaction effects of environmental variables are to be considered, the
number of parameters in the models becomes large. The parameters are likely
to become ill-determined. The number of parameters can be reduced by fitting
a hlerarchy of models and by deciding by statistical tests whether a simpler
model is s8till acceptable. This i3 however a rather complicated procedure,
often leading to qualitatively different models for different species
{Looman, 1985). It will depend on the context whether such a complex
procedure is worthwile. The experiences of Looman {1985) with multiple logit
regression were an important stimulus to me to search for a simpler direct
method to relate species to enviromment (Chapters 5-7).

Calibration

The example of the previous section is continued. After having described the
relationship of diatom species with pH, the researcher wants to produce
estimates of the pH in the past from fossil diatom remains. He/she takes a
core from the sediment, splits the core into thin sections and identifies
which speclies are present in each section. In addition, the sections are
dated by methods analogous to the *“Crmmethod. The only problem considered
here is how to estimate pH from the presences and absences of the species. It
is a nonlinear multivariate calibration problem. The notation used is the
same a3 In the previous section, but it should be noted that the sites now
refer to thin sections of a core and that the values {x;} are unkowns.

Nonlinear multivariate calibration has not received much attention in
the statistical literature. The approach proposed in Chapter 3 is based on
extra radmittedly unrealistic- assumptions.

1. The parameters of the response curve ¢of each of the apecies are
determined with great preclsion, so¢ that they can be considered as known
constants,

2. the responses of the species, given pH, are independent.

With these assumptions, the pH can be estimated from the presences and
absences of the apecies by the maximum ]likelihood method. Here, the
likelihood is maximized numerically.

In vegetation science, Ellenberg (1948) developed a much simpler method
to estimate the value of an environmental variable at a site from the plant
specles that grow there. The method is based on "indicator values" of species
with respect to the envirommental variable, Ellenberg (19348) did not give a
precise definition of "indicator value", but, intuitively, it is the optimum
{= the value most preferred by the species). So, the weighted average in Eq.
(2} can be considered as an estimator of the indicator value. In Ellenberg's
method, the value of an environmental variable is estimated by the weighted
average of indicator values of apecies growing at the site; in our notation,




A LRl (1)

So it is a weighted averaging method, but "the other way round" compared to
Eq. (3)}. For presencemabsence data, the method reduces to averaging of optima
of specles that are present. An intuiltive rationale is as foliows.

In a site with a particular pH, species with an optimum close to that pH wiil
be present most frequently. So, an intuitively reasonable estimate of pH is
to take the average of optima for pH of the species present. Ellenberg's
method was proposed independently by Whittaker (1948: in Gauch, 1982), Pantle
and Buck (1955) and continues to recelve interest (e.g. von Tumpling, 1966;
Durwen, 1982, Gauch, 1982, Bbcker et al, 1983, Melman et al, 1985, Sladegek,
1986).

Chapter 3 is a bold attempt to reconstruct the model that Ellenberg
(1948) may have had in mind when he proposed weighted averaging of indicator
values as a calibration method. This is done by investigating with which
model the method has attractive statistical properties, namely consistency
and efficiency. It turned out that, for presence~absence data, the Gaussian
logit curve is the only response model under which the weighted average can
achieve asymptotically an efficiency of 1 compared to the maximum 1ikelihood
estimator. Unit efficiency iIs actually achieved with a species packing model
(Fig. 2), in which the Gausaian logit curves of the species have equispaced
optima, equal maxima and equal te¢lerancea. For abundances that are
Poissonian, the Gaussian curve has this property. So chapter 3 shows that the
Gaussian logit model has a more than casual relation t¢ the method of
welghted averaging. In the context of regression, weighted averaging can also
achieve unit efficiency {(Chapter 2), but the theoretical analysis is carried
out for calibration because then only a single parameter is involved,

In the example, a simple method to infer pH from diatoms is thus to
estimate the optima from a training set by Egq. (3) and to use Eq. (7) to
produce estimates of pH for thin sections of the core. (In this approach,
averages are taken twice, so that the range of pH is shrunken. This defect
can be repaired by linear rescaling on the basis of a simple linear
regresaion of pH on ii in the training set.) Using counts of diatoms, Ter
Braak and Van Dam {in prep.) compared this methed with the maximum likelihood
method. They found that the maximum likelihood method performed only slightiy
better than weighted averaging as judged by the mean squared prediction error
in a test set.

Calibration by weighted averaging-appliedstwice is the natural end-point
of a historical development that started with Imbrie and Kipp (1971). To
regonstruct past seawsurface temperature from Foraminifera, Imbrie and Kipp
(1971) considered applying inverse regression to a training data set, i.e.
regression of temperature on the abundances of the species. But this method
was considered inappropriate as the abundances of apecies showed
multicollinearity. So, they decided to reduce the abundances of the species
to a few axes by principal components analysis and to regress temperature on
these axes (this is termed principal components regression; Jolliffe, 1986),
The resulting equation was used for reconstruction. Roux {1979} produced
better estimates of temperature, at least in the training set, by replacing
principal components analysis by correspondence analysis.

By rearranging species and sites in the data matrix in order of their scores
on the first axis of correspondence analysis, he obtained a matrix with large



abundance values near the principal "diagonal®" of the matrix and small values
elsewhere. Such matrices arise when relationships are unimodal.

Gasse and Tekala (1983) were concerned about the fact that only part of
the information on the relationship of species to x i3 retained in the first
few axes of the correspondence analysis. They suggested the following
improvement in their attempt to estimate pH from diatoms. They divided pH
into four classes and, next, applied correspondence analysis to a species-by-
class data matrix, each entry of which containas the total abundance of a
species in sites with a pH of the correaponding class. The final calibration
equation was obtained by a multiple regression of pH on the axes of the
correapondence analysis. Despite its complexity, the method is closely
related to weighted averagingrapplied-twice. Both methods are special cases
of canonical correspondence analysis (Chapter 5). The main difference is
that, in the method of Gasse and Tekaia {1983), pH is divided in clasaes
whereas pH i3 treated as a quantitative variable in weighted averaging-
applied-~twice.

Ordination

With ordination, one enters the realm of explorative data analysis., If one
has not measured any environmental variable, one can still attempt to
construct a latent variable that explaing the abundances of the apecles
ohserved at the sites by way of the Gaussian model. Ordination is then a
method to detect a simple atructure in the data, or a method to reduce the
dimensionality of the data (from m to 1 or 2).

Gauch et al (1974) ritted Gaussian curves Lo vegetation data by the
least—~squares method. However, the least~squares method is not very
attractive because abundances tend to have a very skew distribution. In a
paper that remained largely unnoticed, Kooijman (1977a) fitted Gaussian
curves by the maximum likelihood method under the assumption that the
abundances were independent Poissonian counts. Kooijman (1977a) was the first
to fit the two-~dimensional Gaussian model in which species have Gaussian
response surfaces against two latent variables. The computer programs
developed by Kooijman {1976b) were written in APL, which limited their use.
An application is described in Kooijman and Hengeveld (1979}. A recent
overview of one~dimensional Gaussian ordination, including algorithms, is
given by Ihm and van Groenewoud (1984},

Gaussian ordination has not become popular among ecologists because of
its computational complexity and its strong and explicit assumptions. Hill
(1973} developed a simpler method with the same aim: reciprocal averaging,
alias correpondence analysis, Hill (1973) is one of the many independent
inventors and reinventors of correspondence analysis {Tenenhaus and Young,
1985). Hill suggested the technigue as a natural extension of the method of
weighted averaging, known to him via Whittaker's (1956} paper. If Egs. (3)
and (7) are applied alternately to a data matrix {yik}' the values of “(uy)
and (x;) converge to the first nontrivial axis of correpondence analysis
(Hill, 1973; Chapter U4 and Chapter 9). Under simplifying conditions, this
first axis is an approximation to the latent variable of Gaussian ordination
as estimated by maximum likelihood (Chapter H4). The conditions needed are a
combination of those needed in Chapter 2 and 3 for the weighted average to be
an efficient estimator of Uy and of Xy, respectively. This results holds true
for presence/absence data and abundance data that follow the Poisson
distribution.

Independently, Ihm and van Groenewoud {198%) compared correspondence
analysis and Gaussian ordination. They defined a variant of the Gaussian

10



model that is attractive if sites vary in "aize", so that only relative
abundance values are meaningful, I shall discuss this variant in some detail
as it provides an interesting link with the analysis of contingency tables by
correspondence analysis. Their model {Equation 3.2.1 of the paper} is (with
te = t)

T (x = u,)?/t2
Eyj, = rjcee 2 L k k (8)

Compared with Eq. (2), ry is an extra parameter, which accounts for the size
of site i. The model is useful for compositional data also; r; then accounts
for the constant—sum constraint (Pawid, 1982; ter Braak, 1987%. By expanding
the quadratic term in Eq. (8) and assuming tk = t, Ihm and van Groenewoud
(1984: section 5.1) obtain
u, x. /62
Byj =13 o e K1 )

with ry = ry exp (™ -1 xi/tz) and ck = e, exp( = uZ/t?), and by using a first
order %aylor expandion,
#* *
Eyg =g ck(1 + ukx./tz) {10)

A simple estimate of ri ek is yi+y+k/y++, so that, with t=1 and Yik replacing
Eyik, we obtain

¥,y
i+ +k
Yik = v, (1 + ukxi) (11)

This is the reconstitution formula (of order 1) of correspondence analysis
(Chapter 4: Eq. (2.4)). So the model of Eq. (8) is shown to resemble the
"model™ of correspondence analysis. The estimation equations are similar too,
as shown by Goodman (1981); Eq. (9) is Goodman's RC-model for two~way
contingency tables, The similarity can also be shown by extending the
analysis of Chapter 4. Eq. (8) can be rewritten in a form similar to Eq.
(3.1) of Chapter Y4, namely

1
log EYik = ¢1 + ak = : (xi - uk)z/tﬁ (12)

where ¢. = log ry and a, = log Ce Under Poisson sampling, Eqs. (3.2) and
(3.3) o% Chapter u are then the maximum likelihood equations for u, and xy
{with py, = Ey;,}. The appoximations made in Chapter 4 are valid for this
model too and lead to the transition formulae of correspondence analysis. The
equality of Egqs. (8) and (9), for ty = t, is the solution of the apparent
paradox, noted in Chapter 4, that both a unimodal mcdel and a (generalized)
bilinear model stand at the basis of correspondence analysis. In chapter 7, a
multidimensional form of Egs. (9) and (12) are considered, which ~ when
approximated — reduces to multiple correspondence analysis. Chapter T so
provides a link between multiple correspondence analysis and a loglinear
model for contingency tables. The loglinear model contains main effects and
multiplicative terms, Van der Heijden and de Leeuw (1985) and van der Heijden
(1987) use correspondence analysis to analyse the residuals of an additive
loglinear model. Such an anaiysis is an approximation to a loglinear model
with both additive and multiplicative terms {van der Heijden and Worsley,
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1986). Gabriel (1978) considered a linear (not loglinear) model with both
additive and multiplicative terms.

The possibility of analysing unimodal relationships with correspondence
analysis was first noted by Mosteller (1948 in Torgerson 1958: p. 338).
Mcsteller showed that Guttman's prineipal components analysis of categorical
data {Torgerson, 1958) could alsc be used to analyse point items (binary
observations with unimedal "trace lines" with respect to the latent
variable). Heiser (1981) proved that correspondence analysis has interesting
properties for ordering sites when relationships are unimodal (see also
Heiser, 1986),

Sinece the introduction of correspondence analysis, ecologlists have been
concerned about the arch effect. This is the phenomenon that the second axis
of correspondence analysis i8 a quadratic function of the first axis (Hill,
1974; Gauch, 1982)}. By careful mathematical analysis, Schriever (1983}
established when the arch occurs. A qualitative explanation that can be
understood by ecologists is given in Chapter 8 (section IV C):; see also
Jongman et al {1987: section 5.2.3) and the discussion of Chapter 7. Although
the explanation makes clear that the arch is sometimes an artifact of the
method, the debate will continue whether it is always an artifact (Pielou
1984 ; Helaser, 1986, 1987; van Rijekevorsel, 1987). In detrended
correspondence analysis (Hill and Gauch, 1980) the arch is removed by a
modification of the reciprocal averaging algorithm, In simulations (Chapter
%), this modification was shown to improve the approximation to two~
dimensional Gaussian ordination. The modification may occasionally lead to
new artifacts (Minchin, 1987}, which led me to develop a simpler alternative
method of detrending (Chapter 9). The new method of detrending by polynomials
is incorporated in the computer program CANGCO {(ter Braak, 1987}.

Rival approaches to ordination on the basis of a unimodal model are
maximum likelihood Gaussian ordination (Ihm and van Groenewoud, 1984),
unfolding {Heiser, 1987) and multidimensional scaling {Prentice, 1977; Faith
et al, 1987; Minchin, 1987). In nonmetric unfolding, the model does not need
to be Gaussian, buf must stiil be symmetric (Heiser, 1987). The
multidimensional secaling approach appears to allow evén more complex models
when used with an appropriate measure of similarity (Faith et al, t987).
These rival approaches are computationally far more demanding than detrended
correspondence analysis, and require good starting values, Such values can be
derived from detrended correspondence analysis (Chapter 4).

Constrained ordination

Ordination is also popular among ecologists even when environmental variables
have been measured. The approach is then to interpret the ordination axes
(estimates of latent variables) in terms of the environmental variables - an
indirect way of relating species to environment.

There 13 a problem with this indirect approach. Ordination of species
data is not designed to detect the effect on the species of any envirommental
variable at all. So the effect of a variable cne is particularly interested
in can be poorly represented in the ordination or even be missed completely.
This problem can be overcome by using regression instead of ordination,
Building non-linear models by regression 1s demanding in time and
computation, when the effects of several environmental variables on a set of
species are of interest (see the section on regression). A considerable
simplification is possible if species react to the same linear combination of
environmental variables, according to a common response model. Such a model
is the Gausszian ordination model in which the latent variable is constrained
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to be a linear combination of envirommental variables,
9
X, =g+ ¥ b,z (13)

where 2z is the value of environmental variable j at site i and bo, b.,...bq
are parameters., By inserting Eq. (13) in Eq. (1), we obtain the model of
canonical Gaussian ordination (Chapter 5)

1
= {by + }.:b:zs: = u, )2/t
Eyijk —cox e ? o EJ I kH (14)
which is, of course, just a particular non-linear regressicn model. Under the
same simplifying conditions as in the preciocus section, the model reduces to
canonical correspendence analyals {Chapter 5), a constrained form of
correspondence analysis.

When I wrote chapter 5, I chose the adjective "canonical" because of the
relation of the technique with canonical correlation analysis, which is the
standard linear method of relating two sets of variables (here, species and
environmental variables). It turns out that the linear method of redundancy
analysis (van den Wollenberg, 1977) is even more closely related (Chapter 9).
Fortunately, "canonical"™ is still an apt adjective for another reason. It is
shown in Chapter 7 that Eq. (14) 1is the (one=dimensional) canonical form of a
particular nonlinear regression model.

The idea of constrained ordination may be new to ecology, but has
already been around for some time in psychometry (see de Leeuw and Heiser,
1980). Heiser (1981: sections 8.3 and 8.4%) proposed a constrained unfolding
model ¢losely related to the model of canonical correspondence analysis.
Imposing constraints on the sclution of correspondence analyais is not new
elther as it is the basis of the Gifi aystem of multivariate analysis of
nominal and ordinal variables {Gifi, 1981; de Leeuw, 1984). Even the type of
equations for solving cancnical correspondence analysls are not new; Israéls
(1984) derived the same eigenvalue equations in his redundancy analysls of
qualitative variables (see alsc Isra®ls, 1987 and Lauro and d'Ambra, 1984).
Yet canonical correspondence analysis is new, because it was not clear in
advance that these developments were useful in relating species to
environmental variables according to a unimodal modei. In chapter 7 a
Gaussian model is proposed that takes into account the effects of
covariables; this 13 the natural endpgoint of the general approach in this
thesis, 1i.e. the approximation of complicated Gaussian models by
correspondence analysis techniques,

I hope this thesis will encourage ecologists to go beyond exploratory
ordination, data analysts to understand the limitations of correspondence
analysis techniques, and statisticians to bridge the gap between
correspondence analysis techniques and nonlinear regression models.
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Abstract

The indicator value and ecological amplitude of a species with respect to a quantitative environmental vari-
able can be estimated from data on species occurrence and environment. A simple weighted averaging (WA)
method for estimating these parameters is compared by simulation with the more elaborate method of Gaus-
sian logistic regression (GLR), a form of the generalized lincar model which fits a Gaussian-like species re-
sponse curve to presence-absence data. The indicator value and the ecological amplitude are expressed by
two parameters of this curve, termed the optimum and the tolerance, respectively, When a species is rare and
has a narrow ecological amplitude — or when the distribution of quadrats along the environmental variable
is reasonably even over the species’ range, and the number of quadrats is small — then WA is shown (o ap-
proach GLR in efficiency. Otherwise WA may give misleading results. GLR is therefore preferred as a practi-
cal method for summarizing species’ distributions along environmental gradients. Formulas are given to cal-
culate species optima and tolerances (with their standard errors), and a confidence interval for the optimum
from the GLR output of standard statistical packages.

Introduction cies abundance and in ecological amplitude

(Goff & Cottam, 1967; Ter Braak & Barendregt, in

If the relationships between species occurrences
and values of a quantitative environmental variable
conform to bell-shaped curves, then each species’
curve can conveniently be summarized by an indi-
cator value and an ecological amplitude (Ellenberg,
1979, 1982). The indicator values can subsequently
be used to predict values of an environmental varia-
ble from species composition, simply by averaging
the indicator values of species that are present
(Ellenberg, 1979). The average indicator value can
be weighted, to take account of differences in spe-

* Nomenclature follows Heukels-van der Meijden (1983).
** We would like to thank Drs [ C. Prentice, N. J. M. Grem-
men and J. A. Hoekstra for comments on the paper. We are
grateful to Ir. Th. A. de Boer (CABO, Wageningen) for permis-
sion Lo use the data of the first example.

Vegetatio 65, 3-11 (198a).

© Dr W. Junk Publishers, Dordrecht. Printed in the Netherlands.

press). Weighted averaging can also be used to esti-
mate the indicater values themselves -(de Lange,
1972; Salden, 1978). Values of the environmental
variable are averaged over the samples in which a
species occurs. (The average can be weighted by
species abundance, but we consider only presence-
absence data.) Weighted averaging is the basis of
the ordination technique known as reciprocal aver-
aging (Hill, 1973) and is implicit in Gasse &
Tekaia’s (1983) algorithm to establish a transfer
function for estimating paleo-environmental condi-
tions (pH) from fossil diatomn assemblages. Hérn-
strom (1981) used medians, instead of averages, in
a similar context. But there is a problem with aver-
aging, or taking medians: namely that the result
cart depend on the distribution of the quadrats
along the environmental variable. When the distri-
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bution is uneven, all weighted averaging methods
may potentially give mislecading results (Greig-
Smith, 1983, p. 130).

The estimation of indicator values is fundamen-
tally a regression problem. Indicator values and
ecological amplitudes can be estimated from
presence-absence data by logistic regression, with a
second-order polynomial in the environmental
variable as linear predictor. This procedure, termed
Gaussian logistic regression (GLR), fits a curve
related to the Gaussian species response curve
(Austin, 1980) but adapted for presence-absence
data. The indicator value is then the ‘optimum’
(mode) of the curve. Logistic regression is a Gener-
alized Linear Modelling technique (GLIM), and is
the equivalent for presence-absence data of ordi-
nary muftiple and polynomial regression (Dabson,
1983; McCullagh & Nelder, 1983). Austin, Cun-
ningham & Fleming (1984) showed the usefulness
of GLM and GLR in their study of the occurrence
of a range of eucalypt species in relation to temper-
ature, rainfall, radiation and geology. There is no
good evidence for the exact shape of a species re-
sponse curve; we shall show that GLR is a practical
method.

We compare the performance of weighted aver-
aging and logistic regression, using stimulation and
practical examples. We know from theory that
logistic regression must give more accurate esti-
mates of species’ optima in large datasets in which
the number of presences is not too small and for
which the logistic model holds. But is logistic re-
gression also worthwhile when the number of pres-
ences is small, say 10 or 20? There is no advantage
in using an elaborate technique where a much sim-
pler one would be equally good. Our simulations
give some idea about the conditions under which
weighted averaging compares reafonably well with
logistic regression; but they also show that GLR is
more generally applicable. Qur results are also rele-
vant in choosing between reciprocal averaging and
Gaussian ordination (Ter Braak, in press).

Logistic regression
The ‘presence-absence response curve’ of a spe-
cies describes the probability, pfx), that the species

occurs {in a quadrat of fixed size) as a function of
an environmental variable x. Whittaker (1956), and
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others since, have observed that species typically
show unimodal (bell-shaped) response curves. The
‘Gaussian response curve’ (Austin, 1980) is a simple
bell-shaped curve in which the logarithm of abun-
dance is a quadratic function of the environmental
variable, Presence-absence data are more conve-
niently modelled with the Gaussien logit curve, in
which the logit-transform of probability (Cox,
1970) is a quadratic function, (Fig. 1):

px) o
log I]_p(x)]-bn+b.x+b;x =a—'Y (x—-u)2/r (1)

where u is the species optimum or indicator value
(the value of x with highest probability of occur-
rence) and ! is its tolerance (a measure of ecological
amplitude). The parameter a is related to the maxi-
mum value of pfx), which we shail call p,. ... When
Pmax 15 small the shape of pfx} is almost identical
to that of a Gaussian curve; when p,,,, is close to
1 the Gaussidn logit curve is flatter near the opti-
mum {Fig. 1). The parameters bq, , and »; do not
have a natural ecological meaning, but they can
easily be estimated using logistic regression which
is available in standard statistical packages includ-
ing GENSTAT (Alvey et al,, 1977), GLIM (Baker &
Nelder, 1978), BMDP (Nixon, 1981) and SAS (Barr
et al, 1982), and interpretable parameters can be
obtained from them as follows:

optimum u=—b,/(2,)
tolerance t=1/v/(-282) (2)
maximum probability p,,,, =pfu}=

l/fl +exp(—bo—b1u—bzu2)l

Fig. 1. Gaussian logit curves with u=0, r=1 and p,,<0.1 (a),
0.5 (b), 0.8 (¢) and 0.95 {d} and a linear logit curve (¢} (x: value
for the environmental variable, prx): probability of finding this
species at a value x).



(These formulas assume &, < 0. If b2>0 the curve
has a minimum instead of a maximum). Table 1
gives a sample program in GLIM (Baker & Nelder,
1978) for artificial data and Figure 2 shows the
fitted curve. The sample program shows that this
procedure of GLR is a special case of the General-
ized Linear Model {see Dobson, 1983 for an in-
troduction): (1) response variable is a 1/0-variable,
¥, containing the presences and absences of the spe-
cies in the quadrats; (2) error distribution is the
binomial distribution with total J, also termed the
Bernoulli distribution; (3) link function is the logit-
transform, which links the expected value of y (ie.
the probability of occurrence) to {4) the linear

Tabie 1. Sample program for Gaussian logistic regression in
GLIM, with output for artificial data (5.E.: standard error of es-
timate). The program does not provide the estimates for p,.,.,
u and ¢ automatically; these estimates were computed by use of
Eqgs. (2), (A.1) and (A.2).

PROGRAM
SUNIT 16'
SDATA X Y?
SREAD
20 )] 23 i) 26 0 30 1]
a3 0 36 0 a0 0 43 0
46 0 50 1 53 1 56 ]
60 L 70 1 80 0 %0 0
SCALCULATE TOTAL =1
$CALCULATE XQUAD = X*X
SYVARIATE Y
SERROR BINOMIAL TOTAL
SLINK LOGIT?
SFIT X + XQUAD*
SDISPLAY E 3¢
ESTIMATE S.E.
CONSTANT (ko) —55.5 34.5
X [(:D) 1.86 1.t5
XQUAD (ba) —§.015 0.009
Ponax 0.90 -
u 62 3.3
! 5.8 1.8
Comments

' 16 data vatues.

* {x; ¥) being read.

* The response variable is y containing independent 2/0 data.

4 Link function is the logit-transform.

4 x and x2 are the explanatory variables to be fitted.

¢ Displays the parameter estimates be, b, b2 with standard er-
Tor.

10, plx) so g .

0jo0osoo ot PR
¢

L1 &9 B0 x

Fig. 2. Gaussian logit curve fitted by logistic regression 10 the
artificial data (o) of Table L.

predictor specified in the FIT-statement. In GLR
the linear predictor is a quadratic polynomial in x.
The user does not need to provide initial values for
the parameters. The approximate standard errors
of the estimated optimum and tolerance can be de-
rived frdm the variances and covariances of &, and
b that are provided as options by the statistical
packages. A confidence interval for the optimum
can also be calculated, Details of these additional
calculations are given in the Appendix.

The optimum cannot be estimated well if it lies
outside or near the edge of the sampled range. In
such cases the response curve is said to be truncated
and b; in Eq. (1) could be set to zero; the effect is
to fit a sigmoid curve, termed the linear logit curve

(Fig. 1). Whether this simplification is acceptable ’

statistically can be seen by a one-sided significance
test on the value of b;, in which b; divided by its
standard error is compared with the Student #-dis-
tribution with n—3 degrees of freedom (n is the
number of quadrats}. If the null hypothesis (b, =0}
is rejected in favour of the alternative hypothesis
(b2 < 0), then the optimum is said to be significant.

A more general approach to statistical testing in
GLIM is to compare the residual deviance of a mod-
el with that of an extended model (Austin ef o,
1984; Dobson, 1983). The additional terms in the
model are significant when the difference in re-
sidual deviance is larger than the critical value of a
chi-square distribution with k degrees of freedom,
k being the number of additional parameters. (The
residual deviance is defined by —2 log-likelihood
and takes a similar role as the residual sum of
squares in ordinary multiple regression). For exam-
ple, to test the overall significance of GLR we alsa
fit the model with both 5, and b; in Eq. (1) set to
zero and we compare the difference in residual devi-
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ance with a chi-square with 2 degrees of freedom,
The tests described in this paper are approximate;
they are valid when the number of quadrats is large.

Weighted averaging

The weighted average for presence-absence data
is simply the mean of the x-values over those quad-
rats in which the species occurs. Figure 3 shows
how the weighted average depends on the distribu-
tion of sampled quadrats. Highly uneven distribu-
tions can even scramble the order of the weighted
averages for different species (Fig. 3c). Truncation

0.6 B (a)

quadrats:

without A or B

with A

with B

Fig. 3. The response curves of imaginary species A and B (a),
the occurrence of these species in 80 samples, distributed evenly
(b) or unevenly {c) along the environmental gradient. The
weighted averages are indicated with arrows. The two sampling
designs vield weighted averages that are in reversed order (p:
probability of occurrence, & number of quadrats, x: environ-
mental variable).
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is an extreme form of uneven distribution, because
the response curve is then not sampled over the
whole range where the species can occur. Only in
the special case of an even or uniform distribution
over the whole range does the weighted average re-
liably estimate the optimum. The sample standard
deviation {SD) of the x-values of those quadrats in
which the species occurs is a simplistic estitnate of
ecological amplitude, Assuming the Gaussian logit
response curve (1) and an even distribution of the
quadrats, SD overestimates the tolerance f; the dif-
ference between the expected SD and f depends on
the value of p,,.., but is less than 12% when p,,,.
is less than 0.5 (Looman, unpublished manuscript).

Design of simulations

Presence-absence data were generated using a
Gaussian logit response curve with & and ¢ arbitrar-
ily set to ¢ and 1, respectively. We further need to
specify p,,.. the number of guadrats per dataset
and the distribution of the quadrats along the gra-
dient. Table 2 shows the tested combinations and,
for each combination, the expected number of
presences per dataset. In case 1 of the distributions
the x-values of the quadrats are equispaced on the
interval from —35 to 5. In all the other cases the
x-values are random. In cases 2—35 their distribu-
tion is uniform with different degrees of trunca-
tion, negligible in case 2, asymmetric in cases 3 and
4 and symmetric in case 5. Another six cases were
run with p,,. =05 and 125 quadrats only (Ta-
ble 3). In case 6 (Table 3) the curve is unevenly
sampled with on average three times more quadrats
in the interval {1, 5] than in the interval [-§, 1], but

Table 2. Expected number of occurrences per dataset in the
simulations specified by maximum probability of occurrence
(Dmar), number of quadrats and distribution of quadrats {case).
{Ufa, bJ: uniform distribution of quadrats on the interval g to
B).

Pomax LA 3 S R a5 0%

ne. of QUADRATS 375 65 25 125 50

C 1EQUALSPACING 10 10 10 18 19
A 2Uf-5, 3] 10 10 10 19 19
S 3U-1 35 13 13 12 25 23
E 4Uf 05§ 0 10 10 1% 1

SUf-1, ] 3203 2 51T 44




with quadrats uniform within both intervals.
Case 7 consists of quadrats uniformly distributed
in the interval {-2, 5] but with quadrats from the
interval [~1.5, 0.5] removed, giving a case with
moderate truncation and an internal gap. For the
remaining cases (8—11) we used normal {(Gaussian)
distributions of quadrats with different means and
standard deviations; case 8 gives synunetric and
cases 9 and 10 asymmetric truncation. In case 11
the curve is sampled over a short range with 95%
of the guadrats in the interval [-0.5, 1.5].
Weighted averaging (WA) and Gaussian logistic
regression {(GLR) were obtained for each dataset
using GENSTAT (Alvey er al, 1977). For each com-
bination in Tables 2 and 3 we simulated 100 data-
sets and summarized the results as means, medians
and standard deviations of the weighted average
and GLR-estimates calculated for each dataset. In
cases where no optimum could be calculated
{b2=0), we treated the regression estimates as miss-
ing values. Estimated optima are also unreliable
when b, is negative but close to zero; we therefore
discarded simulations in which the estimated opti-
mum lay more than ten times the tolerance outside
the sampled interval. We also calculated means and
standard deviations of the regression estimates over
the cases in which the optimum was significant at
the 10%-level. This selection summarizes the sig-
nificantly non-monotone curves. No such selection
was applied to weighted averaging, because in prac-
tice the weighted average is calculated irrespective
of such evidence for unimodality. The efficiency of
the weighted average with respect to the regression
estimate for the optimum was then expressed as
MSE(GLR}/MSE(WA) where MSE is the mean
squared error, ie variance plus squared bias,

Comparison of WA and GLR

Equal spacing and uniform distribution without
truncation

WA is as efficient as GLR when the x-vaiues are
equispaced (case 1). However, when the x-values are
randomly distributed on a large interval (case 2),
the efficiency of the weighted average is less. The
efficiencies calculated from the runs of case 2 with,
on average, 10 occurrences per simulated dataset
(Table 2} were 1.0, 0.84 and 0.54 for p,,,=0.1,

efl.
1.0,

=

a5 e
pmnx
)

Fig. 4. The efficiency (ordinate) of weighted averaging with re-
spect to Gaussian logistic regression to estimate the optimum for
uniformly distributed guadrats without truncation (case 2, Ta-
ble 2} decreases with increasing maximum probability of occur-
rence (abscissa). '

0.5 and 0.9, respectively, in agreement with theoret-
ical values (Fig. 4) derived by Ter Braak & Baren-
dregt {in press). The variance of the regression esti-
mate in the simulation was slightly (<10%) larger
than its theoretical value of £2/(no. of occurrences)
(cf. Ter Braak & Barendregt, in press), with the ex-
ception of the runs with only 25 quadrats (Table 2)
where the difference was $0%.

Effect of distribution of quadrats

Table 3 summarizes the results of cases with
125 quadrats and p,,,, =0.5 and confirms that WA
is sensitive to the distribution of the quadrats along
the gradient, showing significant bias (r-test,
P<0,05) in 7 cases. The optimum could not be
estimated by GLR in 1% of the simulated datasets
of Table 3, except in the cases 4 and 11 where this
percentage was about 15%. GLR removes the bias
of WA when the truncation is not too severe
(cases 6—10). When it is severe (cases 3, 4 and 11)
the regression estimate of the optimum shows a
large bias in the opposite direction, but this bias is
small in a statistical sense, as the standard error is
high. The medians of the estimates show small bias
in the same direction as WA, When the estimated
curves are first tested for unimodality against
monotonicity at the 10%-level, the remaining opti-
ma (u-sig) show selection bias; they are biased be-
cause an optimum is more likely to be significant
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Table 3. Weighted averaging and Gaussian logistic regression compared on simulated datasets with eieven distributions of
125 quadrats along the environmental variable, Shown are means + standard deviations and medians (md), multiplied by 100. The
entries in the table must be compared with the true values: 0 for &, 100 for ¢, 50 for p,.,, 112 for $D. The cases are explained in the
text. m: average number of occurrences; A-sig: number out of 100 datasets showing a significant optimum and summarized under
the headings w-sig and t-sig; N g+ b normal distribution of quadrats with mean a and standard deviation 5}. For further symbols

see text and Table 2.

CASE m WA u md-u  u-sig SD t md-t  i-sig Borax N-sig
1 EQUAL SPACING 19 2121 2+ 2% 0 2+21 108=+16 94+ 1§ 9 94+16 352+10 100
2Uf-35, 57 19 I+28 3z 25 2 3+£25 111x16 9+ 16 98 99116 S1z10 100
Iuf-4 5} 25 39+14 22+ 76 0 3x3 8611 104=x 31 98 %+19 S$3z 8 84
4 U 035 19 91+14 —-3884£403 33 50+ 21 63+11 104+ 67 80 t+16 57+19 52
SuUf-1, 17 58 1+ 8 -3£116 2 2x11 55+ 3 120+ 80 89 67+ 8§ 3Mx 7 30
6 UNEVEN 1§ 51+13 6+ 30 1 630 114x21 94+ 17 93 94+17 S4x13 100
7 GAP 15 80129 1+ 35 1 2+35  106+29 93+ 22 93 931422 55+13 98
§NG 2 1 1£19 0+ 22 1 0x22 98+11 99+ 15 100 9x15 51z 7 100
N2 +2 22 50+19 -2+ 37 4 0+132 97+ 14 9+ 21 96 99+20 S1+ 8 %9
WAN3 +2 14 72124 0+ 62 e H+40 91+18 94+ 28 1] 9112l 54zx12 o4
LI NOSzOS 55 44+ 6 —T0+£438 {4 27£18 45+ 4 1331154 90 6611 5513 34

when it lies inside than when it lies outside the sam-
pled interval. This bias is less than with WA. The
efficiency of WA compared to GLR after the sig-
nificance test lies between 0.2 and 0.6 except in the
cases 1 and 2 and the unnatural cases 5 and 8 in
which the quadrats lie symmetrically with respect
to the true optimum.

The sampled SD underestimated the true 8D in

cases 3, 4, 5 and 11 with severe truncation (Table 3).-

Overestimation was never pronounced. GLR esti-
mated the tolerance well; the bias shown in Table 3
is not significant (P> 0.05). The median of the esti-
mated tolerance is slightly biased downwards. After
the significance test for unimodality the pias is
downwards, but less than with the sample §1. GLR
slightly overestimates the maximum probability
with and without sclection, the mean and median
of the estimates being close together. WA provides
no estimate for this probability.. The remaining
simulations of the cases 1-5 (Table 2) showed
qualitatively similar features as reported here for
Pmax=0.5 and 125 quadrats.

The effect of number of quadrats

The efficiency 6f WA can be expected to decrease
to zero with increasing numbers of guadrats in
those cases in which WA is biased. This is because
estimates by GLR are consistent, fe. the bias in the
estimates hecomes smaller as the number of quad-
rats increases, and the variances become negligible
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with respect to the bias in WA. However, in our
simulations with only 10—13 occurrences per data-
set (Table 2) the variances are appreciable; conse-
quently the efficiencies for estimating the opti-
mum, after the significance test, were high (>0.9 in
10 out of the 12 simulations). Even 375 samples are
not enough to get markedly better estimates with
GLR than with WA, when p.,. =0.1!

Standard errors and confidence interval

First, the standard errors found in the simula-
tions are compared with the approximate standard
errors provided by GLR for cach estimated opti-
mum and tolerance (see Appendix for the formulas
used). The latter standard errors showed often a
skew distribution with large outliers. As a result the
average and the median of the estimated standard
errors differed enormously, the average being much
higher and the median slightly lower than the
standard error found by simulation. Clearly the es-
timated optimum or tolerance is unreliable when
the estimated standard error is huge, but when it is
low, it may be over optimistic about the precision
achieved. Secondly, in I 085 { = 40%) of all simula-
tions a 95%-confidence interval could be calculat-
ed (see Appendix). The true optimum lay outside
the 95%-confidence interval in 3.9% of these
1 085 simulations, hence the interval gives higher
confidence than its nominal value of 95%.



Examples with real data

The first real dataset concerns soil acidity (pH)
and the occurrences of 15 species in 100 meadow
samples, selected at random from the study of
Kruijne et al. (1967). Figure § shows the fitted
Gaussian logit curves for seven contrasting species.
The Spearman rank correlation between the opti-
ma as estimated by GLR and the weighted averages
was 0.93. (The optima for two species for which 52
was positive, but non-significantly different from
Zero, were set to + oo or — oo, depending on wheth-
er the value of b, in the fit or the linear logit curve
was positive or negative, respectively). However, the
range of the weighted averages was much smaller
than the range of the estimated optima (1.0 against
more than 4.0 pH-units). A 90%-confidence inter-
val for the optimum could be calculated for five
species. For one of these species (Bellis perennis)
the weighted average lies outside this confidence in-
terval.

In the second example we used a much larger set
of data, taken from Reijnen et @l (1981} and
Gremmen e? al. (1983). This dataset concerns the
relation between species occurrence and soil mois-
ture supply capacity in the Pleistocene part of
West-Brabant (The Netherlands) with sandy to
loamy soils. The distribution of soil moisture sup-
ply capacity in the 994 samples was markedly

1.0 piX]

1
!
\
1

BF

AC

Number of sites in each class

Fig. 5. Probability of occurrence of seven contrasting species in
relation 10 soll acidity (pH) in meadows, as fitted with logistic
regression, The curves can be ideniified by the code near their
optimum indicated by dotted lines. The species arranged in or-
der of their optima are: Agrostis canina (AC); Stellaria grami-
nea (SG); Alopecurus geniculatus (AG); Plantage major (PM);
Beliis perennis (BPY;, Hordeum secalinum (HS), Glechoma
hederacea (GH).
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skewed, with many more ‘wet’ than ‘dry’ samples.
For 121 of the 221 species that occurred in more
than five samples, a 30%-confidence interval for
the optimum could be calculated. The weighted
average lies outside this interval for about half (65)
of these species, always being on the wetter side of
the confidence interval. Although p,. was less
than 0.1 for about 5% of the species, WA is un-
reliable for estimating indicator values in this large
dataset.

Discussion

WA disregards species absences. Ashby (1936)
pointed out that disregarding species absences may
lead to erroneous conclusions, for instance that
telegraph poles show an optimal pH-value (see
Greig-Smith, 1983, p. 130). This effect is due to the
distribution of quadrats. Nevertheless, WA is still
being used (see Introduction), perhaps because of
its simplicity. Our simulatiohs provide a better rea-
son,; they suggest that WA performs reasonably well
when the distribution of the quadrats along the en-
vironmental variable is not too uneven and when
the response curve is not severely truncated. For
rare species (species with tow maximum probability
of occurrence and/or narrow tolerance) WA is
nearly as efficient as GLR in most situations. This
result is ireespective of the distribution of the quad-
rats, provided the variance of the estimated opti-
mum is large compared to the potential bias of the
weighted average. In other cases WA can give mis-
leading results. It is therefore safest always to use
GLR.

To estimate optima and tolerances of species, the
optima should ideally lie well within the range of
environmental values of the samples. Further sam-
pling considerations are provided by Mohler (1983).
Attention should also be paid to confounding vari-
ables, ie. variables that are influential and show a
relation with the variable under consideration (see
e.g. Breslow & Day, 1980). Ignoring confounding
variables may give, for example, spuricusly bimo-
dal response curves {Austin ef al, 1984). The real
power of logistic regression lies in the simultaneous
analysis of the effect of several environmental vari-
ables, including potentially confounding variables
{see Appendix). The Gaussian logit response curve
is then just a convenient starting point in the proc-
ess of model building.
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Appendix

Standard errors for estimated w and # confidence interval
for u.

