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STELLINGEN 

1. In vergelijking met het optisch venster leiden waainemingen in het microgolfvenster voor de 
monitoring van gewasgtoei op veldniveau op dit moment tot minder bruikbare gegevens, omdat het 
huidige begrip van interactie tussen microgolfitraling en gewas nog ontoereikend is. (dit proefschrift) 

2. In de afgelopen 2 decennia zijn remote sensing projecten gestuurd door de ontwikkelingen met 
betrekking tot sensoren. Het zou beter zijn als toekomstige projecten gestuurd zouden worden door de 
dynamiek van de gewasgroei. (dit proefschrift) 

3. Karakteristieke groeicurven per gewastype zijn met microgolf remote sensing op regionaal niveau beter 
te bepalen dan op veldniveau. (dit proefschrift) 

4. De verandering in gewasstiuctuur tijdens het groeiseizoen kan door microgolf remote sensing goed 
bepaald worden. Voor zover deze verandering duidelijk gerelateerd is aan de ontwikkeling van het 
gewas (zoals bij granen) en indien er voldoende waamemingen worden gedaan kan deze inforraatie 
gebruikt worden voor ijking van het gewasgroeimodel. (dit proefschrift) 

5. Voorkennis vanuit gewasgroeimodellen, natuurlijke omgeving en bedrijfsvoering geven voorwaarden 
voor effectief toepassen van eenvoudige semi-empirische remote sensing modellen in 
gewasgroeimonitoring. (dit proefschrift) 

6. Na bestudering van microgolf sateUiettijclseries (ERS-1/2) van gewassen met veel bladmassa (zoals 
suikerbieten en aardappelen) in 3 opeenvolgende jaren in de Flevopolder blijkt dat bodemvocht een veel 
grotere invloed heeft dan voorspeld met microgolf remote sensing modellen. (ESA study 
11154/94/NUNB) 

7. Vanuit gewasfysiologisch oogpunt is de informatie afkomstig van het groene deel van het spectrum 
interessant De dynamiek van vegetatieindices mede gebaseerd op deze informatie verdient verdere 
aandacht in het onderzoek op het gebied van gewasgroeimonitoring. 
(Gitelson A., M.N. Merzyldk and Y. Grits, 1996. Novel algorithms for remote sensing of chorophyll 
content in higher plant leaves. Proceedings IGARSS"96, VolW: 2355-2357) 

8. Voor de bestudering van natuurlijke processen op meerdere ruimtelijke schaalniveaus zijn methodieken 
gebaseerd op het gebruik van remote sensing en geografische informatie systemen onontbeerlijk. De 
inzet van deze technologie vraagt om een eigen conceptuele benadering, hetgeen de aanwezigheid van 
een hierop gerichte discipline op leerstoelniveau binnen de Landbouwuniversiteit rechtvaardigt. 

9. Kleine bedrijven met postdoctorale kennis kunnen een verbindende rol spelen tussen universiteiten, 
instituten en bedrijven, doordat ze in het toegepaste onderzoek de specialistische kennis van deze 
organisaties kunnen integreren. 

10. De zuigkracht van de arbeidsmarkt op AIO's in de remote sensing en geografische informatie 
verwerking is zo groot dat met werkgevers een aparte regeling getroffen zou moeten worden om ex-
AIO's binnen hun nieuwe werkverband de gelegenheid te geven hun proefschrift af te ronden. 

11. Specialisatie in het onderzoek is pas veranrwoord, indien fragmentatie van kennis wordt voorkomen. 

12. De duurzaamheid van onze samenleving is omgekeerd evenredig aan het aantal kilometers dat afgelegd 
wordt om een alledaags bord vol met eten te krijgen. 

Stellingen behorend bij het proefschrift: 
Methodology for combining optical and microwave remote sensing in agricultural crop monitoring: the sugar beet 
crop as special case. 
Hans van Leeuwen, 18 September 1996. 
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Preface 

In 1989 a preparatory study has been carried out for the Dutch Remote Sensing 
Board (BCRS) in order to inventarize the possibilities to combine optical and 
microwave remote sensing data for agricultural and forestry applications (Clevers & 
Hoekman, 1989). This study was the start of the socalled 'Synergy project'. The project 
was subsidized by the BCRS for 4 years and started in December 1989. During this 
period I was employed as assistant research trainee (AIO) and financed by the 
Department of Landsurveying and Remote Sensing at the Wageningen Agricultural 
University. My supervisor was Prof. Molenaar. 

Normally, the PhD research lasts about 4 years in the Netherlands. Because of 
additional research projects and duties at the Department, the period was extended to 6 
years. Besides the mentioned BCRS project, a study was granted from the European 
Space Agency. It was one of the first studies tendered by ESA on synergy of optical 
and microwave remote sensing for agricultural applications. For half a year I was 
asked to replace Henk Schok, who has been a fine colleague to me and great support in 
image processing. Together with Jan Clevers I had the opportunity to work on the 
educational aspects of remote sensing like guidance of students and setting up practical 
lectures in the last year. 

During the last years I felt a great urge to bring theories into practise and took 
(sometimes nightly) efforts to found the company 'Synoptics' together with my mates 
of the early hour, Guido Lemoine, Jeroen Huising, Jos Bakker, Paul van Ingen and 
Lucas Janssen. Sometimes naive, but enthousiastic discussions around the campfire 
near the stone factory in the 'Uiterwaarden' of Wageningen formed the start of a 
mature consultancy which forms my present challenge of work. 

