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1. De teraperatuurfl'uctuatiemethode voor het bepalen van de voelbare 

warmtestroom is geschikt voor operationele toepassingen. 

Dit proefschrift. 

2. Het gedrag van de Priestley-Taylor parameter a Iran goed warden be-

schreven met een eenvoudig grenslaag/oppervlaktelaagmodel. 

Dit proefschrift. 

3. Een grenslaag/trajectori'&imodel heeft als voordeel dat de verticale 

gradienten van de luchttemperatuur en vochtigheid goed kunnen worden 

beschreven. Dit is met name van belang voor verwachtingen op korte 

termijn van bewolking. 

h. Het is zinvol op een meteorologisch station de standaarddeviatie van 

de horizontale windsnelheid te bepalen, daar deze een directe maat 

is voor de schuifspanning. 

5. In de zomer kan de verdamping van een meer redelijk nauwkeurig worden 

geschat uit de 2e term van de Penmanformule. 

H.A.R. de Bruin, J. Appl. Meteor., 17 (1978), 1132-113^. 
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Samenvattlng 

Deze studie handelt over de verschillende componenten van de 

energiebalans van het aardoppervlak, waarbij het accent op praktische 

toepasslngen ligt. 

Het meest eenvoudige beeld van de energiehulshoudlng van het aard

oppervlak is het volgende. Per seconde en per vierkante meter ont-

vangt het oppervlak een netto hoeveelheid strallngsenergie. Deze wordt 

voor een gedeelte door de zon geleverd; een ander deel is afkomstig van de 

atmosfeer (= infrarode straling afkomstig van wolken, waterdamp en COp)• 

Deze "wins'tposten" moeten worden verminderd met de volgende "verliezen": 

(a) de door het oppervlak teruggekaatste straling en (b) de infrarode 

straling, die door het oppervlak zelf wordt uitgezonden. Uiteindelijk 

houden we een netto hoeveelheid stralingsenergie over, die aan het aard

oppervlak ten goede komt. Deze wordt kortweg nettostraling genoemd. Aan 

het aardoppervlak wordt de nettostraling verdeeld in drie porties. Een 

portie wordt gebruikt om de bodem op te warmen (= de bodemwanntestroom). 

Een tweede gedeelte wordt gebruikt om water te verdampen, dat meestal 

aanwezig is aan het oppervlak (= de verdamping). Tenslotte wordt een ge

deelte van de nettostraling gebruikt om de atmosfeer van onderen af op te 

warmen (= voelbare warmtestroom). 

In dit eenvoudige beeld zijn kleine termen verwaarloosd, zoals bijvoor-

beeld de energie die de planten gebruiken voor fotosynthese. 

Omdat water een hoge verdampingswarmte heeft is de verdamping vaak een 

belangrijke post op de energiebalans. Via de verdamping is de energie

balans gekoppeld aan de waterbalans van zowel de atmosfeer als het oppervlak. 

Vanuit verschillende vakgebieden is men gelnteresseerd in de energiebalans 

van het aardoppervlak. Voorbeelden zijn de landbouw, de hydrologie en de 

meteorologie. 

In de hydrologie heeft men belangstelling voor de gemiddelde verdamping 

op regionale schaal gemiddeld per dag of langer. Dit betreft in de meeste 

gevallen landoppervlakken, maar men is ook gelnteresseerd in de verdamping 

van meren en spaarbekkens. In dit verband kan de problematiek ten aanzien 

van thermische verontreiniging van oppervlaktewater worden genoemd. De In

dustrie en energiecentrales gebruiken oppervlaktewater voor koeling. Hier-
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door wordt het water kunstmatig opgewarmd. Een te hoge temperatuur is 

schadelijk voor de kwaliteit van het water. Om de temperatuursverhoging 

ten gevolge van kunstmatige opwarming te kunnen bepalen moet men de 

zogenaamde natuurlijke mtertemperatuur berekenen. Dit is de tempera

tuur, die het water zou hebben bij afwezigheid van de kunstmatige op-

warming. Het blijkt dat de natuurlijke watertemperatuur nauw samenhangt 

met de energiebalans aan het oppervlak. In hoofdstuk VI wordt een model 

behandeld, waarmee de energiebalans en de (natuurlijke) temperatuur van 

wateroppervlakken kunnen worden bepaald uit standaard weergegevens. 

Ook in de landbouw is men gelnteresseerd in de verdamping. Zo wil 

men weten hoelang het duurt voordat een van buiten nat gewas opdroogt. 

Verder bestaat er voor veel landbouwgewassen een verband tussen het 

waterverbruik van het gewas en de opbrengst. De opbrengst is maximaal, 

wanneer de verdamping potentieel is (= maximaal verder de gegeven weers-

omstandigheden). Verdampt het gewas niet potentieel, omdat de bodem te 

droog is, dan kan men de opbrengst vergroten door kunstmatige beregening 

toe te passen. 

Voor dit soort van vraagstukken zijn eenvoudige meettechnieken nodig 

am de verdamping te kunnen meten. In hoofdstuk II wordt hier aandacht 

aan besteed. 

Ontwikkelingen in de meteorologie van de laatste tien jaar hebben de 

belangstelling voor de energiebalans van het aardoppervlak vanuit dit 

vakgebied doen toenemen. Het blijkt dat in weersverwachtingsmodellen 

voor zowel korte (12-^f uur) als voor middellange (3-10 dagen) termijn 

de energieuitwisselingsprocessen aan de grond moeten worden beschreven. 

Dit betekent dat voor dit soort van toepassingen de energiebalans moet 

worden uitgedrukt in voorspelbare weergrootheden. Een dergelijk model 

(voor overdag) wordt in hoofdstuk III behandeld. 

In de (micro)meteorologie bestaat belangstelling voor de atmosferische 

grenslaag. Dit is de onderste laag van de atmosfeer die direct door het 

aardoppervlak wordt beinvloedt. 

De dikte van deze laag varieert in de tijd. Na zonsopgang neemt deze 

dikte toe. De snelheid, waarmee dit gebeurt, hangt nauw samen met de hoe-



veelheid warmte die aan de grond In de atmosfeer wordt gebracht en 

dus met de energiebalans aan de grond. In hoofdstuk IV wordt deze 

samenhang beschreven, alsmede hoe de temperatuur en vochttoestand van 

de grenslaag afhangen van de energiebalans. Dit laatste is bijvoorbeeld 

van belang voor korte termijnverwachtingen van temperatuur en vocht. 

De grenslaag is ongeveer de laag waarover luchtverontreiniging wordt 

verspreid. Is de grenslaag dik dan is de concentratie aan de grond 

van luchtverontreiniging relatief laag; is de grenslaag dun dan is daar-

entegen de grondconcentratie, en dus de overlast,hoog. Qmdat de grens-

laaghoogte samenhangt met de voelbare warmtestroom, speelt ook in lucht-

verontreinigingsvraagstukken de energiebalans van het aardoppervlak een 

rol. 

In het algemeen kan men slechts beschikken over gegevens die op een 

standaard weerstation operationeel worden verzameld. Daarom komen veel 

praktische vragen neer op: "Hoe kan de energiebalans van het aardopper

vlak worden bepaald uit standaard weergegevens?". In de hoofdstukken III 

en VI worden hier voor mogelijke oplossingen gegeven. 

We zullen nu de verschillende hoofdstukken apart beschouwen. 

Hoofdstuk II handelt over eenvoudige meetmethoden voor het bepalen van 

de verdamping en van de voelbare warmtestroom op routine basis. Deze wor

den vergeleken met een ingewikkelder techniek (de Bowen-verhouding metho-

de), die algemeen als betrouwbaar wordt beschouwd. 

Als eerste wordt de flux-profiel methode behandeld. Het blijkt dat deze 

voldoende nauwkeurige resultaten oplevert. Vereist worden metingen van 

de temperatuur op twee hoogten en van de windsnelheid op tenminste een 

niveau. Voor de verdamping is verder nog een meting (of schatting) van 

de nettostraling nodig. 

Verder blijkt uit het onderzoek, dat in niet te droge gevallen, de be-

kende Penman formule ook goede schattingen van de etmaalgemiddelde ver

damping oplevert. Een voorstel wordt gedaan om de profiel methode te com-

bineren met de Penman formule. 

Een nadeel van de profiel methode is dat nogal veel rekenwerk moet 

worden verricht, waarvoor een computer nodig is. Dit is een beperking als 

het om routine metingen gaat. Daarom hebben wij gezocht naar vereenvoudigde 
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berekeningswijzen. Deze worden in hoofdstuk II.3 behandeld. Met deze 

eenvoudige berekeningswijzen is het mogelijk de verdamping en de voel-

bare warmtestroom ter plaatse te bepalen uit de meetgegevens, bijvoor-

beeld met een microprocessor. 

Als tweede wordt in hoofdstuk II de temperatuurfluctuatiemethode 

behandeld. Deze is gebaseerd op het verband dat er bestaat tussen de 

intensiteit van de temperatuurfluctuaties en de voelbare warmtestroom 

(overdag). Dus uit de eerste kan men de tweede bepalen. Het gaat hier 

om snelle temperatuursveranderingen (binnen een seconde kan de lucht-

temperatuur op een bepaalde plaats enkele graden veranderen). De me-

thode vereist daarom een kleine, snel reagerende thermometer. De me-

thode levert zeer bemoedigende resultaten op. Het grote voordeel van 

de methode is dat slechts op een hoogte behoeft te worden gemeten. 

Zowel de profiel- als de fluctuatiemethode zijn geschikt om te wor

den toegepast op een standaard weerstation, waarbij de laatste methode 

wellicht de voorkeur verdient. Op zo'n station zou dan in de toekomst 

de voelbare warmtestroom en de verdamping kunnen worden gemeten op 

operationele basis. 

In hoofdstuk III worden twee modellen voor de verdamping en de voelbare 

warmtestroom met elkaar vergeleken. Beide hebben standaard weergegevens 

als invoer en een indicatie van de vochttoestand in de bodem. Het ene 

model bevat meer fysica, maar eist meer invoergegevens, terwijl het ande-

re weinig fysica bevat, maar minder invoergegevens behoeft. Het blijkt 

dat beide modellen vergelijkbare resultaten opleveren. Voor sommige prak-

tische toepassingen verdient daarom het eenvoudige model de voorkeur. 

Voor dit vergelijkend onderzoek werden micrometeorologische gegevens, 

verzameld te Cabauw, geanalyseerd. 

Hoofdstuk IV is een beetje een buiteribeentje, omdat het een meer theore-

tisch karakter heeft. Hierin wordt een, door ons ontwikkeld, model gepre-

senteerd, waarmee onder andere de resultaten van hoofdstuk III kunnen 

worden verklaard. Het gaat om een gekoppeld grenslaag-energiebalans model. 

Het beschrijft het verloop overdag van de hoogte, de temperatuur en de 

vochtigheid van de grenslaag, alsmede de termen van de energiebalans, als 

de beginprofielen van temperatuur en specifieke vochtigheid bekend zijn 
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tezamen met de zonnestrallng en de vochttoestand aan het aardoppervlak. 

Modeluitkomsten kanen redelijk overeen met metingen. 

De hoofdstukken V en VI handelen over wateroppervlakken. In hoofdstuk V 

wordt een empirisch verdamplngsmodel (dat ook in hoofdstuk III wordt 

toegepast voor land) getoetst met hydrologische en meteorologische waar-

nemingen verricht boven het voormalige Flevomeer. Het model hlljkt in 

de zomer goed te voldoen voor dagsommen. Echter, afwijkingen worden ge-

vonden in het voor- en najaar en ook als het gaat om tijdsintervallen 

van 3 uur. 

In hoofdstuk VI tenslotte wordt een model behandeld, waarmee de gemid-

delde temperatuur en energiebalans van een meer kunnen worden berekend 

uit standaardweergegevens. De berekende en gemeten watertemperatuur van 

twee, vlak bij elkaar gelegen, waterreservoirs worden met elkaar verge-

leken. Deze waterbekkens zijn ongeveer even groot, maar ze verschillen 

aanzienlijk in diepte (5 en 15 m ) . Dit is van belang, want de waterdiepte 

bepaalt mede de watertemperatuur. 

De resultaten van de vergelijkingen, die enkele jaren betreffen, zijn 

bevredigend. 



1.1 

I. Introduction 

1. Purpose and background. 

This study is devoted to the energy balance of the earth's surface 

with a special emphasis on practical applications. A simple picture of 

the energy exchange processes that take place at the ground is the 

following. Per unit time and area an amount of radiant energy is supplied 

to the surface. This radiation originates partly from the sun, but an

other fraction is coming from the atmosphere (= infra-red radiation 

emitted by clouds, water vapour and C0 2 ). From these gain terms the 

following losses must be subtracted: (a) the reflected solar radiation 

and (b) the infra-red radiation emitted by the surface itself. The final 

result is that a net amount of radiant energy is received by the surface, 

simply denoted as net radiation. At the ground net radiation is used to 

heat the ground (soil heat flux), to evaporate liquid water (evaporation), 

and to heat the atmosphere (sensible heat flux). In this simple picture 

we have neglected minor terms such as the energy used by the plants for 

their photosynthesis. 

Due to the high value of the latent heat of vaporization, the energy needed 

for evaporation is often an important term in the energy balance. In ad

dition the energy balance of the earth's surface is linked with the water 

budget of both the atmosphere and the earth's surface, through the eva

poration at the ground. 

Several practical questions in agriculture, hydrology and meteorology re

quire information on the energy balance of the surface. It is the purpose 

of this study to find solutions for some of these problems. 

In hydrology one is mainly concerned in evaporation averaged over 1 day or 

more on a regional scale. Generally, this refers to land surfaces, but the 

evaporation of inland lakes or reservoirs is also of interest. In this con

text we also mention the problem of thermal pollution of open water bodies 

by industry or power plants. For this the so-called natural water tempera

ture must be known, which is the temperature of the water in the hypothe

tical case that there is no artificial heating. It appears that this tem

perature depends mainly on the energy balance at the surface. In Chapter 

VI a model dealing with this problem is discussed. 
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In agriculture one is interested also in evaporation. Now time intervals 

ranging from half an hour to several days are of interest. 

The relation between evaporation on the one side and plant diseases and 

pest control on the other can be mentioned. 

Furthermore, the yield of several agricultural crops is the greatest 

when the evapotranspiration is potential (= a maximum under the given 

weather conditions). When the crop transpires less than the potential 

rate, because the soil is too dry, the yield can be augmented by arti

ficial precipitation. For applications such as these cheap and simple 

techniques are required for measuring the actual and potential 

evaporation. This applies also to agricultural research projects, e.g. to 

determine yield-water use relationships. 

In Chapter II simple measurement techniques are considered. 

Recent developments in meteorology have led to an increase of the interest 

in the energy balance of the earth's surface, especially in the input of 

heat and humidity at ground level into the atmosphere. Examples are mo

dels for the atmospheric boundary layer and related models for short range 

weather forecasts (12-18 h ahead). These models require simple parameteri-

zations of the surface fluxes. This applies also to weather forecast mo

dels on a medium time range (3-10 days ahead). 

Since the height of the boundary layer is related to the heat input at the 

ground information on the surface energy balance is needed also for air 

pollution problems. 

In Chapter III a simple parameterization for evaporation and sensible heat 

flux is described that can be used for these type of problems. 

Usually, the only available data are standard weather observations. For 

that reason, many of the practical questions, mentioned above, can be for

mulated as: "How can the surface energy balance be estimated from standard 

weather data only?" In Chapters III and VI possible answers to that question 

are discussed. 

Chapter II is devoted to simple measuring techniques that, in principle, 

can be used on an operational base. These methods will be compared with the 

so-called energy-balance method, using Bowen's ratio. 
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In Chapter III two models for evaporation and sensible heat flux 

during daytime are compared. Both require standard weather data 

as input and an indication of the surface wetness. The first mo

del needs more data, but contains more physics. The second is less 

complete, but requires less input data. 

Chapter IV has a mainly theoretical character. A model is presented 

that couples the evolution of the atmospheric boundary layer to the sur

face energy balance. It describes the course of the height, tempera

ture and humidity of the boundary layer, together with the surface 

fluxes, when the initial profiles of temperature and humidity the 

radiative forcing and the surface wetness are known. It is restricted 

to convective conditions. Model output will be compared with obser

vations . 

In Chapter V an empirical evaporation model for open water is con

sidered. Comparisons with observations of evaporation of the former 

Lake FLevo will be made; the annual and the diurnal cycle will be 

considered. 

In Chapter VI a model for the (natural) temperature and energy ba

lance of inland lakes and water reservoirs is discussed that requires 

standard weather data only. A comparison between the calculated and 

measured water temperature will be given. This concerns two adjacent 

water reservoirs, which have about the same size, but which differ in 

depth (5 and 15 m ) . This is of importance, since the water tempera

ture also depends on water depth. 

At some places we made new modifications, but most of the theoretical 

concepts applied in this study are adopted from literature. This is 

inherent in our practical approach. Some of the theories used have 

been available for many years. But, e.g. because no suitable instru

ments were available, they were not usefull for practical applications. 

Recent developments in the field of Instrumentation and data handling 

have changed the situation to our advantage. A good example is the 

temperature fluctuation method for measuring the sensible heat flux 
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(discussed in II . h). The theoretical basis for this approach was given 

by Prandtl already in 1932. But for an experimental verification we had 

to wait until the sixties and early seventies. In that period instru

ments were developed to measure turbulent surface fluxes and fast tem

perature fluctuations, while also the data handling techniques were im

proved significantly. Finally, the method wouldn't be operationally un

til quite recently. 

For the verification of the parameterizations, measuring techniques and 

models treated in this study, we used data collected at the 200 m mast 

at Cabauw, and at the nearby micro-meteorological field, of the Royal 

Netherlands Meteorological Institute. 

2. Editorial comments. 

Except Chapters I and II this dissertation consists of parts that 

are published or submitted as individual journal papers. Unfortunately, 

it was not possible to keep the notation uniform. For that reason a list 

of symbols is added to each chapter. Each chapter also has its individual 

numbering of pages, figures and equations. The reader is cautioned that 

in some chapters the water vapor pressure e is used as moisture variable, 

while in others the specific humidity q is taken. This has consequences 

for the value and definition of related quantities, such as the psychro-

metric constant y and the parameters describing saturated air. 
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II. Simple methods for the measurements of the surface 

fluxes of sensible heat and water vapor. 

Abstract 

The aim of this study is to investigate methods for the determination 

of the sensible heat flux density H and the evaporation E, which are 

applicable for routine, operational use. The first part is devoted to 

the standard flux profile method, with which H can be evaluated from 

observations of temperature (at 2 levels) and wind speed (at 1 or 2 

levels). A comparison is made with the energy-balance method, using 

Bowen's ratio. The agreement appears to be acceptable, especially 

during daytime. Reliable estimates of daily evaporation are obtained 

from H, determined with the flux profile method, and additional obser

vations of net radiation. A procedure is proposed to combine this 

approach with the Penman equation. The use of the latter must be pre

ferred in rainy periods. In the second part simplifications of the 

standard flux profile method are presented. With these the data 

handling becomes so simple that the fluxes can be evaluated on the 

site with a microprocessor. Finally, the temperature fluctuation method 

is considered. This method is based on the fact that during daytime H is 

determined by the standard deviation of the temperature. It is concluded 

that this approach is very attractive for operational use. 
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List of symbols 

zx1 
a = — , x = m o r h (.) 
^ zx2 

-1 -1 

c specific heat of air at constant pressure (J.kg .K ) 

g accelaration of gravity (m.s ) 

h* dimensionless heat flux (-) 

h * value of h in free convection regime (-) 

h * free convection constant (-) 
a 

k von Karman constant 

n 
Px 
q 

length of daytime (h) 
empirical parameter (Fig. 10); x = m o r h (-) 
specific humidity (kg .kg" ) 
humidity scale (kg.kg" ) 

s slope of saturation spec. hum. - temp, curve (K ) 
u horizontal wind speed (m.s ) 
u* friction velocity (m.s ) 
w vertical wind speed (m.s ) 

( 1 - 1 6 Z / L ) 1 A (-) 

height (m) 

roughness length (m) 

level at which wind (x = m or u) (m) 

or temperature (x = h) is observed 

„ * Zx1 " zx2 f v 
zx* OnCajT (m) 

B the Bowen ratio (-) 
C., Cp, CL constants (-) 
F defined by eq. (39); x = m or h (-) 
G soil heat flux density (W.m ) 
H sensible heat flux density (W.m ) 
H^ value of H in the free convection regime (W.m ) 
HQ value of H when ̂ m = ij>h are taken zero (eq. 37) (W.m~2) 
L Obukhov length (m) 
L, defined by eq. (38) 

x 
z 
z„ 
zx 
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Q* net radiation (W.nf ) 

Ri Richardson number (-) 
T absolute air temperature (K) 
T wet-bulb temperature (K) 

Y = cp/X (K_1) 
6e saturation deficit (mb) 
9 potential temperature (K) 

6* temperature scale (K) 

X latent heat of vaporization (J.kg" ) 

p air density (kg.m-^) 
Om standard deviation of the temperature (K) 

-2 
T shearing stress (N.m ) 
<|> stability function for heat (x=h), water (-) 

.A. 

vapor (x=e) or momentum (x=m) 
\pv idem, but in integrated flux - profile relations (-) 

•A. 

A9, A u ' \ ve r t ica l difference of 9, u, T and T, 
AT, w 

AT w 
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1. Introduction 

Many practical problems in meteorology, agriculture and hydrology 

require simple techniques to measure the sensible heat flux and 

evaporation from cropped surfaces. In meteorology one is mainly in

terested in the diurnal variation of these fluxes and therefore in 

this branch (half-) hourly values are required. On the other hand in 

hydrology the emphasis lays mainly on evapo(transpi)ration averaged 

over one day or longer. For agricultural purposes both half-hourly 

and daily values are of interest. In all application fields routine 

measurements are needed. 

