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Stellingen 

1 Doordat percolatiemodellen voorbij gaan aan de beweeglijkheid 
van deeltjes en clusters en doordat de meeste modellen 
gebaseerd op de Smoluchowski-vergelijkingen geen rekening 
houden met de ruimtelijke opbouw van vlokken, resulteert het 
gebruik van deze modellen voor de beschrijving van gelvorming 
door deeltjes vaak in misverstanden en soms in onzin. 
Dit proefschrift 

2 De door percolatiemodellen voorspelde algemene kritieke 
volumefractie beneden welke gelering niet mogelijk is, bestaat 
niet in het fractale model en wordt in de praktijk niet 
gevonden. 
Dit proefschrift, hoofdstukken 2 en 4, stelling 1 

3 De bewering dat een gel alleen kan ontstaan indien de exponent, 
x, in de frequentieverdeling van het aantal deeltjes per cluster, 
N(n) <*= n_T, groter is dan 2 is onjuist. In de praktijk zal een 
monodisperse clustergrootteverdeling gelering juist in de hand 
werken. 
J.E. Martin and B.J. Ackerson, Phys. Rev. A, 3 1 , 1180, (1985) 

Dit proefschrift, hoofdstukken 2 en 4, stelling 1 

4 De halveringstijd, d.w.z. de tijd waarin het aantal deeltjes door 
vlokking is afgenomen tot de helft van het initiele aantal, wordt 
vaak ten onrechte vloktijd genoemd. 
Dit proefschrift, hoofdstuk 6, stelling 1 

5 Volgens Kendall et al. streven clusters naar maximalisatie van 
hun vrije energie. 
K. Kendall, N. McN. Alford, W.J. Clegg and J.D. Birchall. Nature, 339, 130, (1989) 

6 De hoeveelheid treinsegmenten van geadsorbeerde polymeer 
moleculen is gevoeliger voor de adsorptie-energie dan de staart-
segmentdichtheid dat is. 
G.P. van der Beek, M.A. Cohen Stuart and T. Cosgrove, Langmuir, 7. 49, (1991) 



7 De bij d rage van texture profile analysis (TPA) aan een goede 
karakterisering van de mechanische eigenschappen van 
levensmiddelen is eerder negatief dan positief geweest. 

8 In tegenstelling tot de moderne chemie kan men de fysische 
chemie de chemie van de toekomst noemen. 
W. Ostwald, Zeilschrift jur Physikalische Chemie, 1 , 1 , (1887) 

9 Een grote feitenkennis werkt remmend op het verrichten van 
onderzoek. 

10 Het is onmogelijk om naar het verleden te reizen of in de 
toekomst te kijken. Iedereen kijkt in het verleden en reist naar 
de toekomst. 

11 De regel dat je gewicht moet liggen onder het aantal kilo's 
verkregen door je lengte in meters in het kwadraat met 25 te 
vermenigvuldigen gaat uit van personen met een effectieve 
fractale dimensionaliteit van 2 en is dus oppervlakkig. 

12 Reologische metingen met ondeugdelijke apparatuur zijn altijd 
"constant stress" experimenten. 

13 Dit is een van de weinige stellingen over het oostblok die ten 
tijde van de promotieplechtigheid met zekerheid te verdedigen 
valt. 

Leon Bremer 
Fractal Aggregation in Relation to Formation and Properties of 
Particle Gels 
Wageningen, 22januari 1992 
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I Introduction 

1.1 General introduction 

To gel or not to gel, that is the question on which this work is 
meant to give the clue. Sometimes aggregation of colloidal particles leads 
to a gel, and sometimes to a sediment. In spite of the tremendous 
importance of this difference, not in the last place for industrial 
purposes, still not much is known about the factors determining whether 
a system containing colloidal particles will gel or not. In general, 
aggregation leads to rather irregular-shaped aggregates which, 
potentially, may completely occupy the available volume, leading to a gel. 
Factors like sedimentation, velocity gradients in the aggregating 
dispersion and rearrangements of the floes may, however, disturb this 
process. The ability to gel varies widely among different colloidal systems. 
Plastic fats (fat crystals in oil) and pulp particles in beverages like orange 
juice [1], gel at very low concentrations whereas emulsions seldom form a 
gel unless their volume fraction exceeds about 0.2. 

The term 'gel' has traditionally been used rather loosely for various 
combinations of substances. Gels formed by the aggregation of particles 
may be mentioned as one of them, but even within this group, the gel 
properties vary widely as may be illustrated by comparing two members of 
this group; orange juice and silica gel! Another group of gels is constituted 
by networks consisting of long, flexible macromolecules, partially cross-
linked by covalent bonds, microcrystalline domains, entanglements or 
other linkages. These gel types have traditionally been subject to more 
extensive studies, which resulted in the classical theory of gelation of 
Flory [2] and Stockmayer [3], and in percolation theories [4]. These 
theories have also been applied to particle networks [5 - 7] and they are 
even successful in fitting experimental results. For being successful it is, 
however, necessary to introduce some misty factors like a critical volume 
fraction (corresponding to a percolation threshold) and appropriately 
chosen polyfunctional structural elements [7]. For gels that are formed by 
the aggregation of particles the critical volume fraction is mainly 
dependent on the accuracy of the measurement and on factors like 

1 



convection currents in the sample. Consequently, the use of these 
theories does not contribute to a better understanding and insight in the 
formation of a particle network. A third group of gels is composed of fairly 
small, amphiphilic molecules which may associate into a gel. These types 
of gels are well ordered and also called liquid crystalline phases. A 
concentrated dispersion of (electrostatically) repulsive colloidal particles, 
may also be classified in this group because it exhibits a similar, well 
ordered structure. In this gel type the particles are not connected 
geometrically, but there is strong repulsive interaction which leads to a 
high packing density of the 'effective' hard-spheres whose interaction size 
is considerably larger than the particle geometrical size [8, 9]. 