Denate the variance of the estimates of b, and b; in mode! (1)
by v and vzz and their covariance by vi2. Using Taylor expan-
sion we obtain that the variance of the estimated optimum and
tolerance are approximately

var(i#)=(v\1+4uv iz +462v2:)/ (453 (Al)
var(fy =vi:/(—8b3) (A2)

An approximate }00(7— a)%-confidence interval for the opti-
mum is derived from Fiellers theorem (see Finney, 1964,
p. 27-29). Let ¢, be the ordinary Student (-deviate a1 chosen
probability level « and with n—3 degrees of freedom (n is the
number of quadrats). For example, ¢, =240 for a

95%-confidence interval and 63 quadrats.  Calculate
g=(tv,2)/b% and .
D=4b% var(ii) - g(w, —vi2/va2) (A.3)

iguers Uupner =10+ V2 g Volvant Y L, (NDVB:A(1-8) (A4

where the symbot + is used to indicate addition and substrac-
tion in order t¢ obtain the lower and upper Limits of the confi-
dence interval, respectively. [f b, is not significantly different
from zero (g>1), then the confidence interval is of infinite
length and, taken alone, the data must be regarded as valueless
for estimating the optimum.

If model (1) is extended with another explanatory variable z
10, for example (Austin et ef, 1984: Table 2)

log [p/(1-p]=bo+ Bux+bx3+cz+0222 (A5

then the coefficients by, by, b, ¢; and ¢; can, again, be estimat-
ed with the mentioned statistical packages, together with vari-
ances and covariances. This model can easily be summarized by
optima and tolerances with respect to x and z, because there is
no interaction term, like x.z, in the model. To calculate the confi-
dence interval for the optimum of respect to x (or 2) from this
madel, the given formulas are still valid, apart from the number
of degrees of freedom in #, which must now be n-5.
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ABSTRACT

A common bioassay problem in applied ecology is to estimate values of an environmen-
tal variable from species incidence or abundance data. An example is the problem of
reconstructing past changes in acidity {pH) in lakes from diatom assemblages found in
successive strata of the bottom sediment. The method of weighted averaging is based on
indicator values, the indicator value of a species being, intuitively, the value of the
environmental variable most preferred by that species. [ndicator values of all species
present in a sile are averaged to give an estimate of the value of the environmental variable
at the site. The average is weighled by species abundances, if known, with absent species
having zero weight. Using feld data, several authors have compiled lists of indicator values
of species for various environmental variables for use in weighted averaging, eg. pH
indicator values of diatom species. In this paper the properties of the method of weighted
averaging are studied. starting from the idea that indicator values are parameters of
response curves that describe the expected abundance of each species in relation to the
environmental variable. In practice the response curves must he estimated by regression
methods, but here they are assumed 10 be known in advance. Conditions are derived under
which the weighted average is a consistent and efficient estimator for the value of an
environmental variable a1 a site. Because weighted averaging is central to the ordination
technique known as reciprocal averaging or correspondence analysis, the conditions also
define models that are implicitly invoked when reciprocal averaging is used in ecological
ordination studies,

1. INTRODUCTION

Plant species need particular environmental conditions for regeneration,
establishment, and growth. It should therefore be possible to infer the
environmental conditions at a site from the species that occur there. This
type of bioassay has become popular [3, 6, 9, 19] with the publication of lists
of indicator values of species with respect to various environmental variables.
For example, Ellenberg [8] has published indicator values of Central Eutopean
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Fi1G. 1. Gaussian logit response curves of the probability # = p_(x) that a species (k)
oceurs at a site, against environmental variable x. Two sets of species are displayed, each
with ¢=1 and optima with spacing 4 =1, having maximum probabilities of .5 and .9,
respectively. xg is the value of x at a particudar site.

plants with respect to site variables including soil moisture, pH, and nitrogen
level, Ellenberg based the indicator values on his field observations of the
conditions under which particular species occurred and, to a lesser extent, on
laboratory experiments. For example, a plant species may prefer a particular
soil moisture content, and not grow at all in places where the soil is either too
dry and too wet. Intuitively, the indicator vaiue is then the value most
preferred by a species (cf. Figure 1). Ellenberg [8] did not give a precise
definition of “indicator value.” However, Ellenberg [7, 8] did describe a
method to predict the value of an environmental variable: the method
consists simply of averaging indicator values for the plant species that are
present. For quantitative data, the average is weighted by species abundance,
with absent species carrying zero weight. This method has been applied to
vascular plants [12, 17, 21, 23, 25], to diatoms [20), and to aquatic organisms
and the biological evaluation of water quality [19].

It might be’ thought easier t0 measure environmental variables at a site
than to infer their values from the species that grow there. But often it is not.
For example, total values over time may be required; repeated measurements
are costly, while plants automatically integrate environmental conditions over
time. This is one of the ideas behind biological evaluation of water quality
and biomonitoring in general. There are also situations where it is impossible
to measure environmental variables by direct means, whereas a biological
record does exist. An example is the reconstruction of past changes in acidity
{pH) in lakes, from diatom assemblages found in successive strata of the
bottom sediment; this technique is an important tool in acid rain research.
Most researchers in this arca use the indicator values for acidity of diatom
species as compiled by Hustedt in the 1930s [2]. A more sophisticated
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method, yet to be implemented, is to build firsdy a (nonlinear) regression
model from data on species occurrences and present pH in lakes, which
yields for each species an estimated response curve for the probability of
occurrence versus pH; and secondly to use these response curves for the
calibration of pH from species data, for example by maximum likelihood
estimation. Here the indicator value of a species is just a parameter of the
response curve of that species, the mode of the curve being one possible
definition of the indicator value.

In this paper we study the properties of weighted averaging of indicator
values to estimate the value of a continuous environmental variable at a site.
We do this by secking conditions under which weighted averaging compares
favorably with methods based on explicit response curves. We use assump-
tions (Section 2) that idealize the real world, among others that a single
environmental variable determines the species composition at a site and that
the response curves of the species with respect to this variable are already
known. Certainly, weighted averaging is of little value if it bas undesirable
properties under ideal assumptions. On the other hand, there is no advantage
in using an elaborate technique if a simpler one would be equally good. We
answer two questions:

(1) How should indicator values of species be defined in terms of re-
sponse curves to ensure that the weighted average is a consistent estimator?
{The weighted average is called consistent if it converges in probability to the
true value of the environmental variable as the number of species available
increases.)

(2) What should the response curves look like to ensure that the weighted
average is an efficient estimator? (An estimator is called efficient if its mean
squared error is minimum.)

2. WEIGHTED AYERAGING AND RESPONSE CURVES:
DEFINITIONS

Let x denote a quantitative environmental variable, and x; the value of
this variable at a particular site. We want to estimate this value x, by
checking which species (out of a large number) are present at that site or,
more generally, the abundance of each species. Let ¥, be the abundance
(¥, = 0) of the kth species (k=1,2,3,...), and let #, be its indicator value,
usually taken from a published list of indicator values. To estimate x,,
ecologists commonly use the weighted average [7-9]

%quk
Swa= ZY“ f (21)
k
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where summations are over all species. To make sense, Xy, and hence the
values for », must have the same dimension as x. The indicator values are
therefore location parameters on x.

To be a potential indicator, a species must show a distinct relation to the
indicated environmental variable x. We define the relations between species
and the environmental variable by a statistical response model with a
response curve pu, (x), a known function of x, for each species k. p,(x)
specifies the expectation of the value Y, observed at the site with value x, for
x. The observational data will be assumed to be independent randem
variables with variances depending on the expectations only. The variance of
¥, is therefore a known function v, (x) = v*{ u,( x}}. For presence-absence
data ¥, is a Bernoulli variable and p, (x,) is the probability that the kth
species is present at a site with x = x,. Then v*(p) = p(1 — p). For counts,
the data may be assumed to have a Poisson distribution so that v*(p)=4g,
whereas for continuous quantitative data with constant coefficient of varia-
tion [¢*(p) = p?] the data could have a Gamma distribution.

W= consider response curves that form a location family, i.e. have identi-
cal (but arbitrary) shape and different positions along the real line. Formally,
py (x)=p(x — u;) for some function p(-) that is almost everywhere continu-
ous, and with location parameters for which we take the indicator values
{u,}. It follows that v, (x)=v(x — u,), where v(-) is the variance function
corresponding to p{-). We use asympiotics in which the number of species
available for the estimation of x, increases indefinitely in such a way that the
indicator values become increasingly densely spaced on every finite interval.

3. CONSISTENCY AND THE DEFINITION OF INDICATOR VALUE

Whether the weighted average is a “good” estimator depends on (1) the
shape of the response curves, (2) the definition of indicator value, and (3) the
distribution of the indicator values along the environmental variable. In this
section we reverse the reasoning: we require that the weighted average be a
consistent estimator of x,, and from that requirement we derive conditions
on the response curves, a definition of indicator value, and conditions on the
distribution of the indicator values.

We express the number of indicator values at the point x by A[ A, (x)—
H,(x—0)], where X is the average number of indicator values per unit
length, Hy(x —0)=1lim , H,(y), and H,(-) is a nondecreasing right-con-
tinuous stepfunction [in the terminology of measure theory, Hy(-) is the
distribution function of a discrete measure) We suppose that for A — o
H,(-) converges to a distribution function with bounded and continucus
derivative h(+). h{-) is the limiting density function of the indicator values.
Now, %ys=T/R, where T=A"'L,¥,u, and R=A"'L,7Y,. It follows that
T has expectation A~'Z, u p{xy — 1, )= fup(x, — u) dH, (%), which for
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large A approaches

fup.(xo— u)h(u) du=xnfﬂ(u)h(xa—u}du—jun(u)h(xo— u) du
(31)

Moreover, var{T)— 0 (A —c0) il and only if [x%w(x)dx exists; then T
converges in probability to (3.1). Similarly, R = A~'L, ¥, converges in prob-
ability to fu(u)k(x, — u) du > 0. Therefore T/R converges 10 x,, if and only
if fup{w)h{x,; — u)du= 0. The latter condition should hold for every value
of x,; this condition may be fulfilled if the function h{x) is constant, i.¢. if
the indicator values are evenly distributed. For particular p(-), certain almost
periedic functions k() might do as well, but we believe these functions to be
of no practical importance. For some p(-), e.g. the Gaussian curve [1, 9],
constant h(-) is a nccessary condition. If A{x)=c, we get fup(u)du=0:
the centreid of p(-) must be equal to zero. Consequently, the centroid of
pe(x) = p(x — #,) must be equal to u,, or rephrasing, the indicator values
must be the centroids of their response curves,

Jrmelx)
Y fmoa

This definition of indicator value is necessary for the weighted average to be
consistent. Note that defined in this way, the indicator value of a unimodal
response curve is only equal to the most preferred value (mode or optimum)
if the curve is symmetric. Note also that we had to assume in the derivation
that both integrals in (3.2), and fx?v(x)dx, exist. The weighted average is
inconsistent for response curves that do not satisfy these conditions, e.g.
monotone increasing or decreasing functions. The weighted average is also
inconsistent for data with a constant variance function.

In conclusion, the weighted average is a consisient estimator of x; (for
A — oo) provided (1) the three aforementioned conditions ca integrals of the
response and variance curve hold, (2) the indicator values are centroids of
the response curves, and (3) the indicator values are evenly distributed along
the real line. Using central limit theorems and laws of large numbers valid for
independent but nonidentically distributed random quantities [5], it follows
that the weighted average is then asymptotically normal with variance [11,
Equation (10.17), p. 247]

(1.2)

%(“.& = xn)zv,‘(xo)

= [gmx")]’ (3.3)

Uya
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4. THE MAXIMUM LIKELTHOOD APPROACH

When response curves can be expressed in parametric form, x, can be
estimated by the method of maximum likelihood [4). Maximum likelihood
estimators are often good estimators in large samples: under mild conditions
they are consistent and asymptotically normal with minimal variance [4, 5].
These assertions hold for our applications; the proof thereof goes along
similar lines as in the standard case of independent and identically distrib-
uted random variables. Maximum likelihood is more widely applicable than
weighted averaging.

For Bernoulli, Poisson, or Gamma random variables the maximum likeli-
hood estimator is the solution for x, of the maximum likelihood equation
{14}

dlog L
8x,

F’k(-’:u)[yk —Fk(xo)] _
Uk(xﬂ)

=% 0, (4)
&

where p), { x,) denotes the derivative of ., (x) with respect to x, evaluated at

xy. Often the solution of (4.1) can only be obtained by numerical methods.

The asymptotic variance of the maximum likelihood estimator is, as usual,

the inverse of the information {4] and equals

E‘{mxonz]{

Uy =
M [k v xe)

When the distribution of ¥, is not fully specified, Equation (4.1) is a
quasi-likelihood equation, which often gives estimators with good asymptotic
properties [14]. This extension of (4.1) and (4.2) is important when count
data are overdispersed with variance proportional to the mean.

(a.2)

5. EFFICIENCY AND SHAPE

For large numbers of species maximum likelihood will in genera! be more
efficient than weighted averaging, but the latter method is much easier to use.
It is therefore of interest to investigate whether there exists a shape of the
response curves for which weighted averaging achieves, in terms of mean
squared error, asymptotically unit efficiency with respect to maximum likeli-
hood. With the species packing model [13, 22] in view, we adopt the location
family of Section 2 with equispaced indicator values. In this situation both
methods are consistent. It is therefore sufficient to compare the variances
{3.3) and (4.2) for spacing 4 — 0. It is proved in the Appendix that,
asymptotically, vy < by, With equality if and only if

(5.1)

ey = - )
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for ¢ a nonzero constant, The differential equation (5.1) has a solution of the
form

2
Q-T"*L , (52)

Amdx)=a-3

where the function f(-) depends on the variance function. The curves in (5.2}
form a generalized linear model [14, 16), and the function f(-} is precisely the
“natural” link function of such a model: the logistic function f{p)=
log[p /(1 - u)] for Bernoulli variables, the logarithmic function f(p)=logp
for Poisson vatiables, and the inverse function f{(u)=—1/p (and a < Q) for
Gamma variables. In (5.2) the parameter a is the maximum of f{-) attained
at the indicator value, mode, or optimum #,, and 1, termed the tolerance, is a
measure of curve width. For Poisson variables (5.2) is precisely the Gaussian
response curve that is frequently invoked in plant ecological studies [1, 91

For presence-absence data we propose to term (5.2) the Gaussian logit
response curve (Figure 1). Iis formula is

espl a - 4(x- u)'/ e}
1+ewp{a—4(x-u)/r)

wi(x)= (5.3)

Instead of a we may use the parameter p,,, =1/(1+ ¢ ), the maximum
probability of occurrence. If g, — 0, p, (x) approaches the Gaussian curve.
Thus for many rare species, the two models are effectively the same. Using
(3.3) and (4.2), we found numerically that for Bernoulli variables and
Gaussian rather than Gaussian logit curves, the efficiency (vyy /vw,) of
weighted averaging decreased from 1.0 10 0.8 when p_ . was increased from
near zero to 0.9,

The maximum likelihood variance (4.2) can be simplified by substitution
of (5.1), which gives

-1
o = 2| K = o) ()| (54)
k
Because of the equal spacing of the indicator values,
¥ (e = x0) 0 x0) = 2 X s (). (5.5)
k k

For integrals the approximation (5.5) is an equality, as follows from (5.1) and
integration by parts. Numerical calculations showed that the approxima-
tion in (5.5) is quite good, provided the indicator values are equispaced
on a “large” interval J around x; with spacing less than ¢, where =
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{u|p(x,— u)>8, ue R} for small § With (5.5) we obtain

2

R PN ENE 56

Substitution of (5.5) in (3.3) gives the same result for vy, . A sample-based
version of (5.6) is */L,Y,.

We carried out a simulation study in which presence-absence data were
generated according to the model (5.3) with r =1, equispaced optima (4 <1:
d=1, 0.5, 0:25, 0.12, 0.06, or 0.03) on the interval (—5,5) and maximum
probability either .1 or .5 or .9. The minimum number of. species was
therefore 10. x, was always chosen close to the center of the interval,
between 0 and & /2. The simulations were constrained to give at least two
species occurrences per sample. In each case 1000 samples were generated.
For each sample x;, was estimated by weighted averaging and by maximum
likelihood. All cases showed an efficiency in terms of mean squared error of
1.00, even when only 10 species were positioned on the interval. In most
cases the mean squared error of both %y, and %, exceeded the theoretical
variance (5.6), but the excess was less than 12% when the average number of
species occurrences per sample was larger than 5.

6. VARYING SPACING, MAXIMA, AND TOLERANCES

For the “optimal” response curves (5.2) the weighted average still has
asymptotically unit efficiency when the species can be divided into sets such
that within each set the speties have equal maxima and equispaced optima
with spacing less than ¢ (Figure 1). An important example arises when the
species are divided into sets on the basis of their response te another
environmental variable. The result follows from (5.5): for each set of species
(5.5) holds and can be substituted for each set in (3.3) and (5.4), which leads
to (5.6) in both clses. However, this trick does not carry through when the
tolerance varies between species, because substitution of (5.5) now involves
different tolerances for different sets. As a result the efficiency can drop
considerably when the tolerance varies. For example, with two tolerances
differing by a factor of two, the efficiency drops te ca. 0.6 in the logistic
maodel with maximum probability of occurrence 5. Full efficiency can then
be retained by using a tolerance-weighted version of the weighted average,

- Youy
XwAT ™ E 2 E
P

3
PR

¥,
- (6.1}

In (6.1) good indicator species get more weight than bad ones, an intuitively
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reasonable idea used already by Zelinka and Marvan [24]. The results of this
section suggest that equality of tolerances is a more critical assumption in the
weighted average (2.1) than equality of maxima and equal spacing.

7. RANDOM INDICATOR VALUES AND RANDOM RESPONSE
CURVES

The shapes of response curves may vary between species. In this section
we mimic this variability by assuming that response curves arise from a
“superpopulation” model consisting of three parts:

(1) A Poisson point process P that generates indicator values {u, } on the
real line with intensity function Ak(x) [A > 0 and k(x) > 0 for every x].

(2) A stochastic process § that generates shapes M(x) for response
curves, independently for any indicator value #; generated by P. Any
realization of M(x) is a bounded, nonnegative continuous function on the
real line such that x*M{x) and x?V(x)€ L'(= oo,e0), where ¥(-) is the
variance function corresponding to M(-), and [xM(x) dx = 0. Expectation
and variance with respect to S are denoted by E; and varg.

{3) A translation of M(x) over u,: M, {x)= M(x —u,).

The model will be termed the translation model. It is proved in the
Appendix that the weighted average is consistent (A — oo} if #{x) =1. Then
P is a homogeneous Poisson process, and the indicator values are said to be
randomly spaced. The asymptotic variances are then

J(u—xy Eg{V(u)+ M*(u)}

A[IESM( u) du]1

(711)

Vwa

and
Vrip = [AfEs{ %} du}- (7.2)

respectively. vy, is always strictly greater than v, . For the response curves
(5.2) (process § degenerate) and random spacing, the efficiency of weighted
averaging increases to unity when the maximum of p{-) decreases to 0, as
shown in Figure 2 for logistic f{-). To obtain the variances in the case of
equal instead of random spacing between the indicator values, M2 (u) in
(7.1) must be replaced by varg{ M(x)}, whereas (7.2) remains the same. In
this case vy < vy, With equality if and only if the response curves are
nonrandom and satisfy (5.2).
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eff.

Y

0,5,

2

P max
FiG. 2. The efficiency of weighted averaging with respect to maximum likelihood
against the maximum probability of occurrence { p,..,) for Gaussian logit curves with
randomly spaced optima and equal maxima and tolerances [eff = vy Sirwa = {£/7].

To simplify (7.1) for Bernoulli variables we define the commonness e and

the standard deviation T of the expected response curve u(x) = Eg{ M(x)}
by

x? dx
a=fp(x)dx and 71—L’i—x)wf (7.3)

From (7.1) we obtain [cf. (5.6)]

1_2

Uw,,.=n. (74)

An unbiased estimator for B is the usual sample variance of

the indicator values of the species present at the site. It is only in this special
case that the indicator values might be considered as independent “samples™
from a probability distribution.
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Simulations, as in Section 5, with (aussian logit curves (5.3), but with
random, instead of equispaced, optima showed calculated efficiencies that
agreed with the asymptotic efficiencies shown in Figure 2. The mean squared
errors exceeded the theoretical variances (5.6) and (7.4), the convergence 1o
the theoretical variances being slower than in Section 5. For random optima
the excess was less than about 15% when the average number of species
accurrences per sample was larger than 10.

8. DISCUSSION

This paper shows that a method proposed and used by community
ecologists, namely weighted averaging, performs well under a model advo-
cated by evolutionary ecologists, namely the species packing model [13]. This
model is based on the idea that competing species evolve to occupy maxi-
mally separated niches with respect to a limiting resource. This idea applies
as well to the occurrence of competing species along habitat variables [22].
Response curves should therefore have minimal overlap; hence, equally
spaced indicator values. It should be noted that our asymptotic theory
ignores another consequence of this model, namely that there exists a limiting
similarity beyond which competing species cannot coexist. The minimal
spacing derived by MacArthur and Levins [13] is about equal to the standard
deviation of the response curves. But direct gradient analyses often show
much closer spacings than that [9, 22). Moreover, in lists of indicator values
such as Ellenberg [8], the values coincide for many species. Of course, many
species are coexisting without seriously competing.

Our results suggest that the distribution of the indicator values along the
indicated variable should be even. But for Ellenberg’s [8] List with about 2000
plant species the indicator values show uneven and markedly skew distribu-
tions [6, Figure 11]. A change of scale of the environmental variables could
alleviate this problem. However, such a change modifies the response curves
as well as their centroids. If the indicator values are centroids on the present
scale, 2 nonlinear change of scale would destroy this desirable property. An
alternative estimator is obtained by replacing ¥, with ¥, /h{w,) in (2.1).
This estimator can be shown to be consistent under the model of Section 7.
However, when the species packing model does hold in a part, say A, of a
multidimensional habitat space, possibly uneven marginal distributions of
indicator values do not destroy the attractive propertics of the usual weighted
average (2.1). More specifically, when the indicator values are regularly
spaced and the value x, of the site lies well within A (i.e., there is a subset B
of 4 such that B = {u|p(x;—u) > 5, x, ER", ueR"} for small &), then
for decreasing spacing along all # environmental variables:

(1) The weighted average is consistent if each indicator value is the
centroid of the response curve that is obtained afier integration of
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the corresponding response surface over the remaining # —1 dimensions, and
the integrals, defined in Section 3, of the “marginal” response curve exist.

(2) The weighted average has asymptotically unit efficiency with respect
to maximum likelihood if the response surfaces are the multivariate extension
of (5.2), namely

A2y, 20,00, x,))

2 2
1{(x-u,) {x;—uyy) (x, = wn)
Pl 2 + 2 oot 2
2 I 1 f

=a—

where x;, x,,..., x, are the variables of a n-dimensional habitat space, u,;
and ¢; are the optimum and tolerance of the k-th species with respect to x;
and f(-) is as in Section 5. [With maximum likelihood based on (8.1) the
values of x,, x,,..., x, at the site are estimated jointly.]

The first assertion can easily be verified. The second assertion follows from
Section 6: for fixed, but unknown values of x,, x,,..., x, the species have
different maxima with respect 1o x;, but can be divided into sets of species
with equal maxima because of the regular spacing in multidimensional
habitat space.

Weighted averaging ignores species that are absent, whereas the maximum
likelihood method uses the response curves of all species. In maximum
likelihood, absent species do potentially provide information on the environ-
ment. This paper shows that this information is negligible under the (multidi-
mensional} species packing model. Another, more informal medel under
which absent species do nol add much information arises when the maximum
probability of occurrence is close to zero, Then, the probability of absence is
close to unity—irrespective of the value of the eavironmental variable—and
hence cannot strongly influence the likelihood (see also Figure 2). The
probability of occurrence of a species, given the value of a factor, will be
small in practice for most species, just because in most sites with that value
the species will be absent due to other, unfavorable factors (cf. the effect of
neglecting other variables in a multidimensional species packing model).
Absences therefore often indicate little.

Weighted averaging is central to the algorithm of the ordination technique
known as reciprocal averaging or correspondence analysis, Reciprocal aver-
aging is commonly used in ecological ordination studies te analyse data on
the incidence or abundance of species in samples [9]. The first few ordination
axes are often interpreted as latent variables and are presumed to relate to
underlying, habitat variables. The results of this paper can be extended to
provide a theoretical basis of the model that is implicitly invoked when
reciprocal averaging is used. Under the conditions of the species packing
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model it can be shown that reciprocal averaging approximates the maximum
fikelihood solution of Gaussian-like response models in one latent variable.
The stochastic model of Section 7 is an explicit formulation of the model! that
is used by Hill and Gauch [10] to scale the axes of (detrended) correspon-
dence analysis.

APPENDIX
Proof of (5.1). We prove that

[f#(x) dxr

fxzv(x) dx-f{[p’(x)]z/v(x)} dx

<1 {Al)

with equality iff p'(x)=— xv(x)/t%. The left hand side in (Al) is the
asymptotic (d — 0) efficiency vy /Vya. becausé summations in (3.3) and
(4.2) approach integrals for 4 — 0, and after translation, x, = (. We use the
Cauchy-Schwartz inequality

[frtmatmas] < frier as [ ax (A2

for arbitrary functions p(x) and g(x) € L*{— 0,00). Equality in (A2) holds
iff p(x)=cq{x) with ¢ a constant. By setting

p(x) = XX ad q(x)= }% (A3

and assuming that xu(x)— 0 for x — + 00, so that

fxp’(x)dx-—fp(x)dx, (A4)

we obtain (Al) with equality iff xe(x)=cp'{x), from which (5.1) follows
with ¢ = — ¢2. The condition ¢ < 0 arises from the assumption above (A4).

Qutline proof of (1.1). Expectations and (co)variances are required of
R=L,Y, and T =Y Y, u,. These are calculated by dividing the real line into
small intervals with midpoints u;, (i=...,-2,-1,0,1,2,...) and width A,
The expectations correspord to the formulae in Section 3 with u(u) replaced
by AE M(u); hence %, is consistent if #(x) is constant. We show the
derivation of the variances for xy = 0 and k(x) =1. Repeated use is made of
the decomposition of the variance as the sum af two components: (a) the
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average conditional variance, and (b) the variance of the conditional average
[18, Equation (2b.3.6), p. 97). Species with indicator values that lie in the ith
interval contribute to var( R) an amount

6= Eg{¥(uy,)} +vars{ M(u,,) )+ E2{ M(u,,))]. (A9

and to var{T") an amount uf,,c,-. The last two terms in {(AS5) can be combined
to give E{ M’(um)}. The total variance can be obtained by summing over
all intervals, because the data from different intervals are independent, due to
the properties of the Peisson process. Replacing sums by integrals gives, with
g(u)= Eg{(V(a)+ M*(u)},

var( R) =\ [ g(«) d,
var(T) -J\fuzg( u) du, {AS)
cov( R, T) =.\fug(u) du.

Because u’M(u) and u?V(u) € L'(- o0, 00), we have var(T/X), var{ R /A),
and cov(R /A, T/A)— 0 for A — co; this and Taylor expansion of T/R [11,
Equation (10.17), p. 247] vield (7.1).

Outline proof of (7.2). Let % denote the maximum likelihood estimator,
D, the first x derivative of the log likelihood (4.1) evaluated at y, and T the
total information evaluated at x,. Without confusion, the symbol x will now
be used for x,. A first order Taylor expansion of D; in x, gives [4, Chapter
9.2, Equation {19)]

D=0 —(%-x)I (A7)

Equating (A7) to zero, as in (4.1), and solving for % —x shows that,
asymptotically (A — o0),

var{ %) =

M . (A3)

H

Conditionally on § and P, the expectation of D, is equal to zero and its
variance is the inverse of (4.2). Unconditionally, the variance of D, is
therefore equal to the quantity between square brackeis in (7.2). The total
information is the expectation over § and P of the conditional information.
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This expectation is equal to the variance of I, ; hence, from (A8) we obtain
{1.2). '
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Correspondence Analysis of Incidence and Abundance Data:
Properties in Terms of a Unimodal Response Model

Cajo J. F. ter Braak

TNO Institute of Mathematics, Information Processing and Statistics,
P. O. Box 100, 6700 AC Wageningen, The Netherlands

SUMMARY

Correspondence analysis is commonly used by ecologists to analyze data on the incidence or
abundance of species in samples. The first few axes are interpreted as latent variables and are presumed
to relate 10 underlying environmental variables. In this paper correspondence analysis is shown to
approximate the maximum likelihood solution of explicit unimodat response models in one latent
variable, These models are logistic-linear for presence/absence data and loglinear for Poisson counts,
with predictors that are quadratic in the latent variable. The approximation is best when the maxima
and tolerances (widths) of the response curves are equal and the species’ optima and the sample
vatues of the latent variable are equally spaced. It is still fairly good for uniformly distributed optima
and sample values, as shown by simulation. For the models extended to two latent variables, the
approximation is often bad because of the horseshoe effect in correspondence analysis, but improves
considerably in the simulations when this effect is removed as it is in detrended correspondence
analysis.

1. Introduction

Correspondence analysis is a multivanate technique primarily developed for the analysis
of contingency table data (Nishisato, 1980; Greenacre, 1984). However, in ecology and
archaeology, correspondence analysis is commonly applied to incidence or abundance
matrices (Gauch, 1982}, In ecology these matrices typically record the presence/absence or
abundance of species in samples, e.g., plant species in quadrats or animal species in areas.
Such matrices are not transformed to m-way contingency tables “on the grounds that the
data are essenlially asymmetric and the absences indicate little” (Hil), 1974). Cleasly a
different rationale is needed for the application of correspondence analysis to incidence or
abundance data. A pertinent result concerns so-called Petric matrices (a Petrie matrix is an
incidence matrix which has a block of consecutive 1's in every row and in every column,
the block of the first row starting in the first column and the block of the last row ending
in the last column). The result says that if a matrix can be rearranged to a Petrie matrix by
a permutation of rows and columns, then this permutation is generated by the first nontrivial
solution of correspondence analysis (see Hill, 1974).

Hill (1973) introduced correspondence analysis to ecology, under the name of “reciprocal
averaging,” He supgested the technique as a natural extension of the method of weighted
averaging used in Whittaker’s (1956) “direct gradient analysis,” Whittaker, among others,
observed that species typically show unimodal (bell-shaped} response curves with respect
to environmental gradients. For example, a plant specics may prefer a particular soil
moisture content, and not grow at all in places where the soil is either too dry or too wet.

Key words: Correspondence analysis; Detrended correspondence analysis; Dual scaling; Ecology;
Generalized linear models; Joint plot; Reciprocal averaging; Species packing model; Unfolding;
Unimodal response model.
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Each species is therefore largely confined to a specific interval along an environmental
variable. The value most preferred by a species was termed its “indicator value” or optimum.
In Whittaker’s method, the indicator value of a species is estimated by taking the average
of the values of the environmental variable in those samples in which the species occurs.
(For quantitative data, the average is weighted by species abundance.) Conversely, with
known indicator values of species, weighted averaging is used to estimate the value of an
environmental variable in a sample from the species that it contained [see e.g., Kovacs
{1969) for an application]. Hill {1973) showed that if iterated, this process of “reciprocal
averaging” converges to a solution independent of initial indicator values, namely the first
nonirivial axis of correspondence analysis (see also Greenacre, 1984, §4.2). Hill’s method
therefore amounts to arranging samples and species along a latent vanable, an activity
Whittaker (1967) termed “indirect gradient analysis.” After such analysis, attempts are
made to identify the latent variable by comparison with known variation in the environment
(Gauch, 1982). The Petrie matrix provides a deterministic example of a response model
wherein the response curves are {weakly) unimodal “block functions.” Unimodal models
also play an important role in unfolding theory (Coombs, 1964).

In this paper, correspondence analysis is regarded as an estimation method for latent
variable models and is compared with maximum likclihood under parametric unimodal
response models with respect to one or two latent variables. The models considered are
loglincar and logistic-linear models with predictors that are quadratic in the latent vari-
able(s). Ter Braak and Barendregt (in press) showed that these are the only models with
Poisson and binomial error, respectively, for which the weighted average of indicator values
can achieve unit asymptotic efficiency with respect to maximum likelihood. The compari-
son gives some idea about the model that is implicitly invoked when correspondence
analysis is applied to incidence or abundance data. This comparison is important because
the maximum likelihood approach may be computationally too demanding for the numbers
of species and samples commonly encountered in ecological research. Moreover, when the
maximum likelihood approach is considered worthwhile, the results suggest that good
initial estimates can be derived from correspondence analysis or, for two latent variables,
from detrended correspondence analysis (Hill and Gauch, 1980).

2. Correspondence Analysis

Nishisato (1980) takes the,uiew that correspondence analysis, alias duat scaling, assigns real
numbers or “scores” to rows and columns of a table so as to optimize a particular criterien.

Consider a species-by-sample matrix Y = [p] (k= 1,...,m; i=1, ..., n) of nonnegative
real numbers, denoting the presence/absence (¥ = 1 or () or count of individuals of cach
of m species in #samples. Letu=[w]k=1,..., mandx=[x]((=1,..., n) contain

the scores for species (rows) and samples (colurnns), respectively. In correspondence analysis
these scores are chosen so that the weighted sum of squares of the sample scores is
maximum with respect to the weighted sum of squares of the sample scores within species,
i.e., the criterion maximized is

D= 2 Pailxi — 2)2/§ E il X = W 2.1)

where z = ¥; y..X/y++ and the subscript + denotes summation over that subscript.
Maximization of D? will give each species a score close to the scores of those samples in
which it is abundant. (An alternative interpretation of this criterion is given in Section 4.3.)
With the Lagrange method of multipliers and the sample scores centred so that z = 0, we
obtain after some rearrangement the fransition formulae of correspondence analysis {(with
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a=0)
Al = % ViliefVer (i=1,...,n) 2.2)

Nluk = 2 yklxi/yk+ {k = 19 IR m)s {2'3)

where A is a real number (0 < A < 1). The extra parameter o governs the scaling of the
species scores and the sample scores with respect to one another, There are three choices
of & in common usage, namely & = 0, 1, or 3. Criterion (2.1) leads to & = 0. With & = 0,
the species scores # are weighted averages of the sample scores x; [equation (2.3)] and the
sample scores arc proportional to the weighted averages of the species scores [equation
(2.2)]. With o« = 1, the role of species and samples is interchanged, also in the criterion
being maximized. The third choice, « = 4, is a compromise in that it treats species and
sample scorcs in a symmetric way.

The transition formulac have more than one solution. All solutions can be obtained
from the singular value decomposition of R™"2 YC'/2 (see Hill, 1974) with R = diag( y:+)
and C = diag( y,,). When the left and right normalized singular vectors in this decomposition
are denoted by g, and r,, corresponding to singular value p, = A, (s =0, 1, 2, ...), then
the solutions are u, = pR™2q,p¥? and x, = C'r,p}¥2. The solutions are the “axes” of
carrespondence analysis and A, is termed the cigenvalue of the sth axis, The maximum
singular value is always 1, corresponding to the trivial solution in which all sample and
species scores equal 1, The first nontrivial solution (s = 1) is orthogonal to the trivial
solution, hence satisfies the previously applied centering z = 0, and maximizes the criterion
D? withu = u, x = x,, and D? = 1 /{1 — \;). Moreover, the singular value decomposition
implies that the species and sample scores, u and X, approximate the data in a weighted
least squares sense by the bilinear model {see Nishisato, 1980)

R
Yei = € e (2.4)
Eki
with &;; = V1. V./Vss, the expectation under the assumption of row/column independence
in contingency tables.

3. A Unimodal Response Model

From now on the species-by-sample matrix Y will be assumed to consist either of counts
¥« that are independent Poisson variables with expected value py;, or of presence/absence
(1/0) data that are independent Bernoulli variables with probability ., that the kth species
is present in the ith sample. The models assumed for yuy; are loglinear and logistic-linear
models (Nelder and Wedderburn, 1972) in which the lincar predictor is a quadratic
polynomial in the latent variable x. It is convenient to write these models in the form

link(u} = a — 306 — w)/i, (3.1)

where link is the logarithmic function for counts and the logistic function for the 1/0 data.
In (3.1) the parameters for the kth species are a., the maximum on log or logit scale; u,,
the mode or optimum (i.e., the value of x for which the maximum is attained); and 1, the
tolerance, a measure of ecological amplitude, The value of the latent variable in the ith
sample is x;, which is treated as a fixed incidental parameter. Figure | displays an example
for 1/0 data. The loglinear model is precisely the “Gaussian” response curve that is put
forward by ecologists as an ideal for species responses along a gradient [see Austin (1976)
and Gauch {1982} for reviews].
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Figure 1. Unimodal response curves (3.1) for the probability { P of occurrence along a latent variable

{x), fitted by correspondence analysis to Table 2. The species optima and sample points are indicated

by ticks below and above the abscissa. The length of a tick is proportional to the number of sample

points. The numbers below the optima correspond to row numbers in Table 2. The horizontal bar
is 1 tolerance unit,

The arbitrariness in the scale of the latent variable can be resolved, for example by
centering as in correspondence analysis (I y.:x; = 0} and by setting the mean square of
the tolerances to unity { ¥ t7/m = 1), so that the latent variable can be measured in {mean)
tolerance units. Then, the maximum likelihood equations for the parameters x = [x)]

(i=1,....mandu =[] (k= 1,..., m) become, after some rcarrangement,
o Pl Y _ | 6 — i Yri
nep e [y [yl fon] 62
wi =Y VXl Vs = [E (xi - uk]#k.-/}’k+]~ (3.3)

These (implicit) equations could be simplified further by using the maximum liketihood
equations for the parameters a = [4] (k = 1, ..., m), but for the comparison with
correspondence analysis, (3.2) and (3.3) are sufficient.

4. Theoretical Comparisons

Hill's approach to correspondence analysis makes plausible that the species scores and
sample scores in Section 2 play a role similar to the species optima and sample values in
Section 3; that is why similar symbols are used in Sections 2 and 3. Qur aim is to show
that the terms between square brackets in (3.2) and (3.3) are negligible in certain cases, so
that the maximum likelihood equations reduce effectively to the transitional formulae (2.2)
and (2.3) of correspondence analysis. These cases are as follows: either u;, is small or uy, is
symmetric around X, and around u;.
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4.1 Eguations for the Sample Scores

For the comparison of the estimation equations (2.2) and (3.2), let us first assume that x is
a manifest environmental variable, and that the species’ tolerances are equal (¢, = ¢ = 1).
With known species’ optima and maxima, a missing value of the environmental variable
in a sample can be estimated by using (3.1) as calibration relation. The naive estimator is
the weighted average (2.2) with & = 1. The maximum likelihood equation (3.2) would give
the same result when the term between square brackets is negligible, e.g., if for all species
the maximum of u,; as a function of x is close to 0 (@ — —e). This case may have some
practical relevance, as it implies very sparse matrices, which are not uncommon in ¢cology.

A more interesting case arises when gy, is symmetric around x;. This happens under the
species packing model (MacArthur and Levins, 1967). This is an ecological model based
on the idea that during evolution species evolve to occupy maximally separated niches with
respect 1o a limiting resource, Christiansen and Fenchel (1977, Chap. 3) provide a lucid
introduction. With x the resource, maximally separated niches mean minimal overlap
between the response curves and thus, for a given number of species on a fixed-length
interval and equal maxima, cqual spacing between the optima (apart from edge effects). If
in this situation (i) the interval is longer than, say, 10 tolerance units, (ii) the spacing
between the optima on this interval is closer than ca. 1 and (iii) the sample value x; is well
within this interval, then the term between square brackets is negligible because of the
symmetry in the model (3.1). Simulations showed that under the stated conditions the
weighted average has, in terms of mean squared error, an efficiency of 1.00 with respect to
the maximum likelihood estimator (with an uninformative prior for x;). Moreover, Ter
Braak and Barendregt (in press) showed that the asymptotic efficiency is unity when the
spacing decreases to 0 on an interval of increasing length and that in the class of response
curves that form a location family on x, the models considered here are the only models
with this property.

The weighted average still has approximately unit efficiency when the species maxima
and optima vary in a cyclic pattern along the environmental variable, i.e., when the species
can be divided into sets so that within each set the species have equal maxima and equally-
spaced optima with spacing less than 1 tolerance unit. However, the efficiency may drop
considerably when the tolerance varies. For example, with two tolerances differing by a
factor 2, the efficiency drops to ca. .6 in the logistic model with maximum probability of
occurrence .5. In that case the term between square brackets still vanishes, but what remains
is not a simple weighted average. If the tolerances are known a priori, then the weighted
average should be applied to /i, instead of 10 4, in order to retain high efficiency.

