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STELLINGEN 

1. Het optellen van de verdunningssnelheden, in plaats van de verblijftijden, van in serie 

geschakelde reactoren leidt tot grove overschattingen van de prestaties van een 

serieschakeling van reactoren ten opzichte van die van een enkelvoudige reactor met 

eenzelfde totaal volume. 

Lee, J.M.; Pollard, J.F.; Coulman, G.A. 1983. Ethanol fermentation with cell recycling: 

computer simulation. Biotechnol. Bioeng. 25: 497-511. 

2. Het fileleed in Nederland kan worden voorkomen door, analoog aan de succesvoile 

invoering van de wisselstrook tussen 't Gooi en Amsterdam, het samenvoegen van 

beide weghelften van alle rondwegen om steden tot een wisselstrook, waarbij 's 

ochtends tegen de klok in wordt gereden en 's avonds omgekeerd. 

3. Almere zou nooit binnen 20 jaar meer dan 100000 inwoners hebben gehad als niet 

eerst Lelystad was gebouwd. 

4. De dunne darm is een uitstekend voorbeeld van een propstroom-bioreactor. 

5. Nieuwe AIO's zouden hun nieuwe, snelle en vaak onderbezette PC's moeten ruilen 

tegen die van oudere AIO's zodat zij alien, gedurende de hele promotie, gemiddeld 

over een vlotte PC beschikken. 

6. De constatering dat voor een belegger een goed idee per jaar voldoende is, geeft een 

onderzoeker stof tot nadenken over een omscholingscursus. 

7. Het herhaaldelijk laten uitlopen van nachtelijke wegwerkzaamheden geeft blijk van 

een grove minachting voor de werkzaamheden van anderen. 

8. Fokker is een duur 'speelgoed'; in plaats van de voortdurende steun met miljarden 

is het voordeliger dit bedrijf te sluiten en elke werknemer een ton per jaar te geven. 



9. Het is merkwaardig om te moeten constateren dat de huizenprijzen in Flevoland niet 

passen bij de status als ontwikkelingsgebied waarvoor EG subsidies worden 

ontvangen. 

10. In verband met de gevolgen van het broeikaseffect is het raadzaam om bij het plannen 

van nieuw land en een vliegveld in zee alvast rekening te houden met het smelten van 

de poolkappen en een mediterraan klimaat. 

11. Het concheerproces is een cruciale stap in de chocoladebereiding. 

12. De afgelopen jaren is bewezen dat de parlementaire enquete een prima bezigheids-

therapie voor politici is; mogelijk heeft het correctieve referendum een zelfde 

heilzame werking. 

Stellingen behorende bij het proefschrift: 'Design, characterization and application of the 

Multiple Air-lift Loop bioreactor'. 

W.A.M. Bakker 

Wageningen, 19 december 1995 
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ABSTRACT 

Bakker, W.A.M., 1995. Design, characterization and application of the Multiple Air­

lift Loop bioreactor. Ph.D. thesis, Wageningen Agricultural University, The 

Netherlands (174 pp., English and Dutch summaries). 

Key words: Hydrodynamics, mixing, oxygen transfer, reactor series, modeling, 

optimization, hybridomas, Nitrobacter agilis, invertase. 

A new bioreactor is introduced: the Multiple Air-lift Loop reactor (MAL). The MAL 

consists of a series of air-lift loop reactors within one vessel. With the MAL, a new 

type of geometry for air-lift reactors with an internal loop is introduced. This new 

geometry was characterized with respect to hydrodynamics, mixing and oxygen 

transfer. The hydrodynamics were described by an existing model. Hydrodynamics, 

mixing and oxygen transfer in the new reactor configuration were comparable to that 

in conventional air-lifts with an internal loop. 

The design and use of the MAL as a reactor cascade, to approximate plug-flow 

behaviour, were studied. Biological model systems were used to compare the reactor 

series to a single vessel. These model systems included immobilized invertase and 

nitrifying bacteria. With the immobilized invertase it was shown that a three-

compartment MAL gives an improved substrate conversion when compared to a single 

vessel of the same overall volume. This could be described with a previously 

developed model. Also for the immobilized nitrifying bacteria improved substrate 

conversion was shown in the comparison between a series and a single vessel. Free 

suspended hybridomas were used for monoclonal antibody (MAb) production. It was 

shown that reactor series can be useful research tools for kinetic studies. In the second 

vessel in the series conditions were obtained that can hardly be reached in a single 

vessel. Not only growth, but also death could be studied under stable conditions. A 

model was derived that describes hybridoma growth and their MAb production. 

Vessels in a series can be of equal volume, but very often unequal volumes can 

be more advantageous. Therefore, choosing the appropriate reactor volumes is an 

important design step, which is discussed for different applications. Finally, a general 

procedure for choosing the optimal bioreactor cascade configuration for any 

application is given. 
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Part of this chapter 1 was used for the publication in chapter 8. 

CHAPTER 1 

INTRODUCTION TO THE 

MULTIPLE AIR-LIFT LOOP BIOREACTOR 

INTRODUCTION 

In this thesis a novel type of bioreactor is introduced: the Multipe Air-lift Loop reactor 

(MAL). The MAL consists of a series of air-lift loop reactors incorporated into one 

vessel. Serial reactors, like the MAL, can be used for many goals in biotechnology. 

In this introduction, bioreactor series will be described shortly, and then, more 

specifically, the MAL will be discussed briefly. This is followed by an outline of this 

thesis. 

REACTOR SERIES 

Reactor series find their application not only in chemical engineering, but also in food 

and bioprocess engineering. Multistep processes are not an uncommon feature in 

biotechnology. The subsequent conversion steps can be executed separately in a series 
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of vessels. An alternative use of the reactor cascade is to approximate plug-flow 

behaviour. Here one reaction step is applied repeatedly in each compartment of a 

serial bioreactor. This may be done when optimal bioreactor design with respect to a 

minimal total residence time at a given substrate conversion is the goal. In this thesis 

the design and applicability of bioreactor cascades for plug-flow approximations was 

studied. 

THE MULTIPLE AIR-LIFT LOOP REACTOR 

The MAL, which can both be used for scale-up of the majority of multi-step systems 

and for plug-flow approximations, consists of a series of internal-loop air-lift reactors 

within one vessel (Figure 1). The central MAL compartment is a conventional 

internal-loop air-lift reactor with aeration in the annulus. Subsequent compartments in 

the MAL are concentric. The annular-shaped compartments have a circular baffle 

which splits them into a riser and a downcomer section. Medium 'travels', driven by 

gravity, through the cascade via overflows. The advantages of the MAL compared to 

single air-lift loop reactors in series include: 

• many configurations can be constructed for various applications e.g.: 

supplying different gases to the subsequent compartments to, for 

example, carry out aerobic and anaerobic processes in series within one 

vessel, 

remove the baffles to obtain a multiple bubble column, 

direct the medium flow from the inside to the outside, or vice versa; 

• no extra pumps or hoses are needed for medium transport; 

• the reactor series can be sterilized as one reactor; 

• old reactor vessels can be reused and upgraded to a MAL by placing walls, 

baffles and gas distributors; 

• inner walls and baffles can be of simple construction because hydrostatic 

pressure acts on both sides. 

and the disadvantages for the same comparison include: 

• on a lab scale the compartments are narrow, which makes: 

cleaning difficult and, 
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Figure 1. Three compartment Multiple Air-lift Loop bioreactor cross-
sectional side and top view. 
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leaves little space for electrodes and other inserts; 

• the gas distributor in the outer compartments is relatively complex. 

Nevertheless, there are several cases where the advantages outweigh the 

disadvantages, as shown in this thesis. 

OUTLINE OF THIS THESIS 

With the outer compartments of the MAL, a novel type of geometry for air-lift 

reactors with an internal loop is introduced. Hydrodynamic properties affect shear 

forces, mixing, and mass and heat transfer, which are all important aspects in the 

design of reactors for bioprocesses. Hydrodynamics are greatly influenced by reactor 

geometry. This made knowledge of the hydrodynamics necessary for designing a 

MAL, and thus a Physical characterization was carried out, which is described in the 

chapters 2 and 3. In these chapters the MAL is also described in more detail. 

Vessels in a series can be of equal volume, but very often unequal reactor 

volumes can be more advantageous when optimal bioreactor design with respect to a 

minimal total residence timed at a given substrate conversion is the goal. Therefore, 

choosing the appropriate reactor volumes is an important design step, which is 

discussed in the Theoretical considerations section (chapter 4) for different 

applications. 

To investigate the applicability of the MAL in practice, and to evaluate the 

design steps known from the previous chapters (2 - 4), several Biological 

modelsystems were studied. These included freely suspended hybridoma cells for 

monoclonal-antibody production. Further, enzymes (invertase for sucrose conversion) 

and growing cells (nitrifying bacteria for nitrite conversion) were used as an 

immobilized biocatalyst. With the immobilized invertase it was shown in practice that 

a three-compartment MAL gives an improved substrate conversion when compared 

to a single vessel of the same overall volume (chapter 5). The hybridomas were grown 

in a series of two continuously-operated stirred vessels, instead of using a MAL, for 

practical reasons. Here, bioreactor series were shown to be useful tools for kinetic 

studies (chapter 6). Finally, in chapter 7, for immobilized nitrifying bacteria it was 

shown that a series of two air-lift loop reactors gives a better substrate conversion than 
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that in a single vessel of the same overall volume. 

In chapter 8 the Future trends in the theoretical considerations discussed in 

chapter 4, with respect to the optimal design procedures, are addressed. Using the 

practical experience gained with the biological modelsystems (chapters 5 - 7) it was 

found that several prerequisites have to be fulfilled before a bioreactor optimization 

for plug-flow approximations can be carried out successfully. Also in this final chapter 

8 the Future trends in physical characterization studies of air-lift reactors with an 

internal loop are given. 



This chapter 2 has been published as: Bakker, W.A.M.; Van Can, H.J.L.; Tramper, J.; 
De Gooijer, CD. 1993. Hydrodynamics and mixing in a Multiple Air-lift Loop reactor. 
Biotechnol. Bioeng. 42: 994-1001. 

CHAPTER 2 

HYDRODYNAMICS AND MIXING IN A 

MULTIPLE AIR-LIFT LOOP REACTOR 

SUMMARY 

A new bioreactor, in which a series of air-lift reactors with an internal loop is 

incorporated into one vessel, is introduced. With this Multiple Air-lift Loop reactor 

(MAL) an approximation of an aerated plug-flow fermentor is strived for. Mixing, 

liquid velocity, and gas holdup were measured as a function of the gas flow rate in 

this new internal-loop reactor geometry. As a reference, hydrodynamics were also 

investigated in a conventional internal-loop reactor. A model description of the 

hydrodynamics in the second compartment of the MAL is given. This model is 

based on a two-phase, drift-flux model and a friction coefficient. Frictional losses 

were independent of the reactor bottom geometry, and were observed to increase 

with the gas flow rate as a result of the presence of stationary gas bubbles in the 

downcomer. The hydrodynamics and mixing of the second MAL compartment 

were comparable with those of conventional internal-loop reactors. 
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INTRODUCTION 

The quest for new or optimal processes in biotechnology is still proceeding. 

Although the stirred-tank reactor (continuous or batchwise operated) dominates 

most bioprocess applications, the interest in alternative configurations is increasing. 

A promising alternative is the cascade of continuous stirred-tank reactors. The 

behavior of a series of ideal mixers approximates that of a plug-flow reactor 

[Levenspiel, 1972]. Such flexible reactor systems can be helpful tools for the 

optimization of bioprocesses [Hill and Robinson, 1989; Pirt, 1975; Shimizu and 

Matsubara, 1987]. 

The Multiple Air-lift Loop reactor (MAL) is a new type of Air-lift Loop 

Reactor (ALR). In this MAL, a series of ALRs with an internal loop is 

incorporated into one vessel. ALRs behave like nearly ideally mixed vessels 

[Verlaan et al, 1989]. With the MAL, aerated plug-flow behavior can thus be 

approximated. A schematic side and top view of the MAL is given in Figure 1. 

The subsequent reactors in the MAL are concentrically placed, which introduces a 

new type of geometry for air-lift reactors with an internal loop. The torus-shaped 

compartments have a circular baffle that splits the compartment in a riser and 

downcomer. The central reactor is a conventional internal-loop reactor (ILR). 

Gasner [1974] suggested a rectangular MAL version for waste-water treatment; its 

geometry is, however, different from the MAL presented here. 

Hydrodynamic properties affect shear forces, mixing, and mass and heat 

transfer. Hydrodynamics and mixing are greatly influenced by reactor geometry. 

Important design parameters are downcomer-to-riser area ratio [Bello et al., 1984; 

Jones, 1985; Zuber and Findlay, 1965], the downcomer-to-bottom area ratio [Chisti 

et al, 1988; Sukan and Vardar-Sukan, 1987], filling height above the draft tube 

[Chisti, 1989; Sukan and Vardar-Sukan, 1987; Weiland, 1984], and reactor height 

[Chisti, 1989]. This makes knowledge of the hydrodynamics necessary for 

designing a MAL, and thus this physical characterization study was started. The 

hydrodynamics and mixing for the new reactor geometry have been in particular 

studied in the second compartment of a MAL. Liquid velocity, gas holdup, and 

mixing time were measured as a function of the gas flow rate. Also the effect of 

downcomer-to-riser area ratio was investigated by varying the baffle diameter. 
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Figure 1. Three-compartment MAL, cross-sectional side and top view. 
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Consequently, the bottom area for flow under the baffle was also varied. To 

investigate the effects on hydrodynamics of varying the bottom area only, a 

conventional ILR was used. The ILR results are also compared with the 

hydrodynamics in the second MAL compartment. 

A model description, in good agreement with the experimental data, of the 

hydrodynamics of the second MAL compartment, is given. The estimations are 

based on the two-phase, drift-flux model of Zuber and Findlay [1965], and on a 

friction coefficient derived from experimental data. 

THEORY 

In general, hydrodynamic models for ALRs are based on conservation laws of 

mass, momentum, and energy completed by empirical correlations. Van Sonsbeek 

[1992] reviewed the hydrodynamic models based on either momentum or energy 

conservation, and concluded that there is no advantage of using one approach over 

the other. The energy balance has been used frequently in recent literature [Chisti 

et al, 1988; Garcia Calvo, 1989; Garcia Calvo and Leton, 1991; Jones, 1985]. A 

disadvantage of the energy balance approach is that all energy dissipation, which 

may be difficult to estimate, has to be accounted for. For applying the model based 

on the momentum conservation law, only a frictional loss coefficient is needed 

which can be determined from one-phase flow theory for external-loop reactors 

[Van Sonsbeek et al, 1990; Verlaan et al, 1986]. Because the momentum balance 

is straightforward, and has been applied successfully in various publications [Siegel 

et al, 1986; Van Sonsbeek et al, 1990; Verlaan et al, 1986; Young et al, 1991], 

it is also used in this work. 

Liquid flow rate and gas holdup in ALRs depend on the gas flow rate. To 

model the relation between these quantities, two independent equations are required 

to calculate both dependent variables from the independent variable. The two 

equations used here are based on a momentum balance and on the two-phase, drift-

flux theory of Zuber and Findlay [1965]. It is assumed that, in a steady state, the 

hydrostatic pressure difference between riser and downcomer (AP) is the driving 

force for liquid circulation: 
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AP = (ar*d)ApgH (1) 

where ar and ad are the time average gas holdup in the riser and in the 

downcomer, respectively, Ap the density difference between the liquid and gas 

phase, g the gravitational acceleration, and H the riser or downcomer length. Here, 

ar, ced, and Ap are considered not to change over reactor height. The pressure drop 

due to overall frictional losses along the circulation loop is expressed as [Van 

Sonsbeek et al, 1990; Verlaan et al, 1986]: 

AP = Kf.-pv2 (2) 
f 2 

where K* is the overall frictional loss coefficient, p the liquid density, and v the 

average liquid velocity in an arbitrarily chosen reactor section. This velocity term, 

on which K* is based, can be chosen arbitrarily, because the liquid velocities in all 

reactor sections are interrelated; the same liquid volume will flow through all 

reactor sections. Combination of Eqs. (1) and (2) leads to a stationary 

hydrodynamic force balance: 

{<iT-ad)A9gH = Kf.±pv2 (3) 

In a steady state, the equation for momentum conservation is the same as for the 

force balance [Eq. (3)], as momentum is mass multiplied by velocity or force 

multiplied by time [Van Sonsbeek, 1992]. Thus, Eq. (3) is based on the momentum 

conservation law over the liquid phase. 

With a known Kp and a relation between gas flow rate and liquid velocity, 

the ALR hydrodynamics {i.e. liquid velocity and gas holdup) can be predicted. 

Many authors [Clark and Flemmer, 1985; Lee et al, 1987; Siegel et al, 1986; 

Van Sonsbeek et al, 1990; Verlaan et al, 1986; Young et al, 1991] based this 

relation on the Zuber and Findlay [1965] theory, which is also used here: 

v =C. (v +v. ) + v . (4) 
g y gS IS ' 0°° 

where v is the gas velocity in the riser, C is the distribution parameter, v and vfa 
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are the superficial gas and liquid velocity, respectively, and vboo is the terminal rise 

velocity of a bubble in an infinite stagnant medium. In Eq. (4), C accounts for 

radial distributions of gas concentration and liquid velocity for two-phase flow in 

circular tubes. Values for C approaching unity indicate flat flow and concentration 

profiles and, e.g., C = 1.5 is found for a parabolic gas-concentration profile 

combined with a parabolic liquid-velocity profile. In Eq. (4), the gas velocity, v , 

in the riser is defined as: 

v = ̂ £ (5) 

From the continuity equation, liquid velocities in all reactor sections can be 

calculated: 

v*A( l -« r ) = v w ^( l -a r f ) (6) 

in which vlr and vw are average liquid velocities in the riser and downcomer, 

respectively. Superficial liquid velocities can be derived from these liquid velocities 

by: 

vfar = VfrCl-a,) and v M = v H ( l - a r f ) (7) 

where vfar and vfarf are average superficial liquid velocities in the riser and 

downcomer, respectively. 

MATERIALS AND METHODS 

THEMAL 
The vessel in study was the 0.034 m3 second compartment of a MAL with a glass 

outer wall (Figure 2). Three downcomer-to-riser area ratios could be configured by 

using interchangeable baffles with different diameters. Geometric data are given in 

Table I. One of the baffles consisted of non-transparent PVC and the other two of 

transparent perspex to allow visual observation of gas bubbles in the downcomer. 
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Sample 
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2.0 

Hb = 0.04 

Figure 2. Schema of the second MAL compartment (not on scale). Inner diameters 
are given (m). Variable dimensions are summarized in Table I. 
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The tubular wall between the first and second compartment also consisted of 

transparent perspex. 

THElLR 

A 1.5 X 10 m3 conventional ILR was constructed of glass cylinders. Inner 

diameters were 9.6 X 10"2 m and 6.8 X 10"2 m for the outer wall and the baffle, 

respectively. The baffle height was 2.0 m, and the liquid filling height above the 

baffle 0.10 m. Air was sparged in the central tube. The baffle height above the 

bottom of the ILR could be adjusted by interchangeable supports, resulting in 

different free areas for flow under the baffle (Ab). Geometric data are given in 

Table I. 

Table I. Geometric data for MAL and ILR. 

Config. 

D2[m] 
w [mm] 
Hb [m] 
Ad/Ar 

*J*b 

A 

0.154 
3.0 
0.04 
0.31 
0.18 

MAL 

B 
0.158 
3.0 
0.04 
0.43 
0.22 

C 
0.162 
9.0 
0.04 
0.91 
0.27 

A 
-

3.3 
0.031 
0.78 
0.70 

B 
-

3.3 
0.052 
0.78 
0.29 

ILR 

C 
~ 

3.3 
0.081 
0.78 
0.27 

D 
-

3.3 
0.102 
0.78 
0.21 

SPARGERS 

The ILR sparger consisted of sintered ceramic. The MAL sparger was made of a 

circular tube (stainless steel, D = 5 x 10~3 m) with 58 holes (D = 5 X 10"4 m) at 

equal distances. This sparger ring (D = 1.85 X 10"1 m) was connected by eight 

pipes (D = 5 X 10"3 m) to a gas inlet chamber to guarantee an equal distribution 

of air. Spargers for ILR and MAL were positioned at the riser entrance to prevent 

entrainment of bubbles into the downcomer due to turbulence in the bottom section. 

EXPERIMENTAL CONDITIONS 

A 20 mol.m"3 solution of KC1 was used in all experiments to eliminate tracer 

effects on coalescence. Surface tension of the liquid was 73 mN.m"1; viscosity was 
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1.0 mPa.s. All experiments were carried out at 20 ± 1°C. 

HOLDUP 

Gas holdup was registered by differential pressure measurement between two 

sample ports. Their distance was taken as large as possible in order to measure an 

average holdup. Sample ports were at least 0.08 m from the baffle top and bottom 

to eliminate entrance effects. Fully developed two-phase flow was assumed. 

LIQUID VELOCITY 

Liquid velocity was investigated by tracer response measurements. As a tracer, 10 

cm3 of 2 X 103 mol.m"3 of either HC1 or KOH was injected. This tracer was 

detected by two identical pH probes, which were positioned at a known distance 

from each other in the investigated reactor part. Tracer was injected at the entrance 

of the riser or downcomer for the ILR or MAL, respectively, and measured in the 

opposite reactor part. For practical reasons, liquid velocity was measured in the 

MAL riser. Superficial liquid velocities in the downcomer were calculated from 

these experimental data by using Eqs. (6) and (7). Friction coefficients were 

derived from these downcomer superficial liquid velocities to make the values 

comparable to the ILR data. 

MIXING 

Mixing behavior of the second MAL compartment was also studied by tracer 

responses. The experimental and calculation procedures are given by Verlaan et al. 

[1989]. Like for the velocity measurements, two electrodes were positioned in the 

riser. Tracer was injected 0.47 m below the upper electrode in the riser. The pH 

response was converted to ion concentrations as described by Verlaan et al. [1989]. 

Mixing time was defined as the time elapsed until the concentration deviated less 

than 5% from the calculated average for both electrodes. 
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RESULTS AND DISCUSSION 

LIQUID VELOCITY AND HOLDUP 

In Figure 3 downcomer liquid velocities and riser gas holdups are shown as a 

function of superficial gas velocity for four ILR configurations. Average values for 

the four ILR configurations are shown; effects from differences in bottom geometry 

on hydrodynamics were insignificant. Figures 4 and 5 show downcomer superficial 

liquid velocities and riser gas holdups at different superficial gas velocities for 

three MAL configurations. 

The MAL and ILR results show the same trends. With increasing superficial 

gas velocities, liquid velocities rapidly became constant. From a certain gas 

velocity onward, the power supply was large enough for gas bubbles to flow 

completely through the downcomer (recirculation). From here onward, liquid 

velocities increased again with the gas flow rate. Obviously, for both reactor types, 

the downcomer relative gas-liquid velocity had to exceed the bubble terminal rise 

velocity before gas recirculation started. This value can vary due to variations in 

CO 

0 0.03 0.06 0.09 0.12 0.15 0.18 
Vgs [m.s -1 

Figure 3. Average downcomer liquid velocity (O) and average riser 
holdup ( • ) for four ILR configurations (specified in Table I). Error bars give 
standard deviation. Arrow: onset of gas recirculation. 
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bubble sizes, but 0.25 m.s"1 is assumed to be the average value [Wallis, 1969]. 

Gas bubbles in the downcomer were observed to be larger than in the riser for both 

reactor types. The largest bubbles had the form of spherical caps and were formed 

by coalescence in the downcomer. Their rising velocity was in equilibrium with the 

downward flowing liquid and they were thus observed as stationary. When those 

bubbles grew further by coalescence they escaped upward. 

Downcomer holdup was found to be a constant fraction of the riser holdup, 

at all gas flow rates, for all reactor configurations (Figure 6a and b). The average 

holdup ratio for the MAL configurations (otd/ctr = 0.875 ± 0.006), and for the 

ILR configurations (ctd/ar = 0.863 + 0.004), were in agreement with earlier 

findings [Bello et al, 1985; Chisti, 1989] (adlctr = 0.89). Riser and downcomer 

holdup both increased with superficial gas velocity. This increase was less steep 

after the occurrence of gas recirculation in the ILR (Figure 3) than in the MAL 

(Figure 5). Furthermore, Figure 5 suggests pronounced geometric effects on gas 

holdup for the three MAL configurations. At all superficial gas velocities in Figure 

5, lower riser gas holdups are observed with increasing downcomer-to-riser area 

ratio (Ad/Ar), this is going from MAL configuration A to C. However, comparable 

superficial gas velocities for different riser areas correspond to different gas flow 

rates. Plotting the holdup as a function of the gas flow rate (not shown) showed no 

such trend in holdup with different downcomer-to-riser area ratios (Ad/Ar) at the 

same gas flow rates for the three MAL configurations. These MAL results are 

comparable to findings for conventional ILRs [Bello et al., 1985; Chisti, 1989]. 

Very low gas flow rates were not applicable for the MAL, because this 

resulted in an inequal distribution of gas over the sparger ring. This caused large 

irregular variations in liquid velocities. At higher gas flow rates with equal gas 

distribution, where the measurements were done, bubble coalescence in the riser 

probably caused local holdup differences that induced visually observed tangential 

liquid movements. Consequently, holdup measurements showed an increasing 

spread with an increasing gas flow rate. Holdup measurements however, could be 

replicated within 5% accuracy for both the MAL and the ILR. 

For the MAL, the standard deviation in liquid-velocity measurements was 

20%, probably due to irregularities in the tracer path between the electrodes. In 

spite of this limitation, the tracer-response method was used because those 
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0.06 0.09 
Vgs [m.s-1] 

0.15 

Figure 4. Superficial liquid velocity in the downcomer for three MAL 
configurations (specified in Table I): A (O), B ( • ) and C (A); solid lines: 
model estimations. Arrows: onset of gas recirculation. 

deviations are inherent to the reactor type, and other methods also have their 

disadvantages. Liquid velocities in the ILR could be determined more accurately, 

within 10% standard deviation, which is acceptable in observing that Chisti [1989] 

reported variations of ±30% for liquid velocities in ILRs. The fluctuations were 

ascribed to gas entrainment in the downcomer, and comparable observations of 

fluctuating flows were described by Siegel et al. [1986] and were also seen in the 

present study. 

FRICTION COEFFICIENTS 

The model estimations were based on two input parameters: the gas flow rate, and 

the overall frictional-loss coefficient K* Theoretical K* values for ILRs, derived 

from one-phase flow theory, were difficult to derive, because no accurate estimates 

of the frictional losses in the 180° turns at the top and bottom of the reactor could 

be made. Recent studies emphasize that entrance effects due to a flow which is not 

fully developed at the turns may cause additional frictional losses [Wachi et al., 

1991; Y o u n g s al, 1991]. 
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Figure 5. Riser gas holdup for three MAL configurations (specified in 
Table I): A (O), B ( • ) and C (A); solid lines: model estimations. Arrows: 
onset gas recirculation. 

Friction coefficients were calculated from riser and downcomer holdup and 

superficial liquid velocity by using Eq. (3). The small difference between both 

holdups made this K* determination very sensitive toward inaccuracies in 

experimental data. Nevertheless, the resulting K* values show a clear positive trend 

with the superficial gas velocity for both the MAL and ILR (Figure 7a and b) up to 

the velocity where gas recirculation occurred. Linear regression on Kf&s a function 

of superficial gas velocity in this range indeed showed a significant positive slope 

for each configuration - and also when Kf was calculated [Eq. (3)] on the basis of 

measured average liquid velocity instead of using superficial liquid velocities. This 

increase in Kf is not as expected from one-phase flow theory when applied to the 

current experimental conditions. During the experiments, the diameter of the 

described spherical-cap bubbles in the downcomer often was as large as the width 

of the downcomer torus. This flow regime is referred to as slug flow [Wallis, 

1969]. Liquid velocity was approximately constant, and the flow regime turbulent 

at all gas flow rates. (Re > 7000 for all reactor configurations). For one-phase 

flow, this implies that wall friction coefficients should remain constant [Wallis, 
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Figure 6. (a) Downcomer holdup versus riser holdup for three MAL configurations 
(specified in Table I): A (O), B ( • ) , and C (A), (b) Downcomer holdup versus riser 
holdup for four ILR configurations (specified in Table I): A (O), B ( • ) , C (A), and D 
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1969], and not increase with superficial gas velocity. Frictional losses dropped 

again to lower values at higher liquid velocities after gas recirculation occurred. It 

is thus clear that no single Kf value can characterize the reactor hydrodynamics at 

all gas flow rates. 

A mechanistic explanation for the increasing frictional losses can be given 

by considering the interfacial drag effects between gas bubbles and the surrounding 

liquid [Chisti and Moo-Young, 1988; Ishii and Zuber, 1979; Patel et al, 1986; 

Young et al., 1991]. Ishii and Zuber [1979] developed general drag-force relations 

for bubble, droplet and particle flow. Young et al. [1991] successfully adopted this 

model for the estimation of the frictional losses in the riser of their ALR with an 

external loop. For the present study, pressure drops were derived from drag-force 

estimations with the Ishii and Zuber [1979] relations. The increased pressure drop 

expressed in a higher K* value, as found in practice for the MAL and ILR, could 

be calculated with Eq. (2). The pressure drops derived from drag-force estimations 

for the downcomer section were of the same order of magnitude. For more 

accurate estimations, and incorporation into the model calculations by introduction 

of a variable Kp bubble-size distributions must be known at all gas flow rates. 

Concluding from the observations of the current study and literature [Chisti and 

Moo-Young, 1988; Ishii and Zuber, 1979; Patel et al, 1986; Wachi et al, 1991; 

Young et al, 1991], three contributions to the total friction have thus to be 

distinguished: fully developed annular flow, entrance effects at turnarounds, and 

stationary bubbles. 

In this study, the MAL and ILR were used to validate an empirical 

correlation [Chisti et al, 1988]: Kf = \\A{AdIAbf
19, relating Kf to the bottom 

clearance (Ad/Ab) for K, values of different ILRs derived from literature with 0.2 

< AdIAb <2. When valid, this correlation can be useful for model estimations of 

hydrodynamics in the MAL and other ILRs. In the MAL, Ad and Ab are not 

independent and thus varied at the same time (Table I). However, the four ILR 

configurations used in this study only differed in Ab (Table I), and are therefore 

useful to investigate the effect of changing Ab on /^separately. For the three AdIAb 

ratios which are similar for the MAL and ILR, the experimental Kf was found to 

be considerably lower for the MAL (Table II) and, consequently, the empirical 

correlation, which should be applicable to different reactor geometries, does not 
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apply. From these findings it can be concluded that Ky has to be determined 

experimentally for the MAL and other ILRs. 

Table II. MAL and ILR experimental Kf 
and maximum Kfand vgs values used for Figure 

Config. 

Max. Kf[-] 
Max. v^ [m.s -1] 

A 

1.32 
2.57 
0.0678 

MAL 

B 

1.53 
2.66 
0.0745 

C 

3.31 
5.48 
0.128 

values for the hydrodynamic 
: 7a and b. 

A 

7.74 

10.4 

0.168 

B 

8.58 
14.4 
0.168 

ILR 

C 

11.5 
17.7 
0.168 

model, 

D 

10.0 
14.2 
0.168 

MODEL CALCULATIONS 

For model calculations, the average Ky in the absence of gas recirculation was used 

(Table II), because K* was shown to depend on the gas flow rate. This implies that 

the amount of measurements can influence the average value of Kp Furthermore, 

model calculations in the absence of gas recirculation are the most interesting 

because these flow rates will be used for most practical applications. 

