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Abstracts 

Title: 

An integrative algorithmic approach towards knowledge discovery by bioinformatics 

Short Summary: 

In this thesis we describe different approaches aiding in the utilization of the 
exponentially growing amount of information available in the life sciences. Briefly, we 
address two issues in molecular biology, on sequence analysis, and on text mining. The 
former issue addresses the problem how to determine remote sequence homology 
especially when the sequence similarity is very low. For this a visualisation tool is 
introduced that combines sequence alignment, domain prediction and phylogeny. The 
second topic on text mining centres on the question how to unambiguously formulate 
queries for efficient information retrieval. It tackles the problem of gene nomenclature — 
one in two gene symbols being ambiguous - by introducing a new text-clustering- and 
taxonomy-based disambiguation methodology. 

Titel: (Title in Dutch) 

Kennisextractie ("knowledge discovery") in de moleculaire biologie met behulp van 
bioinformatica technieken 

Samenvatting: (Short summary in Dutch) 

In dit proefschrift worden verschillende benaderingen beschreven om de exponentieel 
groeiende data stroom in de levenswetenschappen te exploiteren. Twee velden uit de 
moleculaire biologie worden aangesproken, de sequentie analyse en tekst analyse. 
Het eerste onderwerp richt zich op het probleem van de verwantschap van eiwitten, 
vooral wanneer de onderlinge overeenkomsten erg gering zijn. Hiervoor is een 
visualisatie programma ontwikkeld dat sequentie alignment, eiwit domein voorspelling en 
fylogenie combineert. 
Het tweede hoofdonderwerp van dit proefschrift, text mining, spreekt het probleem aan 
hoe een zoekvraag in de literatuur zo efficient en eenduidig mogelijk geformuleerd lean 
worden. Hierbij wordt in het bijzonder het probleem van de gen-symbool ambigulteit 
geadresseerd: 50% van de gen-symbolen is niet eenduidig, en kan dus meer dan een gen 
of eiwit familie aanwijzen. De nieuw ontwikkelde methode kan door gebruik te maken 
van tekst clustering en taxonomische informatie dit probleem in vrijwel alle gevallen 
eenduidig oplossen. 
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An integrative algorithmic approach towards knowledge discovery by bioinformatics 

1.1 Definition of bioinformatics 

Bioinformatics, often referred to as computational biology, involves the use of various 
fields including mathematics, statistics, computer science, artificial intelligence, chemistry 
and biochemistry to solve biological problems, most commonly at the molecular level. 
Major bioinformatics research interests comprise diverse domains such as sequence %: 

alignment, gene finding, genome assembly, protein structure prediction, protein-protein 
interaction, phylogeny, text mining and many more. Whereas computational biology is 
focussed on forming a hypothesis based on a given data set, bioinformatics is more V* 
concerned with gaining information from such data. In other words, bioinformatics 
refers more to the creation and advancement of algorithms, computational and statistical 
techniques and theory to solve formal and practical problems deduced from the 
management and analysis of biological data. Meanwhile, computational biology refers to 
a hypothesis-driven investigation of a specific biological problem using computers as 
took. The latter is carried out with experimental or simulated data, with the primary goal 
of discovery and the advancement of biological knowledge. 

1.2 Why using bioinformatics? 

Nowadays genome-wide techniques such as micro array analysis, Serial Analysis of Gene 
Expression (SAGE), Massively Parallel Signature Sequencing (MPSS), linkage analysis, 
yeast two-hybrid, mass spectrometry and association studies are used extensively in the 
search for genes that are causative in diseases or responsible for a phenotype in general, 
and these techniques often identify many hundreds of candidate genes. Such high-
throughput experimental technologies have given rise to the "omics" fields in current life 
sciences that are characterized by the transition from local to global scale studies, as well 
as generating complete genomic sequences of unprecedented number and size. 
In view of such massive generation of information new approaches are required to aid in 
the organization and exploitation of these data sets in order to live up to the expectations 
that the "omics" fields may rise. 

13 Computational technique and machine learning in bioinformatics 

The exponential growth of biological data raises two main problems: on one hand the 
efficient storage and management, on the other hand the extraction of useful 
information from these data. The latter requires the development of tools and methods 
to transform these heterogeneous data into biologically meaningful facts and testable 
models. 
The ultimate goal is to understand and predict normal function of organisms and to 
proceed from there to the understanding of abnormalities such as diseases. Given the 
wealth of data, the interpretation can not be done manually. It requires advanced 
computational tools, mimicking some aspects of the manual interpretation process and 
thus computer science becomes an indispensable asset in assisting the automation of data 
analysis in biology. 
Machine learning (ML) is a field of research where computational methods learn to 
answer complicated problems based on sets of provided data. Machine learning 
algorithms are data-driven and are ideally suited for areas with an extensive generation of 
data but little theoretical background, such as is often the case in the field of molecular 
biology. The methods often do not need to be separately modified for each problem; 
rather they are general-purpose. Classifying samples, pattern recognition, clustering, 
modelling, and visualization are typical applications of machine learning. Machine 
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learning can be largely defined as either supervised or deductive methods that attempt to 
obtain a "correct response" given by a teacher, unsupervised or inductive methods that 
attempt to achieve the statistical goal "response unknown", and reinforcement learning 
where one is rewarded based on how well one did, but is not told what the correct 
response was. Machine learning uses computer programs to optimize a performance 
criterion by managing example data or past experiences. In other words, machine 
learning is concerned with the design and development of algorithms and techniques that 
allow computers to "learn". The ultimate goal here is to extract useful information from 
a body of data by building good probabilistic models and automating the process as 
much as possible. As stated above, in general there are two types of learning: inductive 
and deductive. Inductive machine learning methods extract rules and patterns out of 
massive data sets whereas deductive machine learning methods apply the kind of 
reasoning where drawing a conclusion is necessitated by previously known premises. 
There are several sub-disciplines of the life sciences where machine learning is applied 
for knowledge extraction from data. Examples of ML in bioinformatics include Support 
Vector Machines (SVM), Nearest Neighbour Algorithms (NNA) and Hidden Markov 
Models (HMM) to name a few. Support vector machines map input vectors to a higher 
dimensional space where a maximal separating hyperplane is constructed. Two parallel 
hyperplanes are constructed on each side of the hyperplane that separates the data. The 
separating hyperplane is the hyperplane that maximizes the distance between the two 
parallel hyperplanes. An assumption is made that the larger the margin or distance 
between these parallel hyperplanes the better the generalisation error of the classifier will 
be. In NNA an object is classified by a majority vote of its neighbours, with the object 
being assigned to the class most common amongst its k nearest neighbours. Hence NNA 
is a method for classifying objects based on closest training example in feature space. 
Features are the individual measurable heuristic properties of the phenomena being 
observed. A HMM on the other hand is a statistical model in which the system being 
modelled is assumed to be a Markov process with unknown parameters, and the 
challenge is to determine the hidden parameters from the observable parameters. The 
extracted model parameters can be further used for pattern recognition application. 

1.4 Bioinformatics in various biological fields 

Current genomics deals with an exponential sequence data production that 
encompasses for example linkage analysis, sequence assembly, gene annotation, and 
single nucleotide polymorphism (SNP). 
Bioinformatics, using genome sequences, can aid in their analysis, such as gene finding or 
RNA gene finding, alternative splicing, coding-region identification and splice site 
prediction as well as the prediction of gene function and RNA secondary structure. 
Computational techniques can further assist amongst others in motif detection of 
transcription binding sites, promoter binding sites and operons. 
Examples of structure and function prediction by machine learning include the Hidden 
Markov Model (HMM), multilayer perceptions and decision trees. A perception is a 
binary classifier that maps its input (binary vector) to an output single binary value. A 
decision tree is a predictive model that uses graph decisions to map observation about an 
item to conclusion about its target value. Decision trees are also known as classification 
trees (discrete outcome) and regression trees (continuous outcome). 

In the proteomics domain, the main application of machine learning can be found in 
protein function and structure prediction, protein location prediction, protein-protein 
interaction and protein annotation as well as sequence alignment (Altschul, Madden et al. 
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1997; Notredame, Higgins et al. 2000; Edgar 2004; Ma, G et al. 2007) (simulated 
annealing, genetic algorithm). 

Bioinformatics also finds its application in the management of complex microarray 
experimental data sets, which has lead to the application of techniques such as Self 
Organising Map (SOM) and Bayesian network. Microarray assay's complexity owes to 
the fact that data have to be pre-processed, i.e. modified, prior to their analysis by 
machine learning algorithms in search for expression pattern identification and genetic 
network identification. Traditional clustering techniques based on hierarchical, self-
organising maps (Tamayo and et al. 1988) have been used to derive putative functional 
clusters of genes from expression profile data (Sherlock 2001) . Applying the guilt-by-
association principle, expression profile clustering also can be used for inferring the 
biological functions of new genes. If an uncharacterised gene is clustered with a group of 
genes known to participate in a specific biological process, then it is hypothesized that 
the uncharacterised gene also participates in this process. 

However, genes sharing similar expression profiles do not always share a common 
function. Spellman and colleagues (Spellman and et al. 1988) reported that clustering by 
expression profile grouped genes into a single cluster even though they are involved in 
distinct cellular functions. The reverse can also hold true, i.e. not all genes comprised in 
the same function group necessarily exhibit a common expression. For example, the 
members of a signalling pathway often play antagonistic roles, resulting in anticorrelated 
expression levels in microarray experiments. Therefore the gene expression clustering 
approach should not be used as the sole analysis tool, but rather should be coupled with 
other data mining techniques. The latter can provide necessary biological knowledge in 
intelligent expression profile analysis. 

Another domain of biology where machine learning proves valuable is systems biology. 
The objective of systems biology is to model intracellular life processes, cell, organ, and 
organism up to whole ecosystems. Bioinformatics uses computational techniques to 
model these biological networks such as metabolic pathways, genetic and signal 
transduction networks. 

The field of evolution attempts to elucidate and understand the changes of inherited 
traits in a population from generation to generation. An important technique in this field 
is the generation of phylogenetic trees as the schematic representation of organism's 
evolution. These trees are currently based on the comparison of different genomes 
(molecular evolution), a comparison that is made based on multiple sequence alignment 
where computational techniques are extremely valuable for their optimization (Baldi P 
and S. 2001). 

A consequence of the use of computational techniques in the aforementioned biological 
fields is a dramatic increase in available publications. This in turn represents a new source 
of valuable information where text mining techniques are required to keep at pace with 
the information load. Text mining sees its benefits in for instance functional annotation, 
cellular location prediction and protein-protein interaction analysis and extraction 
(Krallinger, Erhardt et al. 2005). It aims to automatically distil information, extract facts, 
discover implicit links and generate hypothesis relevant to the user's needs (Spasic, 
Ananiadou et al. 2005). Researchers in life sciences usually design experiments based on 
prior knowledge embedded in the literature to generate hypotheses that can be 
experimentally validated or rejected in the laboratory. The available information in 
literature is however in one of the most challenging formats for large-scale exploitation, 
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i.e. natural language text. In order to purposefully exploit this wealth of information in 
scientific publications several tools have been developed to extract and mine data in the 
literature (Smalheiser and Swanson 1998; Tanabe, Scherf et al. 1999; Liu, Jenssen et aL 
2004; Tu, Tang et al. 2004; Zhou, Wen et al. 2004; Alako, Veldhoven et al. 2005). 

These developments clearly show the importance of text mining in building on existing 
knowledge and linking various biological fields to provide a sound basis of directed and 
concerted actions in current life sciences. Therefore the next section will introduce text 
mining in more detail as the main scope of this thesis. 

1.5 Biological terminology and ontology 

In order to share the vast amount of biological and biomedical knowledge effectively, 
textual evidence needs to be linked to ontologies as the main repositories of formally 
represented knowledge. These ontological repositories are created by organizing sets of 
terms in order to define their relationships to each other, thus formalizing knowledge 
and making it more accessible. In view of this the next logical step is to transform 
biology into a machine-readable depiction of life as we know it. 

Therefore ontologies are crucial for text mining because it provides semantic 
interpretation of texts and also constrains the possible interpretation of biological entities 
(terms). Consequently, text mining can be classified as ontology-based or ontology-
driven. This means that text mining is used to enrich the ontology and ontology is used 
to help text mining. Thus: does text mining needs ontology or does ontology needs text 
mining? The fact is that there is a perpetual circle in which text mining and ontology 
benefit from each other. 

Besides the well-structured ontologies other, less well-organized term collection systems 
exist including taxonomies, controlled vocabulary, thesauri and dictionaries. Differences 
among the latter are subtle and are generally collectively referred to as terminologies. In 
the following we will give some examples on current often-used terminologies and 
ontologies. 
Curators at the National Library of Medicine (NLM) review each article entering 
MEDLINE, then select terms from the Medline Subject Heading (MeSH) hierarchy that 
best capture the aim of the article, thereby summarizing it using a controlled vocabulary. 
The MeSH terminology displays certain coverage of how proteins function in cellular 
systems, but is by far not exhaustive. 
The Gene Ontology (GO) (2006) more accurately captures what happens at the cellular 
and molecular level. Just as MeSH terms are assigned to individual scientific articles to 
describe their content, GO terms are assigned to proteins to illustrate what they do, i.e. 
their molecular function (MF); where they do it, i.e. their cellular component (CC), and 
to what end, i.e. their biological processes (BP). 
MeSH and GO have been merged with other terminologies in the Unified Medical 
Language System (UMLS) (Bodenreider 2004) . Besides MeSH and GO, other current 
terminologies and ontologies are summarised in table 1. 
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Ontology/Terminology 
SNOMED 

OMIM 

NCBI taxonomy 

MIPS FunCat 

UWDA 

COGs 

IUBMB 

NCI 

Definition 
The Systematized Nomenclature of Medicine 
(Bodenreider 2004) 
The Online Mendelian Inheritance in Man (Hamosh, 
Scott et al. 2005) 
The National Center for Biotechnology Information 
Taxonomy (Wheeler, Barrett et al. 2006) 
The Munich Information Centre for Protein Sequence 
Functional Catalogue (Ruepp, Doudieu et al. 2006) 
The University of Washington Digital Anatomist 
(Bodenreider 2004) 
The Cluster of Orthologous Groups of Protein 
(Tatusov, Fedorova et al. 2003) 
The International Union of Biochemistry and 
Molecular Biology Enzyme Commission 
The National Cancer Institute thesaurus (Bodenreider 
2004) 

Annotation 

clinical phenomena 

genetic disorders 

species 

proteins 

parameters related to 
anatomy 
orthologous protein 
groups 
enzymes 

oncological 
phenomena 

Table 1: Ontologies and terminologies used by Bioinformatics 

These ontologies and terminologies can help to reliably identify protein names, diseases, 
biological entities, phenotypes and genotypes in literature with a wide range of 
applications, such as microarray analysis, biomarker discovery and database curation. 
Computationally accessible annotation systems such as GO enable one to ask, for 
instance, if physical interaction significantly correlates with molecular function, 
subcellular localization, or biological processes, thereby laying the groundwork for better 
algorithms to add predicted annotation to uncharacterized proteins. Text mining tools 
have started by relying on ontology and terminology, and the latter promises 
improvement in term of precision and recall (Doms and Schroeder 2005). 

1.6 Gene nomenclature standardization chaos 

Despite this wealth of information-rich systems, there are a number of fundamental 
difficulties when performing text mining. A researcher who is starting to work on a gene 
or protein (here we use genes and proteins interchangeably) so far unknown to him 
should consider several databases for obtaining the most relevant information. 
Particularly he or she should use all available gene names when doing literature search. 
Terms such as gene or proteins names, drug, chemical compound, and other biological 
entities are biological objects of primary importance for understanding biochemical 
processes and therefore are the backbone of scientific communication as they are used to 
identify domain concepts. Successful term identification is therefore the key to getting 
access to the stored literature information. But what are those biological terms, how are 
they created, and to what standard do they comply? 