The requirements for the methods are: 

(i) the instruments must be robust so that they can withstand most 

weather situations and do not need complicated servicing, 

(ii) the datahandling must be so simple that the surface fluxes can 

be calculated from the observations on the spot, e.g. with a 

pocket calculator or a microprocessor. 

In this study two methods will be considered that satisfy these re

quirements in principle, namely: 

(a) a simplified flux-profile method, 

(b) the temperature-fluctuation method. 

Both techniques are based on the similarity theory of MDnin and 

Obukhov (195*0. Generally the governing equations of the methods have 

no analytic solution; they can only be solved with an iterative com

putation scheme for which a computer is indispensible. This does not 

satisfy the second requirement mentioned above. A large part of this 

study is devoted to approximative techniques that generate solutions 

that are accurate enough for practical calculations. 

The reliability of the methods will be investigated by making compa

risons with fluxes measured at Cabauw with the energy-balance method, 

using Bowen's ratio. 

In section 2 the standard flux-profile method will be considered and 

a comparison with the energy-balance technique will be made. 
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In section 3 it will be shown how the flux-profile method can be 

simplified. 

Finally in section h the temperature fluctuation method is treated. 

2. The standard flux-profile method 

2.1 Introduction 

In the atmospheric surface layer, which extends from the ground to 

about one tenth of the atmospheric boundary layer, the vertical fluxes 

of momentum, sensible heat and water vapour are semiempirically related 

to the vertical gradients of temperature, horizontal wind speed and spe

cific humidity. This is known already a long time. Many authors have 

developed methods for determining the fluxes according to profile 

measurements. A comprehensive review of the subject, both theoretical 

and experimental, have been given by Monin and Yaglom (1971 ? ch- *+)• 

However, there are only a few publications which report on routine, 

operational applications of the approach. Examples are the recent papers 

of Strieker and Brutsaert (1978), Saugier and Ripley (1978), Grant (1975) 

and Itier (1981). 

In this section we will follow the main lines of the work of Strieker 

and Brutsaert (1978) who used the flux-profile theory to determine the 

sensible heat flux, after which evaporation was evaluated from the sim

plified energy-balance equation. In this way they obtained the evapo

ration during a period of 90 days in the summer of 1976 from a catchment 

area in the Netherlands. However, they did not test their approach. 

In the present study the method of Strieker and Brutsaert will be in

vestigated and a verification will be given for about 90 days in the 

summer of 1977- For this verification energy-balance measurements of the 

fluxes observed at Cabauw in the centre of the Netherlands will be used. 

2.2 Theoretical background 

On the basis of dimensional analysis Obukhov 09l+6, 1971) has shown 

that over horizontal uniform surfaces under stationary conditions the 

vertical fluxes of momentum, sensible heat and water vapour are related 

to the profiles of temperature, wind speed and humidity by 
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H-St^h^ ' (1) 

£ = £••<!> > (2) 

3£=ki*m (L} ' (3) 

where the Obukhov length is defined by 

T u # 2 

and the friction velocity u„ by 

» . . / * - P
 ( 5 ) 

Also the temperature (difference) and humidity scales 9# and q„ follow 
from 

H = - Pc
p
 e* u* (V 

E = - p u # q#. (7) 

In eqs. (1)-(7) a bar denotes a mean value, 9 is the potential temperature, 
q the specific humidity, p the density of air, c the specific heat at 
constant pressure of air, T the mean absolute temperature of the surface 
layer, g the acceleration of gravity, k the von Karman constant, u the 
horizontal wind speed, z the height, H the vertical flux density of sen
sible heat, T the shearing stress and E the vertical flux density of water 
vapor (= evaporation). Finally ta, $ and <(> are \iniversal functions of 
the stability parameter ̂  . 

file:///iniversal
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Monin and Obukhov (195^) were the first who presented experimental 

evidence for these relations. This is the reason that the literature 

refers to eqs. (1)-(3) as the Mcnin-Obukhov similarity theory. Since 

it is based on dimensional argumentsj the theory does not predict 

the mathematical form of the <|>-functions. Therefore this form has to 

be determined experimentally. In the last two decades many papers have 

been published on the structure of the (f>'s. It is not useful to mention 

here the entire list of relevant references. Reviews on the subject 

are given in the standard textbooks by Lumley and Panofsky (196M-) and 

Monin and Yaglom (197D and in the papers by Dyer (197^) and Yaglcm 

(1977). Unfortunately the mathematical form of the ̂ -functions is still 

uncertain, because it is difficult to measure the fluxes and profiles 

with sufficient accuracy. 
Probably the best data set is that collected in Kansas in 1968, which 

is the basis for the flux-profile relations of Businger et al. (197D. 
However, their results deviate significantly from those obtained earlier 
by others, such as Dyer and Hicks (1970). The main discrepancies are the 
value of k (the Kansas measurements give k = 0.35, while most experiments 
yield k * 0.̂ -) and the ratio cf̂ /cf̂  at j - = 0 («1.35 found in Kansas, com
pared to 1 obtained by many others). Recently Wieringa (1980) gave a 
plausible explanation for these disagreements. He shows that obstacles 
in the Kansas mast have influenced the stress measurements. From his ana
lysis it follows that u probably was underestimated 20-30%. When for this 
corrections are made k is found to be O.M-1 while <)>}/<l>m at j = 0 becomes 1. 
After this revision the Kansas <j>'s does not differ significantly frcm 
those obtained elsewhere. 

In this study we will use the flux-profile relations proposed by Dyer 
(197^)« which are also used by Strieker and Brutsaert (1978). They read as 

k = O.M (8) 

i "i 

d>m = V = (1 - 16 £) for I < 0, (9) 

(unstable case) 

* h = * m = 1 + 5 ! for f >0 (10) 

(stable case), 
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while 

•e = *h fara11 L (11) 

The Richardson number Ri is defined by 

Ri 

96 
_ & 3z 

"T (If 
(12) 

Prom (9) it follows that in unstable conditions the Richardson number 

equals the stability parameter j-'-

Ri = (13) 

In the surface layer the relative variation of the fluxes with height 

are negligibly small. Then the above flux-profile relations can be 

integrated. It is common to write the integrated form of the flux-

profile relations in the form: 

H = 

In 

pC k A9 Au 

-fl)-»«]H£ - * 
6m1 

m\ L * ) ] 
(1*0 

and 

u * = -
k Au 

fe)-*HW 
(15) 
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Here A9 = 9i-6p and Au = t^-Up, while z,.. and z^, are the levels at 
which 9. and 6p are observed and z .. and z ~ the heights of the wind 
measurements. 
The functions tp and ̂  are defined by 

, ] 1 - ̂ fr , • 
*m= - 7 ^ • (16) 

and 
z 

\= z? L da". (17) 

From the set of equations (lM-)-(17) and the definition expressions C+) 
and (6) H and u^ can be solved iteratively when Au and A9 are known. 
It should be noted that in a complete formulation the buoyancy effects 
of water vapour have to be taken into account. This can be done be 
replacing 9* by 9^0+0.07/B) in Of). Here B(=H/XE) is the Bowen ratio 
(X is the latent heat of vaporization). Over land surfaces the influence 
of E on H is generally less than 10$ (see later). In the interests of 
simplicity we will ignore this effect. 

We will apply the flux-profile method in its most simple form, namely 
in the case that the wind is observed at one and temperature at 2 levels. 
This is only possible for surfaces whose surface roughness length z is 
known. Then our governing equations are: 

H _ - pcp k
2 A9 u (18) 
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u^ = k u (19) 

MS - *M 

and 

H = - pc u # 8« (21) 

where 6 is measured at z* and z~ and u at z . 
(Bqs. (20) and (21) are the same as (k) and (6)). 
Fran (9) and (10) and the definitions of the \j»'s it follows (Paulson, 
1970) that for stable conditions (f > 0 ) : 

* m = * h = - 5 ! , (22) 

while for -unstable conditions (j- < 0 ): 

% = 2mp4^-], (23) 

i>m = 2 In J !-£-£ + In 1 * * - 2 arctan (x) + | (30 

where x = (1 - 16 JO*. 

Generally this set of equations has no direct analytic solution and 
a time-consuming iterative procedure has to be followed [see e.g. 
Strieker and Brutsaert (1978) and Itier (1980)]. 

„ 
T In (18) and (19) we neglected i|> h £ ) . 

Ill Li 
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2.2.1. Determination of E 

After having determined H from (l8)-(2lf) we can obtain E from 

the energy-balance equation: 

Q*_ G = H + X E, (25) 

in which Q* is the net radiation and G the soil heat flux density. 

When the crop covers the ground completely G is generally small 

compared to Q* in summertime. Then it is safe to neglect G when 

daily averages are considered, while G can be taken as 

G = 0.1 Q* (26) 

during daytime. The skill of (26) is rather good (De Bruin and 

Holtslag, 1982); it leads to a random scatter of about % in Q* - G. 

Adopting these approximations for G we arrive at the following 

estimates of E 

—2*f —,2h 2k 
XE = Q* - Hpr (27) 

-2k 
(X means a 2̂ --hourly average) 

or 

XE = 0.9 Q* - ILj, (daytime) (28) 

valid during daytime. H_r is H obtained with the profile method. 

During nighttime, E is usually small, at least in summer. Then 

(28) can also be used to obtain a daily mean value of E: 

-2k 
XE = (0.9Q* - Hpj, ) ̂  (29) 
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where n is the duration of daytime (expressed in h). 

In hydrological practice often the Penman equation is 

used to estimate the so-called potential evapo(transp3 

For comparison purposes we will use this in the form 

2h 
XE = s(Q* - G) + y • 7M0.5 + 0.5^ t^) 6e ^ 

~"~~~~~~~~~~~~~~————————-—— , 
S + y 

where s is the slope of the saturation specific humidity temperature 

curve, Y = cr/^» u tiie wtocl speed at 2 m and 6e the saturation 

deficit. All variables in the right hand side of (30) are averaged 

over 2h h. For a background of this equation the reader is referred 

to Thorn and Oliver (1977), De Bruin and Kohsiek (1979), Mcnteith 

(1981) and De Bruin (1982). 

2.3 The energy-balance method, using Bowen's ratio 

For comparison purposes in this study the fluxes determined with the 

well-known energy-balance method, using the Bowen ratio are used. This 

method is based (a) on the energy-balance equation (25): 

Q* - G = H + X E, (3D 

and (b) on the fact that 

d^ = <j>e for all f (32) 

(see eq. 11). 

K This is the evapotranspiration of a certain crop when there is no 

shortage of water in the root zone. 



11.13 

Then it follows from (1), (2), (6) and (7) that the Bowen ratio 

B E H/AE equals 

B = ̂ . (33) 
3q/3z 

Hence B can be determined from 9 and q observed at 2 levels. 

When Q* and G are measured also H and E then follows from 

H = ̂  (Q* - G) (3W 

and 

AE = ̂  ( 3 5 ) 

The method breaks down when Q* - G = 0, which is the case when 

B = -1. This can occur during the transition hours around sunset 

and sunrise. 

Usually q is determined indirectly, e.g. with a psychrometer. This 

was the case in the Cabauw measurements discussed in the next 

section. Then B follows from 

-fct£-,r1' (36) 

where AT and AT are the vertical differences of the dry- and wet-bulb 

temperature respectively, s is the slope of the saturation specific 

humidity - temperature curve at T and Y = ^ * 

2.h Experimental 

In this study we will compare the fluxes evaluated with the standard 

flux-profile method with those determined with the energy-balance 

technique. For this we analysed a set of micrometeorological data 
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collected at Cabauw in the summer of 1977. The main features of 

this data set are: 

(a) The measurements were carried out at a field of 100 x 100 m 

covered with short grass of about 8 cm high. The surrounding 

fields are pastures. 

(b) The Bowen ratio was evaluated from the measurements of the 

dry- and wet-bulb temperature at 1.1 and 0.4-5 m. The thermo

meters used are ventilated and shielded. (Slob, 1978). 

(c) Net radiation was observed with a Funk-type pyrradiometer. 

(d) The soil heat flux was determined with a method proposed by 

Slob (see De Bruin and Holtslag, 1982). 

(e) The wind speed was observed at 2 m with a cupanemometer. 

The temperature and wind observations were used also to determine 

H with the profile approach. 

The construction of daily means of the "energy-balance" fluxes was 

hindered by the fact that during the transition hours around sunset 

and sunrise the Bowen ratio often is near -1. Then H and E cannot 

be evaluated accurately with the energy-balance method. For these 

hours the lacking values of H and E were completed with those ob

tained with the flux-profile technique. In this way an 

artificial correlation between the two methods to be compared.is in

troduced. However, because during these hours the fluxes are small 

this is a small effect. 

2.5 The standard flux-profile method compared with the energy-balance 

approach 

In this section the results of the flux-profile method are presented. 

It is applied as follows. 

From the observed temperature at 0.4-5 and 1.1m and the wind at 2 m H is 

evaluated every half hour by solving the set of equation (18)-(24-) 
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-2h -d 
iteratively. Then dally and daytime mean values, denoted as H and H 

respectively, were computed, where "daytime" Is defined to be the 

period in which Q > 0. Finally the daily mean values of AE, denoted 

as AET , are evaluated with (27) and (29) respectively. 

The roughness length is taken at z = 1 cm, which is a representative 

value for grass of 8 cm high (Strieker and Brutsaert, 1978). 

The influence of E on the Obukhov-length is not taken into account. 

From Fig. 1, where IT calculated with and without this effect is de

picted, it is seen that this is permitted. It leads to an underesti

mation of H0^ of only a few percent. 

We did not use a displacement height d as done by Strieker and 

Brutsaert (1978). This is perhaps questionable because our lowest ob

servation level is 0.̂ -5 m which is not very large compared with the 

crop height. On the other hand we believe that the physical meaning of 

d, especially for sensible heat, is so unclear that it must be pre

ferred to work as long as possible with only one parameter characterizing 

the surface, namely z . We believe that in our case this has to be done. 

It is noted that the introduction of d = 5 cm, which is a representative 

value for a crop height of 8 cm (Brutsaert and Strieker, 1978), has the 

same effect as the lowering of z from 1 to 0.6 cm. 

In Fig. 2 the flux-profile measurements of H are compared with the 

corresponding energy-balance observations. This figure refers to about 

90 days in May through August 1977. The agreement is rather good, but 

there is a tendency that the profile-measurements are greater than the 

energy-balance observations. 

In Fig. 3 the results for the daily means of H are depicted. Again there 

is a good agreement, but now the profile method underestimates n slight

ly with about 10% (when it is believed that the energy-balance obser

vations are the "true" values). On these features we will comment later. 

The results of eqs. (27) and (29) concerning the daily means of XE are 

presented in Figs. h and 5. Both show good agreement, even better than 
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Fig. 1. Comparison between u computed with and without the water 

vapor correction in L. 
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W.nrv 

Fig. 2. Daily mean of H (H ) computed with the flux profile method 
—24 vs the energy-balance observations of H . 

CabauWy May through September 1977. 
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-d 
H pr 

150 

Fig. 3. As Fig. 2, but for lr (daytime mean of H; Q* > 0). 
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24 
Fig. 4. \E evaluated with (eq.27) vs the energy-balance observations. 

The data from the dry period 3-17 July 1977 are encircled. 
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xn24 Fig. S. As Fig. 4, but now X£ evaluated with eq. (29) 
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that obtained for H. A plausible explanation for this is the fact 

that -usually AE > H, so that an error in H causes a much smaller 

deviation in AE. But it must also be noted that the AE's compared 

in Figs, k and 5 have the measured net radiation in common. 

— 2 h 
In Fig. 6 the energy-balance observations of AE are compared with 

the corresponding values evaluated with Penman's equation (30). It 

is seen that, except for about twenty days, the agreement is good. 

Most of the days for which (30) gives too great values fall in the 

period 3-17 July during which there was a clear shortage of water 

in the soil (see also De Bruin and Holtslag, 1982). The data of these 

period are encircled In Figs. U--6. 
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Fig. 6. Energy-balance measurements of XE vs XE computed with 

Penman's equation (30). Data from the dry period 3-17 July 

are encircled. 
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2.6 Discussion 

From the above it follows that the daytime means of H, evaluated with the flux-

profile method, agree rather well with the energy-balance observations, while 

the 2^-hourly values show'more deviations. This implies that during nighttime the 

two methods do not yield similar fluxes. An explanation for this is 

the fact that under stable conditions it is very difficult to carry 

out reliable measurements. For instance, because all fluxes then are 

small, systematical errors in Q* and G, which easily can be of the 

order of 10 W.m , cause large percentual errors in the derived values 

of H and E. Moreover, the thermometers are often wetted by fog which 

is rather likely during the night and early morning. This reflects 

directly on both the results of the profile and the energy-balance 

method. 

Fran this it must be concluded that it is very difficult to measure 

the surface fluxes under stable conditions on a routine basis. 

For this study it means that our results for the nighttime are incon

clusive. 

The uncertainties of the nighttime observations, of course, also reflect 

on the daily means of the measured fluxes. On nice summer days the day

time fluxes highly exceed those at night, so that on these days this 

effect on Ir and AEr is small. However, on rainy overcast days this 

is no longer true. Moreover, then also during daytime the observations 

can easily be disturbed, e.g. due to wetting of the thermometers by rain. 

Although we exclude the days with pertinently errorneous data, there are 

certainly days which are not rejected but which contain hours with less 

reliable observations. We could not reject all these data because then 

it is impossible to construct daily and daytime mean values. 

These feature can explain the relatively large scatter shown in Fig. 2 

and 3 for YT or iP less than hO W.m" , because those data refer mostly 

to rainy overcast days which were rather numerous especially in August 

1977. 

The experimental difficulties mentioned above are inherent in micrometeo-

rological observations carried out on a routine basis in the Dutch climate. 

As far as we know there exist no techniques for measuring the surface 
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fluxes continuously which do not give problems during e.g. fog and 

rain. 

If we take this into account and when we consider the results ob

tained for the days with IT or Fr greater than kO W.nf , which are 

of great importance for e.g. evaporation (see later), we may conclude 

that the flux-profile method yields acceptable results. 

Let us now pay our attention to the daily evaporation. We note that 

the results shown in Pigs. *f and 5 are accurate enough for most prac

tical applications. This is in agreement with the findings of Grant 

(1975). Also the Penman equation (30) yields good results, except in 

the dry July period (encircled points in Fig. 6 ) . 

Because the input data for Penman's equation are less sensitive to in

fluences of unfavourable weather conditions a logical consequence of 

this is to combine the profile-method with the Penman approach for the 

determination of E . 

We propose the following procedure: 

(a) On days with rain or preceded by a rainy period the evaporation 

will not deviate much from its potential value and Er can be 

evaluated with the Penman formula (30). 

(b) On dry days E can be about E . but it is also possible that E < E . 

It appears that in the latter case the Bowen ratio is greater than 

O.h at the midday. With G = 0.1 Q* this implies that then 

H > 0.25 Q*. Thus when E is considerably smaller than E H will be 

larger than 0.25 Q • Adopting this criterium we arrive at the 

following: 

When around noon H evaluated with the profile method exceeds 0.25 Q* 

I T is determined with (29). Otherwise !r is computed with Penman's 

formula (Eq. 30). 

The advantage of this approach is that the profile method now is applied 

only on dry days, i.e. under favourable weather conditions. 
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We found that a visual inspection of the diurnal course of A6 can be 

of help to distinguish days for which E»E from days where E < E . 
x^ XT 

To make this clear the course of AS and Q* is shown in Fig. 7 for 

two clear days. The first, 19 May 1977, is preceded by a rainy period 

of several days and consequently a « E (see Fig. 6). The second, 

10 July 1977, falls in the dry July period described above. 

It is seen that the net radiation of these days is almost the same, 

but the A6 curves differ significantly. On 19 May A0 does not exceed 

0.65 K, while at 10 July A0 > 0.8 K during several hours. Furthermore 

it is striking that on 19 May A0 becomes zero at the end of the day 

earlier than 0*, whereas on 10 July A6 and Q* pass about simultanously 

the zero-line. 

These features, which are rather typical, can be used to distinguish 

visually days for which E»E from those where E < E . 

The above results refer to a short vegetation. Above a tall crop (heights 

> 1 m) growing in small fields the method will be less applicable, be

cause one must require that the observations are done In the internal 

boundary layer. Therefore we must demand:(a) the observation levels are 

larger than z (—- > 50) and (b) these are small with respect to the 
O ZQ I 

length (or width) of the field 1 (± Z 100). These requirements are diffi-

z 
cult to fulfill for tall crops growing in relatively small fields. 

Furthermore, in the case of a tall vegetation it is no longer permitted 

to ignore the displacement height d. However, this is a very uncertain 

quantity (Reitsma, 1978). When the field of interest is small the lowest 

observation level can not be chosen much greater than d. This implies 

that then the uncertainty of d can cause considerable errors in the com

puted fluxes. 

These features are serious restrictions of the profile method. 

In section h a method is discussed, which is more attractive above tall 

vegetations. 
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is GMT 

Fig. 7. Course of A9 and Q* for 19 May 1977 (E»Ep) and 10 July 1977 

(E < Ep). 
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2.7 Conclusions 

The main conclusions concerning the profile method are: 

(a) Above short vegetations (crop heights smaller than 0.5 m) the 

fluxes of sensible heat and water vapour can be measured 

accurately enough for most practical applications with the 

profile method. 

This conclusion refers to daytime values of H and E and daily 

means of E. 

(b) The results referring to nighttime are inconclusive, because 

then the energy-balance method does not yield reliable results. 

At the moment there are no methods known to measure H and E on 

a routine base during nighttime. 