Liquid-velocity and gas-holdup estimations were based on the two-phase, 

drift-flux model [Zuber and Findlay, 1965] [Eq. (4)]. For external-loop reactors, it 

has been shown that experimentally determined values for C and vba> can be 

explained by physical theory [Merchuk and Stein, 1981; Van Sonsbeek et al., 

1990; Verlaan et al, 1986; Young et al, 1991]. Furthermore, Siegel et al. [1986] 

showed the validity of the drift-flux model for ILRs. Clark and Flemmer [1985] 

investigated two-phase up and down flow in tubes; their results agreed with the 

drift-flux model. 

From the drift-flux model [Eq. (4)] estimates for C and vboo can be 

obtained. Linear regression on v as a function of the total flow, v + vfa, gives 

values of C (slope) and vboa (intercept) that characterize the flow. For all 

configurations of the MAL and ILR, values obtained for C varied between 1.3 and 

1.7, suggesting a positive correlation between liquid-velocity and holdup-

concentration profile across the riser. The average vboo obtained for the three MAL 

configurations (0.25 + 0.07 m.s"1) agreed well with the assumed average value 



24 CHAPTER 2 

[Wallis, 1969] of 0.25 m.s"1; the average vboo for all ILR configurations was 

considerably lower (0.09 ± 0.04 m.s"1). This can be explained by nonideal 

circumstances at higher gas holdups. Such nonidealities are inevitable at the present 

experimental scale as the ducts for fluid flow in both model reactors were narrow 

compared with bubble size, thus causing wall effects [Wallis, 1969]. 

Bubble rise velocity decreased due to turbulence effects. This means that, at 

holdups exeeding 0.10, as found for the ILR, air bubbles start hindering each other 

in their flow [Ishii and Zuber, 1979]. In order to use only physically explainable 

parameters, and to show the general applicability of the drift-flux model, it was 

decided to take conservative estimates, C = 1.3 and vb<x — 0.25 m.s"1, for further 

model calculations for the three configurations of the current laboratory-scale 

MAL. Estimates for C and vboo in the downcomer could not be made, as the gas 

flow rate in the downcomer is not known. 

The drift-flux model was originally developed for plug flow in vertical tubes 

[Zuber and Findlay, 1965]. Although the MAL geometry deviates from this, the 

model turns out to be applicable. Model calculations, based on mass flows, were 

made by an iterative calculation procedure [Verlaan et al., 1986]. As the gas flow 

in the downcomer is not known, the average experimental holdup ratio (ccd/ar = 

0.88) was used for estimation of the downcomer gas holdup from the estimate for 

the riser. Local gas density differences were accounted for by a pressure correction 

halfway the column [Verlaan et al., 1986]. 

Figure 4 shows model estimates for the superficial liquid velocity in the 

downcomer for three MAL configurations. Deviations were explained by the 

fluctuating flow due to downcomer gas holdup. On the whole, experimental data 

are approximated well, taking into account the deviations from ideality and the fact 

that parameter values explainable from physical theory were used. Estimates of gas 

holdup in the riser (Figure 5) and downcomer agreed well with the measurements. 

No correction was made for the unknown amount of recirculation gas flow. 

MIXING 

Mixing is an important feature for the MAL performance. For continuous 

operation, the residence time in each MAL compartment should exceed the mixing 

time per compartment to prevent short-cut flow of medium. For the second MAL 
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compartment, axial as well as tangential mixing may be expected. From the data 

for two MAL configurations (Table III), it is concluded that a large riser area 

(configuration A) entails a slightly better mixing. This is in agreement with data 

and correlations for conventional ILRs [Bello et al., 1984; Chisti, 1989; Sukan and 

Vardar-Sukan, 1987; Weiland, 1984], of which the first (central) MAL 

compartment is an example. The tangential liquid movements in the second MAL 

compartment slightly enhanced liquid mixing; complete mixing was established 

within 3.4 liquid circulations. 

Table III. Mixing and circulation times for two MAL 
configurations at different superficial gas velocities. 

MAL 
config. 

A 

B 

V 
[m/s] 

0.0074 

0.0145 

0.0297 

0.0646 

0.0081 

0.0160 

0.0327 

0.0710 

r m ±SD 
[s] 

49.5 ± 3.2 

46.0 ± 2.0 

40.4 ± 1.4 

38.7 ± 3.0 

54.0 ± 1.2 

52.3 ± 4.6 

52.6 ± 1.3 

39.2 + 4.4 

Tc 

[s] 

21.5 

19.4 

20.0 

11.3 

18.8 

18.1 

18.4 

12.0 

TJTC 
H 
2.3 

2.4 

2.0 

3.4 

2.9 

2.9 

2.8 

3.3 

CONCLUSIONS 

Tangential liquid movements were observed in the second MAL compartment. 

Otherwise, MAL hydrodynamics were similar to hydrodynamics in conventional 

ILRs. Downcomer holdup was a constant fraction of the riser holdup at all gas 

flow rates: adlar equaled 0.88 for the MAL and 0.86 for the ILR. Mixing in the 

MAL as a function of riser-to-downcomer area ratio was shown to be comparable 

with conventional ILRs. Tangential liquid movements slightly enhanced mixing. 

Frictional losses were observed to increase with the gas flow rate. Stationary 
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bubbles could be regarded as obstacles causing additional friction. From both this 

observation and the literature [Chisti and Moo-Young, 1988; Ishii and Zuber, 

1979; Patel et al, 1986; Wachi et al, 1991; Young et al, 1991], three 

contributions to the total friction have to be distinguished: fully developed annular 

flow, entrance effects at turnarounds, and stationary bubbles. 

A correlation for the frictional-loss coefficient based on reactor bottom 

geometry [Chisti et al., 1988] could not be applied for both reactors under study. 

Frictional losses had to be determined experimentally, especially considering the 

fact that friction was shown to depend on the applied gas flow rate. 

The hydrodynamic model based on the two-phase, drift-flux model [Zuber 

and Findlay, 1965], and on a friction coefficient derived from experimental data, 

describes the experimental data for the second MAL compartment well. For the 

chosen experimental setup, wall effects at higher gas holdups were inevitable. 

Model estimations can be improved, by using a variable Kp when accurate drag-

force estimations can be made. 

ACKNOWLEDGEMENTS 

This work was partly supported by Applikon Dependable Instruments B.V., 

Schiedam, The Netherlands. The authors thank H.M. van Sonsbeek for fruitful 

discussions. W.A. Beverloo and H.H. Beeftink are thanked for their suggestions 

during the manuscript preparation. 

NOMENCLATURE 

H 
*d 

*r 

c 
D 

D2 

free bottom area 

cross sectional downcomer area 

cross sectional riser area 

distribution parameter 

diameter 

inner baffle diameter for the second MAL compartment 

[m2] 

[m2] 

[m2] 

[-] 

[m] 

[m] 
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gravitational acceleration [m.s"2; 

H riser length [mi 

Hb baffle height above reactor base [m' 

Kf overall friction coefficient [ 

AP pressure difference [Pa 

Re Reynolds number [-

v velocity [m.s"1 

vboa terminal rise velocity of a single bubble in an 

infinite stagnant medium [m.s" 

v gas velocity [m.s* 

v superficial gas velocity [m.s" 

vw downcomer liquid velocity [m.s" 

vlr riser liquid velocity [m.s" 

vb superficial liquid velocity [m.s" 

vUd downcomer superficial liquid velocity [m.s" 

vfar riser superficial liquid velocity [m.s" 

w baffle wall thickness [m 

ad downcomer holdup [ 

ar riser holdup [ 

p density [kg.m": 

Ap density difference [kg.m"3 

TC circulation time fr 

Tm mixing t ime [ŝ  
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CHAPTER 3 

OXYGEN TRANSFER IN A 

MULTIPLE AIR-LIFT LOOP REACTOR 

SUMMARY 

The Multiple Air-lift Loop reactor (MAL) is a new type of bioreactor, in which a 

series of air-lifts with internal loops is incorporated into one vessel. As such, the 

MAL is an approximation of an aerated plug-flow fermentor. Gas/liquid oxygen 

transfer was studied as a function of the gas flow rate in a MAL. The second 

MAL-compartment in the series was investigated in particular, and a Rectangular 

Air-lift Loop reactor (RAL) was used as a reference. Both a dynamic and a steady-

state method were used for the determination of the overall volumetric oxygen-

transfer coefficient. Both methods gave the same results. The oxygen transfer 

coefficient in the second MAL-compartment was low compared to that of 

conventional internal-loop reactors. Wall effects probably caused bubble 

coalescence and a reduction in the oxygen transfer. For the RAL it was found that 

oxygen transfer was comparable to that in a bubble column. 
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INTRODUCTION 

The Multiple Air-lift Loop reactor (MAL) is a new type of bioreactor [De Gooijer, 

1989]. In the MAL a cascade of Air-lift Loop Reactor (ALRs) with internal loops 

is incorporated into one vessel. Bioreactor series, like the MAL, can be used for 

the optimization of bioprocesses [Bakker et al., 1993]. With the MAL, aerated 

plug-flow behavior can be approximated if sufficient ALRs, which behave like 

nearly ideally mixed vessels [Bakker et al., 1993], are placed in the cascade. 

Aerated plug-flow reactors, like the MAL, have not been used in biotechnology 

until now. 

A schematic side and top view of the MAL is given in Fig. 1. The 

subsequent reactors in the MAL are placed concentrically. This construction results 

in a new type of geometry for air-lift reactors with an internal loop, in this study 

represented by the second MAL-compartment. These annular-shaped compartments 

have a cylindrical wall to separate the riser and downcomer regions. The central 

reactor is a conventional internal-loop reactor. 

Recently the MAL has been described and evaluated regarding its 

applicability for biotechnological processes. To that end sucrose conversion by 

immobilized invertase was studied in a three-compartment MAL and compared to 

that in a single, nearly ideally mixed, ALR. Indeed a higher degree of sucrose 

conversion was obtained in the MAL [Bakker et al., 1994]. 

Now gas/liquid oxygen transfer is described for the same MAL 

configuration that previously was used for the hydrodynamics and mixing studies 

[De Gooijer, 1989]. A Rectangular Air-lift Loop reactor (RAL) was used as a 

single-vessel reference for the comparison of oxygen transfer in it with that in the 

second compartment of the MAL. Gasner [1974] suggested the use of a series of 

RALs for wastewater treatment, and characterized oxygen transfer in it. Others 

also used RALs for characterization studies [Chisti, 1989; Siegel and Merchuk, 

1988], and reviewed the literature on oxygen transfer in ALRs with an internal 

loop [Bello, etal, 1985; Chisti, 1989; Siegel and Merchuk, 1988]. 

Oxygen is a substrate in many bioconversions and therefore the gas/liquid 

oxygen transfer rate is an important parameter in the physical characterization of an 

aerated bioreactor. The product of the oxygen mass-transfer coefficient k„, and the 
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Figure 1. Three-compartment MAL, cross-sectional side and top view. 
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specific gas/liquid interfacial area a, known as the overall volumetric mass-transfer 

coefficient kji, was determined as a function of the gas flow rate in four different 

configurations of the second MAL-compartment. The four MAL-configurations 

differed in their downcomer-to-riser area ratio. In this study also two different 

methods to determine kgfi in the second MAL-compartment were compared. The 

first is the frequendy applied dynamic method [Van 't Riet, 1979]. The second 

method is the steady-state method [Van Sonsbeek et al, 1991], based on de-

oxygenation of the liquid phase outside the bioreactor. 

Separator wall 

Sparger 

Figure 2. Scheme of the rectangular air-lift loop reactor (not on scale). 
Variable dimensions are summarized in Table I. 



OXYGEN TRANSFER IN A MAL 35 

MATERIALS AND METHODS 

THE MAL 
The vessel in study was the previously described 0.034 m3 second compartment of 

a MAL [Bakker et al., 1993]. The downcomer-to-riser area ratios were: AJAr = 

0.31 (configuration A); 0.43 (configuration B); and 0.91 (configuration C). In 

addition to that, the vessel was also operated as a bubble column (without separator 

wall; configuration BC): AJAr = 0. Geometric data are given in Table I. Gas-

holdup data were determined earlier [Bakker et al., 1993]. 

Table I. Geometric data and bubble-diameter estimations for the MAL and the 
RAL. Values for the kjdb ratio are from a non-linear fit of Eq. (4) to the data for 
the MAL and the RAL, as illustrated in Figures 7 and 8. Furthermore, average 
bubble sizes (db) were derived from the kjdh ratio assuming k^ to be constant ( = 4 
X 10^ m.s1) for bubbles larger than 6 mm. 

Config. BC 
Geometric data: 
7?2[m] 
w [mm] 
Hw[m] 
H,[m] 
AJAr 

Bubble-diam 

kjdb [s1] 
dh [mm] 

-
-
-
2.26 
0 

MAL 

A 

0.077 
3.0 
2.06 
2.26 
0.31 

eter estimations: 
0.039 0.025 

10 16 

B 

0.079 
3.0 
2.06 
2.26 
0.43 

0.032 

13 

C 

0.081 
9.0 
2.06 
2.26 
0.91 

0.022 

18 

A 

-
3.0 
0.75 
0.85 
0.98 

B 

-
3.0 
1.25 
1.34 
0.98 

RAL 

C 

-
3.0 
0.75 
0.85 
0.42 

0.071 
5.6 

D 

~ 
3.0 
1.25 
1.34 
0.42 

THE RAL 
The 0.115 m3 RAL consisted of transparent perspex (Fig. 2), with metal support 

bars on the outside to prevent the walls from bending. Dimensions were I X b X h 

= 0.8 x 0.1 x 1.5 m. The downcomer-to-riser area ratio could be changed by 

choosing a different position of the separator wall. Also, the height of the separator 

wall could be adjusted. Liquid height above the separator wall was 0.10 m, and the 
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height of the separator wall above the bottom was 0.05 m. Variable geometric data 

are given in Table I. The straight sparger construction was comparable to that for 

the MAL [Bakker et al., 1993]. Gas was injected in a gas inlet chamber, from 

there it was distributed over the straight sparger tube. Overall gas holdup was 

determined by measuring the dispersion height over the unaerated liquid. 

EXPERIMENTAL CONDITIONS 

As previously [Bakker et al., 1993] a 20 mol.m"3 solution of KC1 was used for all 

experiments. The kji values measured were converted to those at standard 

conditions of 20°C with [Heijnen and Van 't Riet, 1984; Siegel and Merchuk, 

1988]: ^ (20 oC) = ^(7)/(1.024)r-20°c, where T is the actual temperature (°C). 

Surface tension of the liquid was 73 mN.m1; viscosity was 1.0 mPa.s. 

DYNAMIC METHOD 

The general equation for the oxygen transfer rate from a gas to a well mixed bulk 

liquid is [Van 't Riet, 1979]: 

dc, ... 

-^-VCVi) (1) 

where kol is the overall oxygen transfer coefficient, a the specific gas/liquid 

interfacial area, cs the saturation oxygen concentration in the liquid phase and ct the 

actual oxygen concentration in the liquid phase. Integration of Eq. (1) for constant 

cs gives: 

Cs~cl® =e-h,*< (2) 
c , -c /0) 

Eq. (2) is suitable for the determination of the lumped parameter kji by the 

dynamic method; the aqueous oxygen concentration has to be measured in time 

after a step-wise change in the gas inlet oxygen concentration. 

The constraints to this method [Van 't Riet, 1979] were found to be met. 

The response time (63% of full scale) of the polarigraphic electrodes was 6.3 ± 
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1.5 s, which is low compared to \lkji. Linear regression on ln({cs-cfid)}/{crc,(t)}) 

between 0.25cs < ct(t) < 0.75cs as a function of time [see Eq. (2)] yielded k„fl 

[Van 't Riet, 1979]. Each dynamic measurement was done at least two times and 

averaged to give kji. 

STEADY-STATE METHOD 

The central MAL-compartment (i. e. the first vessel in the series) was operated as a 

bubble column, with nitrogen supply, for the de-oxygenation during the steady-state 

measurements (Fig. 3). Liquid was pumped from the bottom of the second MAL 
compartment downcomer to the de-oxygenation vessel. From there liquid returned 

to the reactor via natural overflow. Measurements were done up to superficial gas 

flow rates of 0.04 m.s1 where no gas was entrained in the tubing (MAL 

configuration A). Gas holdup in the external circuit should be known, or avoided, 

as it can contribute to the oxygen transfer [Van Sonsbeek et al., 1991]. Oxygen 

concentrations were measured in both the reactor and in the de-oxygenation vessel. 

In a steady-state the net transport of oxygen in the de-oxygenation circuit 

will be equal to the oxygen transfer in the reactor, and to the oxygen transfer in the 

de-oxygenation vessel [Van Sonsbeek et al., 1991]: 

*!fcw,-«W) = Vr(Kl*\Kr-ClJ = ^ <*«rf«W (3) 

where <i>; is the liquid flow rate to the de-oxygenation vessel, V is the liquid 

volume, c, ln and c, m, are the oxygen concentrations in the incoming and outcoming 

liquid of the de-oxygenation vessel, respectively. Furthermore, the subscripts r and 

d refer to the reactor and the de-oxygenation vessel, respectively. 

For this method two constraints have to be taken into account [Van Sonsbeek 

et al., 1991]: (i) both reactor and de-oxygenation vessel are assumed to be 

perfectly mixed, in other words, the mixing time rmr < VJ$„ resulting in clin = 

clr and c,m, = cld, respectively, (ii) the oxygen concentration should agree with 
ciJci,r

 < 0.8 and csr/clr < 0.8 for accurate measurements. Both constraints were 

found to be met. 

file:///lkji
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Figure 3. Scheme of the second MAL compartment (not on scale), and experimental 
setup for the steady-state method. Inner diameters are given (m). Variable dimensions are 
summarized in Table I. PI = probe 1 and P2 = probe 2. 
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RESULTS AND DISCUSSION 

OXYGEN TRANSFER IN THE MAL 

The kji was determined from the dynamic measurements at different superficial 

gas velocities for four configurations of the second MAL compartment. Figure 4 

shows that, for all MAL configurations, k^i increased with the superficial gas 

velocity v^ (defined as the division of gas flow rate by Ar). Furthermore, the kji 

decreased with increasing downcomer-to-riser area ratio (from AJAr = 0 to 0.91) 

at every superficial gas velocity, although configurations A and B show comparable 

results. This effect, a lower kola with increasing Ad/Ar, was also observed by other 

investigators for air-lift loop reactors with an internal loop [Bello et al., 1985; 

Chisti, 1989]. 

In Figure 4, a solid line is drawn using an empirical correlation for bubble 

columns [Heijnen and Van 't Riet, 1984] (k„fi = 0.32v^07) to make a comparison 

to the MAL. The kji values for the present bubble column (AJAr = 0; 

configuration BC) were somewhat lower (Fig. 4) but they approach this 

correlation, for which deviations of about 30% are acceptable [Van 't Riet and 

Tramper, 1991]. For all air-lift configurations (A, B and C), the experimental kji 

values were somewhat lower than those for the bubble column, which is normally 

observed in such a comparison [Bello et al, 1985; Chisti, 1989; Van 't Riet and 

Tramper, 1991]. This is because the contact time between gas and liquid phase in 

an ALR is always smaller than in a BC under the same experimental conditions. 

In Figure 5, the results of measurements from the steady-state method are 

compared with those of the dynamic method for MAL configuration A. Good 

agreement between both methods of ^^-determination was observed, which was 

also found for a liquid-impelled loop reactor [Van Sonsbeek et al., 1991]. The 

steady-state method is a useful alternative if problems associated with the dynamic 

method can not be avoided [Van Sonsbeek et al., 1991; Van 't Riet, 1979]. For 

example, the presence of a third phase in which oxygen dissolves can cause large 

inaccuracies in the dynamic kola determination. 

OXYGEN TRANSFER IN THE RAL 

The RAL was used as a reference, and may be seen as an approximation of an 
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Figure 4. The k„ft as a function of the superficial gas velocity v^ for four 
MAL configurations: A (O), B (•), C (A), and BC (O). Solid line: empirical 
correlation for bubble columns [Heijnen and Van 't Riet, 1984]: k„fi = 
0.32v °-7. 

outer compartment of a large-scale MAL. Four extreme configurations were used 

to observe the effects of varying AJAr, and reactor height, on k^a. The results of 

the dynamic measurements at relativly low superficial gas velocities as compared to 

the MAL experiments, are shown in Figure 6. Reactor height did not affect kji, 

but still larger height differences might show an increased volumetric mass-transfer 

coefficient with increasing liquid height [Chisti, 1989; Onken and Weiland, 1983]. 

The effect of varying AJAT on k^a was comparable to that in the MAL where k„fl. 

decreased with increasing AJAT. 

In the RAL, liquid circulation cells were observed in the downcomer. This 

is probably caused by low liquid velocities at the edges of the downcomer section; 

entrained gas bubbles moved to the edges and coalesced there, and then escaped 

upward. Therefore the hydrodynamic behavior of the RAL downcomer was bubble-

column like because it was not possible to obtain complete bubble recirculation 

through the RAL downcomer. This holds for a wide range of power inputs per unit 

of reactor volume, and different /4dA4r-ratios, which both were in the same range as 

applied in the MAL (results not shown). This is in contrast with findings of Siegel 
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Figure 5. Comparison of the ^-values measured with the steady-state 
method (A) to those obtained with the dynamic method (O) for MAL 
configuration A. 

and Merchuk [1988] for a RAL with different (more slender) dimensions, where 

bubble recirculation could easily be established. 

In Figure 6 a solid line is drawn using the same empirical correlation for 

bubble columns [Heijnen and Van 't Riet, 1984] again (kji = 0.32V,,0-7), to make 

a comparison to the RAL. The oxygen transfer in the RAL was found to be 

comparable to that in bubble columns (Fig. 6). Others also reported high aeration 

efficiencies for different RALs [Chisti, 1989; Gasner, 1974; Siegel and Merchuk, 

1988]. From these findings it was concluded here that the RAL was not a good 

model reactor for hydrodynamics and oxygen transfer in the second MAL-

compartment where bubble recirculation can easily be established [Bakker et al., 

1993], and no liquid circulation cells were observed. 

BUBBLE-SIZE ESTIMATIONS 

For a mechanistic comparison of oxygen transfer in the MAL to that in the RAL 

and in other ALRs with internal loops, the total gas holdup and the bubble diameter 

are important parameters. Gas holdup and the bubble diameter together determine 
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Figure 6. The k„fl as a function of the superficial gas velocity vgs for four 
RAL configurations: A (O), B ( • ) , C (A), and D (O). Solid line: empirical 
correlation for bubble columns [Heijnen and Van 't Riet, 1984]: k„fl. = 
0.32V/7. 

the gas/liquid interfacial area for oxygen transfer. The k„fl can be related [Chisti, 
1989; Van 't Riet and Tramper, 1991] to the overall gas holdup a, and the mean 
bubble size db: 

Kia = 
6k ol 

d. (1-a) 
(4) 

From a non-linear fit of Eq. (4) to kji as a function of the overall gas holdup, the 

kjdb ratio was estimated for all MAL and RAL configurations as shown in Figures 

7 and 8, respectively (see Table I for the kjdb ratios). In this analysis, effects from 

different RAL geometries were insignificant (Mest), and thus one kjdb ratio was 

obtained. 

The kjdb-vd\a&$ for the MAL were lower than the average 0.053 s"1 

reported by Chisti [1989] for various ALRs with internal loops under similar 

conditions. This indicated that reduced gas/liquid interfacial area was present in the 

second compartment of the MAL, even in the bubble-column configuration. The 
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kjdb ratio of 0.071 s"1 for the RAL (Fig. 8 and Table I) was higher than the ratio 

of 0.058 s"1 reported by Chisti for a bubble column [1989]. For bubble columns 

kjdb may be estimated to be 0.067 s"1 by assuming bubbles with equilibrium 

diameter (db = 6 mm) [Wallis, 1969], and ^ = 4 x 10"4 m.s1 [Heijnen and Van 

't Riet, 1984; Kawase and Moo-Young, 1992]. This kjdb value is in agreement 

with the experimental results for the RAL (Table I). 

In order to explain the difference between the MAL and the RAL, bubble 

sizes were estimated from the assumption that k^ = 4 X 10"4 m.s"1. The k^ itself is 

dependent on db, but for a rough estimate k^ was assumed to have this constant 

value for bubbles larger than 6 mm [Heijnen and Van 't Riet, 1984; Kawase and 

Moo-Young, 1992]. The large bubble sizes obtained (Table I) were in agreement 

with the visual observation of bubbles with diameters larger than 6 mm in the 

MAL riser and downcomer [Bakker et al, 1993]. The occurrence of those bubbles 

could be explained by observing the scale of the MAL. The ducts for fluid flow 

were narrow compared to bubble size, thus causing bubble/wall interactions, 

bubble/bubble interactions, and bubble coalescence [Bakker et al, 1993; Wallis, 

0.000 
0.00 0.04 0.08 0.12 0.16 

« ["] 

Figure 7. The kji as a function of the overall gas holdup a for four MAL 
configurations: A (O), B ( • ) , C (A), and BC (O). Solid lines: non-linear fit 
with Eq. (4). Resulting kj devalues are given in Table I. 
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1969]. 

CONCLUSIONS 

Oxygen transfer in the MAL was low compared to that in the RAL. 

Hydrodynamics and oxygen transfer in the RAL were comparable to that in bubble 

columns. Therefore the current RAL was found not to be a good model reactor for 

studying the second MAL-compartment. Those compartments were earlier found to 

behave like conventional ALRs with an internal loop [Bakker et al., 1993]. 

If oxygen transfer in the MAL has to be comparable to that in conventional 

ALRs with an internal loop, the MAL has to be of a larger scale than the current 

one to prevent bubble coalescence due to wall effects. 

The steady-state method for k^ determination was shown to be a good 

alternative for the dynamic method as both methods gave comparable results. 
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Figure 8. The kji as a function of the overall gas holdup a for four RAL 
configurations: A (O), B ( • ) , C (A), and D (O). Solid line: non-linear fit 
with Eq. (4). The resulting kjdb-value is given in Table I. 
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NOMENCLATURE 

Ad 

Ar 

a 

Cl 

Cs 

db 

Hw 

Ht 

Ki 

R2 

T 

t 

V 
w 

a 

P 

Tm 

*, 

cross-sectional downcomer area 

cross-sectional riser area 

specific gas/liquid interfacial surface area 

actual oxygen concentration in the liquid 

saturation oxygen concentration 

mean bubble diameter 

separator-wall height 

liquid height above reactor base 

overall oxygen transfer coefficient 

inner radius for the separator wall in 

temperature 

time 

superficial gas velocity 

separator-wall thickness 

overall gas holdup 

density 

mixing time 

liquid flow rate 

the second MAL 

K ] 
[m2] 

[m2.m-3] 

[mol.m3] 

[mol.m"3] 

[m] 

[m] 

[m] 

[m.s1] 

compartment [m] 

[°C] 

[s] 

[m.s1] 

[m] 

H 
[kg.m3] 

[s] 

K.s1] 

Subscripts: 

d = de-oxygenation vessel r = reactor 

in = incoming out = outcoming 
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CHAPTER 4 

BIOREACTORS IN SERIES: AN OVERVIEW OF 

DESIGN PROCEDURES AND PRACTICAL 

APPLICATIONS 

"If one fermenter gives good results, 

two fermenters will give better results and three fermenters better still. 
This is sometimes true, but often false." 

Herbert, D., 1964a 

INTRODUCTION 

Over the last decades, many papers described the design or application of series of 

bioreactors. Usually, these bioreactors in series are of the continuous stirred tank 

reactor (CSTR) type. This most widely used bioreactor is easy to operate, of simple 

construction, and replacement of biocatalysts and maintenance is not troublesome 

[Hill, 1977]. 

The pertinent processes described in literature can be divided into two main 
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groups: processes with a constant overall reaction stoichiometry that can be described 

by a single kinetic equation, and processes where the stoichiometry is variable and the 

descriptive kinetic equation changes. The first group consists of those bioprocesses that 

may well be performed in one bioreactor, but where segregation into two or more 

bioreactors may lead to a higher product concentration, a larger degree of conversion, 

or a higher volumetric productivity (also known as space-time yield), or a combination 

of these factors. The second group is by nature heterogeneous in time or space, and 

is characterized by two or more independent reactions each governed by its own 

kinetics, as in biogas production or nitrification/denitrification. 

For processes with a fixed overall reaction stoichiometry, this paper first will 

present a general theoretical oudine that enables one to decide if a series of bioreactors 

is favourable. After that, the question of how such a series should be designed will be 

addressed. Subsequently, the general theory will be applied to catalytic reactions 

(enzymatic conversions), and also to autocatalytic reactions (cells in suspension). This 

will be done for different types of kinetics. After each theoretical treatise, a number 

of applications of series of bioreactors will be presented. 

For processes with a variable stoichiometry some examples will be presented, 

since up to now no design rules exist for series with these types of processes. The 

paper concludes with a short description of bioreactors suitable for bioprocesses in 

series, both with constant and variable stoichiometry. 

The descriptions of a single plug-flow type bioreactor with the tanks-in-series 

model [Powell and Lowe, 1964; Kleinstreuer, 1987] are omitted, as well as the 

numerous papers devoted to this subject in the field of chemical engineering. This 

paper will also solely focus on single-feed series of bioreactors. 

CONSTANT STOICHIOMETRY PROCESSES 

Processes with a constant overall reaction stoichiometry may show a higher product 

concentration, a higher degree of conversion, a higher volumetric productivity, or a 

combination of those if executed in a series of CSTR's when compared to a single 

bioreactor. 



DESIGN PROCEDURES FOR BIOREACTORS IN SERIES 49 

THEORY 

As a process with a constant stoichiometry, Bischoff [1966], citing Herbert [1964a], 
describes an optimal series for biomass production, consisting of a CSTR followed by 

a plug-flow reactor. Such a system may be conceived of as one large CSTR, followed 

by an infinite number of infinitesimally small CSTR's (Figure 1A; for the calculations 

underlying Figure 1 see appendix). This combination of a CSTR followed by a PFR 
has the lowest total residence time to achieve a certain degree of conversion (Figure 

1A-G). Since for biomass production in most cases oxygen is required, and an aerated 

PFR does not exist, an alternative to this combination is a series of CSTR's with equal 

volume (Figures IB and 1C), or a series of unequal-volume CSTR's (Figures ID and 

IE). 

Implicitly, Figure 1, which holds with no biomass in the influent, imposes that 

the desired degree of conversion of the process determines whether a series of 

bioreactors is favourable or not: if the substrate concentration at the exit of the series 

is to the left-hand side of point A in Figure 1A (a high degree of conversion) then a 

series is favourable, if it would be to the right-hand side of point A (a low degree of 

conversion), a single CSTR would be the best solution. It should be noted, as also 

stated by Moser [1985], citing Topiwala [1974], that the PFR/CSTR volume ratio for 

such an optimal configuration is strongly dependent on the ratio K = KJS0, with Ks 

the Monod constant (mol.m ) and S0 the substrate concentration at the inlet of the 

series (mol.m"3) (Figure 2). For Monod kinetics, and a quite common influent 

concentration K = 0.01 [Van 't Riet and Tramper, 1991], the minimum in Figure 1C 

is attained at a = S/S0 = 0 . 1 , indicating that up to conversions of 90% a single 

CSTR (without any PFR) would perform optimally. 

As far as the design of a reactor series is concerned, a distinction has to be 

made between the design of a series of equal volume CSTR's, and a series of non-

equal volume CSTR's, the latter also referred to as optimal design. 

