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STELLINGEN 

Met behulp van biomarkers voor blootstelling en/of effect is het mogelijk om vast te 
stellen in welke mate een organisme beTnvloed wordt door toxische stoffen. Voor het 
voorspellen van de uiteindelijke effecten op in het wild levende organismen is veel 
additionele informatie nodig over omgevingsvariabelen, kinetiek, en gevoeligheid van 
levensfasen. 

Dit proefschrift 

Met behulp van een reporter gen assay zoals de CALUX-assay kan op snelle en gevoelige 
wijze de potentie van een mengsel van stoffen om via een specifiek werkingsmechanisme 
toxische effecten te veroorzaken direct worden gekwantificeerd. Dit is een groot voordeel 
boven de conventionele, op chemische metingen gebaseerde methode, gezien de 
onnauwkeurigheid bij het vaststellen van de toxische equivalence factoren van met name 
de minder potente PHAKs. 

Dit proefschrift 

De in vitro inductie van de EROD-activiteit is uitsiuitend een bruikbare maat voor de 
kwantificering van de toxische equivalentie van potente Ah-receptor agonisten. 

Dit proefschrift 

Dankzij aanzienlijke emissiereducties worden effecten op populaties niet meer 
voornamelijk door stoffen veroorzaakt, maar vormen de meer subtiele effecten van stoffen 
een onderdeel van een complex van antropogene stress factoren, met o.a. fysieke 
ingrepen en eutrofiering. 

Om te voorkomen dat aan PCBs verwante stoffen, zoals gebromeerde difenylethers op 
termijn vergelijkbare nadelige effecten zullen veroorzaken, moet er op korte termijn veel 
aandacht worden besteed aan een zorgvuldig produktie-, en hergebruik- of verwerkings-
systeem van de produkten die dergelijke stoffen bevatten. 

In het huidige toelatingsbeleid en waterkwaliteitsbeheer wordt weinig rekening gehouden 
met voorkomen en effecten van transformatieprodukten van bestrijdingsmiddelen. De 
veel gehoorde opvatting dat deze minder persistent en toxisch zijn dan de uitgangsstoffen 
kan niet gestaafd worden door de beperkte beschikbare gegevens. 

Belfroid AC, Van Drunen M, Van Cestel CAM en Van Hattum B (1996). Relative risks of 
transformation products of pesticides for aquatic ecosystems. IVM-rapport R-96/09. 

De bepaling van de toxiciteit van uit milieumatrices gei'soleerde mengsels van stoffen, ligt 
op het grensvlak tussen de chemie en de toxicologie. Hierdoor ontbreekt in publicaties 
vaak een goede validatie van de extractiemethoden of juist de bioassay. 

Conclusie van de workshop 'Extractie milieutoxiciteit' op 26/9/1996, werkgroep Extractie 
en bioanalyse van milieutoxiciteit. 

Het voeren van vismeel aan herbivoren zoals koeien is niet alleen tegennatuurlijk, het 
leidt bovendien tot een recycling van de in visolie geconcentreerde persistente, lipofiele 
verbindingen. 



9 Voor veel Nederlandse zoutwatersystemen is bekend dat tributyltin concentraties het 
risiconiveau voor imposex bij Gastropoden ruimschoots overschrijden. Minder bekend 
is dat ook in zoetwatersystemen vergelijkbare effecten te verwachten zijn, omdat ook daar 
regelmatig het risiconiveau overschreden wordt. 

Mensink BP, Van Hattum B, Vethaak AD en Boon IP (1996). The development of imposex 
in relation to organotin contamination in the common whelk, Buccinum undatum. NIOZ-
rapport 1996-3; Van Hattum B, Ariese F, Van Kesteren) en Freriks I (1996). Organotinver-
bindingen in sediment uit het Noordzeekanaal. IVM-rapport R-96/10. 

10 Hoewel sociaal medeleven en zorgzaamheid leiden tot een grotere overlevingskans van 
sociale diersoorten, wi l dat niet zeggen dat het 'er beter van worden' de individuele 
drijfveer voor zulk gedrag is. 

Naar: Frans de Waal (1996): Van nature goed; over de oorsprong van goed en kwaad in 
mensen en andere dieren. 

11 De terecht stringente voorwaarden die worden opgelegd bij het gebruik van proefdieren, 
vormt een groot contrast met de schrijnende manier waarop overigens met dieren wordt 
omgegaan, bijvoorbeeld in de bio-industrie en de visserij. 

12 Hoewel soft drugs op zich misschien niet verslavend zijn of gevaarlijk voor de 
gezondheid, is veelvuldig gebruik ervan door jongeren schadelijk als ze hiermee kunnen 
vluchten voor de voor hun leeftijd normale onzekerheden en problemen, in plaats van 
ermee leren om te gaan. 

13 Hoewel ook bij de LUW met de mond de wens van grotere participatie van vrouwen in 
hogere functies wordt beleden, doet de geringe aandacht voor het oplossen van het 
knelpunt van onvoldoende kinderopvang vermoeden, dat hierbij de belangstelling vooral 
uitgaat naar vrouwen zonder baarmoeder. 

14 Het succes van 'new age'-achtige bewegingen in de zogenaamd moderne en ontwikkelde 
West-Europese samenleving, biedt de op zich te prijzen 'rationalisten beweging' 
(rationalist movement) in India, die probeert om de schadelijke rol van het bijgeloof en 
de afgoderij in hun maatschappij terug te dringen, een weinig rooskleurig vooruitzicht 
op duurzaam succes. 

15 De natuurlijke neiging van jongeren hun grenzen te onderzoeken en zich ten opzichte 
van elkaar te bewijzen, brengt met zich mee dat vandalisme niet zozeer 'zin'-loos geweld 
is, maar wel een uitdaging richting maatschappij om duidelijke grenzen te stellen. 

16 Zelfs een hobby waarbij de liefde voor de onderwaterwereld centraal staat, kan leiden tot 
erosie van dit fraais wanneer ze zonder sturende maatregelen door grate aantallen duikers 
beoefend kan worden. 

Stellingen behorend bij het proefschrift 'Biomarkers for the assessment of exposure and 
sublethal effects of PHAHs in wildlife' door Tinka Murk, Wageningen, 15 januari 1997. 
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die mij de ruimte gaven om de wereld te ontdekken, 

en een vertrouwde basis om op terug te vallen. 



ABBREVIATIONS 

AhR aryl hydrocarbon receptor 

CALUX chemical activated luciferase gene expression 

CALUX-TEQ TCDD-equivalence determined using the CALUX assay 

CloA50 Clophen A50 (a technical PCB-mixture) 
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P450 cytochrome P450 
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PCB-77 3,3',4,4-tetrachloro biphenyl 

PCDD polychlorodibenzo-p-dioxin 

PCDE polychlorinated diphenyl ether 

PCDF polychlorodibenzofuran 

PCT polychlorinated terphenyl 

PHAH polyhalongenated aromatic hydrocarbon 

PHDE polyhalogenated diphenyl ether 

PROD pentoxy resorufin O-deethylase 
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TEF toxic equivalence factor 
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UDPGT uridine-5-diphosphate glucuronyltransferase 



List of abbreviations 

Chapter 1 General introduction. 

CONTENTS 

Chapter 2 Toxic and biochemical effects of 3,3',4,4'-tetrachlorobiphenyl 
and Clophen A50 on eider ducklings (Somateria mollissima) 
in a semi-field experiment. 19 

Chapter 3 Effects of polyhalogenated aromatic hydrocarbons on biochemical 
parameters in chicks of common tern {Sterna hirundo). 35 

Chapter 4 Effects of polyhalogenated aromatic hydrocarbons on common 
tern {Sterna hirundo) reproduction: integration of biological, 
biochemical and chemical data. 57 

Chapter 5 In vitro metabolism of 3,3',4,4'-tetrachlorobiphenyl in relation 
to ethoxyresorufin-O-deethylase activity in liver microsomes of 
some wildlife species and rat. 81 

Chapter 6 Chemical-activated luciferase expression {CALUX): a novel 
in vitro bioassay for Ah receptor active compounds in 
sediments and pore water. 95 

Chapter 7 The CALUX (chemical-activated luciferase expression) assay, 
a sensitive in vitro bioassay for measuring TCDD-equivalents 
in blood plasma 115 

Chapter 8 General discussion and concluding remarks. 131 

References 143 

Samenvatting in het Nederlands 165 

Curriculum vitae and publications 171 

Dankwoord 177 

Appendix A Monitoring exposure and effects of polyhalogenated aromatic 
hydrocarbons (PHAHs) in European otters {Lutra lutra). 179 

Appendix B Application of the CALUX (chemical activated luciferase gene 
expression) assay for measuring TCDD-equivalents in sediment, 
pore water and blood plasma samples. 185 



CHAPTER 1 

The research described in this thesis concerns the effects of polyhalogenated aromatic 

hydrocarbons (PHAHs) on wildlife species, and the development of biomarkers for 

exposure and effect based on the mechanism of toxic action of PHAHs. In addition, 

attention is paid to differences in vulnerability between species with regard to exposure, 

kinetics and (eco)physiology, and the possible impact of current PHAH levels in The 

Netherlands on fish-eating wildlife species. The research was performed within the 

framework of the ecotoxicological research program of the department of Toxicology. 

GENERAL INTRODUCTION 

Triggered by a large number of case studies during the 1950s and 1960s, and by publica

tions such as Rachel Carson's 'Silent Spring' (Carson, 1962), restrictive measures were 

taken to prevent the often not anticipated damage on fish and wildlife populations caused 

by newly introduced chemicals such as pesticides. In most industrialized countries 

legislation was implemented requiring a number of single species toxicity tests before 

production and use of a compound (OECD, 1989). Despite their limitations (Van 

Leeuwen, 1990), the implementation of such tests in addition to curative measures, has 

led to great improvements in environmental quality. Single species toxicity tests, how

ever, mainly assess acute toxicity but hardly sublethal effects or effects of chemicals on 

ecosystems. Therefore, especially with persistent compounds, unforseen exposure routes 

and effects are to be anticipated. The development of irreversible ecological damage can 

only be prevented if the fate and effects of such chemicals in ecosystems are effectively 

monitored. 

Although restrictive measures have been taken regarding the production and use 

of certain PHAHs, such as polychlorinated biphenyls (PCBs), a lot of them are still 

circulating in the environment. In addition, structurally related chemicals are still being 

produced and appear in wildlife species. 

Polyhalogenated aromatic hydrocarbons 

The ubiquitous occurrence of PHAHs in highly complex mixtures of varying composition, 

has been widely documented (e.g. Kimbrough and Jensen, 1980; Firestone, 1984; IPCS, 

1993, 1994; Tanabe eta/., 1994;). Some widely occurring PHAHs are (Figure 1.1): 

Polychlorinated dibenzo-p-dioxins (PCDDs) and -dibenzofurans (PCDFs), which 

are unwanted byproducts from incomplete combustion in the presence of chlorine, for 

example during waste incineration, and the production of certain metals, certain pesti

cides and organic chemicals (Firestone, 1984; Rappe and Buser, 1989; Ahlborg et a/., 
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1992). Despite measures taken to reduce formation and release of PCDDs and PCDFs, 

these chemicals are still entering the environment. 

Polychlorinated biphenyls (PCBs) -terphenyls (PCTs), and -naphtalenes (PCNs) 

became industrial useful chemicals from the early 1930s on. Especially PCBs have been 

used in large quantities, for example in capacitors, transformers, paints, construction 

materials, lubricant oils, sealing material and fire retardants (Brinkman and De Kok, 1980; 

Firestone, 1984; De Voogt en Brinkman, 1989; IPCS, 1993, 1994; Pijnenburg et al., 

1995). Although these compounds have been banned in most industrialized countries 

since the early 1980s, they are still entering the environment by leakage from old so-

called closed systems, from recycling of old materials, from volatilization and leakage 

from landfills and sewage sludge, and from continued usage in tropical countries 

(Ballschmittereta/., 1989; De Voogt and Brinkman, 1989; IPCS, 1993; Tanabe eta/., 

1994). In 1969 PCBs were reported as environmental pollutants in The Netherlands for 

the first time (Koeman et a/., 1969). By the end of 1980 about 1,054,800 tonnes of PCBs 

had been produced by OECD countries (IPCS, 1993). It has been estimated that only 16-

30% of the PCBs have entered the environment yet, and there is a serious risk that a large 

part of the rest wil l ultimately reach the world oceans unless actively retrieved and 

destroyed (Klamer et a/., 1991). 

Polybrominated diphenyl ethers (PBDEs) are still in full use as fire retardants in 

a wide range of applications such as furniture and electrical and computer components 

and housing. The use of PBDEs has significantly increased over the last years (IPCS, 

1994). 

Polybrominated biphenyls (PBBs) are still in use as flame retardants (Janus et al., 

1994).Tetrachlorobenzyltoluenes, such as the technical mixture Ugilec 141 (Figure 1.1), 

are preventively prohibited in The Netherlands, but are still in use as PCB-substitutes in 

other European countries (Janus et al., 1994). 

In general background levels of PCBs and other PHAHs are especially elevated in highly 

industrialized areas with historical input from mining and leakage from large scale 

applications (IPCS, 1993). Atmospheric transport contributes to a major extent to the 

global distribution of PCBs, including remote areas (Barrie et a/., 1992; Falandysz, 1994, 

Tanabe et al., 1994). Due to the low ambient temperature, PCBs will eventually be 

deposited in the polar regions, where great levels in particularly fish-eating marine 

organisms is to be expected (Tanabe et al, 1994). Most of the environmental load of 

PHAHs has been estimated to be in aquatic sediments, which acts both as an environ

mental sink and a reservoir (IPCS, 1993). 

10 
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Figure 1.1 General molecular structures and ring positions of PCDD (polychlorinated 
dibenzo-p-dioxin), PCB (polychlorinated biphenyl); PCDF (polychlorinated dibenzofuran), 
PCDE (polychlorinated diphenylether), PCN (polychlorinated naphtalene) and Ugilec 141 (a 
technical mixture of tetrachlorobenzyltoluenes). The numbers between brackets indicate the 
number of possible congeners. For each of these classes, except PCNs, brominated analogues 
have been produced as well. 

Bioaccumulation and metabolism of PHAHs 

The fate of PHAHs in the environment, leading to exposure of species, greatly depends 

on their chemical structure. The lower halogenated PHAHs are generally easier degraded 

than the higher halogenated ones. Lower chlorinated PHAHs can be degraded by 

microorganisms under aerobic conditions and higher chlorinated PHAHs under anaerobic 

conditions (IPCS, 1993; Beurskens, 1995). Photolysis is an important abiotic transforma

tion process for PHAHs in the atmosphere and in the aquatic environment (IPCS, 1993). 

As sources and routes of environmental contamination differ, the absolute and relative 

abundance of different PHAH congeners may differ greatly between environmental 

matrices and sites (Rappe and Buser, 1989; Norstrom et al., 1990; Duinker et a/., 1989). 

Due to their lipophilic character, PHAHs almost exclusively occur in the environment 

associated with organic compounds and lipids. In general, species that are part of the 

aquatic food chain contain higher levels of PHAHs than exclusively terrestrial species 

(Gilbertson, 1989; Kannan et al., 1989b). PHAHs are also passed on to the next genera

tion via deposition into eggs (Biessmann, 1980; Ankley et al., 1991) and via the trans

placental transport and the consumption of milk in mammals (Disser and Nagel, 1989; 

11 
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for review see Brouwer et a/., 1995). 

PHAH congener patterns differ considerably between the various trophic levels, 

which is partially due to differences in exposure, but mainly to differences in biotransfor

mation capacity between species (Muir et a/., 1988; Boon et a/., 1992; Leonards et a/., 

1994a; Brouwer, 1996). There is an upward trend for bioaccumulation and -magnification 

with increased halogenation of PHAHs (Tanabe et a/., 1988; Duinker et a/., 1989; 

Ahlborg et a/., 1992; Leonards et a/., 1994a). The rate at which organisms can excrete 

PHAH congeners is to a large extent determined by the readiness to metabolize them 

to more polar compounds, which are mainly eliminated via the bile and faeces. Metabo

lism primarily occurs by the hepatic cytochrome P450 (P450)-dependent mono-oxygenase 

system, of which different types of biotransformation enzymes can be induced, depending 

on the possibility of the PHAH to adapt a planar conformation. Planar, non-ortho-

substituted PHAHs induce in rodents P450 1A1/2 activity, often measured with the model 

substrate ethoxyresorufin as ethoxyresorufin O-deethylase (EROD) activity, or with 

benzo(a)pyrene as arylhydrocarbon hydroxylase (AHH) activity. Non-planar, for example 

di-ort/io-substituted, PHAHs induce primarily P450 2B1/2 activity, often measured as 

pentoxyresorufin O-deethylase (PROD) activity. Mono-ort/io-substituted PHAHs induce 

both types of P450 isoenzymes, and are therefore called mixed-type induces (Bandeira 

et a/., 1992; Safe, 1989, 1990). However, species differences exist. Fish, for example, 

have been reported to lack P450 1A2 inducibility (Goksayr and Forlin, 1992; Stegeman 

and Kloepper-Sams, 1987) and most fish-eating birds and fish lack P450 2B inducibility 

(Ronis and Walker, 1989; Bosveld eta/., 1995). 

Differences in metabolizing capacity will not only have consequences for 

elimination half-lives of individual PHAH-congeners and resulting differences in PHAH-

pattern, but also in the quantity and quality of metabolites formed, which have been 

shown to induce their own specific set of toxic effects. Elimination half-lives of PCB 

congeners in rats have been reported to range from less than one day to about 450 days 

(Nord, 1992). Hydroxylated (OH) products are the major PCB metabolites, but also 

conjugated metabolites such as methyl sulphonyl metabolites, and partially dechlorinated 

metabolites have been identified (Lund et al 1985; Klasson-Wehler et a/., 1989; Nord, 

1992). OH-and methyl-sulphonyl metabolites of PCBs have been reported to accumulate 

in fetuses, resulting in fetal tissue concentrations which are, in contrast to levels of parent 

PCBs, higher than corresponding maternal levels (Danerud etal., 1986; Klasson-Wehler 

etal., 1989; Bergman etal., 1992; Morse et a/., 1996). 

Ah-receptor mediated effects of PHAHs 

For PCBs and other PHAHs species differences in sensitivity and pattern of symptoms 

12 
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have been identified, but the reasons for this variation in species sensitivity have not yet 

been (fully) elucidated (Kimbrough, 1987; Safe, 1990; Gallo et a/., 1991; Hakansson et 

a/., 1991). Toxic effects commonly observed after acute, subchronic and chronic admini

stration of PHAHs include progressive weight loss; adverse effects retinoid and thyroid 

hormone homeostasis and male and female reproduction; hepatotoxicity; teratogenicity 

and developmental toxicity; neurotoxicity; immunotoxicity and tumour promotion 

(McConnell, 1985, 1989; Goldstein and Safe, 1989; Safe, 1990; Nord, 1992; DeVitoand 

Birnbaum, 1994). Most of the toxic effects induced by PHAHs, such as immunotoxicity 

and teratogenic effects, are suggested to be mediated by the aryl hydrocarbon receptor 

(AhR). 

Toxic effects 

Figure 1.2 Schematic representation of the Ah-receptor mediated mechanism of toxicity. 
Abbreviations: PHAHs: polyhalogenated aromatic hydrocarbons; AhR: arylhydrocarbon 
receptor; Hsp: heat shock protein; ARNT: Ah-receptor nuclear translocator; DRE: dioxin 
responsive enhancer; P450: cytochrome P450 1A; UDPGT: uridine-5-diphosphate-glucu-
ronyltransferase; GST: glutathione S-transferase 

13 
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The AhR resides in the cytoplasm of responsive cells (Figure 1.2) in a soluble complex 

with two copies of the heat shock protein Hsp90 as chaperones and a, not yet fully 

characterized, protein designated Hsp50 (Landers and Bunce, 1991; Reyes et a/., 1992). 

Upon binding of a ligand, the AhR-complex dissociates and the ligand-AhR interacts with 

the Ah-Receptor-Nuclear-Translocator (ARNT). This activated toxicant-AhR-ARNT 

complex translocates to the nucleus where it binds with high affinity to specific DNA 

enhancer sequences, the dioxin responsive enhancers (DREs), resulting in increased or 

inhibited transcription of genes adjacent to the DRE (Nebert et a/., 1993; Okey et a/., 

1994; Weber and Stahl, 1995; Denison and Whitlock, 1995; Okey et a/., 1995). To date, 

at least 26 genes have been shown to be either directly controlled by the AhR or to be 

responsive to AhR agonist (Sutter and Greenlee, 1992; Okey et a/., 1994; Hankinson, 

1995). The most investigated AhR-mediated response is increased synthesis of P450 1A 

and its associated EROD activity (Whitlock, 1990; Safe, 1994). Also the level and activity 

of some phase II enzymes such as uridine-5-diphosphate-glucuronyltransferases (UDPGT) 

and glutathione S-transferase (GST) have been shown to be induced in an AhR related 

manner (DeVito and Birnbaum, 1994). Epidermal growth factor (EGF) receptor and 

estrogen receptor are examples of proteins that are 'down-regulated' by TCDD and these 

reductions appear to be mediated by the AhR (Goldstein etal., 1990; Line eta/., 1991; 

Zacharewski et a/., 1991; Okey et a/., 1994). The AhR-binding of PHAHs is dependent 

on the planarity and presence of lateral chlorines on the molecule. Safe (1990) concluded 

that the non-ort/io congeners, which are substituted in both para and at least two meta, 

and no ortho positions, are the most toxic PCB congeners. Chlorination at one or two 

ortho positions further decreases the toxic. The sensitivity for AhR related effects, 

however, is species specific. 

Disruptive effects of PHAHs on retinoid and thyroid hormone homeostasis 

Not all toxic effects of PHAHs can be directly attributed to an AhR mediated mechanism. 

Many symptoms of PCB-exposure resemble those of a vitamin A deficiency (Brouwer, 

1991; Nord, 1992), and at least one additional mechanism of action is involved in PHAH-

induced effects on the retinoid homeostasis. Although non- and mono-ortho-PCB conge

ners have been shown to reduce retinoid storage in several species (Jensen et a/., 1987; 

Spear et a/., 1988, 1989; Bank et a/., 1989a,b; Zile et a/., 1989; Chen et a/., 1992), also 

non-planar PHAHs decrease serum retinol levels (Brouwer, 1991; Chen etal., 1992). 

Recent studies have revealed that hydroxy (OH-) metabolites of PCBs and other PHAHs 

inhibit thyroxine (T4) binding to the T4-plasma transport protein transthyretin (TTR) 

(Brouwer and Van den Berg, 1986; Lans et a/., 1993, 1994). T4 is transported in the blood 

plasma in a complex of T4-TTR-retinol binding protein(RBP)-retinol. Certain OH-PCBs 

14 
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directly compete with T4 for the T4-binding site on TTR, resulting in a loss of T4 from 

the circulation and a reduced TTR-RBP binding (Brouwer et a/., 1989). The retinol-RBP 

unbound to TTR is small enough to be filtered out of the blood by the kidney, and is lost 

from the body via the urine (Brouwer and Van den Berg, 1986; Brouwer, 1987). TTR-

binding by OH-PCBs is, in contrast to AhR-binding by PCBs, not favoured by planarity, 

and even mono-ring structures such as chlorinated phenols, interact with TTR (Van den 

Berg et al., 1991; Den Besten et al., 1993; Lans et a/., 1994). In addition to interference 

of OH-PCB with plasma T4 levels, induction of T4- or T3 (triiodothyronine)-glu-

curonidation may enhance hepatic elimination of thyroid hormones (Barter and Klaassen, 

1992; Beetstra et al., 1991; Visser et a/., 1993). OH-PCBs have also been shown to 

competitively inhibit hepatic T4-5'-deiodinase activity, involved in the conversion of T4 

to T3 (Adams et al., 1990; Brouwer et a/., 1994; Lans et al, 1996). 

Indications for toxic effects of PHAHs in wildlife species 

Most toxicological studies with PHAHs have been performed with laboratory mammals 

such as rodents (rats and mice), and to a lesser degree with monkeys. Experimental 

studies with herbivorous birds, such as chicken, dove and quail dosed with technical 

PCB-mixtures, indicated that PCBs reduces egg production and hatchability in chickens; 

extends the courtship period, decreases parental attentiveness and thyroid hormone levels 

in doves; reduces nest-building activity of pigeons; and delays onset of egg laying and 

reduces avoidance behaviour in Japanese quail (McArthur et al., 1983; Gilbertson, 1989; 

Fox, 1993; IPCS, 1993). Experiments performed with birds and mammals feeding on 

aquatic prey are much more rare. In studies with female mink fed technical PCB mixtures, 

reduced embryo implantation, kit survival and kit body weight gain were reported 

(Brunstrom et al., 1994). Comparable effects were observed after feeding mink with fish 

from polluted the lakes (Aulerich et al., 1970; Aulerich and Ringer, 1977; Wren et al., 

1987; Kihlstrom et al, 1992; Leonards et al., 1995). In a Dutch experimental study 

harbour seals (Phoca vitulina) were fed fish diets from either the greatly polluted Wadden 

sea or the relatively clean Atlantic ocean. The heavily PHAH-exposed group of seals 

showed impaired reproductive success (Reijnders et al., 1986) and significantly decreased 

plasma thyroid hormone and retinol levels, suggesting an impaired physiology (Brouwer 

et al., 1989). In a comparable study, a significant reduction in immune functions was 

observed for harbour seals fed on fish from the polluted Baltic sea if compared to seals 

fed with Atlantic ocean fish (De Zwart et al., 1994; Ross et al., 1995) 

Many field observations in the area of the Great Lakes report decreased repro

ductive success in fish eating birds, such as reduced egg hatchability and chick survival 

and skeletal deformations, which correlated with residues of PHAHs (Hoffman et al., 
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1987; Kubiak et a/., 1989; Tillitt et al., 1992). In a Dutch study, developmental impair

ment has been observed for cormorant hatchlings (Phalacrocorax carbo) (Van den Berg 

et al., 1994; Van der Gaag et al., 1993). Field observations on mink, otter and seal 

populations around the Great Lakes and in the Nordic countries indicated an association 

between relatively high PCB concentrations in fat and declining populations (Gilbertson 

1989; Olsson etal., 1992; Leonards et a/., 1995). 

Establishing causal relationships for PHAHs under field conditions 

Currently, most ecotoxicological risk assessments are based on chemical residue analysis 

of abiotic matrices correlating them with determinations of toxic effects in wildlife 

species. It is, however, often not known whether these correlations are due to a causal 

relationship. The possible detection of direct effects in response to release of specific 

pollutants from point sources (such as industrial effluent or spills) is relatively easy. The 

detection, however, of chronic effects caused by mixtures such as PHAHs which are 

released over long time periods and from diffuse sources, is much more difficult. In 

addition, the response of populations to pollutants is often non-specific and hard to 

distinguish from responses to natural influences, such as nutritional status and physical 

stresses. Even if adverse effects observed under field conditions are found to be correlated 

with certain PHAH-concentrations, it remains unclear whether these contaminants play 

a role as etiologic agents, since most study areas are polluted with a cocktail of contami

nants. It can never be excluded that the suggested causal relationship is due to co-

correlation with other pollutants present in the exposure matrix that are not included in 

the exposure assessment or below the detection limit. 

Especially for compounds, such as PHAHs, that are present in complex mixtures 

and act via a common mechanism of toxicity, exposure analysis would be significantly 

improved if the toxic potency of the total mixture could be quantified instead of only 

single representatives. For this purpose the TCDD or toxic equivalency factor (TEF) 

concept was introduced by Safe (1987), allowing conversion of a chemical data set into 

the AhR-related toxic potency of the mixture of PHAHs. Concentrations of individual 

PHAHs are multiplied by their respective TEF-values and added up to give the TCDD-

or toxic equivalency (TEQ) value (Safe, 1990). Although this TEF-approach is an improve

ment compared to sole chemical analysis, it is limited by the fact that it assumes all 

effects to be mediated by the AhR, and only assumes additive, and not synergistic or 

antagonistic effects (Brouwer, 1991; Ahlborg et al., 1992, 1995; Safe, 1994). In addition, 

it is not yet possible to fully quantify the AhR-related toxic potency of environmental 

mixtures of PHAHs because TEF-values exist for only part of the PHAHs and levels of 

many PHAHs are not measured as they are unexpected, not looked for, or present in 
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levels below detection limits. 

In addition to a more toxicologically relevant exposure analysis, the role of 

PHAHs as etiologic agent for observed adverse ecotoxicological effects would be 

strengthened, if mechanism-based information was available, about biochemical or 

physiological changes known to be early precursors of PHAH-induced effects. 

Biomarkers 

The need for more mechanism-based exposure and effect analyses link up with the 

rapidly developing use of biomarkers in ecotoxicological research. Biomarkers are 

biochemical, physiological or cellular responses, and can be used (a) to identify the 

toxicologically effective exposure, or (b) indicate early signs of effects. A very important 

advantage of biomarkers is the short response time which is indicative of (sub)lethal 

effects that may eventually lead to impaired population success, integrating the 

toxicological (inter)action induced by complex mixtures of chemicals. Additionally, 

biomarkers can be developed to (c) assess the sensitivity of a species or individual animal 

for a certain class of chemicals, for example based on the presence or absence of specific 

receptors or enzymes. The usefulness of biomarkers in ecotoxicology and strategies of 

using them to assess environmental effects are described in a number of recent reviews 

(McCarthy and Shugart, 1990; Peakall, 1992; Peakall and Shugart, 1993; Fossi and 

Leonzio, 1994). 

Commonly used biomarkers often require the analysis of tissues and organs, such 

as liver, kidney or brain, involving the destruction of living organisms. This may be 

undesirable in many situations, for ethical and practical reasons. Therefore, it is important 

to develop and validate nondestructive biomarkers, i.e. biochemical, cellular, physiologi

cal or behavioural parameters that can be measured in an organism or population, which 

provide evidence of exposure and/or effects of one or more chemical pollutants without 

causing damage or prolonged stress to the organism or population (Fossi and Leonzio, 

1994). Nondestructive biomarkers may include the use of in vitro bioassays with cell lines 

or with tissues from animals that died by accident, or measurement of biochemical 

changes in blood samples. 

Outline of the thesis 

This thesis concerns the development and validation of biomarkers to identify causal 

relationships between exposure to PHAHs and adverse effects, even at low levels of 

exposure. Of course such biomarkers have to be validated in experimental and field 

studies. Using these tools the question can be addressed whether at present fish eating 

wildlife species in the Netherlands are exposed to toxic levels of PHAHs. 
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Two research questions are derived from these objectives: 

1 Do natural fish-eating bird species exhibit toxic effects upon PHAH-exposure, 

comparable to the effects observed in laboratory species; 

2 What is the perspective for the use of an receptor-mediated reporter gene assay 

to assess the total AhR related potency of environmental pollutants? 

The first question will be addressed in Chapters 2-5. Chapters 2-4 describe a semi-field 

and a field study, respectively with eider ducklings {Somateria mollissima) and common 

tern {Sterna hirundo) chicks. The eiders were dosed with the planar PCB-77 congener 

or the technical PCB mixture Clophen A50. The toxic and biochemical effects and 

parameters were recorded (Chapter 2). Comparable parameters were measured in 

common tern chicks that hatched from artificially incubated eggs, originating from 3-egg 

clutches in colonies differing in degree of pollution. The biochemical results were 

compared with PHAH-levels and incubation parameters of the same animals (Chapter 

3). In the field, the breeding biology of the two remaining eggs and natural influences, 

such as weather and predation, were monitored and compared with the data from the 

artificially incubated egg (Chapter 4). As part of PHAH toxicity is caused by metabolites, 

the capacity of some wildlife species to metabolize the model planar PCB-77 (3,3',4,4'-

tetrachlorobiphenyl) congener into hydroxylated metabolites, is qualitatively and 

quantitatively compared with that of a laboratory rat species (Chapter 5) 

To answer the second question, a novel reporter gene assay was further deve

loped for use as an in vitro bioassay for measuring the total, integrated potency of 

mixtures of PHAHs for AhR-mediated toxicity in biotic and abiotic environmental 

matrices. This assay is based on chemical induced luciferase gene expression, and is 

applied and validated for measuring the toxic potency of PHAHs, expressed as TCDD 

equivalents, in sediments and pore water (Chapter 6) and in small aliquots of blood 

plasma (Chapter 7). 

In Chapter 8, the implications of the presented work are discussed, with emphasis 

on the use of the mechanism-based responses as biomarkers for PHAHs under field 

conditions; differences in sensitivity between species and life-stages; perspectives for the 

prediction of population effects of PHAHs; and the possible ecotoxicological effects of 

current and future PHAH levels in the Dutch situation. 
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CHAPTER 2 

TOXIC AND BIOCHEMICAL EFFECTS OF 3,3',4,4'-TETRACHLOROBI PHENYL (PCB-77) 

AND CLOPHEN A50 ON EIDER DUCKLINGS (Somateria mollissima) IN A SEMI-FIELD 

EXPERIMENT* 

ABSTRACT 

In this study the possible toxic and biochemical effects of one intra peritoneal dose of 

5 or 50 mg-kg-1 3,3',4,4'-tetrachlorobiphenyl (PCB-77) or 50 or 200 mg-kg Clophen A50 

(CloA50) on 28-day-old eider ducklings (Somateria mollissima) were investigated. After 

ten days no significant differences could be observed in any of the toxic and biochemical 

parameters studied apart from ethoxyresorufin O-deethylase (EROD) activity, when 

comparing group average values of the dosed and control animals. However, significant 

correlations were observed at day 10 after exposure between the internal PCB 

concentration and body weight gain and beak length growth (negative correlation in the 

CloA50 groups); relative liver weight and cytochrome P4501A activity (positive 

correlation in PCB-77 and CloA50 groups); plasma thyroid hormone and hepatic retinoid 

levels (negative correlations in PCB-77 groups) and plasma retinol levels and the ratio 

plasma retinol/hepatic retinyl palmitate (positive correlations in PCB-77 groups only). 

Animal activity was significantly reduced in the group that received 50 mg-kg"1 PCB-77. 

These observations indicate that eider ducks are a sensitive species to PCB toxicity and 

may be at risk for development of adverse health effects in relatively high contaminated 

areas such as the Dutch Wadden Sea. 

* Based on: Murk A], Van den Berg jHj, Fellinger M, Rozemeijer MjC, Swennen C, 

Duiven P, Boon )P, Brouwer A and Koeman jH (1994): Toxic and biochemical effects 

of 3,3',4,4'-tetrachlorobiphenyl (CB -77) and Clophen A50 on eider ducklings (Somateria 

mollissima) in a semi-field experiment. Environ. Pollut. 86: 21-30 
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INTRODUCTION 

Polychlorinated biphenyls (PCBs) are ubiquitous environmental toxicants which accu

mulate especially in aquatic food chains. Of the total world production of PCBs about 

60% is still in use and it is calculated from literature data that 11-17 tonnes of PCBs still 

enter the North Sea each year (Klamer et a/., 1991). Becker et a/. (1991) found that PCB 

levels in eggs of various shore birds were increased 2-6-fold in 1987 compared with 

levels in 1981. 

PCBs are known to induce a wide spectrum of toxic effects in laboratory animals 

(Goldstein and Safe, 1989; McConnell, 1989). In fish-eating birds exposure to PCBs and 

related compounds has been associated with effects such as impaired reproduction 

(Hoffman et a/., 1986,1987; Kubiak et a/., 1989; Van den Berg et a/., 1994), morphologi

cal abnormalities (Hoffman et a/. 1986,1987), thymus atrophy and immunotoxicity 

(Nikolaidiseta/., 1988; Andersson eta/., 1991), hypovitaminosis A and/or hypothyroidy 

(Moccia et a/., 1986; Spear et a/., 1989; Van den Berg et a/., 1994), behavioural changes 

(Kubiak et a/., 1989; McArthur et a/., 1983; Tori and Peterle, 1983), and loss of body 

weight (Koeman et a/., 1973a; Gilbertson, 1989). Most of these studies are, however, 

field work in which it is impossible to make a distinction between effects caused by PCBs 

and other substances such as polycyclic aromatic hydrocarbons (PAHs). Some of the 

results of these field studies have been supported by experimental observations. 

PCDDs, PCDFs and some PCBs initiate their effects, at least partially, through 

binding to the arylhydrocarbon (Ah)-receptor followed by the induction of specific gene 

products such as cytochrome P4501A1 and 1A2. The Ah-receptor mediated effects are 

induced by the parent compounds. However, reports have been published recently that 

indicate that toxicity of PCBs may partly be due to Ah-receptor mediated production of 

hydroxylated PCB-metabolites which interfere with thyroid hormone and vitamin A 

transport system (Brouwer, 1991). 

Blue mussels (Mytilus edulis) are the main source of PCB-exposure for Eider 

ducks (Broman et a/., 1990). During the growth period a single bird consumes every 24 

hr more than 3000 specimens of Mytilus of 15-25 mm in size. Among other substances, 

extreme PCB levels of 890-2400 /vg-g"1 lipid were measured in blue mussels close to the 

Dutch shore (Klamer et a/., 1991). From earlier research it is known that female eider 

ducks (Somateria mollissima) are especially at risk for development of PCB toxicity 

because they do not feed during incubation, leading to a strong increase in blood 

concentration (Koeman and Van Cenderen, 1972). A reduction of about 65% in the size 

of the breeding population of eiders on Vlieland (an island in the north of The Nether

lands) was observed in the period from 1988-1990. The question addressed in this study 
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concerns whether the eiders are sensitive to PCB toxicity. 

Eider ducks were experimentally exposed to a single i.p. dose of a planar PCB 

congener, 3,3',4,4' tetrachlorobiphenyl (CB-77) or to a commercial PCB mixture, Clophen 

A50 (CloA50) under semi-field conditions. Several toxic and biochemical parameters 

were investigated. 

MATERIALS AND METHODS 

Animals 

Newly hatched eider ducklings were caught on the isle of Vlieland, in the Dutch Wadden 

Sea. They were kept on the isle of Texel at The Netherlands Institute for Sea Research 

(NIOZ), in two large open-air cages. Each cage consisted of a seawater section of 49 m2, 

0.6 m deep that was flushed through with filtered seawater, and a terrestrial part of 9.75 

m2 with a shelter and heat lamp. The animals were walked with daily to keep them in 

a good condition. 

After 14 days, the eiders were individually numbered with an aluminum leg ring. 

Their weight and beak length (culmen midline) were measured daily before feeding. Food 

(Poultry pellets, Koopmans BV, Leeuwarden) was available acf libitum during daytime 

until 10 pm. Fresh water was available at all times. 

Treatment 

After an acclimation period of 27 days, the animals were divided among 5 groups and 

received an extra plastic leg ring with their group colour. Ten animals were dosed once 

by i.p. injection with corn oil (5 ml-kg"1 body weight (bw)) as a vehicle, six animals with 

5, ten with 50 mg-kg"1 PCB-77, six animals with 50, and ten with 200 mg-kg "bw CloA50 

dissolved in 5 ml-kg"1 bw corn oil. For practical reasons, the animals from the low-dose 

groups were dosed one day later than the animals in the other groups. 

Blood was collected from the superficial plantar metatarsal vein at days 0, 1, and 

7 after exposure. At day 10, the animals were killed under ether anaesthesia through heart 

puncture. Wing length was measured, and blood, liver, thymus, brain and adipose tissue 

collected. Liver, thymus and brain weight were recorded immediately. After decapitation, 

the skull length was measured from the tip of the beak to the basioccipital condyle. Blood 

was centrifuged at 1000g for 10 min and plasma was stored at -20°C. Liver was 

immediately frozen in liquid nitrogen and stored at -80°C until further analysis. 
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PCB analyses in adipose tissue 

For adipose tissue analyses, a piece of ( + 60 mg) abdominal fat was used to 

extract and measure PCB-77 levels and to determine the pattern of PCB congeners 

(CloA50 groups) by GC-ECD (analytical CPSil 8 column, 50 m x 0.25 mm i.d., Chrom-

pack, The Netherlands), as described by Everaarts et a/. (1991). Concentrations of PCB-77 

are expressed as /vg-g"1 l ipid. Total concentrations of CloA50 congeners are converted 

into toxic equivalences (TEQs) using international toxic equivalence factors (TEFs) as 

described by Safe (1990). 