The main barriers to successful term identification are extensive lexical variation, which 
prevents some terms of being recognized in free text, term synonymy and term 
homonymy, the latter creating uncertainties with respect to the term's exact identity. 
Furthermore the biological field is mined with constandy changing and expanding 
terminology and even more importandy the often-encountered lack of stringent naming 
convention. 
Each gene or protein typically has several names and abbreviations which consequendy 
can lead to so-called term ambiguity. For instance 'Cdc28' is also known as 'cyclin-
dependent kinase 1' or 'Cdkl' and, to complicate matters even more, some terms 
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associated with 'Cdc28' are common English words (e.g. 'hairy roof), biological terms 
(for example 'SDS") or even names of other genes, such as 'Cdc2' that refers to two 
completely unrelated genes in budding and fission yeast. Another example is the symbol 
PSA with a multitude of very different associated long terms: Prostate Specific Antigen, 
Puromycin-Sensitive Aminopeptidase, Psoriatric Arthritis, Pig Serum Albumin, or one of 
the more than 100 other meanings of PSA that can be found in the literature (Weeber, 
Schijvenaars et al. 2003). 

It was shown that the highest degree of ambiguity with common English words exists 
for fly {Drosopbila). This is due to the frequent phenotypic descriptions that are used as 
gene names and abbreviations thereof. For example in FlyBase (a database for Drosopbila 
molecular genetics), "WE" is the abbreviation for a gene named "Washes eye". This 
illustrates that the long form as well as the short form of the gene name are perfect 
English terms. The gene nomenclature guideline for FlyBase is relatively unrestricted 
(Tuason, Chen et al. 2004), stating that "gene names must be concise, should allude to 
the genes function, mutant phenotype or other relevant characteristic, and gene name 
must be unique and not have been previously used for a Drosopbila gene, moreover gene 
names should be inoffensive". This is a rather loose guideline, as no format is proposed 
for the symbols, and no restrictions about ambiguity with English words or other terms 
are made. The guideline additionally favours the use of descriptive name, which might be 
useful for an immediate functional classification of genes by a researcher when reading 
scientific articles, but clearly results in significant disadvantages for literature search and 
automatic text processing. Moreover, these non-stringent nomenclature favours 
ambiguity with English words. Examples of ambiguous gene names in fruit fly are: "cheap 
date", mutants that are especially sensitive to alcohol; interestingly another name for this 
gene is "amnesiac" as the mutant also shows poor memory; "fruity", mutants that are not 
interested in females; "out cold", with falling temperature the mutants loose their 
coordination and eventually paralyze; "sarah", mutant flies that are practicaEy sterile; "van 
gogh", swirling wing hair patterns in the mutants resemble the brush strokes in van 
Gogh's paintings; "clown", the clown flies' eyes have a characteristic white and red 
appearance; "technical knockout', the gene is involved in protein transport; "siviss cheese", 
mutant flies' brains have swiss-cheese-like holes. 

In contrast to the above, the nomenclature guidelines for the mouse genome database 
(MGD) and the rat genome database (RGD) explicitly state that "genes that are 
recognizable orthologs of already-named human genes should be given the same name 
and symbol as the human gene". The Human genome organization (HUGO) also states 
"that homologous genes in different vertebrate species should where possible have the 
same gene nomenclature" and that "the agreement between human and mouse gene 
nomenclature for many homologous genes should be continued and extended to other 
species where possible". Generally, the nomenclature of, human, mouse, and rat genes 
are coordinated with each other by the corresponding committees. This enforces a 
mapping between orthologs by cross-references, co-assignment of nomenclatures to 
orthologs genes and thus an increasing unification of the individual nomenclatures. 
However, even these more stringent databases are not as free of ambiguity as one would 
wish. Gene names that show ambiguity with the general English language in humans 
include: "hip" and "hop", whose gene products help other proteins to fold correctly, and 
"jack-1", janus kinase, which contains two phosphate-transferring domains. Thus, it got 
its name from the Roman two-faced gatekeeper of heaven Janus. The abbreviation 
"JAK" is also said to stand for "just another kinase" as there are so overwhelmingly 
many kinases in the body that makes it difficult to remember all of them. A "tigger" is a 
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transposable element in the human genome, i.e. it can jump to another location in the 
genome; "hedgehog', a gene first found in fruit fly and named because of the resemblance 
of its mutant larvae with a hedgehog. One of the human hedgehog genes was named j -
"tonic hedgehog' according to the Sega computer game character; "pokemon", (POK jtf?> 
Erythroid Myeloid Ontogenic Factor) is an oncogene, that once mutated can cause <; 
cancer. In fact, it appears to be a master switch for cancer. The primary name '.*. 
recommended by OMIM (The Online Mendelian Inheritance in Man database) was 
"Zinc Finger and BTB domain-containing protein 7". 

In plant science databases the Maize Genome Database (GDB) standardizes 
nomenclature and symbols as follows: "the name and symbols that have been used for 
maize gene should be retained. The name and symbols of a gene should be represented 
with lower-case, italic character. Genes must be given 3 letter symbols. Newly detected 
maize genes that have been previously identified in other plant species should be named 
where appropriate with reference to the list of genetic names compiled by the 
commission on plant gene nomenclature. Symbols may describe a mutant phenotype or 
some aspect of gene structure or function". 
But also here ambiguity of plant genes with English words has been reported, leading to 
distincdy bizarre cases such as in model plant Arabidopsis (genus of the family Brassicaceae): 
"superman" and "dark kenf mutants have extra stamens (male genitalia) in their flowers; 
the "kryptonite" mutation suppresses the function of "superman"; "werewolf, were plants 
have exceptionally hairy roots, and "antikevorkian" in which the programmed death of 
three out of the four female meiotic products is prevented in this mutant (dr. Kevorkian 
was the infamous American physician helping people to commit suicide). 

This ambiguity is in part due to the guidelines of genes and protein nomenclature for the 
corresponding model organism as shown before. It is evident that a descriptive and free 
nomenclature as it is used for Drosophila makes automated identification of gene names 
very difficult, while a stringent nomenclature as it is used for yeast allows an easier 
identification of gene names. 

Another problem that occurs is the tendency for error propagation with names based 
upon sequence similarity alone. For example, a gene named YFG2 is based upon 
sequence similarity to YFG1; gene YFG3 is then named based on similarity to YFG2 and 
YFG4 is named based upon similarity to YFG3. In fact, YFG3 and YFG4 may be quite 
distandy related to YFG1 so that in this case the relationship inferred by its name is 
misleading. 

1.7 Terminology: principal link between the literature and ontology 

The principal link between text and ontology is a terminology, which aims to map 
concepts to terms, but term variation and ambiguity make the integration of information 
available in text and ontology difficult. Term variation originates from the ability of a 
natural language to express a single concept in a number of ways as we have seen from 
the aforementioned examples. Term ambiguity occurs when the same term is used to 
refer to multiple concepts and is inherent to the biological and biomedical field as the 
evolution of species gave rise to many homologues and analogues. 
Furthermore, biomedical and biological terms often appear in abbreviated forms. 
Although several methods have been develop to capture the different acronyms formed 
in the literature (Rimer and O'Connell 1998; Frantzi, S. Ananiadou et al. 2000; 
Rindflesch, Tanabe et al. 2000; Yoshida, Fukuda et al. 2000; Chang, Schutze et al. 2002; 
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Yu, Hatzivassiloglou et al. 2002; Yu, Hripcsak et al. 2002; Hisamitsu and J. Tsujii 2003; 
Schwartz and Hearst 2003; Adar 2004), there is still a need to assist the biologist in 
choosing the right term (acronym) that unambiguously pertain to a concept of interest 
(biological function). 

Applications such as manual literature search, automated text-mining, name entity 
identification, gene or protein annotation, and linking of knowledge from different 
information source all require the knowledge of all used names referring to a given gene 
or protein (Fundel and Zimmer 2006). It is thus desirable to encourage researchers to use 
well-formed and approved gene and protein names that comply with strict nomenclature 
rules, easing literature search and automatic text processing. 

An example of such an attempt is the UniProt consortium which is concerned with 
integrating information in the UniProt Knowledge Base. This consortium aims to 
provide a central, stable, comprehensive, fully classified, and richly and accurately 
annotated protein sequence database with extensive cross-references to other data 
sources. The expectation of the UniProt project is that the SwissProt/UniProt and 
Entrez genes will increasingly share their nomenclature and that the mapping between 
databases will be increasingly complete and unambiguous. This will facilitate the 
generation of gene name dictionaries for text mining application. 

Nevertheless, this will not remove the difficulty entirely, since there are still huge 
numbers of published documents around containing "legacy" and add-hoc terms that 
need to be integrated and analysed. Therefore it is paramount to develop systems that 
can resolve ambiguity problems in a general way and irrespectively of the organism under 
consideration. This will be the scope of chapters 4 and 5. 

1.8 Text mining techniques 

Text mining directed towards knowledge discovery comprises various steps or 
techniques, e.g. Entity Recognition (ER), Information Retrieval (IR), Information 
Extraction (IE) and Data Mining (DM). It is more strictly defined as the "discovery by 
computer of new, previously unknown information, by automatically extracting 
information from different written resources". Therefore, IE does not qualify as a text-
mining tool itself, as it can only extract what has already been published and thus rather 
forms the basis for text mining in the same way that ER forms the basis for IE. 

1.8.1 ER: Entity Recognition 

The objective of entity recognition (ER) is to find the biological entities that are 
mentioned within a text, in particular the names of genes and proteins. At first glance ER 
might seem neither challenging nor particularly useful, but in fact it is probably the most 
challenging task in biomedical text mining and a prerequisite for both IE and IR. Basic 
approaches to find named entities include rule-based techniques using finite-state 
transducers (Roche E. and Schabes Y. 1997; Cunningham H., Maynard D. et al. 2000) 
and statistical taggers that use Support Vector Machines (SVMs) (Li Y., Bontcheva K. et 
al. 2005) or Hidden Markov Models (HMMs) (Manning CD . and Schutze 1999). Once 
detected, biomedical and biological terms need to be normalized (refer all term variants 
to a single descriptor) and grounded (link through identifier to entry in database e.g. 
UniProt). This illustrates how term variation and ambiguity can hamper the recognition 
of biological and biomedical entities, not only in the nomenclature using long terms but 
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also for their respective short forms. ER can also be usefully applied on its own in cross-
linking literature that is related to certain genes as it is used in the Information 
Hyperlinked Over Protein system (iHOP) (Hoffmann and Valencia 2005). 
A particularly common term variation type in biology is the representation by acronyms. 
In MEDLINE abstracts, 64,242 new acronyms were introduces in 2004, with an 
estimated total of 800,000 (Chang and Schutze 2006). Acronym recognition aims to 
extract pairs of short forms (acronyms) and their associated long form (expanded). State-
of-the-art acronym recognition can be categorized in heuristics scoring rules (Schwartz 
and Hearst 2003; Adar 2004), machine learning (Pakhomov 2002) and statistical methods 
(Okazaki and Ananiadou 2006). 

1.82IR: Information Retrieval 

Information retrieval (IR) is the activity of finding documents that answer an 
information need with the aid of indexes. One of the best-known and used IR systems in 
the wider public is probably Google. However, one of the drawbacks of such system is 
that the user is faced with reading many documents in order to discover the facts 
reported in them. There is a multitude of systems based on IR techniques and applied to 
databases of biological and biomedical literature with reasonable high precision including 
Textpresso (Muller, Kenny et al. 2004), iHOP (Hoffmann and Valencia 2005), 
GoPubMed (Doms and Schroeder 2005), EBIMed (Rebholz-Schuhmann, Kirsch et al. 
2007), PubMatrix (Becker, Hosack et al. 2003), PubFinder (Goetz and von der Lieth 
2005), MedScan, LitMiner, Chilibot, Transminer and BioRAT. 
The best-known biomedical IR system, PubMed is an ad hoc system that uses two 
established IR methodologies, the Boolean model and the vector model. The Boolean 
model enables the user to retrieve all documents containing certain combinations of 
terms by using a logical operation, for example "Alkl AND damage response". In 
contrast, the vector model represents each document by a term vector, in which each 
term is assigned a value according to a frequency-based weighting scheme. These 
document vectors can subsequently be compared to a query vector that specifies the 
relative importance of each query term. Alternatively they can be compared to each other 
to calculate document similarity, which is used in PubMed by the "related articles" 
function. However, it is crucial not to restrict IR to exact matching of query terms, 
because term ambiguity and variation phenomena may cause irrelevant information to be 
retrieved ("low precision") and relevant information to be missed or overlooked ("low 
recall"), (van Driel et al, Eur J Hum Genet 2006) 

1.83 IE: Information extraction 

In contrast to IR, information extraction (IE) strives to extract information from texts 
without requiring the end user of the information to read the entire text. IE depends on 
named entity recognition (NER) as the main step in accessing textually described 
domain-specific information. IE can be used to support a fact-retrieval service or as a 
step towards text mining based on conceptually annotated text. Furthermore, IE can be 
ontology-based, i.e. map a term occurring in a text to a concept in ontology, typically in 
the absence of any explicit link between term and concept. This is a passive ontology use. 
On the other hand, IE can be also ontology-driven, which means that it makes active use 
of ontology in processing in order to strongly guide and constrain analysis. 
Two main examples for approaches that extract relationships from biological texts are 
co-occurrence methods and natural language processing (NLP). Co-occurring terms in a 
discourse assumes a mutual relationship. NLP strive to keep the semantic of the 



General introduction 

relationship of terms under investigation in a discourse. Co-occurrences methods tend to 
give a better recall but a weaker precision as compared to NLP methods, and thus are 
well suited as part of exploratory tools because of their ability to identify relationship of 
almost any type (Jensen, Saric et al. 2006). Borrowing terminology from logic, precision 
may be viewed as the "degree of soundness" and recall as the "degree of completeness". 
Text mining using natural language processing (NLP) not only uses sentence structure, 
but employs part of speech (POS) and phrase recognition to identify certain relationship 
among entities in a sentence (Hunter and Cohen 2006) . However, due to the inherent 
complexities of retrieving a sound meaning from a group of sentences that use complex 
grammar, NLP methods in text mining are often unreliable in identifying a relationship 
between multiple sentences (Ding, Berleant et al. 2002; Daraselia, Yuryev et al. 2004), 
also known as anaphoric relationship. An anaphoric relationship is exemplified by the 
following two sentences: "The dog was sick. It had to be put down". Moreover, 
complex sentences that contain multiple relationships give rise to additional, erroneous 
relationships. 

Furthermore, co-occurrence is unable to extract direct and indirect relationships, for 
instance whether or not a compound X directly phosphorylates a compound Y, whereas 
NLP combines the analysis of syntax and semantics and can therefore - in principle -
tackle the issue of direct and indirect relationships. 

1.9 Text mining legacy (literature-based discovery and hypothesis generation) 

The following section will focus on the challenges of terminology and terminological 
processing and novel techniques for information extraction in text mining. Text mining 
can be used for a multitude of purposes, for instance to interpret gene expression 
clustering or to model complex biological pathways based on published literature 
(Blaschke, Oliveros et al. 2001; Glenisson, Coessens et al. 2004). 
More importantly, text mining also serves the purpose of hypothesis generation and 
biological discovery. For example, one set of literature has shown that dietary fish oils 
lead to certain vascular changes, and a separate set of literature has reported that such 
vascular changes would benefit patients with Raynaud's syndrome. Raynaud's syndrome 
is a condition that affects blood flow to the extremities such as fingers, toes, nose and 
ears, when exposed to temperature changes or stress. In a similar fashion text mining 
was also applied to infer that migraines may be caused by magnesium deficiency and that 
the connection between arginine intake and blood level of somatomedins may be critical 
in the treatment of thymic deficiencies. 