Due to this huge variety of gels it is difficult to give a general 
definition of a gel [10]. Flory did spend a few pages of text in an 
introductory lecture [11] reviewing different definitions and general 
properties of gels. A gel may be defined as a continuous three-dimensional 
network of connected molecules or particles in a continuous liquid phase 
[12]. This definition would, however, exclude concentrated dispersions of 
repulsive particles, which are not connected geometrically. IUPAC (1972) 
says 'A gel is a colloidal system with a finite, usually rather small, yield 
stress. Materials such as silica gel which have passed a gel stage during 
preparation are improperly called gels. The term xerogel is used for such 
dried out open structures; and also for dried out compact macromolecular 
gels such as gelatin or rubber. The term aerogel is used when the 
openness of the structure is largely maintained'. 

The one feature identified almost universally as an essential 
characteristic of a gel is its solid-like behaviour, a gel is characterized as 
having a yield stress at the considered time scale. Even this characteristic 
is, however, somewhat arbitrary; most people do not think of orange juice 
as being a solid [1], and on the other hand, cheese, which may also be 
classified as a gel, sometimes does not have a yield stress [13]. A better 
characteristic of solid-like behaviour is the preponderance of elastic over 
viscous properties which varies widely among different gels. Since both 
the yield stress and the ratio between the elastic and viscous properties 
are dependent on the time scale, it is possible that a material is a gel on a 
short, but fluid-like on a longer time scale. 



Gelation of colloidal particles or polymers is characterized by a 
transition from a liquid to a solid state. At the 'gel point' there is a critical 
state between liquid and solid. For the determination of the gel point a 
criterion is needed to distinguish whether the system is liquid, before the 
gel point, or solid, after the gel point. The most simple approach is to 
define the gel point as the point where elastic properties become just 
preponderant over viscous properties; i.e. tan 8 becomes smaller than 
one. With this definition, the gel point is dependent on the frequency of 
the measurement, co. Another definition of the gel point is the point 
where a permanent, three dimensional network is just formed. However, 
the detailed structure of a network may change continuously and one 
might disagree about how long the network must keep the same structure 
to call a system a gel. Winter and Chambon used another criterion which 
enabled an accurate determination of the instant of gelation of permanent 
gels [14, 15]. They found that linear viscoelasticity reduces to a simple, 
universal power law behaviour in which G scales like co" after the gel 
point. The relaxation exponent, n, may vary between 0 and 1. At the gel 
point tan 5 is independent of the frequency co. 

The type of gels considered in this thesis are so-called particle gels 
in which a network formed after the aggregation of colloidal particles 
causes the solid-like properties. This group of gels may be divided in 
several subtypes, according to the properties of the particles (e.g. 
anisotropy), the gelation being reversible or not, and changes after 
gelation like syneresis. In this thesis any system that aggregates into a 
space-filling network is designated gel as distinct from a sediment which 
is not space-filling, but according to most other definitions also a gel. An 
important geometrical difference which particle gels show in comparison 
with macromolecular gels is the length of their strands relative to their 
thickness. In a typical macromolecular gel, the chains are, in general, 
thin compared to their length and can assume numerous conformations 
due to Brownian motion. The main cause of resistance against permanent 
deformation is a decrease in the number of possible conformations, i.e., a 
decrease in entropy. The modulus of elasticity is then proportional to kT 
for these gels (rubber theory). For the relatively thick strands of a particle 
network the value of kT per strand is negligible in comparison with the 
energy involved in the deformation of atomic or physical bonds in the 



strand. Deformation of a particle gel is thus, mainly, an enthalpic process. 
A consequence of this difference is that the linear region, i.e. the region 
over which stress and strain are proportional, is much smaller in the case 
of particle gels [12]. Moreover, a particle gel is mostly much shorter, i.e. 
it fractures at a smaller deformation. Another property on which many 
particle gels may be distinguished from both other types, is the ability to 
swell. Both macromolecular gels and liquid crystalline phases are, in 
general, capable of swelling in the presence of a liquid such as water, 
benzene, etc. (good solvent). In general, irreversible particle gels do not 
show this behaviour because of their enthalpic nature (unless the building 
blocks swell). 

The classification of a gel is not always simple. For example casein, 
which is extensively used in this work, consists of macromolecules. These 
macromolecules are, however, associated into particles which may 
aggregate and form a particle network. (3-lactoglobuline and bovine serum 
albumin gels look, on electron micrographs, sometimes like particle 
networks [16 - 18]. They may nevertheless behave somewhat like 
macromolecular gels. On the other hand pectin gels are macromolecular 
gels with stiff chains and deformation leads here mainly to enthalpic 
changes. Gels made of clay particles may either be classified in the group 
of particle networks, or in the liquid crystalline group, depending on 
whether the particle-particle interactions are attractive or repulsive. 
Often commercial products like food-stuffs and pharmaceutical or 
cosmetic articles, such as ointments or creams, consist of more than one 
gel type. For example, some whipped emulsions consist of a network of 
aggregated particles which is stable due to a liquid crystalline gel phase at 
the oil-water interface of the emulsion droplets [19]. 

1.2 Factors controlling gelation 

There is still hardly any general, quantitative knowledge about 
conditions controlling the gelation of particles, but many factors 
promoting or hindering gelation are known: 



Particle interactions. One of the most extensively studied subjects in 
colloid chemistry is that of the interactions between particles. The 
classical factors in the description of interactions are the van der Waals 
attraction and the electrostatic repulsion. A quantitative description has 
been given in the well-known DLVO theory [20, 21]. This theory predicts 
that coagulation may occur in a so called secondary minimum, where the 
separation of two aggregated particles is relatively large (about 5 nm, non-
touching), or in a primary minimum at very small separations (about 1 
nm, touching). The depth of the secondary minimum, i.e. the interaction 
free energy, can be estimated and is often considered low compared to 
the primary minimum. Secondary minimum flocculation may thus result 
in weak, flexible bonds. At short separations, less than about 1-2 nm, 
short range interactions like hydration forces are effective [22]. These 
short range interactions are not incorporated in the DLVO theory and the 
position (and thus the depth) of this minimum cannot be predicted. 
Slight alterations in the effective distance of closest approach have a large 
effect on the energy of interaction. This distance is not only determined 
by general factors like the salt concentration, but also by rather specific 
characteristics of the system of interest like the presence of surface 
irregularities. Moreover, DLVO theory only considers interaction forces 
normal to the surface; the particles are, theoretically, free to move lateral. 
In practice, interaction forces lateral to the surface hinder rolling, 
slipping and rotation of particles with respect to each other. Again, the 
presence of surface irregularities is important, but difficult to quantify. 
The strength of the bonds may increase with time [23, 24] and fusion or 
sintering of the particles may occur leading to an increase of the stiffness 
of the floes. 

