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STELLINGEN 

1. De puis proton NMR-methode zoals beschreven door Hemminga en De Jager, 
is geschikt om door middel van het meten van bloedstroraing eventueel 
bloedvatvernauwende en/of -verruimende effecten van geneesmiddelen te 
bepalen. 

M.A. Hemminga en P.A. de Jager, J. Magn. Reson. 37(1980), 1 
Dit proefschrift, hoofdstuk 4 

2. Het ontleden van een niet-exponentieel verval bij spin-echo NMR 
spin-spin relaxatietijd metingen aan water in biologische systemen 
in een som van e-machten vertoont een grote mate van willekeur; voor 
de rechtvaardiging van een dergelijke ontleding is onafhankelijke 
experimentele informatie nodig. 

B.M. Fung, Biochim. Biophys. Acta 497( 1977),317 
B.M. Fung en P.S. Puon, Biophys. J. 33(1981),27 

3. Het verdient aanbeveling pas van dubbele fluorescentie te spreken als 
uit excitatiespectra eenduidig blijkt dat de waargenomen fluorescenties 
van een en dezelfde verbinding afkomstig zijn. 

D.L. Philen en R.M. Hedges, Chem. Phys. Letters 43(1976),358 

4. Het is de hoogste tijd dat in de evolutie van de beschrijving van de 
fysische toestand van water in biologische systemen een scheppende 
daad wordt gesteld. 

M.J. Tait en F. Franks, Nature 230(1971),91 
P.T. Beall, The Sciences 2J_(1981),6 

5. De theorie ontwikkeld ter verklaring van CIDNP verschijnselen, zoals 
waargenomen met behulp van NMR aan verbindingen in verdunde oplossing, 
mag niet zonder meer toegepast worden op reactiecentra van fotosynthe-
tiserende bacterien. 

R. Kaptein, J. Am. Chem. Soc. 94(1972),6251 

6. Het is te betwijfelen of de resulaten verkregen met de methode beshreven 
door Radda et al., om met behulp van NMR bloedstroomsnelheden te meten, 
onafhankelijk zijn van de spin-rooster relaxatietijd. 

G.K. Radda, P. Styles, K.R. Thulborn en J.C. Waterton, 
J. Magn. Reson. 42(1980,488 

7. Het is waarschijnlijk dat er een eenvoudig verband bestaat tussen de 
waterpotentiaal en de spin-spin relaxatiesnelheid. 

Dit proefschrift, hoofdstukken 5 en 7 

8. Het "Voorontwerp van een wet gelijke behandeling" bevat onvoldoende 
garanties om te voorkomen dat nieuwe vormen van discriminatie ontstaan. 

Voorontwerp van een wet gelijke behandeling 
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GENERAL INTRODUCTION 

Plants require water; deprived of it, they will wilt and die. In 

fact, the typical land plant consumes prodigious quantities of water, 

much more than any of the other substances that enter it. Most of 

this water does not remain within the plant, but passes through the 

plant to the atmosphere. This process is called transpiration. Water 

transport over long distances primarily occurs through a system of 

capillaries called xylem. The xylem forms an extra-protoplasmic path­

way for solute flow, consisting in particular of water, ions and 

certain organic solutes upwards from the root to transpiring sur­

faces of shoot system. In contrast, there is a second pathway through 

the sieve elements of the phloem. Within this system concentrated 

solutes such as carbohydrate produced by photosynthetically active 

structures flow to sink regions of various kinds in which these 

solutes are consumed for growth or stored in fruits or other reser­

voirs. 

The seemingly wasteful consumption of water through transpiration 

is essential to the growth of plants. In nature and even in agricul­

ture, it is a rare and fortunate plant that enjoys an optimum supply 

of water throughout its lifecycle. Without irrigation, most crops are 

inhibited, often seriously, from achieving full growth and develop­

ment. 

Out of all process controlling the growth of wild or cultured 

plants there is perhaps no single factor that is more crucial and 

none more amenable to our intervention (at least in principle) than 

that of control over transpiration in plants. Also in horticulture 

(greenhouses) this becomes increasingly important as energy costs 

are rising and transpiration as well as uptake of water in the roots 

require large amounts of energy. 

The transpirational process is one of the factors contributing 

to the water balance of the plant, beside uptake, transport and 

storage of water; these processes are strongly mutually coupled [1]. 

The rate of water transport in the xylem in combination with water 



content of the surrounding stem tissue are useful parameters to study 

and control the water balance, especially in relation to the effects 

of environmental factors such as light intensity, air humidity, C02 

concentration, soil- and air temperature on crop production. In 

addition, these parameters may be used for selection of breeds which 

combine favourable parameters for the water balance and low energy 

use. 

Several methods have been used to study water transport and 

-content [2]. 

Concerning water transport, either the mean linear flow velocity 

v or the volume flowrate Q of the movement of water in the vascular 

system in plant stems has been measured. The major existing methods 

are: 

injection and monitoring of dyes or radio-active tracers (e.g. 

[3]). These methods are highly sensitive but cannot measure flow 

after equilibrium has been reached. Also, it is uncertain if the 

transport rate of tracers represents the actual rate of water 

flow, since dyes or radio isotopes are absorbed at the vessel's 

surface [3]. 

heat pulse methods, measuring the unbalance created by net water 

transport through plant stems by a unit containing a heat injecting 

resistor and two temperature sensors symmetrically placed around 

the injector [4,5]. This method cannot measure absolute flowrates, 

but only changes. It does not provide reliable figures on the 

volume of waterflow per unit of time. The time-resolution is 

relatively long (5-10 min.). 

the magnetohydrodynamic technique, where a magnetic field perpen­

dicular to the flow generates a small induction voltage in a 

direction at right angles both to the flow and the field, due to 

the movement of charged particles [6,7]. The voltage measured by 

means of an electronic detection system is directly proportional 

to magnetic flux density, to the internal radius of the vessels 

and to the instantaneous velocity of the stream. The method can 

be used for instantaneous (repetitive) as well as continuous 

(steady state) measurements. A disadvantage of this method is 

the need of a relatively high flow velocity. 



the weight balance method, by which the loss of weight of the 

plant per unit of time is determined by a sensitive balance 

(e.g. [8]). The method requires isolation of the plant and sur­

rounding soil and is vulnerable to air-currents. It has a time-

resolution of a few minutes. In contrast to the previous mentioned 

methods this method yields volume flowrates. This is also obtained 

by a related method based on lysimeters [2]. Increase in plant 

weight by C02 and/or water uptake introduces errors in determining 

the actual volume flowrate through the plant stem. 

None of these methods detects the movement of water itself, however, 

and many are invasive. Nuclear magnetic resonance (NMR) does not 

have these disadvantages, and has been shown te be a suitable tech­

nique to study liquid flow [9]. To measure flow in plant stems the 

technique must be able to measure linear flow velocities in the range 

of 1-30 mm/s [2], and must be able to discriminate between a small 

fraction of flowing water (2-10%) and a large amount of stationary 

water in the plant stem tissue. Two different pulsed NMR methods 

have been developed satisfying these conditions [10,11], the first 

of which is a difference method and requires that the amount and 

physical properties of stationary water do not change in the course 

of the measurements. In Chapter 5 we show that this situation in 

plants clearly cannot be obtained. 

The second method [11] does not have this disadvantage and allows 

determination of flow in a single experiment. This NMR method has 

the following advantages: 

it is non-destructive and non-invasive. Whereas the first advan­

tage is obvious, the importance of the second is not generally 

realized. Some plants react excessively to mechanical or electrical 

contact, and it must be suspected that most if not all plants 

exhibit some change in one or more rate-processes upon such 

contact. 

it allows instantaneous as well as continuous measurements, 

it selectively measures flowing water only and does not record 

stationary water. In addition it measures the movement of the 

water molecules itself by "labelling" and monitoring the protons 

of the water molecules. 

the method is insensitive to air-currents after the sample remains 

in a fixed position in the magnet. 



as will be shown in Chapter 4, the method permits measurement of 

linear as well as volume flowrates after non-destructive cali­

bration using a glass capillary system. 

the method, when used to perform instantaneous measurements, 

allows a high time-resolution (3-10 s). 

The disadvantages of this NMR method are: 

intrinsic low sensitivity of NMR. 

the NMR apparatus is relatively expensive in comparison to alter­

native methods, described before. 

The method can equally well be applied to liquid flow in other bio­

logical objects than plants, e.g. for the measurement of blood flow 

(see Chapter 8) and the circulation of body fluids in human and 

animals. Finally, there appears to be no technical barrier for the 

measurement of spatially resolved flow patterns in various objects, 

using a combination of flow measurements by pulsed NMR and zeugmato-

graphy. 

For the determination of the water content, several methods have 

been used and are still in use [2], but they are either invasive, 

indirect, or destructive. Already in 1961 it has been shown that 

NMR can be used to determine the water content of grain [12]. From 

basic theory of NMR (see Chapter 3), it follows that the NMR signals 

are proportional to the amount of protons in the detector of the 

NMR apparatus. In Chapter 7 it is demonstrated that these signals 

can indeed be related to the water content. In addition the dynamical 

information in these NMR signals (see Chapter 3), can be used to 

distinguish various water fractions in the tissue with different 

physical properties, e.g. surface-bound, exchanging or bulk water 

fractions. 

Thus NMR flow measurements can be used to selectively measure 

flowing water only, without interference of the stationary tissue 

water, whereas by choosing a different pulse-sequence stationary 

water content can be monitored in the same experiment, without re­

placing the plant. This is a great advantage of the non-destructive 

NMR method over the existing other methods. 

The goal of this Thesis is to describe the application (and its 

limits) of the pulsed NMR method to plant stems. Chapter 2 summarizes 

the process of watertransport in plants and the physical state of 



water in the cell. Basic NMR theory as well as NMR pulse sequences 

to determine flow, diffusion and water content in biological systems 

are presented and reviewed in Chapter 3. Chapter 4 presents a de­

tailed description and discussion of the NMR method to determine 

flow in plant stems, showing that linear flow velocity as well as 

volume flowrate can be determined simultaneously, yielding in addition 

an estimate of the effective cross-sectional area of the transport 

vessels. NMR flow measurements in stem segments and in intact plants 

are reported in Chapters 5 and 6. Chapter 5 explains the reason for 

some negative results and discusses the results of simultaneous flow 

measurements and water content monitoring. A comparison between the 

results of flow measurements obtained with NMR, the heat pulse and 

weight balance method is presented in Chapter 6. 

Throughout this Thesis we are concerned with transport of water 

in the xylem. The phloem transport is downwards, which should give 

rise to an opposite sign of the NMR signal with respect to that of 

the upwards xylem transport. Phloem transport has not been observed, 

due to its much lower velocity. 
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2 WATER IN PLANTS 

This Chapter summarizes some characteristics of water transport 

in the plant stem and the physical state of water in the plant cell, 

in order to define some basic concepts underlying the main results 

of this Thesis. 

Water transport and -balances in plants and its parts have been 

treated in several reviews [1-6], on which the last parts of this 

Chapter are based. The state of water in the cell is reviewed in 

ref. 5-9. 

2.1 STATE OF WATER IN THE CELL 

Biological tissues contain 60-90 percent water and living organisms 

are absolutely dependent on water in a variety of ways. Nevertheless, 

basic knowledge about the physical state of cellular water is rather 

limited. There are two classical viewpoints about cellular water: 

cellulose cell wall 

intercellular 
space 

cytoplasm 

modesmnta 

plasmalemma 

onoplast 

central vacuole 

nucleolus 

Fig. 1 Structure of a vacuolated plant cell (adapted from [10]). 



(i) most water in the cell is considered to be in the free liquid 

state (bulk water); then, a living cell is equivalent to a dilute 

aqueous solution surrounded by a semipermeable membrane. 

In a vacuolated plant cell (Fig. 1) the cytoplasm is considered as 

such a semipermeable membrane. Following this model, it has been 

thought that the total cell behaves as an osmometer, an idea which 

is still in use [1], (ii) on the other hand there is also experimental 

evidence that the cellular water partially or totally exists in a 

physical state significantly different from normal liquid water. 

Water, ions and biopolymers inside the cell form a highly ordered 

phase. 

Hechter [11], discussing these classical concepts, concluded that 

both ideas are partly correct and partly wrong. 

For water near interfaces there is considerable evidence that 

there exists indeed a structurally changed boundary layer of water, 

called hydration water. The water molecules in the hydration layer 

of biological macromolecules exhibit restricted motion due to a 

significant decrease in translational and rotational degrees of motion 

by interaction with the macromolecules. Clifford [7] has described 

Simple interface 

B 
narrow pore 

no bulk water 

SURFACE ORIENTED 
ZONE 

second phase 

biological 
interface 

Fig. 2 Possible surface environments: (A) surface in contact with bulk water, 

(B) thin films and narrow pores, (C) particular surface in biological 

material, (adapted from [7]). 



the effect of surface environments on the behaviour of water, as 

illustrated in Fig. 2. In A there is simply an interface between 

bulk water and a second phase, which may be solid, liquid, or vapour. 

In B there is a thin layer of water between two interfaces, not 

allowing sufficient space for the development of bulk water structure. 

In biological material surfaces are usually more like C: the surface 

available for adsorption is many times the superficial surface area 

and water molecules exist in spaces comparable with molecular dimen­

sions. 

2.2 WATER POTENTIAL [4] 

In plant physiology, it is customary to express the free energy 

content of water by the water potential t|i. Derivations of water 

potential from strict thermodynamic principles can be found in [1] 

and [4]. For our purposes, it is sufficient to define water potential 

as the free energy per unit volume of water, assuming the potential 

of pure water to be zero under standard conditions. 

Because water potential increases with temperature, it is important 

to maintain constant temperature during a series of measurements. 

In contrast, water potential is lowered below that of pure water by 

dissolved solutes and also by the binding of water to surfaces by 

matrix forces. Since these effects are considered to be mutually 

independent, the water potential of a solution (t|i) can be expressed 

as 

t|i = t|i + t|< (2.1) 

where tb , the solute potential, is the reduction in water potential 

due to dissolved solutes (negative), tb , the matrix potential, is 

the reduction in water potential due to matrix forces (negative) 

and thus tb will be negative. Consequently, in the soil-plant-atmos­

phere system, water potentials are usually negative, and water flows 

towards regions with more negative values. 

In plant tissue, water potentials may be increased by hydrostatic 

pressure and, therefore, eqn. 2.1 must be modified to give 

tli = 41 + tb + tb (2.2) 
T Ts Ym ^p 



where ijj , the pressure potential, is the increase in water potential 

due to hydrostatic pressure (positive). Since I|J is positive, the 

resulting water potential is less negative than would be expected 

if only solute and matrix effects were considered. 

2.3 WATER TRANSPORT IN THE PLANT STEM 

Longitudinal water transport in the plant stem is primarily 

located in the vascular system, where it moves from the xylem ter­

minals in the root to those in the leaf. In principle, the whole 

cross-sectional area of the root or the stem is available for trans­

port. However, the flow through cell walls in the stem pathway can, 

at least under normal conditions, be neglected. The permeability of 

the protoplast is assumed to be 50 times less than that of the cell 

wall [2,3] and consequently this pathway can also be neglected with 

respect to vascular transport. This does not mean that transverse 

water transport is absent in the stem. This has been demonstrated, 

by adding isotopically labelled water to the root medium [12], causing 

the water in the xylem to be rapidly replaced by the labelled water, 

concomitant with a slow progressive replacement of water in the 

remainder of the outer stem tissue. 

In a freely-transpiring plant, water evaporates from the moist 

walls of epidermal and mesophyll cells in the interior of the leaves 

and is lost to the atmosphere through the stomata. As water loss 

proceeds, the water potential in the leaf apoplast falls below that 

of the leaf cells and also below the water potential in the xylem 

and the soil. (The apoplast is defined as the non-living parts of 

the plant, e.g. xylem, cell walls, etc.). This results in the rapid 

withdrawal of water from leaf cells and a lowering of cell water 

potential. Although there is continuity of liquid water between leaf 

and soil via the xylem, equalization of water potential throughout 

the plant by upward water movement can not occur very rapidly because 

there is a resistance to hydraulic flow in the plant/soil system. 

Consequently, transpiration establishes a water potential gradient 

causing flow of water from the soil to the leaf. 

The flow of water to a transpiring leaf in response to a water 

potential gradient has been described by an expression analogous to 

Ohm's Law [13]. In a symplified form this results in 
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Q = "'" I "'leaf (2.3) 

where Q is the volume flowrate of the water moving from soil to leaf, 

i|i is the water potential of the soil at the root surface, i|)-,_ ~ rs xeax 
is the water potential of the transpiring leaf, and R is the resis­

tance to hydraulic flow between the root surface and the site of 

evaporation. For a simple plant (e.g. a seedling), R can be divided 

into a series of component resistances within the plant: 

R = r + r „ + r- , (2.4) 
root stem leaf 

where r . is the resistance to flow between the root and the lumen root 
of the xylem, r . is the resistance in the xylem (root, stem and 

leaf), and r-, ~ is the resistance to flow across the leaf to the leaf 
evaporation site. Of those quantities, r, f and r r o o t have been 

considered as the most important resistances. Experimentally, it 

has been found that the resistance in the xylem vessels depends on 

the lumen wall surface sculptures [14]. 

When a plant is transpiring rapidly (>l>soil - 4>rs) and (t|»rg - <l>leaf' 

cannot exceed values of 10 - 30 bar (1 bar = 10s Pa) whereas 
(I]>T t - <|< .:,.) varies between 100 and 2000 bar [4]. Therefore, as VTleaf Tair 
long as steady state flow is maintained, leaf diffusive resistance 

controls the rate of water throughout the soil-plant-atmosphere 

system as well as transpiration rate. 

Great care must be exercised in applying this model to the 

behaviour of plants. Most plants do not consist of a single root, 

stem and leaf in series; they should rather be considered as a number 

of root axes, branches and leaves attached in parallel to a single 

(or multiple) stem. Another difficulty is that water can be withdrawn 

into, or released from, storage reservoirs (e.g. stem or leaf tissue, 

fruits, etc.) at different points along the pathway, thus altering 

the flowrate. In Chapter 5 we show, that cells bordering the xylem 

in the stem and root system lose water during periods of water stress 

(e.g. during the day) and adsorb water during the night. This problem 

can be overcome by extending the electrical analogy to include 

capacitance, as well as resistance in the soil, stem and leaves; 
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t h e exchange of wa te r w i t h s t o r a g e r e s e r v o i r s i s t h en ana logous t o 

c h a r g i ng and d i s c h a r g i n g an e l e c t r i c a l c a p a c i t a n c e . Such a model 

has been p roposed i n [ 5 ] . 

An i n d i c a t i o n of t h e v a l u e of t h e ave rage maximum v e l o c i t i e s of 

wa t e r t r a n s p o r t i n xylem i s g iven i n [ 1 5 ] . In mm/s v i s 0 .3 - 0 .6 

i n f e r n s , 0 .33 i n e v e rg r e en c o n i f e r s , 0 .27 - 1.7 i n l e a f y t r e e s w i t h 

s c a t t e r e d porous wood ( e . g . b i r c h , beech , l i m e ) , 3 .9 - 12 .2 i n r i n g 

po rous wood (oak , a sk t r e e s ) , 2 . 8 - 16 .7 i n h e rb s and 42 i n l i a n e s . 
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3 PULSED NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY IN BIOLOGICAL SYSTEM 

Reviews on the NMR pulse method and the theory of relaxation have 

been published [1-6,13]. Hence, this Chapter does not contain a de­

tailed treatment of methods, theory and interpretation of pulsed 

NMR. Only the necessary background for the Chapters 4 - 8 of this 

thesis is provided, as well as short reviews on some special appli­

cations of NMR, i.e. self-diffusion and flow measurements. In addi­

tion, the relationship between the relaxation parameters and water 

content, emphasizing biological systems, is shortly discussed. 

3.1 BASIC THEORY OF PULSED NMR 

Most nuclei posses the property of spin, characterized by an 

angular momemtum vector t and a magnetic moment jj related by 

M = Y * I, (3.1) 

where y is the gyromagnetic ratio, a constant for a given nucleus; 

ft is h/2n where h is Planck's constant. When a nucleus of spin I is 

placed in a static magnetic field B , the magnetic interaction be­

tween the nuclear magnetic moment |j and B gives rise to (21 + 1) 

equidistant energy levels, with a separation 

A E = y fi B (3.2) 

For protons (XH), the only nuclei considered in this thesis, I = \ . 

At thermal equilibrium, nuclei are distributed among the energy 

levels according to a Boltzmann distribution. This results in a 

macroscopic magnetization M along the direction of B . For a sample 

containing N nuclei, the equilibrium magnitude of M is given by 

[2] 

|M | = Ny2fi2 1(1 + 1)B /3kT (3.3) 
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We shall find it adequate in our treatment of pulse phenomena to 

deal almost entirely with the macroscopic magnetization by a clas­

sical description [1]. A complete theoretical description, in a 

quantum mechanical formalism, is given in several textbooks [2-4]. 

Bloch et al. [5] found that the motion of macroscopic magnetiza­

tion in the presence of an applied magnetic field § could be explained 

in terms of phenomenological differential equations. The classical 

equation of motion for the magnetization is given by 

dM/dt = yM x B (3.4) 

describing a precession of the magnetization around the magnetic 

field vector § at an angular frequency it) = -yB. The precession fre­

quency of M in B is called the Larmor frequency u> . In order to 

stimulate spin transitions, the frequency of the electromagnetic 

radiation must be equal to the frequency of the Larmor precession 

according to UJ = -yB . This is the resonance condition. 

In NMR experiments, commonly a rotating frame of reference 

{x.' ,y' ,z'} is defined for which the z1 axis has the same direction 

as the z axis in a laboratory frame, coinciding with the direction 

of B . The frame {x',y',z'} rotates at an angular frequency \u(iu = w ) 

around I (Fig. 1] 

(a) (b) 

V 

\ 

X X' 
Fig. 1 Magnetization M in a laboratory frame (a) and a rotating frame (b), when 

UJ = U) 
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The equation of motion (Eqn. 3.4) in the rotating frame becomes 

dM'/dt = M' x -y(B' + w/y) = M' x yB' 
eff 

(3.5) 

On resonance w = -y§ • When §' = B , M', the magnetization in the 

rotating frame, is constant. When we apply in addition to B a radio 

frequency field Bx, with angular frequency w, perpendicular to B 

(i.e. in the x,y plane), the effective field in the rotating frame 

becomes Sx, and the magnetization rotates around B\ at an angular 

frequency yBi. During a time t the angle over which M rotates is 

yBit (radians) (3.6) 

Strictly speaking, this relation only holds for the exact resonance 

frequency. It can be shown however, that the condition (3.6) holds 

relatively well even when the resonance condition is not exactly 

fulfilled, provided the B% pulse is sufficiently strong and its rise 

time short (a few M S ) . 

If the B1-field is switched off at the moment when a = 90°, the 

pulse in question is a 90° (VO pulse. Correspondingly, if the 

length of the pulse is chosen in such a way that a = 180°, the pulse 

is called a 180° (n) pulse (Fig. 2). 

i 

Fig. 2 The 90° and 180° pulses. 
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After the pulse, Ba is absent and B_ff= o. Because M is no longer 

in its equilibrium state, nuclear magnetic relaxation processes en­

sure its return to the equilibrium value M . Bloch [5] has described 

the motion of the components of magnetization by the following 

equations: 

dMx,/dt = - Mx,(t)/T2 or Mx,(t) = Mx,(o)exp(-t/T2) (3.7a) 

dMy,/dt = - M ,(t)/T2 or My,(t) = My,(o)exp(-t/T2) (3.7b) 

d(Mz, - MQ)/dt = - (Mz,(t) - Mo)/Tx or Mz,(t) = (Mz,(o) - M^exp^t/Ti) 

(3.7c) 

The terms - M , ,/T2 and - (M , (t) - Mr.)/T l represent the tendency 

of the magnetization to return to its equilibrium value, i.e. nuclear 

magnetic relaxation. The time constant 11 refers to the return of 

M to its equilibrium value M ; Tx is called the spin-lattice or 

the longitudinal relaxation time. 

The transverse component of M decays exponentially with the time 

constant T2, the spin-spin or the transverse relaxation time (also 

called the phase coherence time). In fact, the spin-lattice relaxa­

tion time Tt characterizes the exchange of energy between the spin 

system and the degrees of freedom of the lattice whereas the spin-

spin relaxation time T2 characterizes the exchange of magnetic energy 

inside the spin system, i.e., without a global change of the equilib­

rium magnetization. The latter characterizes the mean life time of 

the spins in a given energy state, due to the exchange of magnetic 

energy between the spins. 

As shown in eqns. 3.7a-c M approaches equilibrium exponentially. 

However, because of the heterogeneity of biological systems, the 

nuclear relaxation is in general not characterized by a single ex­

ponential decay, but by a sum of exponentials, each with its charac­

teristic relaxation time. This situation applies also to the results 

for plant samples as described in this thesis (Chapter 7). 

3.2 MECHANISMS FOR THE SPIN-SPIN RELAXATION 

The NMR relaxation times of water in biological samples, which 

have been widely used to measure the physical properties of this 

water, are affected by many factors and in general a straightforward 
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theoretical interpretation of the observed relaxation behaviour is 

therefore impractical. In this section we will give the mechanisms 

and dynamic processes which cause nuclear relaxation, especially in 

biological tissue. In favourable cases one of these mechanisms or 

dynamic processes dominates the relaxation behaviour and interpre­

tation of the data is quite simple. Unfortunately, in most biological 

tissues this is not the case and approximations must be made to ex­

plain the relaxation measurements. 

3. 2.1 Dipolar interaction 

One of the most important mechanisms for nuclear magnetic relax­

ation involves magnetic dipole-dipole interaction. Due to this inter­

action a magnetic nucleus experiences a small local field B-, , pro­

duced by the neighbouring nuclear magnets [1]: 

B. =1.-3 (3cos26.-l) (3.8) 
loc i r? i 

I 

where r. is the internuclear distance, and 6. the angle between r 

and the magnetic field. This interaction may be intra- or inter-

molecular. 

