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Voorwoord 
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medeauteur. 
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Mijn promotor Prof. Dr. Ir. J. Dekker heeft ervoor gezorgd dat ik dit onder
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durende belangstelling en opmerkingen en de grote vrijheid die hij mij ver-

leende zijn mede bepalend geweest voor het verloop van het onderzoek. 

De diskussies met de leden van de Werkgroep Inwendige Therapie bij Planten, 
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De dames van de administratie van de vakgroep fytopathologie en van de af-

deling tekstverwerking hebben de manuskripten uitgetypt en bijgedragen aan 

de uiteindelijke vormgeving van het proefschrift. 

De leden van de vakgroep fytopathologie zorgden vooreen klimaat waarin het 

prettig werken was. 

Het Pudoc droeg zorg voor de vermenigvuldiging van het proefschrift. 

De Centrale Organisatie T.N.O., Sectie Landbouwkundig Onderzoek maakte het 

mij mogelijk aan dit onderwerp te werken en enkele kongressen te bezoeken. 

Tevens heeft T.N.O. financieel bijgedragen in de kosten van dit proefschrift. 

Academic Press, Inc. and Elsevier/North-Holland Biomedical Press B.V. have 

given permission to reprint the articles incorporated in this dissertation. 



De steun die ik thuis kreeg van Willy en de afleiding die Ellen en Pieter mij 

bezorgden, mogen ook niet onvermeld blijven. 

Hartelijk dank aan alien die hier genoemd zijn. Hartelijk dank ook aan al 

degenen die met belangstelling mijn werk hebben gevolgd. 



Introduction 

Since the time man began to grow plants for food, he was confronted 

with the problem how to protect his crop against diseases and pests, which 

often caused a considerable reduction in yield and quality. The causes of 

diseases and pests were initially shrouded in mystery and methods to control 

them were rather imaginative. In the middle of the nineteenth century when 

fungi were recognized as the cause of a number of plant diseases the first 

scientific and systematic studies appeared in the field of plant disease 

control. From that time progress in crop protection is closely linked with 

the discovery and development of new chemical compounds. The first fungicides 

used as such were elementary sulphur, copper and mercury preparations. In

creasing knowledge in chemistry made it possible to synthesize new organic 

compounds and in 1934 the fungitoxic properties of some organic sulphur com

pounds were reported. 

In the last forty years an enormous number of compounds have been tested 

for fungicidal activity and several hundreds have found use in practice. Most 

of these compounds do not penetrate into plant tissues and, consequently, can 

only prevent or protect against infection. Absence of penetration is also the 

reason why these compounds which mostly appeared to be general cell poisons, 

are not harmful to the host plant. 

In the last ten years several compounds have been discovered which can 

penetrate into the plant and are translocated within the plant tissues. These 

compounds, which are usually called systemic fungicides, have the advantage 

that they may eradicate established infections, may protect newly grown parts 

of the plant and are less subject to weathering. It is evident that systemic 

fungicides have to be selective in their action with respect to the plant and 

the parasite. In addition to this type of selectivity systemic fungicides are 

usually also selective within the group of fungal plant pathogens. Some fungi 

are very sensitive to a certain compound, whereas others are resistant. 

Soon after the introduction of systemic fungicides in practice negative 

aspects became apparent. In some instances disease control was no longer 

successful, because fungicide-resistant strains developed in previously sen

sitive fungal populations. This phenomenon, well known in insect pest control, 

was until recently seldom encountered in controlling fungal diseases and might, 

therefore, be inherent to the use of the new systemic compounds. 

Selectivity of the systemic fungicides and resistance of fungi to these 



compounds may be due to a differential uptake of the compound, a differential 

interaction with target sites or absence of target sites, a different con

version into non-toxic or toxic derivatives, or differences in regulatory 

systems of the organisms. For a detailed account of the developments in the 

field of fungicide research the reader is referred to "Systemfungizide -

Systemic fungicides" (eds. H. Lyr and C. Polter, Akademie Verlag, Berlin), to 

"Systemic fungicides", 2 edition 1976 (eds. R.W. Marsh, Longman Group 

Limited, London) and to "Antifungal compounds", Vol. 2, 1976 (eds. H.D. Sisler 

and M.R. Siegel, Marcel Dekker, Inc. New York). 

Fundamental research on fungitoxic compounds has several aspects. From 

the point of view of fungal disease control, knowledge of their mechanism of 

action and possible mechanisms of resistance might elucidate vulnerable sites 

in fungi. It may lead to the development of new compounds which specifically 

interfere with these sites. From the cell biological point of view research 

on systemic compounds which act specifically may contribute towards our in

sight in cell processes and their regulatory systems. From the toxicological 

point of view elucidation of target sites makes it possible to carry out ad

ditional specific toxicological tests. It might be possible that compounds 

which have passed the general tests may require further attention on account 

of the result of a specific test. 

This thesis deals with the mechanism of action of carbendazim or methyl 

benzimidazol-2-yl carbamate (MBC), one of the systemic benzimidazole fungi

cides and a mechanism of resistance of fungi to this compound. Biocidal 

activity of synthetic benzimidazole compounds was first reported in 1961, 

when the anthelmintic properties of thiabendazole were described. The anti

fungal properties of this compound were discovered in 1964. The systemic 

benzimidazole fungicides benomyl and fuberidazole were introduced in 1968. 

After that time a number of other biologically active benzimidazole compounds 

were found and introduced as anthelmintics like mebendazole, parbendazole and 

fenbendazole, as fungicides like carbendazim, cypendazole and as antitumoral 

drug like oncodazole. 

This thesis contains four articles. In the first paper the localization 

of the site of action is described. The second and third paper deal with the 

biochemical aspects of fungitoxicity and the mechanism of resistance in 

fungi. Since metabolic conversion might play a role in the mechanism of re

sistance, this aspect was also studied. The results of this study are given 

in the fourth paper. 
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Antimitotic Activity of Methyl Benzimidazol-2-yl Carbamate 
(MBC) in Aspergillus nidulans 
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Mitosis in germ tubes of Aspergillus nidulans was inhibited directly upon addition of 
methyl benzimidazol-2-yl carbamate to liquid cultures, whereas dry weight increase and 
DNA and RNA synthesis were progressively inhibited only after a few hours. Micro
scopic observation of the organism, grown on malt extract agar containing MBC 
revealed abnormal chromatin configurations. The possible mode of action of MBC 
through interference with spindle formation is discussed. 

INTRODUCTION 

Methyl benzimidazol-2-yl carbamate 
(MBC), the conversion product of benomyl, 
thiophanate-methyl and 2-(3-methoxycar-
bonylthioureido)-aniline, is generally ac
cepted as the actual fungitoxic principle of 
these systemic fungicides. Although MBC 
has somewhat inferior systemic fungicidal 
properties (1), this compound is at least 
as toxic as the parent compound benomyl 
to Aspergillus nidulans (2) and many other-
fungi (3-5). A difference in toxicity of 
benomyl and MBC has only been found 
toward Saccharomyces pastorianus (6), but 
this appears to be an exception to the rule. 
Hence MBC was the toxicant chosen in 
this study. 

Information concerning the effect of 
MBC on various cellular processes is given 
by d emons and Sisler (3) and Hammer-
schlag and Sisler (6). These authors found 
an inhibition of DNA, RNA, and protein 
synthesis, which was progressive with time 
and which they ascribed to a failure of 
normal mitosis or cytokinesis. 

This study was undertaken as part of a 
research program concerning the mode of 

action of benomyl and the mechanism of re
sistance of fungi to this systemic fungicide. 

MATERIALS AND METHODS 

Organism. Aspergillus nidulans bi A-l 
Acr A-l, requiring biotin and resistant to 
acriflavine, was used throughout this work. 
This strain was kindly provided by Ir. C. J. 
Bos (Department of Genetics, Agricultural 
University, Wageningen) and was originally 
obtained from the Department of Genetics, 
University of Glasgow. 

Chemicals. MBC was generously supplied 
by E. I. Du Pont de Nemours and Co. 
(Inc.) (Wilmington, Del.). Calf thymus 
DNA and yeast RNA were purchased from 
Sigma (St. Louis, Mo.) and Fluka AG 
(Buchs, Switzerland), respectively. 

Culture methods. The organism was 
grown on malt extract agar in Petri dishes. 
To prepare conidial suspensions, the coni-
dia were washed off with sterile water con
taining one drop of Tween 20 per 20 ml and 
filtered through two layers of Kleenex 
tissue to remove most of the hyphal frag
ments. The suspension was washed twice 
with sterile water, and resuspended in 



sterile water (final conen approx 109 

conidia per ml). Spores were then added to 
100 ml of glucose-nitrate medium (7), 
supplemented with 500 /ig biotin per liter, 
in a 300-ml Erlenmeyer flask to give a 
concentration of 107 conidia per ml. 
Flasks were incubated at 37°C on a 
Gallenkamp orbital shaker at 150 rpm, 
for about 10 or 16 hr, depending on the 
method used in the inhibition experiments. 

Inhibition experiments. MBC. dissolved 
in methanol, or methanol alone was added 
to 300-ml Erlenmeyer flasks containing 
either 10 hr old cultures or 100 ml of a 
mycelial suspension, which was obtained 
by filtration of l(i hi' old cultures on a 
Buchner filter and resuspension of the 
mycelial cake in fresh medium. In (he latter 
case also 50-ml Erlenmeyer flasks contain
ing 10 ml mycelial suspensions were used. 
In all instances, the final MBC1 concen
tration in the medium was 4 ,uM ; the 
methanol concentration never exceeded 
0.5% (v v) in treated and control media. 

The suspensions wen; incubated as de
scribed above. Samples of treated and 
control suspensions, consisting of the whole 
contents, of four 50-ml and two 300-ml 
flasks per treatment were taken at intervals 
and immediately cooled in an ice-bath to 
stop growth. 

The contents of the 50-ml flasks were 
used for dry weight determinations. The 
contents of the two 300-ml flasks were 
added together and divided in 20-ml por
tions for dry weight, DNA and KXA de
terminations and, in the experiments with 
10 hr old cultures, also for determining the 
average number of nuclei per germ tube. 

Dry weight determinations. Growth was 
measured by determining increase in fungal 
dry weight of the cultures. Four 10- or 
20-ml samples of treated and control 
suspensions were filtered using preweighed 
filter papers. After washing with distilled 
water the filter papers were dried overnight 
at 60°C and reweighed. 

DNA and RNA analysis. DNA and RNA 
synthesis was measured as increase of DNA 

and RNA contents of the cultures. To this 
end, four 20-ml samples of treated and 
control suspensions were spun down in 
centrifuge tubes and washed twice with 
distilled water. To remove low molecular 
weight compounds, samples were incubated 
in 5 ml ice-cold 0.2 N perchloric, acid 
(PCA) for 10 min in an ice-bath and centri-
fuged. This process was repeated twice. 
The pellet was suspended in 4 ml 0.3 N 
KOH and kept overnight at 37°C to 
hydrolyze RNA. The suspension was cooled 
in an ice-bath and 0.9 ml 2.5 N PCA was 
added to precipitate DNA. After centrifu-
gation the supernatant was decanted and 
the residue; was washed with 4 ml ice-cold 
0.2 N PCA. The extract and the washing 
were combined and made up to 10 ml with 
0.2 A' PCA. This fraction was considered 
the RNA fraction and was assayed for 
RNA by the orcinol method (8) with yeast 
RNA as a standard. 

The residue remaining after extracting 
RNA, was treated with 1 ml 1.5 N PCA for 
20 min at 70°C to extract DNA. After 
centrifugingand decanting; the supernatant, 
the residue was again extracted with 1 ml 
1.5 N PCA in the same way. The super-
natants were combined and made up to 2.5 
ml with 1.5 AT PCA. This fraction was 
considered the DNA fraction and was 
assayed for DNA by the diphenylamine 
method of Burton (9) as modified by Giles 
and Myers (10). Calf thymus DNA was 
used as a standard. 

Determination of number of nuclei per 
germ tube. Two and a half milliliter samples 
of treated and control suspensions wen-
pipetted in an equal volume of cold 10% 
trichloroacetic acid, kept at 0°C for 30 
min and centrifuged (7). After washing 
with distilled water, the residue was taken 
up in 0.05 .1/ phosphate buffer, pH 7.2 
to which acridine orange was added, the 
final concentration being 100 Mg per ml 
(11). Clumps of germ tubes were broken 
up by agitating the samples in a 50 ml 
beaker placed in a Metason 1500 ultrasonic 
cleaner (Struers Scientific Instruments, 
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Copenhagen). The material was not dam
aged by this treatment. The hyphae were 
viewed with a Zeiss microscope, equipped 
with an ultraviolet light source (barrier 
filters 50 and 41, exciter filters I and II) . 
Using this technique the nuclei appear green 
in red cytoplasm. Nuclei were counted in 
at least 50 germ tubes (12). 

Cytological observations. Conidia were 
allowed to germinate overnight on sheets 
of dialysis tubing, sterilized by boiling in 
water, and placed on the surface of malt 
extract agar (13, 14) with or without 4 fiM 
MBC. After incubation the sheets were re
moved from the agar and fixed in modified 
Helly's solution (15) for 10 min and washed 
with 70% (v/v) ethanol in water. After 
hydrolysis for 12 min in 1 N HC1 at 60°C 
(14) and after washing with distilled water, 
the material was stained for at least 1 hr 
with Giemsa (2 ml Giemsa's Losung, 
Merck, in 100 ml 0.05 M phosphate buffer, 
pH 7.0). The colonies were viewed with a 
Wild photomicroscope. 

HOURS 

FIG. 1. Effect of 4 (ill MBC on increase of dry 
weight of mycelium of Aspergillus nidulans. MBC 
added at t = 0 to 16 hr old mycelium in fresh medium. 
The initial inoculum was 7.9 mg dry wt/10 ml 
mycelial suspension. 

RESULTS 

MBC (4 nM) did not markedly inhibit 
the increase in dry weight of A. nidulans 
mycelium during the first 4 hr of the incu
bation period, when an initial inoculum of 
7.6 mg dry wt per 10 ml suspension of 16 
hr old cultures was used. Strong inhibition 
became evident after 4 hr (Fig. 1). Treat
ment of the mycelium with 1 uM MBC 
during the preexperimental period did not 
eliminate or reduce the delay in MBC 
inhibition of growth. As to increase in 
DNA and RNA content of the samples a 
similar pattern was observed (Fig. 2); 
however, in this case the inhibition became 
apparent already after 2 hr. In the latter 
experiment the inhibition of growth, meas
ured as increase in dry weight during 8 hr 
of incubation, was about 13% (initial 
inoculum 26 mg dry wt/20 ml mycelial 
suspension of 16 hr old cultures). The 
inhibition of increase in DNA and RNA 
content was about 62% during the same 

period. This inhibition proved to be pro
gressive with time so that after 8 hr of 
incubation with the toxicant synthesis of 
DNA and RNA was inhibited for almost 
100%. At this time, the DNA content of 
treated samples was almost doubled, while 
in the controls the amount of DNA was 
more than three times the initial amount. 

Inhibition of increase in number of 
nuclei per germ tube was much more 
pronounced (Fig. 3). At a concentration of 
4 MM, MBC completely inhibited the in
crease in number of nuclei per germ tube, 
immediately after addition of the toxicant 
to 10 hr old cultures. Counting the nuclei 
revealed synchrony of mitosis in individual 
hyphae as has been reported by Rosen-
berger and Kessel (7). Under these circum
stances, inhibition of increase in dry weight 
was not noted, while increase in DNA and 
RNA content was inhibited for 43 and 
13%, respectively, during 4 hr of incubation 
(initial inoculum 16.4 mg dry wt/20 ml 
mycelial suspension of 10 hr old cultures). 



Fm. 2. Effect of 4 / J .\1 MliC on increasi of dry weight (0,9), DXA ( • , • and li.\A (A, A) content of 
mycelial suspensions of Aspergillus nidulans. M KC added at \ = 0 to lfi hr old mycelium in fresh medium. The 
initial inoculum was 2t> mg dry ui 20 ml mycelial suspension. 

With regard to the last experiments, the 
decreasing RXA content of the germ 
tubes, viz, from 92 MK UNA mg dry \vt at 
t = 0 to 69 MR RNA mg dry wt at t = 4, 
is worth noticing. This phenomenon was 
not observed in experiments with l(i hr old 
germ tubes. The RXA content here was 
about 55 Mg RXA mg dry wt and remained 
the same during the incubation period. 

Giemsa-Ht'l staining of MBO treated 
hyphae revealed a remarkable effect on the 
structure of the nuclei. While in control 
hyphae the chromatin of the interphase 
nuclei had a ring-shaped appearance, due 
to the size and form of the nucleolus (14, 
Fig. 4A), in treated hyphae the chromatin 
was much more contracted and did not 
appear in a ring shape (Fig. 40, D). No 
separate nuclei could be observed; this 
observation and the uneven distribution of 
irregular masses of chromatin in the hyphae 
seems to indicate a disturbance of mitosis 

caused by MBO. Normal phases of mitosis, 
as were found in control hyphae (Fig. 4B), 
were not seen in treated hyphae. 

DISCUSSION 

The inhibition of growth of A. nidulans 
by MHO can be ascribed to an interference 
with mitosis by the fungicide. Upon ad
dition of MBO to liquid cultures the average 
DNA content per nucleus increases till 
nearly twice the initial content (Fig. 5), 
since DNA synthesis is not directly in
hibited. This means that the inhibition of 
DNA synthesis after 2 hr of incubation in 
the presence! of MBO is the result of 
arrested mitotic activity. Due to the 
asynchronous character of the culture, 
nuclei will be arrested in increasing number 
in some stage of mitosis, resulting in a 
progressive inhibition of DNA synthesis. 

The doubling of the DNA content per 
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FIG. 3. Effect of 4 MM MBC on increase in dry weight (0,9), DNA ( • , • ) and RNA (A, A) content of 
mycelial suspensions and on average number of nuclei per germ tube (€),0) of mycelium of A. nidulans. MBC 
added at t — 0 to 10 hr old cultures. Initial dry weight 16.0 mg/20 ml mycelial suspension. 

nucleus after addition of MBC to the 
culture also means that the Gi period1 

should be long in comparison with the G2 

period of the division cycle. When phase 
G i is long and phase G2 is short, most of the 
nuclei are in phase Gi and upon addition of 
MBC to the culture, these nuclei can go 
through the S phase, and thus synthesize 
DNA, before the division cycle is blocked 
in mitosis. On the other hand, when phase 
Gi is short and G2 is long most of the nuclei 
are in the latter phase and addition of MBC 
will result in at most a slight increase of 
DNA content per nucleus. The result of this 
indirect measurement of the length of 
phase Gi and G2 agrees well with the results 
of Bainbridge (12). 

Clemons and Sisler (3) reported a dif
ferent response of Neurospora crassa conidia 
and Ustilago maydis sporidia to MBC 

1 The (S-) phase of DNA synthesis during inter
phase is preceded and followed by two phases, 
G(ap)i and G(ap)2, respectively, during which no 
DNA synthesis takes place. 

treatment with respect to inhibition of 
DNA synthesis. In the light of our results 
the doubling of the DNA content of the 
culture of N. crassa conidia after addition 
of MBC is to be expected, since resting 
nuclei in spores have a minimal DNA 
content and can go through the G1-S-G2 
phases of the division cycle before inhi
bition becomes apparent. With U. maydis 
sporidia, however, DNA content of cultures 
only slightly increased upon treatment with 
MBC. As this system is similar to the 
system we used to study the effect of MBC, 
the results of Clemons and Sisler would 
suggest that in U. maydis sporidia phase Gi 
is short and phase G2 is long. 