My first introduction to remote sensing was given by Toon Janse, who has left 
behind an unforgettable impression. His eccentric attitude strongly appealed to me and 
he gave me the opportunity to do my MSc thesis in the Faculty of Electrical 
Engineering, Telecommunication and Teleobservation at the Delft university. With his 
help and that of Professor Leo Krul, Paul Snoeij and Peter Swart I learned to abridge 
the gap between theory and practical application of microwave remote sensing during 
my MSc study in the mid eighties, which appeared to be very helpful in my PhD study 
and probably in my future career as well. 



The first years of my PhD study were difficult, because of the great amount of 
remote sensing campaigns and data to be processed. Sometimes the objective of the 
study was complete out of sight and thanks to my guidance group of Martien 
Molenaar, Henk Buiten, Gert-Jan Rijckenberg, Dirk Hoekman, Jan Goudriaan (later 
Bas Bouman) and especially Jan Clevers I was brought back on the right trail. 

Sometimes it was difficult to separate my social life from work because I 
experienced the work as very motivating and pleasant. I want to thank Edith Gijsen for 
the support during the first stages of this study. Especially I want to thank Fons van 
Leeuwen (Fonske) for his great and warm friendship and who was always there when I 
needed him as a friend. 

The flexibility and great patience of my colleagues at the department were 
much appreciated and formed the boundary conditions for my activities. Especially 
Dick de Wit (Diederik) gave me a warm nest feeling at the department and he took 
care of all the necessary logistics. Furthermore Dirk Joghems, Philip Wenting and Ank 
Hoeneveld are greatly acknowledged for their help in everyday problems. I want to 
thank my room mates and PhD colleagues Joost van der Sanden for giving me room in 
a literally sense as well and Silvia de Hoop also for sharing her thoughts with me on 
information science. Furthermore discussions with Wim Droessen, Nanna Suryana, 
Rene van der Schans and Gerrit Epema contributed to this thesis. 

Martien Molenaar, my promotor, is much appreciated for his vision and insight 
helping me to stick to the core of the study and keeping me away from the various 
side-walks I would have made. The critical questions and remarks of Martien resulted 
sometimes to a total revision of my draft thesis, which led to better formulation and 
structure of the work. Together with him and Lucas Janssen we managed to organize 
the IAPR-TC7 Workshop in Delft in (1992) on integration of GIS and remote sensing. 

I want to express my deep admiration for Jan Clevers, my co-promotor, who 
must have had much patience with his first PhD student, certainly in the writing stage 
of this thesis, which took me quite some effort to accomplish. Jan and I have had many 
projects together and I felt strongly motivated by his enthusiasm and work attitude 
which led us many times into synergy. 

All the years during my MSc and PhD, Guido Lemoine (LeMoen) has been a 
great friend and a fine colleague to me, who supported me (Leo) many times. Together 
with Ron Schoenmakers (de Schoen; rest in peace) we enjoyed times during 
conferences, visits to JRC and the writing of several papers together. 
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Furthermore, I want to thank my PhD colleague Gert-Jan Rijckenberg for the 
many discussions I had with him on the issues of modelling and microwave remote 
sensing, which really helped me to get on. The pigheaded discussions with Gert-Jan 
sometimes led to difficult and hilarious but mostly to very fruitful situations. 

Martin Vissers has been a fine colleague and friend during my study and helped 
me many times in processing and managing the microwave remote sensing and field 
data. 

I want to thank for the support of my MSc students Ina Derksen and Onno 
Luimstra and PhD student Luce Castagnas for sharing their critical remarks and 
discussions. 

I appreciated the many discussions I had with Bas Bouman, which enlarged my 
insight in the complex world of crop growth modelling. Gerard Nieuwenhuis is 
acknowledged for his critical and pragmatical attitude, which put me back to reality 
once more in my study. 

The discussions I had with Maurice Borgeaud en Josef Noll on the synergy 
topic during several ESA contract studies are very much appreciated and helped me in 
finishing my thesis. 

Hanneke Drijvers is acknowledged for correcting the syntax and the spelling of 
the manuscript. 

In the last stages of my study I experienced the new blind love from Floor de 
Wit inspiring me to finish the last chapters of my thesis and puberty. Thanks to her 
patience and help I found the energy to finish my thesis. 

Finally, I want to thank my family for their great confidence in me for 
accomplishing this study. 
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Introduction 

1.1 Background to the present study 

Accurate and up-to-date information on agricultural production is a vital component in 
running market economies. At European level, considerable differences between 
countries in their agricultural production have led to a complex system of rules and 
subsidies which all rely on a certain level of accuracy regarding agricultural statistics 
(such as acreage and yield). Such statistics, when collected using conventional 
methods are, inevitably, out-of-date by the time they are available and there is a 
growing realization that it may be possible to use a combination of modern information 
techniques and knowledge to provide realistic estimates of crop yield and production. 

Yield prediction is an important tool for industry, farmers and policy makers, 
facilitating logistic planning of transportation and production, storage and sale at 
national level and planning at farm level. For the present study some common 
agricultural crops in The Netherlands were chosen for monitoring crop growth using 
different sources of information. Crop growth models describe crop growth as a 
function of time. When assuming standard growing conditions, these models could 
supply us with a prediction of yield at a certain day later in the growing season. 

