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STELLINGEN 

De chromatine herrangschikkingen tijdens de meiotische profase vinden 

plaats door reorganisatie van het chromatine op nieuw-geassembieerde 

structuren (de synaptonemale complexen) die geheel of grotendeels 

bestaan uit meiose-specifieke componenten (dit proefschrift). 

Het uitblijven van een aantoonbare kruisreactie van 66n monoclonaai 

antilichaam met overeenkomstige eiwitten uit verschillende organismen 

betekent niet noodzakelijk dat de desbetreffende eiwitten slecht 

geconserveerd zijn (Hollingsworth and Byers, 1989, Genetics. 121, 445-

462) 

De bewering: "SC components are absent in hopl mutants, this raises 

the intriguing possibility that with the HOP1 protein a component of the 

SC that interacts directly with DNA has been discovered...." is 

verwarrend doordat het woord "component" eest als morfologische en 

vervolgens als biochemische term wordt gebruikt (Loidl, J. , 1991, 

Chromosoma. 100, 289-292). 

Elke poging om met antilichamen geseiecteerde cDNA's te bevestigen 

met behulp van antilichamen die opgewekt zijn tegen het 

translatieproduct van de betreffende cDNA's houdt een cirkelredenering 

in. 

De excessieve groei van het aantal uitzendbureau's heeft veel jongeren 

tijdelijk werk gegeven, maar heeft de kans op een vaste baan voor veien 

verminderd. 

De kwaliteit van een voetbalploeg wordt niet afgemeten aan de voetbai-

technische en tactische kwaliteiten maar aan het aantal doelpunten dat 

gescoord wordt. 
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7 Men kan zich bij een technische vinding als high definition television 

(HDTV) afvragen of de noodzaak voor de industrie tot produceren niet 

groter is dan de behoefte in de maatschappij. 

8 De trend om studies die een direct economische rol spelen met geldelijke 

middelen te bevoordelen leidt tot intellectuele verarming. 

9 Het feit dat alkohol-vrij bier veelal wordt ingedeeld bij alkohol-houdende 

dranken heeft meer te maken met het maatschappelijk acceptabel maken 

van het product dan met de werkelijke chemische samenstelling. 

10 Het veelvuldig opduiken van steeds nieuwere wapens in gebieden van 

strijd en de moeilijkheden de strijd aldaar te stoppen wijst op een grotere 

macht van de wapenhandel dan van de Verenigde Naties. 

11 Millitaire dienstplicht voor afgestudeerden is een vorm van 

kapitaalvernietiging. 

12 Voorkeursbeleid voor etnische minderheden en vrouwen leidt 

waarschijnlijk tot grotere maatschappelijke kansen voor deze groepen, 

maar kan ook leiden tot verlies van zelfrespect. 

13 Competitie in de wetenschap kan leiden tot versnelde vooruitgang maar 

ook tot verlamming. 

14 Oorzaken van problemen tussen verschillende bevolkingsgroepen moeten 

niet alleen bij betrokken groepen zelf gezocht worden, maar ook bij de 

wetgeving. 

Stellingen behorend bij het proefschrift "Identification and characterization of 

synaptonemal complex proteins of the rat" door H.H. Offenberg, te verdedigen 

op 26 januari 1993 te Wageningen. 



CHAPTER 1 

INTRODUCTION 



Introduction 

The life cycle of sexually reproducing eukaryotes is characterized by the alterna­

tion of haploid and diploid generations of cells. Haploid cells have a single set of 

chromosomes, diploid cells have two such sets (Figure 1). The transition from 

the haploid to the diploid phase takes place at fertilization, when two haploid 

cells (gametes) fuse to form a diploid zygote; the diploid phase switches to the 

haploid phase at meiosis. 

Figure 1. Life cycle of sexually reproducing eukaryotes (from Alberts et a/., 1983). 

Meiosis consists of two successive cell divisions, meiosis I and II. After pre-

meiotic S-phase, during the prophase of meiosis I, a series of chromatin re­

arrangements takes place by which homologous chromosomes condense, pair, 

recombine and segregate; the result is that at meiosis I diploid cells divide to 

produce haploid cells with new combinations of genes. Subsequently, at meiosis 
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II, the chromatids of each chromosome segregate; this division is very similar to 

a mitotic division. 

It is of fundamental importance for eukaryotic genetics to analyze the chromatin 

rearrangements of meiotic prophase at the molecular level. Not only is this 

essential for the interpretation of genetic crosses, but it may also provide insight 

into the evolutionary origin of meiosis. Nevertheless, only during recent years 

the molecular analysis of meiosis has got into its stride. This thesis describes 

some preliminary investigations to allow the analysis of meiotic prophase at the 

molecular level. 

Svnaptonemal complexes and the rearrangements of chromatin during meiotic 

prophase. 

In almost all eukaryotes analyzed thus far, the chromatin rearrangements of 

meiotic prophase are accompanied by the assembly and disassembly of nuclear 

structures that are specific for meiotic prophase nuclei: the synaptonemal com­

plexes or SCs (Moses, 1968). These are flat, zipper-like structures (Figure 2) 

which appear between paired homologous chromosomes. They consist of two 

compact proteinaceous axes, one along each homologue. These are connected 

by thin transverse filaments. On the transverse filaments, between the axes, 

there is another longitudinal structure, the central element or CE. Both LEs 

together with the CE make up the tripartite structure of the SC; homologues are 

called synapsed if they are connected by this tripartite structure. The assembly 

and disassembly of the SC closely correlates with the chromatin rearrangements 

of meiotic prophase: early in meiotic prophase (leptotene) proteinaceous axes 

are formed along the chromosomes; the axes of homologous chromosomes 

(homologues) are subsequently connected (during zygotene) by the transverse 

filaments, and the CE appears on the transverse filaments. The chromosomal 

axes are called lateral elements (LEs), where they make part of the tripartite 

structure, i.e. where chromosomes are synapsed (see Figure 3). In some 

species, for instance the tomato, the process of synapsis is preceded by so-

called presynaptic alignment (reviewed by Loidl, 1990); this is a rough align-



Figure 2. Detail of an ultrathin section of the nucleus of a pachytene spermatocyte of 
the rat. SC, synaptonemal complex; LE, lateral element; TF, transverse filament; CE, 
central element; Bar represents 150 //m (from K. Schmekel, with permission). 

ment of homologous chromosomes at a larger distance (about 300 nm) than the 

width of the SC (100 nm) (see Figure 4). During the pachytene stage of meiotic 

prophase homologues are synapsed along their entire length, and the SC ex­

tends from telomere to telomere. During diplotene the SCs are disassembled, 

and the now recombined chromosomes condense further (diakinesis) in prepara­

tion of the first meiotic division. During diakinesis chiasmata show up as the 

visible results of the reciprocal exchanges between non-sister chromatids of 
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Figure 3. The successive stages of meiotic prophase can be defined on the basis of -
morphological changes of the SC: leptotene (formation of proteinaceous axes along the 
homologues), zygotene (the start of the actual synapsis of homologous chromosomes), pa­
chytene (synapsis is complete; the SC extends along the homologues from telomere to 
telomere), and diplotene (disassembly of the tripartite structure) and diakinesis (SCs com­
pletely disassembled; further condensation of chromosomes, which are still connected by 
chiasmata; not shown) (From Alberts et al., 1983). 

homologues. 

The assembly and disassembly of SCs are accompanied by the appearance and 

disappearance of recombination nodules (RNs); these are small, electron dense 

structures which appear on the central element of the SC in zygotene and 

pachytene. In some species there are two classes of morphologically distinct 

RNs: early RNs, which are present in zygotene and early pachytene; and late 

RNs which occur in early and mid pachytene (reviewed by Carpenter, 1987). 

The distribution of late RNs along the bivalents (pairs of homologous 

chromosomes) is similar to that of chiasmata (Albini and Jones, 1988), and the 

number of late RNs correlates with the number of reciprocal recombination 

events (Carpenter, 1975; Stack and Anderson, 1986) or chiasmata (Albini and 

Jones, 1988). For early RNs no such correlations have been found (reviewed in 

Von Wettstein et al., 1984; Carpenter, 1987 and 1989): in general the number 

of early RNs is larger than the number of reciprocal recombination events (Stack 
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Figure 4. Early zygotene SC of the tomato; the axes of homologous chromosomes 
are aligned at a distance of about 300 nm, a phenomenon called presynaptic alignment 
(from J.H. de Jong, with permission). 

and Anderson, 1986; Albini and Jones, 1987). Most investigators tentatively 

agree that late RNs are located at crossover sites, and may be involved in the 

mechanism of crossing over (Carpenter, 1987). It is possible that early RNs 

have a function in homology search and/or homology testing, and that they give 

rise to gene conversions as by-product of these activities (Rasmussen and 

Holm, 1978; Carpenter, 1987, 1989) (see below). 

It seems likely that SCs are essential for the proper progress of meiotic 

prophase, because morphological alterations of SCs closely match the succes­

sive rearrangements of chromatin, and because the SC-structure has been 

conserved almost universally among eukaryotes. However, as yet no functions 

have been assigned with certainty to SCs. The analysis of SC functions is the 

major subject of the research project of which this thesis makes part. 



Hypotheses about SC functions. 

Information about possible SC functions comes from four different experimental 

approaches, namely (1) ultrastructural analysis of SC assembly in individuals 

with normal or aberrant karyotypes; (2) analysis of mutants with a defect in 

meiosis; (3) determination of the order of events during meiotic prophase and 

(4) biochemical analysis of purified SCs. 

Ad (1). From the ultrastructural analysis of SC assembly we know that the 

chromosomal segments that are synapsed are not always homologous: in 

zygotene, short segments of non-homologous synapsis can be observed with 

low frequency (Rasmussen and Holm, 1978); in early pachytene, synapsis 

appears to be largely homologous. The specificity of synapsis appears to relax 

in later stages of meiotic prophase: in late pachytene pairs of homologous 

chromosomes (bivalents) are synapsed along their entire length, irrespective 

(within limits) of structural differences such as inversions, duplications, 

translocations or deletions. This relaxation of specificity of synapsis has been 

called synaptic adjustment (Moses and Poorman, 1981). The observations of 

non-homologous synapsis shed doubt on a direct role of the SC in the recog­

nition of homology. 

Ad (2). Analysis of mutants with a defect in meiosis has been performed in 

several species (Baker et a/., 1976; Esposito and Klapholtz, 1981; Roeder, 

1990; Zickler, 1991; Maguire and Riess, 1991; Curtis and Doyle, 1991; 

Gulobovskaya, 1989), and many of these mutants have a defect in SC assem­

bly. As yet, for none of the mutations it has been proven with certainty that 

they directly affect the SCs, since the observed defects in SC (dis)assembly 

could be a cause as well as an effect of the disturbance of meiosis. However, 

what we have learned from these analyses is, that the SC is not essential for 

meiotic levels of recombination: certain mutants of yeast with reduced spore 

viability display normal or appreciable levels of correct meiotic reciprocal recom­

bination, but fail to assemble SCs (Rockmill and Roeder, 1990; Engebrecht and 

Roeder, 1989). 
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Ad (3). The order of events during meiotic prophase at the DNA-level and at the 

level of chromatin organization was studied by Padmore et al. (1991) in 

synchronized cultures of yeast. From this study it appears that the tripartite 

structure has no function in the initial event at the DNA-level preceding recom­

bination, namely site specific double strand scission (Nicolas et al., 1989), 

because the resulting double strand breaks occur prior to or concomitant with 

the first appearance of the tripartite structure of SCs (Padmore et al., 1991). 

Ad (4). We have chosen to approach the question about SC functions by 

biochemical analysis of SCs. For this purpose we have developed a procedure to 

isolate SCs from rat spermatocytes (Heyting et al., 1985; Heyting and Dietrich, 

1991) and to isolate monoclonal anti-SC antibodies (Heyting et al., 1987, 1989; 

Heyting and Dietrich, 1991). In this thesis, the isolation of several monoclonal 

as well as polyclonal anti-SC antibodies is described (Chapter 2). These an­

tibodies have been used for the identification and characterization of SC-com-

ponents (Chapter 3 and Chapter 6) and for the isolation of cDNAs encoding SC 

proteins (Chapter 4; Meuwissen et al., 1992, Chapter 5; Lammers et al., in 

preparation). These cDNAs now provide the means to perform targeted 

mutagenesis of genes encoding SC-components, and to study meiosis in 

mutants for which it has been proven that the primary defect concerns the SCs. 

To summarize our present knowledge about SC function: it is doubtful whether 

SCs play a direct role in the recognition of homology; SCs are not essential for 

meiotic levels of recombination, and the tripartite structure probably has no 

function in the initiation of recombination. What then could be the role of SCs? 

Several suggestions have been made, of which I will discuss four: (1) SCs help 

to resolve tangles of chromosomal axes; (2) SCs control the number and dis­

tribution of chiasmata; (3) SCs perform a test for long-range homology of 

chromosomes or (4) SCs help to prevent ectopic recombination. 

Ad (1). The need for a mechanism to prevent or resolve tangles of chromosomal 

axes during meiotic prophase is obvious, unless some specific chromosome 

arrangement already exists at the onset of meiosis (see discussion Loidl, 1990; 
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Heslop-Harrison and Bennett, 1990). Interlocking axial elements have been 

observed in zygotene nuclei of various organisms (Rasmussen and Holm, 1980). 

Kleckner et al. (1991) suggested that obstacles in the assembly of the tripartite 

structure can be sensed by the meiotic prophase cells. Progression through 

meiotic prophase is blocked until these obstacles have been removed or cir­

cumvented and complete tripartite SCs have been formed. Obstacles can be 

circumvented at later stages of pachytene, when the specificity of synapsis is 

relaxed or abandoned, and heterologous chromosomes (reviewed in Von 

Wettstein et al., 1984) or chromosomal segments (Moses and Poorman, 1981) 

are synapsed (see above). Meiotic prophase cells which succeed, with or 

without heterologous synapsis or synaptic adjustment, to form a complete set 

of entirely synapsed bivalents, have a better chance of producing viable meiotic 

products than cells which do not (e.g. De Boer and De Jong, 1989). According 

to this hypothesis mutation of genes encoding structural components of SCs 

will lead to a block in meiotic prophase. 

Ad (2). The need for at least some control of chiasma number and distribution is 

also clear: a minimum of one chiasma per bivalent is required to ensure proper 

disjunction, although there are exceptions to this rule (discussed by Hawley, 

1988). It is possible that the same control mechanism that might ensure the 

resolution of tangles, also ensures a minimum of one chiasma per bivalent: if 

the assembly of a stable tripartite structure starts at sites where reciprocal ex­

change has been initiated, a minimum of one chiasma per bivalent is ensured, 

provided that progress to diplotene is blocked until all bivalents are completely 

synapsed. This proposal implies that the cell can discriminate between initiated 

reciprocal and non-reciprocal recombination events (as has been suggested by 

Carpenter, 1987). 

The need for other aspects of chiasma distribution, like specific chiasma 

localization and chiasma interference (reviewed by Jones, 1984, 1987) is less 

clear. Egel (1978) proposed that possible sites of reciprocal exchange are es­

tablished before synapsis, and that the formation of the tripartite structure 

starts at these sites; the tripartite structure then prevents the establishment of 
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further possible sites of reciprocal exchange. This will result in positive chiasma 

interference. According to this view chiasma interference is simply the conse­

quence of the way in which the tripartite structure is nucleated and extended. In 

the context of this hypothesis it is conceivable that mutations in genes encoding 

certain SC components eliminate positive chiasma interference, without affect­

ing other aspects of meiosis. 

Ad (3). Whether there is a mechanism to test long-range homology as a precon­

dition for reciprocal exchange is still a matter of debate (see for instance discus­

sion in Carpenter, 1987). In various objects, for instance mice (De Boer and De 

Jong, 1989), reciprocal exchange between a translocated segment and the 

homologous segment at its original position occurs frequently, so apparently 

telomere-to-telomere homology is not required. However, in most cases the 

chance for such an ectopic reciprocal exchange (i.e. an exchange between 

homologous segments at non-homologous positions) is small if the translocated 

segment is short. Does this mean that at least long-range homology is required, 

or that the chance is small that short homologous segments find each other? 

Information from studies on maize (Maguire, 1977) argues against a test for 

long-range homology, but is compatible with nucleation of tripartite SC at sites 

where recombination has already been initiated: Maguire observed a 1:1 relation 

between homologous synapsis of certain chromosomal segments with inversion 

heterozygosity and crossing over within those segments. Also in yeast, ectopic 

recombination occurs frequently between short gene duplications which had 

been generated by transplacement; this indicates that pairing of extensive 

regions of homology is not required for recombination events (Lichten et a/., 

1987). What seems to be the rate limiting step in meiotic recombination is the 

activation of a locus to become an initiation site for recombination (by double 

strand scission); once activated, a locus can search the entire genome for a 

homologous partner with which to recombine (Haber et a/., 1991). The 

efficiency of a locus to serve as a donor for allelic or ectopic recombination 

depends possibly on a meiosis-specific chromosome organization by which 

some sequences are preferentially exposed for (homology search and) initiation 

of recombination (i.e. are hot spots of meiotic recombination, Lichten and 
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Haber, 1989). It is unlikely that the intact tripartite structure is required for such 

an effect, because in yeast initiation of recombination occurs before synapsis 

(see above, and Padmore et a/., 1991). However, it is possible that certain com­

ponents of SCs, for instance of the lateral elements, contribute to the meiosis-

specific chromatin organization by which certain loci become hot spots. 

Ad (4). Are the observations on ectopic recombination in yeast also valid for 

eukaryotes with larger genomes, for instance in mice? What then prevents 

ectopic recombination between the numerous repeated sequences in mice? Is 

recombination inhibited in regions containing repeats, or is only a limited number 

of sequences selected for homology search and initiation of recombination 

(Stern et a/., 1975)? If so, what determines this selection? Or is there a test for 

long-range homology mice, although there is no evidence for this in yeast? 

Recently, Kricker eta/. (1992) presented an interesting hypothesis how ectopic 

recombination could be prevented: what is required is (a) a mechanism by which 

homologous sequences of 20-200 nucleotides, depending on the species, in a 

heterologous environment (duplications) are accurately recognized, (b) a 

mechanism by which duplications are diversified and (c) a mechanism which 

can detect mismatches in heteroduplexes of imperfect repeats and eliminate the 

heteroduplexes containing these mismatches. 

The mechanism by which duplications are recognized is not yet known, but it 

seems likely that recognition involves base pairing (Selker, 1990; Faugeron et 

a/., 1990). Diversification mechanisms have been identified in some fungi 

(Neurospora crassa and Ascobolus immersus; Selker, 1990; Faugeron et a/., 

1990), and are suspected in other organisms including humans (Kricker et a/., 

1992). In N. crassa and A. immersus, after recognition of a duplication, 

cytosines are probably methylated and C-»T transition occurs by demethylation 

of 5-methylcytosine to thymine (Selker, 1990; Kricker et a/., 1992). At least in 

Neurospora and Ascobolus the diversification takes place prior to meiosis 

(Selker, 1990; Faugeron et a/., 1990). 

Radman (1988, 1989) suggested that a long patch mismatch repair mechanism 
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Figure 5. Molecular model of homology search by heteroduplex formation. 
Heteroduplex formation between homologues leads to synapsis. Heteroduplex formation 
between homeologous (diversified) sequences due to mismatches or unpaired residues will 
be resolved by LPMR like enzymes (see text for explanation). Only base-pair differences 
between the parental molecules are indicated: the hybrid region in this sketch (shown with 
dashes indicating hydrogen bonding) contains one A.G mismatch plus one unpaired C 
residue (as in a frameshift mutation) (according to Rayssiguier et a/., 1989). 

(LPMR), analogous to the mutL/mutS system in E.coli (Jones et a/., 1987; 

Rayssiguier et a/., 1989; Petit et a/., 1991) could serve to detect mismatches in 

heteroduplexes and eliminate the heteroduplexes containing these mismatches. 

He proposed that such a system contains gene products capable of recognizing 

a single mismatch in a 20-200 nucleotide-long stretch and an enzyme (helicase) 

capable of unwinding a heteroduplex in which a mismatch has been detected. 

Homeologous or non-homologous pairing attempts can be aborted by such a 

system (see Figure 5). If this hypothesis is correct, a mismatch repair-like 

system should be active during early meiotic prophase, when homologous 

chromosomes align, and recombination is initiated (Padmore et a/., 1991). 
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It is unlikely that components of a mismatch repair-like system make part of the 

SC, because the tripartite structure itself seems to be insensitive to homology: 

non-homologous synapsis is often observed (see above). However, it is possible 

that early recombination nodules contain mismatch repair enzymes, because the 

stages where a mismatch repair-like system is expected to be active correspond 

to the stages where early recombination nodules are observed. In zygotene, 

heterosynapsis could be the result of homeologous heteroduplex formation 

which is not yet recognized as such; in late pachytene, synaptic adjustment 

could result from heterosynapsis, which is not recognized anymore because the 

supposed mismatch repair-like system is no longer active. 

Summarizing, at present the function of the SC is not at all clear; most in­

vestigations discussed above exclude possible functions of SCs. Several ques­

tions concerning SCs remain unanswered, including their evolutionary and 

ontogenetic origin, their role in meiotic chromosome pairing and recombination, 

and the regulation of their (dis)assembly. In this thesis, I describe how we have 

elicited several antibodies directed against SC components. Using these anti­

bodies we have isolated cDNAs encoding four SC proteins (Offenberg et a/., in 

preparation. Chapter 4 this thesis; Meuwissen et a/., 1992, Chapter 5 this 

thesis; Lammers et a/., in preparation). For the analysis of the function of these 

proteins and of the function of SCs it is now possible to perform targeted 

mutagenesis of the corresponding genes and study meiosis in these mutants. I 

expect that the outcome of these mutagenesis experiments will bring along a 

series of surprises. 
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Summary 

Synaptonemal complexes were isolated from rat spermatocytes for the purpose 

of biochemical and morphological analysis. Several monoclonal antibodies were 

elicited against purified synaptonemal complexes to study the composition and 

assembly of these structures. Four classes of antibodies could be discriminated 

according to the polypeptides that they recognize on Western blots of purified 

synaptonemal complexes, namely antibodies recognizing (i) a 190-kDa11 

polypeptide; (ii) a 30- and a 33-kDa polypeptide; (iii) two polypeptides with 

molecular weights of about 120 kDa; and (iv) polypeptides with molecular 

weights of 66-55 kDa. The localization of these antigens within spermatocytes 

was analyzed light microscopically, by means of the immunoperoxidase techni­

que and ultrastructurally, by immunogold labelling of surface-spread 

spermatocytes. The 66- to 55-kDa polypeptides are not confined to synap­

tonemal complexes; rather, these polypeptides appear to be chromosomal 

components. The 190-, 30-, and 33-kDa polypeptides make part of the lateral 

elements of paired as well as unpaired segments of synaptonemal complexes. 

The distribution of the 190-, 120-, 30-, and 33-kDa polypeptides within the 

testis was analyzed by immunofluorescence staining of cryostat sections. All 

these polypeptides turned out to be specific for nuclei of zygotene up to and 

including diplotene spermatocytes. Only in some early spermatids could the 

190-, 120-, 30-, and 33-kDa polypeptides be detected, presumably in remnants 

of synaptonemal complexes. We conclude that the lateral elements of synap­

tonemal complexes do not arise by rearrangement of pre-existing components in 

the nucleus, but that their major components are newly synthesized during 

meiotic prophase. 

11 This paper was published in (1989) Genome, 3 1 , 81-87. The molecular 

weights reported for the identified proteins have been estimated on basis of 

their relative electrophoretic mobilities: in later Chapters these proteins are 

designated by their relative electrophoretic mobilities. For instance, the 30 kDa 

protein in this Chapter corresponds to the Mr 30,000 protein in later Chapters. 
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Introduction 

The first meiotic division is a specialized cell division during which the transition 

from the diploid to the haploid phase of the life cycle of sexually reproducing 

organisms takes place. A series of complex chromatin rearrangements precedes 

this division: after premeiotic S-phase the chromosomes condense, and 

homologous chromosomes pair, recombine, and segregate. All of these re­

arrangements appear to be mediated by synaptonemal complexes (SCs). These 

nuclear structures, characteristic for meiotic prophase cells, undergo a series of 

morphological alterations that correlate with the successive rearrangements of 

chromatin (Gillies, 1975; Lu, 1984; Moses et a/., 1984): at the beginning of 

meiotic prophase, an axial core is formed along each chromosome; the axial 

cores of homologous chromosomes are then aligned, and transversal filaments 

are formed between them (zygotene); when chromosome pairing is complete 

(pachytene), the structural elements of SCs include two lateral elements (LEs, 

the former axial cores), attachment plaques (APs) at the end of LEs by which 

SCs appear to be connected to the nuclear wall, transversal filaments between 

the LEs, and a central element (CE), which is formed on the transversal fila­

ments between the LEs. 