Not all congeners can be separated on the analytical CPSil 8 column used. As 

a consequence, TEQ estimates have to be based on a limited number of congeners. None 

of the non-ortho-substituted PCBs (PCBs -77, -126 and -169) can be determined. Of these 

congeners, only PCB-126 is measurably present in CloA50 (Schulz et a/., 1989). Of the 

mono-ortho-substituted PCBs present in CloA50, PCB-105 and PCB-118 can be deter

mined unequivocally. PCB-156, however, is not separated from PCB-171. The ratio 

between PCB-156 and PCB-171 in CloA50 is 1.43 : 0.50. As the height of the combined 

peak showed a constant ratio with respect to PCB-180 in the eider ducklings in this 

experiment (Rozemeijer et a/., 1991), it is assumed that the original ratio in the CloA50 

mixture is maintained during the experimental period of 10 days. The measured concen

trations of PCB-156 will therefore be multiplied by a factor of 0.74 for TEQ calculations. 

The mono-ortho-substituted PCBs have TEF values of 0.001 (Safe, 1990). Of the dlortho 

substituted congeners, only PCB-128, PCB-138 and PCB-170 are present in relatively high 

concentrations in CloA50 (Schulz eta/., 1989). PCB-128 is well separated. PCB-138 co-

elutes with PCB-158, but since they have identical TEFs (0.00002) the concentrations 

measured as PCB-138 equivalents are applied for the calculation of TEQs. PCB-170 co-

elutes with PCB-190 (Schulz et a/., 1989). The same reasoning as for PCB-156/-171 is 

valid for these two pairs of congeners. The correction factor for measured concentrations 

of PCB-1 70 is 0.65:0.70 = 0.93. In total 62.4% of the total amount of TEQs present in 

CloA50 (Schultz et a/., 1989) can be measured. To obtain an estimate of the total TEQ 

body burden of the CloA50-dosed animals, the observed amount will be multiplied by 

1.6. 

EROD and PROD activities 

Hepatic microsomes were prepared according to the method of Gibson and Skett (1986), 

and stored in a 0.1 M Na-K phosphate buffer pH 7.4, containing 20% (v/v) glycerol, 1 

mM EDTA, 1 mM dithiothreitol (DTT) in liquid nitrogen. EROD and PROD activities were 

determined according to the method of Burke and Mayer (1983). 
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Extractions and HPLC analysis of retinoids 

Aliquots of 50 fj\ of plasma were spiked with retinyl acetate as an internal standard and 

extracted with 50//I of methanol and 100/yl of diisopropyl ether. The ether phase was 

filtered over a 0.45 //m Millipore filter, dried under a gentle stream of nitrogen gas and 

dissolved in 50 /vl of methanol. Aliquots of 20 /J\ extract were analysed isocratically on 

a reverse phase silica RP C18 column (Perkin Elmer, Pecosphere 3*3) with metha-

nol/water (85:15) as eluent with a flow rate of 1 ml.min"1 and data collection for 10 min 

according to the method described by Morse et al. (1995a). Aliquots of 50 //I of liver 

homogenate were extracted according to the same procedures as described for plasma, 

but elution was by methanol/water (85:15) for 1.5 min, followed by a gradient to 100% 

methanol for 2.5 min, and subsequent elution of the retinyl esters at 100% methanol for 

12 minutes. Retinoids were detected at 326 nm and quantified using standard curves of 

retinol or retinyl palmitate. The column was then re-equilibrated at methanol/water 

(85:15) for 6 min. Further details are described by Morse et al. (1995a). 

Thyroid hormones 

Total thyroxin (T4) and total triiodothyronine (T3) levels were determined in, respectively, 

10 and 25 JJ\ aliquots of plasma by chemiluminescence immunoassay using commercially 

available kits (Amerlite assay kits, Amersham International pic, Amersham, UK). 

Animal activity 

Swimming and eating activities were scored in the control, the CloA50 200 mg-kg1 and 

the PCB-77 50 mg-kg"1 groups, by counting the number of times that the eiders crossed 

the footboard to the water or went eating. Activities were scored with a frequency of five 

times a day, for 10 min, starting three days before dosing and continuing until the end 

of the experiment. 

Statistics 

Statistical analysis of dose-effect relationships was performed by unweighted least-squares 

linear regression analysis. PCB levels, expressed either as mass or TEQs, and EROD 

activity are presented on a log scale to obtain better distribution of the values over the 

axes. Differences between group means were tested using the Mann-Whitney test. 

Differences in activity were tested with ANOVA. The acceptance level was set at 

P<0.05. 
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PCBs (ng TEQ/g lipid) 

Figure 2.1 Increase in beaklength in CloA50-dosed animals between day 0 and day 10 
of the experiment plotted against the PCB concentration, expressed as ng TEQs/g body 
lipid ( r=0.62,P<0.05). 
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Figure 2.2 Relative liver 
weight of the (a) CB-77-dosed 
(r = 0.63, P<0.05) and (b) CloA50-
dosed and control eiders (r = 0.43, 
P<0.05), plotted against internal 
PCB concentration expressed as, 
respectively, fjg CB-77/g or pg 
TEQ/g body lipid. 

(b) 

24 



Eider duck experiment 

Table 2.1 Internal PCB levels in the five exposure groups of eider duck. 

Parameter 

TEQ (ng*) 

CB-77 Ot/g*) 

Control 

0.3 ± 0.2 

n.d. 

5 mg/kg 

140 ± 52 

14.0 ± 5.2 

CB-77 

50 mg/kg 

875 ± 7 1 5 

87.5 + 71.5 

CloA50 

50 200 mg/kg 

23 + 17 129 ± 86 

n.d. n.d. 

*Data are expressed as meansg"1 lipid ± S.D. 
Abbreviation: n.d., not determined 

RESULTS 

Internal concentration of PCBs in body lipids 

The mean internal PCB concentrations expressed as ng TEQ-g"1 lipid and/yg-g"1 (PCB-77 

only) are presented in Table 2.1. The average TEQ values of the high-dose CloA50 group 

(129 ng-g"1 lipid) is similar to that of the low-dose PCB-77 group (140 ng TEQ-g"1 lipid). 

The individual variation is very large, up to 82% of the average value in the 50 mg-kg"1 

bw PCB-77 group. 

Morphological measurements 

The total body weight of the eider ducklings increased from 246-492 g (14 days old) to 

949-1443 g (end of the experiment, 38 days old). This is similar to the body weight gain 

of eider ducks in the wild (Swennen, 1991). The beak length increased in the same period 

from 26.3-33.9 mm to 40.1-49.1 mm. No significant differences in group averages of total 

body weight gain nor increase in beak length were observed between the PCB-exposed 

and control groups at day 10 of exposure. In the CloA50-dosed groups, however, body 

weight gain in 10 days (%increase =45 - 3.0 [TEQ]) and increase in beak length in 10 

days (Figure 2.1) were significant negatively correlated with internal PCB concentrations 

expressed as pg TEQ-g"1 body lipid. This correlation was not seen in the PCB-77-dosed 

eiders. 

The relative liver weights (group average values) were not significantly different 

between PCB-exposed groups and controls. However, when relative liver weight of each 

individual animal was plotted against internal PCB-77 level (//g-g"1 lipid) or CloA50 (ng 

TEQ-g"1 lipid) significant positive correlations were observed (Figure 2.2 a,b). 

No significant alterations were observed for relative thymus weight, relative brain 

weight, wing length and skull length, either compared as group averages or individually 

correlated with internal PCB concentrations. 
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Table 2.2 
ducklings. 

Plasma total thyroxine (T4) and total thyronine (T3) levels in control and PCB-exposed eider 

Parameter 

nmol/l 

Control PCB-77 

5 mg/kg 50 mg/kg 

CloA50 

50 mg/kg 200 mg/kg 

T4, day 1 

T4, day 7 

T4, day 10 

T3, day 1 

T3, day 7 

T3, day 10 

7.5 ± 2.6 

9.7 ± 2.8 

11.7+ 4.2 

1.5 + 0.3 

1.9 ± 0.4 

0.8 ± 0.2 

9.1 ± 3.3 

8.3 ± 1.9 

13.3+ 2.5 

1.4 ± 0.2 

2.5 + 0.3* 

0.9 ± 0.1 

7.7 ± 2.2 

10.4+ 1.5 

12.7± 3.5 

1.4 + 0.4 

1.6 ± 0.3 

0.9 + 0.2 

9.7 ± 3.2 

7.5 + 2.5 

13.9± 5.7 

1.6 ± 0.4 

2.7 + 0.1* 

1.1 + 0.3* 

6.9 ± 1.9 

10.3± 3.4 

9.9 ± 3.2 

1.3 ± 0.3 

1.3 + 0.1 

1.3 ± 0.5* 

Data are expressed as means + S.D. 
*Significantly different from control with P<0.05. 

200 

CB-77 (pg/g lipid) 

10 

CB-77 (pg/g lipid) 

100 200 

(a) 

Figure 2.3 Correlations be
tween (a) plasma total thyroxin 
levels (T4, r = 0.69, P<0.05) 10 
days after dosing or (b) plasma 
triiodothyronine (T3, r = 0.74, 
P< 0.005) levels 7 days after CB-
77 dosing plotted against PCB 
levels (fjg CB-77/g body lipid). 

(b) 
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Hepatic EROD activity 

Cytochrome P4501A induction measured as EROD activities were dose-dependently 

increased in the PCB-77 groups (respectively 60.2 + 13.4 and 502.8 ±412.9 

nmol-mg^-min"1) compared with control values (8.8 + 4.1 nmol-mg^-min"1). No significant 

differences were found for both CloA50-dosed groups (respectively 9.7+11.7 and 

17.4+14.0 nmol-mg^-min"1) compared with the control group. However, when corre

lated on an individual basis, the EROD activities in both the PCB-77 and the CloA50 

groups were significant positively correlated with internal PCB levels expressed (respec

tively log EROD =1.19 + 0.48 log [CB-77], r = 0.70, P< 0.001 and log EROD = 0.46 + 

0.41 log [TEQ], r = 0.67, P<0.005). 

Thyroid hormone measurements 

The average total thyroxine (T4) levels in the control group increased from 6.1 +1.2 

nmol-l"1 plasma at day 0 to 11.7 + 4.2 nmol-l"1 at day 10 of the experiment. Plasma total 

triiodothyronine (T3) levels decreased from 1.8 + 0.6 to 0.9 + 0.2 nmol-l"1 over the same 

period. There were no significant differences in group average plasma values for T4 levels 

at any time point of exposure (Table 2.2). Group average values of plasma total T3 levels 

of the low-dose PCB-77 and the low-dose CloA50 groups were significantly greater than 

control levels (respectively 132% and 142 %) at day 7 of exposure (Table 2.2). At the 

same time point a reduced plasma total T3 level compared with the control group 

(respectively 84% and 68%) was observed in both high-dose groups, but this difference 

was significant only in the CloA50 200 mg-kg"1 group. At day 10, plasma total T3 levels 

in both PCB-77-dosed groups did not differ from the controls. In the low and high-dose 

CloA50 groups total T3 levels were significantly greater compared with controls (138% 

for the 50 mg-kg"1 and 163% for the 200 mg-kg"1 CloA50 group). 

Individual plasma total T4 levels were significant negatively correlated with 

internal PCB-77 levels at day 10 of exposure only (Figure 2.3a). Plasma total T3 levels 

were significant negatively correlated with PCB-77 levels at day 7 (Figure 2.3b). No 

significant correlations of thyroid hormone levels with internal PCB concentrations were 

found in both CloA50-dosed groups. 

Plasma retinol and hepatic retinoids 

During the experimental period, the average plasma retinol levels in the control eider 

ducks were 2.0 + 0.22//g-ml"1. Plasma retinol levels of the PCB-dosed groups at days 1, 

7 and 10 expressed as a percentage of the control values, are shown in Figure 2.4. In the 

PCB-77-exposure groups, a significant decrease to 84 and 82% of the control values is 

observed at day 1, of exposure, followed by a return to control levels at day 7, and a 
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Figure 2.4 Plasma retinol levels on 1, 7 and 10 days after dosing PCBs, expressed as a 
percentage of the control values (absolute values can be found in Table 2.3). For CB-77 
and Clophen A50-dosed groups, low doses are respectively 5 and 50 mg/kg bw, high 
doses respectively 50 and 200 mg/kg bw. 
""Significantly different from control values (P<0.05). 

subsequent increase at day 10 to 108% for the low-dose and 127% for the high-dose 

group. In the PCB-77 groups, plasma retinol levels were significantly increased w i th 

internal PCB-dose, ten days after dosing (Figure 2.5a). 

Hepatic retinol, retinyl palmitate and retinyl stearate levels showed large inter-

individual variations (up to 95%; Table 2.3). The only significant difference in group 

averages from control values was a reduction to 65% of the retinyl palmitate level in the 

high-dose PCB-77 group. Hepatic retinoid levels were also correlated on an individual 

basis w i th the PCB body burdens. In the PCB-77-exposure groups a clear, significant, 

negative correlation between internal PCB levels and hepatic retinol and both retinyl ester 

concentrations was observed. Figure 2.5b shows this relationship for hepatic retinyl 

palmitate. In the CloA50-dosed animals no such relationships were found. 

The average ratio between plasma retinol and hepatic retinyl palmitate is 

significantly different from the controls in the PCB-77 50 mg-kg"1 group (Table 2.3). The 

ratio hepatic retinol over hepatic retinyl palmitate was not significantly correlated w i th 

the internal PCB concentration. The ratio plasma retinol to hepatic retinyl palmitate 

(g"g1)/ however, is significant positively correlated wi th the internal PCB-77 concentration 

(j/g-g-1 l ipid) ( rat io= -15 + 24.7 log [CB-77]; r = 0.74, P<0 .05) . In the CloA50-dosed 

animals this ratio d id not change w i th the PCB body burden (expressed as TEQs). 
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Table 2.3 Hepatic and plasma retinoid levels in control and PCB exposed eider ducklings. 

Parameter Control CB-77 CloA50 

H. retinol (/ug/g)a 

H. ret.palmitate (//g/g) 

H. ret.stearate (ytfg/g) 

PI. retinol day 1 (//g/ml) 

PI. retinol day 7 (/Ug/ml) 

PI. retinol day 10(/vg/ml) 

Retinol/ret.palmitateb 

5.1 + 3.6 

17.0± 6.0 

6.9 ± 2.5 

6.9 ± 2.5 

8.7 ± 4.9 

8.7 ± 4.9 

0.11 ± 0.04 

5mg/kg 

9.7 ± 8.2 

20.0+ 8.2 

8.6 ± 3.8 

8.6 ± 3.8 

9.5 ± 2.1 

9.5 ± 2.1 

0.12 ± 0.07 

50 mg/kg 

9.8 ± 5.1 

11.1 ± 5 . 2 * 

6.2 ± 2.2 

6.2 ± 2.2 

6.2 ± 2.2 

6.2 ± 2.2 

0.24 ± 0 . 1 1 * 

50 mg/kg 

11.0 + 10.6 

19.2+ 8.5 

8.7 + 4.9 

8.7 + 4.9 

9.5 + 2.1 

9.5 + 2.1 

0.11 + 0.06 

200 mg/kg 

7.9 + 3.4 

20.0 ± 4.0 

9.5 ± 2.1 

9.5 ± 2.1 

6.2 ± 2.1 

6.2 ± 2.1 

0.11 + 0.03 

Data are expressed as means + S.D. 
'Significantly different from control with p<0.05. 
a/vg/g liver. 
bRatio of (plasma retinol)/(hepatic retinyl palmitate). 
Abbreviations: H.-hepatic; PI. = plasma; ret. = retinyl. 

Behavioural activity 

In the control group swimming and eating activity gradually increased over the ex

perimental period from 10 times per animal per day (five observations of 10 min per day 

for both activities) to, respectively, 17 and 19 times per animal per day. This increase was 

significantly less in the PCB-77-dosed group. Swimming activity in the PCB-77 group was 

79% and eating activity 77% of the control values. In the CloA50 200 mg-kg"1 group 

these activities were, respectively, 91 % and 98% of the control group, but these diffe

rences were not significantly different from the control group. 

DISCUSSION 

In this semi-field study eider ducklings were found to be responsive with respect to Ah-

receptor mediated responses, such as cytochrome P4501A induction and hepatomegaly. 

Some changes were observed in vitamin A and thyroid hormone levels that may be 

partially mediated by the Ah-receptor. Reduced growth and behavioural activity were 

recorded. 

Variation in internal dose 

The average internal PCB concentrations in the body lipid of the eiders dosed with 5 

mg-kg"1 PCB-77 was 140±52 ngTEQ-g"1 lipid, of the 200 mg-kg-1 CloA50-dosed group 
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129.4 + 85.9 ng TEQ-g"1, and of the 50 mg-kg"1 C loA50 group 23 + 1 7 ng TEQ-g"1 l ip id. 

These levels were similar to the levels found in yolksacs of eggs from fish eating birds 

in recent bird studies in The Netherlands. In relatively polluted cormorant chicks 

(Biesbosch), average PCB levels of 136 ng TEQ-g"1 yolksac l ipid were found (Van den 

Berg et a/., 1994), and in common tern (5terna hirundo) yolksacs from a relatively 

polluted colony (Slijkplaat) 40 ng TEQ-g-1 l ipid (Murk et al. 1993, Bosveld et a/., 1995). 

In our semi-field experiment, as wel l as in both f ield studies mentioned above, the large 

variation in internal dose and measured parameters was obvious. This is mainly due to 

large intrinsic differences between individuals from a natural species compared w i th 

laboratory animals. Even when the diet is identical for all individuals and exposure is 

controlled, as in our semi-field experiment, correlation of the measured parameters wi th 

the individual internal PCB concentration is essential for studying effects. 

10 

CB-77 (Mg/g lipid) 

100 200 

200 

(a) 

Figure 2.5 Correlation be
tween (a) plasma retinol concen
trations ( r -0 .56, P<0.01) 10 
days after exposure or (b) hepatic 
retinyl palmitate concentrations 
( r -0.69, P<0.01) and PCB lev
els in the CB-77-dosed eider 
ducks. 

(b) 

CB-77 (^g/g lipid) 
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Ah-receptor mediated effects 

A strong P450 induction was observable in the PCB-77 groups, while no significant 

induction was observed in the CloA50 groups (Rozemeijer et a/., 1991). We nevertheless 

found a PCB-related EROD induction in both PCB-77 and CloA50 groups. In both CloA50 

and PCB-77-dosed eiders, we also found a significant positive correlation between 

relative liver weight and PCB body burden. This usually coincides with P450 induction. 

For a number of reasons it is difficult to compare the relationship PCB body 

burden and EROD activity that we found here with the results of other studies; firstly, this 

is because wild birds always are exposed to various chemicals which may induce or 

inhibit P450 activity; secondly, it was because most of the birds used were adults, often 

caught during breeding season (Walker, 1990), when the mixed-function oxidase activity 

has its peak (Fossi et a/., 1989). We therefore only compared our results with that of one-

day-old chicks of common tern and cormorant. In our experiment, the slope of the 

correlation of log (EROD activity) to log [PCB-77] internal dose was 0.49, with the 

corresponding slope to log TEQ internal dose in the CloA50-dosed groups of 0.41. In one-

day-old cormorants (Van den Berg et a/., 1994), the log (EROD activity) to log [mono-

ort/io-PCBs] slope was 0.49 and in one-day-old common terns 0.50 was the ratio to log 

[TEQ]. The eider ducklings therefore showed an P4501 A-inducing potency similar to that 

of the cormorant and the common tern. 

The only study reported of the effects of PCBs on eiders was performed with eggs 

by Brunstrom et al. (1990). They concluded from egg injection experiments that eider 

embryos were rather insensitive to PCB-77 and 3,3',4,4',5-pentachlorobiphenyl. They 

did not find significant embryonic mortality at a dose of 1 mg PCB-77-kg"1 egg, but they 

did not measure biochemical parameters such as EROD activity or retinoid levels. It is 

difficult to compare the results of their egg experiment with our results with eider 

ducklings because no internal doses were measured in the eggs. A very rough estimation 

of the internal dose per gram lipid after injection of 2 mg PCB-77-kg"1 egg, based on the 

assumption that 4% of the egg is lipid, as in cormorant eggs (Van Schaik and De Voogt, 

1989) and that all PCBs will be present in the lipid, results in a PCB level of 50 mg PCB-

77-kg"1 l ipid. In our experiment, such a body burden resulted in large reductions in 

hepatic retinoid stores and increase of EROD activity. 

Morphology 

We did not detect any morphological aberrations as the ones related to PCBs in field 

studies with the black-crowned night herons (Nycticorax nycticorax) (Hoffman et al. 

1986) and Forster's tern (Sterna fosteri) (Hoffman et al., 1987). One possible explanation 

is that, under natural circumstances, exposure already takes place in ovo, during organ 
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formation. The eider ducklings in our experiment were dosed at the age of 28 days. They 

were growing rapidly (36% in 10 days), but tissue differentiation had already taken place 

before dosing. On the other hand, important differences between field studies and more 

controlled experimental studies, like our eider study, are the presence in the field of 

various other pollutants and confounding factors such as parasites, which can cause 

additional effects that may be attributed to PCBs. 

We did find +45% difference in body weight gain between the animals with 

low and high PCB body burdens in the CloA50-dosed groups. The mechanism of body 

weight loss and reduced body weight gain is not yet elucidated. 

Thyroid hormones 

In the unexposed eider ducklings, plasma T3 levels decreased by about 50% during the 

experimental period and T4 levels increased by 90%. This is in accordance with 

Decuypere and Kuhn (1988), who described an increase in T4 concentrations with age 

and weight in chicks after hatching, up to 128 days. In those chicks, plasma T3 levels 

increased in the first 2 weeks after hatching and then declined with age. 

In both CloA50- and PCB-77-dosed groups there was a significant decrease in 

plasma T3 level at day 7 related to PCB body burdens, but not at day 10. Plasma T4 levels 

were only significantly negatively correlated with internal PCB-77 concentrations at day 

10 of exposure. Under normal circumstances reductions in thyroid hormone levels will 

be compensated by additional secretion of thyroid hormone by the thyroid gland. We 

nevertheless found significant plasma T3 and T4 reductions at, respectively, 7 and 10 

days after a single PCB-77 dose. A reduction of thyroid hormone levels in birds by PCBs 

has been demonstrated before in experiments with black-backed gull (Larus fuscus), 

pigeons (Jefferies and French, 1971) and Japanese quail (Coturnix coturnix; Grassle and 

Biessmann, 1982). In field studies a correlation between PCB body burdens and thyroid 

hormone levels has been demonstrated in common tern (Murk et a/., 1994b) and 

cormorant (Van den Berg et a/., 1994) chicks. 

PCBs have been reported to influence thyroid hormone levels at two levels at 

least, firstly interference of hydroxylated metabolites with the T4 transportation system 

(Brouwer et a/., 1990, Lans et a/., 1993) and secondly by induction of T4-glucuronidation, 

thus enhancing hepatic elimination of thyroid hormone (Barter and Klaassen, 1992; 

Beetstra et a/., 1991; Visser et a/., 1993). Arguments that both mechanisms may actually 

be involved in eiders and other fish-eating birds have been obtained recently. From in 

vitro metabolism experiments (Murk et a/., 1994c) it was apparent that hepatic 

microsomes of eiders from the CloA50 and the PCB-77 groups, are able of producing 

especially 50H-metabolites of PCB-77. These metabolites are very potent in interfering 
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with the T4 transport system (Lans et a/., 1993). In addition a significant positive correla

tion between T4-glucuronidation and PCB body burdens was demonstrated in common 

tern (Murk et a/., 1994b). 

Thyroid hormones are important regulators of physiological functions, such as 

the maintenance of body temperature (Falconer, 1984), energy metabolism, growth and 

differentiation of epithelia, and synchronization of reproduction and migration of birds 

with the seasons (Nicholls et a/., 1985, Kar and Chandola, 1985; Sharp and Klandorf, 

1985; Dawson, 1989a,b). However, at present it is unknown whether thyroid hormone-

related health effects may develop in fish eating birds upon exposure to environmental 

levels of PCBs. 

Retinoids 

One day after exposure a significant decrease of plasma retinol levels in the CloA50-50 

mg-kg"1 group and in both PCB-77-dosage groups was observed to +80% (Figure 2.4). 

The plasma retinol levels probably are influenced by two processes at least: an increase 

by enhanced mobilization from the liver and a decrease through interference of the 

hydroxylated metabolites with the plasma transport. In laboratory animals such as mice, 

a reduction in plasma retinol concentration can be observed within a day after a single 

dose of PCB-77, followed by a recovery, and sometimes overcompensation, in the 

following days (Murk et a/., 1991). 

The hepatic retinyl palmitate levels were more than 4-fold less in the animals 

with great PCB-77 body burdens than in the animals with smaller PCB-77 concentrations 

(Figure 2.5b). At the same time (day 10 of the experiment) plasma retinol levels were 

significantly positively correlated with PCB-77-body burden (Figure 2.5b). These results 

were not observed for the CloA50-dosed animals. 

In laboratory studies with rats dosed 40 mg-kg"1 3,3',4,4',5,5'-hexa-

bromobiphenyl (HBB). Spear et a/. (1988) observed after 28 days, elevated serum retinol 

levels, increased liver weight, and decreased liver retinol and retinyl palmitate levels. 

In rats dosed 20 mg-kg"1 HBB only liver retinol and retinyl palmitate levels concentrations 

declined. They found in vitro elevated hydroxylation and conjugation by UDP-glucuronyl 

transferase of retinoic acid in liver microsomes that corresponded with increased activities 

of P4501 A. Spear et al. (1985, 1990) observed reduced liver retinol and retinyl palmitate 

levels in natural populations of herring gulls (Larus argentatus) from contaminated 

colonies compared to relatively clean colonies. Also in our field study with common terns 

chicks we observed reduced yolksac retinyl palmitate levels and increased plasma retinol 

concentrations (Murk et al., 1994b). 

If the processes mentioned above would continue for a longer period of time, 
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depletion of the retinoid store is to be expected. This may have consequences for vitamin 

A-mediated physiological functions such as reproduction, differentiation of epithelia and 

good skin condition (Sporn and Roberts, 1983),and resistance against infections (Sijtsma 

eta/., 1989). 

Behaviour 

In our experiment we found a significant decrease in swimming and eating activity for 

the PCB-77-50 mg.kg"1 dosed animals. This effect was not found for the CloA50-200 

mg-kg"1 group. PCBs have been shown to influence bird behaviour, such as parental 

attentiveness (Kubiak et a/., 1989, McArthur et a/., 1983), courtship behaviour (Tori and 

Peterle, 1983) and avoidance behaviour (Kreitzer and Heinz, 1974). The mechanism 

through which behaviour is influenced is not yet clear. For eider ducklings it is very 

important to react on a distress call of the females by congregating into as compact a 

group as possible for protection against predators (Swennen, 1989). Under natural circum

stances, less active reaction could decrease the chance of survival. 

CONCLUSIONS 

From this experiment we can conclude that eider ducks are vulnerable to the toxic action 

of PCBs. This effect is at least partially Ah-receptor related. Whether PCBs actually have 

adverse health effects on eiders in natural populations is not known. In The Netherlands, 

eider populations are not only exposed to various chemicals, but they are also seriously 

affected by mechanical destruction of mussel banks by fishing activity. This forces the 

eiders to eat more crabs, which contain the parasite Polymorphus botulus, leading to 

increased incidence of infection (Swennen, 1991). 

Due to intrinsic individual differences between the natural eiders in our ex

periment, correlation of the measured parameters with the individual internal dose is 

essential in studying effects. This is even more important for field studies where exposure 

occurs via the diet and thus the individual food choice of the animals is an extra source 

of variation. 
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CHAPTER 3 

EFFECTS OF POLYHALOGENATED AROMATIC HYDROCARBONS (PHAHS) ON 

BIOCHEMICAL PARAMETERS IN CHICKS OF THE C O M M O N TERN (STERNA HI

RUNDO)* 

ABSTRACT 

Common tern {Sterna hirundo) eggs were collected from eight breeding colonies that 

differed in degree of polyhalogenated aromatic hydrocarbon (PHAH) pollution. The eggs 

were artificially incubated and the chicks sacrificed within 12 hr after hatching. Plasma 

thyroid hormones, hepatic T4-UDP-glucuronyltransferase (T4-UGT) activity, plasma 

retinol and yolksac retinoid levels were measured and compared with yolksac PHAH 

residues (PCBs, PCDFs and PCDDs) and hepatic EROD and PROD activities. No signifi

cant differences were observed between colony average levels of plasma thyroid 

hormones (TT4, FT4 and TT3) nor plasma retinol levels and T4-UGT activities that could 

be related to colony average PHAH levels. However, average colony yolksac retinyl ester 

levels did show significant differences. When correlated for individual terns, significant 

correlations between all these parameters and PHAH levels or EROD or PROD activities 

were found. The correlation between hepatic T4-UGT and EROD and PROD activities 

was very strong, suggesting a concomitant induction of these drug metabolizing enzymes. 

The PHAH levels were expressed as TEQs based on TEFs as proposed by Safe (1990, 

1994). In addition to plasma retinol, another retinoid was found which resembles 3,4-

didehydro-retinol (vitamin A2) in chromatografic and spectroscopic behaviour. This 

putative plasma vitamin A2 was significantly positive correlated with the yolksac TEQs 

and with the hepatic EROD activity. Esters of both retinol and putative vitamin A2 were 

detected in the yolksac. The average yolksac vitamin A2 levels of the cleanest Zeewolde 

colony were significantly greater than the average levels in the other colonies. It was not 

possible to correlate the yolksac retinoids with residue levels or TEQs for individual terns, 

as these had not been analyzed in the same yolksacs. Common tern chicks that required 

a longer period of incubation before hatching had significantly smaller concentrations 

of yolksac retinyl palmitate and greater PHAH levels. The ratio plasma retinol over 

yolksac retinyl palmitate was significantly increased. 

*Based on: Murk A}, Bosveld ATC, Van den Berg M and Brouwer A (1994): Effects of 

polyhalogenated aromatic hydrocarbons (PHAHs) on biochemical parameters in chicks 

of the common tern (Sterna hirundo). Aquat. Toxicol. 30: 91-115 
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INTRODUCTION 

Polyhalogenated aromatic hydrocarbons (PHAHs) such as polychlorinated biphenyls 

(PCBs), polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins 

(PCDDs) are ubiquitous environmental toxicants which accumulate especially in aquatic 

food chains. PHAHs can induce a wide spectrum of adverse health effects in laboratory 

and wildlife species (Safe, 1986a; Nebert, 1989; Safe, 1990; Brouwer, 1991). In fish-

eating birds, exposure to PCBs has been associated with embryonic mortality, growth 

retardation, hepatomegaly, morphological abnormalities, impaired reproduction, 

alterations in vitamin A and thyroid hormone metabolism, and behaviourial changes 

(Cilbertson and Fox, 1977; Hoffman et a/., 1987; Gilbertson, 1989; Cilbertson et a/., 

1991; Kubiak et a/., 1989; Murk et a/., 1994a). PCDDs, PCDFs and planar PCB congeners 

initiate their effects mainly through binding to the ary I hydrocarbon (Ah) receptor followed 

by the induction of specific gene products. Most often studied are increased Cytochrome 

P450IA1 production and related enzyme activities, such as ethoxyresorufin-O-deethylase 

(EROD), and aryl hydrocarbon hydroxylase (AHH) activities. These gene products may 

catalyse PHAHs metabolism or disturb the physiology of the animal (Safe, 1986a; 

Brouwer, 1991). However, for some toxic endpoints such as neurotoxicity, tumour 

promotion, alterations in vitamin A and thyroid hormone metabolism, there seems to be 

no absolute requirement for a planar configuration of PHAHs, while also the metabolites 

of PHAHs have been shown to perform adverse effects (Brouwer, 1991). 

The annual load of PCBs to the North Sea is calculated to be 11-17 metric tonnes 

(Klamer et a/., 1991). Inputs of PCBs into the North Sea are contributed by the Atlantic 

Ocean and atmospheric deposition (together 60-70% of the total input), the Straights of 

Dover, Baltic Sea, rivers, sewers, (harbour) sludge and industrial calamities. The toxic 

load that is released by the highly polluted rivers Rhine, Meuse and Scheldt is transported 

along the Dutch coast towards the Wadden Sea and the German Bight. This has resulted 

in median PCB-138 levels in the sediment of 117/yg-kg"1 organic carbon in the Wadden 

Sea and 75/yg-kg"1 organic carbon in the German Bight. Not surprisingly PCB levels in 

eggs of sea birds breeding at the German North Sea coast stayed relatively high or 

increased between 1981 and 1990 (Becker et a/., 1992). In the mesohaline zone of the 

Westerchelde, Stronkhorst (1993) measured 230//g PCB-138-kg"1 suspended matter (ash-

free dry weight) in 1987 till 1989. In common tern carcasses and common tern eggs, 

average levels of 5930 and 5310 //g PCB-153-kg"1 ash-free dry weight were found, 

respectively. Stronkhorst (1993) suggested that common terns in Saeftinghe (the eastern 

part of the estuary) could be at risk for reproductive impairment, since PCB-concentrations 

were found in the same range as reported for Green Bay (Lake Michigan, USA) where 
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effects such as reduced hatchability, reduced body weight, increased incubation time and 

congenital abnormalities have been observed by Kubiak et a/. (1989). 

To set quantitative and verifiable ecological objectives for the Dutch manage

ment of the North Sea and inland waters, a selection of 60 indicators has been made (Ten 

Brink et a/., 1991). These indicators are selected species, that should represent a cross 

section of the ecosystem. One of these target species is the common tern {Sterna hi-

rundo), a fish eating bird that breeds especially in the Delta region in the south-west part 

of The Netherlands. Terns have been shown to be susceptible to pollutants such as 

organochlorine pesticides (Koeman, 1971) and PCBs (Kubiak et a/., 1989). Furthermore 

it is to be expected that terns build up a considerable PCB burden within a few weeks 

after their arrival from their wintering sites in West-Africa. 

This study of the suitability of common terns as biomonitoring species is a follow-

up of a comparative study with one-day-old cormorant (Phalacrocorax carbo) chicks from 

two Dutch colonies which differed in degree of pollution. In this cormorant study 

significant concentration-effect relationships were found for mono-ortho-PCBs versus 

EROD and PROD (pentoxyresorufin-O-deethylase) activity, head length, plasma thyroid 

hormone and hepatic retinyl palmitate levels (Van den Berg et al., 1994). Despite their 

toxic responses to PHAH exposure, cormorants were judged not to be suitable as 

bioindicator species. Firstly because their nests are very hard to reach as in The Nether

lands they breed high in trees. Secondly because large intercolony variations in residue 

concentrations and EROD and PROD activities were found, possibly due to the very large 

foraging areas. 

Common terns are also specialized predators of the aquatic food-chain but their 

nests are much more accessible and they forage mostly within 10 km from their breeding 

place (Stienen and Brenninkmeier, 1992; Rossaert et al., 1993). Terns may be sensitive 

for effects of PHAH contamination as well. Correlations have been shown between levels 

of non-and mono-ortho-PCBs and decreased hatchability, increased incubation period 

and decreased parental attentiveness in Forster's terns {Sterna forsteri) Green Bay, Lake 

Michigan (Kubiak et al., 1989). Hoffman et al., (1987) observed a positive correlation 

between hepatic AHH activity and weight loss and abnormal functioning of the thyroid 

gland in Forster's tern chicks. Becker (1991) found a reduced hatching success for 

common terns that coincided with increased PCB levels. This reduction was, however, 

not statistically significant. 

At lesser levels of contamination more sensitive parameters than obvious adverse 

effects are needed to determine effects of chemicals such as PHAHs. It is known that 

PCBs, PCDDs and PCDFs may alter thyroid hormone and vitamin A metabolism in 

laboratory species such as rat, mouse (Spear et al., 1988; Brouwer, 1991; Chen et a/., 
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1992) and birds such as herring gull {Larus argentatus), ring dove (Streptopelia risoria) 

and eider duck {Somateria mollissima) (Spear et a/., 1990; Murk et a/., 1994a). Both 

thyroid hormone and vitamin A play essential roles in embryonic development and 

physiological functions such as energy metabolism and reproduction (Falconer, 1984; 

Kar and Chandola, 1985; Dawson 1989a,b; Thompson, 1970). Therefore vitamin A and 

thyroid hormone may function as indicators for both exposure to PCBs and for the 

animals homeostasis. 

In this experiment common tern eggs were collected from seven colonies in The 

Netherlands and one colony in Belgium, which differed in degree of pollution. The eggs 

were artificially incubated in the laboratory. Within 12 hr after hatching the common tern 

chicks were sacrificed. Several tissues were collected for further investigations. Growth 

parameters of the chicks, PCB/PCDD/PCDF concentrations in the yolksac and hepatic 

EROD and PROD activities were measured and are reported elsewhere (Bosveld et a/., 

1994). This paper describes the possible adverse effects of in ovo PHAH exposure on 

vitamin A and thyroid hormone status in blood plasma and yolksac of one-day-old 

common tern chicks from different breeding colonies. In the same colonies an ecological 

survey was performed on the reproductive success of the common terns (Rossaert et a/., 

1993). Correlations of the ecological results with physiological and chemical parameters 

are described elsewhere (Murk et a/., 1996a). 

MATERIALS AND METHODS 

Animals and treatment 

Fifteen common tern eggs (the second egg of nests of three eggs) were collected from 

seven breeding colonies in The Netherlands and one in Belgium during the period May 

and June 1991. The colonies were chosen to represent control and contaminated sites, 

and were situated at Zeewolde in Flevoland (Zeew); the isle of Griend in the Wadden 

Sea (Grnd); Slijkplaat in the Haringvliet (Slpl); the Prinsesseplaat in the Oosterschelde 

(Prpl); the Land van Saeftinghe in the Westerschelde (Saef); Terneuzen (Tern); the West-

plaat at the North Sea coast near Oostvoorne (Wpl) and at the North Sea coast near Zee-

bruggein Belgium (Zeeb) (Figure 3.1). The eggs were artificially incubated in a laboratory 

incubator at a temp of 37.5 °C with a relative humidity of 50-60%. Within 12 hr after 

hatching the young terns were weighed and sacrificed under ether anaesthesia. Livers 

and yolksacs were weighed immediately, snap frozen in liquid nitrogen and stored at 

-70°C. Blood was centrifuged and the plasma was stored at - 20°C. 

PCDD, PCDF and PCB residues were analyzed in yolksacs by GC-MS and GC-
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Zeebrngge ^ 

North Sea 
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FPrfaueueplaat 

Germany 

River Rhine 

Belgium Figure 3.1 Locations of 
breeding colonies of common 
terns included in this study, in 
the Netherlands and Belgium. 

ECD , respectively (Bosveld et al., 1993). The individual PHAH levels were transformed 

into Toxic Equivalents (TEQs), using Toxic Equivalency Factors (TEFs) as proposed by Safe 

(1990, 1994). Di-ort/?o-PCBs were not used in the TEQ calculations. 

Liver microsomes were prepared as described in Bosveld et al. (1994). Protein 

content was analyzed according to the method described by Bradford (1976). 7-ethoxyre-

sorufin-O-deethylase (EROD) and 7-pentoxyresorufin-O-depenthylase (PROD) activities 

were analyzed fluorimetrically according to the method of Rutten et al. (1987). 

Plasma thyroid hormone assays 

Total thyroxin (TT4), total triiodothyronine (TT3) and free thyroxin (FT4) levels were 

determined in, respectively, 10, 25, and 25/j\ aliquots of plasma, by chemiluminescence 

immunoassay, using commercially available kits (Amerlite assay kits, Amersham Internat. 

pic, Amersham, UK). Thyroid hormone levels were calculated from the luminescence 

data with the Securia computer program of Amersham. 

Plasma and yolksac retinoid analysis 

Because of the small amounts of plasma available, aliquots of 25 //I were diluted with 

25 //I of demineralized water. They were subsequently spiked with retinyl acetate as an 
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internal standard and extracted with 50 //I methanol and 100//I diisopropylether. The 

ether phase was filtered over a 0.45 /ym Millipore filter and evaporated under nitrogen 

gas. The residue was dissolved in 50/vl methanol. Aliquots of 20/J\ extract were analyzed 

on a reverse phase silica RP C18 column (Perkin Elmer, Pecosphere 3*3) with 

methanol/water (85:15) as eluent according to the method described by Morse and 

Brouwer (1995). To determine yolksac retinoids, the yolksacs were first weighed, 

homogenized in 1 ml of Tris-buffer pH 7.4 and extracted in aliquots of 50JJ\ as described 

for plasma retinoids. The dried residues were dissolved in methanokethyl acetate 1:1 

instead of 3:1 because of the relatively large fat content compared to liver extracts. 