Design of a finite equal-volume series. The theory of a series of equal-sized CSTR's 

was first treated by Herbert [1964B], and later cited by Moser [1988]. Two 

performance criteria were defined: biomass productivity (kg.m~3.s_1), and effective 

yield, defined as the ratio of biomass concentration at the outlet and the substrate 

concentration at the inlet of a bioreactor system. For the first criterion he showed that 
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Figure 1. (See the opposite page). For a continuous-flow system with a autocatalytic 
processes (microbial reaction, Monod kinetics, single feed and no biomass in the influent), 
at a fixed stoichiometry, optimal design is inferred from a plot of the reciprocal 
dimensionless rate (1/r = ^r^^cJr^ versus the dimensionless concentration (a = S/S0). Due 
to the existence of a minimum in the curve, minimalization of overall holding time may 
require a CSTR and a PFR in series. Shaded areas: holding times. A 95% degree of 
conversion is aimed for, and K = KJS0 = 1. The number listed at the top of the graph is 
the total dimensionless holding time of each configuration. 
A: one CSTR followed by a Plug-flow reactor. Point A is the minimum of the curve, 

corresponding to acrir 

B: series of 3 equal-sized CSTR's designed by the procedure described by Fiechter 
[1981]; the first vessel operates at the maximum rate. Note that more than 95% is 
converted. 

C: series of three equal-sized CSTR's where the first vessel operates at less than the 
maximum rate. 

D: series of three unequal-sized CSTR's, optimal design according to Hill and Robinson 
[1989]. 

E: series of three unequal-sized CSTR's, where the first vessel operates at the maximum 
rate and the subsequent vessels have an equal volume. 

F: one single CSTR. 
G: one single PFR. 
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for a single-stage system this productivity equals D.X with D the dilution rate (s1) and 

X the biomass concentration (kg.rn"3), whereas for a two-stage system this is X2.Dave, 

with Dave = D2/2 (or, in general terms, Dave = F/(NV), with V the volume (m3) of 

each vessel in the series of AT reactors, and F the flow rate (m .s )). For single-feed 

series, three conclusions could be drawn, as illustrated in Figure 3: 

i) the maximum possible overall productivity is higher in a single-stage system, 

ii) at lower dilution rates the overall productivity of a two-stage system is slightly 

larger than that of a single-stage system, and, derived from this, 

iii) at lower dilution rates, the effective yield (or the utilization of substrate) is 

slightly higher in a two-stage system. 

Herbert [1964b] also stated that more than two bioreactors in series have no practical 

advantage as far as the volumetric productivity is concerned. However, later stages 

might improve product quality, since the endogenous metabolism will continue in a 

third stage, leading to changes in the chemical and physiological state of the cells. 

Note that this in fact implies a change in stoichiometry. 

For multiple-feed series of bioreactors, Fencl et al. [1969, 1972] showed that 

under certain conditions the productivity can be higher than for a single CSTR. 

Herbert [1964b] gives mathematical descriptions of a multiple-feed reactor system. For 

an extensive theoretical treatise of series with multiple-feed operation we refer to 

Fencl [1966]. 

Fiechter [1981], citing Fencl [1966], and Deindoerfer and Humphrey [1959], 

describes a four-step graphical procedure for the design of a series of chemostats of 

equal volume for biomass production. The first vessel should, in their view, operate 

at the maximal volumetric productivity, and subsequently the number of (equal-sized) 

vessels is determined in order to achieve a certain degree of conversion or biomass 

concentration (Figure 4): 

i) Obtain dx/dnmaJ as a function of x, the dimensionless biomass concentration 

XIY^SQ with Y^ the yield of biomass on substrate (kg.mor1), from a batch 

experiment or from mass balances over substrate and biomass if the parameters 

in the kinetic equation are known; 

ii) Plot d\/diJ.nwJ, with nmax the maximum specific growth rate (s"1) and t the time 

(s) versus x; 

iii) Draw a line from x = 0 to x = X;» the dimensionless concentration of biomass 
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Figure 2. Dimensionless rate (1/r = nmaxS(J
rs) v e r s u s the dimensionless concentration 

(a = S/Sfl). (a) parameter K = KJS0, with no biomass in the influent (x0 = 0). At low K, 
the minimum in the curves (acn,) decreases to a low value, indicating that a single CSTR 
performs best for most exit concentrations, (b) parameter xo = ^ / ^ x A ' w ' t n * = 1- At 
high biomass concentrations at the inlet of the series, the minimum of the curves (otcril) shifts 
to 1, indicating that series of CSTR's perform best for all exit concentrations. 
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Figure 3. Dimensionless production rate per unit of reactor volume (II = 
D.X/fimaxYxsS(^ in an equal-volume two-stage series versus dimensionless dilution 
rate (5 = D/iimax) as compared to a single CSTR. Each reactor on itself (the first 
and second reactor in the series, and the single CSTR) shows the same maximum 
in productivity. At low overall dilution rates, the series shows a slightly higher 
overall productivity; maximum productivity is attained in a single reactor at high 
dilution rates. Monod kinetics, with K = KJS0 = 0.05. 

in the first stage, which is found at the maximum of the curve. The slope of 

this line is equal to F/Vt; 

iv) Keep the slope of this line constant, start at x = X; and determine X2> ano" s o 

forth. 

Similarly, if product formation is the aim of the process, dP/dt versus the product 

concentration P (mol.m"3) can be plotted, as applied by Tyagi and Ghose [1980] for 

the design of an ethanol fermentation with cellulose hydrolysate as substrate. For 

enzymatic conversions the latter procedure is also adequate. 

As shown in Figures IB and 1C, this procedure may lead to a higher degree 

of conversion than needed. The alternative design of series of equal-sized CSTR's can 

be done iteratively, starting with a desired rate of conversion calculating back along 

the series, or by means of a zero-finding routine, solving the set of equations for each 

CSTR in the series, in a similar way as will be discussed below. 
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Figure 4. For a cascade of equal-volume CSTRs and a microbial reaction 
with Monod kinetics, the number of vessels in the series may be determined from 
a dimensionless rate vs. dimensionless concentration plot according to Fiechter 
[1981]. Slopes represent dilution rates; the first reactor operates at the maximum 
rate. See text for details. 

Optimal design of a finite series of non-equal-volume-CSTR's. The theory on cascade 

design may be quite perplexing, due to the plethora of performance criteria and kinetic 

equations (and combinations thereof). Although quite relevant, economic criteria will 

be ignored here in favour of an engineering measure: Luyben and Tramper [1982] 

defined optimal design of a finite series of CSTR's as that configuration that has the 

minimal total holding time at a given degree of conversion in a series consisting of N 

reactors. This means that the volumes for all reactors along the series are varied, with 

a subsequent change in the intermediate substrate concentrations, until a minimal total 

volume is reached. Mathematically this leads to: 

N 

j=l 

da. 
J =0 i = l , 2 , . . . ( J V - l ) 

(1) 

where a, is the dimensionless substrate concentration in the i'-th vessel, S/S0, so a0= 1, 
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N is the pre-defined number of vessels, and T. is the dimensionless residence time in 

thej-th vessel, T is defined as VivmaxelFS0 for enzymes with v , ^ the maximum 

specific velocity per unit amount of enzyme (mol.kg^.s"1) and e the enzyme 

concentration (kg.m ), and as Vi^imax/F for autocatalytic reactions. Although Luyben 

and Tramper [1982] defined this optimal design for a dissolved enzyme following 

Michaelis-Menten kinetics, Eq. (1) is independent of the kinetics involved, and has 

been used by many authors [Malcata, 1988; Hill and Robinson, 1989; De Gooijer et 

al., 1989; Malcata and Cameron, 1992; Lopes and Malcata, 1993; Paiva and Malcata, 

1993]. 

For autocatalytic systems (suspended micro-organisms), Schiigerl [1987] and 

Hill and Robinson [1989] introduced the concept of a dimensionless critical effluent 

substrate concentration ctcrit. At dimensionless effluent concentrations up to or equal 

to ctcrit, the optimal "series" is the single tank. This critical concentration can be found 

by assuming that the dimensionless effluent concentrations of the first and the second 

vessel in the optimal series are the same, or aj = a2 (= cccrit), meaning that the 

volume of the second vessel is zero. If it is found that the desired dimensionless 

effluent concentration aN is smaller than acrit, an optimal design is feasible. In Figure 

1 and 2, acrit is the minimum of the curve. 

Below, the acrit concept and the optimal design of a series will be described for 

both autocatalytic and catalytic processes. To further classify the latter group, a 

division is made between non-growing and growing biocatalysts. Within each division, 

a subclassification is made between freely suspended and immobilized biocatalysts. 

AUTOCATALYTIC SYSTEMS 

In this section papers dealing with growing cells (Figures 1-4), freely suspended or 

immobilized, will be reviewed. 

Theory. The design of a reactor cascade for autocatalytic reactions depends on the 

optimization criterion. The minimum overall residence time at an arbitrary but fixed 

exit substrate concentration will be used as a criterion. To investigate if a series is 

worth considering, the critical effluent concentration at which the reaction order 

changes from positive to negative (point A in Figure 1A) and at which the optimal 

cascade in fact is a single tank (acrit), may be obtained from a procedure given by Hill 
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and Robinson [1989] and by Schiigerl [1987], as discussed below. 

A generalized form of the growth equation is used: 

= pa+qa2 

f + ga + ha' 
(2) 

Here/?, q,f, g, and h are dimensionless parameter groups depending on the particular 

kinetic equation (Table I). Combining the specific growth rate /x (s"1) with the yield 

factor Y^ (kg.mol"1) and the biomass concentration X (kg.nf3), the substrate 

consumption rate rs (mol.m^.s"1) is obtained: 

rs-^X (3) 
*xs 

A general mass balance over a single CSTR in a series yields: 

V, ( a . . - a , ) 

r , ,i/S0 

where 0, is the residence time in the j-th reactor (s). Substituting Eqs. (2) and (3) in 

Eq. (4) results in an expression for the dimensionless residence time for each vessel 

in the series in terms of substrate concentrations and kinetic parameters: 

Vi Vmax Xi K - ! - a , ) ( / + g « , - + ft«?) , -
T. = = (S) 

FS Y 2 
r ° o J xs p a • + q a, 

which, with the result of a mass balance over all vessels in the series: 

Xi = Yxs(SQ-Si)+XQ (6) 

can be written as : 
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T _ Vj\lmaX_(«i-l-*t)(f+g*i+k*2l) ( ? ) 

F ( 1 + X o - « , - ) ( / ' « , • + « « ? ) 

For a two-reactor cascade [N = 2 in Eq. (1)], operated at a fixed, arbitrary effluent 

concentration a2, optimization requires: 

——l- 2- = 0 (8) 
dal 

and from this equation, an optimal oij value is obtained as a function of the effluent 

concentration chosen (a2). Implicitly, the volumes of both reactors are defined by this 

result. 

In order to answer the question as to whether or not an optimally designed 

series is worthwhile, in other words if the desired effluent concentration is to the left 

of point A in Figure 1A, the minimum of this curve has to be found. Substituting Eq. 

(7) in Eq. (8), and applying aj = a2 = acril for this general case of 2 reactors in 

series, results in the following implicit equation: 

( 1 _ f t X , ( l + Xo-« c r i t ) ( g+2 f t a c r i f ) ( l + X 0 - < ^ ) ( / > + 2wa c r i , )> |_ o 

^ (f+g«crit+ ^crit) (P^cri,+ W «L) 
(9) 

Table I shows the expression for acrit for different types of kinetics. If indeed two 

reactors in series are superior to a single vessel, that is a2 < otcrit, then this procedure 

may be used to show the favourablity of multi-reactor cascades [Hill and Robinson 

1989]. This means that: 

i) if two reactors in series are superior to a single vessel then any series of 

reactors will be superior, and 

ii) the optimization of the design requires an infinite number of vessels that 

areincreasingly smaller along the series, or, the optimal reactor configuration 

is a single CSTR followed by a PFR. 

It can be derived from Table I that a cascade is particularly suited for product-
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inhibited autocatalytic reactions: increasing the severity of the inhibition (i.e. 

decreasing K , the inhibition constant (mol.m"3)), results in an increase in acrit, thus 
widening the feasibility range for a cascade. This may also be clarified by taking the 

limit for K to zero of acri[. To find this expression, the realtion for acrit from the 

bottom row in Table I is used, and appropriate expressions for/, g, h, p, and q are 

substituted. Thereby, for the sake of simplicity, it is assumed that both the biomass 

and product concentration are zero at the inlet of the first reactor (XQ = 0 and P0 = 

0). For non-lethal product inhibition it can then be found that: 

(Kp + YpS0)Ks * JKSKP(KP * YpS0)(Ks + SJ (10) 
lim acrit = lim ! = 1 
KP- o KP- o S0(YpKs-Kp) 

Hence at very strong inhibition (K approaching zero) a cascade becomes superior at 

all effluent concentrations (occrit approaching one). 

In case of substrate inhibition, the reverse is true: low Ki values entail low acrit 

values, or, the more severe the substrate inhibition is, the less favourable series of 

reactors will become. 

Now having the answer to the question */ a series is worthwhile, that is after 

the determination of acrit, the optimal design of the series according to Eq. (1) (how) 

can generally be done as suggested by Hill and Robinson [1989]. For ,/V reactors in 

series, N-l equations with AM unknown substrate concentrations can be derived by 

substituting Eq. (7) in Eq. (1) and taking the differentiation: 

B(g+2hai)-A + BA BAjp+lqa^ ^ (f+gai+1
+ha2

i+l) 

CD +
C2D CD2 + ( l+Xo-« i + i ) ( />« i + i+<7«?+ 1 )" 

(11) 

with 

2 2 <12> 

A=f+gai+hai; B = ai_1-ai; C = l +x 0 - a . ; D=pai + qai 

and/ = 1..AM. 
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This set of equations can be solved by a suitable algorithm with a zero-finding routine 

on a PC. Alternatively, for the first two reactors in series, a more convenient design 

equation can be found for all kinetics with q = 0 (all kinetics except lethal product 

inhibition), and no biomass in the influent of the series (XQ = 0). Substition of Eq. (7) 

in Eq. (8) will then lead to an expression for «; in terms of a2: 

, / a , (1 - a, ) 
a2 = J_2K 1_>_ ( 1 3 ) 

«2 (h +g)+f 

which is the same as found by Hill and Robinson [1989]. Hence, for a two-reactor 

cascade, Eq. [13] is sufficient, and if the series consist of more than two reactors, Eq. 

(13) combined with Eqs. (11) and (12) has to be used. After determination of the 

intermediate substrate concentrations, the required residence times are easily obtained 

through Eq. (7). 

Hill and Robinson [1989] showed for Monod kinetics, Aiba kinetics (product 

inhibition) and Haldane kinetics (substrate inhibition) that if indeed a series design is 

favourable (i.e. if aN < occrit), three optimally designed non-equal volume CSTR's 

will provide an overall residence time that is close to the possible minimum, i.e. the 

CSTR-PFR sequence suggested by Bischoff [1966]. Also, it was shown that if three 

equal-sized CSTR's are used, the decrease in overall residence time is less than with 

an optimally designed series of non-equal-volume-CSTR's. If a series of equal-sized 

CSTR's is used, one should consider washout problems in the first vessel. It is also 

pointed out that although for substrate inhibition kinetics one would intuitively choose 

a single CSTR, depending on a, series of CSTR's might still be advantageous (Table 

I). A complication is the fact that with for example Haldane kinetics, the first reactor 

in the series operating at a substrate concentration beyond that concentration where the 

rate is maximal becomes inherently unstable (operating at a point to the right from 

point A in Figure 5: a small increase in the substrate concentration will result in 

washout, whereas a small decrease will result in an operating point to the left of point 

A at the same rate). 

In the theory above, the assumption was made that all reactors in the series can 

be described by the same kinetic parameters. Lo et al. [1983] discuss the situation 

where the parameters of the Monod equation are non-identical in the different vessels 
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Figure 5. Dimensionless rate (rjvmax) versus dimensionless substrate 
concentration (a - S/S() for substrate inhibition kinetics. The dimensionless 
substrate concentration at which the maximum rate is attained (point A) equals 
acrit; it decreases with increasing severity of the inhibition (i.e. lower K{ values). 

of the series. They showed, for that case, with the use of two equal-sized bioreactors 

in series, that design according to the rules discussed above is no longer possible. 

Cells in suspension. In this section some examples of freely suspended cells will be 

discussed, whereas quantitative data on ethanol production are given in Table II, and 

a review of other processes described in literature is given in Table III. 

For the production of lactic acid from whey permeate Aeschlimann et al. [1990] 

conclude that the dilution rate of the series affects all important fermentation 

parameters. In a single vessel, a maximum volumetric productivity of 2.3 x 10"3 

kg.m .s"1 could be reached at a dilution rate of 1.1 x 10"4 s"1 with a degree of 

conversion of 50%. The addition of a second (non optimally designed) bioreactor 

resulted in an increase of the degree of conversion, but also in a decrease of the 

volumetric productivity, due to the additional reactor volume, which is consistent with 

theory (Figure 3). From their data of the first reactor only, plotted as rs versus S 

(compare Figure ID), they simply searched for the minimum area under the curve for 
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Figure 6. Volumetric productivity of an ethanol fermentation versus product 
concentration. Solid line = 1, dashed line = 2, dotted line = 3 reactors in 
series, respectively. Parameter values were as used by Shimizu and Matsubara 
[1987], with Ks = 1.6 kg.m"3, y.m = 6.7 X 10"5 s"1, Y„ = 0.06, YXD = 0.16, 

xp 
Pm - 90 kg.m , and S0 = 220 kg.m . Note that at a product concentration of 
82.5 kg.m"3 all substrate is converted. 

two reactors in series, which is a correct approach. Further assuming that the data of 

the first reactor should also be valid for the second reactor, they conclude that for 

their case the total reactor volume may be reduced by almost 50% as compared to one 

fermentor (overall residence times of 3.2 X 104 s for the series as compared to 5.9 

X 104 s for the single vessel, for a degree of conversion of 98%). They further report 

values for [).max, S0, and 5^ of 1.9 x 10"4 (s"1), 49.2, and 0.9 (kg.m'3), respectively. 

In order to be able to illustrate the design procedure discussed above, Monod kinetics 

were assumed, and a value for Ks was obtained from a fit to their r/1 versus S plot 

for the first vessel in the series: 11.6 (kg.m"3). Using Table I (Monod kinetics) a value 

of acrit of 0.3 can be calculated, indicating that indeed a series is favourable. 

Subsequently, ct1 is found through Eq. (13) to be 0.13 (a2 = 0.018, fixed by the 

desired degree of conversion). Eq. (7), for the case of Monod kinetics, reduces to 

V&mJF = (<*; " oc2WJS0 + a2)/((l - a2)a2) and V^F = (KJS0 + aj/ctj for 
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the second and first vessel of the series, respectively. This then enables the calculation 

of the residence times: 1.5 X 104 and 0.8 X 104 s for the first and second vessel in 

the series, respectively. This results in an overall residence time of 2.3 X 10 s. If 

a1 = 0.018 is substituted in the latter derivation of Eq. (7), the residence time in a 

single vessel can be calculated to be 7.1 X 104 s. The differences in residence times 

found here compared to those found by Aeschlimann et al. [1989; 1990] may be 

explained by the organism not completely obeying Monod kinetics. This shows that 

one should take care on how kinetic data are obtained and used. 

An interesting theoretical study of the application of series of CSTR's (up to 

three reactors) for ethanol production is presented by Shimizu and Matsubara [1987]. 

They use production kinetics with absolute inhibition (l-P/P^, in combination with 

either growth-associated or non-growth-associated production, and the condition of a 

zero-maintenance level. Based on the kinetics and parameter values of Shimizu and 

Matsubara [1987], the productivity as a function of the product concentration of one, 

two and three reactors in series was calculated, as shown in Figure 6. Obviously it is 

not possible to enhance the product concentration beyond Pm if this type of kinetics 

is involved. However, an improved volumetric productivity is possible at higher 

degrees of conversion by using more than one reactor. Note that, although the 

differences are marginal, for product concentrations below the point where the 

productivity is maximal, one single CSTR has the highest volumetric productivity. In 

other words, for substrate concentrations above acri[, a single vessel is superior, as 

expected. 

Shama [1988] reviewed the reactor development for fuel ethanol production. 

For a batch process with glucose as substrate and Saccharomyces cerevisiae as 

microbial strain, volumetric productivities of 2.8 - 6.7 X 10 kg.m .s"1 are typical, 

whereas 19.4 x 10"4 kg.m"3.s_1 can be achieved in continuous processes. As can be 

seen from Table II, continuously operated series of bioreactors can lead to much 

higher productivities combined with high degrees of conversion, as for example the 

studies of Klein and Kressdorf [1983, 1986] showed: at almost complete conversion 

productivities of 158.3 - 300 X 10~4 kg.m"3.s"' were reported. Also, compared to a 

batch process, the ease of control, and the absence of peak loads upon up- and 

downstream processes favour continuous processes. 

Few papers could be found dealing with animal cells, whereas theoretically (an 
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autocatalytic system with growth-associated production, and very often by-product 

inhibition) series of bioreactors can be used advantageously for monoclonal-antibody 

production by hybridomas [Venables et al., 1993; Reuveny et al., 1986; Shimizu and 

Matsubara, 1987; Pirt 1975]. Reuveny et al. [1986] found that for a semi-continuous 

two-stage system with an extra feed of glucose and glutamine in the second stage, both 

the monoclonal-antibody concentration and the productivity doubled in the two-stage 

system as compared to the single semi-continuous bioreactor. 

Immobilized growing cells. By immobilization, high cell densities and high volumetric 

productivities can be achieved. Immobilization also introduces simultaneous diffusion, 

consumption of substrates, and growth, which is troublesome to relate mathematically 

to design of a series. Therefore, it is not surprising that no papers could be found that 

deal with the theory of optimal design of series of CSTR's with immobilized growing 

cells. However, one paper presents a graphical procedure to provide design rules and 

estimation of kinetic constants for activated sludge processes for waste-water treatment 

[Braha and Hafner, 1985]. 

Godia et al.. [1987] present a thorough review of the use of immobilized cells 

for continuous ethanol production. Table II shows experimental data on production of 

ethanol with series of immobilized-cell bioreactors. With ethanol production, three 

goals have to be met (preferably simultaneously): 

i) high volumetric productivities to reduce reactor costs, 

ii) high product concentrations to reduce downstream processing costs, and 

iii) high conversion degrees to reduce feed costs. 

In a single vessel, these three goals can hardly be met simultaneously. Godia et al. 

[1987] show for example, that in a single vessel a productivity of 150 X10"4 kg.m"3.s_1 

was obtained at a degree of conversion of 63%, wheras 25 X 10"4 kg.m^.s"1 was 

observed at a degree of conversion of almost 100%. It is still, however, a considerable 

improvement when compared with the review data of Shama [1988] where typical 

productivities of 2.8 - 6.7 X 10"4 and 19.4 X 10"4 kg.m^.s"1 were reported for batch 

and continuous processes with freely suspended cells. From Table II it is clear that the 

use of series of reactors with immobilized cells are the most promising prospect to 

meet the three goals for ethanol production [Klein and Kressdorf, 1983; 1986]. 
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CATALYTIC SYSTEMS 

Non-growing biocatalysts may consist of enzymes, cell organelles, whole non-viable 

cells, or viable non-growing cells [Van 't Riet and Tramper, 1991]. In literature 

however, only reports based on free or immobilized enzymes, applied in bioreactor 

series, can be found. 

Theory. The same optimization criterion as with autocatalytic processes is used: the 

minimization of the overall cascade residence time at a given final exit concentration 

of substrate [Eq. (1)]. A fixed reaction stoichiometry is assumed, and the enzyme 

concentration in each reactor is assumed to be equal and constant. A generalized rate 

expression is used to represent various types of kinetics (Table IV). As a result, the 

reaction rate per unit volume rs equals: 

k + la + ma.2 „ , , 
a max « 7 7 

f+ga+haz 

where parameters / , g, h, k, I, and m are kinetic characteristics depending on the 

kinetic equation (see Table IV). 

Substitution of Eq. (14) in the general mass balance over a single CSTR in a 

series [Eq. (4)] yields: 

T = K ' V ™x e
 = K--l-K ,-)(/+gtt,+ft«f) (15) 

r o o k + lai+mai 

In order to answer the question if an optimally designed series is worthwhile, Eq. (15) 

is substituted in Eq. (8) for N=2, and otj = a2 = acrit is applied. For this general 

case of 2 reactors in series this results in: 

= hk -fin + \l(hk -fin ) 2 + g2km -fgml - ghkl +fhll ( 16 ) 

gm-hl 

Evaluation of Eq. (16) for the different types of kinetics (Table IV) shows that 

for Michaelis-Menten kinetics, unimolecular-equilibrium kinetics, product-inhibition 
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kinetics, and first-order kinetics, an optimally designed series is superior to a single 

vessel at all effluent concentrations: the critical concentration for these kinetics equals 

the system influent (i.e. acrit =1 ) . For substrate inhibited reactions however (Figure 

5), the series configuration may be superior, but only if the desired effluent 

concentration ceN is below acril i.e. below K^JSQ (Table IV). Evaluation of this 

latter expression shows that for substrate inhibition the feasibility range for the 

application of a cascade decreases with the severity of the inhibition: acrit decreases 

with decreasing Kt values. For a zero-order reaction, there is no difference in 

performance between any cascade and a single-vessel system. 

Interestingly, acrit can be found in an alternative way by taking the first 

derivative of the reaction rate equation with respect to the substrate concentration. If 

a value of a exists at which this first derivative equals zero, then this value of a is 

acrit. In other words, as long as the enzymatic reaction rate per volume is 

monotonically increasing with a, a series of bioreactors will allways be superior to a 

single vessel (Figure 7). 

Now having the answer to the question if a series is worthwhile, that is after 

the determination of acrit, the optimal design of the series according to Eq. (1) can 

generally be done in the same way as suggested by Hill and Robinson [1989] for 

autocatalytic processes. For the case of Michaelis-Menten kinetics, the final, 

surprisingly simple design equation following from Eq. (1) is [Luyben and Tramper, 

1982]: 

« , = aj?!+1) <»> 

Starting with the known aN, the intermediate substrate concentrations can easily be 

calculated by Eq. (17), if the total number of reactors in the cascade is known. 

Optimum design results in a monotonically decreasing reactor volume along the series. 

The decrease in required total holding time is the largest when going from 1 to 2 

bioreactors. Also, this decrease is larger at higher desired degrees of conversion. Note 

that for first order kinetics, exactly the same result is obtained. 
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Figure 7. Overall residence times (shaded areas) for an enzymatic 
reaction with Michaelis-Menten kinetics in a single CSTR and in a cascade 
consisting of 4 CSTRs. For these kinetics, the curve decreases monotonical-
ly, and the cascade requires less holding time at all effluent concentrations. 

Another way of assessing if a series of CSTR's is worthwhile is considering the 

difference between the residence time of a single CSTR and the residence time of a 

PFR. For Michaelis-Menten kinetics, the dimensionless residence time of a PFR can 

be described by [Luyben and Tramper, 1982]: 

T„fr = ( a 0 ~ a l ) " K l n ( a l ) (18) 

with K being the dimensionless Michaelis-Menten constant (Km/S0). The maximum 

attainable decrease in dimensionless residence times then becomes [Eqs. (4) and (18)): 

5 
xpfr _ 1 - K l n ( a 1 ) / ( 1 - t t j ) 

cstr 
1 + K / a j 

(19) 

This equation indeed shows that for high degrees of conversion {a1 approaching zero), 

£ approaches zero, or the residence time of a single CSTR is infinite times higher than 

that of a PFR. This is in accordance with the findings of Luyben and Tramper [1982]. 

For the zero-order extreme of Michaelis-Menten kinetics (K approaching zero) one can 
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find that £ equals one (no difference in residence times), and for the first order 

extreme it can be found that: 

l im ^ = 1 v (20) 

illustrating that at high degrees of conversion series of CSTR's might be worthwhile: 

with a1 = 0.1 and 0.01, an £ of 0.26 respectively 0.05 can be found, indicating that 

a single CSTR would be 4 or 20 times the volume of a PFR, respectively. 

Enzymatic decay. First-order decay of enzymes is described by several authors [Lopes 

andMalcata, 1993; Paivaand Malcata, 1993; Vos, 1990; Yoon etal, 1989; Furusaki 

et al., 1980; Furusaki and Miyauchi, 1977]. Lopes and Malcata [1993] showed that 

as long as the time constant for decay is larger than the time constant for flow through 

the series (Vtot/F), a simple relation can be found that allows a good estimate for the 

reactor sizes in series of 3 and 4 bioreactors. If non-isothermal operation is 

considered, completely different optima can be found [Paiva and Malcata, 1993]. 

Vos [1990] describes a reactor system for the production of High Fructose Corn 

Syrup with immobilized glucose-isomerase. His reactor is a multiple fluidized bed, 

where intermittently the flow is stopped and the biocatalyst is refreshed top-down, by 

simply allowing the biocatalyst beads to pass the holes in the sieve plates between the 

different compartments and removing the beads from the bottom compartment. He 

concludes that HFCS could be produced 20% cheaper in such a reactor than in a 

single CSTR. 

Yoon et al. [1989] describe three other strategies to address enzymatic decay 

in continuously operated bioreactors: i) change the feed rate for a constant degree of 

conversion which may affect mass-transfer properties in the bioreactor, ii) accept a 

decreasing degree of conversion at a constant feed rate, or iii) apply temperature 

control. For the case of a multi-stage immobilized-glucose-isomerase reactor, it is 

described that at least 10% higher specific productivities (mol.kg"1 enzymes'1) can 

be attained with optimal temperature control, and that three bioreactors in series 

perform better than two. 
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Dissolved enzymes. Dissolved enzymes are favourable if large througputs are involved, 

the enzyme costs are not too high (since it has to be constantly added to the reactor), 

and residual enzymatic activity can be easily removed, e.g. by thermal treatment 

[Malcata and Cameron, 1992; Paiva and Malcata, 1993; Lopes and Malcata, 1993]. 

Penicillin acylase shows substrate inhibition, non-competitive 6-APA inhibition 

and competitive phenyl acetic acid inhibition. Karanth [1979] showed that for the case 

of hydrolysis of penicillin-G to 6-APA and phenyl acetic acid, 2 CSTR's in series are 

to be favoured over one batch reactor. In this analysis, at a degree of conversion of 

98%, the volume of 1 CSTR would be 8.6 times the value of a batch reactor, and 2 

CSTR's would require 1.5 times the batch volume, if the batch would have a zero 

downtime. If the downtime for the batch reactor would be 1 h with a reaction time of 

2 h, the series of CSTR's would show a higher volumetric productivity. These results 

were confirmed by Noworyta and Bryjak [1993], where the superiorety of a three-

reactor series was shown over a single CSTR; the total residence time could be 

reduced by about 40%. 

Malcata [1988, 1989] and Ong et al. [1986] extended the work of 

Luyben and Tramper [1982] with a description of the cost of scaleup by a power rule 

on the equipment capacity. The relation is only valid for a low number of reactors, 

and the extra costs (spare parts, cleaning) for differently sized bioreactors have to be 

carefully weighed. For a two-substrate reaction (ping-pong, obeying Michaelis-Menten 

kinetics) under application of the six-tenth-factor rule for capital investment, Malcata 

showed that the required volumes of the reactors in the series first decrease and after 

that increase again, and that never more than three reactors in the series are optimal 

with respect to reactor capital investment. This is in accordance with the findings of 

Blanch and Rogers [1972]. 

Using unimolecular equilibrium kinetics for the production of L-malic acid from 

fumaric acid, Malcata and Cameron [1992] showed that if the Monod constant Ks is 

close to the product inhibition constant K (Table IV), the optimal reactor series 

consist of equal-sized bioreactors. 