We want to study the structure and composition of SCs, the origin of their 

components as well as the regulation of their assembly-disassembly, to obtain 

more insight into the mechanisms of chromatin rearrangements during meiotic 

prophase. For this purpose we developed a procedure to isolate SCs (Heyting et 

a/., 1985) and elicited monoclonal antibodies (Mabs) against purified SCs (Hey­

ting et a/., 1987). In this paper we summarize the results, obtained up till July 

1988. 
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Results 

Isolation of SCs from rat spermatocytes. 

Figure 1 summarizes the protocol for the isolation of SCs. Two problems had to 

be solved for the isolation of these structures, namely to detach the SCs from 

the nuclear matrix (Comings et a/., 1976; lerardi et a/., 1983; Raveh and Ben-

Zeev, 1984) and to separate them from other subcellular structures. We began 

with purified spermatocytes, to avoid contamination of the final preparation 

with nuclear laminae (which are lacking from spermatocytes (Fawcett, 1966; 

Stick and Schwarz, 1983)), and sperm heads and tails. The effects of a variety 

of lysis conditions on spermatocytes were monitored by phase-contrast micros­

copy and electron microscopical analysis of agar filtrates of lysed 

spermatocytes. Agar filtration is a very useful technique to study the effects of 

successive steps of an isolation procedure, because it allows the inspection of 

the complete composition of a suspension. Those lysis conditions that appeared 

to cause aggregation, as indicated by an increased contrast in the nuclei of 

lysed spermatocytes, and clumping of cellular material in the agar filtrates were 

avoided. Ionic detergents, NaCI, and Mg2+ ions had to be omitted from the lysis 

medium to prevent aggregation. Lysis of spermatocytes in Triton X100, EDTA, 

and DTT at neutral pH yields swollen nuclei with thin SC-like structures. The 

SCs can be liberated from these swollen nuclei by digestion with DNAse II, 

which does not require Mg2 + . After DNAse II digestion the SCs can be 

separated from other nuclear components by centrifugation through 1.5 M 

sucrose. The resulting preparation consists of clean 60-80% pure SCs. Figure 2 

shows an agar filtrate of SCs, purified from late pachytene spermatocytes. In 

these SCs only fragments of the CE are present. SCs, isolated from early 

pachytene SCs have thinner LEs, and an apparently intact CE (not shown). 

Polypeptide composition of purified SCs. 

Figure 3 shows an SDS-polyacrylamide gel electropherogram of purified SCs 

from zygotene, early-mid pachytene, late pachytene, and diplotene SCs. The 
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Suspension of testicular cells 
(35 -day-old rats) 

I Purification of spermatocytes 

98-99% pure spermatocytes 

I Lysis in Triton X100, EDTA, and DTT 

Swollen nuclei with SCs 

I Digestion with DNase II 

SCs with debris 

I CentrHugation through 1.5M sucrose 

60-80% pure SCs 

Figure 1 . Protocol for the 
isolation of SCs. 

Figure 2. Agar filtrate of SCs, 
isolated from late pachytene 
spermatocytes; the SCs have thick LEs 
and few remnants of the CE. Bar, 1 //m. 

spermatocyte fractions were obtained after synchronization of spermatogenesis 

with hydroxyurea (HU), which kills spermatogonia in S-phase (Oud et a/., 1979). 

By purification of spermatocytes at successive points of time after release from 

a HU block (Dietrich and Mulder, 1981), spermatocyte populations enriched in 

zygotene (47% purity), early-mid pachytene (70% purity), or diplotene (90% 

purity) were obtained (R.J. Dettmers, C.Heyting, A.J.J. Dietrich, E.J.W. 

Redeker, and A.C.G. Vink, in preparation). SC preparations 60-80% pure could 

be isolated from early-mid or late pachytene SCs, with thick LEs, and only frag­

ments of the CE present. The major polypeptides in these preparations have 

relative electrophoretic mobilities (Mrs) corresponding to molecular masses of, 

respectively, 190, 130-120, 66-65, 55-53, 48, 45, 33, 30 and 26 kDa (Figure 

3, lanes c and d). The LEs of SCs from diplotene spermatocytes were often 

observed to disassemble into long sub-fibrils (not shown); the polypeptide com­

position of these preparations is more complex than that of pachytene SCs 
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Figure 3. SDS-polyacrylamide gel 
electrophoresis of SCs, isolated from 
spermatocytes in successive stages of meiotic 
prophase. Lanes a and b, SCs from zygotene 
spermatocytes, isolated 20 days after release 
from the hydroxyurea (HU) block; lane c, SCs, 
isolated from late pachytene spermatocytes, 
isolated 26 days after release from the HU block; 
lane d, SCs from early-mid pachytene 
spermatocytes, isolated 24 days after release 
from the HU block; lanes e and f, SCs from 
diplotene spermatocytes, isolated 31 days after 
release from the HU block. Molecular mass 
markers used are myosin, 200 kDa; 6-galac-
tosidase, 116 kDa; phosphorylase B, 94 kDa; 
bovine serum albumin, 67 kDa; ovalbumin, 43 
kDa; carbonic anhydrase, 30 kDa; trypsin in­
hibitor, 21 kDa. 7 to 18% linear gradient 
polyacrylamide gradient slab gel, stained with 
silver. 

Figure 4. Immunoblot 
analysis of anti-SC monoclonal 
antibodies. Lane a, 
polypeptides of purified SCs, 
separated on a 10% SDS-
polyacrylamide slab gel and 
stained with Coomassie blue; 
lane b, immunoblot after in­
cubation in Mab IX9D5; lane c, 
immunoblot after incubation in 
Mab IX5B2; lane d. im­
munoblot after incubation in 
Mab IX8E11; lane e, im­
munoblot after incubation in 
Mab M52F10;/anef, im­
munoblot after incubation in a 
control hybridoma super­
natant, elicited against fish 
brain homogenate. Molecular 
mass markers, see legend to 
Figure 3. 

(Figure 3, lanes e and f); this may be ascribed in part to proteolytic breakdown 

of SC components, as the SCs are falling apart in diplotene cells; however, pro­

teolytic breakdown cannot provide an explanation for the presence of some high 
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molecular mass polypeptides in diplotene SC preparations. 

The few SCs that could be isolated from the zygotene spermatocyte cell frac­

tion were fully paired early pachytene SCs; it is doubtful whether zygotene SCs 

can stand the isolation procedure. About 70% of the "zygotene" SC prepara­

tions consisted of contaminating chromatin and (or) nuclear matrix material. 

These preparations contain a relatively large amount of polypeptides with Mrs of 

66-55 kDa (Figure 3, lanes a and b); probably, (some of) these polypeptides do 

not originate from SCs, but from SC-associated material (see below). 

Monoclonal anti-SC antibodies. 

To find out which of the polypeptides in SC preparations make part of SCs, we 

elicited monoclonal antibodies against purified SCs and localized their antigens 

within spermatocytes. After immunization of mice, and fusion of their lym­

phocytes with myeloma cells, we screened the resulting hybridomas for the 

production of anti-SC antibodies by means of the immunoperoxidase technique 

and phase-contrast microscopy, applied to agar filtrates of lysed spermatocytes. 

We thus found 75 different anti-SC antibody producing clones, 47 of which 

react with polypeptides on Western blots of purified SCs. These 47 clones can 

be divided into four classes, according to the polypeptides with which they 

react (Table 1). Examples of these four classes will be discussed below. 

Localization of antigens. 

30- and 33- kDa polypeptides. 

Eighteen anti-SC Mabs react with a 30- and a 33-kDa polypeptide on im-

munoblots of SCs. The best characterized Mabs of this class are II52F10 (Figure 

4, lane e) and IX8G9. Their antigens have been localized ultrastructurally on the 

LEs of SCs of zygotene up to and including diplotene SCs (Moens et a/., 1987; 

Heyting et a/., 1987; Figure 6a). Both polypeptides are specific for meiotic 

prophase nuclei and are absent from mitotic chromosomes (Heyting et a/., 
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1988). Immunocytochemical staining of lysed spermatocytes with IX8G9 is 

shown in Figures 5d-5f. 

120- to 130-kDa polypeptides. 

We found 13 Mabs that react with polypeptides with Mrs of 120-130 kDa on 

Western blots of purified SCs. The best characterized Mab of this class is IX5B2 

Table 1 . Reaction pattern of Mabs elicited against purified SCs 

Prototype 

II52F10 
and IX8G9 

IX5B2 

IX9D5 

IX8E11 

Im-
munoblot 

(kDa) 

30 and 33 

120-130 

190 

66-55 

SCs of lysed 
spermatocytes 

(LM) 

paired 

+ 

+ 

+ 

+ " 

un­
paired 

+ 

-/ + 

+ 

+ b 

Reaction wi th: 

cryostat sec­
tions of rat 
testis (LM)' 

Spermato­
cyte nuclei 
(SCs) 

Spermato­
cyte nuclei 
(SCs or SC 
fragments) 

Spermato­
cyte nuclei 
(SCs), sperm 
heads 

not 
determined 

Surface-
spread 
spermato­
cytes (EM)* 

LEs (paired 
and un­
paired) 

Inner edge 
of LEs 
(paired) 

LEs 

SC- as­
sociated 
material 

No. of 
clones 

18 

13 

14 

2 

Note: LM, light microscopy; EM, electron microscopy. 
'Localization of antigens on cryostat sections and in surface-spread spermatocytes has 
been performed wi th prototype antibodies only. 
bSeries of dots on SCs. 

Figure 5. Immunoperoxidase staining of lysed spermatocytes with anti-SC 
monoclonal antibodies (a-c) Mab IX9D5; (d-f) Mab IX8G9; (g-i) Mab IX5B2; (j-l) Mab 
IX8E11. (a,d,g, and j) Zygotene; (b,e,h, and k) pachytene; (c,f,i and I) diplotene. Bright-
field illumination. Bar, 20 / /m. 
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Figure 6. Ultrastructural localization of the antigens of anti-SC monoclonal antibodies 
by immunogold staining of surface-spread pachytene spermatocytes, (a) Mab IX8G9; (b) 
Mab IX5B2; (c) IX9D5; (d) Mab IX8E11. Bar represents 0.5 jum. 

to 130-kDa polypeptides (Moens et a/., 1987); unfortunately the antigen of 

11115B8 could not be identified. 

The SC components that we have now identified all appear to be newly 

synthesized during meiotic prophase (Heyting et a/., 1988; this paper). Ap­

parently, the LEs of SCs do not originate from pre-existing structures in the 

nucleus. Thus, the chromatin rearrangements of meiotic prophase appear not to 

be affected by rearrangements of chromatin-supporting structures; rather, it 

appears that the chromatin has to detach from the lamina and (or) the nuclear 

matrix and to reorganize on the SCs. 

With respect to the further analysis of chromatin rearrangements during meiotic 

prophase, the following steps now appear feasible: the assembly of SCs can be 

analyzed by detailed immunocytochemical studies; the composition of SCs may 

be compared with that of mitotic chromosomes; changes in the pattern of 
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modifications of SC proteins in successive stages of meiotic prophase (if any) 

can be analyzed; and the genes coding for the newly identified SC components 

can be isolated by screening expression libraries of the rat testis with the anti-

SC Mabs; this should allow us to obtain more information about the amino acid 

sequence of SC polypeptides and possibly also about their function. 
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Materials and Methods 

Most of the procedures mentioned in this paper have been described before: the 

isolation of spermatocytes and SCs, and the procedures of agar filtration and 

one-dimensional SDS-polyacrylamide gel electrophoresis by Heyting et al. 

(1985); the preparation of anti-SC Mabs and the screening of hybridomas by 

Heyting et al. (1987); the immunogold staining of surface-spread spermatocytes 

by Moens et al. (1987); and the procedures of immunofluorescence staining of 

cryostat sections and of immunoblotting by Heyting et al. (1988). The 

procedures of fractionation of spermatocytes will be described in detail later by 

R.J. Dettmers, C. Heyting, A.J.J. Dietrich, E.J.W. Redeker, and A.C.G. Vink (in 

preparation). 
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Summary 

In this paper we describe an analysis of the tissue distribution of two recently 

identified components of synaptonemal complexes (SCs), an Mr 125,000 and an 

Mr 190,000 protein, in the male rat by immunoblot analysis and 

immunocytochemical techniques. We compared the tissue distribution of these 

antigens with that of two earlier identified SC components, an Mr 30,000 and 

an Mr 33,000 polypeptide. For this purpose we used monoclonal antibodies 

(Mabs), that react exclusively with SCs in lysed spermatocytes, and that recog­

nize the above mentioned antigens specifically in immunoblots of SC proteins or 

of nuclear proteins from spermatocytes; these were Mab IX9D5 (anti-190,000), 

Mab IX5B2 (anti-125,000), Mab II52F10 (anti-30,000 +33,000), and Mab 

IX8G9 (anti-30,000 +33,000). In the immunoblot experiments, we could detect 

the Mr 190,000 and Mr 125,000 antigens exclusively in blots of SC proteins or 

nuclear proteins from spermatocytes; these antigens were not detectable in 

blots of nuclear proteins from liver, brain, spermatogonia of spermatids or in 

blots of proteins from mitotic chromosomes or nuclear laminae. With the anti-

30,000 + 33,000 Mabs we obtained essentially the same result, except that 

Mab IX8G9, but not II52F10, recognizes a small amount of Mr 30,000 antigen 

in blots of nuclear proteins from spermatids and spermatogonia. Although this 

might be ascribed to contamination of the isolated spermatids and 

spermatogonia, we cannot exclude that a small amount of 30 kDa antigen is 

present in these cells. In the immunofluorescence analysis, the testis was the 

only tissue that reacted detectably with the above antibodies. Within the testis, 

spermatocytes and some early spermatids were the only cell types which con­

tained detectable amounts of antigen. The Mr 125,000 antigen was exclusively 

observed in nuclei of spermatocytes, from zygotene up to and including 

diplotene, in paired segments of SCs. The Mr 30,000 + 33,000 and 190,000 

antigens were present in paired as well as unpaired segments of SCs in nuclei of 

spermatocytes, from zygotene up to and including diplotene and in the nuclei of 

some early spermatids in presumed remnants of SCs. We conclude that SCs 

largely consist of meiosis-specific proteins. 
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Introduction 

During the prophase of the first meiotic division homologous chromosomes pair, 

and recombination takes place between non-sister chromatids of homologous 

chromosomes. These processes appear to be mediated by specific structures of 

the meiotic prophase nucleus, the synaptonemal complexes (SCs) (Von 

Wettstein et al., 1984). As yet, little is known about the ontogenetic and 

phylogenetic origin of these structures and about the regulation of their 

(dis)assembly. Elucidation of the ontogenetic origin of SCs is required to obtain 

insight into the mechanism of chromatin rearrangements in meiotic prophase: 

SCs might arise either from preexisting chromatin supporting structures in the 

nucleus like the nuclear matrix or the nuclear lamina, or from newly synthesized 

products. The latter possibility implies more drastic chromatin rearrangements. 

Elucidation of the phylogenetic origin of SCs or SC components might provide 

clues to the evolutionary origin of the whole process of meiosis. 

In this paper we concentrate on the ontogenetic origin of SCs. For this purpose, 

we developed a procedure to isolate SCs from spermatocytes of the rat, and 

elicited monoclonal antibodies (Mabs) against purified SCs (Heyting eta/., 1985, 

1987, 1989, Chapter 2 this thesis). In a previous publication we reported that 

two major components of the lateral elements (LEs) of SCs with Mrs of 30,000 

and 33,000 are specific for meiotic prophase nuclei (Heyting et al., 1988). In 

this paper we show by immunohistochemical and immunoblot analyses, that 

two recently identified SC antigens, with Mrs of 190,000 and 125,000 respec­

tively, also occur exclusively in meiotic prophase cells. One of these antigens 

(Mr 190,000) forms part of the LEs of paired as well as unpaired segments of 

SCs; the other antigen (Mr 125,000) is localized specifically on the inner edge of 

the LEs in paired segments (Heyting et al., 1989; Moens et al., 1987). Thus, 

with respect to their ontogenetic origin, it is gradually becoming clear that SCs 

are not derived from other chromatin supporting structures of the nucleus but 

that they are assembled from newly synthesized components during the 

prophase of the first meiotic division. 
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Results 

Immunoblot analysis. 

Table 1 shows the composition of the testicular cell fractions that were used for 

isolation of nuclei and immunoblot analysis. The conditions mentioned in the 

Materials and Methods section allow the isolation of almost spermatocyte free 

spermatogonia and spermatid fractions. The spermatid fraction contained 

Table 1 . Composition of the cell fractions used for proten immunoblot analysis 

Cell fraction Composition (% of identifiable cells) 

Spermato- Spermato- Spermatids Non-sperma-
gonia cytes togenic 

Spermatogonia 

Spermatocytes 

Spermatids 

93.1 

0.6 

0.9 

0 

98.5 

4.3 

6.9 

0.6 

94.0 

0 

0.2 

0.9 

Figure 1 . Immunoblot analysis of proteins of various nuclei and nuclear fractions with 
monoclonal antibodies (Mabs) IX9D5 (anti-M, 190,000), IX5B2 (anti-M, 125,000) and 
IX8G9 (anti-Mr 30,000 + 33,000). Samples containing about 60 //g of soluble protein or of 
3x107 SCs were loaded onto 2 cm wide slots of 16x20x15 cm 7-18% linear gradient SDS-
polyacrylamide gels. A 0.4 cm wide strip of each lane was stained with Coomassie blue; 
the remaining 1.6 cm was blotted onto a nitrocellulose filter. From these filters 0.3 cm 
wide strips were cut for incubation in hybridoma supernatants. The strips shown in A , B 
and C are from different gels. In A, the following samples were layered: lane I, synap-
tonemal complexes (SCs); lane II, rat liver nuclear laminae; lane III, rat mitotic 
chromosomes. B: Lane I, spermatocyte nuclei; lane II, liver nuclei; lane III, brain nuclei.C: 
lane I, SCs; lane II, spermatogonia! nuclei; lane III, spermatocyte nuclei; lane IV, spermatid 
nuclei. Each lane shows from left to right: Coomassie blue stained gel, and immunoblots 
incubated in respectively, Mab IX9D5 (anti-Mr 190,000), Mab IX5B2 (anti-Mr 125,000), 
Mab IX8G9 (anti-M, 30 ,000+ 33,000) and a control hybridoma supernatant. Molecular 
weight markers used are for A: myosin, 200 kDa; B-galactosidase, 116 kDa; 
phosphorylase B, 94 kDa; bovine serum albumin, 67 kDa; ovalbumin, 43 kDa; carbonic 
anhydrase, 30 kDa; trypsin inhibitor, 20 kDa; for B and C we used prestained molecular 
weight markers (BioRad), which were blotted together with the other lanes of the same gel 
onto nitrocellulose; the relative electrophoretic mobilities as specified by the manufacturer 
are shown. 
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primarily round spermatids and did not contain mature sperm heads; it was not 

possible to differentiate between all types of spermatogonia in the Giemsa-

stained preparations, thus, we cannot exclude that some early resting 

spermatocytes were scored as B-type spermatogonia. 

The reaction pattern of the anti-SC Mabs with immunoblots of nuclear proteins 

from various sources is shown in Figure 1. Like Mab II52F10 (Heyting et a/., 

1988), Mab IX8G9 exclusively recognizes Mr 30,000 and 33,000 proteins on 

blots of SCs or spermatocyte nuclei (Figure 1A, lane I, Figure 1B, lane I and 

Figure 1C, lanes I and III). Because Mab IX8G9 produces a severalfold stronger 

signal on blots than Mab II52F10 (compare Heyting et a/., 1988), Mab IX8G9 

was used for further immunoblot experiments. Mab IX8G9 does not recognize 

any proteins on immunoblots of nuclei from liver or brain (Figure 1B, lanes II and 

III) or on blots of purified liver nuclear laminae (Figure 1A, lane II) or of mitotic 

chromosomes (Figure 1A, lane III). This is consistent with results obtained 

earlier with Mab II52F10 (Heyting et a/., 1988). Mab IX8G9 produces a weak 

signal at Mr 30,000 on blots of purified spermatogonia (Figure 1C, lane II) or 

spermatids (lane V). From scans of the nitrocellulose strips we estimate that the 

intensity of this signal is at most 2 % of the intensity of the signal at Mr 30,000 

on the blot of spermatocyte nuclei (Figure 1C, lane III). 

The anti-Mr 190,000 Mab IX9D5 exclusively recognizes an Mr 190,000 protein 

in immunoblots of SCs or spermatocytes (Figure 1C, lanes I and III, Figure 1A, 

lane I and Figure 1B, lane I). It does not detectably recognize any protein on 

blots of nuclei from other sources (Figure 1B, lanes II and III and Figure 1C, 

lanes II and IV) or of nuclear laminae (Figure 1A, lane II) or mitotic 

chromosomes (lane III). Similarly, Mab IX5B2 (anti-Mr 125,000) only recognizes 

an Mr 125,000 protein on immunoblots of SCs or spermatocyte nuclei (Figure 

1A, lane I, Figure 1B, lane I, Figure 1C, lanes I and III) and does not react with 

any proteins from nuclei from other sources, liver nuclear laminae or mitotic 

chromosomes (other lanes in Figure 1). 
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Figure 2. Ultrastructural 
localization of the antigens of 
the Mabs IX9D5 (anti-M, 
190,000) a, IX5B2 {anti-Mr 

125,000) b and IX8G9 (anti-M, 
30,000 + 33,000) c, by im-
munogold staining of surface-
spread diplotene 
spermatocytes. Bar represents 
0.5 /vm. 
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Figure 3. Frozen sections of rat testis after immunofluorescence staining with Mabs 
IX9D5 (a), IX5B2 (b) and II52F10 (c); a, c and e, immunofluorescence; b, d and f, phase 
contrast of the same sections. Bar represents 50 /vm. 
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Immunolocalization of antigens. 

Figure 2 shows electron micrographs of pre-diffuse diplotene SCs after im-

munogold staining with Mabs IX8G9, IX5B2 and IX9D5, respectively. The Mr 

30,000 + 33,000 antigens as well as the Mr 190,000 antigen are localized 

specifically on the LEs of SCs in paired as well as unpaired segments (Figure 2a, 

c). The Mr 125,000 antigen is confined to the inner edge of the LE in paired 

segments (Figure 2b). In light micrographs of zygotene or diplotene cells, 

stained by the indirect immunoperoxidase technique with Mab IX5B2, SCs show 

up as a series of interrupted lines (Heyting et a/., 1989), while after im­

munoperoxidase staining with Mab II52F10 (Heyting et a/., 1987), IX8G9 or 

IX9D5 (Heyting et a/., 1989) SCs are visible as forked structures. 

In the immunofluorescence analysis of tissue sections, the testis was the only 

tissue that contained detectable amounts of antigen of Mab IX9D5, II52F10 or 

IX5B2 (not shown). 

Figures 3 to 6 show the result of immunofluorescence staining of frozen sec­

tions of the rat testis with these Mabs. As has been reported earlier for the Mr 

30,000 + 33,000 antigens (Heyting et a/., 1988), the Mr 125,000 and Mr 

190,000 antigens are confined to nuclei of spermatocytes and associated with 

the axes of SCs. The identity of the antigen-containing cells could be deduced 

from the stages of the seminiferous epithelium (Leblond and Clermont, 1952). 

The central tubules in Figure 3a to f are in stage VII to XI because of the 

presence of the relatively large spermatocytes with fully paired SCs and of 

round spermatids. All three tested Mabs react exclusively with the layer of 

spermatocyte cells in these tubules. Figure 3e (top left) also shows part of a 

tubule where two layers of cells react with Mab II52F10. These are stage XIII 

tubules which contain two layers of spermatocytes, one consisting of zygotene 

cells, the other of diplotene cells (Leblond and Clermont, 1952). Figures 4 to 6 

show details of such tubules. In Figure 4 the inner layer of spermatocytes is in 

diplotene and has partially unpaired SCs, while the outer layer is in zygotene 

(Leblond and Clermont, 1952). In the zygotene cells the anti-Mr 
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30,000 + 33,000 Mab II52F10 recognizes very short pieces of presumed SC 

axes, particularly in the outer rim of the nucleus (Figure 4e). The anti-Mr 

190,000 Mab IX9D5 produces an almost identical staining pattern (Figure 4a), 

while the anti-Mr 125,000 Mab recognizes paired segments of diplotene SCs, 

but does not react detectably with the early zygotene nuclei (Figure 4c). 