Sampling and running conditions were performed as described for hepatic retinoids by 

Morse and Brouwer (1995) except that the samples were not cooled during HPLC-analysis 

to prevent blockage of the column by clotting fat. All handlings were performed at 4°C 

in the absence of direct daylight. Identification of retinoids was based on co-

chromatography with standard retinoids measured at 326 nm. Quantification was 

performed using standard curves of retinol or retinyl palmitate. HPLC retinoid data were 

integrated and calculated using Merck D-6000 HPLC manager software. 

Further identification of some plasma and yolksac retinoids was performed by 

dr. A Barua, a member of the Vitamin A Research group of Prof. J.A. Olson. He used 

reversed phase HPLC (Column Waters Assoc. "Resolve" 5 /J x 3.9 mm x 30 cm) coupled 

to a Photo-Diode Array detector (Waters, model 991), and as solvent acetoni-

trile/dichloroethane/methanol (85:10:5) with 0.05% ammonium acetate. The flow rate 

was set at 1.5 ml-min"1. 

Thyroxin (74) UDP-glucuronyltransferase assay 

Thyroxin UDP-glucuronyltransferase (T4-UGT) activity was measured basically as 

described by Beetstra ef. a/. (1991). Hepatic microsomes were incubated with 125I-T4 and 

the co-factor Uridine Diphosphate Clucuronaat (UDPGA). Because of the small amounts 

of microsomes available, the microsomal protein in the reaction mixture was diluted to 

1 mg-ml"1 instead of 2 mg-rrfl1 with buffer containing 10 mM MgCI2. The reaction 

mixture consisted of 50 JJ\ substrate solution (100.000 cpm 125I-T4, 4 / /M T4), 50 //I 

cofactor solution (20 mM UDPGA and 30 mM MgCl2) and 100//I microsomal preparation 

(containing 1 mg protein-ml1). The mixtures were incubated in duplicate at 37°C. Blanks 

were incubated in the absence of UDPGA. The reaction was stopped after 120 min by 

adding 200//I ice cold methanol. After 10 min on ice, the samples were centrifuged for 

10 min at 3000 rpm. 200/vl of the supernatant was brought to 1 ml with 0.1 M HCI, and 
125I-T4 and 125l-T4-glucuronate (125I-T4-G) were separated by Sephadex LH-20 columns 

chromatography. Finally the separated fractions were analyzed for radioactivity in a 
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gamma counter. T4-UGT Production is expressed as nmol T4-UGT formed per min per 

gram microsomal protein. 

Statistical methods 

Differences between colony averages were tested with ANOVA. Testing of dose effect 

relationships was done by unweighted least squares linear regression analysis and t-test. 

The acceptance level was P<0.05. 

RESULTS 

The differences in yolksac PHAH levels, either expressed as ng TEQs-g"1 lipid or on a 

mass basis (/vg mono-ortfro-PCB-g"1 lipid) do not differ very much between the different 

breeding colonies (Table 3.1, Figure 3.9 for mono-ort/io-PCBs). The pattern shown for 

the mono-ortho-PCBs is the same for the yolksac TEQ levels. The average yolksac PHAH 

level is significantly less than the other colonies in the Zeewolde colony, and significantly 

greater in the Slijkplaat colony. 

Plasma thyroid hormones 

The greatest total thyroxine (TT4) levels were found in the Zeebrugge colony (6.85 + 3.1 

nmol-l"1). The least levels were found in theTerneuzen colony (5.34+1.92 nmol-lV No 

significant differences were observed in average plasma TT4 concentration between the 

different colonies when expressed as colony means (Table 3.2). Greatest mean plasma 

free thyroxine (FT4) levels were found again in Zeebrugge (6.21 +3.42 pmoH"1) and least 

in the Terneuzen colony (4.00+1.05 pmol-l"1). Some average FT4 levels differed signifi

cantly between colonies (Table 3.2). However, no trend was found which could be 

related to colony differences in mean yolksac PHAH-concentrations. Plasma triiodothyro

nine (TT3) levels were on average again greatest in the Zeebrugge colony (3.93 +1.75 

nmol-l"1). The Terneuzen and Prinsesseplaat colonies had the least TT3 levels (2.52 ±1.15 

and 2.43+ 0.53 nmol-l"1, respectively). Although differences existed in average TT3 levels 

between some colonies (Table 3.2), these differences could not clearly be related to 

differences in mean yolksac PHAH levels (Table 3.1). Some animals showed extremely 

high levels of TT4, TT3 as well as FT4. When those levels exceeded the colony means 

plus twice the standard deviation they were not used in the calculations. 

The thyroid hormone parameters did not correlate with yolksac PHAH levels 

(either expressed as mass or TEQs). However, plasma TT4 levels were significantly 

correlated with EROD activity: (log [TT4] = 0.40 + 0.17-log (EROD activity); r = 0.31, 

P<0.05) and plasma FT4 levels were significantly correlated with PROD activity 
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(log [FT4] = 0.45 + 0.32-log (PROD-activity); r = 0.42, P<0 .005 , Figure 3.2). 

No correlation was observed w i th EROD activity. 

Thyroxine UDP-glucuronyltransferase activity 

Although the available amount of hepatic microsomes was very small, our measurements 

of thyroxine UDP-glucuronyltransferase (T4-UGT) activity proved to be very reproducible. 

There were no significant differences in average T4-UCT activity amongst breeding 

colonies. Greatest T4-UGT activities were found in the Slijkplaat colony (30.4 + 6.3 pmol 

T4-G-min"1-mg"1 microsomal protein) and least in the Zeewolde colony (24.5 ± 6 . 7 pmol 

T4-G-min"1-mg"1 microsomal protein) (Table 3.2). When calculated on the basis of 

individual terns, T4-UGT activity was positively correlated w i th the hepatic EROD (log 

(T4-UGT-activity) = 9.3 + 1.9-log (EROD-activity); r = 0.53, P < 0 . 0 0 1 , Figure 3.3) and 

PRODactivities(log(T4-UGT-activity) = 3.3 + 1.4-log(PROD-activity);r = 0 .43,P<0.001) . 

100 

o 
g 10 

to 
B 1 

0.1 

• •• * \Jz^ r*~" 

r-0.42, p<0.005 

10 30 
hepatic PROD (pmol/min.g protein) 

Figure 3.2 Plasma free thy
roxin (FT4) levels in one-day-old 
common tern chicks plotted 
against hepatic PROD-activity in 
the same animal. 

20 100 1000 2000 
hepatic EROD (pmol/min.g protein) 

Figure 3.3 Hepatic T4-UGT 
activity in one-day-old common 
tern chicks plotted against he
patic EROD-activity in the same 
animal. 
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Common tern study part I 

No correlation was observed between T4-UGT activity and PHAH levels, either expressed 

as mass or TEQs. 

Plasma retinol and yolksac retinyl palmitate 

The average plasma retinol levels per colony are presented in Table 3.3 and Figure 3.4. 

In this and the other bar-graphs the colonies are ordered depending on the mean TEQ 

value found in the yolksacs of the tern chicks from that colony: Zeewolde wi th the least 

TEQ at the left, Slijkplaat w i th the greatest TEQ value at the right. Mean plasma retinol 

levels were greatest in the common tern chicks from the Slijkplaat colony (130.89 + 49.30 

ng-ml"1) and least in chicks from the Zeebrugge (57.55 ± 19.60 ng-ml"1) and Criend colony 

(61.82+18.64) (Table 3.3). Apart f rom Zeewolde and Princesseplaat a trend can be 

observed showing increasing plasma retinol levels coinciding w i th increasing yolksac 

PHAH concentrations (Figure 3.4). No correlation was found w i th PHAHs, either 

expressed as TEQs or as a unity of mass. A significant positive correlation was found 

between plasma retinol levels and hepatic EROD: (log [plRE] = 1.41 +0.22- log (EROD-

activity); r = 0.36, P<0 .01) and PROD acyivities: (log [plRE] = 1.74 + 0.22-log (PROD-

activity); r = 0.42, P<0 .01 ) . 

Average yolksac retinyl palmitate levels from the colonies Saeftinge (0.44 + 0.35 

ng-ml"1), Terneuzen (0.40 + 0.15 ng-rnf ) and Zeebrugge (0.34 + 0.23 ng-"nil ) were 

significantly less compared to the other colonies (58-65% less, Table 3.3). Quantification 

of the yolksac retinol levels was not possible because the levels were very small, barely 

exceeding the noise (about 0.04 ng-ml"1 yolksac). 

200 

o 
= 100 a> 
o 
E 

*** p<0.005 (Zeew+Slpl) 
* p<0.05 (Slpl) 

Zeew Prpl Qrnd Zeeb Saef Tern Wpl Slpl 
Colonies 

Figure 3.4 Average plasma 
retinol levels in one-day-old com
mon tern chicks from different 
breeding colonies (n = 10). 
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Figure 3.5 HPLC chromatograms (measured at 326 nm) of (a) common tern plasma; (b) 
common tern plasma spiked with retinol; and (c) common tern plasma spiked with retinoic 
acid. Marked are retinol (vitamin A) and the putative vitamin A2. 

Putative plasma 3,4-didehydroretinol (vitamin A2) and its vitamin A2-ester in yolksac 

HPLC chromatograms of plasma extracts from common tern chicks showed a large peak 

(Rt 2.37 min) eluting just before the retinol peak (Rt 3.06 min) (Figure 3.5a). A similar 

peak was found in plasma from adult common terns (data not shown). Spiking the plasma 

demonstrated that the peak represented neither retinol (Figure 3.5b) nor retinoic acid 

(Figure 3.5c). Given its chromatographic behaviour and UV-absorption at 326 nm, this 

peak is thought to be a retinoid in nature. Further analysis of the unknown peaks was by 

Dr Barua (Department of Biochemistry and Biophysics, Iowa State University, USA), using 

a diode array spectrometer. It was found that the unknown plasma peak had an 

absorption maximum at 345 nm and a subsidiary peak at 275nm (Figure 3.6). This is 

compatible with the UV spectrum and chromatographic location of 3,4-didehydro-retinol 

(vitamin A2). In addition some a-Tocopherol, traces of B-carotene and a large peak due 

to ft-cryptoxanthin were found as well. In the yolksacs two peaks were identified (Rt 16.6 

and 17.97 min) which both showed absorbance at 345 nm. These peaks are thought to 
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300 350 400 450 
wavelength 260-299.4 nm 

Figure 3.6 Absorbtion spectrum of the putative plasma 3,4-didehydroretinol (vitamin A2). 

represent esters of vitamin A2, based on UV absorption spectrum, localization on the 

chromatogram and shifts to the putative vitamin A2 following hydrolysis (Figures 3.7a 

and b). 

Both plasma and yolksacs of the common tern chicks were bright yellow due 

to carotenoids. The carotenoid profiles of plasma and yolksac indicated the presence of 

a- and ft-carotenoids. Quantification of the putative vitamin A2 and vitamin A2 ester was 

performed by using the standards for retinol and retinyl palmitate, respectively. This gives 

information on apparent vitamin A2 levels that can be used for comparison on a relative 

basis. 

Putative plasma vitamin A2 levels were on average 4-fold greater than those of 

plasma retinol in the same animals (Table 3.3). The mean level of plasma vitamin A2 in 

common tern chicks from the Zeewolde colony (371.8+118.5) was 130% of that of the 

most polluted colonies Westplaat and Slijkplaat (291.9+ 67.61 and 291.0 + 82.1 ng-ml-1, 

respectively) (Table 3.3, Figure 3.8). This difference was, however, not statistically 

significant. Plasma vitamin A2 levels significantly decreased with increasing hepatic 

EROD activity and TEQ, respectively: log [vit. A2] = 386-0.14-log(EROD-activity); r = 0.26, 

P<0.05 and log [vit.A2] = 396-0.10-log(TEQ); r = 0.25, P<0.05. 

Assuming that the vitamin A2 ester is a retinoid with a specific optical density 

similar to retinyl palmitate, the estimated levels were on average 11.8-fold greater than 

those of retinyl palmitate. The average yolksac levels of the putative vitamin A2-ester of 

five tern chicks, and the average mono-ort/io-PCB levels in five other yolksacs from the 
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10 15 20 
i i i I i i i i I i 

5 10 15 20 

Figure 3.7 HPLC chromatograms (measured at 326 nm) of common tern yolksac 
retinoids before (a) and after (b) hydrolysis. 

same colony are shown in Figure 3.9. The standard deviations can be found in, respec

tively, Table 3.3 and Table 3.1. The greatest average colony levels of the yolksac vitamin 

A2-ester were found in terns from Zeewolde (13.24 + 6.29 ng-ml"1 yolksac). This was 

significantly greater than the average yolksac levels in all other colonies (Table 3.3, Figure 

3.9). The Terneuzen colony showed the least yolksac levels of the vitamin A2-ester 

(4.76+1.07 ng-ml"1). It was not possible to correlate the yolksac retinoids with residue 

levels or TEQs for individual terns, as these had not been analyzed in the same yolksacs. 

Incubation period 

The average incubation period of the eggs artificially bred in the laboratory was 22.2 + 1.5 

days. The measured plasma thyroid hormone and plasma and yolksac retinoid levels were 

grouped after the incubation period (21, 22, 23 or more than 23 days) of the chicks (Table 

3.4). The average yolksac retinyl palmitate levels of chicks that hatched after 21 and 22 

days was significantly greater than the average level of chicks that hatched after more 

than 23 days (Figure 3.10a). The average levels of the putative yolksac vitamin A2 ester 
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600 

Zeew Grnd Saef Tern Zeeb 
Colonies 

Prpl Wpl Slpl 

Figure 3.8 Levels of the 
putative plasma vitamin A2 in 
one-day-old common tern chicks, 
quantified using retinol 
standards. 

was also less in terns that hatched after a longer incubation period. This trend was, 

however, not significant. The ratio plasma retinol and yolksac retinyl palmitate levels was 

significantly greater in the incubation groups that hatched after 23 days or more 

compared to the 21-days group (Figure 3.10b), although plasma retinol levels did not 

differ between the groups (Table 3.4). The average putative plasma vi tamin A2 levels 

were greater w i th increasing incubation period, but this trend was not statistically 

significant. The absolute yolksac weights and the relative yolksac weight compared to 

total body weight d id not differ between the incubation groups (Table 3.4). Plasma TT3 

levels (the active form thyroid hormone) in the chicks that hatched after more than 23 

days of incubation were 82% of the levels in chicks that hatched after 21 days (Figure 

3.10c). These levels were, however, not significantly different. No differences were 

observed for average plasma TT4 and FT4 levels that could be related to yolksac PHAH-

levels (data not shown). 

Zeew Prpl Grnd Zeeb Saef Tern Wpl Slpl 
Colonies 

Vit.A2 ester moPCBs *0.5 

Figure 3.9 Levels of the puta
tive vitamin A2-ester (quantified 
using retinyl palmitate standards) 
in 5 yolksacs per colony and of 
mono-ortho PCBs in 5 other 
yolksacs of the same colony. 
Standard deviations can be found 
in Tables 3.3 and 3.1, 
respectively. 
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Figure 3.10 B iochemical parameters in chicks that hatched after 2 1 , 22 , 23 or more 
than 23 days of incubat ion: (a) yolksac retinyl palmitate; (b) ratio plasma ret inol over 
yolksac retinyl palmitate level; (c) plasma TT3 levels. 
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DISCUSSION 

General 

The aim of this investigation was to assess the suitability of common terns as indicators 

for exposure to, and effects of, PHAHs. More specifically this paper describes the possible 

adverse effects of in ovo PHAH exposure on vitamin A and thyroid hormone status in 

blood plasma and yolksac of one-day-old common tern chicks. Positive correlations were 

observed between hepatic cytochrome P450 enzyme activity measured as EROD or 

PROD activity and thyroid hormone parameters TT4 and FT4, T4-UGT activity and 

plasma retinol and vitamin A2 levels. 

The association of thyroid hormone and vitamin A parameters with the level of 

activity of EROD and PROD suggests that these alterations may be a consequence of 

exposure to PHAHs. A correlation with yolksac PHAH residues, either expressed as TEQs 

or as mass, however, was not observed. Until now the reason for this apparent discre

pancy is unknown. One argument may be that the levels of PHAHs in the yolksac reflects 

the body burden of the female parent but does not necessarily reflect the amount 

absorbed by the one-day old young. The level of hepatic EROD activity on the other hand 

does reflect the induction status of the cytochrome P450 system within the neonatal terns 

and thus may better represent internal PHAH levels in the common tern chicks. 

Another possible explanation for the existence of correlations with EROD or 

PROD activity but not with PHAH levels is that also residues that were not measured with 

chemical analyses may induce EROD or PROD activities and biochemical alterations. 

Jones and co-workers (1992) observed that the TEQ calculated from PCB, PCDD and 

PCDF concentrations underestimated the TEQs in an extract of the same avian tissues 

measured with a H4IIE bioassay by an average of 57%. 

Power analysis 

Significant relationships were observed only for data that were correlated on the basis 

of individual terns. Apart from yolksac retinoid ester, no significant effects that could be 

related tot PHAH-levels were found when group average values were compared between 

the various breeding colonies. Power analysis demonstrated that due to the large variation 

in the measured parameters only differences from the controls of at least 35-80% could 

have been observed (Table 3.5). This calculation was based on a one or two tailed test 

(depending on the parameter involved) with eight common terns per colony and a 

probability value of 0.05. Table 3.5 also gives the number of common terns that would 

have been needed to observe an effect of 25%. The large variation within colonies is 

probably partially due to the variations in genetic background and the food choice that 
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Table 3.5 Standard deviations of some of the measured parameters as a percentage of the mean value; 
the consequences for the minimum statistically significant effect that can be observed using 8 animals per 
colony; and the minimum number of animals needed to show a significant effect of 25%. 

„ ^ Standard One or two Min. observable No. animals 
deviation (%) tailed t-test effect (%) for 25% effect 

Plasma TT4 

Plasma FT4 

Plasma TT3 

T4-UGT-activity 

Plasma retinol 

Ys. vit. A2 

EROD-activity 

32 

39 

38 

24 

35 

31 

55 

2 

2 

2 

1 

2 

1 

1 

52 

63 

62 

35 

57 

45 

80 

34 

51 

49 

16 

41 

26 

83 

differed between colonies (Murk et al, 1996a). However, even in a semi-field experiment 

with eider ducks {Somateria millissima), fed the same diet and receiving relatively high 

doses of PCBs (50 or 200 mg Clophen A50-kg_1 body weight or 5 or 50 mg PCB-77-kg"1 

body weight) comparably large variations were observed. Also in such a relatively 

controlled experiment effects could only be demonstrated when related to internal PCB-

levels on the basis of individual birds (Murk et al., 1994a). This suggests that when 

performing afield study with a natural (bird) species it is important that individual internal 

doses are measured and/or that the number of animals needed for a chosen minimal 

observable effect must be calculated in advance. 

Thyroid hormones and T4-UGT activity 

No significant correlations between plasma TT4, FT4 and TT3 levels and yolksac PHAH 

levels (either expressed as unity of mass or as TEQ values) were observed. In the Dutch 

cormorant study (Van den Berg et al., 1994) plasma TT4 and TT3 levels were significantly 

less in one-day-old chicks from the heavy polluted Biesbosch than from the less polluted 

Oude Venen breeding colonies. However, the yolksac mono-ortho-PCB levels in the 

cormorant chicks from the Biesbosch colony were on average 4.6-fold greater than in 

the common tern chicks from the relatively high polluted Slijkplaat colony (184 and 40 

//g-g"1 l ipid, respectively). Mono-o/tho-PCB levels in cormorants of Oude Venen were 

on average 9.5-fold greater than the common terns from the relatively clean Zeewolde 

colony (58 and 6/vg mo-PCB-g"1 lipid, respectively). Possibly the PHAH contamination 

levels of the common terns were not high enough to cause a measurable decrease in 

plasma TT4/FT4 levels, as thyroid hormones are under strict homeostatic control. In the 

common tern study only significant positive correlations were found between the plasma 

TT4 and FT4 levels and hepatic EROD and PROD activity, respectively. Since the EROD 
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activity represents a PHAH inducible form of cytochrome P450IA1, this correlation 

suggests a positive association between PHAH contamination and plasma TT4 and FT4. 

Although increases in TT4 with PCB-dosage have been reported before for 

Japanese quail (Coturnix coturnix japonica) treated with 200 ppm Aroclor 1254 for 120 

days, plasma thyroid hormone levels usually decrease in in vivo studies after dosing 

PCBs. It has been demonstrated that this decrease is at least partly due to competition 

by PCB-metabolites for the binding site on transthyretine and increased metabolism of 

thyroid hormone (Brouwer, 1991; Lans eta/., 1993; Barter and Klaassen, 1991). Hepatic 

microsomes of common tern chicks from this experiment, however, hardly produced any 

PCB-metabolites of 3,4,3',4'-tetrachlorobiphenyl in an in vitro experiment, compared 

to eider duck microsomes (Murk et a/., 1994c). This suggests that little competition of 

PCB-metabolites for the T4 binding site is to be expected at this relatively low level of 

exposure. 

An increase in TT4 and FT4 levels could be the result of decreased 5'-deiodinase 

activity which converts T4 into T3, the active form of thyroid hormone. It has been 

demonstrated by Eltom and co-workers (1992) that 2,3,7,8-tetrachlorodibenzo-p-dioxin 

inhibited 5'-deiodinase activity in rats. However, as the 5'-deiodinase activity was not 

measured in this study, the reason for the apparent positive correlations of TT4 and FT4 

with EROD and PROD remains unclear. It can not be excluded that the correlation 

between EROD and PROD activities and TT4 and FT4 levels reflects an in tandem 

process of development of inducibility of hepatic metabolizing enzymes (EROD and T4-

UGT) and a growth related increase in plasma TT4 and FT4 levels (Harris and Bradshaw, 

1984; Darras, 1992). 

The T4-UCT activity was not significantly correlated with PHAH levels (ex

pressed as mass or TEQ) but, similar to TT4 and FT4, there was a highly significant 

correlation with EROD and PROD activities in the same individuals. An increase in T4-

UGT activity with increasing PCB levels has been described earlier for laboratory rats 

(Beetstra et a/., 1991; Visser et a/., 1993). Morse et al. (1993) observed an increase in 

hepatic T4-UGT activity of 100% in rat fetuses and 40% in neonates after prenatal 

3,3',4,4',5,5'-hexachlorobiphenyl and/or 3,3',4,4'-tetrachlorobiphenyl administration. 

In the fetal hepatic microsomes the EROD activity increased with the dose as well. These 

data suggest a closely linked relationship between hepatic P450IA1 and T4-UGT activity 

in terms of Ah-receptor-mediated induction. 

Plasma and yolksac retinoids 

There was a significantly positive correlation of plasma retinol with hepatic EROD and 

PROD levels, but not with yolksac PHAH levels. This discrepancy may be due to the fact 
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that the levels of hepatic EROD/PROD activity may better reflect the internal body burden 

of PHAHs in the chicks than the levels of PHAHs in the yolksac. The positive correlation 

of plasma retinol levels are in accordance with the correlation observed in a semi-field 

experiment with eider ducks (Murk et a/., 1994a). Spear and co-workers also found a 

cytochrome P450 related increase in plasma retinol levels in 3,3',4,4',5,5'-hexabromobip-

henyl-kg"1 dosed rats (Spear eta/., 1988), and in natural populations of herring gulls {Larus 

argentatus) from contaminated colonies compared to relatively clean colonies (Spear et 

a/., 1985, 1990). The increased plasma retinol levels were accompanied by reduced 

hepatic retinyl palmitate and retinol levels. 

Plasma retinol levels can be altered by PCBs and related compounds through 

at least two pathways. Firstly hydroxy metabolites of PCBs can induce a conformational 

change in the T4-transport protein transthyretine (TTR) which prevents retinol binding 

protein (RBP) with retinol from complex formation with TTR (Brouwer et a/., 1988; 

Brouwer 1991). As a result retinol is lost from the circulation by glomerular filtration. 

However, hepatic microsomes of common terns from this experiment only had a limited 

capability to produce hydroxy PCB metabolites in an in vitro metabolism study (Murk 

et a/., 1994c). Therefore it is unlikely that hydroxy-PCBs may have reduced plasma retinol 

levels in the common tern chicks. A second mechanism involves interference of PHAHs 

in the process that regulates storage and mobilization of retinoids in the liver, resulting 

in an increased mobilisation of retinol to the circulation, decreased retinoid-ester storage, 

and often increased renal retinoid levels (Brouwer, 1988; Chen et a/., 1992). This 

suggestion is supported by the finding that the levels of yolksac retinoids were greatest 

in the chicks from Zeewolde (Table 3.3), the cleanest colony (Table 3.1). In the cormorant 

study hepatic retinyl palmitate levels in chicks from the most polluted Biesbosch area 

were on average 55% reduced if compared to the Oude Venen area. Due to large 

interindividual variation this difference was not statistically significant. 

No significant correlations were found between yolksac retinoids and hepatic 

EROD and PROD activity. But again we have to make a distinction between the yolksac, 

which is a reflection of degree of pollution and availability of vitamin A in the diet of the 

female tern, and the liver, which is a reflection of the body burden and vitamin A storage 

of the chick. Therefore it is suggested for future analysis, to compare hepatic retinoid 

levels with parameters from the chick (EROD, plasma retinol) and to compare yolksac 

retinoid levels when possible with residue levels in the same yolksac. 

In the common tern chicks the putative plasma vitamin A2 (3,4-didehydro-retinol) 

and yolksac vitamin A2-ester levels were identified. These levels were, respectively, 4-

and 12-fold greater than plasma retinol and yolksac retinyl palmitate levels in the same 

animals, assuming that vitamin A2 and its ester were measurable with a specific optical 
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density similar to retinyl palmitate. In rats, vitamin A2 is a retinoid with a functional 

activity of about 40% of that of retinol (Shantz and Brinkman, 1950, ref. in Frolik, 1984). 

During embryogenesis, however, vitamin A2 plays an important role in tissue positional 

specification and development (Pijnappel et a/., 1993). A significant negative correlation 

was found between plasma vitamin A2 levels and hepatic EROD activity or TEQ levels. 

In addition the average yolksac levels of the putative vitamin A2-ester of five tern chicks, 

show a pattern that is inversely related to that of PHAH levels in the five other yolksacs 

from the same colony. To our knowledge, vitamin A2 and its ester have not been reported 

before in laboratory mammals and chicken. However, in flounder (Platichthys flesus), 

rainbow trout (Salmo gardenerii) and cormorant we found the putative vitamin A2 in the 

plasma as well (unpublished results). In the cormorant plasma vitamin A2 levels were 

less than retinol levels. Perhaps the unknown retinoids are associated with fish and fish 

eaters as a consequence of specific food sources. 

Incubation period 

After the data were grouped depending on the incubation period the eggs needed in the 

incubator untill hatching, significantly greater yolksac retinyl palmitate levels were 

observed in chicks that needed 21 and 22 days compared to terns needing 23 days or 

more. Yolksac vitamin A2 showed a similar trend, although not significant. The average 

ratio of plasma vitamin A over yolksac retinyl palmitate significantly increased with 

incubation period, till 237% of the animals that needed 21 days. Also the average yolksac 

PHAH residue levels significantly increased with the incubation period (143% and 172% 

for, respectively, 22 and 23 days compared to 21 days; Bosveld et ai, 1994). An 

increased mobilisation of vitamin A from the liver to the plasma and decreased retinoid 

storage are in accordance with findings that are reported earlier (Spear et ai, 1985, 1988, 

1990; Brouwer, 1988; Chen et a/., 1992). As the average yolksac weight and the yolksac 

weight relative to body weight was the same in all incubation groups (Table 3.4), it is 

not to be expected that the lesser yolksac retinyl palmitate levels of chicks that hatched 

later were a result of the longer period that the embryo was feeding on the yolksac. The 

same goes for the finding that chicks that hatch later have greater yolksac PCB-levels 

(Bosveld et a/., submitted). The suggestion that a longer incubation time is associated 

with, or is a consequence of, lesser yolksac retinyl palmitate levels is in accordance with 

studies with chickens, in which it was observed that vitamin A deficiency reduces 

hatchability. In case of hypovitaminosis A, the large blood vessels that normally appear 

in the membrane surrounding the embryo after 48 hr of incubation were reduced or did 

not appear (Thompson, 1970). Based on these findings, it can not be excluded that the 

incubation period of common tern chicks in the two relatively polluted colonies 
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Westplaat and Slijkplaat will be prolonged due to in ovo exposure to PHAHs and/or the 

biochemical effects resulting from that exposure. More experimental work is needed to 

confirm this hypothesis. 

Observations on the incubation period under field conditions in relation to 

chemical and biochemical parameters will be described elsewhere (Murk et a/., 1996a). 

CONCLUSIONS 

It is concluded that, next to hepatic retinoids, yolksac retinoids may be suitable indicators 

for early effects of PHAHs in the common tern and related fish eating birds. 

Due to the large interindividual variations in responses in natural populations, it is 

important that individual internal doses are measured and/or that the number of animals 

needed for a chosen minimal observable effect must be calculated in advance. 

In general it is speculative to conclude from correlations between effects (such as 

morphological abberations, EROD activity, vitamin A levels, etc) and PCB levels mea

sured in field experiments that a causal relationship exists. Specific effect parameters 

based on laboratory experiments with natural species and semi-field studies are needed 

to prove causal relationships and effects under field conditions. 
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CHAPTER 4 

EFFECTS OF POLYHALOGENATED AROMATIC HYDROCARBONS AND RELATED 

CONTAMINANTS ON COMMON TERN REPRODUCTION; 

INTEGRATION OF BIOLOGICAL, BIOCHEMICAL AND CHEMICAL DATA* 

ABSTRACT 

In eight Dutch or Belgian common tern (Sterna hirundo) colonies, breeding biology and 

food choice were determined, and 15 second eggs were collected from three-egg clutches 

for artificial incubation, biochemical analysis and analysis of yolksac PHAH levels. 

Results from these analyses were combined with biological data from the eggs remaining 

in each clutch. In some breeding colonies severe flooding, rainy and cold weather, and 

extreme predation caused extensive losses of eggs and chicks. A relationship was found 

between yolksac mono-ort/io-(mo-)PCB levels and main food species (fish or insects) of 

the adult terns before egg-laying. Colony average breeding data differed only slightly, 

and were difficult to relate to PHAH-levels. When the colonies were grouped after 

yolksac PHAH-patterns and main food species, significant differences in average egg 

laying date, incubation period, egg volume and chick weight could be related to 

differences in yolksac PHAH and retinoid levels, and hepatic EROD activity. The data 

from all colonies also were combined into one data-set and correlated with the 

biochemical parameters and PHAH levels. In summary greater yolksac PHAH levels or 

hepatic EROD-activity correlated with later egg laying, prolonged incubation period and 

smaller eggs and chicks. Lesser yolksac retinoid- and plasma thyroid hormone levels, and 

a greater ratio of plasma retinol over yolksac retinoids correlated with later egg laying, 

prolonged incubation periods and smaller chicks and eggs. 

The dynamic environment of the terns had more obvious detrimental effects on 

breeding success than PHAHs. However, the more subtle effects observed for PHAHs 

could still be of importance during specific stress circumstances. To monitor site-specific 

reproduction effects, tree-nesting birds feeding on relatively big and non-migrating fishes 

would be most suitable. The use of specific biomarkers for exposure and effect is 

recommended to establish a causal relationship between a certain class of pollutants and 

an adverse biological effect. 

*Basedon: A.). Murk, T.j. Boudewijn, P.L. Meininger, A.J.C. Bosveld, C. Rossaert, T. 

Ysebaert, P. Meire, S. Dirksen (1996): Effects of Polyhalogenated Aromatic Hydrocarbons 

and Related Contaminants on Common Tern Reproduction: Integration of Biological, 

Biochemical and Chemical Data. Arch. Environ. Contam. Toxicol. 31:128-140 
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INTRODUCTION 

Empirical field studies and toxicological studies suggest that birds can be affected by 

lipophilic persistent pollutants, such as polyhalogenated aromatic hydrocarbons (PHAHs) 

and pesticides, that accumulate through the aquatic food chain. In birds PHAHs have 

been associated with adverse effects such as impaired reproduction, growth retardation, 

morphological abnormalities, behavioural changes and alterations in vitamin A and 

thyroid hormone metabolism (Gilbertson and Fox 1977; Koeman etal. 1973; Hoffman 

et al. 1987; Gilbertson 1989; Gilbertson et al. 1989; Kubiak et al. 1989; Spear et al. 

1990; Walker 1990; Fox et al. 1991; Fox 1993; Murk et al. 1994a; Van den Berg et al. 

1995). Although the use and release into the environment of polychlorinated -biphenyls 

(PCBs), -dibenzofurans (PCDFs) and -dibenzo-p-dioxins (PCDDs) is restricted now, levels 

in depositional zones of the North Sea and in top predators have hardly decreased 

(Cummins 1988; Klamer etal. 1991; Becker etal. 1992; Evers et al. 1993). Additionally, 

other PHAHs such as polybrominated diphenyl ethers and polychlorinated terphenyls, 

have been shown to exert similar effects, probably through the same mechanism (Safe 

etal. 1990 1994; Murk etal. 1996b). This means there is still concern for PHAH-effects 

on top-predators. 

To set quantitative and verifiable ecological objectives for the Dutch manage

ment of the North Sea, adjacent salt waters and inland waters, 60 indicator species have 

been selected that are vulnerable to various ecological disturbances and represent a cross 

section of the ecosystem (Ten Brink et al. 1991). The common tern (Sterna hirundo) has 

been recently added, being a specialized top predator of the aquatic food-chain irk 

estuarine areas. Literature data suggest that terns are sensitive for effects of PHAH 

contamination. For Forster's terns positive correlations have been observed between 

levels of non- and mono-ortho-PCBs and decreased hatchability, increased incubation 

period and decreased parental attentiveness (Kubiak et al. 1989), and between hepatic 

arylhydrocarbon hydroxylase (AHH) activity (as a measure of PHAH exposure) and weight 

loss and abnormal functioning of the thyroid gland (Hoffman et a/. 1987). Becker et al. 

(1991) reported a reduced hatching success for common terns which correlated with 

increased PCB levels. This reduction was, however, not statistically significant. Common 

terns offer the advantage of easily accessible nests, as they breed on the ground. Within 

a few weeks after they arrive from their wintering sites in West and South Africa (Cramp 

1985), the terns store reserves for the breeding season. They forage mostly within 10 km 

from their breeding place (Stienen and Brenninkmeijer 1992; Rossaert et al. 1993), 

therefore their diet is expected to reflect the local degree of contamination. The PCB-118 

levels in common tern eggs from the brackish zone of the Dutch Western Scheldt estuary 
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(0.1-0.7/yg-g"1 WW, Stronkhorst et al. 1993) partially overlap the range reported for 

Green Bay (0.32-1.56 /yg-g"1 ww) where 75% reproductive impairment was observed 

(Kubiak et al. 1989). Therefore deleterious effects cannot be excluded. 

An integrated ecotoxicological study was carried out in 1991 to study the 

possible effects of PHAHs on the reproduction and development of common tern chicks. 

Eight colonies were studied, which were expected to cover a gradient in pollution levels. 

The colonies were (Figure 4.1): Saeftinge, Terneuzen and Zeebrugge in the Western 

Scheldt area, situated along a gradient towards the North Sea; Prinsesseplaat near the 

Eastern Scheldt; Slijkplaat and Westplaat in the mouth of the rivers Rhine and Meuse; 

the isle of Griend in the Wadden Sea and Zeewolde, a relatively clean 'fresh-water 

colony'. For these colonies the food species, feeding areas and fate of eggs and young 

were studied. From all colonies the second egg of 15 three-egg-clutches were collected 

for artificial incubation and chemical and biochemical analysis. More detailed results of 

the Cytochrome P450IA activity, plasma thyroid hormone levels, T4-glucuronytransferase 

(UGT)-activity, plasma and yolk-sac vitamin A and yolk-sac PHAH levels, laboratory 

incubation period and correlations are described by Murk et al. (1994b) and Bosveld et 

al. (1995). This paper focuses on the relationship between the breeding biology in the 

field, food species before egg laying, and biochemical data and PHAH levels from the 

(artificially incubated) second egg of the same clutch. More detailed additional 

observations in the colonies have been reported by Rossaert et al. (1993). 

MATERIALS AND METHODS 

Colonies Studied 

Saeftinge is a typical brackish water tidal area in the eastern part of the Western Scheldt 

estuary (Figure 4.1). There is a high tidal amplitude of 4.5. The birds mainly foraged in 

the Western Scheldt. The colony of Terneuzen is situated in the middle of a sluice-

complex. There is no danger of flooding. The terns in Terneuzen were more aggressive 

towards intruders than in any of the other colonies. The sluice complex and the Western 

Scheldt were the main foraging areas. The Zeebrugge colony is situated in the harbour 

of Zeebrugge and holds over 50% of the Belgian breeding population of the common 

tern. Most of the common terns foraged in the North Sea, but during early breeding 

season several terns were also foraging in adjacent fresh water areas. The Prinsesseplaat 

is a tidal flat which separates the freshwater lake 'Zoommeer' from the Eastern Scheldt. 

The common terns bred in two (sub-)colonies. Generally the birds foraged in the Eastern 

Scheldt, but in early May many terns were foraging on emerging Chironomids in the 
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Figure 4.1 Locations of the 
common tern colonies studied: 1) 
Zeewolde, 2) Griend, 3) Saeftinge, 
4) Terneuzen, 5) Zeebrugge, 6) 
Prinsesseplaat, 7) Slijkplaat, 8) 
Westplaat. 

Zoommeer. The Slijkplaat is a sandy, shallow flat, situated in the western part of the 

Haringvliet, a freshwater area with a tidal amplitude of 30-40 cm. The Haringvliet-sluices 

is the most important foraging area, especially during low tide when (fresh) water of the 

Haringvliet is discharged into the sea. Westplaat is a man-made bird island along the 

North Sea. During spring tides the lower parts of the island are flooded. Foraging took 

place in the surroundings of the Westplaat and near the Haringvliet-sluices when these 

were discharging into the sea. The Zeewolde colony is situated on the top of a sand depot 

along a dyke, ca. 2.5 m above surface level. The common terns foraged in the fresh-water 

lakes Wolderwijd and Veluwemeer around the colony. Shortly before egg-laying, 

hundreds of common terns were seen foraging on emerging chironomids. Griend is a 

small island in the western part of the Dutch Wadden Sea. The terns mainly forage within 

the Wadden Sea in water above tidal flats and in gullies (Klaassen 1992). 

Weather Conditions 

Data on daily precipitation, temperature and wind speed for the period May 1 st-July 31 st 

1991, were extracted from monthly reports of the Royal Netherlands Meteorological 
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Institute (KNMI). May 1991 was one of the coldest Mays of this century in The Nether

lands, with an average temperature of 10°C. Night frost occurred on a large scale until 

the end of the month. There were 153 hr of sunshine compared to an average of 205 hr. 

June 1991 was extremely wet, very cold and exceptionally cloudy. It was the wettest 

Dutch June of the century with 122 mm of precipitation, against 62 mm normally. There 

were 119 hr of sun compared to 207 hr normally. Due to this combination it was 

considered the worst June of this century, resulting in very unfavourable conditions for 

young birds. July 1991 was warm, sunny and generally dry, although there were several 

days with heavy showers during the first half of the month. 

Field Procedures and Number of Visits 

The observations in the colonies started late April-early May 1991 during pair-formation 

and ended in the second half of July when chicks had fledged. Nests were marked with 

numbered wooden stakes placed 20-30 cm from the nests. During each visit new eggs 

were marked, and the number of eggs, damage and/or mortality and number of hatched 

eggs were recorded. During the peak of egg-laying the nests were checked daily 

(Saeftinge, Terneuzen and Zeebrugge) or every two days in the other colonies. Before 

and after this peak the colonies were checked less frequently. The visits were carefully 

planned in order to avoid disturbance and temperature stress of eggs and chicks as much 

as possible. During visits in and after the hatching period, young terns were searched and 

checked for developmental abberations, total weight, wing length and total head length. 