Immobilized enzymes. Compared to dissolved enzymes, only a few papers can be 

found that describe series of bioreactors with immobilized enzymes. As a logic 

continuation of the work of Luyben and Tramper [1982], De Gooijer et al. [1989] 
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describe the optimum design of a series of CSTR's with invertase immobilized in 

alginate, obeying intrinsic Michaelis-Menten kinetics. The mathematical approach is 

the same as that of Luyben and Tramper [1982], except for the definition of the 

dimensionless holding time for each vessel: here the efficiency factor J; appears in the 

denominator: 

X. = ' ' ' 1MX (21) 
FS0 

Consequently, for optimal design the dimensionless concentrations can be calculated 

as if the enzyme were free [Eq. (17)], and after that for each intermediate substrate 

concentration along the series an effectiveness factor is determined. These 

effectiveness factors thus account for the extra volume required to compensate for both 

internal and external diffusion limitation caused by the immobilisation of the enzyme. 

Analogously, the same procedure can be applied for other kinetics. Hence, as for 

suspended enzymes, series of bioreactors are favourable for immobilized enzymes 

except for substrate inhibited kinetics. Note that for first-order kinetics, with negligible 

external diffusion limitation, there will be only a single internal effectiveness factor 

for all bioreactors in the series, since the Thiele modulus for that case is independent 

of the substrate concentration [Van 't Riet and Tramper, 1991]. 

In 1994, Bakker et al. made the experimental comparison between a single 

vessel and a three-vessel reactor series. They observed improved sucrose conversion 

by immobilized invertase to 83 % compared to 73 % in the single vessel with the same 

overall residence time. 

CONCLUDING REMARKS 

Theoretically, with respect to the overall residence time for a given degree of 

conversion, the use of more than one CSTR in series can be advantageous for any 

non-autocatalytic process that obeys non-zero order kinetics. For autocatalytic 

processes series of CSTR's can be favourable if a high product concentration 

combined with a high degree of conversion and an acceptable volumetric productivity 

is needed. However, one should always carefully weigh the practical and cost 

implications of more than one bioreactor to the possible advantages. 
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Few recent papers could be found that describe the use of series of bioreactors 

in industry. For an early review see Hospodka [1966], describing a few processes 

including the production of baker's yeast, ethanol (from sugar and starch), beer, and 

acetone/butanol. The largest scale recently described is of the pilot-plant type 

[Takahashi and Kyosai, 1991]. This may of course be caused by the reluctance of 

industry to publish regarding their source of income, but it may also be explained by 

a certain kind of conservatism in the implementation of the results of scientific 

research at an early stage [Tramper, 1993]. 

VARIABLE STOICfflOMETRY PROCESSES 

Processes with a variable stoichiometry need a physical separation into two or more 

reactors (either in space, or time) by their nature. Some examples of such processes 

are discussed below. 

INSECT CELLS 

Insect-cell technology is a fast emerging tool for the expression of foreign genes. 

Also, due to the increase in strict regulations for chemical compounds for crop 

protection, the interest in the wild-type virus for use as a bioinsecticide emerges. 

Suspension cultures of insect cells can be generated by adapting cells of insects (e.g. 

Spodoptera frugiperda) via T-flasks to suspension cultures in spinner flasks or 

bioreactors. These cells are still susceptible to infection with the non-occluded form 

of a baculovirus (e.g. Autographa californica Nuclear Polyhedrosis Virus). After 

infection, cells will produce newly synthesized non-occluded viruses, and, 

subsequently, occluded viruses in the form of polyhedra, or recombinant proteins of 

foreign origin [Granados, 1976; 1980]. After this, the cells lyse. Therefore, if 

continuous production is desired, a physical separation has to be introduced, as 

suggested by Tramper and Vlak [1986]. Kompier et al. [1988] were the first to 

describe a successful experimental setup for such a process. They used a first CSTR 

to grow cells, followed by a second CSTR in series were infection takes place. 

Subsequently, Van Lier et al. [1990, 1992] investigated the optimization of the 

continuous production. It appeared that continuous production for prolonged periods 
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of time is hampered by the occurrence of the so-called passage effect, which manifests 

itself as a reduction in the number of non-occluded viruses and a decrease in the 

infectivity of these viruses. Based on an infection model, De Gooijer et al. [1992] 

suggested a pseudo-continuous mode of operation of the reactor series in the form of 

a repeated batch or fed-batch of the infection vessel, in order to reduce this passage-

effect. The feasibility of such as process had already been demonstrated by Kloppinger 

et al. [1990] and was confirmed by Zhang et al. [1993]. 

WASTE-WATER TREATMENT 

For waste-water treatment, reactor costs should be minimized under the constraint of 

high degrees of conversion. In the specialized journals in this field, numerous papers 

can be found describing reactor design. Some relevant studies are listed below. 

Mitchell and Shuler [1978] studied the production of Single Cell Protein (SCP) 

for feedstuff purposes. Here, in a first vessel, carbohydrates and urea in poultry 

manure were converted. In a second stage, where the SCP was formed, glucose was 

added as additional carbon source, while the ammonia from urea was used as nitrogen 

source. 

Aivisidis et al. [1989] described the anaerobic degradation of complex 

substrates to methane. In a first CSTR, acidogenic bacteria decomposed carbon 

sources into low-molecular-weight compounds with concommittant acidification of the 

waste-water to pH 3-4. In the second stage, for their case a fixed-bed loop reactor, 

methanogenic bacteria produced methane from these acids. This resulted in a more 

stable process with a lower occurrence of pathogens, but with a higher investment and 

a neccesarry pH control. A similar distribution of the subsequent steps in anaerobic 

degradation was found by Howgrave-Graham et al. [1994] for a three stage anaerobic 

digester with cellobiose as sole carbon source. Arora and Mino [1992] and Takahashi 

and Kyosai [1991] reported on the use of a series of bioreactors for treating domestic 

wastewaters for standard COD removal. With 5 reactors in series at pilot-plant scale, 

a conversion degree of 90% could be reached producing less sludge and without the 

need of a final settler tank. Yang et al. [1993] reported on the development of a 

cascade of 5 ponds in series, consisting of empty oil barrels, for treating swine waste 

water in tropical areas. Over 90% of all pollutants were removed well in this 

ultimately cheap series of bioreactors. 
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(DE)NITRIFICATION 

Due to the low specific growth rate of nitrifying bacteria, the nitrifying capacities of 

traditional waste-water plants is often poor [Barnes and Bliss, 1983]. Taniguchi et al. 

[1988] described the use of two airlifts in series with sludge for simultaneous 

nitrification and denitrification, in which 80% if the ammonia was converted to 

nitrogen gas. Al-Haddad et al. [1991] used four aerated submerged fixed-film 

bioreactors in series to nitrify ammonia. Brauer and Annachhatre [1992a; 1992b] used 

three reciprocating jet bioreactors in series to remove ammonia from real-life waste 

water. A reciprocating jet bioreactor consists of a cylindrical vessel containing an 

assembly of sieve plates attached to vertical rods, which is given a reciprocatory 

motion. The first reactor was used to remove the majority of the carbon, the second 

did the nitrification, and the third the denitrification. In this process, 90% of the 

carbon was removed, and 85-95% of the ammonia was converted into nitrogen gas. 

For the denitrifying bacteria, methanol was used as additional carbon source. A 

similar process was suggested by Santos et al. [1993] in a multiple airlift-loop reactor 

(see the 'reactors' section). 

RECOMBINANT MICRO-ORGANISMS 

Barbotin et al. [1990] and Berry et al. [1990] described the improvement of apparent 

plasmid stability by immobilization of recombinant Escherichia coli in a two-stage 

bioreactor series. In the first stage, cells, immobilized in carrageenan, were grown. 

Released cells were fed to a second stage, where a temperature shock was used for 

derepression {i.e. production). This resulted in a five-fold production rate of catechol 

2,3-dioxygenase. Fu et al. [1993] and literature cited therein described the continuous 

production and excretion of fi-lactamase by genetically engineered Escherichia coli in 

suspension in a two stage-chemostat. The micro-organism was grown in the first 

chemostat, after which the expression of the protein was induced by isopropyl-b-D-

thiogalactopyranoside in the second chemostat. Continuous production was possible 

for over 50 days, with the product accounting for 25% of the cellular protein. Due to 

cell death and the selection for lac' cells this process fails in a single chemostat. 

OTHER PRODUCTS 

Already in 1959, Pirt and Callow suggested the use of a series of CSTR's to produce 
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penicillin. In the first vessel the mould would be grown at a pH below 7, in order to 

avoid the formation of aberrant hyphae, wheras in a second stage penicillin could be 

produced at pH 7.4 where the penicillin production is optimal. 

Ricica [1964] showed that the biosynthesis of 6-azauracil (AzU) by Escherichia 

coli B was not feasible in a single CSTR since AzU inhibits cell growth. He 

successfully demonstrated the production in a series of four CSTR's, and also showed 

that the replacement of the last CSTR by a tubular reactor was not successful, which 

was attributed to a lack of oxygen in the latter reactor. 

A rather important aspect of series was studied by Plevako [1964]. Baker's 

yeast was grown in a first CSTR, after which in a smaller second stage, under the 

condition of slight aeration, the residual substances in the medium were utilized, thus 

allowing the stabilization of the cell's enzyme system in maturing cells. It was 

reported that a high-quality, stable product with good keeping conditions was obtained. 

Lelieveld [1984] described the continuous production of yoghurt (two strains) 

and buttermilk (three strains) with mixed cultures in a two-stage cascade. It was 

reported that in the first stage the lactic acid bacteria multiply whereas in the second 

stage they produced most of the desired (flavour) metabolites. He addressed the risk 

of the product being affected by the selection of a faster-growing mutant strain. If it 

is assumed that 1 mutant organism, having a 10% higher specific growth rate, is 

present at the very start of the fermentation, he showed that a continuous process can 

be run for 3.3 weeks for buttermilk cultures and for 1.1 weeks for yoghurt cultures 

if it is acceptable that 1 % of the final microbial population is the mutant. The results 

from several years of full-scale production supported this conclusion. 

For the removal of hexose and pentose sugars from agricultural waste streams, 

Grootjen et al. [1991] concluded that a physical separation between the two yeast 

strains used (Pichia stipitis for pentose sugars and Saccharomyces cerevisiae for 

hexose sugars) was necessary, since otherwise the yeasts will compete for oxygen, 

resulting in a low conversion of xylose. 

Pfaff et al. [1993] described the use of two CSTR's in series for the removal 

of trichloroethylene (TCE) from drinking water. Pseudomonas putida was grown in 

the first chemostat, with ethanol as carbon source and phenol to induce the toluene 

dioxygenase enzyme system. In the second reactor, TCE was added. By the use of this 

second stage, the competition between phenol and TCE was minimised while the 
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biomass, inactivated by toxic TCE oxidation products, was replenished. 

Series of bioreactors can also function as a research tool in itself: Molly et al. 

[1993] used five CSTR's of different volumes to successfully mimick the human 

gastro-intestinal tract. The small intestine was simulated by a two-step "fill-and draw" 

series (not continuously operated), the large intestine consisted of a continuously 

operated series of three CSTR's with different residence times. 

A last small-scale application is the use of two bioreactors in tandem in a 

continuous-flow / stopped-flow sample / reagent processing setup for the determination 

of alkaline phosphatase activity in serum, as described by Raba and Mottola [1994]. 

With this analysis, co-immobilization of the enzymes involved (alkaline phosphatase 

and alcohol oxidase) would fail since the enzymes show mutual product inhibition, and 

buffer incompatability. By physically separating the two enzymes, a successful assay 

was reported. 

CONCLUDING REMARKS 

Obviously, when the stoichiometry of the reaction changes with time in a batch 

process, a series of bioreactors is intrinsically favourable if a continuous process is 

aimed at. Some examples of such processes have been presented. The rules for 

deciding if a continuous process is more competitive than a classical (fed-) batch 

process, cannot be presented in a form analogous to the kinetically favourable series. 

Parameters involved in such a decision are the volumetric productivity, the stability 

of the organism, the acceptability of the risk of contamination, and the ease of 

construction and costs of a series compared to a single vessel. 

REACTORS 

The costs of series of conventional bioreactors form an important incentive to develop 

novel bioreactor types incorporating the principles of series. Many of those devices 

are patented. Only those patents that describe reactors that are relatively easy to 

scaleup are presented here. Almost all patents deal with cylindrical vessels in which 

compartments are formed by sieve plates [Lumb et al., 1970; Kitai et al., 1971; Blafi 

et al., 1979; Caro, 1987]. Already in 1970, Lumb et al. patented a device consisting 
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of five compartments for the production of neomycin with Streptomycesfradiae. BlaB 

et al. [1979] patented the sieve plate itself: the holes in the plate should not occupy 

more than 15% of the bubble column area. Caro [1987] patented a cylindrical vessel 

with concentric cylinders inside to produce biogas from organic wastes. In the inner 

cylinder hydrolysis takes place, the middle stages show acidification, and in the outer 

stage methanogenesis occurs. The patent of Aivasidis et al. [1987] describes a fixed 

bed column for anaerobic decomposition processes, in which two or more 

compartments are stacked with open plates in between and a separate gas outlet for 

each chamber. Grobicki and Stuckey [1991] describe the Anaerobic Baffled Reactor 

(ABR) for waste-water treatment. These rectangular boxes, with working volumes of 

8-10 dm3, are compartmentalized with alternately hanging and standing vertical 

baffles. ABR's with 4 to 8 compartments are decribed. As such, the ABR can be 

regarded as a series of upflow anaerobic sludge blanket reactors [Lettinga, 1980]. 

Recently, Bakker et al. [1993] presented results with a novel bioreactor 

[De Gooijer, 1989] consisting of a series of concentrical airlift reactors with internal 

loop incorporated into one vessel. From the mixing behaviour it is shown that their 

prototype with three ALR's in series can be described by three ideal mixers in series, 

thus approximating an aerated plug-flow reactor [Levenspiel, 1972]. 

CONCLUSIONS 

In this paper a classification is presented to decide if and when a series of bioreactors 

can be advantageously used, for both catalytic and autocatalytic processes. The 

optimization criterion used is the total holding time of the series compared to a single 

CSTR, at a given substrate concentration in the last vessel. 

For autocatalytic processes there is no type of kinetics where a series is always 

superior to a single CSTR. With the critical substrate concentration concept as 

introduced by Hill and Robinson [1989], the feasibility of a series can be predicted. 

The first step to take is to calculate a critical substrate concentration at which the 

single vessel and a two-reactor cascade are equivalent. At desired effluent 

concentrations aN < acrit, a cascade is superior, and at desired effluent concentrations 

acrit < ctN < 1 the single vessel is to be preferred. 
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For catalytic processes based on enzymes, it is shown that a series of 

bioreactors is always superior to a single CSTR if the rate of reaction is monotonically 

increasing with the substrate concentration (Michaelis-Menten, first order, product 

inhibition, and unimolecular equilibrium kinetics). For substrate inhibition kinetics, 

a single vessel may be superior. This superiority can also be determined by applying 

the acrit concept. If a series is superior, the second step is to calculate the intermediate 

substrate concentrations. For the case of free or immobilized enzymes following 

Michaelis-Menten or first-order kinetics, these intermediary substrate concentrations 

can be calculated by a simple relation [Eq. (17)]. Furthermore, from the work of 

Malcata [1988, 1989], who evaluated the capital investment for series of bioreactors 

for enzymatic processes, and from the work of Blanch and Rogers [1972] and 

Hill and Robinson [1989], who evaluated series for autocatalytic processes, it can be 

concluded that the maximum number of bioreactors, when a series is worthwhile, is 

equal to three. 

From the examples of the application of series of bioreactors found in literature 

it is clear that the use of series on an industrial scale is limited, and that most 

applications for kinetically favourable series can be found in ethanol production. As 

illustrated in Figure 1 and Table III, the combination of a high product concentration, 

a high degree of conversion, and a large volumetric productivity may well be attained 

in a series of bioreactors. 

In the situation where use of a series is intrinsically favourable, that is virtually 

any process where the overall stoichiometry of the reaction changes with time, some 

interesting applications are presented, all on a laboratory scale. 

The overview of the novel bioreactor types for series of CSTR's within one 

vessel shows that progress has been made in reactor development, which will lead to 

a possible reduction in cost for a series of reactors, and thus enhance the potential 

application of continuous processes on a larger scale. 
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APPENDIX A 

A general mass balance for biomass in an ideally mixed bioreactor is: 

V— = FXn -FX + VX[i (22) 
dt ° 

which, under the assumption of steady state, and no biomass in the influent, reduces 

to: 

F 
\i=- (23) 

V 

A general mass balance for substrate is: 

V— = FSa -FS + Vr, (24) 
dt ° s 

where rs, the volumetric substrate uptake rate, is defined as: 

rs = ^-X (25) 
xxs 

Again under staedy state conditions, Eq. (24) can be simplified, and after combination 

with Eq. (23) this results in: 

r, = j i ( S 0 - S ) (26) 

Introducing Monod kinetics, and combining Eq. (26) with the Monod equation, the 

result is: 

r S(Sn-S) 
—L = _1_° 1 (27) 
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which, with the introduction of the following dimensionless variables: 

's *o S 
P = , K = , CC= 

Mo So So 

(28) 

can be rewritten to: 

1 K + a 

P a - or 

which is the equation that is depicted in Figure 1. 

(29) 

NOMENCLATURE 

a 

X 
7 

e 
D 

e 

f 
F 

8 

h 

k 

K 

dimensionless substrate concentration (S/S^) 

dimensionless biomass concentration (X/Y^SQ) 

dimensionless residence time in enzyme reactor (^v^^e/FS^) 

or in autocatalytic reactor (Vinm/lx/F) 

dimensionless Michaelis constant (Km/S0) 

dimensionless substrate consumption rate {rJfi^^Q) 

ratio of the residence times in a PFR and a CSTR 

specific growth rate 

residence time 

dilution rate 

enzyme concentration 

kinetic characteristic parameter (Table I and II) 

flow rate 

kinetic characteristic parameter (Table I and II) 

kinetic characteristic parameter (Table I and II) 

kinetic characteristic parameter (Table II) 

dimensionless monod constant (KJ(S0 + XQ/YXS)) 

kinetic constant, equilibrium reaction backwards 

substrate inhibition constant 

[-

[-

[-

[-

[-

[-

[-

[s-1] 

[s] 

[s-1] 

[kg.rn"3 

[-
[m^s'11 

[-

[mol.m 

[mol.m 
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Km Michaelis constant [mol.m"3 

K product inhibition constant [mol.m"' 

Ks Monod constant [mol.m"-

/ kinetic characteristic parameter (Table II) [ 

m kinetic characteristic parameter (Table II) [ 

N number of vessels in a series [ 

p kinetic charateristic parameter (Table I) [ 

P product concentration [mol.m"3 or kg.m"3 

Pm maximal product concentration [mol.m"3 or kg.m"3 

q kinetic charateristic parameter (Table I) [-

rs volumetric reaction rate [mol.m"3^'1 

S substrate concentration [mol.m3 

V reactor volume [m3 

vmax iriaximum reaction rate per unit amount of enzyme [mol.kg^.s"1 

vmax,b id., backward direction [mol.kg"1^"1 

X biomass concentration [kg.m"3 

Xa degree of conversion [-

Y yield of product on substrate [kg.mol"1 

YjQ yield of biomass on substrate [kg.mol"1 

Subscripts 

0 inlet of a series 

crit critical effluent concentration at which a single vessel and a two-reactor cascade 

are equivalent 

i i-th vessel in a series 

j j-th vessel in a series 

max maximum 

N last vessel in a series 



DESIGN PROCEDURES FOR BIOREACTORS IN SERIES 85 

REFERENCES 

[I] Aeschlimann, A. 1989. Production of lactic acid from whey permeate by 

Lactobacillus helveticus. PhD thesis, Lausanne Federal Polytechnical University, 

Switzerland. 

[2] Aeschlimann, A.; Di Stasi, L.; Von Stockar, U. 1990. Continuous production of 

lactic acid from whey permeate by Lactobacillus helveticus in two chemostats in 

series. Enzyme. Microb. Technol. 12: 926-932. 

[3] Aivasidis, A.; Wandrey, Ch.; Hilla, E. 1989. Studies on reaction techniques 

concerning reactor design for the anaerobic degradation of complex substrates with 

the example of methanation of effluents in the fermentation industry. Bioproc. Eng. 

4: 63-74. 

[4] Aivasidis, A.; Wandrey, Ch.; Pick, R. 1987. Fixed bed reactor column for anaerobic 

decomposition processes. U.S. Patent nr 4,670,140, 1987. 

[5] Al-Haddad, A.A.; Zeidan, M.O.; Hamoda, M.F. 1991. Nitrification in the aerated 

submerged fixed-film (ASFF) bioreactor. J. Biotechnol. 18: 115-128. 

[6] Arora, S.; Mino, T. 1992. An experimental investigation of mechanism and operation 

conditions of multi-stage reversing-flow bioreactor (MRB) in treating domestic waste­

water. Wat. Sci. Tech. 26: 2469-2472. 

[7] Bahl, H.; Andersch, W.; Gottschalk, G. 1982. Continuous production of acetone and 

butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. 

Eur. J. Appl. Microbiol. Biotechnol. 15: 201-205. 

[8] Bakker, W.A.M.; Knitel, J.T.; Tramper, J.; De Gooijer, CD . 1994. Sucrose 

conversion by immobilized invertase in a multiple air-lift loop bioreactor. Biotechnol. 

Prog. 10: 277-283. 

[9] Bakker, W.A.M.; Van Can, H.J.L.; Tramper, J; De Gooijer, CD . 1993. 

Hydrodynamics and mixing in a multiple air-lift loop reactor. Biotechnol. Bioeng. 42: 

994-1001. 

[10] Barbotin, J-N.; Sayadi, S.; Nasri, M.; Berry, F.; Thomas, D. 1990. Improvement 

of plasmid stability by immobilization of recombinant microorganisms. Ann. New 

York Acad. Sci. 589: 41-53. 

[II] Barnes, D.; Bliss, P.J. 1983. Biological control of nitrogen in waste-water treatment. 

E.&F.N. Spon, London, U.K. 

[12] Berry, F.; Sayadi, S.; Nasri, M.; Thomas, D.; Barbotin, J-N. 1990. Immobilized and 

free cell continuous cultures of a recombinant E. coli producing catechol 2,3-



86 CHAPTER 4 

dioxygenase in a two-stage chemostat: improvement of plasmid stability. J. 

Biotechnol. 16: 199-210. 

[13] Bischoff, K.B. 1966. Optimal Continuous Fermentation Reactor Design. Can. J. 

Chem. Eng. 50: 281-284. 

[14] Blanch, H.W.; Rogers P.L. 1972. Optimal conditions for gramicidin S production in 

continuous culture. Biotechnol. Bioeng. 14: 151-171. 

[15] Blafi, E.; Wolf, C; Koch, K-H. 1979. Kontinuierliches Verfahren in einem 

Blasensaulen-Kaskadenreaktor. German patent nr. 2167070, Schering AG, Berlin, 

Federal Republic of Germany, (In German). 

[16] Bovee, J.P.; Sevely, Y. 1982. A new trend in alcoholic fermentation: modelling and 

optimal steady state for a continuous cascade ethanol production. In: Modelling and 

Control of Biotechnical processes. IF AC, Helsinki, Finland. 

[17] Braha, A.; Hafner, F. 1985. Use of Monod kinetics on multi-stage bioreactors. Water 

res. 19: 1217-1227. 

[18] Brauer, H.; Annachhatre, A.P. 1992a. Nitrification and denitrification in a system of 

reciprocating jet bioreactor. Bioproc. Eng. 7: 269-275. 

[19] Brauer, H.; Annachhatre, A.P. 1992b. Waste-water nitrification kinetics using 

reciprocating jet bioreactor. Bioproc. Eng. 7: 277-296. 

[20] Caro, T. 1987. Mehrstufiges Verfahren und Apparatur zur Umwandlung von 

organischen und anorganischen Stoffen durch Katalysatore. German patent nr. DE 

3604415 Al, (In German). 

[21] Charley, R.C.; Fein, J.E.; Lavers, B.H.; Lawford, H.G.; Lawford, G.R. 1983. 

Optimization of process design for continuous ethanol production by Zymomonas 

mobilis ATCC 29191. Biotechnol. Lett. 5: 169-174. 

[22] Chattaway, T.; Goma, G.; Renaud, P.Y. 1988. Modelling Ethanol and Secondary 

Inhibitions of Ethanol Fermentation in a Multistage Reactor. Biotechnol. Bioeng. 32: 

271-276. 

[23] Chen, H.C. 1990. Non-aseptic, Multi-stage, Multi-feeding, Continuous Fermentation 

of Cane Molasses to Ethanol. Proc. Biochem. Internal. 6: 87-92. 

[24] Chen, H.C; Mou, D.G. 1990. Pilot-Scale Multi-Stage Multi-Feeding Continuous 

Ethanol Fermentation Using Non-Sterile Cane Molasses. Biotechnol. Lett. 12: 367-

372. 

[25] De Gooijer, CD. 1989. Werkwijze voor het uitvoeren van biotechnologische 

processen in meer-traps loopreactoren. Dutch patent application 89.01649, (In Dutch). 

[26] De Gooijer, CD. ; Hens, H.J.H.; Tramper, J. 1989. Optimum design for a series of 



DESIGN PROCEDURES FOR BIOREACTORS IN SERIES 87 

continuous stirred tank reactors containing immobilized biocatalyst beads obeying 

intrinsic Michaelis-Menten kinetics. Bioproc. Eng. 4: 153-158. 

[27] De Gooijer, CD. ; Koken, R.H.M.; Van Lier, F.L.J.; Kool, M.; Vlak, J.M.; 

Tramper, J. 1992. A structured dynamic model for the baculovirus infection process 

in insect-cell reactor configurations. Biotechnol. Bioeng. 40: 537-548. 

[28] Deindoerfer, F.H.; Humphrey, A.E. 1959. A logical approach to design of multistage 

systems for simple fermentation processes. Ind. Eng. Chem. 51: 809-812. 

[29] Dourado, A.; Goma, G.; Albuquerque, U.; Sevely, Y. 1987. Modeling and Static 

Optimization of the Ethanol Production in a Cascade Reactor. I. Modeling. 

Biotechnol. Bioeng. 29: 187-194. 

[30] Dourado, A.; Calvet, J.L.; Sevely, Y.; Goma, G. 1987. Modeling and Static 

Optimization of the Ethanol Production in a Cascade Reactor. II. Static Optimization. 

Biotechnol. Bioeng. 29: 195-203. 

[31] Fabian, J. 1969. Protease synthesis of Bacillus pumilus grown in continuous culture. 

In: Proc. 4th symp. contin. cult, microorganisms (Malek, I., et al, Eds.). Academic 

press, New York, 489-495. 

[32] Fencl, Z. 1964. A comparative study of cell mass production in a single- and 

multistage cultivation. In: Proc. 2nd symp. contin. cult, microorganisms (Malek, I., 

et al., Eds.). Czechoslovak Academy of Sciences, Prague, CSSR, 109-119. 

[33] Fencl, Z. 1966. Theoretical analysis of continuous culture systems. In: Theoretical 

and methodological basis of continuous culture of microorganisms (Malek, I.; Fencl, 

Z., Eds.). Publishing house of the Czechoslovak Academy of Sciences, Prague, 

CSSR, 69-153. 

[34] Fencl, Z.; Machek, F.; Novak, M. 1969. Kinetics of product formation in multi-stage 

continuous culture. In: Fermentation advances (Perlman, D., Ed.). Academic Press, 

New York, 301-323. 

[35] Fencl, Z.; Ricica, J.; Kodesova, J. 1972. The use of the multi-stage chemostat for 

microbial product formation. J. Appl. Chem. Biotechnol. 22: 405-416. 

[36] Fencl, Z.; Silinger, V.; Nusl, J.; Malek, I. 1961. Theory of semicontinuous and 

continuous cultivation applied to the yeast Torula utilis. Folia Microbiol. 6: 94-103. 

[37] Fencl, Z.; Ujcova, E.; Machek, F.; Seichert, L.; Musilkova M. 1980. Continuous 

cultivation of fungi. In: Proc. 7th symp. contin. cult, microorganisms (Sikyta, B., et 

al, Eds.). Prague, CSSR, 49-62. 

[38] Fiechter, A. 1981. Batch and continuous culture of microbial, plant and animal cells. 

In: Biotechnology: a comprehensive treatise in 8 vol.: Microbial fundamentals. 



88 CHAPTER 4 

(Rehm, H.J.; Reed, G., Eds.). VCH, Weinheim, Federal Republic of Germany, 1: 

455-504. 

[39] Fu, J.; Wilson, D.B.; Shuler, M.L. 1993. Continuous, high level production and 

excretion of a plasmid-encoded protein by Eschirichia coli in a two-stage chemostat. 

Biotechnol. Bioeng. 41: 937-946. 

[40] Fukushima, S.; Hanai, S. 1982. Pilot operation for continuous alcohol fermentation 

of molasses in an immobilized bioreactor. In: Enzyme engineering, vol. 6, (Chibata, 

I., et al, Eds.) Plenum, New York, 347-348. 

[41] Furusaki, S.; Matsuura, I.; Miyauchi, T. 1980. Effect of the cascade operation of 

enzymes in packed bed immobilized enzyme reactors. J. Chem. Eng. Japan 13: 304-

308. 

[42] Furusaki, S.; Miyauchi, T. 1977. Effect of the control of the residence time 

distribution for aging enzyme by a cascade operation -Michaelis-Menten kinetics-. J. 

Chem. Eng. Japan 10: 247-249. 

[43] Godia, F.; Casas, C ; Sola, C. 1987. A survey of continuous ethanol fermentation 

systems using immobilized cells. Process Biochem. 4: 43-48. 

[44] Goto, S.; Kitai, A.; Ozaki, A. 1973. Continuous yeast cell production from ethanol 

with a multi-stage tower fermenter. J. Ferment. Technol. 51: 582-593. 

[45] Granados, R.R. 1976. Infection and replication of insect pathogenic viruses in tissue 

culture. Adv. Virus Res. 20: 189-236. 

[46] Granados, R.R. 1980. Infectivity and mode of action of baculoviruses. Biotechnol. 

Bioeng. 22: 1377-1405. 

[47] Grobicki, A.; Stuckey, D.C. 1991. Performance of the anaerobic baffled reactor 

under steady-state and shock loading conditions. Biotechnol. Bioeng. 37: 344-355. 

[48] Grootjen, D.R.J.; Jansen, M.L.; Van der Lans, R.G.J.M.; Luyben, K.Ch.A.M. 

1991. Reactors in series for the complete conversion of glucose/xylose mixtures by 

Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb. Technol. 13: 828-833. 

[49] Herbert, D. 1964a. Multi-stage continuous culture. In: Proc. 2nd symp. contin. cult. 

microorganisms (Malek, I., et al, Eds.). Czechoslovak Academy of Sciences, 

Prague, CSSR, 23-44. 

[50] Herbert, D. 1964b. A theoretical analysis of continuous culture systems. Soc. Chem. 

Ind. Monogr. 12: 21-53. 

[51] Hill, C.G. 1977. An introduction to chemical engineering kinetics and reactor design. 

Wiley, New York. 

[52] Hill, G.A.; Robinson, C.W. 1989. Minimum Tank Volumes for CFST Bioreactors 



DESIGN PROCEDURES FOR BIOREACTORS IN SERIES 89 

in Series. Can. J. Chem. Eng. 67: 818-824. 

[53] Holstrom, B.; Rose, J.K. 1964. Continuous two-stage culture of streptococci. In: 

Proc. 2ndsymp. contin. cult, microorganisms (Malek, I., etal, Eds.). Czechoslovak 

Academy of Sciences, Prague, CSSR, 167-171. 