In Figures 5 and 6, the results of double staining experiments are shown, with 

polyclonal rabbit anti-Mr 30,000 + 33,000 and monoclonal mouse anti-Mr 

125,000 (IX5B2) as first antibodies, and horse anti-rabbit-TRITC and goat anti-

mouse-FITC conjugates as second antibodies. In Figure 5, the layer of diplotene 

spermatocytes has partially unpaired SCs (Figure 5b), which show up as inter­

rupted lines after staining with the anti-Mr 125,000 Mab (Figure 5c). The layer 

of zygotene cells contains short fragments of axial cores or LEs containing the 

Mr 30,000 + 33,000 antigen (Figure 5b), and very little Mr 125,000 antigen 

(Figure 5c). In Figure 6, the layer of diplotene cells has almost entirely unpaired 

SCs, still containing the Mr 30,000 + 33,000 antigens (Figure 6b), but not the 

Mr 125,000 antigen (Figure 6c). In the layer of zygotene cells the Mr 

30,000 + 33,000 as well as the Mr 125,000 antigens are detectable, particularly 

in the periphery of the nucleus. Thus, in immunofluorescence studies the Mr 

125,000 antigen becomes detectable at slightly later stages of zygotene than 

the Mr 30,000 + 33,000 (and Mr 190,000) antigens, while it disappears from 

earlier stages of diplotene cells. 

We also looked for the presence of antigens in frozen sections of rat liver and 

brain. However, in cell types other than spermatocytes we could not detect any 

SC antigens (not shown). The only exception is a reaction of Mab IX9D5 with 

Figure 4. Details of frozen sections of testicular tubules (stage XIII) with partially 
unpaired SCs in the layer of diplotene spermatocytes; immunostaining with Mabs IX9D5 
(a), IX5B2 (c) and II52F10 (e); a, c and e, immunofluorescence; b, d and f, phase contrast 
of the same section, z, zygotene; p prediffuse diplotene; s, Sertoli cell; t , spermatid; i, 
interstitial cell; g, spermatogonium; Bar represents 10 ym. 
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Figure 5. Details of a frozen section of a testicular tubule (stage XIII) with partially 
unpaired SCs in the diplotene spermatocytes, stained with polyclonal rabbit anti-M, 
30,000 + 33,000 and monoclonal mouse anti-Mr 125,000 (IX5B2) as first antibodies and 
horse anti-rabbit-TRITC and goat anti-mouse-FITC conjugates as second antibodies; a, 
phase contrast; b, TRITC fluorescence; and c, FITC fluorescence of the same section Bar 
represents 20 //m. 

sperm heads (Figure 3a). However, we doubt whether IX9D5 recognizes the 

same protein in sperm heads as in spermatocytes. Spermatids do not react with 

IX9D5, neither on immunoblots (Figure 1C, lane IV), or on frozen sections 

(Figures 3a, 4). 

Discussion 

The experiments described in this paper show that two recently identified 

components of SCs, with Mrs of 125,000 and 190,000 respectively, are 



47 

* * 

Figure 6. Details of a frozen section of a testicular tubule (stage XIII), with unpaired 
SCs in the diplotene spermatocytes. The section was immunostained as described in the 
legend of Figure 5. a, Phase contrast; b, TRITC fluorescence; c, FITC fluorescence of the 
same section. Bar represents 20 fjm. 

specifically detected in nuclei of meiotic prophase cells. We had drawn the 

same conclusion earlier for two other major components of SCs, with Mrs of 

30,000 and 33,000 (Heyting et a/., 1988); to this latter conclusion we should 

now add the proviso that we cannot exclude that a small amount of the Mr 

30,000 component is present in spermatogonia and/or spermatids. As we 

reported earlier (Heyting et a/., 1988), the anti-Mr 30,000 + 33,000 Mab 

II52F10 does not react detectably with immunoblots of nuclear proteins from 

spermatogonia and spermatids; however, Mab IX8G9, which produces a far 

stronger signal on immunoblots than Mab II52F10, reacts detectably with an Mr 

30,000 component of nuclei from spermatogonia or spermatids, although the 
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intensity of the signal is such that it can be explained from a possible con­

tamination of spermatogonia or spermatids with spermatocytes. After im­

munofluorescence staining we did not detect Mr 30,000 + 33,000 antigens in 

spermatogonia, but a small amount of evenly distributed antigen could have 

gone undetected. We did detect small spots of Mr 30,000 + 33,000 antigens in 

some early round spermatids (Heyting et a/., 1988), presumably in remnants of 

SCs; these could provide an explanation for the small amount of 30,000 antigen 

detected by Mab IX8G9 on blots of spermatid nuclei. Strictly spoken, we should 

keep the same proviso for the Mr 190,000 and M r 125,000 components of SCs 

as for the Mr 30,000 + 33,000 components, namely that small amounts of these 

antigens (less than 2% of the spermatocyte level) in non-spermatocyte nuclei 

may not have been detected. Like the Mr 30,000 + 33,000 antigens, the Mr 

190,000 and Mr 125,000 polypeptides are major components of SCs, and show 

up as heavy bands in silver or Coomassie blue stained SDS-polyacrylamide gels 

of purified SCs (see Heyting et a/., 1989, Figure 3). Thus, from these as well as 

experiments described earlier SCs emerge as structures composed of proteins 

that are largely or entirely specific for meiotic prophase cells. 

Other information concerning the ontogeny of SCs comes from molecular 

genetic analysis of meiosis-defective mutants of yeast: several genes, though 

not all (Alani et a/., 1990), that are required for the normal assembly of SCs are 

expressed specifically during meiotic prophase and some of these might encode 

SC components (Hollingsworth eta/., 1990; Engebrecht et a/., 1990). 

One of the implications of the meiosis specifity of SCs is that the characteristic 

chromatin rearrangements of the meiotic prophase, namely folding of chromatin 

fibers into loops, as observed in Bombyx (Rattner et al, 1980 and 1981), con­

densation of chromosomes, pairing, recombination and segregation, are not 

accomplished by rearrangement of the structures to which chromatin is already 

attached, but by detachment of chromatin from supporting structures like the 

nuclear lamina and re-attachment to a new, meiosis-specific structure. 



49 

The identification of SC components is far from complete: the composition of 

the transversal filaments has not yet been elucidated and several polypeptides, 

with Mrs of 90,000, 48,000, 45,000 and 26,000, consistently copurify with 

SCs (see Heyting et a/., 1989, Figure 3); we think it likely that there are SC 

components among them. It is thus still possible that certain (minor) com­

ponents of SCs are not newly synthesized. 

Although the main purpose of this investigation concerns the analysis of the 

tissue distribution of SC components, the immunofluorescence experiments 

presented here also provide some information about the assembly of SCs. 

The Mr 30,000 + 33,000 and 190,000 components of the axial elements/LEs 

appear at the nuclear wall in early spermatocytes; the Mr 125,000 component 

of the central region appears later. This fits the observation that, at least in 

mouse spermatocytes, relatively long unpaired axial elements are formed during 

zygotene, often before any paired segments are detected (Dietrich and De Boer, 

1983, Figure 2a); it also fits the observation of Moens et a/. (1987), who found 

that in rat spermatocytes long segments of axial elements are labeled by an 

anti-Mr 30,000 + 33,000 Mab before they are paired. The Mr 125,000 com­

ponent disappears earlier than the Mr 30,000 + 33,000 and 190,000 com­

ponents. This is in agreement with morphological observations of diplotene SCs 

of the mouse, which first unpair almost completely before the axial elements fall 

apart (Solari, 1970; Dietrich and De Boer, 1983). The immunofluorescence 

staining by anti-Mr 30,000 + 33,000 and anti-Mr 190,000 Mabs is virtually 

indistinguishable. The antigens of both classes of antibodies are detectable as 

soon as and as long as fragments of SCs can be morphologically discerned, and 

possibly even longer, up to the early spermatid stage. This can be considered as 

an indication that these antigens do not serve some stage-specific process, but 

fulfil a structural function (cf. Moens et a/., 1987). The Mr 125,000 antigen, 

however, might have a specific function in chromosome pairing. 
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Materials and methods 

Purification of spermatogonia, spermatocytes and spermatids. 

Testicular cell suspensions were prepared by a modification of the procedure of 

Romrell et al. (1976), as described earlier (Heyting eta/., 1985). For purification 

of spermatogonia we started from 21-day-old rats, for purification of 

spermatocytes we used 27-day-old rats, and for spermatids we used 49-day-old 

rats. The cells were separated on the basis of their sedimentation velocity by 

centrifugal elutriation (Bucci et al., 1986) in a Beckman JE 6.1 rotor at 10° C in 

Spermatocyte Isolation Medium (SIM, Heyting and Dietrich, 1991) containing 

0 . 1 % bovine serum albumin (BSA). Spermatids and spermatocytes were iso­

lated at 1800 rpm and flow rates of 15 to 17.5 ml/min; spermatogonia at 2500 

to 1800 rpm and 15 ml/min and spermatocytes at 1800 rpm and 20 to 35 

ml/min. The cell fractions were washed once in SIM, and then further purified 

by density centrifugation in Percoll. The cells were resuspended in 25 ml 27% 

Percoll in SIM and the refractive index (ND20) was adjusted with SIM or 80% 

Percoll in SIM to 1.3398 (spermatids), 1.3400 (spermatogonia) or 1.3399 

(spermatocytes). The volume was then adjusted to 28 ml with a Percoll 

suspension in SIM with the same refractive index, and the cells were 

centrifuged for exactly 20 min. at 10,000 rpm and 20° C in siliconized Corex 

glass tubes in a Beckman JA21 rotor. Under these (non-equilibrium) conditions a 

shallow density gradient forms in the middle of the tube, with steep parts at the 

bottom and the top. In such a gradient cells tend to form two bands, one in 

each of the two steep parts of the gradient, while they are separated on the 

basis of tiny density differences in the shallow middle part of the gradient (see 

Heyting and Dietrich, 1991). For purification of spermatogonia or spermatocytes 

the (more dense) lower band was collected and for purification of spermatids 

the (less dense) upper band. 

The purified cell fractions were analyzed by differential counts of Giemsa-

stained preparations (Oud and Reutlinger, 1981). At least 200 cells were scored 

per preparation. 



51 

Isolation procedures. 

Nuclei from liver and brain were prepared according to Blobel and Potter (1966). 

Nuclei from spermatogenic cells were prepared according to the hypotonic 

lysis/Triton method, described by Meistrich (1975). Mitotic chromosomes were 

isolated from synchronized rat glioma cells according to Gooderham and 

Jeppesen (1983) as described by Heyting et al. (1988). SCs were isolated from 

rat testes as described earlier (Heyting et al., 1985, 1987). Nuclear laminae 

were isolated from rat liver nuclei according to Kaufman et al. (1983). 

Antibodies. 

Mab II52F10 (anti-Mr 30,000 + 33,000) has been described by Heyting et al. 

(1987). Mabs IX8G9 (anti-Mr 30,000 + 33,000), IX5B2 (anti-Mr 125,000) and 

IX9D5 have been described preliminary by Heyting et al. (1989). These three 

Mabs were obtained after immunization of a BALB/c mouse according to the 

following scheme: day 0: 5.1x108 SCs, mixed with complete Freund's adjuvant; 

day 14, 27 and 4 1 : 2.5x108 SCs, mixed with incomplete Freund's adjuvant. 

The immunizations were performed by intraperitoneal injection. At 76 h after 

the last injection the spleen cells were isolated and fused with SP2 mouse 

myeloma cells as described by Moorman et al. (1984). Screening and selection 

of antibodies was performed as described by Heyting et al. (1988). 

Other procedures. 

Electrophoresis, immunoblotting and immunofluorescence staining were carried 

out as described by Heyting et al. (1988) and Dunn (1986). After immunoblott­

ing and staining nitrocellulose strips were scanned with a Cybertech CS1 image 

documentation system (Cybertech, Berlin). Ultrastructural localization of 

antigens was performed by immunogold labelling of surface spread rat 

spermatocytes essentially as described by Moens et al. (1987). 
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CHAPTER 4 

A MAJOR COMPONENT OF THE AXIAL CORES OF MEIOTIC 

PROPHASE CHROMOSOMES WITH FEATURES OF A DNA-BIN-

DING PROTEIN 

H.H. Offenberg, R.L.J. Meuwissen, M. van Aalderen, H. Kester, and C. Heyting 
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Summary 

During meiotic prophase, as chromosomes condense, proteinaceous axes are 

formed along each chromosome. These axes become later the lateral elements 

(LEs) of the meiosis-specific structures that connect homologous chromosomes, 

the synaptonemal complexes or SCs. Using monoclonal anti-SC antibodies, we 

isolated cDNAs most probably encoding a major component of the lateral ele­

ments, the Mr 190,000 SC protein. 

The protein predicted from the nucleotide sequence of a full length cDNA, called 

SCP2, consists of 1294 amino acids and has a predicted molecular weight of 

148 kDa and an isoelectric point of 8.36. SCP2 is proline-rich, and contains 

several S/T-P-X-X (15x) and S/T-S/T-X-X (38x) motifs that are supposed to 

contribute to DNA binding by interaction with the minor groove. It shares these 

features with some recently characterized nuclear matrix components that bind 

to the minor groove of matrix attachment regions (MARs). Furthermore, SCP2 

has several potential phosphorylation sites, including target sites for p34cdc2 and 

cAMP/cGMP dependent protein kinases, that could play a role in the regulation 

of the assembly and disassembly of SCs. SCP2 has a limited amino acid 

sequence similarity to the RED1 protein of yeast, which is involved in the 

assembly of SCs. 

The gene encoding SCP2 is exclusively or predominantly transcribed in meiotic 

prophase cells. We tentatively conclude, that we have cloned the cDNA encod­

ing a major component of the LEs of SCs, and speculate that the predicted 

protein, SCP2, is involved in the structural organization of meiotic prophase 

chromosomes. 
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Introduction 

During the prophase of the first meiotic division the chromatin undergoes a 

complicated series of rearrangements as chromosomes condense, pair, recom-

bine and segregate. How the rearrangements are accomplished is still largely 

unknown. However, a meiosis-specific nuclear structure has been identified, the 

synaptonemal complex (SO, which undergoes a series of morphological al­

terations which correlate with the successive rearrangements of chromatin 

(reviewed in Von Wettstein et a/., 1984): after completion of premeiotic S-

phase, thin, proteinaceous axes are formed along each chromosome, presuma­

bly between the sister chromatids (leptotene); subsequently, the axes of 

homologous chromosomes are connected (synapsed) by transverse filaments, 

and a third longitudinal structure, the central element is formed between both 

axes. The axes are called lateral elements (LEs) where chromosomes are 

synapsed. Both LEs, together with the central element make up the tripartite 

structure of the SC. During pachytene homologous chromosomes are synapsed 

along their entire length, and within each bivalent the SC extends from telomere 

to telomere. Despite the correlation between SC morphology and chromatin 

rearrangements, it is not clear which role SCs fulfil precisely and how their 

assembly is regulated. Particularly with respect to the lateral elements there are 

several unanswered questions: are LEs comparable to the axes of mitotic 

chromosomes? How are the LEs assembled? Do they play any role in recombina­

tion (see reviews from Kleckner et a/., 1991; Loidl, 1990; Roeder, 1990)? If so, 

is this an inhibiting or an enhancing role? Or do LEs have a function in chiasma 

maintenance (Rockmill and Roeder, 1988) or sister chromatid cohesion 

(Maguire, 1990)? 

In order to address these questions, we developed a procedure to purify SCs 

from rat spermatocytes (Heyting et a/., 1985) and elicited monoclonal and 

polyclonal antibodies against purified SCs (Heyting et a/., 1987, 1989, Chapter 

2 this thesis). Four major components of SCs were identified by means of these 

antibodies, and localized within the SC (Heyting et a/., 1989): one component 

(Mr 125,000) was found specifically between the lateral elements in synapsed 
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regions of SCs (Heyting et al., 1989; Offenberg et al., 1991, Chapter 3 this 

thesis; Meuwissen et al., 1992, Chapter 5 this thesis); and three components 

(Mr 30,000, 33,000 and 190,000) were located in the LEs/axial elements in 

synapsed as well as unsynapsed segments of SCs (Heyting et al., 1987, 1988, 

1989; Moens et al., 1987; Offenberg et al., 1991). All these SC components 

occur specifically in meiotic prophase cells; they are absent from other cell 

types and from mitotic chromosomes (Heyting et al., 1988; Offenberg et al., 

1991). 

In this paper we describe the isolation and characterization of a cDNA encoding 

the Mr 190,000 protein of SCs. The polypeptide predicted from the nucleotide 

sequence, called SCP2, shares features with some DNA binding proteins, which 

make part of the nuclear matrix. In addition, SCP2 has target sites for p34cdc2 

and cAMP/cGMP protein kinases, which could play a role in the regulation of SC 

assembly and disassembly. Furthermore, SCP2 is has a limited amino acid 

sequence similarity to the yeast RED1 protein, which plays a role in the assem­

bly of yeast SCs (Thompson and Roeder, 1989; Rockmill and Roeder, 1990). 

We speculate that SCP2 is involved in the organization of meiotic prophase 

chromosomes. 

Results 

Isolation of cDNAs encoding the Mr 190,000 SC component (SCP2). 

In the experiments described in this paper we used six independently isolated 

monoclonal antibodies each of which recognizes exclusively the Mr 190,000 SC 

component (see Figure 1); this protein is a major component of the lateral ele­

ments (Heyting et al., 1989; Offenberg et al., 1991). Using a pool of these 

antibodies, we screened an expression cDNA library, that had been constructed 

from poly(A)+ RNA isolated from testes of 28-day-old rats (see Materials and 

Methods section). Among 3x10s recombinant phage of this library we found 10 

weakly reacting clones. For rescreening, lysed colonies were probed with the 

same pool of monoclonal antibodies; this yields a stronger signal than im-
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Figure 1. Immunoblot analysis of SC proteins 
with anti-Mr 190,000 monoclonal antibodies. 3x107 

SCs were loaded onto 2 cm wide slots of a 
16x20x15 cm 10% SDS polyacrylamide gel. The 
position of the Mr 190,000 SC protein is indicated. 
Lane 1: 0.4 cm wide strip of the lane stained with 
Coomassie blue; lanes 2 to 8: immunoblots in­
cubated in respectively Mab IX9D5, Mab IX8F1, 
Mab 1X1H9, Mab IX3E4, Mab IX2G11, Mab IX8B11 
and a control hybridoma supernatant. 

» 

munological screening of plaques. All cDNA clones analyzed had overlapping 

restriction enzyme maps. In order to isolate a full length clone we screened the 

cDNA library w i th the 5 ' EcoRI f ragment of clone 3C1 (see Figure 2). This 

yielded clone 5 (see Figure 2), w i th an insert size of 4 4 0 0 bp, wh ich extended 

500 bp further in the 5 ' direction than clone 3 C 1 . No clones w i th longer inserts 

could be detected in the cDNA library, either by screening w i th the 5 ' EcoRI-

Hindll l f ragment of clone 5 (see Figure 2) or by polymerase chain reaction 

(PCR). In search of longer inserts by means of PCR we used a clone-specific 5 ' 

primer, a vector-specif ic 3 ' primer (see Materials and Methods section), and the 

cDNA library as a template. No clones extending further in the 5 ' direction than 

clone 5 were detected by this procedure (see Figure 3). 
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Figure 2. Schematic map of cDNA clone 5, encoding SCP2. The hatched area 
represents the open reading frame. The solid bars in clone 3C1 and clone 5 indicate 
the sequenced parts. The arrow indicates the position of the RNA probes used for Nor­
thern analysis and in situ hybridization. Bar a indicates the probe used for secondary 
screening; bar b indicates the probe used for analysis of PCR products (see text). El, 
EcoRI; Hell, Hindi; Hdlll, Hindlll. 

The nucleotide sequence of clone 3C1 and parts of the sequence of clone 5 

were determined as described in Figure 2 and the Materials and Methods sec­

tion. No discrepancies were found between the sequences of these clones. 

Clone 5 contains a single open reading frame of 3885 nucleotides, encoding a 

protein of 1294 amino acids, with a calculated molecular weight of 148 kDa, 

and a calculated isoelectric point of 8.36. 

We think that clone 5 represents the complete cDNA encoding the Mr 190,000 

SC protein for the following reasons: first, the recombinant gene product is 

recognized by four of the six independently isolated monoclonal antibodies that 

were used for screening (not shown), each of which specifically recognizes the 
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Figure 3. Southern blot analysis of PCR products, 
with 3' EcoRI probe from clone 5. Lane 1: positive control, 
amplification with clone 5 in pBluescript as a template; 
lane 2: negative control, no DNA added; lane 3: negative 
control, no primers added; lane 4: amplification with cDNA 
A3 as a template; lane 5: amplification with cDNA A4 as 
a template (see Materials and Methods section). 

Mr 190,000 SC component (Heyting et al., 1989; Offenberg et al., 1991). 

Second, the predicted pi (8.36) is in good agreement with the observed pi of 

the Mr 190,000 SC component (Offenberg et al., Addendum to Chapter 4, this 

thesis) and third, the gene is predominantly or exclusively expressed in those 

cells which contain the Mr 190,000 SC component (see below). We therefore 

tentatively conclude that we have cloned the cDNA encoding a major com­

ponent of the LEs of SCs, for which we propose the name SCP2 (synaptonemal 

complex p_rotein 2). However, conclusive evidence has to come from com­

parison of the amino acid sequence of the Mr 190,000 SC component with that 

of SCP2; these analyses are in progress. 

The discrepancy between the relative electrophoretic mobility of the Mr 

190,000 SC component and the predicted molecular weight (148,000) of SCP2 

is probably due to the fact that SCP2 is a basic protein with a high percentage 

of proline residues. Proteins with these characteristics will migrate more slowly 

in SDS-polyacrylamide gels than can be expected on the basis of their molecular 

weight (Hames, 1990). A similar discrepancy between predicted molecular 
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weight and observed electrophoretic mobility has been found for other proteins 

with similar characteristics, for instance, the proline-rich protein RAP1 (Shore 

and Nasmyth, 1987). 

SCP2 has features of a DNA-bindinq protein. 

The predicted amino acid sequence of SCP2 was deduced from the nucleotide 

sequence of clone 5, and is shown in Figure 4. Predictions of the secondary 

structure of the polypeptide by means of the algorithm of Chou and Fasman 

(1978) did not reveal large-scale structural motifs. The protein is rich in B-turns. 

It contains several motifs that are of potential interest: the amino acid sequence 

is enriched in the S/T-P-X-X motif (15x), which is supposed to contribute to 

DNA binding, presumably by interaction with the phosphodeoxyribose backbone 

in the minor groove (Suzuki, 1989). In addition, SCP2 contains 38 so-called 

S/T-S/T-X-X motifs (some of which overlap with each other or with the S/T-P-X-

X motifs), which, according to Suzuki (1989), could mimic the conformation of 

the S/T-P-X-X motif. These motifs are localized in two clusters: one between 

amino acid residues 316 and 791, with 7 S/T-P-X-X motifs and 16 S/T-S/T-X-X 

motifs and one cluster between residues 874 and 1272, with 8 S/T-P-X-X and 

21 S/T-S/T-X-X motifs (see Figure 4; the S/T-P-X-X motifs are shaded). The 

region including these two clusters and the amino acid sequence between them 

is hydrophilic and basic, with a calculated pi of 9.52. 