Secondly, molecules are in thermal translational and rotational 

motion, and atoms, or even groups of atoms, may change places within 

or between molecules. Due to these motions, the local magnetic field 

&-, experienced by a particular nucleus continuously varies in time. 

If B-, fluctuates at a suitable frequency it may induce transitions 

between spin states similar to those caused by the external resonance 

frequency field. Thermal motions in a liquid cover a wide spectrum 

characterized by the 'spectral density' function J(w) [6], which 

represents the power at frequency w. J(w) is the Fourier transform 

of the so-called autocorrelation function G(x), measuring the 

persistence of the fluctuations of the motion. Frequently G ( T ) drops 

off exponentially with a decay time T , which is called the cor­

relation time. It is the time taken for a typical fluctuation to 

die away. In many cases, T uniquely defines the J(u>) of the local 

field. For translational motion x can be considered as the time 
c 
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needed for a molecule to make a displacement corresponding to its 
diameter; similarly, for rotational motion, t can be viewed as the 
time needed to make a rotation through an angle of one radian; for 
collisions x is the average time between molecular collisions. 

If we assume that a single correlation time characterizes the 
molecular rotation, the dipole-dipole interaction for two identical 
nuclei with I = \ gives rise to nuclear spin relaxation, with 
relaxation times: 

(T-> intra = ^ ^ * " + ~ J (3"9a) 

Ti intra 6 1 + ^ 2 2 x + 4u) 2 X 2 
o c o c 

i o 4 *2 "̂̂  "̂̂  

(i-). . = ̂ — 2 - {3x + - + ^ } (3.9b) 
T 2 intra 2 Q r6 c l + ^ 2 T 2 x + ^ 2 T 2 

o c o c 

where r is the internuclear distance and x is the rotational corre­
lation time. For the translational motions involved in intermolecular 
interactions, the general expressions for (f-)in+-er

 a n d ^T^inter a r e 

similar to eqns. 3.9a-b, where the rotational correlation time x 
must be replaced by the translational correlation time xfc [2]. 

For fast rotational motion (1/t >> w ), Tj equals T2 and both 
are inversely proportional to x . This condition is commonly met in 
aqueous solution at room temperature, where x for water molecules 
is of the order of 10_11 s. As the correlation time x increases, 
the component of the local fluctuating field at the resonance fre­
quency u) decreases, tending to zero when w x >>1. Tt now becomes 
proportional to x and increases once more as the magnitude of t 
increases. T2, however, continues to decrease linearly with x , 
because T2 is also sensitive to low frequency fluctuations, until 
the molecular motion slows down so much that it reaches the rigid 
lattice condition. When water molecules interact with macromolecules 
in solution or with membranes the rotational and translational motion 
slows down considerably, causing Tx and T2 to become different, and 
resulting in a value of T2 much less than for free water. 

In analyzing relaxation measurements it is a standard procedure 
to include only intramolecular dipolar interactions. However, evi­
dence has been presented that intermolecular dipolar interactions 
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between water molecules, especially in the hydration layer, and 

protons of the macromolecules may have a significant or dominant 

contribution in the relaxation mechanism [e.g. 7-9]. There is an 

additional effect that may influence the observed nuclear magnetic 

relaxation: diffusion through local gradients in the magnetic field, 

due to local differences in the magnetic susceptibility, as found 

for heterogeneous systems [10]. However, it has been concluded that 

in biological tissues this effect is small and often can be neglected 

[9]. 

3. 2. 2 Paramagnetic ions 

A significant effect on nuclear relaxation times in biological 

tissues can be attributed to paramagnetic ions in solution, resulting 

from the dipolar interaction between electron and nuclear spins and 

the scalar interaction depending on the unpaired electron density 

at the position of the nucleus. The relaxation times of nuclei bound 

near a paramagnetic site are given by the equations of Solomon (11) 

and Bloembergen (12), 

Y2g2S(S+l){52 3x 71 2 t 
^ 7 = J F ( - ) { — + — } + |S(S+1) Q) { } (3.10a) 
T l M 1 5 r 6 l+u>2x2 l+tu2X2 3 * l+w2x2 

I c S c S e 
V2g2S(S+l)p2 3x 131 2 I 

f= - JF (- ) {4T + — - + - } + is(S+l) (£) { — ^ - + t } 
TzM 15 r6 C l+u)2T2 l+iu2T2 3 * l+w2T2 e 

1 c b c b e (3.10b) 

where u)T and w are the nuclear and electron Larmor precession fre­

quencies respectively, S is the electron spin, g the electron g 

factor (a dimensionless constant), 0 the electron Bohr magneton, r 

the distance between the nucleus and the paramagnetic ion, A/ft the 

electron-nuclear hyperfine coupling constant, and x and x the cor­

relation times characterizing the modulation of the dipolar and 

scalar interactions, respectively. These are given by 

^- = — + — + — (3.11) X T TM T c s M r 
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and 

e s M 

where T M is the life-time of a nucleus at the binding site, t is 

the rotational correlation time of the bound paramagnetic ion, and 

x is the electron-spin relaxation time. 

When fast chemical exchange occurs of water molecules in the bulk 

water and those near a paramagnetic site, the observed relaxation 

times can be shown to be 

j - m — + j — (3.13a.) 
l,obs lw 1M 

I = ir^ + J- (3.13b) 
2,obs 2w 2M 

where f is the fraction of time that each proton spends in the coor­

dination shell of the paramagnetic ion. If n is the coordination 

number, N is the concentration of paramagnetic species, and N„ is 

the molar concentration of protons we have f=n/N„. Neglecting T, 

and T» , the relaxation times in pure water, eqn. 3.13 becomes 

h = (s-> f5 - (3-14a) 

l,obs H 1M 

k = (J") f2" (3.14b) 
2,obs H 2M 

showing a linear dependence of both 1/T, , and 1/T2 , on N 

(Chapter 7). From eqn. 3.10 it can be seen that 1/T, . and 1/T2 , 

are also roughly proportional to Miff/ the mean square magnetic 

moment of the paramagnetic species, which is about a thousand times 

larger for electrons than for protons, causing a very effective 

relaxation mechanism. 

In biological tissues one is mainly concerned with the ions Cl~, 

Na , and K . At physiological concentrations, the effect of these 

ions on the relaxation times of pure water is usually very small 

and can in general be neglected [14,15]. However, in biological 

tissue these ions can influence the relaxation time of water by 

osmosis, affecting the water content of the tissue, and - at high 
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ionic concentrations 

structure [16,17]. 

by a direct effect of these ions on the water 

3.2.3 Sample heterogeneity 

The measurement and interpretation of nuclear relaxation in bio­

logical tissue is also complicated by tissue heterogeneity, both on 

a macroscopic and on a microscopic scale [18]. In this respect, we 

can distinguish regions with e.g. different cell size, different 

water content, different chemical composition. Furthermore, these 

regions are spatially organized in a non-random manner, they contain 

molecules of different sizes, and - finally -, water and ions may 

be distributed throughout the system in a non-uniform way, as indi­

cated in Fig. 3. Water molecules may exchange between regions A and 

B at a rate that is a function of the self-diffusion coefficient of 

water in each region and of the potential barrier constituted by 

the interface separating the two regions. 

On a microscopic scale the heterogeneity influences the time con­

stants of the different dynamic processes that characterize the 

t 

Fig. 3 Schematic illustration of large scale heterogeneity. Distinct regions 

(e.g. A and B) of the material may have differing compositions (e.g. 

water contents), geometries and dimensions (e.g. X, Y, etc.) and may also 

differ in e.g. degrees of order and anisotropy in internal structure (from 

Packer [18]). 
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motion of the water molecules and proton exchange in such systems. 

Fig. 4 gives a schematic illustration of two interacting regions a 

and p on a microscopic scale [18]. The shaded regions a and p represent 

two macromolecular structures characterized by dimensions d, x, y, 

orientations Ba and 6 defined with respect to an external reference 

axis, and correlation times for tumbling t . The distance d is often 

much larger than the size of a water molecule, and in systems where 

the macromolecules concerned are structural components such as in 

collagen, tm can be very long or even infinite. In protein solutions 
Tm w i l 1 reflect the tumbling of the protein molecule in part or as 

a whole. The water molecules can undergo a variety of motions in such 

a system as illustrated in Fig. 4. 

REGION a 
91* REGION ft 

vrri 111i111) i II I)) i) u)) m 111)) n 

H TD 
I 

H-0 

/VAex 
H H ,H H> 

W//////////777777778&77777771 

\ Tm 

Fig . 4 A schematic i l l u s t r a t i o n of small sca le he te rogenei ty and var ious dynamic 

processes which may he experienced by water in a b i o l og i ca l system (from 

Packer [18] ) . 

Water molecules outs ide the region of influence of the macromolecules 
d i f fuse , r o t a t e and exchange protons with c h a r a c t e r i s t i c times t n , 
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t and i respectively. Water molecules interacting with the macro-

molecules tumble anisotropically, this process being represented by 

a collective correlation time T' and have a lifetime in this state 

designated by t' . Water molecules may diffuse from one region to 

another, their lifetime in a given region being t„ (~ d2/2D ), with 

D the self-diffusion coefficient, while the exchange of protons 

with the macromolecules corresponds to a lifetime of t" . Water 

molecules near the macromolecular surface move in an anisotropic 

potential which remains almost unchanged during the reorientation 

of a water molecule, resulting in an anisotropic magnetic interaction, 

mainly of dipolar nature which is not averaged out to zero during 

the reorientation time of such a water molecule. Water molecules 

outside the region of influence of the macromolecules, the bulk 

liquid water, also experience at any instant an anisotropic potential, 

but the axes defining this anisotropy changes direction as fast as 

individual molecules reorient, consequently the effects due to an 

anisotropic potential are generally averaged out on the NMR timescale. 

As is evident from Fig. 4 the dynamics of water in biological tissue 

contains many different processes and a full description is virtualy 

impossible without making suitable approximations. 

3. 2. 4 Exchange and diffusion 

In biological tissues each region (i.e. a and 0, fig. 4) will 

probably contain a number of different types of binding sites which 

give rise to different values of e.g. correlation times and relaxation 

times. If t' for each such site were sufficiently large then the 

observed nuclear relaxation would contain a superposition of relaxa­

tion rates of free and the total of bound sites. By exchange processes 

however, the nuclear relaxation of the different sites is completely 

or partially averaged, depending on the rate of exchange. For the 

fast exchange condition (x' << T2fa, where b is the bound site) in a 

single region assuming only a single type of binding site, the ob­

served relaxation time becomes [19] 

2f-'+PbT2b-i (3.15) 
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where f refers to the free (bulk) water and Pf, P, are the mole 
fractions of the free and bound water, respectively. For a system 
with exchange between two sites a and b, the relaxation times depend 
on the exchange rates (T — X and t. -1 ) and the relaxation times of 
the sites in the absence of exchange (T2 = and T2, ) as given by [20-22] 

cl JJ 

T^II = \ IV + V + C + tfi ± [ < * + ^ + rij h (3.16) 
a l b 

with S = i (T2-1 - Tz^1) (3.17) 

and a = | ( t " 1 - i " 1 ) (3.18) 
2 a b 

The fractions are given by P = T /(r + t, ). 
In this description the chemical shift difference between the 

two states (the difference in the Larmor precession frequency) has 
been neglected. However, in considering the relaxation rates we must 
also take into account that the exchange process itself causes an 
additional relaxation mechanism because the nuclei experience time-
dependent magnetic fields by exchange between different environments. 
This results in a dependence of the nuclear relaxation times on the 
chemical shift differences and, in the case of a T2 measured via 
the Carr-Purcell-Meiboom-Gill method [23,24 and Section 3.3], on 
the pulse separation 2x of the n-pulses [21,22 and references cited 
therein]. For 2x6 << 1, where 26 is the chemical shift difference, 
the effect of the chemical shift disappears, resulting in egn. 3.16. 
On the other hand, for 2x6 >> 1, T2

-1 is given by [21,22] 

T2l,II= \ (T2~a + T2"b + X a _ 1 + ̂  * P (3"19) 

where p can be calculated from 

(p + iq)2 = (i6 + s + a)2 + (taIb)-1 (3.20) 

and S and a are defined in eqns. 3.17 and 3.18. The physical reason 
for the dependence of T2 on the pulse spacing 2t may be explained 
as follows. During the time t after an echo, the magnetizations M-
and MR rotate in the rotating frame with an angular frequency -6 
and +6, respectively. M, and 1VL have a phase difference 2T6 after 
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time i, in the absence of exchange. As a result, the observed relaxa­

tion times vary with increasing 2x between the limiting values given 

by eqn. 3.16 and eqn. 3.19. Therefore, a comparison of T2 relaxation 

times should take into account the experimental pulse spacing 2T. 

The dependence of T2 on 2t in plant tissue such as bean leaves 

and apple pulp has been demonstrated by Fedotov et al. [25]. From 

these measurements these authors concluded that (in terms of Fig. 

4) x' is of the order of 10~8 s, t" varies from 3.5 x 10-3 s for 

maize leaves to 9.5 x 10"3 s for onion bulb, and t' ^ 10- 4 s. In 

all measured plant tissues these authors observed only a single 

relaxation time for Tx and T2 , in contrast to the measurements re­

ported in this Thesis (Chapter 7). 

So far, exchange between two sites has been considered assuming 

that any water molecule at any instant has equal probability to be 

found in either one of the two sites. This situation is clearly not 

met in heterogeneous systems. The discrete jumps of a water molecule 

or a proton between two well-defined sites can then be generalized 

to random, quasicontinuous displacements, as in free diffusion. It 

depends on the distance over which the tissue is homogeneous, the 

presence of diffusion barriers and the diffusion coefficent, which 

kind of relaxation behaviour is observed: a single relaxation time 

for more homogeneous tissues with unrestricted diffusion or a distri­

bution of relaxation times for more complex systems. A full theoret­

ical description, in which many exchange sites with different re­

laxation times are incorporated, has not yet been developed. 

Recently, Brownstein [26] and Brownstein and Tarr [27] applied a 

simple theory based on a diffusion equation using the bulk diffusi-

vity of water [28,29] to explain the multi-exponential decay seen 

in nuclear relaxation measurements of water in biological tissues. 

They showed that such multi-exponential behaviour arises as a conse­

quence of an eigenvalue problem associated with the size and shape 

of the cell and that this multi-exponential decay can only be observed 

for samples with a size comparable to that of a biological cell. 
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3.2.5 Summary 

In summary we conclude that nuclear relaxation times Tx and T2 

contain the following information: 

concentration and dynamics of the observed magnetic nuclei 

nature of the environment of the nuclei, in particular the micros­

copic geometry of their environment. 

influence of the boundaries (e.g. walls) surrounding the homogeneous 

regions of the sample. 

3.3 MEASUREMENT OF T2, DIFFUSION AND FLOW 

3. 3.1 Method of T2 measurement 

After the magnetization M is rotated by a \ n pulse applied along 

the x' axis as shown in Fig. 2, M is parallel to the y1 axis, and 

immediately begins to decay. The nuclear induction signal can be 

detected with a coil that is part of a circuit tuned at the resonance 

frequency u> . The apparatus is arranged in such a way that signals 

are detected when M has a component perpendicular to B , i.e. the 

receiver coil is parallel to the x or y axis. Accordingly, the trans­

verse magnetization rotating in the laboratory frame induces an 

alternating voltage in the coil, at the Larmor frequency. This oscil­

lating signal can be phase-sensitive detected and decays exponentially 

if the resonance condition is satisfied. This signal is called the 

free induction decay (FID). 

As defined by the Bloch equations (eqns. 3.7a-c), T2 is the decay 

time of the transverse magnetization. However, only in favourable 

cases will the FID decay with the relaxation time T2• In particular, 

the inhomogeneity of the magnetic field B accelerates the decay of 

the transverse magnetization, because the nuclei in the different 

parts of the field precess at different frequencies and hence rapidly 

become out of phase with respect to each other. The FID has an effec­

tive transverse relaxation time T2*, given by [2]. 

(T2*)-i = T2
_1 + yABQ/2 (3.21) 
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where AB is the inhomogeneity of B . 

The effect of the magnetic field inhomogeneity of B can be re­

presented by a distribution of the Larmor frequencies g(Auj). Due to 

this inhomogeneity, the average Larmor frequency w in the sample 

is associated with a range of precession frequencies UJ ± Aw. At a 

given w-, a number of nuclei precess, and these are assigned to a 

spin isochromatic group [30]. After a %n pulse at t=o (Fig. 5a) 

each isochromatic group precesses at a slightly different rate in 

the x',y' plane and fans out (Fig. 5b). When, after a time t, a n 

pulse along the y' axis is applied (Fig. 5c), a 180° reversal to 

the isochromatic spin groups is given with respect to the y',z' plane, 

the slower and faster moving groups again approach each other. Thus, 

at time 2x phase coherence is restored for a short period of time, 

(b) 

(d) 

TCt£2T t = 2T 

Fig. 5 The production of a spin echo (a) t=o : \n pulse along x' , (b) free 

induction decay at 0<t<l, (c) at t=T a 71 pulse along the y' axis results 

in a 180° reversal of the isochromatic spin groups, (d) restoration of 

phase at x<t<2t yields, (e) a spin-echo at t=2T, (f) phase coherence 

is again lost. 
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giving rise to a spin-echo (Fig. 5e). Thereafter the spin-groups 

fan out again (Fig. 5f). The height of the echo at time 2x depends 

on the initial magnetization |M | and on the transverse relaxation 

time T2, which can be obtained from the echo amplitude as a function 

of T. 

However, molecular diffusion also affects the echo height. If 

between pulses the observed nuclei (attached to the molecules of 

interest) move from one part of the inhomogeneous field B to another 

by diffusion, then the compensation for the field inhomogeneity is 

incomplete and the echo does not reach its full height. Carr and 

Purcell have shown [23] that for the multiple pulse sequence 

Vt„i _(t - n - - T ) the effect of diffusion can be neglected when 

t is made small enough. The envelope of the heights of the spin 

echoes, which occur in between the pulses at times 2nt, has the form 

exp(-2nt/T2) and thus yields T2. Meiboom and Gill [24] introduced 

a modification to compensate for off-resonance effects and imper­

fections in the length of the pulses by the sequence: 

Vtx, -(x - ny, - x ) n 

This pulse sequence is known as the Carr-Purcell-Meiboom-Gill (CPMG) 

sequence which is used for the T2 measurements as reported in this 

Thesis. 

3. 3. 2 Effect of diffusion and flow 

As has been stated above, NMR is one of the most versatile tech­

niques for the study of molecular motion through its effect on the 

Larmor precession frequency. When a molecule moves a distance Az 

during a time At along a field gradient G , the phase shift due to 

that motion is 

A* = yG (AZ)(AT) (3.22) 

These motions can be viewed as either incoherent or coherent. Examples 

of the former are thermal motions of the molecules, e.g. transla-

tional and rotational diffusion, and chemical exchange, whereas flow 

represents coherent motion. Turbulent flow might be considered as 

having both the properties of coherence (on a short time scale) and 

randomness (on a longer time scale). 
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The effects of molecular diffusion and flow in spin-echo experi­

ments has already been recognized by Hahn [30] and Carr and Purcell 

[23]. In fact the echo amplitude in a CPMG pulse sequence is atten­

uated by molecular diffusion according to [23] 

S(t) « exp[-(t/T2) - i Y2G2Dl2t] (3.23) 

G is a spatial magnetic field gradient, D the self-diffusion coeffi­

cient. As stated before, S(t) is purely exponential for small T, 

i.e. if v2G2Dx2<<T2
-1. Stejskal [31] and Stejskal and Tanner [32] 

noted that the effect of diffusion is to attenuate the echo height 

whereas the effect of flow is to shift the phase of the echo signal. 

When the signal is phase sensitive detected, this also attenuates 

the echo height. Packer [33] showed that in a CPMG pulse sequence 

only the odd-numbered echoes are affected by flow by a factor 

cos(vGvt2), where v is a constant velocity (in m/s) and the linear 

gradient G is in the direction of flow. 

Several modifications of this basic pulse sequence combined with 

a linear magnetic field gradient have been proposed and employed 

for the measurement of self-diffusion or flow. Of these the use of 

time-dependent field gradients has the advantage of extending the 

range of D-values accessible to measurement to smaller values [32], 

because it permits the use of high field gradients without affecting 

the effective r.f. pulse length and the shape of the echo. This 

concept has also been applied to flow measurements [73]. 

Flow can also affect the echo amplitude in a CPMG pulse sequence 

without the use of a magnetic field gradient [34,35]. This effect 

is simply explained by noting that when the liquid is flowing, a 

fraction of the molecules labelled by a \n pulse is replaced by 

unlabelled molecules. The effect of flow pattern and r.f. field in-

homogeneity on the decrease of the echo amplitude has been investi­

gated by Hemminga et al [36]. 

The next Sections represent a short review of diffusion and flow 

measurements by NMR, with emphasis on the applicability of this 

method to biological systems, especially plants. 
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3.4 NMR DIFFUSION MEASUREMENTS IN BIOLOGICAL SAMPLES 

Most of the reported self-diffusion coefficients of water in 

biological samples have been measured using the time-dependent mag­

netic field gradient method (see Section 3.3) [32]. In plant and 

animal tissues it was observed that the measured values of D depend 

on the pulse spacing x which is indicative of restricted diffusion. 

This can be explained if the diffusing molecules are not able to 

travel for an appreciable distance in the time-interval* T without 

either meeting a partially reflecting barrier or venturing into a 

region of decreased mobility. This results in a behaviour that ap­

proaches that of a pure liquid for short pulse spacing, while for 

longer times the measured value of D decreases [31,37]. Restricted 

diffusion theory has been developed for a number of differently 

shaped restrictions. Expressions have been derived for planar 

[38,39,42], spherical [31,38], and cylindrical [38] impermeable walls 

and one-, two-, or three dimensional diffusion [40]. Formulae for 

geometries with an arbitrary diffusion barrier permeability are given 

by Tanner [41] and Anisimov et al. [43,44]. Tanner's equations contain 

the distance between the barriers as a parameter, which can be derived 

from the NMR relaxation data. In plant tissue the tonoplast, in 

addition to the plasmalemma, were suggested as possible barriers 

causing restricted diffusion. Thus measurements of D may yield infor­

mation about the cell size or the distribution of the size of the 

cells [41-45]. 

In tissues containing many components, the observed NMR relaxation-

behaviour in time-dependent field gradient spin-echo experiments is 

dependent on the fraction of each type of spin contributing to the 

echo. Karger [46] has presented a theoretical investigation of a 

two phase system. He derived complicated expressions similar in form 

to eqns. 3.15 and 3.16, given in Section 3.2 for multisite relaxation 

including exchange. By a proper choice of the r.f. pulse-sequence 

and magnetic field gradient pulses [45] together with other experi­

mental variables such as the pulse spacing time x, the magnitude of 

In reality, the use of the parameter T is not completely correct; further 

details are beyond the scope of this Section, and can be found in ref. [41]. 
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the magnetic f i e ld g rad ien t , the durat ion of t h i s g radient and the 
time between the g radient pulses [45,47,48] the time-window of the 
d i f fusion measurement can be s e lec ted , defining the phase or compart­
ment which i s under observat ion. 

Data for the s e l f -d i f fus ion coe f f i c i en t measurements for several 
p l an t t i s s ue s and c e l l s are l i s t e d in Table 3 . 1 . Abetsedarskaya e t 
a l . [52] have made cor rec t ions for the presence of vacuoles which 
were suggested to occupy 30-50% of the i n t e rna l c e l l volume and to 
contain bulk water, t o obtain the value of D in protoplasm. 

Table 3 . 1 . Values of T i , T 2 , D and c e l l s i ze for var ious p l an t t i s s u e s and c e l l s 
a t d i f f e r en t resonance frequencies and t emperatures . 

Sample 

Water 
Maize leaves 
Bean leaves 
Bean leaves 
Pea leaves 
Maize roots 
Apple fruit 
Tobacco pith 
Onion scales 
Wheat caryopsis 
embryo 
Endosperm tissue 
of wheat grains 
cells of lyo-
philically dried 
yeasts cryptococci 
wheat weevil 
buds 
yeast 
yeast 
Chlorella pyre-
noidosa 

MHz 

20 
20 
20 
20 
20 
20 
20 
20 

20 
60 

20 

20 
20 
20 

20 

Temp 

°C 

25 
25 
25 
25 
25 
26 
26 

-10 

-10 
22 

20 

25 
25 
26 

25 

Weight 
% dry 
matter 

10.5 
9.5 

9.1 

83 
73 

35 

T2 
ms 

2500 
96 

110 

133 

40 

Ti 
ms 

2500 
250 
300 

885 

Dxl09m2s"1 

in 

2 

cell 

.4-2.5 
2.0 
1.81 
1.59 
1.82 
1.76 
1.84 
2.37. 
0.15b 

0.17b 

0.18 
1.2 

0.25 

0.84C 

0.60c 

0.68 

1.03° 

Dxl09m 
in p 

1 
1 

1 

2 S - ! 

roto-
plasma 

82-
56-

49-

-1 
-1 

-1 

60 
20 

12 

Cell, 
d 

size 
|Jm 

43 
111 

0.6 

5.3 

Ref 

49,50 
52 
52 
53 
53 
52 
42 
42 
54 

54 
40 

44 

53 
52 
42 

52 

a. Corrected for presence of vacuoles 
b . Nonfreezing water: 0.27 - 0.45 g/g dry matter 
c. For the h igher mobi l i ty f r ac t ion (85-90%). Less mobile f r ac t ion 

D: 0.2 - 1.0xl0~6 cm2/s (Hydration water : 0.2 - 0.6 g/g dry ma t t e r ) . 
d. Inner diameter as measured by NMR d i f fus ion measurements. 
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The values of D, as shown in Table 3.1., can be up to a factor of 

16 less than the value for pure water, but they are mostly comparable 

to the values obtained in protein solutions and gels (D ~ 1 a 

2 x 10~9 m 2 . s - 1 ) . The smaller D values of water in protein solutions 

compared to that in pure water has been proposed [57] to be the 

result of (a) an obstruction effect, caused by the large and less 

mobile proteins, impeding the translational motion of the water 

molecules, (b) the hydration effect, which may either increase or 

decrease the motion of the hydration water of the proteins, depending 

on the effect of the protein on the water structure in the vicinity 

of the protein. Abetsedarskaya et al. [52] considered the obstruction 

effect to be the predominant cause of the decreased values of D in 

leaves of maize and bean and in maize roots. 