Besides finding relationships between diseases and potential therapeutic interventions in 
the literature, enriching protein-protein interactions and extracting scientific abstracts 
pertaining to a topic of interest, text mining has been successfully applied to much more. 
Text mining can aid in finding new trends in different research field as shown in the 
example of Rebholz-Schuhmann and colleagues (Rebholz-Schuhmann, Cameron et al. 
2007). Upon systematic analysis of the scientific literature from medical informatics and 
bioinformatics research they concluded that emerging topics, equally important to 
bioinformatics and medical informatics in recent years are: microarray experimentation, 
ontologies, open source, text mining, and support vector machines. Emerging topics that 
evolved only in bioinformatics were systems biology, protein interaction networks and 
statistical methods for microarray analysis, whereas emerging topic in medical 
informatics were grid technology and tissue microarrays. Thus both fields share a 
common technological development that tends to be initiated by new developments in 
biotechnology and computer science. Another example for predicting new research 
aspects that are about to become popular is the research of future "hot" proteins that 
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can become commercially attractive targets for the development of antibodies and 
inhibitors. 

Furthermore TM can be used to search for correlated events as exemplified by the 
Amazon's, Ebay's and other e-businesses' function "Customers who bought this item 
also bought ...". This can be similarly applied in life sciences to discover fundamental 
properties of regulatory networks and uncovered relationships between biological entities 
for example. Text mining has even been shown to enhance microarray gene expression 
analysis by incorporating biological information mined from the literature into standard 
distance metric-based clustering algorithms to construct more accurate gene relation 
networks than the standard clustering algorithms alone (Karopka, Scheel et al. 2004). 
Text mining as a tool proved even more valuable when combined with other data types. 
Integration of literature-based protein networks and studies of linkage mapping 
identified candidate genes for Alzheimer diseases within a genomic region on the basis of 
their interactions with genes that are already known to cause the disease (Krauthammer, 
Kaufmann et al. 2004). 

As such text mining in life sciences should be assessed according to its contribution to 
biology-driven problems to maintain the momentum gained over the past decades. After 
this illustration of text mining's assets, we come to the important question of how to 
select for the best text mining tools. The effectiveness of text mining tools is usually 
reported using certain metrics that will be explained in the subsequent section. 

1.10 Text mining evaluation 

For classification problems, bioinformaticians usually measure the performance of a 
model in terms of error rate: the percentage of incorrectly classified instances in the data 
set. Usually a model is build in order to classify new data and thus the performance of a 
model on "unseen" data is of interest. The training set (seen data) is used to build the 
model, i.e. to determine its parameters, and the test set (unseen data) to measure its 
performance, i.e. holding the parameters constant. Sometimes a validation set is required 
to tune the model, for example for pruning a decision tree. However, the validation set 
cannot be used for testing, as it does not qualify as unseen data. 
Training data, test data and validation data have to be representative samples of the data 
that the model will be applied to. If a lot of data are available, two independent samples 
are selected, one used for training and one for testing. The more training data are 
available, the higher the quality of the model and the more test data, the more accurate 
the error estimate. 
Major drawbacks in obtaining big data sets are their expense and time consumption, 
therefore a limited data set is usually selected and a holdout procedure is applied. In 
other words, a random split is done of the data to generate a test set and a training data. 
Typically 1/3 and 1/10 are held out for testing. However, the split into training and test 
data risks to be non-representative, i.e. a certain class is not represented in the training 
set and thus the model will not learn to classify it. In such condition a stratified holdout 
is applied, i.e. the data is sampled in such a way that each class is represented in both sets. 
Unfortunately this procedure does not work well on smaller data sets, which require a 
maximisation of data utilization. 
One solution to the latter is a £-fold crossvalidation that divides the data randomly into k 
subsets of equal size. The model is trained on k-1 subsets and one subset is used for 
testing. This process is repeated k times (folds) so that all subsets are used exactly once 
for testing. Finally the average performance is computed on the k test sets. K-fold 
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crossvalidation effectively uses all the data for both training and testing. Typically k=10 
is used. Another variant of ^-fold crossvalidation is the leave-one-out crossvalidation. 
Leave-one-out crossvalidation is simply ^-fold crossvalidation with k set to n, the 
number of instances in the data set. This means that the set consists only of a single 
instance, which will be classified either correcdy or incorrecdy. This technique thus 
maximises the use of data, i.e. the training is done on »-l instances. In contrast, leave-
one-out is not suitable for large data sets because of the high computational cost of the 
required large number of training runs. 
The reported performance of a classified data set can be summarized in a confusion 
matrix or contingency table as shown in Table 2. Assuming a two-way classification, four 
classification outcomes are possible such as displayed in our example contingency table. 
Here True Positives (TP) are class members correcdy classified as class members; True 
Negatives (TN) are class non-members classified as non-members; False Positives (FP) 
are class non-members incorrecdy classified as class members, and False Negatives (FN) 
are class members classified as class non-members. 

Table 2: Confusion matrix or contingency table 

Category set 

C~W—>C\C\} 

Classifier 
judgement 

YES 

NO 

Expert Judgment 

YES 

TP = YITP, 

FN = £,FN, 

NO 

FP = J^FP, 

m=2^TN, 

Measures that are commonly used in information retrieval, classifications tasks and text 
mining are precision and recall. Precision measures the number of class members 
classified correcdy over the total number of instances classified as class members. The 
recall reports the number of class members classified correcdy over the total number of 
class members. Precision and recall can be combined into the F-measure, which is simply 
the harmonic mean of precision and recall. The F-measure is used if both precision and 
recall are equally important. 
Independendy of the way the performance of the model is measured, the performance 
measure is always carried out in unseen data sets, i.e. test set, but never on seen data, i.e. 
the training set. Performance on the training set only tells us that the model learned what 
it was supposed to learn, hence is not a good indicator of the performance on the unseen 
data. 
As defined here, precision and recall are to be understood as subjective probabilities, 
which mean they measure the expectation of the user that the system will behave 
correcdy when classifying an unseen document under a given category. 
Two different methods may be adopted for obtaining estimates of precision and recall: 

-Microaveraging: precision and recall are obtained by summing over all individual 
decisions, therefore summing over category-specific contingency table to generate the 
"global" contingency table. 

Precision-
TP 1=1 

;=1 

, Recall = 
TP 

kl 

i=i 

TP + FN £(w,/+ 
, and 

FN,) 
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2 * (Pr ecision * Re call) 
F - measure = '-

Precision + Recall 

kl 
/ , precision, 

\c\ ' 
„ 2 * (Pr ecision * Re call) 
F - measure = - -

/^recall; 

Recall = -fci 
|C | 

-Macroaveraging: Precision and recall are evaluated first "locally" for each category and 
then "globally" by averaging over the results of the different categories. 

and 
\C\ ' 

0 
Pr ecision + Re call 

These two methods may give quite different results, especially if the various categories 
show a very different generality. For example, the ability of a classifier to behave well 
also on categories with low generality (category with few positive training instances) will 
be emphasized by macroaveraging and much less by microaveraging. 
Similarly the kappa coefficient statistics (Cohen 1960; Carletta 1996) can be derived 
from the above contingency table. Kappa statistics tests the null hypothesis that there is 
no more agreement than might occur by chance given a random guessing. Kappa ranges 
from 0 for chance agreement to 1 for full agreement. However, with the kappa statistics, 
the agreement between different annotators (inter-annotator agreement) is measured 
which contrasts to the case of precision and recall mentioned above where the agreement 
is between an annotator or expert and a computer or machine. Thus, the inter-annotator 
agreement allows conclusion about the stability of annotation, while the agreement for 
each annotator with himself (intra-annotator agreement) indicates the reproducibility of 
the annotation (Gut and P. Bayer 2004). 

1.11 Outlook on this thesis 

As can be taken from the information given in the above sections of the introduction, 
text mining is a gaining importance in the life sciences and thus the main scope of this 
thesis. Addressing the entire set of problems bioinformatics faces in this genomic era is 
virtually impossible in the frame of just one PhD thesis. Therefore we will address a 
subset of these tasks here in order to improve our understanding of biological 
phenomena. We will adopt an integrative algorithmic approach to navigate from 
sequence analysis to understanding unstructured texts, i.e. scientific literature. 
In this introduction {Chapter 1) we attempted to highlight various aspects - without a 
claim of exhaustiveness - of the main benefits of Bioinformatics in easing our 
understanding of some biological phenomena at the molecular level as well as some 
challenges Bioinformatician addresses. Chapter 2 adopts an integrative approach to 
concatenate protein sequence domain prediction from different prediction methods to 
support relatedness of proteins under investigation. 
Chapter 3 endeavours to mine Medline based on term co-occurrence and faces the issue 
of gene nomenclature ambiguity, whereas Chapter 4 addresses the gene nomenclature 
ambiguity in all species and proposes an approach of efficient resolution of the 
ambiguity. Chapter 5 provides an application of the methodology described in Chapter 
4, namely an effective and unambiguous query formulation for literature retrieval. Finally 
this thesis concludes with Chapter 6 summarising the main findings and the 
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contribution of this work to scientific research, as well as some propositions for future 
directions of this work. 
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Abstract 

Phylogenetic analysis and examination of protein domains allow accurate genome 
annotation and are invaluable to study proteins and protein complex evolution. 
However, two sequences can be homologous without sharing statistically significant 
amino acid or nucleotide identity, presenting a challenging bioinformatics problem. 
We present TreeDomViewer, a visualization tool available as a web-based interface that 
combines phylogenetic tree description, multiple sequence alignment and InterProScan 
data of sequences and generates a phylogenetic tree projecting the corresponding protein 
domain information onto the multiple sequence alignment Thereby it makes use of 
existing domain prediction tools such as InterProScan. TreeDomViewer adopts an 
evolutionary perspective on how domain structure of two or more sequences can be 
aligned and compared, to subsequently infer the function of an unknown homolog. This 
provides insight into the function assignment of, in terms of amino acid substitution very 
divergent but yet closely related family members. Our tool produces an interactive scalar 
vector graphic (SVG) image that provides orthological relationship and domain content 
of proteins of interest at one glance. Alternatively PDF, JPEG or PNG formatted output 
can also be provided. 

These features make TreeDomViewer a valuable addition to the annotation pipeline of 
unknown gene or gene product. TreeDomViewer is available at 
http://www.bioinformatics.nl/tools/treedom/. 
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Introduction 

The past years have seen the rapid sequencing of genomes from many different 
organisms. Sequencing itself is no longer the bottleneck in genomic studies; the 
bottleneck is reliable annotation of new genes. Information from widely studied model 
species included in comparative annotation genomics has greatly aided in these 
annotation efforts and proofed to be a powerful tool. Quoting Constantinesco et al. (1): 
"comparative genomic studies have been invaluable to the annotation efforts in addition 
to their contribution to the understanding of protein evolution". Sometimes homologous 
gene products have strong sequence similarities so that the inference of homology is 
straightforward. However, accumulation of multiple substitutions in the course of 
divergent evolution can make homologous sequences as dissimilar as any two proteins 
chosen randomly from a database (2). 
Several bioinformatics approaches have been developed to identify remote homology in 
the absence of pairwise similarity, one of the popular ones being protein fold recognition 
(FR) (3). Briefly, FR detects homology based on a combination of evolutionary criteria 
and structural considerations. FR differs from traditional sequence homology database 
searches insofar as the databases to be searched by FR contain only proteins with 
experimentally determined structure rather than all protein sequences. Hence the 
availability of a related structure in the Protein Data Bank is an essential but not 
sufficient prerequisite for the success of FR-based identification of homologs (4). 
However, homology is defined on the basis of evolution rather than function. 
Homologues can fulfil different functions and share only very general similarities; even 
orthologs may fulfil non-identical roles states (5). 
Moreover, homology is not necessarily a one-to-one relationship, because a single gene in 
one genome may correspond to a whole family of paralogs in another genome, which 
may be functionally diverse. Hence there is a pitfall of over-prediction (i.e. too specific 
functional assignment) to be avoided when annotating unknown protein or gene 
function by homology, using either simple or sophisticated existing bioinformatics tools 

(4). 
Currently there is a multitude of tools available for the visualization of information 
contained within a protein sequence such as signal peptides (6), transmembrane domains 
(7,8) and functional domains such as InterProScan (9). The latter currently comprises 
fifteen domain prediction methods. 
However, until now there is no tool available combining in one view protein sequence 
analysis with orthological information, thereby essentially combining proteomics 
information with phylogenomics (see e.g. (10)) independent of the available 3D structure 
in databases. 
In this paper we present a more convenient way of identifying putative family members 
based on their evolutionary history and supported by their conserved structural domains, 
as the evolution of the later, unlike amino sequence substitutions, occurs at a slower rate 
throughout evolution. 
This phylogenetic visualization tool allows a rapid 'first pass' quality screening of search 
results from InterProScan and others (e.g. the EMBOSS package (11))- One of its 
strengths is the forthright generation of a publication-quality graphic output 
TreeDomViewer is available as a Perl-based web interface that accepts a multiple 
sequence file in any common format as input and produces a phylogenetic tree with the 
corresponding protein domain information projected onto the multiple sequence 
alignment next to it. Although a powerful tool by itself, TreeDomViewer is obviously 
dependent on the quality of the analysis tools and multiple alignments. 
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Implementation and Design 

Data preparation and processing 

The minimal input required by TreeDomViewer is a set of aligned or unaligned 

sequences. In case where the input file is a sequence file solely, ClustalW (12) is used to 
align the sequences and a tree description is calculated subsequently using ClustalW's 
built-in neighbor-joining option (13). 
By default TreeDomViewer combines the output from several programs, i.e. a multiple f.j 
alignment (in any common sequence format, such as FASTA or Clustal), a phylogenetic j " ' 
tree (in standard Newick or PHYLIP format (14)) and domain predictions (in i 

InterProScan's "raw" format). " 
The ability to upload precalculated files makes the tool extremely flexible, as the user may s 
want to edit manually his/her multiple sequence alignment or other input files, or select | 
another program for alignment of phylogeny construction than the ones provided by £ 
TreeDomViewer. 
There are two possibilities to run TreeDomViewer, either interactive, where the user 
uploads the sequence and/or (alignment, tree description file and the InterProScan 
analysis file), or in batch mode: the user uploads either the sequence or multiple 
alignment file but not the InterProScan file. He/she will receive links to the result via 
email upon job completion and get the option of saving input files as this will save time 
for future runs of the same data set. The tool is sufficiently sophisticated to decide 
which prediction method is the most time consuming one and if selected it may 
automatically switch to batch mode. 
The tool combines multiple domains on the same picture and it is necessary to have 
them sorted by domain length in order to have the largest domain drawn first. This 
provides a quick overview of multiple predictions on the same region. 
One feature of major importance in TreeDomViewer is the alignment of structural 
domains. This allows for quick checking of the alignment quality, easy inference of 
homology even when the sequence residue similarity is very low, and support of the 
phylogeny based on functional characteristics evidences. 
The rate-limiting step in TreeDomViewer is the computation of the structural domains 
using InterProScan. By running these calculations in parallel on 10 nodes of a small 
Linux cluster, turn-around times are still acceptable. For example, the analysis of 60 
protein sequences of 1000 amino residues each is performed in less than 3 minutes. 

Design overview 

TreeDomViewer is implemented in Perl as a web based service running on an Apache 
2.0 web server on a Linux platform (SuSE linux Enterprise Server 9). The core 
application consists of three main programs: Svgtne, Treedom and Clustalw. The first two 
programs are full command line tools written in-house in C and Perl respectively and can 
be used as plug-in for other applications. A web interface was built on top of these 
programs via a Perl CGI script (figure 1). 
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Figure 1: TreeDomViewer web-based interface. Alternative means of generating the input file are 
provided on the top-right panel. 

This preserves platform independence across multiple operating systems and allows the 
user to interact with the different TreeDomViewer programs without computer 
programming or (shell) scripting skills. A global overview of TreeDomViewer workflow 
is presented in figure 2. Full explanation of the tool's mode of action is available as an 
online or downloadable (PDF) manual at the web-interface. 
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s 

Figure 2: Flowchart of TreeDomViewer illustrating sequence of application implemented. Software tools 
used are in bold. Three types of data input are processed and domain information is coordinated with the 
alignment and phylogenetic tree information to produce an interactive SVG output. 