[54] Hospodka, J. 1966. Industrial application of continuous fermentation. In: Theoretical 

and methodological basis of continuous culture of microorganisms (Malek, I.; Fencl, 

Z. Eds.). Publishing house of the Czechoslovak Academy of Sciences, Prague, CSSR, 

493-645. 

[55] Howgrave-Graham, A.G.; Jones, L.R.; James, A.G.; Terry, S.J.; Senior, E.; 

Watson-Craik, I. A. 1994. Microbial distribution throughout a cellobiose-supplemented 

three-stage laboratory-scale anaerobic digester. / . Chem. Tech. Biotechnol. 59: 127-

131. 

[56] Imanaka, T.; Kaieda, T.; Taguchi, H. 1973. Optimization of a-galactosidase 

production in multi-stage continuous culture of mold. J. Ferment. Technol. 51: 431-

439. 

[57] Karanth, N.G. 1979. Multiple continuous stirred tank reactors vs. batch reactors -

some design considerations. Biotechnol. Lett. 1: 139-144. 

[58] Kida, K.; Asano, S-I.; Yamadaki, M.; Iwasaki, K.; Yamaguchi, T.; Sonoda, Y. 

1990. Continuous high-ethanol fermentation from cane molasses by a flocculating 

yeast. J. Ferm. Bioeng. 69: 39-45. 

[59] Kitai, A.; Tone, H.; Ozaki, A. 1971. Mehrstufige Fermentationsvorrichtung und 

kontinuerliche Fermentationsverfahren unter Verwendung der Vorrichtung. German 

patent nr. 2037903, Sanraku-Ocean Co., Ltd, Tokio, Japan, (In German). 

[60] Klein, J.; Kressdorf, B. 1983. Improvement of productivity and efficiency in ethanol 

production with Ca-alginate immobilized Zymomonas mobilis. Biotechnol. lett. 5:497-

502. 

[61] Klein, J.; Kressdorf, B. 1986. Rapid ethanol fermentation with immobilized 

Zymomonas mobilis in a three stage reactor system. Biotechnol. Lett. 8: 739-744. 

[62] Kleinstreuer, C. 1987. Analysis of biological reactors. In: Advanced Biochemical 

Engineering (Bungay, H.R.; Belfort, G., Eds.). Wiley, New York, 33-78. 

[63] Kloppinger, M.; Fertig, G.; Fraune, E.; Miltenburger, H.G. 1990. Multistage 

production of Autographa californica nuclear polyhedrosis virus in insect cell 

cultures. Cytotechnol. 4: 271-278. 

[64] Kompier, R.; Tramper, J.; Vlak, J.M. 1988. A continuous process for the production 

of baculovirus using insect cell cultures. Biotechnol. Lett. 10: 849-854. 



90 CHAPTER 4 

[65] Kulozik, U.; Hammelehle, B.; Pfeifer, J.; Kessler, H.G. 1992. High reaction rate 

continuous bioconversion process in a tubular reactor with narrow residence time 

distributions for the production of lactic acid. J. Biotechnol. 22: 107-116. 

[66] Kuriyama, H.; Ishibashi, H.; Miyagawa, H.; Kobayashi, H.; Mikami, E. 1993. 

Optimization of two-stage continuous ethanol fermentation using flocculating yeast. 

Biotechnol. lett. 15: 415-420. 

[67] Lee, J.M.; Pollard, J.F.; Coulman, G.A. 1983. Ethanol fermentation with cell 

recycling : computer simulation. Biotechnol. Bioeng. 25: 497-511. 

[68] Lelieveld, H.L.M. 1984. Mixed-strain continuous milk fermentation. Process 

Biochem. 19: 112-113. 

[69] Lettinga, G.; Van Velsen, A.F.M.; Hobma, S.W.; De Zeeuw, W.; Klapwijk, A. 

1980. Use of the upflow sludge blanket (USB) reactor concept for biological waste­

water treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22: 699-734. 

[70] Levenspiel, O. 1972. Chemical reaction engineering. 2nd ed., Wiley, New York. 

[71] Levenspiel, O. 1979. The chemical reactor omnibook. OSU, Corvallis. 

[72] Lo, S.N.; Marchildon, L.; Valade, J.L. 1983. Performance of two chemostats in 

series, when the values of the corresponding kinetic parameters in Monod's model 

being nonidentical. In: Proc. third pacific chem. eng. congr. (Kim, C ; Ihm, S.K., 

Eds.). Korean institute of chemical engineers, Seoul, South Korea, 4: 166-173. 

[73] Lopes, T.I.; Malcata, F.X. 1993. Optimal design of a series of CSTR's for 

biochemical reactions in the presence of enzyme deactivation. J. Chem. Eng. Japan 

26: 94-98. 

[74] Lumb, M.; Macey, P.E.; Wright, R.D.; Petchell, R.K. 1970. Fermentation 

processes. British patent nr. 1204486, Boots pure drug company, Nottingham, UK. 

[75] Luyben, K.Ch.A.M.; Tramper, J. 1982. Optimal design for a continuous stirred tank 

reactors in series using Michaelis-Menten kinetics. Biotechnol. Bioeng. 1A: 1217-

1220. 

[76] Malcata, F.X. 1988. Optimal design on an economic basis for continuous stirred tank 

reactors in series using Michaelis-Menten kinetics for ping-pong reactions. Can. J. 

Chem. Eng. 66: 168-172. 

[77] Malcata, F.X. 1989. A heuristic approach for the economic optimization of a series 

of CSTR's performing Michaelis-Menten reactions. Biotechnol. Bioeng. 33:251-255. 

[78] Malcata, F.X.; Cameron, D.C. 1992. Optimal design of a series of CSTR's 

performing reversible reactions catalyzed by soluble enzymes: a theoretical study. 

Biocatalysis 5: 233-248. 



DESIGN PROCEDURES FOR BIOREACTORS IN SERIES 91 

[79] Mitchell, D.W.; Shuler, M.L. 1978. Multistage continuous fermentation of poultry 

manure to a high protein feedstuff. Food, Pharmaceut. Bioeng, AIChE symp. series 

111: 182-188. 

[80] Molly, K.; Vande Woestyne, M.; Verstraete, W. 1993. Development of a 5-step 

multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. 

Appl. Microbiol. Biotechnol. 39: 254-258. 

[81] Moreno, M.; Goma, G. 1979. Alcohol fermentation in strict anaereobiosis in a plug-

flow fermentor: effect of cell recycling. Biotechnol. Lett. 1: 483-488. 

[82] Moser, A. 1988. Bioprocess technology. Springer, New York, 329-356. 

[83] Moser, A. 1985. General strategy in bioprocessing. In: Biotechnology: a 

comprehensive treatise in 8 vol.: Fundamentals of biochemical engineering. (Rehm, 

H.J., et al., Eds.). VCH, Weinheim, Federal Republic of Germany, 2: 173-308. 

[84] Mulligan, C.N.; Safi, B.F.; Groleau, D. 1991. Continuous production of ammonium 

lactate by Streptococcus cremoris in a three-stage reactor. Biotechnol. Bioeng. 38: 

1173-1181. 

[85] Noworyta, A.; Bryjak, J. 1993. Process of penicillin G hydrolysis catalyzed by 

penicillin acylase immobilized on acrylic carrier. Bioproc. Eng. 9: 271-275. 

[86] Ogbonna, J.C.; Amano, Y.; Nakamura, K.; Yokotsuka, K.; Shimazu, Y.; Watanabe, 

M.; Hara, S. 1989. A multistage bioreactor with replaceable bioplates for continuous 

wine fermentation. Am. J. Enol. Vitic. 40: 292-298. 

[87] Ong, S.L. 1986. Optimization of CSTRs in series by dynamic programming. 

Biotechnol. Bioeng. 28: 818-823. 

[88] Paca, J. 1980. Elimination of ethanol inhibition of yeast growth by a multistream 

ethanol feed in a multistage tower fermenter. J. Chem. Tech. Biotechnol. 30: 764-

771. 

[89] Pica, J. 1982. Multistream ethanol and oxygen supply to a multistage tower 

fermentor during continuous yeast cultivations. / . Ferment. Technol. 60: 215-220. 

[90] Paca, J.; Gregr, V. 1979. Growth characteristics of Candida utilis in a multistage 

culture system. Enzyme Microb. Technol. 1: 100-106. 

[91] Paca, J.; Gregr, V. 1979. Effect of interstage mixing in multistage culture systems 

on continuous biomass production. Biotechnol. Bioeng. 21: 1809-1825. 

[92] Paiva, A.L.; Malcata, F.X. 1993. Optimal temperature and concentration profiles in 

a cascade of CSTR's performing Michaelis-Menten reactions with first order enzyme 

deactivation. Bioproc. Eng. 9: 77-82. 

[93] Park, S.C.; Baratti, J.C. 1992. Continuous ethanol production from sugar beet 



92 CHAPTER 4 

molasses using an osmotolerant mutant strain of Zymomonas mobilis, J. Ferment. 

Bioeng. 73: 16-21. 

[94] Pfaff, M.; Heald, S.C.; Jenkins, R.O. 1993. Trichloroethylene removal by a strain 

of Pseudomonas putida: kinetic modelling and bioprocess design. Poster presented at 

the sixth European Congress on Biotechnology, Florence, Italy. 

[95] Pirt, S.J. 1975. Principles of microbe and cell cultivation. Blackwell, Oxford, UK. 

[96] Pirt, S.J.; Callow, D.S. 1959. Continuous-flow culture of the filamentous mould 

Penicillium chrysogenum and the control of its morphology. Nature 184: 307-310. 

[97] Plevako, E. A. 1964. Continuous two-stage cultivation of baker's yeast. In: Proc. 2nd 

symp. contin. cult, microorganisms (Malek, I., etal., Eds.). Czechoslovak Academy 

of Sciences, Prague, CSSR, 273-277. 

[98] Powell, E.O.; Lowe, J.R. 1964. Theory of multi-stage continuous cultures. In: Proc. 

2nd symp. contin. cult, microorganisms (Malek, I., et al., Eds.). Czechoslovak 

Academy of Sciences, Prague, CSSR, 45-57. 

[99] Prokop, A.; Erickson, J.; Fernandez, J.; Humphrey, A.E. 1969. Design and physical 

characteristics of a multistage, continuous tower fermentor. Biotechnol. Bioeng. 11: 
945-966. 

[100] Qureshi, N.; Tamhane, D.V. 1986. Mead production by continuous series reactors 

using immobilized yeast cells. Appl. Microbiol. Biotechnol. 23: 438-439. 

[101] Raba, J.; Mottola, H.A. 1994. Continuous-flow/stopped flow system incorporating 

two rotating bioreactors in tandem: application to the determination of alkaline 

phosphatase activity in serum. Anal. Chem. 66: 1485-1489. 

[102] Reuveny, S.; Velez, D.; Miller, L.; Macmillan, J.D. 1986. Comparison of cell 

propagation methods for their effect on monoclonal antibody yield in fermentors. / . 

Immunol. Meth. 86: 61-69. 

[103] Ricica, J. 1964. Study of the biosynthesis of 6-azauracil riboside by Escherichia coli 

B in a multi-stage continuous process. In: Proc. 2nd symp. contin. cult. 

microorganisms (Malek, I., et al, Eds.). Czechoslovak Academy of Sciences, 

Prague, CSSR, 153-165. 

[104] Ricica, J. 1969. Recent theoretical and practical trends in continuous cultivation. In: 

Fermentation advances (Perlman, D., Ed.). Academic Press, New York, 427-440. 

[105] Ryu, D.D.Y.; Lee, B.K. 1975. An example of process optimization of enzymatic 

transformation of steroids. Process Biochem. January/February, 15-19. 

[106] Ryu, Y.W.; Navarro, J.M.; Durand, G. 1982. Comparative study of ethanol 

production by an immobilized yeast in a tubular reactor and in a multistage reactor. 



DESIGN PROCEDURES FOR BIOREACTORS IN SERIES 93 

Eur. J. Appl. Microbiol. Biotechnol. 15: 1-8. 

[107] Santos, V.A.; Tramper, J.; Wijffels, R.H. 1993. Simultaneous nitrification and 

denitrification using immobilized microorganisms. J. Biomat. Art. Cells. Immob. 

Biotechnol. 21: 317-322. 

[108] Schiigerl, K. 1982. Characterization and performance of single- and multistage tower 

reactors with outer loop for cell mass production. Adv. Biochem. Eng. 22: 93-224. 

[109] Schiigerl, K. 1987. Bioreaction Engineering: reactions involving microorganisms and 

cells. Wiley, Chichester, U.K., 68-73. 

[110] Shama, G. 1988, Developments in bioreactors for fuel ethanol production. Process. 

Biochem. 10: 138-145. 

[ I l l ] Shimizu, K.; Matsubara, M. 1987. Product formation patterns and the performance 

improvement for multistage continuous stirred tank fermentors. Chem. Eng. Comm. 

52: 61-74. 

[112] Sikyta, B.; Doskocil, J.; Kasparova, J. 1959. Continuous streptomycin fermentation. 

J. Biochem. Microbiol. Technol. Eng. 1: 379-392. 

[113] Takahashi, M.; Kyosai, S. 1991. Pilot plant study on microaerobic self-granulated 

sludge process (multi-stage reversing flow bioreactor: MRB) Wat. Sci. Tech. 23:973-

980. 

[114] Taniguchi, N.; Koike, S.; Murakami, T.; Nakayama, S. 1988. High efficiency 

nitrogen removal using multi-stage air-lift recirculation for nitrogen and denitrification 

process. WPCF Annual Conference, Dallas, Texas. 

[115] Topiwala, H.H. 1974. The application of kinetics to biological reactor design. 

Biotechnol. Bioeng. Symp. 4: 681-690. 

[116] Tramper, J. 1993. Critical problems in bioprocess engineering. In: ECB6: Proc. &h 

European Congress Biotechnol. (Alberghina, L., et al., Eds.). Elsevier, Amsterdam, 

The Netherlands, 27-42. 

[117] Tramper, J.; Vlak, J.M. 1986. Some engineering and economic aspects of continuous 

cultivation of insect cells for the production of baculovirus. Ann. N. Y. Acad. Sci. 

469: 279-288. 

[119] Tyagi, R.D.; Ghose, T.K. 1980. Batch and multistage continuous ethanol 

fermentation of cellulose hydrolysate and optimum design of fermentor by graphical 

analysis. Biotechnol. Bioeng. 22: 1907-1928. 

[120] Tzeng, J.W.; Fan, L.S.; Gan, Y.R.; Hu, T.T. 1991. Ethanol fermentation using 

immobilized cells in a multistage fluidized bed bioreactor. Biotechnol. Bioeng. 38: 

1253-1258. 



94 CHAPTER 4 

[121] Van Lier, F.L.J.; Van den End, E.J.; De Gooijer, CD. ; Vlak, J.M.; Tramper, J. 

1990. Continuous production of baculovirus in a cascade of insect-cell reactors. Appl. 

Microbiol. Biotechnol. 33: 43-47. 

[122] Van Lier, F.L.J.; Van der Meijs, W.C.J.; Grobben, N.G.; Olie, R.A.; Vlak, J.M.; 

Tramper, J. 1992. Continuous B-galactosidase production with a recombinant 

baculovirus insect-cell system in bioreactors. J. Biotechnol. 22: 291-298. 

[123] Van 't Riet, K.; Tramper, J. 1991. Basic bioreactor design. Marcel Dekker, New 

York. 

[124] Venables, D.C.; Boraston, R.C.; Bushell, M.E. 1993. Two-stage chemostat studies 

of hybridoma growth, nutrient utilisation, and monoclonal antibody production. In: 

Animal Cell technology; Basic and Applied aspects, (Kaminogawa, S., Ed.). Kluwer, 

The Netherlands, 5: 585-594. 

[125] Vos, H.J. 1990. Design of a continuous reactor for immobilized biocatalysts. PhD 

thesis, Delft University of Technology, The Netherlands. 

[126] Weuster, D.; Aivasidis, A.; Wandrey, Ch. 1990. Multistage ethanol fermentation of 

wastes in fluidized bed reactors - Operation in laboratory - and bench scale. In: 

Dechema Biotechnologie Conferences, (Behrens, D.; Kramer, P., Eds.). VCH-

Weinheim, Frankfurt am Main, Federal Republic of Germany, 4B: 721-728. 

[127] Yang, P.Y.; Chen, H.; Kongsricharoern, N.; Polprasert, C. 1993. A swine waste 

package biotreatment plant for the tropics. Wat. Sci. Tech. 28: 211-218. 

[128] Yoon, S.K.; Yoo, Y.J.; Rhee, H.-K. 1989. Optimal temperature control in a multi­

stage immobilized enzyme reactor system. J. Ferment. Bioeng. 68: 136-140. 

[129] Zhang, J.; Kalogerakis, N.; Behie, L.A.; Iatrou, K. 1993. A two-stage bioreactor 

system for the production of recombinant proteins using a genetically engineered 

baculovirus/insect cell system. Biotechnol. Bioeng. 42: 357-366. 



This chapter 5 has been published as: Bakker, W.A.M.; Knitel, J.T.; Tramper, J.; De 
Gooijer, CD. 1994. Sucrose conversion by immobilized invertase in a Multiple Air-lift 
Loop bioreactor. Biotechnol. Prog. 10: 277-283. 

CHAPTER 5 

SUCROSE CONVERSION 

BY IMMOBILIZED INVERTASE IN THE 

MULTIPLE AIR-LIFT LOOP BIOREACTOR 

SUMMARY 

A new bioreactor series within one vessel, the Multiple Air-lift Loop reactor 

(MAL), is introduced. In the MAL, a series of air-lift loop reactors is incorporated 

into one vessel. From residence time distribution studies, it was shown that the 

three-compartment MAL behaves as a series of three ideal mixers. A continuously 

operated MAL, containing immobilized invertase as a model biocatalyst, was 

evaluated. The advantage of approaching plug flow by using a bioreactor cascade 

could be shown by comparing substrate conversion in the three-compartment MAL 

to that in a single vessel at the same overall dilution rate. This was done for two 

sets of experimental conditions, which were chosen by using a previously 

developed model. Intrinsic kinetic parameters of the immobilized enzyme, needed 

for the model calculations, were determined experimentally. Model calculations 

gave good approximations of the results. The model incorporates external mass-

transfer resistance and diffusion and reaction in the biocatalyst beads. 
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INTRODUCTION 

Cascades of continuously operated stirred-tank reactors can be flexible tools for the 

optimization of bioprocesses [Hill and Robinson, 1989; Luyben and Tramper, 

1982; Malcata and Cameron, 1992; Pirt, 1975; Shimizu and Matsubara, 1987]. 

The Multiple Air-lift Loop reactor (MAL) is a new type of bioreactor consisting of 

a series of air-lift loop reactors (ALRs) within one vessel [De Gooijer, 1989]. With 

a series of ideal mixers, the behavior of a plug-flow reactor can be approximated 

[Levenspiel, 1972]. On a laboratory scale (V < 0.01 m3), and with a regular 

aspect ratio (HID < 13), ALRs behave as nearly ideally mixed vessels [Chisti, 

1989; Van 't Riet and Tramper, 1991]. Therefore, as a whole, the MAL is an 

approximation of an aerated plug-flow bioreactor when sufficient ALRs (N > 20) 

are placed in series. Thus, the advantages of both reactor types are combined in 

this reactor series: the possibility of improved substrate conversion in the plug-flow 

approximation, and suitable conditions for measurement and control in the nearly 

ideal mixers. The MAL can be used to study the applications of a reactor series in 

biotechnology. 

In 1982, Luyben and Tramper derived an analytical expression for the 

optimal design of a cascade of continuous stirred-tank reactors, with the minimal 

overall reactor volume required for a specific substrate conversion as a criterion. 

They limited their design to biocatalytic reactions with suspended enzymes 

following Michaelis-Menten kinetics. This expression was extended to immobilized 

enzymes that obey intrinsic Michaelis-Menten kinetics and validated experimentally 

by De Gooijer et al. [1989] for reactors in series. Further studies on reactor series 

containing suspended enzymes were made by Malcata [1988; Malcata and 

Cameron, 1992] for different kinetics, taking minimal capital investment as the 

optimization criterion. These authors [Luyben and Tramper, 1982; Malcata, 1988; 

De Gooijer et al., 1989] observed that the decrease in required overall reactor 

volume for a desired conversion is the largest when going from one to two reactors 

in series. Only slight improvement is found when going from two to three, and 

even more reactors in the cascade is economically not feasible [Malcata, 1988]. 

From these observations, it was decided that a MAL with three reactors in series 

incorporated in it would be used for this study. 
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Sucrose conversion by invertase was selected as a convenient and cheap 

biological model system to compare the performance of the MAL to that of a 

single vessel of the same volume. Obviously, there can be all kinds of other 

arguments, such as economic motives (not taken into account here), to select a 

different model system or to prefer the use of a single vessel. 

In the present contribution, a MAL was operated continuously with invertase 

immobilized in gel beads as a biological model system. The gel beads moved freely 

and were kept fluidized and well-mixed in each MAL compartment. Substrate 

conversion in a three-compartment MAL was compared to that in a single vessel at 

the same overall dilution rate. This experimental comparison was not made by De 

Gooijer et al. [1989]. Statistically significant improvement (based on the difference 

in steady-state concentrations with no overlay of their 95 % confidence intervals) of 

substrate conversion in the new bioreactor series over a single, nearly ideally 

mixed, vessel could be demonstrated. The theoretical development and the 

calculation procedures of De Gooijer et al. [1989] were used as a tool to choose 

the experimental conditions, using intrinsic kinetic parameters that were determined 

experimentally. With this model, the simultaneous diffusion and consumption of 

substrate in the biocatalyst bead are described, resulting in an estimation of the 

substrate concentration profile in the bead. The trend of the model estimations 

agreed with reality. 

The assumption that the MAL behaves as a cascade of three nearly ideal 

mixers was validated by residence time distribution (RTD) measurements. The 

RTD of a tracer was determined in the effluent for various influent and gas flow 

rates. In all cases, the MAL could be described best as three mixers in series. 

MULTIPLE AIR-LIFT LOOP REACTOR 

The central MAL compartment is a conventional internal loop ALR with aeration 

in the annulus (Figure 1). Subsequent compartments in the MAL are concentric. 

The annular-shaped compartments have a circular baffle, which splits them into a 

riser section and a downcomer section. 

Fresh medium is supplied to the central ALR; from there, it flows into the 

downcomer of the next compartment, where it is mixed with the down-flowing 

stream. In this way, medium travels through the cascade of ALRs. The MAL can 
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Figure 1. Three compartment Multiple Air-lift Loop bioreactor cross-
sectional side and top view. Geometric data are given in Table I. 
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be constructed in many configurations for various applications [De Gooijer, 1989]. 

By supplying different gases to the subsequent compartments, for example, aerobic 

and anaerobic processes can be carried out in series within one reactor vessel. 

The advantages of the MAL compared to single ALRs, or bubble columns, 

in series include the fact that no extra pumps or hoses are needed. Also, the reactor 

series can be sterilized as one reactor, and old reactor vessels can be reused and 

upgraded to a MAL. Disadvantages of the MAL in this comparison include that, on 

a lab scale, the compartments are narrow, which makes cleaning difficult. Further, 

the gas distributor is relatively complex. 

Hydrodynamics and mixing are greatly influenced by reactor geometry; 

these subjects were investigated previously [Bakker et al., 1993] in a MAL of a 

larger scale (0.034 m3 per compartment) than the MAL used in the present study. 

In that previous study, the second compartment of the MAL was used as a model 

for the new internal-loop reactor geometry. Liquid velocities, gas holdup, and 

mixing were comparable to those of conventional ALRs with an internal loop. 

Complete mixing was established within four liquid circulations (rm < 54 s) for all 

gas flow rates applied. This implied that, also on this larger scale, the subsequent 

MAL compartments could be regarded as nearly ideally mixed. 

MATERIALS AND METHODS 

MAL 
The vessel used in this study was a 0.022-m three-compartment MAL made of 

transparent perspex (Figure 1). Geometric data are given in Table I. The three 

compartments were arbitrarily chosen to be of nearly equal volumes. The circular 

sparger rings were constructed of porous Accurel polypropylene membrane tube 

(type V8/2, maximum pore size: 0.51 y.m; gift of AKZO, Obernburg, Germany). 

The spargers were positioned at the riser entrance to prevent entrainment of gas 

bubbles in the downcomer. Gas was distributed over the circular risers by the 

membrane spargers at a flow rate of 9.7 X 10 m .s for each MAL 

compartment. The gas flow rate was kept low to prevent excessive foam formation. 
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Table I. Geometric data of the multiple air-lift loop reactor (MAL). 
MAL 

compartment compartment compartment 
1 2 3 

Liquid volume [m3] 
Working volume* [m3] 
Liquid height [m] 
Diameter** [m] 
Baffle diameter** [m] 
Baffle height*** [m] 

8.07 x 10"3 

7.71 X 10"3 

2.97 x 10"1 

1.99 x 10"1 (4) 
1.1 x 10"1 

2.91 X 10"1 

7.29 X 10"3 

6.97 x 10'3 

2.37 x 10'1 

3.0 x 10'1 

2.4 X 10"1 

2.31 X 10'1 

6.89 x 10"3 

6.57 x 10° 
1.65 x 10"1 

4.0 x 10"1 (4) 
3.4 x 10"1 

1.55 X 10"1 

The working volume is the liquid volume corrected for gas holdup and 
foam formation during the experiments. 
Outer diameters are given. The perspex wall thickness was 5 mm, 
except for the two tubes marked with (4) where it was 4 mm. 
The distance between the baffles and the bottom (1.5 cm) is included in 
the baffle height. 

t t 

t t t 

ENZYME IMMOBILIZATION 

Microgranular anion exchanger (DE32-cellulose), sodium alginate, and other 

chemicals were described previously [De Gooijer et ah, 1989]. The invertase 

(Maxinvert P) was a gift of Gist-brocades, Delft, The Netherlands. Invertase was 

coupled to DE32-cellulose before immobilization in alginate [De Gooijer et al., 

1989]. DE32-cellulose (50 kg.m ) was equilibrated for 48 h in sodium phosphate 

buffer (10 mol.m"3, pH 7.0). Invertase was added (5 kg.m"3) and stirred with the 

DE-32 particles for 3 h at room temperature. Non-adsorbed invertase was then 

removed by washing three times with the equilibrating sodium phosphate buffer 

and finally once with a sodium-acetate buffer (10 mol.m"3, pH 4.6). The latter 

wash liquid no longer showed enzymatic activity. The DE32-cellulose invertase 

was then added to a 2% (w/w) sodium-alginate solution in acetate buffer. In this 

way, a 35 kg.m"3 gel load, based on dry-complex weight, was obtained in the 

beads resulting from immobilization. This immobilization was performed with a 

resonance nozzle [Hulst et al., 1985] at 35 °C. Alginate drops were collected in 
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200 mol.m"3 CaCl2 at 5 °C. To obtain perfect spheres, decane was layered on the 

CaCl2 solution [Wijffels et al, 1991]. The decane-CaCl2 was kept at 5 °C in order 

to initiate the gelation. After solidification for 2 h, the beads were kept in a 50 

mol.m"3 CaCl2 acetate buffer at 4 °C. The Sauter mean bead diameter d32 was 

1.74 mm. 

For the determination of intrinsic kinetic parameters, beads were prepared, 

in the same way as described above, with five different gel loads (9, 33, 69, 83 

and 100 kg of dry enzyme complex per cubic meter of gel beads (kg.m)). To 

obtain those gel loads, the amount of DE32-cellulose invertase added to the sodium 

alginate solution in acetate buffer was changed. The beads were used directly for 

activity assays to determine apparent kinetic constants (i.e. including transport 

limitation). 

ANALYSES 

Glucose and sucrose concentrations were determined with a D-glucose kit and a 

sucrose kit, respectively (Boehringer, Germany). Sucrose concentrations were 

measured in the influent stream. Sucrose was found to be converted 

stoichiometrically into glucose and fructose. Reactor sucrose concentrations thus 

could be calculated from glucose analysis. Samples (1.5 cm3) were heated for 5 

min at 100 °C to inactivate the freely suspended enzyme-DE32 complex used for 

the determination of the kinetic parameters. Consequently, this procedure was used 

for all samples to warrant uniform sample treatment. After heating, the samples 

were frozen at -20 °C until analysis to prevent microbial degradation of the sugars. 

ACTIVITY ASSAYS 

For all determinations of kinetic parameters (intrinsic and for freely suspended 

ezyme complex), substrate conversion was measured as a function of time until 

sucrose was completely converted. The initial sucrose concentration was 600 

mol.m"3, and the batchwise experiments were done in acetate buffer at 30 °C in a 

stirred vessel. For the determination of a loss in enzyme activity with time, beads 

(gel load: 100 kg.m"3) were stored at 30 °C in acetate buffer between the 

determinations to obtain the same conditions as during the MAL experiment. 

Parameters were estimated by fitting the integrated Michaelis-Menten equation to 
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each set of experimental data with nonlinear regression [Van 't Riet and Tramper, 

1991]. The 95% confidence intervals of the kinetic parameters were calculated with 

the use of the Student's f-test value from one set of experimental data (i.e., 

substrate versus time) for the different measurements [Zwietering et al., 1990]. 

M A L EXPERIMENTS 

The MAL was operated continuously twice at 30 °C for several days. The substrate 

was 630 mol.m"3 sucrose in acetate buffer. In the two MAL experiments the 

reactor gel holdup, 6.3% and 9.1% (v/v), respectively, was equal for each of the 

three MAL compartments. Beads were kept in each compartment by a stainless 

steel sieve (hole diameter, 0.5 mm) at the overflows to the next compartment. 

After a change in substrate feed rate, steady-state conditions were established after 

four hydraulic residence times through the cascade of air-lift reactors. 

Subsequently, during three MAL volume changes, samples were taken regularly 

from all three MAL-compartments, and thus the attainment of a steady state was 

verified. Enzyme decay was assumed to be negligible during the short period 

(compared to the duration of the complete experiment) of a steady-state 

measurement. For the two MAL experiments at 6.3% and 9.1% gel holdup 

substrate was supplied at a constant rate of 2.65 X 10"6 and 2.4 X 10"6 m'.s"1, 

respectively. 

The central compartment of the MAL was used as a single-vessel reference. 

To this end, it was operated at a different substrate feed rate (0.94 x 10"6 and 0.85 

X 10"6 m3.s"' for the two experiments at 6.3% and 9.1% gel holdup, respectively). 

Consequently, the overall residence time (2.2 and 2.5 h, respectively) in the 

comparison between the three-compartment MAL and the single compartment was 

equal. Here, residence times were arbitrarily based on the liquid volume plus 

beads, that is, without gas holdup and foam formation (Table I). 

MIXING IN THE MAL 

Macroscopic mixing in the MAL was investigated by measurement of the residence 

time distribution (RTD). For that, the MAL was operated continuously under 

various conditions as explained in the Results and Discussion section. The effluent 

response of an inlet salt pulse (30 cm3, 4000 mol.m"3 NaCl) was measured with a 



SUCROSE CONVERSION BY IMMOBILIZED INVERTASE 103 

conductivity electrode. 

The RTD-curves were characterized by the mean 6 and variance <r of the 

distribution [Levenspiel, 1972]. The distributions were normalized with respect to 

time (0 = time (s)/one hydraulic residence time (s)) and concentration (C = concn 

(kg.m )/initial concn (kg.m )) to make them comparable at different hydraulic 

residence times. The distribution curve was known at a number of discrete time 

values 6t, from which the mean 0 and the variance Og2 were calculated as described 

by Levenspiel [1972]. From this, the theoretical number of equal-size ideal mixers 

N in the series could be derived from N = 1/OQ2. Finally, the area under the RTD 

curve represented the fraction of tracer recovered. 