The effect of MBC on RNA synthesis is 
dependent on the age of the germ tubes. 
In 10 hr old germ tubes, in which RNA 
content per mg dry weight is decreasing, 
RNA synthesis is less inhibited than DNA 
synthesis over a 4-hr incubation period. In 
16 hr old germ tubes RNA synthesis is 
inhibited to the same extent as DNA syn-
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thesis, indicating a close correlation be
tween DNA and RNA content. In younger 
germ tubes this correlation is apparently 
much weaker and inhibition of DNA syn
thesis might not directly result in inhibition 
of RNA synthesis. 

The antimitotic activity of MBC in A. 
nidulans shows a striking resemblance with 

the antimitotic activity of colchicine in 
human cell cultures (Hi). The mechanism 
of action is based on the complex forming-
ability of colchicine with a protein subunit 
of microtubules (17-19). Preliminary ex
periments showed that A. nidulans was 
not inhibited by colchicine at concentrations 
of this compound up to 100 Mg/ml in malt 
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F I G . 4. Photomicrographs of Giemsa-HCI stained hi/phae of Aspergillus nidulans. A. Untreated; nuclei in 
interphase, chromatin ring-shaped. B. Untreated: nuclei in mitosis. C, D. Treated with .'f y.W MBC. Abnormal 
configurations of dense masses of chromatin. 

extract agar. However, as has been shown 
by Haber et al. (20), colcemid, a colchicine 
derivative, inhibits growth and division of 
Saccharomyces cerevisiae under restricted 
culture conditions. Also here, colchicine 

itself was not inhibitory to the organism. 
This difference in activity could not be 
ascribed to a difference in ability of the two 
compounds to permeate the yeast cell, but 
to a difference in affinity of the two agents 
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bility of A. 
exposed to 
bonomyl. 

nidulans diploids (24), when 
sublethal concentrations of 

FIG. 5. Effect of J, M-M MBC on relative DNA 
content per nucleus. Data are based on those in Fig. 3. 

for a cellular binding site, which was 
provisionally identified as a microtubule 
subunit. This difference in affinity to the 
binding site might be due to a minor modi
fication of the structure of colchicine, for 
colchicine has a NH-CO-CH3 group and 
eolcemid a NH-CH3 group. 

The resemblance in the effect of MBC 
with that of colchicine and eolcemid on 
mitosis and synthesis of macromolecules 
might suggest a similar mode of action, viz, 
the formation of a complex between MBC 
and a subunit of microtubuli, resulting in 
inhibition of spindle formation. The NH-
CO-OCH3 side chain of MBC might act 
in the same way as the active group of 
colchicine and eolcemid in determining the 
binding properties between toxicant and 
protein. From this point of view the lower 
intrinsic fungicidal activity of ethyl benzi-
midazol-2-yl carbamate (EBC) (21-23) 
might be due to a lower affinity of this 
toxicant to a microtubule subunit. 

This suggested mode of action of MBC 
could also account for the nuclear insta-
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ANTIMITOTIC ACTIVITY OF METHYL BENZIMIDAZOL-2-YLCARBAHATE IN FUNGI AND ITS 
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Research Uni t fo r In terna l Therapy o f Plants T.N.O. 

Laboratory o f Phytopathology, Ag r i cu l t u ra l Un ivers i ty 

Wageningen, The Netherlands 

1. Summary 

Several l i nes of evidence ind ica te tha t methyl benzimidazol-2-ylcarbamate (MBC 
or carbendazim)and some other benzimidazole der iva t ives may be considered as 
a n t i m i t o t i c agents, ac t ing as spindle poisons. A macromolecular MBC receptor w i th 
t u b u l i n - l i k e proper t ies appeared to be present i n Asperg i l lus nidulans and other 
MBC-sensitive f ung i . 

The d i f ferences in response o f fungi to MBC and the readiness w i th which 
changes in response in o r i g i n a l l y sens i t i ve fungi can be induced may ind ica te a 
very spec i f i c a c t i on . 

A high s p e c i f i c i t y o f the mechanism of ac t ion may also account f o r the f a i l u r e 
o f MBC to i n h i b i t both porcine bra in t ubu l i n polymerizat ion in v i t r o and the 
copolymerizat ion of fungal t ubu l i n i n to microtubules i n a heterologous assembly 
system w i th porcine bra in t u b u l i n . 

In view of t h i s , benzimidazole der iva t ives may prove to be valuable too ls to 
compare biochemical and funct iona l p roper t ies o f t ubu l i n from d i f f e r e n t sources. 

P u r i f i c a t i o n o f t ubu l i n in the heterologous assembly system d id not involve 
c o p u r i f i c a t i o n of the high molecular weight prote ins as is normally observed. 
Incorporat ion of fungal t ubu l i n i n to microtubules might prevent t h e i r associat ion 
w i th s t r uc tu res , composed o f these p ro te ins . 

Th 
v i t r o a 

e heterologous assembly system might provide a new approach by which the in 
i and in v ivo contro l o f microtubule assembly can be i nves t iga ted . 

2. I n t roduct ion 

Methyl benzimidazole-2-ylcarbamate (MBC or carbendazim, f i g . 1) i s one o f the 

benzimidazole der iva t ives which i s h igh ly tox ic to some groups of f ung i . Pa r t i c 

u l a r l y fungi belonging to the Ascomycetes are very s e n s i t i v e , whereas others be

longing to the Oomycetes are r es i s tan t . Other benzimidazole der iva t ives l i k e 

2 - ( t h i a z o l - 4 - y l )benzimidazole ( thiabendazole or TBZ, f i g . 1) which i s a lso known 

as an anthelminth ic and 2 - ( 2 - f u r y l )benzimidazole ( fuber idazo le , f i g . 1) have a 

s im i l a r spectrum of a c t i v i t y , although these compounds are less ac t ive than MBC. 

In a g r i c u l t u r a l p rac t ice these compounds have become increas ing ly important fo r 

the contro l of p lant diseases. In add i t ion to t h e i r high t o x i c i t y t h e i r systemic 

behaviour w i t h i n p lants i s an important property f o r e f f e c t i v e disease c o n t r o l . 

Due to e f f i c i e n t t rans loca t ion these compounds can eradicate establ ished i n fec t ions 

and cure the p lan t . In some cases p ro tec t ion o f new growth may be achieved by 

these systemic compounds. 
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F ig . 1. S t ruc tura l formulae of carbendazim (MBC), thiabendazole (TBZ), 
fuber idazole and benomyl. 

Although MBC is used as such in spray fo rmula t ions , methyl 1-(butylcarbamoyl) 

benzimidazol-2-ylcarbamate (benomyl, f i g . 1) i s more widely employed. The reason 

why benomyl which breaks down to MBC in aqueous s o l u t i o n , i s used, i s due to i t s 
2 3 

s l i g h t l y superior q u a l i t i e s in a number o f app l ica t ions ' . 

However, soon a f t e r the i n t roduc t ion in p rac t ice o f the benzimidazole der iva

t i ves which were occasional ly considered as the f i n a l and decis ive so lu t ion to the 

contro l o f ce r ta in diseases, negative aspects became apparent. In some cases, d i s 

ease contro l was no longer successfu l , because resistance developed in prev iously 

sens i t i ve fungal populat ions. Also in laboratory experiments resistance could be 

induced by mutagenic agents. This phenomenon, wel l known i n insect pest c o n t r o l , 

was seldom encountered in c o n t r o l l i n g fungal diseases u n t i l recent ly and might , 
4 

t he re fo re , be inherent to the use of the new systemic compounds . 

Since the benzimidazole der iva t ives were assumed to be very spec i f i c in t h e i r 

a c t i o n , s c i en t i s t s became in terested in these compounds not only from the po int o f 

view o f t h e i r fung ic ida l aspects, but also because o f t h e i r possible use as inves

t i g a t i v e too ls to study the physiology o f f ung i . 

The purpose o f t h i s paper i s to report recent f ind ings on the mechanism of ac

t i on o f MBC and the i d e n t i f i c a t i o n of i t s s i t e of a c t i on . Also the biochemical 

basis o f resistance to t h i s compound w i l l be discussed. 

13 



3. Mechanism of action 

5 
The first report concerning the mode of action of MBC drew attention to DNA 

and RNA synthesis as the possible targets of MBC action. However, inhibition of 

these processes became only evident several hours after addition of the compound 

to liquid cultures of the fungi studied, viz. Neurospora crassa and Ustilago 

maydis. The observed inhibition might therefore be considered as a secondary 

effect. 

Since nuclear and ce l l d i v i s i o n might be a f fected by MBC, these processes were 

studied separately from DNA synthesis using synchronous cu l tures of Saccharomyces 

cerevis iae and U. maydis or by simply counting nuclei in growing germ tubes o f 

Asperg i l lus nidulans . These studies revealed t ha t p r imar i l y mi tosis was i nh i b i t ed 

by MBC and t ha t i n h i b i t i o n o f DNA and RNA synthesis were secondary e f fec ts 

a t t r i b u t a b l e to m i t o t i c f a i l u r e . In a d d i t i o n , l i g h t microscopic observations o f 

MBC-treated hyphae revealed abnormal chromatin con f igura t ions . 

The a n t i m i t o t i c a c t i v i t y o f MBC i n fungi resembles m i t o t i c a r res t caused by 
Q 

colchicine in mammalian cell cultures . Because of this similarity MBC might be 
a member of a class of antimitotic agents commonly known as spindle poisons, of 

9 
which colchicine can be considered as a prototype . 

4. Induced resistance to MBC and TBZ in Aspergillus nidulans 

In order to study more precisely the mechanism of action of the benzimidazole 

derivatives and the biochemical basis of resistance, resistance to MBC and TBZ 

was induced in A. nidulans . It appeared that the TBZ-resistant strains could be 

distinguished into two categories. Strains belonging to the first category which 

comprised about 95 % of the total number of mutant strains examined, were also 

resistant to MBC. As distinct from these strains, strains belonging to the second 

category which comprised the remaining 5 %, showed an increase in sensitivity to 

MBC. Table 1 gives the inhibitory concentrations of TBZ or MBC causing a 50 % 

reduction in radial growth on agar (ED™ values) for one representative strain of 

each category, viz. strain R and strain 186, as well as those for the wild type 

strain 003. 

Genetic analysis proved both resistance and increased sensitivity to MBC to be 

caused by mutation in the same gene, located on linkage group VIII . In addition 

to this a lower resistance to MBC was found to be caused by mutation of two other 
11,12 genes 

For biochemical studies, strain R, strain 186 and strain 003 were chosen, 

because of their characteristic behaviour with respect to MBC. 
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Table 1 

Response of Aspergillus nidulans strains R, 186 and 003 to MBC and TBZ. Effects 
were estimated by measuring radial growth on malt agar medium containing MBC or 
TBZ at different concentrations. Values .given are inhibitory concentrations 

causing a 50 X reduction in growth (ED5Q value) 

ED5 Q ( ID*6 M) 

Stra in TBZ MBC 

R 800 95 
•186 195 1.5 
003 50 4.5 

14 
5. Binding studies w i th C-MBC 

The cha rac te r i s t i c property o f spindle poisons is t h e i r i n ter ference w i th the 

func t ion o f microtubules. Colchicine accomplishes t h i s by b inding t i g h t l y and very 

s p e c i f i c a l l y to t u b u l i n , the p ro te in dimer o f which the microtubule is composed. 

In order to determine the involvement o f a s im i l a r b inding o f MBC to fungal 

t ubu l i n i n the a n t i m i t o t i c ac t ion o f t h i s compound, c e l l - f r e e ex t racts o f mycelium 
14 

o f the three A. nidulans s t ra ins were incubated w i th C-MBC. Binding was deter
mined by the standard gel f i l t r a t i o n procedure using Sephadex G-100 columns. 
Typical e l u t i on patterns are shown in f i g . 2. 

From t h i s f i gure i t i s evident that r a d i o a c t i v i t y was present in macromolecular 

f r a c t i o n s , when ex t racts o f sens i t i ve mycelium were used. The MBC s e n s i t i v i t y o f 

the s t ra ins was r e f l ec ted in the amount o f bound r a d i o a c t i v i t y . Mycel ial ex t racts 

o f the res is tan t s t r a i n d id not show b inding a c t i v i t y . 

Thin layer chromatographic analysis o f the bound r a d i o a c t i v i t y showed that t h i s 

as s t i l l present in C-MBC. 

As d i s t i n c t from co lch ic ine b ind ing , MBC binding d id not require a high tempera

ture and appeared to be rap id ly r eve rs i b l e , as is suggested by the f ac t that the 

peak o f bound r a d i o a c t i v i t y showed considerable t a i l i n g . In t h i s respect the 
Q 

binding mechanism resembles tha t o f the spindle poison podophyl lotoxin . 

The r e l a t i on between binding o f MBC and MBC s e n s i t i v i t y was f u r the r studied 

using normal sens i t i ve s t ra ins o f Pen ic i l l i um species and r es i s tan t s t ra ins which 

14 
emerged i n benomyl-treated crops . Also two na tu ra l l y r es i s tan t fungi were i n 
c luded, v i z . an A l te rna r ia and a Pythium species. I t appeared that only mycelial 
ex t rac ts of sens i t i ve s t ra ins showed considerable MBC-binding a c t i v i t y , whereas 
mycelial ex t rac ts from res i s tan t s t ra ins d id not . 

These data s t rong ly suggest tha t MBC binding to fungal c e l l u l a r material i s 

essent ia l in the a n t i m i t o t i c act ion o f MBC. 

According to the e l u t i on volume of the MBC complex i t can be concluded that the 

molecular weight of the b inding species is approximately 110,000 da l tons. This 



value has also been obtained i n a more accurate study using a Sephadex G-200 co

lumn, which was ca l ib ra ted w i th proteins of known molecular weight. 

FRACTION NUMBER 

Fig . 2. Gel f i l t r a t i o n o f 40,000 x g supernatant mycel ial ex t rac ts o f Asperg i l lus 
n i d u l a n s s t r a i n s , contain ing approximately 40 mg p ro te in per m l , incubated w i th 
2.7 x 10 M 2- C-MBC (spec. ac t . 11.4 mCi/mmoie)for 120 min. a t 4°C. Extracts 
were prepared in 0.05 M potassiumphosphate bu f f e r , pH 6 .8 , conta in ing 0 .1 M KC1, 
5 mM MgCl~, 0 .1 mM GTP. E lu t ion p r o f i l e s of r a d i o a c t i v i t y o f pa ra l l e l experiments 
w i th ex t rac ts of s t r a i n 003 ( x - - x ) , s t r a i n 186 (o- -o) and s t r a i n R ( § - - • ) are , , 
shown. The e l u t i on p r o f i l e o f Blue Dextran is ind icated by A . . .A (from Davidse ). 

The MBC-binding substance was f u r the r character ized by chromatography on a 

DEAE-Sephadex A-50 anion exchanger. This method was employed because of the sup

posed i d e n t i t y o f the MBC-binding substance wi th fungal t u b u l i n . E lu t ion p r o f i l e s 

o f r a d i o a c t i v i t y and p ro te in i n experiments w i th mycel ial ex t rac ts o f s t r a i n 186 
14 and s t r a i n R, incubated w i th C-MBC are shown in f i g 3A and 3B, respect ive ly . 

With ex t rac ts o f s t r a i n 186 r a d i o a c t i v i t y was e lu ted i n two peaks, one w i th the 

bed volume o f the column and the other at 0.6 M KC1, whereas wi th ex t rac ts of 

s t r a i n R the a c t i v i t y was e lu ted in one s ingle peak w i th the bed volume o f the 

column. 

On the basis o f the re ten t ion propert ies on DEAE-Sephadex ion exchangers and 

the estimated molecular weight of 110,000 daltons there is good reason to be l ieve , 

tha t the MBC-binding macromolecule i s i den t i ca l w i th fungal t u b u l i n . Assuming that 

b inding prevents assembly of t ubu l in i n to funct iona l microtubules, the mechanism 

of ac t ion of MBC might be s im i l a r w i th t ha t o f co lch ic ine and MBC might be 

considered a spindle poison, espec ia l l y ac t ive i n ce r ta in f ung i . Induced 

resistance and e x t r a - s e n s i t i v i t y of A. nidulans s t ra ins might then be based on 

changes in a f f i n i t y o f the receptor s i t e to MBC, caused by mutation o f the coding 

gene. Mutations i nvo lv ing resistance and mutations invo lv ing increased s e n s i t i v i t y 
12 

were shown to be about 16 nucleotides apart from each other , corresponding w i th 

a distance o f about 5 amino acids in the p ro te i n . These data are consistent w i th 
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FRACTION NUMBER FRACTION NUMBER 

Fig. 3. DEAE-Sephadex A-50 column chromatography of 40,000 x g supernatant 
mycelial extracts of strain 186 (A) and strain R (B) of Aspergillus nidulans. A 
1.5 x 23 column was loaded with 4 ml of an incubation mixture (for details see 
text f i g . 2) and was eluted f i r s t with buffer containing 0.1 li KC1, followed by a 
l inear gradient of 0.1 - 1.0 II KC1. Radioactivity (•--•) and protein (x--x) was -,, 
determined in 1 ml of each 2 ml fraction ( ) KC1 concentration. (From Davidse ~). 

the hypothesis that changes in a f f i n i t y might be associated with changes in amino 

acid composition of the MBC-binding si te on tubul in, without interfer ing with i t s 

functional properties. 

6. Partial pur i f icat ion of the MBC-binding protein 

In order to know more about i t s biochemical properties an attempt was made to 
14 

purify the MBC-binding protein, using C-MBC as a marker. Since the binding pro
tein was assumed to be identical with fungal tubul in, a standard tubulin p u r i f i -

15 cation procedure was employed. A 127,000 x g (60 min) supernatant mycelial 

extract was fractionated with a saturated ammonium sulphate solution in water. The 

fraction precipitat ing between 35 and 50 % saturation was taken up in buffer and 
14 incubated with C-MBC. The incubation mixture was run onto a DEAE-Sephadex A-50 

column and the eluted fractions were assayed for radioact iv i ty. Fractions eluted 

at c. 0.6 M KC1 which contained bound MBC and, therefore, the binding protein were 
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subjected to SDS-polyacrylamide e lectrophoresis ( f i g . 4 ) . From t h i s f igure i t i s 

evident tha t in these f rac t ions a p ro te in is present w i th s im i l a r e lec t rophore t ic 

propert ies as brain t u b u l i n . According to the spec i f i c t ubu l in p u r i f i c a t i o n 

procedure used, t h i s p ro te in might be considered as fungal t u b u l i n . However, i n 

add i t ion to t h i s p ro te in several other proteins are present, so that from t h i s 

experiment i t can not be d e f i n i t e l y concluded tha t fungal t ubu l i n i s responsible 

fo r MBC-binding. 

Further p u r i f i c a t i o n o f the MBC-binding p ro te in was g reat ly hindered by the 

i n s t a b i l i t y o f the b inding a c t i v i t y . In 40,000 x g supernatant mycelial ex t racts 

b inding a c t i v i t y r ap id ly decayed i n a f i r s t order manner w i th a ha l f time o f 280 

min. a t 4 C. Guanosine t r iphosphate (GTP), which i s known to s t a b i l i z e co l ch ic ine -

-b ind ing a c t i v i t y o f t u b u l i n , d id not a f f e c t the ra te o f decay. However, i n these 

crude e x t r a c t s , GTP might be rap id ly hydrolyzed, so tha t no e f f e c t can be 
-5 an t i c i pa ted . MBC i t s e l f , a t 10 M, s t a b i l i z e d the b inding a c t i v i t y r esu l t i ng i n 

a ha l f time o f decay of 920 min. 