In the endosperm tissue of wheat grains Callaghan et al. [40] 

measured the value of D for water as a function of the tissue water 

content. Assuming one-dimensional diffusion in a randomly oriented 

array of capillaries with transverse dimensions < 100 nm these authors 

find a single diffusion coefficient at each water content, varying 

from 0.18 x 10~9 at the lowest to 1.2 x 10"9 n^.s-1 at the highest 

water content, corresponding to an increase of the hydration water 

film thickness from ~ 0.5 to ~ 2.5 nm. These values of D agree fairly 

well with those of the nonfreezing water fraction in onion scales 

Table 3.2 Values of Tj, T2, D, X and P, for various plant samples. 

Sample 

Chlorella 
vulgaris 

Elodea leaves 
Ivy bark 

Mean 
cell 
size 
(|Jm) 

3.2a 

96x27b 

36a 

MHz 

11 

11 
18.5 

Temp 
°C 

20 

20 
20 

T2 
ms 

54(intra) 
14(extra), 

^230(intra) 
84(intra) 

9(extra) 

Ti 
ms 

205 
45 

182 
28 

DxlO 9m2s-
in cell 

< 1.7 

0.76 
1.43 

-1 T 
a 

ms 

19-28 

18.2 
-40 

P d ! cm. s 

2.1xl0"3 

3xl0"2 

~3xl0-2 

Ref. 

48 

55 
56 

a diameter 
b length x diameter, both in ̂ m 
c P, = diffvisional water permeability of plasmalemma. P, is defined by 

P , = T , (cm/s , where D is the diffusion constant of water in the plasma-
lemma, and 8 is the thickness of the plasmalemma-membrane. 

d T2 of extracellular water not quoted in reference 55. 
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and wheat caryopsis embryo [54], and with water in lyophilically 

dried yeast cryptococci [44], but are a factor of 10 higher than 

the value of D of the less mobile (hydration) water fraction measured 

by Miftakhutdinova et al. [53] in wheat weevil buds and yeast. 

The self-diffusion of water in the cell and the diffusional water 

permeability (P^, see Table 3.2.) of the plasmalemma has been mea­

sured by Stout et al. in an attempt to evaluate the effect of differen 

freezing stresses as well as drought and cold hardiness of plants 

[48,55,56,58]. These authors have combined the time-dependent magnetic 

field gradient method with a technique to measure P, as applied by 

Conlon and Outhred [59] and Fabry and Eisenstadt [60] to red blood 

cells. In this latter NMR technique, intracellular water is distin­

guished from extracellular water by the difference in T2 when T2 of 

the extracellular water is controlled by added MnCl2 (see Section 

3.2, eqns. 3.14a-b). From such measurements the mean residence time 

(T ) for water molecules within the cell has been determined 

[48,55,56] since movement through the membrane into the extracellular 

medium (which has a shorter T2 ), influences the measured value of 

T2 (eqns. 3.15 and 3.16 Section 3.2). Using x and the known mean 

cell radius, the mean value of P, can be calculated provided that 

x is limited by P, and not by intracellular unstirred layers [61]. 

The results for three different plant samples are presented in 

Table 3.2. 
2+ In the absence of extracellular Mn , T2 in these samples reveals 

the presence of at least two populations of water, each with different 

T2 values. The fast relaxing population was believed to be extra­

cellular water [48,56], whereas the longer T2 was associated with 

intracellular water. Intracellular structure was ignored. In Elodea 

leaves, however, diffusion measurements yielded a mean distance of 

13.5 pm over which the water molecules could freely diffuse. This 

distance is much shorter than the average geometrical cell size. 

This indicates internal cell structure, which can explain the low 

value of D observed in cells of these leaves: these structures 

restrict diffusion of the water molecules. The magnitudes of D in 

Ivy bark and in Chlorella vulgaris are of comparable size with 

respect to those in other plant cells (Table 3.1). 
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3.5 NMR FLOW MEASUREMENTS IN BIOLOGICAL SAMPLES. 

NMR flow measurements include both steady state and pulse NMR 

methods. Despite the early observations of NMR signals arising from 

flowing water in a U-tube by Suryan [62], very little additional 

information was published until 1960. The earlier work was reviewed 

by Zhernovoi and Latyshev [63], who also derived theoretical expres­

sions relating signal amplitude and width to experimental factors 

involved in NMR experiments in flowing fluids, and who developed 

several devices of practical interest. In a more recent review Jones 

and Child [64] have discussed the application of NMR flow measurements 

in industrial, chemical, and physiological situations. 

3. 5. 1 History of in vivo blood flow measurements 

For biological samples, the recognition of the potential of NMR 

in biological and physiological flow measurements has stimulated 

the study of blood flow in vitro and in vivo. The earliest work 

directed toward the application of the NMR principles to noninvasive 

in vivo measurement of blood flow was carried out in 1956 by Bowman 

[65] (using the method reported by Suryan [62]), who observed a linear 

relation due to saturation effects between signal amplitude and flow 

rate, in a continuous B1 field. 

Absolute flow rates have been measured using magnetic labelling 

of nuclei by determining the "time-of-flight" of tagged nuclei 

travelling the distance between two coils, placed in a static magnetic 

field [66]. Many improvements and variations on this technique have 

been reported [63,65], yielding various tagging techniques for non­

invasive measurement of blood flow in humans [65]. 

The first measurement of blood flow in vivo was reported by Singer 

in 1959 [67]. He measured the NMR signal amplitudes Af and A in the 

presence and absence of flow, respectively, using Suryan's expression 

[62] to obtain the average linear velocity of flow [68] 

v = (Lo/T!)[(Af-A)/A] (3.24) 
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where L is the effective length of tube in the r.f. field. Due to 

the contribution of tissue signal to the total NMR signal, however, 

the method only yields relative blood flow rates. Recently, Radda 

et al [99] described a pulsed version of Suryan's original experiment 

which satisfies the requirement that the flow measurement must be 

independent on T2 • This requirement is due to the fact that T2 of 

blood is determined by the oxygenation of the blood [100]. Singer 

also presented the theory of the "time-of-flight" method. Measure­

ments of blood flow velocity in the median veins of human subjects 

by this tagging technique have been reported in 1970 by Morse and 

Singer [69]. NMR blood flow measurements are reviewed by Battocletti 

et al. [65,70]. It has been observed that the measurement of NMR 

signal amplitude in time-of-flight measurements leads to knowledge 

of volume flowrate [65]. 

3. 5. 2 Pulsed NMR flow measurements 

As stated in Section 3.3, pulsed NMR methods with and without 

steady state or time-dependent magnetic field gradients, can be used 

to measure flow velocities. Hahn [71] was the first to employ a 

spin-echo technique in combination with a magnetic field gradient 

to measure the motion of sea water and derived the important result 

A* = yGvt2 (3.25) 

where A* is the average phase shift of the fluid signal due to an 

average linear velocity v, G is the magnetic field gradient and x 

is the time between the r.f. pulses. Grover and Singer [72] have 

used a similar two-pulse method to determine the velocity distri­

bution function, defined as the density of flowing protons per 

velocity interval, characterizing the blood flow in a finger. 

Following \n and n pulses separated in time by x, the echo amplitude 

A(2t) was measured as a function of 2x. Until now, no other spin-echo 

NMR blood flow measurements have been reported in the literature. 

This may be due to the pulse sequences used in these experiments, 

all consisting of one or more \ n pulses, creating a contribution 

of stationary tissue water to the NMR signal (see also Section 3.5.3). 
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Several CPMG type multiple spin-echo sequences have been recommended 

for examining the influence of flow patterns on the spin-echo decays. 

Packer and his group have made a series of careful experimental and 

theoretical studies in this area, using both static and time-dependent 

magnetic field gradients [33,73,74]. The CPMG pulse sequence (Section 

3.3) has been replaced by the sequence Vt - x-n(- x' - n) , with t1 

slightly larger than x, or by %7i (- x - n) , both of these pulse 

sequences minimize the effect of diffusion on the time dependent 

NMR signal, whereas the effect of flow on this signal can be more 

easily determined, as compared to that in the CPMG method [33]. In 

the latter pulse sequence, plug flow for example produces a cosine 

modulation of the spin-echo amplitude, whereas the effect of diffusion 

is the same as in the CPMG sequence (Section 3.3). It has been shown 

that laminar flow results in a (sin x)/x modulation [73,74]. Garroway 

[75] has used a %n - x - \n sequence in combination with a linear 

magnetic field gradient to determine the spatial profile of the 

velocity distribution for the laminar flow of water in circular and 

rectangular pipes, from the shape of the FID (Section 3.3) following 

the second Vt pulse. An improved method, using the Vi [- x - Vi ] 

pulse sequence [75] allowed direct measurement of the velocity dis­

tribution. This author has also suggested the use of multiple-pulse 

line-narrowing techniques [76,77] (yielding an effective T2 of 

10-40 ms) in order to measure flow of solids e.g. in slurries. 

Using a %n - x - n pulse sequence, Lucas et al. [78] have measured 

flow profiles of pressure-driven flow in a rectangular flow channel, 

and of convective flow, driven by the transverse density gradient 

due to a temperature gradient between two flat plates. Because of 

the large value of T2 of the fluid which these authors studied 

- superfluid 3He/4He mixtures - they were able to detect flow veloc­

ities as small as 10 pm/s. Using a CPMG sequence in combination 

with a linear magnetic field gradient, Fukuda and Hirai [79] were 

able to obtain the velocity profiles and distributions of Poiseuille 

(laminar) and turbulant flow. These authors measured the magnetic 

field gradient dependence of the first and the second spin-echo 

amplitude, demonstrating that information on the velocity profile 

can be obtained from the first spin-echo amplitude, whereas the 

amplitude of the second echo depends on the velocity fluctuations 

[79]. A more detailed discussion on flow profiles is given in 

Chapter 4 and 5. 
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Hemminga et al. [36,80,96,98] have described two NMR spin-echo 

methods to detect flow velocities and profiles of flowing fluids 

in the presence of stationary fluid. These methods are described 

in the following Section (3.5.3) 

3. 5.3 NMR flow measurements in plants 

In order to measure water flow rates in biological objects such 

as plant stems, the method must be sensitive to small flow rates 

(1-30 mm/s), and to be able to discriminate between a small fraction 

of flowing water (about 2-10%) of the total amount of water in the 

sample volume and a large amount of stationary water. Both NMR methods 

described by Hemminga et al. [36,80,96,98] can discriminate between 

flowing and stationary water. The first is a difference method based 

on the CPMG pulse sequence and does not require a magnetic field 

gradient [36]. In the case of stationary water, the echo decay in 

the CPMG sequence is given by 

S(t) = SQ exp(-t/T2) (3.26) 

where S is the amplitude of the signal at time t=o, which is pro­

portional to the equilibrium magnitude of the magnetization (eqn. 

3.3). When the liquid moves with a uniform velocity v = v (plug flow), 

eqn. 3.26 is multiplied by a factor 1-fvt/l [35], giving 

S(t) = S (l-fvt/1) exp(-t/T2) for tSl/v (3.27a) 

and 

S(t) = S (l-f) exp(-t/T2) for t > 1/v (3.27b) 

for a rectangularly shaped Bx r.f. field, where f represents the 

fraction of flowing water w.r.t. the total and 1 the length of the 

r.f. coil. After t > 1/v, the volume of flowing water in the r.f. 

coil has been completely replaced and the echo decay is determined 

only by the stationary water fraction. The contribution of the 

stationary water to the echo decay S(t) in eqn. 3.27a and 3.27b can 

be removed by subtracting two echo decays, one with v f o, the other 

with v = o; the difference signal is given by 
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AS(t) = fSQ (vt/1) exp(-t/T2) for t g 1/v (3.28a) 

and 

AS(t) = fSQ exp(-t/T2) for t > 1/v (3.28b) 

Difference decay curves have also been derived for laminar flow and 

for a Gaussian B! r.f. field. 

The application of this spin-echo difference method for measure­

ments of flow rates in the plant stem is of course limited by the 

fact that an echo-decay at v = 0 must be available as a reference. 

The authors [36] have suggested that in the dark the sap stream has 

almost stopped and thus the decay curve at v = 0 can be determined 

and stored in some form. However, in Chapter 5 it is shown that the 

X 
Z / l"/2 i - i fl\ X B,(x) 

.B„ 

* j 1 | | 
JUT ± X _ ^ _ ^ ' I v>»-si-*.-»* f-T It x- pulse 

I ' l l 

X (direction of flow) 

Fig. 6 Basic principles of the n-(-T-n) pulse method for flow measurements: 
n 

water molecules receive r.f. pulses with a pulse angle gradually in­

creasing from 0 to 71, as the distance from the center of the r.f. coil 

increases from infinity to zero, and simultaneously move along the 

magnetic field gradient G. 
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situation v = o cannot be easily realized - even in the dark - and 

in Chapter 7 that T2 of stationary water changes with water content 

and with flow velocity. This renders the difference method impractical 

for flow measurements in stems of intact plants. 

The second method reported by Hemminga et al. [80] is a pulsed 

NMR method, based on a sequence of equidistant n pulses in combi­

nation with a linear magnetic field gradient. As shown in Chapter 

4, the NMR signals of flowing water are the result of the movement 

of water into the r.f. coil from a region outside it. Thus the water 

molecules receive r.f. pulses with a pulse angle gradually increasing 

from 0 to n, as the distance from the center of the r.f. coil in­

creases from infinity to zero. This occurs in reverse at the other 

side of the coil (Fig. 6). Simultaneously, movement of the water 

molecules along the magnetic field gradient G produces a phase shift 

A* of the echoes with respect to the rotating frame of reference 

[31,33, see also Section 3.3]. Using eqn. 3.25 and noting that vi = 

Ax, where Ax is the distance travelled during time t in the direc­

tion of 5 (Fig. 6), we obtain for the phase shift A*: 

A* = vGAxT (3.29) 

For flowing water both effects yield a signal S(t) that is increasing 

in time, and is modulated by a periodical function with a frequency 

directly proportional to the mean flow velocity v. At resonance, 

stationary water yields zero signal (base-line), and the method there­

fore discriminates flowing water from stationary water (see Chapter 

4). 

In addition, the method allows determination of flow in a single 

experiment. These features make the method attractive for study of 

biological samples, as shown for plant stems (Chapter 5 and 6). Linear 

flow velocity as well as volume flowrate can be determined simulta­

neously by this method (Chapter 4), yielding an estimate of the 

effective area of the transport vessels and of the spin-spin relax­

ation time T2 of water contained by these vessels (Chapters 4, 5 

and 6). The limitations of this method as applied to measurement of 

water flow in plant stems are discussed in Chapter 5. 
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3.6 T2 AND WATER CONTENT 

Although there is no straightforward theoretical model for the 

interpretation of the observed NMR relaxation behaviour (Section 3.2), 

many authors have demonstrated a relationship between Tx, T2 and water 

content in biological objects. Daszkiewicz et al. [81] were the first 

to show that the NMR relaxation rates depend on protein concentration 

in protein solutions, and derived the relation 

Tj-1 = Ti ~1 + kxC (3.30) 

for protein concentrations less than 100 mg/ml, where Tx is the 

spin-lattice relaxation time of pure water, kx an experimental 

constant and C the concentration of protein in g/g H20. A similar 

relationship has been shown for T2 [81]. Cooke and Wien [82] have 

shown that the same result is obtained for muscle tissue and solutions 

of muscle proteins. They interpreted their results in terms of a 

fast-exchange-two-state (FETS) model, including fast exchange between 

a bulk water fraction and a - minor - water fraction bound to macro-

molecules. This results in a single experimental relaxation time 

which is the weighted average of the two separate times T l f (free 

>/ater) and Tx, (bound water) as given in egn. 3.15. The relationship 

Detween Tt, T2 and water content has been demonstrated in several 

Diological objects, e.g., muscle and brain tissue [83-85], mammalian 

tissue and cells [86,87], normal and cryolesion rat liver tissue 

[88], and in normal and malignant tissues [e.g. 89,90]. These authors 

lave also explained this relationship in terms of the FETS-model. 

A more general expression for the weighted average relaxation 

rate should include the residence time x, of a proton of the water 

nolecule, or the residence time of the whole water-molecule, which­

ever is shorter, in the hydration layer of the macromolecule, resul­

ting in the expression (see also eqn. 3.16): 

Tr 1 - Pf Tif1 + Pb (Tlb + Tb)~1 (3.31) 

jhere the symbols have the same meaning as in eqn. 3.15, and tb>Tlb. 
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Under physiological conditions, the mean time between proton jumps 

is shorter than ~ 2xl0-3s [91]. This value of tb is less than that 

found for Tlfc) in albino mouse muscle and liver [83] and in solutions 

of hen egg albumin [83], in which Ti. ~ 7xl0-2s, illustrating that 

xb may be neglected in eqn. 3.31. In skeletal muscle Hazlewood et 

al. [19] estimated the value of T l h to be ~ 0.42 ms, comparable to 

or less than that of T,. 

In those cases where the role of intermolecular dipolar relaxation 

cannot be neglected in the proton relaxation of the bound water 

molecules, the total proton relaxation rate of the bound water is 

the sum of the intra- and intermolecular dipolar relaxation rates 

[8]. 

Beall et al. [92], studying 71 and water content as a function 

of the growth cycle of Hela cells, demonstrated that during the 

mitosis and synthesis period of DNA Ti is related to the water conteni 

of the cell. During the transition from the DNA synthesis period to 

the post-DNA synthesis period, however, significant changes in Tx 

were observed, which were independent of changes in the water content 

Samuilov et al [93] observed that in germinating Russian bean seeds 

Tx increases with increasing water content in the course of water-

uptake by the seeds. From the dependence of Tx on the ratio of weight 

dry matter per weight water these authors demonstrated the existence 

of three sudden changes in the relationship between Tx and this ratio 

enabling them to discriminate not less than four water fractions in 

the seeds, differing with respect to their physical properties (e.g. 

relaxation rates) and, accordingly, with respect to the nature of 

their interaction with different surfaces and components of the cell-

structure [93] . 

In the crown of winter wheat cereals Gusta et al. [94,95] demon­

strated a linear relationship between the long component of the 

transverse relaxation rate T 2
- 1 and the water content. From this 

relationship these authors calculated T l f values for the bulk water, 

which were lower for cold acclimatised wheat genotypes than for less 

hardy genotypes. 

The relationship between Tt
- 1 and water content (eqn. 3.15), and 

the effect of Li , K and Cl~ ions on this relationship, in roots 

of Zea mays has been studied by Bacic et al [16]. It was found that 

a minimum in the magnitude of ̂  versus external salt concentration 

exists at ~ 10~3 M, which corresponds with a minimum in water content 
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The changes in Ti reflect a) the osmotic effect of ions on Pf, the 

free water fraction, and b) the direct effect of ions on macromolecular 

hydration shells and the disordering of the free water structure 

([16], see also [17] ). 

Hsi et al. [97] studied T2 in milled Northern white-cedar wood 

chips (Thuja occidentalis L). At water contents below 0.38 g of water 

per gram of dry wood, no freezing effect on T2 is detected. At larger 

water contents the spin-spin relaxation is found to be non-exponential. 

This was explained by assuming that at water contents above 0.38 g 

of water per gram of dry wood, additional water only increases a 

second slowly relaxing water molecule population, which was associated 

with bulk water, the protons of which exhibit rapid exchange with a 

few surface-sites with very efficient relaxation [97]. Using a 

different approach by employing a diffusion model, including magnetic 

sinks, Brownstein [26] was able to explain the measurements of Hsi 

et al. [97]. This model essentially involves two regions of water, 

a surface layer of macromolecules i 0.26 pm thick, with a severely 

reduced diffusion constant for water (D < 2.7*10-12 m 2 . s - 1 ) , and 

the additional water outside this layer. 

In Chapter 7 of this Thesis the results of the study of the effect 
2 + Mn (a paramagnetic ion) on the relatic 

water content in wheat leaves are presented. 

2 + of Mn (a paramagnetic ion) on the relationship between T2
_ 1 and 
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4 FLOW MEASUREMENTS IN MODEL SYSTEMS 

4.1 INTRODUCTION 

Several indirect methods have been used to study water transport 

in plants by measuring the mean linear flow velocity or the volume 

flowrate of water in the vascular system of plant stems [1]. None 

of these methods detects the movement of water itself, however, and 

many are invasive. 

Nuclear magnetic resonance (NMR) is a suitable technique to 

study liquid flow [2-7]. In most of these NMR methods, stationary 

liquid - such as non-flowing water in the tissue of the plant stem -

gives rise to a large NMR signal in addition to the signal due to 

flowing liquid. A recent paper [8] describes a spin-echo NMR 

method, based on a pulse sequence of equidistant n pulses and a 

linear magnetic field gradient in the direction of flow. This method 

permits the detection of flow velocities of flowing fluid in the 

presence of stationary fluid, and NMR signals are generated, the 

shape of which is correlated to the flow velocity and flow profile. 

This Chapter presents a semi-empirical formalism of this pulse 

NMR method, resulting in an analytical expression for the shape of 

the time dependence of the NMR signal-amplitude, allowing a straight­

forward simulation of the experimental signals of plug flow and 

laminar flow. In this way insight is gained in the effect of the 

experimental parameters on the signal shape. This has not been pos­

sible using the formalism given by Hemminga and de Jager [8]. In 

addition, we present a detailed discussion of this pulse method as 

applied to flow in plant stems and based on measurements in capillary 

model systems, simulating the plant stem. It is shown that from 

these flow measurements the mean linear flow velocity v, the volume 

flowrate Q, the effective cross-section of the capillary A, and the 

spin-spin relaxation time T2 of the flowing water can be determined. 

4.2 THEORY 

The response of a spin system, flowing in a r.f. Bj-field and 

along a linear magnetic field gradient, to a sequence of equidistant, 
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identical pulses has been treated by Hemminga and de Jager [8]. 

Because of the complexity of the theory the shape of the NMR signals 

could not be expressed in a closed analytical form and this has been 

obtained by these authors using computer simulations. With this 

approach determination of the effect of the parameters of the method 

on the size and shape of the signal and the presence of additional 

information hidden in the signals is a tedious matter. 

After a brief outline of their results, we present here a semi-

empirical approach, resulting in an analytical expression, which 

can be straightforwardly applied to experimental NMR signals of 

flowing fluids. 

4. 2.1 System description 

Consider a system of nuclei (I - h) in a magnetic field B 

directed along the z axis of a laboratory coordinate system {x,y,z}; 

\ 

N 

/ 

t 

B, 

/ 

\ 

Fig. 1 A schematic representation of a capillary system and sample coil within 

the magnetic field. The fluid in the inner tube is flowing with flow 

velocity v. The r.f. coil is indicated by C, x,y and z are the axes of a 

right-handed laboratory coordinate system. 
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a linear magnetic gradient G (gauss/m) is imposed on B , along 

y, so that B (y) = B + yG (Fig. 1). Let the nuclei move in the +y 

direction with a uniform velocity v (mm/s), which is the situation 

for plug flow. 

The sample is contained in a tube that extends along the y axis 

through the transmitter/receiver coil of a pulsed NMR spectrometer 

(Fig. 1). The axis of this coil coincides with the y axis. 

The motion of the spin magnetization is considered in a frame 

{x',y',z'} rotating about the B (z) direction with the Larmor fre­

quency UD . It is assumed that off-resonance effects on the effective 

r.f. field can be ignored, so that it is equal to Bi and directed 

along the x' axis (see Section 4.3.1). Let the mean Larmor frequency 

of all nuclei be w = -vB , where B = B (y=0). o 8 o o z w ' 
A sequence of equidistant r.f. pulses (time duration t , period 

x, t>>t ) is applied to the sample. During the pulse sequence the 

nuclei move through the Bx field and along the linear field gradient 

G. 

To describe the effect of flow, the nuclei in the fluid sample 

are considered to be divided into small equal groups along the y 

axis. The position of such a group of nuclei at the nth pulse (at 

time t = nx) is then given by 

y = y + vnx (4.1) 
n J o 

where y is the position of the group at the start of the pulse 

sequence at t - 0. In the rotating frame, the precession frequency 

of the magnetization vector M of such a group is then given by 

u)n = YGyn (4-2) 

Y is the gyromagnetic ratio. The precession angle in a time dt 

between the pulses is d* = w dt. This is illustrated in Fig. 2. 

Between the (n-l)th and nth pulse the precession angle A*n 

becomes 

nt 
A* = J w(t)dt = YGy T + !j(2n-l)YGvT2 (4.3) 

n X (n-l)t ° 
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Fig . 2 Schematic r ep re sen ta t ion of the magnetizat ion M of a group of nucle i a t 

time dt a f t e r a (^7l) , p u l s e , as viewed along the y a x i s . Each group has a 

p recess ion frequency, which i s a function of the po s i t i on on the y a x i s , 

due to the magnetic f i e l d g rad ien t G = dB / dy . The r o t a t i ng frame { x ' , y ' , z ' } 

r o t a t e s with Larmor frequency w = -yB . 

(Note t h a t to reach eqn. 4 .3 we have replaced nt by t in eqn. 4 .1 
and made use of eqn. 4 .2 , whereas in eqn. 4 .1 we have used the 
model of spin isochromatic groups with f i n i t e th ickness (VT ) , assuming 
t h a t the f i e ld g radient can be considered to vary s tepwise, r e su l t i ng 
i n AA = w x . However, the d i f ference between these two approaches 
i s VyGvi2, Which i s n eg l ig ib le with r e spec t to nyGvt2 for n>>l. 
Throughout t h i s Chapter we w i l l use eqn. 4 . 3 . In view of t h i s 
approximation, we may a lso use the model of spin isochromatic groups) . 