The software was developed on a Linux (SuSE 8.2 and SuSE linux Enterprise Server 9) 
platform and most of its modules were written from scratch to prevent dependency 
issues when migrating to newer versions of Linux OS or Perl. 
The TreeDomViewer web interface was tested on Windows XP, Mac OS X and several 
flavors of Linux OS browsers with good results. Some JavaScript event handling 
problems for interacting with the SVG output were encountered on Mac OS X and 
Linux OS. This can be attributed to the web browsers used (konqueror, Mozilla, Opera), 
as at the moment no browser supports SVG to its full extend. Currently most browsers 
still require a SVG plug-in, downloadable from the Adobe site. However, the latest 
version of Mozilla Firefox browser (version 1.5) has already native (built-in) SVG 
support and it is to be expected that more browser will soon follow. 
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Most browsers handle SVG pictures quite well when standard shapes such as rectangles 
or lines were instructed to be drawn on the screen. In this matter TreeDomViewer takes 
it one step further by giving life to these shapes through JavaScript. As all browsers 
support and display JPEG (Joint Photographic Experts Group) and PNG (Portable 
Network Graphic), TreeDomViewer uses batik-rasteri^er to provide them as an alternative 
output format besides PDF format, thereby circumventing the SVG plug-in flaw as 
noted above. 
Batik-rasterit^er is part of the open source Apache Batik toolkit 1.6 
(http://xml.apache.org/batik/). 
Most of SVG output features such as mouse-over events are retained except zoom-in 
and zoom-out. As we aimed at integrating as much information as possible within a 
single picture, domain predictions are linked to their source database where more 
information can be retrieved. 

Output description 

By default TreeDomViewer provides SVG output of the tree and domain information. 
The user's web browser needs to be SVG-enabled in order to view the output 
Conveniently, the viewer first checks the web browser to clarify whether it is SVG-
enabled or not, and fetches the Adobe SVG plug-in 
(http://www.adobe.com/svg/viewer/instaE/) and prompts forks installation if needed. 
The user can change parameters for the tree plotting such as tree format, set to 
phenogram as default, and many more features as shown in figure 1. Links to individual 
protein analysis tools are also provided. It is noteworthy that TreeDomViewer does not 
execute protein analysis on its own, but instead provides an interface to InterProScan 
and other programs as shown in the prediction method section of its interface. 
There are several interactive features such as zoom-in and zoom-out, mouse-over access 
for information on each domain, references to techniques used to produce the domain, 
and on-the-fly switching on and switching off of domain prediction through the left 
control panel (figure 3 as well as an accompanying legend of the graphic). 

Alternative formats such as PDF, JPG and PNG are also provided. Although 
TreeDomViewer was designed for protein analysis, nucleotide sequences can be handled 
as well. Moreover, TreeDomViewer is able to generate the output of any domain 
prediction tool, making it the visualization tool of choice at any level of functional or 
phylogenetic study. Tools such as Adobe Illustrator can be used to manipulate domain 
colors of TreeDomViewer SVG file. 
In order to illustrate our approach we analyzed a subset of the lipocalin family members. 
Lipocalins are a superfamily of proteins that carry hydrophobic prosthetic groups. 
Lipocalins share a very low sequence similarity, hence it can be expected to be a 
cumbersome affair to infer homology with the conventional sequence similarity or 
identity techniques. To further our illustration a subset of the lipocalins was selected 
manually in accordance with those reported by Ganfornina et al. (15). We chose this 
family to illustrate the features of TreeDomViewer because of their strong divergent 
protein sequence, denoting a rapid rate of molecular evolution, Moreover, the 
evolutionary history of the lipocalins is rich in gene duplication events, which increases 
the difficulty of obtaining an understanding of orthologous relationships. As denoted by 
red features in figure 3, there are three conserved sequence motifs called structurally 
conserved regions (SCRs) that have been proposed by Flower et al. (16) as a prerequisite 
for a protein to be considered as a lipocalin. 

http://xml.apache.org/batik/
http://www.adobe.com/svg/viewer/instaE/
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Although our tool places no restriction on the number of sequences to be used in the 
analysis, the user's web browser and hardware could be a limiting factor to visualize large 
SVG output files. TreeDomViewer was used to visualize a set of 530 Receptor-Like 
Proteins (RLP) obtained from the arabidopsis genome-wide survey of RLPs without any 
problem on a standard PC or Mac (data not shown). 
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Future plans 

We intend to broaden the scope of TreeDomViewer by incorporating secondary 
structure prediction in the visualization as well as presenting (offering) TreeDomViewer 
as a BioMOBY (Wilkinson et al. (17)) web-service to the scientific community. 
Furthermore we plan to improve TreeDomViewer performance by expanding the 
distributed network of cluster mirrors. 

• % 
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Conclusion 

TreeDomViewer is a biological web-based tool combining in one picture protein 
information on phylogenetic and structural information. As such it provides information 
about the relatedness of proteins and protein families, and thus adds support for 
inferring function of gene products, in particular when sequence identity is low. 
TreeDomViewer therefore helps in any phylogenetic analysis resolving both the 
relationship among different group members and the relationship between groups, based 
solely on the aligned domain structure of each participant. 
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Abstract 

Background: High throughput microarray analyses result in many differentially 
expressed genes that are potentially responsible for the biological process of interest. In 
order to identify biological similarities between genes, publications from MEDLINE 
were identified in which pairs of gene names and combinations of gene name with 
specific keywords were co-mentioned. 

Results: MEDLINE search strings for 15,621 known genes and 3,731 keywords were 
generated and validated. PubMed IDs were retrieved from MEDLINE and relative 
probability of co-occurrences of all gene-gene and gene-keyword pairs determined. To 
assess gene clustering according to literature co-publication, 150 genes consisting of 8 
sets with known connections (same pathway, same protein complex, or same cellular 
localization, etc.) were run through the program. Receiver operator characteristics (ROC) 
analyses showed that most gene sets were clustered much better than expected by 
random chance. To test grouping of genes from real microarray data, 221 differentially 
expressed genes from a microarray experiment were analyzed with CoPub Mapper, 
which resulted in several relevant clusters of genes with biological process and disease 
keywords. In addition, all genes versus keywords were hierarchical clustered to reveal a 
complete grouping of published genes based on co-occurrence. 

Conclusions: The CoPub Mapper program allows for quick and versatile querying of 
co-published genes and keywords and can be successfully used to cluster predefined 
groups of genes and microarray data. 
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Background 

High throughput microarray analysis has made it possible to analyze the mRNA 
expression of most if not all human genes simultaneously [1;2]. The data generated from 
these analyses are overwhelming since hundreds of interesting differentially expressed 
genes can be identified in a single assay. Knowledge on expression levels of genes in 
different systems is useful, but does not directly answer biologically relevant questions, 
such as: What is the gene function? Where is the gene located within the genome? Where 
is the protein located within the cell? Most important is the answer to the question 
whether genes identified in microarray experiments have something in common, such as, 
are multiple genes part of a single biological pathway or proteins part of a protein 
complex? The public database, which contains much of the relevant information to 
answer these questions, is MEDLINE. Therefore, mining the MEDLINE database for 
all information on a set of genes of interest to extract and evaluate their co-occurrences 
with biological keywords and other genes, could reveal biologically relevant pathways [3-
6]. 

The most widely used methodology to identify genes and proteins in text is by thesaurus-
based concept extraction. Using a predefined gene name list, text phrases are compared 
to the thesaurus for matching. Complications for gene name thesauri are variations in full 
name spelling, use of abbreviations (gene symbols), the large number of synonyms 
(different name but same gene) and homonyms (same name but meaning different genes 
or unrelated concepts) [7;8]. Particularly homonyms in the form of abbreviations and 
acronyms create a serious problem of false positive assignment of a gene to a particular 
concept [9-13]. A complementary approach for gene/protein identification is "named 
entity recognition" in which a program learns to recognize concepts from text [14-16]. 
Due to the enormous synonym and homonym problems, named entity recognition 
encounters difficulties in achieving high performance gene name identification. A next 
step in text mining is linking of different concepts (such as gene names and keywords) 
that are identified. In the simplest method, co-occurrence of two concepts within the 
document can be used as an indication of linkage. Extensions of co-occurrence can 
include (i) the number of times a concept is found, (ii) how close concepts are to one 
another, such as, within a single sentence, and (iii) not just two, but the weighed 
combination of all concepts within a document. More sophisticated fact extraction 
methods can also retrieve information on the type of relationship between two concepts. 
Natural language processing (NLP) grammatically parses whole sentences to identify 
verbs and other connecting phrases that describe the correlation between concepts 
[3;4;6;17]. A third step in text mining takes linked concepts and groups them according 
to their co-occurrence and relationships. Again, this can be performed by simple 
clustering of the co-occurrence of pairs of concepts as well as complex multi­
dimensional classification using weighed concept combinations [18;19]. This type of 
clustering of, for example, differentially expressed genes from a microarray experiment, 
can disclose, summarize, and visualize published knowledge, but can also be utilized for 
novel information discovery [5;20]. Although progress is being made in higher order 
literature processing, text mining applications in the field of genomics are mainly 
thesaurus and co-occurrence based. Such programs and methods to identify potential 
functional correlations between genes have been described [21-33]. Each of these 
applications has its unique advantages and limitations, showing the broad range of needs 
for text mining as well as the numerous extraction, linking, and discovery methods 
feasible. 
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We set out to create a well annotated and curated open source gene list including full 
names, symbols and aliases and a regular expression-based search method to identify 
genes in text databases such as MEDLINE. In addition to the gene thesaurus, specific 
keyword lists were generated for co-occurrence analyses. For each concept, PubMed 
identifiers (IDs) from MEDLINE documents containing the concept were extracted, all 
gene-gene and gene-keyword co-occurrence pairs identified and stored in a database for 
fast co-occurrence retrieval. This database can be mined using single or batches of 
concepts to retrieve co-occurrences that form the input in clustering programs to group 
genes and keywords according to their similarity in co-publications. The program, 
database and all thesauri are freely available and can be adapted to include updates, new 
thesauri, and search methods. 

Implementation 

Human gene thesaurus 
A human gene thesaurus was compiled from the Affymetrix HG_U95 / HG_U133 and 
HUGO gene annotations (HG_U95 / HG_U133 annotation files from 2002) [34] [8] 
(Table 1). 

The s au r u s 

Gene 

Molecular Function 

Cellular Component 

Biological Process 

Dis e a s e s 

Tis sues 

Data Sou r ce 

Affymetrix HG_U95-133 

HUGO 

Gene Ontology 

Gene Ontology 

Gene Ontology 

Karolinska Institute 

National Library of 
Medicine 

Numbe r 
of t e rms 

15,621 

962 

218 

767 

1475 

309 

Numbe r of 
terms with 
MEDLINE 

hits 

10,700 

851 

196 

621 

1444 

307 

Total 
n u m b e r of 
MEDLINE 
ci tat ions 

5,932,448 

6,616,546 

1,890,561 

3,455,950 

6,099,280 

9,083,831 

Table 1: CoPub Mapper gene and keyword database information. Gene names, symbols and aliases were 
retrieved from Affymetrix HG_U95 / H G J J 1 3 3 [54] and the H U G O databases [55]. The keyword 
thesauri include the three Gene Ontology subsections [41], diseases [56] and tissues/organs [57]. 

In total, 15,621 annotated genes were included of which most gene descriptions consist 
of one or more full names, the gene symbol, and their aliases. The typical HUGO and 
Affymetrix full gene name descriptions contain commas, semicolons and often 
alternative names in parenthesis, which makes this description an inadequate direct 
search term. Full names were processed by replacing the commas and semicolons with 
the Boolean "AND" operator (Figure 1). 
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Gene name \ 1 Gene Symbol 

Comma, semicolon 
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"S \ 
English Dictionary Exclusion 
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Semi-automatic curation Semi-automatic curation 

T \ 
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Figure 1: Flow diagram of the processing and curation of the gene names, symbols and aliases. Gene 

names, symbols and aliases were retrieved from Affymetrix HG_U95 / HG_U133 and the H U G O 

databases. 

All terms included in parentheses were deleted from "gene-level name" and placed in a 
separate field named "gene-level additional description". Both fields were semi-
automatically curated to remove common words (such as protein, family, hypothetical, 
functional, human, tissue, yeast, etc), misspellings, and insert Boolean "OR" in case 
synonyms are described. From gene symbols and aliases fields, commas and semicolons 
separators were replaced by the Boolean "OR" operator. Two-letter symbols and aliases 
were removed from the thesaurus and all other abbreviations were compared to an 
English dictionary [35] to remove common English words (such as "AND", "CELL", 
etc.). The Microsoft Excel spreadsheet program was used for generating and curating 
gene thesaurus files and, as described by Zeeberg et al [36], conversion problems were 
encountered and when identified, manually corrected. 
Semi-automatic stemming was performed on "gene-level name" and "gene-level 
additional description" fields by removing numbers, letters, and phrases like "alpha", 
"member", "type", "class", etc. This resulted in a stem-level gene name description. 
Although the current version of CoPub Mapper does not take this stem-level into 
account, these fields are part of the gene thesaurus and freely available. 

Keyword thesauri 
In total, five different keyword thesauri were compiled including the Gene Ontology 
"biological process", "cellular component", and "molecular function", as well as 
"diseases" and "tissues" (Table 1). In the disease thesaurus, commas were replaced with 
the Boolean "OR" operator. All keyword databases were manually curated to remove 
terms too specific or too common. 

MEDLINE concept extraction and curation 
The full MEDLINE baseline XML files (until January 2004) were obtained from the 
National Library of Medicine [37], extracted to small text files containing title, abstract 
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and substances using BioPerl API. The title, substance and abstract fields from 
MEDLINE records from 1966 to January 2004 were searched for the presence of 
different case-insensitive gene and keyword concepts using Perl compatible regular 
expressions (PCRE). For the gene-level name descriptions the characters "][•-)(,:;" and 
space were allowed preceding and following the gene-level name description and also an 
optional "s" was permitted to follow the name. Any space in the gene-level name 
description was allowed to be a space or a dash. The same regular expressions were 
applied to the gene name stem-level descriptions, except that, the description could also 
be followed by any single letter or a number between 0 and 99. Gene symbols and aliases 
could be preceded and followed by the characters "][•-)(,:;" and space. After the first two 
characters, the presence of a dash was allowed in between the characters of the symbols 
and aliases (to take, for example, both "bcl2" and "bd-2" into account). The concepts of 
the keyword files could be preceded and followed by the characters "][•-)(,:;" and space. 
In addition, "s" and '"s" were allowed to follow the disease concept. As for the gene-
level name descriptions, a dash was allowed to be present between the words of a 
keyword concept. Per annotated gene or keyword, the PubMed IDs of MEDLINE 
records in which the concept was identified were stored in a MySQL database. 
In order to identify potential problem concepts, 50 genes and 50 keywords with the 
highest number of PubMed IDs were manually inspected and curated if appropriate. In 
addition, a random selection of genes and all keywords that gave less than 2 MEDLINE 
hits were examined and this evaluation was used to optimise the thesauri and regular 
expressions search strategy described above. 

To address the homonym issue, a correction was made for possible discrepancies 
between a parenthesised gene symbol and its expected name. All abbreviations in 
parenthesis in MEDLINE abstracts were retrieved in combination with 4 preceding 
words. In total, 1,105,669 MEDLINE records were identified where the abbreviation 
matched a gene symbol or alias. For all these records, 4 words preceding the abbreviation 
were compared to the gene-level name description of that particular gene. If none of the 
words resembled partly the gene name, the PubMed ID was removed from that 
particular gene's PubMed ID list. Using this method, 603,580 records were deleted from 
the gene hit database resolving part of the gene-unrelated concept homonym problems. 
Manual inspection of 173 random records revealed that, extrapolated, 79 % of the 
603,580 records was correctly removed, while 7 % of the 502,089 non-removed records 
should have been deleted. 
In our examination of genes with the highest number of PubMed IDs and our first 
CoPub Mapper analyses, we noticed a distinct contamination of records identifying gene 
symbols and aliases by abbreviation used for cell lines (such as PC3 which is an alias for 
3 genes as well as a prostate cancer cell line). Since full names of cell line abbreviations 
are rarely put in writing, the homonym correction did not eliminate these discrepancies. 
A list of cell line names was retrieved [38] and gene symbols and aliases that fitted a cell 
line name were further processed. From 106 genes that included one of the cell line 
homonym names, all MEDLINE records were deleted in which the cell line name was 
mentioned without the presence of the stem-level gene name. In total, 100,213 PubMed 
IDs were eliminated. A manual inspection of 78 randomly chosen records showed that 
87 % were correctly removed. 