Possible due to t h i s rapid decay i n the absence o f MBC hardly any b inding 

a c t i v i t y could be detected in combined and concentrated (vacuum d ia l ys i s or 

ammonium sulphate p r e c i p i t a t i o n ) DEAE-Sephadex A-50 f r a c t i o n s , e lu ted at c. 0.6 H 
14 KC1, when these were incubated wi th C-MBC and analyzed f o r bound r a d i o a c t i v i t y 

by gel f i l t r a t i o n on Sephadex G-100 columns. However, the p o s s i b i l i t y tha t 

passage of an ex t rac t through t h i s type o f column might remove a fac tor required 

f o r the formation o f the MBC-protein complex, can not be ru led out . 
3 

In mycelial ex t racts showing MBC-binding a c t i v i t y no H-colchic ine-binding 

a c t i v i t y could be demonstrated. Although normally co lch ic ine b inding can be seen 

as an i nd i ca t ion o f the presence of t u b u l i n , in fungi co lch ic ine probably can not 

be used as a d iagnost ic t o o l . Fungal mi tos is appeared to be i nsens i t i ve to 

co lch ic ine ' presumably due to low a f f i n i t y o f fungal t ubu l i n to t h i s compound. 

Although the d e f i n i t e proof has not ye t been given the data presented support 

the idea tha t MBC is bound to fungal t ubu l i n and tha t MBC might be used as a 

d iagnost ic too l fo r fungal t u b u l i n . 

7. Tox i c i t y o f MBC in mammalian ce l l cu l tures 

20 21 As has been shown ' MBC exh ib i t s a n t i m i t o t i c a c t i v i t y i n mammalian ce l l 

cu l tu res . Studies of the mechanism of ac t ion in mammalian ce l l ex t racts might give 

more in format ion about the character o f MBC as a spindle poison. Binding studies 
14 

w i th C-MBC and porcine bra in ex t racts revealed t ha t no b inding occurred a f t e r 

incubat ion at 4 C nor at 37 C, although the preparat ions showed considerable 
3 
H-colchic ine-binding a c t i v i t y . 

In v i t r o polymerizat ion o f porcine bra in t ubu l in i n to neurotubules was not 

a f fected by MBC. Another benzimidazole d e r i v a t i v e , methyl 5 - (2 - thenoy l ) -



22 benzimidazol-2-ylcarbamate, (R 17934), however, proved to be very e f f e c t i v e 

8. Ef fects of R 17934 on fungi 

In p re l iminary studies wi th R 17934 i t was shown that t h i s compound could 

e f f e c t i v e l y i n h i b i t the growth o f f ung i . I t was found ac t ive against A. nidulans 

even at lower concentrations than MBC. The response o f the three above-mentioned 

s t ra ins was s im i l a r to tha t towards MBC, v i z . s t r a i n R was r es i s tan t compared w i th 

s t r a i n 003, whereas s t r a i n 186 appeared to be most sens i t i ve . 

In b inding experiments w i th C-MBC, R 17934 could e f f e c t i v e l y reduce the 

amount o f MBC bound to the p r o te i n . These facts i nd ica te that at least in fungi 

R 17934 and MBC have a s im i l a r mechanism o f a c t i on . 

9. Heterologous assembly of fungal and porcine bra in t ubu l i n 

Assuming in ter ference o f NBC w i th microtubule formation during mi tos is in fungi, 

a study o f i t s e f f e c t on fungal t ubu l i n polymerizat ion in v i t r o might add to our 

understanding o f the a b i l i t y o f MBC to act as a spindle poison. 

Prel iminary polymerizat ion experiments w i th fungal t ubu l i n p reparat ions, 

p u r i f i e d by DEAE-Sephadex A-50 chromatography were not successfu l . This could be 

due to the low amount of p ro te in which could be p u r i f i e d and which was probably 

not enough to reach the c r i t i c a l concentrat ion essent ia l f o r t ubu l i n polymer i -
23 zat ion . On the other hand also cofactors essent ia l f o r polymerizat ion might 

24 25 
have been removed during the p u r i f i c a t i o n procedure ' 

Possible in ter ference of MBC wi th the assembly o f fungal t ubu l i n might-also 

be s tudied i n a heterologous assembly system. L i t e ra tu re data ' repor t the 

successful assembly o f bra in t ubu l i n onto f l a g e l l a r microtubules from Chlamydo-

monas and sea urchin sperm. However, t ubu l i n from the cystoplasmatic pool of 
27 Chlamydomonas d id not copolymerize wi th bra in t u b u l i n , but prevented assembly . 

In p re l iminary experiments using 40,000 x g (60 min) supernatant porcine bra in 

ex t rac ts and 127,000 x g (120 min) supernatant mycel ial ex t rac ts o f A. nidulans 

no polymerizat ion could be obtained, as was shown by analysis o f the various 

f rac t ions by SDS-polyacrylamide gel e lec t rophores is . Pa r t i a l p u r i f i c a t i o n o f the 

mycelial ex t rac t by 35 - 50 % ammonium sulphate f r ac t i ona t i on and passage o f the 

preparat ion over a Sephadex G-25 column, equ i l i b ra ted w i th reassembly buf fer was 

found necessary to obtain polymerizat ion equal to that in the porcine bra in 

e x t r a c t , as was revealed by p ro te in determinations i n corresponding f r a c t i o n s . 

That indeed microtubule assembly occurred i n the mixture was establ ished by 

e lect ron microscopy. Microtubules being assembled in the mixture appeared to be 

s im i l a r to those in porcine bra in e x t r ac t s . F ig . 5 shows the resu l ts o f e l ec t r o -
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phoret ic analysis o f the t ubu l i n preparat ions a f t e r one cycle of assembly and 

disassembly. 

I t i s evident t ha t the assembly product, obtained in the mixture does not 

contain the two high molecular weight prote ins which were found to be always 
yt po OQ 30 

present i n t ubu l i n preparat ions ' ' ' , p u r i f i e d by the assembly procedure. 

These prote ins were reported to be the components o f f i laments attached to i n 
31 

v i t r o assembled bra in microtubules (neurotubules) and neurotubules in s i t u . 

Besides the t ubu l i n band several other minor bands were v i s i b l e on the gels loaded 

w i th the assembly product o f the mixture which d id not appear on the gels o f the 

contro l p reparat ion. These components pers is ted through a f u r the r second assembly 

and disassembly s tep. 

These resu l ts prompted us to carry out a heterologous assembly experiment, in 

which the prote ins of the fungal ex t rac t were labe led. Proteins were labeled by 

growing mycelium dur ing the l a s t three hours o f the growing period in the presence 

o f 25 uCi 1 4C-phenylalanine per 1 o f medium. About 90 % o f the label was taken 

up and prote ins were labeled a t about 44,850 dpm/mg p ro te in as was determined i n 

the 35 - 50 % ammonium sulphate preparat ion a f t e r gel f i l t r a t i o n on the Sephadex 

G-25 column. 
_5 

A f te r one cycle of assembly and disassembly HBC (10 M) was added to a sample 

o f the p reparat ion, whereas a s im i l a r sample served as c o n t r o l , and a second cycle 

o f assembly was performed. 

The various f rac t ions were analyzed by SDS-polyacrylamide gel e lec t rophores is . 

Gels were s l i ced and the amount o f r a d i o a c t i v i t y was determined i n each segment. 

F ig . 4. SDS-polyacrylamide e lec t rophore t i c analysis o f DEAE-Sephadex A-50 
f rac t ions conta in ing MBC-binding p ro te i n . Five ml o f a 35 - 50 % ammonium sulphate 
preparat ion i n ex t rac t ion bu f fe r (see t ex t f i g . 11 o f a 127,000 x g (60 min) 
supernatant mycel ial e x t rac t were incubated w i th C-MBC(final concentrat ion 9 x 
10 M; 226,000 dpm/ml) f o r 120 min. a t 4 C. The incubat ion mixture was loaded onto 
a 20 ml DEAE-Sephadex column, which was subsequently e luted w i th 15 ml o f a l i nea r 
gradient o f 0 .1 - 0.4 M KC1, 15 ml o f 0.4 M KC1, 30 ml o f a l i nea r gradient o f 
0.4 - 1.0 M KC1 and 20 ml 1.0 M KC1, respect ive ly , al 1 made up in bu f fe r . Fract ions 
o f 2.5 ml were co l lec ted and assayed f o r r a d i o a c t i v i t y . Fract ions from the 0.6 M 
legion which contained resp. 1670, 2160, 4170, 7230, 5570, 2590 and 1070 dpm bound 

C-MBC per ml were subjected to e lect rophoresis (gel A - G). As reference t ubu l i n 
p u r i f i e d by two cycles o f assembly from a porcine bra in ex t rac t was run on a 
separate gel (T ) . Densitometer t rac ings were made o f gel T and gel D (peak f r ac t i on 
of MBC-binding p r o t e i n ) . Samples were prepared fo r e lect rophoresis as described 
Gels consisted o f 7.5 % acrylamide, 0.13 % bisacrylami de, 0 .1 % SDS in 0.1 M 
sodium phosphate bu f fe r (pH 7 .0) . Gels were s tained fo r 60 min. i n 0 .1 % Coomassie 
B r i l l i a n t Blue in a methanol, water, ace t ic acid mixture (227:227:46). Destaining 
was performed by d i f f u s i o n in 7 % acet ic acid in water. 

F i g . 5. SDS-polyacryl amide gel e lect rophoresis o f t u b u l i n , p a r t i a l l y p u r i f i e d 
by one cycle o f assembly i n porcine bra in ex t rac t (1) and in a mixture o f 
porcine bra in and fungal ex t rac t ( 2 ) . For e lec t rophore t i c and s t a in ing condi t ions 
see f i g . 4. 
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The resu l ts o f t h i s experiment are given i n table 2. 

Table 2 

Heterologous assembly of fungal and porcine bra in t u b u l i n . Two ml o f a p a r t i a l l y 
p u r i f i e d mycelial ex t rac t (13 mg p ro te in per m l ; 44,850 dpm/mg p ro te in) o f 
Asperg i l lus nidulans s t r a i n 003 were mixed wi th 8 ml o f a porcine bra in ex t rac t 
(5.5 mg peotein per m l ) . Two cycles of assembly and disassembly were 
performed ' . In cyle I I the e f f e c t of MBC (10"b M) was s tud ied . Total rad io 
a c t i v i t y (dpm) and i t s d i s t r i b u t i o n (%) among the various f rac t ions are g iven. 
Also the percentages o f r a d i o a c t i v i t y ac tua l l y present in t ubu l i n subunits as 

revealed by SDS-polyacrylamide gel e lec t rophore t i c analysis are g iven. 

Assembly Rad ioac t iv i t y o f the f rac t ions (dpm) 
mixture H,S C,S 

c y c l e l 1,166,000 (100 %) 1,150,000 (98.6 %) 15,750 (1.4 %) 

t^S H2S H2P 
c y c l e H control 10,500 (100 %) 7,680 (73 %) 2,410 (23 %) 

MBC 10,500 (100 %) 8,000 (76 %) 2,390 (23 %) 

SDS-polyacrylami de 
gel e lectrophoresis Rad ioac t iv i ty of t ubu l i n {% o f t o t a l 

r a d i o a c t i v i t y o f the f r ac t i on ) 
CXS H2S H2P 

c y c l e H contro l 49 42 73 
MBC 49 47 72 

H,S : 45,000 x g (30 min. 25 C) supernatant from f i r s t assembly 
C,S : 45,000 x g (30 min. 4 C) supernatant from resuspended p e l l e t 

(30 min. 0°C) from f i r s t assembly 
h„S : 45,000 x g (30 min. 25 C) supernatant from second assembly 
H„P : resuspended p e l l e t (30 min. 0 C) from second assembly 

As is evident from t h i s t a b l e , copolymerizat ion o f radio labeled fungal p ro te in 

w i th porcine bra in t ubu l in under microtubule assembly condi t ions s t rongly suggests 

tha t heterologous assembly has occurred i n a mixture o f bra in and mycelial ex t rac t . 

Although in the f i r s t cycle only 1.4 % o f the r a d i o a c t i v i t y could be recovered in 

the t ubu l i n p reparat ion, in the second cycle t h i s percentage increased to 23 % 

i nd i ca t i ng tha t actual temperature dependent polymerizat ion of labeled p ro te in , 

has occurred. Gel e lectrophoresis proved tha t t ubu l i n was mainly responsible f o r 

t h i s phenomenon, because the amount o f r a d i o a c t i v i t y present in t ubu l i n increased 

from 49 % i n C.S to 73 % in H2P. 

At the concentrat ion used MBC did not have any e f f ec t on polymerizat ion o f 

rad ioact ive p r o t e i n , although the fungal preparat ion used d id bind MBC, as was 

determined in s im i l a r p reparat ions. 

An explanation fo r the i n a b i l i t y o f MBC to i n h i b i t the assembly o f fungal 

t ubu l in in a heterologous system can only be t e n t a t i v e , as long as the processes 

o f MbC binding and fungal and procine bra in t ubu l i n copolymerizat ion are not 
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completely c lear . The i n a b i l i t y o f MBC to i n t e r f e r e w i th the heterologous assembly 

might be explained by supposing t ha t an MBC-fungal t ubu l i n complex i s the r e s u l t 
25 32 

o f i n t e rac t i on o f MBC w i th the suggested Y-state o f the t ubu l i n molecule ' and 

t ha t Y-state fungal t ubu l i n molecules do not take par t i n the heterologous 

assembly process. 

At present experiments along these l i nes are in progress. 

10. Discussion 

Although the exact mechanism of ac t ion o f MBC has not ye t been e luc ida ted , 

several l i nes o f evidence ind ica te tha t i t acts as a spindle poison i n f ung i . I t s 

s i m i l a r i t y w i th co lch ic ine in b inding to a p ro te in w i th several biochemical 

cha rac te r i s t i cs o f t ubu l i n i s one o f these. The s t ruc tu ra l r e la t i onsh ip o f MBC 

w i th R 17934, a compound which ce r t a i n l y belongs to t h i s class o f a n t i m i t o t i c 
22 

agents and which probably d isplays a s im i l a r mechanism of ac t ion i n f u n g i , a lso 

supports t h i s idea. 

Whether MBC binding to fungal t ubu l i n i s comparable w i th co lch ic ine b inding to 

mammalian t ubu l i n or whether MBC binding requires a spec i f i c s ta te o f the t ubu l i n 

molecule i s not ye t c lear . 

Changes in amino acid composition o f the MBC-binding s i t e which might r esu l t 

in a f f i n i t y changes might explain the phenomena o f resistance and increased 

s e n s i t i v i t y to the benzimidazole de r i va t i ves . However, mechanism underly ing these 

phenomena might be more complicated and might also involve changes in amounts o f 

t ubu l i n molecules being able to bind MBC. 

Although i t has been shown tha t par t o f the primary s t ruc tu re of the t ubu l i n 
33 molecule i s s t rongly conserved during evo lu t ion , the co lch ic ine-b ind ing s i t e 

might have evolved along d i f f e r e n t l i nes according to the d i f f e r e n t i a l co l ch i c ine -

-b ind ing proper t ies of fungal and mammalian t u b u l i n . In a comparable way, a 

b inding s i t e f o r benzimidazole der iva t ives might have been evolved leading to a 

d i f f e r e n t i a l response of mammalian and fungal c e l l s to MBC. However, mod i f ica t ion 

o f the molecule might s t rongly in f luence i t s i n t e rac t i on w i th t u b u l i n . 

Benzimidazole de r i va t i ves , t he re fo re , might be valuable too ls to study 

d i f ferences i n biochemical and funct ional propert ies of t ubu l i n from d i f f e r e n t 

sources. 

P u r i f i c a t i o n o f t ubu l in in a mixture o f porcine bra in and mycelial ex t rac t d id 

not involve copuri f i c a t i o n o f high molecular weight prote ins as is normally 

observed. Supposing polymerizat ion of these proteins being independent of that o f 

microtubules, t h i s phenomenon might be due to an i n h i b i t o r y act ion o f components 
29 31 

o f the mycel ial e x t r ac t . However, according to l i t e r a t u r e data ' i t i s more 

l i k e l y that presence o f the high molecular weight prote ins in microtubule 

preparations is caused by a s t ruc tu ra l l inkage of these proteins to microtubules. 
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Their absence i n t ubu l i n preparat ions p u r i f i e d from mixtures o f b ra in and mycel ial 

e x t r a c t s , might, t he re fo re , i nd ica te tha t in t h i s case l inkage d id not occur. 

This might be due to incorporat ion o f fungal t ubu l i n i n t o microtubules making 

these less su i tab le f o r associat ion w i th high molecular weight p ro te ins . 

The incorporat ion o f rad ioact ive fungal p ro te in i n microtubule preparat ions in 

the heterologous assembly system suggestscopolymerization o f fungal and bra in 

t u b u l i n . This means t ha t despite the above mentioned d i f ferences between the two 

t ubu l i n species, b inding s i tes involved i n polymerizat ion should be h ighly 

conserved dur ing e vo lu t i on . 

The heterologous assembly system might provide a new approach by which the in 

v i t r o and i n v ivo contro l o f microtubule assembly can be i nves t iga ted . 

The authorwishes to thank Miss W i l l y Flach f o r exce l len t assistance w i th the 
experimental work, and Dr. A. Fuchs f o r help and advice i n the preparat ion o f the 
manuscript. He fee ls indebted to D r . I r . J . Visser (Department of Genetics, 
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ABSTRACT 

The antimitotic compound methyl benzimidazol-2-yl carbamate (MBC) 

formed a complex in vitro with a protein present in mycelial extracts of 

fungi. The binding protein of Aspergillus nidulans showed a set of proper

ties which is unique for tubulin. Binding occurred rapidly at 4 C and was 

competitively inhibited by the antitubulins oncodazole and colchicine. Other 

antitubulins such as podophyllotoxin, vinblastine sulfate, melatonin and 

griseofulvin did not interfere with binding of MBC. Electrophoretic analysis 

of partially purified preparations of the binding protein revealed the 

presence of proteins with similar mobilities as mammalian tubulin monomers. 

Hence it is concluded that the binding protein is identical with fungal 

tubulin. 

The effect of MBC on mycelial growth of mutant strains of A. nidulans 

was positively correlated with the affinity of the binding sites for this 

compound. The apparent binding constant for MBC and tubulin from a wild-
5 4 

type strain was estimated at 4.5 x 10 , from a resistant strain at 3.7 x 10 , 

and from a strain with increased sensitivity to MBC at 1.6 x 10 1. mole 

Mutants showing resistance and increased sensitivity to MBC are candidates 

to have alterations in tubulin structure. Low affinity of tubulin for MBC 

is probably a common mechanism of resistance to this compound in fungi. 

Binding of colchicine to A. nidulans tubulin occurred at 4 C with an 
3 -1 

apparant binding constant of 2.5 x 10 1. mole . 
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INTRODUCTION 

In the last fifteen years several benzimidazole compounds have been in

troduced as fungicides, like benomyl (29), fuberidazole (58), and thiabenda

zole (66), as anthelmintics, like fenbendazole (5), mebendazole (68), par-

bendazole (1), and thiabendazole (12), or as antitumoral drug, like oncodazole 

or R 17934 (3,4). Structural formulae of these compounds are shown in Fig. 1. 

In recent years considerable attention has been given to the mechanism 

of action of these compounds. Benomyl and its conversion product, carbendazim 

or MBC, interfere with mitosis in fungi (21,39,56), plants (56) and manmalian 

cells in vivo(59,67) and in vitro(27,59,67). Mebendazole induces degenerative 

changes in intestinal cells of parasites after treatment of their hosts (8). 

These effects are probably caused by the interaction of this drug with cyto

plasmic microtubules (9,10). Oncodazole interferes with the structure and 

function of microtubules both in interphase and mitotic mammalian cells cul

tured in vitro (25,26). Microtubules of dividing and non-dividing malignant 

cells in vivo are similarly affected (26). 