Before we can apply these concepts to the case in hand, we have 
to make an add i t iona l assumption. I t i s assumed t h a t the nuclei of 
the flowing f lu id have experienced the s t a t i c f i e ld B long enough 
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to have attained Boltzmann equilibrium before entering the transmitter/ 

receiver coil, so that at the beginning of the pulse sequence the 

total magnetization vector of all groups of nuclei is M , directed 

along the z' axis. 

4.2.2 Motion of the magnetization in the rotating frame. 

Hemminga and de Jager [8] noted that the nth pulse of the 

sequence rotates the magnetization of an isochromatic group (M) about 

the x' axis by an angle a , defined as 

% = VBi(yn) tp (4.4) 

where B1 (y ) is the spatial distribution of the Bx field in the y 
n -»+ . 

direction. The magnetization immediately after the nth pulse M is 
related to the magnetization before the pulse M~ by the rotation 

matrix R .(a ): 
x1 v n' 

M+ = R ,(a ) M" (4.5) 
n x n n 

Between pulses, the magnetization freely precesses about the z axis 

and the magnetization at the beginning of the (n + l)th pulse is 

given by 

M~+J = {1- exp(-x/T1)}Mo + Rz,(A*n) S(x,T1,T2)Mn, (4.6) 

R , represents a rotation about the z' axis and S ( T , T 1 , T 2 ) is a diagonal 

matrix with elements 

Sx,x, = S , , = exp(-T/T2) and Sz,z, = exp(-x/T1), 

where Tt and T2 are the spin-lattice and spin-spin relaxation times 

respectively. 
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When t<<T2, only the integral A , of the x1 component of the 

magnetization between the nth and (n+l)th pulses is relevant and 

this is given by 

A , = sinA<|> M+, /A<|> + (1-cosAd) ) M+, /Ad) ( t « T 2 ) (4 .7) 
x ,n Tn x ' , n Yn Tn y ' ,n Yn v 2 v ' 

A , is negligible with respect to A , when x<<T2. The actual 
jf z II X f 11 

NMR signal S is derived by multiplying eqn. 4.7 by the sensitivity 

of the r.f. coil, which is given by Bx(y ), and then summing over 

all groups of nuclei along the y axis: 

+00 

-00 ' 

where y is a function of t = nx as defined in eqn. 4.1. 

It is not possible to obtain eqns. 4.1 to 4.8 in a closed form 

and thus S has been calculated numerically for different r.f. field 

distributions and flow profiles [8] . These calculations are very 

timeconsuming, however. 

4.2.3 n pulses 

Until now the rotation angle of the pulses in the pulse sequence 

was of minor importance for the theoretical description. From now 

on we restrict our treatment to the case of a pulse sequence of 

equidistant n pulses, also assuming t<<T2. This assumption is very 

reasonable, since for our measurements x=1.6 ms and curve fitting 

has been carried out for T2S200 ms. 

Assuming that we have a Gaussian shaped distribution of the Ba 

field, Bx(y) is then given by Bt(y) = BjCO) exp(-2y2/L2), where L 

is the distance between the inflection points of the distribution 

and Bi(0) = 7i/yt . 

At t=0 the first pulse rotates the magnetization M of an iso-

chromatic group at position y by an angle a - 7i-exp(-2y?/L2 ). This 

results in a component A in the x',y'-plane given by 

A = M sin{n'exp(-2y2/L2)}, directed along the y' axis. 
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During the period t=0 -» t=x this group of nuclei gains a phase 

angle A<|> with respect to the y' axis as given by eqn. 4.3 with n=l: 

A<t>T = YGyoT + i^Gvx 2 ( 4 . 9 ) 

At t=t the component of the magnetization of this group of nuclei 

along the x' axis A t(x) is 

A , ( T ) = M sin{n-exp(-2y2/L2)} sin(A(|) ) (4.10) 

The total x' component of the magnetization is found by summing the 

A , of two isochromatic groups which are positioned at t=0 symme­

trically around y=0, and integrating over y from 0 to », yielding 

S ,(x) oc J" sin{n-exp(-2y2/L2)}sin(^YGvt2)cos(^Gy x)dy (4.11) 
o 

At time t=t the isochromatic group of spins receives a second pulse, 

which now equals a = n•exp[-2(y +vx)2/L2]. This pulse rotates the 

magnetization of the isochromatic group by a around the x' axis, 

leaving A , unaffected but changing the total magnetization in the 

x',y'-plane by rotating the z' and y' components. Attempts to evaluate 

this process completely in order to obtain a closed expression have 

been unsuccessful. By making some plausible assumptions on the shape 

of the r.f. field B ^ y ) , we may obtain an approximate closed expres­

sion for S ,' 

4.2.4 A semi-empirical approach 

It has been stated by Hemminga and de Jager [8] that the NMR 

signal of flowing fluid will mainly arise from the region of y values 

where Bi(y) corresponds to \n to \n pulses. Let us therefore assume 

that we can represent the distribution B^y) as a rectangle with 

length 1, corresponding to n pulses for|y|<Hl; at the falling and 

rising edges of this r.f. field at |y| = 41 a = %n (Bx = HB^O)); 

outside the coil B, vanishes. This is shown in Fig. 3. 
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Fig. 3 Distribution of the r.f. field of the transmitter/receiver coil along 

the y axi 

M>hl a=o. 
the y axis: for -^l<y<^l a(= VBit )=n, for |y| =Sjl a=^n and for 

We define the magnetization of an isochromatic group by 

M = M -vx/1 o (4.12) 

assuming that after n = 1/vx pulses the flowing fluid in the coil 

(magnetization M ) has been completely refreshed. This also implies 

that there are n = 1/vt different isochromatic groups in the coil. 

Now we can follow the signal that is generated by the pulse 

sequence while fluid moves into the inside of the r.f. coil, along 

the magnetic field gradient. At the first pulse (t=0) the Vi pulses 

at the edges of the Bx field rotate the magnetization of the iso­

chromatic groups M at |y| = \1. 

The isochromatic group at y = %1 moves out of the r.f. coil and 

its magnetization is not observed. The isochromatic group at y = -^1 

moves into the coil and during the period t=0 -» t=t it gains a phase 

angle A<|> with respect to the y' axis as given by egn. 4.10 with 

y = -HI, resulting in an x' component at time t=x : A , (t) = M sin At(> 
O X T 

At time t=t this isochromatic group of spins receives a second pulse, 

which now equals a n pulse, rotating the magnetization of this group 

by n around the x' axis, i.e. 
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<|>T+ = n-A$x (4.13) 

where ty. is the total phase angle at a given time t and x the time 

immediately following the second pulse. (All pulses are assumed to 

be of negligible duration). During the period T->2T the isochromatic 

group of nuclei gains a phase angle A(j)_ which is given by egn. 4.3 

with n=2: A<|>? = yGy x+jyGvx2 . This results in a net gain of phase 

at t=2i of <|>„ = &$7 +<)) = n+yGvt2 . The third pulse at t=2t also 

rotates the magnetization of the spin isochromatic group by n around 

the x1 axis, resulting in 

<t>2T+ = n-<|>2t = -VGVT2 (4 .14) 

In general it can be shown that 

(() = 71+^vGvT2 (n even) (4.15a) 

and 

* (n + l ) t = ^ Y G V T 2 + ^ G V ( 4 - 1 5 b ) 

Now, if phase sensitive detection is used and the detector is adjust­

ed for maximum signal along the x1 axis the x'-component of the 

magnetization of this isochromatic group of nuclei at t=nx is 

proportional to 

A , (nx) = M sind) (n even or odd) (4.16) 
x nT 

Alas, at time t=t a second isochromatic group arrives at y = -ijl 

and receives the Vt part of the pulse. In addition, the magnetization 

in the x',y' plane is attenuated by the spin-spin relaxation charac­

terized by T2• So the total signal detected at t=2t, S ( 2 T ) , is given 

by 

S(2l) = M [sin<|> e " T / T 2 + sin<|> e " 2 l / T 2 ] (4.17) 
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Continuing this process, at time t=2x a third isochromatic group 

arrives at y = -%1, receives the Vt part of the pulse and starts 

relaxation in the x',y' plane, and so on, resulting in 

S(nx) = I A ,(nx)- e"nX/T2 , for n l-r (4.18) , x vt m=l 

Af te r n > 1/VT t h e s i g n a l r e a che s a s t e ady s t a t e . The sum i n 

egn . 4 .18 can be g iven by a c l o s e d e x p r e s s i o n u s i ng e qn s . 4 . 15 and 

4 . 1 6 , by r e p l a c i n g nt by t ' , i n t e g r a t i n g over t ' from 0 t o t f o r 

t h e even and uneven phase a ng l e s and d i v i d i n g by x, r e s u l t i n g fo r 

t % 1/v i n 

S(t) = j ^ - [{cos(|>o-l}{e"t/T2 0 | sin<(>(t) - ^Gvx cos<t>(t)) + ^yGvx} 

- sin<|> { e " t / T 2 ( - i cos(|)(t) + VtfGvT sin(|»(t)) + | }] (4.19a) 
0 * 2 * 2 ' 

where S is the signal detected from the magnetization M , 

C=2{(l/T2 ) 2 + (1-5yGvt )2} , <t>o=HvGvi2+HvGxl and <|) (t)=V*Gvxt. At t > 1/v 

the flowing fluid has been refreshed in the coil and the signal 

reaches a steady state, which is given by 

S V 1 / T 1 
SE = r r [{co8«|»o-l}{e"1/vl2 ( - i sin<l>E - ŷGvx cos^) + ^Gvt} 

- sincj) {e"
1/vT2 ( - i cos«t>r + VyGvx sirntO + | }] (4.19b) 

O 1 2 £> t 1 2 

wi th <t>F = HvGlx . For T2=°° e qn s . 4 .19 r educe t o 

S(t) = S (vGxl) -1 [cos<|> + cos(|)(t) - cos{(|> - <)>(t)} - 1] , t i - (4.20a) 

S£ = SQ(YGX1)-1 [cos(t)o + cos0E - cos{<t>o - ^} - 1] , t > i (4.20b) 

So far we have considered the signal generated by a pulse sequence 

of equidistant n pulses from fluid that moves into a rectangular 

r.f. field along a linear magnetic field. By doing so no signal is 

observed form the fluid already in the coil at t=0. 
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However, as can be shown from eqn. 4.11, this does not corres­

pond to the experimental situation, where the Bx-field distribution 

is non-rectangular. Then fluid present in the coil at t=0 gives rise 

to a signal. This is equivalent to assuming that the sample contains 

a magnetization P (//y1) at t=0 of the isochromatic groups at 

-Hl<y<isl, in the presence of a rectangular Bt-field, as used before. 

Following the above description for the fluid that moves into the 

B!-field it can be easily shown that the signal generated by the 

isochromatic groups situated in the coil at t=0 just before an odd 

numbered pulse, is given by 

o T -2nx/T2 , 
E{(2n+l)x) = -Eo(l - ~^) sin(nyGvT2) e , for (2n+l) i ± (4.21a) 

and 

E{(2n+l)x} = 0 , for (2n+l) > i (4.21b) 

where E is the signal due to P . Noting that the signal due to the 

even numbered pulses (E(2nx)) has a similar shape to the signal 

E{(2n+l)t}, we can replace (2n+l)t by t in eqn. 4.21 and obtain an 

approximate expression for the total signal generated by plug flow: 

Splug(t) = S(t) + E(t) (4.22) 

where S(t) is given by eqn. 4.19 and E(t) by eqn. 4.21. The amplitude-

ratio of E(t) and S(t), E /S is an adjustable parameter between 0 

and 1. We will use this parameter for curve-fitting. 

Fig. 4A and 4B shows calculated S(t) and E(t) signals, resp., for a 

particular set of G, T, T2 and 1 and various values of v, using 4.22. 

4. 2. 5 Laminar flow 

For laminar flow, the liquid velocity v varies with the distance 

r from the tube axis as given by 

v(r) = 2v(l - r2/R2), (4.23) 

where v is the mean liquid velocity and R is the tube radius. The 

amount of fluid with velocity v(r) lying between r and r+dr is 27trdr. 
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Fig . 4 Calculated NMR s igna l s S ( t ) (A) and E ( t ) (B) of plug flow in a r ec tangular 

B i - f i e ld d i s t r i b u t i o n , c a lcu la ted with eqns. 4 .19a,b and 4 .21a ,b , 

r e sp . 1 = 15 mm, G = 20 G/m, T2 = 2.4 s and t = 1.6 ms. The values of v 

( in mm/s) a r e : 30 ( a ) , 10 ( b ) , 5 (c) and 2 ( d ) . 

The s ignal for laminar flow can now be ca lcu la ted from eqn. 4.22 

using 

R 2v 

l a m ( t ) = 2(R)-2 J S p l u g{t ,v( r )} rdr = (2v)-* J 
plug 

( t ,v) dv , for t g 
2v 

(4.24a) 
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At t i l/2v the flowing fluid with higher velocity components 

has been refreshed in the coil and the signal from this fluid reaches 

the steady state as given by eqns. 4.19b and 4.21b. At time t this 

holds for v between 2v and 1/t. Therefore at t > l/2v the signal 

for laminar flow must be calculated using 

1/t 2v 
S l am ( t ) = ( 2 ^ r l [ •<" S p l u g ( t ' v ) d v + J" S

E
( v ) d v ] f 0 r t > k ( A - 2 4 b ) 

For T2
=a> and P =0 eqn. 4 .24a becomes 

S l a m
( t ) = S (vGTl)-1 [(cos* - 1)(1 - s in$( t ) /$( t ) ) - sin* s in2*j>(t)A0(t)] , 

for t g | v (4.25) 

where (ji(t)=yGvTt. A comparison between eqns. 4.19a and 4.25 shows 

that for plug flow we have sine and cosine terms, whereas laminar 

flow gives 1- sinx/x and sin2x/x terms. The same conclusion holds 

for 12=°° and P-^O. Thus, in general, we expect S ,ua(t) and S-, (t) 

to have different shapes. 

4.2.6 Determination of the flow velocity 

To obtain the flow velocity from the signals of flowing liquid 

using a sequence of n pulses two methods have been suggested by 

Hemminga and de Jager [8]: (i) from an analysis of the initial slope 

of the (spp)0# which has been shown experimentally to be proportional 

to v (or v in the case of laminar flow); (ii) if the signal reaches 

a maximum or minimum, the position t of that extremum has empiric-
r max _ 

ally been shown to be inversely proportional to v (or v ) . 
For plug flow the relationship between v and (<rr)0 and between v 

and t-1 can be easily obtained for the case where the contribution max 
of E(t) to the total signal is small (as for a n pulse sequence) 

using eqn. 4.19a, yielding 

(|f)o = -hSo sin4o v/1 (4.26) 
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for the initial slope, 

and, via ̂ r = o for t = . 31 max 

v = (yGt)-1 (<(> ± n) t"1 (4.27) 
1 To max 

To obtain eqn. 4.26 it has been assumed that T2 has no effect on 

(g+r)0- Eqn. 4.27 shows that the position of the extremum does not 

depend on T2. The small contribution of E(t) to the total signal 

however introduces a T2 dependence on the position of the extremum 

of the signal (see Section 4.2.7). Whether this extremum is a maximum 

or a minimum depends on the direction of 5 and v. As can be verified 

from eqns. 4.19 and 4.21 the signal alters sign when v or G reverses 

direction. (Note that 0 is G dependent and sin* becomes -sini)) 

when G alters sign). This illustrates that the method can also be 

used to reveal the direction of flow. 

For laminar flow (gr)Q l a m can be found using eqns. 4.24a and 

4.19, resulting in 

(Mr) n = ~\ S sin(t) v/1 (4.28) 
9t o,lam o o 

whereas the relationship between v and t_1 can only be obtained 
r max J 

numerically. Comparison of eqns. 4.26 and 4.28 shows that for a 

system undergoing laminar flow with an average velocity equal to 

that of plug flow, the initial slope of the signal is equal to that 

observed with plug flow. 

4. 2. 7 Determination of T2 and volume flowrate 

The effect of spin-spin relaxation on the signal from flowing 

liquid can be explained by considering the two separate contributions 

to the signal, i.e. S(t) and E(t). As has been pointed out in Section 

4.2.4 the magnetization of the isochromatic groups flowing into the 

r.f. coil starts relaxation in the x',y' plane at the moment that 

such a spin group reaches y= -%1. Owing to this mechanism S(t) decays 

not as a simple exponential in time, but as a sum of exponentials 

(see eqn. 4.18) which start at different times, resulting in an 
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effective decay time that is longer than T2. The second contribution 

to the signal, from the liquid that was already situated in the coil 

at t=0, has been assumed to be generated at t=0 and to decay ex­

ponentially with T2. 

Assuming again that the contribution of Eft) to the total signal 

is small for plug flow it can be shown from eqns. 4.19 and 4.27 that 

the spin-spin relaxation time T2 can be found from 

ln[3(S(t )t )/3t ] = lnDi - t /T2, (4.29) 
max max max max z' 

where D1=So(vGxl) 1DQ{ (cos<)>0 -l)sinDQ - sin<t>0cosDo} , DQ= H(<|>0±7i) and 

S(t ) is the height of the signal at tm,„. This is the basis of 

the determination of the spin-spin relaxation time T2 from the NMR 

signals of flowing water. 

The signal S detected from the total magnetization M in the 

r.f. coil is directly proportional to the amount of flowing water 

in the coil V. This amount can be determined by extrapolating the 

ln[3(S(t )t )/3t ] vs. t curve to t = 0 (eqn. 4.29). V L x v max' max" maxJ max max v ^ 
must be calibrated for given values of G and x (see Dx in eqn. 4.29). 

The volume flowrate Q can now be calculated from 

Q = W / L e f £ , (4.30) 

where L cc: is the effective r.f. coil length. L cc does not neces-eff ^ eff 
sarily equal 1, owing to the difference in the shape of the r.f. 

field distribution in theory and practice. It is noticeable that 

V/L f f equals the cross-sectional area A of the capillary. 

For laminar flow it is impossible to obtain from eqns. 4.24 ex­

pressions similar to eqns. 4.29 and 4.30. However, empirically, T2 

can be obtained using the same procedure as for plug flow. 

4.3 SOME COMMENTS ON THE SEMI-EMPIRICAL APPROACH 

4. 3.1 Approximations 

In the semi-empirical formalism developed in Section 4.2.4 we 

have made the following approximations: (i) the r.f. field distri-
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bution is assumed to be rectangular (see Fig. 3); (ii) off-resonance 

effects on the effective r.f. field B f f have been neglected; (iii) 

the variation of the magnetization during the pulse sequence has been 

followed by sampling the signal at time t=nt, just before a pulse; 

(iiii) the effects of spin-lattice relaxation and diffusion have 

been neglected. 

4.3.1.1 Distribution of the r.f. field 

The actual r.f. field distribution depends on the geometry of 

the transmitter/receiver coil in use: a solenoid type coil does not 

produce the same distribution as a Helmholtz type. Their Bx-field 

distributions will differ, in particular with respect to the full 

width at half maximum (L). In our model this is accounted for by 

the length of the rectangular r.f. field distribution 1 (to be dis­

tinguished from Lgff, used in Section 4.2.7). Varying 1 results in 

two effects (eqns. 4.19): (i) the time at which the steady state is 

reached is affected: t=l/v, (ii) the value of <}> changes. The 

effective length of the r.f. coil as experimentally found from the 

time at which the signal reaches its steady state, is used in simu­

lations of the signal, taking (i) into account. 

However, we have stated above (Section 4.2.4) that the NMR signal 

of flowing water will mainly arise from the region of y values where 

Bx(y) corresponds to %n to 4n pulses. In general, this region will 

not coincide with |yj =*gl, as in the model for the rectangular Bx-field 

distribution. Actually, by taking 1 equal to the effective length 

of the r.f. coil, the off-resonance frequency of the region where 

the signal is generated, i.e. ^$0> is too high. Therefore in fitting 

procedures we have used <|) <(VyGil + VyGvx2). Thus, $ is the only 

adjustable parameter which does not follow from experiment, and 

which is used for curve-fitting. 

4.3.1.2 Off-resonance effects on the effective r.f. field 

The off-resonance effects on the effective r.f. field are depen­

dent on the duration of the n pulse (the quality factor of the r.f. 

coil) and the magnitude of the magnetic field gradient. Experimentally 

we have used a solenoid as well as a Helmholtz type r.f. coil (see 



61 

Section 4.4), with n pulses of 15 us and 30 us, respectively. The 
values of G are in the order of 10 G/m. 

For the solenoid the width of B1(y) at half maximum is ~ 10 mm. 
Assume we have a Gaussian shaped Bj-field distribution. If B1(y)=10°, 
B ff=10.5° and B f , is tilted towards the z' axis by 15° with respect 
to the x' axis. For Bx(y)=45° B „ becomes 45° and has only a 2.5° 
deviation from the x' axis. 

The Bj distribution of the Helmholtz coil has a full width at 
half maximum of about 7 mm. Then, for Bt (y)=10°, B ff=10.8° and is 
tipped away from the x' axis by 21°, whereas for B1(y)=45° B ~-
becomes 45° and the deviation from the x' axis is 3.4°. 

These calculations demonstrate that the off-resonance effects on 
the effective r.f. field at the values of G used are of minor impor­
tance, but they become more serious for higher values of G and for 
less sensitive r.f. coils. 

Calculations performed by Hemminga and de Jager on the effect of 
B ff on the NMR signal shape of flowing fluid have shown little 
variations for values of G below about 25 G/m for the solenoid r.f. 
coil [8]. Extrapolating this finding with the aid of the above cal­
culations, the signal shape measured with the Helmholtz coil is not 
expected to be affected by off-resonance effects for G<18 G/m. Ex­
perimentally we have used GS15 G/m. 

4.3.1.3 Sampling time 

Experimentally the signal of flowing fluid has been obtained by 
integrating the x' component of the magnetization between the pulses 
(see Section 4.4.). To derive eqns. 4.19 and 4.20 we have followed 
the variation of the magnetization by sampling the signal at time 
t=nt, just before a r.f. pulse. In these equations integration has 
been omitted. 

Sampling on t=(n+lj)T, just between two pulses, for the phase 
angle 0 we obtain the result: 

^(n+^T ~ 8YGvl2 " 4^GlT (n even) (4.31a) 

and 

4>(n+!i.)T = 71 + | Y G V T 2 + J^Glt (n odd) (4.31b) 
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Comparing eqns. 4.31 and 4.15 shows that in the latter <j> is dependen' 

on n, whereas in the former <t>,_,.i > does not depent on n. In view 

of 4.31a,b M ,{(n+H)x} becomes stationary in time for n even as well 

as odd. Clearly this is due to (i) the use of a rectangular r.f. 

field distribution with the property that we have effectively n 

pulses for |y|<ijl (Fig. 3), and (ii) sampling on t=(n+H)T. For every 

other sampling time t=(n+x)x, o<x<l, the value of M ,{(n+x)x} depends 

on n. Thus, simplifying the actual r.f. field by a rectangular dis­

tribution, results in a predicted dependence of the signal shape on 

sampling time. 

t S (t) (arb. units) 

125 -

'S(t) (arb. units) 

300-

200 

100-

0 

• 100 

•200 

•300 

•Us) 

Fig. 5 Experimental NMR signals S(t) of flowing water vs. time, generated by a 

sequence of equidistant n pulses. (A) Signal obtained by sampling at time 

t=(n+\)x, just between the two pulses, (B) signal obtained by integrating 

the magnetization between the pulses. Further experimental conditions 

are identical for (A) and (B). 



63 

Experimentally we have sampled the magnetization of the flowing 

fluid at times t=(n+H)x (Fig. 5A). Under identical experimental 

conditions, but now integrating the signal between the pulses, signals 

were obtained with identical shape, but with a much higher signal-

to-noise ratio (see Fig. 5B). No other sampling times have been used, 

so we have no further information on the dependence of the signal 

shape on sampling time. 

By sampling at t=nt, the off-resonance contribution $ of the 

region where the signal is generated becomes too large (Compare the 

VtfGlx part in eqns. 4.31 and VyGlt in eqns. 4.15). This is an 

additional argument to use <|> <VyGlt + VyGvi2 in fitting procedures 

(see also Section 4.3.1.1). 

4.3.1.4 Effect of 11 relaxation and diffusion. 

The neglect of spin-lattice relaxation in our model is justified 

since the fluid in the r.f. coil only experiences n pulses. Any 

change in magnetization along the z' axis, therefore, is not rotated 

to the x',y' plane. In reality, the spin-lattice relaxation mechanism 

causes the magnetization to return to the equilibrium position along 

the z' axis. Besides, we have a pulse angle distribution over the 

r.f. coil (eqn. 4.4), so that part of the z' magnetization can be 

rotated to the x',y' plane. However, as long as T2<<T1 the signal 

shape is mostly influenced by the spin-spin relaxation mechanism. 

This condition is commonly met in biological systems. 

The effect of diffusion can be incorporated into the theory by 

replacing nx/T2 in eqns. 4.18 and 4.21a by nT/T2+g-y2G2DT2nT [3], 

where D is the translational diffusion constant. However, if 

T2<< (|-Y2G2Dt2 ) _ 1 the diffusion term can be neglected. Using G^15 G/m, 

Y=2.7xio4 rad/G-s (for protons), i=1.6 ms, and assuming D~2xl0-9 m2/s 

for water this condition is easily met. 

4. 3. 2 Comparison between theoretical approaches. 

In Figures 6, 7 and 8 a comparison is presented between experi­

mental NMR signals of flowing fluid as obtained with the n pulse 

sequence with computer simulations based on the formalism developed 

by Hemminga and de Jager [8] (eqns. 4.1 through 4.8) and computer 
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simulations based on our treatment (eqns. 4.19a,b and 4.21a,b) for 

laminar flow. In these Figures A and B are respectively the ex­

perimental NMR signals and the computer simulations as given by 

Hemminga and de Jager [8], whereas C shows our computer simulations. 

Fig. 6 shows the effect of the field gradient G on the NMR signals. 