The predicted amino acid sequence contains several protein kinase target sites: 

there is one p34cdc2 kinase target site which satisfies the consensus Z-S/T-P-X-Z 

(where X is a polar and Z a basic residue; Moreno and Nurse, 1990), at position 

655 and there are two p34cdc2 kinase target sites which satisfy the relaxed con­

sensus S/T-P-X-Z (Draetta, 1990), at positions 381 and 413. There are eight 

potential cAMP/cGMP-dependent protein kinase target sites (consensus: K/R-

K/R-X-S/T; Fremisco et a/., 1980), all of which are present in the central basic 

region of the protein. In addition, 48 protein kinase C target sites (consensus 

S/T-X-R/K, where X is any amino acid; Kemp and Pearson, 1990), 14 potential 

N-glycosylation sites (consensus N-{P}-S/T-{P}; Marshall, 1972; Miletich and 
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MIKQGLVOKM VSWFENSKEI ILSQRQSKDE AVMNMIEDLF DUMWYDVN DEGKNQVLES FIPHICALVI DSRVNFCIQQ 

EALKKMNLML DRIPQDANKI LCNQEILTLH SNMGERILDV GDYELQVGIV EALCRMTTEK RRQELAYEWF SMDFIANAFK 

KIKDCEFETD CRIFLNLVNG MLGDRRRVFT FPCLSAFLGK YELQIPSDEK LEEFUIDFNL GSHTLSFYIA GDDDDHQWEA 

VTVPEEKVDM YNIEVRESKK LLTLTLKNIV KISKKEGKEl LLYFDAALE1 TNVTKKLFGG NKYKEFTRKQ DISVAKTSIH 

VLFDASGSQI LVPESQPSPV KENLIHLKEK SNLQKKLTNP LEPDNSSSQR DRKNSQDEIT §|SRKKMSEA SHIVPDTDRY 

TVR||iiLIN TS|§§|SRAP LQAIHSAEKA VSKTSESGVD YAVSLKSROS DGRNRGNNRA NHNKTATVON KGHEHHESPp 

|TFNEIEETL SDAYAVEKVD KPVLPGVLDI SKNKAHSRWA CWTPVTTIKL CNNQRSCALP GOTFTQDTGV N K K C T K C K S V 

SDDDSEETQR VKYSKDVIKC NKSEEAEVCE RNIQEQNHPK YSQKKNTANA KKNDWHIESE TTYKSVLLNK TTEESLIYKK 

TCVLSKDVNT TICDK§g|IjjK SMRSHTKSRK ELMSEVTSCE LDEIPVRENS KGKRFTGTAE SUNLINKRY NSSDDMISTR 

KLKEPRDGSG FSKKPELQFN KVQRKSYRKL K T W N V T S E C PLNDVYNFSL NGADEPVIKL GIOEFQATTR EASMDNSIKL 

VDVRNRDERD LSLKTKDERI LSHERKTLFS DTETECGWDD SKTDISULRK PKSKRQUIIV EINTKKCKSI KSRSSTEKGQ 

PRSTWLSKN IAKNDYEVIV DGRTRLPRRA TKTKKNYKDL STSGSESESE KEISYLFKDK LPTKEETVHS SAQTKKLPKK 

QQKVFNTEAL KGQPSEEQKN SSTLRNGRED SLYLSSASVS GSSSSVEVMR CTEKITERDF TQDYDYITKS L | | | | K A A | | 

ipLNRSNRW GHGK||iisE TSAVCVRKSC SPASGLPF$J>H:RHTTKNNSVM NIKNTNSVIN NQRTQHCNSY SDVSSNSSEK 

L Y M E P E S P O S CENHVQSKRE ENHAASPFSL SSEKIEKIUF DMPNDNTHVS GPSQRGSKRR MYLEEDELSN PSEAEVOEAE 

EREHLVSKKL CQREHFDQHT SETSLSTPgf SVPKDWQQEL QGAGMFYDNI NSDYKRKTDT QHKIMDDFTT KTLKLTQQHL 
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Figure 4. Deduced amino acid sequence of SCP2. The single letter designations 
for amino acids are used. The S/T-P-X-X motifs are shaded. 

Broze, 1990) and 7 myristoylation sites (consensus G-{E/D/R/K/H/P/F/Y/W}-X-X-

S/T/A/G/C/N-{P}, where X is any amino acid; Towler, 1988) are dispersed all 

over the amino acid sequence of SCP2 (not indicated). Potential nuclear target-
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ing signals (consensus K-R/K-X-R/K, where X is any amino acid; Chelsky et a/., 

1989) are located at amino acid positions 160 and 865. 

Searching libraries of known sequences with the programs FASTA, BLAST, 

TFASTA and BLASTP (Pearson, 1990; Altschul et a/., 1990) did not reveal any 

large-scale similarities at either the nucleotide or the amino acid sequence level. 

However, a limited similarity was detected at the amino acid sequence level 

with the yeast RED1 protein (Thompson and Roeder, 1989; see Figure 5). Yeast 

redl mutants have a defect in SC-assembly (Rockmill and Roeder, 1990). The 

similarity includes only a small part of both proteins. In other aspects (pi, size) 

the RED1 protein and SCP2 are totally different. 

SCP2 335 SQPSPVKENLIHUEKSNLQKKI.TNPLEPDNSSSQRDRKNSQDEITTPSRICKMS 387 

:||:: I " I III = M U M = =ll l= = I I l = l 
RED1 564 GQPPSKKQKQFHKKEKKKQQKKLTNFKPIIDVPSQDKRNLRSNAPTKPKSIKVS 617 

Figure 5. Amino acid sequence comparison of SCP2 and the RED1 protein. The 
numbers to the left indicate for each protein the first amino acids where the similarity 
begins. Connecting lines indicate identical amino acid residues; colons indicate similar 
amino acid residues. 

The gene encoding SCP2 is expressed predominantly or exclusively during 

meiotic prophase. 

The antigens recognized by the anti-Mr 190,000 monoclonal antibodies occur 

exclusively in meiotic prophase cells (see Figure 1, and Offenberg et a/., 1991). 

Northern blot analysis, performed with anti-sense RNA probes (see Figure 2) 

revealed a single transcription product in poly(A)+ RNA from the testis, but not 

in RNA from other organs (Figure 6). Within the testis, we found that the ex­

pression of the gene encoding SCP2 occurs predominantly in the meiotic 

prophase cells, as determined by in situ hybridization (Figure 7). 
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Figure 6. Transcription of the gene encoding 
SCP2, analysed by Northern blot analysis. 15 fjg of 
poly(A)+ RNA from respectively, testis (T), kidney 
(K), brain (B), and liver (L) was layered per 0.5 cm 
wide slot of a 1 % agarose gel. After electrophoresis 
and blotting hybridization was performed with an 
RNA transcript of an 850 bp fragment of cDNA 
clone 3C1 (see Figure 2). Bars indicate the position 
of the 28 S and 18 S ribosomal RNA of the rat. The 
arrowhead indicates the top of the gel. 

Discussion 

The assembly and disassembly of synaptonemal complexes closely matches the 

successive rearrangements of chromatin during meiotic prophase. Nevertheless, 

it is still not clear which role SCs fulfil precisely in these rearrangements, and 

what triggers their assembly and disassembly. For the lateral elements several 

functions have been proposed. LEs could play an enhancing or inhibititing role in 

recombination (see reviews by Kleckner et a/., 1991; Loidl, 1990; Roeder, 

1990); they might be involved in chiasma maintenance (Rockmill and Roeder, 

1988) or in sister chromatid cohesiveness (Maguire, 1990). In order to study 

the nature and possible functions of LEs we have elicited Mabs that recognize 

specifically components of the LEs of SCs. In this paper we describe the isola-
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Figure 7. Localization of 
SCP2 transcripts in the testis 
by in situ hybridization. (A) 
Phase contrast micrograph of a 
transverse section of a 
testicular tubule; (B) localiza­
tion of SCP2 in the same 
section by indirect im­
munofluorescence staining 
with Mab 1X1H9 as primary 
antibody: this antibody made 
part of the pool of anti-Mr 

190,000 Mabs that was used 
for screening of the cDNA 
library; it recognizes the fusion 
protein of cDNA clones 3C1 
and 5. (C) Localization of 
SCP2 transcript in the adjacent 
section by in situ hybridization; 
a 35S-labelled anti-sense RNA 
transcript was used as a probe 
(see Figure 2). Note that the 
transcripts are present in the 
cytoplasm: nuclei are visible as 
"black holes". Bar represents 
50 pm. 

oq*» 
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tion and characterization of cDNAs encoding one of these proteins, the Mr 

190,000 SC protein, called SCP2, which is a major component of the lateral 

elements of SCs. 

SCP2 transcription is confined to meiotic prophase cells. 

The Mr 190,000 SC component occurs exclusively in meiotic prophase cells, i.e. 

spermatocytes (Offenberg et al., 1991) and oocytes (Dietrich et al., 1992). the 

experiments described in this chapter show that expression of SCP2 is regulated 

at the transcriptional level (Figures 6 and 7). A similar conclusion was reached 

earlier with respect to another SC protein, SCP1 (Meuwissen et a/., 1992). As 

far as we can judge from the in situ hybridization experiments, the transcripts of 

the genes encoding SCP1 and SCP2 occur in the same cells that contain the 

translation products. These results corroborate our earlier conclusion (Heyting et 

al., 1988; Offenberg et a/., 1991) that SCs originate by assembly from newly 

synthesized components rather than by rearrangement of preexisting nuclear 

structures. 

Sequence of the SCP2 gene. 

The amino acid sequence of the predicted protein SCP2 contains several motifs 

that are of potential interest: SCP2 contains one target site for p34cdc2 protein 

kinase which fulfils the consensus K-S/T-P-X-Z (Moreno and Nurse, 1990) and 

two sites which satisfy the relaxed consensus S/T-P-X-Z (Draetta, 1990). These 

sites could be important for regulation of the assembly and disassembly of the 

SC: mutation of CDC28, which encodes the S. cerevisiae analogue of p34cdc2, 

causes an arrest in pachytene (Shuster and Beyers, 1989); this suggests that 

the p34cdc2 protein kinase might play a role in the regulation of SC disassembly. 

The major component of the transverse filaments of SCs, SCP1, also has a 

target site for p34cdc2 protein kinase (Meuwissen et al., 1992). Besides the 

p34cdc2 kinase target sites, SCP2 contains eight target sites for cAMP/cGMP 

dependent protein kinase (Fremisco et al., 1980). It is possible that this protein 

kinase is also involved in the regulation of SC (dis)assembly: inhibition of 
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phosphorylation of nuclear lamins by cAMP/cGMP-dependent protein kinase 

plays a key role in the regulation of the disassembly of the nuclear lamina (Lamb 

et al., 1991). However, it still has to be sorted out whether the potential 

phosphorylation sites on SCP2 are actually phosphorylated in vivo, and whether 

this plays any role in the regulation of SC (dis)assembly. 

A major component of the lateral elements of SCs has features of a DNA bin­

ding protein. 

SCP2 is a structural component of the LEs of SCs. Its predicted amino acid 

sequence shares features with other proteins that have a function in chromatin 

organization. Several nuclear matrix proteins also contain S/T-P-X-X sequences, 

for instance yeast NUF1 (Mirzayan et al., 1992), mammalian nuclear matrix 

protein NUMA (Compton et al., 1992; Young et al., 1992), lamins (chicken 

lamin A, B1 and B2, Human lamin A and C; Peter et al., 1989; Vorburger et al., 

1989; McKeon et al., 1986; Fisher et al., 1986), repressor/activator site binding 

protein RAP1 (Shore and Nasmyth, 1987) and SAR DNA-binding protein SATB1 

(Dickinson et al., 1992). The nuclear matrix proteins RAP1 (Shore and Nasmyth, 

1987) and SATB1 (Dickinson et al., 1992) have been shown to bind to DNA, 

although no obvious similarity with conserved features of DNA binding proteins 

could be identified in these proteins besides the S/T-P-X-X motifs (Shore and 

Nasmyth, 1987; Dickinson et al., 1992). It is possible that SCP2 evolved by 

specialization of such a nuclear matrix protein. 

Possible functions of SCP2. 

The LEs of SCs differ from mitotic chromosome scaffold in several respects: 

first, the lateral elements of SCs largely consist of newly synthesized, meiosis 

specific proteins (Offenberg et al., 1991; this paper). Second, LEs are longer 

than fully condensed mitotic chromosomes. Third, their staining properties are 

different from mitotic chromosome scaffolds (Earnshaw and Laemmli, 1984). 

Fourth, topoisomerase II, which is a major component of the scaffold of mitotic 

chromosomes (Gasser and Laemmli, 1987), is localized adjacent to, not in the 
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LEs (Klein et a/., 1992; Moens and Earnshaw, 1989). At the end of meiotic 

prophase, the SCs, including the LEs, are shed from the chromosomes (Zickler 

and Olson, 1975; Sherman et a/., 1989; Kehlhoffner and Dietrich, 1983). In this 

respect the LEs are more similar to the nuclear matrix on which the chromatin is 

organized, than to the axes of mitotic chromosomes, which are axially localized 

within the chromatin. From cytological studies we know that the chromatin is 

organized on the LEs in loops (Weith and Traut, 1980), but how the chromatin 

is organized on the LEs is still not clear. 

It seems likely that the meiosis-specific components of SCs have a function that 

is not required during mitosis. For SCP2, with its features of a DNA-binding 

protein, we would like to consider a role in one or more of the following 

processes: attachment of chromatin to the lateral elements, homology search, 

initiation of recombination, sister chromatid cohesiveness and/or chiasma 

maintenance. 

It is possible that SCP2 organizes the chromatin in loops on the SC. SCP2 could 

be positioned on the loops by other factors that regulate the accessibility of 

chromatin. The S/T-P-X-X motifs are frequently found in gene regulatory pro­

teins (transcription factors), and often surround a specific DNA binding motif, 

like a zinc finger or a helix-turn-helix motif. Whether this is also the case for 

SCP2 is not known because it is not yet clear whether the sequences between 

the two S/T-P-X-X clusters have any DNA binding properties. It is possible that 

the S/T-P-X-X clusters allow SCP2 to interact with accessible DNA; competition 

with transcription factors could then direct the association of SCP2 with DNA. 

It is also possible that SCP2 has a function in homology search; for instance, 

SCP2 could selectively bind to certain sequences (analogous to SATB1, Dickin­

son et a/., 1992), and make these sequences accessible for homology recog­

nition proteins. If this hypothesis is correct, mutations in the gene encoding 

SCP2 will inhibit homologous chromosome pairing, and possibly also 

homologous recombination. 
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SCP2 could also play a role in the initiation of recombination. In yeast, several 

hot spots have been identified, where meiotic recombination is initiated by 

double-strand scission with a relatively high frequency (Sun et al., 1989; Cao et 

al., 1990); many but not all of these hot spots are localized within promotor 

regions (Nicolas et al., 1989). Furthermore, there are indirect as well as direct 

indications that DNA in hot spots is relatively accessible (Schultes and Szostak, 

1991; Shenkar et al., 1991). In this respect SCP2 could play a role by locally 

influencing chromatin structure, and preferentially exposing certain sequences 

for initiation of recombination. According to this hypothesis, mutations in the 

gene encoding SCP2 will lead to an altered recombination frequency and/or an 

altered distribution of recombination events. 

Another possible function of SCP2 concerns sister chromatid cohesiveness. For 

chiasma maintenance and the proper disjunction of chromosomes at meiosis I 

sister chromatid cohesiveness is thought to be essential (Maguire, 1990; 

Roeder, 1990; Von Wettstein et al., 1984). SCP2 has a limited amino acid 

sequence similarity to the yeast RED1 protein (Thompson and Roeder, 1989); 

this protein is essential for meiosis in S. cerevisiae, and is required for proper 

chromosome segregation at meiosis I (Rockmill and Roeder, 1988). S. cerevisiae 

redl mutants fail to assemble normal SCs during meiotic prophase, while 

meiotic recombination is not severely affected (Rockmill and Roeder, 1990). The 

amino acid sequence of RED1 protein also contains S/T-S/T-X-X (18x) and S/T-

P-X-X (8x) motifs. Nevertheless, we do not think that the RED1 protein is the S. 

cerevisiae homologue of SCP2: there is a lack of overall sequence similarity and 

both proteins differ in several respects: the RED1 protein has a much lower 

molecular weight (95.5 kDa) and isoelectric point (6.79) than SCP2 (Thompson 

and Roeder, 1989). If SCP2 has a role in sister chromatid cohesiveness, muta­

tions in SCP2 will lead to non-disjunction or a block in meiotic prophase. 

Summarizing, we speculate that a major component of the LEs of SCs directly 

interacts with DNA. The interaction with DNA is possibly enhanced by S/T-P-X-

X and S/T-S/T-X-X motifs, that are supposed to contribute to binding to the 

minor groove of DNA (Suzuki, 1989). 
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Materials and Methods 

Antibodies. 

The Mabs recognizing the Mr 190,000 SC protein were obtained after immuni­

zation of mice with rat SCs as described by Offenberg et al. (1991). Of these 

antibodies, Mab IX9D5 has been described in detail by Heyting et al. (1989) and 

Offenberg et al. (1991). 

Isolation of cDNAs encoding SCP1. 

For the isolation of cDNAs encoding the Mr 190,000 SC protein we constructed 

a Azap expression cDNA library of poly(A)+ RNA from the testes of 28-day-old 

rats, using a cDNA library construction kit (Stratagene, San Diego, USA). The 

synthesized cDNA (cDNA A) was packaged in five fractions; the resulting 

libraries were designated as cDNA library A1 to A5. Each of these five libraries 

consisted of 1.4x106 independent clones. The average insert size was ap­

proximately 2 kb, as determined by excision of a fraction of the total libraries 

and subsequent digestion with Xbal. We screened one of the libraries (cDNA 

A1) with a pool of six independently isolated Mabs, each of which recognizes 

the Mr 190,000 SC protein as primary antibodies, and a goat-anti-mouse 

alkaline phosphatase conjugate (Promega, Madison, USA) as secondary an­

tibody, using the western blot incubation procedure described earlier (Heyting et 

al., 1988; Dunn, 1986). Among 3x105 phage screened, 10 positive clones were 

found and purified. The purified clones had overlapping restriction enzyme maps 

and inserts ranging in length from 1100 to 3900 bp. The 5' EcoRI fragment of 

clone 3C1 (see Figure 2) was used for a secondary screening of cDNA library 

A5, in order to search for clones extending further in the 5 direction. This 

yielded clone 5 with an insert size of 4400 bp (see Figure 2). Labelling of the 

probe with [a-32P]dATP was performed by random primed labelling; labelling of 

the probe and screening were performed according to procedures described in 

Sambrook et al. (1989). 



72 

PCR. 

In search of cDNA clones extending further in the 5' direction than clone 5, we 

performed a PCR incubation with the cDNA libraries A1-A5 as a template, and 

oligonucleotides complementary to 5' sequences of clone 5 and to vector 

sequences (pBluescript SK) located at the 5' end of the cDNA inserts as 

primers. For this purpose, we excised pBluescript with inserts from the com­

plete ^zap® library according to the manufacturer (Stratagene). The PCR incuba­

tion involved 1 cycle 5 min. 95 °C, and 30 cycles 2 min. 51 °C, 1.5 min. 72 

°C and 1 min. 95 °C, followed by 15 min. 72 °C, and was performed with 

VentR™DNA polymerase (New England Biolabs Inc.). The amplification products 

were analyzed by Southern blotting and subsequent hybridization with a 5' 

EcoRI fragment of clone 5 as a probe (see Figure 2). 

Sequence analysis. 

The insert of cDNA clone 3C1 was subcloned into the pBluescript vector (SK+) 

according to the instructions of the manufacturer (Stratagene). From both ends 

of the insert of clone 3C1 we generated unidirectional sets of deletions by 

partial digestion with exonuclease III and S1 nuclease using the erase-a-base kit 

of Promega (Madison, Wisconsin, USA). In addition we subcloned several 

restriction enzyme fragments of the independently isolated cDNA clone 5 (see 

Figure 2) in pBluescript. We determined the nucleotide sequences by the di-

deoxy chain termination method of Sanger et a/. (1977), using [o-35S]dATP 

(650 Ci/mmol; Amersham Corp.), Taq polymerase (GIBCO/BRL, or Promega) and 

oligonucleotide primers complementary to the polylinker sequences of pBlue­

script. The sequence was assembled by means of the Wisconsin GCG sequence 

analysis package. Sequence similarity searches of the Gen EMBL, Swissprot and 

PIR data banks were carried out with FASTA, tFASTA (Pearson, 1990), BLAST, 

BLASTP and TBLASTN (Altschul et a/., 1990). Prediction of secondary structure 

was performed by means of a program based on Chou-Fasman algorithms 

(1978). 
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Immunocytochemical staining. 

Immunofluorescence staining of frozen sections of the rat testis was carried out 

with a 1:1 dilution of hybridoma supernatant containing Mab 1X1H9 as descri­

bed by Heyting et al. (1988) and Heyting and Dietrich (1991), except that the 

sections were mounted and fixed as described below for in situ hybridization. 

RNA isolation and Northern blot hybridization. 

RNA was isolated from various tissues of 37-day-old rats by the GuTC/LiCI 

method of Cathala et al. (1983); poly(A)+ RNA was purified by affinity chroma­

tography on oligo(dT)-cellulose (Aviv and Leder, 1972). RNA was electropho-

resed on formaldehyde/agarose gels and transferred to Hybond-N+ membranes 

(Amersham Corp.) by standard procedures (Sambrook et al., 1989). After 

transfer the membranes were washed in 3x SSC, dried and fixed with UV light 

(312 nm; 200 J/m2) for two minutes. As probes for Northern blot hybridization 

we used RNA transcripts produced with a 3' deletion clone, linearized with 

Hindlll, as template (see Figure 2). Transcription was performed from the T7 

promotor in the presence of [or-32P]rATP (3000 Ci/mmole). The Northern blot 

membranes were prehybridized in 50% formamide, 5x SSC, 50 mM Tris-HCI pH 

7.5, 0 . 1 % sodiumpyrophosphate, 1 % SDS, 0.2% PVP, 0.2% Ficoll, 5 mM 

EDTA and 150 //g/ml sheared herring sperm DNA for 6 hrs at 60°C. Hybridiza­

tion was performed in the same mixture with 0.07 /vg/ml probe (36x106 

cpm///g) for 17 hr at 60°C. Subsequently the blots were washed for 30 minutes 

at 65°C in successively 2x SSC 0 . 1 % SDS, 2x SSC 0 . 1 % SDS, 0.1x SSC 

0 . 1 % SDS and 0.1x SSC 0 . 1 % SDS. 

In situ hybridization. 

For in situ hybridization 10 /vm frozen sections were cut from testes of 3-

months-old rats at -19°C. The sections were mounted on 3-aminopropyl-tri-

ethoxysilane (Aldrich Chemical Corp.) coated slides, quickly air-dried at room 

temperature, and heated for 2 min. at 50°C on a hot plate. After further drying 
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for 1-2 hr. at room temperature the sections were transferred through graded 

ethanol (50% - 70% - 100%) air-dried, wrapped in aluminum-foil and stored at 

-80°C. To analyze the expression of SCP2, consecutive sections were, respec­

tively, stained immunocytochemically with Mab 1X1H9, and subjected to in situ 

hybridization. Before hybridization or immunocytochemical staining the sections 

were allowed to assume room temperature while still in the foil. For in situ 

hybridization they were pretreated as follows: 20 min. at room temperature in 

0.2M HCI, 5 min. wash in deionized water, 7.5 min. at 70°C in 2x SSC, 5 min. 

wash in deionized water, 20 min. at 37°C in 0.5 U/ml self digested pronase 

(Koch-Light, 41 U/ml), two rinses in 0.2% glycine in PBS, 2x 30 sec. wash in 

PBS, fixation for 20 min. at room temperature in 4% PFA in PBS, dehydration 

through graded ethanol and air-drying for at least 1 hr at room temperature. 

Hybridization was performed for 18 hr. at 55°C in 50% formamide, 0.3 M 

NaCI, 20 mM Tris-HCI pH 8.0, 5 mM EDTA pH 8.0, 10 mM NaH2P04/Na2HP04 

pH 8.0, 10% dextrane sulfate, 1x Denhardts (Denhardt, 1966), 0.5 //g/ml yeast 

tRNA and 2x105 cpm//yl 35S-labeled RNA probe (18x103 cpm/jug). The RNA 

probe was obtained by transcription from the T7-promotor of a 3' deletion clone 

which was linearized by digestion with Hindlll (see Figure 2); probe synthesis 

was performed in the presence of [o-3SS] rUTP (3000 Ci/mM, Amersham Corp.). 

After hybridization the sections were washed as follows: 30 min. in 5x SSC 10 

mM DTT at 55°C; 1 hour at 50°C in 50% formamide 5x SSC 20 mM DTT; 3x 

10 min. at 37°C in 0.5 M NaCI, 10 mM Tris, 5 mM EDTA pH 8.0; 30 min. at 

37°C in the same buffer with 20 /vg/ml RNAse A; 2x 15 min. in 2x SSC and 2x 

15 min. in 0.1x SSC at room temperature. Dehydration by quick transfer 

through 50%, 70%, 96%, 100% and 100% ethanol each including 0.3 M 

ammonium acetate, two rinses in 100% ethanol without ammonium acetate 

and air-drying. The sections were dipped in llford K5 nuclear track emulsion, 

exposed for 3 weeks at 4°C, developed in Kodak developer D19, and analyzed 

by dark field microscopy. 
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Other procedures. 

SCs were isolated as described by Heyting et al. (1985) and Heyting and 

Dietrich (1991); SDS-polyacrylamide gel electrophoresis of proteins was 

performed according to Laemmli (1970), as described by Heyting et al. (1985); 

immunoblotting was carried out according to Dunn (1986), as described by 

Heyting and Dietrich (1991). 

Acknowledgements 

We thank M. van lersel for performing part of the experiments in the course of 

his undergraduate study, and J.H. de Jong, P. de Boer and J.H.M. Lammers for 

fruitful discussions. 

References 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Mol. 

Biol.. 215, 403-410. 

Aviv, H., and Leder, P. (1972) Proc. Natl. Acad. Sci. USA. 69, 1408-1412. 

Cao, L. Alani, E., and Kleckner, N. (1990) Ceil, 6 1 , 1089-1101. 

Cathala, G., Savouret, J.-F., Mendez, B., West, B.L., Karin, M., Martial, J.A., 

and Baxter, J.D. (1983) DNA. 2, 292-435. 