They were banded, or marked with a little picric acid when they were too small for 

banding. Wherever possible observations on feeding behaviour and prey selection were 

made. 

Recorded Breeding Data 

The date the first egg appeared was used to index the laying date of the clutch. In some 

cases the laying date was calculated from the exact laying date of another egg using the 

average laying period for an egg, or from the hatching date of the first hatched egg using 

the average incubation period per egg. To minimize the chance of underestimating the 

clutch size due to predation or the fact that clutches might not yet have been completed, 

the content of all marked nests was recorded during all visits. The egg volume was 

calculated using the Hoyt (1979) formula: volume (ml) = 0.509 x length (cm) x 

(width)2(cm2). The length and width were measured with sliding callipers to the nearest 

0.1 mm. The incubation period of every individual egg was calculated as the time (days) 

between completion of the clutch and hatching, provided that the exact laying and 

hatching dates were known. 
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Laboratory Incubation and Analyses 

In each colony, the second egg of 15 three-egg clutches of which the exact laying date 

of every egg was known, was collected after at least 7 days of incubation. In the labora

tory the eggs were weighed and incubated at 37.5°C and a relative humidity of 50-60%. 

Eggs were turned automatically every 30 min. Within 12 hr after hatching the young terns 

were weighed and sacrificed. Livers and yolk-sacs were weighed immediately, snap 

frozen in liquid nitrogen and stored at -70 °C. Blood was centrifuged and the plasma was 

stored at - 20°C. Of the hatched eggs the eggshell thickness was measured at the equator 

of the egg after the shell membranes were removed, using a Mitutoyo micrometer. 

Yolk-sac PCB, PCDD and PCDF residues were analyzed in yolk-sacs by GC-MS 

(Bosveld et al. 1995). Total levels of mono-o/t/io-(mo-)PCBs were used, or the individual 

PHAH levels were transformed into Toxic Equivalents (TEQs), using Toxic Equivalency 

Factors (TEFs) as proposed by Safe (1990, 1994). Di-ortrio-PCBs were not used in TEQ 

calculations. Liver microsomes were prepared as described in Bosveld et al. (1995). 

Protein content was analyzed according to the method described by Bradford (1976). 7-

ethoxyresorufin O-deethylation (EROD) and 7-pentoxyresorufin O-depenthylation (PROD) 

activities were analyzed fluorimetrically according to the method of Rutten et al. (1987). 

Plasma thyroid hormones levels, total thyroxin (TT4), total triiodothyronine (TT3) 

and free thyroxin (FT4), were determined in, respectively, 10, 25, and 25 JJ\ aliquots of 

plasma, by chemiluminescence immunoassay using commercially available kits (Amerlite 

assay kits, Amersham Internat. p ic, Amersham, UK). Plasma retinol and yolk-sac reti-

nylpalmitate were extracted from 25 //I aliquots with methanol/diisopropylether and 

analyzed with HPLC as described by Murk et al. (1994b). The ratio plasma retinol over 

retinylpalmitate was calculated as a measure of mobilisation of retinol to the circulation 

or decreased retinoid ester storage. 

Statistical Methods 

Differences between clustered data were tested with one-way ANOVA. In addition to 

comparing colony averages, the data from all colonies were combined into one data set 

and correlated with the biochemical and chemical parameters from the artificially 

incubated chicks. The biochemical and chemical data from the artificially incubated 

chicks were divided into 4 groups based on the data for breeding biology in the field. 

Attention was paid to an equal distribution of the numbers of biochemical and chemical 

data over the four groups. The acceptance level was set at P<0.05. Clear, but not 

statistically significant, differences that could be related to differences in PHAH contami

nation are mentioned as 'trends'. 
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RESULTS 

Comparison of parameters for breeding biology 

The colony average breeding biology parameters measured in the field are summarized 

in Table 4 .1 . The colonies are arranged in order of increasing colony average yolk-sac 

mono-ortho-(mo-) PCB levels. Although the onset of egg laying was well synchronized 

among the colonies (13-15 May, only Saeftinge and Zeebrugge somewhat later; data not 

shown) the average laying date of the first egg showed more variation. Westplaat was 

the latest of all colonies. The average clutch size was largest in Terneuzen and smallest 

in Kleine Prinsesseplaat and Westplaat. The average egg volume is only calculated of 

three-egg clutches, because egg volume partially depends on the number of eggs already 

layed. The eggs were largest in Terneuzen and smallest in Saeftinge, Westplaat and 

Prinsesseplaat (Table 4.1). Most colonies showed a decrease of egg volume in clutches 

which were started later (data not shown, Rossaert et al. 1993). The average laying period 

needed to complete a three-egg clutch varied between 2.59 days (Zeewolde) and 3.50 

days (Westplaat) (data not shown). The average incubation period of three-egg clutches 

was longest on Terneuzen and shortest on Griend. The observed differences in colony 

averages in breeding biology could not be related to differences in average yolk-sac 

PHAH-levels. 

Large differences in hatching success of three-egg clutches were found between 

Kleine Prinsesseplaat (0.00) or Saeftinge (0.64) compared to Zeebrugge (2.88) and 

Terneuzen (2.62) (Table 4.2). However, adverse climatological effects and sometimes 

extreme predation negatively influenced reproductive success in several colonies (Table 

4.2). In the Prinsesseplaat colony heavy showers produced a layer of up to 10 cm of water 

which sometimes took days to disappear, resulting in massive loss of eggs and chicks. 

Strong winds in combination with spring tide caused additional losses of clutches in 

Saeftinge and Griend. Severe predation by oystercatchers (Haematopus ostralegus) was 

observed in the Prinsesseplaat colony. A major problem in the Slijkplaat colony was the 

rapid growth of thistles. Nests got completely overgrown and were difficult to relocate 

by the observers and sometimes deserted by the birds. In the Zeebrugge, Terneuzen and 

Westplaat colonies the adverse factors were not extreme and did not result in abnormal 

losses. In none of the colonies studied hatching failure was a major cause of egg-loss. 

The adverse factors mentioned above make it difficult to relate average breeding 

biology data to differences in PHAH-contamination. Therefore, from here on calculations 

are restricted to the three-egg clutches that were not reduced by the factors mentioned 
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Common tern study part II 

in Table 4.2, and from which the second egg was collected for laboratory incubation. 

The field data from these clutches can easily be compared with the laboratory data of the 

collected second egg. Additionally, these three-egg clutches were layed during the peak 

periods of laying in each colony, which is a limited period of time. This is important as 

egg volumes, clutch size and laying period were found to be related (Rossaert et a/. 

1993). Of these selected three-egg clutches colony averages in breeding biology data 

were also calculated (data not shown). The average laying dates of the first egg were 

significantly earlier for Zeewolde, Griend and Slijkplaat compared to the other colonies, 

but these differences could not be related to differences in PHAH levels. The average 

incubation period of the first egg was significantly shortest (21 days) on Griend and 

longest in the Slijkplaat colony (25 days). The average egg volumes and average eggshell 

thickness (1.3-1.4) did not differ significantly between the colonies. No morphological 

abberations were observed in the field nor for the eggs that were artificially incubated. 

Comparison of Food Choice between Colonies 

Due to circumstances differing between colonies, the quality and quantity of the data on 

food and foraging is different for each colony. However, the data enable at least a 

qualitative description for all colonies. In general, common terns from coastal colonies 

mainly foraged on clupeids (herring (C/upea harengus) and sprat {Sprattus sprattus)), smelt 

(Osmerus eperlandus), sandeel (Ammodytes spec), goby {Gobius spec), whiting 

(Merlangius merlangus), and to a lesser extent on small flatfish, three-spined stickleback 

{Gasterosteus aculeatus), Ruffe {Cymnocephalus cernuus) and crustaceans. Especially 

in the Zeewolde, but also in the Prinsesseplaat colony, emerging chironomids were an 

important prey in the beginning of the breeding season. For the Prinsesseplaat colony 

the fish species were not identified. Figure 4.2 presents the main food choice of adults 

in each colony in the period before egg laying, combined with the average yolk-sac mo-

PCB levels. The average yolk-sac mo-PCB levels were least when adults had foraged on 

large amounts of insects. Yolk-sac mo-PCB levels were highest in the Westplaat and 

Slijkplaat (significant) colonies where smelt and herring were the main food items. 

Clupeids were the main food species in the four colonies with intermediate PCB-levels. 

Clustering of Colonies Based on Food Choice and PHAH-Pattern 

Based on the PCDD/F patterns in yolk-sacs established by principal component analysis 

(PCA, Bosveld et al. 1995), three groups of colonies can be distinguished coinciding with 

mainly smelt, clupeids, or insects as food choice before egg laying. This PCA revealed 

that the Slijkplaat and Westplaat colonies, were clearly distinct from all other colonies, 

and the Zeewolde colony could be distinguished from the other colonies. The five 
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Common tern study part II 

remaining colonies (Prinsesseplaat, Griend, Zeebrugge, Saeftinge and Terneuzen) 

exhibited a similar PCA-pattern. The average data were recalculated for three groups of 

colonies: Slijkplaat/Westplaat, Zeewolde and 'Rest'. In contrast to the colony averages, 

the group-averages show clear differences in both breeding, biochemical and chemical 

data (Table 4.3). In the Zeewolde colony eggs are layed significantly earlier and are 

significantly bigger than in the other two groups. Yolk-sac PHAH levels (expressed either 

as TEQs or as mo-PCBs) and hepatic EROD activity are significantly least and yolk-sac 

retinylpalmitate levels and vitamin A2 levels are significantly greatest in the Zeewolde 

colony. In the Slijkplaat/Westplaat group incubation period is significantly longer, 

chickweight significantly less, and yolk-sac PHAH and hepatic EROD activity significantly 

greater than in the other two groups. Plasma FT4 levels are greatest in the Zeewolde 

group and least in the Slijkplaat/Westplaat group, but these differences were not statisti

cally significant. 

Clustering of Data Based on Parameters for Breeding Biology 

Laying Date. The biochemical and chemical data grouped after laying date of the first 

egg are presented in Table 4.4. Later layed eggs contained slightly (38%) more PHAH-

residues (expressed either as mo-PCBs or as TEQs) than early layed eggs. Earlier eggs (on 

average 137 days after January 1 st) contained significantly (82%) greater yolk-sac retinyl 

50 

= 40 

30 
CD 
O 

20 

o 10 

smelt 

Zeew Prpl Grnd Zeeb Saef Tern Wpl Slpl 
Colonies 

Figure 4.2 Colony average yolksac mo-PCB levels with main food items before egg-laying 
written above the bars: ruffe (Cymnocephalus cernuus); smelt {Osmerus eperlanus); clupeids: 
herring (C/upea harengus) and sprat (Sprattus sprattus); insects (mainly chironomids) and 
?fishes (fish species unknown). 
*: mono-ortho (mo-) PCB levels significantly different from the other colonies. 
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Common tern study part II 

palmitate levels, 69% greater vitamin A2 levels and an almost 2-fold smaller ratio plasma 

retinol over yolk-sac retinylpalmitate, than latest layed eggs (on average 150 days). No 

clear trend was visible for plasma thyroid hormone levels TT4 and FT4. Plasma TT3 levels 

were slightly greater in earlier layed eggs. The incubation period for the earliest eggs was 

on average 2 days shorter compared to the latest layed eggs. 

Incubation Period. When clustering data based on incubation period in the 

field, significantly greater yolk-sac mo-PCB or TEQ levels (100%), or hepatic EROD 

activities (60%) were found in eggs needing 24 days or more for incubation compared 

to eggs needing on average 20 days (Table 4.5). Because of the small number of eggs for 

which both incubation period and yolk-sac retinoids were measured, these data were 

divided over only two groups. Yolk-sac retinylpalmitate and vitamin A2 levels were (not 

statistically significant) greater in the shortest incubation group. The ratio plasma retinol 

over yolk-sac retinylpalmitate, however, was significantly greater (3.2-fold) in the longest 

incubation group. Plasma thyroid hormone (TT3, TT4, FT4) levels were all significantly 

(50-70%) less in the two longest incubation groups compared to the two shortest 

incubation groups. The eggs from the shortest incubation group were layed significantly 

earlier (on average 4 days) than the eggs from the longest incubation group. The chicks 

(Table 4.5) and eggs (data not shown) from the 2 longer incubation groups were slightly 

smaller compared to the 2 other groups. 

Figure 4.3 shows the ratio of the incubation period of the first egg of a clutch in 

the field over the incubation period of the second egg in the laboratory incubator. This 

ratio increases significantly with the incubation period in the field. 

Egg Volume and Chick Weight. As average egg volume (whole clutch) and chick 

weight (second egg) are closely related, these parameters are presented in combination. 

Yolk-sac PHAH-levels (expressed either as mo-PCBs or as TEQs) were slightly greater 

(36%) in the smallest eggs and chicks compared to the bigger eggs (Table 4.6a) and 

chicks (data not shown). Slight differences in average EROD activity were only observed 

for different chick weight groups (Table 4.6b) but not for different egg volume groups 

(data not shown). Yolk-sac retinoid levels were slightly greater and the ratio plasma retinol 

over yolk-sac retinylpalmitate levels less in the biggest eggs. Not enough data were 

available to make a grouping for yolk-sac retinoid levels based on chick weight. 

Differences in plasma thyroid hormone (TT4, TT3, FT4) levels that could be related to 

PHAH contamination, were only observed between groups clustered after chick weight. 

These differences were only significant for FT4. Egg volume, chick weight and liver 

weight were significantly correlated with each other. The ratio liver weight over chick 

weight was on average 2.66-2.73 %, and did not differ between any of the groups. 
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1.50 
o .o 
to 

20 22 24 26 
Incubation period field (days) 

28 

Figure 4.3 The ratio of the egg incubation period in the field over the incubation period 
in the laboratory incubator, plotted against the incubation period in the field (n =47). 

DISCUSSION 

Due to their way of nesting on bare ground close to the shore, common terns are 

relatively vulnerable to climatological influences and predation if compared to, for 

example, tree-nesting cormorants. Massive flooding, severe predation and extreme rainy 

and cold weather had strong negative effects on clutch size, and on hatching and fledging 

success, and masked possible adverse effects of PHAH-exposure on these parameters. 

Because of these strong natural influences, only information on egg laying dates, egg 

volumes and incubation periods could be used for estimating contaminant effects. 

Although colony average breeding data could not clearly be related to PHAH-

levels, colonies clustered after PCDD/F patterns and main food choice, showed significant 

differences in both breeding, biochemical and chemical data. Using the data from all 

colonies combined into one data-set, the breeding parameters could be correlated with 

yolk-sac PHAH-levels, EROD-activity, yolk-sac retinoid-, and plasma retinol and thyroid 

hormone levels. These correlations were either statistically significant or clear trends. 

Food Choice 

On the analogy of observations in North America (Nisbet 1973) female terns could build 

up a considerable PHAH burden during courtship feeding, when returning from their 

wintering grounds in Africa to breed in The Netherlands. This period shortly before egg 

laying is probably the most important period for accumulating PHAH-levels in the eggs. 
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High mo-PCB levels were expected based on a Dutch field study with cormorant chicks 

(Van den Berg eta/. 1995) where yolk-sac levels of 184 and 58/zgmo-PCBs-g"1 lipid were 

observed in, respectively, the Biesbosch and Oude Venen colony. The average yolk-sac 

mo-PCB-levels in common tern chicks, however, were only 40/vg-g"1 lipid and 6/zg-g"1 

lipid in, respectively, the most (Slijkplaat) and least (Zeewolde) contaminated colony. 

The difference in yolk-sac mo-PCB level between these two colonies was only 34//g-g"1 

lipid, compared to 126 //g-g"1 lipid for the Cormorants. The other six common tern 

colonies hardly differed in yolk-sac mo-PCB levels (16-28 //g-g"1 l ipid, Figure 4.2). The 

relatively low mo-PCB concentrations and small differences between relatively clean and 

polluted sites are probably consequences of the food choice of the common terns. The 

terns from the salt water colonies mainly fed on migrating small clupeids, mainly small 

herring, that were born in the North Sea a few months earlier. Therefore, this food does 

not reflect the local degree of contamination, and may mask differences in contamination 

between locations. Small herring contain significantly less PCBs than fishes that 

overwinter locally, such as flounders (Platichthys flesus), 1.3 and 5.2 yivg-g"1 l ipid, 

respectively, (Stronkhorst et al. 1993). Cormorants mainly feed on bigger, often 

carnivorous, fish that mostly stay in an area with the same degree of pollution. Birds that 

remain in an estuary all year round, such as oystercatchers, will build up greater levels 

and better reflect the local degree of contamination, than species such as terns that 

migrate to less contaminated sites. Stronkhorst et al. (1993) observed for PCB-153 a 

biomagnification factor of 19 for the oystercatcher (eggxockle) and for common tern only 

5.5 (eggxlupeid). After hatching, the chicks are being fed with fishes that are only 1-1.5 

times the bill size of the adult tern. These fishes are again much smaller and thus 

probably less contaminated, than the fishes fed to cormorant chicks. 

Considering the relatively small mo-PCB concentrations and the small differences 

between relatively clean and polluted sites, it is not surprising that hardly any differences 

in colony average breeding data were found. However, when the colonies were clustered 

based on yolk-sac PCDD/F patterns, significant differences in both breeding data and 

biochemical and chemical data were observed. Differences in yolk-sac PCDD/F patterns 

may be related to the area where the breeding colonies were situated, but they could also 

be related to the environment the food species originated from. For example, Slijkplaat 

and Westplaat are the only colonies situated in the sedimentation area of the rivers Rhine 

and Meuse, but they are also the colonies where the terns (partially) fed on smelt. 

Additionally, it cannot be excluded that other factors than PHAHs, such as food 

availability, nutritional quality or the presence of other, unmeasured, contaminants could 

contribute to the observed differences in group average breeding and biochemical data. 

73 



Chapter 4 

o 
00 

5 
-H 

E 
Hi 

X u o 
1Q 

E 
CD 
_c 
U 

•S 5 
ro 
CD 

o 
U 

z 

x u 

Q . 

E o u 

m 

-~-. t N 

a 
E o u 

& 
0 0 

o 

Q. CF> 
ZJ *7 
O CN 

(J 0^ 

^ i TJ TJ Tl 
"8 x -c x Ir oo oo oo 

— (0 ™ 

E -
J2 oo 
T V 

rx 

°- ̂ ' 3 i ^ 
o ^ 

0 0 
0 0 

CN 

+1 
"3" 
0 0 

vO 

r\ 
*o 
0 0 

m 
-H 

(̂  O l 
i n 
CN 

m 
* B 

d 
-H 

0 ^ 
>i) 

d 

t N 
CO 

*— 
•H 

i n 
•<r 
vd 

CN ^f 
Q . O 

2 o 
CN 

•s < 

+i +i 
d 
+i 

d 
+i 

00 

CD 

X l 
ra 
CO 
a 
E 
o 
u 

a) 
J 3 
CO 

CO 
a. 
E 
o 
CJ 

00 

d 

r<-> r - O o 

+1 +1 +1 +1 

K 

d 
-H 
ro 

o 
d 
-H 

0 0 

£ 
CD 

E 
CO 
I/) 

- S ^ o 
« S ^. "1 £ 
T— in o m i^ 

oo 
d 
+1 

i n CN T -
m i n * 
*~ <- O 

"5b 

0 0 

"So 
5 
CO 

U 0_ 
6 
E 

0 0 

3. 

a 
U J 

1 -

CD 

E 
CO 
Q . 

2? 
t / i 
> • 

0 0 

"ob 

3 
CN < 
> 
</> >-

*_ 

"5. 
o 

i -

5$ 
x 
00 

'ai 

x 
u 

'o 

X I 

E 

•2 2 
(/) 00 

t CO 
=> X 

00 J? 

a." 
o \o 

° T- 1 -

x ™ 

—• CN 

f *7 

§ 2 

i n 
O 
CN 

+1 
CO 

CN 

CN 

+1 

d 

i n 

+1 
0 0 

m 
CO 

+1 

t-Z 

+ 
fs 

u 

-_ CN CN ro O 

S ^ » ^ ^ 
>- T 1- r- r -

CM U"> 

o-^r 
3 *7 
O ro 

u ^ — 

f N 
f N 

+1 
o 
0 0 
<N 

m 
m 
+1 

r» i 

o 

r ^ s 

r O 

+1 
CO 

CO 

+1 
o 

- H 

\6 

+1 

CN 

+1 
o 
CO 

CN 

E E 
oo ~Sb 

C? N CO * 

r^ CN *o T - . -

in co ^ T -

E E E E 

X I 

E 

3 = 
o 

(/I 1 -
X °° 
00 c i * 

a) >• 

74 



Common tern study part II 

Correlations between Breeding Biology and Biochemical and Chemical Parameters 

The biological data of the first egg were compared with the biochemical and chemical 

data of the second egg from the same clutch. Stronkhorst et al. (1993) showed that the 

variation in contaminant levels is relatively small within the same clutch, especially if 

compared to the variation between clutches. In the following not only statistically 

significant results are discussed, but also the clear trends, as these can be a useful 

indication for contaminant related effects. Due to the relatively large standard deviation 

using natural instead of inbred laboratory species, only very strong effects will be 

statistically significant (Murk et al. 1994b). An overview of all observed correlations is 

presented in Figure 4.4. The arrows indicates the direction of change in biochemical and 

chemical parameters when the parameters for the breeding biology become more 

unfavourable. A clear trend is indicated with a dotted arrow, a significant effect with a 

solid arrow. The results for 'egg volume' and 'chick weight' are combined because the 

parameters are closely related. A more specific discussion is presented below. 

Yolk-sac PHAH Levels and EROD-Activity 

Yolk-sac PHAH levels and EROD activity are greater in eggs with more unfavourable 

breeding parameters (Figure 4.4). This increase is significant for a prolonged incubation 

period, which is similar to the results found for the eggs incubated in the laboratory 

(Bosveld et al. 1995), and in accordance with the results of Kubiak et al. (1989, see 

below). Chicks from later layed eggs contained greater yolk-sac PHAH levels. This 

correlation could be stronger if the eggs had been collected during the whole laying 

period instead of only during the peak period of laying. Additionally, (not significantly) 

greater PHAH levels and EROD activity were observed for smaller eggs and chicks. These 

correlations suggest that exposure to PHAHs may have a negative influence on breeding 

parameters, although a correlation with other pollutants, often present in a similar 

gradient (Cilbertson 1974; Vethaak 1992) cannot be excluded. 

In our study no congenital deformities or bill defects were observed. Nevertheless 

the concentrations of the three most important mo-PCBs (#118, #156 and #105), total 

PCB-concentrations and total PCDD/F concentrations in common tern eggs from Slijkplaat 

and Westplaat were similar or slightly greater than those reported for related species 

(Forsters and common tern) from industrialized sites in North America where birth defects 

did occur (Smith et al. 1990; Ankley et al. 1993; Hoffman et a/. 1993; Bosveld et al. 

1995). Therefore, it cannot be excluded that those effects are partially caused by other 

substances, possibly also acting through the Ah-receptor, as is suggested by the results 

of Tillitt et al. (1992). In their study the hatching success of double-crested cormorant 

{Phalacrocorax auritus) eggs correlated poorly with chemically derived TEQs, but strongly 

75 



Chapter 4 

with TEQs measured in an in vitro H4IIE rat hepatoma EROD assay, measuring the 

biological potency of the total mixture of compounds acting through the Ah-receptor. The 

composition of mixtures of pollutants could be quite different in the north-American sites 

compared to those in The Netherlands, resulting in different effects of what seem to be 

the same levels of a certain pollutant. The hepatic EROD-activity measured in the tern 

chicks in our study cannot easily be compared with the EROD activity in the H4IIE rat 

hepatoma EROD assay performed by Tillitt et a/. (1992), because large differences have 

been observed in species-specific antagonism after exposure to mixtures of PCBs (Aarts 

eta/. 1995). H4IIE's only show slight antagonism, whereas nothing is known yet about 

occurence of antagonism in common terns. 

Yolk-sac and Plasma Retinoid Levels 

Later layed eggs come from clutches with significantly lesser yolk-sac retinlylpalmitate 

levels and significantly greater ratios of plasma retinol over yolk-sac retinylpalmitate in 

the second egg (Figure 4.4). Eggs that needed a prolonged incubation period came from 

clutches with matching chicks with a significantly greater ratio of retinol over 

retinylpalmitate and (not significantly) lesser yolk-sac retinyl ester levels, which is similar 

to the results for the eggs incubated in the laboratory (Murk et a/. 1994b). An increased 

ratio plasma retinol over hepatic retinylpalmitate levels indicates an increased 

mobilisation of retinol to the circulation and a decreased retinoid-ester storage (Brouwer 

et a/. 1988; Chen et a/. 1992). In mammals as well as in birds disturbances in vitamin 

A homeostasis have been associated with PHAH-exposure. PHAH-exposure can influence 

vitamin A homeostasis via at least two mechanisms. PHAH hydroxy metabolites can 

interfere with the plasma transport of thyroid hormone bound to transthyretine (TTR) 

combined with retinol transport bound to retinol binding protein, resulting in increased 

loss of both retinol and thyroid hormone from the circulation. PHAHs can also directly 

increase the release of retinol from the hepatic store, resulting in decreased hepatic 

retinylesterand increased plasma retinol levels (Speareta/. 1985, 1988, 1990; Brouwer 

et al. 1988; Murk et al. 1994a). Apart from PHAH influences, dietary intake of vitamin 

A is very important for vitamin A homeostasis, as are adequate stores of retinyl esters and 

the finely regulated release into the blood (Zile 1992). Therefore, it cannot be excluded 

that the observed correlations are a consequence of a weaker nutritional status of the 

female tern, instead of being related to PHAH-exposure. 

Vitamin A is essential for normal reproduction. In chickens, vitamin A deficiency 

has been associated with reduced hatchability due to reduced or failing appearance of 

large blood vessels around the embryo (Thompson 1970). Therefore the observed greater 

ratio plasma retinol/retinyl palmitate in later layed eggs, eggs needing a longer incubation 
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Laying date 
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Figure 4.4 Overview of the correlations of the chemical 
and biochemical data with the biological data of eggs from 
the same clutches, when clustered on the basis of the 
biological data. An upwards or downwards directed arrow 
indicates that the chemical or biochemical parameter 
mentioned at the bottom increases resp. decreases when 
the biological parameter becomes less favourable, as 
mentioned at the left of the figure. 

period and smaller eggs are in accordance w i th this information. V i tamin A also plays 

an important role in posit ioning tissues and formation of the skeleton in developing 

embryos (Pijnappel et al. 1993). Apart from development and growth, v i tamin A is also 

essential for the immune funct ion, the integrity of epithelia wh ich are barriers against 

infections, mucous secretion, and normal vision (Friedman and Sklan 1989; Wobeserand 

Kost 1992). 

The two opposite mechanisms influencing plasma retinol levels upon PHAH 

exposure, make plasma retinol level alone an unsuitable indicator of PHAH-effects. 

Thyroid Hormones 

Plasma thyroid hormone levels were significantly less in chicks from eggs needing a 

prolonged incubation period (TT3, TT4, FT4), in smaller chicks (FT4; TT3 and TT4 a 

trend), and in chicks f rom clutches w i th later layed eggs (TT3 a trend). Also for chicks 

incubated in the laboratory a negative correlation was found between incubation period 

and plasma TT3 levels (trend, Murk et al. 1994b). Reduction in plasma thyroid hormone 

levels has often been associated wi th PHAH-exposure in in vivo studies wi th mammals, 
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birds and fish, both directly via influencing the metabolism and via hydroxylated PHAH 

metabolites as mentioned above (Leatherland and Sonstegard 1978; Brouwer et a/. 1990; 

Morse et a/. 1992; Brouwer 1991; Murk et a/. 1994c). As thyroid hormones play an 

important role in various physiological processes including energy metabolism, reproduc

tion, development, differentiation and growth (Sharp and Klandorf 1985), the observed 

effects could be related to reduced thyroid hormone levels. 

Breeding Biology 

The incubation period is significantly prolonged for eggs from clutches with later laying 

dates. This is not unusual, as more experienced birds lay their eggs earlier and incubate 

more efficiently (Hays 1978; Nisbet 1978). Additionally, a greater quality of courtship 

feeding by the male induces earlier egg-laying and larger eggs and clutches (Nisbet 1973, 

1977). However, the observation that eggs from clutches with prolonged incubation 

periods in both the field and the laboratory have significantly more PHAHs and greater 

EROD activities suggest that PHAH contamination also plays a role. This could be 

through influencing vitamin A and thyroid hormone metabolism as was explained earlier. 

Reduced vitamin A and thyroid hormone levels in a female tern will not only influence 

egg formation, but also the amount of vitamin A and thyroid hormone passed on to the 

egg. It would interesting to know whether PHAH exposure also influences the courtship 

feeding behaviour of the male. 

With increasing incubation period of the second egg in the laboratory, the 

incubation period of the first egg in the field increases even more (Figure 4.3). This 

suggests that apart from a factor intrinsic to the egg, an additional factor influences the 

incubation period in the field. This is in accordance with the observation that nest 

attentiveness and incubation behaviour of herring gulls were negatively correlated with 

the organochlorine content of the eggs (Fox et a/. 1978). Also Kubiak et a/. (1989) 

demonstrated for Forster's terns that not only factors intrinsic to the egg, but also parental 

attentiveness impaired reproductive outcome from a PHAH-contaminated site. In their 

study the differences in mean incubation periods between the contaminated and clean 

site were, respectively, 4.6 and 8.3 days for laboratory and field incubation. In our study 

these differences were less extreme, respectively, 2.0 and 4.0 days between the short and 

long incubation groups in the laboratory (Murk et a/. 1994b) and the field (Table 4.5). 

A prolonged incubation period must be considered as adverse, as it imposes a greater 

risk for the eggs and costs more energy for the adult terns and chicks. 

A trend is visible that eggs from clutches needing a prolonged incubation period 

were smaller and produced smaller chicks. Usually larger eggs need a prolonged 

incubation period. However, if the reduced egg volume is a consequence of PHAH-
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exposure it can be expected that this exposure also increase the incubation period, 

possibly via decreased vitamin A and thyroid hormone levels. 

Consequences for Reproduction 

During our study the dynamic environment of the terns had more severe detrimental 

effects on breeding success than PHAHs, which is in accordance with the results of 

Becker et a/. (1991). However, the observed correlations using the whole data set, and 

the differences in group averages found after clustering colonies after the PHAH-patterns, 

suggest that in the Dutch situation PHAHs or other contaminants present in the same 

gradient, have an adverse effect on the measured breeding biology parameters of 

common terns. It cannot be excluded that the more subtle correlations observed in our 

study wil l be more obvious and relatively important under circumstances without the 

strong adverse ecological and climatological factors. Data on hatching and fledging 

success are needed, integrating the effects of the quality of the egg, the incubation 

behaviour of the adult terns, and (with fledging success) direct effects of PHAHs from the 

food on the chicks. If a parallel can be drawn with mammals, it is to be expected that 

chicks will be more vulnerable for exposure to PHAHs in ovo than post-hatching, as in 

this period tissues are being formed and hormone levels are being 'fine-tuned'. Even a 

relatively small maternal dose of the PCB-mixture Aroclor 1254, has been found to result 

in long-term alterations in retinoid status in the offspring of rats (Morse and Brouwer, 

1995). 

Choice of Species for Future Ecotoxicological Field Research 

In the effect chain: PHAH-concentration - > biochemical effect in an individual - > 

effect on population level, the variation in the parameters measured increases continu

ously. Not only the PHAHs measured, but also other substances are able to act through 

the same mechanism of action. Biochemical responses are not only influenced by 

contaminants but also by factors such as physiological condition (age, sex, reproduction, 

etc), environmental conditions and food quality. The effect at the population level is 

easily masked by ecological factors such as massive predation, severe flooding, and 

extreme weather conditions. If the goal of a study is to establish whether effects of 

substances on populations occur, it is important to choose a suitable species for the 

specific compounds and effects of interest, but not so vulnerable for other, drastic 

influences. For reproduction studies, tree-nesting birds are more suitable than common 

terns which breed on the ground close to the waterline. Additionally, it is important that 

the exposure of the species studied is site specific. Species that stay in the same area all 

year around and/or feed on bigger fishes that are present all year around, better reflect 
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the local degree of pollution than species, such as the common tern, that feed on 

relatively small and migrating fishes. 

Use of Biomarkers for Future Research 

A correlation between the concentration of a certain class of chemicals and an observed 

adverse biological effect is just an indication that a causal relationship may exist. The use 

of biomarkers for exposure and effect can help to establish a causal relationship between 

a certain class of pollutants and an observed adverse biological effect. Biomarkers for 

exposure wil l indicate the potency of the whole mixture of, often partially unknown, 

compounds that an organism is exposed to. This presents a more realistic measure of the 

exposure, including interactions between the compounds, than measurement of some 

individual compounds and calculating the total toxicity. Examples are measurement of 

EROD-derived TEQs (Tillitt et al. 1992) and of luciferase produced by Ah-receptor active 

compounds (such as PHAHs and PAHs) using the CALUX-assay (chemical activated 

luciferase expression). The CALUX-assay has already been developed for small samples 

of blood plasma, sediment and interstitial water (Murk et a/., 1996b,e). Biomarkers of 

effect should be developed and validated in experimental studies, where hormonal and 

physiological consequences of different dosages of a pollutant of interest can be assessed, 

while all other factors are kept constant (Brouwer et a/. 1990). The biological 

consequences of hormonal and physiological alterations must then be studied under field 

conditions. A complicating factor is that endocrine disrupters may only influence 

physiological functions under specific stress circumstances. Therefore, at the best, it will 

be possible to indicate critical levels for physiological conditions (such as vitamin A or 

thyroid hormone) or pollutants. Due to unpredictable and complex ecological 

circumstances, however, it will be impossible to foretell exact population effects if certain 

levels are reached. 
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CHAPTER 5 

IN VITRO METABOLISM OF 3,3',4,4'-TETRACHLOROBIPHENYL IN RELATION TO 

ETHOXYRESORUFIN-O-DEETHYLASE ACTIVITY IN LIVER MICROSOMES OF SOME 

WILDLIFE SPECIES AND RAT* 

ABTRACT 

A qualitative study was performed of the capacity of hepatic microsomes of several 

wildlife species to metabolize 3,3',4,4'-tetrachlorobiphenyl (TCB). Hepatic microsomes 

of species environmentally exposed to polychlorinated biphenyls (PCBs): harbour 

porpoise (Phocoena phocoena), harbour seal {Phoca vitulina), common tern {Sterna 

hirundo), and hepatic microsomes from species experimentally exposed to PCBs: eider 

duck {Somateria mollissima), rainbow trout (Salmo gairdneri), flounder (Platichthys 

flesus), and Wistar rat were incubated with 14C labeled TCB ([14C]TCB). The mammals 

and birds were able to metabolize TCB at a rate that was correlated with their 

ethoxyresorufin-O-deethylase (EROD) activity. No [14C]TCB metabolism was observed 

in the fish, despite elevated EROD activity in the trout. HPLC analysis of diisopropylether 

extracts of the microsomal incubations indicated the presence of 4-OH-, 5-OH-, and 6-

OH-tetrachlorobiphenyl metabolites and a yet unidentified metabolite. The ratio of the 

different hydroxy metabolites formed varied for the various species. 

*Based on: A.j. Murk, D. Morse, j. Boon, A. Brouwer (1994). In vitro metabolism of 

3,3',4,4'-tetrachlorobiphenyl in relation to ethoxyresorufin-o-deethylase activity in liver 

microsomes of some wildlife species and rat. Eur.). Pharmacol., Environ. Pharmacol. 

Sect. 270: 253-261. 
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INTRODUCTION 

Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants that accumu

late in the environment due to their great lipophilicity and resistance to biodegradation 

(IPCS, 1993). Due to additional biomagnification, greatest concentrations of PCBs have 

been found in body lipids of lung breathing top predators of especially the aquatic food 

chain, such as fish eating birds and mammals. Although internal PCB concentrations 

increase with the trophic level, the pattern of individual PCB congeners is considerably 

different in sediments and in species of different trophic levels (Muir et a/., 1988; Boon 

et a/., 1989). In general, lesser chlorinated PCB congeners (tetra and less chlorine 

substitutions) disappear progressively from the congener patterns with increasing trophic 

level, due to biotransformation. As a general rule, PCB congeners with unsubstituted 

adjacent meta and para positions, and congeners with unsubstituted adjacent ortho- and 

meta-positions and less than one ortho-chlorine are most susceptible to oxidative 

metabolism, catalysed predominantly by cytochrome P450-dependent monooxygenases 

(Walker, 1992; Boon eta/., 1992). 

Cytochrome P450 IA1 (P450IA1) can be induced by several PCB congeners, 

mediated by the arylhydrocarbon (Ah) receptor. Non-ortho-chlorine-substituted PCB-

congeners such as TCB (CB-77), 3,4,5,3',4'-pentaCB (CB-126) and 3,4,5,3',4',5'-hexaCB 

(CB-169), are the most potent PCB congeners with respect to induction of P450IA1 and 

IA2 and its associated ethoxyresorufin-O-deethylase (EROD) activity (Goldstein, 1989; 

Safe, 1990). P450IA1 is an efficient enzyme involved in the oxidative biotransformation 

of non-ort/io-PCBs (Ishida et a/., 1991). Non-planar PCBs are mainly metabolized by 

cytochrome P450 MB. Several phenolic PCB metabolites and mercapturic acid pathway 

metabolites, such as methyl sulphonyl PCBs, have been identified in various laboratory 

species. For example, Darnerud et a/. (1986) identified a number of hydroxy (OH-) 

metabolites and a methylsulphone metabolite of TCB in C57/BI mice and their fetuses. 

Bergman et a/. (1992) showed that methylsulphonyl PCBs are relatively persistent 

metabolites in mink. Yoshimura et a/. (1987) reported several hydroxylated metabolites 

of TCB in rats. 

Several studies over the past eight years have indicated that phenolic metabolites 

of PCBs are not just inert intermediate metabolites of PCBs, but do possess metabolite-

specific toxic potencies. Stucture requirements for metabolite toxicity are different from 

those of the parent compounds, planar metabolites are not necessarily more toxic than 

the non-planar ones (Lans et al., 1993). Hydroxylated PCB metabolites have been found 

to competitively displace thyroxine from its binding site on the plasma carrier protein 

transthyretin (TTR), thus enhancing the elimination of thyroxine from the circulation 
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(Brouwer, 1987; Lans et al., 1993). Hydroxy I ated PCB metabolites have also been shown 

to inhibit hepatic thyroxine 5'-deiodinase (Rickenbacher et a/., 1989, Adams et al., 1990), 

interact with oestrogen receptors (Korach et al., 1988), and to uncouple oxidative 

phosphorylation in mitochondria (Ebner and Braselton, 1987) whereas TCB itself has no 

such effects (Lans et al., 1990). 

The ability of a species to metabolize specific PCB congeners, has mainly been 

estimated from differences in congener composition of food with that of the predators 

(Borlakoglu et al, 1989; Tanabe et al., 1988; Boon et al., 1992). A limitation of this 

approach is that it is indirect, not all congeners can easily be separated from each other 

by gas-chromatography analysis and it is not known what metabolites are being formed. 

The relatively toxic planar TCB, for example, could not be quantified in most experiments 

because it co-elutes with the more abundant 2,3,3',4',6-pentaCB (CB-110). No data have 

been reported on in vitro biotransformation of TCB in hepatic microsomes of marine 

mammals, fish eating birds, and fish. Study of the metabolism of a toxic CB congener in 

addition to analysing the model substrate EROD, has the additional advantage of being 

relevant to the possible occurence of the above-mentioned metabolite specific toxic 

effects in certain species. 

Here we report on a qualitative comparative study for in vitro metabolism of 14C 

labeled 3,4,3',4'-tetraCB ([14C]TCB) by hepatic microsomes of several wildlife species. 

