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STELLINGEN 

Onderzoek aan membraanbioreactoren voor gasreiniging dient vooral 

gericht te zijn op de stabiliteit van biofilms. 

Dit proefschrift. 

De door Parvatiyar et al. uitgevoerde experimenter! vormen geen bewijs 

voor het door hen gepostuleerde model, dat beschrijft dat trichlooretheen 

anaeroob wordt omgezet en de reactieproducten vervolgens in de aerobe 

zone worden afgebroken. Tijdens de experimenten kan ook uitsluitend 

aerobe afbraak of uitsluitend anaerobe afbraak hebben plaatsgevonden. 
Parvatiyar et al. 1996. Treatment of trichloroethylene (TCE) in a membrane biofilter. 

Biotechnol. Bioeng. 50: 57-64. 

Bij het vergelijken van elektronenmicroscopische foto's is het van groot 
beiang dat de foto's min of meer dezelfde vergroting hebben. 
N.A. Sutton et al. 1994. A comparison of conventional SEM techniques, low temperature 

SEM and the electroscan wet scanning electron microscope to study the structure of a 

biofilm of Streptococcus crista CR3. J . Appl. Bact. 76: 448-454. 

Het modelleren van een nieuw biologisch proces zonder zelfs maar een 

poging tot validatie, leidt tot een model, dat geen afbeelding van de 

werkelijkheid is, maar een vlucht emit. 

Ilias, S. and K.A. Schimmel. 1995. Membrane bioreactor model for removal of organics from 

wastewater. J . Air Waste Manage. Assoc. 45: 615-620. 

Met "kan niet" en "weet niet" is men het snelst van een klus af. 

Mijn oma Moe. 

De wens om representatief gekleed te gaan, is funest voor het woon-

werkverkeer per fiets. 

Instanties die adressenbestanden aanleggen om alleen "gerichte" en 

"gewenste" reclame te versturen, gaan voorbij aan het feit dat die 

reclame ook ongewenst kan zijn, juist omdat die geadresseerd is en als 

inbreuk op de privacy kan worden beschouwd. 



8 Het is een wijdverbreid misverstand, dat emmertjes voor groenafval 

alleen in de container geleegd kunnen worden als ze vol zijn. 

9 Het ontbreken van deugdelijke lusjes aan theedoeken doet vermoeden dat 

de ontwerpers ervan zelf een vaatwasmachine hebben. 

10 De begrippen "multidisciplinariteit" en "een samengeraapt zootje" liggen 

dicht bij elkaar. 

11 Het verplicht stellen van een grotendeels vastgesteld 

onderwijsprogramma voor promovendi is in tegenspraak met de 

oorspronkelijke doelstelling van promotieonderzoek; opleiden tot 

zelfstandig wetenschapper. 

12 De vertaling van het Engelse woord layout luidt in het Nederlands niet 

uitleg, maar opzet, opmaak of ontwerp. Toch heeft de layout van teksten 

meer invloed op de uitleg ervan dan de schrijvers vaak vermoeden. 

Stellingen behorende bij het proefschrift 

"Membrane bioreactor for waste gas treatment" 

Martine Reij 

14 februari 1997 
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Voordat u grote of kleine stukken uit dit proefschrift leest, of er alleen maar in 

bladert, wil ik de aandacht vestigen op alle mensen die er een bijdrage aan 

hebben geleverd. 

Op de eerste plaats wil ik Sybe Hartmans bedanken. Vele uren heeft hij 

meegedacht over proefjes en artikelen, vooral toen mijn werk niet zo vlotte. Heel 

erg bedankt voor de prettige samenwerking. Ook Jan de Bonf wil ik hartelijk 

bedanken voor de begeleiding. Zijn kritische blik bracht vaak de hoofdlijnen van 

onderzoek en artikelen weer helder voor ogen. Van Sybe en Jan neb ik heel veel 

geleerd. Verder wil ik ook de begeleidingscommissie onder leiding van professor 

Heijnen van harte bedanken voor nun belangstelling en voor hun waardevolle 

adviezen. 

Verschillende studenten hebben een bijdrage geleverd aan het onderzoek dat in 

dit boekje beschreven staat: Lida Nugteren-Davoodzadeh, Jasper Kieboom, Alja 

Bezoen, Marieke Bruins, Erik Hamann en Leonie Husken. Behalve de door hen 

behaalde resultaten, heb ik ook de samenwerking met hen zeer gewaardeerd. 

Al mijn (ex-)collega's van de Sectie Industriele Microbiologie wil ik bedanken voor 

hun belangstelling en voor hun hulp in het lab en met de computer. Maar 

belangrijker was nog de gezelligheid op het lab, in de AlO-kamer en soms ver 

daarbuiten. Ik zal vooral de lab-uitjes en de vrijdagmiddagborrels missen. Maar 

jullie kunnen nu eindelijk ongestoord aan de borrelnoten.... 

De medewerkers van de werkplaats, de afdeling fotografie en de afdeling 

elektronica wil ik bedanken voor hun vakmanschap en hun hulpvaardigheid. 

Lex heeft er vaak voor gezorgd dat ik niet te hard werkte en ook aandacht voor 

andere zaken dan werk had. Bedankt voor alle geduld en goede zorgen. 
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CHAPTER 1 

General Introduction 

Biological waste gas treatment 

Many industrial activities result in the emission of organic pollutants into the air. 

These pollutants can cause odour nuisance or, in the worst case, endanger health. 

Along with the increasing public concern on environmental issues, reduction of air 

pollution has been pursued by emission prevention and off-gas treatment and 

emission guidelines have been formulated in the Netherlands in 1992 (24). 

A relatively cheap technique for off-gas treatment is biological treatment, or 

biofiltration. Biological waste gas treatment is based on the ability of 

microorganisms to degrade various organic pollutants and to use these pollutants 

for growth. In this way pollutants are degraded into harmless products like C02 , H20 

and new biomass (Figure 1). Biological treatment is especially suitable for the 

removal of relatively low concentrations of organics (< 1 -5 g m"3) (27). 

From the early 1960s biofiltration has been used to control odour and stench 

resulting from e.g. sewage works, composting plants, food processing and chicken 

or pig farms (15). In the early 1980s the field of application was extended to many 

other volatile compounds that are easily biodegraded. Since then the number of 

installations for biological air purification has increased significantly (27). 
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Figure 1. Biological oxidation of gaseous organics. 

Bloreactors for waste gas treatment 

The earliest type of bioreactor for waste gas treatment is the biofilter, containing 

compost, peat or soil and a coarse fraction to prevent high pressure drops (Figure 

2A). The specific gas-liquid surface area of biofilters is with 300-1000 m2 m"3 relatively 

large (20) and the mass transfer properties of biofilters are quite good. Biofilters 

have been used on an industrial scale to remove various pollutants from air, like 

alcohols, undefined odours, aromatics, esters (27) and have also been tested for 

the removal of aliphatics (18). 

Treatment of gases containing chlorinated pollutants, sulphur compounds or 

ammonia results in the accumulation of chlorine, sulphate, or nitrate ions and 

causes acidification of the biofilter. Acidification can, to a certain extent, be 

prevented by the addition of e.g. lime, but large amounts of mineral end-products 

can not be neutralized nor removed from a biofilter (9, 14). To prevent dehydration 

of the biofilter, the waste gas has to be prehumidified. Nevertheless, moisture 

control in biofilters is difficult (18) and malfunctioning of biofilters is often due to 

problems with the humidity control (14). 

A second type of bioreactor is the trickle-bed bioreactor. It consists of a packed 

bed of inert material, on which the microorganisms adhere and form a biofilm. 

Water is continuously sprayed on the packed bed and trickles down in co-current or 
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counter-current flow with the air (Figure 2B). Due to this water phase the humidity, 

the temperature, and the supply of nutrients can be controlled better than in a 

biofilter and mineral end-products can be removed. Trickle-bed reactors have 

been tested successfully on a semi-industrial scale to treat waste gases containing a 

variety of pollutants, including chlorinated hydrocarbons, aromatic compounds, 

alcohols, aldehydes and ketones, ammonia and sulphur compounds (6). 

Excessive biomass growth in the trickle-bed bioreactor can lead to clogging of the 

filterbed, an increase in pressure drop and a decrease in reactor performance. 

Recently, various control strategies have been tested to prevent clogging, as there 

are limitation of the nitrogen supply, the use of nitrate instead of ammonium, back-

washing, washing with NaOH, and modification of the inoculum (22,28). 

A disadvantage of the trickle-bed reactor is the water phase trickling down the 

biofilm. This layer of water forms a barrier for the transfer of poorly water-soluble 

pollutants from air to the biomass and makes the trickle-bed bioreactor unsuitable 

for the efficient removal of poorly soluble volatiles from waste gases (27). 

Similar to the trickle-bed reactor the bioscrubber consists of a bed of inert packing 

material, over which water is sprayed. But now the biomass is not exclusively 

present on the packing material. The water phase absorbs the contaminants from 

the gas phase and is then transported to a separate tank, where biodegradation 

takes place. As contaminants have to dissolve in water, this type of reactor is not 

suitable for compounds with a low water solubility (27). In order to improve the mass 

transfer of poorly water soluble pollutants the use of organic solvents as absorbents 

has been proposed (2,21). 

A fourth type of bioreactor studied is the diy biobed. It consists of a packed bed of 

activated carbon that is sprayed occasionally. This type of reactor can be 

considered to be a combination of a biofilter and a trickle-bed reactor. It has been 

successfully tested on laboratory scale for the removal of the poorly water soluble 

pollutants ethene (4) and styrene (3). 

For the removal of poorly soluble and/or chlorinated hydrocarbons from air a new 

type of bioreactor was proposed: the membrane bioreactor (Figure 2C) (12). Such a 

bioreactor consists of a hydrophobic microporous membrane that separates the 

gas phase and the liquid phase. Biomass grows on the "liquid" side of the 

membrane and pollutants and oxygen diffuse through the membrane. In a 

membrane bioreactor the advantages of both the biofilter and the trickle-bed 

reactor are combined. 
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Figure 2. Schematic representations of various bioreactors for waste gas treatment. (A) 
biofilter, (B) trickle-bed reactor and (C) membrane bioreactor. 

Just like the biofilter, the membrane bioreactor has excellent mass transfer 

properties, making it suitable for the removal of poorly soluble hydrocarbons. Similar 

to the trickle-bed reactor, a discrete liquid phase enables the removal of toxic end-

products and the supply of nutrients and water. In Chapter 2 the membrane 

bioreactor for waste gas treatment, the use of membrane (bio)reactors in general, 

and several types of membrane material are described in detail. 
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Pollutants that are difficult to remove from air 

Although biological treatment has been shown to be successful with a variety of 

pollutants, several classes of pollutants remain difficult to remove from air. 

An important class of pollutants that are difficult to remove from air, are the poorly 

water soluble volattles. A low water solubility results in low concentrations in the 

water phase, which surrounds the microorganisms. The degradation thus will be 

limited by a small driving force for mass transfer. Because of this limitation, the 

thickness of the water layer in between the gas phase and the microorganisms 

should be minimized. The design of the bioreactor in this respect is critical (19). The 

design of the membrane bioreactor will be discussed in detail in Chapters 2 and 3. 

A low water solubility also poses problems to the microbial population, especially if 

low concentrations of pollutant have to be removed from air. Microorganisms, that 

are present in the water phase, then experience a very low concentration of 

substrate and their activity is limited. This aspect is elaborated on in Chapter 5. 

A second obstacle for biological waste gas treatment can be lack of 

biodegradability. Some chlorinated organic pollutants, for example, can not be 

degraded aerobically and consequently their removal from air (~ 20% oxygen) is 

difficult. Other chlorinated hydrocarbons can be degraded under aerobic 

conditions, but only cometabolically. Their removal requires the addition of a 

second substrate for microbial growth (7). 

The third aspect that can be problematic in biological waste gas treatment is 

toxicity. High concentrations of a pollutant occuring occasionally in the waste gas, 

can be toxic to the microbial population. High concentrations of intermediates 

formed by biological degradation can have adverse effects as well; Devinny and 

Hodge (5) described the accumulation of acidic intermediates in a biofilter that 

was overloaded with ethanol. Not only high concentrations are problematic. Low 

concentrations of pollutants may cause toxicity problems as well. Intermediates of 

aerobic trichloroethene biodegradation, for example, are known to have 

deleterious effects on the microorganisms degrading trichloroethene (10, 13). 

Moreover, mineral end-products accumulating in a bioreactor can gradually 

poison the biomass. 

Concluding it can be said the removal of pollutants from air can be hampered by 

a poor water solubility, by lack of biodegradability and by toxicity. This thesis 

focusses mainly on the first aspect, while in Chapter 6 the other aspects are 

considered as well. 
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Pollutants studied In this work 

The major part of this thesis deals with the removal of the poorly soluble 

hydrocarbon propene from air and in Chapter 6 the degradation of a second 

pollutant, trichloroethene, is discussed. 

Propene is difficult to remove from air because of its poor water solubility; In 1 liter of 

water there is 10 times less propene than in 1 liter of air (at equilibrium at 30° C) 

(Chapter 3). Before propene can be degraded by microorganisms, it has to be 

transferred to the liquid phase and limitation of the reaction by mass transfer to the 

liquid is likely to occur. Therefore propene is a suitable model substrate to test the 

mass transfer properties of a bioreactor for waste gas treatment. 

Propene (C3H6 ) is an unsaturated hydrocarbon and predominantly enters the 

atmosphere due to human activities, although biological production from soil has 

been reported (11). It is used for the production of fabricated polymers, fibres, and 

solvents and in the production of plastic products and resins. Its carcinogeneity is 

questionable (16). According to the Dutch emission standards propene has to be 

reduced to a concentration lower than 150 mg m"3 (90 ppm) if the total mass flow is 

more than 3 kg hr"1 (24). 

Trichloroethene (TCE) is a suspected carcinogen (16) and has been widely used as 

solvent and degreasing agent. Although its use had decreased, the annual 

production and emission in 1992 was still 197,000 (± 10,000) metric tonnes (17). TCE is 

a widely distributed pollutant of groundwater and soil. Treatment of contaminated 

sites by air stripping or vapour extraction results in contaminated gas streams. 

Biodegradation may be an attractive alternative to physical-chemical treatment of 

these gas streams, such as adsorption on activated carbon (23). In the Netherlands 

TCE in off-gas has to be reduced to a concentration lower than 100 mg m 3 if the 

total mass flow is larger than 2 kg hr*' (24). 

Under aerobic conditions TCE can only be degraded cometabolically and its 

degradation results in inactivation of the biomass (7). Therefore, a constant supply 

of growth substrate is required to maintain the microbial population. If growth 

substrates and TCE are supplied simultaneously in the bioreactor, competition 

between the two substrates for the monooxygenase will occur and the TCE 

degradation rate can decrease dramatically (7). Moreover, the use of large 

amounts of volatile growth substrate required for biomass growth (see Chapter 6) 

might induce an additional source of air pollution. Therefore, the waste gas 

containing TCE and the growth substrate should be kept apart. This can be 
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achieved in specially designed membrane reactors in which the growth substrate is 

supplied in a closed loop. Several aspects of continuous TCE degradation and the 

potential of membrane bioreactors for removal of this recalcitrant compound from 

air, are discussed in the Chapters 2, 6 and 7. 

Xanthobacter Py2 

Both propene and TCE can be degraded by the same microorganism, the yellow 

bacterium Xanthobacter Py2, which was isolated with propene as the sole source 

of carbon and energy (26). The biodegradation of propene by Xanthobacter Py2 

has been studied extensively by several groups focussing on the physiology (1, 29) 

and the genetics (25, 30) of the first two steps in the degradation pathway. The first 

step in the degradation of propene (Figure 3) is an oxidation to propene oxide and 

is performed by a propene monooxygenase (26). Eventually propene is oxidized to 

C 0 2 and H20 or incorporated into new biomass. Due to the aspecificity of the 

propene monooxygenase (Figure 3), Xanthobacter Py2 is also able to degrade 

trichloroethene co-metabolically (8). 

c=cv 
\\ CH3 

propene 

monooxygenase 
HvVH 

H CH3 

propene oxide 

H CI 

X 
c r CI 

TCE 

monooxygenase 
Hs A P 

cr ci 

TCE epoxide 

Figure 3. First step in the degradation of propene and trichloroethene by Xanthobacter Py2 

Outline of this thesis 

For the removal of poorly soluble pollutants from air, a bioreactor with a 

microporous hydrophobic membrane was designed and tested. Chapter 2 

describes this type of reactor and gives an overview of literature concerning gas-
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liquid processes in which membranes have been used. In Chapter 3 the mass 

transfer properties of the membrane bioreactor were tested with the poorly soluble 

model pollutant propene. Long-term stability of propene removal in hollow fibre 

membrane bioreactors and the effect of the nitrogen supply are discussed in 

Chapter 4. Chapter 5 deals with the kinetics of propene degradation, with growth 

at very low substrate concentrations and with the operation of a membrane 

bioreactor at concentrations required in off-gas treatment. Cometabolic 

degradation of trichloroethene and the problems associated with its toxicity, are 

described in Chapter 6. Finally, in Chapter 7 the potential applications of 

membrane bioreactors for the removal of recalcitrant pollutants are discussed. 
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CHAPTER 2 

Membrane bioreactors for waste gas treatment 

Martine W. Reij, Jos T.F. Keurentjes, and Sybe Hartmans 

Summary: This review describes the recent development of membrane reactors for 

biological treatment of waste gases. In such a bioreactor gaseous pollutants are 

transferred through a membrane to the liquid phase, where microorganisms degrade 

the pollutants. The membrane bioreactor combines the advantages of membrane 

devices with the clean technology of biological air purification. 

Two types of membrane materials can be used for gas-liquid contact: hydrophobic 

microporous material and dense material, such as silicone rubber. Microporous 

material generally has a higher permeability, but dense membranes can be 

advantageous in the case specific selectivity is required. 

Biomass is generally present as a biofilm on the membrane, but may also be 

suspended in the liquid phase. In a number of cases the reactor performance appears 

to be hampered by an unstable biofilm performance and/or by clogging of the liquid 

channels due to excessive biomass formation. So far, membrane bioreactors for 

biofiltration have only been tested on lab-scale. If the long-term stability of these 

reactors can be demonstrated, we expect membrane bioreactors to be useful tools 

in the treatment of gas streams containing poorly water-soluble pollutants and highly 

chlorinated hydrocarbons, which are difficult to treat with the conventional methods 

for biofiltration. 
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Introduction 

The application of membranes has been proposed for a variety of purposes in waste 

management, as there are the separation of solids, biomass retention, aeration of 

bioreactors, and extraction of pollutants from wastewater. These processes were 

recently reviewed by Brindle and Stephenson (10). Here, however, we will focus 

exclusively on the removal of pollutants from air and the subsequent biodegradation 

in membrane reactors. 

In bioreactors for waste gas treatment, organic pollutants diffuse into the liquid phase, 

where microorganisms degrade the pollutants into harmless products like C02 , H20 

and minerals. Membrane bioreactors were designed as an alternative for 

conventional types of bioreactors for waste gas treatment, like the compost biofilter. 

An advantage of the membrane bioreactor over the biofilter is the presence of a 

discrete water phase allowing optimal humidification of the biomass and removal of 

degradation products, thus avoiding inactivation of the biomass. 

gas 
phase 

o0 

organic -
pollutants 

liquid 
phase 

water 

nutrients 
(N, S, R etc.) 

membrane biofilm 

Figure 1. Schematic view of a membrane bioreactor for waste gas treatment containing a 
microporous hydrophobic membrane, a biofilm and suspended cells. 



Membrane bioreactors 

In a membrane bioreactor for waste gas treatment (Figure 1) the membrane serves 

as the interface between the gas phase and the liquid phase. The gas-liquid interface 

that can thus be created e.g. in hollow fibre reactors is larger than in other types of 

gas-liquid contactors (39). Moreover, membrane reactors do not contain moving parts, 

are easy to scale up, and the flows of gas and liquid can be varied independently 

without the problems of flooding, loading, or foaming commonly encountered in 

bubble columns (35). 

In this review we describe a new type of gas-liquid contactor, in which the excellent 

mass transfer properties of membrane devices are combined with the clean 

technology of biological air purification. Based on a critical evaluation of these 

systems, the potential application niches will be defined. 

Theory 

Biological waste gas treatment can be described as an extraction of the gas phase 

with water, followed by consumption of the biodegradable components. The flux of 

a volatile component over the membrane in such a gas-liquid extractor is: 

J = K, x A x ( C 0 / m - C , ) (Eq. 1) 

in which J = flux through the membrane [mol s"1] 

K, = overall mass transfer coefficient based on 

concentrations in the liquid phase [m s"1] 

A = membrane surface area [m2] 

C0,C, = concentrations in the gas and liquid phases [mol m •31 

m = air/water partition coefficient [-] 

(concn. in gas [mol m"3] / concn. in water [mol m"3]) 

The concentration difference between the gas phase and the liquid phase provides 

the driving force for diffusive transport across the membrane. A pressure difference is 

not applied. The driving force depends strongly on the air-water partition coefficient 

(m) of the diffusing volatile. For components with a high partition coefficient (high m) 

the driving force for mass transfer is small. The concentration in the liquid (C,), which 

depends on the biodegrading activity of the microbial population, also affects the 

driving force. The surface of the membrane (A) forms the contact area. 
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Two types of material have been used to prevent mixing of the gas and liquid phases 

and simultaneously allow the transfer of volatile components: hydrophobic 

microporous material and dense material. The properties of both types of membrane 

and the mechanisms involved, are discussed in the next two paragraphs. 

Microporous membranes 

Hydrophobic microporous membranes (Figure 2A) consist of a polymer matrix of e.g. 

polypropylene or teflon and contain pores with a diameter in the range of 0.01 -1.0 Mm. 

Since the membrane material is hydrophobic, the pores are filled with gas. Water does 

not enter the pores, unless a certain critical pressure at the liquid side is exceeded. For 

cylindrical pores this critical pressure (AP) is: 

AP= ( 2 Y C O S 9 ) / R (Eq.2) 

in which y = interfacial tension between gas and liquid [N m"'] 

8 = contact angle with polymer surface [deg] 

R = pore radius [m] 

The overall mass transfer resistance [1/KJ for gas-liquid transfer is a combination of 

several resistances in series and for a gas-filled microporous membrane it is defined by: 

1 
+ (Eq.3) 

k0*m km*m 

in which kg = mass transfer coefficient in gas phase [m s'] 

km = mass transfer coefficient in membrane [m s"'] 

k, = mass transfer coefficient in water phase [m s'] 

Both k, and kg depend on the flow rates in the individual phases but the liquid phase 

coefficient (k,) also depends on the reaction rate. The mass transfer coefficient inside 

the membrane can be calculated as follows: 

(Eq. 4) 
D * e 

6 * T 

in which D 

S 

= diffusion coefficient 

= membrane thickness [ml 
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e = porosity of the m e m b r a n e 

T = tortuosity of the m e m b r a n e 

[ ] 

The porosity is the fraction of pores in the membrane a n d the tortuosity is a measure for 

t he shape of those pores. If the pores a re la rge enough , interact ion wi th the 

m e m b r a n e mater ia l may b e neg lec ted a n d the diffusion coef f ic ient in such a 

membrane (D) is equa l to the diffusion coefficient in air (Dg). As soon as km /D0 has been 

determined for one or more volatiles, the resistance of that m e m b r a n e for any vo lat i le 

c a n b e ca lcu la ted using D0. If interaction c a n not b e neg lec ted , a n e f fect ive diffusion 

coeff ic ient has to b e c a l c u l a t e d (23). 
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Figure 2. Membrane materials for gas-liquid contact: (A and C) hydrophobic microporous 

material and (B and D) dense material. C and D represent concentration profiles of a volatile 

diffusing from the gas phase across the membrane to the liquid phase, where it is consumed. 

