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STELLINGEN 

De HMW glutenine subunit allelen verschillen in bijdrage tot de bakkwaliteit 
van tarwe op grond van type en hoeveelheid van de subunits. Aan het tweede 
aspect is voorheen nauwelijks aandacht besteed. 

Dit proefschrift. 

De veredelaar moet er rekening mee houden dat het verband tussen het 
HMW glutenine subunit genotype en de bakkwaliteit van tarwe minder sterk 
is en ook gecompliceerder van aard dan veelal werd aangenomen. 

Dit proefschrift. 

3. Met snelle kwaliteitsvoorspellende toetsen dient men in elk geval het aandeel 
van de HMW glutenine subunits in de totale hoeveelheid eiwit van de 
tarwekorrel te kunnen bepalen, gezien het belang van deze zeer variabele 
parameter voor de kwaliteit. 

Dit proefschrift. 

De gebruikelijke techniek voor het identificeren van HMW glutenine allelen 
(SDS-PAGE) geeft geen waterdichte resultaten. Bij het relateren van de 
bakkwaliteit van een allel aan zijn genstructuur mag men daarom niet 
volstaan met een ras, maar dient men genen die schijnbaar voor eenzelfde 
subunit coderen uit verschillende rassen te isoleren. 

Flavell RB, Goldsbrough AP, Robert LS, Schnick D, Thompson RD (1989) 
Bio/technology 7: 1281-1285. 
Dit proefschrift. 

De bewering van Goldsbrough et al. dat Pogna et al. aantonen dat de y-type 
subunits 10 en 12 verantwoordelijk zijn voor de verschillen in kwaliteit van 
de allelen voor de subunit combinaties 2+12 en 5+10 is onjuist. 

Goldsbrough AP, Bulleid NJ, Freedman RB, Flavell RB (1989) Biochem J 
263: 837-842. 
Pogna NE, Mellini F, Dal Belin Peruffo A (1987) In: Agriculture. Hard 
wheat: agronomic, technological, biochemical and genetic aspects, pp 53-69. 

De conclusie van Khan et al. dat de aanwezigheid van HMW glutenine 
subunit 8 of van subunit 9 een invloed heeft op het eiwitgehalte van de 
bloem is onterecht. 

Khan K, Tamminga G, Lukow O (1989) Cereal Chem 66: 391-396. 
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Het verbeteren van de kwaliteit van tarwe door veredeling en door 
teeltmaatregelen verdient de voorkeur boven het compenseren van een lage 
kwaliteit door middel van additieven. 

Bij het automatisch koppelen van het predikaat "slechte kwaliteit" aan de in 
Nederland verbouwde tarwe wordt vergeten dat behalve in de broodindustrie 
er nog andere toepassingen bestaan en nog ontwikkeld worden. Daarbij kan 
het juist een voordeel zijn dat er duidelijke verschillen zijn met de tarwes uit 
concurrerende landen. 

9. Voor een optimaal gebruik van de mogelijkheden van de gentechnologie in 
de veredeling is meer kennis vereist van het traject tussen een gen en het 
uiteindelijke produkt. 

10. Voor het welslagen van de introductie van het "vierde gewas" is het 
landbouwkundig van groot belang het derde gewas in stand te houden. 

11. De problemen met de landbouwoverschotten binnen de EG zouden voor de 
consument beter te verteren zijn indien deze overschotten gefinancierd 
zouden worden met een 'voedsel-garantie heffing'. 

12. Voor de bosbouw in de EG was het beter geweest als de beschrijvende 
rassenlijst voor populiererassen uit 1967 als eerste nummer voor een reeks 
van rassenlijsten was opgevat. 

Kolster HW (1967) Populiererassen in de E.E.G.-landen en hun 
bruikbaarheid voor Nederland, 150 p. 

13. Bij het grootschalig gebruik van "eetbaar" verpakkingsmateriaal geproduceerd 
uit landbouwprodukten dient de Nederlandse consument te weten dat deze 
materialen ontwikkeld zijn voor het terugdringen van milieuproblemen, en 
niet zozeer om als voedsel te dienen. 

Proefschrift van P Kolster. 
Titel: High Molecular Weight glutenin subunits of wheat: qualitative and 
quantitative variation in relation to bread-making quality. 

Wageningen, 27 mei 1992. 
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Dit proefschrift is tot stand gekomen op twee instituten. Het grootste deel van het 
experimentele werk is uitgevoerd op de vooimalige Stichting voor Plantenveredeling 
(SVP), nu onderdeel van het Centrum voor Plantenveredeling en Reproduktie 
Onderzoek (CPRO-DLO). Na bijna drie jaar daar gewerkt te hebben ben ik 
overgestapt naar het Instituut voor Agrotechnologisch Onderzoek (ATO-DLO), waar 
voor wat betreft het proefschrift de nadruk heeft gelegen op de verwerking van de 
resultaten met daarnaast afrondende experimenten. Iedereen die aan het tot stand 
komen van dit proefschrift een bijdrage heeft geleverd, zowel binnen deze instituten 
als daarbuiten, wil ik hierbij bedanken. De groep mensen is te groot om iedereen 
hier afzonderlijk te kunnen bedanken. 