Chelsky, D., Ralph, R., and Jonak, G. (1989) Mol. Cell. Biol.. 9, 2487-2492. 

Chou, P.Y., and Fasman, G.D. (1978) Adv. Enzvmol.. 47, 45-147. 

Compton, D.A., Szilak, J . , and Cleveland, D.W. (1992) J . Cell Biol. 116, 1395-

1408. 



76 

Denhardt, D.T. (1966) Biochem. Biophys. Res. Commun,, 23, 641-646. 

Dickinson, L.A., Joh, T., Kohwi, Y., and Kowhi-Shigematsu, T. (1992) Cell. 70, 

631-645. 

Dietrich, A.J.J., Kok, E., Offenberg, H.H., Heyting, C , de Boer, P., and Vink, 

A.C.G. (1992) Genome. 35, 492-497. 

Draetta, G. (1990) Trends in Biochem. Sci. USA. 15, 378-383. 

Dunn, S.D. (1986) Anal. Biochem.. 157, 144-153. 

Earnshaw, W.C., and Laemmli, U.K. (1984) Chromosoma. 89, 186-192. 

Fisher, D.Z., Chaudhary, L., and Blobel, G. (1986) Proc. Natl. Acad. Sci. USA. 

83, 6450-6454. 

Fremisco, J.R., Glass, D.B., and Krebs, E.G. (1980) J. Biol. Chem.. 255, 4240-

4245. 

Gasser, S.M., and Laemmli, U.K. (1987) Trends in Genet.. 3, 16-22. 

Hames, B.D. (1990) In: Gel Electrophoresis of Proteins. A Practical Approach., 

Hames, B.D., and Rickwood, D. (eds.), 2nd ed., IRL Press, 19-20. 

Heyting, C , Moens, P.B., van Raamsdonk, W., Dietrich, A.J.J., Vink, A.C.G., 

and Redeker, E.W.J. (1987) Eur. J . Cell Biol.. 43, 148-154. 

Heyting, C , Dietrich, A.J.J., Moens, P.B., Dettmers, R.J., Offenberg, H.H., 

Redeker, E.J.W., and Vink,A.C.G. (1989) Genome. 3 1 , 81-87. 

Heyting, C , Dettmers, R.J., Dietrich, A.J.J., Redeker, E.W.J., and Vink, A.C.G. 

(1988) Chromosoma. 96, 325-332. 



77 

Heyting, C , and Dietrich, A.J.J. (1991) Meth. Cell Biol., 35, 177-202. 

Heyting, C , Dietrich, A.J.J., Redeker, E.W.J., and Vink, A.C.G. (1985) Eur. J . 

Cell Biol.. 36, 307-314. 

Kehlhoffner, J.L., and Dietrich, J . (1983) Chromosoma. 88, 164-170. 

Kemp, B.E., and Pearson, R.B. (1990) Trends in Biochem. Sci. USA, 15, 342-

346. 

Kleckner, N., Padmore, R., and Bishop, D.K. (1991) Cold Spring Harbor Svmp. 

Quant. Biol.. 56, in press. 

Klein F., Laroche, T., Cardenas, M.E., Hofmann, J.F.-X., Schweizer, D., and 

Gasser, S.M. (1992) J . Cell Biol.. 117, 935-948. 

Laemmli, U.K. (1970) Nature. 227, 680-685. 

Lamb, N.J.C., Cavadore, J . -C, Labbe, J . -C, Maurer, R.A., and Fernandez, A. 

(1991) EMBO J.. 10, 1523-1533. 

Loidl, J . (1990) Genome. 33, 759-778. 

Maguire, M.P. (1990) Biochem. Cell. Biol.. 68, 1231-42. 

Marshall, R.D. (1972) Annu. Rev. Biochem.. 4 1 , 673-702. 

McKeon, F.D., Kirschner, M.W., and Caput, D. (1986) Nature. 319, 463-468. 

Meuwissen, R.L.J., Offenberg, H.H., Dietrich, A.J.J., Riesewijk, A., Van lersel, 

M., and Heyting, C. (1992) EMBO J. , in press. 

Miletich, J.P., and Broze, G.J. (1990) J. Biol. Chem.. 265, 11397-11404. 



78 

Mirzayan, C , Copeland, C.S., and Snyder, M. (1992) J. Cell Biol., 116, 1319-

1332. 

Moens, P.B., and Earnshaw, W.C. (1989) Chromosoma, 98, 317-22. 

Moens, P.B., Heyting, C , Dietrich, A.J.J., Van Raamsdonk, W., and Chen Q. 

(1987) J . Cell Biol.. 105, 93-103. 

Moreno, S., and Nurse, P. (1990) Ceil, 6 1 , 549-551. 

Nicolas, A., Treco, D., Schultes, N.P., and Szostak, J.W. (1989) Nature. 338, 

35-39. 

Offenberg, H.H., Dietrich, A.J.J., and Heyting, C. (1991) Chromosoma, 101, 

83-91. 

Pearson, W. (1990) Methods in Enzvmoloav, 183, 63-98. 

Peter, M., Kitten, G.T., Lehner, C.F., Vorburger, K., Bailer, S.M., Paridor, G., 

and Nigg, E.A. (1989) J. Mol. Biol.. 208, 393-404. 

Rockmill, B., and Roeder, G.S. (1990) Genetics. 126, 563-574. 

Rockmill, B., and Roeder, G.S. (1988) Proc. Natl. Acad. Sci. USA, 85, 6057-

6061. 

Roeder, G.S. (1990) Trends in Genet.. 6, 385-389. 

Sambrook, J . , Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning, a 

Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press. 

Sanger, F., Nicklen, S., and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA. 

74, 5463-5467. 



79 

Schultes, N.P., and Szostak, J.W. (1991) Mol. Cell. Biol.. 11 , 322-328. 

Shenkar, R., Minhua, S., and Arnheim, N. (1991) Mol. Cell. Biol., 11 , 1813-

1819. 

Sherman, J.D., Stack, S.M., and Anderson, L.K. (1989) Genome, 32, 743-753. 

Shore, D., and Nasmyth, K. (1987) CeJi, 5 1 , 721-732. 

Shuster, E.O., and Byers, B. (1989) Genetics. 123, 29-43. 

Sun, H., Treco, D., Schultes, N.P., and Szostak, J.W. (1989) Nature, 338, 87-

90. 

Suzuki, M. (1989) J . Mol. Biol.. 207, 61-84. 

Thompson, E.A., and Roeder, G.S. (1989) Mol. Gen. Genet.. 218, 293-301 

Towler, D.A., Gordon, J.I., Adams, S.P., and Glaser, L. (1988) Annu. Rev. 

Biochem.. 57, 69-99. 

Von Wettstein, D., Rasmussen, S.W., and Holm, P.B. (1984) Ann. Rev. Genet. 

18, 331-413. 

Vorburger, K., Lehner, C.F., Kitten, G.T., Eppenberger, H.M., and Nigg, E.A. 

(1989) J . Mol. Biol.. 208, 405-415. 

Weith, A., and Traut, W. (1980) Chromosoma. 78, 275-291. 

Young, C.H., Lambie, E.J., and Snyder, M. (1992) J. Cell Biol.. 116, 1303-

1317. 

Zickler, D., and Olson, L.W. (1975) Chromosoma. 50, 1-23. 



81 

ADDENDUM TO CHAPTER 4 

H.H. Offenberg, A.H.F.M. Peters, M. van Aalderen, and C. Heyting 



82 

Introduction 

This addendum describes the analysis of the antigens of six independently 

isolated Mabs, each of which recognizes an Mr 190,000 SC component. To find 

out whether these Mabs recognize the same or different SC components, SC 

proteins were separated by 2D electrophoresis, and blotted onto nitrocellulose. 

Incubation of the blots in the anti-Mr 190,000 Mabs showed that all Mabs 

recognize the same, basic Mr 190,000 component, and that different Mabs 

recognize different domains of this protein. 

Results 

Figure 1 of Chapter 4 shows immunoblots of SC proteins separated on a 1-

dimensional (1D) polyacrylamide-SDS gel, after incubation in different Mabs 

which recognize an Mr 190,000 SC component. In addition to the Mr 190,000 

protein, several bands of higher electrophoretic mobility are recognized by these 

Mabs. We interpret the "extra" bands as breakdown products of the Mr 

190,000 SC component. The other possible interpretation, namely cross reac­

tion of the Mabs with other SC proteins seems less likely, because the intensity 

of these bands relative to the Mr 190,000 band varies with the SC preparation. 

Cross reaction with contaminating proteins in the SC preparations cannot 

provide an explanation, because the Mabs bind exclusively to SCs in tissue 

sections or surface-spread spermatocytes (Heyting et a/., 1989, Chapter 2 this 

thesis; Offenberg et a/., Chapter 3 this thesis). Figure 1 of Chapter 4 shows 

that different anti-Mr 190,000 Mabs recognize different breakdown products. 

Three classes of anti-Mr 190,000 Mabs can be discriminated on the basis of the 

breakdown products that are recognized: class I antibodies (IX9D5 and IX8F1) 

almost exclusively recognize the Mr 190,000 band, and weakly some lower 

molecular weight bands. Class II antibodies (1X1H9 and IX3E4) recognize be­

sides the major Mr 190,000 band several weaker bands with Mrs between 

«60,000 and «70,000. Class III antibodies (IX2G11 and IX8B11) recognize a 

similar but slightly different pattern of bands compared to class I antibodies (see 

Figure 1, Chapter 4). 
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Figure 1 . Immunoblots of proteins of isolated SCs, separated on 2D gels after incubation 
in anti-M, 190,000 SC protein monoclonal antibodies. Samples containing 3x107 SCs were 
layered on a tube gel. Separation in the first dimension was performed by isoelectric focusing, 
with ampholines pH 3.5-10 and pH 5-8 mixed 1:4. Separation in the second dimension was 
performed on 7-18% linear gradient SDS-polyacrylamide gels. The gels were blotted onto 
nitrocellulose filters and incubated in hybridoma supernatants. A Immunoblot incubated in Mab 
IX9D5; B Immunoblot incubated in Mab 1X1H9; C Immunoblot incubated in Mab IX2G11 (Of 
immunoblots A and B the basic part is shown; immunoblot C is shown completely. Arrow 
indicates the Mr 190,000 spot). 
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The reactivity of the anti-Mr 190,000 antibodies with SC-proteins was further 

analyzed on blots of 2D gels (Figure 1). All anti-Mr 190,000 monoclonal an­

tibodies probably recognize the same Mr 190,000 protein, but again, different 

Mabs recognize different patterns of presumed breakdown products. Class I an­

tibodies only weakly react with 2D blots, the Mr 190,000 spot is hardly visible 

(see Figure 1A); this is probably due to the small amount of protein on this blot; 

class I antibodies react relatively weakly with the Mr 190,000 SC component, 

compared to the other two classes. Class II monoclonal antibodies recognize an 

Mr 190,000 protein at the same position as the spot recognized by class I 

antibodies (pi**9) and a series of spots with higher electrophoretic mobility and 

a higher pi ( > 9) (see Figure 1B). Class III monoclonal antibodies recognize the 

same Mr 190,000 spot, but the recognized spots of higher electrophoretic 

mobility have lower pl-values (see Figure 1C). Some of the lower molecular 

weight spots recognized by class I antibodies are also recognized by class III 

antibodies. 

Discussion 

The experiments described in this addendum show that the independently 

isolated anti-Mr 190,000 Mabs recognize the same, basic SC protein. The 

results obtained with blots of 2D gels can be explained if the Mr 190,000 SC 

component is a polypeptide with a "basic end" and an "acidic end". The "basic 

end" of the protein is then recognized by class II antibodies, which only bind to 

degradation products at the basic end of the 2D gel. The "acidic end" (pi*8?) of 

the protein is recognized by class III monoclonal antibodies. Immune incubations 

of fusion proteins produced by subclones of cDNA clone 3C1 (which encodes 

SCP2, see Chapter 4 this thesis) revealed that the translation product of 1 kb of 
» 

the 3' end of this clone can only be recognized by antibodies of class III; the 

part of SCP2 encoded by 1 kb of sequences derived from the 5' end of clone 

3C1 could only be recognized by class II antibodies (data not shown). This fits 

the observation that the C-terminus of SCP2, which is encoded by sequences at 

the 3' end of the cDNA, is more acidic than the N-terminal part. 
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We conclude that the SCs probably contain only one Mr 190,000 polypeptide. 

The epitopes recognized by the three different classes of monoclonal antibodies 

are probably localized in three different domains on this polypeptide. The pi of 

the Mr 190,000 SC component is fairly basic (pi « 9). 

Materials and Methods 

2D gel electrophoresis and immunoblotting were performed according to the 

procedures described in the Materials and Methods section of Chapter 6. 
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Summary 

Synaptonemal complexes (SCs) are structures that are formed between homo­

logous chromosomes during meiotic prophase. They are probably involved in 

chromosome pairing and recombination. Using a monoclonal anti-SC antibody 

we isolated cDNAs encoding a major component of SCs which is localized 

specifically in synapsed segments of meiotic prophase chromosomes. 

The protein predicted from the nucleotide sequence of a full-length cDNA, 

named SCP1, consists of 946 amino acid residues and has a molecular weight 

of 111 kDa. It shares several features with nuclear lamins and some recently 

identified nuclear matrix proteins. The major part of SCP1 consists of long 

stretches capable of forming amphipathic o-helices. This region shows amino 

acid sequence similarity to the coiled-coil region of myosin heavy chain. A 

leucine zipper is included in this region. The carboxy-terminus has two small 

basic domains and several S/T-P-X-X motifs, which are characteristic for DNA-

binding proteins. One of these motifs is a potential target site for p34cdc2 protein 

kinase. The amino-terminus is acidic and relatively proline-rich, but does not 

contain the S/T-P-X-X motif. The transcription of the gene encoding SCP1 is 

restricted to zygotene-diplotene spermatocytes. A polyclonal antiserum raised 

against the fusion protein of one of the cDNA clones recognizes a single protein 

on Western blots of isolated SCs, with electrophoretic mobility identical to that 

of the antigen recognized by the original monoclonal antibody (Mab), IX5B2. 

From a detailed comparison of the immunogold labelling of rat SCs by Mab 

IX5B2 and the polyclonal anti-fusion protein antiserum respectively, we tenta­

tively infer that the carboxy-terminus of SCP1 is orientated towards the lateral 

elements and that the other domains of the protein extend towards the central 

region between the lateral elements. We conclude that SCP1 is the major 

component of the transverse filaments of SCs, and speculate that it has evolved 

by specialization of a nuclear matrix protein. 
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Introduction 

Meiosis plays a central role in the life cycle of sexually reproducing eukaryotes. 

Its two major effects are to reduce the ploidy level and to generate new 

combinations of genes. Both effects are accomplished during the first of two 

meiotic divisions through a series of chromatin rearrangements by which 

homologous chromosomes pair, recombine, condense and segregate. The rear­

rangements of meiotic prophase chromatin are accompanied by the assembly 

and disassembly of meiosis-specific nuclear organelles, the synaptonemal com­

plexes (SCs) (reviewed in Von Wettstein et al., 1984). Early in meiotic prophase 

(leptotene), proteinaceous axes are formed along the chromosomes; the axes of 

homologous chromosomes (homologues) are subsequently connected by thin, 

transverse filaments, and another longitudinal structure, the central element, 

appears on the transverse filaments between the axes (zygotene). The central 

element together with both axes make up the tripartite structure of the SC. 

Axes are called lateral elements (LEs) where they make part of this tripartite 

structure. During the pachytene stage of meiotic prophase, homologues are 

connected (synapsed) by the tripartite structure along their entire length, and 

the SC extends as a flat, zipperlike structure from telomere to telomere. During 

diplotene the SCs are disassembled and the now recombined (Padmore et al., 

1991) chromosomes condense further in preparation of metaphase I. 

It seems likely that SCs are essential for the proper progress of meiotic propha­

se, because the morphological alterations of SCs closely match the successive 

rearrangements of chromatin, and because the SC structure has been conserved 

almost universally among sexually reproducing eukaryotes. Nevertheless, as yet 

no functions have been assigned with certainty to SCs. Information about 

possible SC functions comes from three different experimental approaches, 

namely the analysis of mutants with a defect in meiosis, the determination of 

the order of events during meiotic prophase, and the biochemical analysis of 

purified SCs. 
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Several mutants with a defect in meiosis have been described, and many of 

these also have a defect in SC assembly or disassembly (Baker et a/., 1976; 

Esposito and Klapholtz, 1981; Roeder, 1990; Zickler, 1991; Maguire and Riess, 

1991; Curtis and Doyle, 1991; Gulobovskaya, 1989). It has not been possible 

to identify SC functions from the analysis of these mutants because the ob­

served defects in SC (dis)assembly could be a cause as well as an effect of the 

disturbance of meiosis. However, what we do know from these analyses is that 

SCs are not essential for meiotic levels of recombination. Certain mutants of 

yeast with reduced spore viability display normal or appreciable levels of correct 

meiotic reciprocal exchange, but fail to assemble the tripartite structure 

(Rockmill and Roeder, 1990; Engebrecht and Roeder, 1989). 

Padmore et a/. (1991) analysed the order of events at the DNA level and at the 

level of chromatin organization in cultures of yeast, which progressed carefully 

synchronized through meiotic prophase. From this study it appears that the 

tripartite structure has no function in the initial events at the DNA level antece­

dent to recombination. One of the presumed earliest events at the DNA level, 

namely site-specific double-strand scission (Nicolas et a/., 1989), occurs prior to 

or concomitant with the appearance of the tripartite structure of SCs (Padmore 

et a/, 1991). From earlier cytological work it even appears that the tripartite 

structure itself is insensitive to homology in early as well as later stages of 

meiotic prophase (see reviews by Von Wettstein et a/., 1984; Carpenter, 1987; 

Loidl, 1990, and Kleckner et a/., 1991). 

We have chosen to approach the question about SC functions by biochemical 

analysis of SCs. For this purpose we developed a procedure to isolate SCs from 

rat spermatocytes (Heyting et a/., 1985; Heyting and Dietrich, 1991), elicited 

monoclonal anti-SC antibodies (Heyting et a/., 1987, 1989, Chapter 2 this 

thesis) and, using these antibodies, identified four major components of SCs 

(Heyting et a/., 1987, 1989; Moens et a/., 1987; Offenberg et a/., 1991, 

Chapter 3 this thesis). From these analyses we know that SCs are not 

assembled by rearrangement of the nuclear matrix or nuclear lamina, but that 

their major components are newly synthesized during meiotic prophase. 
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Apparently, the chromatin has to reorganize at the onset of meiosis onto a new, 

meiosis specific structure, but for what purpose this occurs we still do not 

know. 

Not only the function of SCs but also the regulation of their (dis)assembly and 

their phylogenetic origin are enigmas. Elucidation of the regulation of SC 

(dis)assembly may provide insight into the coordination of events at different 

levels of integration in the meiotic prophase cell. The phylogenetic origin of SCs 

or SC components may provide clues to the evolutionary origin of the whole 

process of meiosis. In this paper we describe the isolation of cDNAs encoding a 

Mr 125,000 protein of rat SCs. This protein is localized specifically in tripartite 

segments of SCs, between the lateral elements (Heyting et a/., 1989; Dietrich 

et a/., 1992). The protein predicted from the nucleotide sequence, called SCP1, 

has several interesting features. The major part is similar to proteins that are 

capable of forming o-helical coiled-coil dimers, such as the S2 domain of myosin 

heavy chain, or tropomyosin. The carboxy-terminus is enriched in the S/T-P-X-

X-motif, which is characteristic of DNA-binding proteins, and has two small 

basic domains. The protein has several potential phosphorylation sites that 

could play a role in SC assembly and disassembly. SCP1 is probably the major 

component of transverse filaments of SCs. 

Results 

Isolation of cDNAs encoding a major component of SCs. 

Using a pool of five independently isolated monoclonal antibodies (Mabs), each 

of which recognizes an Mr 125,000 SC protein (Heyting et a/., 1989), we 

screened about 106 recombinant phage of an expression cDNA library of 

poly(A)+ RNA from testes of 28-day-old rats. About 1 in 104 clones were recog­

nized by this pool. For 55 of these clones we analysed which of the Mabs could 

recognize their recombinant gene product, and in all cases this turned out to be 

a single Mab, IX5B2 (described in Heyting et a/., 1989, and Offenberg et a/., 

1991). Three clones with colinear restriction enzyme fragment maps were 
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Figure 1 . Restriction map of SCP1 cDNA and sequencing strategy. Arrows indicate 
the length and direction of the sequence determined of clone 536. For clone 536, the 
hatched segment indicates the coding region. For clone 566 and 113, the black segments 
were sequenced as controls for the sequence of clone 536. He, H ind i ; Hd, Hindlll; EV, 
EcoRV; P, Pstl. 

selected for further analysis (Figure 1). A secondary screening w i t h the 5 Pstl 

f ragment (between the Pstl site of the insert and of the polylinker of pBluescript 

at the 5 end, see Figure 1) of the insert of clone 536 as a probe did not yield 

any clones that extended further in the 5 direction than did clone 536 itself. 

The nucleotide sequence of clone 536 was determined as described in Figure 1 

and in the Materials and Methods sect ion. In addit ion, parts of the sequence of 

the independently isolated clones 566 and 113 were determined for ver i f icat ion. 

No discrepancies between the sequences of di f ferent clones were found, except 

for apparent deletions and duplications at the 3 end of some cDNA-clones, 

wh ich w e interpret as cloning artefacts. Clone 536 contains a single complete 

open reading frame which is capable of encoding a 111 kDa protein consisting 

Figure 2. Nucleotide sequence and predicted amino acid sequence of SCP1. The 
predicted translation product is shown below the nucleotide sequence. 