Not on scale. 
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Dens* membranes 

In case of transport through a dense membrane, the diffusing volatile is absorbed in 

the membrane material and diffusion takes place in the dense polymer (Figure 2B). The 

overall mass transfer coefficient for gas-liquid transfer is: 

1 1 1 1 
= + + (Eq.5) 

kg*™ km k, 

The mass transfer coe f f i c ien t inside dense m e m b r a n e (km) d e p e n d s on b o t h t he 

solubility and the diffusivity of a volatile in the dense matrix (13), according t o : 

k m = P / 5 = S m * D m / o (Eq.6) 

in which P = permeability of dense membrane [m2 s"1] 

S m = solubility [-] 

Dm = diffusion coefficient in the membrane [m2 s"'] 

The solubility is the concentration in the membrane (in mol m3) divided by the 

equilibrium concentration in the water phase (in mol m"3). For each volatile the 

solubility and diffusivity are different and the mass transfer resistances of dense 

membranes for various gases may differ considerably due to specific interactions 

between the components in the gas phase and the membrane material. As a 

consequence, selected components can be selectively extracted from or retained in 

the gas phase by a proper choice of the membrane material. 

Gas-liquid contactors 

Both microporous and dense membranes have been used for a variety of processes 

that involve gas-liquid contact. Microporous material is generally applied in hollow 

fibres, although spiral-wound and plate-and-frame modules have also been used (35, 

38). Microporous membranes can be applied as gas-liquid contactors when selectivity 

is not required and only provide gas-liquid contact area. 

Dense material is available as tubes (usually silicone tubing), with a wall-thickness of 

at least several hundreds of micrometers, and in composite membranes. Composite 

membranes consist of a thin, selective toplayer (< 1 um to 30 Mm) of dense material. 
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supported by a highly porous support layer of e.g. non-woven polyester or a 

microfiltration membrane. Composite membranes can be applied in spiral-wound, 

plate-and-frame and in hollow-fibre modules (29). 

Examples of the application of both microporous and dense membranes as gas-liquid 

contactors are given in the next two paragraphs. It should be noted that the list of 

examples is by no means complete. 

Gas-liquid contactors with microporous membranes 

Microporous membranes were first used in blood-oxygenation. Blood flows on one side 

of the membrane and air or pure oxygen flows on the other side. In this way oxygen is 

supplied to and carbon dioxide is removed from the blood during surgery (15, 35). 

Other applications of membrane reactors for oxygen transport are the cultivation of 

shear-sensitive cells (5, 37), fermentors with a high oxygen demand (6), and reactors 

for wastewater treatment (for a review see [10]). On the other hand, hollow-fibre 

contactors were also tested as artificial gills, by which dissolved oxygen could be 

removed from water and small animals could breathe under water (39,40). 

Microporous fibres were also applied in gas-absorption. During (non-biological) gas-

absorption the contaminants, such as sulphur dioxide or ammonia, are transported 

through the membrane, dissolve in the liquid phase and disappear quickly by 

chemical reaction (20, 28). Membrane reactors provide a larger surface area per 

volume than conventional gas-liquid contactors and consequently allow higher 

removal rates. A ten-fold increase in efficiency was observed when using a hollow-fibre 

device over conventional packed columns (39). 

Gas-liquid contactors with dense membranes 

Dense membranes have been tested primarily for aeration purposes. Of the various 

types of dense material, silicone rubber (polydimethylsiloxane, PDMS) was found to 

have the highest oxygen permeability (13) and this material was used for the aeration 

of wastewater (10). 

For wastewater oxygenation dense hollow fibres were preferred over microporous 

material since oxygen can be supplied at elevated pressure, thus increasing the 

driving force for mass transfer (11). With microporous membrane the pressure of the gas 

phase can not be increased, because gas bubbles will appear in the liquid. For waste 

gas treatment, however, increasing the gas phase pressure is not relevant. 
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Other gas-phase components than oxygen can be transported through dense 

membranes as well. Pervaporation is widely used for the selective transfer of volatile 

components from a mixture to the gas phase. Depending on the properties of the 

component to be transported, a suitable polymer can be selected (7,36). Using 

selected polymers, solvents were extracted from aqueous solutions (9,25). 

Finally, dense membranes were tested for gas absorption. Acetone was recovered 

selectively from air streams using a composite membrane consisting of a thin layer of 

PDMS in a polysulfone hollow-fibre carrier (22). 

Applications in biological waste gas treatment 

In addition to non-biological gas absorption, membrane contactors have recently 

been tested for biological treatment of gas streams. In such a process the pollutants 

diffuse through the membrane and are degraded by the microbial population present 

in the liquid phase (Figure 1). An overview of publications on this subject is shown in 

Table 1. 

In general, the biomass is supplied with carbon and oxygen from the gas phase, while 

water and mineral nutrients are supplied by the liquid phase. Microorganisms grow as 

a biofilm on the membrane, but may also be suspended in the liquid phase. Figure 3 

shows such a biofilm, grown on a microporous hydrophobic membrane. 

Most studies mentioned in Table 1 concern the removal of hydrophobic pollutants from 

air. Hydrophobic pollutants, like xylene, toluene, hexane, and propene, have a high 

air-water partition coefficient (m). As can be seen in equation 1, the driving force for 

the transfer of these pollutants to the water phase is very small and as a consequence 

the biodegradation is limited by mass transfer and the design of the bioreactor is 

critical. The large gas-liquid interface and excellent mass transfer properties of 

membrane reactors (20, 39) have inspired several workers to test membrane 

bioreactors for the removal of poorly water soluble pollutants from air (4,17,32,34). 

The membrane materials used in several studies, were chosen such, that they were 

impermeable to microorganisms (16,17). As a consequence, these organisms can not 

contaminate the gas phase. This precaution is considered to be important in case the 

membrane bioreactor is applied for the treatment of indoor air. For the same reason 

the membrane bioreactor was also selected for even more demanding conditions, 

such as in the manned space cabin (8). 



i _ ! 

d> 
XJ 
k_ 
O 
D 
(J 
•c 
O 
.*" sz 
c 

c 
d> 
E 
O 
<D 
i . 

t o 

D 
o» jU 
t o 
D 
S 
D 
O 
CD 
O 
O 
x> 
i _ 

o 
£ 
O 
O 
O 
2 
o X, 
0) 
c 

2 Xl 
E 
d) 
5 

* 
• 
O 
i -

0) 

S -9 
II 0) c 
ac 

c 
o 
3 

o o c 

E 
!i= 
O 
co 

>-
a Q.^, 
3 2 
to 3 

• £ . ? 
0) — 

•c .£ 
"5 z 

a> c 
«•— := o S 
a> x i 
Q- E 
^ | 

£ 

C ^~-
o E C Q. 

,°, ^ u — 

a> .!= 
X) o 
2 E 

c *^ 
3 X> o 0) 
a > 
o t 
u 8 

EE N E 
CO d) d) _ <D 

o 

"•g * 3 

8>£ E 

o 
Wl 

D 
c o 
E 
* 
3 0) 
t o 

a. 

_ 
CM 

5 
Q 
c 

t o 

o 
V ) 

D 
c o 
E 
o 
3 
0> 
t o 

CL 

<N 

5 
Q 
c 
2 

d) 

D 
XI 
O 

a> ^ 

V I 
C 

2 
•*-
to 
vt 
3 

o 
•c 0 
> 

o 
D 
£> 
O 

c 

5 

CM r^ 
CO CM 

CM >-a. 

O 
O 
-Q 
O 
£ 
c 

5 

d> o 
XI 
3 

t o t o ,-> 

£12 I 

S E E E E E E 2 E 
o ) o j ( b o ) d > a > a > o>< i> 

E ~ ~ E "" E ~ E ~ 

ai XI 

5 E E 
g«S o ~ ~ o 

, 01 

2. E 
"> 0) 

D - T5 

5 ~ 

H) 
5 E 
w Q) • - • o 

5 -
X 

o o 
•"* CO 

66 
co • * 

o 
a> o c — 0) 3 

- ^ CD 
> • i 

X c 

o 
CM 
CM 

i 

o 
•o 

<D 
c 
O 

sz 
0) 
E 
2 
o 
sz 
u b 

o CM 

0) 
c 
d) 
3 

o 
1 — 

1 ^ 
- * • 

d) 
c 
O 

SZ 

4) 
E 
2 
0 

- C 

u b 

-o l O 

0) 
c 
d) 
3 

o 
I— 

o-
-o 

d) 
c 
D 
.c 

a> E 
2 
o 

sz 
o b 

d> n 
5 £ 
. * 0) 
d> J 
o 
o 

CM 

a . 
>_ 
3L 
o 
D 
XI 
O 

£ 

5 

d) d> d> d) d) a) >- >~ >- >~ >~ >~ 

2 
d> 
c 
E 
CO 

o 
sz 0 
O 

o 

d) 

.c 
V) x 

t o 

D 
d> 
c 
E 

"5 
d> 
t o 

5 
X 

t o 

O 
0) 
c 
"E 

T3 
c 
3 o 

2 
'a t o 

d) 
C o u 

t o 

D 
d) 
c 
'£ 

"5 
0) 

JZ t o 

5 
X 

2 
d> 
c 
'£ 
d> 
o 
o 
D 

S2 
d) 

XI 

d> 
c 
o 
"5 
t o 

>~ 
o 
a 

t o 

D 
d) 
c 
"E 

to 
d) 

"~ 
5 
X 

CM CM 
CO CO 

d) 

CD ^ i 
§ 1 

d> 
c 
D 
si 
% 
2 o 
y 
b 

d> 
c 
d) 
Q . 
O 

d) 
c 
d) 

sz 

O 
JZ 
u 

* D 
•£Z 
0 
o 
E 
in 

2 o a o 
u 
'E 
n 
5 
"o 
•c 
-2 "5 
E 
o 

X) 

o f ~ 

2 
XI 
SI 

II 
X 

to 

D 
X) 

>- -<t 
O i -

•n d) 

c 
D 

si 
t o 

id X) 
£ 
J2 
t o 

d> 
E 
d) 
a 
,2 

0 

d> 

z d) 
to 
XI 
o 
D) 
c 

D) 
o 

d) 
> d) 

00 

c 
O 
D 

XI 
D 
£ 
a> d> 

XI 
t o 
3 

o d) 
c 
D 

3 
E 
v> 
k_ 

o M — 

XI 
d) 
c 
.S> * t o 

d> 
X) 
t o 

D 
* 
XI 
c 
D 
c 
E 
= di 
O 22 
O D 

i a 
O to 
XI D 
3 a> 

XI o) 
D £ 
' E 
D 2 
l _ " -

0 42 

o> .s 
b E 
5 5 
2 § 
2 ° 
ha 
E Q.X1 
o 2 2 
* . XI 0) O >- D 

O XI D 
*= c *-D D Q-
C , , d) 
2 = •" 
c >• S3 t J : D 
0 Q. $ 
o o ^ I-I i ® 
to > - D 

T -C -C 
O sz O. 
U O 5 
? -0 ?r d) » - CT 

CE 0 J 



20 Chapter 2 

In general, the pollutants diffusing through the membrane serve as carbon sources for 

the microbial population. However, Hinzet al. (19) removed nitrogen monoxide from 

tunnel air and supplied the carbon source for the microbial population in the liquid 

phase. 

Air containing chlorinated solvents was treated in membrane reactors as well. Freitas 

dos Santos et al. (16) tested a reactor with silicone tubes to remove 1,2-dichloroethane 

from air. For the destruction of trichloroethene (TCE) Parvatiyar et al. (27)designed a 

new concept of a membrane bioreactor in which both an aerobic and an anaerobic 

region were present. In the anaerobic zone TCE is partially dechlorinated and the 

products are supposedly degraded further in the aerobic zone of the biofilm (Fig. 4). 

The membrane may also provide protection for the microbial population. During the 

removal of nitrogen monoxide, the microbial population was protected by the 

membrane from heavy metals present in the air contaminated by vehicle exhaust 

gases (19). In a second example, silicone membranes due to their selectivity for 

hydrophobic components, retained acid vapors (S02) that could hamper 

biodegradation of 1,2-dichloroethane (16). 

Dense membranes may also serve as a buffer, in case the supply of pollutants is 

variable. It should be noted, however, that due to simple thermodynamics, the 

equilibrium concentration in the water phase will never change upon the insertion of 

any type of membrane between the gas phase and the water phase. 

All studies mentioned in Table 1 concern laboratory scale experiments. No reports have 

been found so far on pilot-plant investigations or full-scale applications of membrane 

reactors in biological waste gas treatment. 

Comparison with conventional bioreactors for waste gas treatment 

Membrane bioreactors were designed as an alternative for conventional types of 

bioreactors for waste gas treatment, like the biofilter, the trickle-bed reactor and the 

bioscrubber. 

A biofilter usually consists of a bed of compost through which waste gas is blown. 

Microorganisms present in the compost degrade the organic pollutants in the gas. To 

prevent dehydration of the biofilter, the waste gas has to be prehumidified. Treatment 

of gases containing chlorinated pollutants, sulphur compounds or ammonia, results in 

the accumulation of chloride, sulphate, or nitrate ions and causes acidification of the 
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biofilter. Acidification can to a certain extent be prevented by the addition of a 

buffering agent, e.g. lime, but large amounts of mineral end-products can not be 

neutralized in nor removed from a biofilter. An advantage of the membrane 

bioreactor over the compost biofilter is the presence of a discrete water phase. Due 

to this water phase toxic end-products can be removed from the reactor, and the 

humidity, the temperature, and the nutrient supply can be controlled closely and 

independently from the gas flow. 

Two other types of bioreactors used for waste gas treatment are the trickle-bed 

bioreactor and the bioscrubber. Both reactors consist of a packed bed of inert 

material on which water is continuously sprayed. In the trickle-bed reactor micro­

organisms are present on the packed bed, while in the bioscrubber biodegradation 

is mainly located in a separate tank. Just like in the membrane bioreactor the 

conditions in these bioreactors can be controlled and end-products can be removed 

by means of the discrete water phase. However, the location of the water film with 

respect to the biomass, differs. In the trickle-bed reactor and in the bioscrubber 

pollutants have to diffuse through the water phase, before they can be consumed by 

the microorganisms. For pollutants with a poor water-solubility (large m), such a layer 

of water causes a substantial additional resistance for mass transfer (14). In the 

membrane bioreactor, on the contrary, the liquid phase is situated at the opposite side 

of the biofilm and hardly forms a barrier for mass transfer of the poorly water soluble 

pollutants (Figure 1). 

As mentioned before, large gas-liquid interfaces of 1000 to 10,000 m2 m"3 can be 

created in hollow-fibre reactors (29), allowing high mass transfer rates. The pressure 

drop in the gas phase is much lower than observed in biofilters, where the pressure 

drop may become significant (26). 

Disadvantages of membrane bioreactors are the high investment costs, particularly 

compared to biofilters, and possible clogging of the liquid channels due the formation 

of excess biomass (33). Compared to other types of bioreactors, the membrane may 

form an additional barrier for mass transfer (equations 3 and 5). However, as will be 

shown in the next section, the mass transfer resistance of the membrane is often 

negligible. 
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Membrane resistance 

The resistance of both silicone membranes and microporous hydrophobic materials for 

various volatiles are shown in Table 2. For silicone membrane material the data were 

taken from various sources in literature and for microporous membrane the value of 

km/D0 was used as determined by Reij et al. (32) for microporous polypropylene with 

a porosity of 70%-75%. For both types of membrane a thickness of 100 urn was 

assumed. 

The resistance depends largely on the gas-liquid partition coefficient (m) of the 

diffusing volatile: a poor water solubility (large m) implies a small relative resistance in 

the membrane. From this table it can be concluded that the resistance of microporous 

membrane is 10 to 150 times smaller than the resistance of silicone membrane of the 

same thickness. 

It should be noted that the mass transfer coefficient in a membrane is reciprocal with 

its thickness. For microporous membrane a thickness of 100 um, as calculated in Table 

2, is quite relevant, because the thickness of microporous fibres and flat membrane is 

usually in the range of 30 to 100 um ( 23,38,39). For dense material, however, 100 um 

is not always relevant. Silicone tubes have a wall thickness of 150 um up to 1 mm (3, 

12,34) and the mass transfer coefficient of such tubes will be considerably smaller than 

the values mentioned in Table 2, thus making the resistance to mass transfer even more 

important. 

On the other hand, when a composite material is used, a very thin layer (< 1 um to 30 

um) of dense material is sufficient and the resistance of the dense layer can be 

reduced significantly. However, when using composite material the mass transfer 

characteristics of the backing material and its location should be considered as well. 

The backing may attribute to the mass transfer resistance, especially when located at 

the liquid side of the membrane. Moreover, the backing may get fouled with biofilm 

material. Therefore, when using composite membranes, the backing should preferably 

be located at the gas-side. 

To examine the importance of the membrane resistance, the membrane resistance 

should be compared to the resistance in the liquid phase. The liquid phase coefficients 

(kj in well-mixed bioreactors like bubble columns and stirred tanks, are in the range of 

5 x 10"5to 5 x 10"4 m s"' (21). In the membrane bioreactor mixing is less intensive than in 

the bioreactors tested by Kawase et al. (21), but on the other hand (bio)chemical 

reaction in the liquid phase enhances the k, significantly. 
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From the comparison of the values in Table 2 with the liquid coefficients by Kawase et 

a l . (21), it can be estimated that 100 um dense silicone membrane may form a 

significant resistance for any volatile. The resistance of 100 \irc\ microporous membrane 

seems only significant for volatiles with a high water solubility (m < * 0.05), or in case the 

volatile is consumed very rapidly in the liquid phase. 

Literature on non-biological gas absorption corroborates this estimation. Yang and 

Cussler (39) studied the absorption of carbon dioxide (m = 1.2) and oxygen (m = 32) in 

water and concluded that the resistance of microporous hollow-fibres (5 = 30 pm) for 

the transfer of both compounds could be neglected, unless the mass transfer in the 

liquid phase was accelerated by chemical reaction and/or by extremely fast liquid 

flow. The absorption of ammonia, which has a very good water solubility (m = 0.0025), 

was indeed limited by the mass transfer resistance in the membrane (28). 

Figure 3. Photograph of a biofilm grown with methanol and toluene on microporous 
hydrophobic membrane. The arrow indicates the interface between the membrane (right) 
and the biofilm (leff).lhe sample was frozen in liquid propane, fractured at -130°C, etched at 
-80°C for 5 minutes, sputtered with 5 to 10 nm of platina and observed at -170°C in a Low 
Temperature Emission SEM (JEOL 6300 F) at 5 kV. Bar = 1 pm. 
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Microbial growth in membrane bioreactors 

Irrespective of the membrane resistance, the driving force for mass transfer depends 

on the concentration to which the pollutant is reduced in the liquid phase. Therefore, 

the removal rate in a membrane bioreactor depends largely on the activity of the 

microbial population. 

As can be seen in Table 1, in most studies biofilm formation was observed or was even 

essential (34). Both mixed cultures and pure cultures formed biofilms. The hydrophobic 

nature of both microporous and silicone membranes facilitates microbial adhesion. 

The microorganisms located close to the membrane are exposed to higher substrate 

concentrations than suspended cells, making it more likely that cell growth occurs 

close to the membrane. 

Biofilm growth may cause serious problems if excess biomass can not be removed. 

Freitas dos Santos et al . (16)attributed the decreasing reactor performance and the 

increasing pressure drop over the liquid phase to extensive biofilm formation in the 

spiral-wound membrane module. Hinz et ai. (19) observed slime formation on a 

membrane with a high oxygen permeability. The slime resulted in clogging of the 

reactor. This problem was not observed when membranes with a low oxygen 

permeability were used. Clogging of hollow fibres with a biofilm of propene-degrading 

Xanthobacter could be prevented by applying a very high liquid velocity, but still the 

reactor performance decreased over a period of 3 to 6 months. These results suggest 

that, even if clogging is prevented, biofilms are prone to aging (33). 

No biofilm was observed during the degradation of dichloromethane (3). A biofilm 

growing with the same pollutant sheared of the membrane a f te r ! 4 days, causing a 

drop in reactor performance (31). The reason for both observations might be that 

hydrochloric acid, produced during the degradation of dichloromethane, 

accumulates in the biofilm to toxic levels and destabilizes the biofilm. 

Aziz et al. (2) purposely repressed biofilm formation in a membrane reactor for 

wastewater treatment by the addition of a sequestering agent. This membrane reactor 

was part of a two-stage bioreactor, in which methanotrophs were circulated. In the 

membrane reactor the methanotrophs cometabolically degraded trichloroethylene 

(TCE) and in a separate reactor growth substrate was supplied, since TCE itself does 

not support microbial growth. Such a two stage process may also be used for the 

removal of TCE from waste gas. 
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A completely new strategy for the removal of TCE from air was designed by Parvatiyar 

et a l . (27). In their membrane bioreactor acetate is added to the liquid phase as 

carbon source and as electron donor to lower the oxygen tension in the biofilm. Under 

the anoxic conditions that are created in this way, TCE can be partially dechlorinated. 

Subsequently the products of the anaerobic dechlorination are degraded further in 

the aerobic zone of the biofilm (Figure 4). Their work, however, does not contain 

experimental evidence that both the oxic and the anoxic zone are present, but it is the 

first report on the continuous removal of TCE from air in the absence of volatile growth 

substrates. 

BIOFILM 

AEROBIC ANAEROBIC 
•4 X 

diffusion 
of TCE 

diffusion 
of oxygen 
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TCE degradation 
products 

nutrients 
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Figure 4. Combined aerobic and anaerobic degradation of TCE, showing the diffusion patterns 
of oxygen, TCE, and TCE degradation products. Reproduced from Parvatiyar et al. (27). 
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Outlook and conclusions 

All studies presented in this review are lab-scale studies. By their modular nature, 

membrane modules are relatively easy to scale up (20), but before full-scale 

membrane modules can be applied in waste gas treatment, the long-term 

performance should be tested extensively. 

The effects of biomass on the membrane material in the long run have not been tested 

sufficiently. During prolonged operation the pores of hydrophobic microporous 

membranes might be penetrated by biomass and/or water. To prevent penetration 

of the membrane pores, a thin coating of dense material could be applied on the 

liquid side of a porous membrane. Such composite membranes have been used in 

blood oxygenation to suppress blood-trauma and prevent the pores from filling with 

liquid and cell debris (35). 

In addition to the durability of the membrane material, the stability of the biomass is 

essential as well. The formation of thick biofilms (16) and clogging of the liquid channels 

(19,33) were shown to deteriorate the reactor performance. Even when clogging was 

prevented by a very fast liquid flow, the performance of hollow-fibre modules 

decreased in time (33). Therefore, strategies have to be developed to monitor the 

biofilm, to stabilize its activity, and to remove excess biomass from the membrane 

modules. 

In the authors' opinion the removal of poorly water-soluble pollutants from air can be 

considered to be the most promising application for membrane bioreactors. The mass 

transfer resistance of membranes for this group of pollutants is negligible. Moreover, the 

large gas-liquid interface of membrane modules enables efficient removal of these 

pollutants, that in general are difficult to remove from air. 

Other niches for the application of membrane bioreactors are indoor applications and 

the removal of pollutants that require a specific microbial population, like TCE and 

nitrogen monoxide. Very recently, a membrane bioreactor with both an anaerobic 

and an aerobic zone was proposed (27). Such a bioreactor might enable the 

biodegradation of pollutants, such as highly chlorinated hydrocarbons, that until now 

are considered to be beyond the reach of (aerobic) biological waste gas treatment. 
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CHAPTER 3 

Membrane bioreactor with porous hydro­

phobic membrane as gas-liquid contactor 

for waste gas treatment 

Martine W. Reij, Kees D. de Gooijer, Jan A.M. de Bont, and 

Sybe Hartmans 

Summary: A novel type of bioreactor for waste gas treatment has been designed. 