Since technology for civil purposes has developed dramatically in the last two 
decades, tools such as computers and sensors have greatly enhanced our understanding 
of biological processes. In this perspective another source of potential information for 
yield prediction purposes has presented itself lately, namely observations from the air 
or space by sensors. Remote sensing (RS) may become a tool to provide useful 
information for crop growth monitoring and certainly when combined with additional 
knowledge about crop growth. This thesis focuses on the crop sugar beet and to a 
lesser extent on winter wheat. 



Chapter I 

1.2 Crop growth monitoring using growth models 

Since the 19th century, agricultural researchers have used modelling as a tool to 
describe relationships between crop growth and yield and environmental factors that 
appear to govern crop growth. The majority of the crop growth models that have been 
developed are in general not applicable at higher aggregation levels other than field 
level as the description of biophysical relationships is mostly very detailed. In Figure 
1.1 the crop growth process is schematized in a general manner. 

Light 

Figure 1.1 The crop growth process schematized 

Starting point for this study are models and concepts that were developed in The 
Netherlands by De Wit and co-workers (De Wit, 1965; Penning de Vries & Van Laar, 
1982; Van Keulen & Wolf, 1986; Van Keulen & Seligman, 1987; Spitters et al, 
1989). These types of model describe the relationship between physiological processes 
in plants and environmental factors such as solar irradiation, temperature, and water 
and nutrient availability. The models compute the daily growth and development rate 
of a crop (see also Figure 1.2), simulating the dry-matter production from emergence 
until maturity. Finally, a simulation of yield at harvest time is obtained. The basis for 
the calculation of dry matter production is the rate of gross C02 assimilation of the 
canopy. The input data requirements concern mainly crop physiological characteristics 
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(e.g. maximum C02 assimilation rate, respiration and dry-matter partitioning), site 
characteristics (latitude), environmental characteristics (daily irradiation, daily 
minimum and maximum temperatures) and the initial conditions defined by the date at 
which the crop emerges. When applied to operational use, such as yield prediction, 
crop growth models often appear to fail when the growing conditions are nonoptimal 
(e.g. pest and disease incidence, nutritional deficiency, severe drought, frost damage). 
Therefore, for yield estimation, it is necessary to "check" the modelling results with 
some kind of information on the actual status of the crop throughout the growing 
season. To check the actual growing conditions, an observation technique is needed 
that can be applied in practice to very large areas (up to at least national level). Remote 
sensing (RS) techniques may provide such information. 

In this study detailed crop growth models, such as SUCROS (Spitters et al, 1989) 
are used for the prediction of yield at field level. The use of RS information together 
with field and meteorological data is studied in more detail. 

1.3 Monitoring with the use of RS information 

RS techniques have the potential of providing information on agricultural crops 
quantitatively, instantaneously and, above all, nondestructively over large areas. In the 
past decades, our knowledge of optical RS techniques and their application to fields 
such as agriculture has improved considerably (cf Asrar 1989; Steven & Clark 1990). 
Much research has been devoted to land cover classification and acreage estimation 
with considerable success. Another field of interest in agriculture is yield prediction. 
Research on this subject, however, has indicated that RS alone is generally not capable 
of producing an accurate yield prediction. This has prompted scientists to look for 
other information that can be combined with RS data in order to give better 
predictions. Already existing knowledge of the object observed by the remote sensor 
could be provided by crop growth modelling and serve as a useful piece of information 
for better interpretation of RS data. In recent years, RS and crop growth simulation 
models have become increasingly recognized as potential tools for growth monitoring 
and yield prediction. 

Optical RS techniques operating in the spectral window from 0.4 ^m to 2.5 \xm 
with respect to this thesis study, receiving reflected solar radiation, have great 
possibilities for application in agriculture. The status of the physical modelling of solar 
energy reflected by the earth's surface is better developed than that of microwave 
energy that is backscattered. For crop growth monitoring good results have already 
been obtained by using (reflective) optical RS data (e.g. some vegetation index) in 
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estimating the leaf area index (LAI) regularly during the growing season. However, the 
regular acquisition of optical RS data is hampered by frequent cloud cover. 

Microwave RS techniques (active RS) operating in the spectral window from 0.01 
m to 0.7 m with respect to this thesis study, offer a solution in acquiring RS 
information with a high temporal resolution owing to its all-weather capability. For 
operational agricultural applications, optical and microwave sensors and data should 
be integrated. In this study the emphasis is on the combined use of optical and active 
microwave RS data linked to crop growth models. 

Former research (Bouman, 1991c) on crop growth monitoring with RS was 
conducted mainly on yield estimation at field level by applying crop growth models 
calibrated with ground-based measurement techniques. An experiment performed by 
Bouman (1991c) showed that there might be some superior value in combining optical 
and microwave RS with crop growth models. Subsequently, the development of 
methodologies based on airborne and even spaceborne RS needs to be studied for 
operational purposes. 

The major research question here is whether the combined use of both RS 
windows yields synergy. In this study, synergy is defined as the additional benefit in 
yield estimation of agricultural crops by using optical and microwave RS together 
compared to the use of optical or microwave RS separately. 