More realistically, let us assume a superpopulation of response curves in which (i) the
optima are independently and uniformly distributed on an interval (cf. Whittaker, Levin,
and Root, 1973), (ii) the species maxima are either constant or random variables indepen-
dent of the species optima, and (iii) the tolerances are equal, In this superpopulation the
numerator of the term in square brackets in (3.2) vanishes in expected value, provided the
sample value X, is, again, well within the interval on which the optima are uniformly
distributed. Because expectation is involved now, neglecting the term in square brackets
makes weighted averaging less efficient with respect to maximum likelihood. In the logistic
model with equal maxima, the asymptotic efficiencies are .96, .79, and .50 when the
maximum probability of occurrence is . 1, .5, and .9, respectively (Ter Braak and Barendregt,
in press).

With « = 1, the difference between the correspondence analysis equation (2.2) and the
maximum likelihood equation (3.2) for latent x is the term between square brackets, The
above comparisons for manifest x indicate in which situations neglecting this term does
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not affect the solution too much. Notc that equation (2.2) does not involve the species
maxima and, further, that for equation (2.2) to be efficient for alt samples, the sampled
interval should be amply contained in the interval of the optima. With the choice a = |
the latter condition is pre-assumed.

4.2 Eguations for the Species Optima

When the sample values are known a priori, estimation of the optima is a regression
problem. From the symmetry between sample values and species optima in model (3.1)
when the maxima and tolerances are equal, we deduce that the results of the previous
section carry over to those species whose optima lie well within the sampled interval, For
those species the weighted average is therefore asymptotically fully efficient with respect to
the maximum likelihood estimator of the optimum, when the sample points are equally
spaced with spacing less than 1 tolerance unit, and has a sormewhat lower efficiency when
the sample points are independently and uniformly distributed over the sampled interval
(Ter Braak and Looman, in press). (That the maximum and the tolerance are to be
estimated as well does not matter, because for these species the estimator for the optimum
has under the stated conditions negligible correlation with the estimators for the maximum
and the tolerance.) However, for species whose optima lie near the edge of, or even outside,
the sampled interval, the weighted average is biased toward the center of the sampled
interval, because these species’ response curves are truncated. For example, the weighted
average always gives a value inside the sampled interval, whereas the true optimum may
lie outside this interval. This is where the cigenvalue A of correspondence analysis comes
in. With « = 1 as in the previous section, equation (2.3) can be rewritten as

= E ViiXif ¥ie — (A — Dy, 4.1

The term (A — )i, can be considered as an overall correction term for the bias, or,
alternatively, as a crude approximation to the term between square brackets in the
maximum likelihood equation (3.3). The first nontrivial solution to the transition formulac
has an eigenvalue X closest to 1 and is therefore the solution where the least correction is
required, This must be the solution with the longest underlying gradient, because the edge
effects that cause the bias decrease with increasing length of the sampled interval. Although
the correction term acts in the right direction, it overcorrects for optima well within the
sampled interval and stitl undercorrects for optima on the edge of or outside the sampled
interval, This observation explains the “compression of the first axis’ ends relative to the
axis middle” (Gauch, 19%2) in correspondence analysis.

4.3 Scaling of the Correspondence Analysis Solution

The choice of « in the transition formulae {2.2) and (2.3) affects the scaling of the species
scores with respect to the sample scores. If the sampling interval is contained well within
the interval of the species optima, then o should naturally be 1 (§4.1). If the converse
applics, then « should be 0. In practice, the intervals may coincide or may only partly
overlap. The choice of « is then arbitrary and should be decided upon by other means (sec
§6.2).

The standardization of the sample scores also requires attention. Commonly the disper-
sion s? of the sampie scores, s = E; ¥.,x}/Vs., is set equal to the eigenvalue A, so that
differences between sample scores approximate “chi-squared distances” between samples
(sce, e.g., Greenacre, 1984, p. 82). In the maximum likelihood approach (§3), the mean
squared tolerance is set to unity. Assuming the loglinear model and the species packing
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model, Hill {1979) estimated the mean squared tolerance by ¥, ¥ yu{xi — )*/y++ and
standardized the correspondence analysis solution so that this estimator becomes 1. Hill's
standardization gives as dispersion of the sample scores 1/{1 — X) for o = 0 {see §2) and
A/(1 — ) for @« = 1. Under the species packing model an alternative interpretation of
criterion {2.1) is therefore that correspondence analysis maximizes the dispersion of the
sample scores, subject 1o maintaining species response curves with unit mean squared
tolerances. {By contrast, principal component analysis maximizes the variance of the
sample scores subject to the condition that the sample scores are a normalized linear
combination of the species’ abundances.}

4.4 Conclusion

In conclusion, the transition formulae of correspondence analysis approximate the maxi-
mum likelihood equations for model (3.1). For equaliy-spaced optima and sample points,
and equal maxima and tolerances, correspondence analysis uses a rough approximation to
correct for edge effects. For uniformly distributed optima and sample points a second kind
of approximation is involved, namely that the expectation is taken with respect to these
uniform distributions over these parts of the maximum likelihood equations that do not
depend on the data yy,. The equality of the species maxima does not appear to be a crucial
assumption. For unequal and unknown tolerances the approximation is worse, because the
transition formulae then need to be weighted as well by the tolerances, which is not done
in correspondence analysis.

5. Two Latent Variables

5.1 A Unimodal Model
The obvious extension of model (3.1) with equal tolerances to two latent variables is
link () = ax — %(xn - ukl)z - ’i!(xa'z — ) (5.1

The maximum likelihood equations for x;, xp, and w,, u; are analogous to {3.2) and (3.3)
and nothing new arises in the comparison with the transition formulae. However, the edge
effects due to truncation are likely to be more severe in two dimensions. First, there is
more edge; second, the bias of the weighted average for, say, w;; will in general depend not
only on 1y, but also, through s, on 2. Approximating this bias by (A, — 1}y, is thus
dubious; yet only with such approximations do the maximum likelihood equations reduce
to the transition formulae of correspondence analysis.

5.2 Detrended Correspondence Analysis

Hill and Gauch (1980) developed detrended correspondence analysis as a heuristic modi-
fication of correspondence analysis, designed to correct two major “faults™ (i) that the ends
of the first axis are often compressed relative to the axis middle (see §4.2); (ii) that the
scores of the second axis frequently show a systematic, often quadratic relation with those
of the first axis. The latter fault, known as the horseshoe or arch effect, can be proven to
occur for certain matrices (Hill, 1974, Proposition 8; Schriever, 1983).

Hill and Gauch (1980) adopt the species packing model to remedy the compression
problem. The “species turnover rate™ (assumed constant} can be estimated at a point along
the gradient by the dispersion of the scores of the species present in a sample at that point.
Hill and Gauch therefore try to equalize the mean within-sample dispersion of the species
scores at all points along the axis by rescaling the species scores [see Hill (1979) for the
details]. Thereafter the sample scores are simply derived by weighted averaging.
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The horseshoe effect is considered by Hill and Gauch {1980} as “a mathematical artifact,
corresponding to no real structure in the data,” They climinate the horseshoe by “detrend-
ing.” Detrending intends to assure that, at any point along the first axis, the mean value of
the sample scores on the subsequent axes is approximately 0. To this end the first axis is
divided inte a number of segmenis and within each segment the sample scores on axis 2
are adjusted by centering them to zero mean. The program by Hill (1979) uses running
segments for this purpose. This process of detrending is built into the reciprocal averaging
algorithm that generates the normal correspondence analysis solution, and replaces the
usual orthogonalization procedure. Subsequent axes are derived similarly by detrending
with respect to each of the existing axes.

Detrended correspondence analysis has been tested on data sets simulated under the
Gaussian response model in one to four dimensions and was found to recover the structure
of the data well (Hill and Gauch, 1980; Gauch, Whittaker, and Singer, 1981).

6. Numerical Comparisons

6.1 Imtroduction

The theoretical comparisons described so far are approximate and are supplemented in this
section by numerical comparisons, using simulated data sets and one real data set. The
performance of correspondence analysis is judged by correlations of the sample scores with
the real values and by log-likelihood.

6.2 Methods

Data were simulated under the response models (3.1) and {(5.1) in one and two dimensions,
respectively, using vnit tolerance and equal maxima. The optima and sample points were
drawn in each simulation independently from a uniform distribution on an interval and
rectangle with prechosen length and sides, respectively. Ecologists refer to such simulations
as coenocline and coenoplane simulations [see Gauch {1982)]. The simulations were
constrained to give at least three occurrences in each sample and at least three occurrences
per species, to ensure that all parameters could be estimated.

Subroutines from Hill (1979) were used to calculate the {detrended) correspondence
analysis selution for the species optima and sample scores with o« = 1 and Hill’s (1979)
standardization (§4.3). With these scores and ¢ = 1 the specics maxima were ¢stimated by
maximum likelihood, analytically in case of Poisson counts (Kooijman, 1977), and nu-
merically in case of 1/0 data, For this solution the likelihood was calculated. In this simple
approach the choice of « is arbitrary, but influences the likelihood. In a second approach
this problem was solved by calculating for each species the regression of the species’
responses on the sample scores. This is easy because models (3.1) and (5.1) are generalized
linear models (Nelder and Wedderburn, 1972). The tolerances were kept fixed to 1 in the
regressions,

The maximum likelihood solution was derived by alternating “regressions” to estimate
the species parameters and “calibrations” to estimate the sample parameters, the latter
being centred and, in two dimensions, rotated to principal axes in each iteration (Kooijman,
1977). Thus, regression and calibration replace the simple weighted averages in the two-
way averaging algorithm to derive the correspondence analysis solution. In each regression
step and each calibration step the Gauss—Newton method was used with Gallant’s (1975)
chopping rule for stepshortening, and a primitive method that prevented parameters from
iterating 1o infinity. As usual, it cannot be guaranteed that the overall maximum of the
likelihood is found, but the algorithm is at least hill climbing. This optimization method is
akin to the EM algorithm (Dempster, Laird, and Rubin, 1977), the difference being that
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with the EM algorithm it is assumed that the incidental parameters are random, whereas
in this paper they are treated as fixed parameters. EM maximizes therefore a marginal
likelihood (Bock and Aitkin, 1981), whereas here the joint likelihood is maximized. The
(detrended) correspondence analysis solutions and also, when available, the true parameter
values provided the initial parameter values.

6.3 Simulation Results

Table 1 summarizes simulations of incidence matrices (A-E) and matrices with counts
(F-I), the former simulated from the logistic response curves (3.1), the latter from the
loglinear response surfaces (5.1), all with unit tolerance. The maximum probability of
occurrence is .7 in A, B, and C, and .5 in D and E. The maximum count is either 5 (F, G,
H) or 1{I).

Table 2 shows an example of B in which the length of the sampled interval is 5 tolerance
units and Figure 1 displays its correspondence analysis solution. Although some of the
species scores are out of order, the correlation of the scores of samples and of species with
the true values is over .9 and the deviance is even lower than under the true parameter
values. Table | shows that in all simulations correspondence analysis performed well for
the first dimension, but in simulations F-I, badly for the second dimension. Detrended
corresponrdence analysis is comparable to comespondence analysis in one dimension
(A-E), but far superior in two dimensions (F-I).

Table 1
Resudis of simulations of the models (3.1) and (5.1) with unit tolerance, jor 1/0 data in one
dimension (A-E) and for Poisson counts in two dimensions (F-1). Shown are average values of at
least four simulations ( first axis \, then axis 2, if appropriate).

Simulation A B C b E F G H I
No. of species 30010 30 30 30 40 40 40 40
No. of samples 20 50 50 30 50 50 50 50 50
Range of u 12 6 5 5 3 10; 5 55 7;4 7;4
Range of x 10 5 4 4 2 8.4 4;4 6;3 6; 3
Value of a 1 1 1 0 0 1.6 1.6 1.6 0
No. of par. 79 6% 109 109 109 218 218 218 218
df 521 431 1391 1391 1391 1782 1782 1782 1782
Eigenvalues (x 100)

CA 60 38 S2 18 88;63  61:49 77,44  BI;57
DCA %0 50 38 52 18 88;45 61;39 77,34 81;44
Deviances

Null model 634 654 1941 164F 1936 3448 4316 4000 1477
True par. 327 483 1556 1396 1883 B36 1377 1225 856
CA 308 458 1506 1289 1778 1696 1708 1958 907
DCA 292 445 1533 1324 1789 1010 1433 1194 681
CA + REGR 264 441 1475 1280 1758 1167 1320 1374 754
DCA + REGR 279 423 1495 1309 1781 775 1255 1070 642
ML 217 417 1440 1259 1739 648 1170 994 508
Correlation with true sample scores (x £00)

CA 98 90 95 95 67 97,57 — 98; 64 96; 53
DCA 98 9% 96 91 51 98;83 — 99;91 96,77

ML 9% 86 94 92 67 99,95 — 99; 93 96; 77

No. = number; u = species optima; X = sample scores;, par. = parameters; df = degrees of freedom; CA =
correspondence analysis; DCA = detrended correspondence analysis; (DYCA + REGR = (D)CA followed by
regression on (D)CA sample scores; ML = maximum likelihood.

—: Meaningless.

53



54

868 Biometrics, December 1983

Table 2
Incidence mairix simulated from unimodal response curves (3.1) under condition B in Table l The
species (rows) and samples (columns) are arranged in increasing order of the trie optima and
sample values, respectively.

11111111110110010101000001000100000000006000000000
111011111001E1111106110010010000000000000000000000
11000001100101101111111100100000110000000000000000
01110011111011001011101101010111101011000000000000
1HLI111001000EL1011110010101001CG114000000010000000
001100010111011010112501011110111011111011000000000
00010101031000011111011111001000101111101100111000
00000006000000001101000010010001111110LLL11111011L11
00000000000010100000111001001101100110111G01111L1111
00000000000000600000¢000000001000101001011101001111

In two dimensions each solution of correspondence analysis showed the horseshoe, most
in F and H, least in G and 1. The lower the maximum of the response curves, the better
correspondence analysis (D vs C and 1 vs H), in accordance with the theory, The simulations
also confirm the observation of Hill and Gauch (1980) that correspondence analysis works
more satisfactonly with square sampling regions as compared to rectangular regions {G vs
F, H). In order to determine whether the success of detrended correspondence analysis is
due to the rescaling of the axes or to the detrending, some tests were done with rescaling,
but without detrending, These tests showed a slight, but unimportant improvement over
the results of correspondence analysis. The success of detrended correspondence analysis is
therefore mainly due to the detrending.

The eigenvalues showed little variation between simulations of the same type; for
example, in A and F the standard deviations were below 0,05,

The estimates of the species optima can be improved by regressing each species response
on the sample scores, as can be seen from the drop in the deviance (Table 1} and the
increase in correlation with the true optima (not shown). The deviance after regression on
the sample scores from detrended correspondence analysis was in nearly all simulations
less than the deviance under the true parameters.

The maximum likelihood solution has, by definition, the lowest deviance, but does not
always give the highest correlation with the true sample scores. Of the three sets of initial
values used to derive the maximum likelihood solution, the true values and the values
from detrended correspondence analysis gave nearly identical solutions. Starting from the
correspondence analysis solution, the maximization procedure frequently became trapped
in a local maximum in simulations F-I.

For statistical tests and confidence regions it is tempting to assume that deviances are
chi-squared distributed. This assumption is risky in this context because the number of
parameters increases with the number of observations. Indeed, the true parameter values
lie outside the usual 95% confidence region in 34% of the 29 simulations of the one-
dimensional model and in 12% of the 24 simulations of the two-dimensional model.

6.4 A Real Data Ser

The real data set, taken from Van der Aari and Smeenk-Enserink (1975), concerns the
distribution of twelve wolfspiders (Lycosidae) in a dune area and consisis of their accu-
mulated catches in 100 samples. The maximum count in the data is 189, far higher than
in the simulations, but zeroes are as equally abundant as in the simulations. Correspondence
analysis was applied to these data, giving .65 and .42 for the first two eigenvalues. The
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sample scores of the second axis showed a clear quadratic trend with respect to those of the
first axis. Removing this trend, detrended correspondence analysis resulted in a second
eigenvalue of .09. This small value indicates that the second axis is unimportant for these
data, which agrees with the results of Kooijman (1977), who fitted one- and two-dimensional
Gaussian response models to these data by maximum likelihood.

Table 3 shows the results of loglinear regressions of the catches of the wolfspiders on the
sample scores of the first axis of detrended correspondence analysis. When a quadratic
term was added to the model, the deviance decreased considerably for nine of the twelve
spider species. Their fitted curves are all unimodal (see Figure 2. The rescaling of the axis
in detrended correspondence analysis appears advantagcous for these data, as the quadratic
fit with respect to the first axis of the usual correspondence analysis resulted in a 50%
higher deviance. The full maximum likelihood solution (with equal tolerances) gave a
deviance of 4890, 30% lower than the deviance of the quadratic model in Table 3. Yet the
sample scores as estimated by maximum likelihood showed a high correlation ((95) with
those of detrended correspondence analysis.

Van der Aart and Smeenk-Enserink (1975) also characterized the vegetation and the soil
around 28 of the 100 pitfall traps. They state, “The sites were sclected in such a way that
as many biotope types as possible were represented.” Interpreting the first axis of detrended
correspondence analysis as a latent variable, we can therefore atiempt to relate this latent
variable to the measured environmental variables. A multiple regression of the first axis’
scores on the logarithms of the variables soil water content, percentage of bare sand, and
percentage cover by mosses accounted for 90% of the variance. All three variables contrib-
uted to this regression, as judged by ¢ tests on the regression coefficients, The first axis can
therefore be interpreted as a composite gradient of soil moisture and openness of the
habitat. A possibie explanation for these results is that wolfspiders require an open habitat
for hunting purposes but, on the other hand, require moisture te avoid desiccation. Each
species balances these conflicting requirements in its own way and is therefore largely
confined to a specific interval along the composite gradient of soil moisture and openness.
Other factors related to soil moisture or openness cannot be excluded to be operational.

Table 3
Loglinear regressions of catches of wolfspiders (k) on the sample scores (x;) of the first axis of
detrended correspondence analysis. Given are the deviance of the null model and the decreases in
deviance when the loglinear model is extended successively with a linear (b, x) and a quadratic term
(hax?). Provided by < 0, the quadratic model fits Gaussian response curves with unegual tolerances
[equation (3.1}). The spiders are arranged in order of the species score of the first axis.

Successive decrease in deviance

Deviance
Model: lOg M = b + bmx' + bklx:g
k Waolfspider

1 Pardosa tugubris 1494 1159 il
2 Zorg spinimana 935 245 341
3 Pardosa nigriceps 3109 388 1490
4 Trochosa terricola 3671 1033 1743
5 Pardosa pullata 4504 427 2570
6 Arctosa lutetiana 315 18 149
7 Aulonia albimana 958 93 488
3 Alopecosa cuneata 1396 57 696
9 Pardosa monticola 4103 130 3023
10 Alopecosa accentuaia 856 329 202
11 Alopecosa fobrilis 864 693 24
12 Arctosa perita 340 254 3
Total 22545 4826 10740
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X

Figure 2. Unimodal response curves (3.1) for the expected number (x) of wolfspiders along the first

axis of detrended correspondence analysis (x), fitted by loglinear regression (Table 3, last column),

The curves are labelled by the species identification numbers of Table 3. The sample points are

indicated by ticks below the abscissa {length proportional to number). Data from Van der Aart and
Smeenk-Enserink (1975).

7. Discussion

Both the unimodal model (3.1} with # = ¢ and the bilinear model (2.4) stand at the basis
of correspondence analysis. The clue to this apparent paradox is data transformation. In
linear regression, data transformation can be used to linearize monotone relationships. In
multivariate analysis, data transformation can also be used to linearize nonmonotone
relationships. Correspondence analysis is not the only example. Koaoijman (1977} showed
that principal component analysis recovers exactly the parameters of equal tolerance
Gaussian curves and surfaces from error-free data when the data matrix is centered by rows
and by columns after log transformation. Aitchison (1983) proposed this transformation to
overcome the difficulty of the constant-sum constraint in principal component analysis of
compositional data. He notices that “the noniinearity of the logarithmic function opens up
the possibility of coping with curvature in data sets ...,” but does not refer to the Gaussian
or unimodal response model. {His Figure 2(b) clearly shows the unimodal response of
constituent F ailong the first principal component.] Thm and Van Groenewoud (1975) used
a different transformation to analyze Gaussian response curves by principal component
analysis. Their method requires the same assumptions as correspondence analysis about
the distribution of the optima and the sample points.

Four conditions (equal tolerances, equal or independent maxima, and equally-spaced or
uniformly distributed optima and sample points) are nceded to show that (detrended)
correspondence analysis provides an approximate solution to the unimodal models (3.1)
and (5.1). How realistic are these assumptions in practice and how robust is correspondence
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analysis to violations of the assumptions? Some checks on the assumptions are possible,
e.g., by regressing each species’ responses on the derived sample scores, allowing the
tolerances and maxima to vary among species, and I suggest that this should be done
routinely, if only to determine the goodness-of-fit of the model for descriptive purposes.
Ihm and Van Groenewoud {1975) and Koocijman (1977) reported that the optima and
sample values as estimated by their methods are fairly robust against unequal tolerances,
as did Hill and Gauch {1980) for detrended correspondence analysis. The four conditions
are not needed in the maximum likelihood approach, taken by Gauch, Chase, and
Whittaker (1974) for normal data, Kooijman (1977) for Poisson data, and Goodall and
Johnson (1982) for presence/absence data. Yet, the maximum likelihood approach is
applied scldom in ecological research because of its computational complexity and the lack
of reliable and flexible software (Gauch, 1982). Another reason might be that correspon-
dence analysis appears to be “nonparametric.” However, this paper reveals its close
connection with “Gaussian”™ response curves with equal tolerances.

Commeonly high values in the data matrix are downweighted in correspondence analysis
by, for example, a prior square root transformation. However, when the variance is
proportional to the mean, transformation is not required (Wedderburn, 1974), Qverdisper-
sion then inflates the mean deviance, not necessarily implying lack of fit. When the type
of dispersion or lack of fit is allowed to vary between species, all problems of common
factor analysis are lurking in the way.

Principal component analysis and correspondence analysis are rival methods for dimen-
sionality reduction for abundance data (Gauch, Whittaker, and Wentworth, 1977; Greig-
Smith, 1983), both allowing “major features” of the data to be visualized in joint plots of
species and sample scores. The geometrical interpretation of a principal component plot is
based on the bilinear model, as stressed by Gabriel (1971), who termed the plot a biplot.
The value of a variable, as approximated by the biplot, changes linearly across the plot.
Correspondence analysis therefore gives a biplot of the transformed data values (2.4).
However, in terms of the original data Y the joint plot of correspondence analysis is not a
biplot, because the model for the original data is unimodal rather than bilinear. The original
value of a variable, as approximated by a correspondence analysis plot, is maximum at this
variable’s point in the plot and decreases with distance from that point, disregarding for a
moment the fact that (detrended) correspendence analysis provides only an approximate
solution to the unimodal models (3.1) and (5.1). We may interpret the correspondence
analysis plot more informally as Benzécri et al. (1973) do. Their centroid principle (/e
principe barycentrigue) is simply the transition formulae interpreted geometrically. Multi-
dimensional unfolding provides the same kind of plot (Carroll, 1972).

Although principal component analysis and correspondence analysis model and display
multivariate data in different ways, the resulting plots of the sample scores are sometimes
similar. This happens when all unimodal surfaces are truncated to monotone surfaces over
the region actually sampled, the monotone surfaces being approximated by planes in
principal component analysis. In such cases the correspondence analysis solution with
o = 1 shows some species points close to the centroid of the sample points, whereas the
other species’ points fall outside the region where the sample points lie.
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RESUME

L'analyse des vorrespondances est couramment utilisée par les écologistes pour analyser des données
de présence/absence ou d'abondance d’espéces. Les tout premiers axes sont interpréiés en termes de
variables sous-jacentes conditionnant la distribution des espéces. On fait I'hypothése que ces variables
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sont liées aux variables de milieu non explicitées. Dans cet article, on montre qu’en utilisant I'analyse
des correspondances, on obtient une solution approchée de la solution donnée par la technique du
maximum de vraisemblance dans le cas de modéles de réponse unimodale 4 une variable sous-jacente.
Les modéles utilisés sont des modéles logistiques-tingaires en ce qui concerne les données de présence/
absence et log-linéaires pour des abondances suivant des lois de Poisson, les estimateurs étant des
fonctions quadratiques de la variable sous-jacente. On obtient une approximation de meilleure qualité
lorsque, d’une part, les maximum et les amplitudes (tolérances des espéces aux conditions de milieu)
des courbes de réponse des espéces ont mémes valeurs et que, d’autre part, les valeurs de la variable
sous-jacente correspondant aux optimum de chague espéce et aux pointes d’échantillonnage sont
réguliérement réparties. L’approximation demeure satisfaisante pour des optimum et des valeurs
correspondant aux échantillons distribués uniformément, ainsi que le montre la simulation. Pour des
modéles 4 2 variables sous-jacentes, "approximation est souvent mauvaise en raison de la présence
d’un effet Guttman. L’approximation est de bien meilleure qualité lorsque I'on réalise des simulations
aprés avoir retiré cet effet, ce qui se produit lorsqu’on utilise une technique d*analyse des correspond-
ances qui efface la tendance centrale du phénoméne étudié.
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CANONICAL CORRESPONDENCE ANALYSIS:
A NEW EIGENVECTOR TECHNIQUE FOR MULTIVARIATE
DIRECT GRADIENT ANALYSIS'
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TNG Institute of Applied Computer Science, P. O. Box 100, 670G AC Wageningen,
The Netherlands, and Research Institute for Nature Management, Leersum,
The Netherlands

Abstract. A new multivariate analysis technique, developed to relate community composition to
known variation in the environment, is described. The technique is an extension of correspondence
analysis (reciprocal averaging), a popular ordination technique that extracts continuous axes of vari-
ation from species occurrence or abundance data. Such ordination axes are typically interpreted with
the help of external knowledge and data on environmental variables; this twe-step approach (ordination
followed by environmental gradient identification) is termed indirect gradient analysis. In the new
technique, called canonical correspondence analysis, ordination axes are chosen in the light of known
environmental variables by imposing the extra restriction that the axes be linear combinations of
environmental variables. In this way community variation can be directly related to environmental
variation. The environmental variables may be quantitative or nominal, As many axes can be extracted
as there are environmental variables. The methed of detrending can be incorperated in the technique
to remove arch effects.

{Detrended) canonical correspondence analysis is an efficient ordination technique when species
have bell-shaped response curves or surfaces with respect to environmental gradients, and is therefore
more appropriate for analyzing data on community composition and environmental variables than
canonical correlation analysis. The new technique leads to an ordination diagram in which points
represeni species and sites, and vectors represent environmental variables. Such a diagram shows the
patterns of variation in community composition that can be explained best by the environmental
variables and also visualizes approximately the “centers” of the species distributions along e¢ach of
the environmental variables. Such diagrams effectively summarized relationships between community
and environment for data sets on hunting spiders, dyke vegetation, and algac along a pollution gradient.

Key words:  biplot; canonical correlation analysis; canonical correspondence analysis; detrended
correspondence analysis; Gaussian model; gradient analysis; ordination; reciprocel averaging, regres-

sion; species—environment relations; unjolding; weighted averaging.

InTRODUCTION

Problems in community ecology often require the
inferring of species~environment relationships from
community composition data and associated habitat
measurements. Typical data for such problems consist
of two sets: data on the occurrence or abundance of a
nurtber of species at a series of sites, and data on a
number of environmental variables measured at the
same sites. (A “site” is the basic sampling unit, sepa-
rated in space or time from other sites, e.g., a quadrat,
a woodlot, a light trap, or a plankton sample.) When
the data are collected over a sufficient habitat range for
species to show nonlinear, nonmonotonic relationships
with environmental variables, it is inappropriate to
summarize these relationships by correlation coeffi-
cients or to analyze the data by techniques that are
based on correlation coefficients, such as canonical cor-
relation anatysis (Gauch and Wentworth 1976, Gittins
1985). An alternative, twa-step approach has become
popular: (1) extract from the species data the dominant
pattern of variation in community composition by an
ordination technique, such as (detrended) correspon-

' Manuscript received 18 March 1985; revised 12 Novem-
ber 1985; accepted 22 January 1986.

dence analysis, and (2} attempt to relate this pattern
(i.e., the first few ordination axes) 10 the envirenmental
variables (Gauch 19824). The particular merit of de-
trended correspondence analysis in this context is that
it removes nonlinear dependencies between axes (Hill
and Gauch 1980) and has been shown to be an efficient
technique to extract one or more ordination axes (*gra-
dients”) such that species show unimodal {bell-shaped)
response curves or surfaces with respect to these axes
(Ter Braak 19858). The axes can be thought of as hy-
pothetical environmental gradients, which are subse-
gquently interpreted in terms of measared environmen-
tal variables in the second step of the analysis. This
two-step approach is essentially Whittaker's (1967) in-
direct gradient analysis.

‘What can be inferred from indirect gradient analysis?
If the measured environmental variables relate strong-
ly to the first few ordination axes, they can “account
for” (i.e., they are sufficient to predict} the main part
of the variation in the species composition. If the en-
vironmental variables do not relate strongly to the first
few axes, they cannot account for the main part of the
vanration, but they may still account for some of the
remaining variation—which can be substantial. Fur-
ther, it is nontrivial 1o detect by indirect gradient anal-



1168

ysis the effects on community composition of a subset
of environmental variables in which one is particularly
interested (Carleton 1984). These limitations can only
be overcome by methods of direct gradient analysis,
in which species occurrences are related directly to en-
vironmental variabies (Gauch 1982a). Methods of di-
rect gradient analysis in current use consider essentially
one species at a time. Simple methods involve plotting
species abundance against a single environmental vari-
able, or isopleths in a space of two environmenital vari-
ables {(Whittaker 1967). More elaborate methods use
(generalized linear) regression methods (Austin et al.
1984, Bartlein et al. 1986) and are useful in studying
simultanecusly the effect of more than one environ-
mental variable. Regression methods allow fitted re-
sponse surfaces 10 assume a wide variety of shapes.
However, when the number of species is large, separate
regression analysis for each species may be impractical.
Moreover, separate analyses cannol be combined eas-
ily to get an overview of how community composition
varies with the environment (in particular, when the
number of environmental variables exceeds two or
three), and a multivariate method (based on a common
response model) is required.

In this paper a multivariate direct gradient analysis
technique is developed, whereby a set of species is
related directly to a set of environmental variables. The
new technique identifies an environmental basis for
community ordination by detecting the patterns of
variation in community composition that can be ex-
plained best by the environmental variables. In the
resulting ordination diagram, species and sites are rep-
resented by points and environmental variables are
represented by arrows, Such a diagram shows the main
pattern of variation in community composition as ac-
counted for by the environmental variables, and also
shows, in an approximate way, the distributions of the
species along each environmental variable. The tech-
nique thus combines aspects of reguiar ordination with
aspects of direct gradient analysis. The rationale of the
technique is derived from a species packing model
wherein species are assumed 10 have Gaussian {bell-
shaped) response surfaces with respect to compound
environmental gradients. These gradients are assumed
to be linear combinations of the environmental vari-
ables. The new technique is called canonical corre-
spondence analysis, because it is a correspondence
analysis technique in which the axes are chosen in the
light of the environmental variables. Examples dem-
onstrate that canonical correspondence analysis allows
a quick appraisal of how community composition var-
ies with the environment,

THEORY
Data and model

Suppose a survey of n sites lists the abundances or
occurrences (presence scored as 1, absence as 0) of m

CAJO J. F. TER BRAAK

Ecology, Vol. 67, No. §

species and the values of g environmental variables
(q@ < n}. Let y, be the abundance or presence/absence
(1/0) of species k (v, = 0), and z, the value of envi-
ronmental variable j at site i

The first step in indirect gradient analysis is to sum-
marize the main variation in the species data by or-
dination. The method of Gaussian ordination (Gauch
ct al, 1974) does this by constructing an axis such that
the species data optimally fit Gaussian response curves
along this axis. Then the response model for the species
is the bell-shaped function

Eya) = qexp[;./z(x‘ = w), (1)

where E(y,} denotes the expected (average) value of
¥ Bl site § that has score x; on the ordination axis. The
parameters for species & are ¢,, the maximum of that
species’ response curve; i, the mode or optimum (i.e.,
the value of x for which the maximum is attained);
and z,, the tolerance, a measure of ecological ampli-
tude. Ter Braak (1985%) showed that correspondence
analysis approximates the maximum likelihood solu-
tion of Gaussian ordination, if the sampling distribu-
tion of the species abundances is Poisson, and if:

C1) the species’ tolerances are equal {t, = ¢, k=1,
cees ),

C2) the species” maxima are equal (¢, = ¢, k= 1,
ca.,m),

C3) thespecies’ optima {1, } are homogeneously dis-
tributed over an interval 4 that is large com-
pared to 2,

C4) the site scores {x;} are homogenecusly distrib-
uted over a large interval B that is contained
in A.

{The wording “homogeneously distributed” is used to
cover either of two cases, namely (1) that the scores
are equispaced, with spacing small compared to {, or
{2) that the scores are drawn randomly from a uniform
distribution.) Conditions C1-C3 imply a species pack-
ing model (Whittaker et al. 1973) with respect to the
ordination axis. The species scores resulting from a
correspondence analysis actually estimate the optima
of the species in this model. Ter Braak {19855} pro-
vided a similar rationale for correspondence analysis
of presence-absence data. Conditions C1 and C2 are
not likely to hold in most natural communities, but
the usefulness of correspondence analysis in practice
relies on its robustness against violations of these con-
ditions (Hill and Gauch 1980).

The second step of indirect gradient analysis is to
relate the ordination axis to the environmental vari-
ables, for example graphically, or by calculating cor-
relation coefficients, or by multiple regression ({see
Montgomery and Peck 1982) of the site scores on the
environmental variables

q
Xx=hb+ X bz,

=l

@
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where b, is the intercept and b, is the regression coef-
ficient for environmental variable j. Note that the
species optima w, and sites scores x, are estimated from
the species data first; the regression coefficients &; are
estimated next, keeping x; (and #,) fixed. The species
data are thus indirectly related to the environmental
variables, via the ordination axis.

The technique proposed in this paper simultaneously
estimates the species optima, the regression coefficients
and, hence, the site scores by using the model described
by Eq. 1, in conjunction with Eq. 2. Simultaneous es-
timaticn turns the technique into a direct gradient anal-
ysis method. In principle the method of maximum
likelihood could be used to obtain the estimates. This
analysis could be called Gaussian canonical ordination.
It requires excessively heavy computation. The com-
putational task can, however, be alleviated consider-
ably if conditions C1-C4 hold. The reascning that led
from Gaussian ordination to correspondence analysis,
now leads 10 the transition formulae of canonical cor-
respondence analysis (see Appendix):

Nty = D Puki Ver €)]
=1

x*= 2 Vulhe! Via @)
k=1

b = (z'rRZ) 'Z'RX" [&)]

x=1zb, (6}

where y,, and y,, are species and site totals, respec-
tively, R is a diagonal # > s matrix with y,, as the (i,
i}-th elemeny; z = {z;} is an » % (g + 1) matrix ¢on-
taining the environmental data and a column of ones;
and 5, x and x* are column-vectors: & = (b, by, . ..,
bY, x={x, ..., x),and x* = {(x* ..., x,*). The
transition formulae define an eigenvector problem (see
Appendix) that is akin to the eigenvector problem posed
by cananical correlation analysis, A in Eq. 3 being the
eigenvalue, As in correspondence analysis, the equa-
tions have a trivial solution in which all site and spe-
cies scores are equal and A = 1; this trivial solution
can either be disregarded or be excluded by requiring
that the- site scores are centered to zero mean,
ie., Zy.x, =0.

Algorithm: reciprocal averaging and regression

The transition formulae can be sclved by the follow-
ing iteration algorithm of reciprocal averaging and
multiple regression,

$1) Start with arbitrary, but unequal, initial site
SCOres.

52) Calculate species scores by weighted averaging
of the site scores (Eq. 3 with A = 1).

§3) Calculate new site scores by weighted averaging
of the species scores (Eq. 4).

$4) Obtain regression coefficients by weighted mul-
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tiple regression of the site scores on the envi-
ronmental variables (Eq. 5). The weights are the
site totals (v;, ).
Calculate new site scores by Eq. § or, equiva-
lently, Eq. 2. The new site scores are in fact the
fitted values of the regression of the previous
step.
Center and standardize the site scores such that
Zy.x, =0 and Zy.x2=1 [¥))]
Stop on convergence, i.e., when the new site
scores are sufficiently close to the site scores of
the previous iteration; otherwise go to 52.

55

—

56)

57

—

This procedure is akin to the reciprocal averaging
algorithm of correspondence analysis, but steps 54 and
S5 are additional. The new technique is a correspon-
dence analysis technique with restrictions (54 and 85)
on the site scores {¢f. D¢ Leeuw 1984). The final regres-
sion coefficients will be called canonical coefficients,
and the multiple correlation coefficient of the final
regression will be called the species—environment cor-
relation. The species-environment correlation is a
measure of how well the extracted variation in com-
munity composition can be explained by the environ-
mental variables and is equal to the correlation be-
tween the site scores {x*}, which are weighted mean
species scores (caleulated by Eq. 4), and the site scores
{x,}, which are a linear combination of the environ-
mental variables (calculated by Eq. 2 or Eq. 6). This
equality requires the assumption that sites are weighted
proportional to v, , as in steps S4 and S6, and this
weighting of sites is assumed in the calculation of means,
varances, and correlations throughout the paper.

The standardization of the site scores in 86 is con-
venient in the algorithm, but it has more meaning eco-
logically to rescale the solution according to Eq. A8
of the Appendix, as proposed by Hill {1979). Then, the
tolerance of the fitted Gaussian response curves is (on
average) about 1 unit, and a species’ response curve
can be expected to rise and decline over an interval of
about 4 units.

More than one dimension and detrending

Second and additional axes can be extracted as in
correspondence analysis by adding 10 the algorithm,
after 83, a step that makes the trial site scores uncor-
related with the previous axes. The two-dimensional
solution is intended to fit bivariate Gaussian response
surfaces to the species daia (Ter Braak 19855) but often
gives a bad fit because of the arch effect, an approxi-
mately quadratic dependence between the scores of the
first two axes. This effect crops up whenever a short
gradient is dominated by a long gradient (Gauch 1982a).
The modifications of correspondence analysis that led
to detrended correspondence analysis (Hill and Gauch
1980) can also be incorporated in canonical corre-
spondence analysis; the rationale for detrending is the
same. Detrending removes the arch effect and im-
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The distribution of 12 specics of hunting spiders caught in pitfall traps in a Dutch dune area. Canonical corre-

spondence analysis (CCA) ordination diagram with pitfall traps (O), hunting spiders {4), and environmental variables (arrows);
first axis is horizomal, second axis vertical. Shown also are the projections of the spider points labelled Arct peri, Alop fabr,
Alop acce, and Pard mont onto the trajectory of the arrow of bare sand; the order of the projection points indicates the
approximate ranking of the centers of the distributions of these spiders along the variable ““percentage bare sand,” Arcrosa
perita being found in habitats with the highest percentages of bare sand. The spider species are: Alop acce = Alopecosa
accentuata, Alop cune = Alopecosa cuneata, Alop fabr = Alopecosa fabrilis, Arct lute = Arctosa lutetiana, Arct peri = Arctosa
perita, Aulo albi = Awlonia albimana, Pard logu = Pardosa (ugubris, Pard mont = Pardosa monticola, Pard nigr = Pardosa
nigriceps, Pard pull = Pardosa pullata, Troc wrr = Trochosa terricala, Zora spin = Zora spinimana. The environmental
variables are: Water Content = percentage of soil dry mass, Bare Sand = percentage cover of bare sand, Fallen Twigs =
percentage cover of fallen leaves and twigs, Cover Moss = percentage cover of the moss layer, Cover Herbs = percentage
cover of the herb layer, and Light Refl = reflection of the soil surface with cloudless sky.

proves the fit to the Gaussian model considerably in
simulations where the true site and species scores are
homogeneously distributed in a rectangle (the exten-
sion to two dimensions of conditions C3 and C4; Ter
Braak 1985#6). Detrending, however, also attempts to
impose such a homogeneous distribution of scores on
the data where none exists. The computer program
CANOCO (Ter Braak 1983a) will also perform de-
trended canonical correspondence analysis. For a com-
parison of the detrended analysis with the non-detrend-
ed analysis, see Tests on Real Data.