(c) For the determination of daily evaporation it is recommended to 

combine the profile-method (Eq. 29) with the Penman approach 

(Eq. 30): On "potential" days (E»E ) the latter and on "non-

potential" days (E < E ) the first must be used. A visual in

spection of the diurnal course of the vertical temperature dif

ference A9 can be of help to distinguish "potential" and "non-

potential" days. 

(d) These results refer to short vegetations. For tall crops (heights 

> 1 m) it is to be expected that the profile method meets diffi

culties because the observed profiles then are likely to be non-

representative for the field of interest. This concerns especially 

small fields (less than 1 ha). Also the uncertainty of the displace

ment height is then a serious restriction of the profile method. 
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3« Simplifications of the standard flux profile method 

3.1 Introduction 

In section 2 it was shown how the sensible heat flux and evaporation 

can be obtained from the profiles of temperature and wind. It was seen 

that especially during daytime this approach yields good results. For 

a number of practical applications the complicated iteration scheme 

to be used to solve the governing equations is very inconvenient. For 

instance it is much too time-consuming in atmospheric modelling (Louis, 

1979)• Also the scheme is not useful when the fluxes must be evaluated 

on the site with a microprocessor or a pocket calculator. 

In this study methods will be developed which enable us to simplify the 

calculation scheme significantly, so that this is applicable for prac

tical purpose. 

We will restrict ourselves to the unstable case, because then the pro

file method yields the best results. 

3.2 Mathematical background 

In this section we will rewrite the equations for H and L in such a 

way that approximative analytic solutions can be obtained. We assume 

that the Dyer relations for <J> and $. are the best (and consequently 

the corresponding ij;'s given by (23) and (2*f)). 

Let 9 be observed at z. ̂  and z^~ and u at z.. and z ,, and let us intro

duce a^ = z-j/z ~ and a. = Zi^/z^p* W e will choose zx1 > z ^ , so that 

a > 1 (x = m or h ) . 

Also we define the quantities H and L by 

o 
k pc^ |AG I Au 

H = •, ; y , / v (37) o " Li(ah) InCa^) 

and 

0 e M to2(V ' 

where AG = 6-1-62 a n d ^u = u - ] - ^ * 
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H and L are the sensible heat flux density H and the Obukhov-length 
L respectively when the stability corrections are neglected, i.e. when 
the xp's in (18) and (19) are taken zero. 

Furthermore we define 

F = 1 . J L - L 2L_k_ (x = m or h) (39) 
ln(zx1) -to(Z x 2) 

Then H and L can be written as (see eqs. M-, 14- and 15) 

h m 

and 

F 
L = L - ^ (lf1) 

° F 
m 

Now we apply Ca-uchy's theorm for the mean valuex. This gives with 

OV3z)2« = d-*x(if- ) ) /zl! 

z. ' 
Fx = *x("T") ' (x = m or h)' (If2) 

where z ' is a level between z * and z ~. 

If f(x) and g(x) are regular in the interval a, b there is at 
least one value of x' with a < x» < b for which £ M ~ jfo? = f ^ x | ? 
(g'(x') j* 0 inside a,b). 
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Consequently 

H = - , ° „ 06) 
ms x ,

z'hN V-r"' VTT' 
and 

Z ' h , 
*h(L} 

m L 

Under unstable conditions <)>, = <J> (eq. 9 ) ? so that then 

L = LQ
 n

z V (L < 0) (U5) 

From (M-5) we obtain our first Important results namely when 

'm V*z-

and consequently 

H 0 ., 3A 

H = 2 = H ( 1 . l 6 f _ ) (1+7) Z \ , /Z'\ o 

o o 

where z' = z1, = z ' and use has been made of (9). 
The levels z. ' and z ' will be about equal when 9 and u are observed 
at the same levels. Thus we conclude that when temperature and wind 
are measured at the same height L can be estimated directly from the 
observations with (38) and 0+5). It is noted that z' in (h?) is still 
unknown. 
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Several authors found (U6) experimentally (Soer, 1977; Fiou, 
1982). 

Generally z. ' and z ' depend on L and a. or a . From C+2) and 

the Dyer relations (9) for the if'swe find that 

V = W~ (Fx"n _ 1}' (x = m or h) 0+8) 

where n = 2 when x = h and n = h when x = m. 

For -L -»• <*> ik -> 8 — and \p -*• k -jr , so that 

lim V = W , 'i*2 E */• (x = m or h) (»+9) 
-L-* oo x i n k a x ; x 

This result is not surprising because when -L is large the profiles 
becomes logarithmic. 

From (!f8) and (*+9) it follows that \'/z* is a function of zx*A and a^ only. 

In Figs. 8a and b zh
l and zm' scaled with zx* are depicted as a 

function of -zx*/L for different values of a^. It is seen that when a. =a. 
z, ' < z * , but the differences are small. 

If a^ •$ 6 the variation of z. ' and z ' with z*/L is relatively small, 

so that for many practical applications it is safe to take these 

levels constant in that case. 

Some authors, e.g. Itier (1980) and Riou (1982) use in this type of 

problems (see also Paulson, 1970) 

zx' = / z x 1 . z ^ - (x = m or h) (50) 

In Fig. 8a this estimate of z. ' (scaled with Zj*) is indicated (with 
the symbol A). It is seen that it is situated in the centre of the 
interval over which the actual value of z. ' is varying for all a. <: 100. 
Consequently (50) is a proper choice for the case that a <: 6. 
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3.3.1. Case a. zy 5 2 ^ and g^sfa 

Here we will consider the case in which wind and temperature are 

measured at the same levels, thus when V p ^ C - z-|) an<^ zm2=zh2^~ z 2^' 

From the foregoing it follows that then z. ' does not differ much from 

z '. As a result Eq. (U6) will be a good approximation for L over a 
m 2-1 

wide range of z*/-L and a(= — - ) . This is illustrated in Fig. 9 where 
L 2 

(j— - 1) is depicted (at the bottom). We conclude that (M6) is a very-

good approximation indeed. Even for a = 100 and z*/-L = 10 the de

viation is only 10$. We have seen also that when a < 6 z ' and z, ' can 

be taken constant at /"zTzI, thus for that case we obtain 

H = H. 1 - 16 
/z^2 3A 

(a < 6) (51) 

This expression is found earlier by Riou (1982). 

When a > 6 the assumption that z. ' and z ' are independent of z*/-L is 

no longer valid and (50 can then not be applied. 

We found that the curves shown in Figs. 8a and b can be approximated 

by the following empirical expression: 

zx* 

z * X 
?x — (52) 

20 

where px is a constant which depends solely on a . From Fig. 10 the 

value of p and p. can be read. 

In this way we arrive at 

H = H. 1 - 16 V * r z ' 161 (53) 

where z^' and z^' are given by (52). For simplicity z ' can be taken 

equal to z, ', so that then we get 
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20 

10 -

0 
10 100 

Fig. 10. Empirical parameter p-, and p vs a-, or a 
a 

m 

z'. 
3A 

H = Ho (1 - 16 £-) , C5M-) 

with 

1 -

z' = 
PhT 

(55) 
1 - 20 

The skill of these simple expressions, which holds for a < 100 and 
z* 

-£ <5 is very good. This is shown in Fig. 9 where H calculated with 

(9+) and (55) (denoted as H) is compared with H evaluated with the 

entire iteration scheme to solve the eqs. (l8)-(2Lf) (denoted as H ). 

In this Figure we have only drawn the curves corresponding to a = 6, 

a = 50 and a = 100 because when a < 20 the deviations of H/H from 
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1 are less than 3%, so that then the curves are almost covering each 

other. It can be concluded from Fig. 9 that (5^) is a very good 
z* 

approximation; for Tfj-S 1 ̂ e deviations from the full iteration 
scheme are less than 3%. 

3.3.2 Case b. Wind and temperature at different levels 

When wind and temperature are not observed at the same levels the 

expressions derived above, generally, are not applicable. Only when 

zj* « z * and both a. and a^ are smaller than 6 they can still be used. 

In any case Eq. (Mf) is valid. With (9) this reads 

L 

This implies that 

(L<0 ) . (56) 

_o "" ~ " Lo z^' L < L< L V^r (97) 

I t is noted that for large values of |L| 

L~LQ - 8(zm* - z ^ ) , (58) 

so that in the neutral limit L differs only a constant from L . 

For the limit |L| + Owe can make use of the empirical relation 

(52). With this we find that 
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*h %i 

Usually, the experimental set up will be so that the factor 
/ z; * p / / z. * p. lies between about 0.5 and 1.5. For instance, 
at Cabauw, where temperature was observed at about 1 and 0.5 m and 
u at 2 m while z « 0.01 m it equals about 0.5. Then we can take 
for L as first guess 

(60) 

This estimate can be used to evaluate z,' and z ' with (52): 

A 

L = - o 1 
+V # 

2 

Pm 

Ph 

, • 1 ' P x L x " z * 
1 - 2 0 — 

Then L follows from (56) 

(x = m or h) (61) 

t ? (62) 

and subsequently H can be evaluated with 

Zu,' i z * -J-
H = H (1 - 16 -£-) (1 - 16 -£-) . (63) 
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In Table 1 a verification of (63) is presented. It concerns about 

the "Cabauw configuration", namely z,̂  = 1.1, z ^ = 0.4-5 and z * = 2 m, 

While z^, = z is taken 0.02 m. We may conclude that the results are 

very good. 

|A9| 

0.1 
0.1 
0.1 
0.1 
0.1 

0 .3 
0 .3 
0 .3 
0 .3 
0 .3 

0 .5 
0 .5 
0 .5 
0 .5 
0 . 5 

0 .7 
0 .7 
0 .7 
0 .7 
0 .7 

0 .9 
0 .9 
0 .9 
0.9 
0 .9 

u . 

0 . 5 
1 
2 
3 
5 

0 .5 
1 
2 
3 
5 

0 .5 
1 
2 
3 
5 

0 .5 
1 
2 
3 
5 

0 .5 
1 
2 
3 
5 

Hc 

8 
8 
11 
16 
26 

52 
4-1 
^3 
5̂  
80 

125 
95 
88 

100 
140 

223 
167 
14-2 
153 
204-

3*+2 
256 
208 
215 
273 

H I 

8 
8 
11 
16 
26 

52 
40 
^3 
54 
80 

128 
93 
86 
99 

139 

232 
165 
140 
152 
203 

361 
254-
205 
213 
272 

, ' H I I 

(8) 
(8) 
11 
16 
26 

(4-2) 
(h2) 
±3 
53 
80 

(90) 
(90) 
(90) 
98 

140 

(150) 
(150) 
(150) 
(150) 
204-

(219) 
(219) 
(219) 
(219) 
273 

V 
W 

0.346 
0.069 
0.015 
0.007 
0.002 

1.210 
0.24-2 
0.050 
0.021 
0.007 

1.82 
0.4-55 
O.O89 
0.036 
0.012 

2.4-2 
0.661 
0.132 
0.052 
0.017 

3.6M-
0.851 
0.177 
0.069 
0.023 

Table 1. H computed for different values of u (at 2 m) and 

A0 (= 9 at 0.4-5 - 9 at 1.1 m) with 

(i) the complete iteration scheme (H ), 

(ii) eq. (63) (HT) and (iii) eq. (71) or eq. (72) ( H n ) ; 

values between brackets are evaluated with (72). Also 

-z£/L is listed; Z Q = 0.02 m. (H in W.m"2, A9 in K and 

Up in rn.s" ) . 
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When / z * PJJ/ZU* Pu differs more than 0.5 from 1 it is possible 

that one or two extra iterations must be included in order to ob

tain a more accurate value of L with eqs. (61) and (62). (Then 

after (62) one recalculates z. ' and z ' with the new value of L ) . 

This limited iteration process is considerably easier than the 

original complete calculation schema. 

3 A The free convection scaling 

3A.1 Introduction 

A further simplification of the standard flux profile method can 

be obtained making use of the so-called free convection scaling. 

This is based on the fact that under very unstable conditions H 

becomes independent of u* and is determined by the temperature gra

dient only. In this section we will discuss the theoretical back

ground of free convection, while also the practical applicability 

will be considered. 

3.>+.2 Theory 

Free convection is the state in which the vertical transfer of 

heat (or momentum and water vapor) is maintained solely by convecti-

vely produced turbulence. Dimensional analysis shows (Lumley and 

Panofsky, 196*+, pp. 108-110; Monin and Yaglom, 1971, Chapter h) that 

in the regime of free convection H becomes H f given by 

H f = h0« pcp Z
2 /f |f |3/2 , «« 

where h * is a constant. 

It is seen that H does not depend an u^ and is determined by 96/8z 

only. 

Assuming that H is constant with height ((h) can be integrated which 

leads to 



II.1+1 

/— 3/2 

[3 K -V3 . ̂ 1/3, ^ 

When the free convection formulations ((h) and (65) are valid, <(>, , 

introduced in the previous section, must become proportional to 

(- z/L)~ • This can be shown in the following way. Prom eqs. (1), 

(•+) and (6) it follows that H can be written as 

_ 3/2 -i 
H _ „ i,2 2 1991 JT ( z x . -3 /2 
H = p c p k z fel / T ( W ) ^ . (66) 

This expression can be presented in a dimensionless form: 

h = k ^ *h ' ( 6 7 ) 

where the dimensionless heat flux h* is defined by 

h*- „ 2, g |3g,3/2 • (68> 
p c p z VT'az1 

According to the free convection theory we must require that for 

~ T -»• oo h* becomes constant. Thus 

= constant. (69) 

-V3 
As a consequence ̂  much become proportional to (~lj) for "#• ->• w. 

lim h* 

.f~ 
= h o . = 

2 * "* - 3 / 2 

z = - -> a> 
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The functions for <(>. proposed by Dyer 097*+) (= eq. 9) and Businger 

et al. (197D do not have this behavior. Hence the data sets analysed 

by these authors do not confirm the free convection formulations 

given by (6*+) and (65). On the other hand there are also authors e.g. 

Crawford (1965) who substantiate the "1/3-power law". The 

validity of (0+) and (65) is therefore still uncertain. 

In spite of the fact that the Businger-Dyer form of <(>. does not sa

tisfy (69) there is still a region for -z/L in which H, evaluated with 

this <J>. , is almost independent of u#. This is shown in Fig. 11 in 

which h* is depicted as determined with (3*+) using the Dyer form of <L 

given by (9). It is seen that in the region -0.05 > z/L > -0.3 h* is 

fairly constant at about 1.15. Close to the ground, in the first 2 m 

or so, z A is seldom less than -0.3. This implies that in that case H 

can be evaluated with (65) with h * =1.15 when z/L ̂  -0.05. From this 

feature use will be made in the next section. 

3.5 Measurements close to the ground 

When the measurements are done close to the ground, as was the case 

in the Cabauw experiment, the stability parameter z A is seldom less 

than -0.3. This can be seen from Table 1. Only at very low wind con

ditions, which are very rare, this is the case. 

Thus we can make use of the results of the previous section referring 

to the free convection scaling. Herein we found that in the region 

-0.05 >, z A £ -0.3 the dimensionless heat flux h* is fairly constant, 

so that then H can be evaluated with eq. (6*f) using h* =1.15. 

On the other hand for small z we will be not far from the neutral limit 

when z A £. -0.05. From the foregoing it follows that then L*L and 

z '» z *. Moreover, for small values of z/L 

(1 - 16 J) * 1 „ 8 £ (70a) 

and 

(1 - 16 J) « 1 - .if J . (70b) 

J 
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These considerations lead -with (63) to the following simple 

expressions 

8z. * + hz * z * 
H = H (1 - —£-= S_ ) for r ^ > -0.05 (7D 

0 Lo Lo 

z * 
where z * = max(z,*, z * ) , while for ̂ ~ < -0.05 H is given by (65): 

o 

/F 3/2 
1.15 pc„ / f |A9| 

H = £ (72) 

e K,-1/3 - V1 / 3 l ] y 2 

In the last column of Table 1 the results of this very simple approach 

are shown. It is seen that they are very satisfactory, except under 

very low wind conditions (u< 1 m.s~ ). But these are very rare. 

3.6 Daytime mean values 

Until now we did not define precisely the time interval At over 

which AS and u are averaged in the application of the profile-method. 

We used half an hour which is a good compromise between the require

ments of (a) stationarity and (b) a good statistical accuracy of the 

means of e and u. 

When daily or daytime means of the fluxes are needed a time step of 

half an hour is rather inconvenient. Therefore it is worthwhile to in

vestigate if it is possible to apply the expressions derived above to 

e.g. daytime mean averages of A6 and u in order to obtain directly a 

daytime mean of H. 

For this we analysed the data of July 1977 (which contains the dry 

fortnight) and we restricted ourselves to the simple method to deter

mine H given by (71) and (72). 

Because around local noon the fluxes are greatest these will be 

contribute significantly to the daytime mean. Then mostly the "free 

* Page 11.39 
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convection" formula (72) must be used. Therefore it is to be ex

pected that instead of A9 we must take 

^ d 
A6 = i 

c 

|A9l3/2 (73) 

as input. As before the index d refers to the period of the day 
that Q* >y 0. 

We found that 

A6 d « 1 . 1 ? ^ (7*0 

We applied (71) and (72) with this "mean" temperature difference and 
u as input. In Fig. 12 the results are shown for IT, and in Fig. 13 
those for AFT obtained with (29) and this estimate of I?1. 
The evaporation data of the dry period are encircled again. It is 
seen that the results are promising. 

For practical routine observations this "day-mean" approach is very 
important because it simplifies the data handling considerably; 
only the daytime means of A6, u and Q* are needed, while further 
the calculation scheme is very simple. 

The latter can be applied with a micro-processor system which con

tains the arithmetic operation +, -, x, —• and /". 

3-7 Summary of section 3 

In this section simplifications of the standard flux profile method 
are presented. The most important results are summarized briefly in 
the following. For convenience the numbering of the equations is that 
used in the text. 

(i) 6 is observed at z = z.. and z.2, and u at z .. and z « , while 
a x *s defined ty a = ZX^ZTT2 (x = m or hj level 1 > level 2, 
so that a > 1). Also A0 = "9.. - eL Bn^L Au = U| - iL, and 
„*_ Zx1 " Zx2 
z x " •H^r 

(ii) We define 
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Fig. 12. a as computed with (71) or (72) from the daytime mean A0 

and u vs the energy-balance measurements; July 1977. The 

data from the dry period 3-17 July are encircled. 
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and 

l^pCp |A6| AU 
H o = InbJ I n^ ) (37) 

Lo"I^e TTT- (38) 
M •<v 

I. Half-hourly values 

Case a zm1 = ^ 1 ~ z1 ' zm2 = ̂  E z2" 

Then the Obukhov lenth is approximately 

L = LQ, (L < 0) (h6) 

and the sensible heat flux density 

H = HQ (1 - 16 f - f , (L < 0) C5M-) 
£.3A 

o 

where z' follows from 

1 n ^ 

z''= ^ . (L < 0) (55) 
1 - 2 0 ^ -

Lo 

Parameter p. is a function of a. . Its value is depicted in Fig. 10. 
When a < 6 (55) can be replaced by 

z' = /z^Zg . (50) 
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Case b. 0 and u observed at different levels. 

A first estimate of L is 

**A 'm pm 

L = LQ \Jk ^ (L < 0) (go) 

where p and p. can read from Fig. 10. 

Next L is obtained with 

z ' 
11 - 16 -2-

L = L\/ ~r , (L < 0) (62) 
1 - 1 6 ^ -

where 

z* 
1 - p 

zx' = T* ' (L < 0; x = m or h) (61) 
1-20-?-

Subsequently H follows from 

z, ' * z ' * 
H = HQ(1 - 16 -f-) (1 - 16 -m-) . (L < 0) (63) 

Case c. Observations close to the ground, i.e. z . and z ~ < 2 m. 

In this case H can be obtained from 

8a;* +kz* z* 
H = HQ(1 - n

 L — ) , for 0 >-g- > -0.05 (71) 
o o 

and 
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3/2 
1.15 pcp / & |A9| z * 

H = — T7~ , for - f - < -0.05 (72) 

« 3 l * M - 1 / 3 - ^ " 1 / 3 I >3 

(zx* = maxCzj*, zm*)) 

II. Daytime mean values. 

Observations In the first 2 m. 

Defining A as the daytime mean of a certain quantity X the IT can 

be obtained from 

, _ , 8z* + hz * z * 
i p = T? (1 - -33 SL.) f o r o > J L > -0.05 (71 ') 

o o 

or 

,^d,3/2 
1.15 p c p / f |A6d| IP = P _ ^ . _^. f op _^. v< _Q>05 ( 7 2 t ) 

< 3l V V 3 - V V 3 I » L o 

Here A6d ~ 1.15 A^1, 

"° ln(ah) InCe^) 
IC1 = P' (37') 

and 

2 
T* = l (A^) ^ ^ (38'1 

e A6a In (a^) 
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When the roughness length of the terrain of interest is known 
ZTn2 = z and Up = 0, so that Au = u.. 

Usually, the approximations are accurate enough for practical 
calculations; the errors are smaller than those introduced by-
measuring errors or imperfections of the flux profile method 
itself. 

h. The temperature fluctuation method 

*f.1 Introduction 

In this section a method for determining the sensible heat flux 
density during daytime is considered, which requires observations 
at a single level only. The method is based on the relation between 
temperature fluctuations and the vertical transfer of sensible heat. 
It can be regarded as a sister of the flux profile method; the dif
ference is that 36/9z is replaced by Om/z, where a™ is the standard 
deviation of the temperature. 

A verification of the method is presented. This consists of a 
comparison with the energy-balance technique, using Bowen's ratio. 

The applicability of the approach for routine observations of H 
during daytime and mean daily evaporation will be discussed. 

h.2 Theoretical background 

Close to the ground turbulent fluctuations are responsible for 
vertical transfer processes. Therefore we may expect that the stan
dard deviation of the temperature a™, which is a suitable measure 
for the intensity of the temperature fluctuations, is related to the 
sensible heat flux. From dimensional arguments it can be shown that 
in the case of free convection H and a™ are related as follows (Monin 
and Yaglcm, 197D: 

H = ha* pc z* / f a T
3 / 2 , (L < 0) (75) 

where h * is a constant. Eq. (75) is similar to (#f). The only dif-
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ference is that 3?/9z is replaced by Om/z. There is no disagree

ment on the validity of (75), while we have seen that it is un

certain whether (6M-) holds. 