GGAATTCGGCACGAGTCGGGCTTCTAGGAGGTTCTGAGGCAGAAGCTCTCAGTTCCATTCGATGTCTTCATAAAGAAGCGCTCGCGGGCACGGAGCCTGCCATCGGGCCATGGAGAAGC 
AGAAGCGGAGCCTGCCATCGGGCCATGGAGAAGCAGAAGCCTTCACGTTGTTCGTCCCACCGAGACTGAGCAGCAGTCAAGTGTCGGCTGTGAAACCTCAGACGGCGGGAGGAGACTCC 
AACTACTTCAAGACTGTCAACAAATGCACAGAAGGTGATTTTGGTGTTCCATTGACA 

1 ATG TCC AGT CTA TCA AAA AAT CGG GAA AAC ATT GAT ACA GAT CCC GCT TTT CAA AAA CTT AGC ATT TTG CCC ATG CTT GAA CAG GTT GCA 
1 M S S L S K N R E N I D T D P A F Q K L S I L P M L E Q V A 

9 1 AAT TCT GGC AGT TGC CAC TAT CAG GAA GGA GTA AAT GAC TCT GAT TTT GAG AAT TCA GAG CCA ATG AGC AGA CTG TAC TCA AAG CTG TAT 
3 1 N S G S C H Y Q E G V N D S D F E N S E P M S R L Y S K L Y 

8 1 AAA GAG GCT GAA AAG ATA AAA AAG TGG AAA GTG AGC ATA GAG TCT GAA CTG AAG CAG AAA GAA AAT AAG TTG CAA GAA AAC AGA AAG ATA 
6 1 K E A E K I K K W K V S I E S E L K Q K E N K L Q E N R K I 

7 1 ATT GAA GCC CAG CGA AAA GCC ATT CAG GAA CTT CAG TTT GAA AAT GAA AAA GTA AGC TTG AAA TTA GAA GAA GAA ATT CAA GAA AAT AAA 
9 1 I E A Q R K A I Q E L Q F E N E K V S L K L E E E I Q E N K 

6 1 GAT TTA ATC AAG GAG AAT AAT GCT ACA AGA CAT TGG TGT AAT TTA CTC AAG GAA ACC TGT GCT AGA TCT GCA GAA AAG ACA AGT AAA TAT 
2 1 D L I K E N N A T R H W C N L L K E T C A R S A E K T S K Y 

5 1 GAA TAT GAG CGA GAA GAA ACC AGA CAA GTT TAT GTG GAT CTA AAT AAT AAC ATT GAG AAA ATG ATA CTA GCT TTT GAG GAA CTT CGT GTG 
5 1 E Y E R E E T R Q V Y V D L N N N I E K M I L A F E E L R V 

4 1 CAA GCT GAG AAT GCC AGG CTG GAA ATG CAC TTT AAG TTA AAG GAA GAT CAT GAA AAA ATC CAA CAT CTT GAA GAA GAA TAT CAG AAG GAA 
8 1 Q A E N A R L E M H F K L K E D H E K I Q H L E E E Y Q K E 

3 1 GTA AAC AAC AAG GAA AAC CAG GTA TCA CTA CTA TTG ATC CAA AGT ACT GAG AAA GAA AAT AAA ATG AAA GAT TTA ACA TTT CTG CTA GAG 
1 1 V N N K E N Q V S L L L I Q S T E K E N K M K D L T F L L E 

2 1 GAA TCC AGA GAT AAA GCT AAT CAA TTA GAG GAA AAA ACA AAA TTA CAA GAT GAA AAC TTA AAA GAA TTA AAT GAA AAG AAG GAT CAT TTA 
4 1 E S R D K A N Q L E E K T K L Q D E N L K E L N E K K D H L 

11 ACA TCA GAA CTT GAA GAT ATT AAA ATG TCC ATG CAA AGA AGT ATG AGC ACT CAG AAG ACT TTA GAG GAA GAT TTA CAG ATA GCA ACA AAA 
7 1 T S E L E D I K M S M Q R S M S T Q K T L E E D L Q I A T K 

0 1 ACG ATT TAT CAG CTC ACT GAA GAA AAA GAA GCT CAA ATG GAA GAA CTC AAC AAA GCT AAA ACT ACT CAC TCA CTT GTG GTG ACT GAA CTT 
0 1 T I Y Q L T E E K E A Q M E E L N K A K T T H S L V V T E L 

9 1 AAA GCC ACT ACA TGT ACC TTG GAG GAA TTA CTG AGA ACA GAA CAG CAA AGA TTG GAA AAT AAT GAG GAT CAA CTG AAA CTG ATT ACT ATG 
3 1 K A T T C T L E E L L R T E Q Q R L E N N E D Q L K L I T M 

8 1 GAG CTC CAG AAG AAA TCA AGT GAA CTA GAA GAG ATG ACT AAA TTT AAA AAT AAC AAA GAA GTG GAA CTT GAA GAA TTA AAA ACC ATA TTG 
6 1 E L Q K K S S E L E E M T K F K N N K E V E L E E L K T I L 

7 1 GCA GAA GAC CAA AAA CTT TTA GAT GAA AAG AAA CAA GTT GAG AAG CTT GCT GAA GAA TTA CAA GGG AAA GAA CAA GAA CTA ACT TTC CTT 
9 1 A E D Q K L L D E K K Q V E K L A E E L Q G K E Q E L T F L 

6 1 TTG CAA ACC AGA GAG AAA GAA ATC CAT GAT TTG GAA GTA CAA GTA ACT GTC ACT AAA ACA AGT GAA GAA CAT TAT TTA AAA CAG GTT GAA 
2 1 L Q T R E K E I H D L E V Q . V T V T K T S E E H Y L K Q . V E 

5 1 GAA ATG AAA ACT GAG CTT GAA AAA GAG AAA CTT AAG AAT ATT GAA TTA ACT GCA AAC TCT GAC ATG CTT TTG CTT GAG AAC AAA AAA TTG 
5 1 E M K T E L E K E K L K N I E L T A N S D M L L L E N K K L 

4 1 GTA CAA GAA GCA AGT GAT ATG GTC CTA GAA CTC AAG AAA CAT CAA GAA GAT ATC ATT AAT TGC AAA AAG CAA GAA GAA AGG ATG TTG AAA 
I 1 V Q E A S D M V L E L K K H Q E D I I N C K K Q E E R M L K 

3 1 CAA ATA GAA ACT TTG GAA GAA AAA GAA ATG AAT TTA AGG GAT GAA CTG GAA TCA GTA AGA AAA GAG TTC ATA CAG CAA GGA GAT GAA GTT 
1 1 Q I E T L E E K E M N L R D E L E S V R K E F I Q Q G D E V 

2 1 AAA TGT AAA TTG GAC AAG AGT GAA GAA AAT GCT CGA AGC ATT GAA TAT GAA GTT TTA AAG AAA GAA AAG CAG ATG AAG ATA TTA GAA AAT 
4 1 K C K L D K S E E N A R S I E Y E V L K K E K Q M K I L E N 

1 1 AAG TGT AAT AAT TTA AAG AAA CAA ATC GAA AAT AAA AGC AAG AAT ATT GAA GAG CTT CAC CAG GAG AAT AAA GCC TTG AAA AAA AAA AGT 
7 1 K C N N L K K Q I E N K S K N I E E L H Q E N K A L K K K S 

0 1 TCA GCA GAA AAC AAA CAA CTG AAT GCA TAT GAG ATA AAG GTC AAT AAA TTA GAG TTG GAA TTA GCA AGT ACC AAG CAA AAA TTT GAA GAA 
0 1 S A E N K Q L N A Y E I K V N K L E L E L A S T K Q K F E E 

9 1 ATG ATT AAC AAC TAC CAG AAA GAA ATT GAG ATA AAA AAG ATT TCA GAA GAA AAG CTT TTG GGA GAG GTT GAG AAA GCC AAA GCA ACA GTT 
3 1 M I N N Y Q K E I E I K K I S E E K L L G E V E K A K A T V 

8 1 GAT GAA GCC GTA AAG TTA CAG AAA GAA ATT GAT TTA CGA TGC CAA CAT AAA ATA GCT GAG ATG GTA GCA CTT ATG GAA AAA CAT AAG CAC 
6 1 D E A V K L Q K E I D L R C Q H K I A E M V A L M E K H K H 

7 1 CAA TAT GAT AAG ATT GTT GAA GAA AGA GAC TCA GAA TTA GGA CTT TAT AAA AAC AGA GAA CAG GAA CAG TCT TCA GCA AAG GTT GCT TTG 
9 1 Q Y D K I V E E R D S E L G L Y K N R E Q E Q S S A K V A L 

6 1 GAG ACT GAA TTA TCT AAT ATC AGA AAC GAA CTT GTA TCC CTT AAG AAG CAA CTT GAA GTA GAA AAA GAA GAA AAA GAG AAA TTA AAA ATG 
2 1 E T E L S N I R N E L V S L K K Q L E V E K E E K E K L K M 

5 1 GAA CAA GAA AAC ACA GCT ATT CTC ACA GAT AAA AAA GAC AAG AAA ATA CAG GCA TCT TTG CTG GAA TCA CCT GAA GCC ACT AGT TGG AAA 
5 1 E Q E N T A I L T D K K D K K I Q A S L L E S P E A T S W K 

4 1 TTT GAT TCT AAA ACA ACT CCC TCA CAA AAT ATA TCT CGG CTT TCC TCA TCA ATG GAT AGT GGC AAA TCC AAA GAT AAC AGA GAT AGT CTG 
T 1 F D S K T T P S Q N I S R L S S S M D S G K S K D N R D S L 

3 1 CGG GCA TCT GCC AAA AGC ATT TTA TCT ACA ACA GTT ACA AAG GAA TAT ACA GTG AAG ACA CCA ACT AAA AAG AGC ATA TAT CAA AGA GAA 
1 1 R A S A K S I L S T T V T K E Y T V K T P T K K S I Y Q R E 

2 1 AAC AAG TAT TTA CCT ACT GGA GGA AGT AAT AAA AAG AGA AAA ACT GTC TTT GAA TTT GAT GTT AAT TCA GAT AGT TCA GAA ACT ACT GAT 
4 1 N K Y L P T G G S N K K R K T V F E F D V N S D S S E T T D 

11 CTT TTG AGC TTG GTT TCA GAG GAA GAT ATA TCA AAC AGG ATT TAT AAT AAT AAT ACA CCA GAT TCT CAT CTA TTA GTC AAA ACT CCC AAA 
7 1 L L S L V S E E D I S N R I Y N N N T P D S H L L V K T P K 

0 1 CAG ACT CCT TTA TCT TTA TCA ACT CCT GCA TCT TTT ACG AAG TTT GGA AGT CTG AAA AAA ATG AGA GAA GAC CGT TGG GCA ACG ATT GCT 
0 1 Q T P L S L S T P A S F T K F G S L K K M R E D R W A T I A 

9 1 AAA ATT GAT AGG AAA AGA AGA CTA AAG GAA GCA GAA AAG TTA TTT ACT TAA 
3 1 K I D R K R R L K E A E K L F T * 

TTTCAGAAAATCAATGTTGGTTATAGAGACTAATAGTTAACTTTATTATTTCCCAGAGAGCCAAACTTTACTGAGGAATTCAGACTTTAAAATTAATTACATAAATAATTTGTTTGTTAT 
GTTTGTGGTCTAAATATAAAGTAACTATATTTGAATTTTTTTATTGTATTCAGATACTTAGATTTTGTTGCTTTTACTTGCAATGGATATTGAAATTCAAAGGTTTTTTTTGTTTTTGTT 
TTTTTTTTTTTTTGTCTTCTCCTCCCTACCCCCAAGAGCTGAGGACCAAACCCAGTGCTTTGTGCTTGCTAGGCAAGCGCTCTACCACTGAGCTTAATCCCTAACCCTGAAGTTCAAATT 
TTTTATTTTGAGCTTTTGACCATTAGAAATGCATTATCGAGACTTATAATTTATTCTTTATTATTAAAATATTTTGGATGCAAAAAAAAAAAAAAAAAA 
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of 946 amino acids (Figure 2). We think that this protein is identical to the SC 

protein recognized by Mab IX5B2 for the following reasons: first, the predicted 

molecular weight (111 kDa) and pi (5.5) are in reasonable agreement with the 

Mr (125,000) and pi (5.5, unpublished observations) of the SC protein recog­

nized by Mab IX5B2. Second, the gene encoding SCP1 is only transcribed in the 

testis, and within the testis only in those cells that contain the antigen recog­

nized by Mab IX5B2 (see below). Third, a polyclonal antiserum raised against 

the fusion protein of clone 536 recognizes a single band on immunoblots of 

purified SCs; the Mr of the recognized protein is identical to that of the antigen 

recognized by Mab IX5B2 (Figure 3). Fourth, the only structures that this antise­

rum recognizes in frozen sections of the testis (not shown) or in agar filtrates of 

lysed spermatocytes (Figure 4) are the SCs. Because the Mr 125,000 antigen 

that is recognized by Mab IX5B2 and by the polyclonal anti-fusion protein 

antiserum is a major component of SCs (Heyting et a/., 1989; Offenberg et a/., 

1991; Figure 3 lane a), we conclude that we have isolated cDNAs encoding a 

major component of SCs of 111 kDa. For this we propose the name SCP1 

(synaptonemal complex pjotein 1). 

SCP1 contains a large domain with similarity to coiled-coil segments of other 

proteins. 

The complete nucleotide sequence of cDNA clone 536 is shown in Figure 2, 

together with the amino acid sequence of the encoded protein. The first ATG 

codon is found at nucleotide 262. At the 3 end there is a sequence (nucleotide 

3380 to 3480) that is specific for the rat (Barta et al., 1981; Yavachev et a/., 

1986), and that occurs adjacent to several diverse rat genes. No other 

homologies were detected at the nucleotide sequence level. At the 3 end there 

is an untranslated region of 459 nucleotides, with a potential polyadenylation 

signal, AATAAA, at position 3206. 

The protein encoded by the open reading frame is rich in charged amino acids, 

particularly lysine (14.5%) and glutamine (16.3%). A large segment of the 

predicted protein, SCP1, namely amino acid residue 52 to 752 shows amino 
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h c d Figure 3. Immunoblot of proteins of rat SCs, probed with Mab 
- IX5B2 (lane b), a polyclonal antiserum, elicited against the fusion protein 

of cDNA clone 536 (lane c) and the pre-immune serum (lane d\. Lane a 
shows the Coomassie-blue stained gel. The Mr 190,000 and Mr 125,000, 
M, 33,000 SC proteins are indicated. Samples containing 3x107 SCs 
were loaded onto 2 cm wide slots of a 10% SDS polyacrylamide gel. A 
0.4 cm wide strip of each lane was stained with coomassie blue; the 
remaining 1.6 cm was blotted onto a nitrocellulose filter. From this filter 
0.25 cm wide strips were cut for incubation in anti-SC antibodies. 

il 

acid sequence similarity to the S2 fragment of several types of myosin heavy 

chain. The highest similarity was observed with myosin heavy chain of human 

embryonic fast skeletal muscle (16.5 % identity in a 689 amino acid overlap). 

Other proteins which showed sequence similarity to SCP1 include keratins, 

lamin B2, dystrophin and tropomyosin. All of these proteins are (predicted to be) 

capable of forming long coiled-coil dimers consisting of two amphipathic cr-

helices which associate through hydrophobic interaction. The amphipathic 

character of the or-helices arises by the regular spacing of hydrophobic amino 

acid residues in a so-called heptad repeat pattern; this is a repeat of a seven 

amino acid residue sequence with a strong enrichment of hydrophobic residues 

at the first and fourth of the seven positions. Because seven consecutive 

residues will form two turns of an a-helix, the residues at position 1 and 4 will 

form a hydrophobic ridge on one side of the molecule (McLachlan and Karn, 

1982). Figure 5 shows the a-helical regions of SCP1, predicted according to 

Chou and Fasman (1978). The region which shows similarity to myosin (residue 

52 to 752) is predicted to have an a-helical structure, with some interruptions. 

Within this region the heptad repeat pattern is clear: if single residues are 

skipped at positions 192, 543 and 709, the pattern strength for the heptad 
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Figure 4. Indirect immunoperoxidase staining of agar filtrates of lysed spermatocytes 
with a polyclonal antiserum elicited against the fusion protein of cDNA clone 536. (a) 
Zygotene stage; note short interruptions in the labelling of the SCs; (b) pachytene stage, 
arrowhead indicates the XY-bivalent with weakly stained unpaired axes; (c) Diplotene 
stage. Bar represents 10 //m. 

repeat, P7, for this domain is 28.55 (McLachlan, 1977); this value is highly 

significant (P<<0.001) and is comparable to values obtained for other coiled-

coil proteins (Beavil et a/., 1992). The heptad repeat has a number of small 

interruptions between residues 344 and 358, 361 and 372, 569 and 579, 590 

and 607 and 710 and 720; these do not contain proline residues, however, and 

do not disturb the heptad repeat frame. They will probably not interrupt the 

coiled-coil structure. Thus, a 700-amino acid stretch of SCP1, from residue 52 

to 752 is expected to be capable of forming a coiled-coil structure. This stretch 

would be about 100 nm long (Creighton, 1984). 
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Figure 5. Secondary structure predictions of SCP1. On the upper bar the predicted 
coiled-coil domain (amino acid 52 - 752) is indicated, with the interruptions in the heptad 
repeat shown in black; these interruptions do not affect the frame of the heptad repeat. 
The lower bar shows the regions capable of forming a-helices, as predicted by the al­
gorithm of Chou and Fasman (1978). The predicted a-helical domain has short 
interruptions which also do not affect the frame of the heptad repeat. 

The amino- and carboxy-terminal domains that flank this structure are 52 and 

194 amino acids long, respectively. All of the proline residues fall into these two 

domains. In the carboxy-terminal domain, seven out of eight proline residues are 

preceded by a serine or threonine residue. This S/T-P sequence makes part of 

the so-called S/T-P-X-X-motif, which is enriched in all sorts of DNA-binding 

proteins (Suzuki, 1989). It has been proposed that this motif functions as a 

DNA-binding unit (Suzuki, 1989). The carboxy-terminus is also enriched in S/T-

S/T-X-X motifs, which, according to Suzuki (1989), could mimic the conforma­

tion of the S/T-P-X-X-motif. Furthermore, the carboxy-terminus contains small 

basic domains at position 851 to 854 and 931 to 939. At the amino-terminus, 

none of the proline residues is preceded by serine or threonine. In contrast to 

the carboxy-terminus, the amino-terminus (residue 1 to 50) has an excess of 

acidic residues. The amino acid sequence of SCP1 contains several other inter­

esting motifs. Potential nuclear location signals (consensus K-R/K-X-R/K, where 

X is any amino acid; Chelsky et a/., 1989) are located at position 67-70, 560-

563 and 851-854. Furthermore, there are several potential target sites for 

protein kinases. For instance, the sequence K-T-P-T-K (position 929-934) fits 

the consensus for the target of p34cdc2 protein kinase (Z-S/T-P-X-Z, where X is 

polar and Z is generally basic; Langan et a/., 1989); phosphorylation sites for 
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Figure 6. Transcription of SCP1, analyzed by Northern 
blot hybridization. 20 fjg of poly(A)+ RNA from respectively, 
testis (T), kidney (K), brain (B) and liver (L) was layered per 
1/j cm wide slot. An RNA transcript of a 900 bp Hindlll frag­
ment of cDNA clone 536 was used as a probe. Bars indicate 
the position of the 28 S (4700 nucleotides) and 18 S (1900 
nucleotides) ribosomal RNA of the rat. Arrowhead indicates 
top of the gel. 
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cAMP/cGMP dependent protein kinases (consensus K/R-K/R-X-S/T, Fremisco et 

a/., 1980) occur at positions 364-367, 597-600, 642-645 and 852-855. In 

addition there are 19 target sites for protein kinase C (consensus S/T-X-R/K, 

Kemp and Pearson, 1990) dispersed all over the amino acid sequence of SCP1 

(not indicated). Furthermore, there is a leucine zipper motif at position 341 to 

369, which is out of frame with respect to the heptad repeat, with the leucines 

at the fifth rather than the first or fourth position of the heptad. 

To summarize, SCP1 consists of three domains: a large central domain, capable 

of forming an o-helical coiled-coil structure; a carboxy-terminal domain that 

shares features with DNA binding proteins, and has some small, basic domains, 

and an amino-terminal domain which contains some proline residues and is 

acidic. 
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The gene encoding SCP1 is transcribed specifically during meiotic prophase. 

The Mr 125,000 antigen of Mab IX5B2, which we think is identical to SCP1, 

occurs exclusively in meiotic prophase cells (Offenberg et a/., 1991; Dietrich et 

a/., 1992). We analysed whether expression of the gene encoding SCP1 is 

regulated at the level of transcription by Northern blot analysis and in situ 

hybridization. Northern blot analysis with the 900 bp Hindlll fragment of clone 

536 (the left Hind III fragment in Figure 1) as a probe revealed a single trans­

cription product of 4.2 kb in poly(A)+ RNA from the testis, but not in RNA from 

other organs (Figure 6). Within the testis the transcript occurs exclusively in 

zygotene-diplotene spermatocytes (Figure 7). This corresponds to a time span of 

about 11 days in the development of spermatocytes in the rat. The intensity of 

the in situ hybridization signal correlates with the intensity of the 

immunofluoresence staining (Figure 7). Apparently there is no long term storage 

of SCP1 mRNA before meiotic prophase. 

Localization of SCP1 within SCs. 

Figure 4 a to c show agar filtrates of lysed spermatocytes after indirect im-

munoperoxidase staining with a polyclonal anti-SCP1 antiserum. Late zygotene 

SCs show up as interrupted lines, the interruptions probably representing un­

paired segments of SCs (Figure 4a). In some zygotene cells the unpaired axes 

are also stained weakly (not shown). In pachytene, SCs react more strongly and 

along their entire length (Figure 4b). In diplotene, paired segments of SCs react 

as strongly as in pachytene, while the unpaired segments react weakly with this 

antiserum (Figure 4). The heterologous segments of the X and Y chromosome 

are also stained weakly. Ultrastructural localization of SCP1 by means of im-

munogold labelling gave similar results (Figure 8): the paired segments of SCs 

are labeled heavily from zygotene until diplotene; the unpaired axial elements of 

zygotene (Figure 8a) and diplotene (not shown) SCs have dispersed clusters of 

immunogold label; the heterologous segments of the X and Y bivalent also have 

some dispersed immunogold label on the inner side of the axes (not shown). 

These results differ in the following aspects from those obtained with Mab 
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Figure 7. Localization of SCP1 transcripts in the testis by in situ hybridization, (a) 
Phase contrast micrograph of a transverse section of a testicular tubule; (b) localization of 
SCP1 in the same section by indirect immunofluorescence staining with Mab IX5B2 as 
primary antibody; in this experiment serial sections were cut from the rat testis and 
pretreated for in situ hybridization. Alternate sections were then subjected to in situ 
hybridization or immunofluorescence staining; the pretreatment for in situ hybridization 
(heating at 50 °C and transfer through graded ethanol) may have caused aggrgation of 
nuclear contents, and thus of nuclear antigen, against the nuclear wall. This effect is not 
seen in other experiments (Offenberg et al., 1991) where fixation has been optimized for 
the immunolocalization of SC components; (c) localization of the SCP1 transcript in the 
adjacent section by in situ hybridization; an 3BS-labeled RNA transcript of a 450 bp 
HincllxPstl-fragment of cDNA clone 536 was used as a probe; note that the transcripts are 
localized in the cytoplasm: nuclei are visible as "black holes". Bar represents 50 /vm. 

IX5B2. First, labelling of unpaired segments of SCs with Mab IX5B2 has never 

or only rarely been observed (see Offenberg et al., 1991, Figure 3 and Dietrich 

et al., 1992, Figure 4); this can be ascribed to the relatively low intensity of 

labelling by Mab IX5B2. And second, in immunogold labelling experiments, Mab 

IX5B2 tends to label the inner edge of the lateral elements (Heyting et al., 

1989, Figure 6; Dietrich et al, 1992, Figure 4), while the polyclonal anti-SCP1 

fusion protein antiserum labels the space between the lateral elements more 

evenly (Figure 8). The distributions of immunogold grains over the tripartite SC 

differ significantly (Figure 9; P<0.001). This may be due to the difference 

between monoclonal and polyclonal antibodies: Mab IX5B2 probably recognizes 

a single epitope on SCP1, while the polyclonal antiserum probably recognizes 

several. 

Discussion 

The mechanism and role of meiotic chromosome synapsis have been the subject 

of intensive studies for several decades, but the vital questions about the 

process still remain unanswered. It is unknown how initiation of synapsis is ac­

complished, whether initiation depends upon DNA sequence homology and 

whether sequence homology is important for the zippering process (the spread­

ing of synapsis from initiated sites). How synapsis and desynapsis are regu­

lated, and whether synapsis has any role in meiotic recombination, are also 

open questions. An essential step in the study of such questions is the 
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Figure 8. Ultrastructural localization of SCP1 by indirect immunogold labelling of 
surface spread spermatocytes with the polyclonal antiserum against the fusion protein of 
cDNA clone 536 as primary antiserum, and goat-anti-rabbit IgG conjugated to 10 nm gold 
as secondary antibody; a) zygotene, b) pachytene, c) diplotene. Bar represents 0.2 //m. 

identification and characterization of the molecules involved. In previous publica­

tions we reported the identification of four major components of SCs by means 

of specific anti-SC antibodies (Heyting et a/., 1987, 1989). In this paper we 

describe the isolation and characterization of the cDNA encoding one of these 

components, called SCP1, and we present evidence that SCP1 is the major 

component of transverse filaments. 
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Figure 9. Distance of immunogold grains to the center of the nearest LE after indirect 
labelling with the primary antibody being being either the polyclonal antifusion protein 
antiserum (panel A, 2503 grains), or Mab IX5B2 (panel B, 909 grains). For each grain we 
measured first the distance between the centre of both LEs at the site of the grain; this 
distance was set at 100 arbitrary units; and second, the distance of that grain to the 
centre of the nearest LE; this distance was expressed in the same units. For presentation 
we mirrored the obtained distribution, so that "zero" (0) on the horizontal axis represents 
the middle between both LEs at any given point, and + 50 and -50 represent the position 
of the centre of the right and left LE at that point; the position of the LEs has been 
indicated schematically on the horizontal axis. In each panel, the vertical bars add up to 
100%. 

SCP1 is expressed specifically during meiotic prophase. 

Until now SC components have been identified only in rodents, particularly mice 

and rats (Heyting et al., 1987, 1989; Smith and Benavente, 1992). All 

identified components occur specifically in nuclei of meiotic prophase cells, i.e. 

spermatocytes (Heyting et al., 1988; Offenberg et al., 1991), and oocytes 

(Dietrich et al., 1992). The experiments in this paper show, at least for SCP1, 

http://ll.ll.l_
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that the expression is regulated at the transcriptional level (Figures 6 and 7). As 

far as we can judge from the in situ hybridization experiments, the mRNA and 

the gene product occur in the same cells i.e. the spermatocytes, while earlier 

developmental stages (the spermatogonia) do not contain detectable amounts of 

mRNA or gene product. This confirms our earlier conclusion (Heyting et a/., 

1988; Offenberg et a/., 1991) that SCs do not arise by rearrangement of 

existing chromatin supporting structures, like the nuclear matrix or nuclear 

lamina, but that they are assembled during meiotic prophase from newly 

synthesized proteins and that the chromatin is reorganized onto these newly 

assembled structures. Another intriguing aspect of Figure 7, and of results 

presented earlier (see Offenberg et at., 1991, Figures 3 and 4), is the 

remarkable synchrony of spermatocytes in transverse sections of testicular 

tubules. Developmental synchrony in testicular tubular segments of rats and 

mice has been described in detail on the basis of haematoxylin- and Feulgen-

stained sections (Leblond and Clermont, 1952; Clermont, 1972). We also 

observe this synchrony at the level of transcription and SC assembly (Figure 7): 

spermatocytes within the same segment of a testicular tubule are even 

synchronous with respect to the degree of synapsis or desynapsis (Figure 7 and 

Offenberg et a/., 1991, Figures 4-6). This may be due to the fact that 

spermatocytes are organized in large syncytia (Moens and Hugenholtz, 1975). 