The conditions during the MAL experiments with the immobilized enzyme, 

as described above, were within the applied range with respect to the gas flow rate, 

and were lower for the liquid flow-rate. 

MODEL PARAMETER VALUES 

Parameter values used for the model calculations were as follows: maximum 

substrate consumption rate, Vm (at t = 0) = 0.10 mol.kg^.s"1; Michaelis constant, 

Km = 310 mol.m"3; gel load = 35 kg.m"3; effective diffusion coefficient [De 

Gooijer et al., 1989], De = 3.85 X 10"10 m2.s-1; Sauter mean bead diameter, d32 

= 1.74 mm; inlet substrate concentration = 630 mol.m"3; substrate feed rate = 

2.4 x 10"6 nAs"1 (MAL experiment) and 0.85 x 10"6 m3.s_1 (single-vessel 

experiment); reactor gel holdup = 9.1%; liquid/solid mass-transfer coefficient, kls 

= 1 X 10"5 m.s"1, zero-order decay rate, kd = 4.0 X 10"8 mol.kg^.s"2. The first 

steady-state measurement was taken after the MAL was run continuously for 3.5 

days (t = 3.5 days), therefore, this time was used to make a correction for the 

ezyme decay in the model calculations. 
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RESULTS AND DISCUSSION 

KINETIC PARAMETERS 

Alginate beads with five different gel loads of enzyme complex (DE32-cellulose-

invertase) immobilized therein were used to determine intrinsic kinetic parameters 

of the Michaelis-Menten equation: 

V=-^— (1) 
S+Km 

where Vis the specific reaction rate (mol.kg^.s1), 5 is the substrate concentration 

(mol.m"3), Vm is the maximum substrate consumption rate (mol.kg^.s"1) and Km is 

the Michaelis constant (mol.m ). Extrapolation to zero gel load gives the diffusion 

free, intrinsic, kinetic constants Vm and Km [Van Ginkel et al., 1983; Van 't Riet 

and Tramper, 1991]. Here, a linear relationship between the apparent kinetic 

constants V'm and K'm and gel load is assumed. The validity of this assumption was 

assessed statistically by using the Students Mest (Table II). For the intrinsic Vm 

(Figure 2), the slope coefficient was sufficiently different from zero to warrant a 

significant correlation (Table II). The intrinsic Vm, i.e., the intercept of the linear 

regression line in Figure 2, was 0.10 mol.kg^.s"1 (Table II). No statistically 

reliable intrinsic Km could be determined in this way because the slope coefficient 

(Figure 3) was found to not differ significantly from zero (Table II). 

Furthermore, the kinetic parameters Vm and Km were also determined by 

using freely suspended DE32-cellulose-invertase complex, assuming negligible 

diffusion limitation. The average Vm obtained from six independent determinations 

was 0.10 mol.kg^.s"1, and the Km = 310 mol.m"3 (Table II). This average Vm 

agrees very well with the above intrinsic parameter obtained from the beads with 

different gel loads (Table II). Therefore, no effect due to immobilization in 

alginate, for example a change in conformation of the ezyme, on this kinetic 

parameter of the enzyme complex could be shown. The accuracy of the apparent 

constant K'm was limited, as illustrated by the large 95% confidence intervals 

(Figure 3) and the rejection of the linear model (Table II). This limitation of 

accuracy is more often encountered in the determination of immobilized enzyme 
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Figure 2. Apparent maximal substrate consumption rate V'm as a function 
of the gel load. Bars give 95% confidence intervals; when invisible it is due to 
overlay by the data points. Solid line: linear regression line for extrapolation 
to the intrinsic Vm at zero gel load. 

kinetics [Hooijmans et al, 1992]. It was assumed that Km was also left unaffected 

by the immobilization, and thus the average of 310 mol.m"3 for the freely 

suspended enzyme complex represented the intrinsic Km. This Km was on the same 

order of magnitude as the earlier reported 198 mol.m"3 for a different batch of 

enzymes [De Gooijer et al., 1989] and other literature data. Typical values of Km, 

for different binding methods and different invertase preparations, are in the range 

50 - 270 moLm-3 [Johansen and Flink, 1986; Mansfeld and Schellenberger, 1987; 

Mansfeld era/., 1991]. 

For all determinations of kinetic parameters, the initial substrate 

concentration was in the same range (600 mol.m"3) as was applied during the MAL 

experiments (630 mol.m"3). For those concentrations, possible effects of substrate 

or product inhibition on the reaction rate [Combes and Monsan, 1983; Mansfeld 

and Schellenberger, 1987; Mansfeld et al., 1991] were found to be negligible, 

because all experimental results could be described well with the Michaelis-Menten 

equation. 
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Figure 3. Apparent Michaelis-constant for the rate limiting substrate K'm 

as a function of the gel load. Bars give 95% confidence intervals. 
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function of time. Bars for the 95% confidence intervals are invisible because 
they are overlayed by the data points. Solid line: linear regression line giving 
the inactivation rate. 
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To make a correction for the loss of enzyme activity in time, the inactivation 

rate was measured by determining V'm from the same beads for 4 days (gel load, 

100 kg.m"3). Figure 4 shows a linear loss of enzyme activity in 4 days. The zero-

order decay rate kj was 4.0 x 10"8 mol.kg^.s"2. This slope coefficient, kd, was 

statistically significantly different from zero (Table II). The decay rate kd was 

comparable to the 29% activity loss reported for invertase coupled to DE-cellulose 

after 4 days at 30 °C [Suzuki et al, 1966]. 

MIXING IN THE MAL 

A model assumption for the prediction of substrate conversion was that the 

continuously operated MAL behaved as a series of three ideal mixers. This was 

validated experimentally by RTD measurements, as illustrated in Figure 5. The 

theoretical number of equal-size ideal mixers, N, was derived from the RTD curves 

and is given in Table III. Even under the extreme experimental conditions applied 

(low gas flow rates and, for biological systems, relatively short residence times), 

T 
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N 
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E 
o 
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0.0 
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Figure 5. Normalized salt concentration C as a function of the normalized 
time 0, resulting in a typical residence time distribution (RTD) curve (exp. no. 
1 in Table III). Solid lines: model calculations for two, three, and four ideal 
mixers in series. 
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the mixing in the MAL was like that in a series of three ideal mixers (N = 3, see 

Table III). To illustrate this, model calculations by mass-balance equations (at short 

time intervals of 0.1 s) for two, three, and four ideal mixers in series in the MAL 

are given in Figure 5. The model calculations for three ideal mixers in series were, 

as illustrated in Figure 5, also found to be in good agreement with the RTD curves 

obtained from the other experiments. From these results it was concluded that the 

mixing in the MAL during the sucrose conversion experiments indeed could be 

described as that in a series of three ideal mixers. Residence times applied there 

were an order of magnitude larger than those for the mixing experiments, thus 

allowing sufficient time for complete mixing in the MAL compartments. 

Mixing per MAL compartment was also investigated during the MAL 

experiments with immobilized invertase. Samples were drawn at the same time at 

different places over the circle of each compartment. The low spread in the 

concentrations (Figure 6) indicated good mixing within the compartments. The 

aeration of the compartments resulted in hydrodynamic behavior such that all 

alginate beads were kept fluidized and circulating through the riser and the 

downcomer (visually observed) in the three well-mixed MAL compartments. 

Table III. Results of the mixing studies by residence time distribution 
measurements. 
No. 

1 
2 
3 
4 
5 

Overall liquid 
residence time 
M 
851 
851 
552 
556 
554 

Gas flowrate per MAL Mean 
compartment 8 
[nr'.s-1] [-] 
14 x 10~6 0.93 
42 x 10"6 0.96 
8.3 x 10"6 0.97 

14 x 10"6 0.97 
42 X 10"6 0.98 

Var. 

[-] 
0.34 
0.33 
0.31 
0.32 
0.32 

N = 
l/ae

2 

H 
2.98 
3.00 
3.24 
3.09 
3.11 

NaCl 
recovery 

96 
97 
96 
97 
99 

SUCROSE CONVERSION IN THE MAL 

Steady-state sucrose concentrations for the MAL and for a single vessel, both at 

9.1% gel holdup, together with model calculations are given in Figure 6. For 

practical convenience, the same beads were used for several days, while substrate 
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conversion in the MAL was compared to that in a single vessel. Figure 6 clearly 

shows the advantage of using a MAL reactor series over a single vessel. Substrate 

conversion in the MAL improved to 83% compared to 73% in the single vessel. 

The difference in substrate concentrations was shown to be statistically significant 

(no overlay of the 95% confidence intervals). The single-vessel experiment was 

conducted one day before and one day after the MAL experiment. Both steady-state 

sucrose concentrations for the single vessel were averaged to account for enzyme 

inactivation. 

For the model calculations shown in Figure 6, the working volumes of the 

MAL compartments given in Table I were used. A correction of the maximal 

substrate consumption rate Vm was made using the experimentally determined 

inactivation rate, taking into account the number of days between startup and 

steady-state measurement. The calculation procedures used were based on the work 

of De Gooijer et al. [1989] and incorporated internal diffusion and reaction in the 

400 

m 300-

o 
E, 
§200 
o 
» 
to 
o 
u 
« 100 

• Experimental 
• Model estimate 

Comp. 1 Comp. 2 Comp. 3 Single vessel 

Figure 6. Results of the multiple air-lift loop reactor experiment per 
compartment and comparison with a single vessel (empty bars); line bars give 
95% confidence intervals. Model estimates (cross-hatched bars): here the solid 
black bars give the range of model estimates using no film theory (kls = oo) 
and kls = 5 x 10"6 m.s"1. 
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beads and external mass-transfer resistance. Parameter values used for the 

calculations are given in the Materials and Methods section. 

The contribution of the liquid/solid mass-transfer coefficient, kls, to the total 

mass-transfer resistance can be estimated from the Biot number, which is defined 

as the ratio of the mass transfer resistance in the stagnant layer around the bead to 

that in the bead [De Gooijer et al., 1989; Wijffels et al, 1991]. The kls was very 

roughly estimated from the relation of Brian and Hales (1969), which was selected 

because the Reynolds number for the beads was estimated to be 20 (based on the 

particles moving at the rate of free fall). The resulting Biot number (Bi = 26) 

indicated that external mass-transfer resistance was nearly negligible compared to 

internal mass-transfer resistance. Therefore, kt s was chosen to be infinite (i.e., no 

stagnant layer present) and one-half the estimated value of k[s = 1 X 10 m.s"1 to 

give a range of model estimates (Figure 6). This range is in agreement with 

estimations made for lq s using recent correlations for ALRs proposed by Mao et 

al. [1992], kls = 2 x 10"5 m.s-1, and by Kushalkar and Pangarkar [1994], kls = 

4 X 10"6 m.s"1. All other model parameters were determined experimentally and 

the calculations agreed well with experimental results (Figure 6). 

MODEL CALCULATIONS 

Model estimates of the sucrose conversion under various conditions were made to 

choose the experimental conditions, and thus the number of experiments needed 

could be reduced. The residence time and the gel holdup were selected as variables 

that can be easily adapted. The inlet sucrose concentration was chosen such that 

large absolute differences in the steady-state concentrations between both reactor 

configurations could be expected. From the model, those differences were found to 

increase with increasing inlet sucrose concentration. On the other hand, the influent 

concentration was chosen to be not too extreme, such that substrate and product 

inhibition were negligible. The gel load and bead diameter parameters were chosen 

arbitrarily. In Figure 7, model estimates are given for the relative conversion as a 

function of the overall residence time and gel holdup. Other parameter values were 

as mentioned before. The same relative conversion optimum can be reached under 

different conditions. For example, lowering the gel holdup requires increasing 

residence times (Figure 7). In this example, the sucrose conversion in both reactors 
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Figure 7. Model estimates for the relative conversion of sucrose in the 
MAL compared to a single vessel as a function of gel holdup (percentages 
shown in the graph) and overall residence time. Experimental results are for 
6.3% gel holdup (O) and 9.1% gel holdup ( • ) . 

is low. This means that the absolute differences between the steady-state 

concentrations will be small and difficult to show experimentally. Figure 7 also 

shows the experimentally determined relative conversion at 6.3% and at 9.1% gel 

holdup. Both experimental results are in rather good agreement with the model 

estimates (Figure 7). 

CONCLUSIONS 

The novel multiple air-lift loop reactor was evaluated with immobilized invertase as 

a biological model system. The conversion of sucrose in the MAL reactor series 

was higher than that in a single vessel with the same overall residence time. The 

difference was statistically significant. From RTD measurements, it was found that 

the three-compartment MAL could be described as three ideal mixers in series. 

Thus, the MAL proved to be a suitable tool for the experimental evaluation of 
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reactor series in biotechnology. 

No effect of the immobilization in alginate on the kinetics of the DE32-

cellulose-invertase complex could be shown. The immobilized enzyme complex 

was observed to inactivate as a function of time, with a decay rate that was not 

negligible with respect to the duration of the experiment. Therefore, enzyme decay 

was incorporated in the model calculations. 

Model estimations for the sucrose conversion based on the work of De 

Gooijer et al. [1989], incorporating internal diffusion and reaction in the beads and 

external mass-transfer resistance, were in good agreement with the experimental 

results. 
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NOMENCLATURE 

Bi 

C 

d32 
D 

De 

H 

kd 

kl,s 
Km 

Biot number 

normalized salt concentration 

Sauter mean bead diameter 

diameter 

effective diffusion coefficient 

height 

zero-order decay rate 

liquid/solid mass-transfer coefficient 

Michaelis constant for the rate-limiting substrate 

[-] 

[-] 
[m] 

[m] 

[ n rV 1 ] 

[m] 

[moLkg^.s"2] 

[m.s"1] 

[mol.m"3] 
m => •• J 

K'm apparent Michaelis constant for the rate-limiting substrate [mol.m"3] 



114 CHAPTER 5 

N theoretical number of equal-size ideal mixers [-] 

5 substrate concentration [mol.m"3] 

V volume [m3] 

Vm maximal substrate consumption rate [mol.kg^.s"1] 

V'm apparent maximal substrate consumption rate [mol.kg^.s"1] 

Greek symbols: 

8 normalized time [-] 

6 mean normalized time [-] 

OQ variance of the normalized distribution curve [-] 
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CHAPTER 6 

HYBRIDOMAS IN A BIOREACTOR CASCADE: 

MODELING AND DETERMINATION OF 

GROWTH AND DEATH KINETICS 

SUMMARY 

Hybridomas were cultured under steady-state conditions in a series of two 

continuous stirred-tank reactors (CSTRs), using a serum-free medium. The 

substrate not completely converted in the first CSTR, was transported with the cells 

to the second one and very low growth rates, high death rates, and lysis of viable 

cells were observed in this second CSTR. These conditions are hardly accessible in 

a single vessel, because such experiments would be extremely time-consuming and 

unstable due to a low viability. In contrast to what is often observed in literature, 

kinetic parameters could thus be derived without the neccessity for extrapolation to 

lower growth rates. Good agreement with literature averages for other hybridomas 

was found. Furthermore, showing that the reactor series is a valuable research tool 

for kinetic studies under extreme conditions, the possibility to observe cell death 

under stable and defined steady-state conditions offers interesting opportunities to 

investigate apoptosis and necrosis. Additionally, a model was developed that 

describes hybridoma growth and monoclonal antibody production in the bioreactor 
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cascade on the basis of glutamine metabolism. Good agreement between the model 

and the experiments was found. 

INTRODUCTION 

Series of bioreactors can be used in biotechnology for kinetic studies [Pirt, 1975]; 

they also offer the possibility for an overall volumetric productivity improvement, 

when compared to a single vessel [Shimizu and Matsubara, 1987; Hill and 

Robinson, 1989]. In literature many practical and theoretical studies are present 

[De Gooijer et al., 1995]. Examples of successful applications are bioethanol 

[Shama, 1988] and lactic acid production [Aeschlimann et al., 1990]. Also for 

monoclonal antibody (MAb) production by hybridomas a few studies are known 

[Reuveny et al, 1986; Venables et al, 1993]. 

Reuveny et al. [1986] cultured hybridomas semi-continuous and stage-wise 

in flasks, whereby additional substrates were added to the second stage. They 

found a doubling of the overall MAb productivity for two-stage operation when 

compared to a single flask. Later, Venables et al. [1993] used a chemostat cascade 

with no extra feed to the second stage. They also found increased MAb 

concentrations in the second stage and showed promising possibilities for kinetic 

studies at low growth rates. 

The reactor series is indeed a valuable tool for kinetic studies under extreme 

conditions. In the research reported here, hybridoma growth and production 

kinetics were studied in a series of two continuous stirred-tank reactors (CSTRs, 

Figure 1), using a serum-free medium. Steady states were analysed at different 

dilution rates with respect to specific rates of growth, consumption, production, 

and cell death. At the relatively higher dilution rates, very low growth rates of the 

hybridomas were observed in the second CSTR. These conditions are hardly 

accessible in a single vessel, because such experiments would be extremely time 

consuming and unstable due to a low viability. At the lower dilution rates, high 

death rates could be studied under stable conditions in the second CSTR, which can 

not be done in a single vessel. This is because, in contrast to a single vessel, there 

is a continuous feed of biomass to the second CSTR of a reactor series. As such, 
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Figure 1. 
culture. 

Scheme of the bioreactor cascade used for the hybridoma 

this experimental set-up offers interesting opportunities to study the different 

processes of cell death, like apoptosis (programmed cell death [Mercille and 

Massie, 1994]) and necrosis (passive, uncontrolled cell death [Mercille and Massie, 

1994]), under steady-state conditions. 

From the steady-state data, kinetic parameters were determined to use in a 

model that describes hybridoma growth and MAb production in a bioreactor 

cascade. Model estimates were in good agreement with the measurements. 

MATERIALS AND METHODS 

CELL LINE 

The cell line, PFU-83, is a rat/mouse hybridoma suspension cell that produces 

monoclonal antibodies against rat/human corticotropin releasing factor [Van Oers et 

al., 1989]. Every four months a sample from the same working cell bank was 
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thawed and used to inocculate the bioreactors. 

MEDIUM 

Serum-free culture medium, a 3:1 mixture of DMEM and Ham's F12 (both Gibco 

BRL, Life Technologies, U.K.) with additions, was described previously [Van der 

Pol et al., 1992]. Transferrin (5 g.m~3, human holo-form, Intergen, Belgium) was 

the only protein component. The initial glucose and glutamine concentrations were 

21.3 and 7.35 mol.m"3, respectively. The medium was kept at 4 °C in order to 

avoid glutamine degradation. 

CONTINUOUS CULTURES 

The cells were grown in two standard 1 dm3 unbaffled, round-bottomed bioreactors 

( 0 = 10 cm; Applikon, The Netherlands) with a marine impeller ( 0 = 45 mm). 

Both reactors were operated continuously, either separately or in series, with a 

working volume of 0.615 dm3, at different dilution rates. Steady-state 

concentrations were analysed when four hydraulic residence times after a change 

had elapsed. Culture conditions were controlled at a dissolved-oxygen tension (DO) 

of 40 +5 % (air saturation), pH = 7.2 ±0.1, a temperature of 37.0 ±0.2 °C, and 

a stirrer speed of 2.5 s"1. Air and oxygen (for DO control), and C02 (for pH 

control) were supplied via the headspace. Cells were transported from the first to 

the second vessel via a hose with a pump. The residence time of the liquid in this 

hose was less than 60 s. Cell viability and concentration were unaffected by this 

pumping. Thirty-five steady-states were determined, of which 28 in the serial 

bioreactor (14 in the first and 14 in the second vessel), and 7 separately in a single 

vessel. 

BATCH CULTURES 

The inhibitory effect of ammonia (NH4C1, Merck) and lactate (lactic acid, Sigma) 

was investigated separately in batch cultures (T-flasks). Both components were 

added, in the desired amounts, to the medium before filtration. Lactic acid was 

neutralized by the addition of NaOH. The T-flasks were all inocculated from the 

same batch culture, in which the cells were growing exponentially. The flasks were 

aerated after taking samples. Samples were taken regularly to obtain complete S-



HYBRIDOMAS IN A BIOREACTOR CASCADE 121 

curves. All experiments were done in duplicate. To describe these growth curves 

uniformly, the modified Gompertz-equation was fitted to the data. This three-

parameters Gompertz model describes the growth curves of many microorganisms 

adequately [Zwietering et al., 1990]. The three parameters characterize the lag 

period, the maximum number of cells and the maximum specific growth rate ^max. 

ANALYSIS 

Cell counts were done with a hemocytometer. Viability was determined by the 

trypan-blue-exclusion method. Samples from the cultures were centrifuged for 30 s 

at 450 g and the supernatant was frozen at -20 °C until analysis. 

Substrates (glutamine and glucose) and metabolic by-products (ammonia and 

lactate) were determined enzymatically with an Analox GM-7 analyzer (Analox 

Instruments, UK). The monoclonal-antibody concentration in the supernatant of the 

samples was determined by a quantitative ELISA as described previously [Van der 

Pol etal, 1990, 1992]. 

DEAD-CELL LYSIS AND APOPTOSIS 

The specific dead-cell lysis rate was determined from a batch experiment which 

followed after a continuous culture (D = 6.0 X 10"6 s"1). At steady state, medium 

supply was stopped and culture conditions were controlled at the same levels as in 

the continuous culture. Samples were taken in time during the death phase, and 

both viable and dead cells were counted. 

During this batch experiment, the number of apoptotic cells among the dead 

cells was analysed by fluorescence microscopy [Mercille and Massie, 1994; Singh 

et al., 1994]. Cells in a sample were fixed by the addition of an equal volume of 

2% formaldehyde solution in phosphate-buffered saline (PBS). Then they were 

stained by the addition of an equal volume of 10 g.m"3 acridine orange (Sigma) 

solution in PBS. After that, apoptosis in the cells was shown by the appearance of 

condensed chromatin. This was done in the same way as described by Singh et al. 

[1994]. 



122 CHAPTER 6 

RESULTS AND DISCUSSION 

CONTINUOUS CULTURES 

Over a wide range of dilution rates the viable-cell concentration in the first stage of 

the reactor series was about 1.4 x 1012 cell.m"3 (Figure 2). At the highest dilution 

rates wash-out conditions, where cells grow at the maximal rate, were approached. 

From the viable and dead-cell concentrations the viability (XJXt, where Xt 

= Xv + Xd) was calculated, which is shown in Figure 3. Above dilution rates of 

7.5 X 10"6 s"1 the viability in the first CSTR was higher than 0.95, while it starts 

to decrease with lower dilution rates. As the viable-cell concentration remains 

almost constant, this decrease in viability is caused by an increase in dead-cell 

concentrations. This indicated, as expected, that circumstances become more 

favourable for death at lower dilution rates. 

During serial operation, the effluent of the first CSTR was transported to the 
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Figure 2. Viable-cell concentration of hybridomas in two CSTRs in series 
as a function of the dilution rate D in the first or the second CSTR. First stage 
( • ) , second stage (O). Solid line: model estimates for the first stage, dashed 
line: model estimates for the second stage. These lines are discussed in the 
section 'Model estimates'. 
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second CSTR. Circumstances in that vessel were comparable to those in the first 

reactor, except that there was a continuous inflow of partially spent medium 

containing viable and dead biomass, and other products of hybridoma growth. In 

that second stage of the reactor cascade, the viable-cell concentration monotonously 

rised with increasing dilution rate (Figure 2). At higher dilution rates, substrate is 

used less complete by bioprocesses in a single CSTR [Pirt, 1975]. Therefore, more 

substrate will be left over for growth in the second reactor, giving rise to the 

higher viable-cell counts (Figure 2). Besides viable cells, also substantial amounts 

of dead cells were found in the second CSTR. This resulted in a viability that was 

lower than that in the first reactor at every dilution rate (Figure 3). Again, as in the 

first CSTR, the viability decreased with lower dilution rates (Figure 3). 

At the lowest dilution rate (D = 1.9 x 10"6 s"1), almost no viable cells were 

found in the second CSTR (Figs. 2 and 3). As a result, this gave inaccurate 

estimates of specific rates of growth, consumption and production, and therefore 

data from that experiment in the second CSTR were not used in further 
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Figure 3. Viability of hybridomas in two CSTRs in series as a function of 
the dilution rate D in the first or the second CSTR. First stage ( • ) , second 
stage (O). 
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calculations. 

MEASUREMENTS AND PRELIMINARY EXPERIMENTS 

Rate-limiting substrate. Analogous to Frame and Hu [1991a], the rate-limiting 

substrate was determined from step-change experiments. Continuous experiments 

with different initial substrate concentrations were done at a low dilution rate (6.6 

X 10"6 s"1). At steady state the glutamine concentration in the feed was increased 

step-wise. After that a new steady state established. Going from a low to a high 

initial glutamine concentration (from 3.25 to 7.35 mol.m ) a significant increase in 

viable-cell concentration (from 1.1 X 1012 to 1.6 X 1012 cell.m"3) was observed. 

This indicates that glutamine is the rate-limiting substrate. That not a doubling of 

the biomass concentration occurred, which might be expected when doubling the 

substrate concentration, can be explained by the increased biomass concentration, 

which requires more substrate for maintenance, especially at this low dilution rate. 

Dead-cell lysis. At five dilution rates below 7.5 x 10 s"1, total cell counts (Xt = 

Xv + Xd) in the second CSTR were lower than those in the preceding first vessel. 

This means that either dead or viable cells disappear by lysis. In four of the five 

cases, there were more dead cells in the second CSTR than in the first reactor. 

This indicates that the dead cells did not lyse, which was verified in a batch-

experiment (Figure 4). Lysis of dead cells could not be detected during 11 days 

after all cells had died in the batch. This is shown by the straight solid line from 

day 7 to day 18 in Figure 4. Thus the effect of dead cells which disappear by lysis 

was not taken into account in our calculations. The same result was obtained by 

Goergen et al. [1993]. Therefore, the only possible candidates for lysis were the 

viable cells, which was also observed by Goergen et al. [1993]. 

Growth inhibition. Hybridomas are often found to be inhibited in their growth by 

lactate and ammonia. Here, there was no need to account for inhibition. This was 

assessed by the following batch experiments and the analysis of the steady-state 

data from the continuous cultures. 

From the batch experiments, no statistically significant effect (Mest) of 

added ammonia on the specific growth rate could be found for ammonia 
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Figure 4. Viable (A) and dead-cell concentrations ( • ) in time in a batch 
under controlled conditions to determine the dead-cell lysis rate. Solid line: 
linear regression on the dead-cell concentration in time after all cells had died. 

concentrations below 4 mol.m3 . In the continuous experiments the ammonia 

concentration was always lower than 4.5 mol.m . From the steady-state data, the 

true specific growth rate was observed to decrease with increasing ammonia 

concentration, thus suggesting inhibition. At the same time, however, the steady-

state concentration of the growth-limiting substrate glutamine decreased. No 

discrimination between both effects could be made. Therefore, concluding from the 

batch and continuous experiments, growth inhibition by ammonia was assumed to 

be negligible. This result is in agreement with some findings in literature for 

ammonia, although others observed significant inhibition at lower concentrations; 

ammonia concentrations in the range of 2 to 10 mol.m were observed to inhibit 

the growth rate by 50% [Ozturk et al, 1992; Ludemann et al, 1994]. In both 

reviews it is suggested that inhibition can differ markedly between cell lines. 

The same analysis was done for lactate. From the batch experiments no 

statistically significant effect (Mest) of added lactate on the specific growth rate 

could be found for lactate concentrations below 30 mol.m"3. In the continuous 
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experiments the lactate concentration was always below this value. From the 

steady-state data no correlation between lactate concentration and the true specific 

growth rate was observed. Thus lactate did not inhibit growth, neither in the batch, 

nor in the continuous experiments. In literature the inhibitory concentration of 

lactate is at least one order of magnitude higher than that for ammonia [Ozturk et 

al., 1992]. In several studies reviewed by those authors no significant lactate 

inhibition was observed at 40 mol.m"3 of lactate. 

In conclusion, the inhibitory effects of both metabolic by-products (lactate 

and ammonia) were negligible, and therefore growth inhibition by these compounds 

was not taken into account in the further analysis. 

Accuracy of the measurements. The accuracy of the measurements was assessed by 

determination of standard deviations. For each component analyzed in a steady 

state, which consisted of four or more samples taken in time, the standard 

deviation was expressed as a percentage of the mean. The averages of those 

percentages from all steady states were for viable cells 9%, dead cells 20%, 

glutamine 24%, glucose 10%, ammonia 15%, lactate 6% and for the monoclonal 

antibodies 13%. 

Within the experimental error, no significant glutamine breakdown could be 

found when the medium (without cells) was stored for 200 h at 37 °C. 

Nevertheless, during the experiments the medium was kept at 4 °C to prevent non­

specific chemical decomposition of glutamine such as has been found in literature 

[Glacken et al, 1986; Ozturk and Palsson, 1990; Truskey et al., 1990]. 

MODEL DEVELOPMENT 

Net specific growth rate. In steady state, the net specific growth rate \inet of viable 

cells is derived from the mass balance for viable cells: 

x.. 
= * v v-n— v>»-1 ' (i) 

v.n 

Where D is the dilution rate, Xv is the viable-cell concentration and n the vessel 

number. Net specific growth rates were calculated from this Eq. (1). They are 
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shown, for both reactors in the series, as a function of the steady-state glutamine 

concentration in Figure 5. For cells in the second vessel, at lower glutamine 

concentrations between 2.5 and 1 mol.m , negative net specific growth rates are 

seen in this Figure 5. These negative growth rates are explained by viewing the net 

specific growth rate in more detail. In this net specific growth rate all processes, 

that describe the fate of the viable cells, are lumped together (see Appendix). 

Viable cells grow at a true specific growth rate /*„.„<,, not only to overcome the 

dilution rate, but also to compensate for death and lysis. These three processes of 

which the net specific growth rate is composed are given by Eq. A2 in the 

Appendix. 