The reactor contains a microporous hydrophobic membrane to create a large 

interface between the waste gas and the aqueous phase. To test the new reactor 

propene was chosen because of its high air/water partition coefficient, which 

causes a low water concentration and hampers its removal from air. Propene 

transfer from air to a suspension of propene-utiliang Xanfhobacfer Py2 cells in the 

membrane bioreactor proved to be controlled by mass transfer in the liquid phase. 

The resistance of the membrane was negligible. Simulated propene transfer rates 

agreed well with the experimental data. A stable biofilm of Xanthobacter Py2 

developed on the membrane during prolonged operation. The propene flux into 

the biofilm was 1 * 10" mol m"2s"' at a propene concentration of 9.3 xlO"2 mol m"3 

in the gas phase. 

Biotechnology and Bioengineering (1995) 45: 105-115. 
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INTRODUCTION 

Microporous hydrophobic membranes consist of a porous matrix in which gas is 

present. Water does not enter the pores unless a critical pressure is exceeded. 

Several applications of this type of membrane as gas-liquid contactor have been 

described and have recently been reviewed by Sirkar (22). Microporous 

hydrophobic membranes have been studied for the aeration of liquids e.g. for 

blood oxygenation (8), bubble-free aeration of shear-sensitive cell cultures (23) and 

fermentor aeration at high oxygen demand (1, 2, 5, 13). Yang and Cussler (29) used 

hollow fibre contactors for the de-aeration of water in an attempt to design artificial 

gills. A third application is the absorption of C0 2 and other volatiles in liquids (12, 15, 

19,20). 

Here we describe a new application for microporous hydrophobic membranes: 

biological waste gas treatment. In Figure 1 a schematic view of the membrane 

bioreactor (MBR) for waste gas treatment is shown. Organic pollutants in air diffuse 

through the membrane into the water phase, where they can be degraded by 

microorganisms. Microorganisms can also grow on the membrane forming a biofilm. 

They are supplied with organic carbon and oxygen from the gas phase and with 

water and minerals from the liquid phase. 

The MBR has several advantages for waste gas treatment: A large gas-liquid 

interface can be obtained in membrane reactors and the gas pressure drop over 

the reactor is much lower than observed in biofilters, commonly used for biological 

waste gas treatment (18). A second advantage over biofilters is the presence of a 

discrete water phase in the MBR allowing the removal of toxic degradation 

products. An example of a toxic product is hydrochloric acid, produced during the 

degradation of chlorinated hydrocarbons, which causes acidification in biofilters 

(18). 

Other types of membrane bioreactors have been proposed for the removal of 

hydrophobic contaminants from waste gas (3) and wastewater (6, 16, 17). In these 

cases, dense silicon membranes were used. Dense membranes have a higher mass 

transfer resistance than microporous hydrophobic membranes (1) because the 

contaminants have to dissolve in the membrane material and diffuse through this 

material, while in the porous membranes diffusion is in air. Therefore, we have 

chosen microporous hydrophobic membrane material for our bioreactor for waste 

gas treatment and in a preliminary study we have selected a polypropylene 

membrane material (11). 
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Figure 1. Principle of the membrane bioreactor for waste gas treatment. 

In this study the performance of the membrane reactor was studied with propene 

and Xanthobacter Py2, which can grow aerobically with propene as sole source of 

carbon and energy, as a model system. Propene was chosen for its high air/water 

partition coefficient. Volatiles with a high partition coefficient are hard to remove 

from air by biological gas treatment, because of the low driving force for gas-liquid 

mass transfer. 

MATERIALS AND METHODS 

Organism and growth medium 
Xanthobacter Py2 was previously isolated with propene as sole source of carbon (24) and 
was maintained on agar slants containing 3.5 g I"1 yeast extract and 5 g I"' glucose. To 
obtain suspensions of cells, X. Py2 was grown at a dilution rate of 0.04 hr"' in continuous 
culture with mineral salts medium (10) at pH 7.0 and 30°C with 2 96 (v/v) propene in air as 
the carbon source, supplied at a rate of 0.1 vvm. Cells were harvested by centrifugation, 
washed once with 50 mM potassium phosphate buffer (pH 7.0) and suspended in the same 
buffer. Suspensions were used immediately. 

Membrane material and chemicals 
Propene (99.99%) and a gas mixture containing 0.4 % (v/v) propene and 0.5 % (v/v) C02 in 
air were purchased from Hoek Loos (Schiedam, The Netherlands). All other chemicals were 
reagent grade. The membrane material used in all experiments was hydrophobic polypro­
pylene Accurel membrane, type 1E-PP, provided by Enka AG (Wuppertal, FRGJ.The porosity 
was 70-75 %, average pore diameter 0.1 pm and thickness 75-110 um, as stated by the 
supplier. 
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Experimental set-up 

The membranes were c lamped between two identical halves of a perspex reactor as 

shown In Figure 2. The membrane separated the reactor into two compartments. Through 

one compartment liquid was pumped, while through the other compartment gas was 

blown. The effective membrane area was 40 cm 2 and the volume of both compartments 

was 8 cm 3 . Gas flows were controlled by thermal mass flow controllers (Brooks Instrument, 

Veenendaal , The Netherlands). The set-up in Figure 3 was built to measure the overall mass 

transfer of propene from air to water. De-aerated water was pumped along the membrane 

(10b in Figure 3) a t various velocities. Gas was circulated over the membrane at 1 I min ' 

and the inflow of mixed gas was varied (0.15 to 3 ml min"'). The gas loop was sampled at 

least three times during a period of 2 hours to confirm steady-state conditions and tested for 

leakage after each experiment. The whole set-up was p laced in an isothermal chamber at 

30°C, except for the condenser and the gas pump (KNF Neuberger, Freiburg, FRG). 

For transfer with microbial reaction the de-aerated water was replaced by propene-grown 

suspended cells of X. Py2. The cell suspension was circulated (10a in Figure 3) over the 

membrane at a velocity of 4.1 x i o 2 ms"'. Typical experiments lasted 3 hours and no 

nutrients were added. 

With the same set-up a biofilm of X. Py2 was grown on the membrane inside the reactor. 

First the membrane reactor was sterilized with ethylene oxide. After removing residual 

ethylene oxide the reactor was inoculated for 2 days by circulating a propene-grown 

culture of X. Py2 over the membrane at 1.3 * 10~2 m s"1 in the set-up shown in Figure 3. After 

inoculation the pump was switched to the once-through mode and fresh mineral salts 

medium pH 7.0 (10) was pumped through the reactor continuously at a velocity of 2.1 * 10"4 

m s"\ X. Py2 grew on the membrane forming a biofilm. 

Analytical methods 

The propene concentrations in air were determined by analyzing headspace samples of 

100 ul on a gas chromatograph equipped with a Porapak R column (100 - 120 mesh) at 

210°C and a flame-ionization detector. All values are the average of at least three 

separate determinations. The standard deviation of the propene determination was less 

than 2 %. 

The partition coefficient of propene over air and 50 mM potassium phosphate buffer at 

30°C was determined in a manner similar to the EPICS method described by Gosset (9). 

Maximum propene oxidation activities of suspensions of X. Py2 were determined in 130 ml 

serum flasks. Suspensions were diluted and 4 ml of the diluted suspensions were incubated 

with 1.0 % (v/v) propene in air at 30°C under vigorous shaking. Propene consumption rates 

of the suspensions were measured at two dilutions, the second dilution having a cell density 

twice as high as the first. The specific propene consumption rates (in nmol min"' mg"' dry 

weight) were found to be equal for both dilutions, confirming that under these conditions 

diffusion limitation did not occur. 
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Figure 2. Membrane reactor (effective membrane area: 40 cm2) with hydrophobic porous 
membrane clamped between two perspex halves. (A) longitudinal section, and (B) cross 
section. 
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Figure 3. Experimental set-up for steady-state measurements of propene transfer from gas to 
liquid. 1: liquid reservoir, 2: liquid pump, 3: 40 cm2 membrane reactor, 4: inflow of gas 
mixture with thermal mass flow controller, 5: condenser, 6: air overflow, 7: air pump, 8: 
sample port, 9: thermometer, 10: liquid (10a) circulation or (10b) outflow. 
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RESULTS AND DISCUSSION 

Propene transfer to liquid in the absence of microbial reaction 

Propene was chosen as a model component to test the performance of a lab-scale 

membrane reactor for the removal of a contaminant with a high air/water partition 

coefficient. The partition coefficient of propene (m) over air and water was found to 

be10±0.5at30°C. 

First mass transfer of propene without reaction in the 40 cm2 membrane module was 

investigated at various water velocities. In the absence of chemical reaction, the 

mass balance over the gas loop in Figure 3 at steady state is: 
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(Eq. 3) 

<J> is the flow of mixed gas into the gas loop (no. 9 in Figure 3) and C,n is the propene 

concentration in the mixed gas. Both of these values and F, the flow of water 

through the liquid compartment of the reactor, are known. The concentration in the 

gas loop, C0, was measured and the flux through the membrane (J) and the 

concentration of propene in the outflowing water [ClMjnet) were calculated with 

equation 1. 

The flux through the membrane is equal to k „ * A " driving force. The gas phase 

concentration (C0) is determined experimentally and is constant over the length of 

the reactor since the gas phase is circulated at a flow rate exceeding $ more than 

100 times. For the water phase plug flow without axial dispersion is assumed, 

because of the high Peclet number (10*). Therefore the driving force can be 

described with the logarithmic mean (C0/m - C,)100 to describe the concentration 

change in the water phase. The overall mass transfer coefficient was calculated 

with equation 2. 

As can be seen in Figure 4 the dimensionless overall mass transfer coefficient 

(Sherwood number) depends on the liquid velocity according to: 

Sh= 19* Rea3 (Eq.4) 
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In contrast with other gas-liquid contactors, as there are bubble-columns and 

trickle-bed reactors, a membrane is present between gas and liquid phases in the 

bioreactor under study (Figure 1). The overall mass transfer coefficient in this type of 

reactor is a function of the mass transfer coefficients in the gas, the membrane, and 

the liquid (22): 

1 1 1 1 

K<>v kgxm l ^ x m 
(Eq.5) 

For any volatile the membrane mass transfer coefficient can be calculated from Dg 

as described in Appendix 1 with km/Dg = 9 * TO2 m"'. For propene km x m is approxi­

mately 9 x 10~2 m s"'. This means that the membrane mass transfer coefficient for 

propene is three orders of magnitude larger than k^- Therefore the resistance may 

assumed to be totally in the liquid phase resulting in k ,̂ being equal to k,. 

In the literature very few theoretical or experimental relations for flow along a flat 

membrane have been reported. In their review of mass transfer correlations 

Wicksramasinghe et al. (27) reported k, to be proportional to v , /3 for flow along a 

crimped flat membrane. This is quite close to our findings. 
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Figure 4. Sherwood number as a function of Reynolds number for transfer of propene to 
water in a flat sheet 40 cm2 membrane reactor. Dimensionless groups as defined as follows: 
Sh = k d / D, and Re = p v d / p with d = characteristic length equal to four times the cross 
section divided by the wetted perimeter. 



38 Chapter 3 

Mass transfer of propene with microbial reaction 

To determine the propene removal capacity of the 16 cm3 membrane bioreactor, 

suspensions of the propene-consuming Xanthobacfer Py2 were circulated through 

the reactor in the set-up shown in Figure 3. The maximum volumetric activity was 

varied by varying the cell density ( 1.6 to 11 g dry weight per liter). The maximum 

activity of the suspension was determined separately for every suspension in the 

absence of diffusion limitation as described in the Materials and Methods section. 

The concentration of propene in the gas loop was 9.6 * 10"2 (± 9%) mol m3 during 

all experiments. 

As can be seen in Figure 5 the flux of propene through the membrane increases with 

increasing cell density although not proportionally. However, the activities observed 

in the reactor were less than 1 % of the theoretical maximum consumption 

capacities of the biomass present in the reactor, demonstrating that mass transfer 

was limited by diffusion. 

This is consistent with the findings of Qi and Cussler (20), who concluded from their 

experiments with 0 2 and even C02 , which is readily soluble in water, that the perfor­

mance of microporous hollow fibre modules is nearly always controlled by mass 

transfer in the liquid phase, except when mass transfer is accelerated by chemical 

reaction or by very fast liquid flow. 

Modelling propene transfer into a flowing suspension of cells 

The liquid in the reactor can be described as liquid flowing over the membrane in 

the laminar flow regime. Propene diffuses through the membrane into the liquid and 

is consumed by the biomass according to Michaelis-Menten kinetics. Unfortunately 

no method is known to exactly calculate mass transfer rates as affected by both 

Michaelis-Menten kinetics and diffusion in laminar flow. Therefore we have calcu­

lated the upper and lower limits for comparison with the experimental data, as 

described in the next two sections. 

Modelling transfer into flowing cells: Calculation of the lower limits. 

The lower limits were found by calculating simultaneous reaction and diffusion in 

immobilized biomass with the simulation program BIOSIM (7). In this way the biomass 

is assumed to be immobilized, while it is actually flowing along the membrane. By 

neglecting the flow and mixing due to flow, this calculation underestimates the 

mass transfer rates and therefore is an estimation of the lower limits. 

The principles of the BIOSIM program and the assumptions made in modelling this 

system are given in Appendix 2. Table 1 lists the input parameters used in the 
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simulations. The gas phase concentration (C0) in the reactor and the maximal 

volumetric consumption rate ( V ^ ) in mol per m3 of liquid per second are 

determined separately for each suspension as described in the Materials and 

Methods section. For the diffusion coefficient (D,) the free liquid value for water is 

assumed, not corrected for the presence of cells. The "biolayer thickness" is 

determined by the dimensions of the liquid compartment of the reactor (2 mm), 

which is filled completely with the cell suspension. 
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Figure 5. Consumption rates of propene by washed X. Py2 cells in the membranebioreactor 
in mmol per second per m3 liquid phase in the reactor versus the maximum consumption 
rate of these cells. (•) experimental, ( ) lower limits simulated with BIOSIM, assuming 
stagnant biomass, and ( ) upper limits calculated with Hatta theory, assuming pseudo-
first-order reaction. 

Modelling transfer into flowing cells: Calculation of the upper limits 

The upper limits in Figure 5 were found by using the Hatta theory and assuming the 

microbial degradation of propene to be a first order process. The Hatta theory 

describes the effect of chemical reaction on the mass transfer rate. From equation 4 

the mass transfer coefficient in this MBR in the absence of reaction is known. 

Microbial reaction enhances the mass transfer rate by lowering the concentration in 

the liquid phase. 
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Assuming the degradation of propene by Xanthobacfer Py2 to be a pseudo-first-

order process, the first-order Hatta number. Ha, and the enhancement factor, E, in 

the flowing liquid can be calculated (4): 

Ha = (D . x ^ / k , 2 ) " 2 

E = (Ha 2 +1) , / 2 

The pseudo-first-order reaction constant k, in equation 6 is defined as Vm 

is the mass transfer coefficient without reaction. 

(Eq. 6) 

(Eq. 7) 

/ ^ and l< 

Assuming k,= kov, k, was calculated with equation 4 to be 3.9 * 10s m s"1 at the 

given liquid velocity of 4.1 * 10~2 m s"'. Hence the flux into the liquid in the absence 

of biomass was calculated to be 0.17 mmol nrr3 s'\ In the presence of biomass the 

flux is enhanced by the factor E as given by equation 7. 

Table 1. Input parameters for BIOSIM simulations. 

Parameters 

Y max 

Nn 

D, 

c0 
R 

m 

Definition 

max. volumetric cons, rate 

- in cell suspension (Fig. 5) 

- in b iof i lm: 

Michaelis-Menten constant 

diffusion coefficient 

- in cell suspension (Fig. 5) 

- in biofilm 

gas phase concentration 

thickness of biolayer 

partition coefficient 

Value 

2 x 1 0 3 - 1.4 x 10 2 " " 

varied in Fig. 7 

1.09 x 10"3(24) 

1.4 x 10"' (21) 

9.4 x 10"'°- 1.1 x 10"'"" 

0.01 - 0 . 1 2 a 

2.0 x 10"3 

10 

Unit 

mol m"3,, s"' 

mol m"3,. 

m2s-' 

mol m " 3 ^ 

m 

-

Determined separately in each expermiment as described in Materials and Methods. 
Calculated according to the method recommended by Westrin (26), with specific 
activity 75 nmol min"' mg"' dry weight and cell volume 0.005 ml mg~' dry weight. 

Comparison of experimental and simulated data 

In Figure 5 it can be seen that the experimentally observed transfer rates with 

flowing cell suspensions are about twice as high as the lower limits. Apparently some 

mixing occurs in the laminar flowing liquid. Sedimentation of cells, resulting in a 

higher biomass density close to the membrane (and hence a higher consumption 

rate) was ruled out as experiments with the reactor upside down gave the same 

transfer rates. 
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From Figure 5 it can be seen that the experimental values are indeed lower than the 

simulated upper limits. This was expected because in the Hatta calculations a 

pseudo-first-order reaction constant k, was used, while the reaction obeys Michaelis-

Menten kinetics (24) and the substrate concentrations in the liquid phase (± 9.6 * 10~3 

mol m 3) are essentially higher than the half saturation constant of the propene 

consumption (1.09 * 10~3mol m~3) (24). Therefore the reaction rate is overesti­

mated with the help of the first-order Hatta numbers and this method yields the 

upper limits for the reaction rate. 

Biofilm formation and activity 

When the membrane reactor was operated overnight with a suspension of cells, 

formation of a thin yellow biofilm on the membrane was observed. Subsequently ex­

periments were performed to investigate biofilm formation and the capacity of the 

membrane bioreactor for the removal of propene over a period of several weeks. 

In the first experiment the supply of gas mixture with 0.4% (= 0.16 mol m"3) propene 

into the gas loop (no. 9 in Figure 3) was kept constant. After 5 days a biofilm of 

Xanthobacter Py2 had formed on the membrane and the concentration of 

propene in the gas loop had dropped to 9.3 x 10~2 (± 9%) mol m"3. In Figure 6 it can 

be seen that the flux of propene through the membrane into the biofilm was more 

or less constant during 20 days. 
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Figure 6. Flux into a growing biofilm of X. Py2 at constant propene concentration in the gas 
phase of 9.3 * 10~2 mol m"3. The flux is expressed as pmol per second per m2 membrane. 
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In a second experiment the rate at which the gas mixture with 0.4% propene was 

fed into the gas loop was varied, resulting in varying concentrations in the gas loop. 

In Figure 7 the propene flux into the biofilm is shown as a function of the propene 

concentration in the gas phase. 

Comparison of the Figures 5 and 7 shows that the flux into the biofilm at 9.3 * 10"2 

mol rrr3 is about the same as the flux into suspensions of cells at the highest cell 

density tested (Figure 5). Since enhancement of mass transfer due to mixing is not 

possible in a biofilm, the biomass density of the biofilm has to be higher than the 

highest cell density studied with suspended cells, which was 11 kg nr3. 
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Figure 7. Flux Into a biofilm of Xanfhobacfer Py2 as a function of the propene concentration 
in the gas phase. The flux Is expressed as umol per second per m2 membrane. The lines a, b, 
c, and d represent simulated fluxes assuming maximal volumetric activities of 0.03, 0.04, 
0.05, and 0.06 mol rrr3 s1 respectively. 

Modelling propene consumption of biofilm 

The value of the biomass concentration, expressed as maximum volumetric activity, 

lvmax) u s e d i n the simulation program BIOSIM was varied to find the best agreement 

with the consumption rates observed in the experiments at various propene 
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concentrations. The diffusion coefficient of propene in the biofilm was calculated 

according to the method recommended by Westrin (26). The effective diffusion 

coefficient was 67 to 78 % of the free liquid value depending on the biomass 

concentration (Vmox) assumed. As can be seen in Figure 7 values for v ^ , of 4 * 10~2 

to 6 x 10~2 mol rrr3 s~' gave the best agreement with the experimental data. 

Assuming the same specific activity as was determined for suspended cells, these 

consumption rates correspond to a biomass density of 32 to 48 kg dry weight per m3 

of biofilm. These values are well within the range of literature values. The actual 

biomass density is probably higher because cells in the biofilm probably have a 

lower specific activity than suspended cells freshly harvested from a continuous 

culture. 

Variation of selected parameters in simulations 

To test the impact of the parameters used in the BIOSIM simulation additional 

simulations were performed at the lowest (0.01 mol rrr3) and the highest (0.12 mol 

rrf3) propene concentrations shown in Figure 7. Throughout the simulation in the 

upcoming section a value for V^ of 4 * 10"2 mol rrf3 s~' was chosen, based on an 

optical fit of the data shown in Figure 7. Other input parameters are listed in Table I. 

The external mass transfer coefficient for propene, describing the mass transfer 

resistance of the membrane, was calculated from appendix 1 to be 9 * 10~2 m s~' 

and was used in the simulations shown in Figure 7. Neglecting the external resistance 

proved to have no effect on the simulated propene consumption rates. For 

compounds with a better water solubility (lower m), however, the value of km may 

form a significant part of the overall resistance, as can be seen in equation 5. For 

these compounds the membrane resistance may be in the same range as the 

resistance in liquid phase. For the poorly soluble compounds, like propene, the 

membrane resistance is negligible compared to the resistance in the liquid phase. 

The thickness of the biolayer in Figure 7 was assumed to be 2 * 10~3 m, equal to the 

depth of the reactor module. The actual biofilm, however, was less than 2 mm thick. 

Therefore additional simulations were performed at decreased biolayer thicknesses 

(data not shown). At a concentration of 0.12 mol m"3 propene in the gas phase, 

decreasing the simulated biolayer thickness from 2000 um to 50 urn resulted in less 

than 5% decrease of the propene transfer into the biofilm. At a concentration of 0.01 

mol m"3 decreasing the thickness to 25 Mm had no effect. This indicates that 

maximally 50 um of this biofilm is actively involved in propene degradation. This 

value seems quite realistic for an aerobic biofilm, growing at a low substrate 

concentration. 



44 Chapter 3 

For several parameters sensitivity analyses were performed by varying them from 

50% to 150% percent of their original value. The impact of the variation in 

parameters is shown in Figure 8 for both a low (A) and a high (B) propene 

concentration. 

Variation of Michaelis-Menten constant, Km, hardly affects the consumption rate at 

high concentration (B). This is because the concentration of propene is considerably 

higher than the Km. At the lower substrate concentration, which is very close to the 

Km value, the effect of a change in the Km is indeed larger. 

Variations in the aqueous diffusion coefficient, D,, and the maximum volumetric 

consumption rate, V,^, affect the consumption rate of the biofilm in a similar way. 

The effect of these parameters is equal for both the lower and higher substrate 

concentrations. 
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Figure 8. Sensitivity analysis: The effect of varying parameters on the calculated flux into the 
biofilm, expressed as pmol per second per m2 membrane. Parameters varied are diffusion 
coefficient (DJ ( • - - • ) , Michaelis-Menten constant (Km) ( ), partition coefficient (m) 
( ), and maximum volumetric consumption rate (Vmax) ( ) . Propene concentra­
tions in the gas phase were set at (A) 0.01 mol m"3 and (B) 0.12 mol m"3 respectively. 
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A decrease in the partition coefficient, m, results in a considerable increase in the 

consumption rate. This can be explained by the direct effect the partition 

coefficient has on the substrate concentration in the liquid phase, since C, = C^/m. 

Therefore, m affects both the diffusion and the reaction rate. Figure 8 also illustrates 

that for substrates with a lower air/water partition coefficient a higher consumption 

rate can be expected in a biofilm at the same gas phase concentration. This 

observation has great impact on the practice of waste gas treatment. The 

efficiency of removal strongly depends on the aqueous concentration of the 

volatile to be degraded. Therefore besides the gaseous concentration, the 

air/water partition coefficient is an important factor determining removal rates in a 

gas-liquid reactor. The fact that pollutants with a high air/water partition coefficient 

are hard to remove from air has indeed been observed in waste gas treatment (18). 

CONCLUSIONS 

For the removal of propene with a membrane bioreactor the mass transfer resis­

tance is totally in the liquid phase, the membrane resistance being negligible. 