Another type of interactions occur in the case of particles with 
adsorbed polymers. Protruding loops and tails of the polymer may adsorb 
on other particles if there is some free surface available on the particles. 
This process is called bridging flocculation. 

Interaction forces affect the strength and the stiffness of the floes 
and thereby their ability to form a gel. Weak floes rearrange easily into 
more compact structures which may settle before they fill the system. A 
network of weak floes may collapse due to gravity or coarsen due to bond-
breaking inside the network. Stiff, irreversible bonds or the presence of a 



limited amount of reactive places on the particles hinder rearrangement 
of the floes or the gel network and thus promote gelation. In addition to 
the interaction forces between the particles, the stiffness of the particles 
themselves may affect the stiffness of floes and gel network and thus the 
ability to gel. 

Geometric structure of aggregates and particles. Traditionally, 
particle gels have often been modelled as consisting of 'strings of beads'. 
The formation of strings of particles promotes gelation and it has been 
shown that attachment of new particles at the ends of a string is 
sometimes, energetically, favourable [25]. These simple models enable a 
quantitative description of gel formation and of properties like pore size 
[26] and modulus of elasticity [27, 28]. The most simple version of these 
models, a cubic array of strands, predicts, however, pore sizes which are 
much too small and moduli which are much too high compared with 
experimental data. Moreover, a linear relationship between the modulus 
and the particle concentration has been derived from these models, but 
has never been found in practice. In order to make these models 
practically applicable, the introduction of correction factors, which 
consider a fraction of particles not contributing to the strands and some 
degree in randomness of the spatial distribution of the strands, is 
necessary. 

Substantial progress in the understanding of aggregation and 
gelation phenomena has been made since the development of numerical 
simulation of the aggregation and the introduction of the concept of 
fractal geometry [29]. The previous 'string of beads' models are 
characterized by a dimensionality of 1 in the terms of a fractal model. 
Mostly, aggregation does not lead to strings, but to more or less open, on 
average spherical floes. The volume fraction of particles in the floe 
decreases with increasing size. These floes may be characterized by a 
higher, so called fractal dimensionality as will be clarified later on. The 
geometric structure of the aggregates is a very important factor to which 
much attention will be paid in this thesis. 

In addition to the geometric structure of the floes, the size and 
anisotropy of the primary particles is important. Small particles have, in 
general, a higher probability to form a gel because disturbances of the 



gelation have less effect on small floes. Anisometry of the particles leads 
to more ramified floes and thus promotes gelation. 

Disturbances of the gelation; factors like shear or convection 
currents and sedimentation. It is well known that velocity gradients, for 
example caused by stirring, may prevent gelation. On the other hand, 
small convection currents caused by temperature gradients, may prevent 
sedimentation and thus promote gelation. Gelation is more likely if the 
disturbances are small or if the system is not very sensitive to them, e.g. 
small particles and a small density difference between the particles and 
the medium. 

Kinetics of aggregation and gelation, the time needed to form a 
space-filling structure. Rapid aggregation promotes gelation because it 
decreases the time in which the floes may sediment, cream or rearrange 
to more compact floes. Floes which are formed due to diffusion limited 
aggregation tend to have a more open, ramified structure than floes 
formed during slow aggregation. Another major kinetic factor is the 
evolution of the cluster size distribution; a narrow size distribution has a 
higher probability to gel than a broad distribution because the resulting 
network is more homogeneous and thus stronger. A high volume fraction 
of the particles increases the probability of gelation because the time 
needed to fill the system and the effect of disturbances is relatively small, 
and because the gel is relatively strong and resistant against uniaxial 
compression. 

Size, shape and properties of the vessel. If a network does not 
adhere to the wall of the container it may exhibit uniaxial compression 
under its own weight [30]. If the size of the vessel is not large enough 
compared to the size of the particles no network can be formed simply 
because there is not enough material (this will be shown later on). 

All these factors may be interrelated which makes gelation an 
intricate subject. It would be a hopeless task to describe all factors, not to 
mention to quantify them. It is well known that, for instance, the salt 
concentration or the temperature affect the interaction between particles 
or the kinetics of aggregation. Less is known, however, about the 
influence of the geometric structure of the aggregates on the kinetics of 



aggregation (and vice versa) and about many other factors which, 
nevertheless, may have a great effect on gelation (e.g. lateral interaction 
forces, kinetics of sintering, convection currents). 

After the gel has been formed there are more complications. 
Characteristic for a particle network is the possibility of the formation of 
numerous additional bonds if the particles in the strands would have the 
opportunity to approach particles in other s trands. This process, 
presumably, occurs mainly shortly after the gel point is reached; the 
process itself causes the rigidity of the network to increase, which, in 
turn, soon makes it much more difficult for still more bonds to be formed. 
In other words, such a rearrangement may stop itself, and the gel may 
reach a meta-stable stage, but before this stage the gel may have changed 
substantially. Moreover, some gels do not reach such a stage at all and are 
subject to syneresis; the network tends to shrink due to the formation of 
extra bonds between the strands, thus expelling the continuous phase. 
Syneresis is supported by external factors like deformation of the gel. 
Quite often aggregation leads, in first instance, to a network which is, 
however, unstable and collapses due to syneresis or gravity. If the gel is 
fixed to the walls of a container there is no possibility to expel the 
continuous phase. In that case micro-syneresis may occur which will lead 
to a coarsening of the network [31 J. Extensive micro-syneresis may occur 
when the interaction energy keeping the particles in a strand together is 
not very high compared to kT, because initially some bonds have to break 
in order to give the particles in the strands the opportunity to form more 
new bonds. 