In het bijzonder gaat mijn dank uit naar mijn promotor, Prof.dr.ir. J.H. van der 
Veen, voor de stimulerende en kritische begeleiding van de interpretatie van het 
onderzoek. Ondanks (of juist dankzij?) het feit dat het onderzoek niet geheel binnen 
uw vakgebied valt ontstonden dikwijls boeiende discussies waarbij het onderzoek in 
een breed kader geplaatst werd. Een bijzonder woord van dank aan mijn co-
promotor, Wim van Gelder. In de belangrijke beginfase op de SVP heb je het 
onderzoek op het juiste spoor gezet. Later in het onderzoek heeft jouw vertrouwen 
voor de broodnodige vrijheid en ruimte gezorgd. Jouw correcties in de 
manuscripten, van dikke rode strepen in het begin tot min of meer voorzichtige 
suggesties in een later stadium, zijn van groot belang geweest. Daarnaast heeft Jaap 
Visser van de vakgroep Erfelijkheidsleer (LUW) een inspirerende rol gespeeld, 
zowel in de doctoraalfase van mijn studie als tijdens het promotieonderzoek. Verder 
wil ik ook Albert Eenink voor de waardevolle hulp die hij, zowel als directeur van 
de SVP als van het ATO, op verschillende manieren op een doortastende wijze 
gegeven heeft. 

Van de voormalige SVP wil ik met name Kees Krechting, Jans Schepers, Harry 
Jonker en Fred van Eeuwijk bedanken voor hun waardevolle hulp en voor de 
bijzondere werksfeer. Op het ATO bedank ik Johan Vereijken voor zijn rol als 
klankbord voor de eerste versies van de meeste hoofdstukken en Paul de Bie voor 
de assistentie bij het afronden van het experimentele gedeelte. 
Als laatste wil ik Anja bedanken voor het vele typewerk, het corrigeren van de 
manuscripten en voor de vele andere bijdragen die je geleverd hebt. Hoewel deze 
technische assistentie zeer belangrijk is geweest, is voor mij jouw morele steun van 
nog grotere waarde geweest. 



aan Anja, 
aan mijn ouders. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Production and uses of bread-wheat 
In the total agricultural world production, cereals -wheat, rice, barley, maize, rye, 
sorghum, oats and millet- are the most important crop with respect to the production 
volume. Among these, wheat takes the first place with an annual production volume 
of 508-106 tons in 1988, directly followed by rice [1]. Bread-wheat (Triticum 
aestivum L.) is the most common cultivated species of Triticum [2]. The production 
volume of durum or macaroni wheat (T. durum) wheat, which is primarily used for 
the manufacturing of pasta's (macaroni, spaghetti etc.), was about 5% of that of 
bread-wheat (1975-1984; [3]). Because durum wheat is not grown in The 
Netherlands, the name wheat will be used in this thesis exclusively for bread-wheat 
(T. aestivum). 

The most important food application of wheat is the manufacturing of bread [4]. 
Other applications are e.g. in the pastry, the biscuit, the feed and the starch and 
gluten industry. Not all wheat fulfills the specifications outlined by the millers and 
bakers for the manufacture of bread. The criteria which determine the suitability of 
wheat for this application are: the milling properties, the dough properties and the 
bread properties. The milling quality is beyond the scope of this thesis. 
Bread-making quality refers here to the processing quality of wheat flour, which 
includes the dough- and bread-properties. 

Bread-making quality is a complex characteristic of wheat. Firstly, the consumers 
demands and the bread-making technology differs largely between countries [4-6]. 
Therefore, it is not possible to formulate universally applicable criteria for 
bread-making quality. In general, the volume of a loaf is considered as the most 
important criterion for it [4], although other characteristics of the loaf (e.g. 
shelf-life, crumb-structure, colour and appearance) and of the dough (e.g. strength, 
stickiness, mixing requirement, water absorbance) are of importance as well [4,7]. 
Secondly, it is not easy to determine the bread-making quality of a flour 
unambiguously, because baking tests are prone to variability depending on the baker 



and on technological differences. The conditions of the baking test should be 
optimized for each flour [4]. 

Only a small proportion of the wheat grown in The Netherlands fulfills the 
requirements of the baking industry. Of the wheat milled for human consumption by 
the Dutch milling industry between 1985 and 1990, about 25% was produced in 
The Netherlands. This corresponds to 300,000 tons, which is only about 30% of the 
total production volume of the Dutch farmers [8]. The rest of the wheat used in 
Dutch milling industry originates from other EC countries. The low quality of the 
Dutch wheat results to a large extent from the low quality of the varieties and from 
the agronomic and climatologic conditions. In some years pre-harvest sprouting 
occurs, which has a deteriorating effect [9]. 