In an article of Space News (July 1993) the following was stated about yield 
prediction with respect to the crop sugar beet: 

'All of British Sugar's activities are really based on the forecast of the sugar beet 
yield, which is done several months before the harvest. They have to book lorries 
[trucks], book storage space and decide the date of opening of the factories. All of this 
costs money. Operational savings can be made by making sure that the amount is 
optimum. British Sugar could save 1.8 million pounds a year using RS technology, in 
distribution costs, storage and fuel for factories. Using data from Earth observation 
satellites such as the French SPOT or the American Landsat spacecraft, experts can 
determine the status of the crop and how much it is likely to yield.' 

The use of RS techniques as a potential tool (e.g. subsidy control, agricultural 
statistics, etc.) in policy making receives more attention from governmental 
organizations. However, certain research questions still remain after having read the 
above statement. These questions will be formulated with the objective of the study in 
mind as defined in Section 1.4. 
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1.4 Objective and methodology of the study 

The research objective of the thesis can be formulated as follows: 

The objective is to understand how optical and microwave remote sensing may be used 
in a synergetic way in order to develop a methodology, that can be used to monitor 
crop growth and predict crop yield together with existing knowledge. 

The thesis objective includes the search for answers to the following questions: 
a Which information on biophysical properties of agricultural crops estimated with 

airborne remote sensing is useful for crop growth monitoring and yield prediction? 
b How can this information be integrated in the methodology for combining crop 

growth and remote sensing? 
c Can the developed combination methodology be applied for operational crop growth 

monitoring and yield prediction and are the present spaceborne sensors appropriate? 

The proposed methodology to meet the objective is a combination method in 
which various pieces of information come together. It will be obvious that the 
combined use of RS and crop growth information needs to be studied in more detail to 
answer the questions mentioned above. As the information has been gathered on fields 
of farms, the scale of study is at field level to begin with. 
To answer the first research question (a) an inventory of information sources is 
needed. The following information is relevant: 
. variables retrieved from optical or microwave interaction models, which describe 

the observation of the "crop-soil system", leading to crop status information; 
. the accuracy of the estimation of these variables; 
. the accuracy of the RS observation; 
• information retrieved from RS signatures or time-series possibly leading to 

information on development of the crop; 
. plant physiological parameters and their plausible biophysical ranges (field 

measurements); 
. a crop growth model; 
• growing conditions (meteorology, farm management, etc.). 

The next research question (b) can be answered by making an inventory of the 
links between information obtained from RS and crop growth and their use to the 
prediction procedure. These links are visualized in Figure 1.2. 
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Figure 1.2 RS information with links to the crop growth model 

The significance of the information obtained from RS to crop growth monitoring 
must be studied in more detail for RS in the first place; this is dealt with in Chapter 2. 

The accuracy of estimating the various crop variables with RS will indirectly 
answer the question of the significance of RS to agricultural crops. In Chapter 3 the 
various combination methods using the links of RS models and crop growth models are 
discussed (question a and b). In Chapter 4 the data acquisition and the quality of RS 
and field data are discussed in the scope of the study objective. In Chapter 5 and 6 the 
success of the combination techniques is studied and discussed regarding crop growth 
monitoring and yield prediction. Important is the step from groundbased RS 
measurements towards airborne and even spaceborne RS with respect to yield 
prediction (question c). The question whether the developed combination methodology 
might be applied in an operational sense is dealt with in Chapter 6, where the 
application of the method on field and regional is discussed. 

The four relevant crop growth calibration or combination methods applied in this 
study (Chapter 3, Section 3.4) are : 
I Crop growth model calibration using an RS model predicting the RS signal at a 

certain moment in the growing season (or so-called direct use of RS models; direct 
modelling method); 
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II Crop growth model calibration using an inverted RS model estimating crop 
variables at a certain moment in the growing season (inverse modelling method); 

III Crop growth model calibration using RS information by means of typical RS 
features in time-series related to the crop development stages; 

IV A combination of approaches 2 and 3. 

The first method was developed by Bouman (1991c). It combines the crop growth 
model SUCROS (Spitters et al, 1989) with RS data; calibration of the crop growth 
model is performed by comparing the measured and predicted RS signals. 

The second method is based on the inverted use of RS models. The crop growth 
model is calibrated by comparing the estimated variable of the RS measurement by 
model inversion and the variable in the crop growth model. 

In the third method, the changes of one crop development stage into another, 
possibly corresponding to structural changes in the above-ground canopy, may result 
in a considerable change in RS observations. The interpretation of such a feature in RS 
time-series is then based on the change of a certain biomass level and/or spatial 
distribution of plant parts, such as leaves or stems, over a period of time. 

In the first two methods calibration of the model occurs when an RS measurement 
is available. The four calibration methods have in common that the variables LAI, 
biomass and canopy structure all play their specific role in the combination 
methodology as a link between RS and crop growth. The second and the third method 
are studied in more detail in this thesis and can be regarded as an extension of the first 
approach (Section 3.4.2), which lead to a better understanding of the yield prediction 
process. The fourth method is the integrated representation of methods 2 and 3. 