1.3 Outline of this thesis 

The question whether an aggregating system will gel or not is much 
too comprehensive to be solved in general. It would even be a hopeless 
task to try and deal with all the combinations of factors controlling 
gelation. The main factors dealt with in this thesis are the effects of the 
geometric structure of the floes and the kinetics of aggregation on the 
gelation and on the properties of the gel that may have been formed. Less 
attention is paid to the nature of the particle-particle interactions. Many 
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experimental results and ideas of other research-workers have been 
examined with a 'fractal view' and form an essential part of this thesis 
(e.g. [31 - 34]). The infrastructure' of the thesis has been affected by 
some publications which are fully incorporated. 

In chapter II a short literature review is given on computer 
simulations of particle aggregation which have been performed under 
numerous different 'input' conditions. The results of these simulations are 
compared with experimental results from literature. Using the concept of 
fractal geometry a model is developed which describes the formation and 
geometric structure of a gel. Some consequences of this model will also 
be discussed, for instance that the size of the container relative to the 
size of the aggregating particles may be an important parameter. 
Furthermore, some consequences of this model for the resulting gel 
properties like permeability and turbidity are discussed. 

In chapter III materials and methods are described; first of all the 
preparation of the gels. Further, attention is paid to permeability 
measurements, confocal scanning laser microscopy and turbidity 
measurements. The results are compiled and discussed in chapter IV. It 
was found that some systems are able to gel at an extremely low volume 
fraction of particles. 

Chapter V deals with the rheology of particle gel networks. Models 
are derived which relate the stiffness (modulus of elasticity) and the 
strength (stress at which fracture occurs) to the volume fraction of the 
particles. Gels formed with casein, respectively polystyrene latex, 
particles are tested and the similarities and differences are described. It 
was found that gels built with the same material but with different 
geometric structure differ substantially (orders of magnitude) in stiffness. 

In chapter VI the kinetics of aggregation and gelation are described. 
Traditionally, mainly the first steps of the aggregation process have 
received attention. In this chapter, however, attention is paid to later 
stages, up to gelation. The essential question is; how long will it take 
before the aggregation can be perceived, be it because of gelation, 
sedimentation, or the appearance of visible floes. It will be shown that the 
evolution of the geometric structure of the floes has a strong effect on this 
time. 



Chapter VII pays attention to factors which disturb gelation. The 
effect of (gravitational) forces and velocity gradients is described (semi) 
quantitatively. This chapter contains also speculations on the relation 
between the interactions of the particles and the ability to gel and gel 
properties. The rate of disaggregation and rearrangement may be an 
important factor which is, however, hardly understood. 
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II Theory of Fractal Aggregation 

2.1 Introduction 

In the past 10 years many scientists and mathematicians have 
worked on problems concerning 'order in chaos' and 'fractals'. A fractal 
has, in general, a sprawling tenuous pattern. As a fractal is magnified it 
reveals repetitive levels of detail, so that a similar structure exists on all 
scales; a fractal is scale invariant. Mandelbrot [1] pointed out that many 
disorderly objects in nature have this property. Well-known examples are 
coastlines, accretion of metal particles in an electrolytic bath, mountain 
ranges and several properties or processes varying with time, such as the 
weather. All these examples, which are of a bewildering complexity, can 
be described by surprisingly simple equations. The quantitative measure 
of how a fractal scales is expressed by the fractal dimensionality which is 
an universal property, i.e., it is independent of many details of how the 
object is formed. The dimensionality is related to behaviour at large scales 
where fluctuations are averaged out. As a consequence, a simple model, 
neglecting most of the complexity of a real system, may nevertheless be 
useful in describing the scaling properties of the system. In many fields 
these models are of limited interest; for instance, in meteorology one is 
interested in the fluctuation itself, i.e. the weather on one particular day. 
Fractal models are, however, very useful in describing aggregation, 
gelation and gel properties [2,3]. In these cases one is not interested in 
the spatial coordinates of a particular particle, but in the overall 
properties of the system. 

An example of a fractal, which may be used to model a floe, is given 
in figure 2.1. Considering the number of particles forming the fractal, a 
string of beads model is characterized by a dimensionality of 1, because a 
magnification of the scale by a factor X results in a change of the number 
of particles by a factor X1. By the same argument, the dimensionality of a 
plane filled with particles is 2; increase of the scale by a factor X results 
in a change in the number of particles with a factor X2. The fractal in 
figure 2.1 has a fractal dimensionality which equals log5/log3 
(approximately 1.46) which is a fraction of the Euclidian dimension. This 

12 



explains the term fractal dimensionality. The scaling behaviour does not 
apply to all length scales in a real system. The fractal in figure 2.1 is 
characterized by an upper cut-off length (R) which equals the radius of 
the cluster and a lower cut-off length (a), equal to the radius of the 
primary particles. The fractal dimensionality (D) does apply to length 
scales between a and R. 

K i 

a-

Fig. 2.1 Examples of two-dimensional deterministic fractals of various size 
and magnification. The fractals may be used to model a floe. 