Canonical coefficients and intraset correlations

For interpreting the ordination axes one can use the
canonical coefficients and the intraset correlations. The
canonical coefficients define the ordination axes as linear
combinations of the environmental variables through
Eq. 2, and the intraset correlations are the correlation
coeflicients between the environmental variables and
these ordination axes. {The term intraset is used here
to distinguish these correlations from the interset cor-
relations between the environmental variables and the
site scores {x,*} that are derived fromm the species data.}
For the rest of the analysis it is assumed that the en-
vironmental variables have been standardized to zero
mean and unit variance prior to the analysis. This stan-

dardization removes arhitrariness in the units of mea-
surement of the environmental variables and makes
the canonical coefficients comparable to each other,
but does not influence other aspects of the analysis.
By looking at the signs and relative magnitudes of
the intraset correlations and of the canonical coeffi-
cients so standardized, we may infer the relative im-
portance of each environmental variable for predicting
the community composition. The canonical coefli-
cients give the same information as the intraset cor-
relations in the special case that the environmental
variables gre mutually uncorrelated, but may provide
rather different information when the environmental
variables are correlated with each other, as they usually
are in field data. Both a canonical coeflicient and an
intraset correlation coefficient relate to the rate of change
in community composition per unit change in the cor-
responding environmental variable, but in the former
case it is assumed that other envircnmental variables
are being held constant, whereas in the latter case the
other environmental variables are assumed to covary
with that one environmental variable in the particular
way they do in the data set. When the environmental
variables are strongly correlated with each other—for
example, simply because the number of environmental
wariables approaches the number of sites—the effects
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of different environmental variables on community
composition cannot be separated out and, consequent-
ly, the canonical ceefficients are unstable. This is the
multicollinearity problem, well known to occur in mul-
tiple regression analysis (see Montgomery and Peck
1982). When this problem arises (the program CAN-
OCO [Ter Braak 19854] provides statistics 1o help de-
tect it) one should abstain from attempts to interpret
the canonicat coefficients. Fortunately, the intraset cor-
relations do not suffer from this problem and can still
be used for interpretation purposes. One can also re-
move environmental variables from the analysis, keep-
ing at least one variable per set of strongly correlated
environmental variables; the eigenvalues and species—
environment correlations will usually decrease only
slightly. If the eigenvalues and species—environment
correlations drop considerably, one has removed too
many {(or the wrong) variables.

In contrast to cancnical correlation analysis, canon-
ical correspondence analysis is not hampered by mul-
ticollinearity in the species data; the number of species
is therefore allowed 10 exceed the number of sites.

Ordination diagram

The sclution of cancnical correspondence analysis
can be displayed in an ordination diagram with sites
and species represented by points, and environmental
variables represented by arrows (see Fig, 1). The species
and site points jointly represent the dominant patterns
in community composition insofar as these can be ex-
plained by the environmental variables, and the species
points and the arrows of the environmental variables
jointly reflect the species’ distributions along cach of
the environmental variables, For example, when an
arrow refers to ““water content,” the diagram allows us
to infer—by rules explained in the following para-
graphs— which species largely oceur in the wettest sites,
which in the driest sites, and which in sites with in-
termediate moisture values, We shgl] limit the discus-
sion to two-dimensional diagrams because these are
the most convenient to visualize. The rules for con-
struction and interpretation of higher-dimensional or-
dination diagrams are the same.

For the diagram to represent the approximate com-
munity composition at the sites, we must plot species
scores and site scores that are weighted mean species
scores, as in Hili’s (1979) program DECORANA, Be-
cause each site point then lies at the centroid of the
species points that occur at that site, one may infer
from the diagram which species are likely to be present
at a particular site. Also, insofar as canonical corre-
spondence analysis is a good approximation to the fit-
ting of Gaussian response surfaces, the species points
are approximately the optima of these surfaces; hence
the abundance or probability of occurrence of a species
decreases with distance from its location in the dia-

gram.
At which values of an environmental variable a
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species occurred in the data can conveniently be sum-
marized by the weighted average. The weighted av-
erage of a species distribution (k) with respect 10 an
envircnmental variable () is defined as the average of
the values of that environmental variable at those sites
at which that species occurs, the weighting of each site
being proportional to species abundance, i.c.,

2y = 2 VaZy Vs ®
=

The weighted average indicates the “center” of a species’
distribution along an environmental variable {Ter Braak
and Looman 1986), and differences in weighted av-
erages between species indicate differences in their dis-
tributions along that environmental variable. The or-
dination diagram of canonical correspondence analysis
can be supplemented by arrows for the environmental
variables to give a graphical summary of the weighted
averages of all species with respect to all environmental
variables.

The arrows for the environmental variables must be
added in the following way. The position of the head
of the arrow for an environmental variable depends on
the eigenvalues ot the axes and the intraset correlations
of that environmental variable with the axes (see Ap-
pendix). The coordinate of the head of the arrow on
axis s must be [A,(1 — A)]* times the intraset correlation
of the environmental variable with axis 5, where X, is
the eigenvalue of axis s and it is assumed that the
species scores are standardized according to Appendix
Eq. A.8, as before. By connecting the origin of the plot
(the centroid of the site points) with each of the arrow-
heads, we obtain the arrows representing the variables
(Fig. 1). How to ¢onstruct such a diagram from a de-
trended canonical correspondence analysis is described
in the Appendix. Only the directions and relative lengths
convey information, so one can increase or reduce the
lengths of all arrows to fit conveniently in the ordi-
nation diagram,

The ordination diagram so constructed allows the
following interpretation. Each arrow determines a di-
rection or axis in the diagram, obtained by extending
the arrow in both directions (in your mind or on paper).
From each species point we must drop a perpendicular

- to this axis, Fig. | shows an example. The arrow for

waler content has been extended (the axis happens to
coincide with the arrow for bare sand) and perpendic-
ulars have been dropped 1o this axis from four species
points. The endpoints indicate the relative positions
of the centers of the species distributions along the
water content axis or, more precisely, they indicate in
an approximate way the relative value of the weighted
average of each species with respect to water content.
From Fig. ! we thus infer that Arctosa perita has the
lowest weighted average with respect to water content
(i.e., it largely cccurs at the driest sites), Alopecosa fa-
brilis the second lowest value, and so on to Arcfosa
futetiana, which is inferred to have the highest weight-
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Tapre 1, Comparison of the results of ordinations by de-
trended correspondence analysis {DCA), canonical cotre-
spondence analysis (CCA), and detrended canonical cor-
respondence analysis (DCCA) of hunting spider data (see
Fig. 1) eigenvalues and species-environment correlation
coefficients for the first three axes.

Axis
1 2 3
Eigenvalues
DCA 0.58 Q.16 0.02
CCA 0.53 0.21 0.06
DCCA .53 0.13 0.02
Correlation coefficients
DCA .96 0.92 0.88
CCA 0.96 0.93 0.64
DCCA 0.97 0.94 0.90

ed average (i.e., to occur largely at the wettest sites).
In general, the approximate ranking of the weighted
averages for a particular environmental variable can
be seen easily from the order of the endpoints of the
perpendiculars of the species along the axis for that
variable. Further, the weighted averages are approxi-
mated in the diagram as deviations from the grand
mean of each environmental variable, the grand mean
being represented by the origin of the plot. A secand
useful rule for interpreting the diagram is therefore that
the inferred weighted average is higher than average if
the endpoint of a species lies on the same side of the
origin as the head of an arrow does, and is lower than
average if the origin lies between the endpoint and the
head of the arrow,

These rules for interpreting the joint plot of species
points and environmental arrows are identical to the
rules for interpreting a biplot (Gabnel 1971). Biplots
have been used so far primarily in connection with
principal components analysis (Ter Braak 1983), but
a biplot is essentially just a joint plot of two kinds of
entities that allows a particular kind of quantitative
interpretation (Gabriel 1981, Ter Braak 1983). The
joint plot of species and environmental variables is, in
fact, a biplot. This biplot provides a weighted least
squares approximation of the weighted averages of the
species with respect to the environmental variables (see
Appendix). The measure of goodness of fit, 100 X (A, +
M)/ (sum of all eipenvalues), expresses the percentage
variance of the weighted averages accounted for by the
two-dimensional diagram. In interpreting percentages
of variance accounted for, it must be kept in mind that
the goal is not 100%, because part of the total variance
is due to noise in the data (cf. Gauch 19826). Even an
ordination diagram that explains only a low percentage
may be quite informative.

Finally, the length of an arrow representing an en-
vironmental variable is equal to the rate of change in
the weighted average as inferred from the biplot, and
is therefore a measure of how much the species dis-
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iributions differ along that environmental variable, Im-
portant environmental variables therefore tend to be
represented by longer arrows than less important en-
vironmental variables.

Relation of canonical correspondence analysis
with weighted averaging ordination and
discriminant analysis

Canonical correspondence analysis peneralizes two
existing techniques for direct gradient analysis. When
a single quantitative environmental variable is consid-
ered, it reduces to weighted averaging ordination (Gauch
1982a), because x, in Eq. 1 is then simply the value of
this variable at site i, and fitting this model simplifies
under condition C4 to weighted everaging (cf. Ter Braak
and Looman 1986). With two quantitative environ-
mental variables, the technigue represents the same
information in a two-dimensional diagram as weighted
averaging ordinaticn with respect to these variables,
although the variables are not necessarily displayed as
orthogonal directions in the ordination diagrarn. With
a single nominal environmental variable, canonical
correspondence analysis is a variant of discriminant
analysis (cananical variate analysis) that is apprapriate
to a unimodal response model, and which can be ob-
tained more simply from a correspondence analysis of
a two-way table of species by {classes ofy the nominal
variable (Greenacre 1984: section 7.1). The celis of the
table must contain the total abundances of each of the
species in each of the classes. In the resulting ordination
diagram the classes are represented by points. This
equivalence suggests that it can be more natural to
represent nominal environmental variables by points
instead of arrows, The point for a class of a nominal
environmental variable must be located at the centroid
(the weighted average} of the sites belonging to that
class. Classes consisting of sites with high values for a
species will then tend to lie close to that species” point.
Gasse and Tekaia (1983) applied this technigue to es-
tablish a transfer function for estimating palec-envi-
ronmental conditions from diatom assemblages.

TanLe 2. Hunting spider abundance data from Fip. 1: ca-
nonical coefficients and the intraset correlations of envi-
ronmental vaciables with the first two axes of canonical
correspondence analysis (CCA). The environmental vari-
ables were standardized to unit variance after log-transfor-
mation. For a description of variables, see Fig. | legend.

Canonical Correlation
. coefficients cocflicients
Axis

variable 1 2 1 2
Water Content -0.51 -0.41 ~-0493 —0.08
Bare Sand 0.33 -0.10 0.73 Q.06
Fallen Twigs -0.14 0.37 -0.43 0.78
Cover Moss 0.05 -0.27 0.69 -0.30
Cover Herbs -0.28 -0.15 -0.32 -0.78
Light Refl 0.27 —0.03 0.64 ~0.5%
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TabLe 3. Hunting spider abundance data, with species (rows} and sites (columus) arranged in order of the scores for the
first axis of canonical correspondence analysis (CCA). Site numbers correspond to those of Van der Aart and Smeenk-
Enserink (1975: Table 4). The species abundance data have been transformed by taking square roots; the integer part is
shown, a blank denoting absence of the species and 9 denoting >80 individuals captured. For this table, the range of each
environmental variable was divided into L0 equal-sized classes {denoted by 0-9) after the data were transformed. Abbre-
viations and a description of the biological system are given in legend of Fig. 1.
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TesTS ON REAL DATA
Hunting spider data

The first data set, taken from Van der Aart and
Smeenk-Enserink {19735}, concerns the distributions of
12 species of hunting spiders (Fig. 1) in a Dutch dune
area, in relation to environmental data. The species
data are the numbers of individuals of each species
caught in pitfall traps over a period of 60 wk, Twenty-
six environmental variables were measured at 28 of
the pitfall traps. This number of variables is too large
to sort out their independent effects on community
composition. Eighteen variables were removed on a
priori grounds, and two more variaBles were removed
because they were strongly correlated with one of the
remaining six variables {Fig. 1). The species data were
transformed by taking square roots to down-weight
high abundances; the environmenial data were trans-
formed by taking logarithms, as in the original paper.

The ordinations by detrended correspondence anal-
ysis (DXCA), canonical correspondence analysis (CCA),
and detrended canonical correspondence analysis
{DCCA) are very similar for these data. The first ei-
genvalue of CCA is only slightly lower than the first
eigenvalue of DCA, and the species—environment cor-
relations of the first three axes are all high (Table 1).
Apparently the measured environmental variables are
sufficient to explain the major variation among the
spider catches. From Table 2 we infer that the first axis
15 a moisture gradient, on which the drier sites have a
high percentage of bare sand or of moss. The corre-
lations of the second axis show a contrast between sites
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with a high cover of leaves and twigs and sites with a
well-developed herb and moss layer.

From the species and site points in the CCA ordi-
nation diagram (Fig. 1) we infer, for example, that
Arctosa perita and Alopecosa fabrilis reached their
maximum abundance in the six pitfall traps repre-
sented on the right-hand side of the diagram, that Par-
dosa monticola had maximum abundance in the pitfall
iraps shown in the middle, and that Pardosa fugubris
was most abundant in the cluster of pitfall traps rep-
resented in the top-left of the diagram. These inferences
from the diagram largely agree with the data (cf. Table
3).

The arrows for environmental variables in Fig. 1
account, in conjunction with the species points, for
87% of the variance in the weighted averages of the 12
spiders with respect to the six environmental variables,
the sum of all eigenvalues being .85, For example,
projecting the spider points on the axis of percentage
bare sand shows that Arctosa perita and Alopecosa fa-
brilis were mainly found in habitats with the highest
percentages of bare sand, Alopecosa accentuata and
Pardosa monticola in habitats with intermediate bare
sand percentages, and the species on the lefi-hand side
of the diagram in habitats with the lowest percentages
of bare sand. For Ar. perita, Al. fabrilis, Al. accentuaia,
and P. monticola, the same ranking applies with respect
to the cover of the moss layer. The ranking is more or
iess the reverse with respect to soil water content. Are-
tosa lutetiana, Pardosa pullata, Pardosa nigriceps, Au-
lonia albimana, and Pardosa monticola occurred in
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TabLE 4. Comparison of the results of ordinations by de-
trended correspondence analysis (DCA), canonical corre-
spondence analysis (CCA), and detrended canonical cor-
respondence analysis (DCCA) of dyke vegetation data (see
Fig. 2): eigenvalues and species-environment correlation
coeficients for the first four axcs.

Axis
1 2 3 4
Eigenvalues
DCA 0.34 Q.25 0.22 Q.19
CCA 0.20 0.13 0.12 0.07
DCCA 0.20 0.12 0.09 Q.05
Correlation coefficients
DCA 0.52 0.40 .58 0.22
CCA 0.82 0.81 0.80 0.77
DCCA 0.83 0.81 D.76 0.66

habitats with a well-developed herb layer. Pardosa lu-
gubris occupies an aberrant position in the diagram,
being the single spider species that occurred mainly in
hahitats with a high cover of fallen leaves and twigs
(i.e., in woods), Trochosa lerricola, Zora spinimana,
and Alopecosa cuneata occupy an intermediate posi-
tion between the woody and grassier sites. Van der Aart
and Smeenk-Enserink (1975) gave a similar descrip-
tion, but the CCA ordination diagram tells the main
story at a glance. The DOCCA ordination diagram pro-
vided essentially the same information. The main
structure in the data is also clear from Table 3, where
species and siles are reordered according to their scores
on the first CCA axis. The species data show a diagonal
band; soil water content decreases along the first axis,
whereas percentage bare sand, cover of moss, and light
reflection increase along this axis.

Dyke vegeration

De Lange (1972) studied the cccurrences of mac-
rophytes in dykes in the Netherlands in relation to
electrical conductivity, phosphate and chloride con-
centration in the water, and soil type (clay, peaty soil,
sand). A total of 125 fresh water dykes (conductivity
<126 m3/m) were selected, with in total 133 plant
species. Conductivity data were transformed by taking
logarithms, because of a skewed distribution, and chlo-
nde concentration was transformed te chloride ratio
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(the share of chloride ions in the electrical conductivity;
G. Van Wirdum, personal communication). The nom-
inal variable *‘soil type” (with three classes) was dealt
with, as in multiple regression (see Montgomery and
Peck 1982: chapter 6), by defining two dummy envi-
ronmental variables “peat” and “sand.” {(The variable
“peat” takes the value 1 when a dyke has soil type
*“peat” and the value 0 otherwise. The variable “sand™
is defined analogously. A dyke in clay thus scores the
value O on each of the two variables. The canonical
coefficient of “peat” then measures the difference in
expected site scores between peaty and clay soils. Other
choices of dummy variables could have been used
equivaiently, e.g., “clay” and “‘sand.”)

Table 4 shows that the environmental variables are
poorly related 10 the first four species axes of DCA.
But by choosing the axes in the light of the environ-
mental variables, by applying CCA or DCCA, the
species—environment correlations increase consider-
ably. The interpretation of the axes is unambiguous
(Table 5): the first axis is defined by conductivity and
phosphate, the second by the chlonde ratic and soil
type; the soil types further differentiate on the third
and fourth axes. CCA and DCCA do not differ much
for this data set. On the CCA ordination diagram (Fig.
2) the dykes are not displaved because the diagram
would have been too crowded; the undisplayed dykes
all lie in the open center region of Fig. 2. Fig. 2 accounts
for 56% of the variance and shows that the weighted
averages of the species with respect to conductivity and
phosphate result in similar rankings; this similarity
cannot be explained by the correlation between these
variables in the data set, because this correlation is
only 0.44, In ¢ontrast, the ranking with respect to chlo-
ride ratio is different. The soil types are also represented
by arrows (Fig. 2). Species whose distribution is the
most restricted to peaty soils lie somewhat to the top-
left-hand corner of the diagram. Analogously, species
with a distributicn mainly on clay 1end to lie somewhat
to the bottom-right-hand corner of the diagram.

The cigenvalues (Table 4) show that the extracted
gradients are quite short (¢f. Gauch and Stone 1979).
The scores (optima} of most species therefore lie out-
side the center region where the sites lie, and the prob-
ability of occurrence of such species simply increases

TanLe 5. Dyke vegetation data from Fig. 2: canonical coefficients and intraset correlations, as in Table 2. For a description

of variables see Fig. 2 legend.

Canonical coefficients

Correlation coefficients

Axis
variable 1 2 3 4 1 2 3 4
EC 0.27 0.03 —-0.02 0.10 0.83 0.17 -0.25 0.20
Phosphate (.30 0.01 0.16 —0.15 0.86 -0.08 0.30 -0.21
Chloride Ratio 0.01 0.30 -0.09 0.09 0.14 0.86 -0.30 0.2%
Clay 0 0 0 0 0.27 -0.21 -0.89 —0.31
Peat* —-0.09 Q.44 Q.78 -0.03 -0.38 0.49 0.72 -0.17
Sand* 0.0k —0.30 0.58 0.99 0.13 -0.40 0.40 0.78

* Not standardized 1o unit variance.
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Fic. 2. Dyke vegetation data: CCA ordination diagram with plant species {A) and environmental variables {arrows), first
axis is horizontal, second axis vertical. Species with positions near the center and some other species elsewhere are not shown
because the diagram would have become too crowded. The plant species shown are: Acor cala = Acorus calamus, Alop geni =
Alopecurus geniculatus, Azol fili = Azolia filiculoides, Bide trip = Bidens tripartita, Call hamu = Callitriche hamulata, Call
berm = Callitriche hermophroditica, Call obtu = Caliitriche obtusanguia, Cata aqua = Catabrose aquatica, Cera subm =
Ceratophyllum submersum, Cole -sp = Coleockaete sp., Lyco euro = Lycopus europaeus, Meny trif = Menyanthes trifoliata.
Nuph lw;s = Nuphar luzea (submerged form), Nymp alba = Nymphaea alba, Pota acut = Potamogeton acutifolius, Pota cris =
Potamogeton crispus, Pota *dec = Potamogeton decipiens, Pota perf = Potamogeton perfoliatus, Pote palu = Potentilla palustris,
Ranu aqua = Renuncwlus equatilis s.{,, Ranu flam = Ranuncuius flammuia, Ranu ling = Renunculus lingug, Ranu scel =
Ranunculus sceleratus, Schi gela = Schizochlamys gelatinosa, Scir mari = Scirpus maritimus, Stra als = Srratiotes aloides
(submerged form), Trib bomb = Tribonema bombycinum, Vero anag = Verenica aragallis-aquatica, Vero cate = Feronica
catenata, Wolf arch = Wolffiz arrhiza, Zann palu = Zannichellia palustris. The environmental variables are: EC = electrical
conductivity, Phosphate = orthophosphate concentration, Chloride ratio = share of chloride ions in the electrical conductivity,
and Clay, Peat, Sand (=type of soil surrounding the dyke).

or decreases monotconically along the gradients actually
sampled, instead of being unimodal as required (see

Theary). Condition C4 is clearly violated in this data
set; nevertheless CCA worked well.

Algae along a pollution gradient

Fricke and Steubing (1984) sampled 235 sites in tivu-
lets near the Ederstausee (Western Germany), recorded
the abundances of 34 algae on a scale from O to 5, and
measured seven environmental variables (Fig. 3), six
of which (all but D) were transformed by taking log-
arithms in our analysis because of skewed distribu-
uons, The first axis of DCA and that of CCA nearly
coincided (Table 6), being a clear pollution gradient:
positive correlations with ammonium, phosphate, bi-
ological oxygen demand (BODS3), and electrical con-
ductivity, and a negative correlation with oxygen {Ta-
bie 7). Although the ordination diagram of CCA (Fig.

Tanre 6, Comparison of the results of ordinations by de-
trended correspondence analysis (DCA), canonical corre-
spondence analysis (CCA), and detrended canonical cor-
respondence analysis (DCCA) of data on algae along a
poliution gradient; eigenvalues and species—environment
correlation coefficients for the first three axes.

Axis
1 2 3
Eigenvalues
DCA 0.70 0.17 0.09
CCA .67 0.14 0.10
DCCA 0.67 0.08 0.05
Correlation coefficients
DCA 0.97 0.50 0.67
CCA 0.98 0.72 0.89
DCCA 0.98 0.80 0.79
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Fi6. 3. Algae along a pollution gradient: CCA ordination diagram with algae (2), sites (O), and environmental variables
(arrows); first axis is horizontal, second axis vertical. The algae are: Amph oval = Amphora ovalis, Audi viol = Audionella
violacea, Batr moni = Batrachospermum moniliforme, Calo sili = Caloneis silicula, Clad frac = Cladophora fracta, Clad
glom = Cladlophora gloneerata, Clos moni = Closterium moniliferum, Clos leib = Closterium leibneinii, Cyma sole = Cp-
matopleura solea, Cymb pros = Cymbella prosiata, Diat hiem = Diatoma hiemale mesodon, Diat vulg = Diatoma vuigare,
Frag capu = Fragilaria capucina, Frag vire = Fragilaria virescens, Gyro atte = Gyrosigma attenuatum, Hantamph = Hantzschia
amphioxis, Melo vari = Melosira varians, Men circ = Meridion circulare, Micr quad = Microspora quadrata, Navi crvp =
Navicula cryptocephaia, Navi radi = Navicula radiosa, Nizs pale = Nizschia palea, Nitz sigm = Nitzschia sigmoidea, Osci
limo = Oscillatoria limosa, Phor fove = Phorntidium foveolarum, Phor inun = Phormidium inundatum, Pinn vit = Pinnularia
viridis, Rhoi curv = Rhoicophenia curvata, Scen quad = Scenedesmus guadricauda, Stau ance = Stauroneis anceps, Stig tenu =
Stigeoclonitm tenue, Syne ulna = Synedra uina, Ulot zona = Ulotrix zonata, Zoog rami = Zoogloea ramigera. The environ-
mental variables are: Ouygen = oxygen conceutration, BOD3 = biclogical oxygen demand, Ammonium = ammonium
concentration, Phosphate = orthophosphate concentration, Caleium = calcium concentration, °Dy = German standard measure
for the total concentration of calcium and magnesium, and EC = electrical conductivity.

3) explains most of the variance (73%), the diagram is
unsatisfactory because of the arch effect (Gauch 1982a).
The detrending in DCCA largely removes this effect
(Fig. 4) and shows that the variation in species com-
position on the second axis is small (A, = 0.08). This
variation has surprisingly high correlation with the en-
vironmental variables (Table 6). The canonical coef-
ficients of the second axis (Table 8) suggest that this

lot 20ne
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minor component of the variation is related to the ratio
of ammonium to phosphate.

In this example the interpretations of the CCA dia-
gram and the DCCA diagram (Figs. 3 and 4) are not
very different, but in more complicated data sets the
difference can be large. As in regular ordination, de-
trending is a methad to prevent the second axis from
being obscured by dependence on the first.
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Fig. 4.

Algae along a pollution gradient: DCCA ordination diagram. For an explanation of symbols see Fig, 3 legend.
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TasLe7, Data on algae along a pollution gradient, from Fig.
3: canonical coefficients and intraset correlations, as in Ta-
ble 2. For a description of variables see Fig. 3 legend.

Canonical Correlation
; coefficients coefficients
Axis

variable 1 2 1 2
Oxygen -0.47 0.20 —0.81 —0.06
BODS 0.06 -0.11 0.88 -0.08
Ammonium 0.80 -0.07 0.94 0.09
Phosphate —0.04 0.64 0.83 0.51
Calcium -0.25 0.28 -0.19 0.19
D —0.07 —0.10 —0.44 0.05
EC 0.28 -0.27 0.71 -0.09

DisCUSSION

Canonical correspondence analysis provides an in-
tegrated description of species-environment relation-
ships by assuming a response model that is common
ta all species, and the existence of a single set of un-
derlying environmental gradients to which all the species
respond. The same strong assumption is implicit in all
ordination technigues. Canonical correspondence
analysis has the advantage over other techniques in
that it focuses on the relations between species and
measured environmental variables and so provides an
automated interpretation of the ordination axes.

Canonical correspondence analysis derives theoret-
ical strength frorm its relation to maximum likelihood
Gaussian canonical ordination under conditions C1-
C4 and furthermore seems extremely robust in practice
when these assumptions do not hold. The vital as-
sumption is that the response surfaces of the species
are unimodal, the Gaussian (bell-shaped) response
model being the example for which the method’s per-
formance is particularly good. For the simpler case
where species—environment relationships are mono-
tone, the results can still be expected to be adequate
in 3 qQualitative sense (see Tests on Real Data: Dyke
Vegetation). The method would not work if a large
number of species were distributed in a more complex
way, €.g., bimodally; the restriction to a unimodal model
is necessary for practical solubility, but as Hill (1977)
points out, a good choice of environmental variable
should minirmize the number of species with more
complex distributions. Some care, however, is required
with the interpretation of the ordination diagram when
the additional assumptions (C1-C4) do not hold. Species
in the center of the ordination diagram may then have
their optima there, but may alternatively be unrelated
to the axes. Which possibility is most likely can be
decided upon by tabular rearrangement of the species
data with respect to each axis, as is done in Table 3
for the first axis. Further work still needs to be done
on the statistical significance of eigenvalues, species—
environment comrelations, and canonical coefficients.

As in correspondence analysis, any kind of trans-
formation of the species abundance data may influence
the results. When the abundance data have a very
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skewed distribution, it is recommended to transform
them by taking square roots or logarithms. In this way
we prevent a few high abundance values from unduly
influencing the analysis. Because the compound en-
vironmental gradients constructed by canonical cor-
respondence analysis are required to be linear com-
binations of environmental variables, nonlinear
transformation of environmental variables can also be
considered if there is some reason to do so. Prior
knowledge about the possible impact of the environ-
mental variables on community composition may sug-
gest particular nonlinear transformations and partic-
ular nonlinear combinations, i.c., environmental scalars
in the sense of Loucks (1962) and Austin et al. (1934).
The use of environmental scalars can also circumvent
the multicollinearity problem described in Theory: Ca-
nonical Coeflicients. In contrast to the ordination tech-
niques in common use, canonical correspondence anal-
ysis allows one 1o incorporate existing knowledge about
species-environment relationships into the analysis and
thus potentially is a more powerful tool 1o advance this
knowledge.

Canonical correspondence analysis can be used fruit-
fully in combination with (detrended) correspondence
analysis, as in the examples described. When the so-
lutions do not differ much, we infer that the measured
environmental variables can account for the main vari-
ation in the species data. When the solutions do differ,
we infer either that the environmental variables ac-
count for less conspicuous directions of variation in
the species data (when the correlations between species
and envircnment axes are high) or that they cannot
account for any of the variation (when the correlations
are small). These possibilitics considerably extend the
analytical power of ordination by allowing comparison
of results from indirect and direct gradient analysis
techniques that have a common theoretical basis. Di-
rect and indirect gradient analysis can also be com-
bined in a single analysis to answer such questions as
“Does the known environmental variation account for
all the community variation, or is there a substantiat
residual variation?” Suppose we believe two environ-
mental variables govern the species composition in a

TapLe 8, Data on algae along a pollution pradient, from Fig.
3: canonical coeflicients and intraset correlations in DCCA.
For a description of variables see Fip. 3 legend.

Cancnical Correlation
Axi cocfficients coefficients
X18

variable 1 2 1 2
Oxygen -0.37 0.05 -0.81 0.04
BODS 0.07 0.21 0.88 —0.40
Ammonium 0.65 —G.60 0.85 —0.47
Phosphate 0.10 0.50 0.86 0.06
Calcium -0.22 0.23 -0.19 0.37
D -0.06 —0.07 —0.43 0.1%8
EC 0.22 -0.17 0.70 —0.22
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region. We may choose two ordination axes in the light
of these variables, then extract further axes as in de-
trended correspondence analysis by reciprocal aver-
aging and detrending with respect 1o all previous axes.
The lengths of the extra axes measure the residual vari-
ation. The program CANQOCO (Ter Braak 1985a) has
an option 10 do such combined analyses. The same
option allows analysis of nested data (subplots within
plots, e.g., yearly vegetation records from several per-
manent plots, or bird records from woodlots in several
regions). The first axes can be chosen to represent vari-
ation between plots, so that the further axes represent
variation between subplots. Swaine and Greig-Smith
{1980) used a variant of principal components analysis
in this way to obtain an ordination of within-plot vege-
tation change in permanent plots; canonical corre-
spondence analysis could be used for the same purpose
but is not hampered by the unwarranted assumption
of a linear relationship between species abundance and
environment.
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APPENDIX

Here canonical correspondence analysis is shown to be {1}
an approximation to Gaussian canonical ordination, (2) an
eigenvector technique akin to canonical correlation analysis,
and (3) a method for weighted least squares approximation
of weighted averages of species with respect to environmental
variables. For an explanation of the notation, see Theory.

The model of Gaussian canonical ordination is Eq. 1 in
conjunciion with Eq. 2 {see Theory). It is assumed that the
species data are Poisson-distributed counts with E(y,) = p,
and that the species tolerances are all equal to 1. Then the
maximum likelihood equations for «, and 5, are, after some
rearrangement, respectively:
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Under conditions C1-C4 and Eq, 7, we may use the approx-
imations

26— e =0 (A3)
&

Z 00— mdka = —MuYa {Ad)

because i, is symmetric about x, and about u;; the propos-
tionality constant A* comes in because 1he species’ curves are
the more truncated the more their optima lie towards or be-
yond the edge of the sampiing interval (Ter Braak 19835b).
The transition formulae Egs. 3-6 now foliow from Eqs. A.l
and A.2 by using Approximations A.3 and A.4 and the equa-
tion A =1 — h*

Starting from Eq. 5 we substitute for x* (Eq. 4), ¥, (Eq. 3),
and finally x, (Eq. 6) and cobtain

(5807 'S — A Sa)b =0, {A.5)

where 5, = 2'v, 5, = Y'Z, 5, = diag (Vs Vezo - - s Vamd S22 =
z'rz and Y = {y;!}. Similarly, successive substitutions in Eq.
3 lead to

Gz 'S2 — Asujuw =0, (A.6)

where w =(u,, . . . , ¥..)'. Apart from the particular definitions
of the matrices in Eqgs. A.5 and A6, these equations are the
eigenvector equations of canonical correlation anatysis, and
the eigenvalue X lies between 0 and | {Gitting 1985). The
eigenvectors are all uncorrelated; using subscripts 7 and 5 for
different axes we obtain that u,'s, &, = 0, 8,/'s,d, = 0 and
x/rx, = D. Algorithms based on Eq. A.5 or Eq. A.6 will in
general be more efficient than the algorithm developed in
Theory.

The first axis of canonical correspondence analysis does not
maximize the species—environment correlation, i.e., the cor-
relation between x and x*. I have also developed an eigen-
vector technique that maximizes the species—nvironment
correlation. This technigue requires that the number of species
is smaller than the number of sites. This requirement is ofien
a nuisance in ecological research. As we have seen, the ratio-
nale for canonical correspondence analysis is different: it is,
under conditions C1-C4, almost a maximum likelihood tech-
nigue.

The weighted averages of the species with respect 1o the
environmental variables in Eq. 8 are, in matrix notation,
w = 5,7'v'z = §,,7'§,;, where w = (2,). We want a least
squares approximatiop of w in an ordination diagram. How-
ever, when a specics total is low, the weighted average is
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imprecise {¢f. Ter Braak and Looman 1986), so that it is not
worthwhile 10 approximate that species’ weighted averages
very accurately in the diagram. This consideration suggests
piving the species weights that are proportional to the species
totals contained in §,,. The result would stitl depend on the
scale of measurement of the environmental variables. To make
the method scale-invariant we use s;,~' as weights for the
environmental variables. The desired weighted least squares
approximation of w follows now from the singular value de-
composition {see for example Greenacre 1984: Appendix A).

A7

where P and ¢ are orthonormal m % ¢ and ¢ X g matrices
(respectively} and A = diag (A, . . ., A For convenience of
notation it 1s assumed here that ¢ = m. This singular value
decomposition is just another way to solve Eqgs. A.5 and A6
(see Mardia et al. 1979: chapter 10). With Hill's (1979) scaling
of site and species scores, namely

S1WS, ™Y = 5,718 ,8 Y = PARQ,

2 vl — P = Yee (A%)
Lk

the coordinates of the species points are the first two columns
of the matrix

U=y, e = AT, (A.9)

and the coordinates of the points for the environmental vari-
ables are the first two columns of the matrix

B, = ¥ " 8000 — APAY =y 21 — A), (ALQ)

where the second equality follows after some algebra, with X
the matrix whose s® columnn is x,. In this scaling U's, U =
Yol — A)-'and x'Rx = p, A0 — A} I is easy to verify
using Egs. A.7, A9, and A.10 that w = UB.". Therefore the
points for species and environmental variables form a bi-
plot {Gabriel 1971) in the sense that inner products approx-
imate the elements of the matrix w, leading to a two-dimen-
stonal approximation w,, say. A measure of poodness of fit
is A + AJ/Asum of all ecigenvalues), which is equal to
trace {s, w.8,, ~'w, ) 1race (s, w s,,~'w’) and is, loosely speak-
ing, the percentage variance in the weighted averages ac-
counted for by the biplot. When the environmental variables
are scaled to zero mean and unit variance (using y;. as site
weighis), we obtain from Eq. A.10 that the coordinate of the
point for environmental variable j on axis s must be [\, (1 -
A,)]" times the correlation coefficient of the environmental
variable with the site scores x,. In detrended canonical cor-
respondence analysis the coordipates of the points for the
environmental variables are obtained from a multivariate

regression of w on the first two columns of U, U, say:
B = WS, U(Up'S Uy) ~F = ZRX(US'su) Y, (A1)

which reduces to Eq. A.10 in canonical correspondence anal-
ysis.
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Abstract

Canonical correspondence analysis (CCA) is introduced as a multivariate extension of weighted averaging
ordination, which is a simple method for arranging species along environmental variables. CCA constructs
those linear combinations of environmental variables, along which the distributions of the species are max-
imally separated. The eigenvalues produced by CCA measure this separation.

As its name suggests, CCA is also a correspondence analysis technique, but one in which the ordination
axes are constrained to be linear combinations of environmental variables. The ordination diagram generated
by CCA visualizes not only a pattern of community variation (as in standard ordination) but also the main
features of the distributions of species along the environmental variables. Applications demonstrate that
CCA can be used both for detecting species-environment relations, and for investigating specific questions
about the response of species to environmental variables. Questions in community ecology that have typically
been studied by ‘indirect’ gradient analysis (i.e. ordination followed by external interpretation of the axes)

can now be answered more directly by CCA.

Introduction

Direct gradient analysis relates species presence
or abundance to environmental variables on the ba-
sis of species and environment data from the same
set of sample plots (Gauch, 1982). The simplest
methods of direct gradient analysis involve plotting
each species’ abundance values against values of an
environmental variable, or drawing isopleths for
each species in a space of two environmental varia-
bles (Whittaker, 1967). With these simple methods
one can easily visualize the relation between many

* Nomenclature follows Heukels-Van der Meijden (1983). Flora
van Nederland, 20th ed.

*» [ would like to thank the authors of the example data sets for
permission to use their data, Drs M., O. Hill and H. G. Gauch
for permission (0 use the cods of the program DECORANA,
and Drs [. €. Prentice, L. C. A. Carsten, P. E M. Verdonschot,
P. W. Goedhart and P. E Q. Vereijken for comments on the
manuscript.

species and one or two environmental variables.
Plant species experience the conditions provided
by many environmental variables; therefore one
might wish to analyse their joint effects. Multiple
regression can be used for that purpose. However,
despite some successful applications, e.g., Yarran-
ton (1970), Austin (1971} and Forsythe & Loucks
(1972), ordinary multiple regression has never be-
come popular in vegetation science. Reasons for
this include: (1) Each species requires separate anal-
ysis, so regression analysis may require an un-
reasonable amount of effort. {2) Vegetation data
are often qualitative, or when they are quantitative
the data contain many zero values for the plots at
which a species is absent, In neither case do the
data satisfy the assurmption of a normal error dis-
tribution that is implicit in ordinary multiple
regression. (3) Relationships between species and
environmental variables are generally non-linear.
Species abundance is often a single-peaked (bell-
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shaped) function of the environmental variables.
(4) Environmental variables are often highly cor-
related, and so it can be impossible to separate their
independent effects. Generalized Linear Modelling
(Austin et ai, 1984; Ter Braak & Looman, 1986)
provides a solution for {(2) and (3), but {1) and (4)
rernain. Whenever the number of influential en-
vironmental variables is greater than two or three,
it becomes difficult to put results for several species
together so as to obtain an averall graphical sum-
mary of species-environment relationships.

A simple method is therefore needed to analyze
and visualize the relationships between many spe-
cies and many environmental variables. Canonical
correspondence analysis (CCA) is designed to fulfil
this need. CCA is an eigenvector ordination tech-
nigue that also produces a multivariate direct gra-
dient analysis (Ter Braak, 1986). CCA aims to
visualize (1) a pattern of community variation, as in
standard ordination, and also (2) the main features
of species’ distributions along the environmental
variables.

Ter Braak (1986) derived CCA as a heuristic ap-
proximation to the statistically more rigorous (but
computationally fraught} technique of Gaussian
canonical ordination, and also showed CCA’s rela-
tion to correspondence analysis (CA), alias recipro-
cal averaging (Hill, 1973). In this paper a simple, al-
ternative derivatibn of CCA is given starting from
the method of weighted averaging (WA).

Theary

From weighted averaging to canonical correspon-
dence anaiysis

Figure la shows an artificial example of single-
peaked response curves for four species along an
environmental variable (e.g. moisture). Species A
occurs in drier conditions than species D. Fig. la
shows presence-absence data for species D: the spe-
cies is present at four of the sites,

How well does moisture explain the species’
data? The fit could be formally measured by the
deviance between the data and the curves, as in
logistic regression {Ter Braak & Locman, 1986), but
this idea will not be pursued here. Instead, a simple
alternative based on the method of weighted aver-
aging (WA) is used.

74

a

I lT T moisture

b

Ix misture+
2 x phosphate

T

A [ D

best linear
combination

Fig. 1. Artificial example of single peaked response curves of
four species (A—D) with respect to standardized environmental
variables showing different degrees of separation of the species
curves: (a) moisture; (b) a linear combination of moisture and
phosphate, chosen apriori; (¢) the best linear combination of en-
vironmental variables, chosen by CCA. Sites are shown by dots
aty = 1 if species Dis present and at p = 0if species D is absent.