Some of these species, such as harbour seal (Phoca vitulina), harbour porpoise (Phocoena 

phocoena) and common tern (Sterna hirundo), were environmentally exposed to PCBs 

and other substances. Also hepatic microsomes from experimentally PCB-exposed eider 

duck (Somateria mollissima), rainbow trout {Salmo gairdneri) and flounder (Platichthys 

flesus) were used in this study. The amount and type of OH-metabolites formed were 

quantified with high performance liquid chromatography (HPLC) and compared with the 

EROD activities measured in the same microsomes. 

MATERIALS AIMD METHODS 

Origin of microsomes 

The liver microsomes used in this experiment originated from environmentally and 

experimentally exposed species. 

Environmentally exposed species 

Harbour seal and harbour porpoise were washed ashore alive at the beach of the island 

of Texel, The Netherlands. The adult male harbour seal was extremely lean, with the 
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blubber layer completely depleted. The liver contained 130 mg CB-153-mg"1 l ipid, the 

blubber 128 and the blood 399 mg CB-153-kg"1 lipid. The adult female harbour porpoise 

had concentrations of 48.9 mg CB-153-kg"1 lipid in the liver, 19.2 in the blubber and 87.8 

mg-kg"1 lipid in the blood. More information about these animals (respectively referred 

to as HS2 and HP1) is given in Boon et a/. (1994). The animals died at the mammal 

rehabilitation centre 'Ecomare', where the livers were removed within 2 hr after death. 

Common tern microsomes were obtained from one-day-old chicks, artificially bred from 

eggs collected in colonies with different degrees of PCB contamination. As only 100 //I 

of microsomes was avaible per individual for this metabolism study, microsomes were 

pooled to get 2 portions of 1 mg microsomal protein each. Three pools of microsomes 

were created, from either 5 animals with a relatively great (around 147 mg CB-153-kg"1 

yolksac lipid, tern 1), 4 with an intermediate (around 86 mg CB-153-kg"1 yolksac lipid, 

tern 2), and 4 with a lesser mean PCB concentration (around 65 mg CB-153-kg"1 l ipid, 

tern 3) (Table 5.1). PCB, PCDF and TCDD concentrations and EROD activities are 

described in Bosveld et a/. (1993), the biochemical effects found are described in Murk 

eta/. (1994b). 

Experimentally exposed species 

Eider duck microsomes were prepared from livers of 38-day-old animals killed 10 days 

after i.p. exposure to 200 mg.kg"1 bodyweight (bw) of the commercial PCB mixture 

Clophen A50 or to 50 mg TCB-kg"1 bw (Murk et al. 1994a). 

Trout microsomes originated from an experiment where trout were orally dosed with 54 

or 215 mg Clophen A50-kg"1 bw. The animals were killed 10 or 20 days after exposure. 

Samples of four different animals were used: 215 mg-kg"1, 10 days (trout 1); 54 mg-kg"1, 

10 days (trout 2); 21 5 mg-kg"1, 20 days (trout 3); and 54 mg-kg"1, 20 days (trout 4). 

An one-year-old Flounder killed 10 days after i.p. exposure to 500 mg Clophen A50-kg_1. 

Microsomes with the relatively greatest EROD activity were used for this study. 

Rat microsomes were obtained from a 16-week-old Wistar rat, that had been given 3 daily 

i.p. administrations of 30 mg R-naphtoflavone-kg"1 bw, and was killed 24 hr after the last 

treatment. These microsomes were used as a positive control, since [14C]TCB metabolism 

has already been characterized in this species (Morse et a/., 1995a). 

Preparation of microsomes, and measurement of microsomal protein concentrations and 

EROD activity 

Microsomes were prepared according to the method described by Gibson and Skett 

(1986), and immediately stored at -80°C until further analysis. 

Protein concentrations were measured according to the method of Bradford (1976) using 

84 



In vitro metabolism PCB-77 

the Bio-Rad protein assay reagent. Measurement of EROD activity was performed as 

described by Prough et al. (1978) at a temperature of 37°C. 

In vitro [14C]TCB metabolism and metabolite analysis 

[14C]TCB obtained from Sigma Chemical Co., with a specific activity of 37.1 mCi-mmol "1 

was purified according to the method of Morse et al. (1995a). Four hydroxylated 

metabolites, 2-hydroxy-3,4,3',4,-TCB (2-OH-TCB), 4-hydroxy-3,5,3',4,-tetraCB (4-OH-

tetraCB) 5-hydroxy-3,4,3',4'-TCB (5-OH-TCB) and e-hydroxy-S^^'^'-TCB (6-OH-TCB), 

kindly donated by Dr E Klasson Wehler (Wallenberg Laboratory, Stockholm, Sweden) 

were used as internal standards for HPLC analysis. 

Microsomal incubations and HPLC analysis of TCB metabolites were performed 

according to the method of Morse et al. (1995a). Duplicate portions of 1 mg hepatic 

microsomal suspension with 10//M [14C]TCB (added in 25//I acetone) and 50 nM Tris-

HCI buffer (pH = 7.5) with a total volume of 900 //I were pre-incubated in glass tubes for 

2 min at 37°C. The reaction was started by adding 100/yl of a 10 mM NADPH solution. 

After 5 min 1 ml ice-cold methanol was added to the incubation mixture. TCB and 

metabolites were extracted four times with 2 ml of diisopropylether. The ether extract 

was pooled and dried under nitrogen gas and resuspended in 50 fj\ of methanol. The 

samples were stored at -20°C until further analysis. The recovery of mono-hydroxy-TCB 

(OH-TCB) metabolites using this extraction method was on average 94+1 % (Morse et 

al., 1995a). 

Aliquots of 20/J\ methanol extract enriched with the four standard metabolites 

were injected on a HPLC on a reversed phase column (Perkin Elmer 30x3 mm coupled 

to a 83x3 C-18 3 jjm column). Separation of metabolites and parent TCB was performed 

with 78% methanol and 22% water for 15 min followed by 100% methanol for 16 min. 

Flow rate was 0.8 ml*min"1min and 0.4 min fractions were collected with a Pharmacia 

fraction collector (LKB.RediFrac). Scintillation fluid (4.5 ml, Ultima-Gold, Packard) was 

added to the collected fractions and they were counted in a Packard liquid scintillation 

counter (1600 TR) for a period of 5 min. The pattern of radioactive peaks was compared 

to the position of the standard metabolites on the UV-absorbance chromatogram (265 

nm). 

RESULTS 

EROD activity 

Hepatic microsomal EROD activities differed greatly among the species tested (Table 5.1). 

EROD activity was greatest in microsomes from the rat (2290 pmol-mg^-min"1) and the 
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environmentally exposed harbour seal (2460 pmol-mg^min"1). The EROD activity of the 

TCB closed eider was 1050 pmol-mg"1-min~'. Microsomes from the environmentally 

exposed harbour porpoise and Clophen A50 exposed trout showed intermediate EROD 

activity (250-450 pmol-mg^-min"1). Low EROD activities (2-130 pmol-mg"1-min"1) were 

found in the microsomes of the Clophen A50 exposed flounder and in the environmen

tally exposed tern chicks. 

Total amount of hydroxy-[14C]TCB metabolites formed 

The rates of formation of hydroxy-TCB metabolites is given in Table 5.1. Of the species 

tested, rat microsomes showed the greatest rate of OH-TCB formation, followed by the 

environmentally exposed porpoise and seal and the experimentally exposed eiders. 

Although the EROD activity was more than 5-fold greater in the seal than in porpoise 

microsomes, the rate of metabolite formation was the same for both species. The 

microsomes of common tern exhibited only limited conversion rates of TCB (between 

0.62 and 1.37 pmol-mg~1-min"1). The TCB dosed eider showed the greatest production 

of metabolites (46.9 pmol-mg^-min"1), about half of the production of the BNF induced 

rat microsomes (91.4 pmol TCB-mg~1-min~1). A striking result was the complete absence 

of metabolite formation in the trout samples, which showed intermediate EROD activity. 

The EROD activity in the flounder microsomes was very low, and no metabolite forma

tion was observed. 

The ratio (x 100) of OH-TCB metabolites formed (pmol-mg^-min1) to EROD 

activity (pmol resorufin-mg"1-min_l)(OH-TCB/EROD) of the rat was the same as the mean 

ratio of both eiders (Table 5.1). The OH-TCB/EROD ratio was greatest in the porpoise 

(8.4) and least in the tern (1.1 -5.6). The ratio OH-TCB/EROD of the tern microsomes 

increased with decreasing EROD activity. However, the total amount of metabolites was 

just at the level of detection in tern 2 and 3. Figure 5.1 shows the correlation of the rate 

of formation of OH-TCB metabolites with the EROD activity of the microsomes of all 

species tested. 

Relative amount of individual hydroxy-TCB metabolites 

The standard OH-TCB metabolites 2-OH-TCB, 4-OH-tetraCB, 5-OH-TCB and 6-OH-TCB 

were well separated from each other and the parent compound under the chromato

graphic conditions used. The sequence of eluted compounds was: 4-OH-tetraCB, 2-OH-

TCB, 5-OH-TCB, 6-OH-TCB and finally the parent compound. Figure 5.2 (a-f) gives the 

OH-tetraCB metabolites extracted from microsomal incubations of different species. No 

radioactivity was observed at the retention time of 2-OH-TCB (arrows in Figure 5.2). In 

most chromatograms also a yet unidentified metabolite is visible. Although the total 
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amount of metabolites could just be detected for terns 2 and 3, this amount was too small 

to determine the formation of individual metabolites. 

The relative contr ibut ion of the individual metabolites to the total amount of 

metabolites is given in Table 5 .1 . In the microsomal incubations of 14C-TCB in most 

species five peaks of radioactivity were visible in the HPLC chromatograms, wh ich co-

eluted w i th , respectively, 4-OH-tetraCB, 5-OH-TCB and 6-OH-TCB, an unknown peak 

and TCB itself. The main OH-TCB metabolite formed is the 5-OH-TCB. This is particularly 

evident in microsomal incubations of the eider ducks and common tern (+75%) and the 

common seal (53.8%). Porpoise and rat microsomes produced roughly equal amounts 

of 4-OH-tetraCB, 5-OH-TCB, and 6-OH-TCB. Little or no radioactivity was observed other 

than to TCB in the HPLC chromatograms of trout and flounder microsomal incubations. 
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DISCUSSION 

Apart from those of the fish, hepatic microsomes of all animals investigated were able 

to metabolize TCB in vitro. Metabolites were found that co-eluted with 4-OH-tetraCB, 

5-OH-TCB and 6-OH-TCB standards, and one unidentified less polar metabolite. No 

radioactivity was observed at the retention time of 2-OH-TCB. Although the microsomes 

originated from animals with different conditions and exposures, there was a good 

correlation between total OH-TCB production and EROD activity in the hepatic micro

somes tested, apart from the trout microsomes. 

The 5-OH-TCB was the major metabolite formed in the birds (75%) and marine 

mammals tested (33-54%). Kannan and co-workers (1989a) calculated for PCBs that the 

carbon position with the greatest frontier (n) electron density is most readily hydroxylated. 

In a non-chlorinated biphenyl this is the para position. If the carbon with the greatest 

frontier electrons is occupied by chlorine, either a rearrangement occurs (NIH shift) or 

the carbon with the next greatest electron density is activated for metabolism. For TCB 

ortho-positions have the most favourable electron density, but due to steric hindrance 

they are least oxidized. The 5,5' positions have the next greatest electron density, which 

is in accordance with 5-OH-TCB being the principal metabolite found in birds. However, 

in the rat and porpoise the chlorine shift metabolite 4-OH-tetraCB and the ortho-hy-

droxylated 6-OH-TCB were present in amounts almost equal to those of the 5-OH 

metabolite. This suggests different substrate specificities for the Cytochrome P450IA-

isoenzyme homologues between the species investigated. 

Mammals 

Most information about TCB metabolite formation by mammals is from studies with 

laboratory rodents. Ishida et al. (1991) showed that 4-OH-tetraCB and 5-OH-TCB were 

produced at a ratio of 2.2:1 in vitro in rat liver microsomes. In our experiment this ratio 

was 1.2:1. In an in vivo experiment, the amount of the 5-OH-TCB in rat faeces was a little 

larger than that of 4-OH-tetraCB in the first five days after exposure. This discrepancy can 

be explained by a previous finding that the 5-OH-TCB is excreted much more rapidly 

than the 4-OH-tetraCB (Yoshimura et al., 1987). Also in mice major metabolites of TCB 

were 5-OH-TCB and 4-OH-tetraCB. In adipose tissue Klasson Wehler et al. (1989) found 

TCB as well as 4-OH-, 5-OH- and 6-OH-tetraCB. 

In our study TCB, which possesses adjacent chlorinated meta and para positions, 

is metabolized in vitro by both the porpoise and the seal. Tanabe et al. (1988) concluded 

based on a comparison of tissue PCB concentrations, that small cetaceans had no capacity 

to metabolize PCBs with adjacent non-chlorinated meta and para positions. This is not 
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in contradiction with our data, although no data were available on TCB. The same goes 

for the conclusion of Boon et a/. (1992) that seals can metabolize PCBs with a planar 

configuration when there are adjacent H-atoms present in the ortho- and meta-positions. 

Our in vitro data suggest that the metabolic capacity of the environmentally exposed 

porpoise and seal is similar to that of the eiders, and about twice as small as the 

experimentally induced rat. This is in contradiction with Tanabe et a/. (1988) who 

suggested that the capacity of PCB metabolism of small cetaceans (such as porpoises and 

seals) is extremely small as compared to those of birds and mammals. Kannan et al. 

(1989b) also concluded that terrestrial organisms are better equipped metabolically than 

marine mammals in degrading xenobiotics. We found that the rat metabolizes about 

twice as much TCB as the marine mammals. This could be due to a greater exposure to 

'animal-plant warfare' (Nebert et al., 1989) of the omnivorous rat compared to the 

piscivorous marine mammals. 

Birds 

The only information about TCB metabolism by birds is from chicken embryos and 

pigeons. Analysis of bile from chicken embryos by Klasson Wehler et al. (1990) 

demonstrated that six days after injection of 0.3 mg [14C]TCB-kg_1 egg into the airsac, 4% 

of the dose was detected in the bile. Three conjugated OH-metabolites were identified: 

5-OH-TCB (234 ng per gall bladder), 4-OH-tetraCB (45 ng per gall bladder) and 2-OH-

TCB (3 ng per gall bladder). The presence of a dihydroxy-tetrachlorobiphenyl and a 

dihydroxy-trichlorobiphenyl was also indicated. Borlakoglu et al. (1991) also found di-

hydroxylated PCB metabolites in Aroclor 1254 treated pigeons and rats. They showed 

that induction of isoforms of P450 by PCBs results in an enhanced secondary hy-

droxylation of the mono-hydroxylated metabolites. In our incubations, however, only 

mono-hydroxylated metabolites were formed. The unknown peak is not polar enough 

to be di-hydroxylated PCB metabolite. This difference could be due to the differences 

in incubation time: 60 min against 5 min in our experiment. 

On the basis of comparison of PCB congeners in Aroclor and in fish eating sea 

birds, Boon et al. (1989), Borlakoglu et al. (1990), Roozemeijer et al. (1991) and Walker 

(1992) concluded that only PCB congeners with unsubstituted adjacent meta and para 

positions can be metabolized by birds. Thus, congeners with only unsubstituted adjacent 

ortho- and meta-positions appeared to be metabolizable in marine mammals (when no 

more than one ortho-C\ atom is present) but not in birds. These conclusions in regard to 

birds, however, were only based on measurements of mono-ortho-substituted congeners 

with ortho-meta vicinal H-atoms (2,3,3',4,4'-PCB (CB-105), 2,3',4,4',5-PCB (CB-118) and 

2,3,3',4,4',5-HCB (CB-156)), because congeners with ortho-meta vicinal H-atoms without 
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ortho-CI substitution (such as 3,3',4,4'-TCB and 3,3',4,4',5-PCB (CB-126)) were not 

investigated due to CC separation problems for these compounds, and the relatively small 

environmental concentrations. The results of the present study show, however, that TCB 

is rapidly metabolized by the eider hepatic microsomes. Thus, the differences observed 

in PCB congener patterns in vivo may only involve the mono-ortho-substituted congeners 

with ortho-meta vicinal H-atoms. 

Although predatory birds were expected to have lesser P450 activities than 

mammals (Walker, 1980), the eider microsomes in this experiment showed great EROD 

activities and were very well capable of metabolizing TCB. The rate of metabolism was 

similar to that of the microsomes of the marine mammals tested. 

Fish 

We observed that exposure of trout to PCBs induced EROD activity. This is in accordance 

with Melancon and Lech (1983) who found that TCB does induce EROD activity in trout 

in a dose dependent way. We found, however, that the induced trout were not able to 

metabolize TCB. Apparently the substrate specificity of P450IA is different between fish 

and birds and mammals. Two main factors are responsible for substrate specificity 

towards the cytochromes P450. First the molecular dimensions which determine whether 

a chemical fits into the binding site. Second the enzyme-substrate complex has to be 

activated to permit the oxidative metabolism of the substrate (Parke et a/., 1990). The last 

factor involves the position of the frontier molecular orbitals in relation to the shape of 

the active site of the P450 enzyme. Parke et a/. (1990) show in a plot of the molecular 

shape parameter (area/depth2) against electronic parameter (*E) for a number of chemicals 

metabolized by P450 I, IIB, I IE and IV, that clusters can be observed of chemicals 

metabolized by certain P450 iso-enzymes. It is conceivable that due to the evolutionary 

distances the active sites offish P450IA and mammal/bird P450IA have slightly different 

requirements for those parameters. As a result ethoxyresorufin could answer the demands 

offish P450IA but TCB could not. Additionally it has been demonstrated that, contrary 

to birds and mammals, fish do not have two iso-enzymes of P450IA (IA1 and IA2) but 

only one (IA1) that can be induced by planar PCBs (Goksoyrand Forlin, 1992; Stegeman 

and Kloepper-Sams, 1987). Possibly, ethoxyresorufin is metabolized by IA1 and TCB by 

IA2. For fish no data on TCB metabolism is available. Of the PCB congener 2,5,2',5'-

tetraCB, it was observed that 4-OH-glucuronides were excreted by trout into the bile 

(Melancon and Lech, 1976). Recent experiments in our laboratory suggest that flounders 

have little Ah-receptor and cytochrome P4501A activity is vulnerable for substrate 

inhibition (Besselink et a/., 1993, pers. comm.). The EROD-activity in flounder probably 
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was blocked by the excess of PCBs. 

Our findings of the inability of trout and flounders to metabolize T O is in 

accordance with the findings of De Boer et a/, (in press). They analysed the concentrati

ons of some non-ortho- and mono-ortho-substituted chlorobiphenyls and chlorinated 

dibenzo-p-dioxins and dibenzofurans in 14 marine and freshwater fish species and 4 

shellfish species from The Netherlands. In all fish and shellfish but the yellow eel 

(Anquilla anquilla), TCB concentrations were present in two-fold greater relative concen

trations than in the technical PCB mixture Aroclor 1254, while the pattern of the other 

non-ortho-substituted PCBs was rather similar to that of Aroclor 1254. This indicates that 

apart from the eel none of the tested (shell)fish species, including the flounder, can 

metabolize TCB. 

Possible consequences of TCB metabolism 

The ability of animals to metabolize PCBs can lead to an increased excretion of these 

congeners and accordingly to decreased toxicity associated with the parent compound. 

However, OH-PCB metabolites have been shown to exhibit biochemical effects of their 

own. With in vivo (Brouwer et a/. 1990a) and in vitro experiments (Lans et a/., 1994) it 

has been demonstrated that various hydroxy-polychlorobiphenyls (and -dibenzo-p-dioxins 

and -dibenzofurans) show a competitive interaction with transthyretin (TTR), a plasma 

transport protein of thyroxine. The greatest competitive binding potency was observed 

for hydroxylated PCB congeners with the OH-group substituted on meta or para positions 

and one or more chlorine atoms substituted adjacent to the hydroxy-group on either 

aromatic ring or both rings. The metabolites that were formed in our study all had a 

relative potency greater than that of the physiological ligand thyroxine (Lans et al., in 

press). All hydroxylated PCBs identified in this study have also been shown to uncouple 

mitochondrial oxidative phosphorylation (Lans et a/., 1990). 

Conclusions 

From our experiments we conclude that although EROD activity is a measure of the 

exposure of animals to PCBs and related compounds, it is not a direct measure of the 

ability of a species to metabolize TCB. The structural requirements for PCB metabolism 

can be quite different between different animal species. Within the same species (apart 

from fishes) and when exposed under the same circumstances, there is a relationship 

between biotransformation of ethoxyresorufin and TCB. 

The observed species differences in P450IA1 induction and amount and 

composition of metabolites formed from TCB may be a consequence of evolutionary 
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differences in which the divergence of the IA family into the isoforms IA1 and IA2 may 

play an important role. Also food specialization is expected to be of influence (Nebert 

et a/., 1989). The accompanying differences in detoxification capacity and potential 

toxicity of metabolites formed pose serious problems for extrapolation of toxicity data 

from one type of species to another. Identification of the characteristics that make a 

specific species vulnerable for the toxic actions of PCBs will help to find the species at 

risk. 
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CHAPTER 6 

CHEMICAL-ACTIVATED LUCIFERASE GENE EXPRESSION (CALUX): A NOVEL IN VITRO 

BIOASSAY FOR AH RECEPTOR ACTIVE COMPOUNDS IN SEDIMENTS AND PORE 

WATER* 

ABSTRACT 

This study demonstrates that the novel in vitro CALUX (chemical-activated luciferase 

expression) assay is a rapid, sensitive assay for assessing the toxic potency of (mixtures 

of) aryl hydrocarbon receptor (AhR)-active compounds in sediments and pore waters. A 

rat hepatoma (H4IIE) cell line, stably transfected with a construct containing the dioxin-

responsive element (DRE) sequence and the luciferase reporter gene, was used to 

determine the relative potency or the total activities of AhR-active compounds in 

sediment and pore water extracts. This novel CALUX assay had a detection limit of 0.5 

fmol of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The sensitivity and linear working 

range was slightly better than for the ethoxyresorufin O-deethylase (EROD) assay in H4IIE 

wild type cells. The primary improvement of the CALUX assay compared to the EROD 

assay however, is that the CALUX assay is insensitive to substrate inhibition. The CALUX 

activity induced by organic extracts from 450 mg aliquots of sediment or 250//I aliquots 

of pore water, corresponded with the instrumentally analyzed degree of pollution of the 

sediment. Using pore water, only a simple and rapid extraction procedure was needed, 

without additional clean-up to prevent cell death. The response from pore water samples 

in an 8-day early life stage test with zebra fish (Branchydanio rerio) corresponded with 

the CALUX induction, although the correlation was sometimes disturbed by heavy metals. 

Two polychlorinated terphenyl mixtures, the PCB-substitute Ugilec 141, polybrominated 

diphenylethers, and the PCB-mixture Clophen A50 were tested in the CALUX assay, and 

had induction potencies that were 10~4-10"7 compared to TCDD. 

* Based on: Murk A), Legler J, Denison MS, Ciesy jP, Van de Cuchte C and Brouwer A 

(1996): Chemical-activated luciferase expression (CALUX): a novel in vitro bioassay for 

Ah receptor active compounds in sediments and pore water. Fundam. Appl. Toxicol. 33, 

1:149-160 
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INTRODUCTION 

Sediments at many locations in Dutch waters are heavily polluted with polyhalogenated 

aromatic hydrocarbons (PHAHs) such as polychlorodibenzo-p-dioxins (PCDDs), 

-dibenzofurans (PCDFs), and -biphenyls (PCBs). Of the large group of PHAHs, 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) is the prototypical and most potent member. PHAHs 

are persistent and lipophilic and elicit a number of species-specific, toxic responses in 

vertebrates, including hepatoxicity, body weight loss, thymic atrophy, impairment of 

immune responses, dermal lesions, reproductive toxicity, alterations in vitamin A and 

thyroid hormone metabolism, teratogenicity and carcinogenesis (Poland and Knutson, 

1982; Goldstein and Safe, 1989; Brouwer, 1991; Giesy eta/., 1994; Safe, 1994). Studies 

with aquatic organisms have concentrated mainly on fish. They have been found to be 

very sensitive to PHAH-induced toxicity, especially when exposed during early life stages, 

i.e., egg to larval stadium (Kleeman et a/., 1986). Typical toxic responses are malforma

tions, hemorrhages and pericardial edema (Walker et a/., 1991, 1992). PHAH-contami-

nated sediments thus may pose a serious threat to aquatic species and their predators, 

including fish-eating birds, mammals, and humans. Therefore a rapid, inexpensive assay 

is needed for monitoring the toxic potency of a great number of samples. We feel that 

our novel in vitro bioassay, with chemical-activated ijjciferase expression (CALUX) based 

on the mechanism of action of PHAHs, will facilitate rapid assessment of the toxic 

potency of mixtures of PHAHs in environmental matrices. 

Biomarkers for PHAHs 

Of the hundreds of existing PHAHs, those with one or no ortho-substituted halogen can 

assume a planar configuration, making them approximate isostereomeres TCDD. The 

mechanism of action for these relatively toxic, planar PHAHs has been partially eluci

dated. After binding of the ligand to the cytosolar Aryl hydrocarbon Receptor (AhR), the 

ligand-receptor complex is activated and translocated to the nucleus, wherein it binds 

to a dioxin responsive element (DRE) and stimulate transcription of an adjacent gene 

(Denison and Whitlock, 1995). Examples of induced genes are the phase I and II enzymes 

cytochrome P450 1A and UDP-glucuronyltransferase (DeVito and Birnbaum, 1994). 

Although it is not known how cytochrome P450 1A activity contributes to specific PHAH-

toxicity, its associated increase in ethoxyresorufin O-deethylase (EROD) activity is often 

studied in vivo and in vitro because it is altered in tandem with that of other enzymes 

and receptor proteins (Brouwer 1991; Tillitt et a/., 1991; Jones eta/.; Eggens eta/., 1995). 

The EROD bioassay, however, poses some disadvantages, such as in vivo season-

dependent fluctuations in inducibility, low enzyme stability after death of an animal, and 
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in vitro inhibited activity at greater ligand concentrations (Kennedy et al., 1993; Sawyer 

eta/., 1984; Hahneta/., 1993). 

In our laboratories, an additional in vitro bioassay for PHAHs has been deve

loped, based on AhR-mediated firefly (Photinus pyralis) luciferase gene expression (Aarts 

et al., 1995; Garrison et a/., 1996). A vector containing the luciferase gene under 

transcriptional control of DREs isolated from the 5-flanking region of the mouse P450 1A1 

gene, was stably transfected into a number of hepatoma cell lines, including mouse 

(Hepa1c1c7) and rat (H4IIE) cell lines. The induction of luciferase activity in the trans

fected cells, upon exposure to TCDD, is dose-dependent and comparable to that of the 

natural cytochrome P450 1A activity (Aarts et al., 1995; Garrison et al., 1996, Sanderson 

eta/., 1996). 

For hazard and risk assessment purposes of mixtures of PHAHs, the relative toxic 

potencies of individual PHAH congeners compared to TCDD have been transformed into 

toxic equivalency factors (TEFs). The concentrations of the individual congeners mea

sured, multiplied by their respective TEFs, are added up to give the total TCDD toxic 

equivalency (TEQ) of the mixture (Safe, 1990; Ahlborg et al., 1992). For the PCDD-, 

PCDF- and PCB-congeners tested so far, the potency to induce CALUX activity relative 

to TCDD (CALUX-JEF) has been in accordance with reported TEF values (Denison et al., 

1993; Aarts et al., 1995; Garrison et al., 1996; Sanderson et al., 1996). 

This study 

In this paper we describe the use of the CALUX assay for monitoring AhR-active com

pounds associated with sediments. In addition to PCBs, PCDDs and PCDFs, otherPHAHs, 

such as polychlorinated terphenyls (PCTs) (Watanabe et al., 1987; De Boer, 1995), tetra-

clorobenzyltoluenes (the PCB-substitute Ugilec 141) (De Boer, 1995) and polybrominated 

diphenylethers (PBDEs, widely used as fire retardants) (Watanabe et al., 1987; Andersson 

and Wartanian, 1992; IPCS, 1994; Pijnenburg et al., 1995) wil l end up in the organic 

extracts. The relative potency of these PHAHs in the CALUX assay is compared to that 

of TCDD. Sediment samples from a number of locations in The Netherlands were 

collected, and extracts of both whole sediment and pore water were tested in the CALUX 

assay. The CALUX response of pore water extracts is compared to the biological response 

in an early life stage (ELS) test with the zebra fish {Branchydanio rerio). 
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MATERIALS AND METHODS 

Chemicals 

All chemicals used were of pesticide analysis (pa) or HPLC grade. TCDD (2,3,7,8-

tetrachlorodibenzo-p-dioxin) was purchased from Schmidt B.V. (Amsterdam, The Nether

lands). The technical brominated diphenyl ether mixture Bromkal 70-5-DE, and three pure 

congeners 2,2',4,4'5,5'-hexabromodiphenylether (HBDE), 2,2',4,4',5-pentabromodi-

phenylether (PBDE), and 2,2',4,4'-tetrabromodiphelylether (TBDE) were provided by Dr. 

Ake Bergman (Environmental Chemistry, Stockholm University, Sweden). The technical 

PCB mixture Clophen A50, the PCT mixtures Aroclor 5442 and 5460, and the technical 

tetrachlorobenzyltoluene mixture Ugilec 141 were provided by Dr. De Boer (Netherlands 

Institute for Fisheries Research, RIVO, IJmuiden). GC-MS analysis to assure the purity and 

concentration of the TCDD stock solutions was performed by the Dutch State Institute 

for Quality Control of Agricultural Products (RIKILT-DLO). For exposure of cells, all 

chemicals were dissolved in ultra clean dimethylsulfoxide (DMSO; Janssen, Belgium). 

CALUX assay 

For experiments with individual congeners, rat (H4IIE) or mouse (Hepald c7) hepatoma 

cell lines, stably transfected with the luciferase (Luc) reporter gene plasmid pGudLud .1 

were used (further called H4IIE.Luc and Hepa.Luc cells respectively). These cell lines 

were prepared as previously described in Aarts et a/. (1995) and Garrison et al. (1996) 

(also called H4L1.1c4and H1L1.1c7). The cells were grown in 24-wellcell culture plates 

(Costar) in 0.5 ml minimal essential medium (a-MEM, Gibco) with 10% heat-inactivated 

(h.i.) fetal calf serum (FCS, Gibco) or in 6-well cell culture plates (Costar) in 3 ml a-MEM 

with 10% h.i. FCS. The cell layer reached 90-100% confluence 24 hr after seeding, and 

growth medium was replaced with fresh culture medium containing test compounds or 

extracts in a maximum of 0.5% DMSO. Exposure was in triplicate, and for each assay 

a TCDD standard series from 1 to 1000 pM was included. After 20-24 hr of exposure the 

medium was removed and cells washed twice with phosphate-buffered saline (PBS), and 

the cells were harvested in 250 fj\ (6-well plates) or 75 /j\ (24-well plates) cell lysis 

reagent (Promega), centrifuged for 3 min (6-well plates) or 90 sec (24 wells plates) at 

13000g and the supernatant frozen at -80°C For measurement of luciferase activity the 

samples were thawed on ice, 20 /J\ supernatant was pipetted into a 96-well microtiter 

plate and 100//I luciferin assay mix (Promega) at room temperature was added and the 

plate was mixed for approximately 90 sec on a plate mixer. The light production was 

measured in an Amerlite Luminometer (Amersham). For each sample the protein content 

was measured in a microtiter plate at 595 nm, according to Bradford (1976) using protein 
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assay dye reagent (BioRad) and bovine serum albumin (BSA) as protein standard. 

EROD assay 

The EROD activity was measured using 96-well microtiter plates, mainly based on the 

method described by Sanderson etal. (1996). Briefly, H4IIE or Hepa1c1c7 wild type cells 

were seeded in 96-well plates in 100/vl a-MEM. After 24 hr incubation at 37°C the cell 

layer was 80-90% confluent, and 100 fj\ of fresh a-MEM containing the test compound 

in maximal 0.5% DMSO was added to each well. Samples were tested in four or six-fold 

replicates. After an additional 48-hr incubation, the medium was removed and the wells 

were rinsed twice with 50% diluted PBS. To each well 20 //I of nanopure water was 

added to swell the cells and after 15 min incubation at room temperature, the plates were 

placed at -80°C to lyse the cells. To measure resorufin production, 50 //I of Tris-sucrose 

buffer (pH 8) with 40/t/M dicumerol, followed by 25 fj\ 10>uM 7-ethoxyresorufin (ER) 

were added to each well and the plates were pre-incubated for 20 min at 37°C. To start 

the reaction, 25 //I 1 mM NADPH solution was added per well and the plates were again 

incubated, 1 hr at 37°C. The resorufin production was measured in a fluorometer 

(Cytofluor) with an excitation filter at 530 nm and an emission filter at 590 nm. Protein 

measurement was carried out in the same plates, using the Pierce method (Smith et a/., 

1985), for which, unlike the Bradford method described above, dilution of samples was 

not necessary. Samples were left overnight at 37°C to dry until slightly wet. After addition 

of bicinchoninic acid (Pierce) followed by 30 min incubation at 37°C, the absorbance 

at 562 nm was measured in a microtiter plate spectrophotometer (Thermomax, Molecular 

Devices). BSA was used as protein standard. 

Substrate Inhibition Test 

For the CALUX inhibition assay, H4IIE.Luc or Hepa.Luc cells were exposed to 50 pM 

TCDD in 24-well plates for 24 hr. Upon harvesting and addition of lysis mix, the plates 

were frozen at -80°C and later thawed on ice prior to luciferase activity measurement. 

Final concentrations of Clophen A50 ranging from 0.1 to 500 //M and 3,3',4,4-tetra-

chlorobiphenyl (PCB-77) ranging from 0.01 to 50//M were reached by adding appropriate 

concentrations of stock solutions in 4 //I DMSO to the 20 fj\ of cell lysate in each well. 

The plates were allowed to stand 5 min at room temperature and then thoroughly mixed 

for 5 min at 37°C on a plate mixer. Samples of 20 //I were measured for light output as 

described above. For the EROD assay, H4IIE or Hepa wild type cells were exposed to 

50 pM TCDD in 96-well plates for 48 hr. Upon harvesting and addition of nanopure 

water, plates were frozen at -80°C and later thawed on ice for EROD measurement. Final 

concentrations of Clophen A50 ranging from 0.1 to 500 //M and PCB 77 ranging from 
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0.01 to 50 fjM were achieved by adding stock solutions in 4 //I DMSO per well shortly 

after cell lysis at -80°C. The plates were then thoroughly mixed on a plate mixer for 20 

min at 37 °C, 50//I of Tris-sucrose buffer (pH 8) with 40//M dicumerol, followed by 25 

fj\ 10jt/M ER were added to each well, and the plates were pre-incubated for 20 min at 

37°C. To start the reaction, 25 fj\ 1 mM NADPH solution was added per well and 

resorufin production was measured as described above. 

CALUX measurement of sediment and pore water extracts 

Sediment samples. Sediment samples collected throughout The Netherlands were 

obtained from the National Institute for Inland Water Management (RIZA) from the 

following locations: Ketelmeer (KM1, KM3 and KM13), Oostvaardersplassen (OVP), 

North Sea Canal (NSC), Drontermeer (DM), Markermeer (MM), Brabantse Biesbosch (BB), 

Dommel (DOM), Delfland (DL), and Spijkerboor (SB). Sediments were sampled with an 

Eckman grab and stored in large plastic vials at 5°C. Of the sediment samples used, KM 

and OVP are routinely assayed in RIZA biomonitoring programs. KM, BB and SB are 

sedimentation areas of the rivers Rhine and Meuse, and known to be polluted with a wide 

range of chemicals, including PCBs and dioxins. The OVP is not in direct contact with 

one of the main rivers and is therefore considered to be a reference site (Maas et a/., 

1993). Also MM, DM, and DL have low contamination levels in the sediment. NSC and 

DOM have regional inputs of organic micropollutants and heavy metals, respectively. 

Extraction and clean-up of sediment. Sediment samples were homogenated, extra

neous overlying water was decanted, and large pieces of debris were removed by sieving 

the sediment over a coarse sieve (3 mm). Ten grams of sediment was mixed with Na2S04, 

dried in an oven overnight at 40°C, and extracted with hexane/acetone (1:1) in a soxhlet 

for 16 hr. After cooling down, the extract was washed with 50 ml of deionized water and 

5 ml of saturated NaCI solution, and the hexane fraction was concentrated to 3-4 ml by 

evaporation. Sulphur was removed using tetrabutyl ammonium sulfite (TBA) (De Voogt 

et a/., 1990; Verbrugge et a/., 1991). Further clean-up was performed using a multilayer 

acid-base silica column consisting of 0.75 g Na2S04 on top of dried silica with, 

respectively, 0.75 g of 22% and 0.75 g of 40% hexane washed H2S04 and 1 g 33% 

NaOH on glass wool. After preeluting with 5 ml of hexane the column was loaded with 

the sample and eluted with 20 ml of hexane followed by 20 ml of hexane/dichlorome-

thane (1:1). The sample was reduced to less than 1 ml by rotoevaporation at 35°C and 

transferred to 1 ml vials. Just before the extract was completely dried under a gentle, 

filtered air flow, 100 JJ\ of DMSO was added and the last hexane was evaporated. 

Collection and extraction of pore water. Pore water was collected by the method 

described by Maas et a/. (1993). Mixed, decanted, and sieved sediment samples of 200 
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g were added to 500 ml plastic containers and centrifuged for 30 min at 3000g at 5°C. 

The supernatant was carefully decanted into glass erlenmeyer flasks and stored at 5°C. 

To avoid major chemical or physical changes in its composition, the pore water was not 

kept longer than 1 week. Samples of pore water (5 ml) were extracted with 5 ml hexane, 

vigorously vortexed, and centrifuged at 3000g for 5 min. The hexane fraction was 

collected in a hexane-rinsed, glass test tube. This procedure was repeated twice, and the 

combined hexane fractions were evaporated under a gentle nitrogen flow until only a 

very small drop was left. To each sample 200//I of DMSO was added and, after complete 

evaporation of the remaining hexane, diluted with 3.3 times more DMSO. 

Early life stage test with zebra fish 

Early life stage (ELS) tests with zebra fish (B. rerio) were performed according to the 

method described by Van Leeuwen et a/. (1990). Two to six females and two to four 

males were placed together overnight in special 'brood chambers. Induced by the 

morning light, the females normally lay up to 600 eggs which are fertilized by the males. 

The fertilised eggs fall through a mesh at the bottom of the brood chamber into a separate 

compartment. After disinfection (in a 0.04% formalin solution for 1 min) 20 blastulareggs 

were transferred to 60-ml glass vials each containing 20 ml of test solution. Undiluted 

pore water samples and two dilution steps of 1.8 and 3.1 times in dutch standard water 

(DSW, pH 7.8, hardness = 210 mg-l"1 as CaC03) were prepared in triplicate, added to the 

eggs and renewed every 2 to 3 d. DSW was used as a blank. A TCDD standard series was 

included at the concentrations of 0, 25, 50, 500, 1000 and 2000 pM, added in 80//I 

DMSO/20 ml DSW and renewed daily. During solution renewal, eggs or larvae were left 

in the test vessels in a small amount of fluid, while the water was changed. The embryo-

larval stages were exposed continuously for 8 d at 25 +1 °C, without feeding. Water 

quality parameters (pH, 0 2 , ammonium, nitrate and nitrite) were checked throughout 

the test period and remained within acceptable ranges. Dead larvae were enumerated 

and removed daily, and malformations were recorded. At the end of the test period 

surviving fish were checked for malformations under a binocular microscope. The end 

points, percentage mortality and teratogenicity, were corrected by deducting the percen

tage dead in the control, multiplying the result by 100, and dividing this by 100 minus 

the percentage mortality in the control (Tattersfield and Morris, 1924). 

Calculations of CALUX-TEEs and CALUX-JEQs 

For calculation of the TCDD equivalency factors for compounds in the CALUX assay 

(CALUX-JEEs) a complete dose-response curve in triplicate was used. Values between 

10% and 90% of the maximum were used for Scatchard analysis. The intercept with the 

101 



Chapter 6 

X-axis yields the theoretical maximum CALUX response (G4LUXmax); the intercept with 

the Y-axis the CAL(JXmax/EC50 from which the EC50 can be calculated. The calculated 

EC50 was always compared with the visually determined values for confirmation. The 

CALUX-JEf value of each compound was calculated as the ratio EC50 (TCDD):EC50 

(compound). 