To discuss the second combination method more in detail, the biophysically 
relevant variables from the inverse RS model are compared with the corresponding 
variables in the crop growth model. The retrieved variables from RS are the LAI and 
biomass, because these variables play an important role in optical and microwave RS 
models and of course in the crop growth model. In this manner weighted contributions 
(by means of the standard deviation of the estimated LAI or biomass) from different 
sensors can be combined simultaneously (same time), contemporaneously (during 
same period assuming no change in crop status) or at different times (with clear 
changes in crop status between different points in time). Further, in this approach the 
RS measurement error is incorporated by using the standard deviation of the RS 
measurement. The crop growth model is calibrated for every new RS measurement so 
that new predictions of LAI and biomass can be made (so-called model-based approach, 
see Figure 1.3). 
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Figure 1.3 Proposition to use RS information in combination (model-based) with a crop 
growth model for yield prediction in general 

In the third combination method a possibility for introducing incidental features, 
such as changes in canopy structure, is proposed. For dense leafy vegetation (sugar 
beet, potato, etc.) the canopy structure can be represented by the leaf angle distribution 
(LAD). Canopy structure is in fact accounted for in the simplified semi-empirical RS 
model by adjusting its regression parameters. For cereals, like wheat, crop structure is 
more evidently related to the various crop growth stages in which the spatial 
distribution of stems, leaves and ears changes clearly during the growing season (see 
Figure 1.4). As canopy structure cannot be estimated by the inversion of simple 
models, structure information may be derived from time-series of RS measurements. 
Changes in canopy structure are expected to be detected by mulritemporal microwave 
measurements (the so-called features in microwave signatures). Of course this depends 
on the sensor configuration (frequency, polarization, etc.) and crop type, and 
presumably even crop cultivar. 
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Transition from one development stage into another can result in a change in 
canopy structure. This accounts especially for cereals. Microwave RS time-series can 
be used to find these changes in canopy structure, which in turn might lead to 
information on crop development. This structure information is evaluated for 
calibration of the crop growth model (so-called feature-based approach; see Figure 
1.4). The accuracy of finding these calibration points in RS time-series depends 
amongst others on the frequency of observation. 

The fourth approach is based on the integration of the model and the feature based 
combination method. It is a new approach that makes use of the available information 
from RS observations, so far, weighted with the accuracy of estimation of each piece 
of information for the purpose of crop growth monitoring. 
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Figure 1.4 The integration ofRS model based and feature based information with the crop 
growth model. Growth and development of the crop give changes in biomass and crop 
structure during the growing season. RS can play a role to monitor these changes in order to 
assist in crop yield prediction. 
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Variations on these static and dynamic approaches can be made by introducing 
factors such as the RS measurement timing, the sensor configuration (optical or 
microwave, resolution etc.) and the observation platform (ground-based, airborne or 
spaceborne). 

To meet the objective, the monitoring potential of RS needs to be studied by 
making an inventory of the characteristic calibration points in RS time-series for 
agricultural crops. This is carried out in detail for sugar beet at field level. In future 
studies an inventory could then be made of analogies for other crops. Part of the 
methodology scheme (model-based) as given in Figure 1.3 is outlined in Figure 1.4 for 
sugar beet as an example of possible calibration points (model- and feature- based). 

To test the developed methodology a demonstration crop has been chosen (Chapter 
4), namely the sugar beet which is a common crop in the Southern Flevoland Province 
in The Netherlands. At the start of this study the crop growth model had already been 
initialized for growing conditions in the Southern Flevoland Province. This region had 
been chosen numerous times in the past as a test site for ground-based, airborne and 
spaceborne calibration experiments under contract of the Dutch Remote Sensing Board 
(BCRS), ESA, NASA, etc.. Apart from this, the newly reclaimed Flevoland Province 
(in the 1950s) provides large and homogeneous agricultural fields. Several airborne 
experiments have been conducted there to calibrate and test the spaceborne 
measurements (SIR-B, SIR-C X-SAR, ERS-1, JERS-1, SPOT, Landsat). In other 
words, the airborne measurements were planned to offer a link between ground survey 
measurements and spaceborne measurements. During the ROVE period (1975-1981; 
De Loor, 1982) ground-based measurements with microwave (X-band FMCW 
scatterometer) and optical (field reflectance radiometer) sensors had been done on a 
frequent (three-daily) basis during the growing season. 

Furthermore, the MAC Europe campaign offered RS data coming from different 
airborne sensors, which provided the necessary information to study the step from 
ground-based to airborne crop growth monitoring (Chapter 5). 

In order to produce regional yield figures a proposition for application of the 
combination methodology is made in Chapter 6 using a crop growth model in 
combination with RS information of presently operational platforms such as 
spaceborne optical (SPOT, Landsat) and microwave sensors (ERS-1, JERS-1), 
However, this is not further elaborated and tested with field data because of lack of 
data for validation of the methodology on a higher scale level (regional or national). 
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1.5 Structure of the thesis 

The thesis work is subdivided into three parts. Part I outlines the theory and 
background supporting the thesis methodology and the combination methodology 
itself. In Part II, the test data are presented and, for the case study, the synergy of the 
combination of information is studied, especially for the multisensor airborne 
campaign MAC Europe 1991. The application of the methodology described in this 
thesis is evaluated in Part III, accompanied by concluding remarks and 
recommendations. 