Apparently, trans-acting factors are active in these syncytia to synchronize the 

transcription of SC-genes, and the assembly and disassembly of SCs in the 

separate nuclei. 

The predicted SCP1 protein sequence contains a large domain with similarity to 

coiled-coil proteins. 

The amino acid sequence similarities of SCP1, and the secondary structure 

analyses indicate that this predicted protein has a large central domain which is 

capable of forming coiled-coil structures. The predicted secondary structure of 

SCP1 is similar to that of intermediate filament proteins, which also (are 

predicted to) consist of a central coiled-coil domain flanked by nonhelical ends 

(Steinert and Roop, 1988). This similarity may account for the cross reaction of 



105 

various anti-myosin and anti-intermediate filament antibodies with the region 

between the lateral elements of SCs (DeMartino et al., 1980; Dresser, 1987). 

The predicted secondary structure is also similar to that of two recently 

characterized nuclear matrix proteins, namely yeast NUF1 (Mirzayan et al., 

1992) and mammalian NUMA (also called centrophilin; Tousson et al., 1991; 

Compton et al., 1992; Young et al., 1992). Like SCP1, lamins as well as NUMA 

and NUF1 have short, non-helical ends that are enriched in the S/T-P-X-X-motif 

(Mirzayan et al., 1992; Young et al., 1992; Compton era/., 1992). This motif is 

common in gene regulatory proteins, and is supposed to contribute to DNA 

binding (Suzuki, 1989). In SCP1 the carboxy-terminus, in NUF1 the amino-

terminus and in NUMA both termini are enriched for this motif. The lamins have 

two (chicken lamin B1) or three (chicken lamins A and B2, and human lamins A 

and C) S/T-P-X-X motifs in their 30 residue amino-terminus (Peter et al., 1989; 

Vorburger et al., 1989; McKeon et al., 1986; Fisher et al., 1986). SCP1 may 

thus belong to a class of nuclear proteins that are capable of forming coiled-coil 

filaments, and of attaching to DNA with one or both ends; we speculate that 

SCP1 may have evolved from such a nuclear matrix protein. As has been 

suggested earlier (Wu et al., 1986; Diffley and Stillman, 1989; Chen et al., 

1992), the coiled-coil domains of such proteins may function not only in 

homotypic interactions to assemble large structures which support the 

chromatin, but also to interact heterotypically with similar domains in proteins 

with functions other than structural ones, such as SIR4 (Diffley and Stillman, 

1989), the REP1 protein (Wu et al., 1986) and possibly also the yeast RAD50 

protein, which is involved in the initiation of meiotic recombination and 

chromosome synapsis (Cao et al., 1990; Alani et al., 1990) and has two large 

amphipathic a-helical domains (Alani et al., 1989). 

SCP1, NUF1, NUMA and the nuclear lamins have one or more target sites for 

p34cdc2 p r o t e j n kinase (Compton et al., 1992; Mirzayan et al., 1992; Young et 

al., 1992). For nuclear lamins A and C it has been shown that phosphorylation 

of these sites is important for the dissasembly of the lamina during mitosis 

(Heald and McKeon, 1990; Peter et al., 1990; Ward and Kirschner, 1990). It is 
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possible that phosphorylation of the p34cdo2 kinase target site of SCP1 is 

required for desynapsis at the onset of diplotene: mutations in the Sa-

ccharomyces cerevisiae CDC28 gene (which is the equivalent of the 

Schizosaccharomyces pombe CDC2 gene ) cause an arrest in pachytene 

(Davidow and Beyers, 1984). Other phosphorylation sites of SCP1 that are of 

potential interest are the cAMP/cGMP dependent protein kinase target sites. 

Inhibition of phosphorylation by this kinase plays a key role in the disassembly 

of the nuclear lamina at mitosis (Lamb et a/., 1991). However, for these as well 

as all other potential phosphorylation sites it still has to be determined whether 

they are actually phosphorylated, and whether this plays any role in the (disas­

sembly of SCs. 

SCP1 also contains a leucine zipper motif, at position 341 to 369, which is out 

of frame with respect to the heptad repeat on both sides of the motif, with the 

leucine residues at position five rather than at positions one or four of the 

heptad; the heptad repeat itself is interrupted at this position. It is possible that 

this will cause a distortion of the coiled-coil structure, and/or that these leucine 

residues are available for interactions other than homotypic ones. 

Localization of SCP1. 

It seems likely that SCP1 is a major component of transverse filaments: it is a 

major component of SCs which colocalizes with these filaments, and its 

predicted secondary structure is similar to that of filamentous proteins. The 

detailed localization of SCP1 epitopes will thus provide information about how 

the transverse filament is integrated in the tripartite structure. The experiments 

in this paper provide some information on this, although they have not been 

particularly designed for that purpose. 

After immunogold labelling of SCs with Mab IX5B2, the gold grains are located 

somewhat closer to the lateral elements than after labelling with the polyclonal 

anti-SCP1 antiserum (Figure 9). Because Mab IX5B2 probably recognizes a 

single epitope, and the polyclonal anti-SCP1 antiserum several on the SCP1 
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molecule, this is an indication that the SCP1 molecules have a fixed orientation 

within the SC, with the epitope of Mab IX5B2 orientated towards the LEs. The 

shortest cDNA that we have isolated using Mab IX5B2 had a 1100 bp fragment 

of the 3' terminus; this includes about 640 bp of the coding sequence; it is 

possible that Mab IX5B2 recognizes even shorter clones, but we have not 

analysed this. Thus, the epitope recognized by Mab IX5B2 lies within 215 

amino acids from the carboxy-terminus of the SCP1 protein, and, therefore, the 

SCP1 molecule is probably oriented with its carboxy-terminus towards the LE. 

How far the remainder of the molecule extends towards the opposite LE cannot 

be said from Figure 9. It is possible that the amino-terminus of the SCP1 

molecule reaches the opposite LE, because the length of the expected coiled-

coil domain (100 nm) is about equal to the distance between the LEs in tripartite 

SCs. In that case the dip in the distribution of grains in Figure 9a needs to be 

explained; for instance, it is possible that the central element has covered part 

of the SCP1 molecule. It is also possible however, that the SCP1 molecules do 

not connect the LEs directly, but that they interdigitate between the LEs (see 

Steinert and Roop, 1988, for a discussion of possible arrangements of inter­

mediate filament-like proteins). This can be sorted out by a precise localization 

of the amino-terminus of SCP1 within the SC. 

Materials and methods 

Antibodies. 

The Mabs recognizing the Mr 125,000 SC protein were obtained after immuni­

zation of mice with rat SCs as described by Offenberg et al. (1991). Of these 

antibodies, Mab IX5B2 has been described in detail by Heyting et al. (1989) and 

Offenberg et al. (1991). One polyclonal antiserum was elicited by injection of a 

rabbit with the fusion protein of cDNA clone 536. 1.5 mg of inclusion bodies 

containing the fusion protein was injected subcutaneously and intramuscularly 

at 2 weekly intervals. For the first injection the antigen was mixed with 

complete Freund's adjuvant; for all later injections it was mixed with incomplete 

Freund's adjuvant. 20 ml bleedings were collected from the ear-veins at 2 week 
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intervals, starting one week after the third injection. 

Isolation of cDNAs encoding SCP1 

To isolate cDNAs encoding the Mr 125,000 SC protein, we contructed a /zap* 

expression cDNA library of poly(A)+ RNA from the testes of 28-day-old rats, 

using a cDNA library construction kit (Stratagene, San Diego, USA). We 

screened the library with a pool of six Mabs that recognize the Mr 125,000 SC 

protein as primary antibodies, and a goat anti-mouse alkaline phosphatase 

conjugate (Promega, Madison, USA) as secondary antibody, using the Western 

blot incubation procedure described earlier (Heyting et al., 1988, Dunn, 1986). 

Among 106 phage screened 110 positive clones were identified, 55 of which 

were purified. All purified clones had overlapping restriction enzyme maps and 

inserts ranging in length from 1100 to 3600 bp. The Pstl fragment of clone 536 

(see Figure 1) was used for a secondary screening of the library in search for 

clones extending further in the 5' direction; labelling of the probe with [ct-
32P]dATP was performed by random primed labelling; labelling of the probe and 

screening were performed according to procedures described in Sambrook et al. 

(1989). 

Sequence analysis. 

The insert of cDNA clone 536 was subcloned into the pBluescript vector (SK+) 

according to the instructions of the manufacturer (Stratagene). From both ends 

of the insert of clone 536 we generated unidirectional sets of deletions by 

partial digestion with exonuclease III and S1 nuclease using an Erase-a-base kit 

(Promega, Madison, Wl, USA). In addition we subcloned several restriction 

enzyme fragments of the independently isolated cDNA clones 566 and 113 (see 

Figure 1) in pBluescript. We determined the nucleotide sequences by the 

dideoxy chain termination method of Sanger et al. (1977), using [o-35S]dATP 

(650 Ci/mmol; Amersham), Taq polymerase (GIBCO/BRL, or Promega) and 

oligonucleotide primers complementary to the polylinker sequences of 

pBluescript. The sequence was assembled by means of the University of Wis-
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consin GCG sequence analysis package. Sequence similarity searches of the 

Genbank, EMBL, Swissprot and PIR data banks were carried out with FASTA 

and tFASTA programs (Pearson, 1990). Prediction of secondary structure was 

performed by means of a program based on Chou-Fasman algorithms (Chou and 

Fasman, 1978). 

Immunocvtochemical staining. 

Immunoperoxidase staining of agar titrations of lysed spermatocytes was 

performed with a 1:500 dilution of the polyclonal anti-SCP1 antiserum as 

described by Heyting et al. (1987) and Heyting and Dietrich (1991). 

Immunofluorescence staining of frozen sections of the rat testis was carried 

with a 1:1 dilution of hybridoma supernatant containing Mab IX5B2 as 

described by Heyting et al. (1988) and Heyting and Dietrich (1991), except that 

the sections were mounted and fixed as described below for in situ 

hybridization. Immunogold labelling was performed in surface-spread sperma­

tocytes, according to Moens et al. (1987), as described by Heyting and Dietrich 

(1991). 1:1200 diluted polyclonal anti-fusion protein antiserum was used as 

primary antibody and goat anti-rabbit IgG conjugated to 10 nm colloidal gold 

(Amersham) as secondary antibody. After immunogold labelling and washes the 

preparations were stained for 5 min. in 1 % uranyl acetate in deionized water, 

rinsed in deionized water and air-dried. 

Analysis of the distribution of immunogold grains. 

The distance of individual gold grains to the nearest LE was measured on a 

digitizer from electron micrographs (magnification 92,000-120,OOOx). The 

distributions of grains relative to the LEs were compared by a Kolmogorov-

Smirnov two-sample test. 
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RNA isolation and Northern blot hybridization. 

RNA was isolated from various tissues of 37-day-old rats by the GuTC/LiCI 

method of Cathala et al. (1983); poly(A)+RNA was purified by affinity chroma­

tography on oligo(dT)-cellulose (Aviv and Leder, 1972). RNA was electropho-

resed on formaldehyde/agarose gels and transferred to Hybond-N+ membra-

nes(Amersham) by standard procedures (Sambrook et al., 1989). After transfer 

the membranes were washed in 3x SSC, dried and fixed with UV light (312 nm; 

200 J/m2) for 2 min. As probes for Northern blot hybridization we used RNA 

transcripts of the 900 bp Hindlll-fragment (see Figure 1) which had been 

subcloned into pBluescript. Transcription was performed from the T3 promotor 

in the presence of [or-32P]rATP (3000 Ci/mmole). The Northern blot membranes 

were prehybridized in 50% formamide, 5x SSC, 50 mM Tris-HCI pH 7.5, 0 . 1 % 

sodium pyrophosphate, 1 % SDS, 0.2% PVP, 0.2% Ficoll, 5 mM EDTA and 150 

ji/g/ml yeast tRNA for at least 3 hr at 65°C. Hybridization was performed in the 

same mixture with 1.5 //g/ml probe (15x106 cpm/yug) for 17 hr at 65°C. 

Subsequently the blots were washed for 30 min at 65°C in, succesively, 2x 

SSC, 0 . 1 % SDS; 2x SSC, 0 . 1 % SDS; 0.1x SSC, 0 . 1 % SDS; and 0.1x SSC, 

0 . 1 % SDS. 

In situ hybridization. 

For in situ hybridization, 10 jum tissue sections were cut from testes of 3-

months-old rats at -19°C. The sections were mounted on slides coatred with 3-

aminopropyl-tri-ethoxysilane (Aldrich), quickly air-dried at room temperature, and 

heated for 2 min. at 50°C on a hot plate. After further drying for 1-2 h at room 

temperature, the sections were transferred through graded ethanol (50-70-

100%) air-dried, wrapped in aluminum foil and stored at -80°C. To analyse the 

expression of SCP1, consecutive sections were, respectively, stained im-

munocytochemically with Mab IX5B2, and subjected to in situ hybridization. 

Before hybridization or immunocytochemical staining the sections were allowed 

to assume room temperature while still in the foil. For in situ hybridization they 

were pretreated as follows: 20 min. at room temperature in 0.2 M HCI, 5 min. 
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wash in deionized water, 7.5 min. at 70°C in 2x SSC, 5 min. wash in deionized 

water, 20 min. at 37°C in 0.5 U/ml self-digested pronase (Koch-Light, 41 

U/ml), two rinses in 0.2% glycine in PBS, two 30 s washes in PBS, fixation for 

20 min. at room temperature in 4 % PFA in PBS, dehydration through graded 

ethanol and air-drying for at least 1 hr at room temperature. Hybridization was 

performed for 18 hr. at 55°C in 50% formamide, 0.3 M NaCI, 20 mM Tris-HCI 

pH 8.0, 5 mM NaEDTA pH 8.0, 10 mM NaH2P04/Na2HP04 pH 8.0, 10% 

dextran sulfate, 1x Denhardt's (Denhardt, 1966), 0.5 //g/ml yeast tRNA and 

2x105 cpm/yul 35S-labelled RNA probe (18x103 cpm///g). The RNA probe was 

obtained by transcription from the T3-promotor of a 450 bp Hindi x Pstl 

fragment (see Figure 1), which had been subcloned in pBluescript; probe 

synthesis was performed in the presence of [o-35S]rUTP (3000 Ci/mM, 

Amersham Corp.). After hybridization the sections were washed as follows: 30 

min. in 5x SSC 10 mM DTT at 55°C; 1 hour at 50°C in 50% formamide, 5x 

SSC, 20 mM DTT; 3x 10 min. at 37°C in 0.5 M NaCI, 10 mM Tris, 5 mM 

EDTA pH 8.0; 30 min. at 37°C in the same buffer with 20 (jg/m\ RNAse A; 2x 

15 min. in 2x SSC and 2x 15 min. in 0.1x SSC at room temperature. 

Dehydration by quick transfer through 50, 70, 96, 100 and 100% ethanol each 

including 0.3M ammonium acetate, two rinses in 100% ethanol without 

ammonium acetate and air-drying. The sections were dipped in llford K5 nuclear 

track emulsion, exposed for 3 weeks at 4°C, developed in Kodak developer 

D19, and analysed by dark field microscopy. 

Other procedures. 

SCs were isolated as described by Heyting et al. (1985) and Heyting and 

Dietrich (1991); SDS-PAGE of proteins was performed according to Laemmli 

(1970), as described by Heyting et al. (1985); immunoblotting was carried out 

according to Dunn (1986), as described by Heyting and Dietrich (1991). 
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CHAPTER 6 

ANALYSIS OF Mr 30,000 AND 33,000 COMPONENTS OF 

SYNAPTONEMAL COMPLEXES OF THE RAT BY TWO-

DIMENSIONAL GEL ELECTROPHORESIS 

H.H. Offenberg, A.H.F.M. Peters, M. van Aalderen, and C. Heyting 
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Summary 

After two-dimensional electrophoresis of synaptonemal complex (SO proteins, 

the Mr 30,000 - 33,000 SC components are resolved in at least 24 spots with 

pi values ranging from 6 to )9. Thes£ spots represent closely related proteins, 

because two independently isolated anti-Mr 30,000 - 33,000 Mabs and one 

polyclonal anti-Mr 30,000 - 33,000 antiserum recognize almost all these spots. 

Two other anti-Mr 30,000 - 33,000 Mabs recognize a subset of the spots. The 

nature of the differences between the pi variants has not yet been elucidated. 
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Figure 1. Two dimensional separation of SC proteins. Samples containing 3x107 SCs 
were dissolved and separated as described in the Materials and Methods section. Figure 
1A and Figure 1B show separations of proteins from different SC preparations. Figure 1A 
shows the entire 2D gel, Figure 1B shows the Mr 30,000 - 33,000 region only. 

Introduction 

Synaptonemal complexes (SCs) are meiosis specific structures that mediate 

pairing of homologous chromosomes during meiotic prophase (Von Wettstein et 

a/., 1984). Biochemical analysis of SCs is possible since these structures can be 
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purified from spermatocytes of the rat (Heyting et a/., 1985). One-dimensional 

(1D) SDS-polyacrylamide gel electrophoresis of proteins from purified SCs show 

two prominent bands with relative electrophoretic mobilities (Mrs) of 30,000 

and 33,000 respectively (Heyting et a/., 1985, 1987). These bands contain 

protein components of SCs, because several monoclonal antibodies (Mabs) that 

recognize these bands bind specifically to SCs (Heyting et a/., 1987, 1988, 

1989 (Chapter 2 this thesis); Moens et a/., 1987; Offenberg et a/., 1991 

(Chapter 3 this thesis)). The Mr 30,000 and Mr 33,000 SC components are 

immunologically related, because 18 independently isolated anti-SC Mabs recog­

nize both components, whereas as yet no anti-SC Mabs have been identified 

that can discriminate between these components. In this Chapter we analyse 

the Mr 30,000 and Mr 33,000 SC components in detail by two-dimensional gel 

electrophoresis and immunoblot analysis. 

Results and Discussion 

Figure 1A and B show silver stained gels, obtained after 2D separation of pro­

teins from two different SC preparations. In both gels the Mr 30,000 and Mr 

33,000 protein bands are resolved in a large number of spots with pi values 

ranging from 6 to )9. The patterns of spots in Figure 1A and 1B are not identi­

cal; this is probably due to variation among SC-preparations, because different 

2D separations of proteins from the same SC-preparation result in the same 

pattern of spots (Figure 2). To analyse which of the SC spots correspond to the 

Mr 30,000 and Mr 33,000 SC components, we performed immunoblot analyses 

Figure 2. Immunoblot analysis of the M, 30,000 - 33,000 SC proteins. Six 2D 
separations of proteins from the same SC preparation were performed. One of the 
resulting 2D gels was stained with silver (panel 2F; this is a detail of the same gel that is 
shown in Figure 1A), or blotted onto nitrocellulose (panel 2A to E). The resulting 
immunoblots were probed with the following anti-Mr 30,000 - 33,000 antibodies: A, Mab 
IX8G9; B, Mab IX7B12; C, Mab IX3H3; D, Mab IX4D4; E, polyclonal antiserum "Knuf". In 
panel F the spots are indicated that are not recognized by any of the anti-Mr 30,000 -
33,000 antibodies (indicated with an asterisk). The spots indicated with an asterisk in 
panel C and D are due to a reaction with an anti-Mr 190,000 Mab with which these 
immunoblots were probed before incubation in the anti-Mr 30,000 - 33,000 Mabs. 
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Figure 3. Two-dimensional separation of SC proteins after treatment with alkaline 
phosphatase (A) or buffer only (B). Samples containing 3x107 SCs were treated with 
alkaline phosphatase or buffer, and subsequently subjected to 2D gel electrophoresis. 
After treatment with alkaline phosphatase the relative intensity of spot a has increased 
compared to that of spot b. 

of SC proteins that had been separated on 2D gels. For this purpose we 

performed six 2D separations of proteins of the same SC preparation. One of 

the resulting 2D gels was stained with silver (Figure 1A and 2F); the other five 

were blotted onto nitrocellulose, and probed with anti-Mr 30,000 - 33,000 

Mabs (Figure 2A to D) or with a polyclonal anti-Mr 30,000 - 33,000 antiserum 

(Figure 2E). Most of the spots are recognized by ail antibodies tested; the im-

munoblots in Figure 2B to E show even more spots than the silver stained gel. 

Mabs IX3H3 and IX4D4 recognize 24 spots (Figure 2C and D); the polyclonal 

antiserum recognizes 22 of these 24 spots (Figure 2E); and Mabs IX7B12 and 

IX8G9 recognize 14 and 13 of these 22 spots respectively. Only a few minor 

spots in the Mr 3O,00Q - 33-,000 region of* the silver stained gel (indicated in 

Figure 2F) are not recognized by any of the antibodies tested. We conclude that 

most of the spots in the Mr 30,000 - 33,000 region contain immunologically 
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closely related proteins. Because the only structures that are recognized by the 

anti-Mr 30,000 - 33,000 antibodies are the SCs (Heyting et a/., 1988, 1989; 

Offenberg et a/., 1991), all these related proteins must be components of SCs. 

What could be the nature of the differences between the pi variants? Particular­

ly in Figure 1B it is clear that the spots are arranged in rows that slightly slant 

down towards the basic side of the gel. Such a pattern can arise if a protein can 

have different numbers of the same acidic residue. From the slope of the rows 

we estimate the molecular weight of such a residue at about 0.1 kDa. This 

corresponds to the molecular weight of a phosphate group or an amino acid 

residue. We have tried to analyse whether the Mr 30,000 - 33,000 SC com­

ponents are phosphorylated by treatment of intact SCs with alkaline 

phosphatase. This resulted in a shift of part of some spots to a more basic 

position in the gel; compare for instance spots a and b in Figure 3A with the 

same spots in Figure 3B. If this shift is due to dephosphorylation, the alkaline 

phosphatase treatment has been incomplete. It is possible that the phosphatase 

could not remove all phosphate groups from the intact SC structure. SCs can 

only be dissolved in the presence of an ionic detergent such as SDS; alkaline 

phosphatase is not active on SDS-treated SC proteins, however (not shown). 

We have also considered differences in poly-ADP-ribosylation as a possible 

explanation for the occurrence of pi variants of the Mr 30,000 - 33,000 SC 

components. Several nuclear proteins can be poly-ADP-ribosylated (Hayaishi and 

Ueda, 1977), and poly-ADP-ribosylation of histones seems to play a role in 

several chromatin functions, including DNA repair (Althaus et a/., 1990). Poly-

ADP-ribosyl moieties can be hydrolysed to AMP monomers and iso ADP-ribose 

by treatment with alkali or phosphodiesterase (Hayaishi and Ueda, 1977). 

However, treatment of intact SCs with either 0.2 N NaOH or snake venom 

phosphodiesterase did not cause any change in 2D electropherograms of SC 

proteins (not shown). 

To summarize: it is possible that differences in phosphorylation provide an 

explanation for part of the pl-variants of the Mr 30,000 - 33,000 SC com-
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ponents. It is unlikely that the variants differ with respect to poly-ADP-ribosyla-

tion. There are several other possible explanations for the existence of variants 

of the Mr 30,000 - 33,000 SC components. The variants might represent 

members of a protein family; translation products of differentially spliced 

messenger RNAs, or proteolytic breakdown products. Whether one of these 

explanations could be valid can be sorted out by isolation of the cDNA(s) enco­

ding the Mr 30,000 - 33,000 SC components, and analysis of the predicted 

amino acid sequence(s). Such analyses are in progress (Lammers et a/., in 

preparation). 

Materials and Methods 

Antibodies. 

The monoclonal antibodies IX3H3, IX4D4, IX7B12 and IX8G9 which recognize 

the Mr 30,000 - 33,000 SC components were obtained after immunization of 

mice with rat SCs as described by Offenberg et a/. (1991). The polyclonal 

antiserum "Knuf" was elicited by subcutaneous and intramuscular injection of a 

rabbit according to the scheme described by Offenberg et a/. (1991) for the 

immunization of mice. 20 ml bleedings were collected from the ear-veins with 

two-week intervals, starting one week after the third injection. 

Gel electrophoresis and immunoblottina. 

Electrophoresis was carried out as described by Heyting et a/. (1988). Two-

dimensional gel electrophoresis was performed as described by O'Farrell (1975). 