To improve the bread-making quality of flours, technological measures (e.g. 
improved technology and the use of additives) can be successful. The improvement 
of the intrinsic bread-making quality of wheat by agronomic measures or by plant 
breeding is important as this would enable the milling industry to use more 
domestic wheat without requiring technological compensation for decreased flour 
quality. As such, improved wheat quality is important to the Dutch farmers and the 
milling industry. 

The subject of this thesis is studying genetic factors that influence the 
bread-making quality of wheat, but agronomic factors will be considered as well. 
The research aims primarily at developing a strategy for improving the bread-
making quality by plant breeding. 

Flour components 
A flour contains a large number of components, which essentially originate from the 
endosperm of the kernel [10], but components from other kernel structures (e.g. 
aleurone layer, germ and bran) are present as well. Differences in the baking 
performance of flours are related to differences in the flour composition. The major 
classes of the flour components are [4]: 

- carbohydrates (70-80% of dry flour) 
- proteins (8-18% of dry flour) 
- lipids (1.5-2.5% of dry flour) 

Each of these classes is composed of a large number of individual components, 
which will be briefly discussed. Differences in characteristics of the components 
which affect the bread-making quality of flours will also be discussed, with special 
emphasis on characteristics which can be improved by plant breeding. 



In the carbohydrate fraction, starch is the main component. The amount of water 
which must be added to a flour for an optimal baking result depends partly on the 
level of 'starch damage'[4,ll] (i.e. the amount of sound starch granules which are 
damaged, or 'activated' by mechanical stress during milling), which in turn depends 
on the milling conditions and the kernel hardness [10]. The kernel hardness is to a 
large extent genetically determined [12]. As only a small number of genes controls 
kernel hardness, this quality-affecting wheat characteristic can be controlled by plant 
breeding [12,13]. Differences in the starch granule size may also affect 
bread-making quality [14]. According to Lelievre et al. [15] the optimal granule size 
depends on the protein content of the flours, which could be the cause of the 
different effects of variation in starch granule size on the bread-making quality 
reported in the literature [15]. 

The lipid fraction of a flour can be divided into two main fractions [16]: the 
polar (glycolipids and phospholipids) and non-polar lipids (mainly triglycerides). 
Part of the lipid fraction (about % of the total amount [17]) is bound to starch, the 
so-called starch lipids [18,19]. Another part of the lipids becomes bound to the flour 
proteins during mixing. It is generally accepted that these lipid-protein interactions 
are of importance for the bread-making quality [17,20,21]. The effects of lipids on 
the bread-making process are summarized by Pomeranz [16]. Shortening, or fat, is 
frequently added to flours to improve loaf volume, dough properties and shelf-life 
[22-24]. For a good bread-making quality of a flour, a high content of the native 
lipids and a high ratio of polar lipids : non-polar lipids is required [4]. Differences 
in lipid content and composition between varieties, and differences between samples 
of varieties grown at different locations, could be related to differences in 
bread-making quality [23,25,26], but in other studies, these relationships were less 
clear-cut [27-29]. 

In conclusion, differences in the composition of starch and lipids can affect the 
bread-making quality of flours. This knowledge has so far not been used for 
breeding for bread-making quality because the starch and lipid characteristics 
studied do normally not appear to control the quality. The protein fraction is more 
important in determining this characteristic of wheat. 

Wheat flour proteins 
The flour proteins can be classified according to their extractability and solubility in 
various solvents. Traditionally, the Osborne classification procedure is used, which 
has been developed in 1924 [see 30]. In this procedure, sequential extraction of 



flour results in the following protein fractions: the albumin (water extraction), 
globulin (salt solution extraction), prolamines (aqueous alcohol extraction) and 
glutelins (dilute acid or alkali extraction). Later, the names gliadin and glutenin 
were adopted for the prolamins and glutelins, respectively [30]. These two fractions 
are known as gluten. In some studies, a protein fraction which is not extracted by 
any of the Osborne solvents was identified and called 'residue protein' [31]. The 
glutenin and gliadin fraction accumulate in the endosperm of the wheat kernel 
during kernel-filling and are considered to be true storage proteins (see [32]). Some 
of the proteins belonging to the albumin and globulin fractions have enzymatic 
functions; the functions of other proteins are unknown [33]. In general, the albumin 
and globulin fractions each account for about 10% of the total amount of flour 
proteins, the gliadin and glutenin fractions each for about 40% [33-35]. 