To monitor growth and production of agricultural crops with RS techniques, an 
inventory of the information estimated with RS must be made. A review of the state of 
the art in modelling in the reflective optical and microwave region of the 
electromagnetic (EM) spectrum is required since a major objective of this study is the 
investigation of the possibilities of a synergistic use of both optical and microwave RS 
data (Chapter 2). Furthermore, the most suitable models need to be selected and 
validated with RS measurements. 

Furthermore, the underlying physiological processes of crop growth have to be 
studied in order to link them with RS information. The knowledge concerning these 
processes can be summarized in crop growth models. For practical use, a crop growth 
model must be calibrated to the actual growing conditions in the specific growing 
season. This calibration can be performed by using actual information from the field or 
information supplied by remote sensing from airborne or spaceborne platforms. 
Chapter 3 proposes a methodology for combining the information (RS data, field data 
and models) from different sources in order to meet the research objective. The 
ultimate goal is to monitor crop growth and to predict the yield. This immediately 
raises the question how to do this with RS. In other words, can RS provide relevant 
biophysical variables and with what accuracy can these be estimated to actualize the 
description of crop growth? This information can be provided by inverting the selected 
RS interaction models. Knowledge needs to be included in the inversion approach in 
order to reduce the number of unknown object (read crop) variables or to limit the 
range of these variables so that the model can be linearized or simplified. Then, the 
growth model can be calibrated with the actual estimates of variables from RS. 

In order to meet the research objectives, Chapter 4 deals with data gathering and 
data analysis in order to work out and test the combination methodology applied in 
Chapter 5. Most of the information has been gathered from incidental campaigns, 
stimulated by the introduction of new sensors (polarimetry, interferometry) and 
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strategic funding. In order to study the effect of synergism of optical and microwave 
RS data, conditioned data sets are required. A theoretical RS model or interaction 
model needs to be calibrated with experimental data and validated with other 
experimental data sets. This has certain consequences for the quality and the quantity 
of data. 

With the analysis of RS data by image processing and information extraction in 
Chapter 4 a thorough data preparation and data fusion of several campaigns is 
accomplished. A synergetic data set is selected and tested. It appeared that the MAC 
Europe data set of 1991 from the Flevoland test plot was suitable to test the synergism 
of combining multisource data in Chapter 5. The combination methods of Chapter 3 
are tested with contemporaneous (simultaneous) and non-contemporaneous recordings 
of optical and microwave sensors. A new methodology to introduce structure 
information from microwave data into the procedure of crop growth model calibration 
is applied on the MAC Europe data set. 

Chapter 6 discusses the practical application of the methodology. The various 
methods using airborne RS in the previous chapters are reconsidered and compared 
with spaceborne RS. An important aspect is that the level of study is translated from 
field to regional level in order to evaluate practical use or potential of the combination 
method in conventional prediction strategies of the present processing industry. 

Chapter 7 presents the main conclusions and recommendations for further 
research. 

14 



PART I THEORY AND CONCEPTS 

2 Information from remote sensing for crop growth monitoring 
3 Crop growth monitoring with remote sensing 
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Information from remote sensing for crop 
growth monitoring 

2.1 Introduction 

In order to monitor the growth and production of agricultural crops with remote 
sensing (RS) techniques, an inventory needs to be made of the information retrieved 
from the optical and microwave region of the EM spectrum during RS observations in 
the growing season. This study was done for leafy crops like sugar beet and also for 
cereals like winter wheat, which are two important crops in the Netherlands. 

The models describing the observation of crops by remote sensors are reviewed in 
Sections 2.3.1 and 2.4.1. The models that are available and most appropriate for the 
study are selected in Section 2.3.2 for optical and in Section 2.4.2 for microwave 
applications. In Section 2.3.3 and 2.4.3 the selected RS models are calibrated with 
field measurements and RS observations and validated for use in the test area in the 
Southern Flevoland Province in The Netherlands. 

Results of sensitivity analysis of RS interaction models which describe the 
observation of crops in a theoretical and detailed manner are presented in Section 2.3.4 
and 2.4.4. Respectively, the SAIL model in the optical region and the 'Eom and Fung' 
model in the microwave region provided us with the main variables influencing the RS 
signal in general. The main variables when observing a crop during the growing season 
are LAI, biomass and plant structure. Optical and microwave RS models appeared to 
supply similar and complementary information, which can be used for crop growth 
monitoring. 

Reflective optical RS data provide the possibility of estimating the leaf area index 
LAI and leaf angle distribution LAD of agricultural crops (Section 2.3.5). The CLAIR 
("Clevers Leaf Area Index by Reflectance") model offers a practical algorithm for 
describing the relationship between reflectances and LAI and can be used as a practical 
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algorithm for estimating LAI from RS. The more detailed (or complex) SAIL model is 
used for understanding the observation by sensitivity analysis and is somewhat less 
practical for inversion. The variable LAD can be estimated with this model using 
additional independent informations, from the sensor (several look angles, wavelength, 
field data, etc.). 

Microwave RS data can be used for estimating the amount of plant moisture 
related to above ground biomass by using validated RS models (Section 2.4.5). As the 
physical interpretation of the microwave measurement process is not fully understood 
yet, complex theoretical models can serve as tools for sensitivity analysis and trend 
studies. Analogously to the CLAIR model in the optical domain, the Cloud model can 
serve as a simplification of more complex models and offer a practical algorithm for 
describing the relationship between backscatter and plant moisture and soil moisture. 