Although the biological activity of these benzimidazole compounds is 

probably based on interference with the formation or functioning of microtu

bules, which are present in all eukaryotic cells, eukaryotes are not equally 

sensitive to each benzimidazole compound. Benomyl and MBC partly owe their 

success as systemic fungicides to a relative non-toxicity to plants and 

animals. But also within fungi, there are differences in sensitivity to these 

compounds. For instance, fungi belonging to the Ascomycetes are sensitive, 

whereas others belonging to the Oomycetes are resistant (7). In addition to 

natural resistance to benomyl and MBC, resistant strains of naturally sensi

tive species are frequently found in sprayed crops. In the laboratory such 

strains can be readily obtained by mutagenic treatment (28). 

The following common names and abbreviations are used: 
benomyl, methyl 1-(butylcarbamoyl)benzimidazol-2-yl carbamate; fuberidazole, 
2-(2'-furyl)benzimidazole; thiabendazole, 2-(4'-thiazolyl) benzimidazole; 
fenbendazole, methyl 5-phenylthiobenzimidazol-2-yl carbamate; mebendazole, 
methyl 5-benzoylbenzimidazol-2-yl carbamate; parbendazole, methyl 5-butyl-
benzimidazol-2-yl carbamate; oncodazole or R 17934, methyl 5-(2-thienyl-
carbonyl) benzimidazol-2-yl carbamate; carbendazim or MBC, methyl benzimi-
dazol-2-yl carbamate; SDS, sodium dodecylsulfate; PKMg buffer, 0.05 M 
potassium phosphate buffer, pH 6.8, containing 0.1 M KC1 and 0.005 M MgCl„; 
DMSO, dimethylsulfoxide; PNaMg buffer, 0.05 M sodium phosphate buffer, pH 
6.8, containing 0.1 M NaCl, and 0.005 M MgCl ; MES, 2-(N-morpholino)ethane-
sulfonic acid; EGTA, ethyleneglycol-bis-(B-aminoethylether)tetraacetic acid; 
TEMED, N,N,N',N',-tetramethylenediamine; VB, vinblastine sulfate. 
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Fig. 1. Structural formulae of biologically active benzimidazole compounds. 

The curative action of mebendazole in animal as well as in human helmin

thiases implies selectivity with respect to host and parasite. Ultrastructural 

studies have shown that upon treatment of the host microtubules in cells of 

the parasite are completely destroyed, whereas cytoplasmic and spindle micro

tubules of the host cells remain unaffected, even though both types of cells 

have been exposed to identical, drug concentrations (9,10). 

In vivo experiments on the effect of oncodazole on experimental and 

human neoplasms have shown that this compound specifically eliminates micro

tubules in dividing and non-dividing neoplastic cells, whereas microtubules 

of interphase normal cells are apparently intact. Microtubules in mitotic 

cells, however, are seriously affected (26). 

Biochemical studies on the mechanism of action of benzimidazole compounds 

have shown that the antimitotic action of MBC in fungi is probably mediated 

via binding to fungal tubulin (22,23). Oncodazole is bound to mammalian brain 

tubulin at the colchicine binding site (45) and is a potent inhibitor of micro

tubule assembly in vitro (26,27,45). Benomyl and MBC only slightly affect this 

process (27,44). 
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The molecular basis of selectivity of these benzimidazole compounds is 

yet unknown. Differential uptake or metabolism may be responsible for the 

relative non-toxicity of benomyl and MBC to animals and plants (36,65). For 

natural and induced resistance in fungi, it has been found that no differences 

in metabolism exist between MBC-resistant and MBC-sensitive strains (24). Here 

a differential binding of MBC to tubulin in strains differing in MBC sensi

tivity might underly the selective action of this compound (22,23). The se

lective action of mebendazole does not appear to be related to a differential 

drug-uptake between host and parasite (9,10). A differential interaction of 

the drug with the target inside the cells is assumed to be responsible (9,10). 

In this study the interaction of MBC with its receptor site in MBC-sensi

tive and MBC-resistant strains of the fungus Aspergillus nidulans has been 

investigated in detail. Since it has been assumed that MBC binds to fungal 

tubulin the effect of oncodazole and of other antitubulins on MBC binding has 

been studied. With [ c]MBC as affinity label the binding protein was partial

ly purified and electrophoretically characterized. 

MATERIALS AND METHODS 

Organisms. Most of the experiments were carried out with Aspergillus nidulans 

biA1 AcrA1 (Strain 003) and two mutant strains (Strain 186 and Strain R), 

which differ in MBC sensitivity. Sensitivity of these strains in terms of in

hibitory concentrations, which cause a 501 reduction in growth (EDrn) on agar, 

are 4.5 VU MBC for Strain 003, 1.5 uM for Strain 186 and 95 yM for strain R. 

Both strains were selected in the laboratory after UV treatment of conidia of 

Strain 003 (69). Genetic analysis has shown that both increased sensitivity in 

Strain 186 and resistance to MBC in Strain R had been caused by a mutation in 

one single gene, located on linkage group VIII (69,70). 

We also used MBC-sensitive strains of Penicillium brevicompactum and 

P. corymbiferum and resistant strains of these fungi, which emerged in MBC-

treated crops (6). Alternaria brassicae and Pythium irregulare represented the 

naturally MBC-resistant fungi. 

Culture methods. Conidia of A. nidulans strains were grown on a 2% malt extract, 

0.1 % bacto-peptone, 2% glucose, 1.5% agar medium. Conidial suspensions were pre

pared as described previously (21). Conidia of Penicillia strains and A. 

brassicae were harvested from potato-dextrose agar and oatmeal agar, res

pectively. P. irregulare was maintained on potato-dextrose agar. Mycelium of 

A. nidulans strains was grown in a glucose-nitrate medium (57), supplemented 
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with 1 yg biotin per ml. Mycelium of the other fungi were cultured in Czapek-

Dox liquid medium (Oxoid), supplemented with 0.5% (w/v) yeast extract powder 

(Qxoid). Cultures were incubated on a Gallenkamp orbital shaker at 200 rpm 

at 37°C for A. nidulans and at 25°C for the other fungi. 

Preparation of mycelial extracts. Exponentially growing mycelium was harvested 

by filtering on a Biichner filter. The mycelium was washed three times in cold 

0.05 M potassium phosphate buffer, pH 6.8 and frozen at -22 C in a previously 

cooled X-Press Cell Disintegrator (LKB-Biotec, Sweden) with 0.5 ml of homo-

genization buffer per gram wet weight of mycelium. The homogenization buffer 

consisted of 0.05 M potassium phosphate buffer, pH 6.8, containing 0.1 M KC1 

and 0.005 M MgCl2 (PKMg solution). After 1 hour at -22°C the mycelium was 

homogenized by passing it five times through the press. The homogenate was 

thawed and then guanosine triphosphate (GTP) was added to a final concentration 

of 0.1 nM. The suspension was centrifuged at 40,000 x g for 10 min. and the 

resultant supernatant recentrifuged at 48,000 x g for 30 min. The 48,000 x g 

supernatant was immediately used in binding studies. All steps were done at 4 C 

Preparation of porcine brain extracts. Fresh porcine brains were obtained from 

Stroomberg's Exportslachterij (Ede, The Netherlands) and immediately processed 

after arrival. Blood vessels and meninges were removed and the tissue was 

washed three thimes with ice cold 0.05 M potassium phosphate buffer, pH 6.8 

and once with PKMg solution. Hundred grams of tissue were then homogenized 

with 100 ml of PKMg solution, containing 0.1 mM GTP, using a motor-driven 

glass homogenizer with Teflon pestle (Braun, Melsungen, GDR). The homogenate 

was centrifuged at 48,000 x g for 60 min and the resulting supernatant was 

fractionated with a neutralized saturated ammonium sulfate solution. The 

fraction precipitating between 35 and 501 saturation was taken up in 10 ml PKMj; 

solution containing 1 nM GTP. This preparation was used in binding assays 

either directly or after storage at -22 C. 

Binding assays. Varying amounts of a methanolic solution of [ C]MBC were 

added to mycelial or brain extracts and incubated either at 4 or 37 C for 

various periods as specified in the legend of Figures and Tables. Small samples 

of a [ H]colchicine solution in benzene/ethanol (9/1) were placed in empty 

scintillation vials or centrifuge tubes and the solvent was evaporated to 

dryness in a stream of nitrogen. The dried compound was dissolved directly in 

mycelial or porcine brain extract. Vials and tubes were wrapped in aluminum 

foil in order to prevent photodecomposition of colchicine. Incubation was at 
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4 or 37 C for various periods as specified. Potential inhibitors of MBC 

binding were added as solutions in dimethylsulfoxide (DMSO). The DMSO concen

tration of treated and control samples never exceeded 0.1% v/v. 

Binding of [ CjMBC or [ HJcolchicine was measured by gel filtration of 

1 ml of the incubation mixture on a Sephadex G-100 column (28 x 1.5 cm) with 

PKMg solution as elution buffer. Fractions of 16 drops (approximately 1 ml) 

were collected with a LKB UltroRac fraction collector and radioactivity in 

each fraction was measured in a Nuclear Chicago Mark I Liquid Scintillation 

Spectrometer with Bruno and Christian's (13) scintillation liquid. Counting 

efficiency was determined by external standardization procedures. Radio

activity present in protein fractions was considered to represent bound ligand. 

Binding of [ CJMBC was also measured with a second method, which has 

been introduced recently to measure colchicine binding to tubulin (62,63). 

Aliquots of the incubation mixture were placed in centrifuge tubes containing 

an equal volume of a charcoal suspension (Merck, Darmstadt, GDR) at 6 mg/ml in 

PKMg solution. The tubes were placed in a shaker and the mixture was heavily 

agitated for 10 min and then centrifuged at 1500 x g for 5 min at 4 C. Aliquots 

of the supernatant were assayed for radioactivity. Blanks, which contained 

40 mg/ml bovine serum albumin in PKMg solution incubated with [ c]MBC 

were handled in the same way. The difference in amount of radioactivity 

found in supernatant aliquots of sample and blank was assumed to represent 

bound [ CJMBC Bound MBC was expressed as dpm per unit of volume of the 

original extract. 

Purification of fungal tubulin. Mycelial extracts were prepared as described 

above, but with 0.05 M sodium phosphate, pH 6.8, containing 0.1 M NaCl and 

0.005 MgCl~ (PNaMg solution) as homogenization buffer. The 48,000 x g super

natant mycelial extract was further centrifuged at 127,000 x g for 60 min. 

The soluble proteins were fractionated with a neutralized (pH 6.8 after 20 : 1 

dilution) saturated ammonium sulphate solution. The fraction precipitating 

between 35 and 50% saturation was taken up in PNaMg solution containing 1 mM GTP 

The resulting preparations were incubated with [ c]MBC and run onto a 

DEAE-Sephadex A-50 column (10 x 1,5 cm), which had been previously equilibrated 

with PNaMg solution. The column was subsequently eluted with 15 ml of a 

linear gradient of 0.1-0.4 M NaCl, 15 ml of 0.4 M NaCl, 30 ml of a linear 

gradient of 0.4-1.0 M NaCl and 20 ml of 1.0 M NaCl, respectively, all made up 

in buffer. Gradients were produced by a LKB Ultrograd Gradient Mixer. The 

eluate was continuously monitored at 254 nm and fractions of constant volume 

were collected. Radioactivity was measured in each fraction. 
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Once the elution properties of the MBC complex were established, the in

cubation step was omitted and the 35-50°s ammonium sulfate preparation was 

applied directly to the DEAE-Sephadex column. Fractions which were eluted 

at 0.45-0.90 M NaCl, were combined, dialysed against bidistilled water, and 

lyophilized. Dry samples were stored at -22 C above silica gel until analysis. 

Purification of porcine brain tubulin. Two purification methods were used. 

With the first method, a tubulin preparation prepared as described above, but 

with PNaMg solution as extraction buffer, was chromatographed onto a DEAE-

Sephadex A-50 column in the same way as described above for mycelial extracts. 

Fractions containing tubulin were dialysed against bidistilled water and lyo

philized. The second method used was a slightly modified assembly-disassembly 

procedure according to Shelanski et al. (61). Fresh porcine brains were washed 

and homogenized in 0.1 M MES buffer, pH 6.90, containing 1 mM EDTA, 0.1 mM GTP, 

and 0.5 mM MgCl„ (MES buffer). The homogenate was centrifuged at 40,000 x g 

for 10 min and the resulting supernatant at 48,000 x g for 60 min at 4 C. 

To achieve assembly of microtubules extracts were mixed with an equal volume 

of MES buffer containing 8 M glycerol and 2 mM GTP and incubated for 30 min. 

at 37 C. Assembled microtubules were pelleted by centrifuging at 48,000 x g 

at 25 C. After resuspension and depolymerization of microtubules in MES buffer 

at 4 C and centrifuging, a second assembly cycle was performed. 

Molecular weight determination of the MBC-protein complex. The molecular 

weight of the MBC-protein complex was determined by gel filtration of an am

monium sulfate fractionated mycelial extract, which had been incubated with 

[ C ] M B C on a Sephadex G-200 column (2.5 x 32 cm), according to the method 

of Andrews (2). The column was calibrated in two parallel runs with alcohol 

dehydrogenase (yeast), MW 150,000 and cytochrome C ( horse heart), MW 12,400; 

and with lipoamide dehydrogenase (pig heart), MW 100,000 and a-chymotrypsin 

(beef pancreas) MW 24,500, respectively. 

Reduction and carboxymethylation of proteins. Proteins were reduced by adding 

'3-mercaptoethanol and sodium dodecylsulfate (SDS) at final concentrations of 

M to the samples and heating for 2 min at 100 C. The reduced proteins were 

dialysed overnight at room temperature against 0.01 M sodium phosphate buffer, 

pH 7.0, containing 0.1s 6-mercaptoethanol and 0.H SDS. 

Protein samples were reduced and carboxymethylated according to the 

method of Crestfield et al. (20) as modified by Renaud et al. (55). Protein 

solutions were made 1 % in B-mercaptoethanol and mixed with an equal volume 



of reducing solution (0.35 M Tris-HCl, pH 8.8, containing 0.12 M B-mercapto-

ethanol, 8 M urea and 0.1% EDTA). The mixture was dialysed overnight at room 

temperature against this solution. Lyophilized proteins were directly dissolved 

in reducing solution and incubated overnight at room temperature under nitrogen. 

The reduced proteins were carboxymethylated by adding one volume of a 1.1 M 

iodoacetic acid - 8 M urea solution in 2.5 N NaOH to nine volumes of protein 

solution. The reaction was allowed to proceed for one hour in the dark, and 

the solution was then dialysed against 0.01 M Tris-HCl, pH 8.0 for at least 

6 hours at room temperature also in the dark. 

Sodium dodeoylsulfate (SDS) poly aerylamide gel electrophoresis. Two SDS sys

tems were employed. The first one was based on that of Weber and Osborn (71). 

Reduced or carboxymethylated protein samples were run on 6 cm gels (7.5% (w/v) 

acrylamide, 0.13% (w/v) bisacrylamide, 0.075% (w/v) ammonium persulfate, 

0.075% (v/v) TEMED in 0.1 M sodium phosphate buffer, pH 7.0) at 40 Volt for 

about 6 hours. The second system was similar to the discontinuous SDS system 

as has been described by Luduena and Woodward (51). Carboxymethylated protein 

samples were prepared for electrophoresis as described and run on 9 cm gels 

at 4 mA per gel for approximately 2.5 hours. 

Gels were stained for 15 hours in 0.015% Coomassie Brilliant Blue in 

methanol/acetic acid/water (45/9/46). Destaining was performed by diffusion 

in methanol/acetic acid/water (2/3/35). 

Protein determination. Protein was determined according to the method of Lowry 

et al. (50) as modified by Hartree (40) with bovine serum albumin as a stan

dard. 

Chemicals. [2- CJMethyl benzimidazol-2-yl carbamate (spec. act. 11.4 mCi/mmole) 

was purchased from International Chemical & Nuclear Corporation (Irvine, Cal., 

USA). Stock solutions were prepared in methanol at approximately 1200 vM 

[ C]MBC. Radiochemical purity of the preparation was checked at intervals 

by thin-layer silica gel chromatography on DC-Alufolie 60 F 254 (Merck, Darm

stadt, GDR) with ethylacetate saturated with 0.05 M potassium phosphate buffer, 

pH 6.8, as solvent. Chromatograms were scanned with a Nuclear Chicago Acti-

graph III radiochromatography system and then cut transversely into 1 cm sec

tions, which were placed in scintillation vials containing Bruno and Chris

tian's scintillation liquid and counted. Purity was always found higher than 

97%. 

[Ring C-methoxyl- HJ colchicine (spec. act. 3.8 Ci/mmole) as a solution 
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in benzene/ethanol (9/1) was obtained from New England Nuclear (Boston, Mass., 

USA). The preparation diluted to a specific activity of 20-200 mCi/mmole was 

either used as such or after being purified according to the procedure des

cribed below. 

Methyl 5-(2-thienyl carbonyl)-benzimidazol-2-yl carbamate (oncodazole or 

R 17934) was a gift of Dr. M. De Brabander (Janssen Pharmaceutica, Beerse, 

Belgium). Colchicine was purchased from Merck (Darmstadt, GDR). Griseofulvin 

and vinblastine sulfate were obtained from Sigma (St. Louis, Mo., USA). Mela

tonin and podophyllotoxin were purchased from Fluka (Buchs, Switzerland) and 

Aldrich Chemical Co. (Milwaukee, Wise, USA), respectively. 

Purification of [ HJcolchicine. An aliquot of the [ H] colchicine solution 

in benzene/ethanol was diluted with unlabelled colchicine in the same so

lution, giving a concentration of 10 M colchicine at approximately 10 dpm 

per 100 pi solution. Two hundred pi of this solution were applied as a small 

band to a silica gel plate (DC-Alufolie 60 F 254, Merck, Darmstadt, GDR) and 

chromatographed in chloroform/aceton/diethylamine (5/4/1) over a distance of 

17 cm with unlabelled colchicine as a reference. The centre part of the [ Hj 

colchicine band (visible under UV at 254 nm) with Rf-value 0.57 and a 1-cm-

broad band corresponding to the Rf-value of an unknown radiolabeled compound 

X, which was found to be present in our colchicine preparation, with Rf-

value 0.46 were cut out and transferred to a centrifuge tube. The silica gel 

was scraped off and subsequently eluted 4 times with 1 ml methanol. To avoid 

photodecomposition of the compounds, exposure of samples to light was kept to 

a minimum during the procedure. Tubes and chromatography tank were wrapped in 

aluminum foil. Approximately 1.3 x 10 dpm were recovered in [ H]colchicine 

and 1.4 x 10 dpm in compound X. To analyze the purified preparations aliquots 

were spotted onto a chromatogram and developed with the same solvent as used 

before. Chromatograms were cut transversely into 1 cm sections which were 

placed in scintillation vials containing Bruno and Christian's scintillation 

liquid and counted. Radioactivity present in sections corresponding to the 

Rf-values of colchicine and compound X was 86 and 84°6, respectively of the 

total radioactivity recovered. In the case of [ H]colchicine 11% of the 

radioactivity was present in a third compound with Rf-value 0.83. This com

pound is probably identical to that found by Borisy and Taylor (11), which was 

shown to be formed during storage of L HJ colchicine preparations purified by 

silica gel chromatography. 
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RESULTS 

Evaluation of charcoal assay. The gel filtration method for measuring MBC-

binding activity in mycelial extracts, as used in previous work (22,23] gives 

reproducible results. However the assay is laborious and not suitable for 

multiple determinations. Therefore, in the present investigation a second 

method was used in addition to the Sephadex G-100 assay. The usefulness of 

this method, which is based on separation of free MBC from bound MBC by ad

sorption to charcoal, will be discussed first. 