The constant h * is given by 

°1 

where C. follows from the form in which (75) often is presented in 

literature 

l ^ f = C1 tftp • (L < 0) (77) 

Wyngaard et al. (1971) reported a value of 0^=0.95, which they 

derived from the well-known Kansas data. It should be noted that 

C. remains unaltered when the corrections for 6^, u„, L and k pro

posed by Wieringa (1980) are applied. With" k = 0.M-1 this leads to h * = 0.7, 

Recent measurements in Cabauw (see the Appendix) substantiate this value, 

which means that it applies also to less homogeneous terrain. Wyngaard et al, 

also found that (77) holds already for j - < -0.1. 
z

 L 

At j - > -0.1 mechanically produced turbulence will also play a part in 

the transfer processes and then the influence of u # must be taken into ac

count. This has been done by Til]jiian (1972) who proposed instead of (77) 

the interpolation formula 

l ^ r = C l ( C 2 + l f r ) " 1 / 3 , ( L < 0 ! (78) 

where C~ is another constant. As a result 
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H.^pe^i/i^^o^^i^) 4 
(L < 0) (79) 

Cp follows from 

lim = c (80) 

* * c3 = ri73-

The value of CU is rather uncertain. This is due to the fact that 

when _£ -*• 0 both aT and e* vanish. Tillman (1972) suggested CU = 2.5, 

which leads to CL«1/18. When the Kansas-data are revaluated according 

to Wieringa (1980) C-, becomes somewhat higher, about 2.9. 

For our calculations we will use C-, = 2.5, so that (79) becomes 

H = 7§ PPplL^/fd+lB^.)*^ 3j) aT
3/2 , (L < 0) (81) 

where z™ is the level at which aT is observed. 

For the evaluation of L additional measurement of the wind speed are 

needed. When it is assumed that the roughness length of the terrain 

of interest is known we can use the flux-profile relation for momen

tum to determine u^ (eq. 19): 

u 
k u 

r*Ux 

O 

(82) 

(ZL^ is the level at which u is measured), 
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With -1/3 H = - pc ^ 6 , and (78) written as (using CL = .c, ,C2" /J and C2 = 1/18) 

aT 18 *. 1/3 

|9#| = c 1 (1 + " ] L T ) (L < 0) (83) 

we then have obtained a set of equations which can be solved 
iteratively when u and aT are known. However, as was the case with 
the flux-profile relations, such a calculation procedure is too 
complicated for many practical applications. Therefore we searched 
for a more simple solution. 
For this we rewrite (82) using (k2): 

u,= 7
k u

 z . , (90 

o 

where z ' is a level between z and z . m u o 

With the Dyer relation (9) for <j> , and eqs. (83) and (k) we then 
find for L 

T k C, 2 (1 + 16 -Mr) 
|L| = I \- J J1- (L < 0) (85) 

g ln2(^) ° T (1 + 18 ̂ ) 1 / 3 

For j - < -0.1 the free convection formulation (75) holds, which implies 
that then H is not sensitive to an error in L, because L disappears 
in (75). On the other hand, when j - > -0.1 we are so close to neutral 
stability that the factor 

(1 + 16 -m-)*/(1 + 18 - m - ) 1 / 3 will be close to 1. 
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As a result it is safe to ignore this factor in (85), so that we can 

estimate L with 

|L| = 
m K 0^ 

U 

m2(-^) 
zo 

(86) 

Inserting (86) into (79) we get with (76) and C^ = O, C2"
1//^: 

k pc_ 
c32 * * £ Om £ 

H = " K"P„ u am(1 + P- f ̂  -| ) 
c3 m ( ^ ) k C, u 

(87) 

The error we make with (87) can be evaluated from 

H 

H 

1 + l 8 m 
Zm V 3 

< 1 + 1 8 i r > , r
z r 

_ <1 -16 w>* 

- I * 

(88) 

which follows from (81), (85) and (86). 

In the case that z = 2 m, z = 0.01 m and z™ = 0.9 m (which is 

about the configuration used at Cabauw) H/H deviates never more than 

3% from 1 (see Table 2). We conclude that (87) is accurate enough 

for practical use. 

It is remarked that when z ' differs too much from z™ (86) possibly 

is too crude. Then a better approximation of L can be obtained using 

expressions similar to eqs. (61) and (62). 
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oT(K) 

0.1 

0.3 

0.5 

0.7 

0.9 

Up (m.s~ ) 

0.5 
1 

2 

3 
5 

0.5 
1 

2 

3 
5 

0.5 
1 

2 

3 
5 

0.5 
1 

2 

3 
5 

0.5 
1 

2 

3 
5 

H/H 

.98 

.97 

.98 

.99 

.99 

.99 

.97 

.97 

.97 

.99 

.99 

.98 

.97 

.97 

.98 

.99 

.98 

.97 

.97 

.98 

.99 

.98 

.97 

.97 

.98 

-z^/L 

M 
.10 

.02 

< 10~3 

< 10"3 

1.33 
0.32 

0.07 

0.03 

0.01 

2.17 

0.55 
0.12 

0.05 

0.02 

2.9 
0.78 

0.18 

0.07 

0.02 

3.66 

1.00 

0.23 

0.10 

0.03 

H(W.m"2) 

5 
6 

9 
12 

19 

25 

27 

33 
42 

62 

53 
56 
65 
77 
108 

88 

91 
101 

117 

158 

127 

131 

1^3 
162 

212 

Table 2. H/H for different values of u (at 2 m) and aT (at 0.9 m). 
/ S O 

Also Zm/L and H(W.m~ ) are given; z = 0.01 m. 
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-̂•3 Experimental 

For the verification of the temperature fluctuation method data 

were collected during some days in August-September 1980 at the 

micrometeorological field at Cabauw. The standard deviation of the 

temperature was measured at about 0.8 m with a small thermocouple 

system developed by the instrumental division of the Royal Netherlands 

Meteorological Institute. The sensor has a diameter of about 100 vim. 

The thermometer was unshielded and was not ventilated artificially. 

For comparison purposes the surface fluxes were measured with the 

energy-balance method described in section 2.3. The instrumental de

tails are given in section 2.^. Unfortunately the measurement of the 

soil heat flux was not reliable. This quantity was estimated as one-

tenth of the net radiation, which is a rather good approximation during 

daytime (De Bruin and Holtslag, 1982). 

All data"were handled by a Hewlett and Packard 21MX minicomputer. 

The sample frequency was 1 Hz. With a standard program the 10 min aver

ages and the corresponding standard deviations of all measured quanti

ties were determined and stored on magnetic disk and later on magnetic 

tape. For this study we constructed from the 10 min values hourly fluxes. 

Because of all measured quantities the standard deviation per 10 min 

was determined the data set includes also a™ observed with the thermo

meters used to determine the Bowen ratio (at the lowest level (O.k-5 cm) 

the absolute temperature is observed). From this we will estimate H also 

with the am method (see next section). The thermometer is developed for 

operational use (Slob, 1978). It is shielded and is ventilated artifi

cially. The sensor is a thermo-couple with a diameter of about 2 mm. 

We analysed the data of four days, namely 15, 17 and 25 September and 

3 September 1980. On these days the wind speed conditions were different: 

the two meter wind covered a range between about 1.5 and 5 m.s" . 

h.k Results 

In Fig. 1*f the hourly and daytime mean values of H evaluated with the 

temperature fluctuation method (eq. 87) are plotted versus the energy-

balance observations. We recall that o™ was observed with a small thermo

couple at about 0.8 m, that the roughness length of the field is about 
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Heb 
150 

100 -

Fig. 14. Hourly and daytime mean values of H computed with (87) 

compared with the energy-balance measurements. 

(• 15 Aug., +17 Aug.j x 25 Aug., o 3 Sept., Qdaytime mean). 
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1 cm, while the hourly and daytime means are constructed from 10 

min averages. Also In the energy-balance data the soil heat flux 

density is taken as one-tenth of the net radiation. The results 

presented in Fig. 11* are very promising; the scatter shown is of 

the same order as that caused by measuring errors. 

To illustrate that the influence of the wind speed cannot be 

neglected we plotted in Fig. 15 for each day seperately H, computed 

with the free convection formula (75), versus the energy-balance 

measurements. At the top of each sub-figure the course of the ob

served wind speed at 2 m is indicated. On 25 August 1980 Up was low 

C$ 2 m.s" ) and then the free convection formula yields good results. 

But on the other days, when Up > 2 m.s eq. (75) underestimates H 

considerably. The evidence given in Figs. 1*f and 15 reveals that the 

interpolation formula (87) accounts satisfatorily for the influence 

of u on H. 

The results shown in Figs. 1M- and 15 are obtained from measurements 

of a T carried out with a thermometer that is about 100 ym in diameter. 

Such a sensor is very sensitive to destruction by e.g. hail, rain 

and animals. Therefore it is not very attractive for operational use. 

For that reason we investigated whether the a™ method is applicable 

with a thermometer of the type that is used for the determination of 

the Bowen ratio. As reported in the previous section this instrument 

has a diameter of a few mm and therefore it is slower. But it can be 

used operationally. We found experimentally that the a T of this robust 

thermometer is about 2/3 of that observed with the fast 100 pm thermo

couple. With this conversion factor we corrected the data of the slow 

thermometer, after which we applied with these corrected values the 

temperature fluctuation method. The results are depicted in Fig. 16. 

We conclude that they are very satisfactorily; also now the deviations 

are of the same order as those caused by measuring errors. This result 

is very important for practical applications. When on a routine weather 

station the temperature is observed with a thermometer similar to the 

robust instrument used in this experiment, reliable estimates of H 

during daytime can be obtained. 

Then with (28) the daily mean evaporation can be evaluated. For this we 

need the net radiation. When this is not measured directly, it can be 

estimated from standard weather data using well-known semi-empirical ex

pressions (see e.g. Manteith and Szeicz,' 1961; De Bruin and Kohsiek, 1977; 

?an Ulden and Holtslag, 1982; Nielsen et al., 1981). 
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25 August 1980 
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3 September 1980 

m.s 
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.1 

Fig. 15. Free convection estimate of H (hourly values) evaluated with. (75) 

compared with the energy-balance observations for 15, 17 and 25 

August and 3 September. Also the course of the 2 wind speed at 

2 m (uj is given. 
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Heb 
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50 

Fig. 16. As Fig. 14, except O™ observed with a robust, but 

relatively slow, thermometer. 
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h.5 Discussion and conclusion 

In this section it is shown that the temperature fluctuation 

metiiod is a very suitable technique for the determination of the 

sensible heat flux during daytime. With the results of section 2, 

in which it is shown that reliable estimates of the daily mean 

evaporation can be obtained from the daytime mean of Hjthis also 

implies that with the temperature fluctuation method the evapo

ration can be evaluated. Then additionally net radiation must be 

observed (see eqs.(28) and (29)), but this can be done directly, 

while also Q* can estimated from standard weather data (see e.g. 

De Bruin and Kohsiek, 1979, and Van Ulden and Holtslag, 1982). 

Our results implies that at a standard weather station evaporation 

can be observed when additionally o„ is measured. The extra costs 

of this are relatively low. 

The determination of a™ can be done in several ways. It is the best 

to use a microprocessor. This can execute the entire data handling, 

so that H and E can be obtained on the site. A more simple way is to 

registrate T with a X-Y recorder. Then o T can be estimated from the 

peak-to-peak values of the recorded T-signal (Businger, 1973). This 

is rather laborious, but most data collected at a routine weather 

station are still processed manually. 

Under some circumstances the temperature averaged over 5 min or so 

changes rapidly. Then a™ must be corrected for time trend, because 

very low frequencies in the T-spectrum influence clearly a™, but do 

not contribute to the vertical exchange processes. Trend corrections 

can be made rather easily. When the manual procedure is used one can 

correct for trend visually, while when the data handling is done by a 

microprocessor linear regression techniques can be applied. Usually, 

the time trend in T is the most pronounced in the early morning and 

in the late afternoon. But then the fluxes are small. In our opinion, 

therefore a trend correction can be omitted when a™ is determined over 

10 min. This period is so short that the trend of T cannot be large, 

while it is long enough to obtain a™ with sufficient statistical accu

racy. 
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The great advantage of the temperature fluctuation method is 

that it requires observations at a single level only, while it 

is also not very sensitive to irregularities in the terrain (see 

the Appendix). This makes the method very attractive for appli

cation in agriculture for which often the surface fluxes from 

small fields are needed. We have seen before that then it is 

difficult to satisfy the requirements that the observations must 

be done (a) in the internal boundary layer and (b) at a level 

much greater than the roughness length. With the temperature 

fluctuation method these requirements can be fullfilled much 

easier than with a profile approach. 
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Appendix 

The temperature fluctuation method is based en the free convection 

scaling leading to eqs. (75) and (77)' These expressions are ob

tained with dimensional analysis, assuming that the terrain is ho

rizontal and homogeneous. The theory does not predict the numerical 

values of the constants &, and h * involved in (75) and (77) • These 

must be determined experimentally. We used C. =0.95 (resulting in 

h * = 0.7 with k = OM) as derived by Wyngaard et al. (1971) from 

the Kansas data. In Kansas the terrain is very homogeneous. Usually 

the Dutch land scape is less uniform. For instance at Cabauw the 

terrain consists of pastures separated by ditches with at intervals 

trees and houses. These irregularities influence the profiles of wind 

and temperature. Wieringa (1980) reported that at 20 m the Cabauw 

wind profiles show a kink. This feature reflects on the applicability 

of e.g. the flux profile method. Therefore it is very interesting to 

investigate whether (75) and (77) (or the related expressions) are 

sensitive to disturbances of the flow. 

In 1981 an experimental program was carried out at Cabauw to inves

tigate the behavior of u^, H and_,E in a disturbed surface layer. At 

Cabauw the disturbances are largest at easterly and northern winds. 

In this Appendix some preliminary results of these experiments will be 

presented. 

H and u^ were observed at 3-]+ and 22.5 m with the eddy-correlation 

method, thus with 

H = pc w'T' (89) 

and 

u / =-u'w» , (90) 

where u and w are the wind components in the x and z direction respec

tively and a prime denotes a deviation from a mean value. 

At 3.^ m u and w were observed with a sonic anemometer and T with 

a small thermocouple (of the same type as described in section M-.3). 
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At 22.5 m this was dene with a trivane and a thermocouple system 

described by Driedanks O98D. 

The data handling was done by a H.P. 21MX mini computer; a sample 

frequency of 5 Hz was used. All samples are stored on magnetic 

tapes. Data are available of about 75 periods of 10 min. 

In Figs. 17a and b the eddy-correlation observations of Om/9# are 

plotted against z/L for "5M- and 22.5 m respectively. Also the lines 

corresponding to (77) and (78) with 

O, = 0.95 (as found by %ngaard et al., 1971), 

C2 = 2.5 (proposed by Tillman, 1972) and 

C-. = 2.9 (following from the revaluation of the Kansas data as 

suggested by Wieringa, 1980). 

Fran Fig. 17 it is seen that for z/L < -0.2 (75) with 0, = 0.95 fits 

the Cabauw data well, taking into account that the random scatter of 

10 min fluxes is always large. For z/L > -0.2 the data points deviate 

from the free convection formulation. But then ufc determines 

H also and (78) must be applied. It is seen that the 

curves corresponding to this expression with C-, = 2.5 and C, = 2.9 both 

fit well to the data points in the region -0.05 > z A > -0.5. Then also 

the difference between these two curves is small. In the nearly neutral 

case (z/L > -0.05) there is a tendency to underestimate am/|6^|, so that 

Co = 2.9 or even a greater value must be preferred. However, we recall 

that under nearby neutral conditions a™ and e# both are small. As a 

consequence their ratio cannot be determined with great accuracy. So it 

is dangerous to draw definitive conclusions on the numerical value of C-. 

from our results. Because for z/L < -0.05 the curves corresponding to 

C-s = 2.5 and CT = 2.9 do not differ significantly (in view of the expe

rimental scatter) and because the fluxes are small for |z/L.| < 0.05 the 

uncertainty of C^ has no great practical consequences. 

As pointed out by Hicks (1980) the validity of (77) is not a sufficient 

condition for the validity of (75)• Therefore we verified separately 

the latter expression. In Fig. 18a and b we plotted w'T' (= H/pc ) vs 

z^ am for convective days, while also the line following from (75) 

with h * = 0.7 is shown. It is seen that the agreement is good. 
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The evidence shown in Figs. (17) and (18) refers to a wide range 

of wind directions, including the "disturbed" easterly and nothern 

sectors. Because the Cabauw eddy correlation measurements are well 

described by (77) and (78) derived from the Kansas data collected 

over homogeneous terrain, we conclude that (77) and (78) are not 

very sensitive to irregularities at the surface. This means that 

the temperature fluctuation method is attractive for many practical 

purposes. 
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III. A single parameterization of the surface fluxes 

of sensible and latent heat during daytime 
f compared with the Penman-Monteith concept. 

Abstract 

In this paper a comparison is made between two methods to 

determine the surface fluxes of sensible and latent heat 

during daytime. The first method, known as the Penman-Monteith 

approach, incorporates a more complete description of the 

physics. However, it needs a relatively large number of input 

parameters, which is inconvenient in many applications. The 

second method is a modification of the Priestley-Taylor eva

poration model, which needs only net radiation, air temperature 

and an indication of the moisture condition at the surface. 

Both models are compared on basis of hourly micro-meteorological 

data obtained in the Netherlands during the summer of 1977- It 

appears that the models have a similar skill for a short vege

tation. Therefore, the simple parameterization is preferred for 

practical purposes. It reveals that this result can be explained 

partly by the fact that the so-called equilibrium latent heat 

flux density (L^rvO and vapor pressure deficit are correlated. 

+ 
Submitted to Journal of Applied Meteorology 

A.A.M. Holtslag as co-author. 
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List of 

cp 
ea 
es 
ra 
rc 
s 

u 

z 

zo 
B 

E 

% 
G 

H 

L 

QX 

a 

a' 

6 

Y 
6e 

P 

symbols 

specific heat of vaporization 

water vapor pressure 

saturation water vapour pressure 

aerodynamic resistance 

surface resistance for water vapor 

de /dT at T = T 
S cl 

wind speed 

height 

roughness height 

the Bowen ratio 

evaporation 

equilibrium evaporation 

soil heat flux density 

sensible heat flux density 

latent heat of vaporization 

net radiation 

Priestley-Taylor parameter 

modification of a 

constant 

psychrometric constant 

saturation deficit 

density of air 

(J.kg"1.K_1) 

(mb) 

(mb) 

(m.s-1) 

(m.s~ ) 

(mb.K"1) 

(m.s-1) 

(m) 

(m) 

(-) 

(kg.nf .s~ ) 

(kg.m .s ) 

(W.ni ) 

(W.nf2) 

(J.kg-1) 

(W.m-2) 

(-) 

(-) 

(-) 

(mb.K-1) 

(mb) 

(kg.m-3) 
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1. Introduction 

A simple description of the surface fluxes of heat and water vapor 

in terms of routine variables is useful for many purposes, such as: 

- the determination of evapo(transpi)ration from the surface, which 

is required by hydrology and agriculture. 

- the description of the convective atmospheric boundary layer. 

- the estimation of the stability of the air near the ground, e.g. 

for air pollution problems. 

- the determination of the input of heat and moisture at the ground 

into the atmosphere for weather-forecast purposes. 

For some of these applications the fluxes must be described in terms 

of variables which can be forecast, while for others a parameterization 

is needed in terms of routine weather data observed in the past at 

standard meteorological stations. In this paper a parameterization of 

the surface fluxes will be treated which has the capability to be 

useful for both categories. It is a modification of the evaporation 

model of Priestley and Taylor (1972). 

It is the aim of this paper to compare the skill of this simple model 

with that of the Penman-Monteith approach (Monteith, 1065). This 

description contains the most complete physics; however, it has the 

disadvantage that it needs a relatively large number of input parameters. 

For the comparisons a set of micro-meteorological data collected at 

Cabauw, the Netherlands in the summer of 1977 is used. We will consider 

hourly values during daytime. 

2. Experjjnental data 

For this study we analysed a set of micro-meteorological data collected 

at Cabauw, in the centre of the Netherlands, in the period May through 

August 1977. The measurements were carried out at a field of 100 x 100 m 

covered with short grass kept about 8 cm high. The surface fluxes of sen

sible and latent heat were determined with the well-known energy-budget 

method, using Bowen's ratio (e.g. Sellers, 1965). The latter was evaluated 

with ventilated psychrometers (Slob, 1978) at 0M5 and 1.10 m respectively. 

The vertical differences of dry-and wet-bulb temperature were measured 

directly with thermocouples. The net radiation was measured with a net 
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pyrradiometer of the type Funk (1959)• The soil heat flux was observed 

with heat flux plates at a depth of 5 and 10 cm at three locations. 

With the aid of the temperature difference between 0 and 2 cm in the 

ground the soil heat flux at the surface was obtained with a method 

developed by Slob (see Appendix). The wind speed was observed with a 

cup anemometer at 2 m. 

For this study we transformed the 10-min means into hourly averages. 

Unreliable values were excluded; these mostly refer to situations with 

rain and fog. 

3. The models 

a. Introduction 

According to the energy balance equation for the earth's surface the 

sum of sensible and latent heat flux densities (H and LE respectively) 

is given by 

H + LE = Q K - G, (1) 

where Q K is the net radiant flux density, generally denoted as net 

radiation, G the soil heat flux density, L the latent heat of vapori

zation and E the evaporation. For a land surface G is mostly small with 

respect to Q during daytime. A good estimate for G is (e.g. Burridge 

and Gadd, 1977) 

G = 0.1 Qx. (2) 

This is confirmed by our measurements (see later). 