The amount of the flour proteins is positively correlated with the loaf volume. 
An increase in the protein content of flours from 10% to 14% results in an increase 
in loaf volume of about 50% [36-38]. Because only the amount of the gluten 
proteins increases with an increase in protein content [4], the improvement of the 
loaf volume wil be due to a higher amount of gluten. The slope of the regression 
line of loaf volume on protein content differs between genotypes, which reflects 
differences in protein quality. 

Breeding for bread-making quality by increasing the protein content is hampered 
by a negative correlation between the yield and the protein content of the kernels 
(see [13]). Furthermore, the amount of protein present in a flour is largely 
determined by environmental conditions, which also hampers breeding for protein 
content [13,39]. In contrast, the protein quality is primarily genetically determined. 
Selection for protein quality enables breeding for improved bread-making quality 
without a yield-penalty. 

In determining the protein quality, the albumin and globulin fractions are 
believed to be of no [4], or only of minor [33] importance. However, enzymes such 
as proteases and amylases, which are part of these fractions, do have an effect on 
the bread-making quality. By far the most important are the gluten proteins, which 
impart visco-elastic behavior to a dough. This property, which makes gluten unique 
among the plant proteins, is essential for the production of a leavened dough. 
During mixing and rising of the dough, a proper gluten allows the formation and 
expansion of gas-cells so that a high loaf volume and a good texture are formed. If 
the gluten is weak and highly extensile, a poor bread-texture will result; a gluten 
which is not sufficiently extensile will result in a poor loaf volume [33]. Therefore, 



especially the characteristics of the gluten proteins are of importance when breeding 
for bread-making quality. 

Small-scale tests for bread-making quality in breeding 
Selection in the early stages of plant breeding by fast and small-scale tests is 
required for efficient programmes, also in the case of bread-making quality. Fast 
and small-scale tests can also be used in the milling and baking industry. It should 
be emphasized however that the aims of the industry are not in keeping with those 
of the breeders. The milling and baking industry is interested in a reliable estimate 
of the phenotypic quality, whereas the breeder is interested in the genotypic quality. 
The tests which have been developed aim at an as high as possible correlation with 
the phenotypic bread-making quality. 
The requirements for a test applicable in early generation selection are: 
1) small sample size, preferably a whole meal flour, 
2) simple and fast methods, 
3) good correlation with the genetically determined bread-making quality, and little 

influences of variation in environmental conditions. 

The traditional baking and dough-tests [4,7] are too time- and labor-consuming 
and require far too much flour for application in early stages of a breeding 
programme. These tests are however of importance in later stages of breeding 
programmes. 
Small-scale tests for bread-making quality are e.g. the Zeleny-, the Pelshenke-, the 
residue protein- and the SDS-sedimentation test [see 4,40,41]. The correlation 
coefficients between the results of these small-scale tests and the bread-making 
quality ranges between 0.35 and 0.86 [see 42-44]. In studies of Blackman and Gill 
[42] and Axford et al. [43], the correlation was superior for the SDS-sedimentation 
test. The results of the small-scale tests are not only determined by the protein 
quality, but are also affected by differences in the protein content of the flours [45]. 
As the protein content is mainly environmentally determined, this will decrease the 
selection response. The heritability of small-scale tests was medium to high, and 
varied between crosses [46] and between growing seasons [47]. The occurence of 
genotype * environment interactions limits the applicability of the tests [45,48,49]. 

Also Near-Infrared Reflectance (NIR) has been studied as a technique for the 
prediction of the bread-making quality. In some studies the quality prediction was 
poor [50-52]. However, Williams et al. [53] obtained accurate estimates for the 



dough-characteristics and the loaf volume for hard spring wheat. In all, it has not 
been proven yet whether NIR has a potential for predicting bread-making quality in 
breeding programmes. In predicting other quality related characteristics of wheat, 
e.g. protein content and wheat moisture, NIR can be applied successfully [see 52]. 

In the small-scale tests for early generation selection flours have to be used, 
which implies that the tests are destructive. This is a drawback as in early 
generations only small amounts of kernels are available. Furthermore, the tests give 
no insight in the biochemical and the genetic basis of differences in protein quality. 

Biochemical characterization of the gluten proteins 
The poor solubility of the gluten proteins has limited the applicability of 
biochemical separation techniques. For experiments using gel-filtration, extraction 
procedures have been developed in which buffers were used containing urea and 
CTAB (hexadecyltrirnethylarnmonium [54,55]), SDS (sodium dodecylsulphate [56]), 
or SDS in combination with sonification of the sample [57,58]. Because of these 
stringent extraction conditions, the results of these studies may not be representative 
for the situation in-vivo or in a dough. 