For the number of particles in a fractal floe JVp we may write [3]: 

NP = R 
(2.1) 

A property of a three-dimensional fractal floe is that its density decreases 
as its size increases because D is smaller than 3. Real floes are, in general, 
fractals in a statistical sense. These stochastic fractals are not exactly 
scale invariant like the deterministic fractals of fig. 2.1., i.e., a part of a 
stochastic fractal is not an exact copy of the fractal itself. However, on 
average a part of a stochastic fractal shears statistical properties with the 
fractal itself. Examples, taken from the work of Weitz et al. [2, 4], are 
shown in fig. 2.2. These are projections of (3 dimensional) clusters of gold 
particles which exhibit a very ramified, fractal structure. Eqn. 2.1 does 
apply to these floes. Parts of the large floe in fig. 2.2 that are magnified 
have on average the same geometric structure as the smaller floes and as 
the large floe itself. Aggregation of clusters leads automatically to the 
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repetitive levels of detail that are characteristic for fractals because small 
clusters aggregate into larger clusters that on their turn aggregate 
further. 

50 nm 
100 nm 

200 nm 500 nm 

Fig. 2.2 Electron micrographs of clusters of gold particles with varying 
sizes at varying magnifications (taken from Weitz et al 12]). The 
projections of the three-dimensional clusters, and the clusters 
themselves are stochastic fractals. 

2.2 Computer simulations 

Much of the present understanding of the relation between 
aggregation mechanisms and the resulting structure of the floes is based 
on the results of computer simulations. The earliest computer simulation 
models by Void [5, 6] and Sutherland [7] investigated particle-cluster 
aggregation via linear trajectories. The resulting structures are porous, 
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but uniform on sufficiently long length scales; i.e., the fractal 
dimensionality (almost) equals the Euclidian number of dimensions. This 
implies a rather high volume fraction of particles in the floes. Simulated 
floes which look more like the examples in figure 2.2 were obtained by 
Sutherland [8, 9] using cluster-cluster aggregation via linear trajectories. 
The concept of fractal geometry was, however, not used at that time. 

Considerable interest in the simulation of aggregation has been 
generated by the discovery by Witten and Sander [10] that particle-cluster 
aggregation via Brownian trajectories leads to floes with a well-defined 
fractal dimensionality which has a value of about 1.7 in 2-dimensional 
simulations and 2.4 in 3 dimensions. These values are independent of 
many details of how the floe is formed; for instance a small sticking 
probability, which is a simple representation of a (high) activation energy, 
leads to the same dimensionality at long length scales. The branches of 
the aggregate (small length scales) are, however, thickened. Also changes 
in the length of the Brownian steps (flights) does not change the 
dimensionality on scales larger than the Brownian steps. On smaller 
scales, D may vary from the long scale value to the Euclidian value which 
also is obtained for linear trajectories [11]. 

The particle-cluster models are, in general, not realistic in 
describing the aggregation of colloidal particles. A more realistic model 
which investigates cluster-cluster aggregation has been introduced, 
independently, by Meakin [12] and Kolb et al [13]. There is not much 
difference between 'Sutherlands' clusters and the new, so-called Diffusion 
Limited Cluster Aggregation (DLCA) clusters, because the effect of 
Brownian motion is negligible in comparison with the effect of cluster to 
cluster addition. The DLCA model is, however, very useful because it is 
possible to introduce numerous details on how aggregation proceeds, and 
because the kinetics of aggregation and the floe size distribution can be 
followed. A simplified simulation in which clusters are grown by 
consecutive diffusion of two equal sized clusters towards each other is 
called a hierarchical or monodisperse model. The dimensionality obtained 
with this model is only slightly lower than D in the case of a polydisperse 
model. Values obtained for D are; about 1.43 in 2-dimensional and about 
1.75 in 3-dimensional simulations. These values are, again, insensitive to 
some details of the model, such as the way in which the cluster diffusion 
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coefficient depends on the number of particles in the cluster [14, 15] 
(provided that smaller clusters diffuse at least as rapidly as larger 
clusters). The fractal dimensionality in these models is, however, 
sensitive to the introduction of a low sticking probability [16, 17]. If this 
probability is thus low that, effectively, all mutual bonding configurations 
are sampled before aggregation of the clusters, the so-called Chemically 
or Reaction Limited Cluster Aggregation model (CLCA or RLCA) applies. 
This model results in an increase of D up to about 1.55 in 2-dimensional 
and 2.0 in hierarchical, 3-dimensional simulations. A low sticking 
probability has also a huge effect on the kinetics of aggregation. Ball et al. 
[18] pointed out that RLCA leads to an exponentially increasing cluster 
radius and a power-law cluster size distribution. D is significant higher 
(about 2.1) if the polydispersity of the cluster size distribution is taken 
into account (The process looks somewhat like particle-cluster 
aggregation due to the wide variation in cluster size). Probably there is a 
feed-back mechanism between the cluster size distribution and the fractal 
dimensionality [18]. The kinetics of aggregation and gelation is discussed 
further in chapter VI. 

Other important complications, which have been studied, are the 
effect of random bond breaking [19] and rotational diffusion [20]. Random 
bond breaking does not (or hardly) affect the dimensionality, the floes are 
however more compact at short length scales. Rotational diffusion 
decreases the fractal dimensionality of cluster-cluster aggregates [16]; the 
effect is, however, small in most realistic simulations. The introduction of 
particle-particle interaction forces in the model has, in general, no 
influence on the structure on large scales but it may affect the short range 
structure [21, 22]. Recently, simulations in which rearrangements after 
the cluster to cluster addition are allowed have been performed [23, 24]. 
These rearrangements lead to an increase of the dimensionality up to 
about 2.3, depending on the extent of freedom to rearrange. Similar 
results have been reported by Adachi and Ooi [25] who used table-tennis 
balls to model a floe instead of simulation on a computer. These models 
may be useful to predict the behaviour of floes with flexible bonds, like 
floes consisting of emulsion droplets or particles which are aggregated in 
the secondary minimum. 
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There are numerous experimental results which are in perfect 
agreement with computer simulations. In addition to the electron 
micrographs of Weitz et al. [4], small angle X-ray scattering [26] and light 
scattering [26 - 28] have often been used. Most simulations and 
experiments were carried out at low concentration. The discussion of 
fractal-type structures in non-dilute systems is much more complicated, 
due to the interpenetration of the clusters and the formation of a gel 
state. These gels are homogeneous on the macroscopic scale, but 
heterogeneous and possible of a fractal nature on smaller scales. Kolb et 
al. [29] have suggested that higher volume fractions of particles should 
lead to a higher dimensionality, owing to an increase in interpenetration 
between the developing clusters, leading to a dimensionality of 3 in the 
case of gelation. Simulations of aggregation in concentrated systems 
resulted in an increase of the effective fractal dimensionality with 
increasing concentration [21]. 