Since net radiation can be evaluated from cloud cover (or duration 

of bright sunshine), air temperature and solar elevation using semi-

empirical relations (e.g. Van Ulden and Holtslag, 1982), our problem 

is reduced to the determination of the partitioning of the available 

energy (0* - G) into sensible and latent heat. 

b. The Penman-Monteith model 

The most complete expression for the partitioning of (Qx - G) into 

H and LE is Penman's equation applied to a cropped surface as done e.g. 
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by Monteith (196?) and Rijtema (1965) resulting in 

s(0K - G) + pc 6e/r 
LE = — E , (3) 

s + Y (1 + rc/ra) 

where s is the slope of the saturation vapor-pressure temperature 
curve, p and c the density and specific heat at constant pressure 
of air, y the psychrometric constant, r the aerodynamic resistance 
for sensible heat (and water vapor) of the air layer between the 
ground and the height of observation z, r the surface resistance, 
and 6e the saturation deficit at z defined by 

6e = °s<V ~ ea » (k) 

where e (T ) is the saturation vapor pressure at air temperature 
S 3. 

T and e the actual vapor pressure at z. 
Eq. (3) applies to extensive areas covered with a uniform vege

tation fully shading the ground. Then the surface resistance is 
mainly determined by physiological factors, except when the foliage 
ia wet. In that case r = 0. A detailed survey on the different 
features of Eq. (3) has been given recently by Monteith (1981). The 
counterpart of (3) for sensible heat is 

Yd + r V r )(QX - G) - pc <Se/r 
H = 2_a E a ̂  ( ^ 

s + Y(1
 + r 7 r ) 

From (1) and (3) it follows that the surface resistance r is 

given by 

pc„ ._ 
r c = ( t B " 1 ) ra + ̂  « (1 + B ) > (6) 

C Y a Y (QX - G) 

where B is the Bowen ratio (= H/LE). 
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With this relation r can be determined from micro-meteorological 

observations. Then the aerodynamic resistance r_ must be specified. 

In this study the semi-empirical expression proposed by Thorn and 

Oliver (1977) is used, which is a modification of a relation given 

before by Penman O 1 ^ ) : 

m(-f)2 
h.72 

a 1 + 0.5^ u 
r. = = ^~±- , (7) 

where u is the wind speed, z is the height and z the surface 

roughness length for momentum. Thorn and Oliver showed that in this 

expression stability effects on r are taken into account empiri-

x a 
cally . In the deduction of (7) it is assumed that the "surface 

roughness lengths" for heat and water vapor are equal to z . This 

is not correct, but the errors introduced that way are small 

because the Bowen ratio often is of the order y/s (see later). Then 

the first term in the right hand side of (6) can be ignored and r 

is independent of r . 

For our purposes Eqs. (3) and (5) are rather inconvenient, since 

they contain a relatively large number of variables. Therefore, it 

is worthwhile to search for a simplification of the Penman-Monteith's 

formula. Before doing so, it must be emphasized that although this 

formula has some empirical elements (notably the determination of r 

is fully empirical) it is a physical reality that the surface fluxes 

depend on so many variables. The only chance we have to arrive at a 

simplification of Eqs. (3) or (5) is that seme variables are either 

dominating, are interrelated or have a fairly narrow range of values 

in practice. 

Bq. (7) suggests that z can be varied. However, since Penman's 

wind function is valid only for z = 2 m eq. (7) can only be applied 

to this height. 
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c. The modified Priestley-Taylor model 

The best known simplification of Penman's formula is the concept 

of Priestley and Taylor (1972), who found for saturated surfaces K K 

that 

IE = a •£- (<f . G) (8) 

where a is the so-called Priestley-Taylor parameter. When saturated 

air passes over a wet surface a will reach 1 (this has been noticed 

already by Schmidt in 1915 and follows directly from Eq. (3) with 

r = 6e = 0 ) . LE then equals - ~ (QK - G ) . In literature this quanti

ty often is denoted as the equilibrium latent heat flux density ( L E L Q ) , 

because some authors believe that when unsaturated air passes over an 

extensive wet surface it finally will become saturated. However, air 

seldom is saturated and for saturated surfaces a is found to be about 

30 per cent greater than 1 when daily values are concerned (e.g. 

Priestley and Taylor, 1972, Brutsaert and Strieker, 1979). 

Eqs. (1) and (6) lead to 

H = ° V i s
v

+ Y (Qx-G). (9) 

In the moderate climatological regions LE > H, which implies that 

a relative small deviation of the Priestley-Taylor concept causes a 

relatively large error in H. Evidence given by e.g. De Bruin and 

Keijman (1979) reveals that a two parameter model of the type 

IE = a* ̂  (Q* - G) + g (10) 

This refers to water surfaces as well as to cropped land surfaces 

not short of water. 

A water surface or a land surface covered with a thin water layer. 
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is a somewhat better description of LE, where B is a small constant 

(see later). 

Then H is given by 

H = (i - o')s + y (0* . G ) 

S + y 
(11) 

As noticed before, The Priestley-Taylor concept originally was 

restricted to saturated surfaces. In our study it will be applied 

also to non-saturated cases. Then the parameters a, a' and 3 will 

depend on the soil moisture conditions, the soil type, etcetera. 

Herein we follow authors like Davis and Allen (1973)• 

We found that the Priestley-Taylor approach becomes more 

transparent by writing 

ffp_ 6e 

6 = c u 
o'-(l-a') - ^ ^ 

r c V • S+Y ^ 
G) 

r r s._a + _a + 1 

Y r„ r 

(12) 

which follows directly from Eqs. (3) and (10). This equation shows 

clearly that in reality parameter g depends on several independent 

variables such as 6e, r& and (QK - G). Consequently, the Priestley-

Taylor model can only yield useful results when on the average 8 is 

small with respect to the first term in the right-hand side of Eq. 

(10). Then a variation of 6 of, say a factor 2, which certainly must 

be expected when we look at Eq. (12), results in a much smaller change 

of LE. 

A reason why 6 will be small is that the two terms in the numerator 

of (12) have about the same magnitude, hence when 

'h a ' - d - a ' ) ^ ^ 1 
r c y rff (QK-G)' (13) 
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It is seen that the first term of (13) contains 6e and the second 

term S/(S+Y)(Q* - G ) . 

Now, both these quantities have a pronounced diurnal variation. 

(That of 6e is mainly due to the diurnal cycle of the air tempera

ture). To illustrate this 6e and IE™-, are shown in Fig. 1 as function 

of time at a clear day in June 1977- This effect will lead to a posi

tive correlation between the two terms in (1.3) and thus to the dimi

nishing of 6. In the next section more experimental evidence for (13) 

will be given. 

>+. Model comparison. 

From the above description of the two models under consideration it 

follows that both contain at least one parameter which is determined 

by soil and plant factors. These are r in the Penman-Monteith model and 

a, a' and 3 in the (modified) Priestley-Taylor approach. Generally, 

these quantities depend upon many factors, such as availability of soil 

moisture, stage of development of the canopy, carbondioxide concen

tration, irradiance etc.* Models have been developed to describe e.g. r 

as a function of these physiological and environmental factors (e.g. 

Rijtema, 1965), but for the practical problems we are dealing with these 

procedures are not useful, not at least because the necessary information 

about canopy and soil often is missing. Therefore in real life the best 

we can do is to choose appropriate values for r , a etcetera under classes 

of circumstances, e.g. under wet, normal and dry conditions. Our available 

data set does not cover a range of soil conditions wide enough to define 

these classes very precisely. But, since it is our purpose to compare 

several models here this is not a serious problem. 

It appears that during July 3 till 17 there was a significant shortage 

of soil moisture. In the next this period will be denoted as dry while 

the remaining days will be characterized as being normal. 

For a review in recent literature on the dependence of r on these 

factors see Ziemer (1979). 
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For the model comparison the following strategy is chosen. 

Firstly the model parameters will be adjusted for the dry and normal 

period, then the surface fluxes will be evaluated with the different 

models using these parameters. Finally a comparison will be made with 

the measured fluxes. 

5. Pesults 

Firstly, we will investigate the skill of Fq. (2) for the determi

nation of the soil heat flux density (G). In Fig. 2 the hourly values 

of G, determined with the procedure described in the Appendix, are 

plotted against the corresponding observations of the net radiation 

(0 ). A visual inspection of this figure reveals that on the average 

Eq. (2) is a rather good approximation, but there is a large random 
~~x 2 

scatter. From a statistical analysis it follows that 0 =196 Vin 

and G = 16 Wm (a bar denotes a mean value of the entire data set), 

the correlation coefficient is 0.85, while for the regression para

meter a from G = a Q K a value of 0.09 is found. Practically this does 

not differ significantly from a = 0.1, used by Burridge and Gadd (1977). 
1? 

Taking a = 0.1 a standard error for G of 9 Vftn is obtained. This is 

more than *$% of G, however it is 5^ of Q K - G which is an acceptable 

scatter for our practical calculations. 

In order to get an impression of the variability of the model para

meters r , a and a' from Eqs. (3), (8) and (10) respectively and in 

order to be able to adjust these quantities for the normal and wet 

period in Fig. 3 the daytime mean hourly values of r , a and a' are 

shown. Only those days were considered from which a complete data set 

of at least four hours are available. 

From Fig. 3a it is seen that r has a considerable variation: it 
-1 

varies between, say, 20 and 280 s.m .In the normal period it has a 

typical value of 60 s.m. , while in the dry July fortnight it rises 

continuously from 100 to 260 s.m" with a mean of about 160 s.m" . 

Also the parameters a and a' (Figs. 3b and c) show a considerable 

scatter; a varies between 0.6 and 1.5 with a mean of about 1.1? in the 

normal and 0.8 in the dry period. The parameter a' from the modified 

Priestley-Taylor formula (10) shows a very similar behavior. Its mean 
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Fig. 2. Soil heat flux density G plotted against net radiation 

for 1040 hourly values during daytime. 
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Quantity 

LE1 

LE2 

LE3 

H1 

IL, 

H3 

Y 

125.M-

A25.h 

125A 

55.3 

55.3 

55.3 

X 

125.1 

125.3 

126.2 

55.5 

55.3 

9+M 

T 

0.97 

0.97 

0.95 

0.92 

0.92 

0.90 

SE 

23.8 

21.2 

26.3 

23.8 

21.2 

26.3 

SEA 

0.19 

0.17 

0.21 

0A3 

0.38 

0.U8 

Table 1. Comparison of observed values (Y) and calculated 

values (X) of the fluxes of sensible (H) and 

latent heat (LE) of 10UO hours with H + LE > 0. 

(H, LE, Y, X and SE in W.m"2). 

Y, X the average values of Y, X respectively. 

r correlation coefficient between Y and X. 

SE {(X-Y)2} 

E|, LE1 refer to the unmodified Priestley-Taylor model, with 

a = 1.12 for the normal and a = 0.8 for the dry period. 

Hp, LEp refer to the modified Priestley-Taylor model with 

a' = 0.95 for the normal period and a' = 0.65 for the 

dry period and 8 = 20 Wm for the entire period. 

H-5, LE.) refer to the Penman-Monteith model with r„ = 60 sm 
-1 c 

for the normal period and r = 160- sm for the dry 

period. 

1 
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value in the normal and wet period is about 0.95 and 0.65 respectively. 

It is noted that a' is evaluated after 6 is chosen at 20 W.m for the 

entire data set. This mean value of 6 is visually obtained by plotting 

the observed values of LE against LELQ. 

After having obtained these results it was decided to choose the following 

values for r , a and a' to be used in the model comparisons: 
1 

(a) normal period: r = 60 s.m , a = 1.12 and «' = 0.95, 
-1 

(b) dry period: r = 160 s.m" , a = 0.8 and a' = 0.65. 
-2 

(As noted before parameter g is kept at 20 W.m~ for the entire period). 

Using these values the surface fluxes were evaluated with the Penman-

Monteith model and the, modified and unmodified Priestley-Taylor formula. 

For LE some results are shown in Fig. h. In Table 1 statistical infor

mation is given about the skill of the models, referring to the entire 

data set and including also the sensible heat flux. 

From the evidence given in Fig. h and Table 1 it can be seen that the 

skill of the modified Priestley-Taylor model is certainly as good as that 

of the Penman-Monteith equation. This leads to the conclusion that for 

many practical problems the modified Priestley-Taylor model must be pre

ferred. 

As to be expected the results of both models for evaporation are 

better than for the sensible heat flux, mainly due to the fact that 

mostly LE is greater than H during day-time. 

From Table 1 it is seen that the modification of the Priestley-Taylor 

model by adding the constant 8 = 20 Wm improves the skill, especially 

with respect to H. This can partly be explained by the fact that during 

the transition hours around sunrise and sunset H and (0K - G) do not 

change sign at the same time. Especially, at the end of the day it is 

often observed that H becomes zero earlier than (Q - G). 

In section 3c it is noticed that a good skill of the Priestley-Taylor 

model can be explained by the fact that the two terms of (13) are posi

tive correlated. That this is the case indeed is shown in Fig. 5, where 

a scatter diagram between these two terms is given. The correlation 

coefficient is found to be 0.65. For this relatively high value is no 

direct physical reason. It is mainly due to the fact that fie and 

— j — (Q - G) both have a diurnal (and also an annual) cycle. The corre-
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Fig. 5. Soatter diagram of the two terms of (13) for 1040 hourly values 

during daytime. 
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lation coefficient between these quantities appears to be 0.7. 

From Fig. 5 it is seen further that the first term of (13) mostly 

exceeds the second, resulting in a mean value of B greater than zero. 

The scatter present in Fig. 5 illustrates the statistical character 

of the Priestley-Taylor model; in reality 3 has a relatively large 

variation. When a' is fixed at 0.95 in the normal and at 0.65 in the 

dry period it appears that B for our data set can vary between -10 
-2 — -2 

and +100 W.m . Excluding the extreme values we obtain B = 23 W.m 

with about the same standard deviation. 

The final step which must be made, but which falls outside the 

scope of this paper, is the determination of the net radiation. The 

way in which this must be done depends upon the available data. As an 

example we present here the results of an estimation scheme developed 

by Holtslag et al. (1980). They determine the net radiation from the 

air temperature, the total cloud cover and the incoming shortwave 

radiation. Using further Eq. (2), 3 = 20 Wm~2 and a' = 0.95 in the 

normal and a' = 0.65 in the dry period H is evaluated with Eq. (11) for 

152 randomly selected hours. The results are shown in Fig. 6. It is 

seen that the agreement with the measured values is good. 

6. Discussion 

From the evidence given above it can be concluded that from a practi

cal point of view the modified model of Priestley-Taylor has about the 

same skill as the more complete, but also more complicated, model of 

Penman-Monteith. We arrived at this result after adjustment of the model 

parameters which depend on soil- and plant factors. The available data 

set does not allow us to develop complete empirical rules for the deter

mination of these parameters under different soil moisture conditions. 

In, what is denoted in this paper as normal period, the parameter a' from 

the modified Priestley-Taylor model appears to be about 1 (0.95 to be 

more precisely), while it equals about 0.65 in the so-called dry period. 

The best estimate of B appears to be 20 Wm during the entire period. 

An explanation for the fact that the Penman-Monteith model can be 

simplified to the modified Priestley-Taylor formula is the fact that the 

water vapor deficit 6e is positive correlated with LEpjQ. This correlation 
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HcalclWnrr2) 
300 

200-

100 200 300 
HobslWm-2) 

Fig* 6. Comparison of observed hourly averages of the sensible heat 

flux (H b ) and calculated values (UQalo) with Eqs. (9), (2) 

and a semi-empirical procedure for the net radiation taken 

from Holtslag et al. (1980). Dots represent hours in normal 

periods and triangles represent hours in the apparently dry 

fortnight of July. 
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is mainly based on the diurnal cycle of both quantities. As a result 
the two terms in the numerator of Eq. (12) are counteractive, by which 
on the average 8 is small and H and LE become insensitive to variations 
of 6e, i* and rQ (and thus to variations of wind speed). 

We have seen that in the normal period a' is found to be 1 and 
_2 

8 = 20 W.m . On a clear summerday LE is of the order of several 
_2 

hundreds of W.m , so that then 8 can be neglected, by which 

LE = LEgp , (1*f) 

and consequently the Bowen ratio equals 

B = * 0 5 ) 

As noted before this result is also obtained when saturated air passes 
over a wet surface. On the other hand in literature often experimental 
evidence is reported for (\W) for non-saturated circumstances, but his 
refers mostly to daily mean values. A review of these observations is 
given by McNaughton (1976). This author deduced Eq. (15) theoretically 
for the case of a sudden step in surface wetness, assuming that the 
reciprocal eddy diffusivities becomes indefinitely large with height. 

In this study it is shown clearly that a' = 1 on the average but that 
there is a large random scatter, while furthermore (1^) and (15) are not 
valid in the dry July period. 

Nevertheless, there remains some intriguing questions: Is there a 
tendency for (short) crops not short of water to evaporate at its equili
brium rate LE™-.? and: Is there a physical or physiological reason for 
this? If there is a physical cause for (1*+) and (15) then, in our opinion, 
this must be searched in the mechanism of turbulent exchange of heat and 
mass. It is suggested that in unstable air the vertical transfer of heat, 
mass and momentum is maintained by so-called convective plumes 
(Kaimal and Businger, 1970). Possibly, within these plumes the partitioning 
of the available energy at the surface (Qx - G) into H and LE is described 
by (15). If this is true there can be an interaction between the plant-
cover and the thermal. Does the canopy play an active role, e.g. by opening 
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its stomata when a plume is passing? Or, reverse: Does the occurrence 

of a plume be triggered by a plant cover opening its stomata and 

causing a local instability due to the water vapor injected into the 

atmosphere? These are intriguing questions indeed on which at the 

moment we do not know the answer. But it is worthwhile to look at the 

energy-exchange process in this way.x 

It is noted before that for so-called saturated surfaces parameter 

a from the unmodified Priestley-Taylor model is often found to be 

1.26 for daily means of IE. This is not in contradiction with our 

a = 1.12 obtained for daytime hourly values. Namely, when it is 

assumed that during nighttime LE is negligible small, while (0K - G) 

is significantly less than zero, it can be shown that the daily mean 

of a is about 10 per cent greater than its hourly value during daytime. 

Indeed, it is found that a = 1.26 yields good results for daily values 

in the summer months (De Bruin and Strieker, 1982). 

Our results applies to a short vegetation for which the aerodynamic 

and the surface resistance are of the same order. This is illustrated 

in Fig. 7 where the ratio r V r is given. Except for the dry July period, 

r /r is of the order 1.5 which is in good agreement with the value 
C a. 

found by Thorn and Oliver (1977) for a similar surface in England. In the 

case of a tall vegetation with a dry foliage, r V r is much larger since 

r is than small due to the great surface roughness. In the limit r -»• 0 
LE reaches (Thorn and Oliver, 1977) 

™ = ̂ f- • (16) 

so that LE does not depend anymore upon (Qx - G) explicitly. Thus for 

tall vegetations it is not to be expected that the Priestley-Taylor 

model is applicable. Nevertheless, the correlation between <Se and 

-~ (0X - G) remains to exist also in the case of a tall crops, so that 

the Priestley-Taylor concept still may be useful. But then one should 

account for the contribution of evaporation of intercepted water to the 

total evaporative losses (Shuttleworth and Calder, 1979)• 

We found afterwards that the behavior of a and B can be understood 

with a coupled boundary layer-surface layer model (see next chapter). 
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Finally, It must be emphasized that our results refer to the 

summer months. Then (Q - G) is relatively large. In winter this is 

no longer true and it must be expected that then the (modified) 

Priestley-Taylor model will yield unrealistic results. 

7. Conclusions 

In this paper it is shown that for a short vegetation the hourly 

fluxes of latent and sensible heat can appropriately described by a 

modified Priestley-Taylor model Bq. (10) and (11). It has the same 

skill as the Penman-Monteith equation, which is more complete from a 

physical point of view but which requires more input data. An important 

reason why the Penman-Monteith equation can be simplified to the 

Priestley-Taylor formula is the fact that the saturation deficit and 

the equilibrium latent heat flux density (IEpyj) are correlated, due to 

the fact that both have a diurnal cycle. 
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APPENDIX 

The determination of the soil heat flux 

The soil heat flux density G is described by: 

G(z) = - x | £ , (AD 

where X is the thermal conductivity of the soil, T is the soil tempera

ture and z is the depth. In our experimental set-up G is measured at 

5 and 10 cm simultaneously with the soil temperature at 0 and 2 cm in 

the ground. 

The soil heat flux at the surface (z = 0) must be evaluated. 'For this 

Slob (unpublished) uses the following procedure: 

It is assumed that 9T/8z at the surface can be approximated by: 

(21) = A T ( A 2 ) 

V Az ' KPui) 

where AT is the difference between the soil temperature at 2 and 0 cm 

and Az = 2 cm. Furthermore the assumption is made that X in the top 

layer of 2 cm is constant during a period of approximately one day 

taken from ̂ .00 GMT till M-.00 GMT the next day. The unknown value of X 

during the period is obtained as follows: Firstly, the quantity I(z) 

is introduced, which is defined by: 

V T G(z,t )-G(z,t +T) 
I(z) = J |G(z,t) °__ 2 (t-tQ)|dt , (A3) 

where t is the time, t = M-.OO GMT and T = 1 day. It is seen that I(z) 

is the time integral of the absolute value of G(z) minus the trend 

over 1 d. It is a measure for the diurnal amplitude of the soil heat 

flux density. 
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Now it is assumed that I(z) decreases exponetially with depth. 