The effectiveness of charcoal in adsorbing free MBC was determined in 

solutions of BSA at 40 mg/ml in PKMg buffer. More than 99.5°6 of the total 

radioactivity present in the incubation mixture could be removed at [ clMBC 

concentrations, ranging from 1-40 yM, which correspond with 2.5-100 x 10 

dpm/ml. Removal of free MBC, however, may not involve removal of bound MBC 

which is present in mycelial extracts incubated with MBC. Therefore the char

coal assay was compared with the gel filtration method. As is evident from 

Table I even higher values for bound MBC were found with the charcoal assay 

than with the gel filtration method. Since incubation of mycelial extracts 

with [ C]MBC in the presence of a specific inhibitor of MBC binding (see 

below) resulted in complete adsorption of radioactivity to charcoal, the 

higher degree of binding found with the charcoal assay, is not due to in

complete adsorption of free MBC to charcoal in mycelial extracts. Hence, 

less dissociation of MBC from the complex during the charcoal assay than 

during the gel filtration procedure is probably responsible for the higher 

degree of binding found. 

Due to dissociation the value of bound MBC decreases with the length of 

the incubation period with charcoal (Fig. 2). In the standard procedure mix

tures were shaken for 10 min with charcoal, so that disturbance of 

Table I Comparison of charcoal and Sephadex G-100 assays for MBC binding 

Assay bound dpm/ml extract pinole bound MBC/mg protein 

charcoal 31.4xl03 30 

Sephadex G-100 22.3x103 22 

Freshly prepared mycelial extract of A. nidulans Strain 186 at 41 mg protein 
per ml was incubated with [ c]MBC at 5.7 yM (14.2x10 dpm/ml) for 2 h 
at 4 C. Binding assays were carried out as described under Materials and 
Methods. 
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Fig. 2. Effect of incubation time during the charcoal assay on the quantity 
of bound MBC. 
A mycelial extract of A. nidulans, Strain 003 at 38 mg protein per ml was 
incubated with [ c]MBC at 21.2 uM (53.0x10 dpm/ml) for 2 h at 4°C. Binding 
was determined with the charcoal assay, in which the length of the incubation 
period was varied. 

equilibrium was minimum and removal of free MBC was maximum. 

Selectivity of MBC binding. MBC binding was found in 48,000 x g supernatant 

extracts of mycelial homogenates in PKMg solution after the extracts were in

cubated with [ c]MBC at 4 C (22,23). Binding activity appeared to be correlate 

with the in vivo MBC sensitivity of the species or strain examined. Table II 

gives detailed binding data obtained with the Sephadex G-100 assay for various 

MBC-sensitive and MBC-resistant fungal species or strains. Whereas extracts of 

sensitive strains did bind MBC in quantities between 3 and 18% of the quantity 

added, resistant strains did not bind more than 0.6% of this amount which is 

hardly above background. 

Since it has been suggested (22,23) that the MBC-binding substance is 

identical with fungal tubulin, the MBC-binding properties of mammalian brain 

tubulin were investigated. As is evident from Table III porcine brain tubulin 

did not bind MBC in significant amounts at 4 C nor at 37 C. As expected the 

preparation showed [ Hj colchicine binding activity which implies the presence 

of native tubulin in the preparation used. Therefore, it can be concluded that 
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Table II. MBC binding in 48,000 x g supernatant mycelial extracts of fungal 
species and strains, which differ in MBC sensitivity 

Species Strain ED 

uM 
50 protein 

cone. 
mg/ml 

MBC cone. bound MBC 
-3 -2 

(dpm/ml)xl0 yM (dpm/ml)xl0 pmole/mg 
protein 

Aspergillus 
nidulans 

Penicillium 
brevicompactum 

Penicillium 
corymbiferum 

Alternaria 
brassicae 

Pythium 
irregulare 

003 

186 

R 

S 

R 

S 

R 

< 

> 

< 

> 

> 

> 

4.5 

1.5 

55
+ 

2C;00+ 

2 + , 

2000+ 

1000§ 

1000§ 

38 

42 

40 

22 

20 

24 

38 

37 

-

64.0 

68.2 

68.2 

67.0 

56.0 

66.0 

56.8 

64.0 

65.0 

2.6 

2.7 

2.7 

2.7 

2.2 

2.6 

2.3 

2.6 

56.4 

122.0 

3.2 

41.4 

2.2 

20.8 

1 .4 

3.7 

6.0 

1 1.5 

0.3 

7.6 

0.4 

3.4 

0.1 

0.4 

2.6 2.5 

Mycelial extracts were incubated for 2 hours at 4 C with L CJMBC. 
Binding was determined by gel filtration of 1 ml of the incubation mixture 
through a Sephadex G-100 column. 

Inhibitory concentration causing a 50% reduction in growth on agar medium. 

Data from Bollen (28) for benomyl. 

Data from Bollen and Fuchs (21) for benomyl. 

Not determined. 

Table III. MBC-binding and colchicine-binding activity of partially purified 
porcine brain tubulin 

Exp. Binding agent Temp. Concentration 

dpm/ml uM 

Binding activity 

dpm/ml pmole/mg protein 

1 

2 

3 

[14C]MBC 

[1AC]MBC 

L Hjcolchicine 

4°C 

37°C 

37°C 

15.3x10 

19.5x10* 

1.2xl06 

6.1 

7.8 

3.0 

2.1x10 

4.1x10 

48.6x10 

0.3 

0.6 

45.0 

A porcine brain extract purified by ammoniunijsulfate fractionation (35-50%) 
at 27 mg protein per ml was incubated with [ c] MBC and [ H] colchicine, 
respectively, for 2 h at the temperatures indicated. The tubulin preparation 
had been stored for 0 (exp. 1), 11 (exp. 2) and 13 days (exp. 3) at -21°C, 
respectively. 
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mammalian tubulin has no or at least a low affinity for MBC. These findings 

are in agreement with the observation that MBC at a concentration which is 

lethal for MBC-sensitive fungi does not interact with in vitro microtubule 

assembly in brain extracts (23,27,44). 

For further work the three Aspergillus nidulans Strains 003, 186 and R 

were selected, merely because of the fact that their genetic background is 

known (69,70). 

Molecular weight of the MBC complex. To determine the molecular weight of 

the MBC complex a partially purified mycelial extract, which had been incu

bated with [ c]MBC, was gel filtrated through a calibrated Spehadex G-200 

column. Bound radioactivity was eluted in a single peak and as can be seen 

in Fig. 3 the elution volume corresponds with a molecular weight of the MBC 

complex of approximately 110,000. Since this value is very similar to that 

found for the colchicine-tubulin complex (17), the elution behaviour of both 

complexes was compared on a Sephadex G-200 column (1.5 x 27 cm). The elution 

volume of the MBC complex appeared to be similar to that of the colchicine-

tubulin complex. 

20-
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o 
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2 2 

V alcoholdehydrogenase 
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lipoamide dehydrogenase 

N » ot-chymotrypsin 
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Fig. 3. Molecular weight determination of the MBC-protein complex. 5 ml of an 
ammoniumsulfate fractionated (35-50%) mycelial extract (40,000 x g) at 38 mg 
protein per ml was incubated with [ CJ MBC at 8 uM for 2 h at 4 C and gel 
filtrated through a calibrated Sephadex G-200 column. The labelled complex 
was eluted as a single peak at an elution volume corresponding to a molecular 
weight of approximately 110,000. 
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Fig. 4. Time course of MBC binding. 
A mycelial extract of A. nidulans, Strain 003, at 38 mg protein per ml was 
incubated with [ c] MBC at 1.1 yM (2.7x10 dpm/ml) for varying periods of 
time at 4 C. The quantity of bound MBC was determined with the charcoal assay. 

Factors which influence MBC binding. Binding of MBC to its receptor was nearly 

complete within 15 minutes of incubation of the mycelial extract with [ CJMBC 

(Fig. 4). Only a slight increase in bound radioactivity was found thereafter. 

Therefore an incubation period of 1 hour or more with [ CJMBC, as routinely 

used in our experiments, can be considered to be long enough for maximum 

binding. 

MBC-binding activity was influenced by pH as is illustrated in Fig. 5. 

Maximum binding appeared between pH 6.5-6.8. Whether pH affected binding of 

MBC indirectly through an effect on stability of the receptor or directly has 

not been investigated. 

MBC-binding activity of mycelial extracts was not stable. At 4 C the 

ability to bind MBC decayed according to first order kinetics (Fig. 6). The 

half-time for inactivation was 6.5 hours. Sucrose, MBC and glycerol stabilized 

the binding activity. Known stabilizers of colchicine-binding activity of 

tubulin like vinblastine sulfate and GTP did not significantly increase the 

stability. 

The influence of temperature on MBC-binding activity was also examined. 

When 48,000 x g supernatant mycelial extracts were incubated for 1 h at 37 C 

a considerable denaturation of proteins took place. Therefore, these extracts 

were cooled in ice for about one hour and centrifuged before binding activity 

was measured. Since for unknown reasons the charcoal assay applied to heated 
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Fig. 5. (left) Effect of pH on MBC binding. 
Two ml samples of a 127,000 x g (1 h) supernatant mycelial extract of A. 
nidulans, Strain 186, at 24 mg protein per ml, were adjusted to different 
pH-values with 50 yl of a H„P0, or KOH solution, respectively, of different 
strenght. One ml of the resulting preparation was incubated with L cjMBC 
at 11 uM (27.5x10 dpm/ml) for 1 h at 4°C. The quantity of bound MBC was 
determined with the charcoal assay. The pH (22 C) was determined in the other 
ml of the preparation. 

Fig. 6. (right). Stability of the MBC-binding activity under various condi
tions at 4 C. Three ml of a mycelial extract of A. nidulans, Strain 186, at 
24 mg protein per ml were mixed with an equal volume of a solution of 
respectively, 1 mM vinblastine sulfate (VB), 2 mM GTP, 8 M glycerol, 22.8 yM 
[ c] MBC (56.8x10 dpm/ml), and 2 M sucrose in PKMg solution. As control 
preparation 3 ml extract was diluted with 3 ml PKMg solution. At the times 
indicated [ cjMBC was added (28.4x10 dpm/ml) to aliquots of the mixtures 
except to that which already contained [ CjMBC. After incubation for 15 min 
at 4 C the quantity of bound MBC was determined with the charcoal assay 
using appropriate blanks. Binding activity was expressed as percent of initial 
binding directly after mixing the solutions (510 dpm/50 yl of 1 : 1 diluted 
extract). The half-times of decay (tj) of the MBC-binding activity have been 
calculated from the slopes of the lines. 

extracts gave anomalous binding data, binding activity was determined with the 

gel filtration method. Binding activity of the supernatant was 11% of that of 

control samples which were kept at 4 C during incubation and centrifuging of 

the experimental sample. Binding activity in the control sample was determined 

with the charcoal assay. This result indicates that loss of binding activity 

is enhanced by high temperature. 

Incubating mycelial extracts with 0.1 % trypsin for one hour at 4 C before 

incubation with[ CjMBC resulted in a 55°s loss of binding capacity. 
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Centrifuging at 127,000 x g for 1 hour at 4 C of the 48,000 x g super

natant lowered the binding activity of the resulting supernatant to 70-80% of 

that of control samples which were not centrifuged and were stored at 4 C for 

the duration of the run. This result suggests that the MBC-binding activity 

might be partially associated with some particulate fraction. The nature of 

this binding activity has not been studied further. 

Affinity for MBC in extracts of Aspergillus nidulans Strain 003, Strain 186 

and Strain R. Since it has been suggested (22,23) that differences in affinity 

of MBC binding sites for MBC might be the biochemical basis of the selectivity 

of MBC, we determined apparent binding constants (K) and number of binding 

sites (S ) in mycelial extracts of the three A. nidulans strains. Total MBC 

binding was measured as a function of free MBC concentration and the data were 

plotted in double reciprocal form, according to the equation: 

V [bound MBC] 
1/s + VK.S • V [free MBC] 

(11) 

The concentration of bound MBC has been expressed as bound dpm per volume 

of mycelial extract and the concentration of free MBC in uM. Results of a 

number of experiments are summarized in Fig. 7. From the slopes of the lines 
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Fig. 7. Binding of [ c] MBC to mycelial extracts of A. nidulans, Strain 003, 
Strain 186 and Strain R. 
Mycelial extracts of Strain 003, Strain 186, and Strain R at 38, 39 and 40 mg 
protein per ml, respectively, were incubated with [ Cj MBC at increasing 
concentrations for 1 h at 4°C. The quantity of bound MBC was determined with 
the charcoal assay. The concentration of free MBC was calculated from the dif
ferences between total and bound MBC. Values of binding constants K (l.mole ) 
and maximum binding capacity (pmoles/mg protein) with their respective 
standard deviations are given as determined in at least four experiments. 
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and the intercepts, values of S , expressed as maximum binding capacity in 

pmoles per mg protein and the apparent binding constants were calculated. 

Evidently the number of binding sites in extracts of the three strains are 

about equal, but the respective binding constants differ considerably. The 

reciprocals of the binding constants, which are identical with the MBC 

concentration which will half-maximally saturate the MBC-binding site, are 

2.2, 0.6 and 27 yM for extracts of Strain 003, Strain 186 and Strain R, 

respectively. These values correspond with the inhibitory concentration of 

MBC causing a 50% reduction in growth (see Table 2). This strongly suggests 

that the response of the three A. nidulans strains to MBC is governed by the 

affinity of the receptor site for MBC. 

Inhibition of MBC binding by antimitotic agents . In order to characterize 

the MBC-receptor site in fungi, several compounds which interact in some 

way with tubulin, were tested for inhibitory effects on MBC binding. A 

first screening was carried out by adding these compounds simultaneously 
r14 -, 

with L CJMBC, at varying concentrations to mycelial extracts of A. nidulans 

Strain 186. Podophyllotoxin and vinblastine sulfate, which compounds are 

known to bind to tubulin (74,75) did not reduce MBC binding at a concentration 

of 500 yM. Melatonin which has been shown to interfere with colchicine 

binding to mammalian brain tubulin (76) and which was active in the stentor 

oral migration assay for antitubulin drugs (52), was also ineffective at 

500 yM. Griseofulvin, which affects spindle functioning in A. nidulans (19) 

and selectively interferes with in vitro microtubule assembly (73), did not 
r14 i 

affect MBC binding at 1000 yM, either when added simultaneously with [ CJMBC 
r14 T or after extracts had been incubated for 1 hour before addition of [ CJMBC. 

Qncodazole was included in the inhibition experiments because in fungi 

the action of this compound has been suggested to be similar to that of 

MBC (23). This assumption was based on a similar response of the three 

strains to the growth-inhibitory action of oncodazole. ED™ values for 

mycelial growth on agar were 0.55 yM for Strain 003, 0.23 yM for Strain 186 

and 20 yM oncodazole for Strain R. 

Oncodazole appeared to be a very effective inhibitor of binding in the 

primary test. At 50 yM, this compound inhibited MBC binding for 90%, if 

assayed at 6.0 yM with the gel filtration method. 

Although the standard antitubulin colchicine did not inhibit mycelial 

growth on agar of any of the three A. nidulans strains at concentrations up 

to 10 mM, a slight inhibition of MBC binding in mycelial extracts was noticed 

at 500 yM. 
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The ability of the latter two compounds to inhibit MBC binding was in

vestigated in further experiments, in which mycelial extracts were preincubated 

for one hour either with oncodazole or with colchicine at increasing concen

trations. After this period [ C]MBC was added and the mixtures were in

cubated for another hour. Figs. 8 and 9 show the result of this experiment. 

It is evident that oncodazole is a much more potent inhibitor of MBC binding 

than colchicine. Whereas oncodazole gave a 50°& inhibition of MBC binding at 

a molar ratio of oncodazole to MBC of 0.18 : 1, colchicine could not even 

achieve this at a molar ratio of 830 : 1. Inhibition of MBC binding became 

apparent in extracts of Strain 186 at lower colchicine concentrations than in 

extracts of Strain 003. 

The effect of oncodazole on the preformed MBC complex was also studied. 
r14 l 

[ CJMBC was added to a mycelial extract and after 1 hour of incubation, 

oncodazole was added and the mixtures were incubated for another hour. In this 

case inhibition by oncodazole was much lower than that found when extracts 

were preincubated with the inhibitor (Table IV exp. 1). However, after 20 

hours of incubation with both compounds, inhibition values were similar 

(Table IV, exp. 2). Evidently after this period equilibrium had been esta

blished, which confirms the reversible character of MBC binding. 
These results suggest that oncodazole may competitively inhibit the 

Table IV. Effect of oncodazole on MBC binding 

% inhibition of MBC binding 

Time at which com- exp. 1 exp. 2 
pounds were added: 2 h after initiation 20 h after initiation 
t = 0 h t = l h of experiment of experiment 

rl4 I 

[ CJMBC 0 0 

oncodazole [' c] MBC 94 52 

[ c] MBC oncodazole 41 54 

[14C] MBC + 62 54 
oncodazole 

Mycelial extracts of A. nidulans Strain 186 were incubated with oncodazole 
at 10 yM4 and [ c] MBC at 2.7 uM (6.8x10 dpm/ml) in exp. 1 and 5.4 yM 
(13.6x10 dpm/ml) in exp. 2, respectively, in the order as indicated. Bound 
MBC was assayed 2 h (exp. 1) and 20 h (exp. 2) after initiation of the expe
riment by the charcoal method. The quantity of bound MBC in the absence of 
oncodazole (0% inhibition) was 1010 dpm/50 yl extract (exp. 1) and 540 dpm/50 
ul extract (exp. 2), respectively. 
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1.0 2.0 40 
Oncodazole (ju M) 

10.0 

Fig. 8. Inhibition of MBC binding by oncodazole. 
Aliquots of a mycelial extract of A. nidulans, Strain 186 at 30 mg protein 
per ml were incubated with increasing concentrations of oncodazole for 1 h 
and then for an additional hour with [ C] MBC at 5.5 uM (13.8x10 dpm/ml) 
at 4 C. Bound MBC was assayed by the charcoal method. The quantity of bound 
MBC in the absence of oncodazole (0% inhibition) was 1000 dpm/50 ul extract. 

1.0 2.0 5.0 
Colchicine (mM) 

10.0 

Fig. 9. Inhibition of MBC binding by colchicine. 
Aliquots of mycelial extracts of A. nidulans, Strain 003 and Strain 186 at 
30 mg and 29 mg protein per ml, respectively, were incubated with increasing 
concentrations of colchicine for 1 h at 4 C and then for an additional hour 
with [ CJMBC at 11.6 uM (29.0x10 dpm/ml) at 4°C. Bound MBC was assayed 
by the charcoal method. The quantity of bound MBC in the absence of colchicine 
(0% inhibition) was 980 dpm (Strain 003) and 950 dpm (Strain 186) per 50 yl 
extract. 

43 



binding of MBC. Since this can only be established at equilibrium, mycelial 

extracts diluted 1 : 1 with a solution of 2 M sucrose in PKMg buffer to sta

bilize MBC-binding activity were incubated for 20 hours with [ c]MBC at in

creasing concentrations with or without inhibitor. Data from an experiment 

with oncodazole as inhibitor are plotted in double reciprocal form in Fig. 10 

and those with colchicine in Fig. 11. It is evident from these figures that 

both compounds inhibit MBC binding in a competitive manner, since only the 

slope of the line has been changed but not the intercept. Inhibition constants 

(K.) can be calculated using the equation: 

Abound MBC] = 1 /s o
 + 1/K.So- V + [l] /K±) • V [ f r e e MBC] 

where I is the concentration of free inhibitor. Since, however, the concen

tration of free inhibitor cannot be readily determined, the value of the 

total inhibitor concentration has been used to estimate the inhibiton con

stant. For oncodazole this estimation probably results in a value which is 

higher than the real value, because the concentration of binding sites is of 

the same order as that of the oncodazole added, resulting in a high proportion 

of bound oncodazole. For colchicine, which has been used at higher concen

trations, the value calculated can be considered a real estimation of the 

inhibition constant. 