In addition, microwave RS data can provide information on plant structure by 
studying time signatures of backscatter values (Section 2.5). Specific features found in 
these backscatter signatures may yield important information on specific development 
stages of crops as this is often accompanied by structural changes in the plant. 

2.2 General approach to evaluation of RS information 

There are several possible applications for RS information in agriculture. For example, 
using RS information acreages (1) can be estimated and crop types classified (2). 
Using the same RS information, crop characteristics can be retrieved (3) by means of 
inversion of a validated RS model describing the observation of the "crop-soil system". 
In order to prepare this, a general approach is visualized in Figure 2.1. 

On the other hand, multitemporal RS information can give indications of 
recognizable and characteristic RS time signatures (4) related to soil or vegetation. 
More RS applications may be available, but in the scope of crop growth monitoring 
with remote sensing these four applications of RS are considered as the main elements 
for operational use for the moment. In the scope of this thesis crop classification can 
be regarded as a means of preparing data; acreage estimation is not further dealt with. 
This thesis focuses on the derivation and estimation of crop variables by using RS 
models and RS time-series for the purpose of crop growth monitoring and yield 
prediction. The scheme in Figure 2.1 will be followed accordingly in the next sections 
of this chapter. 
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Figure 2.1 General evaluation ofRS information 

2.2.1 Review of RS models 

A profound review of RS models with respect to agricultural crops is inevitable in 
order to interpret RS information. Estimation of physical characteristics related to crop 
growth variables is one way to interpret RS, besides other techniques like 
classification (identification), segmentation (estimation of area), etc. In this study 

19 



Chapter 2 _ _ ^ 

information from RS is restricted to the optical and microwave region of the Electro­
magnetic (EM) spectrum. As a consequence, optical and microwave RS models are 
used here. A distinction can be made between models which are still in development 
and those that can already be applied in practice. Another distinction in RS models can 
be made between complex (physical) and simple (semi-empirical) model 
representations of the observation by remote sensing. The development of these RS 
models depends on crop type and cultivar (and corresponding growth conditions) and 
on the physical assumptions underlying the modelling in a specific part of the 
spectrum. Furthermore, one can say that in general the modelling activities in the 
optical region are better understood compared to those in the microwave region. 

2.2.2 Selection of RS models 

Criteria for the selection of RS models in this study are: 
1 Validity of the specific RS model and its applicability to a specific crop type and 

crop cultivar; 
2 Interchangeability of variables of the specific RS model with variables in crop 

growth models; 
3 Interchangeability of variables of the specific RS model with those in another RS 

model; 
4 The scale level for predicting variables with the specific RS model (field, regional, 

national, supranational) or in other words level of aggregation, assuming 
homogeneous objects (crop-soil system); 

5 The level of complexity of the RS model. 

Each crop has its specific impact on the RS signal. Biomass level and the phenological 
development of each crop have characteristic consequences for the observation with 
remote sensing. Here, the selection of RS models is based on their validity and 
consequently on model boundary conditions with respect to each crop. 

The application of RS models in a crop growth monitoring study depends on the 
interchangeability of variables in optical RS models and microwave RS models. 
Secondly, the interchangeability of variables of RS models and crop growth models is 
of great importance to monitoring and yield prediction in the end. On the one hand, 
models of the optical and microwave domain need to have comparable and 
corresponding model variables for reasons of interchangeability, especially with 
contemporaneous RS observations (from the same period) or simultaneous RS 
observations (at the same time). On the other hand, independent and different variables 
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in RS models can give synergetic results in the prediction of crop growth and yield as 
well. Another requirement is that the RS model variables can interact with the crop 
growth model itself by having overlap in variables. 

Modelling at field level will be the central issue here. Fields form the elementary 
spatial units with a homogeneous crop-soil system, where statistically sound RS signal 
averages are assumed to be representative for the spectral properties of the specific 
crop. Within-field variability is expressed by the standard deviation of the RS signal of 
the field. 

Once the RS observation has been described in detail, a sound sensitivity analysis 
can be made as more variables are theoretically assumed to be responsible for the RS 
signal. Through simple representation of the same observation with less variables the 
inversion of the RS model is easier and with that the estimation of crop variables. 

2.2.3 Calibration and validation of RS models 

RS models can be calibrated on the basis of conditioned and experimental studies 
(Ulaby et ah, 1986). Simulations of a theoretical algorithm are compared with 
measured data in a (conditioned) experiment for ideal situations of a pilot test data set. 
This comparison can be performed statistically by introducing regression or fit 
parameters in the theoretical model and adjust them in order to match the simulated RS 
data with the measured data. The variables of the RS model have mostly direct or 
indirect relationships with the crop and soil model variables measured in the field. For 
calibration of the RS model data from the remote sensor as well as from the field are 
needed at the same time (Hoekman et al, 1982). 

Validation of these calibrated RS models is needed in order to determine the 
applicability of the model to other data sets of the same crop and the corresponding 
growing conditions. This can be done by applying the model to another measurement 
situation in another season or to fields other than those used for the calibration 
procedure of the same growing season. As a result of these measurements the 
validation of the model is restricted to subranges of the input RS model variables 
under study and used in the calibration. These subranges are nothing more than the 
plausible biophysical ranges of crop variables of the specific crop type under certain 
growing conditions. These ranges of crop variables have been measured in the field. 