Fig. 7 and 8 represent NMR signals s, (t) obtained with various 
lam 

values of the mean liquid velocity v. In Fig. 7 G has been chosen 

in such a way that the signals do not have a maximum, whereas in 

Fig. 8 a higher value of G is employed. 

Within the limitations of the theoretical model the agreement is 

very good between our simulations and the experimental NMR signals, 

as well as the curves calculated by Hemminga and de Jager. In order 

to obtain our simulations we have used the experimental values of 

i, T2 , G and v as given in [8]. The value of 1 has been determined 

from plug flow curves as calculated with the computer program used 

by Hemminga and de Jager [8]. The time at which the plug flow signal 

reaches its steady state has been taken as t=l/v. For all velocities 

1 has been calculated to be 27 mm for the dimensions of the r.f. 

coil used by Hemminga and de Jager [8] . The value of <b (see eqn. 

4.19 and Section 4.3.1.1) has been adjusted to give the best fit 

for the shape of the signals. It is rather surprising that in all 

simulations ft was found to equal 0.5, whereas in theory ft is pro­

portional to G. The amplitude-ratio E /S in eqn. 4.22 has been 

choosen to yield the best agreement between the experimental and 
calculated S(t „„) vs t curve. This ratio was found to be max max 
0.03SEQ/S SO.05. The vertical scaling factor is the same for all 

simulations in Figs. 6C, 7C and 8C. 

The simulations given in Figs. 6C, 7C and 8C have been calculated 

on a MINC-11/03 microcomputer, using a BASIC program. The calculation 

time of a theoretical NMR signal is about 5 min. The calculation 

time (CPU-time) of the curves in Figs. 6B, 7B and 8B, which have 

been performed on a DEC SYSTEM-1090, using a FORTRAN program, is 

about 30 min. So, our treatment yields an enormous gain in computing-

time. 

Fig. 6 (A) Effect of the field gradient G on the experimental NMR signals S(t) 
of flowing water in a capillary, generated by a sequence of equidistant 
71 pulses, as given by Hemminga and de Jager [8]. The mean flow velocity 
v is 4.7 mm/s. The values of G (in G/m) are: 3.3(a), 7.6(b), 12.3(c), 
(to be continued at next page) 
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•Its.c) 
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t S(t) (arb. units) 
10- © 

t(s) 
17.0(d), and 0.0(e). The pulse period I is 1.6 ms. The spin-spin relaxa­
tion time T2 of the water sample is 2.4 s. (B). Computer simulations of 
the effect of G as calculated in [8]. All parameters and conditions used 
in the calculations are identical to those in the experiment (see A ) . 
(C) Computer simulations of the effect of G on S(t) based on eqns. 4.19 
through 4.22. For T, T2, G and v the experimental values have been used 
as in A. The value of the length of the rectangular I^-field distribution 
1 was determined to be 27 mm (see text). The value of <|) (eqn. 4.19) for 
all four curves equals 0.5 rad. The amplitude-ratio E 7S was taken to 
be 0.05. 

In (B) and (C) laminar flow is simulated using 20 calculated plug flow 
NMR signals. The vertical scales are given in arbitrary units. The verti­
cal scaling factor of the simulations are for (B) the same as in Figs. 
7B and 8B, and for (C) as in Figs. 7C and 8C. Figs. A and B reproduced 
from [8] by permission of the authors and Academic Press. 
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Fig. 7 Effect of flow velocity v on experimental (A) and calculated (B) NMR 

signals both from [8]. The field gradient G is 3.3 G/m. The values of v 

(in mm/s) are: 25.4(a), 7.0(b), 3.0(c), 1.0(d), and 0.0(e). (C) Computer 

simulations based on eqns. 4.19 through 4.22. See caption of Fig. 6 

for other conditions. 
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Fig. 8 Effect of flow velocity v on experimental (A) and calculated (B) NMR 

signals as given in [8]. G = 6.7 G/m. The values of v (in mm/s) are: 

15.5(a), 8.8(b), 4.3(c), 2.0(d), and 0.0(e). (C) Computer simulations 

based on eqns. 4.19 through 4.22. See caption of Fig. 6 for other 

conditions. 
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Packer [3] has also devised multipulse sequences which allow a 

"one-shot" determination of v and T2 • He has discussed the effect 

of flow along a magnetic field gradient using two different pulse 

sequences: (i) l ^ , - x - ( - n , -T ) n and (ii) Vtx, -x-(-n , -t' ) n , with 

x'>x. In the theoretical analysis Packer has only considered the 

liquid already present in the r.f. coil at the beginning of the pulse 

sequence. The effect of n pulses on the magnetization of fluid moving 

into the r.f. coil and the loss of magnetization of fluid moving 

out of the coil volume have been neglected. The time dependence of 

the amplitude of the echoes, occurring at time 2nx, and resulting 

from the first pulse sequence is given by [3]: 

E(2nx) = E(0)cos(nYGvx2) e-2nX/T2 (4.32) 

This result is similar to our eqns. 4.21a,b taking into account 

liquid already situated in the coil at t=0, where the sine-function 

is replaced by a cosine due to phase sensitive detection along the 

y' axis instead of the x' axis in our method. In Packer's pulse 

sequences (i) and (ii) there is also a contribution to the signal 

due to fluid moving into the r.f. coil, where it receives n pulses. 

This results in a contribution S(t) to the signal equal to that 

given in eqns. 4.19. However, due to the first Vc pulse in the pulse 

sequences used by Packer, the aforementioned contribution due to 

liquid already present in the coil, at t=0, is much larger than in 

the 7i pulse sequence used in our experiments. In other words, the 

value of P using Packer's pulse sequences is higher than in our n 

pulse sequence (see also the E /S ratio in eqn. 4.22). These 

arguments justify the use of eqn. 4.32 in Packer's case. 

In biological tissues Packer's methods are not attractive since 

stationary fluid also gives rise to a signal due to the first \n 

pulse. 

4.4 EXPERIMENTAL 

The experiments have been performed on a 15 MHz single coil pulsed 

NMR spectrometer with a 7-in. electromagnet. Details of the spectro­

meter have been described elsewhere [9]. Several home-made sample 

probes have been used with transmitter/receiver coils of the HelmholtZ' 
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or the solenoid type. The Helmholtz type coil has a length and dia­

meter of 10 mm, whereas the solenoid type coils have various dimen­

sions. The field homogeneity is optimized using a shim unit. A 

gradient in the y direction (direction of flow) is produced using 

the y-shim control. The center of the transmitter/receiver coil is 

positioned exactly in the middle of the shim coils. Prior to each 

experiment the magnetic field B is set on-resonance (i.e. no beats 

in the free induction decay). 

To measure flow, a pulse sequence of 4096 n pulses is given 

directed along the x' axis of the rotating frame. The reference phase 

of the phase-sensitive detector is adjusted to detect the x' component 

of the magnetization. The receiver was used in combination with a 

circuit, which integrates the signal between pulses. One data point 

of the NMR signal contains the integrated signal resulting from 16 

pulses, so that experimental signals are built up from 256 data 

points. Further experimental details are given in [8]. 

Two types of simulation systems for a plant stem have been con­

structed. Both contain stationary water in a glass tube with an 

inner diameter of 7 mm. In the single capillary system a capillary 

containing flowing water with a diameter of 1.25 mm is fitted in 

the center of the glass tube. This results in a flowing water 

fraction of 5%, as calculated from the dimensions of the system. 

A four-capillary system has also been used, containing four capil­

laries with inner diameter of 1 mm, which are positioned in the 

glass tube at the four edges of a square at equal distances (1.7 mm) 

from the center of the glass tube. The flowing water fraction in 

this system is 8%. The capillaries are connected to a reservoir, 

from which water flows through the capillaries under an adjustable 

hydrostatic pressure. The mean flow velocity v is calculated from 

the flow quantity and the area of the inner capillaries. The length 

of the capillary systems is about 6 mm. The system is symmetrically 

positioned within the NMR sample probe. 

The flow velocity v can be obtained from the position t of 

the extremum in the NMR signals of flowing fluid. Previously it has 

been shown (Fig. 8 and ref. [8]) that t .„ is inversely proportional 
max 

to v : v = C/t (see eqn. 4.27). The calibration constant C depends max ^ 
on the value of G. At a particular value of G, C can be found by 
plotting v versus t_1 , where v can be calculated from the 

rriciX 
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measured flow quantity and the known internal diameter of the 

capillaries of a capillary calibration system [8,10]. To perform 

this calibration method it is not necessary to know the exact value 

of the field gradient G. Therefore we have only estimated the actual 

value of G. If necessary, calibration of G can be carried out more 

accurately using the free induction decay F(t) by measuring the time 

tx at which F(tj. ) = HF(o) [8]. tx is related to G by 

(Y/27I) Gt, = Cj (A.33) 

where G is expressed in gauss per meter, X.x in seconds and y/2n in 

hertz per gauss. C1 is a constant (in m_ 1) for a particular trans­

mitter/receiver coil, and reflects the spatial distribution Bx(y) 

of the r.f. field. For the various transmitter/receiver coils used 

we have assumed that Bi(y) may be approximated by a Gaussian function 

(see Section 4.2.3). In this way C: can be calculated for a given 

transmitter/receiver coil. The value of G calculated in this way 

has a maximum deviation of 25% from the actual value. 

4.5 RESULTS AND DISCUSSION 

In this Section we presents the results of a series of NMR-

experiments on water flow in glass capillary systems designed to 

model the use of the n pulse sequence for the measurement of the 

flow velocity of water in plant stems. 

4. 5.1 Calibration 

4.5.1.1 Necessity of a linear field gradient 

Flow velocities can in principle be obtained from the NMR signals 

of flowing water from either the initial slope (rr) (eqns. 4.26 

and 4.28), which has been shown experimentally to be proportional 

to v [8], or, if the signal reaches a maximum or minimum, from the 
position t__„ of that extremum via v = C/t [8,10]. The initial 

iucix in 3.x 

slope depends on the gain of the aplifiers of the pulsed NMR spectro­

meter and on the amount of flowing water (eqns. 4.26 and 4.28). The 

second method is independent of these experimental variables 
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and is therefore prefarable for practical applications. Unknown flow 

velocities can now be determined after calibration of the spectrometer, 

yielding C for a particular value of G. 

When G=0 the NMR signal is expected to be zero (eqns. 4.19 and 

4.21). Experimentally, NMR signals have been obtained, however, 

without applying an external field gradient, because the natural 

gradient in the magnetic field produced by our electromagnet in the 

direction of flow is already sufficient to produce the signals. So, 

if the system containing flowing water is always placed at the same 

position in the magnetic field, then flow velocities can be measured 

without applying an external field gradient, after calibration at 

this particular position, yielding C for this local natural y 

gradient. This situation applies to all measurements which we carried 

out on a single capillary system, where the capillary was concentric 

with a larger glass tube, placed in the center of the transmitter/ 

receiver coil. The outer tube may contain water, thus simulating 

plant-tissue surrounding xylem transport vessel in a plant stem. 

In general water flow in plant stems cannot be considered as being 

concentrated in a single capillary. Therefore we have investigated 

the shape of the natural gradient in the x,z-plane (see coordinate 

system in Fig. 1) by measuring the NMR signal of a constant water 

flow through one of the capillaries of the four-capillary system. 

By rotating the capillary system around the y axis (Fig. 1) NMR 

signals of flowing water at different x,z-coordinates have been 

measured. Not surprisingly these measurements revealed that the 

magnitude and direction of the natural gradient strongly depends on 

the x,z-coordinates. When water flows through two neighbouring capil­

laries it has even been observed that at certain x,z-coordinates of 

the capillaries virtually no net signal is observed (see Fig. 9). 

This can be explained by assuming that the signals produced by the 

water flow in each capillary are nearly equally shaped, but reversed 

in sign, indicating that the local natural y gradients at the posi­

tion of these capillaries have about the same magnitude, but are of 

opposite sign. Similar results have been obtained with water flow 

through all four capillaries. Optimizing the homogenity of the static 

magnetic field by using the shim unit and applying an external y 

gradient results in NMR signals of flowing water which are almost 

or completely independent of the x,z-coordinates of the capillaries. 
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Fig. 9 Experimental NMR signals S(t) of flowing water vs. time as obtained by 

the n pulse method as a function of the position in the local natural 

gradient in the magnetic field. N and S denote the poles of the electro­

magnet, x are the flowing water containing capillaries, whereas o are 

capillaries with stationary water. No external field gradient has been 

used. 

Differences observed in this situation probably are due to inhomo-

geneities in the Bx-field distribution. 

4.5.1.2 Effect of Tx and T2 relaxation. 

Up to now calibration curves of v vs. t-1 have been shown for 
max 

water with T x ^ i 2.4. s [8,10]. In Section 4.2.6 we have stated 

that the contribution E(t) (see eqns. 4.21) to the total NMR signal 

of flowing water introduces a T2 dependence on the position of the 



extremum at t=t 
max 
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In general, Tx and T2 of water in biological 

tissue are shortened with respect to the values for distilled water, 
and, in addition, Tt i T2• In Chapter 5 we demonstrate that Tx as 
well as T2 strongly depend on the diameter of the capillary containing 
flowing water. For this reason we have investigated the effect of 
T\ and T2 relaxation on the relationship v = C/t 

' max 

6-^1
QX(s-1) 

Fie. 10 Plot of v vs. t- 1 for experimental NMR signals, obtained with the single 
max 

c a p i l l a r y system. G = 7.6 ± 1.5 G/m, x = 1.6 ms. The t r a n sm i t t e r / r e c e i v e r 

c o i l was of the Helmholtz type with length and diameter 10 mm. (0) 

Ti = T2 = 2.4 s , (x) T t = 2.2 s , T2 = 1.6 s , and (A) Tj = 1.5 s , 

T2 = 0.5 s . 

Fig. 10 p resents the r e s u l t s of calibration-measurements using 
2 + the s ingle c ap i l l a r y system containing pure water, and two Mn 

so lu t ions with d i f f e ren t T1 and T2 va lues , r e spec t ive ly . For both 
the samples with Tt = T2 = 2.4 s, and t h a t with Tx = 2.2 s, T2 = 1.6 s , 
we find t h a t t~ ' indeed has a r ec iproca l r e l a t i onsh ip with v as rricix 
long as v < ~ 25 mm/s, with C = 6.7 ± 0.3 mm. At higher v e l o c i t i e s 
devia t ions are found leading to higher values of t 

max 
For the sample 



74 

with Ti = 1.5 s, T2 = 0.5 s the relation v vs. t"1 clearly deviates 
max 

from a straight line. 

With the aid of calculated NMR signals we were able to investigate 

the effects of Tt and T2 relaxation on the relationship v = C / t , 

separately. Due to the assumed rectangular r.f. field distribution 

our theoretical treatment is insensitive for variations in Tj (see 

Section 4.3.1.4). Therefore, the calculations have been performed 

with the computer program based on the formalism of Hemminga and de 

Jager [8]. The results of these calculations (see Fig. 11) show that 

as long as v < 20 mm/s the relationship v = C/t holds. For higher 
r max 

values of v, t i n c r e a s e s with respect to its value derived from 

Fig. 11 Plot of v vs. t * for calculated NMR signals. Calculations have been " max e 

performed based on the formalism as given in [8]. G = 7.6 G/m, 

T = 1.6 ms. The shape of BjCy) was choosen as in [8], based on the BjCy) 

distribution of a solenoid with length 3.5 mm and diameter 13.2 mm (o) 

Ti = T2, (x) Tj = 2.4 s, T2 = 1.2 s, (A) Tx = 2.4 s, T2 = 0.5 s, (•) 

T! = 2.4 s, T2 = 0.2 s, (+) Tx = 1.0, T2 = 0.5 s, (o) Tj = 1.0 s, 

T2 = 0.2 s. 
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this relationship. If Ti = T2 there is no shift in the position of 

the maximum. The effect of decreasing T2 is to shift t to lower 

values, whereas a decrease of Tt has the opposite effect. For the 

optimum conditions to obtain a linear relationship v = C / t i n 

the range 0 i v < 30 mm/s, we refer to Section 4.5.3. 

4.5.1.3 Effect of flow profile 

In Section 4.2.5 we have argued that in general s
Dnu a(t) anc* 

S, (t) have a different shape. Consequently, the value of C in the 

relationship v = C/t for a particular value of G depends on the 

actual flow profile. Theoretically this has been confirmed by comparing 

the results of the calculations for laminar flow as given in Fig. 11 

with analogous plug flow calculations. In the case of laminar flow 

C was found to be 7.8 ± 0.1 mm, whereas under identical experimen­

tal conditions C = 12.0 ± 0.1 mm for plug flow. So, calibration must 

be performed with a calibration system in which the behaviour of 

the flowing water is identical to that in plant stems. In Chapter 5 

we will argue that flow of water in the vascular system in plant 

stems may be expected to be laminar, implying that the Reynolds number 

(Re) in that system is < 2000 [11]. For flow velocities up to 40 mm/s 

(the range of flow velocities that may be expected for water flow 

in plant stems [1]) Re is predicted to be < 2000 in cylindrical 

systems with a diameter $ 0.05 m. Thus, for the calibration systems 

used in our experiments Re is always << 2000, and therefore we may 

safely assume, that fluid flow in these calibration systems is 

laminar. Flow profiles in plant vessels are discussed in Chapter 5. 

4.5.2 Determination of T2 and volume flowrate 

4.5.2.1 Effect of Ti 

In Section 4.2.7 we have shown that the spin-spin relaxation time 

T2 of the flowing fluid can be found from the slope of a plot of 

^ ^ W ' W ^ W VS- Snax (see eqn- 4-29)-
in Figure 12 we show plots of S± a m(tm a x) • t m a x vs. t m a x derived 

from the experimental NMR curves of flowing water which have been 

used to obtain Fig. 10, with a) Tj. = T2 = 2.4 s, b) Tt = 2.2 s, 
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T2 = 1.6 s and c) Tx = 1.5 s, T2 0.5 s, respectively. From the slope 

of curve a) plotted vs. t we have calculated - via egn. 4.29 - a 

value of T2 of 2.6 ± 0.3 s, whereas from the slope of curve b) 

T2 = 1.2 ± 0.2 s was derived. The slope of curve c) is partly negative 

and therefore it was not possible to calculate a T2 value via egn. 4.2' 

It seems that the deviation of the T2 value found with this method 

from the actual value of T2 increases both with decreasing T2 and 

with increasing Ti/T2 ratio. To investigate the effect of Ti on the 

determination of T2 according to this method, we have used the 

calculated flow curves from which Fig. 11 was obtained. 

t s<tmax>'max <arb-u^ts) 

8 -

4 -

Fig. 12 Plot of S(t ).t vs. t from experimental NMR signals. Experimental 
max max max r 6 r 

conditions as given in Fig. 10. (0) Tj = T2 = 2.4 s, (x) Tt = 2.2 s, 

T2 = 1.6 s, and (A) Ti = 1.5 s, T2 = 0.5 s. 
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Fig. 13 Plot of S(t ).t vs. t from calculated NMR signals. Experimental 
max max max 

conditions as given in Fig. 11. A). T2 = 0.5 s, 11 (in s) is 2.4 (0), 

1.0 (x), 0.5 (A), B). T2 = 0.2 s, Tx (in s) is 2.4 (0), 1.0 (x), 0.5 (A) 

and 0.2 (•). 

Table 4.1 Calculated values of T2 and B1 from calculated flow curves 

with different T^ and T2 values. T2 and Di have been cal­

culated via eqn. 4.29. 

Actual value of 
T^s) T2(s) 

Calculated value of 
T2(s) Di (arb. units) 

2 . 4 
2 . 4 
2 . 4 
1.0 
0 . 5 
2 . 4 
1.0 
0 . 5 
0 . 2 

2 . 4 
1 .2 
0 .5 
0 . 5 
0 . 5 
0 . 2 
0 . 2 
0 . 2 
0 . 2 

2.3 
1.1 

± 0.1 
± 0.1 

0.36 ± 0.04 
0.40 ± 0.06 
0.55 ± 0.06 a 

a 
a 

0.27 ± 0.07 

78 
72 
73 
75 
76 

+ 4 
± 4 
± 4 
± 5 
± 4 

a 
a 
a 

65 + 10 

Due to the partly negative slope 3(S, (t ).t )/3t 
° r lam max max max 

(see Fig. 13) T2 and Dj cannot be determined. 
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Fig. 13 demonstrates that the slope 9(S, (t ).t )/9t a ^ v lamv max' max" max 
obtained from these theoretical curves strongly depends on the value 

of Tt, in agreement with the experimental results shown in Fig. 12. 

In Table 4.1 T2 values are presented which were calculated via eqn. 

4.29 from these theoretical curves. This Table also contains Dt , 

obtained by extrapolating the In [3(Sn (t ).t )/3t ] vs. t 
2 * * l x lanr max' max" maxJ max 

curve to t „ = 0. Apart from a calibration constant this value of max 
Di is equal to V, the amount of flowing water, which was held constant 

for all calculated curves. 

The results of Table 4.1 clearly show that the calculated T2 

values strongly depend on Tj. If Tj = T2 the calculated value of T2 

corresponds with the actual T2 value. Increasing Tt results in an 

increased deviation of T2 (calc) from the actual T2 value. These 

results also show that D1 is much less sensitive to variations in Tt 

and T2 and indeed can be used to calibrate and determine the amount 

of flowing water V, which in turn can be used to calculate the volume 

flowrate (see eqn. 4.30). 

The deviations of the calculated values of T2 from the actual 

values can be explained by considering the contribution E(t) of the 

fluid already in the coil at t - 0 to the total signal: S •, or 

S, (see Section 4.2.4, eqns. 4.21). In deriving eqn. 4.29 we have 

assumed that the contribution of E(t) is small and can be neglected. 

However, if E(t) cannot be neglected it introduces a distortion of 

the relationship as given in eqn. 4.29. One can rationalize that 
v = C/t holds for S(t) as well as for E(t). If this is so then max 
it can be found from eqn. 4.21a that 

-t /T2 

3(E(t ).t )/3t ) = (1-t /T2) sin(^GTC)e m a X , t i 1/v (4.34) 
max max max max z ' max 

Thus, E(t) introduces a t_.„ dependence in the slope 
9 (Sni.mltm,.) • ̂ ^ v ) / 3 ^ , . - A similar dependence is expected for plugv max' max max r 

laminar flow. The effect of Tx in our formalism can now be accounted 

for by the relative contribution of E(t) with respect to S(t), the 

signal generated by the Vi pulse region of our rectangular r.f. 

field distribution. In Fig. 12B we present the case where T2 = 0.2 s 

is held constant and Tj is varied from 0.2 to 2.4 s. It can be seen 

that the position at which the slope of the curve becomes zero shifts 
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towards t__„ = T2 as Ti increases. For higher values of tm_,„ this 

slope becomes increasingly negative. From eqn. 4.34 it follows that 

for E(t) the slope 3(E(t ).t )/3t becomes zero at t „ = T2, v ' t> \ \ m a x ' max'' max max *' 
whereas for higher values of t this slope is indeed predicted to 

be negative. From these observations we conclude that by increasing 

the Tx/T2 ratio, the relative contribution of E(t) increases. If 

this contribution is much larger than that of S(t) (Tx >> T2) we 

expect that T2 can be determined from a plot of ln[s
Diua(t x)] or 

ln[si --m(t„,v) ]vs. t_,„ (eqn. 4.21). Indeed, from the theoretical 
J. etui fflclX I U G I X 

curves with Tt = 2.4 s and T2 = 0.2 s the slope of ln[siam(t
max)] 

vs. t yields T2(calc.) = 0.28 ± 0.03 s and Dx = 88 ± 4. On the 

other hand, such a plot for the curves with Tx = T2 = 0.2 s yields 

T2 (calc) = 0.72 ± 0.03 s and Dt = 66 ± 4 and thus is much less 

satisfactory. These observations support our conclusion mentioned 

above. 

In determining T2 and V via S(t ) we have taken for granted 

that the nuclei of the flowing fluid have experienced the static 

magnetic field B long enough to have attained Boltzmann equilibrium 

before entering the transmitter/receiver coil. However, experimentally 

this condition is not always met. Suppose we have a fluid with spin-

lattice relaxation time T1 . The time in which the magentization 

attaines equilibrium is about 5 x Tx. Let d be the diameter of the 

pole face of the electromagnet, and let the transmitter/receiver 

coil be positioned in the center of the magnet. Now the magnetization 

of the flowing fluid reaches equilibrium before entering the coil 

if v g (Hd/5T!). Experimentally we have d = 17.5 cm, meaning that 

when Tx = 2.4 s for v ? 7 mm/s the observed NMR signal does not 

reache its maximum possible height, but is attenuated by Tx. This 

is clearly observed in Figs. 7 and 8, where the calculated curves 

(B) and (C) are higher than the experimental curves, due to this Ti 

effect. In the calculated curves of Figs. 7 and 8 this effect has 

been neglected. 

If Tj is a known parameter, corrections can be made to the experi­

mental signal height S(t) using [12] 

S (t) = S(t) {1 - exp(-d/2vT1)}-1 (4.35) 

where S (t) is the signal at equilibrium magnetization. 
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4.5.2.2 Off-resonance signal of stationary water. 

In Section 4.4 it has been stated that all flow measurements have 

been performed on-resonance. Under this condition no signal is ob­

served from water with v = 0 (see Figs. 7 and 8). Indeed, using our 

model systems filled with tap water no signal has been observed from 

stationary water surrounding the capillaries. However, by making 

the stationary water fraction inhomogeneous, for instance by using 

paper tissue or glass beads, it has been observed that this fraction 

may sometimes give rise to an additional signal, even when the 

system is on-resonance. This additional signal decays exponentially 

with a decay time approximately equal to T2 of the stationary water. 

Obviously, this signal will introduce errors in S(t ) and thus in 
max 

the determination of T2 and V of non-stationary water. In plant stems 

the stationary water fraction can also be considered as an inhomo­

geneous system and the same additional signals may be expected. 