2.3 The model 

The model is described on a lattice, although this is not an essential 
feature. Each lattice site is occupied with either a particle or a volume 
element solution. A fractal structure on the lattice is expressed by Eqn. 
2.1. Here, R is the radius of the fractal and a is the radius of one lattice 
site which can be equal to the radius of one primary particle if a lattice 
site is of the same size as the particle size. D is the fractal dimensionality. 
In a real system R and a are not well defined, the aggregates are in 
general not spherical and the primary particles are not always mono-
disperse. One may, however, consider the system to be characterized by 
an upper [R) and a lower (a) cut-off length, between which scaling limits 
fractal geometry applies. The average radius of the primary particles is 
used as the lower cut-off length. This is not necessarily true but it turns 
out to be a good choice for most gels (see further on). 

It is obvious that the total number of lattice sites that have been 
taken up by an aggregate (Afa) equals (R/a)3 for a 3-dimensional lattice. 
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M! (2.2) 

The volume fraction of particles in an aggregate (<)>a) can thus be 
expressed by: 

<t>a = 
_ N P 

N. 

D-3 

(2.3) 

implying, since D < 3, that <|>a decreases as R increases. The fractal 
clusters thus grow until they jointly occupy the total liquid volume, at 
which moment a gel is formed. This implies that the fractal 
dimensionality of the aggregating clusters is retained in the gel (albeit 
with a slight modification: see later on), while at a scale » R, the gel is 
homogeneous and has, of course, a dimensionality of 3. Mathematically, 
the sum of all sites occupied by the individual fractal aggregates ENa t will 
be equal to the total number of lattice sites in the gel (Nt): 

2>a . t = Nt (2.4) 

and: 

2>a.tNa.t=MVt (2.5) 

Here (j)0 is the overall volume fraction of the particles and JVt is the total 
number of aggregates. Combination of the equations 2.1 to 2.4 leads to: 

<t>o = 
lRi° JR^ 

a D " 3 I^ 

D-3 

(2.6) 

where J?g is the 3-D average radius of the clusters in the gel; 

* g = I* 
XRtD 

3-D 

After gelation it is thus possible to define R more precisely. 
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The model leads to a gel built of fractal clusters. Because fractals are 
scale invariant, the gel may also be scale invariant, i.e., a gel formed from 
a system with a high volume fraction of particles may resemble a gel with 
a low particle concentration, only the scale will be different. In order to 
be scale invariant the cluster size distribution in the gel needs to have the 
same form, whatever the particle volume fraction. The existence of so-
called self-preserving cluster size distributions has been observed by Swift 
and Friedlander [30], long before the introduction of fractals. The idea of 
self-preserving cluster size distributions has recently become of interest 
in dynamic scaling theories and is connected to the idea of fractal 
geometry [18]. 

The appearance of a gel may vary considerably with the volume 
fraction of the disperse phase. Laying and McBain [31] distinguished 
between a 'gel' which is turbid, consisting of coagulated particles, and a 
'jelly' like gelatin which is transparent. This difference is, however, only 
based on a difference in dimension of the building blocks. Von Weimarn 
[32] showed that there is a gradual transition from transparent 'jellies' to 
flaky, coagulated 'gels' if the concentration of the disperse phase 
decreases. Eqn. 2.6 gives a quantitative relation between the overall 
volume fraction and the scale, i.e. the average size of the clusters in a gel, 
given a fixed value of the fractal dimensionality. According to some 
computer simulations, however, the effective fractal dimensionality will 
increase with increasing volume fraction due to an increase in 
interpenetration between the clusters [21]. This is in contradiction with 
the property of scale invariance of the fractal clusters. The form of a small 
cluster will resemble the form of a larger cluster and the relative 
interpenetration is thus independent of cluster size and, according to 
Eqn. 2.6, also of the volume fraction. Interpenetration may thus lead to a 
gel with, on a scale smaller than R, a fractal dimensionality somewhat 
higher than that of the original clusters, but independent of the volume 
fraction; this agrees with experimental results (see further on). A reason 
why computer simulations may lead to different results is the limited 
number of particles used in these simulations. The total scale of the 
simulation experiment is often far smaller than the scale on which the gel 
is homogeneous. 
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The structure of the aggregates is not expected to be fractal at very 
short distances, due to particle impenetrability and to interactions 
between non-bonded particles [21]. Consequently, the model may not be 
valid at very high volume fractions, since in that case the clusters contain 
only a small number of particles at gelation. Although a single small floe is 
not fractal, a large collection of these floes may nevertheless show 
statistical fractal behaviour. At very low volume fractions sedimentation 
may disturb the gelation, since the floes become very large and thus may 
sediment; moreover, in such large tenuous floes the pliability of the 
strands may not be negligible any more, permitting rearrangement of the 
floe structure (chapter VII). 