This is the case when X/(p c) (p is the density and c the specific 
o S 

heat capacity of the soil) is constant with the depth and when there 

is no trend. This leads to: 

§ = ̂  W) (h) 

Then 1(5) and 1(10), these are the values of I at 5 cm and 10 cm 

respectively, can be evaluated from the available data. 

Since X is assumed to be constant over T it can be obtained from 

Eqs. (A1)-(A3) by taking z = 0. This yields: 

X = - 1(0) Az 7 AT(t )-AT(t +T) 
|AT(t) - 2 2 (t_t ) | d t 

T O ' 

-1 

(A5) 

Then G follows from (A1). 



IV.1 

t IV. A boundary layer model coupled to the Penman-Monteith equation 

Abstract 

A model Is presented that describes the evolution of air temperature, 

humidity and the surface fluxes of sensible heat and water vapor, 

when the initial profiles of temperature and humidity are known to

gether with the radiative forcing and the surface wetness. The model 

can be regarded as an extension of the one by Perrier. In our study 

the description of the atmospheric boundary layer is more complete, 

e.g. the boundary layer height varies in time, while at its top the 

fluxes of sensible heat and water vapor are parameterized. For this 

a simple description is used by which a relaxation equation for the 

specific humidity deficit is obtained. With our model the Priestley-

Taylor parameter a is calculated as a function of the surface wetness 

and other parameters. Good agreement with observations is found. 

f 
Submitted to Journal of Applied Meteorology. 
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List of symbols 

a entrainment parameter for sensible heat 

b entrainment parameter for moisture 

c constant in Swinbank formula 

h boundary layer height 

p air pressure 

q specific humidity 

q specific humidity of the well-mixed layer 

between z = Zj- and z = h 

q saturation specific humidity 
W 

r_ aerodynamic resistance 
r surface resistance for water vapor 

•W a t T = 9m 

s idem at T = 0„ r r 

t time 

t initial time 

t * idem 

u wind speed 

z height 

z L height of the surface layer 

A albedo 

B the Bowen ratio 

E evaporation 

G soil heat flux density 

H sensible heat flux density 

I heat-input integral 

K turbulent exchange coefficient 
X 

K incoming shortwave radiation 

L incoming longwave radiation 

Q net radiation 

T air temperature 

T d dew point 

Y dew point depression 

( - ) 

( - ) 

or2) 
(m) 

(N.nf2) 

(kg.kg"1) 

(kg.kg -1) 

(kg.kg -1) 

(s.rrf ) 

(s.m ) 

or1) 
or1) 
(s) 

(s) 

(s) 

(m.s -1) 

(m) 

(m) 

( - ) 

( - ) 
P 1 (kg.nf .s~ ) 

(W.m-2) 

(W.m-2) 
(m.K) 

(m2.s_1) 

(W.m-2) 

(W.m-2) 

(W.m-2) 

(K) 
(K) 
(K) 
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Ye quantity defined by eq. (8) 

a Priestley-Taylor parameter 

Y = Cp /A ^ 

Y* = Yd + ^ ) 
c 

ê = i f O T 2 > h 

- sa 
" dz 

o 
6q 

6 

6m 

9 
0 0 

A 

P 

o 

T 

A9 

Aq 

for z > h 

quantity defined by eq. (19) 

saturation specific humidity deficit 

quantity defined by eq. (35) 

potential temperature 

potential temperature of the well-mixed 

layer between z = Zr and z = h 

potential temperature at the surface 

defined by eq. (20) 

latent heat of vaporization 

density of air 

the Stefan Boltzmann constant 

time lag 

jump in 6-profile at z = h 

jump in q-profile at z = h 

(K) 

(-) 

or1) 

(K_1) 

(K.m-1) 

(nf1) 

(K.m) 

(kg.kg-1) 

(kg.kg-1) 

(K) 

(K) 

(K) 

(J.kg-1) 

(kg.nf3) 

(W.m-2.K-l+) 

(s) 

(K) 

(kg.kg-1) 
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1. Introduction 

The Penman-Monteith equation (Monteith, 1981) describes the surface 

flux densities of water vapor (E) and sensible heat (H) as functions of 

air temperature (e) and specific humidity (q). In this concept 9 and q 

are assumed to be independent variables, i.e. they do not depend on H 

and E. 

On the other hand, models have been developed that describe the 

evolution of the temperature and humidity of the lowest layer of the at

mosphere as a function of E and H (e.g. Driedonks, 1981). In these models 

H and E are assumed to be independent quantities. In reality there is an 

interaction between 8 and q on the one side and H and E on the other. 

When at the surface heat and water vapor are supplied to the atmosphere 

the temperature and moisture content of the air will be influenced. In 

turn this reflects on the surface fluxes. 

In a recent paper Perrier (1980) pointed out this interaction in the 

Penman-Monteith equation. He constructed a simple model in which the re

lation between 9 and q and the surface fluxes is taken into account. In 

this paper a model is presented which can be regarded as an extension of 

that by Perrier. 

The behavior of the soil-atmosphere system is determined also by external 

factors. Among other things, these are the amount of energy and the 

amount of water available at the surface. We will confine ourselves to 

extensive homogeneous cropped terrains during daytime conditions. Then 

the surface wetness can be described by the surface resistance r (Monteith, 

1965, 1981). Furthermore, a vegetation insulates the surface efficiently, 

so that usually the soil heat flux density (G) is small compared to the 

net radiation (0*). During daytime G can be taken as a small fraction of Q*. 

Then the sum of the sensible and latent heat flux densities H + XE (X = 

latent heat of vaporization) is determined by Q* only. This quantity de

pends mainly on solar radiation and, in first order, it can be regarded as 

a purely external factor. For that reason we will describe with our model 

the partitioning of Q* - G into H and XE rather than the surface fluxes H and 

E themselves. 

For this we will use the Priestley-Taylor parameter a, defined by 
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A E = c t ^ (Q* - G) , (1) 

where y - c /A, c the specific heat of air at constant pressure and 

s the slope of the saturation specific humidity-temperature curve at air 

temperature. 

We prefer to use a rather than the Bowen ratio B = H/AE as a measure 

for the partitioning of (0* - G) into H and AE (i) for practical 

reasons: in the last several years a large number of papers have been 

published on a and (ii) for physical reasons: in the case that satu

rated air passes over a wet surface (i.e. r = 0) a = 1 and B = y/s 

(this follows directly from the Penman-Monteith equation treated in 

section 3.2). Since s depends on 6 this implies that for that case B 

still varies with 6, while a is constant for all temperatures. 

Another external factor is the wind speed. The influence of this 

weather variable on the surface fluxes can be described by the aerody

namic resistance r (Monteith, 1981). 

The main differences between the model of Perrier and ours are (i) in 

our model the height of the boundary layer h varies as a function of H 

and time, whereas Perrier took h constant, and (ii) in the model of 

Perrier there is no air exchange at the top of the boundary layer. In 

our model there is a flux of heat and moisture at z = h due to the 

entrainment fran above of warm and generally dry air into the boundary layer. 

Because Perrier assumed that the boundary layer is closed at the top, 

while heat and moisture are supplied continuously to the atmosphere at 

the surface 9 and q can reach unrealistically high values in his model. 

For the development of our model we will use a boundary layer model 

recently published by Driedonks (1981, 1982). 

We intend to calculate a as a function of the surface resistance r for 

different values of the aerodynamic resistance r and for different en

trainment rates of dry air at the top of the boundary layer. This will 

be done for a typical summer day in the Netherlands. 

Finally comparisons between observed and calculated values of a will be 

made. 
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2. The model of Perrier 

Perrier (1980) started from a schematic picture of the atmosphere 
-soil- plant system as shown in Fig. 1. Above the canopy there is a 
surface sub-layer (Perrier used the French denoting sous-couche 
limite de surface) to which an exchange coefficient (1/r„) can be 
assigned. 

Above this sub-layer there is a turbulent layer (couche turbulente) 
characterized by temperature T, dew point T^ and wind speed u. The 
height of this layer (h) is constant, while at z = h the system is 
closed, so that there vertical fluxes of heat and water vapor are 
zero. 

Perrier ignores further details of the structure of the turbulent 
layer and the surface sub-layer. 
He states without derivation that the evolution of T and T-, are 
described by 

d[T(t) - T(t0)] 
p c p h dt — = H (2) 

„ d[T-,(t) - T,(t )J 
™d P g

P
h f dt - * * > (3> 

where p is the air density and t the initial time. 
From (2) and (3) a differential equation for the dew point depression 

(»+) 

is obtained 

Y = 

: 

dY 
dt 

T - T d 

_ H-y/s 
P CP 

XE 
h (5) 

Finally, using the Penman-Monteith equation for E and H, Perrier 
arrives at a relaxation equation for Y, which we present here in 
the form 
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H = 0 E = 0 

_r_ H 

TURBULENT LAYER 
(U,TandTd) 

'1 
SURFACE SUB-LAYER ( r a ) 

VEGETATION 

y/////////////A^y///////. / 

Fig. 1. Schematic picture of the soil-plant-atmosphere system used 

by Perrier (1980). 
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dt T T ' 

where the time lag T is given by 

T = ( r a + in r c ) h M 

and 

y = _x_ ai^s (8) 
e S+Y pc c 

Perrier assumes that r is independent on weather variables. 

Although Perrier's description, especially that of the atmospheric 

boundary layer, is not complete, it is a very elegant first step 

to model the interaction between 6 and q and the surface fluxes. 

The main imperfection of the model of Perrier is the fact that in 

his description the temperature and humidity of the air can reach 

unrealistically high values. This is due to the assumption made 

concerning the atmospheric boundary layer. As seen in the intro

duction this can lead to errors in the calculated surface fluxes. 

In our extension of the Perrier model a more realistic description 

of the boundary layer is used. 

3. Our model 

3.1 The boundary layer sub-model. 

To describe the relevant boundary layer parameters we will 

use the recent papers by Driedonks (1981, 1982) concerning the dy

namics of the well-mixed atmospheric boundary layer. On a clear 

day the profiles of the conservative quantities 0 (= potential 

temperature) and q (specific humidity) have the approximative forms 

shown in Fig. 2. 

x Here 9 is defined with respect to the surface air pressure in stead of 

1000 mb generally used. By this 9 equals the air temperature at z = 0. 
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Fig. 2. Profiles of potential temperature (Q) and specific humidity (q) 
in the well-mixed atmospheric boundary layer. 

Up to z = h (= the height of the boundary layer) q and e are constant 

at q and 6 respectively due to turbulent mixing. At z = h the boun

dary layer is capped by an inversion; for z > h there is stable air 

characterized by yQ = (d9/dz)z > h and y - (dq/dz)z > h. The transition 

layer between the well-mixed layer and the air aloft is usually small, 

so that the profiles can be approximated as shown in Fig. 2: at z = h 

they have a jump characterized by A0 and Aq. 

In the surface layer (constant flux layer) the gradients of 0 and q 

are sharp: going down from the top of this layer (z = z-r) to the ground 

8 and q increase rapidly during daytime from 6 and q to their surface 

values 6 and q , especially close to the ground. 

Usually the thickness of the surface layer is small compared to h, so 

that its heat capacity can be neglected. 
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The dynamics of the atmospheric boundary layer can be described as 
follows. The atmosphere is transparent for shortwave (solar) ra
diation, implying that there is no direct heating of the air by 
the s"un. The surface is heated by the sun, in its turn, the surface 
heats the air. This leads to convective production of turbulence in 
the boundary layer. If the wind speed is different from zero there 
is also mechanical production of turbulence due to wind shear. The 
turbulence maintains a vertical flux of heat. Since the heat flux 
decreases with increasing z the temperature of the air increases. 
On clear days with sufficient net radiation the turbulence is vigo
rous enough to maintain a well-mixed layer with vertical profiles as 
depicted in Figure 2 . 
In daytime the height of the boundary layer generally increases in 
time. The growth of h is caused by the entrainment of stable air 
above the inversion into the boundary layer. The entrainment is 
driven by turbulent eddies that intrude into the stable air aloft. 

To simplify matters, we will restrict our study to cases in which 
only convectively produced turbulence is of importance. This con
dition is met most easily on clear summer days; also the early mor
ning hours have to be avoided (Driedonks, 1981). Furthermore we ne
glect the influence on the temperature of the divergence of longwave 
radiation and the effects of horizontal advecticn. 

3.1.1 Parameterization of the entrainment of dry and warm air at z = h. 

When the boundary layer is growing stable air with a higher 
potential temperature enters it. As a result there is a downward heat 
flux at z = h. For practical applications good results are obtained 
when this flux is taken proportional to the flux at the surface 
(Tennekes, 1973; Driedonks, 1961). Together with the fact that (i) 6 
is constant in the boundary layer and (ii) the transition layers at 
the surface and the inversion are negligibly small, this leads to 

—JH - a H (0) 
dt " pc h ' w 
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where a is a constant equal to 1.2 (Driedonks, 1981). 

The specific humidity q of the boundary layer is altered by 

(i) evaporation at the surface of liquid water and (ii) the entrain-

ment of generally drier air at the top of the boundary layer. This 

implies that q depends on the rate of growth of h (dh/dt) and of 

the profile of q for z > h, i.e. on Aq and y (Driedonks, 1981). 

In this study we will use a simplified parameterization for dqVdt, 

which corresponds to the simplified equation (9) for dfl/dt. We thus 

approximate dq /dt by 

% -b_E 
dt p h 

(10) 

in which b is a parameter describing the rate of entrainment of dry 

air at the top of the boundary layer. When b = 1 there is no flux of 

moisture at z = h, while when b = 0 the humidity increase due to the 

surface evaporation is balanced by the humidity decrease at the top 

of the boundary layer caused by the entrainment of dry air. In that 

case q is constant. Also b can be negative. In that case the humidi

ty decrease due to entrainment exceeds the effect of surface evapo

ration. We will assume that b is constant for any day, but we will 

allow it to vary from case to case. 

Data on q are scarce. Driedonks (1981) published observations of q 

at Cabauw for 8 days. When variations of q of 15% or less are ignored, 

q was about constant on h-5 days, implying that b was about 0 in 

those cases. Furthermore on one day q increased clearly, while on 

.two others q^ tended to decrease. From this information we estimate 
Til 

that usually b varies between -0.5 < b < 0.5. 

It will be shown in section 3«2 that the surface fluxes depend on the 

specific humidity deficit 6q at the top of the surface layer (at z = z-/) 

defined by 
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6q = ̂ (VPL
) "%> (11) 

where q is the saturation specific humidity at 9 = e and air 
pressure p = pT (= p at O . We will assume that pj- is constant in 
time. Usually, the surface layer is so thin that the variation of 
p in this layer can be neglected. For these reasons we will omit 
the dependence of q on p in the following. 
With these simplifications q is a function of 6 only. This is a 
non-linear relationship. To simplify matters we now approximate 

^V^V+^m-V' (12) 

where 9 is a reference potential temperature which is the average 

of 6„ on a particular day, and s the derivative of q at 6 = 9„. m ' r w r 
In this way we get for 6q: 

6q=(qw(9r) - q j + s ^ - 6p). 03) 

Here q„(9„) and s_ are constant, ^w r r 
Then d(6q)/dt equals 

di&i = _ ^ 2 i + a £ i , o _J1 ML.) 
dt dt s r dt * *• *} 

With (9) and (10) this leads to 

a(fir.\ a s , H - b Y AE 

filial = E L__ a*) 
dt pc h * u p ; 

We recal l that y = - ^ . 
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3.1.2 The evolution of 0 and h 

We are dealing with conditions under which the production of 

turbulence is purely convective. Then we can use the analytic ex

pressions for the evolution of h and 9 found by Driedonks (1981, 

1982): 

'2(2a-D (Kt)-60) 
h(t) = v/ (16) 

Ye 

and 

e m ( t ) = 6oo + ̂ 9 2*T h<« > W 

in which 
t 

(18) 

where t is the time of effective sunrise, i.e. the time at which H 
becomes positive. The quantities 8 and 6 are determined by the 
initial values of A6, 8 and h (denoted with an index o): 

and 

6 o = ho A e o - * ^ e h o 2 (19) 

6~ = 9™ + A6 - ya h . (20) 
oo mo o '9 o 

In Fig. (3) the meaning of 6 and 9 is clarified. 
Eqs. (16) and (17) require that I(t) > 6 and h > 1.2 h . In most 
cases these conditions are satisfied a few hours after t . We will 
start our calculations at t = t0* chosen such that we do not run 
into problems. 
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0 O0 m 0 0 0 

Fig. 3. Initial temperature profile. The shaded area represents 6C 

Also %oQ is indicated, (from Driedoriks, 1981). 

3.2 The surface fluxes. 

3.2.1 The Penman-Monteith equation for E and H. 

The simplest model for the fluxes of heat and water vapour 

from vegetative surfaces containing the essential physics is given 

by Mbnteith (1965, 1981) who applied Penman's equation to a vege

tation. The Penman-Monteith equation reads 

s(Q* - G) + (pcT/r)6q 
XE = ^—- (21) 

s + y 

and 

H = 
Y*(Q* - G) - (pCp/r )6q 

(22) 
S + y 
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r 
where y* = y(1 + — ) . We recall that Q* is the net radiation, G the 

soil heat flux density, y = c_/X and rQ and r are the aerodynamic 
P cL C 

and surface resistance respectively. As Perrier we assume that r 

depends not on weather variables and that it is determined only by 

soil moisture conditions. 

In our study we will apply (21) and (22) to the entire surface layer, 

e.g. the level at which 6q must be specified is z = z,. 

Then the aerodynamic resistance is 

(23) 

in which z , is the roughness length and K the turbulent exchange 

coefficient for sensible heat and water vapor. 

The specific humidity deficit is given by (11) and approximately 

by (13). 

Eqs. (21) and (22) are derived from a set of equations which are 

also important for the following. These are 

(i) The energy balance equation 

Q* - G = H + XE (2M-) 

and 

( i i ) The bulk formulas for H and XE: 

e - e 
F a 

and 

^ = Xp %l6i " q* . (26) 
a c 
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In the model of Monteith the canopy is approximated by a hypothe
tical surface with a surface resistance r for water vapor, which 
is a result of the integrated effect of all stomata of the actual 
leaves of the canopy. Also it is assumed that this hypothetical 
surface has the same optical and aerodynamic properties as the ac
tual surface, e.g. it has the same albedo and roughness length. 

3.2.2 Net radiation and soil heat flux. 

Because a vegetation insulates the surface efficiently from 
solar radiation the soil heat flux density G of a cropped surface 
is usually small compared to the net radiation Q*. For practical 
calculations it is permitted to take it as a small fraction of Q*. 
For a grass cover at Cabauw during daytime, De Bruin and Holtslag 
(1982) found: 

G = 0.1 Q* (27) 

We will adopt this empirical expression in this study. 

Net radiation can be written as 

Q * = (1-A) K+ - a Q^ + L* , (28) 

i J, 

where A is the albedo, K and L the incoming short- and longwave 
radiation and a the Stefan-Boltzmann constant. 
Furthermore 9 is expressed in K. ¥e recall that due to our defi
nition of 0 at the surface 8 equals the surface temperature T . 
In (28) it is assumed that the surface is a black body in the 
longwave region. 
For the time being we restrict ourselves to cloudless days and we 
approximate L by (Rwinbank, 1963) 

L^coO^, (29) 
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where 6 is In K and c is a constant (c = 9.h 10" K~ ). 

Next we use a series development for 9 ̂  which yields 

ej* = ej*" + h 9 3 (9 -9 ). Consequently 

Q" = C " h° em3 ̂ s-V • (30) 

Here Q* i s defined bv 

* _ ,* A\TT4- _ „ ^ . _ _ „ 6 

V = ( 1_A)K " 0 em + c a 6m ' ( 3 1 ) 

The last term of (30) is a relatively small correction term, 

which is estimated by us as follows. 

By virtue of (22), (25) and (27) (8s-9m) can be expressed in Q ^ and 6q 

0-9 v* Q * _ pcP 6q 

s+y* m ra S+Y 

m 

Pc„ n a -.* 

(32) 

^£ + Q ^ l h Q e_3 
s+y' 

r_ _..,» m 

This expression will be used for the calculations of Q*. In this 

way the influence of 9„ and 9 on 0* are taken into account. This 
s m 

is another extension of the model of Perrier (1980), because he 

assumed that Q* - G is given. 

3-3 Relaxation equation for <Sq 

Substitution of the Penman-Monteith formulas (21) and (22) 

into the differential equation (15) for 6q leads, after some algebra, 

to the following relaxation equation 
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d(6q) 
dt 

In which 

T - r a 

T 

l-i h a « 

(6q) e 

T 

S+Y* 

3r + by 

(33) 

(3W 

and 

K 

(Q* - G) r (s_ a Y " - by s) 
(6q)e =

 a - i — - , (35) 
pcp (a s r + by) 

It should be noted that when we take a = b = 1 and s = s we 
retrieve the eqs. (6)-(8) which were derived firstly by Perrier 
However, in our concept h is variable. 
The lag time T is proportional to h. Because usually h grows in 
the morning relatively rapidly T will have the same behavior. 
The quantity (6q) represents the external forcing, since it con
tains (Q* - G). When the resistances r. and r are constant, (6q) 
will approximately behave as a sine wave with its maximum at about 
local noon. 

h. Comparison with the model of Perrier. 

In order to get an impression of the differences between the model 
of Perrier and ours we will consider here the simple case, also 
treated by Perrier (1980), that all variables are constant, except 
(Q* - G). The latter jumps at time t = 0 from one constant value to 
another. Then 6q will reach the new value of (6q) , while d(6q)/dt 
will becomes zero. Consequently the Bowen ratio B(= H/XE) goes to: 

B * | ^ . (36) 

X 
sY*t6q. 
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This follows directly from (15). In the "closed boundary layer" 

concept of Perrier a = b = 1 (and s = s ), so that B -»• y/s, 

which implies that the Priestley-Taylor parameter a -*• 1 (This in 

virtue of (1) and (2^)). In our approach a = 1.2, while we found 

for b that it can vary between about -0.5 and 0.5. Therefore B 

lies between about -0.^ y/s and +0.H y/s. 