The true specific growth rate is by definition positive. Therefore, negative 

net specific growth rates are caused by a substantial specific death rate, a high 

specific lysis rate of viable cells, or a combination of both. To gain insight in the 

net specific growth rate, the two loss terms in Eq. A2, /id and nt, are first 

discussed in more detail. 
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Figure 5. Net specific growth-rate nnet for hybridomas in two CSTRs in 
series as a function of the glutamine concentration. First stage ( • ) , second 
stage (O). Solid line: curve fit with Eq. A2 (discussed in the section 'true 
specific growth rate'), parameter values are given in Table I. 
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Specific death rate. The mass balance for dead cells, at steady state, gives an 

expression for the specific death rate nd: 

Av,n 

(2) 

Specific death rates were calculated from this Eq. (2). The curve for the specific 

death rate as a function of the glutamine concentration in Figure 6 appeared as an 

inverted Monod-curve: 

f*d = t*d, 
Kd + C

8ln 

Cgln 

(3) 

With Md/mn being the minimum specific death rate and Kd a death-rate constant. 
This Eq. (4) was fitted to the measurements by non-linear regression. Both 

Glutamine [mol.m3] 

Figure 6. Specific death-rate \id for hybridomas in two CSTRs in series as 
a function of the glutamine concentration. First stage ( • ) , second stage (O). 
Dashed line: curve fit with Eq. (3). Solid line: curve fit with Eq. (4), 
parameter values are given in Table I. 
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parameters, ^dmin anc* ^d> w e r e statistically insignificant (f-test). Therefore t'-d.min 

was arbitrarily chosen 6.2 x 10"7 s"1, which is the average \t,d at the three highest 

glutamine concentrations (Figure 6). With the best fit now, the specific death rate 

was overestimated for the first CSTR at all glutamine concentrations (Figure 6), 

even when \id min was chosen lower. To be able to describe the specific death rate 

better, an extra parameter was added to Eq. (3) as described below. At glutamine 

concentrations between 2 and 1 mol.m the specific death rate mostly increased in 

both CSTRs (Figure 6). Also, the glutamine concentration was never lower than 1 

mol.m"3 (Figure 6). This was described by an additional glutamine threshold 

concentration Cgln th d to the reversed Monod model. This is the same approach as 

followed by Frame and Hu [1991a, 1991b] for other hybridomas: 

. d + gfa ~ ^gln,th,d / 4 ) 

^gln ^gln,th,d 

Such thresholds are rarely seen in literature about hybridomas, but in a review 

Button [1985] found that threshold concentrations are more often encountered, e.g. 

with micro-organisms. Hence, Eq. (4) was fitted to the measurements by non-linear 

regression, with p.dmin fixed at 6.2 X 10"7 s"1 (Figure 6), and the resulting 

statistically significant (f-test) parameter values are given in Table I. Figure 6 

shows that Eq. (4) fits the results of the first CSTR much better. Therfore Eq. (4) 

was used to describe the specific death rate in the model calculations. In the next 

section, the specific lysis rate of viable cells will be described by the same type of 

equation. 
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Specific lysis rate of viable cells. The concentrations of lysed viable cells in the 

first reactor were unknown. For the second vessel in the series, the amount of 

lysed viable cells was estimated from the difference in total cell count between both 

reactors: X[2 = (Xv ; + Xdl) - (Xv2 + XdJ). Assuming steady state, the mass 

balance for lysed viable cells gives an expression for the specific lysis rate of 

viable cells nf. 

Hn 
V(X/,*-*u-i) (5) 

Specific lysis rates of viable cells in the second vessel in the reactor series were 

estimated from this Eq. (5). For that, as a first estimate, it was assumed that lysis 

of viable cells in the first reactor in the series was negligible. This assumption was 

made from the observations of Goergen et al. [1993], who found almost no lysis of 

viable cells in a continuous culture (D — 4.7 X 10 s ) at pH 7. However, at pH 

6.8 they saw appreciable lysis of living cells (/xj 

" 25 

<? o 

6.0 x 10"6 s"1). Our 
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Figure 7. Estimated specific lysis rate of viable cells ^ for hybridomas in 
the second vessel of the reactor series as a function of the glutamine 
concentration. Solid line: curve fit with Eq. (6). 
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experiments indicate that not only pH, but also the glutamine concentration can 

influence the specific lysis rate of viable cells. The estimated specific lysis rate of 

viable cells in the second CSTR is shown in Figure 7 as a function of the glutamine 

concentration. At low glutamine concentrations between 1 and 1.3 mol.m lysis 

was not negligible (Figure 7), while at higher glutamine concentrations lysis was 

assumed to be negligible (mostly in the first reactor, see above). To describe this, 

the same reversed Monod kinetics with a glutamine threshold concentration was 

assumed as done for the specific death rate (see Eq. (4)): 

C g /n '"gln.th.l 

With Hi min being the minimum specific lysis rate of viable cells and K{ a lysis-rate 

constant. As a first impression, also in Figure 7, a fit by non-linear regression with 

Eq. (6) is shown. Here the C ln th { was taken the same as that for the death 

kinetics in Eq. (4). Determination of the actual parameter values in Eq. (6) (i.e. 

not fitted to the estimated specific lysis rate of viable cells as shown in Figure 7) 

will now be discussed in the following section about the true specific growth rate. 

True specific growth rate. The true specific growth rate can not be calculated 

directly from the measurements with Eq. A2, because the concentrations of lysed 

viable cells are unknown. Therefore a Monod model was assumed to describe the 

true specific growth rate as a function of the glutamine concentration: 

„ = „ . sl»^ ( 7 ) 

* . + C
8tn 

where Ks is the Monod-constant. The maximal specific growth rate was determined 

to be yimax = 1.7 X 10~5 s"1 from wash-out experiments. Substitution of Eqs. (4, 6 

and 7) in Eq. A2 gives an expression for the net specific growth rate, with Ks, 

Hmirv Kl a n d cgln,th,l b e i ng f o u r unknown parameters since ndmin, Kd and Cglnthd 

were known from the previous (values in Table I). This expression was fitted to the 

net specific growth rate as a function of the glutamine concentration by non-linear 
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Figure 8. The net specific growth rate nnet in Eq. A2 as a function of the 
glutamine concentration is the resultant of the three specific rates, \itrue from 
Eq. (7), nd from Eq. (4) and /*; from Eq. (6). Straight solid lines indicate 0.5 
X fjimax and Ks for the true specific growth rate curve. Parameter values are 
given in Table I. 

regression, as shown in Figure 5. The resulting parameter values are given in 

Table I. From the overlay in 95%-confidence limits it was concluded that the 

threshold concentration C ln th { obtained here is comparable to that from the death 

rate equation (Eq. (4), Table I). All four rates discussed above are summarized in 

Figure 8. The net specific growth rate pnet is the resultant of the three specific 

rates, fitrue, fij and nt (see Eq. A2 and Figure 8). At glutamine concentrations 

above 3.5 mol.m"3 the specific lysis rate of viable cells is lower than the specific 

death rate (Figure 8). But at low glutamine concentrations, approaching 1 mol.m"3, 

the loss of viable cells by lysis dominates over the loss by death (Figure 8). From 

this, it was concluded that, under adverse conditions, lysis of viable cells can not 

be neglected and should be included in models describing hybridoma growth. 

Glutamine consumption. To couple the glutamine consumption kinetics to the true 

specific growth rate, the following linear relation was assumed: 
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^true 

9^ = - +™ tgi* 
x/gln 

gin 
(8) 

where Yx/ ln is the yield factor of biomass on glutamine and m tn is the 

maintenance coefficient for glutamine. The specific glutamine consumption rate qgin 

was calculated from a general mass balance (see Eq. (A3) in the Appendix), 

assuming steady state: 

„ Dn-(CA,n-CA,n-l) 
<lA,n = 

X.. 
(9) 

v,n 

In Figure 9 the specific glutamine consumption rate is shown as a function of the 
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Figure 9. Specific glutamine consumption rate q ln for hybridomas in two 
CSTRs in series as a function of the true specific growth rate ntrue for the 
determination of the kinetic parameters Yx/gln and m ln in Eq. (8) by linear 
regression (solid line: parameter values given in Table I). In the linear 
regression the two observations above q ln = 4 x 10"17 mol.cell^.s"1 were 
omitted because they deviated statistically significant (Mest) from the linear 
model. First stage ( • ) , second stage (O). 
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true specific growth rate. The true specific growth rate was estimated with Eq. A2 

by using y.net and \id calculated with Eqs. (1) and (2) from the measurements, and 

Hi calculated from Eq. (6) with parameter values from Table I. The yield factor of 

biomass on glutamine Yx/ ln and the maintenance coefficient for glutamine mgln 

were obtained from linear regression with Eq. (8) (Figure 9). The values are given 

in Table I, together with averages for other hybridomas. Although it should be 

realized that those parameters were determined for different hybridomas under 

often different process conditions, both parameters are in good agreement with 

values found in literature. 

MAb production. In the same way as for glutamine, the specific MAb production 

rate q^i, was analysed. The qMA^, which was calculated from Eq. (9), appeared to 

be roughly constant with the true specific growth rate, or in other words it was 

non-growth associated (Figure 10, Table I). In literature both positive, negative and 

non-growth associated MAb production is observed in continuous cultures [Al-

Rubeaief a/., 1992]. 
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Figure 10. Specific MAb production rate qMAb for hybridomas in two 
CSTRs in series as a function of the true specific growth rate nlrue. Solid line: 
average qMAb independent of ntrue. First stage ( • ) , second stage (O). 
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Model estimates. Based on the steady-state viable-cell and glutamine balances, a 

model was developed. This steady-state model describes hybridoma growth, 

glutamine consumption, and their MAb production as a function of the dilution 

rate. By substitution of Eqs. A2, (4) and (6 - 9) in Eq. (1), an expression is 

obtained in which the steady-state glutamine concentration is the only unknown. 

Roots of this expression are found by a bisection method (RTBIS from Press et al. 

[1989]). When the steady-state glutamine concentration is known, other 

concentrations, like biomass and MAbs, can be estimated. In this way, using the 

above-mentioned parameter values given in Table I, model estimates were made for 

hybridoma growth and their MAb production in a reactor series. In Figure 2 the 

results for the viable cell concentrations are given. At higher dilution rates an 

increased maximal viable cell density was calculated in the serial bioreactor, when 

compared to a single vessel. The model estimates agree rather well with the 

experiments (Figure 2). Seeing the variance in experimental data for the specific 

MAb production rate in Figure 10, we can not expect much from the model 
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Figure 11. MAb concentration in two CSTRs in series as a function of the 
dilution rate D in the first or the second CSTR. First stage ( • ) , second stage 
(O). Solid line: model estimates for the first stage, dashed line: model 
estimates for the second stage. 
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estimates for the MAb concentrations. However, the model estimates for the first 

vessel agree reasonable well (Figure 11). For the second vessel there is still some, 

but less agreement, which could be expected as the estimations for the second 

vessel were made from the first one. 

RESEARCH TOOL 

Low growth rates. A main advantage of the reactor cascade, compared to a single 

CSTR, is that experimental results at very low and negative net specific growth 

rates can be obtained relatively fast and easy in the second CSTR. Thus very 

informative data for model development, regarding the metabolism as a function of 

the whole range of possible specific growth rates can be obtained (see Figs. 8, 9 

and 10). These conditions are hardly accessible in a single vessel, because such 

experiments would be extremely time-consuming and unstable due to a low 

viability. This shortcoming in single-vessel experiments is often seen in literature 

where extrapolations to lower specific growth rates have to be made to obtain 

values for kinetic parameters [Hiller et al., 1991; Linardos et al., 1991; Miller et 

al, 1988]. 

Further, in the steady states at lower dilution rates, dead and lysed cell 

concentrations increased to high levels in the second vessel. In contrast to a single 

vessel, a reactor cascade can easily supply these high concentrations because 

growth, death and lysis prolongate in the second vessel. As such, this offers 

interesting possibilities to study apoptosis and necrosis kinetics under stable 

conditions. 

Apoptosis. Apoptotic cell death is commonly seen in hybridomas [Mercille and 

Massie, 1994; Singh et al, 1994]. This was qualitatively assessed here. After 5 

days in a batch (samples taken from the experiment shown in Figure 4) more than 

80% of the cells were observed to have died of apoptosis, as shown by the 

appearance of condensed chromatin. 

In literature it is observed that low substrate concentrations induce apoptosis 

[Mercille and Massie, 1994; Singh et al, 1994]. It is illustrated in Figure 8 that 

the net specific growth rate starts to deviate from normal Monod kinetics (i.e. the 

curve for the true specific growth rate) at about 0.5 x nmax, where glutamine 
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concentrations are below the A^-value. This indicates that there exists a 'critical 

growth rate' at low substrate concentrations below which apoptosis is induced 

[Martens et al., 1995]. Therefore apoptosis may be seen as the process that mainly 

caused the sudden increase in the specific death rate at glutamine concentrations 

below the A^-value (Figure 8). 

CONCLUSIONS 

In a bioreactor cascade experimental conditions were realized that are not 

accessible in a single vessel. Hybridoma metabolism was analyzed as a function of 

the whole range of possible growth rates. Thus, a major advantage of the reactor 

series over a single vessel is that no extrapolations to lower growth rates were 

needed to obtain values for kinetic parameters. Further, at low dilution rates the 

reactor series supplied high concentrations of dead cells. This can be used to study 

apoptosis and necrosis under stable conditions. Hence, the bioreactor cascade is a 

powerful research tool. 

Growth was described with a Monod relation. Glutamine was the rate-

limiting substrate. No inhibition by lactate or ammonia was observed. Death and 

lysis of viable cells were both described by reversed, and modified, Monod 

kinetics. At low glutamine concentrations the growth rate decreased rapidly, which 

indicates that there exists a critical growth rate below which apoptosis is induced. 

The specific MAb production rate was non-growth associated. 

Based on glutamine metabolism, model estimates were made for the 

hybridoma growth in a bioreactor series, and their MAb production. The model 

estimates agree rather well with the experiments. 
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NOMENCLATURE 

[mol.m"3] 

Is'1] 
[mol.m"3] 

[mol.m"3] 

[mol.m"3] 

[mol.ceir1.*-1] 

[mol.celKs"1] 

[s] 
[cell.m"3] 

[cell.mol"1] 

Greek symbols 

Hd Specific death rate [s"1] 

ixt Specific lysis rate of viable cells [s'1] 
Hnet Net specific growth rate [s"1] 

Ptrue True specific growth rate [s"1] 

Subscripts 

d Dead cells 

gin Glutamine 

cA 
D 

Kd 

Ki 

* , 
m 

q 
t 

X 

Y 

Concentration of any component A 
Dilution rate 

Death-rate constant 

Lysis-rate constant 

Monod constant 

Maintenance coefficient 

Specific consumption or production rate 

Time 

Cell concentration 

Yield coefficient 
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min 
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Lysed viable cells 

Maximum 

Minimum 

Vessel number in the reactor series 

Total cells 

Threshold 

Viable cells 

Abbreviation 

MAb Monoclonal Antibody 

APPENDIX 

The net specific growth rate in Eq. (1) can be further specified. In hybridoma 

cultivation both viable and dead cells are being observed. From a continuous 

culture viable cells disappear in three ways: i) by death, ii) by lysis, and iii) by 

dilution. 

Death of viable biomass gives dead biomass. Besides that, Goergen et al. 

[1993] described lysis of viable cells, which was also observed in this study. 

Therefore, in the mass balance viable biomass is removed by death, lysis and 

dilution. At dilution rate D, this gives for the viable cells Xv: 

dXvn _ 
j ! ~Dn 'Xv,n-1 + Vtrue.n 'Xv,n Vd,n 'Xv,n ^l.n 'Xv,n Dn 'Xv,n 

(Al) 

where n^.^ is the true specific growth rate at which the cells grow to compensate 

for death, lysis and dilution; \x.d is the specific death rate and ^ the specific lysis 

rate of viable cells. Hence, the net specific growth rate in Eq. (1) can be described 

by the rates of growth, death and lysis from Eq. (Al): 
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>^net,n f^true.n l^d.n f^l.i 
(A2) 

For any substrate or product with concentration CA that is respectively consumed 

or produced at rate qA the mass balance yields: 

dCA 

— ± 1 = D C. .-D C. +gA -X <A 3> 
if n A,n-l n A,n ^tA,n v,n 

Here qA is positive for production and has a negative sign for consumption. 
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INTRODUCTION 

Multistage processes are commonly used in waste-water treatment. The subsequent 

conversion steps can be executed separately in a series of vessels. For example, 

nitrification (i.e. the oxidation of ammonia via nitrite to nitrate) is often followed 

by a denitrification step (i.e. the conversion of nitrate to nitrogen) for complete 

removal of nitrogenous compounds from wastewaters [Barnes and Bliss, 1983]. An 

alternative use of the reactor cascade is to approximate plug-flow behaviour. Here 

one reaction step is applied repeatedly in each compartment of a serial bioreactor. 

This may be done when optimal bioreactor design with respect to a minimal total 

residence time at a given substrate conversion is the goal [De Gooijer et al., 1995]. 

Recently a compact reactor cascade, which can both be used for scale-up of multi-

step waste-water treatment systems and for plug-flow approximations, was 

introduced [Bakker et al., 1995]. This new reactor type consists of a series of 

internal-loop air-lift reactors within one vessel. To investigate the applicability of 

such a bioreactor for plug-flow approximations, nitrite conversion to nitrate (the 

second step in nitrification) by immobilized Nitrobacter agilis was studied on 

laboratory scale in a cascade of two air-lift loop bioreactors. 

In literature serial bioreactors are claimed to be especially favourable over a 

single vessel of the same overall volume when product inhibition plays an 

important role [Shimizu and Matsubara, 1987; Hill and Robinson, 1989]. Theory is 

well developed for freely suspended cells [De Gooijer et al., 1995]. However, with 

the exception of bioethanol production, little is known about optimal design of 

bioreactor cascades when using immobilized growing cells. Therefore, to gain 

more insight, the effects of substrate and product inhibition on the performance of 

a single vessel as compared to a reactor series with immobilized N. agilis cells 

were studied. For that, high substrate (nitrite, N02") and, as a result of substrate 

conversion, high product (nitrate, N03") concentrations were applied; concentration 

levels which can be expected in waste streams from industry, agriculture or 

landfills [Hunik et al., 1993]. 

In the experiments, the combined effect of substrate and product inhibition 

was investigated. For that, steady states at different dilution rates were analysed 

with respect to substrate and product concentrations. A statistically significant 
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improvement of substrate conversion by using the bioreactor cascade over a single 

vessel of the same overall volume was found. The experiments agreed with 

simulations by a dynamic model [Hunik et al., 1994] that estimates biomass growth 

and concentration profiles across gel beads in time. The model incorporates the 

effects of diffusion limitation and substrate and product inhibition. 

MATERIALS AND METHODS 

CELL LINE AND MEDIUM 

Nitrobacter agilis (ATCC 14123) was precultured at 30 °C in a 5-dm3 batch. The 

medium contained per dm3 demineralized water: 0.68 g KH2P04; 0.87 g K2HP04; 

0.052 g MgS04.7H20; 0.052 mg FeS04.7H20; 0.026 mg CuS04; 0.74 mg 

CaCl2.2H20; 0.24 mg Na2Mo04.2H20 and 4.3 mg ZnS04.7H20 [Hunik et al, 

1994; Wijffels et al, 1991]. The pH was adjusted to 7.8 with 2 mol.nT3 KOH. 

Nitrite and nitrate concentrations were measured regularly and KN02 was added to 

20 mol.m"3. Furthermore, the suspension was diluted every 2 days to avoid product 

inhibition. All chemicals were obtained from Merck. 

IMMOBILIZATION 

After centrifugation (20 min at 16300 g and 5 °C) the cells were immobilized in a 

2.6% (w/w) K-carrageenan solution as described by Wijffels et al. [1991]. The 

immobilization yielded gel beads with an average diameter of 1.99 ± 0.20 mm. An 

initial biomass concentration of 7.0 g.m"3 gel was estimated from the specific 

oxygen consumption rate of the cell suspension before immobilization. This 

estimation was made in the same way as described by Wijffels et al [1991]. 

BlOREACTOR-CASCADE OPERATION 

The beads with the immobilized cells were cultivated for 134 days in a cascade of 

two air-lift reactors with an external loop (ALRs, Figure 1). The continuous 

bioreactors were operated in series, both with a working volume of 2.4 dm3, at 

different dilution rates. Steady-state concentrations were analysed when at least 

four hydraulic residence times had elapsed, and reasonable stable maximum oxygen 
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Medium in Overflow Effluent 

IstALR 2nd ALR 

Figure 1. Scheme of the air-lift loop reactor (ALR) series used for the 
culture of immobilized Nitrobacter agilis. 

consumption rates were observed, after a change had been made. Air, oxygen and 

nitrogen (for oxygen concentration control) were supplied via mass flow controllers 

to obtain a constant gas flow rate of 5.0 cities'1 (superficial gas velocity = 0.18 

cm.s"1). The oxygen concentration was maintained at 0.119 ± 0.006 mol.m"3, and 

the temperature at 30.0 ± 0.2 °C. Medium was transported within 20 s from the 

first to the second vessel via a hose with a pump. The gel beads were kept in the 

reactors with sieve screens. The same medium as for the precultivation was used, 

but the pH was adjusted to 8.0 with 2 mol.m"3 KOH. The medium contained 

variable amounts of KN02. A bead hold up of 20% (v/v) was used in both 

reactors. Steady-state concentrations were analysed five times, representing a total 

of 10 steady states (5 in the first and 5 in the second ALR) in the reactor series. 

ANALYSIS 

The N02" and N03" concentrations were measured daily with a Skalar 

autoanalyser, as described by Hunik et al. [1994]. Biomass activity was estimated 
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from the maximum oxygen consumption rate, as described by Wijffels et al. 

[1991]. For that, 100 beads and 4 cm3 fresh medium (pH 8.0) were transferred to 

a closed stirred vessel at 30 °C with an oxygen electrode in it. The oxygen 

consumption rate was measured in time after substrate (KN02) addition to a final 

concentration of 20 mol.m"3. 

MODEL CALCULATIONS 

Model estimates were made with the dynamic model validated by Hunik et al. 

[1994] because, in contrast to that used by Wijffels et al. [1991], this model 

incorporates the effects of both non-competitive substrate and product inhibition 

(see Appendix). The model described by Hunik et al. [1994] was for two microbial 

species co-immobilized in gel beads. For our purposes, only the part describing N. 

agilis growth was used. Input parameters were as in Hunik et al. [1994], except for 

the maximum biomass concentration. Here 11 kg.(m gel)"3 was used, which was 

determined experimentally by Wijffels et al. [1991]. This value was used, even 

though Hunik et al. [1994] observed lower maximum biomass concentrations for 

N. agilis, but this was for the case when co-immobilized with A7. europaea. 

Further, the current experimental gel bead radius of 1.0 mm was used. 

RESULTS AND DISCUSSION 

SUBSTRATE AND PRODUCT INHIBITION 

The immobilized N. agilis cells were cultured continuously for 134 days in a series 

of two ALRs. This is illustrated by the course of the maximum oxygen 

consumption rate given in Figure 2. Analogous to Wijffels et al. [1991], the 

maximum oxygen consumption rate was used as an estimate for the activity of the 

viable biomass. The first 70 days were intended to study product inhibition by 

applying high inlet substrate concentrations (up to 400 mol.m of N02~). In this 

way, when substrate is almost completely converted into equimolar amounts of 

product, high product concentrations were expected. The first part of Figure 2 (day 

1 - 70) is discussed separately below. 

In a second period (day 70 - 134, Figure 2) changes in the dilution rate were 
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Figure 2. Overview of the biomass activity (expressed as maximum oxy­
gen consumption rate) during 134 days of continuous culture in a bioreactor 
cascade. First reactor ( • ) , second reactor (O). Before day 70 (dashed line) 
the effects of high product concentrations were studied, and after that day the 
reactor series was operated at different dilution rates. Solid line: influent 
substrate (N02") concentration. Liquid residence times are given in the text. 

made to compare the substrate conversion in a reactor series to that in a single 

vessel. In this period more moderate inlet substrate concentrations were used. This 

second period will be discussed in more detail in the next section. 

From a preliminary continuous run for 60 days in the ALR train (results not 

shown), it was seen that biomass in both reactors remained active when the inlet 

substrate (N02~) concentration was increased up to 200 mol.m"3. Therefore, the 

feed substrate concentration was increased rapidly to this level in the current 

experiment. The reactor cascade was started at low, non-inhibitory inlet substrate 

(N02~) concentrations to obtain high concentrations of immobilized biomass (day 

1 - 22, Figure 2). A stepwise increase of the inlet substrate concentration from 20 

to 60 mol.m"3 at day 14 roughly gave a doubling of the biomass activity in both 

reactors (Figure 2). Subsequently, the substrate concentration was further increased 
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stepwise, via 180 mol.m"3 (day 22), up to 400 mol.m"3 at day 33 to obtain high 

product concentrations, and thus facilitating observation of the effects of product 

inhibition. At first, with 180 mol.m"3 substrate in the inlet, an increase in the 

biomass activity in the second vessel was seen (days 24 and 25, Figure 2). 

However, later it was seen at this same inlet substrate concentration and a 

residence time of 6 h that the activity started to decrease somewhat in both reactors 

(day 23 - 33, Figure 2). For this situation it was estimated from the model that the 

steady-state substrate concentration would be about 60 mol.m"3 in the first reactor, 

i.e. almost 120 of the 180 mol.m"3 of substrate in the influent would have been 

converted into nitrate. Under these conditions, the effects of substrate inhibition 

were still assumed to be negligible. This assumption was made on the basis of the 

work of Hunik et al. [1993]. At pH 8.0, which was also applied in the current 

experiments, they found no substrate inhibition for freely suspended cells with 

substrate (N02~) concentrations up to 100 mol.m . Therefore, when assuming thus 

no substrate inhibition at pH 8.0, the results obtained in the first reactor until day 

33 (Figure 2) could indicate that the decrease in biomass activity was caused by 

product inhibition. However, as conversion proceeds in the second vessel, even 

higher product concentrations were found in that reactor. Therefore, in the second 

ALR a lower activity than in the first was to be expected due to increased product 

inhibition. But adversely, the activities in both reactors were about the same (day 

2 3 - 3 3 , Figure 2). This low activity in the first ALR therefore indicates that, in 

contrast to what was found by Hunik et al. [1993] at pH 8.0, substrate inhibition 

has to be accounted for even below 100 mol.m"3. 

To study these effects further, the dilution rate was lowered to a residence 

time of 20 h and the inlet substrate concentration was further increased to 400 

mol.m"3 to obtain high product concentrations (day 33 - 42, Figure 2). Now 

activity dropped even further, probably due to the increased substrate concentration 

which caused still more severe substrate inhibition. The circumstances with high 

product concentrations that were aimed at could thus not be attained in this way 

because the substrate converion was too low. Then, high activity was regained by 

lowering the inlet substrate concentration to 125 mol.m"3, and decreasing the 

residence time back to 6 h again (day 43 - 70, Figure 2). 
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N0 2 " CONVERSION IN A BIOREACTOR CASCADE 

The second part of Figure 2 (day 70 - 134) shows the operation of the bioreactor 

cascade at different dilution rates and a constant inlet substrate concentration of 125 

mol.m . From day 81 on, steady states were analysed at different dilution rates in 

the reactor series with respect to specific rates of consumption and production. In 

this whole period biomass activity in the second ALR was higher than in the first 

(Figure 2). The biomass activity in both reactors varied with the changes in the 

dilution rate (day 70 - 134, Figure 2). 

In Figure 3 the substrate concentrations in the influent and in both reactors 

are shown, together with the variations in the dilution rate. Also shown in this 

Figure 3 are estimates from a model that is discussed later. At residence times of 

12 and 8 h all substrate is converted in the second vessel (day 8 1 - 8 9 and day 

12h 3h 

Dqfflnrtn 
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Figure 3. Substrate concentrations in the influent (A), the first reactor 
( • ) , and the second reactor (O) at different dilution rates (periods separated 
by vertical dashed lines). Liquid residence times in the first reactor are given 
at the top of the graph. The residence time in the second reactor is the same 
because reactor volumes are equal. Model estimates for the steady-state 
substrate concentrations in the first reactor (solid line), and the second reactor 
(fat dashed line). 
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123 - 127, Figure 3), while at 3 h residence time about 70 of 125 mol.m"3 in the 

inlet is still unconverted in the second vessel (day 93 - 101, Figure 3). The steady-

state concentrations at residence times of 6 and 4 h (day 109 - 118 and day 130 -

134, Figure 3) lie between those extremes. Substrate (N02") was converted into 

equimolar amounts of product (N03") with a maximum standard deviation of 6% in 

the steady-state concentrations. Here the combined effects of substrate and product 

inhibition were studied. The chosen residence times make a comparison between 

substrate conversion in the reactor series and that in a single vessel of the same 

overall volume possible. 

For this comparison, substrate conversion in the ALR cascade and in a 

single vessel (i.e. the first ALR) was viewed at the same overall residence time. 

Conditions were thus chosen such that both reactor configurations could be 

compared at three different overall residence times (6, 8 and 12 h). For example, 3 

h in the first ALR gave an overall residence time of 6 h in the reactor series (both 

ALRs were of equal volume), which was compared to the experiment where the 

residence time in the first vessel was 6 h (Figure 3). Substrate conversions at these 

three overall residence times, for both reactor configurations, are shown in Figure 

4. As can be expected at higher overall residence times more substrate is converted 

(Figure 4). Figure 4 also shows that with higher overall residence times, substrate 

is converted increasingly better in the reactor series when compared to the single 

vessel. At the highest overall residence time (12 h), substrate conversion in the 

ALR series is statistically significant (no overlay of the 95%-confidence limits) 

better than that in one reactor (i.e. 86% conversion compared to 61%, Figure 4). 

For an explanation of this improvement no differentiation in the effects of substrate 

and product inhibition can be made because both effects occur simultanuously. 

Inspection of Eq. (1) (see Appendix) reveals that three terms can influence the 

growth rate, and thus substrate conversion. The affinity for the substrate (Ks) plays 

no role since Ks = 0.36 mol.m"3 [Hunik et al., 1994], which value is low 

compared to the substrate concentrations. At pH 8.0 no substrate inhibition was to 

be expected [Hunik et al., 1993], whereas the product inhibition term IN03 is 188 

mol.m"3, which is in the same order of magnitude of the product concentrations 

observed. Hence, the improved substrate conversion at higher residence times is 

probably mainly caused by the effects of product inhibition. 
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Figure 4. Substrate conversion in the reactor series (cross-hatched bars) 
compared to that in a single vessel (empty bars) at the same overall liquid 
residence time. Error bars give 95%-confidence intervals. 

MODEL ESTIMATES 

For product inhibition, Hunik et al. [1993] give an inhibition constant for freely 

suspended cells (J^Q3 = 188 mol.m"3). Substrate inhibition was reported to be pH-

dependent, and no substrate inhibition was found at pH 8.0 [Hunik et al., 1993]. 

For the model estimates to agree with our experiments in the first ALR, both 

inhibition constants had to be adapted by trial and error to more severe inhibition 

(INO2 ~ 50 mol.m"3 and IN03 = 48 mol.m"3). The model estimates thus obtained 

agree well with the trend in the experiments in both reactors in series (Figure 3). 

The adaptation of the substrate inhibition constant is in agreement with the 

observation here that not only product inhibition, but also substrate inhibition very 

likely plays a role. 
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CONCLUSIONS 

In a bioreactor cascade improved nitrite conversion by immobilized N. agilis was 

shown, when compared to a single vessel with the same overall volume. With 

higher overall residence times, substrate is converted increasingly better in the 

reactor series when compared to a single vessel. This is probably mainly caused by 

product inhibition. At extreme conditions, not only product inhibition but also 

substrate inhibition played a role. Model estimates agreed well with the trends in 

the experiments. For that, the inhibition constants for both substrate and product 

had to be adapted to more severe inhibition than that reported in literature. 
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APPENDIX 

In the model calculations non-competitive substrate and product inhibition is 

described by: 

\i = Hmnr • (1) 
"•" (Ks + S)-Kj 

where y. is the specific growth rate (s"1), f i ^ , is the maximum specific growth rate 

(s ), 5 is the substrate concentration (mol.m ), K is the affinity constant for the 
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substrate (mol.m"3), with: 

* / = 1 + 
lNO. ' 2 / 

1 + 
'NO. 

(2) 

V 

where P is the product concentration (mol.m"3), I N O 2 is the nitrite (substrate) 

inhibition constant (mol.m3) and I N O 3 is the nitrate (product) inhibition constant 

(mol.m"3). 

REFERENCES 

[1] Barnes, D.; Bliss, P.J. 1983. Biological control of nitrogen in wastewater 

treatment. E.&F.N. Spon, London, UK. 

[2] Bakker, W.A.M.; Den Hertog, M.; Tramper, J.; De Gooijer, CD . 1995. Oxygen 

transfer in a Multiple Air-lift Loop reactor. Bioproc. Eng. 12: 167-172. 

[3] De Gooijer, CD. ; Bakker, W.A.M.; Beeftink, H.H.; Tramper, J. 1995. 

Bioreactors in series: an overview of design procedures and practical applications. 

Enzyme Microb. Technol. Accepted. 