Database set-up and CoPub Mapper program 
A file was generated that contains a unique query ID and the probeset IDs, UniGene 
(combination of Aug 2002 and Oct 2003 builds) and RefSeq identifiers for each of the 
individual 15,621 entries in the gene thesaurus (alias_affygene). In addition, a file with the 
gene name, symbol and aliases and unique query ID was created (query_affygene). 
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The retrieved PubMed IDs from each field (gene names, symbols and aliases) of the 
15,621 unique gene thesaurus query IDs were non-redundandy combined into a MySQL 
database (lit_affygene) and a separate data-file (litstat_affygene) in which the number of 
PubMed IDs per query was counted. Furthermore, the PubMed IDs from the keyword 
thesauri were per concept stored (query_keyiford, ht-keyword and \itstat_keyword). Per gene-
gene pair and gene-keyword pair, overlaps in PubMed IDs were identified and separately 
stored in the database (pair^g/awaLaffygene). From these paired files, a pairstat file was 
generated containing the number of PubMed IDs of each concept, the number of 
overlapping PubMed IDs between the two concepts and a relative score. The relative 
score is based on the mutual information measure and was calculated as 

S — PAB/PA PB 

in which PA is the number of hits for concept A divided by the total number of PubMed 
IDs, P1( is the number of hits for concept B divided by the total number of PubMed IDs, 
and PAB is the number of co-occurrences between concepts A and B divided by the total 
number of PubMed IDs. The relative score is produced as a loglO conversion and in the 
batch search option in a 1-100 scaled loglO conversion: 

R = 10log S 

and the scaled log transformed relative score: 

R' = 1 + 99 * ( R _ Rmin) / (Rmax - Rmin) 

where Rmin and Rmax are the lowest and highest R values in each pairstat file, 
respectively. 

The CoPub program was generated in Python and runs as a web-based application (CGI 
script). The text output of a batch search can be saved and imported into a clustering 
program such as Cluster [39] and SpotFire (Spotfire, Goteborg, Sweden). The HTML 
output of "number of hits", "relative score", and batch search results are hyperlinked to 
the MEDLINE database at the European Bioinformatics Institute [40] for direct 
manuscript retrieval. 

Performance evaluation using ROC (receiver operating characteristics) curves 
In order to investigate whether the CoPub Mapper output could group genes according 
to their MEDLINE co-occurrence profile, 8 different groups of genes were defined 
based on common gene ontology (GO) terms [41], the BRCA1 BioCarta pathway [42], 
or a microarray experiment (Table 2). 
In the UniGEM V microarray experiment, the gene expression profile of prostate stroma 
cells was compared to prostate epithelial cells [43]. A set of 28 annotated genes, higher 
expressed in epithelial cells as compared to stromal cells (more than 2-fold) was 
randomly selected. 
The 150 genes from the eight selected gene groups are pooled into one set. The selected 
genes were entered into CoPub Mapper to generate the co-occurrence matrix of relative 
scores of genes versus genes and genes versus the 5 different keyword thesauri. Relative 
scores were only generated in case more than 2 co-publications occurred per concept-
concept pair. The genes versus genes matrix was hierarchical clustered and visualised 
using Cluster and TreeView [39] (Figure 2). 
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T e s t g r o u p s # Ge n e s S ou r c e 

smooth muscle contraction 

a c e ty ltra ns fe ra s e 
nuclear pore 
nuc leosome 
ubiquitin 
hypoxia 
BRCA1 
Epithelial-specific g enes 

12 
18 
15 
17 
24 
26 
11 
27 

GO (Biological P rocess ) 
GO (Molecular Function) 
GO (Cellular Component) 
GO (Cellular Component) 
GO (Molecular Function) 
GO (Biological P roce s s ) 
BioCarta 

UniGEM V microarray: 
stroma vs epithelial cells 

Table 2: CoPub Mapper test groups. Eight groups of genes with a common function, process, cellular 
location, or microarray expression profile, were defined from gene ontology (GO), BioCarta, or a 
microarray experiment. The genes used for CoPub Mapper analysis were randomly selected from larger 
sets of genes part of the 8 different groups. 

Figure 2: Clustered view of gene co-occurrences among a collection of 8 groups of selected genes. Of the 
150 genes, the relative scores of co-occurrences were calculated and clustered using hierarchical clustering. 
A co-occurrence was only taken into account when at least two articles mention the gene-gene pair. Using 
this criterion, 45 genes did not co-publish with any of the other 149 genes. To which group (Table 2) a 
gene belongs to is indicated in the right part of the figure. Image contrast in Tree View was set at 50. Scaled 
(1-100) relative scores are represented in a red spectrum with bright red being the highest score. A relative 
score of zero or no score are in black. 
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For a systematic evaluation of performance we applied Receiver Operating 
Characteristics (ROC) graphs and the area under the ROC curve (AUC) as an outcome 
measure. To use this method all genes from the 8 subgroups are pooled into one set. To 
calculate an AUC for every gene we used the following procedure. A gene from the 
pooled set is selected as a seed. The seed is paired with all other genes in the set and non-
centered Pearson correlation coefficients are calculated based on their co-occurrence 
profiles. The co-occurrence profile is one row of the co-occurrence matrix under 
investigation. The genes are ordered by their correlation coefficients, with the highest 
value at the first rank. To generate a ROC curve, the obtained ranking of the genes is 
viewed as the outcome of a classifier. For a seed, genes from the same subgroup are 
called positives and all other genes are called negatives. ROC curves are two-dimensional 
graphs in which the true-positive (TP) rate is plotted against the false-positive (FP) rate. 
The TP rate is defined as correctly classified positives divided by all positives. The FP 
rate is defined as incorrectly classified negatives divided by all negatives. While running 
down the list, for every rank the true and false positive rate are calculated, by taking all 
encountered genes to be classified as positive and all not yet encountered genes as 
negative. The AUC of the ROC curve is calculated. The procedure is repeated until an 
AUC has been calculated for every gene in the pooled set An average AUC is calculated 
per subgroup. The AUC measure varies between 0 and 1. Random ordering gives an 
AUC of 0.5 and an AUC of 1 represents perfect ordering, i.e. all positives are at the top 
of the list with no negatives in between, indicating perfect co-occurrence clustering of 
the genes in the subgroup [44]. 

Results 
Validation of CoPub Mapper co-occurrence profiling 
To validate the usefulness of the CoPub Mapper output, we evaluated how well genes 
with known relations could be grouped according to their MEDLINE co-occurrence 
profile. As shown in Figure 2, partial clustering of the initial 8 groups occurred upon 
their gene-gene co-occurrence profile evaluation. To quantify this grouping, ROC 
(receiver operating characteristics) curves were generated and the AUCs (Area Under 
Curve) for each gene calculated. In Figure 3, the median AUCs ± SD of the genes per 
group are depicted. Most of the 8 groups and in particular the BRCAl-associated genes 
clustered well together in the gene-keyword comparisons (median AUC of 0.93 ± 0.07). 
The ubiquitin-associated genes performed worst (median AUC of 0.6 ± 0.11). With 
respect to the thesaurus selection, the overall clustering of the 8 groups using the "genes 
versus genes self comparison, performed best with an average AUC of 0.76 ± 0.13. The 
"genes versus diseases" and "genes versus tissues" comparisons were for many of the 8 
groups not resulting in clustering higher than expected by random chance. In other 
words, from co-publication analysis of genes with disease or tissue keywords, the 
commonality between the genes, as defined by the 8 groups, could rarely be traced 
(Figure 3). 
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Figure 3: Receiver operating characteristics (ROC) of the 8 selected groups of genes to quantify their 
coherence upon clustering of literature co-occurrences. Co-occurrences of the 150 genes were determined 
with the genes themselves, or the 5 different keyword thesauri. A co-occurrence was only taken into 
account when at least two articles mention the gene-gene or gene-keyword pair. The co-occurrence 
matrixes were Pearson correlation clustered and the distances between genes determined. For each gene, it 
was determined whether the next closest clustered gene was a group member. Genes from the same group 
were scored as true positive and any other gene as false positive to generate a ROC curve. For each gene, 
the area under the ROC curve (AUC) was determined and the median of all the group members per group 
± SD depicted. Scaling is from an AUC of 0.3 to 1. An AUC of 0.5, representing a random ordering is 
highlighted with a thick line. 
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As shown in Table 2, six groups of genes were selected based on gene ontology 
keywords, using two from each of the annotation trees (biological process, molecular 
function, and cellular component). As expected and without exception, the AUC of the 6 
groups of genes was higher using their corresponding GO-derived thesaurus compared 
to using the other two GO-derived thesauri. For example, the molecular function 
annotated group of "acetyltransferases" was clustered best using the "genes versus 
molecular function" co-publication comparison (AUC of 0.81 as compared to 0.65 using 
the biological process thesaurus and 0.59 using the cellular component thesaurus). This 
shows that the selection of keywords for co-occurrence analysis is an important 
determinant in optimal text-based grouping of genes. 

Microarray analysis using CoPub Mapper 
In order to validate the CoPub Mapper program with real microarray data, a set of 
differentially expressed genes was selected from a comparison between ovaries of healthy 
women and women suffering from Poly Cystic Ovary Syndrome (PCOS) [45]. PCOS is 
characterized by a combination of chronic anovulation, hyperandrogenism and cysts in 
ovaries and is the most common cause of anovulatory infertility. Also hyperinsulinemia 
and obesity can be observed in many PCOS patients [46;47]. 
A set of 230 dysregulated DNA fragments representing 189 genes were used as input for 
CoPub Mapper (see Table 1 in [45]). Gene-keyword pairs were obtained from biological 
processes and diseases. Relative scores were only generated in case 3 or more co-
publications occurred per gene-keyword pair. From these 189 genes, 104 were annotated 
and had at least 3 co-publications with one of the keywords. Resulting matrices were 
exported as text files and opened and merged in Spotfire. Hierarchical clustering was 
used to group genes and keywords. Figure 4 shows that subsets of genes form clusters 
with subsets of biological processes and diseases. Zooming in on these clusters confirms 
the relation of certain genes with e.g. PCOS, diabetes, obesity, gametogenesis, immune 
response. Characterization of all clusters revealed known and unknown relations of these 
PCOS dysregulated genes with biological processes and diseases. 

Single Gene-Keyword extraction 
The CoPub Mapper includes an option to query the database for all genes and keywords 
co-published with a single gene of interest. In addition, a keyword of interest can be 
selected and all genes with 2 or more co-occurrences can be extracted. As examples, the 
top ten genes (Table 3) and top ten diseases (Table 4) co-published with the androgen 
receptor are shown. 
An assessment of the 2 lists identified the puromycin-sensitive aminopeptidase gene 
(NPEPPS) as an example of a homonym (Table 3, fourth gene). The PSA alias of 
NPEPPS is mainly used to specify prostate specific antigen. The prostate specific antigen 
gene (KLK3) is regulated by the androgen receptor and correcdy found many times to be 
co-published with the androgen receptor (Table 3, second gene). Due to the homonym 
curation described in the Systems and Methods section, the number of co-occurrences of 
the androgen receptor with NPEPPS (246) is lower than with KLK3 (414). Before 
homonym curation, NPEPPS and KLK3 had 634 and 635 co-publications with the 
androgen receptor, respectively. The top ten list of diseases co-published with the 
androgen receptor (Table 4) is a near perfect reflection of the known diseases associated 
with androgen receptor activity and aberrations. 

,1 



Figure li Cluttered view of gene co-occurrences among a collection of 8 groups of selected gene*. Of the ISO ge­
ne*, the relative scores of co-occurrences were calculated and cluttered using hierarchical clustering. A co-occurren­
ce was only taken into account when at least two articlei mention the gene-gene pair. U ting thk criterion, 4S genet 
did not co-publith with any of the other 149 genes. To which group (table 2) a gene belong* to a indicated in the 
right part o£ the figure, Image contrast in Tree View « u let at 50. Scaled (1-100) relative score* are represented in a 
red spectrum with Wight red being the high est score. A relative score of aero or no score are in Mack. 
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Figure 4t Hierarchical cluttering of literature co-occumncet of 104 genes (rows) versus 761 biological processes and 
diseases (columns). A co-oceurrence was only taken into account when at least three articles mention the gen*-keyword 
pair. Hierarchical clustering of CoPub Mapper results using genes dif&rentiaDy expressed in PCOS ovaries. From 221 
regulated genes 104 genet contain a gene name, symbol or afiat and produce a gette-keyword pak with biological pro­
cesses « diseases. 104 modulated genet renuned 761 keywords denoting biological processes or diseases. Hierarchical 
cluttering was performed using Spot&re using the Complete Linkage method and Correlation as Similarity Measure. 
Several subdnttert were identified shown here with blue bases; between parentheses the number of genet in a duster. 
A: PCOS, Obesity Insulin Resistance (4); B & D: Gametogenesit (S&8); C: Cell adhesion, Angiogenesis (19); E & H: 
Immune response. Inflammation (14flcll);F: Cancer, Cell growth. Differentiation p2);G: Inflammatory diseases (6). 
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Gene Name 

progesterone receptor 

kaikrein3, prostate specific anUgen, 

prostate specific antigen 

(nuckar receptor siifamfy 3, gfotp C, 

member 1). (gtacocorocoid receptor) 

arrinopeptidase purorrych sensitive 

sex hormone-binding gbbuSn 

gonadotropin- releasing hormone 1, 

leutkizing- releasing hormone 

prolactin 
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epidermal growth factor, beta-urogastrone 

tumor protein p5 3 

Gene Symbols 

PGR 

KLK3 
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SHBG 

GNRH1 
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TP53 

Gene Alias 
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Figure 4: Hierarchical clustering of literature co-occurrences of 104 genes (rows) versus 761 biological 
processes and diseases (columns). A co-occurrence was only taken into account when at least three articles 
mention the gene-keyword pair. Hierarchical clustering of CoPub Mapper results using genes differentially 
expressed in PCOS ovaries. From 221 regulated genes 104 genes contain a gene name, symbol or alias and 
produce a gene-keyword pair with biological processes or diseases. 104 modulated genes returned 761 
keywords denoting biological processes or diseases. Hierarchical clustering was performed using Spotfire 
using the Complete Linkage method and Correlation as Similarity Measure. Several subclusters were 
identified shown here with blue boxes; between parentheses the number of genes in a cluster. A: PCOS, 
Obesity, Insulin Resistance (4); B & D: Gametogenesis (5&8); C: Cell adhesion, Angiogenesis (19); E & H: 
Immune response, Inflammation (14&11); F: Cancer, Cell growth, Differentiation (32); G: Inflammatory 
diseases (6). 
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Gene Name 

progesterone receptor 

kallikrein 3, prostate speci6c antigen 

nuclear receptor subfamily 3, group C, 
member 1; glucocorticoid receptor 

aminopeptidase puromycin sensitive 

sex hormone-binding globulin 

gonadotropin-releasing hormone 1, 
leutinizing-releasing hormone 

prolactin 

insulin 
epidermal growth factor, beta-
urogastrone 

tumor protein p53 

Gene 
S ymbols 

P G R 

KLK3 

NR3C1 

NPKPPS 

SHBG 

GNRH1 

P R L 

INS 

E G F 

TP53 

Gene Alias 

NR3C3 

P S A 

GCR, GRL 

MP100, PSA 

ABP 

GNRH, GRH, 
LHRH, LNRH 

U R G 

P 5 3 

Pmid Hits 

6 0 5 

4 1 4 

389 

2 46 

179 

157 

131 

125 

123 

94 

Table 3: CoPub Mapper single gene pair output. Output of the "Single Gene Pair Mapper" in which the 
top ten genes co-published with the androgen receptor are listed according to number of co-publications 
(Pmid hits). 