This example illustrates that our extensions of the Perrier model 

can have significant effects. 

The example used here, however, is not realistic. This can be 

seen as follows. When we take s = s*10 J K , r = 50 s.m , 

h = 500 m, b = 0 and a = 1.2 the time constant T is at least 7 h 

(r >, 0). Due to the properties of the relaxation equation (32) 6q 

will reach a new equilibrium state at about t = 3T. This implies 

that this is the case after at least 20 h. In reality, therefore, 

an equilibrium never will be reached. 

In the next section we will treat more realistic examples. 

5. Results from model calculations. 

In this section we will apply our model under conditions typical for 

a clear summerday in the Netherlands. We will calculate the Priestley-

Taylor parameter a for different values of (i) the parameter b which 

determines the entrainment of dry air at the top of the boundary 

layer (ii) the surface resistance r and (iii) the aerodynamic re

sistance r . The main lines of our calculation scheme are given in 
a. 

the Appendix. As initial conditions we used the data observed at 

Cabauw on 31 May 1978 (Driedonks, 1981). These are at about 7 GMT: 

h = 180 m, 6^ = 18.5 °C, 6q = 5 gAg and ye = 5-10"3 K.nfTtfe also 

used the observed solar radiation data (£ hourly values). 31 May 1978 

was a typical summerday. In Jig. h the diurnal variation of the cal

culated a is shown for different values of r„. The aerodynamic re-

sistance rQ is taken 50 s.m" and b = 0 (i.e. q„ = constant). It is 
cl III 

seen that a has a diurnal variation, but during the midday hours, 

when the fluxes are largest, a is fairly constant. Also the curves 

referring to different values of r are very similar. Therefore, they 

In fact y was not constant on 31 May 1978, we took a mean value. 
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oc 

1.5 

0.5 

— i — i 1 1 • " r 

b=0.rQ = 50 s.m-1 

rr 

12 15 GMT 

Fig. 4. Daytime variation of the computed a for different values of 
r ; b = 0 and r = 50 s.m~^. 

can be characterized by one point. For this we chose a... which is the 

value of a at 11 GMT. This reduces the information to be presented 

considerably. 

In Fig. 5 a^ is shown as a function of r for different values of b, 

while r is taken constant at r = 50 s.m-1. The main features are: 

(i) a,., varies between 1.2 and 1 .k-5 at r = 0 and equals about 0.6 at 
-1 -1 

r = 270 s.m .In the region between r = 30 and r = 120 s.m 

(a typical range under normal conditions in the Netherlands) a^ 

varies between 0.85 and 1.25. These results are in good agreement 

with the a values found by De Bruin and Holtslag 0982). 

(ii) The dependence of a on b is relatively weak and is insiginificant 
-1 

for r > 150 s.m . 
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(iii) When r = 30 s.m" which is about the minimum value of r for 

grass when the root zone is well supplied with water and when 

the foliage is dry, o ^ is found to be about 1.2 which agrees 

well with a*1.3 often observed for well-watered surfaces.(see 

e.g. De Bruin and Keijman, 1978, and Monteith, 1981). 

(iv) A typical summer value of r for a pasture in a moderate cli-
1 

mate is 60 s.nf (Them and Oliver, 1977; De Bruin and Holtslag, 

1982). Then a... is about 1, a value often reported in the li

terature (McNaughtcn, 1976; Perrier, 198O). 

In Fig. 6 the dependence of the calculated a11 on r and r is shown. 

This Figure refers to b = 0. We can conclude that for rc < 120 s.m" 

a ^ depends only sligthly on r , but for r > 120 s.m-1 a is more 

sensitive to variations of r . Generally, r_ increases with decreasing 

wind speed. Thus the model predicts that when the surface is dry a de

creases with increasing wind speed. 

Usually, r < 120 s.m so that in most cases the wind speed has a 

minor influence on a and thus on the surface fluxes. This agrees with 

the findings of De Bruin and Holtslag (1982). 

In Fig. 7 the calculated and observed values of 0*, H and XE are de

picted for 31 May 1978. For the calculations we used b = 0, 
-1 1 

r~ = 50 s.m and r = 60 s.m" . 
a, C 

It is seen that Q* is simulated well by the model. Reasonable results 

are obtained also for H and XE. At the end of the day the calculated 

fluxes deviate from the observed one; the measured H's then are greater. 

An explanation for this is that often r increases at the end of days 

with a relatively high evaporation rate. 

At the end of such days the water supply in the root zone stagnates 

after which the plants close their stomata. 

The analysis given above reveals that on clear days a is mainly deter

mined by r . It is interesting to investigate whether observations of 

a and r behave as predicted by the model. In Fig. 8 a ^ and the cor-
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Fig. 7. Calculated and observed Q* (top) and H and XE (bottom); 

Cabauti 31 May, 1978. 
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responding value of r are plotted as observed for grass at Cabauw 

in the summer of 1977. For more information on these observations 

see De Bruin and Holtslag (1982). The data depicted in Fig. 8 refer 

to hours around 11 GMT during which the averaged net radiation was 

at least ̂ 00 W.m . Then it is likely that the conditions were con-

vective. In Fig. 8 also the curve is drawn representing the relation 

between a... and r as calculated with our model taking b = 0 and 

r = 50 s.m" , using the initial data observed at 31 May 1978, which 

are typical for a convective day in the Netherlands. 

From Fig. 8 we may conclude that the results of our model are en

couraging; it predicts the dependence of a on r for convective days 

rather realistically. 

6. Discussion and conclusions 

In this study a coupled model for the surface fluxes of sensible 

heat and water vapor and the atmospheric boundary layer is presen

ted. With this model we calculated the daytime variation of the 

Priestley-Taylor parameter a. The model can be regarded as an ex

tension of the one by Perrier (1980). Perrier pointed out that in 

the Penman-Monteith equation the air temperature and humidity are 

not independent variables, but that they are related to the surface 

fluxes. He constructed a simple model in which he accounted for 

this interrelation. However, his description of the atmospheric 

boundary layer is very crude. He assumed that it is closed at the 

top, while its height h is constant. A consequence of these as

sumptions is that the air temperature and humidity can reach un-

realistically high values, which can lead to wrong estimates of the 

surface fluxes. 

The present model uses a more complete description of the boundary 

layer. For this we applied the boundary layer model of Driedonks 

(1981, 1982) derived for clear days with sufficient net radiation. 

In this description h is a function of the heat input at the surface. 

Also the fluxes of heat and moisture at the top of the boundary layer 

are taken into account in our model; a simple parameterization is 
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vised. The fluxes at z = h are assumed to be proportional to the sur

face fluxes. 

With our model we found the following: 

(i) a depends mainly on the surface resistance for water vapor rc« 

It varies between about 1.2 at r = 0 to a = 0.6 at 
1 1 

r = 250 s.m . In the range 30 < rc < 120 s.m , which is a 

typical range found at Cabauw, a varies between about 0.8 and 

1.2 and is on the average about 1. This is in good agreement 

with observations (see Fig. 7 ) . 

(ii) The parameter b describing the entrainment of dry air at the 

top of the surface layer is not very important, except for 

small values of r„. 
-1 

(iii) Only when r > 120 s.m" the aerodynamic resistance r (and 
thus the wind speed) has significant influence on a. For 
r < 120 a is almost independent of the wind speed. 

Our model illustrates the dependence of the surface fluxes on the 

various parameters involved. For this we made some simplifications 

by which our equations become more transparent. In principle, the 

model can also be used for forecasting purposes. Then seme of our 

simplifications must be replaced by more sophisticated descriptions. 

For instance our parameterization of the entrainment of dry air at 

the top of the boundary layer can be replaced by a more complete 

one (Driedonks, 1981; Reiff et al., 1982). However, it is still 

necessary to specify the surface wetness characterized by r . 

This quantity can be very variable, in space but also in time, while 

its value is very uncertain. This opens the question whether it is 

worthwhile to adopt this type of model for weather forecast purposes. 

For these it is perhaps much more convenient to characterize the sur

face wetness directly with the Priestley-Taylor parameter a as pro

posed by De Bruin and Holtslag (1982) and others. The results of our 

study support this approach because we found with our model that a 

is mainly determined by rn; it is only slightly dependent on other 

factors. 
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Appendix 

The calculation scheme 

The main lines of our calculation scheme are described in 

the following. 

A time step of half an hour is used. It is assumed that within 

this interval h, K , Q*, x and (5q) are constant. Then (33) 

can be solved exactly. The calculations start with the determi

nation of a new value of 6 (eq. 17), T (eq. $+) and (6q) 

(eq. 35). For the latter we need Q*- G, which according to (27) 

equals 0.9 Q*. Net radiation is calculated with (30) from K+ 

(which is given), the new 9 values and 9 from the previous 

time step. The error made by this is small, because 9 is part 

of a small correction term). 

Then 6q is computed from (33)* After this a better estimate of 

Q* is obtained from (30) and (32). The next steps are the eva

luation of H and XE frcm (21) and (22), of the Priestley-Taylor 

parameter a and of the heat-input integral I [eqs. (1) and (18)], 

From the latter h for the next time step can be determined with 

(16) and the calculations can be repeated. 
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V. The Priestley-Taylor evaporation model applied to a 

large, shallow lake in the Netherlands. 

Abstract 

The applicability of the model of Priestley and Taylor (1972) 

for evaporation of saturated surfaces is examined for the former 

Lake Flevo (The Netherlands). This lake had an area of about 

*460 km and an average depth of 3 m. Daily values of evaporation 

in the period July-September 1967, determined with the energy-

budget method, are compared with the corresponding estimated 

values obtained by the Priestley-Taylor model. The agreement 

appears to be satisfactory. The diurnal variation of the para

meter a of the Priestley-Taylor model is found to be pronounced. 

From standard meteorological observations at Oostvaardersdiep, 

a station at the perimeter of the lake, and an energy-budget 

model of Keijman (197^) an indirect extension of the available 

time series is obtained. In this way energy-budget data for the 

period April-October 1967 became available. Analysis of this data 

set leads to the preliminary conclusion that a has a seasonal 

variation. This is due to the fact that there is a linear relation 

between the daily latent heat flux LE and the equilibrium latent 

heat flux LE™-. with a non-zero intercept. 

+ Published in J. Appl. Meteor., 1979, 18, 893-903 

J.Q. Keijman as co-author. 
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List of symbols 

c1 constant (-) 
-2 c0 constant (W.m ) 
-1 -1 c specific heat of air at constant pressure (J.kg .s ) 

P 2> f(u) function of wind speed (W.nf ) 
qg specific humidity at 2 m (-) 
q saturation specific humidity (-) 
s slope of saturation specific humidity - temperature curve (K~ ) 
u wind speed (m.s~ ) 

/ - 2 - 1 
E evaporation (kg.m .s 
G surface heat flux (density) (W.m ) 

_2 
H sensible heat flux (density) (W.m ) 
K4 global radiation (W.m-2) 
L latent heat of vaporization (J.kg" ) 
Q net radiation (W.m ) 
Tp air temperature at 2 m (K) 
T sub-surface temperature (K) 
T surface skin temperature (K) 
a Rriestley-Taylor parameter (-) 
8 the Bowen ratio (-) 

(K_1) 
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1. Introduction 

Priestley and Taylor (1972) found that evaporation from saturated 
surfaces is empirically related to the total energy available for 
the latent and sensible heat fluxes according to the relation 

m = « 4 ; (Q - G) , (1) 
S+Y ' 

where E is the evaporation, L the latent heat of vaporization, a the 
so-called Priestley-Taylor parameter, s the slope of the saturation 
specific humidity-temperature curve, Q x the net radiation, G the 
surface heat flux, y = c /L and c is the specific heat of air at 
constant pressure. The term S/(S+Y)(Q.K - G) is often denoted as the 
equilibrium latent heat flux LEnyy 

In fact the Priestley-Taylor model implies that LE is proportio
nal to the first term of Penman's combination equation Penman (19*+S): 

LE = if7(QX-G)+^f(u){qs(Ts)-q2}, (2) 

where f(u) is a function of the wind speed u, q_ is the specific 
humidity and q (Tp) the saturation specific humidity at Tp, both at 
2 m. 

From this it follows that the first and second terms are proportio
nal to each other (Ferguson and Den Hartog, 1975) which implies that 
LE is also linearly related to the second term of Penman's equation 
(De Bruin, 1978). 

For saturated land surfaces the soil heat flux G is small compared 
to Q x when 2l4-hour values are considered. Thus, for this case, the 
Priestley-Taylor model can be read as 

LE^if^Q* (3) 
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It is interesting to note that about twenty years ago Makkink 

(1957) proposed an empirical relation for saturated grass surfaces 

very similar to (3), namely 

^ = C1 iJf ** + < * ' (l+) 

X 

where K is the daily global radiation and c. and Cp are constants 

(c.| is approximately 1, C2 is small, about -8 VJrrf ). From a practi

cal point of view (*f) is to be preferred to (3) ? because K is much 

easier to evaluate than Q*. On the other hand it is to be expected 

that the value of ĉ  depends on crop factors such as albedo and 

roughness. 

In advection-free conditions an average value of a = 1.26 was 

obtained both for water surfaces and saturated land surfaces. 

Several authors have confirmed this value: Ferguson and Den Hartog 

(1975), Stewart and Rouse (1976 and 1977), Davies and Allen (1973) 

and Mukammal and Neumann (1977). Some of these authors found the 

same value for small, shallow lakes, e.g. Stewart and Rouse (1976 

and 1977). This is a somewhat surprising result, because the in

fluence of advection on the energy-budget df small lakes is not ne

gligible. This suggests that there is no need to be unduly strict 

about the range of applicability of the Priestley-Taylor model. 

However, this does not hold for very small water surfaces, such as 

an evaporation pan. In that case advection influences the value of 

the parameter a considerably (Mukkammal and Neumann, 1977). 

Tsarm-Wann Yu (1977) studied the diurnal variation of a using 

data of the Wangara experiment (Clarke et al., 197D. His findings, 

however, apply to an unsaturated surface and will not be considered 

here. 

Combining Eq. (1) with the energy-budget equation 

LE + H = Q x - G, (5) 

(where H is the sensible heat flux), we obtain a relation between a 

and the Bowen ratio 8 = H/LE: 
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a = 3Yt1+s> or (6a) 

e * 1 x 

p a s 

1-ct 
a 

(6b) 

Hicks and Hess (1977) analysed several sets of open water data and 

found that the empirical relation 

3 = 0.63 i - 0.15 (7) 

gives a better fit to the data than Eq. (6b) with a = 1.26. 

Eq. (7) leads to 

LE = 0.8& I O.63Y ( Q K " G ) (8) 

It is the purpose of this paper to test Eqs. (1), (6a), (6b) and 

(8). We will use the data collected in the summer and autumn of 1967 

during the Flevo-project. We will also investigate a possible diurnal 

and seasonal variation of the parameter a. 

2. Experimental 

In the framework of a reclamation programme of a part of Lake 

IJssel (The Netherlands) in 1966/1967 a dike was built in Southern 

Flevoland. This dike enclosed together with the old coastline a water 

area of *467.6 km . In this way a temporary lake, called Lake Flevo, 

was created. Figure 1 shows a map of the area under consideration. In 

the summer and autumn of 1967 detailed micro-meteorological and hydro-

logical data were collected at this lake. 

At the main station, at the centre of the lake, net radiation, wind 

speed at 2, ̂  and 8 m, dry and wet bulb temperature at 2 and h m, 
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s a is 
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water temperature at several depths, Including the water surface, 

and the heat flux from the water body into the underlying soil 

were measured continuously. At several places (see Figure 1) pre

cipitation and water-level changes were determined. At four secon

dary stations along the perimeter of the lake, standard meteorolo

gical data were collected, namely air temperature and humidity at 

screen height, wind speed at 3 m and the duration of sunshine. Ex

tensive measurements of turbulent fluctuations of wind and tempera

ture were made (Wieringa, 1973)? but these fall outside the scope 

of this study. 

With the data collected at the centre of the lake it was possi

ble to determine the evaporation using different methods, while the 

available data set allowed also calculations of evaporation with 

the water-budget method. Comparing the evaporation determined with 

the water-budget method and the evaporation determined with the 

energy-budget method gives for the average value and the standard 

error of the ratio of these quantities 0.97 + O.Qh. This comparison 

is based on seven water-budget periods with an average length of *+.6 

days (Keijman and Koopmans, 1973) • Therefore, in this study the 

energy-budget measurements of E are considered the true values of 

the evaporation. This is a generally accepted procedure (Stewart and 

Rose, 1977), which implies that E is determined with: 

LB = X I G • (9) 
1 + Bobs 

where S ̂  , the observed value of the Bowen ratio, is calculated from 

the usual formula: 

VT2 
«<*• - y 5 ^ f ^ (10) 

in which T Q is the surface temperature, Tp the air temperature at 2 m, 
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q (T ) the saturated specific humidity at T , and q2 the specific 

humidity at 2 m. For a given time interval 6 b is calculated from 

the time average values of T , T 2 and q2. The surface skin tempera

ture of a waterbody, which we will denote by T , is generally lower 

than the subsurface temperature, denoted above by T . Because the 

fluxes of sensible and latent heat depend on T rather than on T , 
•r s o' 

one may wonder what the effect would be of using T instead of T . 

Estimating (T -T ) with the model of Hasse (197D, we find a value 

of approximately +0.5°C. This leads to a correction of +3% in 

(1+6)" , LE and a. This small correction has been neglected in our 

calculations. 

3. Results 

a. Daily values 

In Figure 2 the mean daily values of IE measured with the energy-

budget method are plotted against .IE™. Linear regression calculations 

forcing the regression line through the origin yield a value of 

a = 1.25 + 0.01. The corresponding correlation coefficient is 0.991• 

Defining the error of estimate by the root mean square of the differ

ences between measured and calculated values, this error is found to 

be 7.0 Wm . The regression line with non-zero intercept is 

LE = 1.17(^0.02)1^ + 7.0(+m-) (Wm- 2). The corresponding error of 

estimate is 6.0 Wnr^. This is only slightly smaller than the error of 

estimate of the zero-intercept line. We therefore conclude that the 

Priestley-Taylor model yields very good results for daily evaporation 

values at Lake Flevo. As energy-budget measurements of LE are only 

available for July through September, this test holds only for summer

time and early autumn. 

Figure 3 shows the results of the model of Hicks and Hess, which is 

a modification of the Priestley-Taylor concept. The slope of the re

gression line through the origin is O.98, the correlation coefficient 

0.992 and the error of estimate 6.7 Wm • The differences between the 
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Fig. 2. Test of the Priestley-Taylor model. Comparison of daily 

average measurements of LE and LE 
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Fig. 3. Test of the model of Hioks and Hess for daily values. 
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two models are small. This is not very surprising. During the test 

period the mean daily water and air temperature fell in the range 

15-20°C. In this range the differences between the two models are 

small. 

It should be noted that the observed high correlation between LE 

and L ELQ is partly due to the fact that both quantities contain 

(QK - G ) . This is because we have considered the energy-budget 

measurements of LE the true latent heat flux. As mentioned before, 

this is justified by the fact that these energy-budget measurements 

compare satisfactorily with the water-balance data. However, the 

choice of the energy-budget method as a reference implies that 

scatter due to measuring errors in (Qx - G) is not incorporated in 

the applied statistical analysis. Therefore our results (Figures 2 

and 3) show less scatter than they would have shown if LE and I E ™ 

had no common factor. This also reflects on the computed standard 

deviation of a. However, because the energy-budget method compares 

well with the water-balance, the root mean square value of a itself, 

as evaluated by our approach, will not be effected significantly by 

measuring errors in (QK - G ) . Therefore, our conclusion that the 

Priestley-Taylor model yields good results at a«1.26 is not changed 

by the fact that LE and LEU-, both contain (0X - G ) . 

b. The diurnal variation of a 

The diurnal variation of a has been studied with 3-hour averages 

of T Q , Tp and q2« We computed 6 , with the aid of Eq. (7) and then 

a with Eq. (6). Average values of these quantities for July and August 

1967 are shown in Figure h. There is a certain day-to-day scatter, 

which is small however, so these average values are representative for 

any given day in the months under consideration. From Figure k- it is 

seen that in both months the parameter a has a pronounced diurnal va

riation with a minimum early in the day and a maximum in the late 

afternoon. The minima are 1.15 and 1.16 for July and August respective

ly and the maxima 1 .h2 and 1 A 1 . The daily average value of a for both 

months is 1.29. This is in good agreement with the regression calcu-
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lation of the preceding paragraph, based on mean dally values. As 

the temperature function (s+y)/s is nearly constant during the day, 

the variation of a is due to the variation of 6 , . It can be seen 

from Figure h that the variation of 6 b is, in its turn, chiefly 

due to the variation in T -Tp because q-qp ^s nearly constant. 

The diurnal variation of the air temperature Tp is much larger 

than the variation of the surface water temperature T . It is noted 

that the air temperature never exceeds the surface water temperature. 

This results in a Bowen ratio which is always positive with a minimum 

in the late afternoon. This variation of S , leads to the variation 

of a already mentioned above. 

c. The seasonal variation of a 

The Priestley-Taylor model has only been tested in summertime and 

early autumn. This holds also for the test given in section 3- So it 

is certainly possible that a varies in the course of the year. Unfor

tunately, no direct measurements of LE and LE™-. are available for the 

other seasons. In order to get an impression of a possible seasonal 

variation of a we followed an indirect way. We used an energy-budget 

model with standard meteorological observations as input. These data 

were collected at Oostvaardersdiep in April-October 1967- As is seen 

from Figure 1 Oostvaardersdiep was completely surrounded by water and 

thus it can be considered representative for Lake Flevo. No data were 

available for a complete year. 