For calculation of TCDD-equivalents in the CALUX assay (CALUX-TEQs), a 

complete standard curve of 2,3,7,8-TCDD was used for each cell line. For each 24-well 

plate the response of the unknown samples were measured (in triplicate) plus three TCDD 

calibration standards bracketing the TCDD EC50 Based on these calibration standards 

the complete standard curve was adjusted for plate to plate variation. The standard curve 

was fitted (1-site ligand fit, function: y = a0*x(a1+x)) using SlideWrite 5.1, which 

determines the fitting coefficients by an iterative process minimizing the Chi-squared 

merit function (least squares criterion). The CALUX-TEQ value for the unknown sample 

was interpolated on this curve. The response of the unknown sample is ideally in the 

range of 10%-100% of the EC50 (for H4IIE.Luc 1-10 pM TCDD), and should be further 

diluted when out of this range. The detection limit is set at the DMSO response plus three 

times the standard deviation. 

Clophen A50 

o T C D D 

?0"1 10° 10 1 1 0 2 1 0 3 1 0 4 1 0 s 1 0 8 1 0 7 1 0 8 1 0 9 

Concentration (pM) 

Figure 6.1 Dose-response curves for luciferase induction in H4IIE.Luc cells for 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) and the technical PCB mixture Clophen A50. Back
ground CALUX response was 13.8 relative light units (RLU)///g protein, induction by 1000 pM 
TCDD 414.2 RLU/fjg protein. Exposure was during 24 hr, for details see M&M. 
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RESULTS 

Induction of CALUX response by PHAHs 

The CALUX response was sensitive and reproducible for exposure to 2,3,7,8-

tetrachlorodibenzo-p-dioxine(TCDD). The detection limit in H4IIE.Luc cells was less than 

1 pM, which equals an absolute amount of less than 0.5 fmol/well. The EC50 is reached 

at 10 pM and the curve saturates between 100 pM and 1 nM, with a maximum induction 

factor of 30 (Figure 6.1). The standard deviation in the CALUX assay, performed in tripli

cate, was generally ^5%. The dose-response curve for the technical PCB mixture Clophen 

A50 was comparable to that of TCDD, but the EC50 was 5-105 times greater and the 

maximum induction factor was 27, slightly less than for TCDD. Dose-response curves 

for mixtures of polychlorinated terphenyls (PCT) (Aroclor 5442 and 5460), 

polybrominated diphenylethers (PBDE) and individual PBDE congeners were similar (data 

not shown). The EC50 values, TEFs, and induction factors at the EC50, for CALUX activity 

in H4IIE.LUC cells exposed to these PHAHs are reported in Table 6.1. The CALUX-JEF 

for the technical PCB mixture Clophen A50 and for the PCT mixture Aroclor 5442 were 

almost identical. Aroclor 5460 was found to be 350 times more potent as a CALUX 

inducer, and the PBDEs tested were similar to Clophen A50. The CALI /X-TEF of 2,2',4,4'-

TBDE was 10-fold less than for the other PBDEs, comparable to the relatively low 

induction potency of Ugilec 141. The TEFs for CALUX activity determined in H4IIE.Luc 

or Hepa.Luc cells were almost identical (data not shown). 

Table 6.1 Toxic equivalency factors (TEFs) for luciferase induction in H4IIE.Luc cells 
of several sediment associated compounds, as determined in the CALUX-assay. The 50% 
effect concentration were calculated using Scatchard analysis. 

^ . Molecular ECqn CALUX Induction 
C o m p O U n d weight (M) TEF (fold)1 

2,3,7,8-TCDD 

Clophen A50 

Aroclor 5442 

Aroclor 5460 

Bromkal 70-5-DE 

2,2',4,4'-TBDE 

2,2',4,4',5-PBDE 

2,2',4,4',5,5'-HBDE 

Ugilec 141 

322 

300 

396 

562 

536 

486 

565 

644 

320 

1.0 1 0 n 

5.0 10-6 

6.3 10"6 

1.8 10"8 

2.1 10"6 

1.4 10"5 

1.7 10-6 

2.3 10"6 

1.6 10"5 

1.0 

2.0 10"6 

1.6 10"6 

5.6 10"4 

4.8 10"6 

7.1 10"7 

5.9 10"6 

4.3 10"6 

6.3 10"7 

15.0 

13.6 

14.0 

8.5 

7.3 

7.6 

4.8 

9.6 

4.0 

'The induction factor is determined at the EC50, as the increase in luciferase induction 
relative to background induction (12.1-13.8 relative light units///g protein). 
Abbreviations: TCDD-tetrachlorodibenzo-p-dioxin, TBDE-tetrabromodiphenylether, 
PBDE-pentabromodiphenylether, HBDE-hexabromodiphenylether 
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• EROD 

10 100 

TCDD (pM) 

* CALUX 

1000 

Figure 6.2 Dose-response curves for luciferase induction in H4IIE.Luc cells and etho-
xyresorufin O-deethylase (EROD) activity in H4IIE wild type cells for 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD). For conditions of the luciferase response see Fig. 1. 
Background EROD activity was 1.3 pmol resorufin (RR)/y[/g protein.min, induction by 1000 
pM TCDD 11.7 pmol RR///g protein.min. Exposure for EROD assay was during 48 hr, for 
details see M&M. 

The CALUX and EROD assay gave similar curves (Figure 6.2), though in the CALUX assay 

the lower detection limit was approximately 2- to 3-fold less and the maximum induction 

factor was approximately 3-fold higher, the EC50values were somewhat less, and the TEFs 

slightly higher (both in H4IIE cells). The EC50 for TCDD was 16 pM in the EROD assay. 

The induction factors in the EROD assay for Aroclor 5442 and Aroclor 5460 at the EC50 

were 4.0 and 3.6, respectively (data not shown), as compared to 14.0 and 8.5, 

respectively, in the CALUX assay. EROD induction by Ugilec was not measurable, and 

EROD induction by PBDEs was not studied. 

Substrate inhibition tests 

Inhibition of the responses of the CALUX and EROD assays by PCBs were compared in 

the H4IIE cells (Figure 6.3a). The activity induced by 50 pM of TCDD was measured in 

the presence of increasing amounts of Clophen A50, added to the lysed cells shortly 

before the substrates luciferin or ethoxyresorufin respectively, were added. The induction 

by 50 pM of TCDD for EROD activity was 9.6 pmol resorufin-yt/g"1 protein-min"1 while 

that for CALUX activity was 98.9 relative light units (RLUJ-jUg"1 protein. Both responses 

were set at 100%. The measured EROD activity was reduced to 16% of the original 

activity after addition of 100 nM Clophen A50. A Clophen A50 concentration of 50 /vM 

completely eliminated EROD activity. No significant inhibition of the CALUX activity was 
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observed at concentrations of Clophen A50 as great as 500 ^.M. Also 3,4,3',4'-

tetrachlorobiphenyl (PCB-77) inhibited EROD activity when added to the lysed cells just 

before measuring (Figure 6.3b). This inhibition was, however, less pronounced than for 

Clophen A50, as 40% of the EROD activity was still measurable when 5 0 / / M PCB-77 

was added. Again, no significant inhibit ion was observed for CALUX activity (Figure 

6.3b). Comparable results were obtained using Hepa cells (data not shown), although 

the reduction in measurable EROD activity was slightly less than for H4IIE cells. No 

reduction of the CALUX activity was observed in either H4IIE.Luc or Hepa.Luc cells. 
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Figure 6.3 Effect of an increasing concentration of (a) Clophen A50 
or (b) PCB-77 ,added to lysed H4IIE.Luc or H4IIE.wt cells shortly before 
measuring, on measurement of respectively the CALUX or EROD 
activity. The CALUX and EROD activities had previously been induced 
by exposure to 50 pM 2,3,7,8-TCDD during 24 hr, and this induction 
was set at 100%. 
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Figure 6.4 a) The CALUX response by extracts of Ketelmeer location 1 (KM) and 
Oostvaardersplassen (OVP) sediment in H4IIE.Luc cells after 20 hr of exposure, expressed as 
induction factor relative to background luciferase induction (12.1 relative light units///g 
protein), b) The same for EROD response in H4IIE wild type cells after 48 hr exposure, 
background EROD activity 1.1 pmol resorufin//vg protein.min. 

OVP 

KM 

NSC 

1 10 100 

pi pore water 

Figure 6.5 The CALUX response by pore water extracts in H4IIE.Luc cells after 20 hr 
exposure, expressed as induction factor relative to background luciferase induction. 
OVP= Oostvaardersplassen, NSC= North Sea Canal, KM= Ketelmeer location 13 
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Induction of CALUX activity by sediment extracts 

As an example of the type of responses observed, the dose-response curves for H4IIE cells 

exposed to sediment extracts from the relatively clean Oostvaardersplassen (OVP) and 

the polluted Ketelmeer (KM1) are presented for the CALUX assay (Figure 6.4a) and the 

EROD assay (Figure 6.4b). In the CALUX assay, the maximum induction factor for TCDD 

(1000 pM) was 44.6. The extract of 0.3 mg of KM1 sediment resulted in a 4-fold 

induction of CALUX. The extract of 193 mg of KM1 sediment resulted in a CALUX 

response comparable to 1000 pM TCDD. The induction by 387 mg of sediment was 

approximately 70-fold greater than the DMSO blank, which was greater than the TCDD 

maximum induction factor. The extract of 441 mg of OVP sediment did not induce 

CALUX activity more than 12.4-fold. The EROD activity was completely inhibited in the 

presence of KM1 extract at the greater concentrations. Based on the TCDD standards that 

were used in each CALUX assay, the TEQ value of the KM1 sediment was calculated to 

be 70.0 + 6.6 fmol-g"1 dry sediment and 4.2 + 0.2 fmol-g-1 for the OVP sediment. The 

recovery of 13C-labeled PCBs and ' t- labeled TCDD in the whole extraction and purifica

tion procedure was 85%. Because it was not possible to measure the recovery of each 

individual sample, the recovery was not used in the calculation of TEQ values. 

The sediment extracts not subjected to clean-up, had a dark tar-like appearance 

(especially the extract of KM1) and caused visible disturbances in the cells, resulting in 

decreasing protein concentrations and finally cell death. Therefore, unpurified sediment 

extracts were not tested in further experiments. 

CALUX activity by pore water extracts 

In contrast to sediment extracts, unpurified pore water extracts did not result in any cell 

death or reduced protein concentrations. The dose-response curves in H4IIE.Luc cells 

of pore water extracts from OVP, KM13 and the North Sea Canal (NSC) are presented 

in Figure 6.5. The extract of 250 //I NSC pore water induced CALUX activity 12.1-fold, 

but did not result in maximum induction. The same volume resulted in 3.8- and 2.2-fold 

induction for KM13 and OVP respectively. When tested in the EROD assay, the same 

extracts resulted in 3- to 4-fold less induction (data not shown). Based on the measured 

TCDD standards, the TEQs calculated for these pore waters were 26.4 fmol-ml"1 for 

KM13, 317.4 fmol-ml"1 for NSC and below detection limit for OVP. The detection limit 

in this CALUX assay was 1.9 fmol/well. As 250 fj\ pore water or less was tested per well, 

the detection limit was 7.6 fmol-ml"1 pore water. The recovery of 13C labeled PCB-101 

(2,2',4,5,5-pentachloro biphenyl) and PCB-153 in the extraction procedure was 94%, but 

the TEQ values were calculated without correction for the average recovery. 
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Figure 6.6 Dose-response curves for mortality and malformations after 8 d exposure of 
eggs of zebrafish {Branchycardio rerio) (ELS response) and luciferase production {CALUX 
response) in H4IIE.Luc cells after 24 hr exposure, compared for the same 2,3,7,8-TCDD 
concentrations. The CALUX response is expressed as induction factor relative to 
background induction. The value at 0.1 pM is in fact the control value (0 pM). 

Early life stage test and CALUX assay with pore water 

The slope of the dose-response curve for the early life stage (ELS) test with zebra fish in 

artificial pore water (DSW) spiked with TCDD, was steeper than the slope of the dose-res

ponse curve for the CALUX assay (Figure 6.6). The EC50 (8 d, malformations and morta

lity) for the ELS assay was 21 +2.3 pMTCDD (21 fmol TEQ-ml"1), which was in the same 

order of magnitude as the EC50 of 10 pM TCDD for the CALUX assay. At concentrations 

greater than 35 pM 100% effect was observed, and at concentrations grater than 165 pM 

all zebrafish larvae were dead within 8 days. Even at the lowest concentration tested (8.3 

pM TCDD) 7% malformations were observed. 

The results of the CALUX assay were compared with those of the ELS test, with 

pore waters from 10 natural sediments (Table 6.2). The effects varied among pore waters, 

ranging from 0-100% effect in the ELS assay and from detection limit to 317 fmol 

TEQ-ml"1 pore water in the CALUX assay. 

DISCUSSION 

The results demonstrate that the CALUX assay is a rapid, sensitive, and reproducible 

method of determining the toxic potency of mixtures of lipophilic compounds that bind 
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to and activate the AhR. Persistent AhR-active compounds that occur in whole sediments 

or pore water were measured in small aliquots with minimal effort. The CALUX assay 

represents significant improvement relative to the H4IIE.wt assay, which uses endogenous 

EROD induction as a response. The sensitivity and linear working range of the CALUX 

was slightly better than the EROD assay, but the primary improvement of the CALUX 

assay was that it was insensitive to substrate inhibition, which has been a problem in the 

EROD assay. 

Induction of CALUX response by PHAHs 

The TEFs of Clophen A50, Bromkal 70, PBDE and HBDE (Table 6.1), were almost 

identical, which is in accordance with the results of an in vivo experiment with Wistar 

rats (Von Meyerinck et a/., 1990) in which the EROD induction by Bromkal 70 was 

slightly greater than the induction by Aroclor 1254, a technical PCB mixture comparable 

to Clophen A50 (Schultz, 1989). The TEF for coplanar and mono-ortho-polychlorinated 

diphenyl ethers (PCDE), based on immunotoxicity and AHH induction in C57BL/6 mice 

(Safe, 1990), was 10"3. This is about 200-fold greater than the CALUX-JEFs that we 

determined forthe di-ortbo-brominated diphenylethers and the mixture Bromkal 70-5-DE. 

However, TEFs of di-o/tho- and mono- or non-ortho-PCBs have been reported to differ 

by 50-200 as well (Safe. 1990). In the CALUX assay, the PCT Aroclor 5460 was 20-fold 

more potent than Aroclor 5442. A comparison of the EROD induction in Spraque-Dawley 

rats by PCT mixtures Aroclor 5432 and Aroclor 5460 (Toftgard et a/., 1986) revealed that 

Aroclor 5432 was, on a mass base, a more potent inducer than Aroclor 5460. Since 

Aroclor 5460 is much heavier than Aroclor 5432 or 5442 (Table 6.1) this comparison 

would be different on a molar base. We did not test Aroclor 5432. The CALUX-TEF for 

Ugilec 141 was 3.2-fold less than that for Clophen A50. This is in accordance with an 

earlier observation that the EROD activity in C57BL/6 mice dosed with 200 mg-kg"1 

Ugilec 141 was 3.4-fold less than that of mice dosed with 200 mg-kg"1 Aroclor 1254 

(Murk etal., 1991). The molar densities of Ugilec 141 and Aroclor 1254 differ less than 

10%. 

It should be noted that induction values reported for technical mixtures could 

be partially due to a small percentage of impurities. Additionally, it is important for TEF 

calculations that the concentrations of the stock solutions used for the assays are validated 

with GC-MS, as concentrations of carefully prepared stock solutions from different 

laboratories may vary by a factor of 10. If no validation has been performed, the EC50 

of the TCDD stock used should be mentioned as well. The maximum CALUX induction 

factors for TCDD may differ slightly between individual assays. This is probably due to 

slight differences in the condition of the cells, such as the degree of confluency. Three 
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TCDD calibration concentrations were measured in duplicate on each 24-well plate to 

allow comparison of TEFs and TEQs determined in different assays. 

Substrate inhibition in the EROD assay 

The CALUX assay offers some advantages when compared to the commonly used EROD 

assay in H4IIE cells. It is slightly more sensitive and has a 3-fold greater induction factor, 

but, more importantly, the CALUX assay offers the possibility of measuring the presence 

of less potent inducers such as Clophen A50 and Ugilec 141, as well as low concentra

tions of compounds in environmental matrices. Since PHAHs are not substrates for 

luciferase, substrate inhibition by PHAHs will not occur in the CALUX assay. The EROD 

activity is already inhibited at substrate concentrations of 50 nM or more, which are 

needed for induction by less potent inducers (Figure 6.3a). In contrast to Clophen A50, 

PCB-77 did not inhibit EROD activity up to 99% at high concentrations (Figure 6.3b). 

Since PCB-77 is a substrate for cytochrome P4501A1, and readily metabolized in in vitro 

incubation with rat hepatic microsomes (Murk et a/., 1994c), PCB-77 could have been 

metabolized for 40% or more during 60 min incubation in the H4IIE.wt EROD assay. 

Substrate inhibition has been demonstrated in chicken hepatocytes and rat- and fish 

hepatoma cell lines (Kennedy eta/., 1993; Sawyer eta/., 1984; Hahn etal., 1993; Richter 

et a/., 1996). Also in experimentally dosed flounder the EROD activity induced by 5 

//g-kg"1 TCDD was reduced by 66% when dosed simultaneously with 42 mg-kg"1 Clophen 

A50, although the cytochrome P450 protein content increased in an additive manner 

(Besselink, pers.comm.). 

CALUX activity induced by sediment and pore water extracts 

Exposure of H4IIE.Luc cells to extracts of KM1 sediment, which is known to contain a 

number of contaminants, resulted in 17-fold greater CALUX activity than did extracts from 

the relatively clean OVP sediment. Based on chemical analyses, the TEQs of these two 

locations differ by a factor 20 (unpublished data RIZA). A comparable difference was 

observed using pore water extracts. The CALUX response to 250 /J\ OVP pore water was 

less than the detection limit (1.9 fmol/250 //I). The NSC pore water sample contained 

almost 13-fold more CALUX-JEQs than the two sites from the KM. A herbicide producing 

plant is situated in the NSC, where accidental emissions of PCDD and PCDF have 

occurred (Turkstra and Pols, 1989). In contrary to whole sediment samples, pore water 

needed no soxhlet extraction or clean-up steps. This makes the sample preparation much 

more rapid and the chance of loosing unknown AhR-active compounds with yet unknown 

optimal recovery conditions much smaller. 

PHAHs and organochlorine pesticides can be lost during filtration, due to 
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irreversible adsorption on polyamide filters, and to a lesser degree, on Teflon material 

(Rood et a/., 1995a,b). This may explain why Anderson et al. (1995) did not measure any 

CALUX activity using pore water samples from polluted sites, which they filter sterilized 

over a 0.1-//m membrane. Additionally, Anderson etal. (1995) kept collected pore water 

for approximately 4 months before testing. Whole sediments can be kept at 4°C for more 

than 112 days, without losing toxicity (Othoudt et a/., 1991), however, pore water 

samples should not be kept longer than 1 week because of chemical changes (Burton, 

1991; Hill eta/., 1994). When optimizing the pore water assay, we observed that upon 

filtering 3H-PCB-77-spiked pore water samples over a glass fiber Whatman GF/F 0.7-;(/m 

filter, 86-92% of all radioactivity remained on the filter. This was to be expected, since 

lipophilic molecules such as PHAHs are mainly associated with dissolved and particulate 

organic carbon, especially in the smallest size fraction (0.22-1 //m) (Muir et al., 1992). 

PHAHs that are associated with small particles can readily be accumulated by species 

which filter or ingest organic particles, such as mussels and chironomids (Muir et al., 

1992; Ankley etal., 1992) and will be relatively available for uptake through skin or gills 

after dissociating into the water phase (Swartz et al., 1990; Kjeller et al., 1990; di Toro 

et al., 1991; Power and Chapman, 1992). Partitioning of organic compounds between 

the solid phase of sediments and pore water depends on the lipophylicity of the 

compounds and the presence of dissolved organic matter like humic acids in the pore 

water (Landrum and Robbins, 1990). Analysis of only the solid phase of sediments does 

not discriminate between bioavailable and tightly bound contaminants. Therefore, either 

much additional information is needed for assessment of the bioavailable fraction of 

sediment associated contaminants or the biologically available fraction could be mea

sured directly using pore water samples. 

In vivo validation of the CALUX response 

The CALUX response has already been chemically validated with pure compounds (Aarts 

et al., 1995; Garrison et a/., 1996) or with mixtures (Postlind et al., 1993). To indicate 

the hazard of a certain polluted sediment for the ecosystem, the CALUX response has to 

be validated against responses from in vivo assays. In this study the in vivo response in 

the ELS assay for a TCDD spiked DSW sample corresponded with the CALUX response 

(Figure 6.6), although the slope of the ELS assay curve was steeper, resulting in a more 

narrow working range. These results demonstrate that compounds present in pore water 

samples are directly available for organisms in the water phase, since the fish larvae did 

not eat during the test period. The response in the 8 day ELS assay with zebra fish has 

been reported to correlate with the 60-day ELS test for rainbow trout and with a chicken 

embryotoxicity tests (Van Leeuwen et al., 1990). These species share embryonic develop-
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Figure 6.7 Correlation between the 2,3,7,8-TCDD equivalents in pore water determined 
in the CALUX assay (CALUX TEQs) and the PCB-153 level in sediment from the same location 
measured by GCMS (Table 6.2). The different symbols indicate the % mortality and 
malformations in the early life stage test with zebrafish (Branchycardio rerio) performed in the 
collected pore water (see also Table 6.2). 

merit in the absence of maternal metabolism or a placenta barrier. Although the cells used 

in the CALUX assay are mammalian, they are also directly exposed to the toxic 

compound. The correlation w i th in vivo embryotoxicity in mammals could therefore be 

less strong. 

No clear correlation was observed when comparing the CALUX response to 

extracts of naturally occurring pore waters w i th the response in the ELS test (Table 6.2). 

This was to be expected, since the ELS assay w i l l also be influenced by the sometimes 

great concentrations of heavy metals present in the whole pore water samples (Table 6.2). 

A better correlation w i th the CALUX response is to be expected w i th an ELS assay 

performed wi th extracts from pore waters. Comparison of the concentrations of PCB-153 

in the sediments w i th the CALUX response shows a better correlation (Figure 6.7). 

The use of the CALUX assay for hazard assessment of sediments 

Given the complexity of the mixtures of PHAHs in sediments and organisms in industria

lised countries, chemical analysis can give only a rough impression of the potential risks 

for the environment. Due to the often small concentrations of individual congeners and 

the presence of unknown or not routinely measured AhR active substances, such as 

PBDEs and PCTs that may still contribute to the total TEQs of a sample, there is a risk of 
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underestimation of the total TEQ. The toxic responses of AhR-active compounds may be 

additive, as is the case for TCDDs and TCDFs, but for PCBs and non-PCB-like substances 

both additive and antagonistic interactions have been observed (Safe, 1994; Aarts et a/., 

1995). These limitations form drawbacks to the TEQ approach. The CALUX assay provides 

a measure of the toxic potency of the whole mixture, including interactions. To be able 

to correct for differences in quantification due assay to assay variation, three TCDD 

calibration standards have to be measured with each assay. No changes in EC50-values 

or CAZ.L'X-induction relative to TCDD have occurred over the period of 1 year that the 

cells were in culture. 

For assessment of the total biological hazard by contaminants in sediments, a 

triad approach of combined chemical analyses, bioassays and in situ bottom fauna studies 

can provide an integrated diagnosis of sediment contamination (Chapman, 1992; Van 

de Guchte, 1992, 1995). In vivo bioassays will give an impression of the total toxic 

potential and the bioavailability of sediment-associated contaminants. However, they are 

time-consuming, vulnerable to physical or chemical conditions of the samples, and often 

provide little information on the cause of toxicity. Additional in vitro bioassays like the 

CALUX assay will provide more specific insight into the functional groups of chemicals 

that are present. In particular the CALUX assay using pore water extracts could be a useful 

tool for rapid and sensitive indication of the toxic potency of biologically available 

mixtures of AhR-active compounds in sediments. If high CALUX responses are observed, 

chemical analysis is needed to determine the specific compounds responsible for the 

toxic response. 
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CHAPTER 7 

THE CALUX(CHEMICAL-ACTIVATED LUCIFERASE EXPRESSION) ASSAY, A SENSITIVE 

IN VITRO BIOASSAY FOR MEASURING TCDD-EQUIVALENTS IN BLOOD PLASMA* 

Abstract 

Recombinant rat (H4IIE) and mouse (Hepa1c1c7) hepatoma cell lines, containing the 

firefly {Photinus pyralis) luciferase gene under trans-activational control of the aryl 

hydrocarbon receptor (AhR), were used to determine total AhR-active compounds in 

blood plasma. Extracts from 250 y\ blood plasma aliquots or less, from eider ducks dosed 

with 3,3',4,4'-tetrachlorobiphenyl (PCB-77) or with the technical PCB-mixture Clophen 

A50, were used for chemical validation of the CALUX (chemical activated luciferase 

expression) response. For each sample both the fat-containing organic extract and the 

fat-free, cleaned, extract were tested in the CALUX assay. The CALUX responses for the 

extracts were converted into so-called CALUX-JEQs (TCDD-equivalents), using a 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) standard curve. The CALUX-TEQs in both fatty and 

cleaned extracts correlated significantly with PCB-77 or PCB-153 levels (depending on 

the dosage group) determined in blood plasma using GC-MS. For PCB-77 a toxic 

equivalency factor (TEF) of 1.5 10"3 was calculated based on these correlations. In 

addition, PCB-118 and PCB-156 levels in abdominal fat (assessed with GC-ECD) and 

hepatic EROD activities correlated well with the CALUX-TEQs in both fatty and cleaned 

blood plasma extracts. Plasma cholesterol and triglyceride levels were determined as a 

measure of lipid content, in 10 [A aliquots of blood plasma using enzymatic spectropho-

tometric determination. 

In conclusion, we have demonstrated that the CALUX assay is a rapid, sensitive 

assay for assessing the toxic potency of (mixtures of) AhR-active compounds in small 

samples of blood plasma. The current limit of detection for the CALUX assay is less than 

0.1 fmol (32 fg) TEQ, which would correspond to roughly 0.3-2 ml blood plasma needed 

for quantification of TEQs in environmentally exposed species. 

* Based on: Murk A), Leonards PEG, Bulder AS, Jonas A, Rozemeijer MjC, Denison MS, 

Koeman jH and Brouwer A (1996): The CALUX (chemical-activated luciferase expression) 

assay, a sensitive in vitro bioassay for measuring TCDD-equivalents in blood plasma. 

Submitted to Environmental Toxicology and Chemistry 
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INTRODUCTION 

It is essential for proper risk assessment of micropollutants occuring in the environment, 

to be able to measure the internal exposure of wild life species. Quantification of the toxic 

potency of the whole mixture of compounds acting via a specific mechanism, instead 

of only a single or a few representatives, would strengthen the causal relationship 

between an observed adverse effect and the presence of a (group of) chemical(s). 

Polyhalogenated aromatic hydrocarbons (PHAHs) such as polychlorinated 

biphenyls (PCBs) and polychlorinated terphenyls (PCTs), are ubiquitous pollutants that 

are especially associated with the aquatic food chain. The highest PHAH concentrations 

are found in top predators of the aquatic food chain, such as mussel- or fish-eating birds, 

and fish-eating mammals (Koeman, 1973, Focardi et a/., 1988, Duinker et a/., 1989; 

Tanabe et a/., 1994). PHAHs elicit a number of species-specific, toxic responses in 

laboratory and wildlife species, including hepatoxicity, body weight loss, thymic atrophy 

and impairment of other immune responses, dermal lesions, reproductive toxicity, alter

ations in vitamin A and thyroid hormone metabolism, teratogenicity and carcinogenesis 

(Poland and Knutson, 1982; Gilbertson, 1989; Goldstein and Safe, 1989; Brouwer, 1991; 

Nord, 1992; Safe, 1994; Leonards et a/., 1995; Ross et a/., 1995). 

PHAHs are present as complex mixtures in environmental matrices such as 

sediments, wildlife and humans. Industrial applications of some PHAHs, such as PCBs 

and PCTs, have been banned in industrialized countries since the early 1980s. They are, 

however, still entering the environment for example by leakage from old, so-called closed 

systems, from recycling of old contaminated materials, leakage from dump sites, and long 

range atmospheric transport and deposition (Tanabe, 1988). The recent pattern of PCB-

contamination suggests their usage still continues in tropical countries (Iwata etal., 1994). 

Other PHAHs with qualities comparable to PCBs, such as polybrominated- and poly

chlorinated diphenylethers (PBDEs and PCDEs), are still being produced and used 

(Pijnenburg et a/., 1995). Moreover, environmental input of PHAHs such as 

polychlorinated-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) is still 

continuing due to their formation during incomplete combustion in the presence of 

chlorine (Rappe and Buser, 1989; Rappe, 1991). 

As PHAHs are lipophilic, persistent compounds they mainly accumulate in the 

lipid compartments of organisms. The distribution in the body is dependent on the 

structure and the physicochemical characteristics of the individual congeners. Excretion 

depends to a large extend on the metabolism to more polar compounds. The rate of 

metabolism of PHAHs depends upon halogen content and substitution pattern, the dose 

and the animal species (Ahlborg et a/., 1992). As a result , the absolute and relative 
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abundance of individual congeners differs greatly between various biological samples 

(Rappeand Buser, 1989; Norstrom etal., 1990; Duinker et a/., 1989). 

The mechanism of action for the toxic, planar PHAHs, which are approximate 

iso-stereomeres of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been partially 

elucidated and involves a receptor mediated proces. After binding of the ligand to the 

cytosolar aryl hydrocarbon receptor (AhR), the ligand-receptor complex is activated and 

translocated to the nucleus, wherein it binds to dioxin responsive elements (DREs) 

followed by stimulation of transcription of adjacent down stream genes (Denison and 

Whitlock, 1995). Induction of cytochrome P450 1A1 and its associated increase in 

ethoxyresorufin O-deethylase (EROD) activity is often studied, because its AhR-mediated 

expression is altered in tandem with that of other enzymes and receptor proteins 

(Brouwer 1991). The use of the EROD activity for quantifying AhR-active compounds is, 

however, limited under several circumstances by the phenomenon of substrate inhibition 

(Murk etal., 1996b, 1996d). 

For hazard and risk assessment of mixtures of PHAHs, the relative toxic potencies 

of individual PHAH congeners compared to TCDD have been transformed into toxic 

equivalency factors (TEFs). The concentrations of the individual congeners multiplied by 

their respective TEFs are added up to give the total TCDD toxic equivalency (TEQ) of the 

mixture (Safe, 1990; Ahlborg et a/., 1992). However, the often small concentrations of 

individual congeners, the presence of unknown or not routinely measured AhR-active 

substances, the lack of TEF values for several PHAHs, and the possible additive and 

antagonistic interactions between PHAHs (Safe, 1994; Aarts et a/., 1995) are drawbacks 

to the TEQ approach. In addition, an extensive sample clean-up is needed for chemical 

analysis of the toxicologically relevant planar PHAHs, in order to separate them from the 

bulk of other congeners (Nord, 1992). Therefore, a sensitive and quick pre-screening 

assay is needed for monitoring the toxic potency of whole mixtures of PHAHs in 

relatively small samples, such as blood plasma. 

The CALUX (chemical-activated luciferase expression) assay 

A novel in vitro bioassay has been developed recently, based on AhR-mediated firefly 

(Photinus pyralis) luciferase gene expression in genetically modified cell lines (Aarts et 

a/., 1995; Garrison et a/., 1996). The assay is called the CALUX assay (chemical-activated 

luciferase expression). To produce the CALUX cells, a vector containing the luciferase 

gene under transcriptional control of DREs was stably transfected into mouse 

(Hepa1c1c7) and rat (H4IIE) hepatoma cell lines, and several other cell lines (Postlind 

et a/., 1993; Aarts et a/., 1995; Garrison et a/., 1996; Richter et ai., 1996). Luciferase 

induction by TCDD appeared to be dose-dependent, and saturates at ligand concen-
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trations greater than 100-1000 nM. For the PCDD-, PCDF- and PCB-congeners tested so 

far, the relative potency to induce CALUX activity correlated well with reported TEF 

values (Denison et a/., 1993; Aarts et a/., 1995; Garrison et a/., 1996; Sanderson et a/., 

1996). 

Objectives of the present study 

The present study was performed to study the possible use of the CALUX assay for 

determining AhR-active compounds present in blood plasma, as a measuring for the 

internal exposure of animals. CALUX-lEQs were determined in crude blood plasma 

extracts, still containing all lipids, and in sulphuric acid cleaned blood plasma extracts 

from experimentally dosed eider ducks. The CALUX-TEQs determined in these extracts 

were compared with chemically determined PCB levels in blood plasma and in 

abdominal fat, and with the hepatic EROD-activity of the same animal. Plasma cholesterol 

and triglyceride concentrations were determined and used for normalisation of PHAH 

levels on a lipid basis. 

MATERIALS AND METHODS 

Chemicals 

Methanol, diethyl ether, and isooctane were of p.a. grade and purchased from Merck 

(Germany). Hexane was of HPLC quality (Rathburn, Scotland). 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) was purchased from Schmidt (The Netherlands) and 

the purity and concentration of the TCDD stock solution was reconfirmed by GC-MS 

analysis (Dutch State Institute for Quality Control of Agricultural Products, RIKILT-DLO). 

Ultra-clean dimethyl sulfoxide (DMSO) was purchased from Janssen (Belgium). Sulphuric 

acid (z.a., Baker, Holland) was washed with hexane before use in a silica gel 60 (70-230 

mesh, ASTM, Merck) column with dried sodium sulphate (p.a., Merck). 

Eider ducks 

The blood and tissue samples used in this experiment, originated from an earlier 

performed in vivo experiment with eider ducks. The newly hatched eider ducklings were 

caught on the isle of Vlieland in the Dutch Waddenzee, and kept in large open-air cages 

as described in Murk et a/. (1994a). After an acclimation period of 27 days the animals 

were dosed once intra peritoneally with the vehicle corn oil, 5 or 50 mg-kg1 body 

weight (bw) 3,3',4,4'-tetrachlorobiphenyl (PCB-77), or with 50 or 200 mg-kg"1 bw 

Clophen A50 (Murk et a/., 1994a). Ten days later the animals were killed under ether 
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anaesthesia, and in addition to tissues, blood was collected and processed to obtain 

plasma. Blood plasma was stored at -20°C. EROD activities were measured in hepatic 

microsomes, and a number of mono-ortho-and di-ort/70-PCB congener levels were 

determined in abdominal fat using GC-ECD, as described in Rozemeijer et al. (1995). 

Lipids were extracted from abdominal fat using pentane and quantified gravimetrically. 

In this paper only the levels of 2,3,4,4',5-pentachlorobiphenyl (PCB-118) and 

2,3,3',4,4',5-hexachloro biphenyl (PCB-156) were used for comparison with the bio-

assays, because these congeners contributed most to the total TEQs of the PCB-mixture. 

For the PCB-77 dosed animals the PCB-77 levels in the abdominal fat were quantified. 

Extraction and clean-up of blood plasma 

A selection of 25 blood plasma samples was made based on the internal PCB-concentra-

tions measured in abdominal fat, in order to obtain a wide range in concentrations. Blood 

plasma aliquots of about 1.5 ml in hexane-washed glass centrifuge tubes were de-

naturated with one volume of methanol. After vigorously mixing, two volumes of hexane 

were added (about 3 ml) and after mixing again, the tubes were centrifuged for 2 min 

at 1500g at room temperature. The hexane layer was transferred to another hexane-

washed tube, and 1 drop of 6 M HCI per 0.5 ml of plasma was added to the remaining 

water phase. Subsequently the samples were extracted twice again with hexane as 

described above. Finally 0.5 ml hexane was added to the water phase, collected again 

without mixing, and pooled with the rest of the hexane extract. The extraction efficiency 

of PHAHs from the blood plasma was not determined for each individual sample, as 

addition of 13C-, or14 C-PCB-standards would influence the CALUX measurements. 

However, the average extraction efficiency was tested using 3H-TCDD spiked eider duck 

blood samples. The recovery was always 99-101 %. 

An aliqout of the hexane extract was taken for further clean-up and GC-analysis, 

the rest was pipetted into a conical screw vial, and evaporated at 30°C under a gentle 

stream of nitrogen gas. These extracts are further referred to as 'fatty' extracts. Shortly 

before all hexane was evaporated the desired amount of DMSO was added. After all 

hexane was evaporated a dilution series of the samples was made in DMSO. For the first 

dilution step the extracts had to be kept warm ( + 30°C) to prevent clotting of the lipids 

in the pipet. The fatty extracts were tested in 6-well plates using Hepa.Luc cells (see 

below). 

The other part of the hexane fraction of the plasma extract was cleaned over a 

20% H2S04 deactivated silica column with 15 ml hexane-diethyl ether (97:3, v/v). This 

extract is further referred to as 'cleaned' extract. The recovery of PHAHs from the silica-

H2S04 column could not be tested for each individual sample for the same reason as 
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mentioned above. From former experiments however, using 13C-PCB standards under 

the same standard conditions, we know that this recovery is more than 95%. The cleaned 

extract was evaporated to 0.5 ml; 1 ml iso octane was added and the extract was 

quantitatively transferred to a tapered vial and evaporated to approximately 50 //I for GC-

MS determination (see below). After GC-analysis, the remaining extract was evaporated, 

dissolved and diluted in DMSO for CALUX measurement in 24-well plates using 

H4IIE.Luc cells (see below). 

CALUX assay 

H4IIE.pGudluc1.1 (H4IIE.Luc) or Hepa.pGudlud .1 (Hepa.Luc) cells, prepared as 

previously described in Aarts et al. (1995) and Garrison et al. (1996) (also called, 

respectively, H4L1.1c4 and H1L1.1c7), were used for experiments performed in, 

respectively, 24-well or 6-well culture plates (Costar). All cells were grown in minimal 

essential medium (a-MEM, Gibco) with 10% heat-inactivated (h.i.) fetal calf serum (FCS, 

Gibco) and 500 fj.g of G418 (Geneticin, Gibco) per ml of medium, at a temperature of 

37°C and 5% C02.The CALUX experiments with the fatty eider plasma extracts were 

performed in 6-well cell culture plates in 3 ml a-MEM per well. Due to technical 

improvements during the course of these studies, the cleaned extracts were tested in 24-

well cell culture plates with 0.5 ml a-MEM per well, both without Geneticin. When the 

cell layer reached 90-100% confluency, 24 hr after seeding, the cells were dosed with 

the test compounds in a maximum of 0.5% DMSO in growth medium by adding the 

DMSO to the culture medium (6-well plates) or replacing the medium with fresh culture 

medium containing the DMSO (24-well plates). Exposure was in triplicate, and on each 

24-well plate three TCDD calibration standards, or a TCDD standard series per assay (6-

well plates) were included. After 20-24 hr of exposure the medium was removed and 

cells were washed twice with phosphate-buffered saline (PBS; Oxoid, England). The cells 

were harvested in 250 /J\ (6-well plates) or 75 /J\ (24-well plates) cell lysis reagent 

(Promega), centrifuged for 3 min (6-well plates) or 90 sec (24 wells plates) at 13000g and 

the supernatant frozen at -80°C. For measurement of luciferase activity the supernatants 

were thawed on ice, 20//I aliquots were pipetted into a 96-well microtiter plate, 100//I 

luciferin assay mix (Promega) at room temperature was added and the plate was mixed 

for approximately 90 sec on a plate mixer (Amersham). The light production was 

measured in an Amerlite Luminometer (Amersham). The protein content of each 

supernatant was measured in a microtiter plate at 595 nm (Molecular Devices micro plate 

reader), according to the method of Bradford (1976) using BioRad protein assay dye 

reagent and bovine serum albumin (BSA) as protein standard. 
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CC-MS-method 

The cleaned eider blood plasma extracts were analysed for PCB-77 (PCB-77 dosed 

animals) or PCB-153 levels (rest of the animals), using gas chromatography (CC) coupled 

to a Saturn II ion trap detector (ITD) (Varian, Walnut Creek, CA). The GC column was 

a 30 m x 0.2 mm i.d. DB5-MS with a film thickness of 0.2 fj.m (J&W Scientific, Folsom, 

CA). A retention gap of 2 m x 0.53 mm i.d. deactivated fused silica (Chrompack, 

Middelburg, The Netherlands) was used. The helium flow rate was 1.2 ml-min"1 at 90°C 

(2 min) at UX-m in " 1 to 240°, next at 15°Cmirr1 to 270°C with a hold for 15 min at 

270°C. For the identification and determination of PCB-77 and PCB-153 a cluster of 

masses was selected, a single mass was used for the quantification. For further GC and 

ITD conditions see Leonards et al. (1996). 