After intensive vortexing and boiling of SCs in 5 mM EDTA, 2% SDS and 1 % 

DTT, the sample buffer was adjusted to 2.67 % ampholine mixture (Pharmacia-

LKB), 10 % Nonidet P-40, 1 mM PMSF and 9.0 M Urea and subsequently 

layered on the tube gels. Isoelectric focusing in the first dimension was 

performed in 4 % acrylamide gel containing 2% ampholines (one part pH 3.5-10, 

four parts pH 5-8), 2% Nonidet P-40, 9.16 M urea for approximately 4000 Vh 

at a maximum voltage of 2000 V. The isoelectric focusing tube gels were in-
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cubated in SDS equilibration buffer (10% glycerol, 125 mM Tris-HCI pH 6.8, 

2% SDS, 0.4% DTT, 1 mM PMSF) for 10 min. at room temperature. SDS-PAGE 

in the second dimension was performed on a 7 to 18% linear gradient acryl-

amide gel as described by Heyting eta/. (1987). 

After gel electrophoresis, proteins were transferred to nitrocellulose by 

electroblotting in 10 mM NaHC03, 3 mM Na2C03, 25 mM Tris-HCI pH 9.9, 20% 

Methanol (Dunn, 1986) at 4 °C for 1400 Vh at a maximum of 0.5 A. After 

blotting, the filters were washed in deionized water and stored under vacuum at 

4 °C. Immune incubations were performed as described by Heyting et al. 

(1988) and Offenberg et al. (1991). 

Modification studies. 

Isolated rat SCs were treated with alkaline phosphatase as described by Gerace 

et al. (1984) for the nuclear lamina. SCs were incubated with 12 U alkaline 

phosphatase (Sigma type III, Bacterial E. coli suspension in 2.5 M (NH4)2S04) in 

0.1 M Tris-HCI pH 8.0, 5 mM MgCI2, 2 /vg/ml leupeptine (Boehringer Mann­

heim), 10 /yg/ml aprotinine (Boehringer Mannheim), 10 //g/ml trypsin inhibitor 

(Boehringer Mannheim) and 1 mM PMSF for 3 hr. at 37 °C. 

Poly-ADP-ribosylation of SC proteins was studied by incubating SCs with 0.2 U 

snake venom phosphodiesterase per mg protein (Mullins et al., 1977; Wong et 

al., 1983) or by incubation in 0.2 M NaOH, for 30 min. at 25 °C (Yoshihara et 

al., 1975; Mullins et al., 1977). 

Other procedures. 

SCs were isolated as described by Heyting et al. (1985) and Heyting and 

Dietrich (1991). Silver staining was performed as described by Oakley et al. 

(1980). 
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General Discussion 

This thesis describes the isolation of antibodies which recognize SC-specific 

proteins, and the identification and characterization of the major SC components 

by means of these antibodies. Using the antibodies described in Chapter 2 and 

Chapter 3 of this thesis, we isolated a cDNA clone which probably encodes a 

major component of the LEs, the Mr 190,000 SC component (Offenberg et a/., 

in preparation, Chapter 4, this thesis). In addition, we recently isolated a cDNA 

clone encoding a major component of the transverse filaments of SCs (the Mr 

125,000 SC component; Meuwissen et a/., 1992, Chapter 5 this thesis) by 

means of these antibodies, and probably also a cDNA encoding the Mr 30,000 

and/or 33,000 components of SCs (Lammers et a/., in preparation). In this final 

chapter, I would like to consider what we have learned from the experiments 

described in this thesis with respect to the questions that have been posed in 

Chapter 1: what is the possible evolutionary and ontogenetic origin of SCs? 

How is their (dis)assembly regulated? And what is their role in meiotic 

chromosome pairing and recombination? 

What is the evolutionary and ontogenetic origin of SCs? 

Two different mechanisms can be envisaged with respect to the ontogenetic 

origin of SCs and the mechanism of chromatin rearrangements of meiotic 

prophase (Figure 1): either the chromatin detaches from supporting structures 

like the nuclear lamina and nuclear matrix, and reorganizes onto a new, meiosis 

specific structure, the SC (Figure 1A); or chromatin-supporting structures re­

arrange to form axial elements which are then connected to form SCs (Figure 

1B). To discriminate between these two mechanisms, we have analyzed the 

assembly of SCs immunocytochemically by means of the anti-SC antibodies 

(Chapter 3, this thesis; Heyting et a/., 1988); we found that all SC components 

analyzed thus far occur exclusively in meiotic prophase cells, on the SCs (Hey­

ting et a/., 1987, 1988, 1989 (Chapter 2, this thesis); Offenberg eta/., 1991 

(Chapter 3, this thesis); see also Smith and Benavente, 1991). These identified 

SC components are absent from mitotic chromosomes (Heyting et a/., 1988; 
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Figure 1 . Two possible mechanisms of chromatin rearrangement during meiotic 
prophase. Explanation, see text (From Heyting and Dietrich, 1992, with permission). 

Offenberg et a/., 1991 (Chapter 3, this thesis). Furthermore, nuclear lamins 

could not be detected in rat SCs (Heyting et al., unpublished). Thus, though it is 

still possible that components of the interphase nuclear matrix are (minor) 

components of SCs, it seems likely that SCs consist largely of meiosis-specific 

components, and that during meiotic prophase the chromatin reorganizes onto a 

newly synthesized structure (Figure 1A). 

The amino acid sequences of SCP1 (the Mr 125,000 SC component) and SCP2 

(the Mr 190,000 component) also provide some information about the possible 

evolutionary origin of SCs: both SC-components show structural, though not 

sequential similarity to nuclear matrix proteins: SCP1 has a large domain 

capable of forming an amphipathic a-helix; furthermore, it has a cluster of S/T-
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P-X-X motifs outside this domain. It shares these features with nuclear lamins 

(Peter et a/., 1989; Vorburger et a/., 1989; Mckeon et a/., 1986; Fisher et a/., 

1986), and some recently characterized components of the nuclear matrix, such 

as mammalian NUMA and yeast NUF1, that are supposed to fulfil chromatin 

supporting functions (Compton et a/., 1992; Young et a/., 1992; Mirzayan et 

a/., 1992; Luderus et a/., 1992). We speculate that SCP1 has evolved by 

specialization of such a nuclear matrix protein, although as yet no sequence 

similarity has been detected with any of such proteins. The o-helical domain of 

SCP1 has significant sequence similarity to the S2-domain of myosin heavy 

chain (Meuwissen et a/., 1992, Chapter 5 this thesis). This has also been found 

for two nuclear proteins of yeast, namely the RAD50 protein (Alani et a/., 1989) 

and the ZIP1 protein (M. Sym et a/., unpublished observations). It is possible 

that the a-helical domains of SCP1, myosin heavy chain, RAD50 protein and 

ZIP1 protein have a common progenitor. 

SCP2 has one structural feature in common with proteins that are supposed to 

be involved in chromatin loop organization, such as the gene products of SATB1 

and RAP1 proteins, namely a high content of S/T-P-X-X and S/T-S/T-X-X motifs 

(see Chapter 4 this thesis). However, SCP2 has no amino acid sequence 

similarity to any of these proteins except the RED1 protein of yeast. This protein 

plays a role in the assembly of yeast SCs. The similarity covers only limited seg­

ments of SCP2 and RED1 proteins, and does not extend to the region of RED1 

that is enriched in the S/T-P-X-X and S/T-S/T-X-X motifs. Thus, it is possible 

that SCP2 has evolved by specialization of a nuclear protein that plays a role in 

chromatin loop organization, but as yet no candidate progenitor proteins have 

been identified. 

How is the (dis)assembly of SCs regulated? 

Because antibodies recognizing different SC components, and cDNAs encoding 

these components, are now available, the regulation of the assembly and dis­

assembly of SCs has become accessible for analysis at the molecular level. The 

amino acid sequences of SCP1 and SCP2 contain several protein kinase target 
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sites that could play a role in this respect. Both SCP1 and SCP2 contain target 

sites for p34cdc2 protein kinase. It has been shown that phosphorylation of such 

sites on nuclear lamins A and C is important for the disassembly of the lamina 

at mitosis (Heald and McKeon, 1990; Peter et al., 1990; Ward and Kirschner, 

1990). p34cdc2 function is also required for disassembly of SCs and progression 

through meiotic prophase in yeast: mutation of CDC28 (which is the Sac-

charomyces cerevisiae gene which corresponds to CDC2 of Schizosac-

charomyces pombe) prevents disassembly of SCs and causes an arrest in 

pachytene (Shuster and Byers, 1989). It thus appears that some of the controls 

that function at the transition from G2 to mitosis, are also active at the exit 

from pachytene. Other phosphorylation sites in SCP1 and SCP2 that are of 

potential interest for the regulation of SC (dis)assembly are the cAMP/cGMP 

dependent protein kinase target sites. It has been shown that inhibition of 

phosphorylation of such sites on nuclear lamins is essential for the disassembly 

of the lamina during mitosis (Lamb et al., 1991). However, it remains to be 

determined whether the potential phosphorylation sites of SCP1 and SCP2 are 

actually phosphorylated in vivo, and if so, whether this has any biological sig­

nificance. 

What is the function of SCs? 

The two major components of SCs that have now been analyzed, SCP1 and 

SCP2, have characteristics of nuclear matrix proteins. SCP1 shares features 

with components of the nuclear lamina and with proteins that could make part 

of a fibrillar network in the nucleus, the nuclear matrix (Bereznev and Coffey, 

1977). SCP2 has structural similarities to proteins that are involved in the 

organization of chromatin in loops (see above). These results suggest a struc­

tural function for SCs: SCs might organize the chromatin in such a way that 

homology search, recombination and/or chromosome segregation can proceed 

properly. Rather than speculating further about this, I would like to make two 

remarks: first of all, a structural function of SCs does not exclude involvement 

in other functions; and second, different SC components can be involved in 

totally different functions. The most direct approach to the analysis of SC 
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function(s) includes the identification of conserved domains in SC proteins, and 

the targeted mutagenesis of the genes encoding these proteins. For this pur­

pose, we have isolated the yeast genes that are homologous to the rat genes 

encoding SCP1 and SCP2. Mutagenesis of the yeast SC-genes, and analysis of 

the meiotic phenotype of the mutants should not only provide more information 

about possible functions of SCs, but also about the regulation of their 

(dis)assembly. 
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Summary 

Synaptonemal complexes (SCs) are structures that are formed between 

homologous chromosomes during meiotic prophase. They undergo a series of 

morphological alterations which closely correlate with the successive re­

arrangements of meiotic prophase chromatin, namely chromosome con­

densation, pairing, recombination and segregation. Despite this correlation, as 

yet no functions have been assigned with certainty to SCs (Chapter 1). The 

work described in this thesis is focused on the identification and characteriza­

tion of components of SCs of the rat with the purpose of biochemical and 

functional analysis of SCs. For the identification of SC components we elicited 

monoclonal and polyclonal antibodies against isolated SCs. 

Chapter 2 describes the isolation of SC-specific monoclonal antibodies and the 

identification of four major components of the SC by means of these antibodies. 

Three major components of the lateral elements (LEs) were identified, with 

relative electrophoretic mobilities (Mrs) of 30,000, 33,000 and 190,000 respec­

tively. All 18 monoclonal antibodies that recognize the Mr 30,000 SC com­

ponent also recognize the 33,000 component; apparently these components are 

related. One Mr 125,000 component was localized at the inner edge of the LEs, 

specifically where chromosomes are paired (synapsed). Furthermore, we found 

that Mr 66,000 - 55,000 antigens were localized in clusters in the vicinity of the 

SCs. It is possible that these antigens are SC-associated proteins, rather than 

real SC components. 

Chapter 3 describes an analysis of the tissue distribution of the Mr 30,000, 

33,000, the Mr 125,000 and the Mr 190,000 SC antigens. All antigens could 

only be detected in meiotic prophase cells by means of immunofluorescence. 

The Mr 30,000 and 33,000 components were observed in all stages of meiotic 

prophase where LEs are present, i.e. from zygotene up to and including diplo-

tene, in paired as well as unpaired segments of SCs. It could not be excluded 

that traces of both proteins, in a form not recognizable as SCs, were present in 

spermatogonia and spermatids. The tissue distribution of the Mr 190,000 com-
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ponent, as detected by immunofluorescence, was indistinguishable from the 

distribution of the Mr 30,000 and 33,000 antigens. The Mr 125,000 component 

was exclusively present in meiotic prophase nuclei, in paired segments of SCs. 

Thus, SCs largely consist of newly synthesized proteins and the chromatin rear­

rangements of the meiotic prophase involve the reorganization of chromatin 

onto newly assembled, meiosis-specific structures, the SCs. 

Chapter 4 describes the isolation of cDNA clones encoding SCP2, a major 

component of the LEs of SCs, by means of Mabs that recognize the Mr 190,000 

SC component. The gene encoding SCP2 is exclusively expressed in the testis, 

predominantly in spermatocytes. SCP2 has a predicted molecular weight of 148 

kDa. It shares some features with DNA binding proteins that are involved in 

chromatin organization, such as the SATB1 and RAP1 proteins: it is rich in S-

turns, it has a high content of proline residues, and it has several S/T-P-X-X and 

S/T-S/T-X-X motifs. We speculate that SCP2 interacts directly with DNA and 

has a chromatin organizing function. 

Chapter 5 describes the isolation of cDNA clones encoding SCP1, a major 

component of transverse filaments of SCs, by means of a Mab that recognizes 

the Mr 125,000 SC component. The transcription of the gene encoding SCP1 is 

restricted to zygotene till diplotene spermatocytes. A polyclonal antiserum 

raised against the fusion protein produced by one of the cDNA clones 

recognizes a single protein on Western blots of isolated SCs, with identical 

electrophoretic mobility as the antigen recognized by the anti-Mr 125,000 Mab. 

SCP1 has a predicted molecular weigth of. 111 kDa. It shares several features 

with nuclear lamins and some nuclear matrix proteins. A major part of SCP1 is 

capable of forming an amphipathic a-helix. This region shows amino acid 

similarity to the coiled-coil region of myosin heavy chain. We speculate that 

SCP1 has evolved by specialization of a nuclear matrix protein. 

Chapter 6 describes the analysis of the Mr 30,000 and 33,000 SC components 

by two-dimensional gel electrophoresis. These SC components are resolved in at 

least 24 spots, with pi values between 6 and )9. Some of the anti-Mr 30,000 
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and 33,000 Mabs recognize all 24 spots, which indicates that the spots 

represent related proteins or variants or breakdown products of the same pro­

tein. 



143 

Samenvatting 

Synaptonemale complexen (SC's) zijn structuren die tijdens de meiotische 

profase tussen homologe chromsomen gevormd worden. Ze ondergaan een 

serie morfologische veranderingen die correleren met de opeenvolgende 

chromatine herrangschikkingen van de meiotische profase, namelijk 

chromosoom condensatie, paring, recombinatie en segregatie. Ondanks deze 

correlatie heeft men tot nu toe nog geen functies met zekerheid aan SC's kun-

nen toeschrijven (Hoofdstuk 1). Het werk dat in dit proefschrift beschreven 

wordt is gericht op de identificatie en karakterisering van componenten van 

SC's van de rat, met het doel om de biochemie en de functie van SC's te 

analyseren. Voor de identificatie van SC componenten hebben wij monoclonale 

en polyclonal anti-SC antilichamen bereid. 

In Hoofdstuk 2 wordt de isolatie van specifieke anti-SC antilichamen be­

schreven, en de identificatie van vier kwantitatief belangrijke componenten van 

SC's door middel van deze antilichamen. Er werden drie componenten van de 

laterale elementen (LE's) geTdentificeerd, met relatieve electroforetische 

mobiliteiten (Mr's) van, respectievelijk, 30.000, 33.000 en 190.000. Alle 18 

monoclonale antilichamen (Mabs) die de Mr 30.000 component herkennen, 

herkennen ook de Mr 33.000 component; kennelijk zijn deze componenten 

verwant. Een Mr 125.000 component werd gelocaliseerd aan de binnenkant van 

de LE's, specifiek in de gepaarde segmenten van de chromosomen. Bovendien 

bleken Mr 66.000 - 55.000 antigenen in clusters voor te komen in de buurt van 

SC's. Het is mogelijk dat deze antigenen SC-geassocieerde eiwitten zijn en geen 

echte SC componenten. 

In Hoofdstuk 3 wordt de weefselverdeling van de Mr 30.000, 33.000, 125.000 

en 190.000 SC antigenen geanalyseerd. Alle antigenen waren door middel van 

immuunfluorescentie uitsluitend detecteerbaar in cellen die in de meiotische 

profase verkeerden. De Mr 30.000 en 33.000 componenten kwamen voor in 

alle stadia van de meiotische profase waarin LE's aanwezig waren, van 

zygoteen tot en met diploteen, in gepaarde zowel als ongepaarde segmenten 
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van SC's. Het is niet uitgesloten dat sporen van beide eiwitten, in een vorm die 

niet herkenbaar is als SC, aanwezig zijn in spermatogonia en spermatiden. De 

weefsel-verdeling van de Mr 190.000 SC component was door middel van im-

muunfluorescentie niet te onderscheiden van de verdeling van de Mr 30.000 en 

33.000 antigenen. De Mr 125.000 component was uitsluitend aanwezig in 

meiotische profase kernen, in gepaarde segmenten van SC's. Samenvattend, 

SC's bestaan voor een groot deel uit nieuw gesynthetiseerde eiwitten; de 

chromatine herrangschikkingen van de meiotische profase houden een reor-

ganisatie in van het chromatine op nieuw geassembleerde, meiose-specifieke 

structuren, de SC's. 

In Hoofdstuk 4 wordt de isolatie beschreven van cDNAs die coderen voor SCP2, 

66n van de voornaamste componenten van de LE's van SC's, door middel van 

Mabs die de 190,000 SC component herkennen. Het gen dat codeert voor 

SCP2 komt uitsluitend tot expressie in de testis, vooral in de spermatocyten. 

Het voorspelde molecuulgewicht voor SCP2 is 148 kDa. SCP2 heeft enkele 

kenmerken gemeen met DNA bindende eiwitten die betrokken zijn bij de or-

ganisatie van het chromatine, zoals de SATB1 en RAP1 eiwitten: het bevat veel 

/Mums, het heeft een hoog proline-gehalte en het heeft een aantal S/T-P-X-X en 

S/T-S/T-X-X motieven. Wij speculeren dat SCP2 directe interactie met DNA kan 

aangaan en een chromatine-organiserende functie heeft. 

In Hoofdstuk 5 wordt de isolatie beschreven van cDNAs die coderen voor SCP1, 

6en van de voornaamste componenten van de transversale filamenten van SC's, 

door middel van een Mab dat de Mr 125,000 SC component herkent. Het gen 

dat codeert voor SCP1 komt alleen tot expressie in spermatocyten van zygoteen 

tot diploteen. Met behulp van het fusie eiwit, dat geproduceerd werd door een 

van de cDNAs, werd een polyclonaal antiserum opgewekt. Dit antiserum 

herkent een eiwit op westernblots van geTsoleerde SC's, met eenzelfde 

electroforetische mobiliteit als het eiwit dat herkend wordt door de anti-Mr 

125,000 Mabs. Het voorspelde molecuulgewicht van SCP1 is 111 kDa. SCP1 

heeft een aantal kenmerken gemeenschappelijk met nucleaire lamina en enkele 

nucleaire matrix eiwitten. Een groot deel van SCP1 is in staat om een 
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amfipatische a-helix te vormen. Dit deel vertoont overeenkomsten met het 

coiled-coil deel van de zware keten van myosine. Wij speculeren dat SCP1 

geevolueerd is door specializatie van nucleaire matrix eiwitten. 

In Hoofdstuk 6 worden de Mr 30.000 en 33.000 SC componenten geanalyseerd 

door middel van 2-dimensionale gel electroforese. Deze SC componenten 

worden in meer dan 24 spots gescheiden, met isoelectrische punten tussen 6 

en )9. Sommige van de anti-Mr 30.000 en 33.000 Mabs herkennen 24 spots, 

wat erop duidt dat de meeste spots verwante eiwitten bevatten, varianten van 

hetzelfde eiwit, of afbraakproducten van hetzelfde eiwit. 
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Het proefschrift dat hier voor U ligt beschrijft experimenten die de afgelopen vier 

jaren zijn uitgevoerd in het kader van mijn promotie-onderzoek. Het beschrijft 

echter niet de wijze waarop de resultaten tot stand gekomen zijn, de inspanning 

die het gekost heeft om de antilichamen te maken en te karakteriseren; de 

problemen, teleurstellingen en onzekerheden die overwonnen moesten worden 

om uiteindelijk de genen te kloneren waar wij op uit waren. Het zal duidelijk zijn 

dat ik dit werk niet alleen gedaan heb. Integendeel. 

Christa, jouw bezielende hulp en begeleiding tijdens mijn promotie onderzoek 

zijn van zeer grote waarde geweest voor de totstandkoming van dit proefschrift. 

Ik dank je voor de vele uren die je voor mij hebt doorgebracht in het kweekhok 

van het AMC; voor de vele discussies die we gevoerd hebben; voor je zeer 

kritische en heldere kijk op de proeven die ik uitgevoerd heb; voor de intensieve 

wijze waarop je me tijdens het schrijven begeleid hebt. 

Onmisbaar voor het maken van de antilichamen was ook Bert Redeker. Bert, ik 

dank je voor alle SC preparaten die je voor mij gemaakt hebt, voor het over-

nemen van het kweekwerk indien dit nodig was, voor de fijne tijd die we hadden 

op het AMC. 

Axel Dietrich, de "electronenmicroscopenboer" van het AMC, en Agnes Vink wil 

ik bedanken voor hun niet geringe bijdrage aan Hoofdstukken 2, 3 en 5. Rob 

Lutgerhorst en consorten dank ik voor de prachtige foto's van Hoofdstuk 2, die 

zij op de valreep voor mij wilden afdrukken. 

Ik wil verder alle leden van de vakgroep Antropogenetica bedanken voor de fijne 

manier waarop ik daar heb kunnen werken. 

Van de vakgroep Erfelijkheidsleer wil ik met name de mensen bedanken van het 

SC groepje. Peter de Boer en Frits van der Hoeven wil ik bedanken voor de 

wandelingen door de uiterwaarden van de Rijn, hoewel dat er het laatste jaar 
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nauwelijks meer van gekomen is. Hans de Jong wil ik bedanken voor het kritisch 

doorlezen van de inleiding van dit proefschrift en de hulp bij het gebruik van 

diverse computer-programma's (...weer een nieuwe versie? Deze is veel 

beter...). 

Verder wil ik Theo Goosen bedanken voor de steun bij het kloneringswerk en 

Bert Wennekes voor de gezellige zeildagen. 

Rest mij nog de mensen te bedanken die direct betrokken zijn geweest bij vele 

proeven. Mirjam, jou wil ik bijzonder bedanken voor de experimenten die jij zo 

degelijk hebt uitgevoerd. Jij hebt van mij veel door de vingers moeten zien, als 

er weer eens een veldslag had plaatsgevonden. Ralph, jou wil ik bedanken voor 

de fijne manier van samenwerken, jouw inbreng bij het kloneringswerk was zeer 

belangrijk; samen hebben we toch maar mooi die twee genen in korte tijd 

gesequenced ( deletiereeksen in de avonduren maken, sessies sequentiegel 

lezen. Gedeelde smart is halve smart....). Bovendien heb jij mijn woordenschat 

aan krachttermen sterk uitgebreid. 

Tenslotte ben ik veel dank verschuldigd aan de studenten die met grote inzet 

aan dit onderzoek hebben meegewerkt en voor een prima sfeer zorgden op het 

lab. Silvere van der Maarel en Frank de Bont, die beiden betrokken zijn geweest 

bij het opzetten van het DNA/RNA werk. Hans Lammers, die het werk van Frank 

voortzette en een cDNA bank heeft gemaakt waar hij misschien zelf tijdens zijn 

promotie nog veel plezier van kan hebben. Hans, bovendien voor het kritisch 

doorlezen van de tekst van dit proefschrift. Antoine Peters, voor de prachtige 

2D gels waarvan hij een aantal in dit proefschrift terugvindt. Martijn van lersel, 

die een belangrijke bijdrage heeft geleverd bij het opzetten van de Northern blot 

analyses. Henri Kester, die de "full length" cDNA kloon 5 gei'soleerd heeft en 

vervolgens onvermoeibaar heterologe hybridisatie condities heeft uitgewerkt. 

Met de resultaten van deze proeven heeft Marjolein Kikkert (meer onder 

begeleiding van Ralph en Christa dan van mij) de gist homoloog van SCP2 

gekloneerd. Ik wens jullie alien veel succes met jullie loopbaan. 
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Tenslotte wil ik alle medewerkers van de vakgroep Erfelijkheidsleer en de afde-

ling fotografie van het Biotechnion bedanken voor nun inzet en het scheppen 

van een prettige werksfeer. 
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