Gel-filtration studies revealed that the gluten proteins are highly polydisperse in 
their molecular weight, with molecular weights up to several millions. Covalent 
bonds (S-S bonds) and non-covalent interactions (hydrogen bonds and hydrophobic 
interactions) are present between the gluten proteins. These cross-links play an 
important role in the bread-making quality [33,59,60]. The glutenin (solubility) 
fraction comprises large protein aggregates (up to 20,000 kD), composed of High 
Molecular Weight (HMW) glutenin subunits cross-linked by disulphide bonds. The 
gliadins are smaller, with elution positions ranging from 11 to 63 kD. Also a peak 
corresponding with a molecular weight of about 100 kD is present in the gliadin 
fraction [61]. This peak comprises Low Molecular Weight (LMW) glutenin 
subunits, which are linked by intermolecular disulphide bonds. 

Electrophoretic techniques, such as PolyAcrylamide Gel Electrophoresis (PAGE) 
at a low pH (A-PAGE), PAGE in the presence of Sodium Dodecyl Sulphate (SDS-
PAGE) and various two-dimensional techniques, were used to study the individual 
proteins which constitute the solubility fractions. 
The gliadin fraction of bread-wheats is composed of about 50 monomeric proteins. 
Based on their electrophoretic behavior during A-PAGE, these proteins are divided 
in a-, P-, y- and co-gliadins showing decreasing electrophoretic mobilities, 
respectively. The co-gliadins show molecular masses of about 70 kD, the other 



groups of gliadins between 30 and 40 kD. Cysteine residues of the gliadins are 
involved in intra-molecular disulphide bonds [30]. 

Upon reduction of the disulphide bonds of the glutenin, the component proteins can 
be studied separately. Based on the molecular weight of the glutenin subunits, two 
classes can be distinguished: the HMW (97-136 kD) and the LMW (31-48 kD) 
glutenin subunits. A wheat variety contains 3-5 HMW glutenin subunits and about 
15 LMW glutenin subunits [7,16,30,33,62,63]. Although the exact structure of the 
glutenin aggregates is unknown, it is believed that subunits are head-tail linked by 
disulphide bonds, and form linear aggregates [64,65, see also 59]. 
It is generally accepted that the gliadins contribute to the dough-extensibility, 
whereas the glutenins confer strength and elasticity to a dough [4,35,66]. Based on 
the sequence of HMW glutenin subunits and on the results of analysis with physical 
techniques, Tatham and coworkers [67] suggested that the repetitive P-turn 
conformation of the central region of the subunits form a P-spiral, which could be 
responsible for the elastic properties. Ewart [65] suggested a role of the gliadins as 
plasticizers between glutenin aggregates. The role of the LMW glutenin subunits is 
unknown. 

In conclusion, the solubility fractions differ considerably in their biochemical 
characteristics and in their contribution to the physical gluten properties and hence 
to the bread-making quality. It is believed that the ratio between the amounts of 
gliadin and glutenin is of great importance for the bread-making quality [4], 
although according to Schofield and Booth [33] this has not yet been proven. 
Therefore, it is important to study the effect of variation in the amount of protein 
fractions in wheat on the quality of flours. 

Variation in the amount of protein fractions in wheat 
Variation in the amount of solubility fractions has been studied extensively in 
relation to the bread-making quality. Because different extraction procedures were 
used by research groups, an accurate comparison of the results of different groups is 
virtually impossible [33,68]. Moreover, the biochemical and genetic interpretation of 
these studies is hampered by the large experimental error in the isolation of these 
protein fractions, by the complexity of each fraction and by the overlap in the 
composition between fractions [30,31,68]. 

Differences between flours in the amount of solubility fractions - which probably 
have resemblance to the Osborne gliadins and glutenins - have been related to 
differences in bread-making quality [69-76]. Because different extraction procedures 



were used, the results can not be interpretated in terms of functionality of the 
protein fractions. These studies revealed nevertheless several causes for the 
differences in amount of the fractions. Firstly, the amount of the fractions may 
differ between varieties and between locations [72,73]. Secondly, the ratio between 
these fractions is changing during kernel development [77,78] and during 
germination or sprouting of the kernel [79,80]. Thirdly, increase in the level of 
nitrogen-fertilization, which is known to increase the total amount of protein, results 
in an increase in the gliadin/glutenin ratio caused by an increase in the proportion 
of the gliadins [81]. 