A stable biofilm of propene-degrading Xanthobacter Py2 formed on the membrane 

in the liquid compartment of the membrane reactor. The propene consumption by 

the biofilm was more or less constant for more than 20 days suggesting that 

practical application of this type of reactor for waste gas treatment is feasible, 

especially for the removal of volatiles with a high air/water partition coefficient. 

The relationship between the propene concentration in the gas phase and the 

propene consumption rate of the biofilm could be described very well with the 

simulation program BIOSIM. With BIOSIM mass transfer in immobilized biomass as 

affected by both diffusion and reaction according to Michaelis-Menten kinetics is 

calculated. 

Besides its potential applications in waste gas treatment, the membrane bioreactor 

can also be used for biofilm studies. It offers a unique tool for biofilm cultivation 

because nutrients can be supplied from both sides of the biofilm (Figure 1). 

Moreover the membrane bioreactor can be used to study microbial growth with 

poorly soluble volatile substrates, e.g. oxygen, without the problems of mass transfer 

limitation in the liquid phase usually encountered with biofilms growing on an inert 

surface. 
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NOMENCLATURE 

A membrane area 
C concentration 
d characteristic length: 4 * the cross-section 

divided by the wetted perimeter 
D diffusion coefficient 
E enhancement according to Hatta theory 
F water flow 
Ha Hatta number 
J flux through membrane 
k mass transfer coefficient 
k, pseudo-first-order reaction constant 
K„, Michaelis-Menten constant 
m partition coefficient (on mol m~3 basis) 
v liquid velocity 
Vmax maximum volumetric activity of the cells 

m ' 

mol m"3 

m 

rrrs" 

mol s"' 
ms"' 
S"' 

mol m"3 

ms"' 
mol m"3 s"' 

Greek symbols 
6 membrane thickness 
e porosity of the membrane 
|j viscosity 
p density 
T tortuosity of the membrane 
<t> flow into gas loop in Figure 3 

Pas 
kgm"3 

mol s"' 

subscripts/superscripts 
g gas 
in flowing into gas loop in Figure 3 
I liquid 
m membrane 
ov overall 

APPENDIX 1 

Determination of the membrane mass transfer coefficient (km) 

The mass transfer coefficient of the membrane was measured at 23 ± 1 °C in the 40 cm2 

membrane reactor shown in Figure 2. To exclude any mass transfer resistance in the liquid 

phase the transfer rates of water vapour and of two components with a high solubility in 

water, ethanol and propanol, were determined. 
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Liquid was pumped through one compartment of the reactor at a rate of 0.75 x 1 0 ' to 1.0 « 

1 0 ' m s ~ \ Through the other compartment air was blown at 0.54 to 5.4 m s"'. In case of 

water transfer, tap water was used and the vapour pressure and temperature of the air 

leaving the reactor were measured with an Aqmel Dew Point Hygrometer. For the transfer 

of ethanol and 2-propanol solutions of 5 g I"1 of the alcohol in tap water were pumped over 

the membrane and the alcohol concentrations in the air leaving the reactor were deter­

mined in a manner similar to the determination of propene. 

The liquid phase concentration of the diffusing component water was constant over the 

length of the reactor. The decrease in the alcohol concentrations in the liquid phase over 

the length of the reactor was less than 0.5%. Therefore in equation 5 the resistance in the 

liquid phase (1/k,) can be neglected and a constant liquid phase concentration Q can be 

assumed. Reducing the air velocity did not affect the transfer rate. Consequently the resis­

tances in the gas phase ( l/(kg * m)) in equation 5 can be neglected as well. The driving 

force for mass transfer (C,/m - C0) decreases over the length of the reactor since Cg i n ­

creases. Therefore the logarithmic mean of the driving force was calculated. Assuming all 

resistance to be in the membrane, km values for the transfer of ethanol and 2-propanol 

were found as shown in Table 1. 

Table A ! - 1 : Determination of the membrane 

Diffusing agent 

water 
ethanol 
2-propanol 

(ms-') 

2.1 (±0.2) x 1 0 ' 
1.2 (±0.1) x 1 0 ' 
8.9 (±0.8) x 10"3 

mass transfer coefficients 

D 0 ° 
( rn 's ') 

2.6 x 10s 

1.35 x 10 s 

0.99 x 10s 

km/D f l 

(m-'l 

8.1 (±0.7) x 10' 
8.7 (±0.8) x 10' 
9.0 (± 0.8) x 10' 

a Calculated according to ref. 28. 

In hydrophobic microporous membranes the pores are filled with gas and therefore the 

membrane mass transfer coefficient is a function of the gaseous diffusion coefficient and 

the porosity, thickness, and tortuosity of the membrane (22) according to the equation 

km = ( Cj, x e) / (6 x T). By dividing the mass transfer coefficient by the diffusion coefficient 

the expression km/Dg is obtained, which is independent of the diffusing agent. Interaction of 

the diffusing component with the membrane, i.e. Knudsen diffusion, is neglected. For the 

three compounds similar values for km/Dg were found (Table A1 -1). 

Kreulen et al. (14) determined the membrane resistance of the same type of membrane 

with several gas mixtures. For diffusion in N2, which is quite similar to diffusion in air, they 

found values of km/Dg of 1.1 x io3 and 1.45 * 103m_1 for NH3 and mono-ethyl-amine 

respectively at 25°C. The lower value of km/Dg in our experiments can not be due to resis­

tance in the liquid phase since we have also used pure water. The true km/Dg might be 

slightly higher due to a small resistance in the gas phase. If there is a substantial gas phase 

resistance, it is included in the membrane resistance determined experimentally. 
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APPENDIX 2 

Description of the simulation program BIOSIM 

With the simulation program BIOSIM reaction according to Michaelis Menten kinetics and 

simultaneous diffusion in a biolayer can be calculated numerically. Substrate consumption 

in a f lat layer of biomass exhibiting Michaelis Menten kinetics can be described with the 

following general mass balance (25): 

d2C V ^ C 

ax2 Km + c 

The boundary conditions are: 

dC 
= 0 at x = L (or x = x,) 

dx 

C = C g /m a t x = 0 (no external resistance) 

with x = distance to the membrane 

C = substrate concentration in biofilm 

L = thickness of biofilm 

(Eq.A2-1) 

(Eq.A 2-2) 

(Eq. A2-3) 

x, = the distance from the membrane where the substrate concentration 

approaches zero 

This differential equation is solved using a Runge-Kutta algorithm. The detailed description 

of the computing scheme has previously been given by De Gooijer et al. (7). 

External mass transfer resistance can optionally be taken into account. In case of gas-liquid 

transfer the concentration at the interface is calculated according to the film theory and 

equation (A2-3) converts into: 

dC 

— at x = 0 (Eq. A2-4) 

In this case the gas phase concentration (C9) in the reactor is constant because the gas is 

recirculated over the membrane at high speed. 

C„ D f l d fx=0 
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CHAPTER 4 

Propene removal from synthetic waste gas 

using a hollow-fibre membrane bioreactor 

Martine W. Reij and Sybe Hartmans 

Summary: Hollow-fibre modules containing microporous membrane material were 

evaluated as bioreactors for waste gas treatment. The reactors were inoculated 

with the propene-utilizing strain Xanfhobacfer Py2, which formed a biofilm on the 

inner side of the fibres. The removal of the poorly soluble volatile propene from 

synthetic waste gas was monitored for up to 170 days. The maximum removal rates 

were 70 to 110 grams of propene per m3 reactor per hour. A gas residence time of 

80 s was required to remove 95 % of an initial propene concentration of 0.84 g m"3. 

The presence of ammonium in the liquid medium resulted in the development of an 

additional population of nitrifying organisms. Therefore, nitrate was used as the 

source of nitrogen in later experiments. During long-term operation the propene 

removal rates gradually decreased. At low liquid velocities (1 -5 cm s"1) clogging of 

individual fibres with excess biomass was observed. Elevation of the liquid velocity in 

the fibres to 90 cm s"1 resulted in the formation of a dense biofilm and prevented 

clogging of the fibres. However, also at this high liquid velocity a gradual decrease 

in propene removal rate was observed. These results suggest that aging of biofilms is 

a very important factor in long-term operation of hollow-fibre bioreactors. 

Applied Microbiology and Biotechnology (1996) 45: 730-736. 
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INTRODUCTION 

Biological methods have been used on an industrial scale to treat various exhaust 

gases with relatively low concentrations of biodegradable organic volatiles. 

Biodegradable volatiles are converted by microorganisms into mineral end-

products (e.g. C02 , HjO etc.), and biomass. The oldest type of bioreactor for waste 

gas treatment is the biofilter, consisting of a bed of soil or compost with attached 

microorganisms, through which the gas is blown (14, 21). 

Two other types of reactors are the trickle-bed reactor and the bioscrubber. In these 

reactors the contaminants are first transferred to the water phase. In a trickle-bed 

reactor the contaminants are then degraded by microorganisms that are present 

on the packing material in the packed bed and, in a bioscrubber, degradation is 

located in a separate tank containing activated sludge. 

A major problem in biological waste gas treatment is the removal of low 

concentrations of volatiles with a poor water solubility (14). Volatiles with an 

air/water partition coefficient larger than 0.1 are considered to be poorly water 

soluble (13). In bioscrubbers and trickle-bed reactors a layer of water is present in 

between the gas phase and the biomass. For volatiles with a high air/water partition 

coefficient such an inert water layer forms a considerable mass transfer resistance 

(3). 

A new membrane bioreactor with microporous hydrophobic membranes was 

designed for the removal of volatiles with a low solubility (9). Waste gas, supplying 

organic carbon and oxygen to the biofilm, flows along one side of the membrane 

(Figure 1 A). The biofilm is located at the other side of the membrane and is supplied 

with minerals and water by the circulating liquid phase. The pores of the 

hydrophobic membrane are filled with gas. The biofilm is situated directly at the 

gas-liquid interface without a water layer between the gas and the biomass. 

Therefore, just like the biofilter, the membrane bioreactor is suitable for the removal 

of poorly soluble pollutants. In a biofilter, however, the humidity and the pH can not 

be controlled due to the absence of a circulating water phase. In a membrane 

reactor the water phase can remove degradation products, such as HCI, and 

humidifies the biomass without forming a barrier for mass transfer. Hydrophobic 

membranes have been used by Hinz et al. (10) in their membrane bioreactor for the 

elimination of nitrogen monoxide from air. Silicon tubes have also been tested in 

bioreactors for waste gas treatment (1,6). 
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Figure 1. Schematic view of (A) one hollow-fibre with biofilm and (B) a complete setup with 

membrane module and gas and liquid flows. 

Propene (a i r /water partit ion coeff ic ient = 10) was chosen as a m o d e l pol lutant to 

test t he pe r fo rmance of the m e m b r a n e b ioreactor for the t reatment of waste gases 

conta in ing poorly wa te r soluble pol lutants. In a previous study (16) the mass transfer 

propert ies of f lat sheet m e m b r a n e reactors we re de te rmined . This study focusses on 

the long-term operat iona l stability of hol low-fibre m e m b r a n e bioreactors. Hollow-

f ibre modules (Figure 1B) have a considerably larger gas-water in ter face than the 

f lat sheet b ioreactors used previously, a l lowing higher vo lumetr ic r emova l rates. 

MATERIALS AND METHODS 

Microorganism 

Xanfhobacter Py2 was isolated with propene as sole source of carbon (20). Membrane 

reactors were inoculated with cultures of X. Py2 grown at 30°C in 5-1 Erlenmeyer flasks 

containing 0.5 I mineral salts medium (pH 7.0) and 4 % (vol vol"') propene in air as the 

carbon source. After inoculation the reactors were operated in a non-sterile way. 

Chemicals and media 

Propene (99.99% pure) was purchased from Hoek Loos (Schiedam, The Netherlands). 

Propene was mixed with ambient air using Thermal Mass Flow Controllers (Brooks Instrument, 

Veenendaal, The Netherlands). Mineral salts medium was prepared as described by 

Hartmans et al. (8) and contained 2 g I"' (NH4)2S04. Since nitrification occurred during 
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prolonged operation of the bioreactors. In later experiments (NH4)jS04 was replaced by 3.0 

g I"' KNO, and 0.7 g I"1 NajS04. All chemicals were reagent grade. 

Hollow-fibre membrane bloreactor 

The layout of the hollow-fibre membrane bloreactor is shown in Figure 1B. The hollow-fibre 

membrane modules (type MD 020 CP 2N, Microdyn, Wuppertal. Germany) contained 40 

hydrophobic polypropylene fibres with a length of 500 mm. an inner diameter of 1.8 mm, 

and a pore size of 0.2 pm. The internal volume of the modules was 157 ml and the total 

membrane-liquid interface was 0.1 m2 (637 m2 m~s). Air containing propene was supplied at 

a rate of 275 ml min"\ corresponding to a gas residence time of 7.4 s. The module was 

mounted sloping with an angle of 20° to allow condensate to be removed quickly from the 

gas phase. Liquid was circulated through the fibres with a velocity ranging from 1 to 5 cm 

s"\ using a Watson and Marlow 502S pump. Several modules, however, were operated at a 

liquid velocity of 90 cm s~\ using a Verder 2035 pump. The total liquid volume in the system 

was 1.25 I. The liquid entering the membrane module was kept at 30 (± 1) °C. In the well 

mixed systems with a liquid velocity of 90 c m s"\ the pH and the oxygen tension. p0 2 , were 

measured at regular intervals in the buffer vessel. 

Membrane bloreactor operation 

On day 0 the liquid phase was inoculated with a propene-grown culture of Xanthobacter 

Py2 to an opt ica l density of 0.3 at 660 nm. From this moment on the reactor was operated 

as an open system, i.e. in a non-sterile way. Water loss due to evaporation in the hollow 

fibres was replenished on a regular basis with demineralised water. Periodically, as 

ind icated in the individual experiments, 0.5 I of the liquid phase were removed and 

replaced with fresh mineral salts medium to supply nutrients. After each experiment the 

hollow-fibre modules were opened and the individual fibres were examined for clogging. 

Sampling and activity assays 

The gas flows going in and out of the bioreactors were sampled every 2 h and analysed for 

propene and C 0 2 using an on-line CP 2001 gas-analyser (Chrompack, Middelburg, The 

Netherlands) equipped with a Hayesep A column (25 cm) at 70 °C and a thermal 

conductivity detector. During the experiments in which the propene concentration or gas 

residence time were varied, the propene concentrations were determined manually. 

Detachable glas containers (35 ml) were p laced in line with the ingoing and outgoing gas 

flows and 100 pi gas samples from these containers were injected into a gas 

chromatograph equipped with a Porapak R column (100-120 mesh) at 210°C and a f lame-

ionization detector. All values are the average of a t least three separate determinations. 

The concentrations of ammonium, nitrate, and nitrite in the liquid phase were measured 

using an auto-analysis system (Skalar 5100) (7). 

The propene oxidation activities in the liquid phase were determined by incubating 5-ml 

samples of the liquid phase with 0.3 % (vol vol"') propene in air in serum flasks at 30°C under 

vigorous shaking, as described previously (16). 
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RESULTS 

Continuous removal of propene from air 

Biofilters used for waste gas treatment are usually operated with a gas load in the 

range of 100 to 200 m3 gas per m3 reactor per hour (21). We selected a volumetric 

load of 106 m3 gas per m3 reactor per hour to test the membrane bioreactor. This 

load corresponds to a gas residence time of 7.4 s. A relatively high propene 

concentration of 6 g m"3 was chosen, as we first wanted to study the reactor 

performance under conditions that allowed adequate growth. 

Figure 2 shows both the propene removal rates and the C0 2 production rates of the 

0.1 m2 hollow-fibre membrane bioreactor (MBR). The data represent daily averages 

of =12 automated measurements. Approximately 10 days after start-up the 

efficiency of the reactor increased sharply, but it decreased again from day 17 

onwards. In a similar experiment, with a lower concentration of 0.92 g m"3 propene 

in the gas phase, the propene removal rate also decreased to a very low value 

after two months of operation. Neither the addition of fresh mineral salts medium, 

nor the addition of propene-grown cells could restore the propene conversion 

(data not shown). 
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Figure 2. Propene removal (+), and CO, production (D) rates in a hollow-fibre membrane 
reactor with a propene concentration of 6.0 g m"3 in the ingoing gas flow. Propene removal 
is indicated as g m"3 h"1 (teff) and as a percentage (righf). On days indicated with (•) the 
liquid medium was refreshed. The propene load was 624 g m"3 h"'. 
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The total amount of propene that had been degraded from day 0 until day 44 was 

calculated to correspond with 3.8 g of carbon. After subtraction of the amount of 

carbon recovered as C02 , the total biomass production can be estimated to be 3.1 

g (C content = 45%). In the liquid phase only 0.6 g of dry biomass were recovered, 

suggesting that 2.5 g of dry weight (50 kg of biomass per m3) were present in the 

fibres. For comparison, the density of a biofilm of Xanthobacter autotrophicus GJ10 

was found to be on average 60 kg m"3 (4). When the reactor was dismantled, the 

liquid phase indeed appeared to flow through only four of the 40 fibres, indicating 

that most of the fibres were clogged with biomass. 

Effect of liquid velocity on the stability of propene consumption 

The liquid velocity was increased to see if this would prevent deterioration of the 

reactor performance. The volumetric gas load was the same as in the previous 

experiment, but the concentration of propene was slightly lower at 4.0 g nrf3. Two 

modules were operated simultaneously. In one module the liquid velocity in the 

empty fibres was 90 cm s"' ("fast") and in the second module the liquid velocity was 

3.4 cm s"' ("slow"), similar to the previous experiment. 

Figure 3 shows the propene removal of these modules during 170 days. Maximum 

removal rates of 110 and 70 g m 3 h"1 were reached in the "fast" and "slow" 

modules, respectively, after 25 days. As the data are the daily averages of 12 

measurements, and the standard deviation for propene measurement was only 2 %, 

the considerable variations in propene removal rates were not due to sampling 

errors. From day 65 onwards, when the liquid phase was refreshed less frequently, 

the variation in the propene removal rates decreased. During this period the 

removal rates gradually decreased from 50 to 35 g m"3 h"1 in the "fast" module and 

from 50 to 25 g m"3 h"1 in the "slow" module. 

After dismantling the reactor several fibres of the "slow" module appeared to be 

c logged with biomass. In the "fast" reactor, none of the fibres were clogged with 

biomass and most fibres appeared to contain an evenly distributed biofilm. A cross-

section of the "fast" module is shown on the front cover of this thesis. 

Effect of nitrification on pH, p02 , and propene consumption 

During the experiments shown in Figure 3 a drop in pH was observed after the 

addition of fresh mineral salts medium, sometimes (days 29, 42 and 62) coinciding 

with a temporary decrease in the propene removal rate. Nitrification was likely to 

be responsible since the addition of mineral salts medium without ammonium did 

not trigger these effects (data not shown). A population of nitrifiers could develop 

since the system was operated in a non-sterile way. 
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Figure 3. Volumetric propene removal rates and the percentages of propene removed in 

hollow-fibre membrane modules with ammonium as nitrogen source. The liquid velocities in 

the fibres were 3.4 cm s"'(+) and 90 cm s"1 ( • ) . The concentration of propene in the 

ingoing air was 4.0 g m~3 and the propene load was 424 g m~3 h"'. As indicated on thex-axis 

0.5 I liquid were replaced with mineral salts medium containing 30 mM ammonium (•), no 

nitrogen source (•), or 30 mM nitrate (v). 
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Figure 4. Effect of the addition of ammonium sulphate on the pH (0), the oxygen tension 

(•), and the ammonium (») and nitrate (o) concentrations. On day 97 (J) 0.5 I liquid was 

replaced with mineral salts medium containing 30 mM ammonium sulphate. On day 102 (2) 

the pH was adjusted manually to pH 7.0. 
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To confirm nitrification, mineral salts medium containing ammonium was added 

again on day 97 and the pH, the p0 2 and the nitrogen concentrations in the liquid 

medium of the well mixed 'fast" module were measured to check for the presence 

of nitrifiers (Fig. 4). On day 102 approximately 40% of the ammonium was still present. 

On that day the pH, which had dropped to 5.3, was adjusted manually to 7.0. 

Subsequently a second drop in p 0 2 was observed, probably due to the renewed 

activity of the nitrifiers that had been inhibited by the low pH. The reduced p0 2 did 

not cause a temporary decrease of the propene removal rate, as had been 

observed on days 29, 42 and 62 in the same reactor. The nitrate level remained 

relatively constant at 10 mM, a maximum concentration of 0.2 mM of the 

intermediate nitrite was found in the liquid, and after 7 days all ammonium had 

been consumed. 
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Figure 5. Volumetric propene removal rates and the percentages of propene removed in 
hollow-fibre membrane modules with nitrate as nitrogen source. The liquid velocities in the 
fibres were 3.4 cm s"1 (+) and 90 cm s"1 (•). The concentration of propene in the ingoing air 
was 4.0 g m~3 and the propene load was 424 g m ' h ' . O n dates indicated with (v), 0.5 I 
liquid were replaced with mineral salts medium containing 30 mM nitrate. 
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Nitrate as source of nitrogen 

To prevent nitrification and thereby possibly improve the stability of propene 

removal, the ammonium in the mineral salts medium was replaced by nitrate in the 

next experiment. The growth rates of Xanthobacter Py2 on propene in serum flasks 

were found to be the same with both mineral salts media (data not shown). Once 

again, as in the experiment using ammonium as nitrogen source, one module ("fast") 

was operated at a liquid velocity of 90 cm s"' and the other ("slow") at 3.4 cmls . 

Figure 5 shows the propene removal rates in these modules. The pH and p 0 2 in the 

liquid of the "fast" module were stable during the entire experiment (data not 

shown). The variations in the propene removal rates were considerably less than the, 

sometimes acute, variations observed in the modules in which ammonium was used 

as the nitrogen source (Fig. 3). In both the "slow" and the "fast" modules maximum 

removal rates of 60 to 70 g m"3 h"' were observed. After 40 days the removal rate in 

the "fast" module dropped relatively quickly to 30 g m"3 h ' . After 70 days the 

removal rate in the "slow" reactor had decreased to the same level. 

C02-production 

The carbon recovered as C0 2 in the gas phase was calculated as the percentage 

of the propene consumed. In the "fast" reactors the C0 2 yields were 78 and 86 %, 

being significantly higher than in the corresponding "slow" modules (70 and 74 %). 

With nitrate as nitrogen source the C02-yields were 74 and 86 %, against 70 and 78 % 

with ammonium. The reason could be the assimilation of nitrate, which requires 

energy resulting in a lower biomass yield and higher C0 2 yield. However, the lower 

COz production in the presence of ammonium could also be a result of 

simultaneous C 0 2 consumption by the ammonium oxidizers. It should be noted that 

in all experiments the C0 2 yields were significantly higher than the 54±2 %, measured 

in continuous liquid cultures (17). 

Variation of propene concentration and gas residence time 

During the experiment in which nitrate was used as nitrogen source the propene 

removal rates were relatively stable around 60 g m"3 h"' between day 27 and 41, 

especially in the "slow" module. During this period the inlet propene concentration 

and gas residence time were varied to study the performance of the reactor over 

wide a range of conditions. Each measurement lasted =3 hours and in between the 

measurements the standard conditions were applied. 

Between days 27 an 31 the concentration of propene in the gas phase was varied 

at a constant gas flow rate of 275 ml min"1. Figure 6 shows the volumetric propene 

removal rates and the fluxes as a function of the propene concentration in air. The 
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propene concentration in this figure is the calculated logarithmic mean of the 

propene concentrations at the inlet and outlet of the reactor. The maximum 

propene conversion was 32%. The "slow" module was slightly more efficient than the 

"fast" module at low concentrations of propene. 