An RS model is considered to be valid when the RS signal prediction with the 
calibrated RS model fed by actual field measurements matches the measured RS signal 
of the same fields. It can occur that a calibrated RS model of a specific measurement 
programme cannot be applied to another programme (another season, weather or 
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different location) because of non-comparable measurements and/or crop growing 
conditions (Bouman, 1991a). 

2.2.4 Sensitivity analysis of RS models 

Once the RS model has been calibrated and validated for the specific conditions of a 
test plot, it can be applied for simulating RS signals. In order to find out which crop 
(or soil) variables dominate the reflection or backscattering of EM radiation, a 
sensitivity analysis must be performed with these RS models. 

If the RS models are not calibrated and/or validated, theoretically a sensitivity 
analysis can still be performed. In that case one may discover certain trends or the 
relative importance of the variables involved, which may lead to better insight into the 
different physical processes. 

For the sensitivity analysis of RS models a distinction in complexity level of the 
model must be made. The description of an RS observation with a physically based 
model deals with many variables. In contrast, a simplified description of the 
measurement process can be represented by semi-empirical (semi physically based) 
regression functions with only a few variables. 

A sensitivity analysis of complex RS models is important in order to determine the 
most dominant variables of the crop-soil system. In this way an important subspace of 
the total solution space, in which probably all practical solutions are embedded, can be 
selected for inversion purposes. This subspace can be represented by a semi-empirical 
model. In this way other important variables affecting the measurement signal can be 
found. 

However, the regression parameters of this semi-empirical model may be a 
function of certain other crop variables which are not accounted for in this simplified 
description. By changing the corresponding input variables the complex RS model 
produces simulated RS signals and this dependency can be studied. These produced 
"RS measurements" can be used for fitting (or new calibration) with the semi-
empirical description resulting in new regression parameters. In fact these regression 
parameters quantify the validity region of the sub model or semi-empirical RS model. 
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2.2.5 Boundary conditions for RS models 

The use of semi-empirical models is more practical than the use of the complex multi-
variable RS models as the models are already confined to a subpart of the total 
solution space as in Figure 2.2 and are easy to invert. The boundary conditions of the 
practical semi-empirical models cannot be defined by field measurements only, but 
can theoretically be predicted by simulations of the complex RS models as mentioned 
in Section 2.2.4. 

RS signal 

Variable 

Figure 2.2 A subspace formed by combinations of two different model variables representing 
local solutions of a complex RS observation model with more than two variables 

RS modelling of the crop-soil system must account for the dynamic changes 
during crop growth in the season. Crop growth is accompanied by changes in plant 
geometry (spatial distribution of plant parts) and the amount of plant material 
(biomass). Besides this, the nature of the plant material (e.g. dielectric properties), the 
structure and dimensions of individual constituents (like leaf mesophile structure), the 
density of the canopy medium, etc. are important for RS observation modelling. 

These different variables are embedded in the physical RS model. The semi-
empirical RS models, which have local validity, still do model the various properties 
of the crop-soil system. However, these are not explicitly present as model variables 
but are embedded in the regression parameters. Therefore, it is important to define 
boundary conditions on the basis of these regression parameters as a function of the 
properties of the crop-soil system. Once these conditions have been clearly defined, 
inversion is allowed. 
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2.3 Reflective optical modelling 

2.3.1 Review of optical RS models 

The incoming solar radiation is partly reflected by the top layer of the canopy. The 
direct reflectance of the canopy is a function of solar elevation, leaf area index (LAI), 
leaf angle distribution (LAD) and optical properties of the leaves. The complementary 
fraction is potentially available for absorption by the canopy. The absorptance by the 
canopy is a function of LAI, scattering coefficient and extinction coefficient. The 
extinction coefficient is a function of solar elevation, leaf angle distribution and 
scattering coefficient. The product of the amount of incoming photosynthetically 
active radiation (PAR) and the absorptance yields the amount of absorbed 
photosynthetically active radiation (APAR). 

The main purpose of physical modelling in the reflective optical region of the EM 
spectrum is the understanding of the interaction between solar radiation and vegetation 
elements. Such understanding is then incorporated into a model that relates the 
vegetation characteristics to its spectral signature or reflectance. For homogeneous 
vegetation this modelling requires specification of the following elements: 

1 the area of the vegetation elements (leaves, stems, branches, fruits, etc.); 
2 the optical properties of the vegetation elements; 
3 the geometry of the vegetation; 
4 the optical properties of the soil background; 
5 the illumination and viewing geometry. 

Since the leaves constitute the main vegetation element for many crops that can be 
seen from an RS platform, the LAI will be the main characteristic describing element 1. 
Concerning element 2, also leaf characteristics determining the optical properties (such 
as chlorophyll content, water content and mesophile structure) may be used. 

RS canopy-modelling enables the study of relationships between reflectances and 
crop characteristics. An understanding of the interaction between EM radiation in any 
wavelength region (visible, infrared, microwave, and thermal) and any object is 
developed by using the Maxwell equations. However, since vegetation canopies are so 
complex, one cannot hope to solve these equations in a direct way. To meet this 
problem different approaches have been developed with various levels of complexity. 
Methods to model the radiation regime in the vegetation canopy can be divided into 
the following categories: 

24 