Differences in the amount of groups of storage proteins have also been studied 
using biochemical separation techniques, viz. SDS-PAGE and Reversed Phase-High 
Performance Liquid Chromatography (RP-HPLC). Molecular weight regions of the 
storage proteins as determined by SDS-PAGE patterns correspond roughly to the 
various solubility classes [82]. Differences in the amount of proteins in these 
molecular weight classes were found between species related to bread wheat [82,83] 
and between varieties [84]. Sulphur deficiency during kernel development resulted 
in an increase in the relative amounts of the HMW glutenin subunits and of the co-
gliadins [85,86]. This is probably a consequence of the relatively low S-content of 
these proteins. An increase in the nitrogen fertilization resulted with three out of 
four varieties in an increase in the proportion of the gliadins, whereas the 
proportions of the albumins and globulins decreased. In contrast, the proportion of 
the glutenins seemed largely independent from differences in protein content [87]. 
In another study with different levels of nitrogen fertilization, it was shown by 
electrophoretic analysis of the gliadins that the proportion of the co-gliadins relative 
to the total amount of gliadins increased as kernel protein content increased [88]. 
Variation in growing location may also affect the relative amount of gliadins [89] 
and glutenin subunits [90], as determined by RP-HPLC analysis. Using the same 
separation technique, changes were shown during kernel maturation in the 
proportion of groups of glutenins (including the proportion of the HMW glutenins), 
in the amount of gliadins and in the ratio between the individual HMW glutenin 
subunits [91,92]. Also the location of the kernel in the spike affects the proportion 
of gliadins [92]. Pests during kernel filling may also affect the amount of proteins 
[93,94]. 

Care should be taken however with the interpretation of the results of Seilmeier et 
al. [91] and Huebner et al. [92]. In these studies, the gliadins and glutenins were 
isolated as solubility fractions, before a detailed analysis by RP-HPLC of the 



fractions. This could mean that the results reflect differences in the extractability of 
these proteins, rather than differences in the amounts produced by the plants. A 
study of Kruger and Marchylo [95] illustrates that the extractability of proteins may 
change. A part of the HMW glutenin subunits become soluble in 50% 1-propanol 
during germination, and may therefore be lost when isolating the glutenin as a 
solubility fraction. 

The above results show that the quantitative composition of the kernel proteins of 
wheat, which is of prime importance for the bread-making quality, is subject to 
environmental variation. The results obtained so far give no information on the 
nature of the underlying genetic variation, consequently it is not known whether the 
variation in amount of the protein fractions is amenable to plant breeding. 

Biochemical techniques as small-scale tests for predicting bread-making quality 
Knowledge of the relations between biochemical characteristics of the proteins and 
bread-making quality can be exploited in the development of small-scale tests for 
the prediction of the bread-making quality. A biochemical separation technique as 
HPLC can be a usefull test because it is relatively simple and fast and allows the 
use of small amounts of sample. 

The aggregation behavior of the kernel proteins has been related to bread-making 
quality. A high proportion of large aggregates, which probably corresponds with a 
high proportion of glutenin, has been related positively [55,96,97] or negatively [98] 
with bread-making quality. This contradiction can be caused by differences in 
extraction-efficiency; especially large aggregates appear to be poorly soluble [59]. 
Size Exclusion (SE)-HPLC for determining the aggregation behavior of the gluten 
proteins, has been suggested as a fast and relatively simple selection technique. A 
drawback of this technique is that the results of gel-filtration depend on the level of 
extraction. Furthermore, other flour components [99] may also affect the level of 
aggregation. 

The amount of glutenin subunits separated by RP-HPLC which are present in two 
peaks has been related to the bread-making quality [100]. The constituent proteins 
of these peaks were not identified. Regression equations to predict the bread-making 
quality, using the amount of the protein in these peaks as variables, allowed 
discrimination between poor, mediocre and good bread-making quality. In a second 
year of testing, the predictive power of the equations was lower [101], but still 
enabled discrimination between poor and good bread-making quality. 

The amount of gliadins too was related to bread-making quality. A specific 



region in a RP-HPLC chromatogram, named the 'Baking Quality Gliadin Fraction 
(BQGF), was negatively correlated with quality [102]. Samples grown at different 
locations were used, with different sets of varieties at each location. Correlation 
coefficients between the proportion of the gliadins in the BQGF fraction and the 
bread-making quality of varieties grown at the same location differed between 
locations and ranged between -0.61 to -0.93 [102]. In another year, these correlation 
coefficients were comparable [103]. For samples grown at different locations, the 
correlation coefficients between BQGF and bread-making quality was less than -
0.36 or were not significant [103]. Therefore, quantification of BQGF for predicting 
the quality can only be used to compare wheats grown at the same location. 
Peak regions of the 70% ethanol soluble proteins separated by RP-HPLC have been 
related to dough-extensibility but there was no relation with other dough 
characteristics and loaf volume [104]. 
The amount of the HMW glutenin subunits extracted in 50% 1-propanol relative to 
the amount of these proteins extracted in 50% 1-propanol + dithiothreitol was 
inversely related with dough strength. The ratio between the HMW glutenin 
subunits and the LMW glutenin subunits, extracted in 50% 1-propanol + 
dithiothreitol, increased with increasing dough strength [105]. The proteins were 
quantified using RP-HPLC. In a subsequent study, only the first relationship could 
be confirmed [106]. 