For each species a score can be calculated by tak-
ing the weighted average of the moisture values of
the plots. For abundance data, this score is calculat-
ed as

n
e =, L | VXY 4k (1

where i, is the weighted average of the k-th (out of
my) species, x; is the (moisture) value of the i-th (out
of n) site and y; is the abundance of species k at site
i, and y . is the total abundance of species k. For
presence-absence data the weighted average is sim-
ply the average of the moisture values of the plots in
which the species is present. The weighted average



gives a first indication of where the species occurs
along the moisture gradient {see the arrows in
Fig. 1a}. As a measure of how well moisture explains
the species data, the dispersion of the weighted aver-
ages is used (see below). If the dispersion is large,
moisture neatly separates the species curves, and
moisture explains the species data well. If the disper-
sion is small, then moisture explains less.

To compare the explanatory power of different
environmental variables, each environmental varia-
ble must first be standardized to mean 0 and vari-
ance 1. For technical reasons, weighted means and
variances are used; each environmental variable is
standardized such that

n n
igl.)’i+xi=oandi§lyj+x%/y++ =1 2)

where ;.. is the total abundance at site f and y, ,
the overall total. The dispersion can now be written
as

m
§= L Yeii/Ves 3

By calculating the dispersion for each environmen-
tal variable one can select the ‘best’ variable.

Now suppose that moisture is the ‘best’ single
variable in the artificial example. However, someone
might suggest a better variable, that is a combina-
tion of two others (seg, e.g., Loucks, 1962). In the ar-
tificial example a combination of moisture and
phosphate, namely (3 X moisture + 2 X phos-
phate}), is shown to give a larger dispersion than
moisture alone (Fig. 1b), and consequently the
curves in Fig. 1b are narrower, and the presences of
species D are closer together, than in Fig. la. So it
can be worthwhile to consider not only the environ-
mental variables separately but aiso all possible line-
ar combinations of them, i.e. all ‘weighted sums’ of
the form
X = blz!l + bzz,*z + ... + bpz.lp (4)
where z;; is the value of the j-th (out of p) enviren-
mental variable at site i, and b; is the weight (not
necessarily positive) belonging to that variable; x; is
the value of a compound environmental variable at
site i, (It is assumed in equation (4) that cach en-

T

vironmental variable is centered to a weighted mean
of 0. Although not essential, it will also be com-
venient to standardize the environmental variables
according to equation (2) so as to make the weights
{bj) comparable.}

CCA turns out to be the technique that selects
the linear combination of environmental variables
that maximizes the dispersion of the species scores.
In other words, CCA chooses the optimal weights
(b)) for the environmental variables. In the Appen-
dix it is shown that these optimal weights are the
solution of the same eigenvalue equation as the cne
derived by another rationale in Ter Braak (1986},
and that the first eigenvalue of CCA is actually
equal to the {maximized) dispersion of species
scores along the first CCA axis.

The second and further CCA axes also select lin-
ear combinations of environmental variables that
maximize the dispersion of the species scores, but
subject to the constraint of being uncorrelated with
previous CCA axes. In principle, as many, axes can
be extrdcted as there are environmental variables,

From correspondence analysis to canonical cor-
respondence analysis

CA also maximizes the dispersion § in equation
(3). But it does so irrespective of any environmental
variable; that is, CA assigns scores (x;) to sites such
that the dispersion is absolutely maximum, the
scores being standardized as in equation (2)
(Nishisato, 1980). CCA is therefore ‘restricted cor-
respondence analysis’ in the sense that the site
scores are restricted to be linear combinations of
supplied environmental variables.

A familiar algorithm 10 carry out CA is the reciprocal averag-
ing algorithm (Hill, 1973). In Ter Braak {1986) this algorithm is
exiended with an additional multiple regression step so as to ob-
tain the CCA solution. In each iteration cycle the trial site scores
are regressed on the envirenmental variables (using y;, /y, , as
site weights) and the new trial scores are the fitted values of this
regression. The FORTRAN program CANOCO (Ter Braak,
1985h) to carry out CCA is in fact just an extension of Hill's
(1979) program DECORANA*

CCA is restricted correspondence analysis, but the restrictions
become less strict, the more environmental variables are included
in the analysis. If p=wa-1, then there are actually no
restrictions any mere; CCA is then simply CA. The arch effect
may therefore crop up in CCA as it does in CA (Gauch, 1982).
The method of detrending (Hill & Gauch, 1980) can be used to
remove the arch and is available in the computer program

*The program is available from the author at cost price.
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Fig. 2. Dune meadow data: CCA ordination diagram with relevés (x), plant species ( ® ) and environmental variables (arrow); first axis
horizontally, second axis vertically. For relevé numbers see Table [. Abbreviations are given as underlining in full names in Table I. The
c-scale applies to the environmental arrows, the u-scale to species and sites points, Eight infrequent species are not shown because they

lie outside the range of this diagram.

CANQCO (Ter Braak, 1985b). But in CCA the arch can be re-
moved more ¢legantly by dropping superfluous eavironmental
variables. Variables that are highly correlated with the ‘arched’
axis {often the second axis} are most likely to be superfluous.

CA is very susceptible to species-poor sites con-
taining rare species in that it places such aberrant
sites (and the rare species occurring there) at ex-
treme ends of the first ordination axes (Gauch,
1982), relegating the major vegetation trends in the
data to later axes. CCA does not show this ‘fauilt’ of
CA, provided the sites that are aberrant in species
composition are not so aberrant in terms of the en-
vironmental variables.

Ordination diagram

The ordination diagram of CCA displays sites,
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species and environmental variables (Fig. 2). The
site and species points have the same interpretation
as in CA. They display variation in species compo-
sition over the sites. The environmental variables
are represented by arrows (Fig. 2). Loosely speak-
ing, the arrow for an environmental variable points
in the direction of maximum change of that en-
vironmental variable across the diagram, and its
length is proportional to the rate of change in this
direction. Environmental variables with long ar-
rows are more strongly correlated with the ordina-
tion axes than those with short arrows, and so more
closely related to the pattern of community varia-
tion shown in the ordination diagram.

Further insight into the ordination diagram of CCA can be
obtained from yet anather characterization of CCA. From equa-
tions (A.5) en (A.6) of the Appendix it follows that CCA is a
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Fig. 3, Inferred ranking of the species along the variable quantity of manuring based on the biplot interpretation of Fig. 2. For explana-

tion see the Ordination diagram section.

weighted principal comporents analysis applied to a matrix of
species by environmental variables, the (k, j»-th element of
which is the weighted average of species k with respect to en-
vironmental variable f (it is here assumed that sach environmen-
tal variable is reduced to zero mean). CCA is a weighted analysis
in the sense that species are given weights proportional to their
total abundance (¥ ,) and the envirenmental variables are
weighted inversely with their covariance matrix. The intuitive
advantage of the implicit species weights is that a weighted aver-
age for a species is imprecise when its total is low (Ter Braak &
Looman, 1986) and is thus not worth much attention. Environ-
mental variables are given equal weight irrespective of their vari-
ance or unit of measurement. (This type of weighting is also im-
plicit in discriminant analysis (see Campbell & Atchley, 1981)
and makes the analysis invariant to nonsingular linear transfor-
mations of the environmental variables), This characterization
of CCA shows that the joint plot of species and environmental
variables in the CCA ordination diagram can be interpreted
similarly to a principal components biplot (Gabriel, 1971; Ter

Braak, 1983), allowing inference of the approximate values of
the weighted averages of each of the species with respect to each
of the envitonmental variables.

The most convenient rule for quantitative in-
terpretation of the CCA biplot (Ter Braak, 1986) is
therefore as follows: each arrow representing an en-
vironmental variable determines a direction or ‘axis’
in the diagram; the species points can be projected
on to this axis (see Fig. 3). The order of the projec-
tion points corresponds approximately to the rank-
ing of the weighted averages of the species with re-
spect to that environmental variable, The weighted
average indicates the position of a species’ distribu-
tion along an environmental variable {Fig. 1), and
thus the projection point of a species also indicates
this position, although approximately.
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Table 1. Dune meadow data: data table with species (rows) and
relevés (columns of one digit width) arranged in order of their
scores an the first axis of CCA. Relevé numbers are printed ver-
tically. The abundance values, as used in the analysis, are on a
1-9 scale 10 replace the Braun-Blanquet symbols r, +, 1, 2m,
2a, 2b, 3, 4, 5. Thickness of the Al horizon is divided into ten
equal-sized classes (denoted 0—9). The values 1, 2 and 3 for
agriculiural use refer 10 hayfield, haypasture and pasture,
respectively. For further explanation of the environmental vari-
ables see text.

relevés
1111 11 11112
51670217834923894560

Trifolium pratense I SRS
Achillea miflefolium
Bromus kardeaceus
Plantago lanceolata
Rumex acetosa
Beilis perennis
Elymus repens

Lofium perenne 2766657-2652-4=-~—~

Vicia fathyroides — 2l
Poa pratensis 243444413544 -24 -
Arnthoxanthum odoratem 4-324--4——— —
Cirsium arvense [ - _—

Poa irivialis

Trifolium repens
Leontodon autumnalis
Brachythecium rufabulum
Juncus bujfonius

Sagina procumbens
Alopecurus geaiculatus
Hypochaeris radicaia
Aira praecox

Salix repens

Agrostis stolonifera
Juncus arriculatus
Chenopodium album
Empetrum nfgrum
Rarunculus flammula
Eleocharis pafustris
Calliergonella cuspidata
Potentilla pafustris

thickness A1
maisture

quantity of manuring
agricultural use
Standard Farming
Bio-dynamic Farming
Hobby Farming
Mature Management

624547---655494-—-2

2-52633-2213322261 --
3-3335525222223622-2
2-622-4-62224-23-444

483454-4475
——45-4--334

[N, 1, N

40100001211133117930
11112112122445555535
24231210044123311131
12231231122122313231
0109000001 101 1000010
00001 110600000000000
10110000000100100000
00000001 1000H00 11101

The ordination diagrams of CCA and CA also
share some of the shortcomings of WA (Ter Braak
& Looman, 1986). The most important practical
shortcoming is that species that are unrelated to the
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ardination axes tend to be placed in the center of
the ordination diagram and are not distinguished
from species that have true optima there. This
problem can easily be circumvented by looking at
a species-by-site data table in which species and
sites are arranged in order of their scores on one of
the ordination axes (cf. Table 1).

The CCA ordination diagram is not in any way
hampered by high correlations between species, or
between environmental variables.

Applications
Exploratary use of the ordination diagram

Batterink and Wijffels (report} studied the possi-
ble relation between vegetation and management of
dune meadows on the island Terschelling (The
Netherlands).

A subset of their data is analysed here o illustrate the ordina-
tion diagram of CCA. This subset consists of 20 standard plots
recorded in 1982, and 30 plant species (Table 1).

Five environmental variables were recorded: (1} thickness of
the Al horizon, measured in millimeters; (2) moisture content of
the soil, scored on a five-point scale in a semi-objective manner;
{3) quantity of manuring, scored on a five-point scale on the ba-
sis of a questionnaire sent to the owners of the meadows; (4}
agricultural use, a nominal variable with three classes — hay-
field, haypasture and pasture; and (5) type of management, a
nominal variable with four classes — standard farming, bio-
dyramic farming, hobby farming and nature managemernt.

CCA cannot directly cope with ordinal variables, like mois-
ture and manuring here. Ordinal variables must gither be treated
as if they were quantitative, or as nominal variables. Here they
were treated as guantitative. Nominal variables, like type of
managemen:, must be transformed 1o dummy variables as
shown in Table |. For instance, the dummy variable ‘nature
management’ indicates which meadows received that type of
managemeni. Agricultural use was however treated as a quan-
titative variable {Table 1), because haypasture was considered as
an intermediate between hayfield and pasture.

Two vatues were missing in the environment data. CCA can-
not cope with missing values, so relevés with missing values in
the environment data must be deleted. To avoid deletion, miss-
ing values were replaced here by the mean of the corresponding
variable over the remaining plots,

Despite the crude measurement of the environ-
mental variables, they nicely explain the major vari-
ation in the vegetation. The first two eigenvalues of
CCA (A, = 0.46 and »; = 0.29) were not much
reduced in comparison with those of standard CA
(0.54 and 0.40), and the two-dimensional configura-
tions of species and sites in the ordination diagrams
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looked similar. The most conspicuous difference
was that relevés 17 and 19 were outliers in CA and
not 5o much in CCA (Fig. 2).

The configurations of species and sites in CCA
(Fig. 2) must be interpreted as in CA (Ter Braak,
1985a). For instance, from Fig. 2 Sagina procum-
bens can be expected to have its maximum abun-
dance in the relevés close to its point in Fig. 2 (1¢-
levés 8, 12 and 13) and to be absent in relevés far
from that point.

Figure 2 accounts for 65% of the variance in the
weighted averages of the species with respect to
each of the environmental variahles. This percent-
age is calculated as in principal components analy-
sis by taking 100 x (A, + M)/(N + .00 + Ap) It
can be deduced from Fig. 2, for example, that Cir-
sium arvense, Alopecurus geniculatus and Elymus
repens mainly occur in the highly manured
meadows, Agrostis stolonifera and  Trifolium
repens in intermediately manured meadows, and
Ranunculus flammula and Anthoxanthum odora-
tum in little manured meadows (see Fig. 3). The
other arrows can be interpreted similarly. From
Fig. 2 it can thus be seen at once which species oc-
cur mainly under wetter conditions (those on the
right hand side of the diagram) and which ones pre-
fer drier conditions (those on the left hand side of
the diagram).

Multi-species trend surface analysis

CCA can be used to detect spatial gradients in
vegetation data. A spatial gradient can be specified
by a linear comhination of two orthogonal coor-
dinates, say, the x-coordinate (z;) and y-coordinate
(zy) of the relevés, ie. by byz, + byz;. The stron-
gest spatial gradient in vegetation data might be de-
fined as that combination of z; and z, that max-
imally separates the spatial distributions of the
species, and can thus be estimated by taking the x-
and y-coordinates as environmental variables in a
CCA. Put another way, CCA searches for the direc-
tion of the strongest vegetation zonation (cf.
Fig. 1).

Such an analysis was applied to counts of 13 arable weeds in
summer barley in May 1983 in 96 plots (0.5 %0.5 m) in the ex-
perimental field ‘Doeksen’ (50 m x 10@ m) {B. Post, unpubl).

The first CCA axis was defined by b, = 0.0261 and &, =
0.0L17, 50 that the gradient was estimated 10 make tan = {6,/5 )
= 24° with the x-coordinate axis. Further, the first eigenvalue
was six times the second eigenvalue, which indicated that the
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gradient was a clear one. But, judged on the basis of the value
of the first eigenvalue (A, = 0.09), the amount of species turno-
ver was guite small {cf. Gauch & Stone, 1979).

To verify the supposition that the gradient was
related to moisture, percentage moisture was meas-
ured in the top soil (0—3 cm) in March 1985 (B.
Post, unpubi). The strongest gradient in these mois-
ture values had an angle of 34° with the x-
coordinate axis and thus pointed approximately in
the same direction as the gradient estimated by
CCA from the 1983 weed data.

Vegetation succession

An example of application in a succession study
on a rising sea-shore is found elsewhere in this vol-
ume (Cramer & Hytteborn, 1987). One of their
questions was whether the vegetation succession
tracks the land uplift (ca. 0.5 cm per year) or
whether it lags behind.

This question was approached with detrended
CCA with elevation and year as the ‘environmental
variables’, through fitting the compound gradient
x = b, x ¢levation + b, x vear. The resulting
weights were b, = 0,054 and b, = 0.041. Conse-
quently, the equivalent change in vegetation per year
is by/b; = 0.76 cm.

An approximate 95%-confidence interval for the change
ranges from 0.4 cm to 1.1 ¢cm and clearly includes the khown
land rise of ca 0.5 ¢m per year. The confidence interval was ob-
tained from the standard errors of b, and b, in the final regres-
sion within the reciprocal averaging algorithm of CCA by using
Fieller's theorem (see Finney, 1964, p. 27-29). The interval is
presumably a little too short as it ignores that the CCA-axis is
chosen optimally.

Discussion

CCA considerably extends the analytical power
of ecological ordination. Questions like those tack-
led in the applications section above could formerly
only be investigated by *indirect gradient analysis’,
1. first extracting the ordination axes from the spe-
cies data and subsequently interpreting the major
axes in relation to environmental data — eg. by
regression analysis {Dargie, 1984}, trend surface
analysis (Gittins, 1968} or canonical correlation
analysis (Carleton, 1984). Such two-step analyses
ignore the minor axes of variation in community
composition; vet ‘minor’ aspects of the variation
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may still be substantial, especially in large data sets,
and in some problems may be just the variation
that one is actually interested in because of its rela-
tionship to particular external variables (see Jol-
liffe, 1982).

CCA works because species tend to have single-
peaked response functions to environmental varia-
bles. When the response functions are simpler (e.g.
approximately linear), the results can still be ex-
pected to be adequate in a qualitative sense, but it
might then be advantageous to utilize instead the
linear counterpart of CCA - redundancy analysis
(Isragls, 1984). The weed data are a case in point.
Because the number of species is quite small in that
example, and the number of absences is small as
well, these data conld also be analysed from the be-
ginning by canonical correlation analysis (Gittins,
1985). But canonical correlation analysis and
redundancy analysis fail, when species do show
single-peaked response functions (Gauch & Went-
worth, 1976), ie. in the case where CCA works
best.

Appendix

Maximizing & in Eq. (3) leads to CCA (Ter Braak, 1986} and
CCA is a weighted principal components analysis applied to a
matrix of weighted averages,

LletY = lyylandZ = [z,jj ben x mand r x pmatrjces con-
taining the species data and environmental data, respectively, and
let R = diag0,, Y3, - .- ¥z, ). Each environmental variable is
centered to a weighted mean of 0, ie. Z'R1, = 0, where 1_is an
r-vector containing 1°s. Further, let 8 = diag(y,;, ¥3:0-0 0
Yom) 82 = Y48, =LY, 8y = L’'RZand letuand b be
vectors of order m and p, containing the spegies scores 4 and the
weights &, respectively. i

By inserting Eq. {4} in Eq. 1) we cbtain

= S3'V'Zb = §;'S;;h (A1)

=

Hence,
§=p;lwsu =y ib'8y8,'8,p (4.2)
which must be maximized with respect 1o b, subject to Eq. (2). By

inserting Eq. (4) in Eq. (2), we obtain b'Z'R1,, = 0, which is
satisfied trivially because of the centering of Z, and

b 8yh = 1 (A3

The solution of this maximization problem is known to be the
first eigenvector of the eigenvalue equation
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(8180812 — M) b = 0 (a4

with 6 = X (see, for instance, Mardia er af, 1979, theorem
A.9.2). Eq. (A.4) is the centered version of Bq. (AS5) in Ter Braak
{1986). The latter equation has a trivial solution (A = 1, x = 1))
and its nontrivial solutions satisfy Eq. (A.4) and Eq. (2). There-
fore, maximizing 6 leads to the first axis of CCA as defined in
“Ter Braak (1986). Further, maximizing § subject to the constraint
that the second axis is uncorrclated with the first axis {using
weights ¥;, , as in Eq. (2)) leads to the second eigenvector of
{A.4), which is therefore identical to the second axis of CCA as
defined in Ter Braak (1986), and so on for subsequent axes.

Let W bea m X p matrix containing the weighted averages of
the species with respect to the environmental variables, ie

W =S8;'YZ {A.5)

The weighted principal components anatysis of W described in
the main text follows from the singular value decomposition

Sii W8, = 848,85 = PAYQ (A-6)

where P and Q are orthonormal m x pandp x p matrices and
A = diag (A,..., Ay} with M=M= ... 2, For convenience
of notation it is assumed here that p=<m. This singular value
decomposition is just another way to solve (A.4) {see Mardia er
al, 1979, chapter 19). The coordinates of species & in the ordina-
tion diagram are given by the %-th row of the matrix

U=yl 8% BRI - Y, (A7)

and the coordinates of environmenial variable j by the j-th row
of the matrix

B, =y, 2S5 QA" (- 4% (A.8)

The pre- and post-multiplication factors invoiving ¥, , and
(1-A) in Egs. (A.7) and (A.B) are not essential for the biplot;
they are included to obtain the scaling used in DECORANA
(Fill, 1979, section 4.5). In Hill’s scaling the coordinates of the
sites are weighted averages of the species coordinates and the
{weighted) variance of the coordinates of species present at a site
is equal to 1 on average. Hill’s scaling is used in Fig. 2.
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PARTIAL CANONICAL CORRESPONDENCE ANALYSIS
Cajo J.F. TER BRAAK

TND Institute of Applied Computer Science, Box 100, 6700 AC
Wageningen, The Netherlands

Canonical correspondence analysls is (multiple) correspondence
analysis in which the ordination axes are constrained to be linear
combinations of external, explanatory variables. We consider the
case where the set of explanatory variables is subdivided in two
sets, a set of covariables and a set of varlables~of-interest. This
leads to partial canonical correspondence analysis. Its ordination
diagram diaplays the unimodal relationships between a set of
response variables and the variables~of-interest after the effects
of the covarliables have heen partialed out. The derivation shows
that the response data can be incidence data, count data,
compositional data or nominal data.

1. INTRODUCTION

Canonical correspondence analysis is a multivariate analysis technique to
display unimodai relationships between a set of response variables and a set
of explanatory variables in a low=dimensional space, called an ordination
diagram [20,21]. Canonical correspondence analysis has been used in ecology
as a simple form of constrained multidimensional unfelding [%,10,12] to
relate the occurrences or abundances of a number of species to environmental
variables [22]. Applied to nominal variables, canonical correspondence
analysis ia identical to redundancy analysis of qualitative variables [14]
used, for example, to relate nominal welfare varliables to social background
variables, Here we consider the case where the set of explanatory variables
is subdivided in two sets, a set of p covariables and a set of q variables
in the effects of which one is particularly interested. Stated informally,
we want an ordination diagram of the unimodal relationships between the
response variables and the q variables of interest after eliminating the
effects of the p covariables, The object is thus to partial out the effects
of the covariables, hence the name partial canoniecal correspondence
analysis. Ter Braak {20] derived canonical correspondence analysis as an
approximation to canonical Gaussian ¢rdination., Here we define partial
canonical Gaussian ordination, derive partial canonical correspondence
analysis as an approximation and give an example. Our derivation starts from
a constrained generalized linear model and shows that the technique can be
applied to nominal data (multi-way contingency data), compositional data,
count data and incidence data, with quantitative or qualitative explanatory
variables. Related work on partial analysis is given in [3,15,25].

2., THECRY

Let ¥ and Z be real matrices of order nxm and nx(p+q), containing n
chservations of m nonnegative response variables and p+q explanatory
variables, reapectively. The p+q explanatory variables are subdivided in p
covariables (including the vector ln) and q variables of interest and

Z = (Zy, Zy} 1s partitioned accordingly. The response variables can be
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incidences {1/0) or counts of animals or plants in regions, or fractions of
constituents in a composition. For neominal variables, Y is a multivariate
indicator matrix [7,9T with as many columns as categories., The elements of a
matrix B are denoted by bi , the j=th column of B by b, and the i-th row of
B by Q(i)’ a column vector, and a generalized lnverse of B by B™, The symbol
E denotes expectation.

We now define partial canonical Gaussian ordination as a constrained,
generalized linear model,

Definition: For any integer r<q, the model of partial canonical Gaussian
ordinaticon is
1

Link (Byyp) = ¢y + 3y = (2(1)7000)) MG (1) 0 (k) ()

where link is a natural link function (Table 1) [16:p.2H] and M is
constrained to

M=0DD' with D= (§ § (2)

with F, G and C parameter matrices of order pxp, pxr and qxp,
respectively, and 0 is a matrix of order qxp with zeroes; y K is a
{p*q)-vector representing the optimum of response variable Kk, a, ig a
scalar related to the maximum expected response, and 4, is an
incidental parameter for sampling unjit i, which takes care of the
constant-sum constraint, If present [16:p. 106, p. 142].

Table 1 shows for various types of data the appropriate link function, error
distribution and by A statiastical interpretation of partial canonical
Gaussian ordination is that the m reaponse variables (in Y) are explained by
two sets of explanatory variables [in Z = (ZT' 22)] by a generalized linear
model (GLM) [16] with as predictor a quadratic form in the explanatory
variablea, It is a unimodal regression model (Fig. 1) with constrainta. The
difference with standard GLM, which is applied to each response variable
3eparately, is that the parameter matrix M is identical for all response
variables and that M is constrained to be positive semi~definite of rank at
most p+r, 80 as to allowrah rrdimensional representation of the partial
effects of the q variablés of interest on the response variables, This
becomes clear by writing the model ag a constrained ordination model. By
setting (i) = D'z(1) and Yy - D'u(k), the model is transformed to the
canonical %orm (Fig. 1)

link {(Eyyp) = ¢3 * ay - f gy uw) )8 - (3

By this tranaformation, the nx{p+q) matrix Z is transformed to a nx(p+r)
matrix X, whose i=th row i3 % i) In terms of variables {the columns of Z
and X), the p+g explanatory variables are transformed to p+r axes of a new
coordinate system, called ordination axes, by

ZS = Z1ts (1 _<- 35 p) (4a)

Xg = 248y * Ingg (p < s £ p+r) {4p)
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Table 1. Types of response which can be analysed by model (1} which is the
basis of partial cancnical correspondence analysis (¢ = incidental
parameter, 1 = index of the L nominal variables with, in total m,
categories, ref = references for related models).

type of response example link error* [ ] ref
in¢idence artifacts in graves logit Bernoulll 0 13,19
plckmany=out~=of»m data 2
abundance species in regions log Poiason 0 13,19
compositions pellen data log multinomial ¢ 13, 16
electrophoresis data 23
nominal multiplemchoice data iog nultinomial ¢y1 1,8

*) inecluding extensions to gquasi~likelihood models [16].

i.e. the firast p ordination axes are a linear combination of the p
covariables and the last r axes are a linear combination of all p+q
explanatory variables. Model (3) without the constraints in (4} is the
Gaussian ordination model [6,11,19] and contains Inm & Van Groenewoud's [13]
generalized logit model. If a;, = a and ¢; = 0, the model shows shifted
single-peakedness [11]."

In the sequel we focus on the estimation of a,basis for the column space of
the matrix D and ¢n the estimation of the optima after transformation
= (U ooy Uy )'. Under the assumption that the {y;.} are
it er in ependent Bernouglf variables when link(.) = logit{.), or
independent Poisson or multinomial variables when link{.) = log(.) {Tabie
1), with expectations defined by (1), the maximum likelihcod egquaticns for
U and the elements of D become, after some rearrangement 20]

ugs = By YigXye/Vex (T3 (% gmupg) (By g 17y ] (5)
Ly 2gl2e Yae(Rgsmups)] = 25 2p40E (xygmupg) By g ] (6)
for k=1, ..., m; j=1, ..., p+q and s=1, ..., ptr, where ¥Yare = L3 ¥ig-

We now derive partial canonical correspondence analysis as an approximation
to Eqs (5)-(6) under the following simplifying conditions:

C1. the maxima are equal (ak=a, k=1, ..., m), or random and independent of
the optima Beg)s ’

C2, the optima up,y are uniformly distributed over a hypercube A with sides
parallel to the ordination axes and of length much larger than 1,

C3. the sampling polints £ are uniformly distributed over a 'large?
hypercube B that is congained in & and that has the origin as centroid,

C4. m and n are large so that the optima and sampling polnts are densely
spaced. For nominal variables, the number of classes per variable should
be large.

Under these conditions, Eyik is approximately symmetric about Xyq and about
Uieq for each s 19}, 30 that we may use the approximations
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Fig. 1. A unimodal relationship between a response variable y and two
regreasors (Eq. {3) with p+r = 2 and link = log).

Iy (Ryguyg)Eyyy = 0 (7
*
Ei (xis—uks)Eyik = -—Asuksyﬂ( . (8}

The proportionality constant A; comes in because the unimodal response
surfaces are the more truncated the more their optima lie towards or beyond
the edge of the sgmpiing region [19,20]. Using Approximation (8) and the
equation kA, = 1-i;, we obtain from (5)

n
AgUps = Zjaqg YipXig/Vex - (9)

By inserting (4) in (6} and using Approximation (7) we obtain

(Z{RZ,)Eq = Z{Rx, (1<s<p) (10)

(Z'RZ)d, = Z'Ryy (p < s < p*r) an
*

% * %
where R = diag (yi+) with y;, = % Yig and x5 = (x1s, vees Xigs eres xns)’

with
* m /
X1 = Iguy YiUks'Yis+ (12)

Equations (4) and (9)~{12) can be solved in a similar way as the transition
formulae of cancnical correpondence analysis [20].

Because Z, contains the variables of interest, it would be convenient to
solve for the last r ordination axes without having to extract the first p
ordination axes. Fortunately, this can be achieved by making the
partitioning of Z in Z; and Z, explicit. By solving (11) for the component ¢
in g4 = (gé.gé) and using the standard formula for the inverse of a
partitioned matrix [18,p.33], we obtain for 3 > p

gg = (ZéRZz)_ Zéﬁx;, where (13

Z, = (1-2)Z, (14)
and where the notation B° is used to dencte B{B'RB) B'R, the projection
operator on V(B), the colymn space of B, in the metric defined by R. Further

%¥g 1s the projection of gz, on Z = (Z,,Zz) as follows from {(4b) and (11}, so
that
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%5 = Z785 * I8%5 - (15)

But, in canonical correspondence analysis the last r ordination axes are
required to be orthogonal to the first p ordination axes [20], so that

Z9%g = Z{ky = O (p < s < pr) (16)
because V(Z{) = V(Zq, %5y «o s xp). Therefore,
%g = 28%5 = Z,(Z3RZ,) Z3Rxy = Zogg (p<s<p+ry. (17

The last r ordination axes can thus be obtained from (9), (12), (13) and
{17). These equations form the transition formulas of partial canonical
correspondence analysis and define an eigenvalue problem akin to that of
canonical correspondence analysis [20]. This can be verified by inserting
consecutively in (13) the equations {12}, (9) and {17), giving .

(S51K71Sy5 = ASgo)eg = 0 (18)
where S,y = Z3Y, Sy, = Y'Z,, Sy, = Z4RZ, and K = diagly,,).

In summary, partial cancnical correspondence is a canonical correspondence
analysis technique whereby p+r orthogonal axes are constructed. The firat p
axes are linear combinations of the p covariables only and the subsequent r
axes are linear combinations of the p covariables and the q variables of
interest. As the covariables are of less interest in the analysis, the first
p axes are usually ignored. The subsequent r axes are congsidered as the
first r ordination axes of partial canonical correspondence analysis. They
give a low-dimensional representation of the unimodal relationships
according to model (1) with constraint (2} between the variables of interest
and the response varianles after partialing out the effects of the
covariables, Technically, the only difference with canonical correspondence
analysis is that the matrix of explanatory variables is replaced by the
matrix 22 of residugls of a multivariate multiple regression of i, on Z,
{14).

Special cases of partial cancnical correspondence analysis are:

1. Canonical correspondence analysis [14,20] if Z, is a nx1 matrix of 1's
(a single trivial covariable only},

2. Partial correspondence analysis if 22 is a nxn identity matrix (no
variables of interest) or any arbitrary nx{n-1) matrix of rank n-1 (too
many variables of interest [21]). :

3. Multiple correspondence analysis [7,9] if 21 and Z, are as specified in
1 and 2 above {(no explanatory variables or too many of them).

4., Weighted averaging ordination [6,21] if p = 0 and q = 1 (a single
variable of interest).

?ur]definition of partial correspondence analysis differs from that by Yanal
15].

3. ORDINATION DIAGRAM
A3 in correspondence analysis, the results can be presented in an ordination

diagram in which the rows and columns of Y are represented by points at
locations 1) and Uik). To the extent that the analysis approximates the
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fitting of Gaussian surfaces (1), the points for response variables are
approximately the optima of these surfaces; hence, the value of Eyik
decreases with the distance between the points of sampling unit i and
response variable k (Fig. 1). The estimated values are, of course,
conditional on the values of the covariables.

In partial cancnical correspondence analysis the ordinaticon diagram can be
aupplemented with arrows for the variables of interest (Fig. 2). This is
done.in such a way that, in conjunction with the points for response
variables, the arrows give a weighted least squares approximation of the
elements of the mxq matrix W= K 'Y'Z,, The (k, j)~th element of W is the
weighted average of response variable Kk with respect to variable of interest
j, after this variable is adjusted for the covariables. In a unimodal model,
the weighted average indicates the centre of a response curve, S¢ the matrix
W summarizes unimodal relationships, like a matrix of partial correlation
coefficlents summarizes linear relationships. In the approximation of W,
response variables are given weights proportional to their total Yege The
coordinates of the supplementary arrows can be obtained by a multivariate
regession of W on U = {u .}, t.e. by

Cp = WKU(U'KU)™'. (19)

The approximation to W i3 then given by the bilinear model UC;. The plot of
points for response variables and arrows for variables of interest is thus a
biplot [5], termed the species-environment biplot in [20]. This plot Is not
Jjust supplementary, as it can be made central to (partial) canonical
correspondence analysis [22].

4. EXAMPLE

The example is taken from H. Smit (in prep.). Smit studied the abundances of
diatom species in dykes in the province of Zuid Helland (The Netherlands),
with special reference to the effects of water pollution. A sample of 402
dykes was taken, which contalined in total 330 species. Variables that
indicate pollution were compounds with phosphorus (P) and nitrogen (N), and
biological oxygen demand (BOD). Apart from variation in pollution, the
sample showed strong natwral variation due to the season of sampling and due
to a gradient from fresh to brackish water. This natural variation was
partialed out by specifying a season indicator variable and the chloride
conecentration {Cl) as covariables. Partial canonical corpespondence analysis
on diatom species with 2% variables~of-interest showed a first axis (11 =
0.10) that was a clear pollution gradient as indicated by the arrows for P,
BOD and N in the ordination diagram (Fig. 2). The second axis (i, = 0.05}
revealed the importance of other natural variation, notably soil type and
dyke width. Species of polluted waters are represented on the right hand
side of the diagram (Fig, 2), e,g. Navicula accomoda and N. subminusecula,
whereas species of wpolluted waters lie on the left hand side, e.g. Eunotia
pectinalis. Species in the middle have their optimum at intermediate
pollution levels or are indifferent [20]. Which possibility is most likely
can be decided upon by plotting the abundance values on the ordination
diagram. Despite their occurrence at high values of P and BOD, two species
of brackish waters, Melosira jlrgensii and Navicula diserta, are displayed
on the left hand side of the diagram, because brackish waters naturally have
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high P- and BOD~ values. This iliustrates that Fig. 2 displays partial
effects.

5. DISCUSSION

In this paper partial canonical correspcondence analysls is derived as an
approximation to maximum likelihood estimation of a particular unimodal
model. But it does not maximize a likelihood. What is being maximized is the
least—aquares criterion of muitiple correspondence analysis [7,11,12.21,24]
with the additional constraints (a) that the axes are linear combinations of
all explanatory variables and (b) that the axes are orthogonal to the
covariables, We note that the orthogonality constraints do not follow
necessarily from the maximum likelihood approach (see below Egq. {15)}). They
are not aufficient either; we conjecture that when the Guttman effect [9,19]
crops up, the transition formulae have solutions close to solutions of the
maximum likelihood equations that correspond to local maxima. Such solutions
can be excluded by "detrending" [6.19.23? or by deleting explanatory
variables [21]. Other loss-functions are considered in f10,12.17].

In the dual scaling approach to correspondence analysis [9], category scores
form the optimal quantification [7] of the corresponding nominal variables.
This paper gives reascon to interpret category scores as optima of underlying
reaponse curves (termed trace linmes in [24]). The properties of corres-
pondence analysis in terms of a unimodal model were expiored earlier by
Torgerson [24: point items], Heiser [10,11] and Ihm & Van Groenewoud [13].

For data with a constant-~sum constraint (¢i # 0 in Table 1), model (1) can
be rewritten as

fog (Bry) = o} + 2k + 2l 1 o)

where ¢; and a; have absorbed the quadratic forms in Z(i) and u*k) in Eq.
{1), respectively. Model (20) with p=1 and r=1 ia the qualitative logistic
regression model, from which Anderson’ 1] developed his regression method
for ordinal response variables (cf. [8 ). The results of this paper can be
used to show that his method c¢an be approximated by canonical correspondence
analysis with ordinal constraints, as in Gifi {7]. on the category scores.
It is surprising that for nominal and compositional data the unimodal
unfolding model (1) can be reexpressed as a generalized bilinear model

(20}t
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Fig. 2. Ordination diagram of a partial canonical correpondence analysis of
diatem apecies (A) in dykes with as explanatory variables 24 variables—of-
interest (arrows) and 2 covariables (chloride concentration and season). The
diagram is symmetrically scaled [23] and shows selected species and
standardized variables and, instead of individual dykes, centroids (e) of
dyke-clustera, The variables-gf-interest shown are: BOD = biological oxygen
demand, Ca = calcium, Fe = ferrous compounds, N = Kjeldahl-nitrogen, 0, =
oxygen, P = ortho-phosphate, Si = silicium~compounds, WIDTH = dyke width,
and soll types (CLAY, PEAT). All variables except BOD, WIDTH, CLAY and PEAT
were transformed to logarithms because of their skew distribution. The
diatoms shown are: Ach hun = Achnanthes hungarica, Ach min = A, minutissima,
Aph cas = Amphora castellata Giffen, Aph lyb = A. lybica, Aph ven = A,
veneta, Coc pla = Cocconeis placentula, Eun lun = Eunotia lunaris, Eun pec =
E. pectinalis, Gei oli = Gomphoneis olivaceum, Gom par = Gomphonema
parvulum, Mel jur = Melosira jirgensii, Nav ace = Navicula accomoda, Nav cus
= N. cugpidata, Nav dis = N. diserta, Nav exi = N, exilis, Nav gre = N.
gregaria, Nav per = N. permitis, Nav sem = N. seminulum, Nav sub = N.
subminuscula, Nit amp = Nitzschia amphibia, Nit bre = N, bremensis v.
brunsvigensis, Nit dis = N, dissipata, Nit pal = N. palea, Rho cur =
Rhoicosphenia curvata.

(Adapted from H. Smit, province of Zuid Holland, in prep.)
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Abstract

Two methods for estimating ecological amplitudes of species with respect to Ellenberg’s moisture scale are
discussed, one based on weighted averaging and the other on maximum likelihood. Both methods are applied
to phytosociological data from the province of Noord-Brabant (The Netherlands), and estimate the range
of occurrence of species to be about 4 — 6 units on the moisture scale, Due to the implicit nature of Ellenberg’s
definition of moisture, it is impossible to improve the indicator values in a statistically sound way on the
basis of floristic data only. The internal consistency of the Ellenberg indicator values is checked by using
Gaussian logit regression. For 45 out of the 240 species studied the indicator value is inconsistent with those
of the other species. The same method is used to estimate the optima and amplitudes of species considered
moisture-indifferent and of some species not mentioned by Ellenberg. Some of these ‘indifferent’ species
show a remarkably narrow amplitude.

It is concluded that the Ellenberg indicator values for moisture form a reasonably consistent system.

Introduction

Ellenberg (1979) summarized the ecology of the
Central-European vascular plants, by assigning to
each species indicator values for light, temperature,
moisture, nitrogen and acidity.

Ellenberg’s indicator values are used to estimate
the value of any of these environmental factors at
a particular site by averaging the indicator values
for this factor of all species present (e.g. Ellenberg,
1979, 1983; Persson, 1981; Smects, Werger &
Tevonderen, 1980; Bicker, Kowarik & Bornkamm,
1983}). Plants often reflect temporally integrated en-
vironmental conditions and are therefore particu-
larly useful indicators when values averaged over

time are needed. When the value of an environmen-
tal factor in the past is required, the only possible
approach may be to base it on historical vegetation
data.

During the development of a model simrulating
the effects of withdrawal of groundwater on the
disappearance of plant species (Gremmen ef al,
1985; Reijnen & Wiertz, 1984), we wished to know:

(1} do Ellenberg’s indicator values for moisture
and nitrogen correctly represent the optima of spe-
cies for these factors in our study area,

(2) what is the ecological amplitude of each spe-
cies for these factors, including species not men-
tioned by Ellenberg (1979)?

We will only discuss moisture values here. Clear-

* Nomenclature follows Heukels-Van der Meijden {1983), Flora van Nederland, 20th =d.

** We would like to thank M. I. 8. M. Reijnen and J. Wiertz for the discussions that gave us the idea for this research, We are grateful
to J. de Bree, C. Hengeveld and the referees for comments on the manuscript. Part of this research was supported by the Commissie
Grondwaterwet Waterleidingbedrijven, the Keuringsinstituut van Waterleidingarrikelen, the Landinrichtingsdienst, Staatsbosbeheer, and
the Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer.
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ly, the same reascning can be applied for other fac-
tors.