The lower potency of colchicine to inhibit MBC binding in extracts of 

Strain 003, compared with that observed in extracts of Strain 186, suggests 

a differential affinity of the binding site for colchicine. 

Since it has been shown that oncodazole and colchicine bind to mammalian 

tubulin at the same site (45), competitive inhibition of MBC binding in my

celial extracts by these two compounds indicates that the MBC-binding site is 

located on fungal tubulin. 

Colahicine-binding activity of mycelial extracts. Competitive inhibition of 

MBC binding to fungal tubulin implies binding of colchicine to fungal tubulin. 

Since reports on colchicine binding in fungi are rather scarce and somewhat 

controversial (18,38,43,46,54), the colchicine-binding activity of mycelial 

extracts of A. nidulans was investigated. 

Preliminary experiments in which mycelial extracts were incubated with 

[ H]colchicine at 10 yM, showed that up to b% of total radioactivity was bound 

to macromolecules (Table V, exp. 1). Since this amount was unexpectedly high, 

the nature of this bound radioactivity was investigated. Thinlayer chromato

graphic (TLC) analysis, with chloroform/aceton/diethylamine (5/4/1) as solvent, 
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Fig. 10. Inhibition of MBC binding by oncodazole. 
A mycelial extract of A. nidulans, Strain 186 at 33 mg protein per ml was 
diluted 1 : 1 with a solution of 2 M sucrose in PKMg buffer,,Aliquots of the 
solution were incubated with increasing concentrations of [ CjMBC with 
(•-•) and without (o-o) 1 uM oncodazole for 20 h at 4 C. Bound MBC was 
assayed by the charcoal method. The concentration of free MBC was calculated 
from the difference between total and bound MBC. 
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Fig. II. Inhibition of MBC binding by colchicine. 
A mycelial extract of A. nidulans, Strain I86 at 31 mg protein per ml was 
diluted 1 : 1 with a solution of 2 M sucrose in PKMg buffer,.Aliquots of the 
solution were incubated with increasing concentrations of [ C] MBC with 
(•-•) and without (o-o) 1 mM colchicine for 20 h at A C. Bound MBC was 
assayed by the charcoal method. The concentration of free MBC was calculated 
from the difference between total and bound MBC. 
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Table V. Binding of[ Hj colchicine in mycelial extracts 

+ 
+ 

Exp. Binding agent Concentration Bound radioactivity % bound 

uM dpm/ml dpm/ml 

1 [ H ] colchicine 10 3.7x10 
from stock 

[ H] colchicine 
purified 

[3R!X. * 
purified 

1 .2x10 

1.3x10' 

2.1x10" 

1.3x10 

6.7x10 

5.7 

1 . 1 

52.0 

[ H] colchicine and [ HjX were purified according to the method described 
under Materials and Methods. 

Bound radioactivity was determined with the Sephadex G-100 assay after 
mycelial extracts of A. nidulans Strain 003 at 41 mg/ml (exp. 1) or Strain R 
at 42 mg protein per ml (exp. 2, 3) had been incubated with the radio
chemicals for 2 h at 4 C. 

of Sephadex G-100 column fractions which contained bound radioactivity re

vealed that the radiolabel was present in a Compound X, which was not identical 

with colchicine. Furthermore, in contrast with known colchicine-tubulin com

plexes, the complex was perchloric acid (PCA) stable, since after adding PCA 

at a final concentration of 0.5 N to the fractions mentioned above and cen-

trifuging the mixture about 70% of the radioactivity remained associated with 

the pellet. Washing the pellet with ethanol/ether (3/1), removed most of the 

radiochemical, which with TLC analysis was identified as Compound X. Since it 

was presumed that this radiochemical was present as an impurity in our [ II]-

colchicine preparation, the latter was purified (for details see Materials and 

Methods) and binding experiments were performed with the purified compounds. 

Results of these experiments are given in Tabel V, exp. 2 and 3. As is evident 

about 50?o of the radioactivity present in Compound X was bound to components 

of the mycelial extract. With purified [ ll]colchicine less radioactivity was 

bound than with the nonpurified preparation. These results indicate that 

binding activity of mycelial extracts upon incubation with unpurified [ Hj-

colchicine is mainly due to association of the radiochemical impurity X with 

macromolecular components. 

Since purification of[ H]colchicine preparations is laborious and 1001 

purity can never be achieved, in further experiments a more specific binding 
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assay with DEAE-Sephadex A-50 ion exchanger has been used. Mycelial extracts 

were incubated with [ H] colchicine at 500 uM (approximately 19.6 x 10 dpm/ml) 

for 1 hour at 4°C and run onto DEAE-Sephadex columns. The elution pattern of 

radioactivity, which is shown in Fig. 12a shows two high peaks and one very 

small peak. TLC analysis revealed that radioactivity in fraction 4, which con

tained the majority of the protein which was not adsorbed to the ion exchanger, 

was present in the form of Compound X, whereas radioactivity eluted at the two 

other peaks represented colchicine. The high peak is due to free colchicine 

since it is eluted at the bed volume of the column. The second [ H]colchicine 

peak was eluted at approximately 0.52 M NaCl. Since colchicine-tubulin com

plexes are characteristically eluted at this ionic strength (see also next 

sections) this result suggests the formation of a colchicine-fungal tubulin 

complex in the incubation mixture. That indeed colchicine was eluted as 

bound to protein and not in a free form was determined by gel filtration 

of an aliquot of fraction 27 on a Sephadex G-25 column (1.5 x 20 cm), im

mediately upon elution of this fraction. About 37% of the radioactivity re

covered in the eluate, eluted associated with protein in the void volume of 
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Fig. 12. DEAE-Sephadex A-50 column chromatography of mycelial extracts of 
A. nidulans, Strain 186 incubated with [ H]colchicine at 4 C (a) and 37 C (b) 
for 1 hour. 48,000 x g supernatant mycelial.extracts at 32 (a) and 29 (b) mg 
protein per,ml were incubated with- 500 pM [ HJcolchicine (19x10 dpm/ml (a) 
and 12.2x10 dpm/ml (b)). 4 ml of the incubation mixture (a) or supernatant of 
the centrifuged incubation mixture (b) were loaded onto DEAE-Sephadex columns 
and eluted as described under Materials and Methods. The graphs show the 
elution pattern of radioactivity. NAC1 concentration. 
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the column. 

When mycelial extracts were incubated at 37°C for 1 h with [ H]col

chicine and after centrifuging bound colchicine was assayed with the DEAE-

Sephadex method, the quantity of bound colchicine seemed to be lower than that 

after incubation at 4 C (Fig. 12b). Since the binding site for colchicine is 

evidently identical with that of MBC, which appeared to be denatured under 

these conditions, this result would be expected. It should be further noticed 

that no significant amount of radioactivity was eluted associated with the 

bulk of the protein. This suggests that Compound X either did not bind at this 

temperature or was associated with components, which were removed from the 

extract by centrifuging. These possibilities were not studied further. 

Since the DEAE-Sephadex binding assay is not suitable for quantitative 

measurements due to dissociation of the colchicine-tubulin complex during the 

procedure, no attempts were made to determine in this way the binding constant 

for colchicine and fungal tubulin. 

Purification of fungal tubulin. As has been shown in the preceeding sections, 

the MBC-binding protein can be assumed to be identical with fungal tubulin. 

This makes MBC a suitable tool for the purification of fungal tubulin, ana-

loguous to the use of colchicine in purification methods for mammalian tubulin. 

With a standard purification procedure for tubulin the following results were 

obtained. MBC-binding activity in 48,000 x g supernatant mycelial extracts 

could be selectively precipitated with ammonium sulfate between 35 and 50% 

saturation (Table VI). High speed centrifuging and ammonium sulfate frac

tionation together resulted in a preparation which contained approximately 

50°* of the initial binding activity. The specific activity of this preparation 

was increased about two-fold. 

In previous work (22,23) it has been shown that the MBC complex was re

tained on a DEAE-Sephadex A-50 anion exchanger and could be selectively eluted 

at a ionic strength of 0.6 M KC1. Therefore, DEAE-Sephadex column chromato

graphy which has proven to be useful in purification of tubulin from other 

organisms (cf. 74), was included as a final purification step for fungal tubu

lin. This step was first standardized with bound [ C]MBC. A partially puri-
r14 •, 

fied preparation was incubated with [ CJMBC and applied to the column. Part 

of the elution patterns of radioactivity obtained with preparations of Strain 

003, Strain 186, and Strain R are shown in Fig. 13. For Strain 186, part of 

the radioactivity was eluted as a distinct peak at approximately 0.52 M NaCl, 

whereas with Strain 003 only a small shoulder was observed in the elution 

48 



Table VI. Purification of MBC-binding protein from mycelial extract 

Ammonium sulfate Total protein % of total binding Specific binding 
fractionation range (mg) activity recovered activity (pmole/ 

mg protein) 

0 - 2 0 5 0.4 3.7 

20 - 35 72 12.0 7.7 

35 - 50 92 74.1 37.5 

> 50 173 13.6 3.6 

Mycelial extract (11.5 ml) of A. nidulans, Strain 003 at 29 mg protein per 
ml was fractionated with a saturated ammonium sulfate solution in water between 
limits indicated. The preparations were incubated with [ c]MBC at 10.9 uM 
and bound MBC was assayed by the charcoal method. 

Table VII. Gel filtration of DEAE purified MBC-protein complex on a Sephadex 
G-100 column 

Strain 003 186 

Radioactivity of DEAE-purified 
[ C] MBC-protein complex (dpm/ml) 3,140 15,220 

rI4 i 
Recovery of bound l CJMBC after 
gel filtration on Sephadex G-100 (dpm/ml) 701 8,410 

% recovery of bound [ 1 4 C ] M B C 22 55 

48,000 x g supernatant mycelial extracts of A. nidulans Strain 003 at 38 mg 
protein per ml and of Strain 186 at 37 mg protein per ml in PKMg buffer,were 
incubated with [ c] MBC at 7.8 uM (19.4x10 dpm/ml) and 8.1 uM (20.2x10 
dpm/ml), respectively, for 2 h at 4 C 10 ml of the incubation mixture was 
run onto a DEAE-Sephadex A-50 column equilibrated with PKMg buffer, as des
cribed under Materials and Methods, but using potassium buffers instead of 
sodium buffers. Radioactivity of the fractions was determined immediately 
after they had been eluted. 1 ml of the fraction containing the peak of bound 
MBC was filtered immediately through a Sephadex G-100 column. 
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Fig. 13. DEAE-Sephadex A-50 column chromatography of partially purified 
mycelial extracts of A. nidulans, Strain 003, Strain 186 and Strain R. 
127,000 x g supernatant mycelial extracts were fractionated with a saturated 
ammonium sulfate solution (see Materials and Methods). 5 ml of the prepara
tions containing 15 mg (Strain 003) 12 mg (Strain 186) and 19,mg (Strain R) 
protein per ml were incubated with [ CJMBC at 5.1 uM (12.8x10 dpm/ml) and 
run onto DEAE-Sephadex columns as described under Materials and Methods. 
Graphs show part of the elution pattern of radioactivity. •-•, Strain 003; 
o-o, Strain 186; • — • t Strain R. NaCl concentration. 

pattern at this salt concentration. As expected with Strain R no significant 

amounts of radioactivity were eluted at NaCl concentrations of 0.4 M and 

higher. 

Whether eiution of radioactivity at 0.52 M NaCl was caused by elution 

of the MBC-protein complex itself or by dissociation of MBC from the DEAE-

bound complex, due to increasing salt concentration, was determined by rechro-

matography of the fractions concerned on Sephadex G-100 columns. It appeared 

(Table VII) that depending on the strain used considerable amounts of radio

activity were bound to protein, which indicates the elution of purified MBC-

protein complex from the column. 

In subsequent experiments no [ C ] M B C was present, and fractions eluted 

at 0.45-0.90 M NaCl were considered to contain the purified binding protein. 

. The MBC-binding activity of DEAE-purified protein has not yet been investi

gated in detail. In a preliminary experiment, in which a crude mycelial extract 

fractionated with ammonium sulfate was passed through the DEAE-Sephadex column 

and the resulting purified protein solution was concentrated with a Sartorius 
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ultrafiltration device, approximately 5°s of the initial binding capacity of 

the crude extract was recovered. The specific activity of this preparation 

was raised to about 13-fold of that of the crude extract. This rather low 

yield indicates a considerable loss of binding activity during the procedure, 

which was probably due to the instability of the binding protein. 

Proteins isolated from the three strains of A. nidulans by DEAE-Sephadex 

column chromatography were analysed with the continuous SDS system. Gels 

loaded with reduced protein samples of fraction 24-30 (Fig. 13) from the 

experiment with Strain 186 and Strain R are shown in Fig. 14 and 15, respec

tively. As reference, reduced porcine brain tubulin purified by one poly

merization cycle was run on a separate gel. On gels loaded with proteins from 

Strain 186 three closely-spaced bands, among others, were present which have 

a comparable mobility as the porcine brain monomers which move together in 

this system. The banding patterns of gels loaded with reduced proteins from 

corresponding fractions derived from Strain 003 were very similar (not shown). 

In gels loaded with proteins from strain R, however, only one band was present 

at a migration distance which is comparable with that of brain tubulin. 

The difference was more pronounced when proteins were reduced and car-

boxymethylated before analysis with the same system. Gels loaded with DEAE-

purified proteins, eluted at 0.45-0.90 M NaCl, from Strain 003, Strain 186 and 

Strain R are shown in Fig. 16a. Carboxymethylated DEAE-purified porcine brain 

tubulin was run as reference protein. It is evident that the preparation of 

Strain R differed from those of Strain 003 and Strain 186. In gels loaded 

with proteins from the latter two strains, two distinct bands are present with 

a comparable mobility as the band representing porcine brain tubulin and one 

band which had moved slightly faster. With Strain R two weak bands are present 

at this migration distance whereas other bands showed about equal staining as 

corresponding bands present in the other two gels. 

When identical protein preparations of the three strains were run on 

discontinuous SDS gels, two major bands of unequal staining density were 

found with similar mobility as the bands on the reference gel (Fig. 16b). The 

faster-moving band on the reference gel is due to 3-tubulin and the slower-

moving one to a-tubulin (51). 

When gels from both SDS systems are compared it is evident that two bands, 

which are found to be separated in the continuous system, move together in the 

discontinuous system. With respect to the staining densities of the bands it 

seems that one of the two slower-moving bands of the continuous system moves 

together with the faster moving band in the discontinuous system. 
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Fig. 14. Electrophoretic analysis of proteins isolated from A. nidulans, 
Strain 186 by DEAE-Sephadex column chromatography. 
Samples of fractions 24-30 (see Fig. 13, Strain 186) were reduced and ana
lysed on the continuous SDS system. Reduced porcine brain tubulin (T) purified 
by one polymerization cycle was run as a reference. 

24 25 26 27 28 29 30 T 
Fig. 15. Electrophoretic analysis of proteins isolated from A. nidulans, 
Strain R by DEAE-Sephadex column chromatography. 
Samples of fractions 24-30 (see Fig. 13, Strain R) were reduced and analysed 
on the continuous SDS system. Reduced porcine brain tubulin (T) purified 
by one polymerization cycle was run as a reference. 
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Fig. 16. Electrophoretic analysis of proteins isolated from A. nidulans, 
Strain 003, Strain 186 or Strain R, by DEAE-Sephadex column chromatography. 
Lyophilized proteins from pooled fractions eluted at 0.45-0.90 M NaCl were 
carboxymethylated and run in the continuous SDS system (a) and the discon
tinuous system (b). Carboxymethylated DEAE-purified porcine brain tubulin 
was run as a reference. 

Both gel systems could be correlated in the following manner. It was 

found that heating a DEAE-purified preparation for 1 h at 37°C, cooling in 

ice and centrifuging, resulted in a supernatant in which upon electrophore

sis in the continuous SDS system the two slower moving bands were not present 

(Fig. 17a,b). These bands appeared to be present in gels loaded with the 

pelleted material. Heat-dependent precipitation of proteins was not reversible 

by cold, nor was the process inhibited by Ca , colchicine or MBC, which eli

minates the possibility that microtubule assembly is responsible. Apparently 

denaturation by heat of the proteins concerned causes precipitation which is 

in agreement with the observation that mycelial extracts which are heated 

at 37 C and centrifuged, show rather low MBC-binding activity. 

Upon electrophoresis in the discontinuous system the precipitated material 

runs mainly as two bands, with similar mobility as a- and B-tubulin from por

cine brain (Fig. 17c). Because of this behaviour it can be concluded that 

these bands represent both tubulin monomers of A. nidulans. The third faster-

moving band in continuous SDS gels which showed a similar mobility as B-tubulin 

in the discontinuous system, apparently represents a protein which copurified 

with fungal tubulin in this purification procedure. 

It is evident that the purification procedure applied to extracts of 
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Strain R resulted in significantly less a- and 3-tubulin, than was obtained 

with a similar procedure applied to extracts of Strains 003 and 186. Although 

a somewhat lower initial tubulin concentration might be partly responsible 

(see Fig. 7), it is certainly not the only factor involved. A reason for the 

failure to purify tubulin of Strain R might be a low affinity of this tubulin 

for DEAE-Sephadex. A low affinity of brain tubulin for DEAE-Sephadex has been 

reported (47,53) and seems to be related with phosphorylation of the protein. 

At any rate, the different behaviour of tubulin of Strain R in comparison 

with that of both other strains, suggests chemical differences of the protein 

itself or of factors associated with tubulin, an idea which is compatible 

with the observation that differences exist in affinity of the tubulins of 

the three strains to MBC. 

The results of the electrophoretic analysis indicate that MBC might be 

used as an affinity label to purify fungal tubulin from MBC-sensitive strains 

of A. nidulans. It supports the idea that this protein is the primary target 

of MBC action. 

DISCUSSION 

The MBC-binding protein in A. nidulans is characterized by a set of pro

perties which is unique for tubulin (cf. 14). Binding activity could be se

lectively fractionated with ammonium sulfate between 35 and 50% saturation. 

The MBC-protein complex was retained on DEAE-Sephadex columns and its mole

cular weight was estimated at 110,000. Binding activity was labile and could 

be stabilized by sucrose, glycerol and MBC itself. Binding was competitively 

inhibited by known antitubulins such as oncodazole and colchicine. Electro

phoretic analysis of partially purified preparations of the MBC-protein com

plex, showed the presence of proteins with similar mobilities as mammalian 

tubulin monomers. On the basis of these results it can be concluded that the 

MBC-binding protein is identical with fungal tubulin. 

MIC binding to fungal tubulin was rapid, reversible and dit not require 

a high temperature. As has been reported recently (45), binding of oncodazole 

to rat brain tubulin shows similar features. In this respect MBC and oncoda

zole resemble podophyllotoxin, a compound which competes with colchicine for 

the colchicine binding site on tubulin from different sources (75). However, 

podophyllotoxin did not inhibit MBC binding which suggest that fungal tubulin 

has no or at least a low affinity for this compound. 

From the data given in Fig. 7 the number of MBC binding sites can be 

determined. Assuming that one molecule of MBC is bound per molecule of tubulin, 
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one can calculate that tubulin is 0.2-0.4% by weight of total protein present 

in mycelial extracts. This value resembles the value of 0.6% found for the 

colcemid-binding protein in Saccharomyces cerevisiae (38) which proved to be 

in good correspondence with the figure of 0.36°s calculated from the estimate 

of the number of microtubules per nucleus. 