In conclusion, the studies using biochemical separation techniques have shown 
relations between the amount of specific groups of proteins and bread-making 
quality. It is not known whether these techniques estimate the genotypic or 
phenotypic bread-making quality. It has not been proven either whether such tests 
are to be preferred to classical quality prediction tests. In general, the protein 
(peaks) are poorly characterized (with the exception of [105] and [106]); therefore 
the results can not be used to define specific components which contribute to the 
quantitative variation. 

The type of the gluten proteins, as determined by electrophoresis, is a major 
determinant of protein quality. There is a considerable knowledge on the relation 
between the bread-making quality and differences in the type of the gliadins (see 
[107-109]) and the type of HMW glutenin subunits (see [110,111], see also Chapter 
2 of this thesis). There is only limited information on this relation for the LMW 
glutenin subunits [112,113]. Because the type of the proteins is genetically 
determined, and not affected by variation in environmental conditions, these 
relations are of major importance for breeding for improved bread-making quality. 
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Genetics of the gluten proteins 
Bread wheat (J. aestivum) is an allo-hexaploid species. Each genome (denoted by 
A, B and D) is composed of 7 pairs of chromosomes (numbered 1 to 7). Glutenins 
and gliadins are encoded by genes at the following loci [11,63,66,114] 
- Glu-1 loci, located on the short arm of chromosomes 1A, IB and ID. Two 

closely linked genes encoding the HMW glutenin subunits are located at these 
loci [115]. 

- Gli-1 loci, located on the short arm of 1A, IB and ID, encoding the LMW 
glutenin subunits and the GO- and y-gliadins. 

- Gli-2 loci, located on the short arm of chromosomes 6A, 6B and 6D; encoding 
the a- and p-gliadins. 

In wheat varieties, an extensive allelic variation is present at these loci. For each 
of the Gli-loci, about 10 gliadin alleles were described [116], which are identified 
by differences in the mobility during A-PAGE of the gliadins encoded. For the 
LMW glutenin loci, 6 (A-genome), 9 (B-genome) and 5 (D-genome) alleles were 
described by Gupta and Shepherd [117]. Because the gliadin genes are linked to the 
LMW glutenin subunit genes at the Gli-I loci, the effects of allelic variation in 
gliadins and LMW glutenins cannot easily be distinguished. 

Figure 1.1 Separation of the storage proteins of seven wheat varieties by SDS-PAGE. The arrow 
indicates the direction of electrophoresis. The region of the gel which contains the HMW glutenin 
subunits is indicated by a bar. 
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The HMW glutenin subunit alleles are identified by the relative mobilities (R,„) 
during SDS-PAGE of the subunits encoded (Figure 1.1 and 1.2). For the three Glu-I 
loci, 3 (Glu-Al), 11 (Glu-Bl) and 6 (Glu-Dl) alleles have been described [118]. 
Landraces of wheat and wild relatives of T. aestivum contain a large number of 
alleles which are not present in established varieties. The number of possible 
permutations at the loci is therefore enormous. Because only the HMW glutenin 
subunits are studied in this thesis, literature concerning the gliadins and LMW 
glutenins will not be discussed hereafter. 

Because of their specific contribution to the dough properties, imparting visco-
elastic behavior to a dough, and because allelic variation has been related to 
differences in bread-making quality (see hereafter), the structure of the HMW 
glutenin subunit genes has been object of several studies. As the subunits are 
virtually insoluble in solvents traditionally used in biochemical studies, most of the 
knowledge of protein structure is derived from the nucleotide-sequences of the 
genes. The nucleotide sequence of a number of HMW glutenin subunits has been 
published [119-123]. These genes differ only slighdy in their sequences and have a 
similar basic structure: the N-termini of the mature subunits are preceded by a 21 
residues long signal peptide [120]. The mature subunit consists of three domains 
[see 124 for a review]; a central domain, composed of repetitive motifs and two 
non-repetitive domains at the N- and C-terminal part of the protein. The cysteine 
residues, which form inter-molecular disulphide bonds and as such being of 
importance for the bread-making quality, are primarily located in the N-termini. 
One cysteine residue is present in the C-terminal part and one cysteine residue is 
present in the central domain of some subunits. Sequences involved in the 
regulation of the gene expression, including the TATA and CAAT box, are present 
as well. A '-300 element', which is present in storage protein genes of wheat, 
barley and maize [121] may also be involved in the regulation of the expression of 
HMW glutenin subunit genes [120], although there is some controversy about its 
significance [125].The HMW glutenin subunits are synthesized only in the 
endosperm of the developing wheat kernel, and not in other tissues [see 126]. This 
tissue-specific expression is also observed when the genes are introduced in tobacco 
[127]. It has been established that a cw-acting 433 base-pair long element in the 
promoter region of the gene was essential for tissue specificity. In this segment, a 
40 base-pair enhancer element is present, which is located 170 bp upstream of the 
transcription initiation site of the particular gene studied, which encodes subunit 12 
in Chinese Spring. This enhancer is believed to be involved in the spatial and 
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temporal regulation of the gene expression [125]. 