In Fig. 14 the height H of the signal observed from stationary 

water at t = 0 is presented as a function of the off-resonance fre­

quency u) , G, and x, for the single capillary system with a paper 

tissue-water system as stationary fraction, where w = w - •yB . To 

obtain the stationary fraction, the outer tube of the single capillary 

system was filled with an undefined amount of papertissue and with 

water. 

From this Figure it can be seen that H = 0 at w = 0. This is 

valid when the Bx field and the inhomogeneities in the sample are 

symmetric with respect to the middle of the r.f. coil. If this sym­

metry is not present, H = 0 can shift to higher or lower values of 

ui . For paper tissue-water systems H may shift up to 60 Hz from 
wc = °-

Theoretically the dependence of H on w , G and T can be explained 

by the signal generated by the first pulse, as given in eqn. 4.11. 

For calculations of H (w ,x,G) we have incorporated the off-

resonance frequency w in this equation, followed by integrating 

the signal over t, as in the experimental situation. Under these 

conditions eqn. 4.12 for stationary water (v = 0) is transformed 

into 

i °° 
H (w , I ,G) = J J 2 s in{7t .exp(-2y 2 /L 2 )} . sin(ui x) cos(yGy x) dy .dx (4.36) 

o o 
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| H0(arb.uni 

Fig. 14 Height H of the stationary water signal at t - 0 as a function of the 

off-resonance frequency w . Experimental conditions: t (in ms ) is 0.8 

(A), 1.6 (B); G (calculated via eqn. 4.33) is (in G/m): 0.7 (x), 8.7 (o) 

and 15.6 (A). The continuous curves have been calculated using eqn. 4.36, 

with L = 7.2 mm. The vertical scale is given in arbitrary units, but the 

scale factor is the same in (A) and (B). 
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By replacing the integral over y by an integral over y /L it 

can be shown that the cosine-term depends on the product of G x L. 

Thus, G and L are strongly coupled and cannot be determined separately 

from these calculations. Therefore, the continuous curves in Fig. 

14 have been calculated by using L = 7.2 mm, taken as being that 

length of a sample for which the height of the FID becomes insensitive 

for increasing sample length. The values of G have been calculated 

from egn. 4.33, again using L = 7.2 mm. The shape of the calculated 

curves is in reasonable agreement with the experimental data. It is 

clear that experimental data such as given in Fig. 14 can be utilized 

to determine G for a particular value of L. 

The dependence of H on w can be used to lock the magnetic field 

B on the frequency of the rotating frame, particularly at x = 0.8 

ms, where the shape of H becomes much less sensitive for variations 

in G. 

4.5.3 Optimum experimental conditions 

The optimum conditions to determine v are those where the linear 

relationship v = c / t m a x is valid. This is true whenever T2 S h^i 

(see Section 4.5.1.2). Under this condition v can be determined 

without the need to know the value of T2 • On the other hand, when 

T!/T2 > 2 and T2 < ~ 1 s, the calibration curve v vs. t~i strongly 

depends on the value of the ratio Tx/T2 and on the value of T2 (see 

Fig. 11). Then, v starts to deviate appreciably from C/t and v 

can only reliably be determined if Tx and T2 are known. In addition, 

T2 and V can be reliably determined from the NMR flow curves if 

T2 = Tl or T2 << Tx (see Section 4.5.2.1). From these observations 

we conclude that T2 = Tx represents the optimum condition to carry 

out our experiments. 

Unfortunately, in most biological tissues Tj > T2. However, the 

pulse sequence used to measure flow can be considered as a Carr-

Purcell-Meiboom-Gill (CPMG) pulse sequence (Section 3.3.1) minus 

the first Hn pulse. Thus, it can be expected that the flowing water 

curves contain the same value of T2 as measured using the CPMG pulse 

sequence. In biological tissue a number of mechanisms may contribute 

to the spin-spin relaxation (Chapter 3). For the CPMG sequence it 

is known that the measured T2 depends on T, the time between the n 
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pulse, if (i) exchange occurs between different sites (see Section 

3.2.4 and [13-16]), or (ii) the material is nonhomogeneous, by ex­

hibiting either a distribution of slow diffusion correlation times 

[17], or inhomogeneity in magnetic susceptibility [18,19], or both. 

In every case the observed T2 increases as t decreases, and for very 

small x T2 approaches the corresponding 11 value. Due to the in-

homogeneous character of the plant xylem vessel system, it may be 

expected that the same holds for water in that vessels. 

Experimentally we have used a pulse spacing t = 1.6 ms. Reducing 

i in order to increase the effective T2 has two effects on the NMR 

signal of flowing water: (i) t shifts to higher values and the 

maximum broadens, resulting in an increase in the lower limit of v 

that can be measured, and (ii) the signal-to-noise ratio decreases 

due to the fact that the signal is measured by integrating the x' 

component of the magnetization over the time t. The first effect 

(i) can be compensated by increasing G. As long as G x t is held 

constant the shape of the NMR signal is hardly affected at otherwise 

constant experimental conditions. The latter effect (ii) is removed 

by summing over more pulses (see Section 4.4) so that the time be­

tween the data points remains unchanged. If we assume that a reduction 

of T by a factor 10 (160 ps) is required to obtain T2 > h^i> G has 

to be increased by a factor 10 (50 - 150 G/m) in order to maintain 

the same shape of the signal as compared with x = 1.6 ms. Then, a 

total of 40960 pulses must be given for the same time-interval and 

each data point then contains the integrated signal resulting from 

160 n pulses. These conditions are within experimental reach. The 

net gain is an effective longer T2, resulting in an increase of 

S(t ). In addition, reduction of x has the advantage that the sign 

of the signal of stationary water becomes insensitive to the magni­

tude of G (see Fig. 14), meaning that this signal becomes more sui­

table as a lock signal to stabilize the magnetic field. 

4.6 CONCLUSIONS 

The results reported here, demonstrate that the n pulse method 

can be used to measure the mean lineair flow velocity of water in 

plant stems. Although v can in principle be determined from the 

initial slope of S(t), this slope depends on the amount of flowing 
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water and aplifier gain; it is also possible that an additional off-

resonance signal of the stationary water affects this slope. There­

fore, determination of v from t_1 is preferable for practical 
max 

applications. If T2 i ^ \ , v can be determined without a priori know­

ledge of the value of Tj and T2• 

In addition, T2, V, and consequently the volume flowrate can be 

determined from the NMR signals. When Tt >> T2, T2 may be determined 

from the slope of a plot of S(t_.„„) vs. t_,__ in a semilog fashion. 

For Tx > T2 or Tt = T2 the slope of a semilog plot of 
3 I S ( t t a a x > - W / 8 t m a x V S* W * i e l d s T* ' F o r T* > T* onl* t h a t P a r t 

of the plot with t ? T2 is used, whereas for Tj = T2 the plot is 
valid for t ? 3T2. The determination of V is much less sensitive 

to the value of Tt and T2 , and can be found from the intercept at 

t = 0 from semilog plots of S(t ) vs. t as well as 3 r max max 
3[S(t ).t ]/3t vs. t 1 v max7 maxJ/ max _ max 

The lower limit of v that can be measured strongly depends on 

the absolute value of Tx and T2 and on the amount of flowing water 

V. A typical combination of values for tapwater flowing through a 

single capillary, surrounded by a 100-fold excess of stationary water, 

is v i 0.5 mm/s, V i 5 pi. For plants, we have measured values as 

low as 3 mm/s for v and V ~ 5 pi. 
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FLOW MEASUREMENTS IN PLANTS 

5.1 INTRODUCTION 

In biology and agriculture knowledge of the water balance of 

plants is of crucial interest. Uptake, transport, storage and trans­

piration of water contribute to this balance and are strongly mutually 

coupled: transport in the xylem vessels is determined by soil- and 

leaf water potential [1,2,3]. The latter is controlled by stomatal 

transpiration, which in its turn is governed by plant water status, 

C02 concentration, light intensity and air humidity [1,2]. Thus, 

sap stream velocity can be used as an indicator of the transpirational 

process [4]. Several indirect methods have been used to study water 

transport by measuring the mean linear flow velocity v or the volume 

flowrate Q of the sap stream [5]. None of these methods detects the 

movement of water itself, however, and many are invasive. 

In Chapter 4 we have discussed a pulsed nuclear magnetic resonance 

(NMR) method, based on a pulse sequence of equidistant n pulses and 

a linear magnetic field gradient [6], based on measurements in glass 

capillary model systems, as applied to measure flow in plant stems. 

In that Chapter we have shown that these flow measurements yield 

the mean linear flow velocity v, the volume flowrate Q, the effective 

cross-section A, and the spin-spin relaxation time T2 of the flowing 

water, without observing the stationary fluid, such as the non-

flowing water in the tissue of the plant stem. 

In this Chapter we report the use of this pulsed NMR method to 

measure linear flow velocity of water in the vascular system of stem 

segments. These measurements have been successful in stem segments 

of Cucurbitaceae (e.g. cucumber, gherkin, pumpkin) and tomato. On 

the other hand, for several other plant stem segments no signal of 

flowing water could be detected under our experimental conditions. 

These observations can be explained on the basis of the relationship 

between the radius R of the transport vessels and T2 of the water 

in these vessels. 
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NMR flow measurements in intact cucumber and gherkin plants have 

been published recently in a preliminary note [7]. In an earlier 

communication [8] (see Chapter 7) the effect of plant water content 

on the 1H T2 of the tissue water has been discussed. Here we report 

simultaneous NMR flow and T2 measurements in an intact gherkin plant 

in response to light intensity and soil water potential, showing 

that the combination of these two pulsed NMR measurements provide a 

new approach in studying important parts of the plant water balance. 

5.2 EXPERIMENTAL 

5. 2. 1 NMR flow measurements 

For the experiments we have used a 15 MHz :H pulsed NMR spectro­

meter as described in Chapter 4. The linear flow velocity v was ob­

tained from the position t of the extremum in the NMR signal (see 

Chapter 4), via the relationship v = c / t m a x - Calibration of C has been 

carried out with a single capillary system, consisting of a capillary 

containing the flowing water, with a diameter of 1.25 mm, fitted 

into a glass tube with an inner diameter of 7 mm, filled with sta­

tionary water (T2=2.4 s). At the particular value of the linear field 

gradient G (in the direction of the flow) used in the experiments, C 

was found to be 6.3 ± 0.3 mm. The flowing water used for calibration 

was tapwater with relaxation times Ti=T2=2.4 s. 

A total of 4096 n pulses has been given, with pulse period x=1.6 ms. 

Each datapoint represents the integrated signal over 25.6 ms (16 

pulses). The results reported in this Chapter have been obtained 

from single trace experiments. The magnetic field B was adjusted 

to such a value that no signal was observed from stationary water. 

This was obtained on-resonance (no beats in the free induction deceay) 

or slightly off-resonance, depending on the sample measured (see 

Section 4.5.2.2). For intact plants it is difficult to control this 

condition, because the condition v=0 cannot easily be realized, in 

contrast to the situation in cut stem-segments. In practice the NMR 

signal of flowing water at t=0 is made coincident with zero signal 

level for model systems. Further experimental conditions are as 

given in Section 4.4. 

A Helmholtz-type r.f. coil has been used with L=l.l and R=0.5 cm. 

In order to perform measurements on intact plants, the r.f. coil was 



88 

constructed in such a way t h a t i t can be opened and folded around 
the p l an t stem (see Fig. 1 ) . The qua l i ty factor of t h i s co i l was 
-50 . 

Fig . 1 Helmholtz-type r . f . c o i l used for measurements in i n t a c t p lan t s tems. 

L=l . l cm, R=0.5 cm. The co i l has been constructed in such a way t ha t i t 

can be opened and folded around the p l an t stem. 

5 .2 . 2 NMR T2 measurements 

The sp in-spin r e l axa t ion time T2 was measured by the Car r -Purce l l -
Meiboom-Gill (CPMG) method [ 9 ] , c a r r i ed out with the same 15 MHz 1H 
pulsed spectrometer and r . f . c o i l as used for the flow measurements. 
Because of the i n t e rna l inhomogeneity and the s ize of the samples a 
time-dependent base l ine ("basel ine d r i f t " ) must be expected [10 ,11] . 
A f i r s t order co r rec t ion for t h i s phenomenon was made by the following 
pulse sequence: 

V t x - t - ( - n y - 2 i ) n - W(=5T1)-H7T_x-t-(-7ty-2x)n, 
where W i s the wait ing time between the two CPMG sequences. By sub­
t r a c t i n g the two CPMG-decays, the e f fec t of misset ings in the n pulses 
was diminished. The CPMG T2 decay was measured by sampling the height 
of the echoes. The time 2t was chosen to be 1.6 ms. The echo decays 
have been analysed by use of a non- l inear l e a s t squares f i t [12] on a 
t o t a l of 1960 da tapo in t s . Due to a considerable s c a t t e r in echo heights 
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the first datapoints of the decay have been rejected before analysing. 
Invariably, a non-exponential T2 decay was observed. Least squares 
fitting has been performed to a maximum of four exponentials. The 
best solution contains the sum of three exponentials. We define a 
mean effective relaxation rate R2 , 

3 
**=& P±Tji (5.1) 

where P• denotes the fraction of component i. T2 measurements as 
well as flow measurements were made at probe temperature (29°C). 

5.2.3 Plant material 

Freshly excised stem segments have been used with length 10 cm. 
Flow velocity has been varied by hydrostatic pressure. Plant stem 
segment and tube have been connected using an universal variable-
bore connector (Omnifit Inc., Cedarhurst, New York). 

5.3 RESULTS AND DISCUSSION 

5.3. 1 Stem segments 

Fig. 2 represents NMR signals of water flowing through an excised 

segment of cucumber stem (Cucumis sativus L.) The mean linear flow 
velocity v was varied by hydrostatic pressure. In Chapter 4 we have 
shown for glass capillary systems that v can be determined from 
the time t at which the NMR signal S(t) reaches a maximum, by max 3 

the relationship 

v = C/t (5.2) 
max 

This relationship is valid whenever T 2 ^ T ! (see Section 4.5.1.2). 
In Fig. 3 the signals of Fig. 2 have been represented as a plot of 
the volume flowrate Q (as volumetrically determined) vs- t~l . Assuming 
that the effective cross-section is independent of volume flowrate 
(or hydrostatic pressure) we conclude from Fig. 3 that eqn. 5.2. is 
equally valid for this stem segment. 
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^S( t ) (arb. units) 

0 
-T-

6 

Fig. 2 Single scan 15 MHz NMR signal height S(t) vs. time for water flowing 

through an excised stem segment of a cucumber plant. Water flow was varied by 

hydrostatic pressure. A total of 4096 71 pulses has been applied, with 

pulse period 1=1.6 ms. Each point of the curve represents the integrated 

signal over 25.6 ms (16 pulses). G=13 ± 3 G/m. 

The validity of eqn. 5.2. for this stem segment suggests that 
T2=HT1. As stated in Chapter 4 when this condition holds, T2 can be 
determined from the NMR signals as given in Fig. 2 by plotting 

^ S ^ m a x J - W / ^ m a x vs" Snax i n a semilo<3 fashion. For Tl>T2 only 
that part of the plot with t X?T2 is used, whereas for T1sT2 the 

plot is valid for t ?3T2 
r max ^ 

The slope of such a plot for the curves 
of Fig. 1 yields T2=250 ± 20 ms for t <400 ms. 3 -* c max 
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Fig . 3 P lo t of volume f lowrate Q (ml/min) v s . t " 1 for the measurements shown in 
x max 

Fig. 1 

If Tt=T2 the decay time obtained from a semilog plot of S(t ) 

vs. t must be >3T2 (see Section 4.5.2.1) 
max '• Fig. 2 S(t ) vs. t y v max' max 

From the results of 

yielded a decay time that equals 610 ± 40 ms, 

only slightly less than three times the previously calculated T2 of 

250 ± 20 ms. When T1=2T2 the decay time obtained from a semilog plot 

of S(t_,„) vs. t is about 2T2. Here, we have the intermediate case, 

in agreement with the validity of eqn. 5.2. (As noted in Section 

4.5.2.1, the shape of the plot S(t „„)'t „„ vs. t̂ ..,, strongly depends 
max max max 

on the value of the ratio T1/T2 , and thus the position at which the 

slope of this plot becomes zero. For T!>>T2 this position equals 

the time T2, whereas for decreasing Ti/T2 ratio this position shifts 
to higher values of t . For the curves of Fig. 2 the position at 3 max 3 r 

which the slope of S(t )-t vs. t ^ becomes zero was found to r max max max 
be ~1.0 s, equal to 4T2(calculated). This is an additional argument 

that T2>HTi for this stem segment (see Fig. 13, Chapter 4.)). 
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Similar signals of flowing water have been observed in stem segments 

of gherkin (Cucumis sativus), pumpkin (Cucurbita ficifolia) and tomato 

(Lycopersicon esculentum). On the other hand, for several other plant 

stem segments, such as papyrus (Cyperus alternifolius), sweet pepper 

(Capsicum annuum L. ) and seedlings of tomato, cucumber and bean 

(Phaseolus vulgaris), we have tried to obtain NMR signals of flowing 

water without success, although for some of these the amount of 

flowing water (volumetrically determined) should have been sufficient 

for observation with our NMR apparatus. 

These negative results may be explained by (i) a flow velocity 

which is too low, and/or (ii) the value of T2 (and Ti) of the flowing 

water. Concerning (i): the lower limit of v that can be measured 

strongly depends on the absolute value of Tx and T2 and on the amount 

of flowing water (Chapter 4). Calculations of the linear flow velocity 

from the measured volume flowrate based on estimates of the amount 

of xylem vessels and their diameters revealed that in e.g. the papyrus 

stem segments the flow velocity was in the range 2-10 mm/s. At the 

value of the linear field gradient used these flow velocities can 

be measured if T2 > ~ 175 ms. At lower values of T2 the NMR signal 

broadens and the maximum disappears. The resulting signal then can 

be easily misintepreted as being an off-resonance signal of the 

stationary water (see Section 4.5.2.2.), which has about the same 

shape. Knowledge of the values of T2 and Tj of water in these xylem 

vessels is therefore of prime importance. 

As stated above, in the cucumber segment of Fig. 2 we found 

T2=250 ± 20 ms. The flowing water fraction used was tap water 

(T2 = 2.4 s). Thus, the T2 of water flowing through the xylem vessels 

is considerably shortened. This behaviour can be explained in a first 

approach in terms of a two-state fast-exchange model [13,14]. In 

the framework of this model we may assign one state to water in a 

xylem vessel ("free" water) with T 2 f = 2.4 s and water, bound on 

the vessel wall, with T2, ? 1 ms to the second state. There is fast 

exchange of water between both states. The observed single relaxation 

rate R2 is the weighted average of the separate relaxation rates of 

the two exchanging fractions: 

R-JCET;,-1)- Tg"1 + Pb(T2"
1 - Tg"1) (5.3) 
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where P. is the mole fraction of the "bound" water. Let us assume 

that we have a thin layer of bound water with thickness dr and dr<<R, 

the radius of the vessel. Now egn. 5.3 can be written in terms of 

dr and R, resulting in 

•l 2dr 
«*- **f + =fr (Tz^1 " Tz"1) (5.4) 

showing that R2 is expected to be inversely proportional with R. 

This approach can be extended for intermediate and slow exchange by 

use of the equations as given by [15] (see also Chapter 3, eqns. 

3.16 - 3.20). Comparable results have been obtained by Brownstein 

and Tarr [16,17]. Using a simple theory based on a diffusion equation 

using the bulk diffusivity of water, these authors have derived ex­

pressions for the relaxation times Tj as well as T2 in biological 

cells in terms of the diffusion constant D and the dimensions of 

the cell [17]. These authors have shown that multiexponential decay 

of the spin relaxation can arise as a consequence of an eigenvalue 

problem associated with the size and shape of the cell. Brownstein 

en Tarr have also considered relaxation in a cell with cylindrical 

geometry [17]. We will use their results to explain relaxation in 

an xylem vessel. In deriving their equations for relaxation 

Brownstein and Tarr have neglected relaxation of free water (i.e. 

T 2 £ 1 = 0). The surface of the cylinder is considered as an active 

surface, with surfacelike sinks for the magnetization. At the active 

surface the sink strength density M (in cm/s) is assumed to be 

constant. (Note that M has the same dimension as flow. Indeed, flow 

can also be incorporated in their integral theorem [16], resulting 

in the equations as derived by Hemminga et al [18] for the difference 

decay curve of stationary and flowing water). Now, the longest decay 

time T of the spin relaxation is given by 

T = R2/Dn2 (5.5a) 
o 'o 

where n is the positive root of 'o r 

noJ l ( no) / Jo( no) = m/B ( 5-5 b ) 
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and J , Jx are cylindrical Bessel functions. 

Brownstein en Tarr discerne three qualitatively different regions 

of behaviour according to the value of MR/D: 

(i) MR/D<<1. This can be considered as the region that corresponds 

to the fast-exchange limit of discrete multiphase analysis [13-15]. 

The corresponding decay time is given by T =V/Ms where V is the sample 

volume and s is the active surface area. For a cylinder this results 

in 

TQ= W M (5.6) 

For T2, here again we find that R2(=T _ 1 ) is inversely proportional 

to R, in agreement with eqn. 5.4. 

(ii) 1<MR/D<10. This is called the "intermediate-diffusion" region, 

(iii) 10<<MR/D. This can be called the "slow diffusion" region. In 

this region the decay time for a cylinder is given by 

TQ= R2/D(0.75 rt)2 (5.7) 

showing a quadratic relationship between R and T . 

In Fig. 4 we have plotted T vs. R as a function of M. We have 

assumed D=2.5xl0"5 cm2/s. When MR/D>>10 than the relationship between 

T and R becomes independent on M (eqn. 5.7). 

Values of M in biological tissue have not yet been published in 

literature. However, the diffusional formalism developed by Brownstein 

en Tarr can be used to explain the spin relaxation behaviour of water 

protons in rat gastrectonemius muscle [17] and of water in milled 

Northern white-cedar wood chips [19]. In the first case the relaxation 

behaviour has been explained with an annular cylinder geometry. The 

outer surface at R=a has a sink strength density M that satifies 

Ma/D=4.9. With the data given in [17] we were able to calculate a , 

resulting in a=14.7 p . With D=2.5xl0"5 cm2/s this yields 

M=8xl0-2 cm/s. In the study of wood chips [19] Brownstein used a 

surface layer of macromolecules containing water of thickness 

dr Z 0.26 pm and T2 = 1 ms to explain the relaxation behaviour of watei 

adsorbed on wood [19]. Sinks in the bulk volume have been neglected. 
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Fig. 4 Calculated plot of T M vs. MR, based on eqns. 5.5. The diffusion constant 

D=2.5xi0"5 cm2/s. 

The initial slope of the observed relaxation decay curve is governed 

by 1/T2 of this surface layer. In [17] it has been explained that 

this initial decay is related by M via T2=V/Ms, where V is the sample 

volume and s is the active surface area. For a planar geometry with 

thickness dr this results in T2=dr/M. For the surface layer of wood 

[19] this results in M?2.6xl0-2 cm/s, only a factor three lower than 

the value of M in rat muscle. Taking the lowest value of M calculated 

above (2.6xl0~2 cm/s in wood) as a representative of xylem vessel 

walls, we can make an estimation of the xylem vessel radius of the 

cucumber stem segment of Fig. 2. Using our experimental value of 

T2=250 ± 20 ms for such a segment we find R=60 pm from Fig. 4. 

In cucumber stems xylem vessels have been found with R 5 300 nm. 

With the results of Fig. 4 we can also explain why no signal of 

flowing water has been observed in stem segments of a number of other 

plants. In these plant stems the maximum vessel radius R is less 

than that found in cucumber, and, according to Fig. 4, T2 is expected 



96 

to be < 250 ms. Thus, observation of flowing water NMR signals 

strongly depends on the maximum vessel radius. 

In the diffusional formalism presented by Brownstein and Tarr 

[16,17] the expected dependence of T2 on the pulse period x (see 

Section 4.5.3) is not incorporated. As stated in Section 4.5.3 we 

expect an increase of the measured T2 upon a decrease of t allowing 

the measurement of flow in smaller xylem vessels. 

5.3. 2 Intact plants 

Fig. 5 Al and A2 represent flowing water signals in an intact 

cucumber stem before and after adding water to the soil, respectively, 

resulting in an increase of v=9.9 ± 0.8 mm/s to 14.3 ± 1.1 mm/s. 

1 5 6 
*• t(sec) 

Fig. 5 15 MHz NMR signal (single trace) amplitude S(t) vs. time for water flowing 

in the stem of an intact cucumber. (A) Signal of flowing water under 

illumination with two Na-lamps at 1 m mean distance from the leaves, zero 

air velocity, ambient temp. 23°C. 

1. v=9.9 mm/s 2. v=14.3 mm/s 

before and after adding water to the soil, respectively. 

(B) Signal 15 min. after cut-off of flow closely below stem section in 

the r.f. coil; all other conditions identical to those in A. 
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The performance of the method can be judged in Fig. 5B, where, after 

interrupting the supply of water to the measuring region of the stem, 

no signal is observed, not even of the stationary tissue-water (90% 

of the total water content). 

The effect of soil water potential and illumination intensity on 

v and the average spin-spin relaxation rate R2 have been measured 

in the stem of an intact gherkin plant. (Figs. 6 and 8 ) . Fig. 6 shows 

that the soil containing plant is well watered at the moment of 

measurement: a further addition of water does not alter the mean linear 

flow velocity, in contrast to what is observed in Fig. 5. 

R,( 

t V(mm/s) 

water added 

i lamps off 

15 

10 

5-

4 |_.H_ 

X X 

-

* \ x 

"xv- x- -x** X X -x X-X* 

K 
*> 

V 

s-i) 
K 

4 5 
-*• t (hours) 

Fig. 6 1H pulsed NMR measurements of mean l i n e a r flow ve loc i ty v (o) and sp in -sp in 

r e l axa t ion r a t e R2 (x) in an i n t a c t gherkin p l a n t , measured in the stem 

a t ~ 0.5 m above s o i l su r face . The response of the NMR s igna l s to the 

add i t ion of water and to v a r i a t i on in l i gh t i n t e n s i t y i s shown. 