Ellenberg (1979) placed each species on a
12-point ordinal scale according to its distribution
with respect to moisture (Table 1), It is not clear
which characteristic{s} of the moisture regime (e.g.
groundwater level, soil moisture content, and soil
moisture deficit) were used in the definition of
these classes. In practice the indicator values of
Ellenberg's ‘intuitive’ scale seem to work well, how-
ever.

The implicit nature of Ellenberg’s definition of
moisture makes it impossible to check the correct-
ness of the indicator values against actual measure-
ments. Nevertheless, it is possible to check the
internal consistency by comparing the indicator
values of species that occur together: when a spe-
cies mainly occurs together with species with higher
(lower) indicator values, its indicator value is in
comparison with those of the other species too low
(too high). (When species have extreme indicator
values this intuitive idea needs modification.) Al-
ternatively, the consistency of the Ellenberg mois-
ture vaiues could be checked by studying the distri-
bution of each species with respect to moisture, In
this approach the moisture value of a site is calcu-
lated by averaging the indicator values of the spe-
cies present. The indicator value of a particular
species is clearly inconsistent with those of the oth-
er species when it deviates considerably from the
center of the distribution of this species. This dis-
tribution also contains information on the ecologi-
cal amplitiede of the species for moisture,

In this paper this simple method is developed

Tahfe 1. Definition of Ellenberg's moisture values (Ellenberg,
1979).

1 on extremely dry soils, e.g. bare rocks

2 in-between ! and 3

3 on dry sails

4 in-between 3 and 5

3 on fresh sdils, i.e. under intermediate conditions

& in-between 5 and 7

7 on moist soils which do not dry out

8 in-between 7 and 9

9 on wet, often not well aerated soils

10 on frequently inundated soils

11 water plant with leaves mostly in contact with the open
air

12 underwater plant, mostly rotally immersed in water

x  indifferent

further and compared with a more sophisticated
maximum likelihood method, in which the species’
distributions are modelled by Gaussian logit curves
{Ter Braak & Looman, 1986). Both methods are ap-
plied to phytosociological (presence/absence) data
from a diluvial part of The Netherlands to answer
the questions stated above, the first of which being
reformulated as: ‘are Ellenberg’s indicator values
internally consistent in our study area?’.

Methods
Tvpe of response curve

The relationship between the occurrence of a species and
moisture may be shown in a presence-absence response curve,
in which the probability p(x) of occurrence of the species is plot-
ted against moisture (x). Response curves may differ in shape
and vary in complexity, but the response curves of species with
respect to environmental variables are usually unimodal (Ellen-
berg, 1983; Whittaker, [956}. [n this study we assume a unimo-
dal response curve for each species with respect to moisture. In
such curves, the width of the curve is proportional to the ecolog-
ical amplitude and the position of its maximum is the indicator
value. These two concepts lose their meaning in other response
curves, such as bimodal or sigmoid curves.

Weighted averaging method

In the method of weighted averaging the indicator value and
ecological amplitude of a species are defined as the mean (M)
and stardard deviation (SD) of the species’ response curve
Thus, these characteristics are defined as if 4 response curve p{x)
were a statistical probability distribution (see Ter Braak &
Barendregt, 1986). The moisture value of & relevé is estimated
here as the average of Ellenberg’s indicator values for moisture
of all the species present in the relevé. Simplistic estimates of a
species’ indicator value and ecological amplitude would then be
the sample mesn and the sample standard deviation, respective-
Iy, of the moisture values of all relevés containing the species
(Ter Braak & Looman, 1986). The newly calculated jndicator
values might then be compared with the indicator values given
by Ellenberg (1979) to provide an informal 1est on the internal
consistency of the latter, However, these estimates are too sim-
ple, because they neglect the distribution of the moisture values
and their results may be misleading (Ter Braak & Loeman,
1986}, In an attempt to correct for the distribution of the mois-
ture values, the moisture scale is divided into twelve classes, and
the number of relevés, g in each class j is counted. For any
species a rough estimate of its response curve can then be ob-
tained by calculating the fraction of relevés in each class that
contain the species. These fractions can be displayed in a re-
sponse histogram (Fig. 1). Improved estimates for the indicator
value and ecological amplitude are then the mean and standard
deviation of the response histogram. In this study the ecological
amplitude is estimated in a slightly more subtle way, namely by
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Fig. 1. Response histogram of a species with respect to moisture.
The bars show the fraction of relevés in each moisture class
which ¢contain the species.

using Ellenberg’s indicator value of the species instead of the
sample mean in the formula for the standard deviation:

o oy L
si? - £ Yius - M B 0
i=1 n; i=1 ﬂj
where # is the number of relevds, »,=1 or 0 depending on
whether the species is present or absent in relevé i, %, is the esti-
mated moisture value and j the class of relevé i, 7 is the number
of relevés in class j and M, is Ellenberg’s (1979) indicator value
of the species. The latter is used in squation (3}, instead of any
newly computed indicator value, to avoid underestimation of
the ecological amplitude. We also used some variants of equa-
tion (1), but the differences in the 1esults did not seem to be of
practical importance.

Maximum likelihood method

Ter Braak & Looman (1986) proposed t¢ model the presence-
absence response curve of a species by the Gaussian logit curve,
in which the logit-transform of probability is a quadratic func-
tion. According to this model the probability p;, that species &
occurs in relevé i is (Fig. 2)

P = 1711 + ¢, exp [V2 (x; — w2/ 8] )

where u, is the optimum (the value of x with highest probability
of occurrence of species £} and 1y, i3 the rolerance (a measure of
ecological amplitude} of species & and x; is the moisture value
of relevé i. The maximum probability of occurrence of species
kis 1/(1 + ¢,). The Gaussian logit curve is symmetric. [ts opti-
mum is therefore identical to its mean, Also, its tolerance is al-
most identical to its standard deviation when the maximum of
the curve is small (Ter Braak & Looman, 1986). The range of oc-
currence of a species is largely restricted to an interval of length
41 (Fig. 2).

The idea behind the maximum likelihood method is to fit
Gaussian logit curves 1o the relevé data. This is done by varying
the parameter values of the model in order to maximize the

.81

pix}

pimax)

X

Fip. 2. Gaussian-logit response curve {p(x) = probability of oc-
currence of the species at value x, p(max) = maximum probabil-
ity of occurrence, x = environmental variable, t = tolerance, u
= Optimum}.

likelihgod. The likelihood of a set of parameter values is defined
as the probability of cellecting the same data when this set of
values were the true set of parameter values. In the present case
the likelihood is taken to be the product of p¥ (1—p)!~ over all
relevés and species, with p=p,, and y=1 or 0 depending on
whether species & is present or absent in relevé §, Logistic regres-
sion as utilized by Ter Braak & Looman (1986) is a special case
of the maximum likelihood method, in which the species
parameters {u;, I, and c,) are estimated from data on species
oocurrence and known values of x;. We could apply logistic
regression here, using the moisture values from the weighted
averaging method. However, in estimating the tolerances of the
species it is more natural to assume, as in equation (1}, that the
optima are known, namely, that they are gqual to Ellenberg’s in-
dicator values. From this assumption maximum likelihood esti-
mates are derived for the moisture values of the relevés as well
as for the tolerances and maxima of the species, The maximum
likelihood estimates are obtained with an iterative algorithm:

¢1) Start with the moisture values obtained by weighted aver-
aging.

(2) Estimate the tolerance and maximum of each species
from that species’ data and the current moisture values.

(3) Estimate a new moisture value for each relevé from the
floristic data, the species’ optima and the current values for the
tolerances and maxima of the species.

(4) Check whether the moisture values have changed, and if
50, 20 back to step {2), otherwise stop.

In step (2) and step {3) the likelihood is maximized for each
species and each relevé separately and, as a result, the total likeli-
hood increases with each step. Step (2) resembles a Gaussian
logit regression, but differs in that the optimum is given instead
of being estimated. Step (3) of the maximmum likelihood proce-
dure has the attractive property that species with a small toler-
ance witl have a greater effect on the estimation of the moisture
value of a relevé than species with a large tolerance (cf. Ter
Braak & Barendregt, 1986).

With the maximum likelihood method one can test statistical-
Iy whether a species’ aptimum as specified by Ellenberg’s indica-
tor value is censistent with the indicator values of the other spe-
cies. In this test the likelihood calculated above is compared with
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a likelihood that is maximized also with respect 10 the value of
the species’ optimum (cf. Ter Braak & Looman, 1986). When the
difference in residual deviance (= —2 log-likelihaod) is larger
than the critical value of a chi-square distribution with 1 degree
of freedom, the species’ optimum is shown to differ significantly
from the value specified by Ellenberg (1979) and is therefore in-
consistent with the indicator values of the other species. In prin-
ciple this test can be carried out for each $pecies in turn. Howev-
er, in the present case, the test is very Jaborious because of the
large number of parameters in the model. Because it is unlikely
that the moisture values of the relevés will change much, when
the second likelihood is maximized, they may just as well be kept
fixed. Then, the statistical test amounts to comparing a species’
indicator value with its optimum as estimated by a Gaussian
logit regression of the data of this particular species on fixed
moisture valzes. Instead of testing by deviance, we checked
whether Ellenberg’s indicator wvalue lay within the
95%-confidence interval for the optimuwm, The construction of
this interval is described by Ter Braak & Looman {1986). Such
intervals were only constructed for species occurring in more
than five relevés.

Data

In this study, 1041 relevés (all from 1980—1982)
were used representing the vegetation of the dilu-
vial area in the western part of the province of
Noord-Brabant, The Netherlands (Gremmen et af,
1985) as follows: 323 relevés of woodland, 312
grassland, 250 marsh and ditch vegetation, 94
heathland and bog, and 62 other types. Quadrat
size ranged from 4 m? in bog and grassland to
200 m? in woodlands.

Trees, large shrubs, and species that accurred less than 3 times
were excluded. A total of 311 species remained, on average 13 per
relevé; 280 of them had been assigned indicator values for mois-
ture (Ellenberg, 1979). Mast species have indicator values that
are in the middle range (5--9). Of the species with more extreme

moisture values 12% have an indicator value of 4 or less, and
16% have one above 9. '

Results

The moisture values of the relevés estimated by
the weighted averaging method showed a markedly
uneveri distribution, with many more ‘wet’ than
‘dry* relevés (Table 2). These moisture values were
strongly correlated {r=0.94} with those estimated
by the maximum likelihood method, but as shown
in Table 2, the estimated values for any single relevé
may differ considerably (30% of the relevés
differed by more than 0.5 unit, and 9% of the re-
levés by more than 1 unit),
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Table 2. Comparison of the estimates of the moisture values of
the relevés resulting from the weighted averaging method
(xy,) and the maximum likelihood method (x ). Entries refer
ta number of relevés,

Xewa 123 4 5 6 7 8 9 1011 12 Total

>
=
=

1 1
3 3
1 5 2 1%

L 13 1 15
6 1 105
28 220 &1 309
15 122 13 150

43 9% 5 148

16 108 76 4 204
10 I M0 37
1 719111 kH
12 10 2 12

N 0D~ DN B L R =
*
4

Total 0 0 1 14 116 274 243 223 133 33 21 3 1(4]

Table 3. Comparison of the estimates of the species amplitudes
from the weighted averaging method (SD, Equation (1)) and the
maximum likelihood method (¢, Equation (2)). Entries refer 1o
number of species.

SD 00 05 1.0 1.5 20 25 3.0 Total
t 05 1.0 L5 20 25 30 35 =235
0.0-05 6 30 1 k)
a.5-1.0 30 20 1 51
1.6-1.5 18 51 7 4 80
15-2.0 1 3227 2 62
2.0-25 713 4 1 25
2.5-3.0 2 1 2 7
3.0-3.5 1 2 2 3
=35 1 3 11 1 3 13
Total 6 8 115 58 13 4 L 3 280

The simplistic estimate of a species’ amplitude,
that is the sample standard deviation (SD) of the
moisture values of the relevés in which the species
occurs, showed low corretation (0.2) with the more
subtle estimate of SD by eguation (1), which was on
average 1.3 moisture scale unit. The maximum
likelitood method tended to result in somewhat
larger estimates of the amplitude than SD (Ta-
ble 3). Species with indicator values of 11 and 12
had on average a markedly smaller tolerance than
other species. This may be so because they are wa-
ter plants.



In general the maximum probability of occur-
rence of a species estimated by the maximum likeli-
hoad method, was quite small; for only 23 (8%) of
the species the maximum exceeded (.50 and for 154
(55%} it was less than 0.10. Thus, the occurrence of

an logit regression.

most species cannot be predicted with confidence
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Fig. 3. Some examples of response histograms (bars) and estimated response curves. (— =
tikelihood method; — — — = response curve estimated by Gaussian logit regression), F =
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from the moisture value of the site alone.

Figure 3 shows some typical examples of the re-
sponse histograms and Gaussian logit curves fitted
by the maximum likelihood metheod and by Gaussi-
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moisture value
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responst curve estimated by the maximum
Ellenberg moisture value, ¢ = tolerance /

estimated by the maximum likelihood methed, SD = ecological amplitude estimated by the weighted averaging method. (a} Heraclenm
sphondylium F = 51t = 2.1: S0 = 1.7 (b} Juncus effusus F = 7 ¢ = 1.4; S50 = L4 (o) Juncus subuliflorus F = 11 = 1.0; 5D = 0.9
(d) Alopecurus geniculatus F = 9, ¢ = 5.5, 8D = 2.2 (e} Iris pseudacorus F = 10; t = 1.8; 5D = L8 (f) Lemna minor F = 1l; ¢ = L.0;

§D =10,
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In some cases the mean of the response histo-
gram deviates strongly from the indicator value of
the species (Fig. 3a, e}. In those cases the curve
fitted by maximum likelihood with the species’ in-
dicator value taken as a fixed optimum, also devi-
ates strongly from both the response histogram and
the curve fitted by Gaussian logit regression. By us-
ing Gaussian logit regression 95%-confidence in-
tervals for the optimum could be constructed for
175 {(=73%) of the 240 species occurring in more
than five relevés. For 45 (=26%) of these, Ellen-
berg’s (1979) indicator value for moisture lay more
than 0.5 unit outside this confidence interval. The
extra 0.5 unit was used to allow for the fact that
Ellenberg (1979) reports whole numbers. Thus for
instance, an indicator value of 6.45 would be
reported as 6. The indicator values of these species
therefore are inconsistent with those of the other
species. Table 4A gives information on species with
an extreme deviation (=1.7) between the Ellenberg
moisture value and the estimated optimum. When
no 95%-confidence interval could be calculated,
the relationship between moisture and probability
of occurrence was either non-significant (21 spe-
cies) or sigmoid rather than unimodal (44 species),
as judged by the deviance test at the 5%-level (cf.
Ter Braak & Looman, 1986). No great inconsisten-
cies in indicator value could be shown for species
with a sigmoid relationship, because those with an
Ellenberg indicator valug of less than 7, showed a
decreasing fitted response curve and those with an
indicator value of 7 or more showed an increasing
response curve (cf, Fig. 3f). It should be noted that
a nonsigrificant relationship or gptimum may be
due to a low frequency of a speéies in our data set
and does not necessarily point to inconsistencies in
Ellenberg’s indicator values.

Gaussian logit regression was also used to check
whether species Ellenberg (1979) considered in-
different, were also indifferent in our data set. For
28 of the 38 such species that occurred in 6 or more
relevés, a 95%-confidence interval for the optimum
could be calculated, and for 14 species the estimat-
ed tolerance was even less than 1.0 unit, Table 4B
lists the species with the narrowest ecological am-
plitude (£ < 0.9).

Our data set contained only threc herbaceous
species not mentioned by Ellenberg (1979) that oc-
curred in more than 5 relevés; their indicator values
were estimated by Gaussian logit regression (Ta-
ble 4C).
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Table 4. Ellenberg moisture value (F), estimated optimum,
95%-confidence interval for the optimum and estimated ampli-
tude (tolerance) of a number of species. A. Species with a large
discrepancy between Ellenberg moisture value and estimated
optimum. B. Species with a narrow ecological amplitude, al-
though regarded as indifferent by Ellenberg, C. Species not
mentioned by Ellenherg.

Species name F  optimum  interval  tolerance
A,

Ornithopus perpusillus 2 4.1 15-43 05
Stellaria graminea 4 6.0 50-64 14
Alopecurus geniculatus 9 6.9 6.6-7.1 1.
Iris pseudacorus i0 8.2 8.0-84 07
B.

Anemone nemorasa x 6.1 6.0-6.3 0.2
Melampyrum pratense x 6.3 4.6-73 05
Bellis perennis X 56 63-68 06
Prunelia vulgaris x 7.1 6.8-75 4.6
Ranunculus acris x 6.9 67-70 0.7
Capsella bursa-pastoris x 4.6 15-50 08
C.

Eleocharis muiticaulis 7?7 9.1 92.0-93 4.3
Epilobium obscurum 7 740 69-73 06
Myosotis laxa ? 7.8 7.5-8.1 0.7
Discussion

The ordinal scale of Ellenberg’s indicator values

Ellenberg’s indicator values are ordinal (strictly
speaking values 11 and 12 are nominal); from the
values in Table 1 we may infer which of two species
prefers wetter conditions, but not the magnitude of
the difference, But, in the methods applied here, the
indicator values are treated as if they were quantita-
tive, that is, as if they were measured on an interval
scale. Durwen (1982) raised objections against such
a quantitative treatment. In our opinion the ordinal
nature of Ellenberg’s moisture scale is far less im-
portant than the shape of the response curves,
which should be symmetric {cf, Ter Braak & Baren-
dregt, 1986). In the maximum likelihood method, a
particular symmetric response curve was assumed
— although response curves that are monotone by
truncation, could also be dealt with. This condition
of symmetry is equally important in the weighted
averaging method, as mean and standard deviation
arg only usefui characteristics for response curves
that are more or less symmetric. After inspecting
the response histograms of all species (cf. Fig. 3) we




concluded that the assumption of symmetry was
not unreasonable, except, of course, for species
with extreme optima, Therefore, we used the mois-
ture indicator values of Ellenberg without transfor-
mation.

Comparison of the two methods

The weighted averaging method has three major
problems. Firstly, as the number of relevés in each
moisture class is not equal (Table 2), the estimates
of the probability of occurrence in a class are not
equally precise for all classes. The estimate of SD
in equation (1) is closely related to the SD of the re-
sponse histogram (Fig. 1), and it would seem
reasonable to give less weight to classes with rela-
tively few relevés. However, any such weighting
policy, would make the estimator for SD again de-
pendent on the distribution of the relevés, and thus
cause bias.

A second problem is caused by relevés of ex-
tremely wet or extremely dry sites. The moisture
values of these relevés will always be too low and
too high, respectively, because only a few species
indicate extreme conditions and many more species
indicate conditions that are less extreme. Just by
their numbers the probability of species of the lat-
ter group occurring at extreme sites is higher than
of species indicating extreme conditions. This
results in a general trend towards more moderate
moisture values for extreme relevés, and this also
results in a bias in the estimates for SD. Thirdly, the
response histograms of species with an extreme in-
dicator value will be truncated (cf. Fig. 3f) and it is
not clear how the $D value of such species should
be interpreted. The problem is partly one of defini-
tion, that is, when the response curve is truncated
becanse more extreme conditions do not exist, it is
not clear how 5D should be defined, and partly one
of estimation, namely when the response curve is
truncated because more extreme conditions were
not sampled, it is not clear how SD should be esti-
mated. We do not know how to solve this problem
in the weighted averaging method.

In the maximum likelihood method a specific
model has to be adopted, in our case the Gaussian
logit model. This is a disadvantage, since we do not
really know the correct model. When the model is
correct, the resulting estimates are better than in
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the weighted averaging method, but when it is in-
correct, the meaning and quality of the estimates
are unknown. We investigated the goodness-of-fit
of the Gaussian logit curves obtained from the
regressions with the usual chi-square test on the ba-
sis of observed and expected numbers of presence
and absence in the 12 moisture classes. At the %
level 72 species (= 27%) showed significant lack-of-
fitt An example is Alopecurus geniculatus
(Fig. 3d). The response histogram suggests gross
deviations from the Gaussian logit curve in mois-
ture classes 10 and i1, but these are due to only four
occurrences. The important deviation is the low fre-
quency of cccurrence in moisture class 9. Despite
the deviations, we believe that for our purpose and
data the Gaussian logit model is a good com-
promise between model complexity and goodness-
of-fit,

The problems in the weighted averaging method
are largely solved automatically in the maximum
likelihood method, where a truncated response
curve is assumed to be part of a full Gaussian logit
curve. However, an unexpected new problem arose,
namely that the distribution of the maisture values
of the relevés showed local minima near integer
values.

This artifact {which is not apparent in Table 2) is because the
Ellenberg (1979) indicator values are all integer values and in our
method form the optima of the species’ response curves. The
maximum likelihood estimate of the moisture value of a refevé
is based both on the species present and the species absent,
When a species is present, it forces the estimate in the direction
of the gpecies’ indicator value, whereas, when a species is absent,
it forces the estimate away from the species” indicator value. Ab-
sence of a species usually has far less influence than presence,
that is, when the maximum probability of occurrence of the spe-
cies is tow (Ter Braak & Barendregt, 1986}). But the number of
species absent in a relevé is large compared to the number of spe-
cies present. If, for instance, the true moisture value of a relevé
is 6.0, all species with an indicator value of 6 that are absent will
force the estimate away from the value 6.0 and this force cannot
be counteracted by the presence of a small number of species
with this same indicator value, The maximum likelihood esti-
mate thus tends to avoid the integer values. We believe that in
the present study this artifact is not a very serious problem. Be-
cause the average width of the response curves is large as com-
pared to the scale of these irregularities, the fitting of curves will

still give a reasonable estimate of the species tolerance. .
The maximum likelihood method has the addi-

tional advantage over the weighted averaging meth-
od by giving approximate standard errors of esti-
mates, which makes it possibie to test the internal
consistency of the Ellenberg indicator values.
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Improving the indicator values by ordination?

Clausman (1%80) attempted to improve indicator
values by an iterative procedure; he calculated mois-
ture values for the refevés from the indicator values
and then new indicator values from the moisture
values, and then new moisture values from the new
indicator values, and so on. This procedure is es-
sentially an ordination method. For example, when
weighted averaging is used in each calculation, the
method amounts to reciprocal averaging. By conse-
quence, the original meaning of the indicator
values may get lost.

We applied detrended correspondence analysis
(Hill & Gauch, 1980), to our data and found practi-
cally no correlation between the (initial) moisture
values of the relevés and the (final) scores on the
first axis (#=0.01). The first axis turned out to be
highly correlated (r=0.99) with the nitrogen values
of the relevés, estimated by averaging the Ellenberg
indicator values for N, whereas the second axis was
highly correlated (r=0.99) with the moisture
values, Applied to our data, Clausman’s (1980}
method would have changed the Ellenberg’s indica-
tor values for moisture into indicator values for
nitrogen, which is clearly unwanted! Consequently,
ordination cannot be used to improve indicator
values, except in the hypothetical case that it is cer-
tain that the main variation in the species data cor-
responds exactly to the factor one wants to imnprove
the indicator values of, Therefore, we kept the indi-
cator values fixed in both our methods and tested
each species separately to see if its value was consis-
tent with the indicator values of the other species.

Due to the implicit nature of Elfenberg’s defini-
tion of moisture, it is impossible to improve the
moisture values in a statistically sound way on the
basis of floristic data only.

On generglizing the resulls

Our results show the ecological amplitude (SD or
tolerance) of a species to be about 1.0 to 1.5 units
on Ellenberg’s moisture scale. Consequently, the
range of a species’ occurrence is estimated to be on
average 4—6 units. It is difficult to say how these
results are affected by conditions specific to our
study area. The detrended correspondence analysis
showed nitrogen to be the environmental variable
that is most important for explaining the floristic
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variation in our data. Consequently, the assump-
tion in the maximum likelihood method of inde-
pendence of the species is incorrect. Fortunately,
nitrogen was practically uncorrelated with mois-
ture, and therefore unlikely to have distorted the
results to a large extent. The fact that moisture is
shown to be the second most important environ-
mental variable in our data set also gives some con-
fidence in the results. In different geographical
regions, the environmental variables that are most
important for explaining the species distribution
may differ. Especially when these factors are cor-
related with moisture, the estimates of the ampli-
tude of a species with respect to moisture may dif-
fer because of distortion by these factors. In
principle, the problem of other influential variables
can be overcome in the maximum likelihood meth-
od by analysing more than one variabie simultane-
ously. We may attempt this in the future.

Conclusion

The use of Ellenberg’s moisture values on floris-
tic data in estimating site moisture is an example of
environmental calibration. Ellenberg’s method of
environmental calibration assumes a simple model
of the responses of plant species to moisture: sym-
metric, unimodal response curves and equal ampli-
tudes. This model does not include interaction ef-
fects of other environmental variables with
moisture. A mare precise calibration system neces-
sarily has to include such interactions. Such a sys-
tem could be derived from actual measurements of
environmental variables and associated floristic
data (Ter Braak & Barendregt, 1986), but would
lose the simplicity and supposed general applicabil-
ity of the Ellenberg system. May our resuits serve to
increase the confidence with which Ellenberg’s indi-
cator values for moisture are used.
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I. INTRODUCTION

All speciea occur in a characteristic, limited range of habitats; and
within their range, tend to be most abundant around their particular
environmental optimum, The composition of biotic communities thus changes
along environmental gradients. Successive species replacements occur as a
fungtion of variation in the enviromment, or {(analogously)} with
successional time {Pickett, 1980; Peet and Loucks, 1977). The concept of
niche space partitioning also implies the separation of apecies along
"resource gradients" (Tilman, 1982). Gradients do not necessarily have
physical reality as continua in space or time, but are a useful abstraction
for explaining the distributions of organisms in space and time (Austin,
t1985). Austin's review explores the interrelationships between niche theory
and the concepts of ecological continua and gradients.

Our review concerns data analysis techniques that assist the
interpretation of community composition in terms of species' responses to
environmental gradients in the broadest sense. Gradient analysis sensu lato
includes direct gradient analysis, in which each species’ abundance (or
probability of occurrence)} is described as a function of measured
envirommental variables; the converse of direct gradient analysis, whereby
environmental values are inferred from the species composition of the
community; and indirect gradient analysis, sensu Whittaker (1367), in which
community samples are displayed along axes of variation in composition that
can subsequently be interpreted in terms of environmental gradients. There
are close relationships among these three Lypes of analysis. Direct
gradient analysis is a regression problem - fitting curves or surfaces to
the relation between each species'abundance or probability of occurrence
(the response variable) and one or more environmental variables {the
predictor variable(s)) (Austin, 1971)., Inferring environmental values from
gpecies composition when these relationships are known is a calibration
problem. Indirect gradient analysis is an ordination probiem, in which axes
of wvariation are derived from the total community data. Ordination axes can
be considered as latent variables, or hypothetical environmental variables,
constructed in such a way as to optimize the fit of the species data to a
particular (linear or unimodal) statlstical mcdel of how gpecies abundance
varies along gradients (Ter Braak, 1985, 1987a}. These latent variables are
constructed without reference to envirommental measurements, but they can
subsequently be compared with actual environmental data if available. To
these three well-known types of gradient analysis we add a fourth,
constrained ordination, which has its roots in the psychometric literature
on multidimensional secaling (Bloxom, 1978; De Leeuw and Heiser, 1980;
Heiser, 1981). Constrained ordination also constructs axes of variation in
overall community composition, but does so in such a way as to explicitly
optimize the fit to supplied environmental data (Ter Braak, 1986a, 1987e).
Constrained ordination is thus a multivariate generalization of direct
gradient analysis, combining aspects of regression, calibration and
ordination. Table 1 gives an arbitrary selection of literature references,
chesen simply to illustrate the wide range of ecological problems to which
each of the four types of gradient analysis has been applied; the reader is
also referred $o Gauch (1982), whe includes an extensive bibliography, and
to Gittins (1985).

Standard statistical methods that assume linear relationships among
variables exist for all four types of problems (regression, calibration,
ordination and constrained ordination) but have found only limited
application in gradient analysis because of the generally non-linear,
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Table 1.

Regresalon
Alderdice (1972)
Peat (1978)

Wisns & Rotenberry (1981)

Austin et al. (1984)
Bartleln et al. (1986)

Calibration

Chandier (1970)
Imbrie & Kipp (1971}

S1idecek {1973)
Ballach et al. (1976)

Ellenberg (1979)

Van Dam et al. (1381)
Bicker at al. {1983)
Bartlein ¢t al. (1934)
Battarbea (1984)
Charles (1985}
AtkEnaon et al. (1986)

Ordinatfon*
Van der Aart & Smeenk-
Enserink (1975)

Kool jman & Hengeveld
{1919)

Wlens & Rotennerry {1981}

Produn & Lebreton (1981)
Kalkhoven & Opdam {(1984)

Macdonald & Ritchie
(1985)

Constrained ordihation
Wabd & Bryson (1972)
Gaase & Tekala (1983)

As (1985)

Cramer & Hytteborn {1987}

Purata [1986)

taxa

marins fish
troes
birds

Eucalyptus 3pp.
plant pollen types

benthlc macro-
invertebrates
foraminifera

freshwater algae
benthio macror
invertebrates
terrestrial planta
diatoms
terrestrial planta
plant polien types
diatons

diatoms

beatles

splders

beetles

birds
birda

birds

plant pallen types

plant pollen types

diatons

beetles
terrestrial plants
tropleal tress

Willén & Fangatrdo (1986) phytoplankton

Selegted applications of gradient analysis

environmental varisbles

salinity, teaperature
elevation, molisture, latitude
vegetation structure
climatio indices

temperature, preclpitation
water poliution

sea surface temperature

organic pollution
water pallution

soll moigture, N, pH

=4

aoll moisture, N, pH
temperature, precipitation
pH

sumnmer temperature, annual
range

micronenvirommental features

lutua content, elevatlcn

vegetation atructure
vegetation atructure

habltat and landscape featurea

vegetation regions

cliimate varlables, airmass
frequencles

pH oclassaes

vegetation types

tlme, slevatlon
successional boundary
canditiong
physical/chenical varlables

purposa of study

defining ranges

blogeography

niche characterization
habltat characterization
Quaternary palaececology
wabar quailty wanageudent
palasocllmatlc reconstruction

acological monitoring
ecological monitoring

bloassay from vegetation
acld rain effects

bioassay [rom vegetation
palagoclimatic reconstructlion
acld rain effects

aclid rain eftects
palasoolimatic reconstruction

habitat characterization

habitat characterization

niche characterization
niche characterization

habltat characterization

Quaternary palaeogcology

palaeccl imatlec reconstructicon

palaaol innology

niche theory

land uplift effecta

study of secondary successicn

environmental moniltoring

4 [FOOTNOTE] exeluding vegetation studies, where ordination is used routinely: see Gauch (1982}
for a review.
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non~monotone response of specles to envirommental variables. Ecologists have
independently developed a variety of alternative techniques. Many of these
techniques are essentially heuristic, and have a less secure theoretical
basis. These heuristic techniques can nevertheless give useful results, and
can be understood as approximate solutions to statistical problems similar
to those solved by standard methods, but formulated in terms of a unimodal
(Gaussian or similar) response model instead of a linear one. We present
here a theory of gradient analysis, in which the heuristic techniques are
integrated with regression, calibration, ordination and constrained
ordination as distinect, well-defined statistical problems.

The various techniques used for each {ype of problem are classified inte
families according to their implicit response model and the method used to
estimate parameters of the model. We consider three such famillies (Table 2).
First we treat the family of standard statistical techniques based on the
linear response model, because these are conceptually the simplest and
provide a basis for what follows, even though their ecological application
i1s restricted. Second, we outline a family of somewhat more complex
statistical techniques which are formal extensions of the standard linear
techniques and incorporate unimodal (Gaussian~like) response models
explicitly. Finally we consider the family of heuristic¢ techniques based on
weighted averaging. These are not more complex than the standard linear
techniques, but implicitly fit a simple unimedal responss model rather than
a linear one. Our treatment thus unites such apparently disparate data
analysis techniques as linear regression, principal camponents analysis,
redundancy analysls, Gaussian ordination, weighted averaging, reciprocal
averaging, detrended correspondence analysis and canonical correspondence
analysis in a single theoretical framework.

II. LINEAR MCDELS

Species abundances may seem to change linearly through short sections of
enviromental gradienta, a¢ a linear response model may be a reascnable
basis for analysing quantitative abundance data spanning a narrow range of
environmental variation.

A, Regression

If a plot of the abundance (y) of a species against an environmental
variable (x) looks linear, or can easily be transformed to linearity, then
it is appropriate to fit a straight line by linear regression. The formula
¥y = a + bx describea the linear relation, with a the intercept of the line
on the y-axis and b the slope of the line, or regression coefficient (Fig.
1). Separate regressions can be carrled out for each of m species.

We are usually moat interested in how the abundance of each species
changes with a change in the envirommental variabie, i.e. in the slopes
b, (the index k refers to species k}. If we first centre the data - by
subtracting the mean of each species' abundances from the species data and
the mean of the envirommental values from the envirommental data' - the
intercept disappears. Then if ¥,q denotes the centred abundance of apecies
k in the i~th ocut of n sites, and Xy the centred environmental value for
that site, the response model for fitting the straight lines becomes

Yri " DXy * €y (1}
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Table 2, Classification of gradient analysis techniques by type of problem,
response model and method of estimation.

RESPONSE MODEL:

linear unimedal

METHOD OF ESTIMATION: leastesquares maximum likelihood weighted averaging

TYPE OF PROBLEM:

regreasion multiple regression Gaussian regression weighted averaging
of site scores (WA}
calibration linear calibration; Gausslan calibration weighted averaging
"inverse regression® of species scores
(WA}
ordination prineipal components Gaussian ordination correspondence ana-
analysis (PCA) iysis (CA); detren-
ded correspondence
analysia (DCA)
constrained1) redung?ncy analysis Gausasian canonical canonical corres-
ordination (RDA) ordination pondence analysis
(CCA);
detrended CCA
partia%)ordin partial components partial Gaussian partial correspon-
nation analysis ordination dence analysis;

partial con»
strained_ors
dination

partial redundancy
analysis

1) = constrained multivariate regression
2) = prdination after regression on covariables
3) = constrained ordination after regression on covariables = constrained

partial multivariate regression

23]
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partial Gaussian
canonical ordination

"reduced~rank regression™ = "PCA of y with respect to x"

partial DCA

partial canonical
correspondence
analysis; partial
detrended CCA



where e,y is an error component with zZero mean and variance Vii+ The
standard estimator for the slope in equation (1) is

™ - 2
P = ig1ykixi/3x (2

where s§ = §1x§. This is the least~squares estimator, which is the best

linear unbiased estimator when errors are uncorrelated and homogeneous
across sites {v,; = v, ). It is alsc the maximum likelihood (ML) estimator
when the errors are also normally distributed [the maximum likelihood method
is a statistical method with well-established optimal properties (see e.g.
Cox and Hinkley, 1974); a MLrestimator is the value for which, if it were
the true value, the prebability of the observed data is highest). The fitted
lines can be used %o predict the abundances of species in a sitewith a
known value of the environmental variable simply by reading off the graph.

B. Calibration

We now turn to the inverse problem, calibration. When the relationship
between the abundances of species and the environmental variable we are
interested in is known, we can infer values of that enviromnmental variable
for new sites from the observed species abundances. If we took into account
the abundance of only a single species, we could simply read off the graph,
starting from a value on the vertical axis (Fig. 1)}. However, another
species may well give a different estimate. We therefore need a good and
unambigous estimator that combines the information from all m species, In
terms of Eq. {1), the b, are now assumed to be known and x; is unknown. The
role of the bk and X4 have been interchanged. By interchanging their roles
in Eq. {(2) as well, we obtain

%; = kz1ykibk/s§ (3)

where sg = T bi. This is the least-squares estimator (and also the

ML-estimator) when the errors follow a normal distribution and are
independent and homogeneous across specles (Vki = vi).

A problem with equation (3) is that these conditions are likely to be
unrealistic, because effects of other envirconmental variables ¢an cause
correlation between the abundances of different species even after the
effects of the envirommental variable of interest have been removed.
Further, the residual variance Vi may be different for different species.
If these conditions do not apply, we also need to take the residual
correlations and variances into account, (In practice, the residual
correlations and variances are estimated from the residuals of the
regressions used for estimating the bk's.) Searching for the maximum of the
likelihood with respect to x; then leads to a general weighted least-squares
problem (Brown 1979, Brown 1§82) that can be solved by using standard
algorithms.

C. Ordination

After having fitted a particular environmental variable to the species
data by regression, we might asi whether another environmental variable
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abundance value (y)

—r b

environmental variable (x}

Fig,_ 1. A straight line displays the linear relation between the abundance
value {y) of a species and an environmental variable (x), fitted to
artifical data (e). {(a = intercept; b = slope or regression
coefficient).

X2

Fig._2. A plane displays the linear relation between the abundance value (y) of
a species and two environmental variables {x, and xz), fitted to
artifical data (e).
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would provide a better fit. For some species one variable may fit better,
and for other species another variable. To get an overall impresaion we
might judge the goodness-of-fit (explanatory power)} of an envirommental
variable by the "total regression sum of squares", the sum over all species
of the regression sum of squares for each species {the sum of squares of the
fitted values = see e.g. Montgomery and Peck, 1982). The queation then
ariges: what 1s the best possible fit that is theoretically obtainable with
the straight line modei of Eq. (1)?

This question defines an ordination problem, i.e. to construct the
single "hypothetical environmental variabie" that gives the beat fit to the
species data according to Eq. (7). This hypothetical environmental variable
is termed the-latent variable, or simply the (first) ordination axis.
Principal components analysis (PCA) provides the solution to this ordination
problem. In Eq. {1}, Xy i3 then the score of site 1 on the latent variable,
by is the slope for species k with respect to the latent variable {also
called the species loading or species score} and the eigenvalue of the first
PCA axis is equal to the goodness—of-fit, i.e. the total sum of squares of
the regreasions of the species abundances on the latent variable., PCA
provides the least—squares estimates of the site and species scores: these
estimates are also ML estimates if the errors are independently and normally
distributed with constant variance (v,; = v).

PCA is usually performed using a standard computer package, but several
different algorithms can be used to do the same Job. The following
algorithm, known as the power method (Gourlay and Watson, 1973), shows that
PCA can be obtained by an alternating sequence of linear regressions and
calibrations:

Step 1. Start with some (arbditrary) initial site scores {x,} with zero
mean.

Step 2. Calculate new specles scores bk} by linear regression (Eq. (2)).

Step 3. Calculate new site scores {xi by linear calibration (Eq. (3)).

Step 4. Remove the arbitrariness in scale by standardizing the site scores
as follows: new Xy o= old xiln/sx. with s, as defined beneath Eq.
(2).

Step 5. Stop onh convergence, i.e. when the newly obtained site scores are
close to the site scores of the previous cycle of i{teration, else go
to step 2.

The final scores obtained in this way do not depend on the initial scores.

D. Extension to more than one environmental variable

Species experience the effect of more than one envircmmental variable
simul taneously, so more than one varlable may be required to account for
variation in species abundances.

The joint effect of two environmental variables on a species can be
analysed by multiple regression (see e.g. Montgomery and Peck, 1982). For
two envirommental variables the linear response model is

Yii = 8, * PyXiq * DyoXin toeyg ()

with a, the intercept for species k, Xiq the value of varlable 1 at site i
and tyq the {partial) regression coefficient for the effect on species k.
For variable 2, X5 and by 5 are defined analogously, and ykiand €,y are
defined as before. This model specifies a plane in three dimensions {Fig.
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2). Standard computer packages are available to obtain least—squares {ML)
estimates for the regression coefficients. Multiple regression provides for
each variable a regression coefficient that takes into account the effect of
the other variables: hence the term "partial" regression coefficient. Only
when the two environmental variables are uncorrelated will the partial
regression ccefficlents be identical to the coefficlents estimated by
separate regressions using Eq. (1).

The inverse problem, multiple calibration ~ inferring values of more
than one envirommental variable simultaneously = has been given surprisingly
little attention in the literature. However, Williams (1959) derived the
necessary formulae from the Mu-principle; see also Brown (1982).