Differences in quality of HMW glutenin alleles 
A large number of research groups studied allelic variation at the Glu-I loci in 
relation to the protein quality (see Chapter 2 of this thesis). This variation appears 
to be important for the bread-making quality in countries in western Europe [110], 
probably because of the low protein content of wheat grown in this area. In other 
countries, e.g. Canada, the Soviet Union and the United States, the protein content 
is higher and as such the protein quality appears to be less important [see 128]. 

At each locus, alleles have been identified which differ in their contribution to 
the bread-making quality (see Figure 1.2). 
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Figure 1.2 SDS-PAGE of the HMW glutenin subunit(s) encoded by alleles at the Glu-Al, Glu-Bl 
and Glu-Dl loci of wheat, respectively. The arrow indicates the direction of electrophoresis. A 
variety normally contains at each locus one of these alleles, although other alleles can occur. On 
the left hand side of each group of alleles is the banding pattern of the subunits of Chinese Spring. 
Reprinted with permission from Payne and Lawrence [118]. 

The contribution of the HMW glutenin subunit alleles to the quality has been 
determined by relating the presence or absence of an allele in varieties or in 
segregating progenies to the bread-making quality. Only the 'quality' of alleles 
which are most frequent in established wheat varieties has been determined. 
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Methods which enable a less time-consuming and a less expensive prediction of 
the contribution to the quality of an allele are not known. Attempts have been made 
to relate differences in the structure of the subunits to the differences in quality of 
the alleles. Differences in the length of a continuous (3-spiral of the central region of 
allelic subunits, which may contribute to the elastic properties of the gluten 
according to Tatham and coworkers [67], has been suggested as a cause of 
differences in quality [129]. Also the number of cysteine residues and the 
composition of the amino acids adjacent to the cysteines differs between subunits, 
but there is no evidence that this is causing the differences in quality [130,131]. 

A large amount (30%-79%) of the variation in bread-making quality between 
varieties has been ascribed to variation in the HMW glutenin subunit genotype (see 
Chapter 2). The HMW glutenin subunit alleles can therefore be considered as major 
genes in the quantitative trait bread-making quality. The 'high-quality' HMW 
glutenin subunit alleles which have been identified so far (Figure 1.2) can be used 
by plant breeders for improving bread-making quality. The question whether the 
HMW glutenin subunit alleles are also a useful selection criterion depends on their 
contribution to the variation in bread-making quality in breeding material. This 
contribution in breeding lines may differ from that in established varieties (see also 
Chapter 2). 

Outline of the thesis 
This thesis presents studies on the variation in the type and the amount of the 
HMW glutenin subunits in relation to the bread-making quality of wheat. In contrast 
to differences in the type of the HMW glutenin subunits, little is known about the 
variation in the amount of these proteins, especially about the mechanisms 
underlying this variation. This is remarkable because it is well known that 
differences in (relative) amounts of groups of gluten proteins (including the HMW 
glutenin subunits) have considerable effects on the bread-making quality. Therefore, 
in the research described here, genotypic and environmental variation in the amount 
of the HMW glutenin subunits has been studied. The results are discussed in 
relation to the possibilities to use variation in HMW glutenin subunit composition, 
qualitatively as well as quantitatively, in breeding for improved bread-making 
quality. The results can also be important for improving the quality of wheat for 
other applications, such as in the pasta-, pastry-, cookie- and starch-industry and for 
application of the gluten produced by the starch industry. 

In Chapter 2, the effect of variation in HMW glutenin subunit genotype on the 
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loaf volume is studied. The alleles were ranked for quality, but also the contribution 
of variation at the Glu-I loci to variation in bread-making quality was analyzed. To 
exploit the differences in contribution to quality of alleles in plant breeding, it is 
essential that these alleles can be identified unambiguously. However, this 
identification can be hampered by the wide allelic variation. Therefore, variation in 
the type of the subunits is studied in Chapter 3, with special emphasis on the 
limitations of SDS-PAGE for allele identification. Chapter 4 to Chapter 7 deal with 
variation in the amount of individual HMW glutenin subunits. Because the methods 
for quantification of the subunits all have drawbacks for this particular application, 
a new method has been developed (Chapter 4). In Chapter 5 and 6, the effect of 
variation in environmental conditions and the effect of genetic variation on the 
amount of the individual HMW glutenin subunits is studied. The results are used to 
study genetic variation in the amount of the subunits in a set of varieties in Chapter 
7. In Chapter 8, the level of expression of the HMW glutenin genes is investigated. 
It is shown that the level of gene expression can differ by a factor 2 within a 
variety. Furthermore, the relation between the contribution to the bread-making 
quality of an allele and the amounts of the subunits produced will be studied, a 
subject which has not been studied in the literature so far. 
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