Under t h i s condit ion i t i s expected t h a t the flow ve loc i ty i s con­

t r o l l e d by the t r a n sp i r a t i on process in the l eaves . Under the ac tua l 

environmental condit ions ( r e l a t i v e a i r humidity: 44 %, temperature: 
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24.5 °C, illumination with two 400 W Na-lamps at about 2 m above 

the soil surface, zero air velocity) a maximum flow velocity of 

13 mm/s was found. After turning off the lamps, v decreases from 

13 mm/s to ~ 7 mm/s over a period of ~ 30 min. At longer times after 

turning off the lamps the decrease in v is much slower. The decrease 

in v when the light is turned off is due to closure of stomata. As 

suggested by Slatyer [1] at that moment the upward movement of water 

to the leaves, due to a mild water stress in the leaves and stem, 

begins to exceed the rate of loss due to transpiration, and the 

differences in water potential between soil, root and leaf decreases 

(see also [22]). Consequently, the leaf apoplast and cells and stem 

cells are rehydrated. This is reflected in the decrease of R2. As 

shown in [8] R2(=l/T2) is inversely proportional with water content. 

The slight change in R2 at turning off illumination indicates that 

the cells in the stem were only mildly dehydrated during the light-on 

period due to the well watered soil (low resistance between soil 

and root). After turning on illumination, v and R2 increase again 

and approach about the same value as at the beginning of the ex­

periment. (v=13.0-13.5 mm/s, R2=3.4 s - 1 ) - The response of T2 on dark/ 

light periods has been measured in the stem of an intact papyrus 

plant (Fig. 7). This is in fair agreement with the data of Fig. 6. 
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Fig. 7 Change in JH spin-spin relaxation time T 2 (taken as the time at which 

the value of the decay curve reaches 1/e of its initial value) measured 

in the stem of an intact papyrus plant in response to light/dark periods. 
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The effect of a decrease in soil water potential on v and R2 in 

the stem of the same gherkin plant is represented in Fig. 8. At 

t=0 we have measured the flow velocity, two days after adding water 

to the soil. The measured value, v=17.5 ± 1.2 mm/s, is higher than 

that measured in Fig. 6. This may be due to an increase in relative 

air humidity and temperature (65 % and 26 °C, resp.) with respect to 

the conditions for Fig. 6 (44 % and 24.5 °C, resp.). The following day 

the flow velocity was found to be decreased considerably, in agreement 

with the dry soil and the wilting of the lowest leaf on the stem. 

lamps off 
" T - - V////////////A 

15-

10 

5-

lamps Off i water added 

c *1L R 2 ( S - ' ) 
•water added 

| V(mm/s) 

\ 
\ 

/ \ | water • 
{added . g | 

J 1 

' x 

K-X-'1-

10 20 30 40 
• t(hours) 

50 

Fig . 8. 1H pulsed NMR measurements of v (o) and R2 (x) in the stem of an i n t a c t 

gherkin, demonstrating the e f fec t of dehydration and rehydrat ion of the 

s o i l . For fu r ther experimental cond i t ions : see t e x t . 

Under these condit ions the s o i l r e s i s t ance increases and root water 
p o t en t i a l decreases, r e su l t i ng in dehydration of c e l l s in root , stem 
and leaves [ 1 ] . This i s r e f l ec t ed by the increas ing value of R2. At 
the beginning of the t h i r d day R2=8.5 s _ 1 , twice the value measured 
a t the beginning of the second day, i nd ica t ing a s t rong decrease in 
hydration of the stem t i s s u e . The flow ve loc i ty i s a lso decreased 
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with respect to that on the second day. Now, adding a small amount 

of water to the soil results in an increase in v (measured after a 

few seconds after the water gift) and a decrease in R2. Adding a 

second and third larger amount of water to the soil, v increases 

shortly, and next reaches a steady state at v=8.9 ± 0.6 mm/s. This 

value is lower than the maximum value v=17.5 ± 1.2 mm/s (at t=0), 

reached under the same environmental conditions. The supply of water 

results in a decrease of R2, which after about three hours reaches 

approximately the same value (R2=3.2 s_1) as measured under well 

watered conditions with lamps off (see Fig. 6). 

As has been stated in Chapter 4, the amount of flowing water (in 

mm3) is found by either plotting 3 [ S l ^ j .tmax]/3tmax vs. t m a x or 

S(t _„) vs. t_„ and extrapolating to t„_=0. In Fig. 9 the data of max max max 
Fig. 6 are shown in the form of a semilog plot of S(t _„) vs. t „. 

100 

t 
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(arb. units) 

•3fc"**i 
' - - < } . 

- ^ • 

0.5 1.0 
tmax (s) 

Fie. 9 Semilog plot of S(t ) vs. t of the data of Fig. 6. (x) data obtained 
° ° r max max 

in the dark per iod following the turning off of lamps, (o) data obtained 

in the l i g h t pe r iod , a f t e r t u rn ing lamps on. 

Fig. 9 c l e a r l y shows t h a t there i s a systematic devia t ion between 

the values of S ( t ) during a dark per iod following the turning 

off of lamps and those during a l i g h t per iod, a f t e r turning lamps 
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on. Though t „ _ . and thus v, is within the same time interval for 
nicix 

these two processes, S ( t ) measured with lamps off is systematically 

higher than with lamps on. Extrapolation of the two curves to t =0 
max 

reveals that the slope of the curves are approximately the same, 

but S(0), and thus the volume flowrate, is significantly larger for 

the "lamps off" plot than for the "lamps on" plot. (Fig. 9). These 

findings indicate a hysteresis effect in the volume flowrate between 

light and dark periods and vice versa. 
A plot of S(t ) vs. t__„ for the processes of dehydration and 

nicix iucix 

rehydration of the soil, obtained by using the data of Fig. 8, is 

presented in Fig. 10. This Figure demonstrates that now systematic 

deviations between the data points obtained by rehydration and 

dehydration are absent, in contrast to the phenomenon in Fig. 9. 
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S ( t m a x ) 
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(arb. units) 

"Hi. -*U 
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0.5 1.0 

• *max (s) 

Fie. 10 Semilog plot of S(t ) vs. t of the data of Fie. 8. (x) data obtained ° ° r max max 6 

by dehydration of the soil, (o) data obtained after rehydration of the 

soil. 

I t i s no t iceable t h a t S(0) obtained by ex t rapo la t ing the curve of 

Fig. 10 to t x=0 i s s i gn i f i c an t l y higher than S(0) obtained from 

the "lamps off" curve in Fig. 9. I t i s noteworthy, t h a t the data of 

Fig. 9 and 10 have been obtained using the same gherkin p l an t , 

whereas the time elapsed between measuring the data of F ig. 6 and 9 
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on one hand and the data of Fig. 8 and 10 on the other hand is one 

week. This may be the reason for the difference in S(0) in Fig. 9 

and 10. Nevertheless, the slopes of the plots of Fig. 9 and 10 are 

equal within experimental error: Fig. 9 yields a decay time of 

480 ± 55 ms, whereas the deceay time obtained from Fig. 10 results 

in 520 ± 50 ms. 

Concerning the reliability of the values of v in Fig. 6 and 8, 

we note first that calibration has been performed with a glass 

capillary model system (Section 5.2.1) in which the flow may be 

considered as laminar (Section 4.5.1.3). From measurements in isolated 

strands of xylem vessels of Plantago major L it has been demonstrated 

that the flow in these vessels is essentially laminar, even though 

flow resistance in these vessels strongly depends on the wall surface 

sculptures [20]. The Reynolds numbers (ResiO6 Q/R, where Q is the 

volume flowrate and R the vessel radius) found in xylem vessels of 

Plantago major L are in the range ~ 0.1 [20]. From our measurements 

in cucumber and gherkin the maximum value of Re calculated from 

volume flowrate and estimated vessel radius is ~1. Also the effect 

of surface sculptures and curvature of the vessels may not be expec­

ted to introduce turbulence [21]. As has been stated elsewhere the 

shape of the NMR signals of flowing water are sensitive for the flow 

profile (Chapter 4 and [6]). Indeed, the shape of the NMR signals 

support the expected laminar flow pattern. 

Secondly, flow velocity has been obtained via eqn. 5.2, which is 

valid if T^^h^i (Section 4.5.1.2). In Section 5.3.1 we have shown 

that this conditions holds for a particular cucumber stem segment, 

which is not necessarily true for every type of plant stem. In 

Chapter 6 we show by comparing flow measurements with the NMR- and 

balance method that in a particular cucumber plant eqn. 5.2 results 

in systematic deviations, indicating that for water in the xylem 

vessels of that plant stem T2<^T1 (see Section 4.5.1.2). This has 

been verified by the NMR results alone. We cannot exclude that for 

the measurement of the flowing water in the xylem vessel of the 

gherkin plant presented in Figs. 5-10 also T2<HT!. When T2<HTj the 

values of v must be corrected according to the data presented in 

Fig. 11 of Chapter 4. This has no effect on the shape of the response 

of v on variations in light intensity and soil water potential, how­

ever (see also Figs. 6 and 8 of this Section). 
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5.4 CONCLUSIONS 

The value of T2 of the water in the xylem vessels in plant stems 

has been shown to be strongly related to the vessel radius R. Depen­

ding on this value, linear flow velocities (v) and volume flowrates 

(Q) have been obtained by use of the NMR n pulse method. 

Combination of these flow measurements with NMR T2 measurements 

of the stationary water (tissue water surrounding the vascular system) 

in intact plants turn out to be useful to study the effects of en­

vironmental factors, such as light intensity, temperature, relative 

air humidity, soil water potential, etc., on v, Q and, via T2 , water 

content of xylem water and tissue water, respectively. The effects 

of changes in these environmental conditions on v, Q and T2 can be 

measured with a time resolution of a few seconds. This study demon­

strates that these pulsed NMR measurements provide a new approach 

to the study of parts of the plant water balance. 
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6 COMPARISON OF FLOW MEASUREMENTS WITH NMR, HEAT PULSE AND BALANCE 

METHOD 

6.1 INTRODUCTION 

In Chapters 4 and 5 of this Thesis we have presented the use of a 

non-destructive pulsed NMR method to measure flowing water in plant 

stem xylem. In Chapter 4 we have shown that this NMR method, based 

on a pulse sequence of equidistant n pulses in combination with a 

linear magnetic field gradient in the direction of flow [1], is very 

suitable to determine the mean linear flow velocity v, as well as 

the volume flowrate Q, the effective cross-sectional area A available 

for flow, and the spin-spin relaxation time T2 of the flowing water. 

In Chapter 5 we reported the results of this method when applied to 

plant stem segments and intact plants. It has been observed that, 

using the experimental parameters, this method is successful when 

applied to plant stems with large diameter xylem vessels, due to 

the relationship between the vessel radius and T2 of water in these 

vessels (Chapter 5). In Chapter 4, however, we have pointed out that 

the observed value of T2 depends on the pulse period T. In fact, the 

effective T2 increases with decreasing T, thus allowing measurements 

in smaller diameter xylem vessels. 

The combination of T2 measurements of stationary tissue water 

and flow measurements in a particular section of a plant stem has 

been shown to provide a new approach for the non-destructive analysis 

of important parts of the plant water balance, with a time resolution 

of a few (4-12) seconds (Chapter 5). 

Up to here the NMR flow measurements in plants have been compared 

and calibrated with the results of measurements in glass capillary 

model systems. To avoid in-breeding, in this Chapter we compare the 

results of NMR flow measurements in the stem of an intact cucumber 

with those obtained by the weight balance method and the micros­

copically determined cross-sectional area of the xylem elements. A 

linear relationship between v as measured with NMR and Q obtained 

by the balance method is shown. From the slope of v(Q) the effective 

cross-sectional area A available for flow has been determined. The 
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cross-sectional area can also be determined form NMR measurements 

alone, and is shown to be in good agreement with the previous value 

of the slope of v(Q). In addition, the results of flow measurements 

with a heat pulse method [2] are compared with the results of the 

balance- and NMR method. 

6.2 EXPERIMENTAL 

6.2.1 NMR flow measurements 

NMR flow measurements have been carried out by the pulse technique 

as described in Chapter 4 and [1]. For the experiments we have used 

a 15 MHz *H pulsed NMR spectrometer as described in Chapter 4. The 

linear flow velocity v was obtained via the relationship 

v = c/t (6.1) 
max 

where C is a calibration constant and t the position of the ex-

tremum in the NMR signal (see Chapte 4). Calibration has been carried 

out as described in Chapter 5, using flowing and stationary water 

with T1=T2=2.4 s. Calibration of C at the particular value of the 

linear field gradient G used in the experiments yields C=7.5 ± 0.2 mm. 

With the same capillary system used to calibrate C (see Chapter 5) 

at the particular value of G used here we have also calibrated the 

amount of flowing water V (in mm3) via S(0), the height of the 

maximum at t =0, obtained by plotting S(t ) vs. t and extra-
iUclX IflelX IRclX 

polating to t =0 (Chapter 4). For the capillary system V has been 

calculated from the cross-sectional area A of the capillary and the 

effective length of the r.f. coil L f f (defined as that length of a 

sample for which the height of the free induction decay becomes in­

sensitive for increasing sample length) via V=A/L ff. The volume 

flowrate in a plant is obtained from v and V (as measured in that 

plant) via 

Q = v V/Lef£ (6.2) 

whereas the cross-sectional area of the xylem vessels in a plant 

has been found by 
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A = V/Leff (6.3) 

To prevent radio frequency interference from surrounding equipment 

(e.g. microcomputer, etc.) reaching the receiver through the plant 

(working as an aerial), the soil has been grounded via the NMR 

apparatus. In this way a considerable reduction of the noise level 

is obtained. 

Other experimental conditions were the same as in Chapter 5. 

6.2.2 Heat pulse flow measurements 

Heat pulse flow measurements have been carried out with a thermo­

electric method as described elsewhere [2]. Heat is applied locally 

to the stem during a few seconds. The heat flows into the stem in 

all directions. Part of the heat reaches the xylem vessels and is 

transported downstream with the moving water. Thus the temperature 

rise (measured by a pair of integrated circuit temperature sensors) 

will be higher downstream than it is upstream. Time of occurence 

(b) and magnitude (c) of the maximum in the temperature between 

points upstream and downstream both depend on the flowrate. We have 

taken tg a=c/b as a measure of flowrate. A sensor design has been 

used with a flat surface and a distance between heater and each of 

the two i.c.'s is 10 mm. The sensing element is mounted on one leg 

of a thermally isolating clip. The other leg of the clip bears a V 

groove for correct positioning of the sensor on the stem. To reach 

an optimum heat transfer between heater and flowing water, the sensor 

was positioned as near as possible at a xylem vessel bundle (This 

is easily accomplished in the case of a cucumber). 

Duration of heating was 10 s, with a current of 0.5 A in a heating 

element with 0.5 ohm resistance, allowing a repetition time of about 

4 min. at the observed flowrates. Other experimental conditions were 

the same as in [2]. 

6.2. 3 Balance transpiration flowrate measurements 

The transpiration rate of the pot plant has been measured by 

weighing on an electrical differential top balance (Mettler, type 
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PE-11 in combination with BE-13). The output of the balance was 

recorded on a strip chart recorder. The transpiration rate at a 

particular time was determined from the slope of the record at that 

time. To prevent evaporation of water from the soil in the pot, the 

soil surface was covered with aluminium foil. 

6.2. 4 Cross-sectional area 

Cross-sectional areas A of the flow conducting elements have been 

calculated from microscopic measurements assuming the vessels to be 

unobstructed capillaries. Measurements have been carried out in 

radial sections taken from those stem parts which were positioned 

in the NMR r.f. coil and in the heat pulse sensor. 

6.2.5 Plant material 

Measurements have been carried out on an intact cucumber plant, 

potted in a plastic container, placed on the top balance. The plant 

was illuminated with two 400 W Na-lamps at about 2 m above soil 

surface. The NMR r.f. coil was situated on the plant stem at 0.75 m 

above the soil surface, whereas the heat pulse sensor was clampsed 

on the stem at ~ 1.25 m above the soil surface. 

6.3 RESULTS 

Figs. 1 and 2 presents respectively the mean linear flow velocity 

v as measured with NMR and tg a as obtained by the heat pulse method, 

both plotted versus the volume flowrate Q_ measured with the weight 

balance and defined as the weight loss per unit time. In these Figures 

we will take Q„ as the reference. As has been shown in Chapter 5, 

flowrate and water content of the plant tissue are mutually coupled. 

However, deviations of QR from the true actual volume flowrate due 

to these variations in the water content have not been considered. 

To obtain variations in v and Q_ the illuminating Na-lamps have 

been switched off and on, warm water has been added to the soil and, 

at last, leaves have been cut off from the stem. In Fig. 1 as well 

as Fig. 2 we have indicated from which procedure the data points 

have been obtained. The response of v as measured with NMR on each 

process has the same shape as that given in Chapter 5 (Figs. 6 and 8). 
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10 15 
*• Q B ft»m»3/s) 

Fig. 1 Plot of v as obtained by NMR method versus QR as measured with the 

balance method for an intact cucumber plant. For the explanation of curves 

a and b see text. The flow has been varied by: (o) lamps off, (x) lamps 

on again plus adding warm water, (A) lamps off again, and (+) cutting 

off leaves from plant stem. 

0 5 10 15 
*-aB(mm3/s) 

Fig. 2 Plot of tg a as obtained with the heat pulse method versus Qfi as measured 

with the balance method. See legend of Fig. 1 for other conditions. 
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As has been stated in Chapter 4 (Section 4.5.2.1) the amount of 

flowing water V (mm3) in the r.f. coil is obtained from the NMR flow 

measurements by either plotting s(tmax)< the signal height of the 
maximum, versus t „ or via a plot of 3[S(t ).t ]/3t versus max * L v max' maxJ/ max 
t . In Fig. 3 the NMR signals of flowing water in the cucumber 
plant are represented as a plot of S(t ) vs. t .In this Fig. 
the difference in S(t ) between the "lamps off" and "lamps on" 
data points, as has been observed in a gherkin plant (Chapter 5, 
Fig. 9) is absent. This may be due to the time lag between the moment 
of switching the lamps on again and the first flow measurement after 
switching the lamps on, which has been ~ 15 min. Apart from the data 
points obtained after cutting off leaves from the stem, denoted with 
( + ) in Fig. 3, the data points show a linear relationship between 
S(t ) and t x, when plotted in a semilog fashion. Extrapolation 
of this plot to t m = = 0 yields S(0)=9±0.5 (arb. units), which has 
been found by calibration (Section 6.2.1) to correspond with an amount 
of flowing water in the coil V=3.2±0.4 mm3. Via L ff=7.24 mm, it is 
possible to calculate the effective cross-sectional area available 
for flow via eqn. 6.3, and via egn. 6.2 the volume flowrate Q. From 
eqn. 6.3 we found A^.^0.4410.06 mm2. 

t S(tmax)(arb. units) 
1 0 ^ 

tmax(s) 

Fie. 3 Semilog plot of S(t ) vs. t of flowing water in cucumber plant stem 
max max ° r 

as measured with the NMR method. V denotes the amount or volume of flowing 
water measured in the r.f. coil. See legend of Fig. 1 for other conditions. 
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The slope of the plot in Fig. 3 yields a decay time T=0.38 s. In 

Chapter 4, Section 4.5.2.1 we have pointed out that (i) TS3T2 if 

T!=T2, or (ii) T=T2 if T!>>T2, or (iii) T2<T<3T2 when Ti>T2, where 

T] and T2 are the spin-lattice and spin-spin relaxation times, 

respectively. From a plot of S(t ,).t =„ vs. t ,_, (in combination 
iflciX IUclX IUclX 

with the value of T, the decay time obtained from S(t „) vs. t „) 
IUclX IUclX 

the ratio Tx/T2 can be estimated from the point where the slope 

9[S(t ).t ]/3t becomes zero (Chapter 4, Section 4.5.2.1). 
H13.X IH3.X fflclX 

For the data of Fig. 3 this point in such a plot is found to be 

~ 0.5 s (The curve is rather flat). This value is ~ 1.4 times the 

decay time T, indicating that TX>2T2 and T2 is therefore only slightly 

larger than T (Chapter 4, Section 4.5.2.1). When Tj>2T2 eqn. 6.1 is 

not longer valid, and v has to be corrected according to the values 

of Tj and T2 . From the above mentioned considerations we estimate 

T2~0.4-0.45 s and T!~1.0-1.5 s. Corrections on v in agreement with 

these values of T1 and T2 (see Fig. 11 of Chapter 4) results in 

Fig. 1 in a transition of the straight line a to b. Line b is given 

by Q =0.49 v, yielding an effective cross-sectional area for flow 

AB_N=0.49 mm2, where B-N denotes that the cross section has been 

obtained from combined balance and NMR measurements. 

The relative large deviation of the data points denoted with (+) 

in Fig. 1 from line a can be explained using Fig. 3. These points 

have been obtained by cutting off leaves from the stem. Fig. 3 

clearly shows that this results in a decrease of S(t x ) for these 

points, indicating that at that moment the amount of flowing water 

in the coil has decreased, due to a decrease in conducting xylem 

vessels. Thus, the deviation of these points in Fig. 1 from line a 

reflects a decreased value of the effective cross-sectional area 

for the flowing water, just as expected. 

The microscopically determined cross-section of the xylem vessels 

yields A =0.92±0.04 mm2. Though the distribution of vessel radii at 

the position of the NMR r.f. coil (Fig. 4) and at the position of 

the heat sensor are slightly different, the cross-sectional areas 

are equal within experimental error. 



112 

J number of vessels 

50 100 150 
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Fig. 4 Distribution of xylem vessel radii in the cucumber plant stem at the 

position of the NMR r.f. coil. 

6.4 DISCUSSION 

When we compare the value of the cross-sectional area of the xylem 

vessels as found from inspection by a microscope (A =0.92±0.04 mm2) 

with the values of the effective cross-sections as found from v(QR) 

(Fig. 1) (AB_N=0.49 mm2) and the value found with NMR alone 

(ANM_=0.44±0.06 mm2) we observe good agreement between the latter 

values, whereas the former is about two times higher. This is not 

very surprising, because the cross-section for flow may not be the 

same as the microscopically measured area, due to e.g. a stationary 

boundary layer of water at the walls of vessels [3], or due to non­

conducting vessels [4-8]. The agreement between A__N and AN M R is an 

argument in favor of the reliability of this value of the effective 

cross-sectional area available for flow. That ANMI tends to be 

slightly lower than A__N may be expected from the following consider­

ations: as has been stated in Chapter 5 the value of T2 of flowing 

water in a particular xylem element strongly depends on the radius 

R of that element; by decreasing R the value of T2 will also decrease. 

This results in a decrease of the height of the NMR signal at t ,„. 
73 max 

In addition, when we assume Pouiseille flow, the mean linear flow 

velocity depends on R2. Thus, there is a distribution of values for 

v, resulting in a spread of t (eqn. 6.1). However, the spread in 

tm=„ 1 S partly compensated by the correlation between v and T2 via 
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R: when v is small due to a small value of R, T2 is decreased and 

the shift of t to higher values due to smaller v is partly com­

pensated due to the shift in t to lower values by the decrease 

of T2 (see Chapter 4, Fig. 11). Indeed, it has been observed that 

the NMR signals of flowing water in plant stems are hardly broadened 

with respect to the signals of flowing water in a glass capillary. 

This may also be caused due to the fact that the volume flowrate Q 

depends on R4, resulting in the largest contribution to the signal 

of water in the vessels with the largest values of R, v and T2• 

Comparing the data of Fig. 1 with those of Fig. 2 (keeping in 

mind that the data points in Fig. 1 have to be considered as grouped 

around curve b, as argued above), we find a linear relationship 

between v and Q in Fig. 1, whereas the plot of tg a vs. QR exhibits 

somewhat more scatter, in particular for higher values of QD 

(Q_>7 mm3/s). For these larger values of Q_ the water flow can be 

considered as a flow of coolant, resulting in a smaller increase of 

the magnitude of the heat pulse signal as compared to that at lower 

flow velocities. Fig. 2 also shows a strong correlation between the 

relationship of tg a and QR and the process by which the flow velocity 

has been varied. This may be explained by the additional variation 

in the water content when varying the water flow (see Chapter 5). 

The results obtained with the heat pulse method can be presented 

in terms of time of occurence of the maximum (b), magnitude of the 

maximum (c) in the temperature difference or tg a(sb/c) [2]. In either 

case only a relative difference in signal parameter can be achieved. 

Whether these signal parameters are related to v or Q is presently 

unclear. By considering the striking agreement in the behaviour of 

v and tg a in Figs. 1 and 2 respectively, at QR =7 mm3/s and at 

QB=5.5 mm3/s, we expect that tg a is probably closely related to 

the linear flow velocity. However, we should note that the heat pulse 

method generates signals that mainly reflect the water flow in the 

xylem elements or xylem vessel bundle near the sensor and thus changes 

in e.g. the effective cross-sectional area and Q are not necessarily 

reflected by these signals. 
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BRIEF COMMUNICATION 

7. [ 'H]SPIN-ECHO NUCLEAR MAGNETIC RESONANCE 

IN PLANT TISSUE 

I. THE EFFECT OF M N ( I I ) AND WATER CONTENT IN WHEAT LEAVES 

H. VAN As, W. P. A. VAN VLiET.t AND T. J. SCHAAFSMA, Department of 
Molecular Physics, Agricultural University, De Dreijen 6, 6700 EP 
Wageningen, The Netherlands 

ABSTRACT The effect of age-dependent Mn(II)-gradients, as observed by electron paramag­
netic resonance (EPR), on the ('H)NMR spin-spin relaxation time (7"2) was studied in wheat 
leaves. A non-exponential T2 spin-echo decay was always observed, revealing the presence of at 
least two different fractions of non- (or slowly) exchanging water in the leaves. No effect of the 
Mn(II)-concentration on T2 of the separate water fractions (covering -90% of the total water 
content) has been found. From these observations we conclude that Mn(ll) is present in bound 
form. The dependence of T2 on water content can be explained with a two-state model, 
demonstrating the occurrence of fast exchange within each of the two slowly exchanging water 
fractions. 