The ordination problem for the two—dimensicnal linear model turns out to
be relatively simple, compared with the regreasion and calibration problems.
The solution does not need an alternating sequence of multiple regressions
and c¢alibrations, because the latent variables can always be chosen in such
a way that they are uncorrelated; and if the latent variables are
uncorrelated, then the multiple regressions and calibrations reduce to a
series of separate linear regressions and calibrations. PCA provides the
solution to the linear ordination problem in any number of dimensions; one
latent variable is derived first, as in the conendimensicnal case of Eq. (1),
and the second latent variable can be obtalined next by applying the same
algorithm again but with one extra step -~ after step 3, the trial scores are
made uncorrelated with the first latent variable. On denoting Xys simply by
Xgs this orthogeonalization is computed by
Step 3b: Calculate f = Ly XX 1/n,

Calculate new ;=0 d ¥ f Xiq1e

(Further latent variables (ordination axes) may be derived analogously.)

As in the one~dimensional case, PCA provides the ML=solution to the multi-
dimensional linear ordination problem if the errors are independently and
normally distributed with constant variance acress species and sites. The
power algorithm for PCA as described above makes ita relationship to
regression and calibration clear in a way that the usual textbook treatment,
in terms of singular value decomposition of inner product matrices, does
not; it also facilitates comparison with correspondence analysia, which we
discuss later. Jolliffe (1986) reviews the theory and applications of PCA.

E. The environmental interpretation of ordination axes (indirect gradient
analysis)

In indirect gradient analysis the species data are first subjected to
ordination, e.g. using PCA, to find a few major axes of variation (latent
variables} with a good fit to the species data. These axes are then
interpreted in terms of known variation in the envircemment, often by using
graphical methods (Gauch, 1982)., A more formal method for the second step iIn
indirect gradient analysis would be to calcoculate correlation coefficlents
between environmental variables and each ¢f the ordination axes. This
analysis is similar to performing a multiple regression of each separate
envirormental variable on the axes {Dargie, 1984), because the axes are
uncorrelated. But the result 1s still not an analysis of the combined
effects of all environmental variables. Such a joint analysis can be carried
cut by multiple regresasion of each ordinaticn axis on the envirommental
variables, i.e. estimating the coefficients ¢ in the model

Xy weq * f cj i (5)
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in which x; is the score of site 1 on that one ordination axis, z;, denotes
the value at sifte 1 of the j=th out of q actual envirormental variables, and
¢; is the corresponding regresalon coefficient. (For later reference, the
efror term in Egq. (5) is not shown.) The multiple correlation coefficient R
measures how well the environmental variables explain the ordination axlis.

F. Constrained ordination (multivariate direct gradient analysis)

Indirect gradient analysis, as outlined above, is a two-step approach to
relate species data to enviromnmental variables. A few ordination axes that
summarize the overall community variation are extracted in the first step;
then in the second step one may calculate weighted sums (linear
combinations) of the envirommental variables that mest closely fit each of
these ordination axes. However, the environmental variables that have been
studied may turn out to be poorly related to the first few ordination axes,
yet may be strongly related to other, "residual" directions of variatien in
gpecies compesition. Unless the first few ordination axes explain a very
high proportion of the variation, this residual variation can be
substantial, and strong relationships between species and enviromment can
potentially be missed.

In constrained ordination this approach is made more powerful by
combining the two steps into one. The idea of constrained erdination i3 to
search for a few weighted sums of envirommental variables that fit the data
of all species best, i.e. that give the maximum total regression sum of
squares. The resulting technique, redundancy analysis (Rao, 1964; Van den
Wollenberg, 1977}, is an ordination analysis in which the axes are
constrained to be linear combinations of the envirormental variables. These
axes can be found by extending the algorithm of PCA described above with one
extra step, to be performed directly after step 3 (Ter Braak, 1987a):

Step 3a: Calculate a multiple regression of the site scores {x;} on the
enviromental variables (Eq. (5)), and take as new site scores the
fitted values of this regression.

The regression is thus carried out within the iteration algorithm, instead
of afterwards. On convergence, the coefficients {c } are termed canonioal
coefficients and the multiple correlation coefficient in step 3a can be
called the species=enviromment correlation.

Redundancy analysis is also known as reduced-rank regression (Davies and
Tso, 1982), PCA of y with respect to x (Robert and Escoufier, 1976) and
two~block mode C partial least squares (Wold, 1982). It is intermediate
between PCA and separate multipie regressions for each of the species: it is
a constrained ordination, but it is also a constrained form of
{multivariate) multiple regression {Davies and Tso, 1982; Isra®ls, 1984). By
inserting Eq. (5) into Eq. (1), it can be shown that the 'regression'
coefficient of species k with respect to envirommental variable j takes the
simple form bye;. With two ordination axes this form would be, in obvious
notation, b 1857 + bkec 2. With two ordination axes, redundancy analysis
thus uses 2%q f} parame%ers to describe the apecies data, whereas the
multiple regressions use m(g+1) parametera {(cf. Eq. (4)). Cne of the
attractive features of redundancy analysis is that it leads to an ordination
diagram that simultanecusly displays (i) the main pattern of community
variation as far as this variation can be explained by the environmental
variables, and (ii) the main pattern in the correlation coefficients between
the species and each of the envirommental variables. We give an example of
such a diagram later on.
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abundance value (y)

1 1

environmental variable (x]

Fig._3. A Gaussian curve displays a unimodal relation between the abundance
value (y) of a species and an environmental variable (x). (u = optimum
or mede; t = tolerance; ¢ = maximum = exp{a)).

Fig, 4. A Gaussian surface displays a unimodal relation between the abundance
value (y} of a species and two environmental variables (x4 and x5).
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Redundancy analysis is much less well known than canonical correlation
analysis (Gittins, 1985), which is the standard linear multivariate
technique for relating two sets of variables (in our case, the set of
species and the set of envirommental variables). The most important
practical difference is that redundancy analysis can analyse any number of
species whereas in canonical correlation analysis the number of species {(m)
must be less than n~q; the latter restriction is often a nuisance.

Canonical variates analysis, or multiple discriminant analysis, is
simply the special case of canonical correlation analysis in which the
"environmental™ variables are a series of dummy variables reflecting a
single-factor classification of the samples, A similar restriction on the
number of species thus alsc applies to canonical variates analysis.
Redundancy analysis with dummy variables provides an alternative to
canonical variates analysis, evading this restriction.

III. NONLINEAR (CGAUSSIAN) METHODS

A, Unimodal response models

Linear methods are appropriate to community analysis only when the
species data are quantitative abundances (with few zeroea) and the range of
environmmental variation in the sample set is narrow. Alternative analytiecal
methods can be derived from unimodal models.

A unimodal response model for cne envirommental varfable can be obtained
by adding a quadratic term (xf) to the linear model, changing the response
curve from a straight line into a parabola. But this quadratic model can
predict large negative values, whereas species abundances are always zeroc or
positive. A simple remedy for the problem of negative values is provided by
the Gaussian response curve (Gauch and Whittaker, 1972) in which the
logarithm of species abundance is a quadratic in the envirommental
variable:

log y = by + byx + b2x2
(64}
=ar 1/, (xu)2/t? )

where b, < 0 {otherwise the curve would have a minimum instead of a mode).
The coe%ficients 95 by and by are most easily interpreted by transformation
to u, t, and a {Fig. 33 -= u being the species' optimum (the value of x at
the peak), t being its tolerance (a measure of response breadth or
ecological amplitude), and a being a coefficient related to the height of
the peak (Ter Braak and Looman, 1986}.

A closely related model can describe species data in presence-absence
form. In analysing presence—absence data, we want to relate probability of
oceurrence (p) to enviromment. Probabilities are never greater than 1, so
rather than using Eq. (%4) we use the Gaussian logit model,

1og(785) = by + byx + byx* (6B)

which is very similar to the Gaussian model unless the peak probablility is
nigh (> 0.5); then Eq. (6B) gives a curve that is somewhat flatter on top.
The coefficlents bgs by and b, can be tranaformed as before into
coefficients representing the species’ optimum, tolerance and maximum
probability value.
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Although real ecologleal response curves are still more complex than
implied by the Gaussian and Gaussian logit models, these models are
nevertheless useful in developing statfatical descriptive techniques for
data showing mostly unimodal responses, just as linear models are useful in
statistical analysis of data that are only approximately linear.

With two environmental variables, Eqs. (6A) and (6B) become full
quadratics with both square and product terms (Alderdice, 1972). For
example, the Gaussian model becomes

log y = by + byxy + boxi + Daxy + byx3 + bgXyxa « (7)

If by *+ by < 0, and Hbzbu ] b% > 0 then Eq. (T7) deseribes a unimodal surface
with ellipsoidal contours (Fig., 4). If one of these conditions is

not satiasfied then Eq. (7) describes a surface with a minimum, or with a
saddle point (e.g. Davison, 1983). Provided the surface is unimodal, its
optimum (uy, u,) can be caleulated from the coefficients in Eq., (7) by

uy = (bgby = 2byby)/d 5

where d = 4byby - b2. When bz # 0, the optimum with respect te x4y, depends
on the value of Xy; the environmental variables are then said to show
interaction in thelr effect on the species. In contrast, when b5 = 0 the
optimum with respect to x, does not depend on the value of x, (ho
interaction) and Eq. (8) simplifies considerably (Ter Braak and Looman,
1986).

The unknown parameters of nonlinear response models in the context of
regreasion, calibration or ordination can {(at least in theory) be estimated
by the maximum likelinocod principle, however difficult this may be in a
particular situation. Usually iterative methods are required, and initial
parameter values must be specified. The llikelihood function may have local
maxima, so that different sets of initial parameter values may result in
different final estimates. It cannot be guaranteed that the global maximum
has been found. Further, all kinds of numerical problems may occur. However,
the special cases of Gaussian and Gausaian logit response models do allow
reasonably practical solutions, which we consider now,

B. Regression

The regression problems of fitting Gaussian or Gaussian logit curves are
relatively straightforward, since these models are special cases of the
Generalized Linear Model {for details see Austin and Cunningham, 1981;
Dobson, 1983). If the data are abundances (which may include zeroes), the
Gaussian model is fitted by specifying a Poisson error distribution and a
logarithmic link function. If the data are presencemabsence, the Gaussian
logit model is fitted by specifying a Bernoulli error distribution and a
logit link function. Alternatively, any statistical package that will do
logit (= logistic) regression can be used to fit the Gaussian logit model
(Ter Braak and Looman, 1986). No initial estimates are needed and local
maxima do not arise, so these techniques are quite practical for direct
gradient analysis.

The most common complication arises when the optimum for a species is
estimated well outaide the sampled range of environments, or if the fitted
curve shows a minimum rather than a peak. These conditions suggest that the
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regression is ill-determined and that it might be better to fit a monotone
eurve by setting b, = 0 in Egs. (6); a statistical teést can be used to
determine whether this simplification is acceptable (Ter Braak and Looman,
1986). Such cases are bound to arise in practice because any given set of
samples will include some species that are near the edge of their range.

C. Calibratiocn

The calibration problem of inferring envirommental values at sites from
species data and known Gaussian (logit) curves by ML (Ter Braak and
Barendregt, 1986) is feasible by numerical optimization, but no easyrto-use
computer programs are available at present. Local maxima may occur in the
likelihood, when the tolerances of the species are unequal, and one needs to
gpecify an initial estimate. The assumption of independence of species
responses 1s required, but might not be tenable in practice; it remains to
be studied how important this assumption is., Dependency among species could
most obviously be caused by the effects of additional, unconsidered
envirommental variables, in which case the best remedy would be to identify
these varliables and include them in the analysis.

D. Ordination

Ordination based on Gaussian (logit) curves aims to construct a latent
variable such that these curves optimally fit the species data. This problem
involves the ML estimation of site scores {xk} and the species' optima {uk},
tolerances {tk} and maxima {ak}, usually by an alternating sequence of
Gaussian (logit) regressions and calibrations. This kind of ordination has
been investigated by Gauch, Chase and Whittaker (1974), Kooijman (1977),
Kooijman and Hengeveld (1379), Goodall and Johnson (1982) and Ihm and Van
Groenewoud (1975, 1984). The numerical methods required are computationally
demanding; and in the general case, when the tolerances of the species are
allowed to differ, the likelihood function typiecally contains many local
maxima.

E. Extension to more than one environmental variable

The effects of two environmental variables can be modelled by Gaussian
or Gaussian logit surfaces (see Eq. {7)), which can be fitted by Generalized
Linear Modelling or by logit regression (Austin and Cunningham,1981; Austin
et al., 1984; Bartlein et al., 1986). Inferring the values of more than one
envirommental variable simultanecusly on the basis of several such responae
surfages i3 also possible in principle, but has nof been appllied as far as .
we know.

Kooijman (1977} and Goodall and Johnson (1982) reported numerical
problems in their attempts to perform ML ordination using two—dimensional
Gaussian-like models. A simple model with circular contours (b, = by and
bS = 0) may be amenable in practice, especially if by is not allowed to vary
among apecies (Kooijman, 1977). This model is equivalent to the "unfolding
model® used by psychologists to analyse preference data (Coombs, 1964;
Heiser, 1981; Davison, 1983; DeSarbo and Rac, 1984). But with more than two
latent variables the Gaussian (logit) model with a asecond- degree polynomial
as linear predictor contains so many parameters that it is likely to be
difficult to get reliable estimates of them, even if all the interaction
terms are dropped.
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F. Constrained ordination

The constrained ordination problem for Gaussian-like response models is
to construct ordination axes that are also linear combinations of the
envirommental variables, such that -Gaussian (logit) surfaces with respect to
these axes optimally fit the data. As in redundancy analysis (section II F),
the joint effects of the envirommental variables on the species are
"channelled" through a few ordination axes which can be considered as
composite envirommental gradients influencing species composition.

Ter Braak (1986a) refers to this approach as Gaussian canonical ordination,
the word cancnical being chosen in analogy with canonical correlation
analysis. The estimation problem is actually simpler than in unconstrained
Gausslan-ordination, and is more easily scluble in practice because the
number of parameters to be estimated is smaller: instead of n site scores
cne has to estimate q canonical coefficients. (Meulman and Heiser (1984)
have applied similar ideas in the context of normetric multidimensional
scaling.) Gaussian canonical ordination can also be viewed as multivariate
Gaussian regression with constraints on the ccoefficients of the polynomial.
In multivariate Gaussian regression each species has Its own optimum in the
g-dimensional space formed by the environmental variables; the constraints
imposed in Gaussian canonical ordination amount to a requirement that these
optima lie in a low-dimensional subspace. If the optima lie c¢lose to a plane
then the most important specles—enviromment relationships can be depicted
graphically in an ordination diagram.

IV. WEIGHTED AVERAGING METHODS

Ecologists have developed alternative, heuristic methods that are
simpler but have essentially the same aims a3 the methods of the previous
section based on Gaussian~-type models. Each method in the Gaussian family
has a counterpart in the family of heuristi¢ methods based on weighted
averaging (WA). These methods have been used extensively, and even
re-invented in different branches of ecology.

A. Regression

As a regression technique, WA is a method of estimating species' optima
with respect to known enviromental variables. When a specie3 shows a
unimedal relationship witl environmental variables, the species' presences
will be concentrated arocund the peak of this function. One intuitively
reasonable estimate of the optimum is the average of the values of the
environmental variable over those sites in which the species is present.
With abundance data, WA applies weights proportional to species abundance;
absences. still carry zero weight. The estimate of the optimum for species k
is thus

u = xy/ (9)
Y 121Yk1 1Y k+

where y,; is from now onwards the abundance (not centred) or
presence}absence (1/0) of species k at site I, Yi+ is the specles total
(yk+ = Li¥)i’ and x; is the value of the envirommental variable at site 1.
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As a follow-up to an investigation of the theoretical properties of this
estimator {Ter Braak and Barendregt, 1986}, Ter Braak and Looman (1986)
showed by simulation of presencesabsence data that WA estimates the optimum
of a Gaussian logit curve as efficlently as the ML technique of Gaussian
loglt regreasion provided:

Condition 1a: The site scores {xi} are equally spaced over the whole
range of occurrence of the species along the environmental
variable.

WA also proved to be only a little less efficient whenever the distribution
of the envirormental variable among the sites was reasonably homogeneous
(rather than strictly equally spaced) over the whole range of species
occurrences, or more generally for species with narrow ecclogical
amplitudes, But the eatimate of the optimum of a rare specles may be
imprecise, because the standard error of the estimate is inversely
proportional to the square root of the number of occurrences. So for
efficiency, we also need

Condition 1b: the saite scores {xi} are c¢losely apaced in comparison with
the species' tolerance.

B, Calibration

WA i3 also used in calibration, to estimate envirommental values at
sites from species' optima = which in this context are often called
indicator values ('Zeigerwerte', Ellenberg, 1979) or scores (Whittaker,
1956). When species replace one another along the envirommental variable of
interest, i.e. have unimodal response functions with cptima spread out along
that variable, then species with optima close to the envirommental value of
a gite wili naturally tend to be represented at that site. Intuitively, to
estimate the envirommental value at a site, one can average the optima of
the species that are present., With abundance data, the correspending
intuitive estimate is the weighted average,

Xy = kz1ykiuk/y+i (10)

where y,; is the aite total (y,; = Ekyki).

Ter éraak and Barendregt (1%86) showed that WA estimates the value x; of
a site as well as the correponding ML techniques if the species show
Gaussian curves and Poisson~distributed abundance values (or, for
presence~absence data, show Gausslan logit curves), and provided:

Condition 2a: The species' optima are equally spaced along the
envirommental variable over an interval that extends for a
sufficient distance in both directions from the true value
Xis

Condition 3: The species have equal tolerances;

Condition 4: The species have equal maximum values.

These conditions amount to a "speecles packing model" wherein the species

have equal response breadth and equal spacing {Whittaker et al., 1973). The
conditions may be relaxed somewhat (Ter Braak and Barendregt, 1986) without
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seriously affecting the efficiency of the WA-estimate. When the optima are
uniformly distributed instead of being equally spaced, the efficlency is
still high if the maximum probabilities of occurrence are small (< 0.5). The
speciesa' maximum values may differ, but they must not show a trend along the
envirommental variable (for instance, leading to species— rich samples at
one end of the gradient and species—poor gamples at the other end). The
efficiency of WA is worse if the tolerances substantially differ among
species; a tolerance weighted veraion of WA, as suggested by Zelinka and
Marvan (1961) and Goff and Cottam (1967), would be more efficient since it
would give greater weight fo species of narrower tolerance, which are more
informative about the environment.

Under conditions 2a-4 above, the atandard error of the estimate of ii is
approximately t/Jy+i, where t is the (common) species-tolerance. For the
welghted average to be practically useful, the number of species encountered
in a site should therefore not be too small (not less than five), We
therefore need the extra condition {(¢f. Section 5 in Ter Braak and
Barendregt, 1986}):

Condition 2b: The species' optima must be closely spaced in camparlson
with their tolerances.

An alternative heuristic method of calibration is by "inverse
regression”. This i3 simply multiple linear regression of the envirommental
variable on the species abundances (Brown, 1982): the environmental variable
is treated as if it were the response variable and the species abundances,
possibly transformed, as predictor variables. The regression coefficients
can be estimated from the training set of species abundances and
environmental data, the resulting equations being applied directly to infer
environmental values from further species abundance data. When applied to
data on percentage composition, e,g pollen spectra or diatom assemblages
(Bartlein et al., 1984; Charles, 1985), the method differs from WA
calibration only in the way in which the species optima are estimated, since
the linear combination of percentage values used to estimate the
envirommental value is by definition a weighted average of the regression
coefficients.

€. Ordination

Hill {1973) turned weighted averaging into an ¢rdination technique by
applying alternating WA regressions and calibrations to a species-by-site
data table., The algorithm of this technique of "reciprocal averaging”" is
similar to that given earlier for PCA:

Step 1. Start with arbitrary, but unequal, initial site scores {xi}.

Step 2. Calculate new species scores uk} by WA (Eq. (9)).

Step 3. Calculate new site scores {x;i by WA (Eq. (10)).

Step 4. Remove the arbitrariness in scale by standardizing the site
scores by new x; = {old x; ~ z|/s where z = Iy, %;/Z;y,; and
5% = 21y+i(xi - Z)zli.ly,,i (BB

Step 5. Stop on convergence, else go to atep 2,

As in PCA, the resulting site and species scores do not depend on the
initial scores. The final scores produced by this reciprocal averaging
algorithm form the first eigenvector or ordination axis of correspondence
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analysis (CA), an eigenvector technique that is widely used especially in
the French-language literature {Laurec et al., 1979; Hill, 1974). As with
the power algorithm for PCA, the reciprocal averaging algorithm makes c¢lear
the relationship between CA and regression and calibration - this time, with
WA regression and calibration. The method of standardization chosen in step
4 is arbitrary, but chosen for later reference, On convergence, s in step 4
is equal to the eigenvalue of the first axis, and lies between 0 and 1.

Correspondence analysis has many applications outside ecclogy. Nishisato
(198C), Greenacre (1984) and Gifi (1981) provide a variety of different
rationaies for correspondence analysis, each adapted to a particular type of
application. Heiser {1986) and Ter Braak (1985, 1987c) develop rationales
for correspondence analysis that are particularly relevant to ecological
applications.

Ter Braak (1985) showed that CA approximates ML Gaussian (logit)
ordination under Conditions 1 to 4 listed above, i.e. under just these
conditions for which WA is as good as MLrregression and ML-calibration. In
practice CA can never be exactly equivalent to ML ordination, because
Condition ta implies that the range of site scores is broad enough to
include the ranges of all of the species whereas Condition 2a implies that
there must be species with their optima situated beyond the edge of the
range of site scores, These conditions cannot both be satisfied if the range
of site scores is finite. As a result, CA shows an edge effect: the site
scores near the ends of the axes become compressed relative to those in the
middle (Gauch, 19B2). This effect becomes less strong, however, as the range
of site scores becomes wider and the spacing of the site scores and species
scores becomes closer relative to the average species' tolerance.

Conditions 1~4 also disallow "deviant" sites and rare species. CA is
sengitive to both (Hill, 1974; Feoli and Feoli Chiapella, 1979; Oksanen,
1983). This sensitivity may be useful in some applications, but is a
nuisance if the aim is to detect major gradients. Deviant sites (and,
possibly, the rarest species) should therefore ideally be removed from the
data before analysis by CA.

As in PCA, further ordination axes can be extracted in CA by adding an
extra step after Step 3, making the trial scores on the second axis
uncorrelated with the (final) scores on the first axis., (In the calculation
of £ in Step 3b (see sectlion II D) the sites are weighted proportional to
the site total Yego This weighting is implicitly applied from now on.)
However, there ia a problem with the second and higher axes in CA. The
problem is the well-known but hitherto not well-understood "arch effect"
(Hill, 1974}. If the specles data come from an underlying one-dimensional
Gaussian model the scores on the second ordination axis show a parabolic
("arch"} relation with those of the first axis; if the species data come
from a two~dimensional Gaussian model in which the true site and species
scores are located homogeneously in a rectangular region in 2D-space (the
extension to two dimensions of Conditions 1a and 2a}, the scores of the
second cordination axis lie not in a rectangle but in an arched band (Hill
and Gauch, 1980). The arch effect arises because the axes are extracted
sequentially in order of decreasing "variance". Suppose CA has succeeded in
conatructing a first axis, such that species appear one after the other
along that axis as in a species packing model. Then a possible second axis
is obtained by folding the first axis in the middle and bringing the ends
together so that it is a superposition of two apecies packing models, each
with half the gradient length of the firat axis. This folded axis is a
candidate for becoming the second axis, because it has no linear correlation
with the first CA~axis yet has as much as half the gradient length of the
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first axis (Ter Braak, 1987a). The folded axis by itself thus "explains" a
part of the variation in the species data, even though when taken jointly
with the first axis it contributes nothing. Even if there is a strong second
gradient, CA will not associate 1t with the second axis if it separates the
species less than a folded first axis. As a result of the arch effect, the
two-dimensional CA-solution is generally not a good approximation to the
ML-solution (twomdimensional Gaussian ordination).

Hill and Gauch (1980) developed detrended correspondence analysis (DCA)
as a heuristic modification of CA desighed to remedy both the edge effect
and the arch effect. The edge effect is removed in DCA by nonlinear
rescaling of the axis. Assuming a species packing model with randomly
distributed species’' optima, Hill and Gauch (1980) noted that the variance
of the optima of the species present at a site {the 'within-site variance')
is an estimate of the average response curve breadth of those species (they
used the standard deviation as a measure of breadth, which is about equal to
tolerance as we define it). Because of the edge effect, the species curves
pefore rescaling are narrower near the ends of the axis than in the middle,
and the within-site variance is correspondingly smaller in sites near the
ends of the axis than in sites in the middle. The rescaling therefore
attempts to equalize the within~site variance at all points along the
ordination axis by dividing the axis into small segments, expanding the
segments with sites with small within-site variance, and contracting the
segments with sites with large withinnsite variance. The site scores are
then calculated as weighted averages of the species scores and the scores
are standardized such that the within=site variance is equal to 1.

Hill and Gauch (1980) defined the length of the ordination axis to be
the range of the site scores. This length is expressed in 'standard-
deviation units' {SD). The tolerance of the species' curves along the
rescaled axis are therefore close to 1, and each curve rises and falls over
about 4 SD. Sites that differ by 4 SD ecan thus be expected to have no
species in common. This interpretation of the length of the ordination axis
is extremely useful. Even if nonlinear rescaling is not used, one can still
set the average within-site variance of the species scores along a CA-axis
equal to 1 by linear rescaling (Hill, 1979), so as to ensure that the length
of the ordination axis still has approximately this interpretation.

The arch effect, a more serious problem in CA, is removed in DCA by the
heuristic method of "detrending-by=-segments™, This methoed ensures that at
any point along the first ordination axis, the mean value of the site scores
on subsequent axes ia approximately zero. In order to achieve this, the
first axis is divided inte a number of segments and the trial site scores
are adjusted within each segment by subtracting their mean after some
smoothing across segments. Detrending-by-segments is built into the
reciprocal averaging algorithm, and replaces Step 3b. Subsequent axes are
derived similarly by detrending with respect to each of the existing axes.

DCA often works remarkably well in practice (Hill and Gauch, 1980; Gauch
et al., 1981), It has been c¢critically evaluated in several recent simulation
studies. Ter Braak {1985) showed that DCA gave a much closer approximation
to ML Gaussian ordination than CA did, when applied to simulated data based
on a two~dimensional species packing model in which species have identically
shaped Gaussian surfaces and the optima and site scores are uniformly
distributed in a rectangle. This lmprovement was shown to be mainiy due to
the detrending, not to the nonlinear rescaling of axes. Kenkel and Orléet
(1986) found that DCA performed substantially better than CA when the two
major gradients differed in length, but also noted that DCA sometimes
"collapsed and distorted" CA results when there were {a) few species per
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site and (b} the gradients were long {we believe (a) t¢ be the real cause of
the collapse). Minchin (1987) further found that DCA can flatten out some of
fthe variation associated with one of the underlying gradients. He ascribed
this loss of information to an instability in the detrending-by-segments
method. Pielou {1984, p. 197) warned that DCA is "overzealous" in correcting
the "defects" in CA, and "may sometimes lead to the unwitting destruction of
ecologically meaningful information”. Minchin's (1987) results indicate some
of the conditions under which sueh loss of information can occur.

DCA is popular among practical field ecclogists, presumably because it
provides an effective approximate solution to the ordination problem for a
unimodal response model in two or more dimensions = given that the data are
reasonably representative of sections of the major underlying environmental
gradienta. Two modifications might increase its robustness with respect to
the problems identified by Minchin (1387). First, nonlinear rescaling
aggravates these problems; since the edge effect is not too seriocus, we
advise against the routine use of nonlinear rescaling. Second, the arch
effect needs to be removed (as Heiser, 1986, also noted), but this can be
done by a more stable, less "zealous" method of detrending which was also
priefly mentioned by Hill and Gauch (1980): namely detrending-by-
polynomials. Under the one-dimensional Gaussian model, it can be shown that
the second CAraxis is a quadratic function of the firat axis, the third axis
is a cubiec function of the first axis, and so on (Hiil, 19T4; Iwatsubo,
1984). Detrending-by-polynomials can be incorporated into the reeiprocal
averaging algorithm by extending step 3b such; that the trial scores are not
only made uncerrelated with the previocus axes, but are also made
uncorrelated with polynomials of the previous axes. The limited experience
sofar suggests that detrending up to fourth-order polynomials should be
adequate. In contrast with detrendingmby-segments, the method of detrending-
by-polynomials removes only specific defects of CA that are now
theoretically understood.

D. Constrained ordinaticon

Just as CA/DCA is an approximation to ML Gaussian ordination, so is
canonical correspondence analysis (CCA) an approximation to ML Gaussian
canonical ordination (Ter Braak, 1986a). CCA is a modification of CA in
which the ordination axes are restricted to be weighted sums of the
environmental variables, as in Eq. (5). CCA can be obtained from CA as
redundancy analysis was obtained from PCA, An algorithm can be obtained by
adding to the CA algorithm an extra multiple regression step. The only
difference from Step 3a of redundancy analysis (section II F) is that the
sites must be weighted in the regression proportional to their site total
¥,;{Ter Braak, 1986a). CCA can alsc be obtained as the soluticn of an
eigenvalue problem (Ter Braak, 1986a}. It is closely related to "redundancy
analysis for qualitative variables" (Isra&ls, 1984) but has a different
rationale and is applied to another type of data.

In constrained ordination the constraints always become less atrict as
more environmental variables are included. If q > n~1, then there are no
real constraints, and CA and CCA become equivalent. As in CA the edge effect
in CCA 1s a minor problem that Is best left untreated. Detrending may
sometimes be required to remove the arch effect = i.e. to prevent CCA from
selecting weighted sums of environmental variables that are approximately
polynomials of previous axes. Detrending-by=segments does not work very well
here for technical reasons; detrendingnby-polynomials is better-founded and
more appropriate (see Appendix and Ter Braak, 1987bp). However, the arch
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Fig. 5.

Biplot based on principal components analysis of diatom assemblages from
Dutch moorland pools {schematic after from Van Dam et al. 1981). The arrows
for the six most frequent species and the regions where different categories
of samples lie jointly display the approximate community compostion in each
of the regions {old = ca. 1920, recent = 1978; B+V = from the province of
Brabant and the Veluwe). Abbreviations: Eun exi = Eunotia exigua, Eun ten =
Eunctia tenella, Eun ven = Euncotia veneria, Fru rhe = Frustulia rhomboides
var. saxonica, Tab bin = Tabellaria binalis, Tab qua = Tabellaria

quadriseptata.
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effect in CCA can be eliminated much more elegantly, simply by dropping
superfluous environmental variables (Ter Braak, 1987c¢c). Variables that are
highly correlated with the "arched" axis (often the second axis) are the
most likely to be superfluous. If the number of envirommental variables is
small enocugh for the relationship of individual variables to the ordination
axes to be significant, the arch effect is not likely t¢ occwr at all.

CCA can be sensitive to deviant sites, but only when they are outliers
with regard to both species composition and environment. When realistically
few envirommental variables are included, CCA is thus more robust than CA in
this respect too.

CCA leads to'an ordination diagram that simultaneously displays (a) the
main patterns of community variations, as far as these reflect environmental
variation, and (b) the main pattern in the weighted averages {not
correlations as In redundancy analysis) of each of the species with respect
to the environmental variables (Ter Braak, 1986a, 1987c). CCA is thus
intermediate between CA and separate WA calculations for each species.
Geometrically, the separate WA calculations give each species a point in the
q-dimensional space of the environmental variables, which indicates the
centre of the species' distribution. CCA attempts to provide a low-
dimensional representation of these centres; CCA is thus also a constrained
form of WA, in which the weighted averages are restricted to lie in a
low~dimensional subspace.

Like redundancy analysis, CCA can be used with dummy "environmental"
variables to provide an ordination constrained to show maximum separation
among pre-~defined groups of samples. This special case of CCA is described,
for example, by Feoli and Orlbei {1979) under the name of "analysis of
concentration”, by Greenacre (1984, section 7.1) and by Gasse and Tekaia
{1983).

V. ORDINATION DIAGRAMS AND THEIR INTERPRETATION

The linear ordination techniques {PCA and redundancy analysis) and the
ordination techniques based on WA {CA/DCA and CCA)} represent community data
in substantially different ways. We focus on two-dimensional ordination
diagrama, as these are the easiest to construct and to inspect, and
illustrate the interpretation of each type of diagram with an example.

A. Principal components: biplots

PCA fits planes to each species' abundances in the apace defined by the
ordination axes. The species' point (bk1, bk2} may be connected with the
origin (0,0} to give an arrow. Such a diagram, in which sites are marked by
points and species by arrows is called a "bipiot"™ (Gabriel, 1971). There is
a useful symbolism in this use of arrows: the arrow points in the direction
of maximum variation in the species' abundance, and its length is
proportional to this maximum rate of change. Consequently, apecies on the
edge of the diagram {far from the origin) are the most lmportant; species
near the centre are of minor importance. [Ter Braak (1983) provides more
detailed, quantitative rules for interpreting PCA ordination diagrams.]

Van Dam et al. {1981) applied PCA to data consisting of diaztom
assemblages from 16 Dutch moorland pools, sampled in the 1920's and again in
1978, to investigate the impact of acidification on these shallow water
bodies. Ten clearwater (non-humic) pools were situated in the province of
Brabant and on the Veluwe and six brownwater (humic) pools in the province
of Drenthe. The arrow of Eunotia exigua in the biplet (Fig. 5) indicates
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Joint plot based on detrended correspondence analysis (DCA) of bird species
comnunities in the Rhine vallay near Amercngen, the Netherlands (data from
Opdam et al., 1984), displaying the major variation in bird species
composition acroas the landscape. This plot shows the DCA-gscores (o) of the
20 most frequent species and the region in which the samples fall (~--=). Also
shown are optima (A) and lines of equal probability for the 13 species whose
probability surfaces had clear maxima {as fitted by Gaussian logit
regression), and arrows representing directions of increase for the seven
speclies whose probability surfaces were monotonie.
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that this species inereases strongly along the first principal component: E.
exigua is abundant in the recent Brabant and Veluwe samples, which lie on
the right-hand side of the diagram, and rare in the remaining samples, which
lie more to the left., The second axis accounts for some of the difference
among the c¢ld and recent samples from Drenthe. These groups differ in the
abundances of Frustulia rhomboldes var. saxonica, Tabellaria quadriseptata,
Eunctia tenella, Tabellaria binalis, and Eunotia veneris, as shown by the
directions of the arrows for these species in Fig. 5. As E. exigua Is
acidobiontic and the first principal component is strongly correlated with
the sulphate concentration of the 1978 samples, this component clearly
depicts the impact of acidification of the moorland pools in Brabant and the
Veluwe (and to a smaller extent also in Drenthe). Thus Van Dam et al. (1981)
used PCA to summarize the changes in diatom composition between the 1920's
and 1978, and also to show how the nature of the change differed among
provinces.

B. Correaspondence analysis: joint plots

In CA and DPCA both sites and species are represented by peoints, and each
site is located at the centre of gravity of the species that occur there.
One may therefore get an idea of the species composition at a particular
site by looking at "nearby" species points. Also, as far as DCA approximabes
the fitting of Gaussian (logit) surfaces, the species points are
approximately the optima of these surfaces; hence the abundance or
probability of occurrence of a species decreases with distance from its
location in the diagram (Fig. 4).

Fig. 6 illustrates this interpretation of the species points as optima
in ordination space. DCA was applied to presence~absence data cn 51 bird
species in 526 contiguous, 100 m = 100 m gridscells in an area with pastures
and scattered woodlots in the Rhine valley near Amercngen, the Netherlands
(Opdam et al., 1984), Fig., 6 shows the scores of the 20 most frequent
apecles, and the outline of the region in which the grid-cells fall (the
individual grid-cells are not shown, t¢ avoid crowding). Opdam et al., (19841)
interpreted the first axis, of length 5.7 SD, as a gradient from open to
¢logsed landscape and the second axis, of length 5, 5 5D, as a gradient from
wet to drier habitats.

To show that the species' scores were indeed close to their optima, we
also fitted a response surface for each species by logit regression using
Eq. (7) with the first and the second DCA-axes as the predictor variables x
and Xps For 13 of the 20 bird species, the fitted surface nhad a maximum. For
each of these species the optimum was calculated by Eq. (8) and plotted in
Fig. 6, together with the contour within which that bird species cccurs with
mere than half of its maximum probabllity. The fitted optima of the species
lie e¢lose to their DCA~scores,

For the remaining seven species, the fitted suface had a minimum or
saddle point suggesting that their optima are located well outside the
sampled range, For these species we fitted a "linear" logit surface by
setting b,, b and by, in Eqg, {7) to zero. The direction of steepest increase
of each og the fitted surfaces is indicated in Fig. 6 by an arrow through
the centroid of the site points; the beginning and end peints of each arrow
corregpond to fitted probabilities of 0,1 and 0.9 respectively. These arrows
point mores or-less in the same direc¢tion as the BCA~scores of the
correaponding species.

In contrast to the PCA-diagram, the species points on the edge of the
DCA-diagram are often rare species, lying there either because they prefer
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Fig. 7.

Biplot based on redundancy analysis of vegetation with respect to three
environmental variables (quantity of manure, soil moisture and thickness of
the A1 horizon} in dune meadows {c)} on the island of Terschelling, The
Netherlands. The arrcows for plant species and envirommental variables display
the approximate (linear) correlation coefficients between plant species and
the environmental variables. Abbreviations: Ach mil = Achillea millefe¢lium,
Agr sto =~ Agrostis stolonifera, Alc gen = Alopecurus geniculatus, Ant odo =
Anthoxanthum odoratum, Bro hor = Bromus hordaceus, Ele pal = Eleocharis
palustris, Ely rep = Elymus repens, Leo aut = Leontodon autumnalis, Lol per =
Lolium perenne, Fla lan = Plantago langeolata, Poa pra = Poa pratensis, Poa
tri = Poa trivialis, Rum ace = Rumex acetosa, Sag pro = Sagina procumbens,

Sal rep = Salix repens.
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extreme {environmental) conditions or (very often) because their few
occurrences by chance happen to fall in sites with extreme conditions; one
cannot decide between these possibilities without additional data. Such
peripheral apecies have little influence con the analysis and it is often
convenlent not to display them at all. Further, species near the centre of
the diagram may be ubiquitous, unrelated to the ordination axes, bimodal, or
in some other way nct fitting a unimodal response model - or they may be
genuinely specific with a habitat-coptimum near the centre of the sampled
range of habitats. The correect interpretation may be found most easily just
by plotting the species' abundance in the ordinaticon apace.

C. Redundancy analvsis

In redundancy analysis sites are indicated by points, and both species
and environmental variables are jindicated by arrows whose interpretation is
gimilar to that of the arrows in the PCA biplot. The pattern of abundance of
each species among the sites can be inferred in exactly the same way as in a
PCA biplot, and so may the direction of variation of each environmental
variable. One may also get an idea of the correlations between species’
abundances and envirommental variables. Arrows pointing in roughly the same
direction indicate a high positive correlaticon, arrows crossing at right
angles indicate near-zerc correlation, and arrows pointing in oppeosite
directions indicate high negative correlation. Species and environmental
variables with long arrows are the most important in the analysis; the
longer the arrows, the more confident one can be about the inferred
correlation. (It Is assumed here that for the purpese of the ordination
diagram the envirommental variables have been standardized to zero mean and
unit variance, so as to make the lengths of arrows comparable.)} Ter Braak
(1987a) provides more quantitative rules For interpreting the ordination
diagrams derived in this way from redundancy analysis,

The data we use to illustrate redundancy analysis were collected to
study the relation between the vegetation and management of dune meadows on
the isiand of Tersachelling, The Netherlands (M. Batterink and G. Wijffels,
unpublished). Fig. 7 displays the main variation in the vegetation in
relation to three environmental variables (thickness of the A1 horizon,
moisture content of the seil and quantity of manuring), The arrows for Poa
trivialis and Elymus repens make small angles with the arrow for manuring;
these species are inferred to be positively correlated with manuring, Salix
repensg and Leontodon autumnalis have arrows pointing in directions roughly
opposite to that of manuring, and are inferred to be negatively correlated
with manuring. Correlations of species with moisture and thickness of the Al
horizon can be inferred in a similar way.

D. Canonical correspondence analysis

In CCA, since species are assumed to have unimodal response surfaces
with respect to linear combinations of the environmental variables, the
apecies are logically represented by points (corresponding to their
approximate optima in the two~dimensional environmental subspace) and the
environmental variables by arrows indicating. their direction and rate of
change through the subspace.