Although colchicine was evidently bound to tubulin of A. nidulans the 

binding reaction showed some unusual features. The rate of complex formation 

seemed to be rapid and binding was not temperature dependent, which properties 

are in contrast with those of colchicine binding to mammalian tubulin (cf. 74). 

Moreover, affinity of A. nidulans tubulin to colchicine was rather low com

pared with that of mammalian tubulin. A low affinity of, presumably, tubulin 

from S. cerevisiae for colchicine has been reported by Haber et al. (38). 

Burns (18) was not able to demonstrate colchicine binding in Schizosaccharomyces 

pombe and Jockusch (46) did not find colchicine-binding proteins in Physarum 

polycephalum. Heath (43) reported the presence of two binding components in 

Saprolegnia ferax with a low affinity for colchicine, one of which was 

trichloroacetic acid (TCA) stable. A TCA-stable binding protein was also 

found by Olson (54) in Allomyces moniliformis. However, the last two authors 

did not investigate the identity of the bound radiolabel. Since in our 

colchicine-binding experiments the formation of a PCA-stable labelled complex 

could be ascribed to the presence of an impurity in our [ HJ colchicine 

preparation, the results of these authors should be interpreted with caution. 

Low affinity of A. nidulans tubulin for colchicine is probably partly 

responsible for the failure of this compound to inhibit mycelial growth. 

Cell membrane permeability might also play a role since no effect on growth 

was noticed at concentrations 25-times higher than those which are needed 

to half-maximally saturate the binding sites in vitro. In comparison with 

MBC and oncodazole this ratio is rather high, since these compounds gave a 

50°i reduction in growth already at concentrations 2-3 times higher than the 

estimated value of their respective dissociation constants. 

To our knowledge data concerning affinity of fungal tubulin for colchi

cine are restricted to those already mentioned. We think that low affinity 

is a characteristic property of fungal tubulin. This assumption is based on 

the fact that fungi are commonly resistant to the antimitotic action of 

colchicine (cf. 42), which seems only partially caused by a low permeability 

of the cell membrane (38,64) and on the fact that microtubules are supposed 

to play an essential role in fungal nuclear division (34,35). Until now no 

suitable agent has been found which specifically disrupts microtubules in 
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fungi (42). Because of their high fungitoxicity, MBC and oncodazole are 

potential candidates, since from both compounds it is known, that they 

induce disappearance of microtubules in mammalian cells (25-27). 

The differential growth response of the two mutant Strains R and 186, 

in comparison with that of the wild type Strain 003, is probably based on a 

difference in affinity of their tubulins for MBC. This idea is also supported 

by the fact that no differences are found in uptake or detoxication of MBC 

between the various strains (24). 

Genetic analysis has shown that mutations to resistance and to increased 

sensitivity took place in the same gene (69,70). Although it can be assumed 

that this gene codes for tubulin, this can only be definitely concluded when 

differences are found between the primary structures of tubulin of the three 

strains. A difference in affinity for MBC might also be caused by differences 

in post-translational modifications of tubulin, such as phosphorylation (30,31), 

glycosylation (32) or association with tau-like factors (15,16,72). A dif

ferent modification, rather than a single amino acid substitution might also 

explain the failure to purify tubulin from Strain R. 

Mutation to resistance or increased sensitivity did not affect growth 

rate nor sporulation of the strains (ref. 22, 69, Fig. 1), which indicates 

normal assembly and functioning of microtubules. However, diploids carrying 

both mutations were not stable as was evident from increased sectoring of 

diploid colonies . Since non-disjunction of chromosomes is thought to be 

mainly responsible for sectoring, increased sectoring indicates improper 

functioning of microtubules. This might be caused by the presence of two 

incompatible types of tubulins in these diploids. Increased sectoring has 

also been found in ordinary A. nidulans diploids when they are exposed to 

MBC at sublethal concentrations (37,41,49). Griseofulvin induces a similar 

effect (37,48). These observations are compatible with the idea that binding 

of MBC to tubulin interferes with the assembly of tubulin into microtubules. 

The action of MBC and the mechanism of resistance was only studied in 

detail in A. nidulans, but the data in Table I suggest that the mechanism of 

resistance found here might be a general type of resistance in fungi. Since 

in fungi various types of mitosis are found (35) it would be interesting to 

know whether resistance and sensitivity to MBC is related to a certain type 

of mitosis. 

1 
Van Tuyl, J.M., personal communication and own observation. 
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Until now no evidence has been presented that resistance to other anti-

tubulins might be caused by a similar mechanism. Resistance to antitubulins 

has recently been discussed by Freed and Ohlsson-Wilhelm (33). A drug exclu

sion mechanism was found to operate in several instances. The biochemical 

basis of resistance which appeared to be specific to the selecting agent, 

has not yet been studied. 

Several possibilities exist to explain the selectivity of these benzi-

midazole compounds in general. In addition to a differential uptake or meta

bolism, a different affinity of tubulin from various sources for a certain 

benzimidazole compound might play a role. This is illustrated by the fact 

that no binding was found between porcine brain tubulin and MBC, although at 

identical concentrations of MBC considerable binding to fungal tubulin was 

found. A difference in affinity between tubulins from different sources for 

a certain benzimidazole compound might be caused by similar factors already 

discussed above. 

It is note worthy here that despite differences in affinity between 

porcine and A. nidulans tubulin to MBC, the two types are able to copoly-

merize in vitro (23,60). Apparently, binding sites involved in polymerization 

have been highly conserved during evolution in contrast with the colchicine 

binding site. 

Undoubtedly, these benzimidazole compounds will become useful as experi

mental tools in the study of microtubule structure and function in cells. 

Their use, however, in agriculture as fungicides and, quantitatively on a 

minor scale, in veterinary medicine, should be reconsidered from the point 

of view of their mechanism of action. Interference of MBC with nuclear 

division in mammalian cells has been found to occur in vitro (27,59,67) and 

in vivo (59,67). This implies a potential genetic risk for man. The toxicology 

and genetic effects of benzimidazole compounds have recently been reviewed 

by Seller (59). We agree with him that the use of pesticides with this type 

of action should be restricted. 
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ABSTRACT 

Methyl benzimidazol-2-yl carbamate was metabolized by Aspergillus 

nidulans mycelium to two metabolites, one of which was identified as methyl-

S-hydroxybenzimidazol-2-yl carbamate. This compound was further converted to 

a second metabolite which was not identified. Conversion rate was highest 

when the culture medium was depleted of nutrients. Especially in aged con

centrated mycelial suspensions conversion was rapid and complete. Since 

strains differing in MBC sensitivity metabolized MBC at equal rates, conver

sion of MBC to the non-fungitoxic metabolites has no bearing on the mechanism 

of resistance to this compound. 

INTRODUCTION 

Since the introduction of the systemic fungicides methyl 1-(butyl-

carbamoyl) benzimidazol-2-yl carbamate (benomyl) and 1,2-bis-(3-methoxy-

carbonyl-2-thioureido)benzene (thiophanate-methyl) several reports have been 

published about their non-biological and biological conversion in plants, 

animals and microorganisms. 

In aqueous and non-aqueous media both compounds are readily converted 

to methyl benzimidazol-2-yl carbamate (MBC) (1-3), which is generally 

The following abbreviations are used: MBC, methyl benzimidazol-2-yl carba
mate; 2-AB, 2-aminobenzimidazole; 5-OH-MBC, methyl 5-hydroxybenzimidazol-2-yl 
carbamate. 
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regarded as the actual fungitoxic compound. Conversion of thiophanate-methyl 

is pH-sensitive (4) and the conversion rate is increased by plant extracts 

(5,6]. 

In plants, MBC is the only fungitoxic compound recovered after root 

treatment with benomyl or thiophanate-methyl (7-10). Metabolism studies in 

plants with radiolabeled compounds showed that MBC was further decomposed 

via 2-aminobenzimidazole (2-AB) (11-13) into benzimidazole, o-aminobenzonitrile 

and aniline (14). B-Glycosides of MBC and 2-AB are also found. 

In animals benomyl and thiophanate-methyl are metabolized via MBC to 

methyl S-hydroxybenzimidazol-2-yl carbamate (S-OH-MBC) and its 4-hydroxy-

analog which compounds are eliminated from the organism as glucuronide and/or 

sulphate conjugates (9,15-17). 

Microorganisms can degrade benomyl (18,19). This process involves the 

formation of 2-AB as an intermediate and the liberation of CO? from [2- C] 

MBC, which indicates that ring cleavage occurs (20,21). In fungi, thiophanate-

methyl is converted to MBC at a rate which suggests the participation of 

fungal metabolic activity in this process (4,22). As minor metabolites 5-OH-

MBC and an unknown substance are also found. 

Since 5-OH-MBC is less fungitoxic than MBC (22,23), MBC metabolism in 

fungi might be regarded as a detoxication mechanism. Detoxication might play 

a role in the resistance of fungi to this compound. 

The purpose of this study was to determine the metabolic fate of MBC in 

Aspergillus nidulans and its possible relation to mutationally induced 

resistance in this fungus. 

MATERIALS AND METHODS 

Organism. Aspergillus nidulans biA1 AcrA1, requiring biotin, resistant to 

acriflavine and with wild-type sensitivity to MBC (Strain 003) (24) was 

used in most experiments. Strain R, resistant to MBC and Strain 186, highly 

sensitive to MBC (25), were used to determine whether mutant strains with 

a differential response to MBC also differed in rate of metabolism. 

Chemicals. Methyl benzimidazol-2-yl carbamate (MBC) and methyl 5-hydroxy-

benzimidazol-2-yl carbamate (5-OH-MBC) were gifts of E.I. Du Pont de Nemours 

and Co. (Inc.) (Wilmington, Del. USA). Benomyl was purchased from AAgrunol 

(Groningen, The Netherlands) as a 50°s wettable powder (Benlate). 2-Amino-

benzimidazole (2-AB) and benzimidazole were purchased from K & K Laboratories 

(Inc.) (Plainview, N.Y., USA) and Koch-Light Laboratories (Ltd.) (Colnbrook, 
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England), respectively.[2- c]MBC (spec. act. 11.4 mCi/mmole) was purchased 

from International Chemical and Nuclear Corporation (Irvine, Cal., USA). 

Culture methods. Conidia of Aspergillus nidulans strains were grown on a 2% 

malt extract, 0.11 Bacto-Peptone, 2% glucose, 1.51 agar medium. Conidial 

suspensions were prepared as described previously (24). 

In metabolism experiments mycelium was either grown in Czapek-Dox 

liquid medium (Oxoid) or glucose-nitrate medium (26). Both media were supple

mented with 1 ug biotin per ml. Incubation was at 37 C on a Gallenkamp 

orbital shaker at 200 rpm. With Czapek-Dox medium, benomyl (50°s WP) or MBC 

was added as a sterile aqueous suspension or solution in methanol, respec

tively, either simultaneously with spores or after an initial growth period. 

Sterility of the aqueous benomyl suspension was achieved by first dissolving 

the material in ethanol, after which sterile water was added. Methanol con

centration in the media never exceeded 1 % (v/v). 

Mycelium grown for 15 hours in glucose-nitrate medium was harvested by 

filtration on a Biichner filter and washed three times by resuspension in 

fresh medium and filtration. The mycelial cake was resuspended in glucose-

nitrate medium or in 0.05 M potassium phosphate buffer, pH 6.8 at a concen

tration of 1 g wet weight of mycelium per 25 ml medium. MBC or [ CJ MBC 

was added to the mycelial suspensions either directly or after an initial 

incubation period. 

Dry weight determinations. Dry weight of mycelium was determined as described 

previously (24). 

Determination of MBC. MBC concentration in culture filtrates was measured by 

a thin-layer chromatographic bioassay (TLC-bioassay) (27). A 50 or 100 yl 

aliquot of the culture filtrate was spotted on a silica gel plate (DC 

Alufolie Kieselgel F 254, Merck, Darmstadt, W. Germany). Chromatograms were 

developed either with chloroform/methanol (97/3) (Solvent A ) , ethyl acetate 

(Solvent B) or ethyl acetate, saturated with 0.05 M potassium phosphate 

buffer, pH 6.8 (Solvent C). After drying, chromatograms were sprayed with a 

spore suspension of Penicillium brevicompactum in nutrient solution (27) 

and incubated in a humid chamber at 25 C. After 3 days of incubation, 

inhibition zones were replicated on tracing-paper (Schoellershammer Hoch-

transparent, Nr 205 glatt; Diiren W. Germany), cut out and weighed in tripli

cate. The values obtained are an accurate estimation of the size of the 

inhibition zones. Amounts of MBC present in the aliquots were calculated 
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with the regression equation y = a + b In x, where a and b are constants, 

y is the relative size of the inhibition zone (mg) and x is the amount of 

MBC fng). The regression constant a and the regression coefficient b of this 

equation were calculated by non-linear regression analysis of the relation 

between size of inhibition zones and known amount of MBC, with a Diehl 

Algotronic calculator. The non-linear correlation coefficient and t value 

(n = 14) were mostly higher than 0.99 and 30, respectively. With Solvent C, 

which proved to give the best correlation, quantities of MBC in the range of 

3 - 60 ng could accurately be determined. This corresponds to a lowest 

detection level of 0.15 yM MBC, when 100 yl aliquots are spotted. 

The MBC content of the mycelium was also estimated by the TLC-bioassay. 

Mycelium, that had been exposed to MBC was harvested and dried. Usually 

300 mg of the dry material was suspended in 3 ml 50% methanol in water and 

allowed to stand for 24 hours at room temperature. The mycelial residue was 

then spun down and aliquots of the supernatant were analysed by the TLC-

bioassay. 

Analysis and identification of radiolabelled metabolites. Radioactivity in 
r14 1 culture filtrates of mycelial suspensions exposed to [ CJMBC was measured 

by liquid scintillation counting of aliquots in a Nuclear Chicago Mark I 

Liquid Scintillation Spectrometer, with Bruno and Christian's (28) scintilla

tion fluid. Counting efficiency was determined by the external standardization 

procedure. 
•I A 

C-Metabolites in culture filtrates of mycelial suspensions exposed to 

[ C]MBC were tentatively identified with thin-layer cochromatography using 

MBC, 2-AB, benzimidazole and 5-OH-MBC as references. As solvents, Solvent C 

and ethylacetate/acetic acid/chloroform (55 / 5 / 1) (Solvent D) were used. 

Rp values were determined from radioscans of the chromatograms with a Nuclear 

Chicago Actigraph III radiochromatography system. Reference compounds were 

localized under UV-light. 

To determine the proportion of radioactivity present as MBC, chromato

grams were cut into segments, and placed in scintillation vials containing 

the same scintillation liquid as mentioned above. Radioactivity present in 

segments corresponding with the Rf value of MBC has been expressed as per

centage of total radioactivity recovered. 

RESULTS 

Analysis of the fate of MBC in growing cultures of MBC-sensitive fungi, 
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such as A. nidulans implies the need of a very sensitive method of MBC 

estimation. As such, the TLC-bioassay is highly suitable, because it can 

detect MBC in nanogram quantities (29), even in complex media. Culture 

filtrates containing MBC at concentrations which were sublethal to A. nidulans, 

Strain 003, could readily be analysed as is shown in Fig. 1. In fact, in the 

experiment concerned, cultures were incubated with benomyl at 2 uM but it 

can be assumed (1) that under the experimental conditions used, this com

pound was completely converted to MBC. Although growth was not affected, 

cultures treated with benomyl showed a yellow-brown discoloration after 16 

hours of incubation. Upon further incubation the cultures became more darkly 

coloured and after 40 hours the mycelium was nearly black, whereas the 

culture filtrate was light brown. Non-treated cultures did not show any 

discoloration. 

Analysis of the culture filtrate revealed that the MBC concentration was 

initially constant but decreased below the detection level after 32 hours of 

incubation. When MBC was added to non-inoculated medium adjusted to different 

pH values no decrease in MBC concentration was observed. Therefore it can be 

concluded that fungal metabolic activity was responsible for the elimination 

of MBC in inoculated cultures. 

hours 

Fig. 1. Growth of A. nidulans Strain 003 in liquid Czapek-Dox medium, contain
ing benomyl at 2 uM, • - •; control, o - o. 10 ml medium in 25 ml Erlenmeyer 
flasks were inoculated with spores at a final concentration of 5.10 spores 
per ml. Inset shows the inhibition zones caused by MBC on thin-layer chroma-
tograms (Solvent A) of aliquots of the culture filtrate after different 
times of incubation. 
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To investigate whether the MBC elimination process had been induced by 

MBC an experiment was carried out in which cultures were incubated with MBC 

at 2 and 4 uM, respectively, for different times. MBC was added to the cul

tures simultaneously with inoculation or after 30 hours when growth was 

exponential. 

Fig. 2 shows the decrease in MBC concentration under the various con

ditions. Comparison of curve A and C with curve B and D, respectively, indi

cates that MBC elimination from the culture filtrate started immediately 

upon addition of MBC to 30-hour-old cultures at a rate comparable with that 

of MBC elimination in cultures which had been continuously exposed to MBC. 

When cultures were initially incubated with 2 yM MBC and after 30 hours a 

c 3-

70 80 
hours 

Fig. 2. Elimination of MBC from culture filtrates of A. nidulans Strain 003, 
growing in liquid Czapek-Dox medium. 100 ml medium in 300 ml Erlenmeyer 
flasks were inoculated with spores at a final concentration of 7.10-5 spores 
per ml. MBC was added either simultaneously with spores (2 and 4 yM, res
pectively) or after 30 hours of incubation. Part of the cultures to which 
MBC (2 yM) was added at t = 0 h received an additional amount of MBC (2 yM) 
at t = 30 h. MBC concentrations in culture filtrates were determined with 
the TLC-bioassay (Solvent B ) . o - o A, 2 yM at t = 0 h; • - • B, 2 yM at 
t = 30 h; • - • C, 4 yM at t = 0 h; • - • D, 4 yM at t = 30 h; A - A E, 
2 yM at t = 0 h and 2 yM at t = 30 h. , minimal detectable concentration. 
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second portion of MBC was added, the rate of elimination (curve E) was found 

similar to that when MBC was added only once to the cultures growing exponen

tially 30 hours after inoculation (curve D ) . 

Also in this experiment brownish discoloration of mycelium and culture 

filtrate was noticed. The colour was darker in cultures at higher MBC con

centrations and after incubation for longer periods. 

The results of this experiments suggest that MBC elimination was not 

induced by MBC, but was determined by certain properties of the culture. 

To determine whether differences exist between A. nidulans strains in 

eliminating MBC from the culture medium, Strain 003 with wild-type sensitivity 

to MBC, and Strain R which is resistant, were compared. Results of this 

experiment are given in Table I. From the amounts of MBC recovered after 

different times of incubation, it is evident that elimination of MBC followed 

a similar pattern in cultures of both strains. These results indicate that 

here at least, elimination of MBC is not related to the mechanism of resis

tance to this compound. 

MBC could not be detected in the mycelial fractions of the cultures, 

although the mycelium was processed in such a way that even the presence of 

H of the amount initially added to the cultures should have been readily 

ble I. Elimination of MBC from culture filtrates of A. nidulans Strain 003 
nd Strain R. 

Recovery of MBC in culture filtrates 
(% of the amount initially added) 

Incubation 
time (h) 

21 

29 

45 

69b 

St 

i m 

90 

48 
a 

-

rain 003 

2 uM 

103 

49 

-

-

Strain R 

1 uM 2 yM 

104 84 

54 72 

-

-

100 ml liquid Czapek-Dox medium in 300 ml Erlenmeyer flasks were inoculated 
with spores giving a final concentration of 10 spores per ml. MBC was added 
simultaneously with spores. Solvent B was used in the TLC-bioassay. 

amount of MBC below lower limit of detection. 
at this time MBC could not be detected in the mycelium (lower limit of 
detection 1% of the amount initially added). 
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demonstrated. 