7 . 1 INTRODUCTION 

Proton-spin-latticc (7",) and Proton-spin-spin (T2) relaxation times have been widely used for 

the study of the physical properties of water in biological systems (1-4) and a relationship 

between 7",, T2 and water content has been demonstrated (1, 5, 6, 7). The interpretation of the 

results is complicated by the complexity of the specimen. The main difficulties arise from the 

fact that to the measured parameters (7",, T2) contributions may be made by factors not 

directly related to the physical properties of water. It is well-known, that plants contain 

Mn(II) and other paramagnetic metalions as a constituent of the photosynthctic unit (8). 

These paramagnetic centers may shorten the relaxation time of water protons, obscuring the 

correlation between Tu T2 and water content. 

Fedotov et al. (4) have shown that there is no, or only a small, effect of paramagnetic ions 

on 7", of water in intact tissues of bean and crinum leaves, nor is there one in potato tuber. 

Samuilov et al. (9), using the Overhauser effect have found no effect of paramagnetic ions in 

seeds of Welsh onions, peas, broad beans and sunflower. According to Hazlewood et al. (2) 

tH. van As and T. J. Schaafsma were deeply saddened by the death of W. P. A. van Vliet on July 5, 1980. 
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the relaxation mechanism in skeletal muscle is insignificantly affected by paramagnetic 

impurities. Stout et al. (10) suggest, however, that in ivy bark T2 of extracellular water is 

shortened by paramagnetic ions in the cell walls. In aqueous suspensions of chloroplasts 

Wydrzynski et al. (19) concluded that 7", and T2 are largely determined by manganese, bound 

in the chloroplast membrane. 

Here, we report the results of measurements on leaves of summer wheat, type SELTEP. 

Using EPR, we detected Mn(II)-gradients in the leaves, changing sign upon maturation. The 

effect of these gradients on the spin-spin relaxation time T2 of tissue water was investigated as 

a check on the correlation between T2 and water content. This research is part of a program 

aimed at the use of spin-echo N M R techniques to measure transport and exchange of water in 

plant stems (11, 18) and tissues. 

7 . 2 MATERIALS AND METHODS 

Plant Material 

Wheat variety SELTEP, was grown under a 16-h light (23°)/8-h dark (20°C) cycle. No special culture 
was used. Proton spin-spin relaxation measurements were carried out using leaves in different stages of 
maturation and at different positions in the plants. Leaves were cut transversally in ~2 cm sections for 
NMR and EPR measurements. EPR signal amplitudes were not affected by waiting periods of ~2 h 
after segmentation. 

EPR Measurements 

Room temperature EPR spectra were obtained using a Varian E-3 spectrometer (Varian Associates, 
Instrument Div., Palo Alto, Calif). Samples were contained in a quartz tube, 0.8 mm id., permitting 
reproducible sample positioning. Using standard precautions, the EPR signal amplitude of a 0.175 mM 
MnCL solution was reproducible within 3%. Instrument settings: 100 kHz modulation amplitude, 10 G; 
microwave power, 40 mW; time constant, 0.3 s; scan rate, 250 G/min. 

NMR Measurements 

The experiments were carried out with a home-built 15-MHz spin-echo spectrometer, equipped with a 
Newport 7-in electromagnet (Newport Laboratories, Inc., Santa Ana, Calif.) (11), a home-made 
transmitter/receiver coil of the solenoid-type, with a length of 5 mm and a diameter of 11 mm. The 
spin-spin relaxation time T2 was measured by the Carr-Purcell-Meiboom-Gill (CPMG) method (12). 
Because of the inhomogeneity and the size of the samples a time-dependent baseline ("baseline drift") 
must be expected (13, 14). A first order correction for this phonomena was made by the following pulse 
sequence: 

90? - T - ( - 180° - 2T)„ - 5T, - 9 0 ° , - r - ( - 1 8 0 ° - 2T)„ - 57V 

By substracting the two CPMG-decays, the effect of missettings in the 180° pulses was diminished. The 
CPMG T2 decay was measured by sampling the height of the echoes. The time 2T was set on 1.6 ms. A 
graphical method as outlined by Hazlewood et al. (2) was used to analyze the data. The error in T2 was 
evaluated at ±8%. All NMR experiments were made at probe temperature (29°C). 

Water Content 

Water content was determined by weighing freshly excised samples, drying until constant weight in an 
oven at 90°C, followed by reweighing. 

Manganese Determination 

The total manganese content in the wheat leaf segments was determined by atomic absorption 
spectroscopy. Measurements were made with a Perkin-Elmer HGA-74 type 460 atomic absorption 

BRIIJ COMMUNICATION 
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spectrophotometer (Perkin-Elmer Corp., Instrument Div., Norwalk, Conn.). Dried leaf segments were 
digested with 100 ̂ il concentrated HCI04 at = 150°C. Digested samples were evaporated and dissolved in 
100 /A concentrated HCI. The final volume was brought to 100 ml by adding distilled water. Standards 
at 0.02, 0.06, and 0.10 ppm Mn were prepared in an acidified water medium. 

7 .3 RESULTS AND DISCUSSION 

EPR signals are easily detected in wheat leaves. Two types of spectra can be discerned: (a) a 

sextuplet hyperfine structure, typical for Mn(ll), and (b) a weak peak close to the center of 

the manganese multiplet. 

Mn(II) ( p p m ) 

125 

0.5 1.0 
rel. leaf position 

FIGURE 1 Mn(ll) in ppm of dry matter vs. the position in the leaf. The relative position is defined as the 
ratio of the distance from the base of the leaf and the total leaf length. The results are given for three 
wheal leaves in different stages of maturation: (O) very young, not full-grown (eighth leaf of a total of 
eight, growth stage of the wheat, after the decimal code of Zadoks et al. (20, 17); (A) young, nearly 
full-grown (ninth of a total often, growth stage 19); ( • ) old, full-grown (sixth of a total often, growth 
stage 19). Mn(ll) is measured by EPR. 

VAN As ET At. / ' H/Spin-Echo NMR in Plant Tissue 
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Fig. 1 represents the results of Mn(II) EPR measurements for three wheat leaves in various 
stages of growth. For very young leaves the Mn(II) signal decreases from base to top; upon 
maturation this Mn(II) gradient reverses sign. 

We measured T2, Mn(II), and water content of wheat leaves at various positions between 
the base and the top of the leaf, using spin-echo NMR, EPR, and drying to constant weight, 
respectively (Fig. 2). Invariably, a nonexponential T2 decay was observed, indicating that 
there are several fractions of tissue water with distinguishable revalues. Because of the 
limited signal-to-noise ratio we have used two water fractions, constituting 90% of the total 
tissue water for data fitting. The resulting ^-values of the two fractions differ by a factor of 3. 
The ratio between the amplitudes of the slowest and the fastest relaxing water fractions varies 
from 1 to 2 for young vs. old leaves. Considerable scatter in the T2-values of the two separate 
fractions occurs due to a strong correlation between the fitting parameters (amplitudes and 
relaxation times). A mean effective relaxation rate R2 is defined by: 

R2 ~ PaT-2l + PbT-2l (1) 

Here Pa and Pb designate the two fractions of tissue water. In solution, R2 is linearly 
dependent on the Mn(II)-concentration, but such linear relationship does not obtain in either 
type of leaf (Fig. 2) for R2 of the separate fractions. 

In older leaves, the sign of the Mn(II) gradient is reversed compared with younger leaves 
(Fig. 1), but the dependence of the R2 curve on the position in the leaf does not change. 
Evidently, the effect of the Mn(II) gradient measured by EPR is not reflected in the R2 values 
of tissue water determined by NMR. This indicates that Mn(II) is present in bound form 
inaccessible to water on the timescale of our experiments. This is not in conflict with the fact 
Mn(ll) has been detected by EPR by Meirovitch and Poupko (15) and by other authors. 
Siderer et al. (16) have observed Mn(II) EPR signals in lettuce chloroplasts similar to our 
experimental results on intact tissue. Mn(II)-concentrations (Figs. 1 and 2) are calculated 
from the EPR spectra using aqueous MnCl2 solutions for calibration. Whether these Mn(II) 
signals in wheat leaves have the full possible intensity or only 9/35 of the total intensity (Ms = 
± 1/2 transitions) (15, 16) cannot be decided from the observed spectra. 

When all manganese is present as Mn(II) in a bound form, allowing the observation of only 
the - 1/2 z i 1/2 EPR transitions, the amount of manganese deduced from atomic absorption 
and EPR measurements should be in a ratio of ~4. We observed a ratio of ~8. However, 
manganese is not necessarily present as Mn(II). In dark-adapted chloroplasts Wydrzynski et 
al. (19) have found that only part of the bound manganese is present as Mn(II). 

Because Mn(ll) had no effect on the spin-spin relaxation time of >90% of the total water, 
we will now consider the relationship between T2 of the water protons and the total water 
content in the two fractions. Separate /?2-values for the two fractions indicate that 90% of the 
total water is present in two slowly exchanging fractions. For a model with two states a and b, 
slow exchange is defined by the condition: 

ra' + Tb> « (Tl) < - {T°2b)\ (2) 

neglecting the chemical shift difference between the two states; T„, rb are the lifetimes of water 
molecules in states a and b. and J?,,, T\b are the spin-spin relaxation times of water in the 
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FIGLRI: 2 Mn(II), percent of dry matter, and spin-spin relaxation rate R2 as function of the leaf position 
for the very young (a) and the young (b) wheat leaf of Tig. 1. Mn(ll) is measured by FiPR. The spin-spin 
relaxation rate is given as the weighted average. 

absence of exchange. The existence of fast exchange between two subfraclions within each 
fraction is indicated by the dependence of R2

 o n l n c dry matter/water ratio (Fig. 3). 
For a two-state, fast-exchange model (1, 17), the observed single relaxation rate R2 is the 

weighted average of the separate rates of two fractions consisting of "bound" and "free" 
water, yielding: 

K 2 (= T2') = T2}+ Ph(T2'h- r 2 » . (3) 

where subscripts b and/refer to "bound" and "free," respectively; Ph is the mole fraction of 
the "bound" fraction. The magnitude of Pb is proportional to the ratio between the tissue dry 
weight and the water weight, at least in the high water content region. Thus, in the two-state, 
fast-exchange model there is a linear dependence of R2 on the ratio between tissue dry weight 
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FIGURE 3 Proton relaxation rate R2 in the wheat leaves of Fig. 2 A (A) and B (O) as a function of water 
content. A nonexponential 7Vdccay was observed. The two fractions given here account for >907i of the 
tissue water. 

and water weight in the high water content region as experimentally observed for both 
separate R2a in wheat leaves (Fig. 3). 

Therefore, we conclude that >90% of the total water is present in two slowly exchanging 
fractions within which there are fast-exchanging subfractions. Since the relaxation rate of the 
separate fractions varies inversely with water content, in this system the water content may be 
measured using T2 values. This is not always possible (5) since variations of the exchange rate 
between different water fractions and of the dry matter structure may disturb the predicted 
linear dependence of R2 on the ratio dry tissue weight and water weight. 

CONCLUSIONS 

(a) Wheat leaf contains age-dependent Mn(II) gradients. Part of the manganese is observable 
by EPR. (b) The Mn(II)-concentration docs not affect the spin-spin relaxation time T2 of 
water fractions representing >90% of the total water content of the leaf, (c) From a and b we 
conclude that the measured Mn(II) is present in bound form, (d) >90% of the total water is 
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present in two fractions exhibiting slow exchange on the T2 timescale. Within these fractions 
there arc fast-exchanging subfractions. (e) The relaxation rate of these two separate fractions 
varies inversely with water content, in agreement with the predictions from a simple two-state 
fast-exchange model. 

We arc indebted to Mr. P. A. de Jager for general technical assistance and to Mr. R. M.J. Pennders of the Institute 
for Atomic Sciences in Agriculture for making available the atomic absorption spectrometer. Stimulating discussions 
with Mrs. \. van Leeuwen are gratefully acknowledged. 
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8 APPLICATION OF NMR FLOW MEASUREMENTS 

Based on the results reported in Chapters 4-7, we suggest for the 

combination of the pulsed NMR measurements of flow and water content 

the following applications in agriculture and in particular horti­

culture for use as: 

controling device for irrigation of cropfield and glasshouse 

cultures. 

warning device for development of stress phenomena due to drought, 

frost or diseases. 

monitoring device for screening in plant breeding experiments to 

select plants with low energy (low temperature) or low water re­

quirements . 

laboratory device for, e.g. study of the water balance in relation 

to the effects of environmental factors and study of the blocking 

phenomenon of water transport in cut-flowers, relevant to tenab-

ility. 

In all these cases the water flow in the stem xylem vessels can serve 

as a parameter for characterizing the water uptake, transport and 

storage (fructification). 

The results discussed in Chapters 4-7 have been obtained with a 

home-built NMR spectrometer, operating at 15 MHz, and equipped with 

an air-cooled electromagnet with a square yoke (total weight ± 200 kg) 

and either a single solenoid or Helmholtz r.f. coil. The working 

dimensions determined by magnet and coil dimensions permit the use 

of objects with ̂  15 mm cross-section. 

In view of the applications suggested above, a more practical NMR 

instrument should be: 

- portable for horticulture and field applications. This can be 

achieved by using small permanent magnets (e.g. [1]), keeping 

in mind, however, that the water protons must be able to have 

reached Boltzmann equilibrium before entering the r.f. coil 

(Section 4.5.2.1). For parameter settings see Section 4.5.3. 
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able to measure T2 as well as flow velocities. This requires two 

different trains of pulses, which only differ in the first pulse, 

able to compensate for drift. This can be achieved by making use 

of the response of the off-resonance signal of stationary water 

(Section 4.5.2.2). 

The method has some distinct advantages also in medical appli­

cations, in comparison with existing NMR methods measuring blood-

circulation (see Section 3.5.1 and 3.5.2). The main advantage is 

that the method is insensitive for a large amount of stationary 

tissue water. Preliminary results of steady-state measurements in 

fingers of adults have shown the following results: 

the method is sensitive enough to measure the effect of the two-

chamber heart contraction in the profile of the NMR signal (see 

Fig. 1). 
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Fig. 1 NMR signal of pulsed blood flow in finger of adult during the first seconds 

after starting a (n-x) pulse-train. Note structure of heart-beat signal 

and the shape of the back-ground curve, which is similar to that of steady-

state flow. (See e.g. Fig. 5, Chapter 5). This signal may also be due to 

stationary water in finger-tissue, observed off-resonance (Section 4.5.2.2). 
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Fig. 2 A Steady state *H pulsed NMR signals of blood flowing through index 

finger of adult, obtained by a pulse sequence of equidistant n pulses 

in combination with a linear magnetic gradient in the direction of 

flow. Time t=0 coincides with the n pulse, where n>4000. 

B Same signal after 10 times knee-flexing. The DC-level changes sign 

due to change in net flow and/or blood oxygenation. 

C Same signal as in B after \ \ min. resting period. 
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as shown in Fig. 2, both heart-beat frequency, net flow and flow 

during a heart-cycle can be measured. Changes in net flow and/or 

blood oxygenation cause an off-set in DC-level, observed when 

comparing Fig. 2A and B. 

since oxygenation results in changes in T2 of blood [2], which 

in its turn affects the steady state level of the flowing fluid 

signal, effects of e.g. breathing and smoking have easily been 

detected. 

since the T2 of the fluid is strongly related to the vessel radius, 

physiological processes resulting in a change of R will be detect­

able. This applies to defects in the blood circulation system. 

In addition, the pulsed NMR method to measure flow as used in this 

Thesis [3] can easily be combined with the "sensitive-line" imaging 

method [4] to measure spatially resolved flow patterns in various 

objects. 

Obviously, for medical applications, the NMR method would be of 

considerably more interest if the instrument would permit the use 

of objects with large diameters. Preferably the magnet gap should 

admit legs and arms. This does not seem to prevent application in 

the medical field, since instruments would be laboratory-bound. 
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SUMMARY 

This Thesis describes the application of a non-destructive pulsed 

proton NMR method mainly to measure water transport in the xylem 

vessels of plant stems and in some model systems. The results are 

equally well applicable to liquid flow in other biological objects 

than plants, e.g. flow of blood and other body fluids in human and 

animals (Chapter 8). The method is based on a pulse sequence of 

equidistant n pulses in combination with a linear magnetic field 

gradient G. 

Following a general introduction and a survey of the properties 

of water in plants (Chapters 1 and 2), the basic NMR theory as well 

as reviews on the application of pulsed NMR to the determination of 

flow, diffusion and water content are presented in Chapter 3. 

A mathematical treatment has produced analytical expressions for 

the shape of the signal S(t), based on a model in which the flowing 

fluid is thought to receive a Hn-T-(n-x-) pulse train: a Vi pulse 

upon entering the r.f. coil followed by a sequence of equidistant n 

pulses until the fluid leaves the coil; simultaneously, this movement 

of the fluid along a magnetic field gradient applied in the direction 

of flow produces a phase shift of the nuclear magnetization with 

respect to the rotating frame of reference (Chapter 4). Although 

this model does not lead to perfect agreement between the experimental 

and theoretical signal shape S(t), it correctly predicts the effects 

of experimental parameters on S(t) via analytical expressions. The 

main results from this theoretical treatment in combination with 

computer simulations, which have been experimentally verified in 

glass capillary systems, are: 

as long as T2^HT1( the mean linear flow velocity v can be found 

from the time t at which a maximum appears in the signal shape: 

v=C/t , where C is a calibration constant, depending on G, T 
Ifl 3.X 

and the flow profile. If T2<%T1 v can only be reliably determined 

when both Ti and T2 of the flowing fluid are known. 

- T2 and the amount of flowing water in the coil V, and consequently 

the volume flowrate Q, can be determined from the height of the 

maximum S(t ) and t „. Depending on the value of T2 and the 
ITlclX IRciX 

value of the ratio T!/T2, T2 and V are found from a semilog plot 
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of either S(tmax) vs. t m a x (T l»T2) or 3 [S(tmax) .tmax]/3tmax vs. 

Snax < T ^ > -

Based on flow measurements in plant stem segments (Chapter 5) it 

has been suggested that T2 strongly depends on the vessel diameter 

for the narrow xylem capillaries. This behaviour of T2 can explain 

negative results in plant stems with small vessel diameter. Under 

the present experimental conditions the method has been successfully 

applied to Cucurbitaceae (cucumber, gherkin, pumpkin) and tomato 

plants. 

T2 measurements in wheat leaves have been shown to be insensitive 

to the presence of cell-bound paramagnetic ions (Chapter 7). The 

magnitude of T2 of two separate water fractions (covering ~90% of 

the total water content) has been found to be inversely proportional 

to water content. Measurements of flow and water content have been 

combined for an intact gherkin plant (Chapter 5), demonstrating that 

the combination of both NMR methods results in a powerful non-invasive 

method to study important parts of the plant water balance simul­

taneously. The results strongly suggest that the method can be used 

as an early warning for development of stress phenomena in plants, 

due to drought and other factors. From the flow measurements it has 

been shown how in a plant system the values of T2 and Tx of the water 

in the xylem vessels can be determined and estimated, respectively. 

A comparison between the results obtained with NMR, heat pulse 

and weight balance flow measurements is presented in Chapter 6. A 

linear relationship between the linear flow velocity obtained by 

NMR and the volume flowrate determined by the balance method yields 

an effective cross-sectional area available for flow of ~50% of the 

cross-sectional area of the xylem vessels measured by using a micros­

cope. NMR measurements alone yield a slightly lower value of the 

effective cross-sectional area. Compared with the NMR method, the 

heat pulse method monitors only relative changes in the flow velocity. 

A plot of the flow velocity obtained by the heat pulse method versus 

the volume flowrate obtained by the balance method exhibits some 

unwanted experimental scatter. 

Chapter 8 suggests some applications of the pulsed NMR flow method, 

also to other systems than plants, and defines important instrumental 

requirements for these applications. 
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SAMENVATTING 

In dit proefschrift wordt een niet-destructieve proton puis NMR-

methode beschreven, voor de meting van met name het watertransport 

in het xyleem van plantestengels en in modelsystemen van een plant. 

De methode is even goed toe te passen op de meting van vloeistof-

stroming in andere biologische systemen dan planten, b.v. stroming 

van bloed en andere lichaams-vloeistoffen in mens en dier (hoofdstuk 8) 

De methode is gebaseerd op een pulstrein van equidistante n pulsen 

in combinatie met een lineaire magneetveldgradient G in de stroom-

richting. 

Na een algemene inleiding (hoofdstuk 1) en een overzicht van de 

fysisch-chemische eigenschappen van water in planten (hoofdstuk 2) 

wordt in hoofdstuk 3 de theorie van puis NMR behandeld. Dit hoofdstuk 

bevat tevens een bespreking van de tot nu toe bekende puis NMR-

methoden om stroming, diffusie en watergehalte in biologische systemen 

te meten. 

Analytische uitdrukkingen voor de vorm van het NMR signaal S(t) 

werden verkregen uitgaande van een model waarin de stromende vloeistof 

de pulstrein ^n-x-(n-x-) ondervindt, zodanig dat de vloeistof een 

Vi puis ondervindt op het moment dat het de r.f. spoel instroomt, 

gevolgd door een reeks n pulsen totdat de vloeistof de spoel verlaat; 

gelijktijdig heeft de stroming van de vloeistof in de richting van 

de magnetische veldgradient tot gevolg dat er een fase verschuiving 

ontstaat van de magnetisatie ten opzichte van het roterend assen-

stelsel (hoofdstuk 4). Hoewel dit model niet tot volmaakte overeen-

stemming leidt tussen de experimentele en theoretische vorm van de 

signalen S(t), voorspellen de analytische uitdrukkingen wel goed de 

effecten van de experimentele parameters op S(t). De voornaamste 

resultaten, die ook experimenteel in glascapillair systemen zijn 

geverifieerd, uit deze theoretische behandeling in combinatie met 

computersimulaties zijn: 

zolang T2SST! kan de gemiddelde lineaire stroomsnelheid gevonden 

worden uit t x, de tijd waarop het signaal een maximum bereikt, 

via v=C/t , met C een calibratieconstante die van G, T en het 

stromingsprofiel afhangt. Indien T2<
1-jTi kan v alleen betrouwbaar 
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bepaald worden als zowel Ti als T2 van het stromende water bekend 

zijn. 

T2 en de hoeveelheid stromend water in de spoel V, en dus ook de 

volumesnelheid Q, worden gevonden uit de hoogte van het maximum, 

S(tm^v), en t „ _ . Afhankelijk van de waarde van zowel T2 als de 

verhouding T1/T2, worden T2 en V gevonden door middel van een 

semilogarithmische grafiek van of S(t ) tegen t m = v (T!>>T2) of 

Gebaseerd op stromingsmetingen in segmenten van pianteStengels 

is verondersteld dat de waarde van T2 van het stromende water sterk 

afhankelijk is van de diameter van de xyleemvaten (hoofdstuk 5). 

Deze afhankelijkheid kan een verklaring zijn voor de negatieve 

resultaten die in stengelsegmenten met kleine vatdiameter zijn ge­

vonden. Onder de huidige experimentele gegevens is de methode tot 

nu toe met succes toegepast in Cucurbitaceae (komkommer, augurk, 

pompoen) en tomatenplanten. 

In het blad van tarweplanten is gevonden dat de T2 van het eel-

water onafhankelijk is van celgebonden paramagnetische ionen (hoofd­

stuk 7). Voor twee afzonderlijke waterfracties (±90% van het totale 

watergehalte vertegenwoordigend) is gevonden dat de waarde van T2 

omgekeerd evenredig is met het watergehalte. Dit stelt ons in staat 

om niet-destructief veranderingen in het watergehalte te volgen. 

Metingen van stroming en watergehalte m.b.v. twee verschillende puls-

treinen zijn aan eenzelfde intacte plant (augurk) uitgevoerd (hoofd­

stuk 5). Uit de resultaten van deze metingen blijkt dat de combinatie 

van deze twee NMR methoden veelbelovende perspectieven biedt om 

belangrijke onderdelen van de waterbalans van een plant gelijktijdig 

te bestuderen op een wijze die de plant niet beinvloedt. Er zijn 

bovendien sterke aanwijzingen dat de methode gebruikt kan worden om 

het ontstaan van stress situaties - b.v. ten gevolge van droogte of 

andere factoren - in de plant vroegtijdig te signaleren. Met behulp 

van deze stromingsmetingen wordt tevens aangetoond hoe de waarden 

van T2 en Tx van het xyleem water in een plant respectievelijk kunnen 

worden bepaald en afgeschat. 

In hoofdstuk 6 worden de resultaten van stromingsmetingen verkregen 

met NMR-, warmtepuls- en balansmethoden vergeleken. Van het lineaire 

verband tussen de lineaire stroomsnelheid (bepaald met behulp van 

NMR) en de volumesnelheid (verkregen met behulp van de balansmethode) 
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werd het effectieve oppervlak van de dwarsdoorsnede, dat beschikbaar 

is voor stroming, bepaald. Dit oppervlak bleek ~50% te zijn van het 

oppervlak van de xyleem vaten gezamenlijk zoals gemeten met een 

raicroscoop. De NMR resultaten alleen leverden een iets lagere waarde 

op voor de effectieve dwarsdoorsnede van de vaten. In tegenstelling 

tot de NMR methode meet de warmtepuls methode alleen relatieve ver-

anderingen in de stroomsnelheid. Een grafiek van de stroomsnelheids-

veranderingen gemeten met de warmtepuls methode uitgezet tegen de 

volume snelheid verkregen m.b.v. de balansmethode, vertoont een on-

verwachte sterke mate van spreiding van de experimentele meetresul-

taten. 

Hoofdstuk 8 bevat een opsomming van enige mogelijke toepassingen 

van de puis NMR-methode, zowel in de land- en tuinbouw als in de 

medische sfeer. Tevens worden in dit hoofdstuk een aantal belang-

rijke instrumentele eisen voor deze toepassingen geformuleerd. 
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