2.4 Some consequences of the model 

2.4.1 The critical volume fraction 

In contrast with percolation models the fractal model does not 
anticipate a general critical volume fraction for gelation to occur. The only 
result of a lower volume fraction will be a coarser gel (Eqn. 2.6). In 
practice, however, there will be some critical volume fraction, be it 
because of disturbances like velocity gradients or sedimentation or due to 
syneresis [33]. Even if there is no disturbance at all there will be some 
lower limit because the scale on which the gel is heterogeneous can never 
exceed the size of the container (figure 2.3). In this case, the ratio 
between the size of the container and the size of the primary particles 
will determine the critical volume fraction. In most experiments this 
effect is not important because convection and sedimentation will disturb 
gelation already at far higher volume fractions. However, the effect may be 
important if the size of the container is very small, like it is for the 
aggregation of fat crystals in an emulsion of oil in water, where part of the 
oil crystallizes. The ratio between the size of the emulsion droplets and 
the fat crystals inside them determines whether the droplets are solid­
like (gelled) and thus may aggregate or liquid-like and thus fuse 
(coalescence). In accordance with this, it has been observed that an 
emulsion which contained large crystals in the droplets was stable 
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whereas an emulsion with small crystals in the oil phase but with the 
same droplet size and crystalline fat concentration was unstable [34]. 
Solid-like droplets aggregate readily because protruding fat crystals may 
penetrate into other droplets leading to so called partial coalescence [34]. 

Fig. 2.3 Two emulsion droplets with large (a) and small (b), aggregated fat 
crystals. The fat concentration in both droplets is similar. In droplet (a) 
no network can be formed because the ratio between the size of the 
droplet and the size of the crystals is not small enough. 

A simple approximation of the critical volume fraction of particles 
that is needed to occupy the system at given D, R$ and a would be 
( i?d/a)D-3 where i?d is the radius of the container (droplet) and a the 
radius of the primary particles (fat crystals). A gel will just be formed if 
the size of a floe that contains all primary particles equals the size of the 
container. In practice, the situation is more complicated due to the 
effects of the boundary of the container. Various situations may be 
considered or simulated on a computer: 
1 - Moving boundaries; particles that cross the boundary of the 

container are transferred to the other side (computer simulation). 
2 - Particles do not stick to the wall of the container. 
3 - Particles stick to the solid wall of the container. The density of the 

gel close to the wall will be high (section 4.3). 
4 - Particles stick to a liquid-liquid interface and are able to diffuse 

laterally after attachment; a two-dimensional surface gel may be 
formed. 

Two-dimensional computer simulations on a 20 x 20 lattice showed that 
the simple approach of a surface fraction that should be higher than 
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{Rd/a)0-2 to form a gel is only applicable in the case of moving boundaries. 
In the case of particles that stick or do not stick to the wall of the 
container (situations 2 and 3) a higher surface fraction was needed to 
obtain percolation, i.e., a connection between two opposite walls (results 
not shown). 

2.4.2 Permeability 

In the case of a laminar flow through a matrix generally Darcy's law 
is obeyed. For the tube in figure 2.4 we may write 

AP 9f=BpAc — 
(2.7) 

0f = flow rate (m3 s-1) 
Bp = permeability coefficient (m2) 
AP = pressure difference (N m -2) 
TI = v iscosi ty of t h e flowing l iquid (N m - 2 s) 
AQ = pore size area of the gel (m2) 
I = height of the gel (m) 

Gel 

Fig. 2.4 Tube filled with a gel with pore size area Ac and height I. 

The flow rate through one fractal structural element, due to a constant 
pressure gradient, will scale like (as in Poiseuille's law) 

Qt~R (2.8) 
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The flux through the gel in case of a constant pressure gradient will thus 
scale like 

Qt ^ X S u ^ Z ^ i (2.9) 

if the number of pores in the gel were constant. The absolute size of the 
pore surface area (Ac) of the gel scales like Ac ~ Rp. This, in combination 
with Eqn. 2.9, leads to the following relation between the size of the 
fractal clusters in a gel and the permeability coefficient (Bp) of that gel as 
defined by Darcy 's law; 

^ ~ f ? 4 2
2 

A: (2.10) 
Bp--fLocR42 

If the cluster size distribution is self-preserving during the aggregation 
process then R42 ~ RZD a n ( l Eqns. 2.6 and 2.10 can be combined to yield: 

B_= ̂ 1 = ̂ 2 / ( 0 - 3 ) 
P K K T O (2.11) 

where K is a constant, comparable with the tortuosity factor in the 
Kozeny-Carman equation. K is dependent on the cluster size distribution 
and on the ratio between the effective hydrodynamic radius of the 
clusters and the radius of the clusters in a gel, Rg. 

Equation (2.11) describes a relation between the structure of the 
gel (expressed in an effective fractal dimensionality D), the volume 
fraction of the particles in the gel, the size of these particles and the 
permeability of the gel. Measurements of the permeability of gels of 
varying particle concentration can thus provide information about the 
effective fractal dimensionality. 

Darcy's law is applicable in the case of laminar, so-called creeping 
flow. If the flow rate is too high, inertial forces become important, leading 
to turbulence. 0 is no longer proportional to AP in that case. The cross­
over from laminar to turbulent flow is generally given by the Reynolds 
number, Re; 
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•n (2.12) 

v = liquid flux (m s-1) = Q/Ac 
pi = density of the flowing liquid (kg m -3) 
p = characteristic pore radius, here taken equal to Rg (m) 

In the case of flow through porous media Re should not exceed a certain 
critical value, which varies from 0.1 to 75 depending on the porous 
medium [35]. 

2.4.3 Geometric structure and correlation Junction. 

As has been stated before, aggregation may lead to a scale invariant 
gel consisting of fractal clusters. The relation between the scale on which 
the gel is heterogeneous, expressed in Rg, and the volume fraction has 
been given by Eqn. 2.6. It will thus be easy to estimate the effective fractal 
dimensionality by comparing the geometric structure of gels with varying 
volume fractions of particles. 