Enzymatic triglyceride and cholesterol assays 

Triglyceride concentrations were determined in 10 y\ samples of blood plasma by 

quantitative enzymatic determination using commercially available (Sigma Diagnostics, 

procedure no. 337) triglyceride reagent (GPO-Trinder) and glycerol standard (250 

mg-dl"1). This method is based on enzymatic hydrolysis of triglyceride, resulting in the 

production of a quinoneimine dye (measurable at 540 nm) directly proportional to 

glycerol released from triglycerides in the sample. 

Cholesterol concentrations were determined in 10 ̂ l samples of blood plasma 

by quantitative enzymatic determination using commercially available cholesterol reagent 

(Sigma Diagnostics, procedure no. 352) and standard (200 mg-dl"1). This enzymatic 

method also yields a quinoneimine dye (measurable at 500 nm) which is directly 

proportional to the total cholesterol concentration in the sample. 

Calculations of CALUX-TEQs and statistics 

For calculation of CALUX-TEQs a complete standard curve of 2,3,7,8-TCDD was used 

for each cell line. In each assay, three different TCDD calibration standards, bracketing 

the TCDD EC50, were measured to correct for assay to assay variation. The standard curve 

was fitted (1-site ligand fit) using SlideWrite 5.1 and the CALUX-JEQ value for an 

unknown sample was interpolated on this curve. For each sample a dilution series was 

made, and measured in triplicate. The dilution of the sample that resulted in a CALUX 

response between the EC2 and EC50 of the TCDD response, preferably close to the EC5, 

was used for quantification of the sample. This is the most linear part of the dose-response 

curve, and the quantifications based on this part of the curve are very reproducible. 

Statistical analysis of dose-effect relationships was performed by unweighted 

least-squares linear regression analysis. Differences between group means were tested 
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using one-way ANOVA. Both calculations were performed using Statistix version 4.0. 

The acceptance level was set at P<0.05. 

RESULTS 

The CALUX response was found to be very sensitive and reproducible using TCDD as 

a positive control. The TCDD dose-response curve saturated between 100 pM and 1 nM, 

the EC50 was 10 pM, and the standard deviation was generally ^5%. The detection limit 

in H4IIE.LUC cells was less than 1 pM TCDD, which equals an absolute amount of less 

than 0.5 fmol/well in 24-well plates. A full dose-response curve was presented before 

(Murk eta/., 1996b). 

Dilution series of extracts from eider duck's blood plasma induced CALUX 

activities in a dose-related manner, according to a one-site ligand dose-response curve. 

Figure 7.1 presents dose-response curves for the fatty extracts from plasma of three eiders 

exposed to either 5 or 50 mg-kg"1 bw PCB-77 or 200 mg-kg"1 bw Clophen A50, or from 

a corn oil treated control animal. The CALUX activities induced by blood plasma extracts 

from animals dosed with 50 mg-kg"1 bw Clophen A50 (not in the figure) were almost 

as low as the controls. The standard deviations (STDS) in the measured CALUX activities 

were 5-10%. 
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Figure 7.1 CALUX induction in Hepa.Luc cells by fatty extracts from a control, 200 mg 
Clophen A50/kg (CloA50 200), and 5 or 50 mg PCB-77/kg (PCB77 5 or PCB77 50) dosed 
eider duck. 
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Figure 7.2 Correlation between CALUX TEQ determined for uncleaned, fatty blood 
plasma extracts from experimentally exposed eider ducks, measured in 6-well plates using 
Hepa.Luc cells, and the same extracts after clean-up, determined in 24-well plates, using 
H4IIE.Luc cells. For details see Materials and Methods. 

The CALUX-JEQs determined for the cleaned extracts in 24-well plates, correlated very 

well with the CALUX-JEQs, measured in 6-well plates, for the fatty blood plasma extracts 

(Figure 7.2; r-0.97). 

The PCB-77 (for PCB-77 dosed eiders) or PCB-153 (for Clophen A50 dosed 

eiders) levels chemically measured in blood plasma correlated significantly with, 

respectively, PCB-77 levels (r = 0.98, p<0.001) or PCB-118 or PCB-156 (respectively 

r = 0.96, p<0.001 and r = 0.99, p<0.001) chemically measured in abdominal fat (data 

not shown). Correlations between CALUX-JEQs determined in fatty or cleaned extracts 

with PCB-levels determined in abdominal fat or blood plasma are presented in Table 7.1. 

The correlations between PCB-77 (PCB-77 dosed eiders), or PCB-118 and -156 levels (for 

Clophen dosed eiders) in abdominal fat and the CALUX-JEQs determined in the cleaned 

extracts are presented in Figure 7.3. The three control animals are left out of this figure 

because the PCB-levels were at, or below, the detection limit. The relationships between 

the PCB-77 or PCB-153 levels in blood plasma and the CALUX-JEQ are comparable (data 

not shown). From the correlation between the TCDD-equivalents measured with the 

CALUX assay and the chemically determined PCB-77 levels in blood plasma the TEF for 

PCB-77 in the CALUX assay was calculated ([C/UUX-TEQ]/[PCB-77]). Based on the 
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Figure 7.3 Correlation between PCB-118 or PCB-156 levels (for Clophen dosed eiders) 
or PCB-77 levels (for PCB-77 dosed eiders) determined in abdominal fat using CC-ECD and 
the CALUX TEQ of cleaned blood plasma extracts determined in 24-well plates using 
H4IIE.L.UC cells. For correlations see Table 7.1. 

CALUX data for fatty extracts this TEF is 1.6 10~3, based on the cleaned extracts the TEF 

is 1.5 10"3. 

The CALUX-JEQs correlated significantly w i th the hepatic EROD activity, as is 

shown for the fatty blood plasma extracts in Figure 7.4 (r = 0.88, p < 0 . 0 5 ) . In this figure 

two different clusters are visible: the control and Clophen A50 dosed animals w i th low 

EROD activity and the PCB-77 dosed animals w i th a relatively high EROD activity. For 

each exposure group, the average CALUX-JEQs, hepatic EROD activity, and cholesterol 

and triglyceride levels in b lood plasma are presented in Table 7.2. Average plasma 

cholesterol and triglyceride levels were not statistically significant different, although the 

data suggest a slight increase in tr iglyceride levels and a decrease in cholesterol levels 

in the high dose Clophen A50 animals (Table 7.2). A l l CALUX-JEQs mentioned above 

were expressed on a volume basis, as fmol TEQ-ml"1 b lood plasma. When expressed on 

a triglyceride or cholesterol basis, the correlations w i th chemical data or EROD activity 

were comparable or slightly less (data not shown). 
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Figure 7.4 Correlation between the hepatic EROD activity and the CALUX TEQ for 
uncleaned, fatty blood plasma extracts, determined in 6-well plates using Hepa.Luc cells 
(r = 0.88). For details see M&M. 

DISCUSSION 

The CALUX-TEQ in bloodplasma as a measure of PHAH exposure 

The CALUX assay proved to be a sensitive, fast and relatively easy method to determine 

the total toxic potency of mixtures of PHAHs in blood plasma, expressed in TCDD 

equivalents (TEQs). The CALUX-TEQ in blood plasma represents an integrated measure 

of the internal dose of the AhR-active PCBs in eider ducks, experimentally exposed to 

either PCB-77 or Clophen A50. The in 6-well and 24-well plates independently performed 

CALUX assays resulted in almost identical CALUX-TEQs, confirming the high re

producibility which was already observed in former experiments with pure compounds 

(Garrison et a/., 1996; Murk et a/., 1996b; Sanderson et a/., 1996). Based on the 

chemically determined PCB-77 levels and CALUX-TEQs in blood plasma of PCB-77 dosed 

eiders, a TEF of 1.5 10~3 was estimated. This value is in the range of the TEFs determined 

before in H4IIE.Luc cells: 0.7 10"3 (Sanderson et a/., 1996) and 1.4"310 (Murk, 

unpublished data), and the TEF value of 0.01 proposed by Safe (1994), and 0.5 10~3 as 

proposed by the WHO (Ahlborg et a/., 1994). 

The results of this study demonstrate that blood plasma extracts can be measured 

equally well in the CALUX assay with and without application of a clean-up procedure. 
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Skipping the latter step makes the analysis faster, and reduces the probability of unforseen 

loss of yet unknown compounds of interest on the silica column. However, handling of 

the fatty extracts, such as in making a dilution range or concentrating the extract, may 

be more complicated because of the possible precipitation of lipids, unless the extract 

is carefully kept at about 30°C. In addition, adding a lot of lipid to the growth medium 

would gradually reduce the availability of PHAHs for the cells. Performing a simple 

additional Silica-H2S04 clean-up step, circumvents these problems and allows one to 

concentrate the extract. It is also possible to directly expose CALUX cells to untreated 

blood plasma or serum (data not shown). Although it is tempting to use blood plasma 

samples as crude as possible for fast pre-screening, recent information suggests that 

endogenous ligands, or compounds originating from food, may interfere with the 

response induced by PHAHs (Murk, unpublished results). As these factors may differ 

depending on food composition, species, sex, age or health status, the results may be 

misleading. 

Measure of lipid content for normalisation 

The observed good correlation of the CALUX-1EQ in blood plasma with the GC-TEQ in 

abdominal fat, suggests that PHAHs are relatively evenly distributed over the total lipid 

phase in a body. Duinker et al. (1989) reported that PCBs were present in virtually 

identical levels in liver, heart, fat tissue, kidney and muscle if expressed on a lipid basis. 

Only of relatively biodegradable PCBs higher concentrations were present in the liver. 

Liver deposition appears to be relatively more important for nor\-ortho congeners, but 

the ratio between liver and adipose tissue concentrations are species dependent (Ahlborg 

et al., 1992). As blood plays an important role in the transport of PCBs between tissues, 

it is to be expected that there is a dynamic balance between PCBs levels in blood, liver 

and other organs. Therefore levels in blood can be used as an overall measure for the 

internal PHAH dose if normalized on a lipid basis (Aquilar, 1985; Brouwer etal., 1995). 

Aquilar (1985) observed that the brain is the only tissue with deviating PCB-levels 

when expressed on a lipid basis, probably because the basic constituents of the cerebral 

lipids are phospholipids, in addition to the haem-encephalic barrier which blocks the 

passage of pollutants to a certain degree. Phospholipids are characterized by a greater 

polarity than triglycerides and cholesterol, and therefore don't play a great role in the 

retention of apolar PHAHs. As levels of PHAHs seemed to be essentially linked to 

triglycerides, standardization should be preferably on the basis of triglyceride weight 

instead of 'extractable weight', as levels of phospholipids differ among and within tissues. 

Other studies normalize on the basis of triglycerides and cholesterol (so called 'core fat', 

Brouwer et al., 1995). Effects on total plasma lipid levels of fasting and feeding are mainly 
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caused by changes in triglyceride levels (Phillips et a/., 1989). However, most laboratories 

quantify 'extractable lipids' or 'total lipids' gravimetrically. The resulting lipid 

determinations are very non-specific and differ greatly between laboratories, depending 

on de extraction conditions and solvents used (QUASIMEME, 1994). One of the problems 

is that the extracts contain other extractable material as well as lipids, thus measurements 

are 'extractable weight' rather than only 'extractable lipid'. 

The advantage of the kits we used in this study for cholesterol and triglyceride 

measurement, is that lipids can be specifically quantified in very small aliquots of plasma. 

In addition, quantification of categories of lipids could give additional information on 

the physiological condition of organisms. In this study, correlations between CALUX-JEQs 

in blood and PCB-levels in abdominal fat did not improve when expressed on triglyceride 

or cholesterol basis instead of per ml of plasma. In addition, no differences were observed 

in triglyceride and cholesterol levels in blood plasma between the exposed eiders and 

the control group. The eider ducks used for this study, were of the same age, lived under 

the same circumstances, and were fed the same food. Therefore, their plasma lipid levels 

were not expected to differ greatly, as was confirmed by the cholesterol and triglyceride 

measurements. However, when PHAH levels of naturally exposed individuals are to be 

determined, normalisation on a lipid basis is necessary as for these animals large 

differences ecological and physiological conditions are to be expected, and lipid 

composition and lipid levels are influenced by nutritional status, condition, season, 

maturation, reproductive cycle, sex, species, organ, etc. 

Perspectives for CALUX analysis of blood from environmentally exposed species 

The experimentally dosed animals used for this study contained relatively high levels of 

PCBs. The main use for the CALUX assay, however, lies in the application for naturally 

exposed animals including humans. In an integrated ecotoxicological study to establish 

otter-based quality standards for PHAHs (Hattum et a/., 1996), extracts of 1-2 ml aliquots 

whole blood from naturally exposed otters (Lutra lutra) were tested in the CALUX assay. 

The CALUX-JEQs ranged from 10-200 fmol-ml"1 (3-60 pg TEQ-ml1) blood. The CALUX-

TEQs in the livers of these otters and the TEQ based on mono- and non-ortho-PCBs 

correlated very well, and also absolute TEQ levels were comparable (Murk et a/., 1996f). 

With a detection limit of less than 0.5 fmol TEQ/well in 24-well plates, 1 ml of relatively 

clean otter blood (or 2 ml to prepare 1 ml of blood plasma) is needed to make a small 

dilution series, to be sure that one of the CALUX responses falls within the linear part of 

the TCDD dose-effect curve. For semi-quantitative information such as 'relatively clean 

or highly exposed', only one sample needs to be measured (in triplicate), therefore about 

0.3-0.5 ml blood plasma is needed. Although the collection of aliquots of 1-2 ml blood 
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will generally not be a problem for species weighing over 1 kg, it still is too much for 

smaller species, such as common terns, weighing approximately 100 g. From such 

species not more than 1 ml of blood can be collected without harming them. If other 

parameters such as plasma thyroid hormone and retinol levels are to be measured in 

these samples as well, the amount needed for the CALUX assay should be further 

reduced. At the moment, the CALUX assay has been further optimized, and is currently 

performed in 96-well plates without the need of pipetting cell lysate and with automated 

injection of substrate in an automated luminometer (Labsystems) (Murk et a/., 1996f). Not 

only does this further reduce the amount of time and material needed for the CALUX 

assay, it also decreases the limit of detection 5 times compared to the method presented 

here. The limit of detection of the improved CALUX assay is less than 0.1 fmol TEQ/well. 

Concluding remarks 

The results demonstrate that the CALUX assay is a rapid and sensitive method to deter

mine the AhR-related toxic potency of compounds present in blood plasma. The 

usefulness of the CALUX assay is especially evident when, due to small sample size or 

small concentrations of individual congeners, samples would have to be pooled, thus 

loosing information, or animals have to be killed to get enough material. The CALUX 

assay can also be used for rapid screening of large quantities of samples. Samples 

inducing a great CALUX response could subsequently be chemically analysed to identify 

the responsible compound(s). 
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CHAPTER 8 

GENERAL DISCUSSION 

The research described in this thesis investigates toxic and biochemical effects of PHAHs 

on juvenile fish-eating birds following experimental or environmental exposure. Based 

on the toxicological mechanisms of action of PHAHs, biomarkers are developed and 

validated to identify causal relationships between exposure to PHAHs and adverse effects, 

even at low levels of exposure. Such tools are needed to address the question whether 

at present fish eating wildlife species in the Netherlands are exposed to toxic levels of 

PHAHs. 

Overall, the present results confirm the hypothesis that juvenile eider ducks and 

common terns respond to PHAHs similarly to laboratory species in terms of P450 1A 

induction and alterations in thyroid hormone and retinoid levels. In addition, the internal 

PHAH concentrations and biochemical changes can be associated with a number of 

adverse physiological effects. The observed biochemical and toxic effects are at least 

partially Ah-receptor (AhR) mediated. However, the observed effects may also partially 

be a consequence of the toxic action of PHAH metabolites, since hepatic microsomes 

of PHAH-exposed fish-eating birds and -mammals were found to be able to form hy-

droxylated (OH) metabolites in vitro. An AhR driven reporter gene expression assay has 

been developed and validated for use as a simple and sensitive biomarker for PHAHs 

in a number of environmental matrices. 

SUMMARY OF THE RESULTS 

Juvenile eider ducks and common terns showed AhR responsiveness when exposed 

respectively dosed with PHAHs in a semi-field experiment (Chapter 2) or exposed 

environmentally in a field study (Chapters 3 and 4). Internal PHAH levels correlated with 

hepatic P450 1A induction, measured as EROD-activity, and with hepatic T4-UDP-

glucuronyltransferase(GT) activity. For eider ducks PCB-exposure was associated with 

reduced growth and behavioural activity. In common terns, reduced yolksac retinyl 

palmitate and plasma thyroid hormone and retinol levels, and a significantly greater ratio 

of plasma retinol over yolksac retinylpalmitate, coincided with later egg laying and a 

longer incubation period for the artificially incubated eggs. The incubation period was 

even more prolonged for the matching, naturally incubated, common tern eggs. Greater 

yolksac PHAH levels and hepatic EROD-activity were associated with smaller eggs and 

chicks, later egg laying, and prolonged incubation period (Chapter 4). 

The hepatic microsomes of eider duck, common tern, harbour porpoise, harbour 

seal and rat were found to metabolize the model 14C-labelled PCB-77 (3,3',4,4-tetra-
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chlorobiphenyl) at a rate correlating with the EROD activity. The ratio of the 4-, 5-, and 

6-OH-metabolites formed varied for the species tested. The birds mainly formed the 5-

OH-PCB metabolite. No PCB-77 metabolism was observed in the trout, despite elevated 

EROD activity (Chapter 5). 

The Ah-receptor mediated reporter gene assay, the chemical activated luciferase 

gene expression (CALUX) assay, proved to be a rapid, sensitive and relatively simple 

bioassay to measure TCDD-equivalents {CALUX-lEQs) in extracts of sediment, pore water 

and small aliquots of blood plasma (Chapters 6 and 7). The assay offers an integrated tool 

to assess the total AhR-related toxic potency of compounds in a mixture, with a detection 

limit of less than 0.2 fmol TEQ/well in 96-well plates. Few clean-up and separation step 

were needed compared to chemical determination of PHAHs, as the assay is not hindered 

by some lipids (Chapter 7) and the receptor differentiates between relevant or not relevant 

compounds with regard to the AhR mediated mechanism of toxicity. Also PHAHs such 

as polyhalogenated diphenyl ethers (PHDEs) and polychlorinated terphenyls (PCTs), 

which are present in environmental matrices but usually not included in hazard assess

ment, were found to contribute to the AhR mediated toxicity (Chapter 6). 

In the following, these results are discussed in relation to both research questions 

introduced in Chapter 1 of this thesis. 

1 Do natural fish-eating bird species exhibit toxic effects upon PHAH-exposure, 

comparable to the effects observed in laboratory species? 

The biochemical changes in vitamin A and thyroid hormone levels observed in eider 

ducks and common terns, are very much comparable to the effects reported for laboratory 

rodents and -birds, as was discussed in detail in Chapters 2, 3 and 4. In both bird species, 

these biochemical changes could at least be partially related to directly AhR-mediated 

effects or be induced via PHAH metabolites, as is schematically represented in Figure 

8.1, and discussed in Chapters 2-5. The observed biochemical changes could also be 

related to changes in physiological functions, such as moment of egg laying, incubation 

period and growth. It is probable that the physiological changes are due to causal 

relationships, as thyroid hormone and vitamin A levels are known to play an important 

role in growth (McNabb, 1987), embryonic development (Heine et a/., 1985; Dersch and 

Zile, 1993), neurological development (Maden and Holder, 1992), energy metabolism 

(Hardeveld, 1986), and skeletal development (Thaller and Eichele, 1987; Pijnappel et 

a/., 1993), and fetal PCB-exposure can result in long-term physiological alterations 

(Morse, 1995). More specifically for birds, vitamin A shortage has been related to reduced 

formation of the large blood vessels in the membrane surrounding a bird embryo, which 

may lead to a reduced rate of development or even death of the embryo (Thompson, 
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1970). In addition, thyroid hormone plays a very important role in normal hatching of 

especially precocial bird species, which are relatively mature at that moment, such as 

common terns. Reduced thyroid hormone levels may result in delayed hatching or even 

death of the embryo in a late stage of development (Whittmann et a/., 1993; McNabb, 

1987). Large differences have been reported for the physiological role of thyroid hormone 

shortly before hatching or birth in embryos from precocial species (such as tern, eider 

and chicken or sheep and monkey) and species which are immature at birth (altricial 

species such as dove and cormorant or rat and human) (Legrand, 1986; McNabb, 1987). 

This means that the physiological consequence of reduced thyroid hormone levels may 

differ between such species as well. 

Although PHAHs probably disturb the vitamin A and thyroid hormone homeosta

sis in fish-eating birds and mammals via comparable mechanisms, an important difference 

with mammals is that bird embryos develop without physiological interference with the 

Figure 8.1 Schematic representation of Ah-receptor mediated biochemical effects of 
PHAHs and effects induced via hydroxylated (OH-) PHAH metabolites. The luciferase gene 
is present in recombinant cell lines developed for the chemical activated luciferase gene 
expression (CALUX) assay. For further explanation see text. 
TTR=transthyretin; TT4 = total thyroxine; EROD = ethoxyresorufin-0-deethylase; UDP-
GT = uridine-5'-diphosphate glucuronyltransferase; ARAT = acyl-CoA:retinol acyl-transferase; 

= other (yet unknown) effects. 

133 



Chapter 8 

female bird. The female bird deposits retinol and thyroid hormone from her blood 

plasma into the egg yolk (Spear et a/., 1989; Vieira et a/., 1995), and these levels may 

be influenced as a consequence of PHAH-exposure. In contrast to mammalian embryos, 

the bird embryo starts to regulate their own vitamin A and thyroid hormone homeostasis 

during early development (McNabb, 1987; Spear et a/., 1989; Dong and Zile, 1995). 

PHAHs deposited in the egg may cause disturbances in the regulation of this embryonic 

homeostasis, and OH-PHAHs may play an additional role in these disturbances as well. 

OH-PHAHs may be deposited into the egg when the female transfers TTR from her blood 

plasma into the yolk (Vieira et a/., 1995). As the tertiary and quartenary structure of 

chicken and human TTR are supposed to be highly similar (Duan et a/., 1991), it is 

probable that also in birds OH-PHAHs are bound to TTR. Deposition of OH-PHAHs into 

the egg would be comparable with the selective accumulation of OH-PHAH-metabolites 

in mammalian embryos from the serum of the mother animal (Morse et a/., 1995a; 

Danerud et a/., 1996). In contrast to fetal rats (Morse et a/., 1995a), however, chicken 

embryos have been reported to have PHAH-inducible cytochrome P450 activity (Bosveld 

et a/., 1996), and thus may form additional PHAH-metabolites themselves. 

The current knowledge regarding the magnitude of the risk of PHAH-metabolites 

for wildlife species and man, relative to directly AhR related effects, is still very limited. 

OH-PCBs have been found to accumulate in blood of, for example, environmentally 

exposed grey seals (Halichoerus grypus) and man {Homo sapiens) (Bergman et a/., 1994), 

and in albatross (Diomedea spec.) blood in concentrations greater than the parent 

compounds (Klasson-Wehler and Giesy, pers. comm.). The pattern and amount of 

metabolites formed after exposure to the same PHAH-mixture may be different between 

birds and mammals (Chapter 5), resulting in different plasma levels and toxic potencies. 

Information about the capacity of species to conjugate specific OH-metabolites is needed 

to assess in vivo metabolite levels based on in vitro metabolism studies. 

These observations discussed above suggest that PHAHs and/or their metabolites 

may cause biochemical, physiological and developmental effects in birds comparable 

to those mammals. Specific differences are, however, possible as well, especially in the 

case of developing embryos. 

2 What is the perspective for the use of a receptor-mediated reporter gene assay 

to assess the total AhR related toxic potency of environmental pollutants? 

The AhR-mediated CALUX response is induced parallel with other AhR related endpoints, 

such as P450 1A induction measured as EROD activity and reduction in hepatic retinoid 

storage (Figure 8.1). Therefore the CALUX assay is useful to directly quantify the toxico-

logically relevant planar PHAHs, as was also suggested by the correlation between the 
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CALUX response to PHAHs from pore water and the in vivo teratogenicity induced in 

an early life stage test with zebra fish (Branchydanio redo; Chapter 6). Chemical measure

ment of these PHAH congeners is analytically difficult, time consuming, and will hardly 

ever be complete (Liem et a/., 1991; Leonards et a/.; 1994a; Bosveld et a/., 1995). In 

addition, a conversion of individual chemical data into TEQs is needed, based on TEF-

values which may differ up to a factor of 100 between different sets (Ahlborg et a/., 1994). 

This may resulting in apparently different hazards for the same PHAH mixture. With a 

receptor mediated assay such as the CALUX assay the toxic potency of the mixture is 

quantified directly, so no conversion is needed. The relatively few clean-up and separa

tion steps needed and the low limit of detection, even allows non-destructive quantifica

tion of the internal exposure of relatively small animals (Chapter 7). 

The mechanism of CALUX induction is comparable to the often used EROD 

assay, which is based on AhR mediated induction of the natural P450 1A gene. The 

EROD activity, however, strongly decreases with PHAH concentrations after a maximum 

induction level has been reached (Hahn et a/., 1993; Kennedy et a/., 1993; Murk et a/., 

1996b, 1996d). This may partially be due to a decreased availability of heme, needed 

for active P450 1A enzyme, caused by porphyrin accumulation (Figure 8.2) (Matteis and 

Lim, 1994; Kennedy et a/., 1995; Tysklind et a/., 1995). However, the decrease in EROD 

activity at higher ligand concentrations is at least partially a result of substrate inhibition 

(Figure 8.2; Murk et a/., 1996b, 1996d). The CALUX assay is not influenced by porphyrin 

accumulation or substrate inhibition, as no heme is needed for production of luciferase 

and PHAHs are not substrates for luciferase (Figure 8.2). 

As some species specific differences in responses to PHAHs, such as antagonism 

between some di-ortho PCBs and planar PHAHs, were found to occur at the level of the 

AhR (Figure 8.2; Biegel et a/., 1989; Denison and Vella, 1990; Walker and Peterson, 

1991; El Fouly et a/., 1994; Hahn et al, 1994; Aarts et a/., 1995; Richter et a/., 1996), 

it would be interesting to develop CALUX cell lines for a number of different wildlife 

species. 

Perspectives for the use of mechanism-based responses as biomarkers for effects of 

PHAHs under field conditions 

It has been demonstrated that thyroid hormone and vitamin A levels can be reduced upon 

exposure of birds or mammals to PHAHs, and reductions have been associated with 

disturbances of important physiological functions. Therefore these biochemical parame

ters are interesting, potentially broad applicable biomarkers for adverse effects of PHAHs 

under field conditions. An important prerequisite for such use is that the alterations in 

biochemical parameters are consistent, either increasing or decreasing upon PHAH 
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exposure. This is evident for parameters such as T4-UDPGT or EROD activity which 

increase, and hepatic or yolksac retinoid levels which decrease as a consequence of 

PHAH exposure. Plasma retinol levels, however, can be increased via AhR-related 

reduced storage capacity of the liver and/or reduced via the action of OH-PHAH metabo

lites (Chapter 2, Figure 8.1 Jensen eta/., 1987; Brouwereta/., 1989; Bank eta/., 1989a). 

Therefore, although knowledge of changes in plasma retinol levels may help to explain 

mechanisms of toxic action in experimental situations, differences in plasma retinol levels 

can not be used as an indication for PHAH-exposure and -effect in the field situation. A 

comparable limitation applies for plasma thyroid hormone levels in free living species. 

The same As factors such as age, sexe, season, osmotic stress, temperature, ecological 

stress and food quality will modulate physiologically relevant parameters in a natural 

way, either good reference values for these background fluctuations are needed, or the 

animals have to be sampled under comparable conditions. 

[PHAH| 
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Ah-receptor 

Zantac ' 

/v 

/ Cytochrome 
^ P450 

Proteins 
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» Toxic effects 

Figure 8.2 Inhibition of EROD activity by porphyrin accumulation and substrate 
inhibition. The CALUX response (measured as light output) is not inhibited by either of these 
factors. Species specific antagonism at the level of the Ah-receptor influences both cytochrome 
P450 and luciferase production, and probably also the induction of toxic effects. 
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It would be very useful to know the critical level of such physiologically relevant parame

ters, for normal functioning of an animal under realistic field conditions. This critical 

level, however, can only be roughly indicated as it depends on external as well as 

internal and temporal conditions. Hypothyroid hatchlings, for example, will be more 

susceptible to cold stress than hatchlings with normal thyroid hormone levels (Tori and 

Mayer, 1981), but extra deaths will probably only occur during adverse weather condi

tions and not with favourable weather. Integrated field studies can yield information 

about the relationships between exposure, bio-accumulation, biochemical parameters, 

and physiologically important functions under field conditions. In a recent study, per

formed to develop otter-based quality objectives for PCBs (DOQOP), a strong negative 

correlation was found between hepatic vitamin A and TEQ levels in European otters 

{Lutra lutra) (Murk et a/., 1996c; 1996f). A greater incidence of infectious diseases was 

observed in the highly exposed animals (Leonards et al., 1996b), suggesting the biochem

ical changes partially fall outside of the normal physiological range. 

Vulnerable species and life-stages 

The biochemical parameters and reporter gene assay reported in this thesis can be useful 

tools to study species or life-stages with specific (eco)physiological characteristics which 

may result in extreme exposure or dependence on the PHAH-influenced parameters. 

Extreme exposure may occur, for example, in female eider ducks when they fast during 

breeding (Koeman, 1971). Hibernating mammals such as bats and polar bears, which 

accumulate high levels of PHAHs because of their narrow food choice, are exposed to 

extra high levels when they use up their fat-reserves during hibernation (Disser and Nagel, 

1989; Norstrom et al., 1990; Streit et al., 1995). In addition, thyroid hormones play a 

specific physiological role when such animals wake up from hibernation (Hulbert, 1985), 

and depressed thyroid hormone levels could possibly prolong awakening. Also amphibi

ans may be at special risk for exposure to and effects of PHAHs. They depend for their 

food on the aquatic environment during a large part of their life cycle, have relatively 

permeable skins, and thyroid hormones play a specific role in amphibian metamorphosis 

(Shi, 1994) and water-land migration (Grau, 1987; Moriya, 1982). Recent studies in the 

Department of Toxicology have demonstrated that development of early-life stages and 

metamorphosis of amphibians are sensitive for the toxic action of PCBs at concentrations 

occurring in relatively polluted Dutch ponds (Gutleb et al., in prep.). 

In general, it is to be expected that species are particularly vulnerable to the toxic 

actions of PHAHs when the endocrine system has to respond to changing environmental 

factors such as at the onset of hatching or birth, migration, reproduction, physical stress 

and illness. Biomarkers for exposure and effect based on the mechanism of toxicity can 
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Table 8.1 Estimated no-effect and effect concentrations for fish-eating birds and mammals. 

All concentrations in ng TEQ/g lipid 

Common tern, Forster's tern, cormorant 
Field data 1 

Common tern, Forster's tern, cormorant 
Field data ' 

NOEC Bald eagle (range for birds) 
Literature data 2 

NOEC hepatic retinoid reduction 
Field data European otter4 

NOEC mink reproduction 
Literature data 3 

EC90 hepatic retinoid reduction 
Field data European otter4 

EC50 mink reproduction 
Literature data 5 

Unaffected seals (repro duction/immune 
status); (Semi-) field data 6 

Affected seals fed Waddensea/Baltic fish 
(Semi-) field da ta 6 

Birds 

No effect 

4, 5, 20 

0.2 
(0.03-3) 

Effect 

14, 55,65 

Mammals 

No effect 

2 

1-6 

0.06 

Effect 

5 

5-10 

0.2 

1 Common tern data based on Murk et a/. (1994b, 1996a, this thesis) 
Forster's tern data calculated from Kubiak et a/. (1989), assuming an egg contains 4% lipid. Effect: increased 
incubation period: Cormorant data estimated from Van den Berg et a/. (1994), assuming the ratio mono 
ortho-PCB leveLTEQs is comparable with common tern; and the Oude Venen colony contains 3.2 times 
TEQs than the Biesbosch colony. Effect: reduced fledging success. 
2 NOEC for birds based on calculations from Bowerman et a/., 1995 
3 NOEC for mink reproduction (litter size and kit survival) based on Leonards et a/. (1994b), assuming the 
lipid weight of muscle is 2-3%. 
4 Hepatic retinol and retinylpalmitate reduction, based on the results of the DOQOP project (Murk et a/., 
1996c; Murk et a/., 1996f) The reduction in hepatic retinoid levels correlated with increased prevalence of 
infectious diseases (Leonards et a/., 1996b). 
5 The EC50 for mink reproduction (litter size and kit survival) based on Leonards et a/. (1995), assuming 
the lipid weight of muscle is 2-3%. 
6 Adverse immunotoxic effects in Harbour seals: 209 pg TEQ-'g lipid (fed fish from the Baltic Sea), 
reference seals: 62 pg TEQ-g"1 l ipid (fed fish from the Atlantic Ocean) (Ross et a/., 1995). Adverse 
reproductive (Reijnders, 1986) and biochemical (Brouwer eta/., 1989) effects in harbour seals fed fish from 
the Dutch Waddensea, containing TEQ levels comparable to Baltic Sea fish (calculated from Boon et a/., 
1987; De Zwart et a/., 1994). 
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be used to identify and study vulnerable species and life stages, and give an indication 

of critical PHAH levels. 

Possible impact of current PHAH levels on fish-eating wildlife species 

In order to compare the sensitivity of the common terns with other fish-eating birds and 

with fish-eating mammals, and to get an impression whether such species are currently 

at risk for adverse effects of PHAHs in the Netherlands, some estimated (no) effect 

concentrations for fish-eating birds and mammals, based on this thesis and some other 

recent publications are summarized in Table 8.1. Although the comparisons are only 

rough, as toxic endpoint, determination of lipid content and calculation of TEQs differ 

between the experiments, these data suggest that the sensitivity of the common terns are 

in the same order of magnitude as the Forster's terns and cormorants. These birds appear 

to be about one order of a magnitude less sensitive for PHAHs than the Bald eagle and 

birds in general based on the NOECs calculated by Bowerman etal. (1995) (Table 8.1). 

The sensitivity of the common terns seems to be slightly less than that of mink and otter. 

Seals appear to be one magnitude more sensitive than the mink and otter. It can, how

ever, not be excluded that these differences are caused by not yet quantified PHAHs, 

present in greater quantity in the seals compared to the other species. The CALUX assay 

would be useful in such studies to indicate the total AhR-related toxic potency, including 

yet not quantified planar PHAHs. Seals could also be more vulnerable for compounds 

not (directly) acting via the AhR, for example PHAH-metabolites or non-planar PHAHs. 

Unfortunately, the toxicological potency of not directly AhR-related effects can not yet 

be quantified. 

A NOEC for common tern and otter, based on TEQs only, would be around 2 

ng TEQ-g"1 l ipid. Assuming a bio-magnification factor for TEQs from fish to bird of 20 

(Bowerman et a/., 1995) the NOEC in fish would be around 0.1 ng-g"1 l ipid. For otters, 

with and BCF for TEQs of 95 (Smit et a/., 1996), this would be about 0.02 ng-g"1 l ipid. 

For seals, assuming a NOEC of 0.1 ng TEQ-g"1 lipid and a BCF of 20, the NOEC in fish 

would be 0.005 ng TEQ-g"1 lipid. The levels found in Dutch fresh and salt water fish 

mostly fall in the range of 0.03 (eel)-1.2 (pike-perch) ng TEQ-g"1 fish lipid (calculated from 

De Boer et a/., 1993). These calculations suggest that fish-eating birds and mammals are 

still at risk for adverse effects of PHAHs in the more polluted parts of The Netherlands. 

Future perspectives 

Although the use of PCBs and release of PCDD/Fs is strongly reduced, PHAH-release into 

the Dutch environment still continues as a consequence of leakage from PCB-containing 

devices that are still in use or dumped; application of PHAH-containing fish oil in 
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industrial and food products (IPCS, 1993); and increased usage of other persistent PHAHs 

such as PBDEs (IPCS, 1994; Pijnenburg et a/., 1995). PBDEs were found to elicit an AhR 

related toxic potency comparable to PCBs (Chapter 6). In addition, most of the tested 

PBDEs, 3,3',4,4'-tetra chlorinated diphenyl ether and the herbicide nitrophen (2,4-di-

chlorophenyl 4-nitro phenyl ether) were found to compete with T4 for the binding to TTR 

with a potency comparable to that of the technical PCB-mixture Clophen A50 (unpub

lished results), after in vitro metabolism in P450 1A- or 2B-induced rat hepatic micro

somes. It is to expected that several other PHAHs can be metabolized into OH-metabo-

lites with such competitive capacity as well. It is therefore important to continue monitor

ing accumulation and possible effects of such compounds, especially at places where 

concentration may be expected, such as sediments, effluents of waste-water treatments, 

and top predators which reflect the local degree of contamination (see also Chapter 4). 

An important question remains whether PHAH concentrations above the NOEC 

will impair the survival of populations. During the common tern field study, the dynamic 

environment of the common terns had more detrimental effects on breeding success than 

the subtle effects which correlated with PHAH levels (Chapter 4). The toxic action of such 

compounds could impair the recovery from such natural stresses. However, it does not 

seem likely that the current PHAH levels pose a real threat to the survival of populations 

of fish-eating birds in The Netherlands, in addition to physical anthropogenic stresses 

such as habitat destruction, disturbance, traffic and fishing nets. To be able to indicate 

the implications of exposure to toxic compounds on the fitness of a population, informa

tion is needed about the effects on the most important life-cycle stage for the population 

fitness under realistic conditions (Kammenga, 1995). For the relatively well studied 

PHAHs this is not even the case for one species. At this moment, therefore, only a rough 

indication can be presented of the levels of PHAHs above which, or the level of hor

mones, vitamins or enzyme induction, above or below which adverse population effects 

may be expected. 
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MAIN CONCLUSIONS 

PHAH exposure of eider ducks and common terns caused alterations in vitamin A and 

thyroid hormone homeostasis comparable to those described for laboratory rodents. 

Greater differences are, however, to be expected between developing bird embryos 

because of differences in physiological contact with the mother animal. 

The internal PHAH-concentrations in the eider ducks and common terns could be 

associated with a number of adverse effects such as reduced growth and behavioural 

activity, delayed egg laying, a prolonged incubation period and smaller eggs and chicks. 

Although co-correlation with other pollutants or environmental factors such as food 

quality can not be excluded, the biochemical alterations correlating with the internal 

PHAH-concentrations suggest at least a partially causal relationship. 

The observed subtle adverse effects suggest that the induced biochemical changes 

partially fall outside the normal physiological range in which changes can still be 

compensated. 

Hepatic retinoid levels can be used as a physiologically relevant, broad applicable 

biomarker for adverse effects of PHAHs. 

In hepatic microsomes from eider duck, common tern, harbour porpoise, harbour seal 

and rat, PCB-77 is metabolized at a rate correlating with the EROD activity. The pattern 

of OH-metabolites formed, however, differs between birds and mammals. Liver micro

somes from trout exhibited EROD activity but could not metabolize PCB-77. 

A combination of already developed in vitro assays can yield information about the 

capacity of species to form PHAH-metabolites, and the potency of these metabolites to 

compete with T4 for binding to TTR and possibly other receptors. 

The AhR based CALUX assay is a rapid, low cost pre-screening alternative for expensive 

and time consuming chemical analysis of planar PHAHs. This reporter gene assay 

provides a direct measure for the AhR mediated toxic potency of mixtures of PHAHs. 