[4] Hill, G.A.; Robinson, C.W. 1989. Minimum tank volumes for CFST bioreactors 

in series. Can. J. Chem. Eng., 67: 818-824. 

[5] Hunik, J.H.; Meijer, H.J.G.; Tramper, J. 1993. Kinetics of Nitrobacter agilis at 

extreme substrate, product and salt concentrations. Appl. Microbiol. Biotechnol. 

40: 442-448. 

[6] Hunik, J.H.; Bos, C.G.; Van den Hoogen, M.P.; De Gooijer, CD. ; Tramper, J. 

1994. Co-immobilized Nitrosomonas europaea and Nitrobacter agilis cells: 

validation of a dynamic model for simultaneous substrate conversion and growth in 

/c-carrageenan gel beads. Biotechnol. Bioeng. 43: 1153-1163. 

[7] Shimizu, K.; Matsubara, M. 1987. Product formation patterns and the 

performance improvement for multistage continuous stirred tank fermentors. 

Chem. Eng. Comm. 52: 61-74. 

[8] Wijffels, R.H.; De Gooijer, CD. ; Kortekaas, S.; Tramper, J. 1991. Growth and 

substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: Part 

2. Model evaluation. Biotechnol. Bioeng. 38: 232-240. 



This chapter 8 has been submitted for publication as: Bakker, W. A.M.; Overdevest, P.E.M.; 
Beeftink, H.H.; Tramper, J.; De Gooijer, CD. 1995. Serial air-lift bioreactors for the 
approximation of aerated plug-flow. 

CHAPTER 8 

SERIAL AIR-LIFT BIOREACTORS 

FOR THE APPROXIMATION OF 

AERATED PLUG-FLOW 

INTRODUCTION 

Reactor series find their application not only in chemical engineering, but also in food 

and bioprocess engineering. Multistep processes are not an uncommon feature in 

biotechnology. The subsequent conversion steps can be executed separately in a series 

of vessels. An alternative use of the reactor cascade is to approximate plug-flow 

behaviour. Here, the design and applicability of a new type of serial bioreactor for 

aerated plug-flow approximations was studied. In general, with aeration, mixing is 

induced and thus a true plug-flow reactor can not be obtained with aeration. This 

lacuna is overcome with a new serial air-lift bioreactor. 

SERIAL BIOREACTORS 

Traditionally a bioreactor consists of a well-mixed single vessel, which is operated 
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continuous or batchwise [Van 't Riet and Tramper, 1991]. The single vessel is 

convenient with regard to e.g. measurement, control, sterilization, and medium 

supply. However, an interesting alternative is the cascade of continuous stirred-tank 

reactors. Namely, with a series of ideal mixers, a plug-flow reactor can be 

approximated. Such flexible reactor systems can be helpful tools for the optimization 

of bioprocesses with respect to different objectives like e.g. substrate conversion, 

product formation, or biomass production [Herbert, 1964; Bischoff, 1966; Pirt, 1975; 

Luyben and Tramper, 1982; Schugerl, 1987; Shimizu and Matsubara, 1987; Hill and 

Robinson, 1989; Malcata and Cameron, 1992; De Gooijer et al, 1995]. 

Recently, a new type of serial bioreactor was introduced: the Multiple Air-lift 

Loop reactor (MAL: see description and figure in chapter 1) [Bakker et al, 1993; 

1994; 1995a]. In the patent application [De Gooijer, 1989], where the MAL was first 

described, many possible configurations for different biotechnological applications 

were suggested. Initially attention was focussed to one of the possible applications of 

the MAL, i.e. the possibility to approach an aerated plug-flow reactor. The first 

design considerations for a MAL were derived from a physical characterization 

[Bakker et al., 1993; 1995a] and a study with several biological model systems 

[Bakker et al., 1994; 1995b; 1995c]. From the knowledge thus obtained, new 

questions and interesting fields of further study were identified. These items are 

discussed in this article. 

FLUID DYNAMICS AND DESIGN 

With the outer compartments of the MAL, a new type of geometry for air-lift reactors 

with an internal loop was introduced. This new geometry was characterized with 

respect to hydrodynamics (i.e. liquid velocities and gas holdup), mixing and oxygen 

transfer. From these studies [Bakker et al., 1993; 1995a], estimations of the 

hydrodynamic behaviour in a new design of a MAL can be made. Thus insight can 

be obtained in properties important to bioprocesses like mixing, mass and heat 

transfer, and shear forces, which are all affected by the fluid dynamics. 

It was found that the outer compartments of the MAL behave like normal air­

lifts with an internal loop. This means that, besides gas holdup in the riser, there was 
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also a considerable gas holdup in the downcomer. At all gas flow rates, and in 

different reactor configurations, the gas holdup in the downcomer was as high as 0.88 

times that in the riser. Experiments in a conventional internal-loop air-lift reactor gave 

0.86 for this ratio. This certainly is a substantial amount that is not negligible in 

internal-loop air-lift design. Others found a comparable value of 0.89 for this holdup 

ratio in conventional internal-loop air-lift reactors [Bello et al., 1985; Chisti, 1989], 

although the latter author also reported 0.997, which is very high. Here, it should be 

noted that an exception to the constant holdup ratio exists. At sufficiently low gas flow 

rates, the induced liquid circulation is too low to drag gas into the downcomer [Chisti 

et al., 1995]. This situation, with no gas holdup in the downcomer, may cause the 

gentle hydrodynamic environment needed for large scale animal cell culture in air-lift 

bioreactors [Ganzeveld et al., 1995]. 

The hydrodynamics were described by adaptation of an existing model for air­

lift reactors with an external loop [Verlaan et al., 1986]. The only difference was that 

gas holdup in the downcomer was accounted for, which has a large influence on the 

hydrodynamic behaviour. Good agreement between the measurements and the model 

estimates was found [Bakker et al, 1993]. Mixing and oxygen transfer in the new 

reactor configuration were comparable to that in conventional air-lifts with an internal 

loop. Further, oxygen transfer was measured by means of a steady-state method and 

a dynamic method. Both methods gave comparable results [Bakker et al., 1995]. 

At high gas flow rates gas bubbles circulated through the downcomer back to 

the riser. Interestingly, at low gas flow rates, stagnant gas bubbles were observed in 

the downcomer. The bubbles may be seen as obstacles that obstruct the fluid flow in 

the downcomer [Bakker et al., 1993; Chisti and Moo-Young, 1988; Ishii and Zuber, 

1979; Patel et al., 1986; Young et al, 1991]. As such, they can influence the 

hydrodynamics to a large extent. With the general drag-force relations for bubble, 

droplet and particle flow, developed by Ishii and Zuber [1979], a mechanistic 

explanation for the interfacial drag effects between gas bubbles and the surrounding 

liquid in the riser and in the downcomer can be given. Young et al. [1991] adopted 

the Ishii and Zuber relations successfully for the estimation of the frictional losses in 

the riser of their air-lift loop reactor with an external loop. 

Gas holdup in the downcomer of air-lifts with an internal loop had not much 

attention until now, and further study can certainly contribute to the knowledge of the 
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fluid dynamics in air-lift reactors. Recently, Chisti etal. [1995] addressed this subject. 

They described the relationship between the gas holdups in the riser and downcomer 

of internal-loop air-lift reactors based on mechanistic principles. However, the 

frictional loss coefficient in their model was estimated from a, non mechanistic, 

empirical correlation, which was reported to be uncertain [Chisti et al., 1995], and 

shown to be invalid for general application [Bakker et al., 1993]. 

BIOLOGICAL MODELS AND CASCADE OPTIMIZATION 

Reactor cascades, like the MAL, can be used to approximate plug-flow behaviour. In 

that case one reaction step is applied repeatedly in each compartment of a serial 

bioreactor. This may be done when optimal bioreactor design is the goal. The optimal 

Box 1. General optimization scheme for a serial bioreactor. 

In a reactor series the subsequent vessels can be chosen of a different volume. The 
best solution of all possible configurations of a reactor series was found 
numerically by searching the optimum, according to the chosen optimization 
criteria. For that, the reactor configurations that were compared were all assumed 
to be of the same overall volume (V = VI + V2; for a single vessel and a series 
of two reactors, respectively, see Figure 1). Then the range of possible feed rates 
F was determined from the kinetic expressions for growth in the same way as 
described by Pirt [1975], which is from zero until wash-out of the cells occurred. 
This is equivalent to the whole range of possible overall dilution rates Dov = 
\/Z\=l(l/Dn), with Z>„ = F/V„. 

This range of dilution rates is then divided in many (about 100 - 200) small 
steps. At every step in this range of overall dilution rates the set of balance 
equations, for cells, substrate and product (with the appropriate kinetic 
expressions), is solved for the unknown substrate concentration by a zero-point 
finding bisection routine (RTBIS from Press et al. [1989]) for every vessel in the 
series. To find the optimum configuration of a serial reactor, the whole range of 
possible volume ratios for the reactors in the cascade is evaluated now at this same 
overall dilution rate (see Figure 1), also in small steps. According to the 
optimization criteria chosen, the optimal configuration is stored, and subsequently 
the next step in the overall dilution rate can be evaluated in the same way. 
Analogous, this procedure can be extended to more than two reactors in the series. 
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Figure 1. General optimization scheme for serial bioreactors. 
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design is defined as the minimal total residence time needed to reach a given goal. 

This goal can, for example, be a given substrate conversion [De Gooijer et al. 1995]. 

For this application of reactor cascades the design and use of the MAL was studied. 

For that several biological model systems were used to compare a reactor series with 

a single vessel of the same overall volume. These model systems included immobilized 

invertase for sucrose conversion [Bakker et al, 1994] and immobilized growing cells 

Box 2. Bioethanol fermentation. 

In this example a constant overall reaction stoichiometry is assumed, thus substrate 
conversion is described by a single kinetic equation. Under these conditions, 
substrate conversion is equivalent to cell growth or product formation. Therefore, 
in the following attention can be focussed to the product production instead of 
substrate conversion. 

This example (without taking maintenance into account) is adopted from 
the study of Shimizu and Matsubara [1987]. They showed that reactor series can 
be favourable for bioethanol production by yeasts. Here, the Monod growth 
kinetics is extended with absolute inhibition by the product (\-PIP„), where Pm 

is the maximum attainable product concentration. 
The overall volumetric productivity (PD = product concentration P X 

overall dilution rate D) was calculated at all possible dilution rates, until wash-out 
occurred. This overall volumetric productivity was plotted as a function of the 
product concentration (see Figure 2). At the higher dilution rates, product 
concentrations were low, while product concentrations became high at the lowest 
dilution rates. At about 45 kg ethanol per m3 a maximum productivity is seen for 
a single vessel (Fig. 2). Shimizu and Matsubara [1987], saw that this optimum can 
not be improved by using more than one vessel. But, they also observed that, at 
higher product concentrations, a relatively improved volumetric productivity is 
possible by using more than one reactor. For example, at a product concentration 
of about 75 kg.m"3, productivity is almost 1.5 times higher (going from 0.7 to 1.1 
x 10"3 kg.m'-'.s'1) when using an optimized series of two reactors instead of a 
single one (Fig. 2). Optimization of the reactor series was done as described in the 
text of box 1. 

Hill and Robinson [1989] argue that, with a reactor series, absolute 
improvement of the volumetric productivity is possible {i.e. above the maximum 
in Fig. 2). But, from Fig. 2 it is seen that, for the kinetic expressions used here, 
only a relative improvement can be obtained when an additional criterium, like a 
higher product concentration, is formulated. Therefore, to obtain relative 
improvements, a combination of at least two optimization criteria has to be chosen 
[Shimizu and Matsubara, 1987]. 
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Figure 2. Volumetric productivity of an ethanol fermentation versus product 
concentration. Solid line = 1, dashed line = 2, dotted line = 3 reactors in 
series, respectively. Parameter values were as used by Shimizu and Matsubara 
[1987], with Ks = 1.6 kg.m"3, jim = 6.7 x 10"5 s"1, Y^ = 0.06, Yxp = 0.16, 
Pm = 90 kg.m"3, and S0 = 220 kg.m"3. Note that at a product concentration of 
82.5 kg.m"3 all substrate is converted. 

(nitrifying bacteria for nitrite conversion) [Bakker et al., 1995b]. In both cases, the 

advantage of using a reactor cascade over a single vessel was shown by an improved 

substrate conversion. Sucrose conversion in a three compartment MAL improved to 

83% compared to 73% in the single vessel. Further, nitrite conversion in a cascade 

of two air-lift reactors was 86% compared to 61% in the single vessel. 

Until now, the volumes of the reactors in the series were arbitrarily chosen to 

be the same, which is a sub-optimal design. The differences in substrate conversion 

between the series and the single vessel could have been even bigger when the reactor 

cascade had been designed optimally. Such optimal designs have been discussed 

extensively in the literature [for a review see: De Gooijer et al., 1995], but the 

optimization has only once been carried out in practice [De Gooijer et al., 1989]. A 

possible explanation for this omission for other applications can be that a detailed 

kinetic model should be availabe, which is almost always more complicated than the 

situations for which convenient mathematical expressions can be found, such as 
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described by De Gooijer et al. [1995]. This practical evaluation is certainly a 

challenge for future research with the MAL, or with reactor cascades in general, with 

regard to plug-flow approximations. To overcome the forementioned mathematic 

complexity, a general procedure for choosing the optimal bioreactor-cascade 

configuration for any application is outlined here (see text box 1). 

Before such experiments are done, however, one should realize that advantages 

can only be found under certain conditions, e.g. beyond a given substrate conversion 

[De Gooijer et al., 1995]. Further, sometimes the differences that can be found 

theoretically are too small to show a significant difference between the reactor series 

and a single vessel in practice. This was observed for monoclonal antibody production 

by hybridomas [Bakker et al., 1995c], where the accuracy of the measurements was 

too low to show statistically significant differences between the cascade and a single 

vessel. For cells in suspension, like hybridomas, interesting complications arise when 

a more detailed description of the kinetics is used for bioreactor cascade optimization. 

Also here lies an opportunity for future research, which is now discussed in more 

detail. 

CELLS IN SUSPENSION 

Recently the design rules and applications of bioreactor series were reviewed [De 

Gooijer et al., 1995]. In that paper, among others, design procedures for autocatalytic 

processes (cells in suspension) with a constant overall reaction stoichiometry were 

discussed extensively. In this context 'constant overall reaction stoichiometry' means 

that a single reaction is involved which can be described by a single kinetic equation. 

However, for more complex situations, where for example the maintenance 

requirement of the cells, or cell death has to be accounted for, no design rules exist 

[De Gooijer et al., 1995]. Until now, for the sake of simplicity, this second situation 

was neglected in several theoretical studies [Bischoff, 1966; Schiigerl, 1987; Hill and 

Robinson, 1989; De Gooijer et al., 1995]. In reality this simplification can lead to 

sub-optimal design of bioreactor series. This was illustrated first by Shimizu and 

Matsubara [1987], who found that the maximum product concentration can be 

improved when the maintenance requirement of the cells is accounted for in optimal 
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Box 3. Monoclonal antibody production by hybridomas. 

From continuous cultures it was seen that viable hybridoma cells not only grow 
to compensate for dilution, but also for death and lysis [Bakker et al., 1995c]. 
Hence, the net specific growth rate nnet can be described by the rates of growth 
Htrue, death \s.d and lysis nf. nnet = ^frHg - ixd - fit. Kinetic expressions used in this 
equation were adaptations of the Monod growth kinetics. Further, the maintenance 
requirements for substrate were not negligible. Thus a complex kinetic expression 
described the hybridoma growth, from which the possible advantage of using a 
reactor cascade for MAb production can not be seen directly. 

Model estimates for a single vessel and an optimized series are given in 
Figure 3. In this Fig. 3 the possibility of a relative improvement of the overall 
MAb productivity at higher MAb concentrations can be observed {e.g. about 1.9 
times higher overall productivity at CMAb = 83 g.m"3). Also in this Fig. 3 it 
should be noted that in contrast to the bioethanol production example, an absolute 
improvement of the maximum in the overall MAb productivity can be seen when 
using more than one optimally sized vessels in series. Although only a slight 
improvement is seen in this example, differences can become more pronounced 
when other kinetic expressions, or other parameter values, are used. The 
improvement seen in Fig. 3 is possible because the product formation is not 
directly related to the substrate converted, but to the amount of biomass produced. 
Therefore, increased biomass concentrations along the reactor series can enhance 
the overall productivity. 

serial bioreactor design. They also showed, like Herbert [1964], that the maxinum 

attainable overall volumetric product productivity (kg.m .s"1) is realizable in a single 

vessel (see text box 2). Further, they found that the relation between product 

formation and cell growth can influence this maximum in the attainable overall product 

productivity when using an optimally designed series of bioreactors (see text box 3). 

However, no general method for choosing the optimal bioreactor cascade was given. 

Finally, for the hybridomas, it was seen that serial bioreactors can not only be 

used for bioprocess optimization, but also as a powerful research tool for kinetic 

studies. In the second vessel in a series stable conditions can be obtained that can 

hardly be reached in a single vessel. This means, for example, that not only growth, 

but also death (apoptosis and necrosis in case of hybridomas) can be studied under 

stable conditions in a bioreactor cascade. Further, experiments can be done at very 

low growth rates, which eliminates the need for extrapolations to low growth rates 

when determining kinetic parameters like yield factors and maintenance coefficients 
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Figure 3. Model estimates for the overall MAb productivity by hybridomas 
as a function of the product concentration for one (solid line), two (dashed line) 
and three (dotted line) optimized reactors in series. Parameter values were as 
used by Bakker et al. [1995c]. 

[Bakker et al., 1995c]. Of course this is also applicable to other cells or micro­

organisms. 

CONCLUSIONS 

Several interesting topics for future research with regard to serial air-lift bioreactors, 

that can be used for the approximation of an aerated plug-flow reactor, were 

identified. For the design of air-lifts with an internal loop gas holdup in the 

downcomer can be studied for a more detailed description of the fluid-dynamics. The 

practical evaluation of optimal serial bioractor designs for plug-flow approximations 

is a challenge for future research. For cells in suspension, like hybridomas, interesting 

complications arise when a more detailed description of the kinetics is used for 

bioreactor cascade optimization. 
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SUMMARY 

A new type of bioreactor is introduced: the Multiple Air-lift Loop reactor (MAL). The 

MAL consists of a series of air-lift loop reactors within one vessel. The central MAL 

compartment is a conventional internal loop air-lift reactor with aeration in the 

annulus. Subsequent compartments in the MAL are concentric. The annular-shaped 

compartments have a circular baffle which splits them into a riser and a downcomer 

section. With the outer compartments of the MAL, a new type of geometry for air-lift 

reactors with an internal loop is introduced. This new geometry was characterized with 

respect to hydrodynamics (liquid velocities and gas holdup), mixing and oxygen 

transfer; all these properties are important in the design of bioreactors like the MAL. 

The formulation of design rules for a MAL, and bioreactor series in general, was also 

the goal of this research. 

The outer compartments of the MAL behave like normal air-lifts with an 

internal loop. This means that, besides gas holdup in the riser, there was also a 

considerable gas holdup in the downcomer. At all gas flow rates, and in different 

reactor configurations, the gas holdup in the downcomer was 0.88 times that in the 

riser. Only at very low gas flow rates no gas holdup is found in the downcomer. The 

hydrodynamics were described by adaptation of an existing model for air-lift reactors 

with an external loop. The only difference was that gas holdup in the downcomer was 

accounted for, which has a large influence on the hydrodynamic behaviour, and should 

always be considered in internal-loop air-lift reactor design. Good agreement between 

the measurements and the model estimates was found. Mixing and oxygen transfer in 

the new reactor configuration were comparable to that in conventional air-lifts with 

an internal loop. Further, oxygen transfer was measured by means of a steady-state 

method and a dynamic method. Both methods gave comparable results. 

Reactor cascades can be used to approximate plug-flow behaviour. Here one 

reaction step is applied repeatedly in each compartment of a serial bioreactor. This 

may be done when optimal bioreactor design is the goal. The optimal design is defined 

as the minimal total residence time needed to reach a given goal. This goal can, for 

example, be a given substrate conversion. For this application of reactor cascades the 

design and use of the MAL was studied. For that several biological model systems 

were used to compare the reactor series with a single vessel of the same overall 

volume. These model systems included immobilized invertase for sucrose conversion 

and immobilized growing cells (nitrifying bacteria for nitrite conversion). With the 
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immobilized invertase it was shown in practice that a three-compartment MAL gives 

an improved substrate conversion when compared to a single vessel of the same 

overall volume. This could be described with a previously developed model. Also for 

the immobilized nitrifying bacteria improved substrate conversion was shown in the 

comparison of a reactor series to a single vessel. 

Further, freely-suspended hybridoma cells were used for monoclonal-antibody 

production. The hybridomas were grown in a series of two continuously operated 

stirred vessels, instead of using a MAL, for practical reasons. Here, it was shown that 

bioreactor series can also be useful research tools for kinetic studies. In the second 

vessel in a series stable conditions can be obtained that can hardly be reached in a 

single vessel. This means, for example, that not only growth, but also death can be 

studied under stable conditions in a bioreactor cascade. Further, kinetic parameters 

could be derived without the neccessity for extrapolation to lower growth rates. A 

model was derived that describes hybridoma growth and their monoclonal-antibody 

production on the basis of glutamine consumption. The model can be used for further 

bioreactor-cascade optimization. 

Vessels in a series can be of equal volume, but very often unequal reactor 

volumes can be more advantageous when compared to a single vessel. Therefore, 

choosing the appropriate reactor volumes is an important design step, which is 

discussed for different applications. Finally, a general procedure for choosing the 

optimal bioreactor-cascade configuration for any application is given. 



SAMENVATTING 

In dit proefschrift wordt een nieuw type bioreactor gei'ntroduceerd: de Multiple Air-lift 

Loop reactor (MAL). De MAL bestaat uit een serieschakeling van air-lift loop 

reactoren in een vat. Het centrale MAL compartiment is een conventionele air-lift 

reactor met een interne lus (= 'loop'), welke in de binnenbuis wordt belucht. De 

volgende compartimenten in de MAL zijn concentrisch daaromheen geplaatst. In de 

schilvormige compartimenten bevindt zich een cirkelvormig keerschot waardoor ze in 

een stijgbuis en een daalbuis worden verdeeld. Met de buitenste compartimenten van 

de MAL wordt een nieuw type geometrie voor air-lift reactoren met een interne lus 

gei'ntroduceerd. Deze nieuwe geometrie werd gekarakteriseerd met betrekking tot de 

hydrodynamica (vloeistofstroomsnelheid en gas holdup), menging en zuurstof 

overdracht; al deze grootheden zijn belangrijk voor het ontwerpen van een bioreactor 

zoals de MAL. Het opstellen van ontwerpregels voor een MAL, en serieschakelingen 

van bioreactoren in het algemeen, was tevens het doel van dit onderzoek. 

De buitenste compartimenten van de MAL gedragen zich als normale air-lift 

reactoren met een interne lus. Dit betekent dat, naast gas holdup in de stijgbuis, ook 

een aanzienlijke hoeveelheid gas holdup in de daalbuis werd waargenomen. Bij alle 

gas debieten, en in verschillende reactor configuraties, was de gas holdup in de 

daalbuis 0.88 maal de hoeveelheid in de stijgbuis. Alleen bij zeer lage gasdebieten 

wordt geen gas holdup in de downcomer gevonden. De hydrodynamica werd 

beschreven met een aangepaste versie van een bestaand model voor air-lift reactoren 

met een externe lus. Het enige verschil was dat de gas holdup in de daalbuis werd 

meegenomen in de berekeningen. Deze gas holdup in de daalbuis heeft een grote 

invloed op de hydrodynamica, en behoort altijd te worden meegenomen in het ontwerp 

van air-lift reactoren met een interne lus. De overeenstemming tussen de metingen en 

de schattingen met het model was goed. Ook de menging en zuurstofoverdracht in de 

nieuwe reactor configuratie waren vergelijkbaar met die in conventionele air-lift 

reactoren met een interne lus. Verder werd de zuurstofoverdracht gemeten door 

middel van een stationaire en een dynamische methode. Beide methodes leverden 

vergelijkbare resultaten. 

Serieschakelingen van reactoren kunnen worden gebruikt om propstroomgedrag 

te benaderen. Hierbij wordt een reactiestap herhaaldelijk uitgevoerd in elk 

compartiment van een serieschakeling van bioreactoren. Dit kan worden gedaan als 

optimaal ontwerp van de bioreactor het doel is. Het optimale ontwerp is gedefinieerd 
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als de minimaal benodigde verblijftijd om een bepaald doel te bereiken. Dit doel kan 

bijvoorbeeld een bepaalde graad van substraat omzetting zijn. Voor deze toepassing 

van serieschakelingen van reactoren werden ontwerp en gebruik van de MAL 

bestudeerd. Daartoe werden verschillende biologische modelsystemen gebruikt om de 

serieschakeling van reactoren te vergelijken met een enkelvoudig vat. De 

serieschakeling en het enkelvoudige vat hadden in deze vergelijking beide eenzelfde 

totaalvolume. De modelsystemen waren gei'mmobiliseerde invertase voor het omzetten 

van sucrose en gei'mmobiliseerde groeiende cellen (nitrificerende bacterien voor de 

omzetting van nitriet). Met de gei'mmobiliseerde invertase werd in de praktijk 

aangetoond dat een MAL met drie compartimenten een verbeterde substraat conversie 

gaf ten opzichte van een enkelvoudig vat met eenzelfde totaalvolume. Dit werd 

beschreven met een model dat eerder was ontwikkeld. Ook voor de gei'mmobiliseerde 

nitrificerende bacterien werd een verbeterde substraat conversie gevonden in de 

vergelijking tussen een serieschakeling van reactoren en een enkelvoudig vat. 

Verder werden vrije, gesuspendeerde, hybridoma cellen gebruikt voor de 

produktie van monoklonale antilichamen. De hybridoma's werden, om praktische 

redenen, niet in de MAL gekweekt maar in een serieschakeling van geroerde vaten, 

die continu werden bedreven. Hier werd aangetoond dat serieschakelingen van 

bioreactoren bruikbare gereedschappen zijn voor onderzoek naar kinetiek. In het 

tweede vat in een serieschakeling kunnen stabiele omstandigheden worden verkregen 

die nauwelijks in een enkelvoudig vat kunnen worden bereikt. Hierdoor kan 

bijvoorbeeld niet alleen groei, maar ook sterfte onder stabiele omstandigheden worden 

onderzocht. Verder konden kinetische parameters worden afgeleid zonder dat het 

nodig was te extrapoleren naar lagere groeisnelheden. Een model werd opgesteld dat 

de hybridoma groei en hun monoklonale antilichamen produktie beschrijft op basis van 

glutamine verbruik. Het model kan worden gebruikt voor verdere optimalisatie van 

de serieschakeling van bioreactoren. 

In serie geschakelde vaten kunnen een gelijk volume hebben, maar vaak zijn 

ongelijke volumes voordeliger in de vergelijking met een enkelvoudig vat. Daarom is 

het kiezen van de geschikte reactor volumes een belangrijke ontwerpstap. Dit werd 

besproken voor verschillende toepassingen. Afsluitend is een algemene methode 

gegeven waarmee de optimale serieschakeling van reactoren voor een willekeurige 

toepassing kan worden gekozen. 



CURRICULUM VITAE 

Wilfridus Adrianus Maria Bakker werd op 26 maart 1965 geboren te Alkemade, in het 

dorp Oud-Ade. In 1982 behaalde hij het HAVO diploma aan het Bonaventura college 

te Leiden. Vervolgens werd, door dezelfde scholengemeenschap, in 1984 het VWO 

diploma aan hem uitgereikt. 

In 1984 begon hij met de studie Levensmiddelentechnologie aan de Landbouw-

universiteit. Afstudeeronderzoeken werden gedaan in de Proceskunde en de 

Informatica. Stages in dezelfde richtingen werden uitgevoerd bij Bio-Intermediair B. V. 

in Groningen, en bij AKZO Systems B.V. in Velp en Ede. Op 27 augustus 1990 werd 

het ingenieursdiploma behaald. 

Van September 1990 tot en met augustus 1994 was de auteur werkzaam als 

Assistent In Opleiding bij de Vakgroep Levensmiddelentechnologie, Sectie 

Proceskunde aan de Landbouwuniversiteit Wageningen. De resultaten van het daar 

uitgevoerde onderzoek, op het gebied van de Bioprocestechnologie, staan beschreven 

in dit proefschrift. Van november 1994 tot en met januari 1995 werkte hij, op dezelfde 

plaats, als toegevoegd onderzoeker voor het verzorgen van het werkcollege 

Procesontwerpen. 

Vanaf September 1995 is de auteur werkzaam aan de Universiteit Utrecht als 

toegevoegd onderzoeker bij de Vakgroep Voedingsmiddelen van Dierlijke Oorsprong, 

Sectie Technologie, van de Faculteit Diergeneeskunde. 



BIBLIOGRAPHY 

[1] Van der Pol, L.; Bakker, W.A.M.; Tramper, J. 1992. Effect of low serum 

concentrations (0% - 2.5%) on growth, production, and shear sensitivity of 

hybridoma cells. Biotechnol. Bioeng. 40: 179-182. 

[2] Bakker, W.A.M.; Tramper, J.; De Gooijer, CD. 1993a. Hydrodynamics, mixing 

and oxygen transfer in a multiple air-lift loop reactor. In: 3rd Int. Conf. on 

Bioreactor and Bioprocess Fluid Dynamics (Nienow, A.W., Ed.), Mechanical Eng. 

Publ., London, UK, 49-60. 

[3] Bakker, W.A.M.; Van Can, H.J.L.; Tramper, J.; De Gooijer, CD . 1993b. 

Hydrodynamics and mixing in a multiple air-lift loop reactor. Biotechnol. Bioeng. 42: 

994-1001. 

[4] Bakker, W.A.M.; Beeftink, H.H.; Tramper, J.; De Gooijer, CD . 1994a. 

Hybridomas in a bioreactor cascade for kinetic parameter determination. Cytotechnol. 

14: Suppl. 1: Proceedings of the ESACT/JAACT Meeting 1994, Veldhoven, The 

Netherlands. 

[5] Bakker, W.A.M.; Knitel, J.T.; Tramper, J.; De Gooijer, CD . 1994b. Sucrose 

conversion by immobilized invertase in a multiple air-lift loop bioreactor. Biotechnol. 

Prog. 10: 277-283. 

[6] De Gooijer, CD. ; Bakker, W.A.M.; Beeftink, H.H.; Tramper, J. 1995. Bioreactors 

in series: an overview of design procedures and practical applications. Enzyme 

Microb. Technol. Accepted for publication. 

[7] Bakker, W.A.M.; Den Hertog, M.; Tramper, J.; De Gooijer, CD . 1995a. Oxygen 

transfer in a multiple air-lift loop reactor. Bioproc. Eng. 12: 167-172. 

[8] Bakker, W.A.M.; Kers, P.; Beeftink, H.H.; Tramper, J.; De Gooijer, CD . 1995b. 

Nitrification by immobilized Nitrobacter Agilis cells in an air-lift loop bioreactor 

cascade: effects of combined substrate and product inhibition. Submitted for 

publication. 

[9] Bakker, W.A.M., Overdevest, P.E.M., Beeftink, H.H., Tramper, J., De Gooijer, 

CD . 1995c. Serial air-lift bioreactors for the approximation of aerated plug-flow. 

Submitted for publication. 

[10] Bakker, W.A.M.; Schafer, T.; Beeftink, H.H.; Tramper, J.; De Gooijer, CD . 

1995d. Hybridomas in a bioreactor cascade: modeling and determination of growth 

and death kinetics. Submitted for publication. 