From the daily average values of air temperature, air humidity, 

wind speed and duration of sunshine of this station the terms of the 

energy-budget equation (5) were calculated with a model developed by 

one of us (Keijman, 1 9 A ) . This model has a solid physical basis, but 

contains one important simplification. It is assumed that the water 

body has no thermal stratification. However, in summertime, when a 

thermal stratification is most likely to occur, the model yields good 

results for Lake Flevo (Keijman, 197*0. This can be explained by the 

fact that Lake Flevo has a depth of only a few meters. Therefore it 

can easily be stirred by the wind. For further information on the model 

the reader is referred to Keijman (197*+). 
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For each month we applied linear regression techniques to the daily-

values of LE and LELQ. This yields the coefficients a and b of the re

gression lines LE = a LELQ + b, the correlation coefficients r and the 

least square estimates of a, the latter obtained by forcing the re

gression lines through the origin. The values of a, b, a and r are 

listed in Table 1. Furthermore a is plotted per month in Figure 5. It 

is seen from Table 1 that the correlation coefficients are at least 

O.98. Thus, like the Priestley-Taylor model, the energy-budget model 

predicts a good linear relation between LE and LEp̂ .. 

Table 1. The coefficients a and b of the regression equation 

LE = a LEgQ + b, where both LE and LEU-, are calculated per 

day with the model of Keijman; the corresponding correlation 

coefficient r and the least square estimate of the Priestley-

Taylor parameter a. 

a b(Wm~ ) r a 

April 

May 
June 

July 

August 

September 

October 

1.32 

1.07 

1.15 

1.08 

1.09 

1.18 

1.2M-

7.7 
17.6 

7.7 
11.9 

9.5 
M-.5 

17A 

0.98 

O.98 

0.99 

0.99 

0.99 

0.99 

O.98 

1.50 

1.28 

1.25 

1.21 

1.20 

1.25 

1.»+9 

Figure 5 shows a rather pronounced seasonal variation of a. In May 

through September its value differs only slightly from 1.26, but in 

April and October a is about 1.50. This is due to the fact that the 

intercept b is positive for all months (see Table 1). In summertime 

the daily values of LE are large compared to b, which means that then 

the deviation of the Priestley-Taylor model will be small. This is no 

longer the case in spring and autumn, due to the smaller values of LE. 

The result is that, if one stays with the Priestley-Taylor model and 

estimates a from a regression line forced through the origin, an a is 

found with a seasonal variation as given in Figure 5. 
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Fig. 5. The seasonal variation of a as predicted by the model 

of Keijman. 
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Summarizing we can say that the energy-balance model vised in this 

study predicts a linear relation between IE and L E ™ , just like the 

Priestley-Taylor concept, but with a positive intercept. This positive 

intercept causes a seasonal variation of the Priestley-Taylor parameter. 

•+. Discussion 

Our results can be summarized as follows: 

1. In summertime, over 21+-hour periods the Priestley-Taylor model yields 

quite satisfactory results at a = 1.26. 

2. There is a seasonal variation of a due to the fact that the regression 

line between daily values of LE and IK-, has a non-zero intercept. 

3- The parameter a shows a diurnal variation. 

The first result substantiates the findings of Priestley and Taylor 

(1972) and Stewart and Rouse (1977). Their results, however, are related 

to much smaller lakes (* 0.1 - 35 km ) . We are tempted to conclude there

fore that in summertime the Priestley-Taylor model, with a = 1.26, is 

applicable to all lakes regardless their size. Strictly speaking, this 

conclusion is contrary to the original concept proposed by Priestley and 

Taylor, because they restricted themselves to advection-free conditions. 

Small water bodies are strongly influenced by advection while even large 

water bodies like Lake Flevo are to a certain extent affected by it. If 

there exists a general mechanism which at the moment is not understood 

and which leads to the Priestley-Taylor model at a = 1.26 for advection-

free conditions, then from our first and third results we may conclude 

that over 2M-hour periods the advective influences are smoothed out (in 

summer), and that the observed diurnal variation of a is due to advection. 

The latter conclusion implies that a diurnal variation of a will depend 

on the advective influences and on how the water body reacts on these 

influences. So it is to be expected that the diurnal variation of a will 

depend on the size and depth of the lake and on the specific climatolo-

gical conditions of the region in which the lake is situated. 

What are the conditions for finding a diurnal variation of a of the 

type observed at Lake Flevo? The diurnal variation of the air temperature 

over the surrounding land must be large compared to the variation of the 

water temperature and there must be sufficient advection of heat from 
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land to lake. The diurnal variation of the water temperature will be 

small if the water depth is at least a few meters and there is suffi

cient mixing to prevent a thermal stratification. The diurnal vari

ation of the air temperature over land depends on many factors of 

climate, soil and vegetation, but is generally much larger than a 

few degrees. As for many lakes these conditions will be met, we con

clude that the parameter a will often have a variation similar to 

that at Lake Flevo. 

Our second result implies that a linear relation of the type 

IE = a L E L Q + b better fits the data than the original Priestley-

Taylor concept. We did not have enough data to calculate reliable 

values of the parameters a and b per month, but a is somewhat less 

than 1.26 and b is of the order of 10 Wm . In summer, when LE is 

much larger than b, the difference between the one-parameter and the 

two-parameter model is not significant. 
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VI. Temperature and energy balance of a water reservoir 

determined from standard weather data of a land station. t 

Abstract 

A model for the determination of the temperature and energy-budget 

of a well-mixed water reservoir from standard meteorological data 

observed at a nearby land station is investigated. The main features 

are discussed. A verification of the model is given consisting of a 

comparison over several years between the measured and calculated 

temperature of two adjucent water reservoirs. The results are satis

factory. 

To appear in J. of Hydrology. 
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List of symbols 
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G 
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specific heat of water 

water vapour pressure at screen height 

saturation water vapour pressure 

wind function 

water depth 

relative duration of bright sunshine 

des/dT at T = T n 

time or day-number 

time interval 

wind speed 

amplitude of the k Fourier component of T 

evaporation 

change per unit time and area of heat stored 

in the water 

flux density of sensible heat 

incoming shortwave radiation 

incoming longwave radiation 

latent heat of vaporization 

net radiation 

net radiation when T, = T 
w n 

air temperature 

equilibrium temperature 

wet-bulb temperature 

water temperature 

amplitude of the k Fourier component of T 

albedo of the water surface 

change of phase-angle of the k Fourier 
component of T w 

psychrometric constant 

emissivity of the water surface 

phase-angle of the k Fourier component of T 

density of water 

constant of Stefan-Boltzman 

time constant 
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1. Introduction 

Modelling of the energy-budget and temperature cycle of lakes and 

water reservoirs is of practical interest. For instance, man-made 

thermal pollution can only be determined if the natural and arti-

ficual influences en water temperature can be separated. 

Furthermore the evaporative losses of water reservoirs and lakes 

are of practical importance. In this paper a model is considered 

which yields, among other things, the temperature and evaporation 

of water bodies as a function of weather. It is developed by Bdinger 

et al. (1968) and applied to well-mixed lakes by Keijman (197*+). The 

latter tested the model for Netherlands conditions in summertime. In 

this study a verification is presented concerning the entire annual 

cycle for two water reservoirs with different depth. Strictly speaking 

the model requires weather data collected over water. Often, however, 

only observations at a nearby land station are available. It will be 

shown that this difficulty can be removed by using an adapted empiri

cal wind function. 

2. Experimental data 

In this study use is made for testing purposes of the measured water 

temperatures of two adjacent water reservoirs. Their location is shown 

in Fig. 1. The reservoirs are: 

a ) . De Grote Rug with an area of about 0.5 km and an average depth of 

5 m, and 

b ) . Petrus Plaat with an area of about 1 km and a depth of 15 m. 

The water temperature of De Gvote Rug\ is measured once a week with a 

mercury-in-glass thermometer. The time of observation is generally 

10.00 hr local time. 

The water temperature measurement of the Petrusplaat is measured conti

nuously. Weekly values averaged over depth and time were available for 

this study. In order to prevent thermal stratification the water of the 

Petrusplaat is mixed artificially. 

In both reservoirs the horizontal advection of heat can be neglected 

because the amounts of water occasionally let in and out are small com

pared to the total water content of the reservoirs. 



VI A 

Fig. 1. Map of the Netherlands in which the location of the 

meteorological station and the water reservoirs are 

indicated. 
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The relevant weather data, notably mean air temperature and humidi
ty, mean wind speed at 10 m and relative sunshine duration, were 
obtained from the main meteorological station at De Bilt (see Fig. 1) 
situated at V? km N.N.E. from the reservoirs. Since its distance to 
the coast is about the same as those of the reservoirs and 10-day mean 
values are used, this station can be considered representative. 

The model 

Fran the energy-balance equation, the bulk-aerodynamic formulae for 
sensible and latent heat flux, the assumption that the water is 
isothermal and neglecting the heat flux to the underlying soil it can 
be shown that under horizontal homogeneous conditions the water tempera
ture T w can described by (Edinger et al., 1968) 

9T 
pw c w h 3t * - (1-cO K + + L + e a I 

w 
- L v f(u) (s+y) (Tw-Tn) (1) 

where p and c are the density and specific heat of water, h the water 
depth, t the time, a the albedo, K and L the incoming short- and long
wave radiation respectively, e the emissivity in the longwave region, 
a the Stefan-Boltzmann constant, L the latent heat of vaporization, 
f(u) a function of wind speed u, s the slope of the temperature-
saturation water vapour curve at T the wet-bulb temperature at height 
z and y the psychrometric constant. By approximating T by 
LfTn3(Tw"Tn) + Tn and t a k l n S e = 1 Keijman (197*+) simplified (1) and 
obtained: 

3T T T w w e 
8t T ~ T (2) 

in which the equilibrium temperature, T is defined by 

%? 
e n h a T^3 + ̂  f(u) (s+y) 

(3) 
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and the time constant T is given by 

^ w 
k a T n 3 + L v f(u) ( S 4 T ) 

0 x is the net radiation if the surface temperature equals T . 

The equilibrium temperature T represents the atmospheric forcing. 
From Bq. (2) it is seen that T,r tries to reach T . The time scale ^ w e 
on which this occurs is T which is proportional to the water depth. 
For more detailed information on the physical background of the 
model the reader is referred to Edinger et al. (1968), Keijman (197^) 
and Fraedrich et al. (1977). 
The quantities T e and T can be evaluated from standard weather data 
(see later): then Eq. (2) can be solved. Since the time constant T 
is much greater than 1 day ( T * 10 d for h = 5 m and T » 3 0 d for h = 15 m ) , 
T will react mainly on variations of T p with a time scale of several 
days, wherea 
to be small. 
Mathematical 
Fourier series over 1 d. 

days, whereas the response to frequencies of 1 d~ or more is expected 

Mathematically this can be seen from a decomposition of T (t) in a 

Te(t) = T e + ̂  T k sin ( ^ + ^ , (5) 

where At = 1 d, T the mean of T over At, T, the amplitude and <k the 

phase-angle of the k Fourier component. Then, provided T is constant 

the following solution of Eq. (2) is obtained: 

V t } = C e ' t A + Te + I \ sin ^ + «k - °k> » (6) 
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T 
with A. = , k (7) 

= arctan e,, , (8) o^ = arctan e k , 

« k - & k T . (9) 

C is an integration constant. 
In our case T is 10 days or more, so e. > 60 k. This implies that 
Ajj. < Tj/60 k. 

We found that in summertime a typical value of T. is 2 0 A K for 
k = 1, 2, 3> while the higher order values can be neglected. This 
shows that the amplitudes A^ are negligibly small, except possibly 
the first component. Since we are only interested in the annual 
cycle of T w and not in the diurnal changes we can choose an ini
tial time t in such a way that the first Fourier component of T 
in Bq. (6) vanishes. Since a*5- and T reaches its maximum round 
about noon (Edinger et al., 1968) an appropriate choice of t is 
00.00 hr local time. Then we can neglect the last term in Eq. (5) 

and the solution of T , at t = t + At is given by 
w o 

Tw(tQ + At) = \ + Cyt 0 ) - T j e"At/T (10) 

This is the same solution Keijman 097*0 obtained by assuming that 
Trt is constant at T . e e 
From the above it follows (Bq. (9)) that this solution applies only 
for T » 1 d. In the case of very shallow lakes the solution given 
by (10) does not hold, because T becomes too small. 
When T and x do not change significantly over a period of, say, 
N days, the solution for T, at t + NAt reads " i wo 
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N 
T (t + NAt) = Tp [1 - exp(-AtA)] I exp [-(j-1)At/x] 

+ T¥(tQ) exp [-NAt/x] (11) 

Since 

N 
^expr-tMMtAl^I^ffl, 02) 

this leads to 

I (t + NAt) = T + [T (t ) - TJ exp(-NAtA). (13) 
w o e *- w o eJ 

In this study Eq. (13) will be applied for N = 10. 

î-. Important features of the model 

After having determined T as a function of time, we can evaluate the 

flux densities of sensible heat H and water vapour E from the well-

known (Dalton-type) bulk formulae. Furthermore the net radiation 0 

(see later) and the change per unit time and area of the heat stored 

in the water G can be computed. To illustrate the main features of the 

model, the calculated mean values of H, LE, Qx and G are shown in Figs. 

2 and 3. These calculations are carried out over 1971 through 1976 using 

weather data of De Bilt (10-day averages). Figs. 2 and 3 are related to 

small inland water reservoirs with a depth of 5 and 15 m respectively 

(such as De Grote Rug and Petrusplaat). It is seen that in both case the 

net radiation is almost in phase with the noon-solar elevation, while it 

is only slightly dependent on water depth. The influence of the water 

depth on the other terms of the energy balance, in particular the heat 
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Fig. 2. The mean annual cycle of net radiation Q*, sensible 

and latent heat flux H and LE, and the heat storage 

term G as evaluated by the model. Water depth - 5 m. 
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storage term G, is more pronounced. This is due to the fact that in 
Spring and early Summer solar energy is stored in the water. For well-
mixed bodies of water the amount of stored energy is proportional to 
the water depth. The mean of G over several years is zero; therefore 
the heat stored in Spring and early Summer will be released later in 
the year. This released energy will be used for evaporation and sensi
ble heat transferred to the atmosphere. This explains qualitatively 
why there is a phase shift between evaporation and net radiation, and 
why this phase shift increases with water depth. 
To illustrate the behaviour of the water temperature in Fig. h the 
mean annual cycle of T_ is drawn together with that of the equilibrium 
temperature T . The indices 5 and 15 refer to the water depth. It is 

seen that T is slightly retarded with respect to the noon solar 
5 15 elevation, while in turn T J and T y are retarded with respect to T . ww.,,- * e 

Furthermore the sine curves of T ̂  and T J are damped. These features 

ww r 

follows directly from Eq. (2) when the mean annual variation of T is 
assumed to be a single sine (see e.g. Edinger et al., 1968). In this 
way it can easily be shown that the phase shift of T equals 
4-2- arctan (•$?) ** T days when T « 365, so that it is proportional 
to the water depth. 
From the assumption that the mean annual cycle of T is described by a 
single sine it further follows that the mean of the heat storage term 
G (= p w cw h 9 Ty3t) can be written as 

G = p w cw h % A1 cos (fe t + h ~ a 1 ) <*> 

The amplitude of the TQ curve is about 10 K (see Fig. h), while it 

reaches its maximum at about 15 July. With (7)-(9) this leads to 

G = 8Mh sin fife (t - 1»f - T ) ] , (15) 

A + (§^)2 L J 
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In (1*+) and (15) t is the day-number (at 1 January t = 1, etc) and 
T is expressed in days. As before arctan ( J»J) is approximated by 
PIT T -> J 

-^rr, which is permitted for T < 30 d. 
The G-curves shown in Pigs. 2 and 3 are rather well described by 
(15). With expressions 0M-) or (15) a simple estimate of G is obtained 
which can be used for practical calculations of lake evaporation with 
the Penman formula. However, it should be noted that (15) refers to 
an average over several years. In a particular period the deviations 
from (15) can be large. 

Net radiation and wind function 

To estimate net radiation 0 , which is no variable observed on a rou-
tine base, and the related quantity Q (see eq. (3)) the following 
semi-empirical expression is used in this study: 

Q x = K + (1-a) (0,2 + 0,lf8 p) - a Th (0,1+7 - 0,067 /el) 

x (0,2 + 0,8 p) + k a T 3 (T - T J , (16) 
d W cl 

where K is the incoming shortwave radiation across a horizontal plane 
at the outer limit of the atmosphere, p the relative duration of bright 
sunshine, T the air temperature (K) and e„ the vapour pressure (mb). a a 
This relation is a modification of the expression used by Kramer (1957) 
for evaporation calculations in the Netherlands. The modification con
sists of the addition of the last term of (16). This has been done be-
cause the outgoing longwave radiation is described by a T instead of 
a T & . The quantity Q^ is obtained by replacing T w by T R in (16). The 
albedo a is taken at 0.06. 

The wind function f(u) is related to the turbulent exchange coeffi
cients for transfer of water vapour and sensible heat at the air-water 
interface. It depends, besides winds speed, upon a number of factors 
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such as stability, measuring height of the relevant meteorological 

elements and surface roughness. In principle it is possible to 

deduce an expression for f(u) frcm the similarity-theory of Monin 

and Obukhov (see e.g. Hicks, 1975). However, application of such an 

approach meets some problems caused by the following: 

a ) . In most practical applications a time interval of 2M- hr or 

longer is used (also in this study), but when stability effects 

are taken into account a time step of, say, 1 hr must 

be applied, 

b ) . The assumption of horizontal homogenity is often not realistic, 

notably in our case where small inland lakes are considered. 

This reflects on the "effective" exchange coefficients and thus 

on f(u). 

c). Mostly, the meteorological observations are taken at a nearby 

land station. This is also done in this study. 

Since a land and a water surface have a significantly different 

aerodynamic roughness this has consequences for f(u). 

For these reasons it is better to rely on empirically derived wind 

functions rather than on theoretical ones. In this study we adopted 

the function proposed by Sweers (1976), based on the study of 

McMillan (1973) en a Welsh cooling pond of 5 km : 

L y f(u) = h.h + 1.82 u 1 0 , (W.m~2.mbar~1) (17) 

where u.-. is the wind speed measured at 10 m at a nearby land station. 

Sweers obtained this function from an analysis of the hydrological 

literature. The usual procedure to determine f(u) is 

measuring independently the evaporation, the water temperature, the 

vapour pressure and wind speed at a particular height z above the 

water. Mostly averages over 1 day or longer (e.g. 1 month) are taken. 

Then f(u) is found by plotting E/(e(T )-eJ against u, assuming that 

Dalton's formula for evaporation holds: 

E = f(u) (e (T)-eJ , (18) 
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where e (T ) is the saturation vapour pressure at T . In this way s w w 

wind functions are determined for the case that the vapour pressure 

and wind speed are observed at a nearby land station. This applies 

also for Eq. (17). It is noted that application of eq. (17) requires 

that air temperature and humidity are observed at 10 m. But since 

we are taking averages over 1 day or longer the use of temperature 

and humidity data collected at standard height (about 2 m) does not 

introduce large errors. 

6. Verification of the model 

In this study measured and calculated water temperatures are compared 

over several years. This has been done for De Grote Rug and Petrusplaat 

which differ significantly in depth. 

Since we mainly pay our attention to the annual variation of T a 

time step of 10 days was chosen. Hence eq. (13) has been applied in 

this study for N = 10. An experiment over one year in which time steps 

of 1 and 10 days were used reveals that there is no significant loss of 

information when a 10-day time step is chosen. The choice of this time 

step has the additional advantage that the estimation procedures for 

net radiation and f(u) are more accurate for longer periods. In Figs. 5 

and 6 the comparisons are shown. It is seen that the course of T is si

mulated well by the model. However, there are occasional deviations of 

1°C or more. Some of these are presumably caused by things like measuring 

errors in T , tempory non-representativeness of the weather input data, 

unknown changes of the water level etc., but others are certainly due to 

imperfections of the model. First of all, the semi-empirical expressions 

Q K and f(u) are not perfect. Furthermore during calm and sunny periods 

In fact, the time intervals used were not exactly 10 days, but the 

first and second 10 days of a month and the remaining period. Thus, 

the latter has a length varying between 8 and 11 days. This time 

interval is common in meteorological practice. 
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the essential assumption of an isothermal stratification in the water 

is not met. A pronounced variation of the temperature of the top water 

layer of, say, 1 m then occurs (see e.g. Sweers, 1979)• This makes 

that, in that case, point measurements of T highly depend on the time 

of observation. This reflects on the water temperature data of De Grote 

Rug in 1976 when there was an extremely hot spring and summer. This 

possibly explains the relatively large scatter shown in Fig. 2 for that 

year. Because summers like in 1976 are very rare in the Netherlands, it 

may be concluded that the model, including the semi-empirical expressions 

(16) and (17) for Q K and f(u), yields good results for the entire annual 

cycle under Netherlands climatological conditions. 

7. Conclusions 

The results of this study reveals that the simple model resulting in 

Eq. (10) describes the annual course of the temperature of a well-mixed 

water reservoir or lake satisfactorily, when the empirical expressions 

(16) and (17) for net radiation and the wind function f(u) are applied. 

The attractivness of the model is that (a) it has a clearly physical 

basis and (b) it needs only standard meteorological observations. 

Because, \ bodies of water with a depth up to, say, 10 m very often are 

mixed naturaly by wind the model is of great practical importance. 

Applications of the model lie in the field of e.g.: 

- thermal pollution problems (determination of natural water tempera

tures; trend studies using time series of the natural water tempera

ture computed from climatological data; evaluation of frequency 

distributions of natural water temperature); 

- water budget studies (determination of evaporation); 

- planning purposes (estimation of the temperature of cooling ponds 

to be planned). 
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