In parts of The Netherlands, predatory aquatic birds are still at risk for observable adverse 

effects of PHAHs. It does, however, not seem likely that these PHA-levels are a real threat 

to the survival of their populations. 
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NEDERLANDSE SAMENVATTING 

Het onderzoek beschreven in dit proefschrift betreft effecten van polyhalogeen 

aromatische koolwaterstoffen (PHAKs) op twee predatore aquatische vogelsoorten, en 

de ontwikkeling van biomarkers voor het vaststellen van blootstelling aan, en effecten 

van, deze stoffen. Deze biomarkers zijn gebaseerd op het mechanisme van toxiciteit van 

PHAHs, en daarmee specifiek voor een groep van stoffen met hetzelfde 

werkingsmechanisme. Op basis van deze biomarkers kan ook inzicht worden verkregen 

in verschillen in blootstelling, kinetiek en specifieke ecofysiologische eigenschappen van 

organismen en een indicatie van diersoorten die meer dan anderen kwetsbaar zijn voor 

de aanwezigheid van PHAKs in het milieu. 

Inleiding 

Hoewel wetgeving over de toelating en het gebruik van nieuwe en reeds bestaande 

toxische stoffen tot grote verbeteringen in milieukwaliteit heeft geleid, blijken regelmatig 

toch nog toxische effecten van stoffen op te kunnen treden. Het gaat hierbij meestal om 

persistente stoffen die niet acuut toxisch zijn, en toxische effecten kunnen veroorzaken 

via veelal onverwachte routes. Sublethale effecten vallen vaak minder op, maar kunnen 

desondanks grote ecotoxicologische gevolgen hebben. Het is daarom van belang om in 

een zo vroeg mogelijk stadium dergelijke effecten te kunnen detecteren. 

PHAKs vormen een grote groep van stoffen, die in mengsels van varierende 

samenstelling voorkomen in zeer uiteenlopende compartimenten van het milieu. 

Sommige PHAKs, zoals polychloor dibenzo-p-dioxinen (PCDDs) en -dibenzofuranen 

(PCDFs) zijn ongewenste bijprodukten van incomplete verbranding in de aanwezigheid 

van chloor en van de produktie van bepaalde stoffen. Andere PHAKs, zoals polychloor 

bifenylen (PCBs), -terfenylen (PCTs) en -naftalenen (PCNs) zijn vanwege hun gunstige 

eigenschappen tientallen jaren lang gebruikt in diverse toepassingen. Hoewel de pro

duktie en het gebruik van bepaalde PHAKs, zoals PCBs, door beleidsmaatregelen 

inmiddels sterk beperkt zijn, verdwijnen veel PHAKs slechts langzaam uit het milieu. 

Dit is vooral het gevolg van eigenschappen die ze technisch zo bruikbaar maken: 

persistentie tegen fysische, chemische en biologische afbraak. Van de miljoenen tonnen 

PHAKs die in de loop der tijd geproduceerd zijn, zal een groot deel pas in de komende 

tijd in het milieu vrij komen, onder andere via lekkage en verdamping uit gestort afval. 

Daarbij komt dat bepaalde PHAKs, zoals polybroom bifenylen (PBBs) en vooral poly-

broom difenyl ethers (PBDEs) nog volop geproduceerd en gebruikt worden als vlam-

vertragers in tal van toepassingen, zoals meubels en behuizing van electrische apparatuur. 

Dit betekent dat PHAKs nog lange tijd in het milieu aanwezig zullen zijn en daar 

problemen kunnen geven. 

PHAKs komen in het milieu vooral voor in dierlijke vetten en gebonden aan 
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organisch materiaal in bijvoorbeeld sedimenten. PHAKs kunnen worden doorgegeven 

in voedselketens, waarbij de hoogste concentraties in toppredatoren van de aquatische 

voedselketen worden aangetroffen. Ook kunnen PHAKs worden doorgegeven aan de 

volgende generatie via eidooier, trans-placentaal transport en melk. De mate van bio-

accumulatie van PHAKs verschilt sterk, afhankelijk van de moleculaire structuur. Ook 

de mate waarin diersoorten PHAKs kunnen afbreken verschilt sterk, afhankelijk van de 

typen en mate van inductie van biotransformatie enzymen. Over het algemeen zullen 

meer gehalogeneerde PHAKs sterker bioaccumuleren, hoewel ook het substitutie patroon 

van de halogeen atomen in het molecuul hierbij een belangrijke factor is. Omzetting van 

PHAKs tot meer hydrofiele metabolieten heeft niet alleen tot gevolg dat deze sneller uit 

het lichaam verwijderd worden, maar kan ook weer aanleiding geven tot een nieuw 

mechanisme van toxiciteit. 

Mechanismen van PHAK-toxiciteit 

Blootstelling van organismen aan PHAKs kan leiden tot een breed scala aan effecten, 

waarvan de mate van optreden sterk afhankelijk is van de diersoort. Van PHAKs zijn 

tenminste twee mechanismen van toxiciteit bekend. De meest belangrijke is via binding 

aan de cytosolaire 'arylhydrocarbon' receptor (AhR). Vooral PHAKs die een relatief platte 

structuur kunnen aannemen binden sterk aan de AhR, waarna deze een transformatie 

ondergaat en naar de celkem wordt getransporteerd. Hier vindt binding van het AhR-

PHAK complex aan een specifiek stukje DNA. Deze binding heeft veelal een verhoogde, 

maar soms ook geremde, transcriptie van nabijgelegen genen tot gevolg, wat kan leiden 

tot fysiologische verstoringen in het organisme. De via dit mechanisme meest toxische 

PHAK is 2,3,7,8-tetrachloor dibenzo-p-dioxine (TCDD). Het tweede inmiddels bekende 

mechanisme van toxiciteit start na biotransformatie van een PHAK tot een hydroxy (OH-) 

metaboliet. Bepaalde OH-PHAKs vertonen een structurele verwantschap met thyroxine 

(T4), en kunnen dit T4 verdringen van bindingsplaatsen op bijvoorbeeld het transporteiwit 

in het bloed transthyretine (TTR) of het enzym T4-5'-dejodase. Behalve dat deze 

competitie kan leiden tot verstoringen in de schildklierhormoon huishouding, leidt het 

ook tot verlies van retinol (een vorm van vitamine A). Retinol wordt in het bloed normaal 

aan een retinol bindend eiwit (RBE) in een complex met TTR en T4 getransporteerd. Na 

binding door een OH-PHAK aan TTR valt dit complex uit elkaar, en kan het kleine 

retinol-RBE complex door de nieren worden weggefilterd. 

PHAK-effecten in predatore aquatische vogels 

Het voorkomen van deze mechanismen van toxiciteit is voornamelijk aangetoond onder 

laboratorium condities met speciaal hiervoor gefokte dieren. In de praktijk komen hoge 
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PHAK concentraties echter vooral voor bij aquatische toppredatoren zoals visetende 

vogels en zoogdieren. Het eerste deel van het onderzoek beschreven in dit proefschrift 

betreft dan ook de vraag of predatore vogels ook biochemische effecten van PHAKs 

vertonen, die vergelijkbaar zijn met waargenomen effecten in laboratorium dieren. 

Hoofdstuk 2 van dit proefschrift beschrijft een semi-veld experiment waarbij 

jonge eidereenden zijn blootgesteld aan de 'platte' PCB-77 (3,3',4,4'-tetrachloor bifenyl) 

of aan het technische PCB-mengsel Clophen A50. De spreiding in de gemeten parameters 

in deze natuurlijk diersoort was veel groter dan gevonden wordt met speciaal gefokte 

laboratorium dieren. Groepsgemiddelden waren daardoor dan ook niet significant 

verschillend. Op basis van correlaties met interne dosis konden echter wel significante 

effecten van PCB-dosering worden vastgesteld. De resultaten geven aan dat eidereenden 

gevoelig zijn voor PCB-toxiciteit, en dat de effecten vergelijkbaar zijn met die in 

laboratoriumdieren. Interne PCB-concentraties correleerden met verminderde plasma T4 

en lever vitamine A gehalten, en met een toename in de ratio plasma retinol/lever 

retinylpalmitaat en met verhoging van de ethoxyresurofine O-deethylase (EROD) activiteit 

in de lever. Ook werden verminderde groei en loopactiviteit gevonden. In een veldstudie 

naar mogelijke effecten van PCBs op visdief kuikens, beschreven in de Hoofdstukken 

3 en 4, werden biochemische effecten gevonden die vergelijkbaar waren met de in 

eidereenden gevonden effecten. Van visdief nesten met 3 eieren werd het tweede ei 

kunstmatig uitgebroed, en na het uitkomen werd het kuiken gebruikt voor het meten van 

diverse biochemische en chemische parameters. In het veld werd het lot van de twee 

andere, door de visdieven uitgebroede eieren, geregistreerd. PCB gehaltes konden 

worden gecorreleerd met verlaagde vitamine A gehalten in de dooierzak, verlaagde 

plasma vitamine A en schildklierhormoon gehaltes, en met een vergrootte ratio plasma 

retinol/dooierzak retinylpalmitaat en een ge'i'nduceerde EROD activiteit in de lever. 

Bovendien konden deze biochemische effecten en de PCB gehalten worden geassocieerd 

met latere eileg, langere broedduur en kleinere eieren. 

De waargenomen effecten passen bij het patroon van AhR-gemedieerd effecten, 

maar kunnen gedeeltelijk ook veroorzaakt zijn door OH-metabolieten van PHAKs. Uit 

de in Hoofdstuk 5 beschreven in vitro metabolisme studie met lever microsomen van 

verschillende diersoorten, blijkt dat zowel eidereenden als visdieven in staat zijn om van 

PCB-77 OH-metabolieten te vormen. Ook in microsomen van een gewone zeehond, 

bruinvis en rat bleken OH-metabolieten te worden gevormd. De verhouding van de 

verschillende gevormde OH-metabolieten verschilde tussen de vogels en zoogdieren, 

maar van door beide groepen gevormde OH-metabolieten is al in eerder onderzoek 

aangetoond dat deze T4-verdringing kunnen geven. 

Hoewel correlaties tussen gehalten aan PHAKs en toxische effecten indicaties 
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zijn dat effecten van PHAKs ook optreden bij dieren die onder natuurlijke condities 

leven, hoeven dergelijke correlates niet te wijzen op een oorzakelijk verband. Wanneer 

echter ook biochemische of fysiologische veranderingen kunnen worden waargenomen 

waarvan bekend is dat deze vroege stappen zijn in door PHAKs geTnduceerde 

mechanismen van toxiciteit, kan meer inzicht worden verkregen in de mogelijke rol van 

PHAKs in de geconstateerde effecten. In Hoofdstuk 8 wordt nader ingegaan op de 

mogelijkheden en beperkingen van het gebruik van biomarkers voor effect gebaseerd 

op kennis van mechanismen van PHAK toxiciteit. 

Biomarker voor de toxische potentie van PHAK-mengsels 

Dieren worden in het veld meestal blootgesteld aan zeer complexe en deels onbekende 

mengsels van stoffen. Zelfs van PHAKs zijn al vaak tientallen tot honderden 

vertegenwoordigers met zeer verschillende toxische potentie aanwezig. Om de rol van 

PHAKs als mogelijke veroorzaker van bepaalde toxische effecten duidelijker te maken, 

is het van belang om een maat te hebben voor de toxische potentie van het mengsel, in 

plaats van de concentratie van een aantal individuele stoffen. De toxische potentie van 

een PHAK-mengsel wordt nu berekend door de gehaltes van de gemeten stoffen te 

vermenigvuldigen met hun toxische equivalence factoren (TEFs), voorzover deze bekend 

zijn, en vervolgens op te tellen tot de TCDD- of toxische equivalence (TEQ) waarde van 

het mengsel. Niet alle relevante stoffen doen echter mee in deze berekening, 

bijvoorbeeld omdat er geen standaarden voor zijn, men er niet naar op zoek is, of omdat 

ze onder de detectielimiet liggen. Ook worden mengsel-interacties niet meegenomen 

in deze bepaling. Om deze beperkingen te vermijden is een AhR gemedieerde reporter 

gen assay ontwikkeld en gevalideerd, waarmee eenvoudig en gevoelig de toxische 

potentie van het hele mengsel van PHAKs kan worden gekwantificeerd, inclusief 

mengselinteracties op het niveau van de AhR (Hoofdstukken 6 en 7). Een duidelijk 

voordeel van deze receptor gemedieerde assay boven de chemische TEQ bepaling is 

verder dat de zuivering en scheiding van componenten in milieu extracten minder 

uitgebreid hoeven te zijn, omdat een beetje vet niet stoort en de receptor onderscheid 

maakt tussen relevante en niet relevante stoffen. In Hoofdstuk 6 wordt de toepassing van 

deze zogenoemde CALUX ('chemical activated luciferase gene expression') assay 

beschreven voor sediment- en poriewater monsters. Voor poriewater blijken de CALUX-

respons en de respons in een teratogeniteitstest met zebravis larven goed overeen te 

komen. De CALUX assay blijkt ook goed toepasbaar om de interne belasting van 

organismen te bepalen in bloedmonsters (Hoofdstuk 7). Vanwege de lage detectielimiet 

(< 0.1 fmol TEQ per meting) zijn bloedplasma monsters van minder dan 0,5 ml vaak 

al voldoende voor kwantificering van de interne dosis van organismen in de vorm van 
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TEQs. Een belangrijk voordeel van de CALUX assay boven het meten van de veel 

gebruikte EROD activiteit is de afwezigheid van substraatinhibitie (Hoofdstuk 6, Bijlage 

B). Dit komt doordat luciferase alleen luciferine als substraat heeft, in tegenstelling tot 

het natuurlijke cytochroom P450 1A enzym, dat naast ethoxyresorufine ook veel PHAKs 

als substraat heeft. 

BELANGRIJKSTE CONCLUSIES 

PHAKs veroorzaakten in eidereend- en visdiefkuikens veranderingen in de vitamine A 

en schildklierhormoon homeostase die vergelijkbaar zijn met de effecten beschreven voor 

laboratoriumdieren. Grotere verschillen zijn te verwachten tussen zich ontwikkelende 

vogel- en zoogdier-embryo's, vanwege verschillen in fysiologisch contact met het 

moederdier. 

De interne PHAK-concentratie in de eidereenden en visdieven konden worden 

geassocieerd met een aantal negatieve effecten zoals verminderde groei- en loopactiviteit, 

latere eileg, langere broedduur, en kleinere eieren en kuikens. Hoewel co-correlatie met 

andere verontreinigingen of milieufactoren zoals voedselkwaliteit niet kan worden 

uitgesloten, suggereren de waargenomen biochemische veranderingen in ieder geval een 

gedeeltelijk causaal verband. 

De waargenomen subtiele nadelige effecten suggereren dat de ge'mduceerde 

biochemische veranderingen gedeeltelijk buiten de normale fysiologische range vallen 

waarbinnen veranderingen nog gecompenseerd kunnen worden. 

Vitamine A gehaltes in de lever kunnen worden gebruikt als fysiologisch relevante, breed 

toepasbare biomarkers voor effecten van PHAKs. 

In lever microsomen van eidereend, visdief, bruinvis, gewone zeehond en rat wordt PCB-

77 gemetaboliseerd met een snelheid die correleert met de EROD activiteit. De OH-

metaboliet patronen verschillen echter tussen de vogels en zoogdieren. 

De lever microsomen van forel vertoonden wel EROD-activiteit, maar konden 

desondanks PCB-77 niet omzetten. 
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Een combinatie van reeds ontwikkelde in vitro assays kan gebruikt worden om de 

capaciteit te bepalen van diersoorten om OH-PHAKs te vormen, en de potentie van deze 

OH-PHAKs om T4 te verdringen van TTR. 

De AhR gemedieerde CALUX assay is een snelle en goedkope assay om TCDD 

equivalenten te bepalen. Deze reporter gen assay biedt een directe en toxicologisch 

relevante maat voor de potentie van mengsels van stoffen in milieumatrices tot AhR 

gemedieerde toxiciteit. 

In delen van Nederland lopen predatore aquatische vogels nog steeds het risico op 

waarneembare nadelige effecten van PHAKs. Het lijkt echter niet waarschijnlijk dat deze 

PHAK-gehalten op zich, een bedreiging vormen voor de overleving van populaties. 
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CURRICULUM VITAE 

De auteur van dit proefschrift werd op 5 augustus 1959 geboren in Harderwijk. In 1977 

behaalde zij het VWO diploma te Katwijk aan Zee. In aansluiting hierop studeerde zij 

biologie aan de Rijksuniversiteit Leiden. Na het behalen van de kandidaatsdiploma's 

Milieubiologie en Biochemie, werd het eerste hoofdvak verricht bij de vakgroep 

Populatiebiologie, het tweede hoofdvak bij de vakgroep Biochemie, en een stage bij Kent 

State University, Ohio, VS. Na het voltooien van de cursus Milieukunde en de 

Lerarenopleiding Biologie werd het doctoraal examen behaald in 1985. Hierna trad zij 

als wetenschappelijk medewerker in in dienst bij het Centrum voor Milieukunde Leiden, 

gedeeltelijk gedetacheerd bij het Rijksinstituut voor Zuivering van Afvalwater (RIZA) te 

Lelystad. In 1986 werd zij benoemd als stafmedewerker bij de Gezondheidsraad, met 

als speciale opdracht het ontwikkelen van de advisering op het gebied van de 

ecotoxicologie. Sinds augustus 1989 is zij als universitair docent in dienst bij de vakgroep 

Toxicologie, met als taak het doen van onderzoek en het verzorgen van onderwijs in de 

ecotoxicologie. Medio 1990 is een begin gemaakt met het onderzoek dat geleid heeft 

tot het voorliggende proefschrift. 
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1 . Abstract 

PHAH levels in otter livers, fish and sediments have been determined using the in vitro 

CALUX (chemical activated luciferase gene expression) bioassay for Ah-receptor active 

compounds. For fish and otter liver extracts these levels, expressed as 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TEQs), correlated well with chemically 

derived TEQs (GC-TEQs) based on non-, mono-, and di-ortho substituted PCBs. For 

sediments, however, the so-called CALUX-JEQ was much higher than the chemically 

derived TEQs. In livers from relatively fresh otters, retinol and retinylpalmitate levels were 

measured, and these vitamin A levels correlated negatively with hepatic GC-TEQ levels. 

In addition, a strong correlation was observed between PHAH levels in blood and liver 

on a lipid basis, either expressed as TEQs or individual PHAHs. From these observations 

it can be concluded that (CALUX-)JEQ levels in blood can be used as non-destructive 

biomarker for PHAH-exposure and accompanying hepatic vitamin A reduction. 

2. Introduction 

Otter (lutra lutra) populations in Europe have declined markedly over the last decades. 

Polyhalogenated hydrocarbon (PHAH) pollution is considered to be one of the major 

factors in this decline, in addition to physical threats, such as habitat destruction, traffic 

accidents and drowning in fishing nets. This assumption was based on toxicological 

studies with the mink {Mustela vison) which is often used as a model for the otter, and 

on associations between high PCB levels in otters and declining or endangered 

populations1,2. For practical and ethical reasons no toxicological experiments have been 

conducted with the otter itself. Because the Dutch government aims at the return of the 
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otter in the Netherlands, insight in the environmentally safe levels of PHAHs permitting 

survival of viable otter populations is needed3. In addition non-destructive biomarkers 

are needed to monitor exposure and health status of otters, before and after re-

introduction in their natural environment. 

For hazard and risk assessment of mixtures of PHAHs the concentrations of 

individual PHAHs multiplied by their respective loxic equivalency factors (TEFs) are 

added up to give the total TCDD toxic equivalency of the mixture5. However, given the 

complexity of mixtures of PHAHs in environmental matrices, even an extensive chemical 

analysis can only give an impression of the potency of a mixture6. In this study we used 

a rapid, sensitive in vitro assay for assessing the toxic potency of mixtures of PHAHs in 

livers of accidentally killed otters and in sediment and fish samples collected in the same 

area. The response in the CALUX assay78, using recombinant rat (H4IIE) hepatoma cell 

lines, is compared with PCB-levels determined using gas chromatography combined with 

Electron Capture Detection (ECD) or Ion Trap Detection (ITD)9. Whenever possible, 

PHAH levels in the otter livers were compared with PHAH levels in blood samples of 

the same otters. 

One of the mechanisms of toxic action of PHAHs is the reduction of the vitamin 

A storage in liver, which has been demonstrated in both experimental and field 

studies10,11<12. Vitamin A plays an important role in tissue development in foetuses, 

reproduction, and resistance against infectious diseases. In relatively fresh otter livers also 

vitamin A (retinol and retinylpalmitate) levels were determined, and compared with 

hepatic TEQ-levels. This paper presents the first results of a joint study of which the 

general outline is presented separately at Dioxin '964. 

3. Methods 

Sample collection and preparation 

Dead otters were collected from 1992 to 1993 in Denmark, and the health status was 

recorded13. Relatively fresh liver aliquots of 10-20 g from 12 otters were prepared 

separately for CALUX and GC-ITD or ECD measurement (see below). Samples of about 

1 gr were prepared for hepatic retinoid analysis. Blood was collected for chemical and 

CALUX analysis. In five areas in Denmark flsji and sediment samples, representative for 

the otter diet and habitat, were collected in 1995. From each fish species 25 individuals 

were homogenized using a blender. Fish samples were lyophilized, and sediment 

samples dried by 60°C. 
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CALUX-assay 

Rat H4IIE.pGudluc1.1 cells prepared as previously described7,8 were exposed in 24-well 

cell culture plates and the assay performed as described elsewhere6. For calculation of 

CALUX-JEQs a standard curve of TCDD was fitted, and the CALUX-JEQ value for the 

unknown sample was interpolated on this curve. 

Chemical analysis 

After Soxhlet extraction, lipids were gravi metrically determined in 10% of the liver, blood 

and fish extract. Another part of the extract (10%) was cleaned over 33% H2S04 

deactivated silica. The sediment extract was cleaned over a multi layer column filled with 

alumina oxide (deactivated with 5% H20). This extract was evaporated and partly used 

for the CALUX-assay. The rest was fractionated over a silica gel (5% H20 deactivated) 

column and was further separated into three fractions containing non-, mono- and di-

ortho substituted PCBs, using a PYE HPLC column9. The di- and mono-ortho fractions 

were measured with GC-ECD, the non-ortho fraction using GC-ITD. The so-called GC-

TEQs were caluclated based on TEF-values as described before5 

Analysis of hepatic retinoids was performed according to Brouwer et al.10 with aliquots 

of 50 //I liver homogenate on a reversed phase silica C18 column. Retinoids were 

detected at 326 nm. 

4. Results and discussion 

Good correlations were observed between the CALUX-JEQs and GC-TEQs for fish and 

otter liver samples (Figures 1a and 1b). The absolute TEQs were in the same order of 

magnitude. This was to be expected as TEQs in biota are mainly determinded by non-

and mono-ortho PCBs9,14. However, for fish sample extracts the TEQ indicated by the 

CALUX -assay was slightly less than the chemically derived TEQs. This could be a 

consequence of the relatively high levels of di-ortho PCBs in fish compared with the 

otter15. Di-ortho PCBs have been demonstrated to have a slightly antagonistic effect on 

planar PHAHs in H4IIE cells7. The CALUX-JEQ and GC-TEQ for sediment extracts also 

correlated well (Figure 1c). The CALUX-JEQs, however, were much (more than a factor 

of 20) greater than the GC-TEQ. This is probably due to the presence chemically not 

quantified chemicals, such polyaromatic hydrocarbons (PAHs), which may also be good 

Ah-receptor agonists, and therefore are determined by the CALUX assay. As PAHs hardly 

bioaccumulate, such differences are not observed in the biotic samples. Relatively little 

sample preparation and clean-up is needed for the CALUX assay 6. Therefore this assay 

is a good and fast alternative for more extensive chemical PHAH analysis. 
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A strong decline of hepatic retinol (Figure 2) and retinylpalmitate (data not shown) levels 

is observed w i th a relatively small increase in hepatic GC-TEQ levels. This correlation 

on TEQ-basis is much better than on the basis of the sum of the 7 standard PCBs. A 

comparable decrease in hepatic retinol levels was reported for f lounder {Platichthys 

flesus) exposed to pol luted harbour sediment, although hepatic retinylpalmitate levels 

d id not decrease in these fishes17. More otter samples w i l l be analysed to study these 

relationships further. Good correlations were observed between total PCB-levels in 

liver and blood on a l ipid basis (y = 0.97x-0.043 ; r = 0.89, data not shown). This implies 

that TEQ-levels in liver can be estimated based on TEQ-levels in b lood, wh ich can be 

col lected in a non-destructive manner. There were too l itle dead otters available w i th 

both a relatively fresh liver and enough blood to measure both hepatic v i tamin A and 

TEQs in b lood. However, the correlations observed so far between TEQs in liver and 

b lood, and between TEQ in liver and hepatic v i tamin A, suggests that at least a rough 

estimate of the vitamin A reduction in the liver could be obtained based on TEQ-levels 

in b lood. 

4.5 
(a) otter liver (b) fish 

1.S 2.0 2.5 3.0 3.5 4.0 4.5 

log [GC-TEQ] (pg/g lipid) 

0.5 
0.5 1.0 1.5 2.0 2.5 3.0 

log [C-TEQ] (pg/g lipid) 

~ 50 
(c) sediment 

0.0 0.2 0.4 0.6 0.8 

GC-TEQ (pg/g dry weight) 

Figure 1 Correlation between TEQ 
levels in (a) otter liver (b) fish and 
(c) sediment, determined with the 
CALUX-assay and GC (based on 
mono- and non- ortho substituted 
PCBs), using TEF-values published 
by Ahlborgetal. (1994P. 
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Figure 2 Correlation between TEQ and retinol levels in relatively fresh livers of otters. TEQ-
calculations are based on chemically determined PCB-levels using TEF-values published by 
Ahlborgetal. (1994)5. 
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1 . Abstract 

The results presented in this paper demonstrate that the in vitro CALUX (chemical 

activated luciferase gene expression) bioassay is a rapid, sensitive assay for assessing the 

toxic potency of (mixtures of) Ah-receptor active compounds in sediment, pore water and 

blood plasma. Recombinant rat (H4IIE) and mouse (Hepaldc7) hepatoma cell lines, 

containing arylhydrocarbon receptor (AhR)-mediated luciferase gene expression, were 

used to determine the CAZ-l/X-response of sample extracts. Using a 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) standard curve, the CALUX responses for the samples 

were converted into so-called CALUX-JEQs (TCDD-equivalents). The detection limit of 

the CALUX assay was 0.5 fmol of TCDD-equivalents. The CALUX activity induced by 

organic extracts from 450 mg aliquots of sediment or 250 ^ l aliquots of pore-water 

corresponded well with the instrumentally analysed level of dioxin-like compounds in 

the sediment. Using pore water, only a simple and rapid extraction procedure was 

needed, without additional clean-up to prevent cell death. The CALUX response both for 

the fatty, uncleaned organic extract and the cleaned extract of blood plasma from 

experimentally exposed eider ducks, correlated significantly with the PCB-levels 

measured in abdominal fat or blood plasma, and with the hepatic EROD activity in the 

same animals. 

An important advantage of the CALUX-assay compared to the ethoxyresorufin O-

deethylase (EROD) assay is that the CALUX assay is insensitive to substrate inhibition, 

which is demonstrated in this paper for 3,3',4,4',5-pentachlorobiphenyl (PCB-126). 
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2. Introduction 

For hazard and risk assessment of mixtures of PHAHs the concentrations of individual 

PHAHs multiplied by their respective toxic equivalency factors (TEFs) are added up to 

give the total TCDD toxic equivalency of the mixture1. Given the complexity of the 

mixtures of PHAHs in sediments and organisms, chemical analysis can only give a rough 

impression of the potential health risks. Due to the often small concentrations of 

individual congeners and the presence of unknown or not routinely measured AhR active 

substances, there is a risk of underestimation of the total TEQ. The toxic responses of AhR 

active compounds may be additive, as is the case for polychlorinated dibenzo -p-dioxins 

(PCDDs) and -furans (PCDFs), but for PCBs and non-PCB like substances both additive 

and antagonistic interactions have been observed2,3. These limitations are drawbacks to 

the TEQ-approach. The CALUX bioassay provides a measure of the toxic potency of the 

whole mixture, including interactions. 

This paper presents some examples of the use of the CALUX assay for monitoring Ah-

receptor active compounds in sediment, pore water and blood plasma. Applications of 

the CALUX-assay for human milk and blood samples, butter fat and coconut oil, otter liver 

and whole blood, and fish samples4,5,6, and application of the CALUX assay for 

compounds that bind to and activate the estrogen receptor7, will be presented separately 

at Dioxin 1996. In pursue of the substrate inhibition tests with Clophen A50 and PCB-77 

reported elsewhere8, possible substrate inhibition of the more potent Ah-receptor agonist 

PCB-126 is also determined, by comparing the dose-response curves in the EROD and 

CALUX assay. 

3. Methods 

Sample collection and preparation 

Sediment samples differing in degree of pollution were obtained from the National 

Institute for Inland Water Management (RIZA)were decanted and sieved, ten grams of 

sediment was mixed with Na2S04, dried in an oven overnight at 40°C, and extracted 

with hexane:acetone (1:1) in aSoxhletfor 16 hr8. Sulphur was removed using tetra butyl 

ammonium sulphite (TBA). Further clean-up was performed using a multi-layer acid-base 

silica column consisting of 0.75 g Na2S04, on top of dried silica with 0.75 g of 22% and 

0.75 g of 40% hexane washed H2S04, and 1 g of 33% NaOH on glass wool. The column 

was eluted with 20 ml of hexane followed by 20 ml of hexane:dichloromethane (1:1), 

dried under a gentle, filtered air-flow, and dissolved in 100 //I of DMSO. Pore water was 

collected from 200 g decanted and sieved sediment by centrifugation for 30 min at 3000 

g at 5°C. The supernatant was carefully decanted into glass erlenmeyer flasks and stored 

at 5°C. Samples of 5 ml pore water were extracted three times with 5 ml hexane, the 
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hexane was evaporated under a gentle nitrogen flow, and the extract dissolved in 200 

/j\ of DMSO. Blood plasma was collected from 27 days old eider ducklings, was collected 

on day 10 after i.p. injection with 5 ml corn oil/kg body weight (bw), 5 or 50 mg PCB-

77/kg bw, or with 50 or 200 mg Clophen A50/ kg bw10. EROD activities were measured 

in hepatic microsomes, and PCB levels in abdominal fat (using GC-ECD)11. Blood plasma 

aliquots of about 1.5 ml were denaturated with an equal amount of methanol. The 

PHAHs were extracted three times with 3 ml of hexane. After the first extraction step, 

3 drops of 6 M HCI were added to the water phase. Part of the extract was taken for 

further clean-up, the rest was evaporated at 30°C under a gentle stream of nitrogen gas, 

and dissolved in DMSO for use in the CALUX assay using Hepa.Luc cells. For the first 

dilution step these fatty extracts had to be kept warm (+ 30°C) to prevent clotting of the 

lipids in the pipet. The other part of the extract was cleaned over a 20% H2S04 

deactivated silica column with hexane-diethyl ether (97:3, v/v). This extract was 

evaporated, dissolved into isooctane, and analysed by GC. After GC-analysis, the 

remaining extract was evaporated and dissolved in DMSO for measurement of G4/_In

activity in H4IIE.Luc cells. 

For the CALUX-assay, H4IIE.pGudluc1.1 (H4IIE.Luc) or Hepa1c1c7.pGudluc (Hepa.Luc) 

cells prepared as previously described3,9 were exposed to PHAHs in 24-well culture 

plates8. Cells were seeded in 500 fj\ growth medium and incubated for 24 hr until the 

cell layer was 80-90% confluent. The medium was replaced by fresh growth medium 

containing the test compound in maximal 0.5% DMSO. After 24 hours incubation the 

cells were rinsed twice with 50% diluted PBS (0.5* PBS), 75 /j\ lysis mix was added, the 

cells were harvested 15 minutes later and centrifuged for 90 sec. at 13000 g. The 

supernatant was frozen at -80°C. For luciferase measurement 20 fj\ supernatant was 

pipetted in a 96-well microtiter plate, 100 //I luciferin assay mix (Promega) was added 

and after 90 sec mixing on a plate mixer the light production was measured in an 

Amerlite Luminometer. For calculation of CALfX-TEQs a standard curve of TCDD was 

fitted, and the CALUX-JEQ value for the unknown sample was interpolated on this 

curve8. For the substrate-inhibition test the CALUX assay has been performed in 96-well 

culture plates. Briefly, H4IIE.Luc cells were seeded in 96-well plates in 100//I growth 

medium. After 24 hr incubation at 37°C the cell layer was 80-90% confluent, and 100 

/j\ of fresh medium containing the test compound in maximal 0.5% DMSO was added 

to each well. After an additional 24 hr incubation, the plates were rinsed twice with 

0.5*PBS, 20 fj\ lysis buffer was added, and the plates were placed at -80°C. The plates 

were measured in a Labsystems Luminometer (Merlin) with automated injection. To be 

able to correct for differences in quantification due to assay to assay variation, three 

TCDD calibration standards were measured with each assay. 
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The EROD assay was mainly based on the method described before12. Briefly, H4IIE wild 

type cells were seeded in 96-well plates and exposed as described for the CALUX assay 

in 96 well plates, but exposure was during 48 hr instead of 24 hr. Instead of lysis mix, 

20 fj\ of nanopure water was added before the plates were placed at -80°C. To measure 

resorufin production, the plates were pre-incubated for 20 min. at 37°C, with 50 //I of 

Tris-sucrose buffer (pH 8) with 40//M dicumerol, and 25//I 10//M 7-ethoxyresorufin (ER) 

was added to each well. The reaction was started with 25 /J\ 1 mM NADPH per well, and 

after 1 hr incubation at 37°C, the resorufin production was measured in a fluorometer 

(Cytofluor) with excitation at 530 nm and emission at 590 nm. 

For the CALUX or EROD Substrate inhibition assay, H4IIE.Luc or H4IIE wild type cells 

were exposed to 50 pM TCDD in 96-well plates for 24 hr, and frozen at -80°C as 

described above. The plates were thawed on ice prior to luciferase or EROD activity 

measurement, and final concentrations of PCB-126 ranging from 1 to 10000 nM were 

reached by adding appropriate concentrations of stock solutions in 4/yl DMSO to each 

well. The plates were thoroughly mixed on a plate mixer before CALUX or EROD activity 

were measured as described above. 

GC-ITD analysis was performed using the isooctane extract of eider duck blood plasma 

(see above). The gas chromatography (GC) column DB5-MS, 30 m x 0.2 /urn (J&W 

Scientific) was coupled to a Saturn II ion trap detector (ITD; Varian). A retention gap of 

2 m x 0.53 mm i.d. deactivated fused silica was used (Chrompack). The GC and ITD 

conditions are described elsewhere13. 

4. Results and discussion 

The CALUX response was found to be very sensitive and reproducible using TCDD as 

a positive control. The detection limit in H4IIE.Luc cells was less than 1 pM, which equals 

1 10 100 

ul pore water 

Figure 1 The CALUX response by pore 
water extracts in H4IIE.Luc cells, ex
pressed as induction factor relative to 
background induction. OVP -Oostvaar-
dersplassen, NSC-North Sea Canal, 
KM - Ketelmeer 
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Figure 2 Correlation between 
CALUX TEQ of blood plasma 
extracts from experimentally ex
posed eider ducks, with and 
without clean-up. 

an absolute amount of less than 0.5-0.2 fmol/well, depending on method of exposure 

used8. The EC50 was 10 pM, the TCDD dose-response curve saturated between 100 pM 

and 1 nM, and the standard deviation was generally <. 5%. Exposure of H4IIE.Luc cells 

to extracts of Ketelmeer (KM) sediment, which is known to be polluted with several 

PHAHs, resulted in 17 fold greater CALUX activity than did extracts from the relatively 

clean Oostvaardersplassen (OVP) sediment8. Based on chemical analyses, the TEQs of 

these two locations differed by a factor 20. A comparable difference was observed using 

pore water extracts. Pore water from the North Sea Canal (NSC) contained almost 13 fold 

more CALUX-JEQs than the polluted KM (Figure 1). The high signal in the NSC was 

probably caused by accidental emissions of PCDD and PCDF from a herbicide producing 

plant situated in the NSC. Analysis of only the solid phase of sediments does not 

discriminate between bioavailable and tightly bound contaminants, where pore water 

samples represent the biologically available fraction of sediment contamination. An 

advantage of analysis of pore water is that no soxhlet extraction is needed, or clean-up 

to prevent cell-death. This makes the sample preparation much more rapid and the 

chance of loosing unknown AhR-active compounds with yet unknown optimal recovery 

conditions, much smaller. 

Extracts of eider duck blood plasma's induced CALUX responses in a dose-related manner 

(Murk et al., submitted). The CALUX-JEQs based on the fatty blood plasma extracts 

correlated significantly with either the PCB-levels in the abdominal fat (r= 0.80-0.94, 

depending on the PCB-congener used), with the hepatic EROD activity of the eider ducks 

(r = 0.88), and with the CALUX-JEQs determined for the cleaned extracts (Figure 2; 

r = 0.96). Also the PCB levels in blood plasma extracts correlated well with the CALUX-

JEQs measured in these cleaned extracts (r = 0.86-0.96, depending on the PCB-congener 
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used) (data not shown; Murk et al., submitted). These results demonstrate that blood 

plasma extracts can be measured in the CALUX assay with and without a clean-up 

procedure. Performing a simple Silica-H2S04 clean-up, however, offers the possibility 

to concentrate the extract, and makes it easier to manipulate the extract. The observed 

good correlation of the CALUX-TEQ in blood plasma with the PCB-levels in abdominal 

fat suggests that the CA/.UX-TEQ in blood plasma provides an integrated measure of toxic 

potency of the internal dose of the AhR active PHAHs. Although the experimentally 

dosed eider ducks used for this study contained relatively high levels of PCBs, the 

CALUX-assay has already been applied for measuring TEQs in environmentally exposed 

species, such as cormorants, otters6 and humans4. About 0.5-1 ml of blood plasma is 

needed for quantifying CALUX-TEQs in blood plasma, depending on the (expected) level 

of exposure (Murk et al., submitted). 

Substrate inhibition 

The CALUX assay offers some advantages when compared to the commonly used EROD 

assay in H4IIE cells. It is slightly more sensitive and has a three fold greater induction 

factor8,12, but, more importantly, the use of the CALUX assay is not limited by substrate 

inhibition8. As is shown in Figure 3, the CALUX and EROD induction both increase with 

increasing PCB-126 concentration. The EROD activity, however, decreases again at 

concentrations greater than 100 nM, while the CALUX activity saturates at the maximum 

level (Figure 3). For the potent Ah-receptor agonist PCB-126, maximum induction levels 

are not significantly different from the maximum induction with TCDD. However, the 

maximum EROD induction declines with decreasing AhR inducing potencies of PHAHs 

(Murk et al., in prep.). Figure 4 demonstrates the CALUX and EROD activity, induced by 

50 pM of TCDD, when increasing amounts of PCB-126 are added to the lysed cells 

shortly before adding the respectively substrates. The measured EROD activity was 

already reduced to 73% of the original activity by addition of 10 pM of PCB-126, and 

after addition of 10 nM PCB-126 only 6% of the EROD activity is left. No inhibition of 

the CALUX activity was observed at any of the PCB-126 concentrations tested, which was 

to be expected, since PHAHs are not substrates for luciferase. These finding are in 

accordance with previously reported results8 for H4IIE cell lines, and with results with 

experimentally dosed flounder, where the EROD activity induced by 5 //g TCDD/kg was 

strongly reduced when dosed simultaneously with Clophen A50/kg, although the 

cytochrome P450 protein content increased in an additive manner14. 
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Figure 3 CALUX and EROD 
induction by PCB-126 in resp. 
H4IIE.Luc and H4IIE.wt cells. 
Exposure was during 24 hr in 
96-well culture plates. Maxi
mum induction was reached by 
1000pMo fTCDD. 

Figure 4 Effect of an increasing 
concentration of PCB-126 added 
to lysed H4IIE.Luc or H4IIE.wt 
cells shortly before measuring 
the CALUX or EROD activities, 
which were induced by expo
sure to 50 pM TCDD during 24 
hr (this induction was set at 
100%). 
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