In a previous study the propene fluxes into a biofilm of Xanthobacter Py2 growing on 

a flat sheet membrane were measured and simulated (16). For comparison the 

simulated data and the results from both reactor configurations are presented in 

grams per m2 membrane per hour. In the simulations maximum biofilm activities of 

4.5 and 9.1 kg propene per m3 biofilm per hour were assumed. 

*-* 100 F 

E 

© 

CO 

75 
> 
o 
E 
© 

o 
> 

2 3 4 5 

Propene (g rrr3) 

- 0.15 

- 0.10 

- 0.05 

0.00 

E 
3 
x 
3 

Figure «. Propene removal rates (g m 3 h"') and propene fluxes (g rrv2 hf') as a function of 
the propene concentration for liquid velocities of 3.4 cm s"1 (+) and 90 cm $"' (•). The 
correlation between the volumetric removal rate and the flux is the specific membrane 
area in the hollow-fibre module (637 m2 m~3). The air flow rates were constant at 275 ml 
min"'. These data were measured during the experiment shown in Figure 5, between days 
27 and 31. The fluxes (a) obtained with a biofilm of Xanthobacter Py2 growing in a flat sheet 
membrane bioreactor (16) are shown for comparison, in this case only in g m"2 h"'. The 

dotted fines represent simulated values assuming maximum biofilm activities of 4.5 ( ) 
and 9.1 ( ) kg propene per m3 biofilm per hour (g m-2 h"' only). 
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Between days 33 and 41 the propene conversion in the "slow" reactor was 

measured as a function of the gas residence time for initial propene concentrations 

of 0.84 g m"3 and 4.0 g m"3. As can be seen in Figure 7, propene conversion 

depends both on the gas residence time and on the propene concentration in the 

gas inlet. At a gas residence time of 80 s and an inlet concentration 0.84 g rrf3, 95% 

propene removal was obtained. With an inlet propene concentration of 4.0 g m 3 

80% removal was realized with the same residence time. 
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Figure 7. The effect of the gas residence time on the propene conversion in a membrane 
reactor with a liquid velocity of 3.4 cm s"' and nitrate as nitrogen source. The 
concentrations of propene in the air entering the reactor were (v) 0.84 g m~3 and (») 4.0 g 
m~3. Data were measured during the experiment shown in Figure 5, between days 33 and 
41. 
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DISCUSSION 

Propene removal rates 

During continuous operation at a residence time of 7.4 s the propene conversion 

was maximally 20 %. Nevertheless, much higher conversion rates are feasible if the 

residence time of the gas in the hollow-fibre reactor is increased. With a gas 

residence time of 80 seconds an inlet concentration of 840 mg m"3 of propene 

could be reduced by 95 %. For higher propene concentrations longer residence 

times are required to obtain the same reduction. 

In a previous study the propene fluxes into a biofilm of Xanthobacter Py2 growing on 

a flat sheet membrane were measured and simulated (16). The removal rates (in 

grams per m2 per hour) in the hollow-fibre system were approximately 80 to 90% of 

the range of values measured in the flat sheet reactor, exept for three data points, 

which were measured on day 27, when the module was operating very efficiently. 

Thus, in a hollow-fibre module the same flux (in grams per m2 membrane per hour) 

as in a flat sheet reactor can be realized for a limited period of time. However, due 

to the high specific area in the hollow-fibre reactor (637 m2 m"3), higher volumetric 

removal rates are attainable with this reactor configuration. 

Comparison with other reactor types 

We have only found a few reports in the literature on the removal of components 

with a low water solubility. Sly et al. (18) used a trickle-bed reactor to remove 

methane from coal mine ventilation gas and found a linear relationship between 

concentration and removal rate. The data can not be compared to the propene 

removal data because differences in diffusion and partition coefficients, and gas 

residence times. 

De Heijder et al. (3) measured the removal of ethene, which has an air-water 

partition coefficient and a diffusion coefficient similar to that of propene. Ethene 

removal was measured in a packed bed of granular activated carbon with inlet 

concentrations of 0.14 to 0.9 grams ethene per m3. With the higher ethene 

concentrations tested, the volumetric ethene removal rates were similar to the 

propene removal rates measured in the hollow-fibre modules. At lower 

concentrations the dry bed of activated carbon was slightly more efficient in the 

removal of ethene than the hollow-fibre modules were in the removal of propene. 

Nitrification 

Due to the regular addition of ammonium to the liquid phase a population of 

ammonium oxidizers apparently developed in the hollow-fibre reactor, making it 
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suitable for the removal of ammonia from air. However, the presence of nitrifiers 

might be responsible for the observed unstable propene conversion and 

complicated the study of propene removal in several ways. In the first place the 

nitrifiers consumed oxygen and produced acid (Figure 4). The lowered p0 2 and pH, 

as well as small amounts of nitrite produced, might inhibit propene oxidation. On the 

other hand, ammonium oxidizing microorganisms possessing non-specific 

monooxygenases (2), might be responsible for part of the propene oxidation in the 

reactor. 

To simplify the system it was therefore decided to replace ammonium with nitrate in 

the liquid phase, although some Xanthobacter spp. have been reported to supply 

their nitrogen demands by nitrogen fixation (22). With nitrate the propene removal 

(Figure 5) varied to a lesser extent than with ammonium (Figure 3). However, the 

propene removal rate still decreased irreversibly within 70 days. Therefore, apart 

from the presence of a destabilizing population of ammonium oxidizers, there must 

be another cause for the decrease in performance of the biofilm reactor. 

Production of C0 2 and biomass 

During the first experiment most of the fibres seemed to be filled up completely with 

biomass. This observation was corroborated by the estimated average biomass 

density of 50 kg nrf3. Problems due to the formation of excess biomass have also 

been observed with other applications. In membrane bioreactors for wastewater 

treatment the performance was reduced due to excessive biofilm growth (5) and a 

daily removal of the biomass was required (15).The highest ratio of C0 2 over 

propene (and the lowest biomass yield) was observed with nitrate as the nitrogen 

source and at a high liquid velocity. 

Clogging of the fibres with biomass could be prevented by a high liquid velocity. 

With both nitrogen sources tested, an evenly distributed biofilm was found to be 

at tached to inside of the fibres in the "fast" modules, while the fibres in the 

corresponding "slow" reactors were largely filled with clumps of biomass. Although 

clogging of the fibres did not occur at the high liquid velocity, the performance of 

these modules also decreased in time. Apparently, clogging of the reactor is not the 

only factor resulting in a reduction of the reactor performance. Possibly the diffusion 

of nutrients from the liquid phase to the active part of the biofilm close to the 

membrane, could be limited by the thick layer of biomass. However, replacement 

of the liquid phase with mineral salts media with or without nitrogen source, did not 

influence the propene removal rate, indicating that the nitrogen supply was not 

crucial. 
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Biofllm stability 

Another possible cause for a decreased performance of the membrane reactor is 

the accumulation of dead cells close to the membrane or the penetration of water 

into the microporous membrane if the hydrophobic membrane is wetted. Both 

processes result in the formation of an aqueous layer hindering transfer of the poorly 

water soluble propene. 

Before hollow-fibre membrane reactors can be used for waste gas cleaning 

practice, the problems associated with the instable biofilm performance should be 

solved. Regular removal of the biomass by backwashing (15) or (bio)chemical 

treatment (5) might be used to regenerate the membrane bioreactor. Furthermore, 

detailed information on the processes in the biofilm is required. Information about 

the localization of the active biomass could be obtained using ATP measurements 

(12) or probes assessing cell viability (11). Microelectrodes could provide information 

on the oxygen and nitrogen profiles in the biofilm (19). 

For the time being dry biobeds (3) or biofilters (13) seem more suitable for the 

removal of volatiles with a low water solubility. However, an advantage of the 

membrane reactor over the biofilter and the dry biobed is the presence of the 

water phase in the membrane bioreactor. In this way, inhibitory degradation 

products, such as HCI formed during the degradation of chlorinated volatiles, may 

be removed. 
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CHAPTER 5 

Biofiltration of air containing low concentrations 
of propene using a membrane bioreactor 

Martine W. Reij, Erik K. Hamann, and Sybe Hartmans 

Summary: Volatiles with a low water solubility are difficult to remove from air by 

biofiltration, especially when present in low concentrations, because the driving 

force for mass transfer into the aqueous phase is very small. We have used 

microporous hydrophobic membrane material as a support for biofilms that remove 

the poorly soluble propene from air. Two bacterial strains were compared and the 

faster growing strain, Xanfhobacter Py2, was selected to study biofilm formation and 

reactor performance at propene concentrations in the range encountered in off-

gas treatment. With a concentration of 200-350 ppm of propene in the gas phase, a 

20 days start-up period was required for the formation of a biofilm on the 

membrane. Once the biofilm had been established, continuous propene removal 

was tested over a range of concentrations. The amount of active biomass adapted 

to the amount of propene available. When the membrane bioreactor was 

operated with propene concentrations as low as 9 to 30 ppm in the gas phase, the 

propene removal rate was stable for several weeks, without the supply of any other 

source of carbon or energy to the microbial population. 
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INTRODUCTION 

Many human activities result in the contamination of air with organic volatiles. As 

public concern about air-pollution is growing, stringent regulations on off-gases 

have been enforced in several industrial countries. Table 1 shows the maximum 

concentrations of pollutants allowed in off-gas in The Netherlands. The maximum 

allowable concentrations primarily depend on the toxicity of the pollutants, but also 

on the total mass flow and the overall composition of the off-gas (16). The various 

individual pollutants may have to be reduced to lower concentrations than those 

indicated in Table 1, if they are present as a mixture of pollutants. 

Since the early 1980s biological methods have increasingly been used in Germany 

and The Netherlands to remove various volatile contaminants emitted from 

industrial facilities (10). The type of reactor most commonly used is the biofilter, 

consisting of biologically active material, primarily compost, peat or soil. 

Microorganisms present in the biofilter use the contaminants in the waste gas as 

growth substrates. 

As microorganisms require a relatively high water activity to be physiologically 

active, the actual degradation is situated in the water phase. Both the contaminant 

and oxygen, required for its oxidation, have to be transferred from the gas phase to 

the water phase. The actual concentration available to the microorganisms 

depends on the air/water partition coefficient (m) of the contaminant. 

concentration in the gas phase (mol m~3) 
m = 

concentration in the water phase (mol m"3) 

Table 1 shows the aqueous concentrations that correspond to the maximum 

al lowable concentrations in air. For volatiles with a low water solubility (high m) the 

corresponding aqueous concentrations are extremely low. As a consequence the 

driving force for mass transfer over the aqueous layer, surrounding the 

microorganisms, is small and thus these volatiles are difficult to remove from air. 

Membrane bioreactor 

For the continuous removal of poorly soluble contaminants from air a bioreactor 

with hydrophobic microporous membranes was chosen because of its excellent 

mass transfer properties (14). In this reactor the membrane forms the interface 

between the gas phase and the liquid phase (Figure 1). The pores of this 

hydrophobic microporous membrane are gas-filled and thus diffusion through the 

membrane is essentially diffusion in gas. 
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Furthermore a large gas-liquid interface can be created in e.g. hollow fibre 

modules and toxic degradation products can be removed by the water phase. 

Microorganisms in the liquid phase attach to the membrane and form a biofilm 

(Figure 1). This biofilm is supplied with minerals and water from the liquid phase while 

organic pollutants and oxygen are supplied by diffusion through the membrane. 

Table 1. Maximum concentrations of various volatiles allowed in off-gas in The Netherlands 
(16). 

Contaminant 

aliphatic hydrocarbons 

total 

ethene 

propene 

methane 

hexane 

aromatic hydrocarbons 

total 

benzene 

phenol 

styrene 

toluene 

various volatiles 

1,2-epoxypropane 

ethylene oxide 

acetone 

ethanol 

maximum 

concentration 

in off-

(mg m3) 

150 

150 

150 

150 

150 

100 

5 

20 

100 

100 

5 

1 

150 

150 

b 

b 

b 

•gas 

(ppm) 

-
135 

90 

236 

44 

-
1.6 

5.4 

24 

27 

2.2 

0.6 

65 

82 

air/water 

partition coeff." 

(m) at 25°C 

(-) 

NA 

8.8 

8.6 

27 

69 

NA 

0.22 

0.000019 

0.13 

0.26 

0.0033 

0.0056 

0.0016 

0.00021 

corresponding 

concentration 

in water 

(MM) 

NA 

0.62 

0.42 

0.35 

0.026 

NA 

0.29 

l . lx lO4 

7.4 

4.2 

26 

4.1 

1.6xl03 

1.6xl03 

" References 1 and 12. 
b Equal to the total concentration of aliphatics allowed. 

Microorganisms growing with propene 

We selected the unsaturated hydrocarbon propene as a model pollutant to study 

the removal of poorly soluble contaminants present in off-gas in low concentrations. 

Two bacterial strains are available that grow with propene as the sole source of 

carbon and energy, Mycobacterium Pyl and Xanthobacter Py2. 
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Figure 1. Set-up for biofilm formation and continuous propene degradation in a bioreactor 
with a 40-cm2 microporous hydrophobic membrane. The magnification is a schematic 
representation of the membrane module with the membrane separating the gas- and 
liquid-compartments. 

For the cultivation of these strains propene is usually supplied at a concentration of 1 

to 5 percent in air (17- 84 g rrf3). In waste gas treatment, however, the 

concentration of aliphatic hydrocarbons must be reduced to less than 150 mg m"3 

to comply with the emission regulations (Table 1). This implies that the 

microorganisms have to be cultivated at concentrations that are two to three 

orders of magnitude lower than usually applied under laboratory conditions. 

In nature poorly soluble volatiles are known to be degraded in soil down to very low 

concentrations. Ethene e.g. is reduced in oxic soil to less than 0.1 ppm (7) and 

methane oxidizers present in soil can degrade methane to less than the ambient 

concentration of =1.8 ppm (2). However, the microbial capacity to degrade such 

low concentrations has scarcely been examined in bioreactors. 
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Objectives of this study 

Here we describe a membrane bioreactor for the treatment of air contaminated 

with the poorly soluble propene. We focus on the continuous microbial degradation 

of very low concentrations of propene, without the supply of other sources of 

carbon or energy to the microbial population. 

MATERIALS AND METHODS 

Source and cultivation of microorganisms. 

Mycobacterium Pyl (4) and Xanthobacfer Py2 (18) were isolated with propene as the 
carbon source. Both strains were grown continuously on propene in a 1.5-1 fermentor 
containing mineral salts medium. This medium contained per liter: 2 g (NHJjSCV 1.55 g 
K2HP04; 0.85 g NaH2P04.H20; 100 mg MgCI2.6H20; 5 mg FeSO^HjO; 2 mg ZnSO4.7H20; 
1 mg CaCI2.2H20; 1 mg MnCI2.4H20; 0.4 mg CoCI2.6H20; 0.2 mg CuSO4.5H20; 0.2 mg 
NajMo04.2HjO; 10 mg EDTA. The dilution rates were 0.02 and 0.04 h"' for Pyl and Py2, 
respectively. The impeller speed was 550 min"'. the temperature was 30°C, and the pH was 
kept constant at pH 7.0 by titration with 2 M sodium hydroxide. 1.25 % (vol vol"1) propene in 
air was supplied at a rate of 100 ml min"'. This propene concentration is well below the 
minimal concentration for explosion, which is 2.4% (vol vol"') (11). 

For the determination of the kinetic parameters propene-grown cells were harvested by 
centrifugation, washed in washing buffer (50 mM potassium phosphate buffer, pH 7.0), and 
resuspended in the same buffer. 

For the induction experiments both strains were cultivated in 5-1 Erlenmeyers containing 3 g 
I"' sodium succinate and 0.5 I of mineral salts medium of which the amount of phosphate 
buffer was doubled. The cells were harvested in the mid-log phase by centrifugation, 
washed with mineral salts medium, and resuspended in the same medium. X.Py2 harvested 
in the mid-log phase contained slime and could not be washed properly. Slime-formation is 
characteristic for the genus Xanthobacfer (21) when grown with excess carbon. 

Determination of kinetic parameters for propene degradation 
Kinetic parameters of propene degradation were determined by adding 1 ml of washed 
propene-grown cells to a 130-ml serum flask containing 4 ml of washing buffer and a known 
concentration of propene. The propene degradation rate was then determined in * 30 min. 
For each initial propene concentration two cell densities were studied to test if the specific 
rates were equal for both the cell densities. If so, diffusion limitation could be ruled out. If 
the specific degradation rate was lower at the higher cell density, the experiment was 
repeated using lower cell densities. 

Induction of the enzymes required for propene degradation 
1 ml of washed succinate-grown cells (10-20 mg dry weight) were injected into a 130-ml 
serum bottle containing 9 ml of mineral salts medium and a known amount of propene and 
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the propene concentration was monitored in time. Control bottles were amended with 50 

|jg ml ' ' chloramphenicol which inhibits de novo protein synthesis in bacterial cells. 

Propene assay 

The propene concentrations in air were determined by analyzing 100-ul headspace 

samples on a gas chromatograph equipped with a 20% Tween column (Chromosorb W AW 

80-100; Chrompack, Middelburg, The Netherlands) and a flame-ionization detector. The 

column temperature was 110°C and the detection limit was » 0.5 ppm. 

Biomass dry weight 

Biomass dry weights were determined by centrifuging 50-ml samples, resuspending in 

demineralized water, and drying at 108°C for 1 to 2 days. 

Membrane bloreactor 

The membrane material used in all experiments was hydrophobic polypropylene Accurel 

membrane, type 1E-PP, provided by Enka AG (Wuppertal, FRG). The porosity was 70-75 %, 

average pore diameter 0.1 pm and thickness 75-110 pm as stated by the supplier. This flat 

membrane was c lamped between two identical halves of a perspex reactor and the 

membrane separated the reactor into two compartments. Through one compartment 

liquid was circulated while through the other compartment gas was blown. The effective 

membrane area was 40 cm2 and the volume of each compartment was 8 cm3 . 

The set-up in Figure 1 was built to measure the flux of propene through the membrane. The 

liquid phase, containing 400 ml of mineral salts medium, was circulated at a rate of 3 ml 

min"1. The gas phase (volume = 400 ml) was circulated at a rate of ~ 1 I min by a gas 

pump (KNF Neuberger, Freiburg, FRG) ensuring proper mixing of the gas phase and a 

constant concentration of propene over the length of the biofilm. A mixture of propene in 

air was supplied to the gas loop at a rate of 0.1 to 3 ml min"1 using a thermal mass flow 

controller (Brooks Instrument, Veenendaal, The Netherlands). The gas-loop was fitted with a 

thermometer and a gas-sampling port and excess air left the loop through the overflow. 

The whole set-up was p laced in an isothermal chamber kept at 30°C, except for the 

condenser, the gas overflow, and the gas pump. 

Bloreactor operation 

On day 0 the sterilized membrane bioreactor was inoculated by circulating a propene-

grown suspension of Xanthobacter Py2 over the membrane. The supply of propene into the 

gas loop was 9 « 10"' mol s"'. The propene concentration in the loop was monitored daily to 

determine the propene consumption of the developing biofilm. All data have been 

corrected for leakage. After a biofilm had developed, the supply of propene into the gas 

loop was changed daily and the resulting steady-state propene concentrations in the gas 

loop were measured after 16 to 24 hours. From the combination of supply rate and 

measured concentration, the propene consumption rate was calculated. 

For the development of a biofilm at a low concentration of propene, the flux of propene 

into the gas loop was decreased to 1.2 * 10"* mol s"'. The biofilm was grown and monitored 
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analogous to the biofilm at high concentration. From day 27 to 42 [period (2)] the supply of 
propene was changed daily and the steady-state propene concentrations and 
consumption rates were determined. From day 42 to day 50 [period (3)] the supply of 
propene was reduced to 8 * 10" mol s"'. Subsequently, the biofilm was allowed to recover 
at a supply of 1.2 * 10"' mol s~' during period (4) and the minimal supply was repeated from 
day 58 onwards [period (5)]. 

In addition to the frequent steady-state measurements the consumption rates were 
measured dynamically as a function of concentration on days 22, 26, 61, and 76. During 
these dynamic measurements both the supply and the overflow of the gas loop were 
closed, propene was added to the gas loop, and the concentration of propene was 
sampled regularly over a period of several hours in the closed system. Data have been 
corrected for leakage and loss of propene due to sampling. 

RESULTS AND DISCUSSION 

Biofilm formation and propene removal at high concentrations 

Before we studied the feasibility of removing low concentrations of propene from 

air, we tested both Xanthobacter Py2 and Mycobacterium Pyl for their ability to 

form a biofilm at a high concentration of propene. Each strain was inoculated in a 

flat sheet membrane bioreactor. Propene was supplied at a rate of 5.8 * 10~8 mol s"' 

resulting in gas phase concentrations of °= 2.3 * 103 ppm. 
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Figure 2. Flux of propene into the biofilm as a function of the propene concentration in the 

gas phase for strains Pyl (A) and Py2 (•), grown with « 2300 ppm of propene in the gas 

phase. Fluxes were calculated from steady-state measurements. 
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Biofilms of Pyl and Py2 were visible after 14 and 5 days, respectively. Then the supply 

of propene into the gas loop was changed daily. Each resulting steady-state 

propene concentration was measured after 16 to 24 hours and from the 

combination of supply rate and measured concentration the consumption rate was 

calculated. In Figure 2 the flux of propene is shown versus the gaseous 

concentration. The performances of both strains were comparable, although the 

start-up period for Mycobacterium Pyl lasted considerably longer than for 

Xanfhobacter Py2. 

Kinetics of propene degradation by suspended cells 

According to Michaelis-Menten kinetics the consumption rate at low concentrations 

is limited by the substrate concentration and in the lower concentration range the 

affinity of the reaction is important. For both strains we determined the kinetics of the 

first step in the degradation of propene with non-growing, propene-grown cells 

assuming that this reaction can be described by Michaelis-Menten kinetics. The 

consumption rates of Mycobacterium Pyl are shown in both a Lineweaver-Burk plot 

and an Eadie-Hofstee plot. Both graphic methods result in the same values for the 

half-rate constant (KJ, and the maximum consumption rate ( V ^ J . Table 2 sum­

marizes the resulting parameters. 

Table 2. Kinetic parameters of propene degradation by two strains. 

strain max. reaction rate Michaelis-Menten max. growth rate reference 
(Vmox) constant (*„,) (u) 

[nmol min"' mg"'] [ppm in air] [h"'] 

Pyl 15 18 0.035 this work 
Py2 75 160 0.14 15 

Assuming that the first step in the biodegradation of propene is growth-rate limiting, 

the maximum consumption rates can be compared to the maximum growth rates. 

The biomass yield of Xanfhobacter Py2 was previously shown to be 0.44 g C ^ 

biomass per g C ^ propene (15). With an assumption for the carbon content of the 

biomass (45%) the maximum consumption rates can be calculated from the u p ­

values. This results in a VmCK of 66 nmol min"' mg"1 for Py2 and 17 nmol min-1 m g ' 1 

for Pyl. These values are quite close to Vmox-values of 75 and 15 nmol min"1 m g " ' 

measured with non-growing cells. 
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Figure 3. Kinetics of propene degradation by washed, non-growing Mycobacterium Pyl 
cells plotted as Lineweaver-Burk plot (A) and Eadie-Hofstee plot (B). V = propene 
consumption rate and S = propene concentration in the gas phase. 

Using Michaelis-Menten kinetics and the data in Table 2, the specific consumption 

rates of both strains were calculated over a wide range of propene concentrations 

(Figure 4). Although Xanfhobacter Py2 has a considerably lower affinity for propene 

than Mycobacterium Pyl, the specific consumption rates of Py2 are higher than for 

Pyl. 
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Figure 4. Propene consumption rates ot Mycobacterium Pyl ( — ) and Xanthobacter Py2 
( ) as a function of the propene concentration in the gas phase. Data are calculated 
assuming Michaelis-Menten kinetics and using the parameters shown in Table 2. 