Keywords Number of hits R e l a t i v e S c o r e 

Androgen-Insensitivity Syndrome 
Kennedy Disease 
Muscular Atrophy Spinal 
Prostate Cancer 
Gynecomastia 
Hypospadia 
Sex Chromosome Aberrations 
Hirs utis m 
Robinow Syndrome 
X-Linked Myotubular Myopathy 

229 
21 
133 
932 
59 
81 
2 

76 
2 
2 

3.07 
2.56 
2.12 
1.93 
1.88 
1.79 
1.78 
1.78 
1.71 
1.65 

Table 4: CoPub Mapper single gene biological concept output. Output of the "Single Gene Biological 
Term Mapper" in which the top ten diseases co-published with the androgen receptor are listed according 
to their relevance score. 

In Table 5, the top ten genes are listed that are most often co-published with the 
keyword "prostate cancer". Again, the incorrect identification of NPEPPS in 4507 
MEDLINE entries is due to the PSA homonym. 
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I;GF 
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P S A 

M P 1 0 0 . P S A 

D H T R . N R 3 C 4 

G N R H , G R H , L H 

RH . I .NRH 

P 5 3 

U R G 

C A P 2 0 , C D K N 1 , 

P 2 1 . S D I 1 , 

W A R 

N u m b e r l og ID 

o f h i ts Re l a t i ve S c o r e 

6 628 

4 5 0 7 

9 32 

546 

522 

431 

346 

318 

251 

190 

2 .55 

2.57 

1.93 

2.22 

1.24 

0 .96 

1.17 

0 .05 

0 .72 

0 .98 

Table S: CoPub Mapper single gene biological concept output. Output of the "Single Gene Biological 
Term Mapper" in which the top ten genes co-published with the prostate cancer disease-keyword are listed 
according to number of co-publications. 
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Meta-analysis: all genes versus keywords 
In order to provide a summary of all gene-keyword co-occurrences, CoPub Mapping was 
performed using all 15,621 annotated genes as input in the different gene-keyword 
thesauri co-occurrence comparisons. Relative scores were only computed if in at least 
two articles a co-occurrence was observed. Elimination of single gene-keyword co-
publications was carried out to eradicate non-reproduced findings and to make the large 
matrices manageable. A second selection was made to eliminate genes which included 
only low relative scores. Many genes have multiple co-publications with very common 
keywords such as "cancer" (disease thesaurus), "cytoplasm" (cellular component 
thesaurus), etc.. If not functionally relevant, these co-occurrences have typically a low 
relevance score. Genes with only low relevance scores were eliminated by removing 
those genes that did not have 1 or more scaled relevance scores of more than a threshold 
(between 39 and 52) in which 20 % of genes were eliminated. The hierarchical clustered 
genes-diseases co-publication matrix is displayed in Figure 5. 

5626 genes (rows) versus 1275 diseases (columns) were grouped according to their co-
publication profiles. The enlarged section shows the amount of detail present in the 
matrix (Figure 5B). The vertical lines in the matrix are caused by co-publication of almost 
all genes with very common disease keywords such as "cancer", "neoplasm", and -..-,; 
"carcinoma". Horizontal lines are genes co-published with many diseases, such as ...>' 
"insulin", "interleukin 6", and "keratin 3A". If low relevance scores are masked by hiding ..-_ ^ 
values below 30 in Tree View or SpotFire, these streaks become less prominent. }"' ,'.'$& 
Clustering and visualisation of only highly significant co-occurrences will result in 
discrete groups of genes and keywords as shown in Figure 6. 

Stringent selection criteria were implemented including: (i) each gene had to be co-
published with at least two different keywords with a relevance score of more than 50, 
and (ii) a co-occurrence must have been described in at least 3 publications per gene-
keyword combination. From the 10,203 genes co-occurring with cellular component 
keywords, 1135 genes were retrieved using the stringent selection criteria mentioned 
above. As expected, these genes were clustered according to well-known cellular 
components of which some examples are depicted (Figure 6). 
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Keywords 

Androgen-Insensitivity Syndrome 

Kermedy&&Disease 
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Figure 5: Hierarchical clustering of literature co-occurrences of 5626 genes (rows) versus 1275 diseases 
(columns). A co-occurrence was only taken into account when at least two articles mention the gene-
disease pair. Each gene had to have at least once a high (1-100 scaled) relevance score of >46. A: Overview 
of all 5626 genes and 1275 diseases. B: Enlargement of a small subsection of genes showing the amount of 
detail present in the CoPub Mapper analysis. 
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Figure 6: Hierarchical clustering of literature co-occurrences of 1135 genes (rows) versus 177 cellular 
components (columns). A co-occurrence was only taken into account when at least three articles mention 
the gene-cellular component pair. Each gene had to have at least twice a high (1-100 scaled) relevance 
score of >50. Relative scores of less then 50 were masked in the TreeView program. Some of the cellular 
component concepts responsible for clustering of genes are indicated. 
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Discussion 

With the implementation of high-throughput technologies in many fields of research, 
problems have shifted from data gathering to data comprehension. Linking data from 
different sources, such as microarray expression data to biomedical text corpora, can 
assist in the disclosure, summary, and visualisation of knowledge. This is particularly 
valuable when from high throughput data, only a few items can be selected for further 
detailed low-throughput examination. Co-occurrence analysis of concepts using the 
MEDLINE literature database, is an effective tool to extract and categorize published 
knowledge. CoPub Mapper output was successfully used to cluster predefined groups of 
genes and resulted in a commonsensical clustering of PCOS microarray data. In addition, 
CoPub Mapper uncovered relationships between genes using single concept searches and 
provided an overall gene-keyword clustered summary of the literature. One obvious 
limitation of gene-driven text mining is the incomplete study and publication of all 
human genes. Out of approximately 30,000 human genes, we included 15,621 annotated 
genes of which 10,700 were mentioned at least once and 9,769 at least twice in 
MEDLINE. The use of human gene names, symbols and aliases does not necessarily 
mean a human-specific literature search. Many gene names and symbols are shared by 
other species as well. 

The main advantages of CoPub Mapper above most other co-publication programs, are 
its modularity of keyword databases and the pre-calculated co-occurrences. Based on the 
results from the predefined groups of genes, the choice of keyword database made a 
substantial difference in clustering efficiency as determined by AUC calculations. 
Utilisation of a single joint thesaurus could counteract clustering due to inclusion of 
irrelevant non-<discrirninating keywords. Another illustration that keyword selection is an 
important issue is the prevalence of common keywords such as "cancer" (disease), 
"membrane" (cellular component), "metabolism" (biological process), "receptor" 
(molecular function), and "blood" (tissue). These keywords are co-published with nearly 
any gene of interest and were identified using CoPub Mapper. Although the relative 
score is generally low, these co-occurrences will influence the clustering process. Manual 
removal or stringent selection criteria before clustering can largely eliminate this potential 
bias. Addition of new keyword thesauri such as species, technologies, drugs, toxicology, 
pathology, etc. is feasible. Pre-calculation of co-publication of all possible gene-gene and 
gene-keyword pairs and storage in the pairstat data file, makes querying the database 
extremely efficient. Although the data are present, CoPub Mapper is not programmed 
for co-occurrence querying of more than 2 concepts. We are currendy integrating CoPub 
Mapper into the Sequence Retrieval System (SRS) for multi-concept interrogation and 
direct linkage to other databases (such as microarray data, Gene Ontology, OMIM, 
SwissProt, LocusLink, UniGene, Ensembl, etc.) [48]. 

Comparing the gene expression profiles of normal versus PCOS ovaries has identified a 
large number of genes representing networks and pathways that are deregulated in 
PCOS. However, the gene names and symbols hardly ever point to specific signal 
transduction pathways. The relation of genes with their function, localization and context 
has been described in literature. Here we show that within the list of differentially 
expressed genes some are linked to PCOS, obesity, diabetes and gametogenesis. This is 
without surprise and easily explained [46;47]. Other genes are linked to cell proliferation, 
differentiation and cancer. Most of them were downregulated which correlates with the 
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observed arrest in growth and differentiation of follicles. Other clusters with no obvious 
link to PCOS may shed new light on the genes and pathways involved in the disease. 

One of the major challenges associated with compiled heterogeneous text records such 
as MEDLINE, is correct gene recognition and assignment. The lack of consistent gene 
naming has resulted in a flood of synonyms and homonyms [7]. Although the synonym 
issue can be resolved by accumulating all different gene names and symbols, the 
correction for homonyms is still a daunting task. In order to include different spelling 
forms and the word context, we performed the text searches case insensitive and with 
predefined rules of regular expression. 
The homonym problem consists of (i) different genes with identical gene name, symbol, 
or alias, and (ii), more frequently, a gene name, symbol or alias used for other terms than 
genes [9]. In the curated CoPub Mapper gene thesaurus, 1,286 of the 15,621 annotated 
genes (8.2 %) share a symbol or alias. In order to limit both aspects of the homonym 
problem, we (i) eliminated 2 letter symbols and aliases, (ii) deleted all symbols and aliases 
present in the English dictionary, (iii) manually curated terms with exceptionally high 
number of hits, (iv) corrected for cell line names, and (v) deleted records in which the 
preceding description of parenthesised symbols or aliases did not match the 
corresponding gene name. This last method has been used before to make an inventory 
of the homonym problem and provide strategies for correction, such as the one used 
here [9-13]. Although these measures effectively reduced the homonym problem, one 
vsill regularly encounter incorrect record assignment and invalid co-occurrence quotation 
using CoPub Mapper. Additional optimisation of the gene thesaurus might further 
reduce this problem to some extent, but other correction approaches should be 
considered. One of the most promising strategies to achieve disambiguation is based on 
the preferential co-occurrence of other concepts [9;10]. For example, concepts generally 
co-published with PSA meaning Poultry Science Association, will be very different from 
concepts co-published with PSA representing prostate specific antigen. Based on these 
preferential co-occurring concepts, one can assign the correct meaning to an ambiguous 
term. 

Besides disclosure, summary, and visualization of known facts using co-publication, one 
could also discover novel linkages among genes and between genes and other concepts. 
One possibility to identify unpublished, but plausible links, is to screen for black squares 
surrounded by red ones in a clustered co-occurrence heat map as shown in Figure 5. The 
fact that a particular gene-disease combination was not found in MEDLINE (black 
square), but clustered together with other co-published gene-disease pairs (red squares), 
could indicate an unpublished association. This approach shows analogies with the 
Swanson discovery framework in which concept A is known to relate to B and B is 
associated with C [49;50]. Combining all data, the deduction that A relates to C can be 
hypothesised and tested [49;51-53]. 

Conclusions 

CoPub Mapper is a program that identifies and rates co-published genes and keywords 
starting from a single concept search or batch-wise from a set of genes. Its modularity 
and pre-calculated co-occurrences allow for quick and versatile querying. The regular-
expression search strategy and homonym correction makes the keyword database 
comprehensive and less contaminated with false positive classifications. CoPub Mapper 
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can be used to summarize, evaluate and categorise annotated genes from microarray 
analyses based on co-occurrences with biological keywords and other published genes. 
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Abstract 

Background 
One of the challenges text-mining is facing is the gene nomenclature ambiguity. 

A gene symbol can have multiple alternative names (synonyms) and/or multiple different 
functional assignments (homonyms) related to its biological function, its physiological 
location, or even as the result of researchers' conflicts of interest. Moreover, this lack of a 
controlled vocabulary in gene nomenclature is complicated even more by common 
problems such as alternative spellings and literal spelling mistakes. This ambiguity makes 
text mining, information retrieval, information extraction and data mining in the 
biological field a difficult task. 

Results 
We have developed a disambiguation methodology that relies on the hypothesis 

that if we can categorize ambiguous gene symbols correctly in terms of their biological 
function(s), then the taxonomic relationship of genes' species in each category can be 
used to tag that category. Unlike previous species-specific approaches, our 
disambiguation approach is able to cover the entire taxonomic spectrum from viruses, 
prokaryotes and archaea to eukaryotes. We use the NCBI taxonomy database to resolve 
all ambiguous gene symbols in the UniProt Knowledgebase (UniProtKB) with an overall 
94 % precision and 82 % recall. .. 

Conclusion 
Our algorithm uses a naive Bayes classifier to solve problems such as: "Given an 

ambiguous gene symbol and a species name what is its most likely functional 
assignment?" or "What biological terms and gene symbol synonyms can be used in a 
Boolean query to efficiently and unambiguously search the literature for documents 
pertaining to a gene of interest?" 

;» 
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Background 
Molecular biology is undoubtedly one of the more recent scientific fields that has moved 
from technology and technique-based research to information driven research (1). This is 
emphasized by the wealth of information and data from sequencing projects and 
exponential publications about genes and groups of genes. Swanson's work on finding 
implicit relations between facts in publications promoted a greater interest in using 
literature as a knowledge base for hypothesis generation (2-6). Since then several 
informatics tools for literature mining have been developed for extracting information 
based on term co-occurrence such as CoPub Mapper and many more (7-11). In order to 
retrieve sound facts and obtain knowledge it is crucial to pose effective and proper 
questions. However, at present mining the literature is complicated by the presence of 
ambiguity that is inherent to natural language in a publication's abstract or full paper. 
Naturally, this leads to the question: How effective are currently developed text mining 
tools? 
The success of the Critical Assessment of Protein Structure Prediction (CASP) (12), 
Critical Assessment of Prediction of Interaction (CAPRI) (13), Critical Assessment of 
Micro-array Data Analysis (CAMDA) (14) and the Genome Annotation Assessment 
Project (GASP) (15) initiated various evaluation projects of text mining in the biological 
field. These are in order of their initiation: Knowledge discovery and Data mining 
(KDD), Text Retrieval Conference (TREC), Critical Assessment of Information 
Extraction in Biology (BioCreAtlvE), and Natural Language Processing for Biology 
(BioNLP). TREC focuses on document retrieval and classification tasks for genomics 
(16,17), whereas BioNLP tags the biological name in Medline abstracts and BioCreAtlvE 
focuses on gene mention identification and normalization and functional annotation of 
genes using GO (18-22). 
One of the drawbacks of these evaluation approaches is their variation in performance, 
for example in BioCreAtlvE's "gene or protein mention" and "normalized gene list" 
task, a variation was found between organisms with top F-scores higher than 0.90 for 
yeast and 0.80 for both fly and mouse. Detailed analysis revealed that the difference 
between organisms could be explained at the gene nomenclature level due to extensive 
ambiguity in gene names, overlap of gene names with English term, complex multiword 
gene names, and difficulty in associating ambiguous names with the correct gene 
identifier (21,22). Additionally, a substantial ambiguity in gene nomenclature has been 
shown within and across eukaryote species, with English terms and with medical terms 
(23). 
So far, efforts have mainly addressed the quantification of ambiguity restricted to specific 
organisms. To our knowledge the problem of ambiguity quantification to date has been 
addressed mainly in 21 model organisms with various solutions proposed to reduce name 
ambiguity (23). The main solutions have been thesaurus-based (24), using classifiers 
(25,26) and context based-coupled classifiers disambiguation (27-30). Schuemie and co­
workers (31) give an overview of the word sense disambiguation in the biomedical 
domain. 
Ambiguity and the disambiguation process are highly complex, particularly if we consider 
the entire taxonomic spectrum, as is the case in this paper. For example, the gene symbol 
CAT2 is thought to be ambiguous in rats (a category of permeases and a category of ion 
transfer), but also denotes a gene in fungi (yeast, baker's yeast), plants (tomato, potato, 
radish) and bacteria (Halobacterium salinarium, Salinibacter ruber). The functions of gene 
CAT2 can be generalized as permeases and catalases in bacteria and plants, respectively 
as can be taken from Figpire l-a,b generated with TreeDomViewer (32). 
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TreeDomViewer displays the structural domains shared by the different sequences 
annotated as CAT2. 
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Another example of an ambiguous gene symbol used for illustration in this research is 
ALK1, which refers to a gene found in fungi and bacteria. Figure l-c,d, shows the 
existence of two distinct groups in fungi, described respectively as cytochrome P450 and 
permease-peptidase related, whereas in bacteria ALK1 refers to a helix-hairpin-helix 
superfamily-based excision DNA repair protein. These two examples illustrate the 
ambiguity within species (intra-species) as well as between species (inter-species). 
Furthermore, CAT2 also displays the problem of synonymy with CAT, CAT1, ROP and 
SU2, encompassing species from a broad taxonomic spectrum, namely archaea, bacteria, 
fungi, metazoa and plants {Figure 2-ti). Some of these synonyms share the same 
biological category, that is, function, as is the case with CAT and CAT2, whereas SU2 
only shares one out of two CAT2 categories. This shows that the ambiguity problem 
becomes highly complex if we do consider gene symbols and their synonyms alike. This 
observed gene symbol ambiguity might be explained amongst others by variation on 
symbol's spelling and researchers' conflict of interest (33-35), occurrence of multiple 
names for the same genes (synonyms) and gene symbols referring to different biological 
function (homology). 