A quantitative description of the density fluctuations of a cluster or 
in a gel can be given by a correlation or distribution function. The so-
called density-density correlation function C{r) is given by 

c ( r ) = <p(x )pU + r)> 

P (2.13) 

where <...> represents averaging over all orientations and all positions, x, 
in the gel and p is the average density in the gel. Actually p(x) is the local 
weight concentration of the particles on position x and p = <|>oPp where p p 

is the density of the material of the particles. If the gel is isotropic it is no 
longer necessary to average over all orientations. A 1-dimensional 'section' 
through the gel is enough to calculate the correlation function if there are 
enough particles on that line to average out the fluctuations in density. 
The density-density correlation function is, on length scales longer than 
a, equal to the radial distribution function g(r) which is a measure for the 
probability that there is, on a distance r from any particle, another 
particle. 
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The mass of the particles contained in a sphere of the gel with 
radius R can be obtained by integration of the density-density correlation 
function; 

R 
Afp = pj4jcr2C(r)dr 

0 (2.14) 

For a fractal, the mass, Mp, equals {R/a)Dx%na3 x pp (the number of 
primary particles multiplied by their mass). This, in combination with 
Eqn 2.14, leads to a relation between the correlation function, C[r) and 
the length scale, r(r> a): 

D-3 
3<foUJ (2.15) 

C(r) = - i U l ) 

The fractal dimensionality is thus accessible from an image through the 
slope of a log-log plot of C[r) versus r if r lies between the lower cut-off 
where fractal behaviour starts, a, and the upper cut-off length, the size of 
the floes in the gel, Rg. At larger length scales the gel is homogeneous and 
the correlation function will thus be independent of r. 

2.4.4 Turbidity and (light) scattering 

Scattering techniques constitute a powerful method of studying 
fractal structures. Often, the angular dependence of the scattering of laser 
light, X-rays or neutrons is employed. It has recently been shown that the 
value of the fractal dimensionality is also accessible through 
measurements of the wavelength dependence of the turbidity [36]. 

In the angular dependence measurements the power-law decay of 
the structure factor, S(q), as a function of the so called wave vector (q) is 
studied in order to obtain the fractal dimensionality [26]. In the region 
where l/R « q « l/a fractal behaviour applies. S(q) is proportional to 
the Fourier transform of the correlation function (Eqn. 2.15). In an 
isotropic system in three dimensions [37, 38]; 
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Siq) = l + (^na3T\0]\C[r)-l\^^l4nr2dr 
-1 ~ 

0 •»• (2.16) 

substitution of q-!d(qr) for dr, q-1(qr) for r and C(r) of Eqn 2.15 in Eqn. 
2.16 provides; 

S(q) = 1 + D(qa)-D / (qr)0"1 ̂ ^ d ( q r ) ~ ( q a ) " D 

0 q r (2.17) 

where q = - s in — 

6 is the scattering angle, X is the wavelength (in air) and UQ the refractive 
index of the medium. 

In turbidity measurements one integrates over a broad range of q 
and Eqn. 2.17 will thus not be valid in most cases. If the scaling region is 
finite and bounded by both upper {R) and lower (a) cut-off lengths another 
structure factor can be derived [37]. 

, _ Dr(D - l)sin[(D - l)arctan(qi?)] 
q nr 9 9 -|(D-U/2 

(qa)»[l + l/(q
2K2)] ( 2 i g ) 

Where T(D-l) is the gamma function of (D-l). The upper cut-off length 
has been introduced via a cut-off function h(r) = exp[-r/R) that may be 
multiplied with the function |C(r)-l| in Eqn. 2.16. The cut-off function, 
h[r), is introduced to avoid the edge effects due to the finite size of the 
clusters and approaches 1 if r « Rg and 0 if r » Rg. Eqn. 2.18 is valid 
over a broad range of q's. 

Using the Rayleigh-Gans-Debye theory one may calculate the 
dissipation function, Q, which is the factor by which the turbidity 
calculated from Rayleigh scattering must be multiplied. In the case of 
spherical particles 

3 Kt 9(sin(qq) - qa cos(qq))2 S[q) sin9(l + cos2 6) 

= 8l ^ (2.19) 

26 



where a is the acceptance angle of the spectro-photometer [39]. The 
change of the turbidity (T) with the wavelength [X) depends on the 
dependence of 0 on the wavelength. From 

z = HCMQ (2.20) 

with 

H = v ° c ; (kg-2 m 2 mol), 
3 N A r 

NA Avogadro 's number (mol-1), d n / dC the specific refractive index 
increment (kg -1 m3), M the molecular weight (kg mol -1) and C the 
concentration (kg m -3), the derivative 

p = d log0 = 4 _ Y + d ]ogx 
dlogX. dlogX, (2 21) 

can be obtained [36]. 
y is often assumed to be -0.2 for proteins [36] and is a result of the 

wavelength dependence of the refractive index. 

d logk^ l 
Y = 2 ^—9Jk2 = _0.2 

dlog*. ( 2 22) 

Now Q can be calculated and P can be obtained from its wavelength 
dependence. P will tend asymptotically towards the input fractal 
dimensionality for very large clusters [36]. When the fractal dimension is 
known, information can be obtained about the size of the clusters {R) [3]. 

Fig. 2.5 shows that the acceptance angle of the spectro-photometer 
is very important; the lower limit of the integration in Eqn. 2.19 is set at 
the value of the acceptance angle. 
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Fig. 2 . 5 The wavelength exponent (3 (= d log Q / d log X) calculated as a 
Junction of the cluster radius R for various angles of acceptance; D = 2.27, 
a = 50 nm and n = J .33. 

The value of (J is slightly dependent on the wavelength because the 

log-log plot of Q a s a function of the wavelength is not completely linear, p 

is calculated by a ssuming log Q to be linear with log X between 400 and 

800 nm wavelength. 

2.4.5 Rheology and kinetics 

The previous gel p roper t ies (permeability, correlat ion function, 

turbidi ty) a re s t r ict ly d ependen t on t he geometr ic s t r u c t u r e after 

gelation. This s t ruc ture is, however, affected by the interactions between 

the particles dur ing gelation. Rheological properties of the gel network 

depend both on the geometric s t ructure , and on the interaction forces in 

and among the par t ic les . In teract ion forces a re also impor t an t for 

r ea r rang ing p rocesses occurr ing after the gelat ion. The rheological 

propert ies of particle networks will be described in chapter V and the 

kinetics of aggregation and gelation in chapter VI. 
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