Induction of the enzymes required for propene degradation 

For continuous removal of propene from the gas phase not only the consumption 

rate is important, but it is also imperative that the biocatalyst is continuously 

regenerated. Consequently, permanent induction and production of the enzymes 

responsible for propene degradation are required. Propene is known to act as an 

inducer (6, 22) and we tested whether there is a minimal concentration of propene 

to trigger the production of the required enzymes. 

Succinate-grown cells of both strains, that did not contain a detectable 

monooxygenase activity, were exposed to propene and the propene 

concentration was monitored in time (Figure 5). With Xanfhobacfer Py2 degradation 

of the propene started after 60 to 90 minutes, even at the lowest concentration 

tested, which was 5 ppm in the gas phase. With Mycobacterium Pyl induction was 

more difficult. In several experiments the induction period lasted more than 12 

hours, or propene was not degraded at all for 7 days (data not shown). However, in 

a number of experiments in which mid-log phase cells were used, propene 

degradation started ~ 3 hours after the addition of propene, even at 5 ppm. In the 

control bottles protein synthesis was inhibited by 50 |jg ml"1 of chloramphenicol and 

the propene concentrations indeed did not decrease. 
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Figure 5. Induction of propene degradation in succinate-grown cells of Xanfhobacfer Py2 

(•) and Mycobacterium Pyl (A); Open symbols: corresponding controls amended with 50 

pg ml"' chloramphenicol. 

Chloramphenicol did not inhibit monooxygenase activity already present in 

propene-grown cells (data not shown). 

Concluding it can be said that a concentration as low as 5 ppm of propene in the 

gas phase is sufficient to induce the enzymes required for the degradation of 

propene, so continuous removal of propene down to the ppm-level seems feasible. 

It should, however, be noted that the cells used in these experiments were freshy 

harvested and may have contained considerable amounts of storage material. This 

is especially true for Xanthobacter Py2 which had formed slime during growth on 

succinate and might have used the slime as an additional source of carbon and 

energy during induction. Since the minimum amount of energy required for survival 

is not known, induction is no garuantee for long-term stability of the microorganisms 

at these low concentrations. 

Selection of one strain for biofilm experiments at low concentrations 

The kinetic parameters of propene consumption by Mycobacterium Pyl and 

Xanthobacter Py2 differ considerably and strain Py2 has the higher specific 

consumption rate (Figure 4). These kinetic parameters are not in agreement with the 

very similar performances of both strains in a biofilm reactor with a high 

concentration of propene (Figure 2). One possible explanation could be that the 

density of active cells in a biofilm is significantly higher for Pyl than it is for Py2. 
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Another important criterium for selection is the time required for biofilm start-up. At a 

high concentration of propene Xanthobacter Py2 formed a biofilm more rapidly 

than Mycobacterium Pyl. Induction of the enzymes required for propene 

degradation was also easier with strain Py2. Hence, Xanthobacter Py2 was chosen 

for testing biofilm formation and propene removal at low concentrations in a 

membrane bioreactor. 

Biofilm formation In a membrane bioreactor at low concentrations 

On day 0 the reactor was inoculated with Xanthobacter Py2 cells. Figure 6a shows 

the flux of propene through the membrane and the supply into the gas loop (the 

theoretical maximum flux), both in umol m"2 s"\ for each of the 5 periods of this 

experiment. 

During the first days of operation the propene flux through the membrane 

decreased, probably due to starvation and subsequent inactivation of 

microorganisms in the liquid phase. From day 10 to 20, however, the propene flux 

through the membrane increased gradually while the propene concentration in the 

circulating gas phase decreased from 350 to 200 ppm. In the same period the 

formation of a biofilm could be observed visually by the yellow colour of the 

Xanthobacter cells accumulating on the liquid side of the membrane. 

While biofilm formation with ~ 2300 ppm of propene in the gas phase was 

straightforward and took only 5 days, the formation of a biofilm at concentrations 

slightly higher than the Km, required an extended start-up period and it should be 

noted that several attempts were not successful. 

Variation of propene concentration 

From day 27 on [period (2)] the supply of propene into the gas loop was changed 

once a day. The resulting steady-state consumption rates are shown as a function of 

the propene concentration in Figure 7. In addition to the steady-state measurements 

dynamic measurements were performed on days 22 and 26. Using this dynamic 

method the kinetics can be assessed within a few hours, whereas steady-state 

measurements require at least one day per data point. 

In Figure 7 it can be seen that dynamic data and the steady-state data agree 

closely. On day 26 the flux into the biofilm was higher than on day 22. This is in 

agreement with the steady-state performance of the biofilm (Figure 6A), that indeed 

improved between day 22 and day 26. On day 26 apparently a larger amount of 

active biomass was present in the reactor than on day 22. 
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Figure 6. (A) Overview of a biofilm formation experiment. The five periods indicate 
inoculation and biofilm formation (1); variation in propene inflow (2); first period with very 
low concentration (3); biofilm recovery (4); second period with very low concentration (5). 
Symbols: flux of propene removed via the membrane (•) and theoretical maximal flux if 
the conversion were 100% (+); (B) Detailed view showing the concentration of propene in 
the gas supplied to the gas loop (•) and the resulting concentration in the gas loop {•). 
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Figure 7. Fluxes of propene through the membrane as a function of concentration. Steady-
state data (•) were measured between days 26 and 42. Dynamic measurements were 
performed on days 22 (D) and 26 (+). 

First period at low concentrations and restoration 

On day 42 [period (3)] the propene supply into the loop was reduced further to 0.02 

Mmol m"2 s"1. The next day the propene concentration in the gas loop had dropped 

to 12 ppm, implicating that more than 90 % of the propene was being removed 

(Figure 6B). During the subsequent 6 days the propene concentration in the gas loop 

increased from 12 to 27 ppm, while the supply of propene was constant. The 

increasing concentration indicates loss of biological activity and therefore the 

biofilm was al lowed to recover at a supply of 0.3 \imo\ nrf2 s"1 during period (4). As 

can be seen in Figure 6a the flux into the biofilm indeed increased significantly 

during period (4). This increase occurred more rapidly than after inoculation, when 

20 days were required to achieve the same activity. 

Second period at a low concentration ( < 30 ppm) 

On day 58 the propene supply was reduced again and the stability of propene 

removal in the membrane bioreactor at low concentration was tested [period (5]). 

On day 59 the resulting propene concentration was 11 ppm. After an increase to 29 

ppm, probably due to an increase in the supply of propene, the concentration 

stabilized at a level of « 20 ppm, which corresponds to an aqueous concentration 

of 0.09 |JM. Apparently, Xanrhobacfer Py2 is able to remain viable at this 

concentration, which is well below a number of published threshold concentrations 

for carbon sources (3). 
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During period (5) the capacity of the biofilm was assessed dynamically on days 61 

and 76 (Figure 8). On day 61, after 3 days at = 10 ppm, the capacity of the biofilm 

was only slightly less than on day 22, when the biofilm had been operated with a 

concentration of ~ 200 ppm. On day 76, however, the maximal propene flux into 

the biofilm was approximately halved compared to day 22. Apparently, the 

amount of active biomass in the biofilm adapts to the amount of propene 

available. 

Thickness of the active biolayer 

As can be seen in Figure 8 the observed flux into the biofilm on day 76 was 

maximally 0.16 umol m~2 s"1. Assuming the specific activity of Xanmobacfer Py2 

shown in Table 2, this maximum flux corresponds to the presence of 130 mg of 

biomass per m2 of membrane. If 130 mg of biomass were distributed equally over 1 

m2 membrane, the biofilm would be considerably thinner than 1 um, i.e. less than a 

monolayer of bacteria. Therefore, limitation of the flux by diffusion was neglected 

and the lower curve in Figure 8 was fitted with Michaelis-Menten kinetics using the 

half-rate constant from Table 2 (160 ppm). 

0.4 

0.0 
500 1000 

Propene (ppm) 

Figure 8. Effect of operating the membrane bioreactor at a low concentration of propene, 
on the removal capacity of a biofilm. Dynamic measurements were performed on day 22 
(•), when the biofilm had been growing with ~ 200 ppm propene and on days 61 (•) and 
76 (T), when the concentration of propene had been less than 30 ppm for 2 resp. 17 days. 

The curve of day 76 was fitted using Michaelis-Menten kinetics and Km = 160 ppm; Vmax = 
0.18 umol m~2s~'. 
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The optimal fit of the maximal reaction rate was 0.18 pmol m'2 s"1 (r2 = 0.98). 

According to this value and the concentration during steady-state operation (18 

ppm), the flux into the biofilm on day 76 should have been 0.018 pmol m"2 s~\ The 

actual steady-state flux into the biofilm on day 76 was 0.017 umol rrT2 s"\ i.e. very 

close to the predicted value. Hence the propene consumption by a very thin 

(monolayer) biofilm growing on microporous membrane can be described quite 

accurately by Michaelis-Menten kinetics neglecting mass transfer limitation. 

Comparison with reports from literature 

Aliphatic hydrocarbons, such as methane and ethene, are known to be consumed 

in natural soil systems at concentrations around or below 1 ppm (2, 7). In bioreactors 

higher concentrations of aliphatics were continuously removed from air. In soil or 

compost biofilters 100-200 ppm of hexane (13), 10-250 ppm of n-butane (9) and 

2,000 ppm of propane and butane (8) were partially removed from air. Trickle-bed 

reactors were also used for waste gas treatment. In such a bioreactor inert material 

is used as a carrier for biomass. Varying concentrations of isopentane were partially 

removed from air in a trickle-bed reactor (17) and air containing ~ 100 ppm of 

ethene was treated using a packed bed of activated carbon ( 5). 

Continuous removal of very low concentrations of aliphatics from air could up to 

now only be achieved in compost biofilters. Ethene was reduced from 2 ppm to less 

than 0.5 ppm by Mycobacterium E3 immobilized in compost (20). Immobilization of 

the same ethene-oxidizer on the inert substrata perlite and lava in the presence of 2 

ppm of ethene, did not result in a stable system (19). Nutrients present in compost 

were presumably essential to maintain a viable population of ethene-oxidizers (7). 

Nevertheless, our experiments demonstrate that propene-degrading bacteria 

immobilized on inert membrane, were active for 25 days at concentrations ranging 

from 9 to 30 ppm. 

CONCLUSIONS 

The kinetic parameters of propene degradation by suspended cells of 

Mycobacterium Pyl and Xanfhobacter Py2 differed considerably but the propene 

removal rates of biofilms of strain Pyl and strain Py2 were comparable at a high 

concentration of propene. 

The formation of a biofilm of Xanthobacter Py2 took ~ 20 days, when propene was 

supplied at a concentration in the same range as its Km and when no additional 

source of carbon or energy was supplied to the biofilm. Propene removal was 

shown to be feasible at concentrations ranging from 10 to 1000 ppm in air. 
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Once the biofilm had been formed on the membrane the amount of active 

biomass adapted to the amount of propene available. After an increase in 

propene concentration from =30 ppm to =300 ppm the consumption rate adjusted 

within 5 days. When operated at a concentration of 9 - 30 ppm for several weeks, 

the total amount of active biomass decreased but the propene removal rate was 

stable. 

To our knowledge this is the first report on a bioreactor with which a poorly soluble 

volatile can be removed from air for a prolonged period at very low concentrations 

(less than 30 ppm), without the supply of any other source of carbon or energy to 

the microbial population. 
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CHAPTER 6 

Continuous degradation of trichloroethene by 

Xanthobocter Py2 during growth on propene 

Martine W. Reij, Jasper Kieboom, Jan A.M. de Bont, and Sybe 

Hartmans 

Summary: Propene-grown Xanthobacter Py2 cells can degrade trichloroethene 

(TCE), but the transformation capacity was limited and depended on both the TCE 

concentration and the biomass concentration. Toxic metabolites presumably 

accumulate extracellularly, because the fermentation of glucose by yeast cells was 

inhibited by TCE degradation products formed by strain Py2. The affinity of the 

propene monooxygenase for TCE was low and allowed strain Py2 to grow on 

propene in the presence of TCE. During batch growth with propene and TCE, the 

TCE was not degraded before most of the propene had been consumed. 

Continuous degradation of TCE in a chemostat culture of Xanthobacter Py2 

growing with propene, was observed with TCE concentrations up to 206 u.M in the 

growth medium, without wash-out of the fermentor occurring. At this TCE 

concentration the specific degradation rate was 1.5 nmol per min per mg biomass. 

The total amount of TCE that could be degraded during simultaneous growth on 

propene depended on the TCE concentration and ranged from 0.03 to 0.34 g TCE 

per g biomass. The biomass yield on propene was not affected by the cometabolic 

degradation of TCE. 

Applied and Environmental Microbiology (1995) 61: 2936-2942. 
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INTRODUCTION 

A variety of aerobic bacteria containing oxygenases have been reported to 

degrade the pollutant trichloroethylene (TCE) cometabolically when they are 

grown on aliphatic hydrocarbons (4, 14, 18), aromatic hydrocarbons (7) or 

ammonium (20). Ensign et al. (3) showed that the propene-oxidizer Xanthobacter 

Py2 is able to degrade TCE when it is grown on propene because of the presence of 

propene monooxygenase. 

The toxicity of TCE is a major problem encountered in the aerobic degradation of 

this compound, and this toxicity is probably due to the formation of highly reactive 

intermediates. Methane oxidizers are harmed irreversibly, and the greater the 

amount of TCE that the cells have transformed, the greater the effect (1). The 

degradation of TCE by purified methane monooxygenase results in inactivation of 

the enzyme (8). Other enzymes have also been shown to be affected as a result of 

TCE degradation (3, 17). The nature of these inactivating effects is not clear, but it 

has been shown that TCE oxidation products cause alkylation of macromolecules 

(8, 17, 23). It has been shown that in Nitrosomonas europaea de novo protein 

synthesis is required to regain oxidation activity (20). 

Because of the inactivation effects caused by TCE degradation, the transformation 

capacity of cells is limited (1, 11, 18) and processes for continuous removal of TCE 

consequently should involve regeneration of inactivated biomass. Continuous 

aerobic degradation of TCE in a bioreactor or field situation has been observed with 

methane-oxidizers (5, 15, 21) and microorganisms growing with aromatic substrates 

(7, 11, 13). 

In this study Xanthobacter Py2 was chosen to study the continuous degradation of 

TCE to allow comparisons with data already reported for methane- and aromatic 

hydrocarbon-degrading bacteria. Since the TCE transformation capacity of cells is 

limited, synthesis of the monooxygenase is required for continuous TCE removal. 

Unfortunately, propene, which induces the alkene monooxygenase, also inhibits the 

oxidation of chlorinated alkenes (3). 

The same problem has been encountered with TCE degraders growing on methane 

(5), phenol (11), propane (14) and toluene (13). In all of these cases the presence of 

the growth substrate resulted in restoration of monooxygenase activity, but inhibited 

TCE degradation. To overcome the problem of inhibition of TCE degradation by the 

growth substrate, workers have designed two-stage bioreactors (6, 15). In these 

types of reactors cells are supplied with growth substrate in the first stage and are 
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then transported to the second stage, where TCE is degraded. Other workers have 

studied alternating the supply of growth substrate and TCE (19). Nevertheless, under 

controlled conditions simultaneous growth and TCE degradation in only one reactor 

are also possible (5,13, 16). 

We used the continuous culture technique to characterize the kinetics and 

physiology of simultaneous propene degradation and TCE degradation in 

Xanthobacter Py2 cells. In this paper we first describe the transformation capacity 

and the kinetics of TCE oxidation, and then focus on TCE degradation during growth 

on propene in batch and continuous cultures. 

MATERIALS AND METHODS 

Organisms and culture conditions. 
Xanthobacter Py2 was isolated with propene (22), and was grown continuously in a 1.5 I 
fermenter with mineral salts medium (9) at a dilution rate of 0.03 hr"'; 1.25 % (vol/vol) 
propene in air was supplied at a rate of 100 ml min"'. The impeller speed was 550 min', the 
temperature was 30°C and the pH was kept constant at 7.0 by titration with 2 M NaOH. 
Cells were harvested by centrifugation, washed with washing buffer (50 mM potassium 
phosphate buffer, pH 7.0), and resuspended in the same buffer. 

For batch growth in the presence of TCE (see Fig. 3), Xanthobacter Py2 pre-grown with 
propene, was inoculated into 10-ml portions of mineral salts medium in 250-ml serum flasks 
sealed with Teflon-lined Mininert septa (Alltech, Deerfield, III.). Propene was added in the 
gas phase to a final concentration of 1.1%. TCE was added as a saturated solution in 
mineral salts medium to a final concentration of 0, 36, 74, and 250 pM in the water phase. 
The bottles were incubated in a water bath at 30°C and the concentrations of C02, 
propene, and TCE were monitored by gas chromatography during the experiment. 

For continuous growth with propene in the presence of TCE, Xanthobacter Py2 was grown in 
a stirred vessel as described above at a dilution rate of 0.034 (± 0.003) hr"'. Propene was 
mixed with air and a third airflow, which was saturated with TCE in a saturation column at 
room temperature. All gas flows were controlled by thermal mass flow controllers (Brooks 
Instrument B.V., Veenendaal, The Netherlands). The propene concentration was 1.25 % and 
the total flow was 106 ml min"'. In- and outgoing concentrations of TCE, propene, and CO, 
were determined daily by sampling two disconnectable 0.75-liter glass containers placed in 
the in- and outgoing gas streams. The amounts of propene and TCE lost abiotically were 
less than 3%. After each change in the TCE loading rate, the reactor was operated for 5 
days (corresponding to four changes of volume) before steady-state was confirmed as 
follows: the in- and outgoing concentrations and the optical density at 660 nm were 
constant for at least another 2 days. 
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Saccharomyces cerevisiae (CBS 1394) was grown In 0.5-liter Erlenmeyer flasks that 

contained 0.3 liter medium supplemented with 10 g of yeast extract per liter and 10 g of 

glucose per liter and were incubated at 30 °C in a rotary shaker. Cells were harvested by 

centrifugatlon, washed with 50 mM potassium phosphate buffer, and resuspended in the 

same buffer. Suspensions were kept on ice and used within a few hours after they were 

harvested. 

TCE and propene degradation assays. 

The transformation capacities of washed propene-grown cells were determined in 250-ml 

serum flasks sealed with Teflon-lined Mininert septa. TCE was added as a saturated solution 

(8.3 mM) in 50 mM potassium phosphate buffer at room temperature, to final 

concentrations of 130, 260, and 390 uM. Washed Xanf/iobacfer Py2 cells were added at a 

final concentration of 1.8,3.6, or 5.5 mg (dry weight) per ml, and the final volume was 10 ml. 

The flasks were incubated in a water bath at 30 °C, and the concentration of TCE was 

fol lowed for 20 hours by gas chromatography. After 20 h the concentration of the 

accumulated CMons in the medium was determined. 

Kinetic parameters of propene degradation were determined at 30°C in rubber-sealed 75-

ml serum vials containing 5 ml of 50 mM potassium phosphate buffer (pH 7.0) and 0.15 to 

0.37 mg of cells. To eliminate the possibility that the reaction was limited by diffusion, two 

cell densities were incubated with vigorous shaking. Since the specific degradation rates 

were found to be the same for the two cell densities, we concluded that the degradation 

rate was not limited by diffusion. 

The TCE degradation assays were performed with 0.25 mg of cells at 30°C in 250-ml serum 

flasks sealed with Teflon-lined Mininert septa and contained 25 ml of 50-mM potassium 

phosphate buffer. The initial rates of TCE degradation were determined for the first 15 

minutes. 

Toxicity of extracellular metabolites to Saccharomyces cerevisiae. 

A 1.7-mg portion of washed S. cerevisiae cells was incubated aerobically in a water bath at 

30°C with 10 or 20 mg of Xanthobacter Py2 cells and 64 uM of TCE in 250-ml serum flasks 

that were sealed with Teflon-lined Mininert valves and contained a total liquid volume of 10 

ml. After 2.5 hours the Mininert valves were exchanged for rubber seals, and the flasks were 

flushed with nitrogen for 30 minutes to remove oxygen, C02 , and residual TCE. Then glucose 

was added to a concentration of 5 g I"', and the production of C 0 2 was monitored. 

Analytical methods 

The amounts of TCE, propene, and carbon dioxide were determined by gas 

chromatography of 100-ul headspace samples. TCE was analyzed in triplicate with a 

Packard model 437 gas chromatograph equipped with a 20% Tween column (Chromosorb 

W AW 80-100; Chrompack, Middelburg, The Netherlands) and a flame-ionization detector. 

The column temperature was 110 °C. The concentration of TCE was expressed as the actual 
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micromolar concentration in the liquid phase which the cells experienced. The total 
amount of TCE was calculated by adding the amounts present in liquid and gas phases 
and using a TCE gas/water partition coefficient of 0.5 (2). 

Propene was analyzed In triplicate with a Packard model 430 gas chromatograph fitted 
with a Porapak R column (100-120 mesh, 110 [ca. 279 cm] * 1/8 In. [ca. 3.2 mm] [inside 
diameter]) and a flame ionization detector. The oven temperature was 180 °C, and the 
carrier gas was N2. C02 was analyzed in duplicate with a Packard model 427 gas 
chromatograph fitted with a HayeSep Q column and a thermal conductivity detector at 
140 °C. The column temperature was maintained at 110 °C, and helium was used as the 
carrier gas. The standard deviations of TCE, propene, and C02 measurements were 3, 2, 
and 1 %, respectively. Dry weights were determined by centrifuging 50-ml samples, 
resuspending the resulting preparations in demineralized water, and drying them at 108 °C. 

Chloride ion concentrations were determined in triplicate by using cell-free supernatants 
and a microchloro counter (Marius, Utrecht, The Netherlands), which titrated the chloride 
ions with Ag* released electrochemically from a silver electrode. 

Chemicals 
TCE (99.5% pure) was purchased from E. Merck, Darmstadt, Germany. Propene (99.995% 
pure ) and N2 (99.99% pure) were purchased from Hoekloos, Schiedam, The Netherlands. All 
other chemicals were reagent grade. 

RESULTS 

Transformation capacity of washed cells 

Before we studied TCE degradation by a continuous culture of Xanthobacter Py2, 

we determined the transformation capacity of washed propene-grown cells (i.e., 

the total amount of TCE that could be degraded by these cells in the absence of 

other substrates). The effects of both cell density and TCE concentration on 

transformation capacity were studied. Cells were incubated with TCE for 20 h, after 

which no residual monooxygenase activity was detected. Table 1 shows the 

amounts of TCE eliminated per gram of biomass as determined by gas 

chromatography as well as by titration of the accumulated CMons. Most of the 

chlorine atoms in TCE eventually accumulated in the medium as CMons. Our 

results show that the specific transformation capacity of the culture decreased with 

cell density, suggesting that cells produced toxic degradation products which 

accumulated extracellularly. 
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Effect of TCE degradation products on glucose fermentation by S. cenvlsiae 

To test the hypothesis that toxic intermediates appeared extracellularly, the 

following experiment was performed. S. cerevisiae was incubated aerobically for 

2.5 h in potassium phosphate buffer in the presence of Xanthobacter Py2 and 

TCE.Then the incubation system was flushed with N2, glucose was added and the 

C0 2 - production by S. cerevisiae during anaerobic incubation was measured. In 

several experiments (data not shown) the fermentation rate of S. cerevisiae was 

reduced by 20 to 28 % by the preceding incubation if TCE and Xanthobacter Py2 

had been present simultaneously. 

The results of one of these experiments are shown in Figure 1. Preincubation with 

either TCE or strain Py2 did not reduce the fermentation rate. Anaerobically, 

Xanthobacter Py2 did not produce any C02 . 