The ambiguity issue that is addressed in this paper will focus on gene symbol homonymy 
and gene symbol synonymy. Additionally we intend to extend the definition of gene 
ambiguity beyond non-uniqueness in a database, stop words, general English words or 
non-biological terms to a gene having multiple concepts (biological functions). 
First we will quantify the ambiguity problem and subsequendy assign the biological 
meaning or function to each gene symbol (discrimination task). Once plausible senses are 
obtained for each gene symbol, we will assign the proper function to a symbol given a 
species using the disambiguation task. Therefore, our approach should be viewed as 
species taxonomy-pivoted gene function categorization. 
Taxonomy may refer to relationship schemes other than hierarchies such as network 
structure as well as being a simple organization of objects into groups, or even an 
alphabetical list. In this paper we use taxonomy in the sense of an expert evolutionary 
classification of organisms. 
Our approach is based on the fact that most assignments of annotation for molecular 
function rely, at least partially, on the assumption that genes with similar sequences also 
display similar biological functions. This implies that sequences are evolutionary related 
to a certain extent, the relationship denoting a common latest ancestor prior to the 
speciation event. Thus species of a certain taxonomic rank have the same biological 
function for a specific gene. 
Provided that we can discriminate properly between gene symbols in terms of their 
function, then the latest common species ancestor of a gene symbol within a category 
can be used to tag that category. For example, if the gene symbol ALK1 has shown 3 
distinct biological functions during the discrimination process, we assume that each 
group is monophyletic i.e. of one race, if not transformed to monophyletic, and the latest 
common ancestor (LCA) of each group is used to assign a function to that category in 
the disambiguation process. 
In the following sections we will present the results and evaluation of the different 
subtasks namely gene symbol's sense discrimination and gene symbol's sense 
disambiguation used in our methodology. 
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a) Taxonomic-based disambiguation of ALK1. Species having aspergillus 
as the latest common ancestor have the same biological function as shown 
the graph. 
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b) Taxonomic-based disambiguation of CAT2. Species having magnoliophyta 
as the latest common ancestor have the same biological function as shown 
the graph. 

Figure 2 — Taxonomic based disambiguation of two gene symbols ALKl(a) and CAT2(b). 
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Results Evaluation and Discussion 

Gene symbol's sense discrimination and quantification of ambiguity 

Gene symbol senses discrimination is the task of finding the potential biological function 
related to a gene symbol. Each sense is further labeled with an unambiguous meaning. 
This stage can also be used to automatically assist in the construction of ontologies that 
is currently done manually. Throughout this work, we address gene symbol or short form 
rather than its long form (expanded). Occurrence of the gene name in more than one 
UniProtKB entry was the starting point for our ambiguity quantification, but often these 
symbols converged to the same biological function. Thus, our initial data set comprised 
243,366 gene symbols occurring more than once in UniProtKB and was minimized to 
10, 865 ambiguous symbols, addressing more than one actual biological function. After 
obtaining the plausible biological function related to each ambiguous gene symbol during 
the discrimination stage (see Materials and Methods), we examined the gene symbol's 
senses distribution. As shown in Figure 3-a,b we identified 57% of the total 243,366 
putative ambiguous gene symbols as displaying the same biological function, 40% with 2 
distinct biological functions, 3% with 3 and the remaining genes with 4 to 8 biological 
functions. We further investigated the distribution of the 10,865 symbols showing more 
than one biological function among SwissProt taxonomic classes to gain an overview of 
the classes with more confusing names. Our main finding was that 21% occurred in 
bacteria, 21% in human and 18%) in rodents as shown in Figure 3-c. 
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Figure 3 — Quantification of ambiguous gene symbols in UniProtKB. 
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However, this figure also showed an overlap in gene symbols between taxonomic classes, 
which will be illustrated further on. This overlap could be among others assigned to 
ambiguity introduced via homology inference between model species and organisms of 
interest. 
Subsequendy we sought to quantify gene symbols shared by different taxonomic classes 
using Venn Master (36) to analyze the 10,865 ambiguous gene symbols. Figure 4 
summarizes our findings: mammals, plants, vertebrates, rodents, fungi and humans share 
49 gene symbols whereas mammals, bacteria, plants vertebrates, rodents and fungi share 
only 11 gene symbols. Furthermore, bacteria, plants and human share 99 gene symbols. 
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Inaccuracy in gene nomenclature by scientists, conflict of interest or pure coincidence of 
gene symbols having multiple alternative names, may account for our observations. 
Having observed the interspecies gene nomenclature ambiguity lead us to the question in 
which taxonomic class is the ambiguity more prevalent? To address this question, we 
quantified the ambiguity within the main SwissProt taxonomic classes and found that 
ambiguous gene symbols accounted for 362 out of 1,432 in archaea (25.28%), in bacteria 
3915 out of 16,303 (24.01%) and in fungi 2,227 out of its 9610 (23.17%) gene symbol 
entries.{Figure 3-d). Our findings can be attributed to the fact that archaeal, bacterial 
and fungal taxonomic classes have more species and gene symbol entries than any other 
class in the UniProtKB. Entries for human showed the least ambiguous gene symbols, 
namely 3,824 out of its 30,090 (12.71%) gene symbols; this can be attributed to the 
international effort in improving and standardizing human genes. Taken together, these 
results strongly show the extent and spread of gene nomenclature ambiguity within 
species and between species. 

Hereafter we evaluated our methodology at the discrimination and the disambiguation 
task level, respectively, to determine its suitability at detecting ambiguous gene symbols. 
In order to address this question, we evaluated the correlation between the phenotype 
(textual information) and genotype (sequence information). We randomly selected 100 
ambiguous gene symbols out of the 10,865 available. For each randomly selected symbol 
we extracted the corresponding protein sequence from the UniProtKB. We used 
TreeDomViewer for displaying the phylogeny with structural domain information 
supporting each clade and CLUTO to cluster textual (phenotype) information extracted 
from UniProtKB, related to the same gene symbol {Figure 1). Then we manually 
compared the two generated figures; in 86 % of the cases the phenotype analysis 
correlated well with the genotype analysis (see additional files). For 10% of the cases 
the respective domain could not be predicted for the sequence, therefore making it 
difficult to support the members of each clade based on their structural domain(s). In 4% 
of the cases we predicted more groups than actually was the case. A closer look at the 
feature space revealed that some gene symbol entries were solely described by the gene 
symbols itself without any other supplementary information. Moreover, some symbols 
were sparsely annotated and/or with very generic terms such as "hypothetical protein". 
Such general descriptive terms were excluded from the analysis {see Materials and 
Methods). The correction of the above accounted for a total of 90%) correlation 
between the phenotype and the genotype comparison. 

Gene symbol's sense disambiguation 
In order to address the experimental analysis of our method, we opted for the leave-one-
out cross validation given the sparse data at hand. Again we randomly selected 100 gene 
symbols from the ambiguous set. For each gene symbol, we trained the Naive Bayes 
classifier on n-1 instances (see additional files). These instances were the latest 
common ancestor (LCA) of the species within a biological function class and the 
corresponding biological function. We then iterated the classification in such a way that 
all species instances were used as a testing set and the average performance was reported 
as the microaveraging and macroaveraging metric of our classifier. With microaveraging 
we achieved 93.52 % precision, 82.12 % recall and 85.57 % F-measure on average and 
with macroaveraging metric we reported 82.81% precision, 85.97 % recall and 82.81% F-
measure. An excerpt of the performance metrics on 20 ambiguous genes symbols out of 
the 100 randomly selected from the total 10, 865 ambiguous gene symbols is reported in 
Table 1 and Figure 5. 
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Table 1: Performance metric on 100 ambiguous gene symbols randomly selected. 
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The significant difference between microaveraging and macroaveraging could be 
attributed to the fact that the different categories show a very different generality i.e. the 
percentage of species and / or LCA (positive training) that belong to that category. 
Thus the ability of the classifier to behave well also on categories with low generality will 
be emphasized by macroaveraging and much less so by microaveraging. 
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The association of clustering and taxonomy-based tagging 
Throughout our methodology we have combined clustering and species taxonomic 
tagging. Clustering and taxonomic tagging are similar when new annotations are 
introduced in the UniProtKB databases, i.e. they have to be run again. The quality of the 
clustering technique depends heavily on the feature space, while species taxonomy 
tagging relies on the existence of a taxonomic description and entry of a given species in 
the NCBI taxonomy database. 
The above analysis shows that a prior selection of a comprehensive database such as 
UniProtKB and the NCBI taxonomic database coupled to a post-retrieval clustering 
followed by taxonomic rank tagging offers quality, maintenance, flexibility and 
performance benefits. This is an important advantage over thesaurus-based, rule-based 
disambiguation and previous gene symbol sense disambiguation approaches. 

Future work 
We plan to develop a web interface to navigate and resolve the ambiguity through other 
classifier besides the current Naive Bayes. An area under curve (AUC) would be a sound 
statistical measure to select for the evaluation of classifier quality. The latter interface 
should also help recovering literature and other information pertaining to a gene of 
interest, for example disambiguating PubMed abstracts. 

Conclusions 
We present a disambiguation algorithm that integrates clustering, discriminating, tagging, 
mapping and categorization algorithms. The methodology relies on the assumption that 
once function is properly categorized for an ambiguous gene name, we can uniquely tag &; 
all members of each category to a taxonomic rank, and thus map the taxonomic or j g 
species level to one of the concepts, i.e. the gene name function. This approach **. 
disambiguates gene names in a wide taxonomic spectrum, namely viruses, prokaryotes, *t 
archaea and eukaryotes, and resolves ambiguity within species as well as between species. -;: 

The generated data can be used to train a Naive Bayes classifier which can properly 
categorize new gene symbols given the fact that the latter is ambiguous or not and that 
the species is known. 
This methodology attempts to answer questions such as "Which gene do you address?" 
in an association study or text-mining tool. It also highlights the multiple aspects 
(biological function) of a gene symbol. Our algorithm relies on the taxonomy (LCA - last 
common ancestor) as a substitute for the biological function of a gene symbol if in a 
context the species is known and the function is problematic. Moreover, for database 
curators this tool provides a good overview of the extent of ambiguity in their repository, 
as well as an efficient way to resolve the ambiguity. 

Materials and Methods 

Data collection 

Data were extracted from the UniProtKB (Universal Protein Knowledge based) database 
release 12.1 (37), which is a central hub for the collection of functional information on 
protein, with accurate, consistent and rich information and an accepted biological 
ontology, taxonomic classification and cross-referenced information. Figure <f"step 1" 
highlights the data collection stage. UniProtKB is made up of SwissProt (manually 
curated set) and TrEMBL (automatically generated). 
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Step 1 
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X? X Query enrichment for 
information retrieval 

starting with gene symbols 

Figure 6 — Disambiguation algorithm data collection, discrimination and disambiguation workflow. 
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In order to investigate which name variant (primary name, alternative name) yielded 
greater ambiguity, we investigated the ambiguity level considering only the primary gene 
name in the UniProtKB. This explored the extent of the problem if scientists only 
referred to primary nomenclature in their research. A Perl module referred to as 
"neverExpand" implemented this scenario. We further measured the ambiguity extent 
considering the primary name and its UniProtKB alternative name(s), provided the latter 
was not a primary name elsewhere. This approach sought to highlight which of the 
nomenclature categories were mostly used and which might aggravate the ambiguity 
level; the "CondExpand" Perl module handled this case. Finally, the module 
"alwaysExpand" assumed that primary name and alternative names are likely to 
contribute to ambiguity. This analysis resulted in 10,865 ambiguous symbols out of 
243,366 UniProtKB gene symbols occurring more than once, which was 4.5 % of the 
total set. Figure 3 illustrates the extent of gene ambiguity in UniProtKB when using the 
above-mentioned approaches. The rationale in our investigation so far was to optimally 
quantify the ambiguity and as such, "AlwaysExpand' was adopted for our study. 

Data curation: 
Feature stemming 
For biological terms stemming can be considered done at two levels, namely the suffixes 
and the prefixes. Taking the prefix case, deacetylation stemmed to acetylation conveys a 
complete opposite meaning. To further illustrate this, we consider the following 
processes or actions: maturation, differentiation, and inhibition. Yet once maturation is 
stemmed to mature (fully developed), the biological meaning is changed. Furthermore, 
enzymes are suffixed with —ase (e.g. peptidase), and stemming carried out on disease 
(which of course is not an enzyme) results in "dise", which is neither a biological term 
nor an English term, but a French derivate of the verb "dire" (to say). Hence, using 
stemming in vector feature construction in this biological context might lead to a serious 
semantic error and after judging the risk stemming brought into play, we discarded it. 

Stop list generation and biological term selection 
The appropriate content identifiers were extracted from UniProtKB. We focused on 
three limited annotation fields that were likely to be highly enriched. These were the 
UniProtKb description field (DE), the comment field (CC) and Cross-reference fields 
(DR). In the next section we will explain our strategy for selecting gene symbol's content 
as well as the terms to be discarded from the whole set, the so-called stop word list. 
Most automatic indexing efforts start with the observation that the frequency of 
occurrence of individual word types (that is, of distinct words) in natural language texts 
(biological text) has something to do with the importance of these words for the purpose 
of contents representation. It has been observed that words occur in natural language 
unevenly. Consequently, classes of words are distinguishable by their frequency of 
occurrence. In fact, it is known that when distinct words in a text body are arranged in a 
decreasing order of their frequency of occurrence, the constant rank-frequency law of 
Zipf can characterize the occurrence characteristics of the vocabulary, 

frequency x rank ~ = constant, 

Le. the frequency of a given word multiplied by the rank order of that word will be 
approximately equal to the frequency of another word multiplied by its rank (38). The 
law has been explained by citing a general "principle of least effort", which makes it 
easier for a speaker or writer to repeat certain words instead of coining new and different 
words, with the exception for those used in poetry which of course is not applicable in 
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our case. The least effort principle also accounts for the fact that the most frequent 
words and those with the lowest rank tend to be short function words such as "the, and, 
of, but" etc. which are easy to coin and whose cost of usage is small. 
Using the Zipf law of expression as a starting point, we derived word significance factors 
based on frequency characteristics of individual words in gene symbol's biological 
description text. We followed this approach to quantify a potential stop list: by observing 
more closely the term frequency we decided on which suitable high and low threshold 
value to remove all words with a collection frequency above and below this threshold. 
However, low and high-frequency terms might produce losses in precision and recall. 
Another problem is the necessity to choose appropriate thresholds in order to distinguish 
the useful medium-frequency term from the remainder. Therefore the rest of the list was 
manually checked to discard meaningful term from generic and non-function terms (see 
additional files, list stop words). 