Purata (3986, and unpublished results) applied CCA to plant species
abundance data from #0 abandoned cultivation sites within Mexican tropical
rain forest. Data were available for 24 of these sites on the regrowth age
(A), the length of the cropping period in the past (C), and the proportion
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Ordination diagram based on canonical correspondence analysis of successional
plant éommunities with respect to three environmental variables (regrowth age
A, length of cropping period C, and extent of forested perimeter F) on
abandoned cultivation sites within Mexican tropical rain forest (Purata, 1986
and unpublished}. e, sites with environmentai data; o, sites added
"pagalively" on the basis of floristic composition. The species shown are a
selection among the 285 included in the analysis. O denotes ruderals, @
pioneer shrubs, A pioneer trees, & late-secondary canopy trees and * an
understory palm. Abbreviations: Bipi = Bidens pilosa, Medi = Melampodium
divaricatum, Nelo = Neurclaena lobata, Vede = Vernonia deppeana, Trmi = Trema
micrantha, Cecb = Cecropia obtusifolia, Heap = Heliocarpus appendiculatus,
Trme = Trichospermum mexicanum, Pial = Piper amalago, Romi =. Robinsonella
mirandae. Sala = Sapium lateriflorum, Zake = Zanthoxylum kellermanii, Crni =
Croton nitens, Asme = Astrocaryum mexicanum,
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of the perimeter that had remained forested (F). These three variables were
used as environmental varlables in CCA. The remaining 16 sites were entered
as "passive" sites, to be positioned with respect to the CCA axes according
to their floristic composition in relation to the "active"™ sites.

Fig. 8 illustrates the results. The first axis, with length 3.3 SD, was
interpreted as an indicator of the general trend of secondary succession.
The direction of the arrow for regrowth age shows that this trend runs
broadly from right to left. The speciea’ locations are consistent with their
life history characteristica: the trend of succesaion runs from ruderais (to
the right), through pioneer shrubs and trees, to late—secondary cancpy
dominants and shadestolerant understory species (to the left). The
directions of the other two arrows in relation to axis 1 show that a long
cropping period delays succeasion, while an extensive forested perimeter
accelerates succession. Axis 2 (3.0 SD) may (more speculatively)
differentiate species whose establishment is favoured by the presence of
mature Forest around the site from those that simply require a long time to
grov.

Purata (1986) first tried indirect gradient analysis - DCA followed by
multiple regreasion of the firat DCA axis on the three envirommental
variables = but did not succeed in showing a significant effect of the
environmental variablea. However, their effect expressed on the first CCA
axis was shown to be significant by using a Monte Carlo permutation test
(Ter Braak, 1987b).

CCA also allows the computation of unconstrained, "residual™ axes
summarizing floristic variation that remains after the effect of the
environmental variables has been taken out. In Purata's study, the
successive eigenvalues of the first three (constrained) CCA axes were 0,49,
0.34 and 0.18. {There can be no more constrained axes than envirommental
variables.) The first residual axis gave an eigenvalue of 0.TH4, showing that
at least as much floristic variation was not explained by the envirommental
variables. In our experience, terrestrial community data commonly give a
residual eigenvalue as large as the first constrained eigenvalue, however
carefully the environmental variables were chosen. Thus DCA and CCA tend to
give different ordinations, and CCA - as in this example - 1is more powerful
in detecting relationships between species compesition and environment.

VI, CHOOSING THE METHOD

A. Which response model?

Regression methods can fit response models with a wide variety of
shapes. The linear and Gaussian~like models are convenient starting points;
more complex shapes can be fitted by adding further parameters, if the data
are sufficiently detailed to suppert it. Other species may be used as
additional explanatory variables if the specific aim is to detect species
interactions {Fresco, 1982). The shapes of the response functions may be
made even more general by applying Box-Cox transformaticons to the
explanatory variables {Bartlein et al., 1986) or still more general by
fitting splines (Smith, 1979). Even with all these modifications, regression
can still be done with standard packages for Generalized Linear Modelling.

After apecles response curves or surfaces have been fitted by
regression, calibration based on the maximum likelihood principlie can be
used to make inferences about the enviromment from community data. If the
surfacea fitted by regression have complex shapes, then calibration by
numerical maximization of the likelihood may be problematic. But even then,
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if there are only a few envircnmental variables involved, the "most likely™
combination of environmental values can be searched for on a grid across the
envirommental space (Atkinson et al., 1986; Bartlein et al., 1986). So the
type of response model used in both regression and calibration should
generally be guided by the characteristics and resolution ¢of the data, and
inspection of the data should show whether the model being used is adequate
for the purpose.

In contrast Lo regression and calibration, the ordination problem
requires the simultaneous estimation of large numbers of parameters and
cannot be solved practically without some constraints on the structure one
wants to fit. That these constraints may seem unduly restrictive simply
shows that there are limits to what ordination can achieve. The number of
ordination axes to be extracted must be small, and the type of response
model must be restricted, in order to permit a solution. For example, it
seems neceasary to disregard the possibility of bimodal species
distributions (Hil1l, 1977). (Certainly bimodal distributions sometimes
occur, but ordination has to assume that species "on average" have simple
distributions - otherwise, the problem would be insoluble; the utility of
ordination techniques depends on them being robust with respect to
departures from the simple models they are based on.) The Gauasian model
seems to be of the right order of complexity for ordination of ecological
data, but the full second=degree model of Eq. {7) 1s already difficult to
Fit (Kooijman, 1977; Geodall and Johnson, 1982). The Gaussian model with
circular contour lines and equal species tolerances, i.e. the unfoiding
model, might provide a good compromise between practical solubility and
realism in ordination. Promising algorithms for unfolding are developed by
Heiser (1986) and DeSarbo and Rao (1984). DCA provides a reasonably robust
approximation to ML Gaussian ordination and requires far less computing
time, Similarly, ML Gaussian canonical ordination is technically feasible
but CCA provides a practical and robust approximation to it.

Nonlinear methods are appropriate If a reasonable number of species have
their optima located within the data set. If the gradient length is reduced
to less than about 3 SD, the approximations involved in WA become worse and
ultimately (if the gradient length is less than about 1.5 SD) the methods
yield poor results because most Species are behaving monoteonically over the
observed range. Thus if the community variation is within a narrow range,
the linear ordination methods ~ PCA and redundancy analysis - are
appropriate. If the community variation is over a wider range, nonlinear
ordination methods = inecluding DCA and CCA ~ are appropriate.

B. Direct or indirect?

Direct gradient analysis allows cne to study the part (large or small)
of the variation in community composition that can be explained by a
particul'ar set of envircnmental variables. In indirect gradient analysis
attention is first focused on the major pattern of variation in commumity
composition; the environmental basis of this pattern is to be established
later. If the relevant environmental data are to hand, the direct approach
- either fitting separate response surfaces by regression for each major
species, or analysing the overall patterns of the species-enviromment
relationship by constrained ordination = 1is likely to be more effective than
the traditional indirect approach. However, indirect gradient analysia does
have the advantage that no prior hypothesia is needed about what
environmental variables are relevant. One does not need to measure the
environmental variables in advance, and one can use informal field knowledge
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to help interpret the patterns that emerge ~ hence the emphasis in the
literature on crdination as a technique for "hypothesis generation", the
implication being that experimental or more explicit statistical approaches
can be used for subsequent hypothesis testing. This distinction is not hard
and fast, but it does draw attention to the strengths and limitations of
indirect gradient analysia,

In Section VD, we showed in passing how an indirect gradient analysis
can be carried out after a direct gradient analysis in order to summarize
the community variation that remains after known effects have been removed.
When the known envirommental variables are not the prime object of study,
they are called concomitant variables (Davies and Tso, 1982) or covariables.
It would be convenient to solve for the residual (unconstrained) axes
without having to extract all the constrained axes first. Fortunately, this
is straightforward. In the iterative algorithm for PCA and CA, one simply
extends step 3b such that the trial scores are not only made uncorrelated
with any previous axia (if present) but are also made uncorrelated with all
specified covariables (see Appendix for details.) In this way the effects of
the covariables are partialled out from the ordination; hence the name
"partial ordination®. The theory of "partial components analysis" and
"partial correspondence analysis", as we call these extensions of PCA and
CA, is given by Gabriel (1978, theorem 3) and Ter Braak (1988),
respectively. Swaine and Greig-Smith (1980) used partial components analysis
to obtain an ordination of within-plot vegetation change in permanent plots.
Partial correspondence analysis, or ita detrended form, would be more
appropriate if the gradients were long.

C. Direct gradient analysis: regression ¢r constrained ordination?

Whether to use constrained ordination (multivariate direct gradient
analysis) inatead of a series of separate regressions (the traditional type
of direct gradient analysis) depends on whether or not there ia any
advantage in analysing all the apecies simultanecusly. Both constrained and
unconstrained ordination assume that the species react to the same composite
gradients of enviromental variables, while in regression a separate
composite gradient is constructed for each species. Regression can therefore
allow more detailed descriptions and more accurate predietion and
calibration, if properly carried out {(with due regard to its statistical
agsumptions) and if sufficient data are available, However, ecological data
that are collected over a large range of habitat variation require
nen-linear models, and building gcod non-linear models by regression is
demanding in time and computation. In CCA the composite gradients are linear
combinations of environmental variables and the non-linearity enters through
a unimodal response model with respect to a few composite gradients, taken
care of in CCA by the procedure of weighted averaging. Constrained
ordination i3 thus easier to apply, and requires less data, than regression;
it provides a summary of the speciea-environment relationship, and we find
it moat useful for the exploratory analysis of large data sets.

Constrained ordination can also be carried out after regression, in
order to relate the residual variation to other environmental variables.
This type of analysis, called "partial constrained ordination", is useful
when the explanatory {environmental) variables can be subdivided in two
sets, a set of covariables - the effects of which are not the prime object
of study - and a further set of envirormental variables whose effects are of
particular interest,

For example, in the illustration of section VC, the study was initiated
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to invegtigate differences in vegetation among dune meadows that were
exploited under different management regimes (standard farming, bio-
dynamical farming, nature management, among others}. Standard CCA showed
systematic differences in vegetation among management regimes. A further
guestion is then whether these differences c¢an be fully accounted for by the
envirommental variables moisture, guantity of manure and thickness of the Al
horizon, whose effects are displayed in Fig. 7, or whether the variation
that remains after fitting the three environmental variables (three
conatrained ordination axes) is systematically related to management
regimes, This question can be tackled by using partial constrained
ordination, with the three environmental variables as covariables, and a
series of dummy variables (for each of the management regimes) as the
variables—of~interest.

Technlecally, partial constrained ordination can be carried out by any
canputer program for constrained ordination. The usual environmental
variables are replaced by the residuals obtained by regressing each of the
variables of interest on the covariables (see Appendix). Davies and Tso
{1982) gave the theory behind partial redundancy analysis; Ter Braak (1987b)
derived partial canonical cerrespondence analysis as an approximation to
"partial Gaussian cancnical ordination®.

Partial constrained ordination has the same essential aim as Carleton's
(1984) residual ordination, i.e. to determine the variation in the species
data that is uniquely attributable to a particular set of environmental
variables, taking into account the effects of other (cor) variables; however
Carleton's method is somewhat leas powerful, being based on a pre-existing
DCA which may already have removed some of the variation of interest.
Partial constrained ordination is, by contrast, a true direct gradient
analysis technique which seems promising e¢.g. for the analysis of permanent
plot data {(effects of time, with location and/or environmental data as
covariables), and a variety of other applications in which effects of
particular environmental variables are to be sorted out from the
"background" variation imposed by other variables.

VII, CONCLUSIONS

Regression, ecalibration, ordination and constrained ordination are
well-defined statistical problems with c¢lose interrelationships. Regression
is the tool for investigating the nature of individual species' response to
environment, and calibratlon is the tool for (later) inferring the
environment from species composition at an individual site. Both tools come
in various degrees of complexity. The simplest are linear and WA regression
and calibration. The linear methods are applicable over short ranges of
environment, where species' abundance appears to vary monctonically with
variation in the environment. The WA methods are applicable over wider
ranges of environment; WA regression is a crude method to estimate each
species’ optimum, and WA calibration just averages the optima of the species
that are present, WA works with presencexabsence data. If abundances are
available, they provide the weights. These WA techniques can be shown to
give approximate estimates of the species optima and envirormental values
when the species response surfaces (the relationships between the species'
abundance, or probability of occurrence, and the environmental variables)
are Gaussian {or for probabilities, Gaussian-logit) in form. Gaussian
regression and calibration are also possible, but the WA techniques are
simpler and are approximations to the Gaussian methods.

These simple toolsg are suitable when there are many species of interest
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and the exact form of the response surface is not critical, and they are
very easy to use. If the form of the response surfaces is critical, more
compl ex models can be fitted by using Generalized Linear Modelling (for
regression) and maximum likelihood techniques {(for calibration). These more
complex toola are becoming important in the theoretical study of species-
enviroment relationships (Austin, 1985} and environmental dynamics
(Bartlein et al., 1986). Naturally, they require skilled users who are aware
of their statistical assumptions, limitations and pitfalls.

Ordination and constrained ordination can be related to the simpler
methods of regression and calibration. Ordination is the tool for
exploratory analysis of community data with no prior information about the
enviromment. Constrained ordination is the equivalent tool for the analysis
of community variation in relation tco environment. Both impllecitly assume a
common set of envirormental variables and a common response model for all of
the species. (Without these simplifying assumptions, they could not work;
such major simplifications of data can only be achieved at the expense of
some realism.) The baaic ordination techniques are PCA and CA. PCA
constructs axes that are as close as possible to a linear relationship with
the species. These axes can be found by a converging sequence of alternating
linear regressions and calibrationa. Each axis after the first is obtained
by partialling out linear relationships with the previous axias. CA is
mathematically related to PCA, but has a very different effect., CA axes can
be found by a converging sequence of WA regressions and calibrations. In CA,
axes after the first are obtained analogously with PCA; in DCA they are
obtalined by removing all trends, linear or nonlinear, with respect to
previous axea., CA sauffers from the arch effect, which DCA eliminates. DCA is
a reasonably robust approximation to Gaussian ordination, in which the axes
are constructed so that the species response curves with respect to the axes
are Gaussian in form. Gaussian ordination is feasible but not convenient.
DCA is much more practical, But there are problems with the detrending, and
the method can break down when the connections between sites are too
tenuous. Some modifications = including an improved method of detrending -
may improve DCA's robustness; alternatively, some forms of nommetric
multidimensional scaling may be more robust {Kenkel and Orldei, 1986;
Minchin, 1987). :

Constralned ordination methods have the added constraint that the
ordination axes must be linear combinations of envircnmental variables. This
constralint can be implemented as an extra multiple regression step in the
general iterative ordination algorithm. PCA then becomes redundancy analysis
(a more practical alternative to canonical correlation), Gaussian ordination
becomes Gausslan canonical cordination, and CA becomes CCA (Tabie 2). The
constraint makes Gaussian canonical ordination somewhat more stable than its
unconstrained equivalent, but still CCA provides a much more practical
alternative. All these conafrained methods are most powerful if the number
of environmental variables is small compared to the number of sites. Then
the constraints are much stronger than in normal ordination, and the common
problems of ordination (such as the arch effect, the need for detrending and
the sensitivity to deviant sites) disappear.

0ften, community-~enviromment relationshipa have been explored by
*i{ndirect gradient analysis" - ordination, followed by interpretation of the
axes in terms of envirommental variables. But if the environmental data are
to hand, constrained ordination ("multivariate direct gradient analysis")
provides a more powerful means to the same end. Hybrid (direct/indirect)
analyses are also peossible, In partial ordination and partial constrained
ordination, the analysis works on the variation that remains after the

133



effects of particular envirommental, spatial or temporal "covariables" have
been removed,

The choice between linear and nonlinear ordination methods 1s not a
matter of personal preference. Where gradients are short, there are sound
statistical reasons to use linear methods. Gaussian methods break down, and
edge effects in CA and related techniques beccne serious; the representation
of species as arrows becomes appropriate. As gradient lengths increase,
linear methods become ineffective {principally through the "horseshoe
effect”, which scrambles the order of samples along the first axis as well
as creating a meaningleas second axis); Gaussian methods beccme feasible,
and CA and related techniques become effective. The representation of
species as points, representing their optima, becomes informative. The range
1.5 = 3 8D for the first axls represents a "window" over which both PCA and
CA/DCA, or both redundancy analysis and CCA, can be used to good effect.
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VIII. APPENDIX

A general iterative algorithm can be used to carry out the linear and
weighted-averaging methoda described in this review. The algorithm is
essentially the one used in the computer program CANOCO {Ter Braak, 1987n).
It operates on response variables, each recording the abundance or presence/
absence of a species at various sites, and on two types of explanatory
variables: envirommental variables and covariables. By environmental
variables we mean here explanatory variables of prime fnterest, in contrast
with covariables which are "concomitant"™ variables whose effect is to be
removed. When all three types of variables are present, the algorithm
describes how to obtain a partial constrained ordination. The other linear
and WA techniques are all special cases, cbtained by omitting various
irrelevant steps.

Let Y = [yki] (k =1, .o, m3 1 =1, ..., n) be a species-by-site matrix
containing the observations of m species &t n sites (Yki 2 0) and let

2y = [z994] @ =0, coo, ps =1, ooy m)and 2, = [255] Go=t, coey a
i=1, ..., n} be covariable-by-site and envirommental Variable-by-site
matrices containing the observations of p covariables and q environmental
covariables at the same n sites, respectively. The first row of Z1, with
index 1 = 0, is a row of 1's, which is included to account for the intercept
in Eq. (5)., Further, denote the species and site sgores on the s~th
ordination by y = [“k] (k =1, «ovo, m) and § = [xi] {(i=1, ..., n), the
cancniecal coefficients of the environmental variables by ¢ = [c-

(j =1, ««v: q) and collect the site scores on the {(s - 1) previous
ordination axes as rows of the matrix A. If detrending-by-pelynomials is In
force (Step A1G), then the number of rows of A, 3, say, ia greater than s-1.
In the algorithm we use the assign statement " := ", for example a := b
means "a is assigned the value b". If the left hand side of the assignment
is indexed by a subscript, it is assumed that the assignment is made for all
permitted subscript values: the subseript k will refer to species

(k =1, ..., m), the subscript 1 to asites (i =1, ..., n) and the subscript
J to environmental variables {j =1, ..., q).

Preliminary calculations

P1. Calculate species totala {Yk+}' site totals {y+i} and the grand total
Y44+ if 2 linear method is required, set

*
Poiw b, wWgoem 1, Wy % (A.1)
and if a weighted averaging method ia required, set

*
P 3% Your Wi 3% ¥ogy Wy 3% ¥oq/¥a, (A.2)

P2. Standardize the envirommental variables to zero mean and unit variance.
For environmental varlable } calculate its mean z and variance v

- * * -
Z = f WiZpjye V3T § "1(szi - z)2 (A, 3}

and set zpy; := (zzji - zZ) ¥
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P3. Calculate for each envirommental variable j the residuals of the
multiple regression of the environmental variable on the covariables,
i.e.
Y- (zowz) W (A.4)
€y ¢ 1 Wiy 122 .
- *
Zpj = 25 " Zigj (a,5)
*
where g,; = (22-1. rees zz-n)'. W= diag (w1, ey wn) and ¢, 13 the
{pt1)-vettor of” the coeffitlents of the regression of Zpj on Z,. Now
define 2, = [2231] (3 =1, eees @y L =1, vusy 1),
Iteration algorithm

Step AD SBart with arbitrary, but unequal site scores x = [xi]. Set
Xi = xi.

Step Al Derive new species scores from the aite scores by
u, = § YiiXi/ e (A6}
Step A2 Derive new site scores x = {x:I from the species scores
x: t= ﬁ Yieq Uy Wy « (A7)
Step A3 Make x* = [x;] uncorrelated with the covariables by calculating
the residuals of the multiple regression of g* on Z1:
8 =% - 2{(zWe)) " 2, Wgt (R.8)
Step A Ifq¥g 8, » set Xy o= x: and skip Step AS.

#*
Step A5 If q > 5 » calculate a multiple regression of x on 22

- *

g = (ZW2) 7 2 Mg, (A.9)
and take as new site scores the fitted values:

x = 23¢. (A, 10)

Step A6 If = > 0, make g = [xi] uncorrelated with previous axes by
calculating the residuals of the multiple regression of x on A:

£ =% - ATCAWA") T awg (A 11)
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Step A7  Standardize ¥ = [x;] to zero mean and unit variance by
= *
x 1= L WX

82 = L (x; - D)%, (8.12)
i i

i
K = (% - x)/s.

Step A8 Check convergeénce, i.e. if
: wpxd - x3% < 10710 (A.13)
goto Step A9, else set x? 1= x; and goto Step Al.

Step A9  Set the eigenvalue A equal to s in (A.12) and add % = [x;] as a
new row to the matrix A,

Step A10 If detrending-by-pelynomials is required, calculate polynomials
of x up to order 4 and first order polynomials of x with the
previous ordination axes,

i= x2 se 33 U .
Xpj = X[» X35 3= X7, Xyg ™ Xgs Xqp)j T Xj8pj (A.14)
where a,; are the gite scores of a bﬁevious ordination axis
(b =1, ..., 8-1). Now perform for each of the (s+2)~variabies in
(A.14) the Steps A3-A6 and add the resulting variables as new
variables to the matrix A,

Step A11 Set 3 := s+] and goto Step AD if regquired and if further
ordination axes can be extracted, else stop.

At convergence, the algorithn gives the solution with the greatesat real
value of A to the following transition formulae where g diag(r s seay
r_) and w = diag (w1, ceay Wy } and where the notation BY is used to denote
Isl(BHB' Bw, the progection operator on the row space of a matrix B in the
metric defined by the matrix W

g -’y (A.15)
5" - (1 - 2w ey (A.16)
¢ = (ZWe ' zugt (A17)
o= (I - a%)23e. (A.18)

The wiggle above 22 is there as a reminder that the original envirommental
variables were replaced by residuals of a regreasion on ZT in (A.5) i.e, in
terma ¢of the original variables

Zy = (1 - zDHzy (A.19)
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Remarks
1. Note that uy in the algorithm takes the place of bk in secticn II.

2. Special cases of the algorithm are: constrained ordinaticn: p = 0;
partial ordination: q = 0; {unconstrained) ordination: p =0, g = 0;
linear calibration and weighted averaging: p = 0, g = 1; (partial)
multiple regression: m = 1. The corresponding transition formulae
follow from (A.15) = (A.18) with the proviso that, if q = 0, Z, in
(A.19) must be replaced by the nxn identity matrix and generalized
matrix inverses are used. Note that, if p = 0, 21 is a 1xn matrix
containing 1's; 21 renders the centring of the species data in the
linear methods in section II redundant.

3. The standardization in P2 removes the arbitrariness in the units of
measurement of the environmental variables, and makes the canonical
coefficients comparable among each other, but does not influence the
values of A, |4 and % to be obtained in the algorithm.

4, Step A6 simplifies to step 3b of the main text if the rows o; A are
W-orthonormal. The steps A3-A6 form a single projection of ¥ on the
column spage of (I - A )Zé if and only if A defines a subspace of the
roWspace of 22. As each ordination axis defines such a subspace, this
ig trivially so without detrending. The method of detrending-by-
polynomials as defined in step A10, ensures that A defines also the
relevant subspace if detrending i{s in force. The transition formulae
(4.15) = (A.18) define an eigenvalue equation of which all eigenvalues
are real nonnegative (Ter Braak, 1987b}.

5. If a particular scaling of the biplot or the joint plot is wanted, the
crdination axes may require linear rescaling. With linear methods one
can choose between a Euclidean distance biplot and a covariance biplot,
which focus on the approximate Euclidean distances between sites and
correlations among species, respectively (Ter Braak, 1983}, With
weighted averaging methods it is customary to use the site scores x
(A.16) and the species scores y {A.15) to prepare an ordination diagram
alfter a linear rescaling so that the average within-site variance of
the species scores is equal to 1 {cf. section IV C), as is done in
DECORANA (H1l11, 1979) and CANCCO (Ter Braak, 1987b).
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APPENDIX
Short description of CANOCO (version 2.1)

Aim

A common problem in community ecology and ecotoxicology is to discover how a
multitude of species respond to external factora such as environmental
variables, pollutants and management regime. Data are collected on species
composition and the external variables at a number of points in space and
time. Statistical methods sofar available to analyse such data either
assumed linear relationships or were restricted f£o regression analysis of
the response of each species separately. To analyse the generally
non-linear, non monotonic response of a community of species, one had to
resort to the data-analytic methods of ordination and cluster analysis -
"indirect" methods that are generally less powerful than the "direct"
statistical method of regression analysis. Receatly, regression and
ordination have been integrated into techniques of multivariate direct
gradient analysis, called canonical {(or constrained) ordination. The use of
canonical ordination greatly Iimproves the power to detect the specific
effects one is interested in. One of these techniquea, canonical
correspondence analysis, avoids the assumption of linearity and is able to
detect unimodal relationships betiween species and external variables. The
computer program CANOCO is designed to make these techniques available to
ecologists studying community responses. CANQOCO can carry out most of the
multivariate techniques described in chapter 9 by using a general iterative
ordination algorithm.

Researchers in other fields may find CANOCQ useful as well, for
example, to analyse percentage data/compositional data, nominal data or
(dis)- similarity data in relation to external explanatory variables. Such
use is explained in separate sections In the manual (ter Braak, 1987).
CANOCO is particularly suited if the number of response varlables is large
compared to the number of objects.

Techniques covered

1. CANOCQ is an extension of DETORANA (Hill, 1979). CANOCO formerly stocod
for canonical correspondence analysis (chapter 5) and included weighted
averaging, [mul ti pleﬁoeor‘respondence analysis, detrended correspondence
analysis and canonic¢al correspondence analysis, The program has been
extended to cover also prinecipal components analysis (PCA) and the
canonical form of PCA, called redundancy analysis (RDA). Redundancy
analysis (van den Wollenberg, 1977; Isragls, 1984) is also known under
the names of reduced-rank regression {(Davies and Tso, 1982), PCA of ¥
with respect to x (Robert and Escoufier, 1976) and mode C partial least
gquares (Wold, 1982), For these linear methods there are options for
gentring/standardization by species and by sites and for the method of
scaling the species and site scores for use in the biplot. The
eigenvalues reported in PCA/RDA are fractions of the total variance in
the specles data (percentage variance accounted for), Princ¢ipal
coordinates analysis and canonical variate analysis (= linear
discriminant analysis) are also available.

2. CANOCD can also carry out "partial® analyses in which the effects of
particular environmental, spatial or temporal Ycovariables" are
eliminated from the ordination. A partial analysis allows one Lo display
the residual variation in the species data and to relate the residual
variation to the variables one is specifically interested in. Partial
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canonical sorrespondence analysis is the appropriate technique for the
analysis of permanent plot data or for the joint analysis of data from
several locations.

3. CANOCO allows one to test statistically whether the species are related
to supplied environmental variables. The test provided is a Monte Carlo
permutation test (Hope, 1968). The effect of a particular envirommental
variable can be tested after elimination of possible effects of other
(environmental) variables by apecifying the latter as covariables. For
the analysis of randomizedsblock experiments or data from several
locations, there is an optlion to restrict the permutation to permutations
among samples-within-blocks or samples=within-locations.

4. CANOCO provides an alternative method of detrending which is intended to
solve the problems reported to occur with the method used in DECORANA.
CANOCO allows one to remove polynomial relations between ordination axes
(up to order 4)}. Use of the old method of detrending by segments (Hill
and Gauch, 1980) in partial and canonical analyses is not recommended,

5. CANCCO has an coption for nonstandard analyses. In one pessibility, the
reciprocal averaging algorithm is modified so that at each iteration the
apecies and/or site scores are replaced by ranks. This procedure
circumvents what is known as the "deviant sample/rare species problem" in
correspondence analysis.

Data input
CANOCO can read species data, envirommental variables and covariables that

are elther in Cornell condensed format or in full format. The machine

readable copy of the analysis can be used again as input for subsequent

analyses, This possibility allows one, for example:

- to use principal components extracted from environmental data as Lnput
for a later canonical analysis of species data,

~ to extract more than four ordination axea - simply by supplying the
extracted ordination axes as covariables In a subsequent analysis.

Output cptions
CANOCO can supply:

- means, variances and correlations of environmental variables,

~ ejgenvalues, the percentages of variance accounted for by the biplot of
apecies~enviromment relations,

- scores of species and sites on the ordination axes,

= eanonical coefficients or regression coefficients of envirommental
variables with associated t-values, .

- ocoorrelations of environmental variables with the ordination axes,

- 3¢ores of environmental variables for conatructing the arrows in the
species~environment biplot,

~ centroids (weighted averages) of environmental variables in the
ordination diagram (for variables with positive values). In particular,
classes of nominal envirommental variables are more naturally displayed
by their centroid in the ordlnation diagram than by arrows. This option
is also useful for displaying the results ¢f a ¢luster analysis in an
ordination diagram.

CANCCC allows interactive data analysis: results of an analysis can he

displayed at the terminal and after inspection the analysis can be pursued,
for example,
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- by changing from an indirect gradient analysis to a direct gradient
analysis,

- by dropping environmental variables,

- by reading other envirommental variables to be related to the current
ordination axes or to be used in further canonical analyses,

- by changing detrending opticns,

= by changing scaling options of -the ordination scores.

Practical information

CANOCO is written in standard FORTRAN 77 and can be supplied on 5.25% inch
diaskette for IBM-compatible PC's, on 3.5 inch diskette for ATARI-ST PC's or
Apple Macintosh, on magnetic tape (80071600 bpi, ASCII-code) or via
BITNET/EARN. On an IBM-~ compatible PC with 640 Kb, CANOCO can analyse ca.
750 samples, 600 apecies, 60 environmental variables and 100 covariables.
The one-time costs are ca. Dfl 300 for educational institutes and ca. Dfl
600 for other inatitutes (prices may change without notice). Researchers
from countries with valuta problems may send in a request for a free copy.
The comprehensive manual will be sent with the program.
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SUMMARY

To assess the impact of envirommental change on biological communities

knowledge about species-environment relaticnships is indispensable,

Ecologists attempt to uncover the relationships between species and

environment from data obtained from fleld surveys. In the survey, species

are scored on their presence or thelr abundance at each of several sampling
sites and envircnmental variables that ecologists believe Lo be important
are measured.

The research that led to this thesis aimed to unravel the assumptions
required for the application of statistical methods that are popular among
ecologists to analyse such data. From a statistical point of view, speciles
data are difficult to analyse:

there are many species involved (10 - 500),

« many species occur at a few 3ites only. So the data contaln numerous
zeroes,

- relations hetween species and envirommental variables are not linear, but
unimodal: a plant, for example, preferably grows under for that species
optimal moisture conditions and is encountered less frequently at drier
or wetfter sites. A mathematical model for a unimodal relationship is the
Gaussian response model.

Standard statistical methods such as linear regression, principal components
analysis and canonical correlation analysis are often inappropriate for
analysing apecies data because they are based on linear relationships. One
of the methods that ecologists use instead is correspondence analysis. This
thesis contributes to the understanding of the underlying response model.

With correspondence analysis, species and sites are arranged to
discover the structure in the data (ordination) and the arrangement is
subsequently related to environmental variables. It is an indirect method to
detect relations between species and environment, hence R.H. Whittaker's
term "indirect gradient analysis".

Correspondence analysis has been invented around 1935 but did not
receive interest from ecologists before 1973 when M.0. Hill derived the
technique once more as the repeated application of "welighted averaging" - a
method that was familiar to ecoclogists ever since 1930. Weighted averaging
has the advantage of being simple tLo apply. The method can be used for two
different aims: (1) to estimate the optimum of a species for an
envirommental variable and (2) to estimate the value of an environmental
variable at a site from known optima of the species present (calibration).

In chapter 2, estimating optima by weighted averaging is compared with
the results of non-~linear regression on the basis of the Gaussian response
mcdel. Under particular conditions, beth methods agree precisely. In other
cases, weighted averaging gives a biased estimate of the optimum and
non-linear regression is the method to be preferred. An additional advantage
of non-linear regression is that it can alsc be used to fit response modelsa
with more than one environmental variable. In chapter 3, weighted averaging
to estimate the value of an environmental variable is compared with
calibration on the basis of the Gaussian response model. Also in this
context the techniques are sometimes equivalent. Chapter U deals with
correspondence analysis, It is shown that, under particular conditions,
cerrespondence analysis approximates ordination en the basis of the Gaussian
response model, which is computationally much more complicated.
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Te detect relations, indirect methods have an important disadvantage.
The impact of some envirommental variables on the apecies coamposition can be
30 large that the impact of other interesting environmental variables may
fail to be detected. This problem can be overcome by using non-linear
regression, but with many species and envirommental variables this is
laborious. In chapter 5, a simpler "direct" method is proposed, canonical
correspondence analysis. In chapter 6, canonical correspondence analysis
turns out to be a multivariate extension of weighted averaging. The results
can be displayed graphically. In chapter 7, an extension with Ycovariables"
is discussed, which leads to partial canonical correspondence analysis.
Chapter 7 alsao shows that Gaussian models and, hence, canonical
correspondence analysis are relevant to the analysis of contingency tables.

Chapter & describes a study to estimate ecological amplitudes of plant
species with respect to Ellenberg's moisture scale from species data alone.
The quesation that is addressed as well, is how consequent Ellenberg's
moisture indicator values are,

Finally, chapter 9 cross-tabulates various gradieant-analysis techniques
by the type of problem (regreasion, calibration, ordination, ete.) and the
response model (linear or unimodal). Furthermore, improvements are proposed
for detrended correspondence analysis. A computer program, named CANOCO, is
written which can perform meost of the methods discussed.
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Samenvatting

Bij de theoretische onderbouwing van natuurbeheer en milieu-effect-rapportage
moeten de gevolgen worden getaxeerd van milieu—ingrepen op levensgemeenschap-
pen. Kennis over de relatie tussen milieuvariabelen en het voorkoamen van
soorten is daarbij onontbeerlijk. Ecclogen proberen die relaties te achterha~
len door op verschillende monsterplekken soorten te Lnventariseren (op aan/
afwezighelid of abundantie) en tevens huns inziens relevante milieuvariabelen
te meten.

Het onderzoek, dat tot dit proefaschrift heeft geleld, richtte zich op
het ontrafelen van de vereiste veronderstellingen van statistische methoden,
die vaak door ecologen worden toegepast en op het ontwikkelen van een nieuwe
techniek. .

Vanuit klassiek statistisch oogpunt zijn scortgegevens moeilijk te ver-
werken: :

- er zijn veel soorten bij betrokken (10 ~ 500),

~ heel wat scorten komen maar op weinig plekken voor, dus de gegevens zitten
vol nullen,

- verbanden tussen scorten en milieuvariabelen zijn vaak niet rechtlijnig,
maar &&ntoppig: een plant bijvoorbeeld groeit bij voorkeur onder een voor
die soort optimale vochtconditie en wordt zowel op drogere als op nattere
monsterplekken minder aangetroffen, Een wiskundig model voor een

eentoppig verband is het Gaussische responsiemodel.

Klassieke methoden als lineaire regressie, hoofdcomponentenmanalyse en cano-
nische correlatie~analyse kunnen niet zinnig worden gebruikt, omdat ze van
rechtlijnige verbanden uitgaan, Eén van de methoden, waar ecologen wel mee
werken, is correspondentie-analyse. Het inzicht in het achterliggende respon-
slemodel hilervan liet tot voor kort te wensen over. Vlia correspondentie-
analyse wordt een ordening in soorten en monsterpiekken aangebracht (ordina-
tie) om de structuur in de gegevens te laten zien. De ordening wordt vervol-
gens aan de milieuvariabelen gekoppeld. Het 13 een indirecte methode om rela-
ties op te sporen, ofwel een methode voor indirecte gradienten—analyse.

Caorresapondentfe-analyse werd omstreeks 1935 ontwikkeld, maar staat bij
ecologen pas in de belangstelling sinds 1973, Toen leidde M.0. Hill de tech-
niek opnieuw af als het herhaald toepassen van gewogen middelen - een methode
waar ecologen al zinds 1930 mee vertrouwd zijn. Gewogen middelen heeft het
voordeel van de eenvoud bij toepassing op ecologische gegevens. Deze techniek
kan voor twee verschillende doelstellingen worden gebruikt. Ten eerste kan
het optimum van een soort voor een milieuvariabele ermee geschat worden. Ten
tweede kan bij bekende optima de waarde van een milieuvarlabele op een mon-
sterplek worden geschat (calibratie) aan de hand van de scortensamenstelling
(dit is ook de methode die Ellenberg aanbeveelt voor gebruik van zijn milieu-
indicatiegetallen).

In hoofdstuk 2 wordt het schatten van optima met gewogen middelen verge-
leken met de resultaten van niet~lineaire regressie op basis van het Gaussi-
sche responsiemédel. Onder bepaalde veorwaarden blijken deze twee methoden
precies overeen te komen. In andere gevallen schat men docor gewogen middelen
het optimum onzuiver en verdient niet-lineaire regessie de voorkeur, Boven-
dien kunnen met niet-lineaire regressie responsiemodellen met meer dan &én
milievariabele worden aangepast. In hoofdstuk 3 wordt het schatten van de
waarde van een milieuvariabele via gewogen middelen afgezet tegen calibratie
op basis van het Gaussische responsiemodel. Ook hier blijken de technieken
soms equivalent te zijn. Hoofdstuk 4 gaat in op correspondentie-analyse. Er
wordt aangetoond, dat correspondentietanalyse onder bepaalde voorwaarden een
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benadering geeft van ordinatie op basis van het Gaussische responsiemodel,
wat qua rekentechniek veel ingewikkelder is.

Indirecte methoden voor het opsporen van relaties hebben een belangrijk
nadeel. Een aantal milieuvariabelen kan de soortensamenstelling zo sterk
beinvloeden, dat het effect van andere interessante milieuvariabelen niet
meer te achterhalen is. Alleen directe methoden als niet-lineaire regressie
ondervangen dit probleem, maar niet-lineaire regressle met veel socorten en
milieuvariabelen is zeer bewerkelijK. In hoofdstuk 5 wordt een veel eenvoudi-
ger directe methode voorgesteld, canonische correspondentie-analyse. In
hoofdstuk 6 biijkt canonische correspondentie-analyse een multivariate uit-
breiding van gewogen middelen te zijn. De resultaten kunnen grafisch weerge-
geven worden. In hoofdstuk 7 wordt een uitbreiding met covariabelen bespro-
ken, wat leidt tot partigle cancnische correspondentie—analyse. Er wordt
tevens op gewezen dat Gaussische modellen en canonische correspondentie-
analyse kunnen worden toegepast op afhankelijkheidstabellen,

Heofdstuk 8 beschrijft onderzoek om ecologische amplitudes van planten
ten opzichte van de vochtschaal van Ellenberg te bepalen op basis van alleen
soortgegevens. Hoe consequent de vochtindicatie-getallen zija is ook onder-
2o0¢cht ..

Hoofdatuk 9 tenslotte geeft een kruisklassificatie van mogelijkheden
voor gradisnten-analyse, Het type probleem (regressie, calibratie, ordinatie,
enz.) en het respconsiemodel (lineair of unimodaal) zijn hierbij de ingangen.
Verder worden verbeteringen voorgesteld voor "detrended correspondence analy-
aia", Er is een computerprogramma ontwlikkeld, CANOCC, waarmee het merendeel
van de behandelde technieken kan worden uitgevoerd.
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Computer techniques are being used increasingly by ecologists to analyze ficld

data on plant and animal communities and their environment.

This book provides a new synthesis of methods that have proven to be most

useful for such analyses. There are chapters on data collection, regression

analysis, calibration, ordination, cluster analysis and spatial analysis.

Examples and excercises (with solutions) complement most chapters. Three

case studies are also included. Only simple mathematics is used, making the

methods accessible to most ecologists and geographers. In the selection of

methods, due attention is paid to the special properties of ecological data:

~ numerous species recorded as present/absent or on a semi-quantitative
abundance scale

~ the non-linear relationships between species and environmental variables
that often exist ‘

~ the high inter-correlations among species and among environmental vari- -
ables.

In addition to the more traditional ordination and cluster techniques, this
is the first textbaok to explain to ecologists in an elementary way such powerful
data-analysis techniques as logit regression (a regression technique appropriate
for analyzing presence-absence data), canonical correspondence analysis (a
canonical ordination technique especially designed to rejate species commun-
ities to environmental variables and kriging (a sophisticated spatial-interpo-
lation technique).

Readership The book is primarily directed to post-graduate studenis in
ecology, geography and environmental sciences, and to professional ecologists,
who want to understand better the methods they are already using and are
eager to learn new, more powerful methods.
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