Table 1. Effects of cell density and TCE concentration on the amount of TCE degraded by 
washed propene-grown Xanthobacter cells" 

Amount of 

biomass 
(mg ml"1) 

1.8 
3.6 
5.5 

Amount of TCE degraded at an initial TCE concentration of: 

130 MM 

TCE assay 

43.6 ± 6.5 
43.1 ±2.3 
35.0 ± 1.8 

CI" assay 

30.6 ± 1.2 
25.4 ±0.3 
27.4 ±0.5 

260 uM 

TCE assay CI" assay 

55.6 ±11.5 37.1 ±1.3 
47.3 ±6.4 34.4 ±0.1 
39.4 ±3.7 29.6 ±0.3 

390 uM 

TCE assay CI" assay 

58.2 ±16.4 42.3 ±1.1 
46.9 ±10.0 36.4 ±0.2 
43.3 ± 6.7 32.7 ± 0.6 

" TCE removal was determined after 20 hours of incubation. Values are expressed in 
milligrams of TCE oxidized per gram of biomass and were determined by the removal of TCE 
and by the accumulation of Cl-ions. We assumed that three chlorine atoms represented 
one molecule of TCE degraded. 

Kinetics of the alkene monooxygenase 

Using propyne as a specific inhibitor of the monooxygenase. Ensign et al. (3) have 

shown that the propene monooxygenase is required for TCE degradation. Therefore, 

we studied the kinetics of the degradation of both TCE and propene, which is the 

inducer of the propene monooxygenase. First, the initial degradation rates of both 

substrates by washed cells were studied as a function of the concentrations of the 

substrates. Reliable measurements of TCE degradation rates were possible only at 

concentrations lower than the resulting Km (116 pM). The initial TCE degradation rates 

were determined during the first 15 min. Figure 2 shows that Xanthobacter Py2 had a 

higher affinity and a higher maximal degradation rate for propene than for TCE. 
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Figure 1. Effect of preceding aerobic incubation with TCE and strain Py2 on anaerobic C 0 2 

production from glucose by S. cerevisiae. The yeast cells were pre-incubated aerobically in 

the presence of 64 uM TCE (•), 10 mg of strain Py2 (+), without additions (n), 10 mg of strain 

Py2 and 64 uM TCE (A), 20 mg of strain Py2 and 64 uM TCE (O). V, control containing only 10 
mg of strain Py2. 
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Figure 2. Lineweaver-Burk plots of TCE degradation (A) and propene degradation (B) by 

Xanthobacter Py2. Concentrations are expressed in micromoles per liter liquid phase. The 

parameters resulting from the linear least-square fit (the outlying da ta point in A was 

omit ted from the fit) are as follows: for TCE, Vma)< = 16 nmol min"' mg"' and (^ = 116 uM; and 

for propene, Vmox = 75 nmol min"' mg"' and Km = 0.62 uM. 
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Subsequently, the kinetics of simultaneous TCE degradation and propene 

degradation were studied. High concentrations of propene inhibited the 

degradation of TCE (data not shown but this phenomenon is shown in Figures 3B to 

D). To demonstrate that propene degradation was inhibited by the presence of TCE, 

high concentrations of TCE (concentrations greater than the K J were required, 

since the affinity of the monooxygenase for TCE is much lower than its affinity for 

propene. In the presence of TCE concentrations higher than the Km for TCE, the 

propene oxidation rate decreased rapidly during the experiment. 
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Figure 3. Effect of TCE on the growth of Xanthobacter Py2 on propene. The initial TCE 

concentrations were 0 uM (A), 34 uM (B), 76 uM (C), and 250 uM (D). The y axes on the left 

indicate the propene (•) and C02 (o) concentrations (in umoles per flask); The y axes on 

the right indicate the TCE concentrations (A) (in pmoles per liter of liquid). 
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This was probably due to irreversible loss of enzyme activity because of simultaneous 

TCE oxidation. Therefore, the inhibition constants (KJ of TCE and propene could not 

be determined. 

Batch growth on propene in the presence of TCE 

Before we studied continuous degradation of TCE during growth on propene in a 

continuous culture, we studied batch growth of Xanthobacter Py2 in the presence 

of TCE. Figures 3 shows the growth curves of Xanfhobacfer Py2 when the initial 

concentrations of TCE in the water phase were 0, 36, 74, and 250 uM. The maximal 

growth rate (as determined from the C0 2 formation curve) in the presence of 0 to 74 

MM TCE was 0.14 (± 0.02) h r ' . In the presence of 250 yM TCE the growth rate 

decreased to 0.08 hr"'. Figure 3 also shows that TCE degradation did not start before 

most of the propene had been consumed. This is consistent with the affinity of 

washed cells for the two substrates (Figure 2), assuming that both substrates are 

oxidized by the same enzyme. 

Continuous growth on propene in the presence of TCE 

Xanthobacter Py2 was grown in a chemostat culture at a dilution rate of 0.034 (± 

0.003) hr ' , which is well below the maximal growth rate observed in the presence of 

250 MM of TCE (Figure 3D). For each TCE loading rate the reactor was operated for 

four volume changes, and steady-state was confirmed by the in- and outgoing 

concentrations of TCE, and by the fact that the optical density at 660 nm was 

constant for at least another 2 days. Figure 4 shows that Xanthobacter Py2 grew 

propene-limited in the presence of TCE. 

The amount of TCE degraded increased as the TCE concentration increased, 

although the level of TCE conversion decreased (Figure 4A). The highest TCE load 

tested (461 umol I"1 hr"') resulted in a steady-state concentration in the liquid phase 

of 206 | JM and a volumetric TCE removal rate of 54 umol I"' hr1. Figure 5 shows the 

amount of TCE removed per gram of biomass as a function of the TCE 

concentration in the liquid phase. 

The rate of carbon recovery was between 85 and 112 % (Fig. 4B), indicating that the 

overall variability of the data was limited. The yields of biomass and C0 2 on 

propene were constant (Fig. 4B) irrespective of the TCE concentration in the liquid. 

The constant biomass yield suggests that TCE degradation did not cause a 

significant increase in the maintenance requirements due to cell damage or loss of 

reducing equivalents. An interruption in the propene supply for several hours at the 

highest TCE concentration tested, caused a wash-out of the fermentor. 
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Figure 4. TCE degradation by strain Py2 in continuous cultures during growth on propene. 

The TCE load was varied between 15 and 461 umol liter"' hr"1 and resulted in steady-state 

concentrations in the liquid phase (indicated on the x axes). (A) Symbols: • , level of TCE 

conversion; A, TCE removal rate as determined by gas chromatography; A , removal rate 

as determined by the accumulation of CI". (B) Yields (in milligrams of C/milligrams of C) of 

biomass (•) and C 0 2 produced (+) and rates of recovery (•). For biomass a C-content of 

0.45 g carbon per g biomass was assumed. 



Continuous degradation of TCE by Xanthobacter Py2 95 

DISCUSSION 

Xanthobacter Py2 cells were able to degrade a limited amount of TCE, and this 

amount varied with the cell density (Table 1). In the presence of the highest biomass 

concentration (5.5 mg of biomass per ml) and lowest TCE concentration (130 uM) 

tested, 87 % of the TCE was degraded. The lower initial TCE concentrations used in 

this experiment are in the range of the Km value for TCE (116 uM). Therefore, the 

lower specific transformation capacity at a high cell density could have been due 

to substrate limitation. At the highest TCE concentration tested (390 uM), however, a 

maximum of 30 % of the compound was converted. Therefore, in this case the 

decrease in transformation capacity with increasing cell density could not have 

been due to kinetic effects. We speculate that toxic metabolites, (e.g., carbon 

monoxide [10], hydrolysis products of the TCE epoxide or chloral [8]) accumulate in 

the medium to a greater extent at higher cell densities, resulting in stronger 

inhibition. Alvarez-Cohen and McCarty (1), however, found the opposite effect of 

cell density on transformation capacity. In mixed methanotrophic cultures the 

transformation capacity was slightly higher at higher cell density. The values 

reported by these authors (0.025 to 0.033 g of TCE per g of biomass) (1) are similar to 

the values which we found for X. Py2. With phenol-oxidizing microorganisms Hopkins 

et al. (11) observed a much higher transformation capacity (0.24 g TCE per g of 

cells). 

Our hypothesis that toxic metabolites appear extracellularly, was supported by the 

observed inhibition of yeast cells (Figure 1) incubated with Xanthobacter Py2 cells 

degrading TCE. Incubation with either TCE or strain Py2 had no effect on the 

fermentation rate of the yeast, clearly demonstrating that inhibitors were formed 

during incubation with both TCE and strain Py2. The nature of the inhibitory products 

formed from TCE by strain Py2 is not known. Because of its volatile nature carbon 

monoxide is unlikely to play a role, since the bottles were flushed with N2 before 

glucose was added. Diffusible hydrolysis products of the TCE epoxide or chloral, 

however, might be responsible for the observed inhibition. Such hydrolysis products 

have been found to inactivate the purified methane monooxygenase by covalent 

modification (8). On the other hand, compounds produced by Xanfhobacfer itself 

as a stress response to TCE could also be responsible for the inhibition of the yeast. 

Irrespective of the nature of these inhibitors, degradation of TCE presumably results 

in the extracellular appearance of toxic metabolites. This observation has great 

impact on the TCE removal process and implies that biomass and liquid from a 

reactor in which TCE is degraded should be handled with care. 
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The Michaelis-Menten half-saturation constant (KJ forTCE was found to be 116 uM, 

which is considerably higher than the values reported for Pseudomonas cepacia 

G4, 3 uM (7) and 6 uM (13). Our half-saturation constant value was, however, in the 

same range as the values found for the methane oxidizers M. trichosporium OB3b 

(145 uM [17] and 126 uM [12]) and M. methanica 68-1 (225 uM [12]). 

Propene and TCE, which are probably substrates for the same enzyme (3), influence 

the rate of degradation of the other. Propene oxidation rates decreased rapidly in 

the presence of excess TCE. On the other hand, a high concentration of propene 

prevented TCE degradation (Figures 3B to D). In this context it should be noted that 

the specificity constant (maximum rate of metabolism [VmaJ/KJ for propene is 

approximately 900 times greater than the specifity constant for TCE. The low 

specificity constant of the enzyme for TCE thus allows batch growth on propene in 

the presence of 250 uM TCE (Fig. 3D). During batch growth TCE is not degraded until 

most of the propene has been consumed. A similar pattern of subsequent substrate 

degradation was found for the isoprene-utilizing Rhodococcus erythropolis JE77 (4). 

The mutual influence of growth substrate utilization and TCE degradation has also 

been observed with various other organisms (6, 11-14, 16). Folsom et al. (7) 

suspected that the influence of phenol on TCE oxidation and vice-versa in P. 

cepacia G4 can be explained by a competitive mechanism. Landa et al. (13) have 

actually report K, values for competitive inhibition by toluene during TCE oxidation 

and vice versa with the same organism; the reported values (K, for toluene, 30 uM; K, 

for TCE, 5 uM) are very close to the independently determined Km values (25 uM and 

6 uM, respectively), suggesting that competitive inhibition occurs, but no 

Lineweaver-Burk plots are given by these authors. For Xanthobacter Py2 the type of 

inhibition could not be established because of the quick and irreversible loss of 

enzyme activity in the presence of high concentrations of TCE. 

The specific TCE degradation rates by cells during growth on propene in the 

fermentor (Fig. 4) were significantly lower than the initial rates (e.g., at 100 uM 7.4 

nmol min"1 mg"') determined in the absence of propene. The lower rates in the 

fermentor were probably due to competition between propene and TCE for the 

monooxygenase and possibly also because of lower levels of active 

monooxygenase in cells growing in the presence of TCE. 

Although the specific rates of TCE degradation rates in the chemostat were 

relatively low, the transformation capacity of the cells (0.34 g g"') (Figure 5) was six-

to seven-fold higher than the amount of TCE degraded by washed cells in the 
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absence of propene (Table 1) at a similar concentration of TCE. The higher 

transformation capacity in the presence of propene may have been due to 

replenishment of reducing equivalents by propene oxidation. In phenol-oxidizing 

microorganisms the TCE degradation capacity was improved by 102 % in the 

presence of an external source of reducing equivalents (1). With a methanotrophic 

culture the energy- generating substrate formate was found to increase the 

transformation capacity by 58 %, indicating that depletion of stored energy reserves 

by TCE oxidation was a factor which determined the transformation rate and 

capacity (11). However, apart from the replenishment of reducing equivalents by 

propene oxidation, de-novo synthesis of the propene monooxygenase in the 

presence of the inducer propene is probably the main reason for the increased 

transformation capacity. 

Other workers (Table 2) have reported similar values for the transformation capacity 

of toluene and phenol oxidizers (11, 13), whereas lower values have been reported 

for methane oxidizers (16). Table 2 also shows the amount of growth substrate 

required for degradation of TCE. The values in Table 2 are very difficult to compare 

since they depend not only on the TCE concentration but also on whether the 

growth substrate and TCE were supplied alternately. In general, substantial amounts 

of volatile growth substrate(s) are required for cometabolic degradation of TCE, 

which results in high costs and contamination of air or water with the residual growth 

substrate(s). 

Table 2. Amounts of growth substrate required per gram of TCE degraded and 
transformation capacity of the biomasses during continuous degradation. 

Preparation 

mixed culture 

mixed culture 

mixed culture 

M. frichosp.OB3b 

mixed culture 

P. cepacia G4 

Xanthobacter Py2 

Growth 

substrate (s) 

methane 

methane 

methane 

+ propane 

methane 

phenol 

toluene 

propene 

Amount of substrate 

(g of substrate consumed 

per g of TCE degraded) 

23-1,200 

77 " 

11-30 

320-1,200 

9 a 

14-71 

4-23 

Transformation 

(g of TCE per g of 
biomass) 

-
0.036 ° 

0.015-0.08 " 

1.7x10-"-6.8xl0-3 

0.24 a 

0.027-0.152 

0.03-0.34 

Ref. 

5 

1 

19 

16 

11 

13 

this work 

Degradation capacity determined in the absence of energy-generating substrates. 
Per day. 
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Figure 5. Amount of TCE removed per gram of biomass during continuous growth of strain 
Py2 on propene. Data were obtained from Fig. 4A. 

Although a continuous culture of X. Py2 can grow in the presence of a wide range of 

TCE concentrations, it is susceptible to interruptions in the propene supply at a high 

concentration of TCE, which causes a wash-out of the fermentor. The cells are 

apparently not able to recover from exposure to TCE in the absence of propene. 

Thus, although simultaneous oxidation of propene during TCE degradation results in 

lower rates of TCE degradation, it also prevents total inactivation of the biocatalyst. 

The biomass yield of X. Py2 on propene was not affected by the simultaneous TCE 

degradation, even when the concentration of TCE in the liquid was 206 uM TCE 

(Figure 4B). With the toluene-oxidizing P. cepacia G4 Landa et al. (13) also found a 

constant biomass yield over a wide range of TCE concentrations up to 14 uM, but at 

80 pM the yield was lower. On the basis of the energy required for the initial step in 

the oxidation of TCE (1 NADH), a detectable decrease in the yield can hardly be 

expected when the propene flux (at least 15 nmol min"' mg"') is compared with the 

TCE flux (1.5 nmol min"1 mg"1 at most). However, we anticipated that an increase in 

the monooxygenase turnover rate due to inactivation by TCE, would increase the 

apparent maintenance requirements and hence decrease the yield on propene. 

However, it is possible that the inactivation of the cells by TCE degradation was 

compensated for with energy gained from the oxidation of TCE degradation 

products. 
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In conclusion, our results c lear ly demonstrate that Xanthobacter Py2 cells g rowing 

on p r o p e n e , c a n b e used to continuously degrade TCE over a w i d e range of 

concent ra t ions. However, a d i sadvan tage of this organism is its low affinity for TCE, 

wh ich results in rather low specif ic deg rada t ion rates a t low TCE concentrat ions. 

ACKNOWLEDGEMENTS 

W e thank Lida Nugteren-Davoodzadeh for determining kinetic parameters. This 

work was suppor ted by the Dutch Innovation Program for research on Environ­

menta l B iotechnology (project IMB-90201). 

REFERENCES 

1. Alvarei-Cohen, L, and P.L McCarty. 1991. Effects of toxicity, aeration, and reductant 

supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl. 

Environ. Microbiol. 57: 228-235. 

2. Amoore, J.E., and E. Hautala. 1983. Odor as an aid to chemical safety: odor threshold 

values compared with threshold limit values and volatilities for 214 industrial chemicals 

in air and water dilution. J. Appl. Toxicol. 3: 272-290. 

3. Ensign, S.A., M.R. Hyman, and D.J. Arp. 1992. Cometabolic degradation of chlorinated 

alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl. 

Environ. Microbiol. 58:3038-3046. 

4. Ewers, J., D. Freler-Schroder, and H.-J. Knackmuss. 1990. Selection of trichloroethene 

(TCE) degrading bacteria that resist inactivation by TCE. Arch. Microbiol. 154:410-413. 

5. Fennell, D.E., Y.M. Nelson, S.E. Underhill, T.E. White, and W.J. Jewell. 1993. TCE 

degradation in a methanotrophic attached-film bioreactor. Biotechnol. Bioeng. 42: 

859-872. 

6. Folsom, B.R., and P.J. Chapman. 1991. Performance characterization of a model 

bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4. 

Appl. Environ. Microbiol. 57: 1602-1608. 

7. Folsom. B.R., P.J. Chapman, and P.H. Pritchard. 1990. Phenol and trichloroethylene 

degradation by Pseudomonas cepacia G4: Kinetics and interactions between 

substrates. Appl. Environ. Microbiol. 56:1279-1285. 

8. Fox, B.G., J.G. Bomeman, LP. Wackett, and J.D. Lipscomb. 1990. Haloalkene oxidation by 

the soluble methane monooxygenase from Methylosinus trichosporium OB3b: 

Mechanistic and environmental implications. Biochemistry 29: 6419-6427. 

9. Hartmans, S., A. Kaptein, J. Tramper, and J.A.M. de Bont. 1992. Characterization of a 

Mycobacter ium sp. and a Xanthobacter sp. for the removal of vinyl chloride and 1,2-

dichloroethane from waste gases. Appl. Microbiol. Biotechnol. 37: 796-801. 

10. Henry, S.M., and D. Grbi6-Gali6. 1991. Inhibition of trichloroethylene oxidation by the 

transformation intermediate carbon monoxide. Appl. Environ. Microbiol. 57:1770-1776. 



100 Chapter 6 

11. Hopkins, G.D., J. Munakata, L Semprinl, and P.L McCariy. 1993. Trichloroethylene 

concentration effects on pilot field-scale in-situ groundwater bioremediation by 

phenol-oxidizing microorganisms. Environ. Sci. Technol. 27:2542-2547. 

12. Koh, S.-C. J.P. Bowman, and G.S. Sayler. 1993. Soluble methane monooxygenase 

production and trichloroethylene degradation by a Type I methanotroph, 

Methytomonas methanica 68-1. Appl. Environ. Microbiol. 59:960-967. 

13. Landa, A.S., E.M. Slpkema. J. Weijma, A.A.C.M. Beenackera, J. Dotting, and D.B. Janssen. 
1994. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a 

chemostat with toluene as the primary substrate. Appl. Environ. Microbiol. 60: 

3368-3374. 

14. Malachowsky. K.J.. T.J Phelps, A.B. Teboli, D.E. Minnikin, and D.C. White. 1994. Aerobic 

mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by 

Rhodococcus species. Appl. Environ. Microbiol. 60:542-548. 

15. McFarland, M.J., C M . Vogel, and J.C. Spain. 1992. Methanotrophic cometabolism of 

trichloroethylene (TCE) in a two stage bioreactor system. Water Res. 26:259-265. 

16. Oldenhuls, R. 1992. Microbial degradation of chlorinated compounds: Application of 

specialized bacteria in the treatment of contaminated soil and waste water. Ph.D. 

Thesis, Rijksuniversiteit Groningen, The Netherlands. 

17. Oldenhuls, R., J.Y. Oedzes, J.J. van der Waarde, and D.B. Janssen. 1991. Kinetics of 

chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity 

of trichloroethylene. Appl. Environ. Microbiol. 57: 7-14. 

18. Oldenhuls. R., R.LJ.M. Vlnk, D.B. Janssen, and B. Witholt. 1989. Degradation of 

chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing 

soluble methane monooxygenase. Appl. Environ. Microbiol. 55:2819-2826. 

19. Phelps, T.J., J.J Nledzielskl, R.M. Schram, S.E. Herbes, and D.C. White. 1990. 

Biodegradation of trichloroethylene in continuous-recycle expanded-bed bioreactors. 

Appl. Environ. Microbiol. 56: 1702-1709. 

20. Rasche, M.E., M.R. Hyman, and D.J. Arp. 1991. Factors limiting aliphatic chlorocarbon 

degradation by Nitrosomonas europaea: cometabolic inactivation of ammonia 

monooxygenase and substrate speclfity. Appl. Environ. Microbiol. 57:2986-2994. 

21. Taylor, R.T., AA.L Hanna, N.N. Shah, D.R. Shonnard, A.G. Duba, W.B. Durham, K.J. Jackson, 
R.B. Knapp, A.M. Wijeslnghe, J.P. Knezovich, and M.C. Jovanovich. 1993. In situ 

bioremediation of trichloroethylene-contaminated water by a resting-cell 

methanotrophic microbial filter. Hydrol. Sci. J. 38:323-342. 

22. Van Ginkel, C.G., and J.A.M. de Bont. 1986. Isolation and characterisation of alkene-

utilizing Xanrhobacfer spp. Arch. Microbiol. 145:403-407. 

23. Wackett, LP., and S.R. Householder. 1989. Toxicity of trichloroethylene to Pseudomonas 

putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55:2723-2725. 



CHAPTER 7 

General discussion 

To conclude this thesis I will evaluate the potential of membrane bioreactors for the 

removal of poorly water-soluble pollutants from air. Since stable operation is 

essential for full-scale application, I will subsequently focus on the long-term stability 

of biofilm activity in a membrane bioreactor and methods to assess the microbial 

activity. Finally, I will describe the possible applications of membrane bioreactors in 

biofilm research and for the removal of highly chlorinated hydrocarbons, such as 

trichloroethene, from contaminated air or water. 

Poorly water-soluble pollutants 

Pollutants with a low water-solubility are difficult to remove from air with 

conventional gas-liquid contactors, due to mass transfer limitations in the liquid 

phase. New techniques for the removal of these pollutants are required (12). In 

membrane bioreactors a large gas-liquid interface can be created and the mass 

transfer resistance of the membrane for this type of pollutants can be neglected 

(Chapter 3). Therefore, the treatment of waste gases containing poorly water-

soluble pollutants can be considered to be the most promising application of 

membrane bioreactors. 

In addition to the membrane bioreactor, other reactor types were found to be 

successful in the removal of poorly soluble pollutants from air during prolonged 

experiments. Morgenroth et al . (17) showed that hexane, which has an extremely 

low solubility, can be removed from air using conventional compost biofilters. They 

concluded that the nutrient supply and the moisture control are critical. De Heijder 

et al. (5) immobilized ethene-degrading bacteria on activated carbon and varied 
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the humidity of the gas stream. The ethene removal rate was optimal at relatively 

dry conditions. The latter studies indicate that stringent humidity control is a 

promising technique in biological waste gas treatment. Cox et al. (3) tested the use 

of styrene- degrading fungi in bifilters. Fungi are more resistant to acidic and dry 

conditions than bacteria. As a consequence, control of a fungal biofilter is not as 

critical as it is with bacteria and fungal biofilters may have a wider applicability. 

Toxic end-products of biological degradation, however, can hardly be removed 

from biofilters and dry biobeds. If biodegradation of a poorly soluble pollutant 

results in acidification, the membrane bioreactor is the only configuration which 

allows removal of acidic products via the liquid phase. 

Stability of the biological activity 

In this thesis it was shown that propene removal is feasible over a wide range of 

concentrations (10-6000 ppm) (Chapters 4 and 5). The start-up of the membrane 

bioreactor was shown to be difficult when only very low concentrations of propene 

were supplied (Chapter 5) probably due to starvation and subsequent inactivation 

of the microorganisms that had been inoculated in the liquid phase. 