It should be noted that inoculum densities used in this experiment were 

higher than those used in the experiment described in Fig. 2. That elimination 

of MBC at this higher inoculum density became apparent after a shorter 

incubation period suggested that MBC was eliminated at maximum rates at the 

end of the exponential growth phase. Therefore, the process was further 

studied with concentrated mycelial suspensions (1 g of wet weight mycelium 

per 25 ml medium) in glucose-nitrate medium. Since this medium promotes rapid 

growth, nutrients arc rapidly consumed and the stationary growth phase is 

readily attained. Table II gives the results of this experiment. As is 

evident from the dry weight determinations, growth of the cultures was rapid 

and sometime between 5 and 10 hours after initiation of the experiment the 

stationary phase was attained. After 15 hours dry weight decreased, indi

cating that lysis occurred. Rates of MBC elimination from the culture fil

trates was highest during the stationary phase. Within 5 hours cultures in 

this phase eliminated over 90t> of the amount of MBC initially added. 

This system seemed to be most suitable for studying the elimination 

Table II. Effect of age of culture on MBC elimination from culture filtrates 
of concentrated mycelial suspensions of A. nidulans Strain 003. 

Time after Dry weight Recovery of MBC after 
initiation of (mg/25 ml) 5 h of incubation (%) 
experiment (h) 

0 146 30 

5 224 < 10a 

10 234 < 10 

15 210 < 10 

20 169 25 

25 143 57 

30 123 70 

Mycelium grown for 15 hours in glucose-nitrate medium was harvested, washed 
and resuspended in fresh medium at a concentration of 1 g wet weight of 
mycelium per 25 ml medium. At different times during incubation MBC was 
added (4pM) and the amount of MBC recovered in culture filtrates after 5 
hours of incubation was determined by the TLC-bioassay (Solvent B). Dry 
weight determinations were made every 5 hours, 

lower limit of detection. 
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process in more detail with [ C]MBC. When [ c] MBC was added to aged 

concentrated mycelial suspensions in the stationary phase, MBC was rapidly 

eliminated from the medium, as shown by the TLC-bioassay, but the amount of 

radioactivity in the medium remained constant (Fig. 3). Thus metabolism of 

MBC is responsible for the elimination phenomenon. The time required to 

metabolize 50°6 of the MBC was about 2.5 hours for both strains. Similar 
14 

results were also obtained with Strain 186. Since C-metabolites appeared 

to be present in the culture filtrates, aliquots of these were analysed by 

TLC. Radioscans (Fig. 4) showed that during incubation a Metabolite (I) 

was formed, which was converted into a second Metabolite (II) upon prolonged 

incubation. Tentative identification of the metabolites was performed by 

cochromatography of aliquots of culture filtrates with authentic samples 

of MBC, 2-AB, benzimidazole and 5-OH-MBC. From Table III it is clear that 

hours 
rl 4 1 

Fig. 3. Metabolic conversion of L CjMBC by aged concentrated mycelial sus
pensions of A. nidulans Strain 003 and Strain R. Mycelium grown for 15 hours 
in glucose-nitrate medium was harvested, washed and resuspended in fresh 
medium. After 15 hours of incubation [ cjMBC (spec. act. 1.6 mCi/mmole) was 
added giving a final concentration of approximately 4 pM. After different 
times of incubation the MBC concentration of filtrates (o - o, Strain 003; 
• - •, Strain R) was determined with the TLC-bioassay (Solvent C) . Radio
activity (A - A, Strain 003; A - A, Strain R) was measured in 1 ml of the 
culture filtrates. 
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0.00 0.25 0.50 0.75 1.00 
Rf value 

0.00 0.25 0.50 0.75 1.00 
Rf value 

n h 
I MBC n I MBC 

Fig. 4. Radioscans of chromatograms of culture filtrates of concentrated 
mycelial suspensions of A. nidulans Strain R exposed to [ CjMBC. For 
details of incubation see Fie. 3. 
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Metabolite I cochromatographed with 5-OH-MBC in the two solvent systems used 

(C and D ) . Metabolite II remained on the origin in each of the solvent systems 

A and D, and in several other systems tested (ethanol/ammonia (70/30) ; 

hexcine/ethyl acetate/meth.-.mol (10/10/1); ethylacetate/dioxane/methanol/ 

ammonia (160/20/5/0.5); ethyl acetate/chloroform/acetic acid (15/85/2); 

butanol/ethanol/water (4/1/1); butanol/ammonia (4/1); ethylacetate/isopro-

panol/ammonia (35/45/20); and chloroform/methanol (90/10), No further 

attempt was, therefore, made to identify Metabolite II. 

MBC was not metabolized in culture filtrates, obtained by centrifuging 

or filtrating mycelial suspensions after different times of incubation. 

Crude supernatant mycelial extracts prepared by homogenizing frozen mycelium 

with an X-Press (LKB-Biotec, Sweden) in 0.05 M potassium phosphate buffer, 

did not metabolize MBC nor did the mycelial debris. 

Since metabolism was at its highest rate in the stationary growth phase, 

MBC conversion was studied in concentrated mycelial suspensions either made 

up in glucose-nitrate medium or in 0.05 M potassium phosphate buffer, pH 
r 14 i 

6.8. I CJMBC was added immediately after resuspension of the mycelium. 

Aliquots of the medium were analysed by TLC and the proportion of radio

activity present in MBC was determined. Fig. 5 shows the results. In the 

buffer in which no growth occurred, the initial rate of metabolism was rapid 

but slowed down upon further incubation. After 3.5 hours 50% of MBC was 

Table III. Chromatographic characteristics of benzimidazole derivatives and 
of C-metabolites found in culture filtrates of concentrated mycelial 
suspensions of A. nidulans Strain R exposed to L cjMBC. 

Compound 

MBC 

2-AB 

Benzimidazole 

5-OH-MBC 

Metabolite I 

Metabolite II 

Solvent 

0.56 

0.00 

0.23 

0.29 

0.29 

0.00 

C 

Rf va lue 

S Dlvent D 

0.73 

0.45 

0.17 

0.63 

0.64 

0.00 

For details of incubation see Fig. 3. 
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Fig. 5. Effect of incubation medium on metabolism of [ CJMBC by concentrated 
mycelial suspensions of A. nidulans Strain 003. Mycelium grown for 15 hours 
in glucose-nitrate medium was harvested, washed and resuspended in fresh 
glucose-nitrate medium or 0.05 M potassium phosphate buffer, pH 6.8 [ c] MBC 
(spec. act. 11.4 mCi/mmole) was added giving a final concentration of appro
ximately 4 yM. After different times of incubation dry weight (A - A, 
glucose-nitrate medium; A. - A, buffer) and percentages of radioactivity 
present in MBC (o - o,glucose-nitrate medium; • - •, buffer) were determined. 

metabolized. After 24 hours (not shown in Fig. 5) there was still some 

radioactivity in MBC, whereas most of the radioactivity was present in 

Metabolite I and Metabolite II. In glucose-nitrate medium, in which mycelial 

growth occurred, the rate of metabolism was rather low, but increased with 

time. After 7.5 hours 50°s of MBC was metabolized. After 24 hours all of the 

radioactivity present in the medium was present in Metabolite II. During the 

first 8 hours of incubation the total amount of radioactivity in the media 

was unaffected, indicating that no fixation of radiolabeled compounds in 

mycelium occurred or no volatile degradation products were formed. After 24 
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hours of incubation, however, in suspensions in glucose-nitrate medium, the 

amount of radioactivity in the medium had decreased to approximately 70% of 

the amount initially added. With mycelial suspensions in buffer no decrease 

in amount of radioactivity in the filtrates was observed. 

DISCUSSION 

In mycelium of A. nidulans MBC was metabolized to S-OH-MBC which in its 

turn was converted to a compound (Metabolite II) which could not be identi

fied. Both compounds are less fungitoxic than MBC, since otherwise they 

would have been detected in the TLC-bioassay. The metabolic conversion of 

MBC in A. nidulans is similar to that reported by Yasuda et al. (22) in 

Pellicularia sasakii and Alternaria mali. These authors identified 5-OH-MBC 

as a minor metabolite along with MBC as the major metabolite when cultures 

of these fungi were exposed to radiolabeled thiophanate-methyl. In addition, 

they found two other labelled compounds, which were not identified. One of 

these which remained at the origin, upon TLC-chromatography, might be iden

tical with Metabolite II. The other one, Metabolite X, was not detected in 

culture filtrates of A. nidulans. Since radiolabeled thiophanate-methyl was 

used, this compound might be a conversion product of thiophanate-methyl 

other than MBC. Formation of an intermediate fungitoxic conversion product 

in the in vitro conversion of thiophanate-methyl has been reported (30). 

The rate of metabolism was maximum under conditions, at which the 

culture medium becomes depleted of nutrients. Normally, these conditions 

are attained after a certain incubation period, depending on the initial 

amount of inoculum. In concentrated mycelial suspensions in glucose-nitrate 

medium in which a rapid depletion of the medium occurs, the time required to 

metabolize 50 I of the MBC was 7.5 hours, when MBC was initially present at a 

concentration of 4 \M. Aged concentrated mycelial suspensions, incubated 

for 15 hours prior to adding MBC metabolized 50°s of this amount in 2.5 hours. 

Mycelium in buffer and hence under starvation conditions, initially meta

bolized MBC at a high rate but this slowed down upon prolonged incubation. 

After 24 hours of incubation the amount metabolized was less than that by a 

similar curve in glucose-nitrate medium. 

The observation that cultures in the presence of MBC at sublethal con

centrations rapidly turned dark-brown suggests that melanin was synthesized. 

Synthesis of melanin is favoured under conditions of autolysis (31) and is 

mediated by the action of a phenol oxidase (32). Since similar cultural 

conditions promote hydroxylation of MBC to 5-OH-MBC and conversion of this 
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product to Metabolite II, the system responsible for MBC metabolism might 

parallel the system involved in melanogenesis. Hence, the final Metabolite 

II might be an oxidation and condensation product of 5-OH-MBC. 

Strains with altered sensitivity to MBC did not show any difference in 

rate of MBC metabolism. Therefore, differences in metabolic activity cannot 

account for the different behaviour of these strains towards MBC. Since 

MBC is evidently metabolized within the cells, and because no differences 

exist in the rate of metabolism in sensitive and resistant strains, resis

tance to MBC does not seem to be related to differences in uptake of the 

compound. 

Recently it has been shown that differences in sensitivity are in fact 

related to differences in interaction between MBC and its receptor site, 

of which the presence and significance in the mechanism of action of MBC has 

been demonstrated (33-34). 
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Summary and general discussion 

Systemic benzimidazole fungicides are well-known for their pronounced 

ability to control a large number of fungal plant diseases. On the other hand 

development of resistance in fungi to these compounds is as well widely,known. 

Biochemical aspects of both fungitoxic action and resistance in fungi 

are the subject of this thesis. It contains four articles describing a) the 

mechanism of action of carbendazim or methyl benzimidazol-2-yl carbamate, 

b) a mechanism of resistance to this compound and c) its metabolic conversion. 

Most of the work was done with Aspergillus nidulans, because this fungus is 

genetically well defined and new mutants can be readily characterized. Three 

strains were used, one strain with wild type sensitivity, one with an in

creased sensitivity and one with a decreased sensitivity to MBC. The behavi

our of both mutant strains was due to a mutation in the benA locus. 

In the first paper it has been shown that MBC is an effective inhibitor 

of mitosis in Aspergillus nidulans. Synthesis of DNA and RNA appeared also to 

be affected but this could be ascribed to the disturbance of the cell cycle, 

due to inhibition of mitosis. Hence, mitosis can be considered the process 

first affected by this compound. 

In mammalian cells potent inhibitors of mitosis like colchicine, podo-

phyllotoxin and vinblastine sulphate exert their action via interference with 

functioning and assembly of microtubules, the elements of the spindle. These 

compounds bind to tubulin, the dimeric subunit of microtubules, preventing in 

this way microtubule formation. 

On the assumption that the antimitotic activity of MBC might be based on 

a similar binding,the MBC-binding properties of mycelial extracts were in

vestigated. The results of these studies are presented in the second and 

third paper. An MBC-binding protein was found to be present in mycelial ex

tracts which snowed characteristic properties of tubulin. MBC binding was 

competitively inhibited by colchicine and oncodazole, a benzimidazole com

pound which binds to mammalian tubulin at the colchicine binding site. 

Partial purification of the binding activity resulted in a protein pre

paration in which the two tubulin monomers predominated. These results in

dicate that MBC is bound to fungal tubulin. Binding probably prevents micro

tubule formation or functioning which leads to disturbance of mitosis. 

Study of the action of MBC at the molecular level also led to the elu

cidation of a mechanism of resistance of fungi to this compound. Results of 
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binding experiments with a number of MBC-sensitive and MBC-resistant fungal 

species and strains suggested that the affinity of the binding protein for MBC 

determined the fungal response to the action of MBC. Evidence in favour of 

this hypothesis was obtained from detailed binding experiments with three 

A. nidulans strains. Results clearly indicated the relation between degree of 

sensitivity for MBC and magnitude of the binding constant for MBC and tubulin. 

In the fourth paper the conversion of MBC to a non-toxic metabolite has 

been described. Conversion was found to occur in three strains of A. nidulans 

examined and in non of these cases it had any bearing on the mechanism of 

resistance to this compound. IVheather conversion of MBC plays any role in the 

mechanism of resistance in other fungi remains to be elucidated. 

The identification of MBC as an antitubulin, a compound which binds to 

tubulin, indicates that antitubulins can be successful fungicides. However, 

a wide spread and frequent use of such compounds does not seem advisable for 

a number of reasons. Their action based on the specific interference with one 

target site is possibly subjected to any change in this site. A mutation 

leading to a decreased affinity can finally result in the development of a 

resistant fungal population which cannot be controlled effectively. 

The use of these compounds which are selective with respect to plant 

pathogenic fungi may also have ecological implications. A shift in the dyna

mic equilibrium between the various components of the microflora in the soil 

and on the surface of the plant is conceivable. Naturally resistant, as well 

as resistant strains of normally sensitive plant pathogens might be favoured 

in their development, giving rise to increased disease incidence. 

The potential hazard of large scale use of compounds with this type of 

action should also be kept in mind. Mitosis in all eukaryotes follows a basic 

pattern, and in nearly all eukaryotes microtubules play an essential role in 

the separation of the chromosomes. The structure of microtubules seems to be 

highly conserved during evolution and, therefore, agents interfering with 

microtubules might be active in a wide range of organisms. Although NBC is 

relatively non-toxic to mammals, which is probably due to a rapid metabolic 

conversion and excretion, as well as to low affinity of mammalian tubulin for 

this compound, its ability to induce abnormalities in nuclear division in 

some cells of these organisms has been demonstrated. Such an effect in repro

ductive cells may have severe consequences. The use of compounds which act on 

mitosis through interference with microtubules, therefore, implies a potential 

genetic risk for men. 

Whatever may be the future of practical use of benzimidazole compounds 

in agriculture or medicine, they will undoubtedly continue to be valuable 

tools in the study of the structure and functioning of microtubules. 
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Samenvatting 

Systemische benzimidazool fungiciden genieten een algemene bekendheid in 

land- en tuinbouw vanwege hun uitgesproken kwaliteiten ten aanzien van de be-

strijding van een groot aantal schimmelziekten. Anderzijds is evenwel het 

vermogen van schimmels om resistent te worden tegen deze middelen ook zeer 

bekend. De biochemische aspekten van fungitoxiciteit van deze middelen en 

resistentie van schimmels ertegen zijn het onderwerp van dit proefschrift. In 

een viertal artikelen wordt aandacht besteed aan a) het werkingsmechanisme 

van carbendazim of methyl benzimidazol-2-yl carbamaat (MBC), b) een resisten-

tiemechanisme tegen dit middel en c) de omzetting van deze verbinding. De 

meeste experimenten werden uitgevoerd met Aspergillus nidulans omdat deze 

schimmel genetisch goed gedefinieerd is en nieuwe mutanten gemakkelijk kunnen 

worden gekarakteriseerd. Drie stammen werden gebruikt, waarvan een stam de 

normale gevoeligheid had voor MBC en de andere twee een toegenomen, respektie-

velijk een afgenomen gevoeligheid vertoonden, tengevolge van mutatie in de 

benA locus. 

Het eerste artikel is gewijd aan de lokalisering van de plaats van 

werking van MBC in de gebruikte toetsschimmel Aspergillus nidulans. MBC bleek 

een effektieve remmer van de kerndeling te zijn, terwijl daarnaast effekten 

werden gevonden op DNA en RNA synthese. Deze laatste effekten konden worden 

toegeschreven aan de ontregeling van de celcyclus tengevolge van de geremde 

kerndeling. De kerndeling kon derhalve beschouwd worden als het eerste proces 

dat door MBC werd beinvloed. 

Remmers van de kerndeling van dierlijke cellen zoals colchicine, podo-

phyllotoxine en vinblastine sulfaat oefenen hun werking uit door interaktie 

met het funktioneren of de assemblage van microtubuli, de elementen van de 

kernspoel. Deze stoffen worden gebonden aan tubuline, een dimeer eiwit dat 

beschouwd mag worden als de bouwsteen van de microtubuli. Deze binding belem-

mert de assemblage van tubuli tot microtubuli. 

Met dit voorbeeld voor ogen hebben we het MBC bindende vermogen van 

mycelium extrakten onderzocht. De resultaten van dit onderzoek zijn be-

schreven in de tweede en de derde publikatie. Het bleek dat in mycelium ex

trakten een MBC-bindend eiwit aanwezig was met een aantal eigenschappen karak-

teristiek voor tubuline. MBC binding kon kompetitief worden geremd door col

chicine en de benzimidazool verbinding oncodazole. Van oncodazole is bekend 

dat het wordt gebonden aan tubuline op de colchicine bindingsplaats. Na ge-
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deeltelijke zuivering van de bindingsaktiviteit uit mycelium extrakt kon met 

behulp van elektroforese worden vastgesteld dat in de preparaten de beide 

tubuline monomeren aanwezig waren. Uit deze resultaten kon worden gekonklu-

deerd dat MBC bindt aan schimmeltubuline en dat binding de funktionering of 

vorming van microtubuli belemmert. Dit leidt waarschijnlijk tot een ver-

storing van de kerndeling. 

De bestudering van het werkingsmechanisme van MBC verschafte tegelijker-

tijd inzicht in het mechanisme van de resistentie van schimmels tegen deze 

verbinding. Uit bindingsexperimenten met een aantal MBC-gevoelige en re-

sistente schimmelsoorten en stammen werd de aanwijzing verkregen dat de af-

finiteit van de bindingsplaats voor MBC het gedrag van de schimmel ten op-

zichte van MBC zou kunnen bepalen. Bindingsexperimenten met drie stammen 

van A. nidulans toonden inderdaad aan dat de mate van gevoeligheid voor MBC 

en de grootte van de bindingskonstante voor MBC en tubuline een nauwe samen-

hang vertoonden. 

In de vierde publikatie is de omzetting van MBC in een niet-fungitoxische 

verbinding beschreven. Omzetting kon worden aangetoond in kultures van een 

drietal A. nidulans stammen. Er kon geen relatie worden vastgesteld tussen 

mate van gevoeligheid voor MBC en mate van omzetting. In hoeverre dit ook 

voor andere schimmels geldt is nog een open vraag. 

De aan de engelse samenvatting toegevoegde algemene diskussie is gewijd 

aan de implikaties van het praktische gebruik van deze middelen in land- en 

tuinbouw. 
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