For the degradation of very low concentrations of, particularly poorly soluble, 

pollutants, a compost biofilter may be advantageous, since microorganisms benefit 

from nutrients present in the compost. A possible option to improve the removal of 

low concentrations in a membrane bioreactor, is the supply of additional growth 

substrates. These substrates should sustain the desired population, without interfering 

with the degradation of the pollutant and without causing excessive growth. 

In hollow-fibre bioreactors a generous supply of ammonium served as an additional 

source of energy and brought about a population of nitrifiers. The nitrification 

process resulted in acidification of the liquid and a decrease in oxygen tension 

(Chapter 4). The propene degradation was thus hampered instead of stimulated by 

the use of ammonium as additional substrate. 

In addition to nitrification, another problem was observed during the long-term 

operation of hollow-fibre bioreactors at a high concentration of propene. Biomass 

accumulated in the reactor and eventually blocked most of the fibres (Chapter 4). 

This phenomenon is called clogging and was also observed with other membrane 

bioreactors studied for gas and water treatment (9,19), but also in trickle-bed-

reactors for gas treatment (6,23, 26). 
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Various strategies to prevent clogging have been suggested. Diks et al. (6) added 

salt to the liquid phase and Weber and Hartmans (26) limited the amount of 

inorganic nutrients, in order to reduce the growth of biomass. The disadvantage of 

these methods is that often not only the biomass formation rate, but also the 

biodegradation rate is limited. The use of nitrate instead of ammonium, slightly 

reduced the biomass yield of propene-degraders, without affecting the 

biodegradation rate (Chapter 4). This phenomenon was also observed in trickle-bed 

reactors removing toluene (23). So, besides preventing nitrification, the use of nitrate 

as nitrogen source also has a beneficial effect by decreasing the biomass yield. 

Removal of biomass to prevent clogging, has been tested in trickle-bed reactors by 

washing with strong alkali (26) and by backwashing (23). In hollow-fibre bioreactors 

we were able to prevent clogging by applying a very high liquid velocity in the 

fibres. However, irrespective of the liquid velocity in the fibres, the propene 

degradation rate of the hollow-fibre reactors gradually decreased to 

approximately half of the maximum value. 

Apparently, clogging of the fibres is not the only factor resulting in a decrease in 

reactor performance. A possible explanation could be the inactivation of biomass 

close to the membrane. If biomass close to the membrane inactivates and is not 

replaced by new cells, it will hamper the transfer of pollutants to the active biomass 

further away from the membrane. Other possible causes are a lack of nutrients, 

membrane modification, insufficient humidification of the biomass close to the 

membrane, or the accumulation of toxic products in the biofilm. 

Biofilm monitoring 

In order to identify the cause of the decreasing biofilm performance, a method is 

required with which the activity of the biofilm can be assessed. For this purpose we 

chose a fluorescent probe, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC). This 

compound is reduced by the respiratory chain of actively respiring bacteria to form 

a fluorescent product and is thus specific for viable cells. Since fluorescence 

microscopy is very sensitive, individual respiring cells in a biofilm should be 

detectable after staining with CTC (27). The back-side cover of this thesis shows a 

phase-contrast micrograph (right side) and an epifluorescence micrograph (left 

side) of a propene-oxidizing biofilm grown in a hollow-fibre and stained with CTC. As 

can be seen in the epifluorescence micrograph the staining is most intensive close 
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to the membrane, suggesting that the most active cells are present there. This is as 

expected, since the supply of carbon source and oxygen are greater close to the 

membrane. A layer of dead cells close to the membrane was not visible in this 

biofilm. 

As a control we tested the reduction of the same probe after 24 hours of starvation. 

After such a 24 hours starvation period, hardly any propene-degrading activity can 

be found in suspended Xanthobacter Py2 cells (unpublished results). With biofilms, 

however, there was barely a difference between the staining of fresh and starved 

biofilms. Moreover, the addition of propene during the staining did not significantly 

intensify the fluorescence, indicating that the energy-status of cells in the biofilm, as 

determined with CTC, does not depend on the propene degradation rate. 

From these experiments it can be concluded that the assesment of the respiratory 

chain activity using the fluorescent probe CTC, can give information on the viability 

of the cells, but it is by no means an indication of propene-biodegradation in 

biofilms. In the absence of propene, the cells in a biofilm possibly gain energy from 

the oxidation of extracellular compounds or cell debris. 

To determine the location of propene-degrading cells, a method is required that is 

specific for the propene-degrading enzymes, e.g. the propene monooxygenase. A 

very elegant method would be to use a dye that is converted into a fluorescent 

product by this enzyme. In this way the cells degrading propene can be detected 

very specifically. We tested methoxyresorufin, that is converted into a fluorescent 

product by various monooxygenases (15). Fresh Xanthobacter Py2 cells, however, 

did not show any activity with this probe. 

As an alternative to enzyme activity, messenger-RNA (mRNA) could be detected. 

mRNA is present in the cell only when the corresponding protein is being synthesized 

and mRNA is extremely unstable. By detecting mRNA encoding the propene 

monooxygenase or the epoxidase, the activity of the cell can be assessed very 

sensitively. Since the genes of the propene monooxygenase and the epoxidase of 

Xanthobacter Py2 have been cloned and sequenced (24, 28), this technique seems 

feasible for Xanthobacter Py2. The detection of mRNA to assess induction has been 

studied extensively in animal and plant tissues (11). Unfortunately, the bacterial cell 

wall and the high activity of RNA-degrading enzymes (RNases) in bacteria 

complicate the application of this technique to immobilized bacterial cells (10). 
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Membrane bioreactors for biofilm cultivation 

Most techniques for biofilm analysis require cutting, fixation, and staining of the 

biofilm, before samples can be observed. By removing the biofilm from its 

substratum the biofilm may be disrupted and artefacts introduced. Membrane 

material, however, can easily be sectioned and processed along with the attached 

biofilm. Hence, biofilms grown on membranes can be processed relatively easily. 

Membranes are also suitable for the cultivation of biofilms that have a high oxygen 

demand. Since there is no layer of water between the gas phase and the biofilm, 

oxygen transfer rates in membrane bioreactors are very high (Chapter 3). In 

addition, the membrane bioreactor might be used for the cultivation of biofilms in 

the presence of counter gradients (1, 4, 25). Summarizing it can be said that 

membrane reactors are not only promising as bioreactors for treatment of specific 

waste gases, but can also form useful tools in biofilm research. 

Removal of highly chlorinated pollutants 

Apart from biofilm research and the removal of poorly soluble pollutants from air, 

the membrane bioreactor might also be used for the removal of highly chlorinated 

hydrocarbons, such as trichloroethylene, from waste streams. TCE can be degraded 

continuously by Xanfhobacfer Py2 in the presence of the growth substrate propene 

(Chapter 6) and similar studies have been performed with other strains and their 

respective growth substrates (14, 16). The growth substrates required for cultivation 

of these strains generally have a high volatility and direct contact between the TCE-

contaminated air stream and growth substrate would therefore lead to loss of 

growth substrate and contamination of the air to be cleaned. In a membrane 

bioreactor the waste gas stream and the volatile growth substrate can be kept 

apart. 

Unfortunately, I have not been able to test the membrane bioreactor for continuous 

degradation of both TCE and propene. A similar concept was, however, recently 

demonstrated with TCE-containing wastewater by Aziz et al. (2). In their study a TCE-

degrading culture of methanotrophs was circulated from the hollow-fibre contactor 

to a separate reactor, where methane and oxygen were supplied. In the hollow-

fibre contactor the TCE diffused from the contaminated wastewater through the 

membrane to the other liquid compartment where it was degraded by the 

methanotrophs. 
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Ensign et al . (8) recently studied the induction of the propene monooxygenase 

required for TCE degradation. They concluded that TCE might be degraded by 

Xanthobacter Py2 without the addition of volatile and competitive growth 

substrates, since various chlorinated alkenes were able to induce the 

monooxygenase. The inducing substrates include vinyl chloride and 1,2-

dichloroethene, but not trichloroethene. A mixture of TCE and the inducing 

substrates vinyl chloride and 1,2-dichloroethene, however, could be indeed 

degraded by glucose-grown cells. If the regulation of the propene monooxygenase 

production is elucidated further, it might be possible to continuously degrade TCE by 

using a culture of Xanthobacter Py2 that is simply growing with glucose and an 

inducing substrate. However, a reactor that is fed with an easily degradable 

substrate like glucose, will be vulnerable to contamination, expecially since the 

infections do no suffer from the toxic effects of TCE-degradation. 

With other TCE-degrading strains continuous TCE-degradation in the absence of 

volatile substrates was pursued by constructing strains in which the monooxygenase 

was expressed constitutively (13, 18, 21). 

Another possible method to degrade TCE without the addition of volatile growth 

substrate, is the combined anaerobic/aerobic membrane bioreactor proposed by 

Parvatiyar et al. (20). The liquid compartment of this membrane bioreactor was kept 

anaerobic by the addition of large amounts of acetate. According to the model 

that the authors propose, TCE is initially dechlorinated in the anaerobic zone of the 

biofilm. The degradation products are then degraded further in the aerobic zone 

(Chapter 2). In this publication, however, no experimental evidence is presented for 

the production of intermediates or for the existence of both an aerobic and an 

anaerobic zone in the biofilm. Nevertheless, this is the first study, in which TCE was 

shown to be continuously removed from air, without the addition of large amounts 

of a volatile growth substrate, like e.g. methane or propene. 

In addition to TCE, perchloroethene (PCE) was recently found to be degraded 

under anaerobic conditions by a facultatively aerobic bacterium (22). As recently 

as 1993, Dolfing et a l . (7) concluded in their review on the biological degradation of 

chlorinated hydrocarbons, that there are no efficient process technologies for 

transfer of contaminants from the gas phase to an anaerobic compartment. The 

development of membrane bioreactors with both an anaerobic and an aerobic 

zone, and the isolation of facultatively aerobic strains that are able to dechlorinate, 

introduces new possibilities for the removal of pollutants that until now are 

considered to be beyond the reach of (aerobic) biological waste gas treatment. 
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Summary 

This thesis describes the design and testing of a membrane bioreactor (MBR) for 

removal of organic pollutants from air. In such a bioreactor for biological gas 

treatment pollutants are degraded by micro-organisms. The membrane bioreactor 

is an alternative to other types of bioreactors for waste gas treatment, such as 

compost biofilters and bioscrubbers. Propene was used as a model pollutant to 

study the membrane bioreactor. 

A membrane bioreactor for waste gas treatment consists of a gas and a liquid 

compartment, separated by a membrane. Gaseous pollutants diffuse through the 

membrane and are consumed by microorganisms present in the liquid phase. The 

organisms are supplied with water and inorganic nutrients via this liquid phase. 

Various membrane bioreactors described in the literature are reviewed in Chapter 

2. In the work presented in this thesis, microporous hydrophobic material was 

selected because of its low mass transfer resistance and the availability of both 

sheets and fibres. For the removal of propene from air the mass transfer resistance 

of this type of membrane was found to be negligible (Chapter 3). 

The propene-degrading bacterium Xanthobacter Py2 was shown to form biofilms in 

membrane bioreactors. Continuous propene removal by biofilms of Xanrhobacfer 

Py2 was demonstrated in both flat sheet reactors and hollow-fibre reactors. In both 

configurations the biofilms are situated on the membrane in the liquid phase. 

Propene consumption rates could be described quite accurately with the computer 

programme BIOSIM, that describes simultaneous diffusion and reaction in a biolayer 

(Chapter 3). 

During continuous operation of hollow-fibre reactors at inlet concentrations of 0.5 to 

6 gram propene per m3, the propene conversion decreased after several weeks 

(Chapter 4). Clogging of the fibres by excess biomass formation and acidification 

due to ammonium oxidation, were identified as possible causes. However, when 

both clogging and ammonium oxidation were prevented, the propene conversion 

still decreased in time. 
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Apparently other factors than clogging and nitrification affect the long-term 

performance of biofilms of Xanfhobacter Py2, growing in an MBR. These factors 

might be identified with new methods for biofilm analysis, which allow the 

localization of activity within the biofilm. 

According to the Dutch emission standards, hydrocarbons such as propene, in off-

gas have to be reduced to less than 150 mg m"3. In Chapter 5, two propene-

degrading strains were compared for their ability to degrade such low 

concentrations of propene and the faster growing strain, Xanfhobacter Py2, was 

selected. At a concentration of 300 to 600 mg m"3 in the gas phase, a 20 days start­

up period was required for biofilm formation. Once the biofilm had been 

established, the amount of active biomass adapted to the amount of propene 

available within several days. Propene could be removed continuously from air at a 

concentration of 15 to 50 mg m"3 in the gas phase without supplying other organic 

nutrients to the microbial population (Chapter 5). 

Besides the removal of poorly water soluble pollutants like propene, the membrane 

bioreactor is also suitable for the removal of pollutants that result in acidification, 

such as chlorinated hydrocarbons. Therefore, in Chapter 6 the biodegradation of 

trichloroethene (TCE) by Xanfhobacter Py2 was tested during growth on propene in 

a stirred vessel. The aerobic biodegradation of TCE is difficult because of toxic 

intermediates that are formed. With Xanthobacter Py2 continuous cometabolic 

degradation of TCE was shown to be feasible with concentrations up to 206 uM in 

the liquid phase. The amount of TCE that could be degraded, depended on the TCE 

concentration and ranged from 0.03 to 0.34 grams of TCE per gram of biomass. 

Membrane bioreactors for gas-liquid contact have several potential applications. 

They are suitable for the removal of poorly soluble pollutants from air because of 

their large gas-liquid interface and small mass transfer resistance. Especially if 

biodegradation of a poorly soluble pollutant results in acidification, the membrane 

bioreactor might be a unique tool, since the acidic product can be removed via 

the liquid phase. Other applications might be the removal of highly chlorinated 

hydrocarbons from air by an aerobic or a combined anaerobic/aerobic process, as 

was recently suggested in literature. Membrane bioreactors may also be useful tools 

in biofilm research, because of easy handling and processing of biofilm samples, 

excellent oxygen transfer properties and the possibility to apply counter gradients. 



Samenvatting 

Dit proefschrift beschrijft een membraanbioreactor (MBR), waarmee organische 

vervuiling uit lucht verwijderd kan worden. In een dergelijke reactor voor 

biologische luchtreiniging worden de vluchtige stoffen afgebroken door micro-

organismen. De hier beschreven membraanbioreactor is een alternatief voor reeds 

bestaande typen bioreactoren, zoals het compostbiofilter en de biowasser. 

Propeen is in het hier beschreven onderzoek gebruikt als modelverbinding om de 

MBR te testen. 

In een MBR voor biologische gasreiniging vormt het membraan het grensvlak tussen 

het lucht- en het watercompartiment. Vluchtige stoffen diffunderen door het 

membraan heen naar de waterfase en worden daar afgebroken door micro-

organismen. De verschillende typen membraan-reactoren die in de literatuur 

beschreven zijn, staan samengevat in hoofdstuk 2. In het onderzoek dat beschreven 

is in dit proefschrift, is gebruik gemaakt van microporeus hydrofoob membraan-

materiaal, omdat dit een lage stoftransportweerstand heeft en omdat het 

verkrijgbaar is in de vorm van velletjes en vezels. Tijdens de verwijdering van 

propeen is de weerstand van dit membraan verwaarloosbaar klein (hoofdstuk 3). 

Propeen kan continu verwijderd worden uit lucht door een biofilm van 

Xanthobacter Py2, in zowel vlakke-plaat-reactoren als holle vezels. In beide typen 

reactoren bevindt de biofilm zich in de vloeistoffase, direct aan het gasgevulde 

membraan. De biofilm wordt vanuit de vloeistoffase voorzien van water en 

anorganische nutrienten, terwijl het gasvormige propeen vanaf de gaszijde wordt 

aangevoerd. De snelheid van propeenconsumptie kan tamelijk nauwkeurig worden 

beschreven met behulp van het programma BIOSIM, dat gelijktijdige diffusie en 

reactie simuleert (hoofdstuk 3). 

Toen een holle-vezel-reactor continu bedreven werd bij een propeenconcentratie 

van 0.7 tot 6 g per m3, daalde na enkele weken de propeenconversie (hoofdstuk 4). 

Dit leek te wijten aan verstopping van de vezels door de vorming van een 

overmaat aan biomassa of aan verzuring door de oxidatie van ammonium. Toen 

echter verstopping en ammoniumoxidatie verhinderd werden, liep de propeen­

conversie na verloop van tijd alsnog terug. Kennelijk zijn op de lange duur andere 
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factoren dan verstopping en verzuring van belong. Deze factoren zou men kunnen 

achterhalen door biofilms gedurende langere tijd nauwkeurig te volgen. Hiervoor 

zijn echter nieuwe analysetechnieken nodig. 

De Nederiandse norm voor de uitstoot van koolwaterstoffen in afgas is 150 mg m"3. 

In hoofdstuk 5 hebben we daarom twee bacteriestammen vergeleken bij 

propeenconcentraties rond die norm van 150 mg m"3. Van de twee stammen is de 

snelst groeiende, Xanthobacter Py2, gekozen voor nader onderzoek. Bij een 

concentratie van 300 tot 600 mg m"3 propeen in de gasfase, vergde de ontwikkeling 

van een biofilm 20 dagen. Toen de biofilm eenmaal gevormd was, bleek de 

hoeveelheid actieve biomassa zich aan te passen aan de beschikbare 

hoeveelheid propeen. Continue afbraak van propeen bleek mogelijk bij 

concentraties van 15 to 50 mg m"3, zonder toevoeging van andere energiebronnen 

dan propeen. 

Behalve voor de verwijdering van slecht oplosbare verbindingen, zoals propeen, 

kan de membraan bioreactor in principe ook gebruikt worden voor de verwijdering 

van vluchtige stoffen die tot verzuring leiden, zoals gechloreerde koolwaterstoffen. 

Daarom is in hoofdstuk 6 de afbraak van trichlooretheen (TCE) onderzocht. 

Xanthobacfer Py2 bleek TCE te kunnen afbreken tijdens groei op propeen in een 

geroerd vat. Continue biologische verwijdering van TCE uit lucht is moeilijk, omdat 

er giftige(tussen)producten gevormd worden tijdens de aerobe afbraak. Met 

Xanfhobacfer Py2 kon TCE continu afgebroken worden tot de hoogst gemeten 

concentratie van 206 uM in de waterfase. De hoeveelheid die kon worden 

omgezet, hing af van de concentratie en bedroeg 0.03 to 0.34 g TCE per g 

biomassa. 

Membraanbioreactoren kunnen mogelijk in verschillende gebieden toegepast 

worden. Zij zijn geschikt voor de verwijdering van slecht-water-oplosbare vluchtige 

stoffen uit lucht, omdat in een MBR een groot gas-vloeistofoppervlak gecreeerd 

kan worden en de stoftransportweerstand laag is. Vooral als de afbraak van een 

slecht oplosbare verbinding leidt to verzuring, is de MBR uniek, omdat de zure 

producten via de waterfase afgevoerd kunnen worden. Een andere toepassing is 

mogelijk de verwijdering van sterk gechloreerde koolwater-stoffen uit lucht, door 

een aeroob of een gecombineerd anaeroob/aeroob proces, zoals recentelijk is de 

literatuur voorgesteld werd. Membraanbioreactoren kunnen ook goede diensten 

bewijzen in het biofilm onderzoek. In een MBR is de zuurstoftoevoer uitstekend, er 

kunnen gradienten aangelegd worden en bovendien zijn biofilms op een 

membraan makkelijk te hanteren en te bewerken. 



Curriculum vitae 

Martine Wilhelmina Reij werd op 16 mei 1967 geboren te Brunssum. In 1985 

behaalde zij het gymnasiumdiploma met lof aan het Bisschoppelijk College te 

Sittard en begon daarop aan de studie levensmiddelentechnologie bij de 

Landbouwuniversiteit te Wageningen. Met de afstudeervakken proceskunde en 

microbiologie en een stage bij de afdeling Biological Sciences van de University of 

Calgary (Canada), studeerde zij in juni 1991 af. Daarna werd Martine assistent-in-

opleiding bij de Sectie Industriele Microbiologie van de Landbouwuniversiteit te 

Wageningen en deed onderzoek aan membraan-bioreactoren voor biologische 

gasreiniging. Van oktober 1995 tot april 1996 werkte ze bij diezelfde sectie als 

toegevoegd onderzoeker, in opdracht van Stork Comprimo. Sinds augustus 1996 

werkt ze als docent milieutechnologie bij de Agrarische Hogeschool in Den Bosch. 



Bibliography 

ReiJ, M.W., G.T.H. Voskuilen. and S. Hartmans. 1992. Biofilms in membrane 

bioreactors for waste gas treatment, pp. 455-460. In L.F. Melo, T.R. Bott, M. Fletcher, 

B. Capdeville (Eds), Biofilms - Science and Technology. Proceedings of the NATO 

Advanced Study Institute, Alvor, Portugal, May 18-29 1992. Kluwer, Dordrecht. 

Rossi, M., W.B.R. Pollock, M.W. ReiJ, R.G. Keon, Fu Rongdlan, and G. Voordouw. 1993. 

The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a 

potential transmembrane redox protein complex. J. Bacterid. 175: 4699-4711. 

Middelhoven, W.J., P.F.LA. van Adrichem, M.W. Reij, and M. Koorevaar. 1993. Inulin 

degradation by Pediococcus pentosaceus. In A. Fuchs (Ed), Inulin and inulin-

containing crops. Elsevier, Amsterdam. 

ReiJ, M.W., and S. Hartmans. 1993. Membrane reactor for waste gas treatment: 

Removal of pollutants with a low solubility in water, pp. 1203-1206. In I. Alberghina, 

L. Frontali, P. Sensi (Eds), Proceedings of th 6th European Congress on Biotechnology, 

Florence, June 13-17,1993. Elsevier, Amsterdam. 

ReiJ, M.W., and S. Hartmans. 1994. Membrane bioreactor for waste gas treatment, 

pp. 517-519. In Proceedings of the symposium on biological waste gas cleaning, 

Heidelberg, March 9-11 1994, VDI Berichte 1104. 

Reij, M.W., S. Hartmans, CD. de Gooijer, and J.A.M. de Bont. 1995. Membrane 

bioreactor with a porous hydrophobic membrane as a gas-liquid contactor for 

waste gas treatment. Biotechnol. Bioeng. 45: 107-115. 

Reij, M.W., J. Kieboom, J.A.M. de Bont, and S. Hartmans. 1995. Continuous 

degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on 

propene. Appl. Environ. Microbiol. 61:2936-2942. 

Reij, M.W., and S. Hartmans. 1996. Propene removal from synthetic waste gas using 

a hollow-fibre membrane reactor. Appl. Microbiol. Biotechnol. 45:730-736. 



Photographs shown on the covers 

Front cover 
The front cover shows the two types of membrane bioreactors described in this 

thesis: a hollow-fibre module (left) and a flat sheet membrane (right). The cross-

section of the hollow-fibre module shows biofilms of yellow propene-oxidizers inside 

the hollow fibres. 

The picture on the right shows a biofilm of the yellow bacterium Xanthobacter Py2 

grown on a flat sheet of white membrane material. 

Back cover 
The back cover of this thesis shows a phase-contrast micrograph (right) and an 

epifluorescence micrograph (left) of the same biofilm sample. This biofilm was 

grown with propene in a hollow-fibre bioreactor for three months. The biofilm was 

stained with CTC, which is a probe for respiratory chain activity. Biofilms were then 

frozen in liquid nitrogen and samples with a thickness of 6 u.m were cut in a cryostat 

at -20°C. 

The sample consists of a piece of membrane material with a biofilm attached at the 

upper side. In both photographs the white arrows indicate the interface between 

the biofilm and the membrane. In the epifluorescence micrograph it can be seen 

that the membrane is not stained by CTC. The staining of the biofilm is more intensive 

close to the membrane, suggesting that the most active cells are situated close to 

the membrane. 