Gene symbol's sense discrimination 
Data clustering (Vector space representation of gene symbols). 
Figure 6 "step 2" highlights the sense discrimination stage. As the current text mining 
technologies are not able to "read" and "understand" a text like human beings due to its 
unstructured nature, text mining transformed texts into a vector space model, to which 
existing data mining or machine learning algorithms can easily be applied. In a vector 
space model, a text is represented as a vector by means of representative keywords called 
index terms. 
A useful index term must fulfill a dual function: it must be related to the information 
content of the gene symbol, so as to render the item retrievable when it is wanted (recall); 
a good index term also distinguishes the gene symbols to which it is assigned from the 
remainder to prevent the indiscriminate retrieval of all items, whether wanted or not 
(precision). Thus, a term such as protein, gene, RNA, DNA is not very indicative of the 
potential biological function but rather of a certain class of biological molecules. This 
suggests the use of relative frequency measures to identify terms occurring with 
substantial frequencies in some individual gene symbols of a collection, but with a 
relatively low overall collection frequency. Such terms may then help in retrieving the 
items to which they are assigned, while also distinguishing them from the remainder in 
the collection. 
The index terms describing a gene symbol were those from UniProtKB description field 
(DE), Cross-reference fields (DR) and comment fields (CC), devoid of those present in 
the Stop list generated previously. Therefore, for the purpose of further clustering a gene 
symbol's corpus (all document) was constructed. A document is made up of a species 
and gene symbol description index terms pair. 
The aim of document clustering is defined as follows: Given a set of n documents called 
Ds, D s is clustered into a user-defined number of kdocument cluster D s l , DS2,... Dsk (ie 
{DS1, DS2, ... D s t} = Ds) so that the documents in a document cluster are similar to one 
another while documents from different clusters are dissimilar. One innovation in our 
pipeline was to predict the optimal number of clusters given a dataset without user 
intervention as the unsupervised task of document clustering is a very subjective task. 
One important question that might arise from the latter is how can we predict the 
optimal number of cluster given a data set? 
Gordon and colleagues (39) gave a good overview on many methods that have been 
proposed for estimating the optimum number of clusters given a dataset. These methods 
could be classified as global or local. The former evaluate some measures over the entire 
dataset and optimize it as a function of the number of clusters. The local method 
considers individual pairs of clusters and tests whether they should be merged. 
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Robert Tibshirami and colleagues (40) applied six different methods for estimating the 
number of clusters. Their stimulation studies suggested that the Gap statistics estimate is 
a good algorithm to identify well-separated clusters. Given that biological terms co­
occurrence in the description of the biological function of a gene can be clearly 
separated, we believe this method as well suited for clustering and thus discriminating 
biological function of ambiguous gene symbols efficiently. 
The Gap statistic relied on the following: If one tries to cluster a dataset (i.e. numerous 
observations described in terms of a feature space) into n groups or clusters and if we 
plot the graph of within cluster dissimilarity (error) or similarity along an Y-axis and the 
number of clusters along an X-axis, then this graph generally takes a form of an elbow or 
knee depending upon the measure on the Y-axis. The Gap statistic seeks to locate this 
elbow or knee because the x-value of this elbow represents the optimal number of 
clusters for the data set. In Figure 7 "Gap statistic curve ofALKl" (see additional 
files) the Gap curve of ALK1 shows many local maxima and these in itself can be 
informative and suggesting the very subjective native of document clustering. 
In our methodology we integrated and used a suite of clustering algorithm, namely 
CLUTO for clustering(41) . 
Clustering approaches can be categorized as hierarchical, partitional (42) and hybrid. 
Next we will give a brief overview on clustering techniques and the choice of those used 
throughout our methodology. 
Hierarchical agglomerative clustering algorithms successively merge the most similar 
objects based on pair-wise distances between the objects until a termination condition 
holds (criterion function). Criterion function is a term that refers to different metrics that 
clustering algorithm use to try to optimize the quality of a clustering solution. An 
advantage of hierarchical agglomerative algorithm is that they generate a document 
hierarchy that users can search up and down for specific topics of interest. However, due 
to their cubic time complexity, they are limited for a very large number of documents. 
Partitional clustering algorithm, most widely used, first randomly select the k centroid 
and then divide the object into k disjoint groups through iteratively relocating objects 
based on the similarity between the centroids and the object. Hence, partitional 
techniques display a linear time complexity. One major drawback of partitional algorithm 
is that clustering results are heavily sensitive to the initial centroid because the centroids 
are randomly selected. 

Hybrid clustering algorithm is a partitional method that produces hierarchical clustering 
solutions using repeated bisections. The intention is to take advantage of the global view 
of the partitional algorithm but also to reduce the instability induced by the initial 
random k centroid. An example of hybrid clustering algorithm is the repeated bisection. 
Criterion functions are classified into internal, external and hybrid type. The internal type 
takes an intra-cluster (within) view of the clustering process, thus only captures how the 
gene symbol's context-vector in any given cluster is related to each other. 

1 = 2>,Q- Icos(4,4)) (V 

r=l ' d„dleSr 

Where 11 is the internal maximization function, nr represents the size of each k cluster 
(gene symbol biological functions), cos(dj,dJ is the similarity measure between context-
vector dt and dj 
The external criterion functions take an inter-cluster (between) view and try to find gene 
symbol's biological function clusters which are as different or dissimilar from each other 
as possible. 

(2) 
£1 = £»rcos( Cr,C) 
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Where E l is the external minimization criterion function, minimizing the similarity 
(cos(C„C)) between the centroid of each cluster (Cr) and the centroid of the entire set (Q 
weighted by the size of each cluster (»,) 
The hybrid criterion function strives to propose clustering solutions which maximize 
intra-cluster similarity and simultaneously minimize the inter-cluster similarity. 

m_IKm) (3) 
El(m) 

The Hybrid criterion function HI is proportional to a maximization function and 
inversely proportional to a niinirnization function and therefore itself is a maximization 
function. 
Zhao and Karypsis (43) reported that a strength of repeated bisection over 
agglomerative algorithm is its aptitude for excluding merging errors in the early stage that 
are usually the cause of poor performance in the agglomerative method. Furthermore, 
Pundare and Pederson (44) conjectured that when sparse data are available (specifically in 
this study as the corpus for each symbol prior to analysis were very sparse), repeated 
bisection can improve the clustering process. Owing to the advantage hybrid criterion 
function and hybrid clustering procedure offers we used them in our entire methodology. 

Cluster labeling 
Once the context-vector was separated into clusters by CLUTO repeated bisection as 
clustering procedure and hybrid criterion function, CLUTO generated a set of 
descriptive and discriminating features based on a set threshold of most characteristic 
features that were unique to each cluster. These were the top N (10 in our case) grams 
(words) ranked on their frequency or their statistical scores. The idea here was to assign 
automatically the most significant words summarizing a cluster without having to 
examine the clusters content. We would like to emphasize that these summaries were 
simple word lists without any grammatical syntax. 
Furthermore, to each cluster we assigned the latest common ancestor of species within 
that clusters using tools from the BioPerl toolkit (45). Taxonomic entries were from the 
NCBI taxonomic database, which is cross-linked from UniProtKB entries. 

Data Storage and querying 
All data generated throughout our pipeline is loaded and stored in a MySQL database for 
further querying. Sample table headers that show the link between gene symbols, cluster 
ID and latest common ancestor LCA is shown in table 2. This data are paramount in the 
subsequent step of our disambiguation because they are used to train a classifier for 
future classification of an ambiguous gene symbol. 
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Gene symbol 
ALK1 
ALK1 
ALK1 
ALK1 
ALK1 
CAT2 
CAT2 
CAT2 
CAT2 
CAT2 
CAT2 
CAT2 
CAT2 

Kingdom 
Bacteria 
Fungi 
l;ungi 
Fungi 
Metazoa 
Archaea 
Bact eria 
Fungi 
Fungi 

Metazoa 
Metazoa 
Viridiplantae 
Viridiplantae 

Tax rank 
Bacillus cereus 
Ascom ycota 
Aspergillus 
Saccharomvces cerevisiae 
Homo sapiens 
Hal obac teriac eae 
Bacteria 
Ascom ycota 
Pezizo my cod n a 
Mayetiola_destructor 
Ratt us_no rvegicus 
Magno liophyta 

Popu lus^deltoides 

Function/ #species 
2 

0 
2 
2 

0 

0 
1 

0-
1 

,1 

,4 
,3 
,1 
,1 
,2 
,8 
,5 
,2 
1 
1 
18 
1 

# of cluster/ cluster size (species) 
3;3 
3;4 
3;3 
3;3 
3;3 

2;17 
2;17 
2;17 
2;21 
2;21 
2;17 
2;21 
2;17 

Table 2: Data set used for training the classifier in the case of ALK1 and CAT2. Columns 1-3 are self-

descriptive. Column 4 contains 2 digits, the first represents the cluster identifier, the second the number of 

species in that cluster having the taxonomic rank in column 3. Column 5 summarizes the number of 

dusters for a specific symbol followed by the total cluster size. 

Gene symbol's sense disambiguation 
Figure 6 "step 3" highlights this stage 
Word Sense Disambiguation (WSD) may be seen as a text categorization (TC) task (46), 
which is the task of assigning a Boolean value to each pair (d^c^e DxC, where D is a 

domain of the document and C = {c, ,...,C|C|} a set of predefined categories. In our case, 

once we have viewed the gene symbol occurrence context as a document and gene 
function as a category, this is a single-label TC, and one in which document-pivoted TC 
is usually the right choice. We should view TC in our approach as taxonomy-pivoted 
gene function categorization. 
WSD are usually coupled to machine learning (ML) techniques. In ML terminology the 
classification problem is an activity of supervised learning, since the learning process is 
"supervised" by the knowledge of the categories and the training instances that belong to 
them. Amongst various existing machine learning techniques such as Support vector 
machine (SVM), we have chosen the probabilistic classifier Naive Bayes classifier because 
of its simple and yet robust implementation. The Naive Bayes classifier assumes that any 
two coordinates of the document vector are, when viewed as random variables, 
statistically independent of each other. The naive character of the classifier is due to the 
fact that the latter assumption is quite obviously not verified in practice. This 
probabilistic classifier is mathematically defined as follow: 

*$* 

PiC.ldj): Picnic,) 
P(dj) 

In the above formula the event space is that of a specific ambiguous gene symbol. 

P(dj)is the probability that a randomly selected LCA (latest common ancestor) 

encompasses species representing vector rf.. And P(ci) the probability that a randomly 

picked species belongs to category c, therefore has function c(. 
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In order to evaluate the approach analytically and to prove that our system was correct 
and complete, we needed a formal specification of the problem the system was trying to 
solve. Due to its inherent subjective character it is difficult to formalize the notion of text 
categorkation. Therefore our evaluation was conducted experimentally rather than 
analytically. 
Our experimental evaluation measured the ability of the system to take the right 
classification decision (effectiveness) through precision and recall. The precision (p) is 
denned as the probability that, if a random gene symbol-species pair (d^) is classified 
under biological function (ct), this decision is correct. Mathematically as: 

TP (I) 
P= 

TP+FP 

Where TP= number of true positive decision, FP= number of false positive decision. 
The recall (/) is defined as the probability that, if a random gene symbols- species pair (dj 
ought to be classified under biological function (c), this decision is taken. Mathematically 
as: 

TP (II) 

TP+FN 

Where TP= number of true positive decision, FN= number of false negative decision. 
Therefore, precision may be regarded as the "degree of soundness" and recall as the 
"degree of completeness". 
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Abstract 

An important consequence of the accumulation of vast amounts of genomic data is that 
the ambiguity of gene nomenclature leads to confusion in annotation. We present here 
Genellluminator, a tool that can highlight the multiple biological functions assigned to a 
gene within or across species exhibiting an ambiguous name or gene symbol. 
Additionally our tool can annotate a gene symbol of a given species based on prior 
knowledge of its closest taxonomic relative. This is an asset for annotation pipelines as 
well as document-pivoted and category-pivoted text categorization where gene symbols 
or gene name abbreviations are ambiguous. Genellluminator also proposes unambiguous 
gene symbol synonyms to the initial abbreviation of interest for a biological function. 
The suggested sets of unambiguous synonyms and biological entities of the category are 
used in a Boolean or vector model to effectively retrieve PubMed abstracts through 
GoPubMed, thus actively disambiguating PubMed abstracts. Genellluminator is freely 
available for academic use at: www.bioinformatics.nl/tools/gi/. For automated querying 
via custom software, four BioMOBY web services are available for remote programmatic 
access at: 

https://www.bioinformatics.rn/phenolink/home/BIF_services/GeneIUuminator_servic 
es.html. 

V ' 
(4-.-

http://www.bioinformatics.nl/tools/gi/
https://www.bioinformatics.rn/phenolink/home/BIF_services/GeneIUuminator_servic
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INTRODUCTION 

A consequence of the recent application of computational techniques in the life sciences 
is a vast increase in available data and publications. Naturally this provides a new and 
important source of valuable information, which however is presented in a challenging 
format, i.e. natural language text. In order to meet this challenge in large-scale 
exploitation, new text mining techniques are required. Several tools have been already 
developed to help researchers to extract and mine data in scientific literature, such as (1-
6). However, barriers to successful selection and identification of gene names and 
biological terms are: the extensive lexical variation preventing terms to be recognized in a 
free text, the gene name synonymy and the gene name homonymy. The latter creates 
uncertainties regarding the exact identity of a term. Furthermore, the biological field is 
mined with a constantly changing terminology and constant additions to this 
terminology. A related problem is the lack of a stringent nomenclature in the majority of 
gene and protein databases. For example, the guidelines for FlyBase, dealing with the 
genome of Drosophila, is largely unrestricted (7). FlyBase favours a rather descriptive 
nomenclature, which makes an automated identification of gene names very difficult. In 
contrast, term conventions for yeasts are more stringent, thus allowing for easier gene 
name identification. 

To this problem of rather technical ambiguity adds also the often encountered conflict of 
interest between researchers, as scientists might rather share their toothbrush than the 
same gene name (8). 
Applications such as manual literature search, automated text-mining, named entity 
recognition, gene or protein annotation, and linking of knowledge from different 
information sources require the knowledge of all names referring to a given gene or 
protein unambiguously (9). In this context it is important to realize that biomedical and 
biological terms often appear in abbreviated forms, so-called acronyms. Although several 
methods have been developed to capture the different acronyms in the literature (10-19), 
they are not sufficient in selecting the proper acronym that unambiguously pertains to 
the concept of interest, e.g. the biological function. That means that to date current text 
mining tools cannot guide users toward the effective term selection to achieve a 
meaningful query. 
This paper addresses the ambiguity at the gene nomenclature abbreviation or acronym 
level. How does one efficiently and unambiguously tap the huge knowledge base of 
literature in such a way as to assist scientist to make sense of the vast amount of high-
throughput data generated in experiments? Good interpretation is key to generate new 
hypotheses for further experimentation and validation. 
Here we present Genellluminator (GI), a tool that addresses various aspects of text 
mining. It addresses and displays the multiple aspects of the biological functions of 
ambiguous gene symbols. These multiple aspects can be used independendy to partition 
PubMed abstracts based on a similarity profile between abstracts and different concepts 
of an ambiguous gene symbols. The tool can also be used as a gene symbol ambiguity 
checker for information contained in UniProtKB. It categorizes ambiguous gene 
symbols, their synonyms and species with respect to the distinct biological concept of the 
primary symbols used for the searches. Furthermore there is an option to check the 
quality of the categorization as well as the provision of the feature space used for the 
categorization task. And finally, Genellluminator can be seen as an interactive curation 
tool, which supports the curator of databases and can eventually learn from him. Besides 
this it represents a functional annotation approach that combines data from linguistic 
and bioinformatics sources. In the subsequent section we will introduce the methodology 
of Genellluminator. 
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MATERIALS AND METHODS 

Implementation and design 

Data preparation and processing 
Genellluminator interrogates a MySQL repository of ambiguous gene symbols taken 
from a quantitative survey of ambiguous acronyms in UniProtKB. Our database was 
constructed with a methodology (manuscript submitted for publication) based on the 
UniProt Knowledgebase, release 12.2. Briefly, the UniProt consortium is concerned with 
the integration of protein information in the UniProtKB, providing a central, stable, 
comprehensive, richly classified and accurately annotated protein sequence database with 
extensive cross-references to other data sources. The expectation of the UniProt project 
is that the SwissProt/UniProt and Entrez gene databases will increasingly share 
nomenclature with the advantage that the mapping between databases will be 
increasingly complete and unambiguous. This will aid in facilitating the generation of 
gene name dictionaries which in turn will represent a comprehensive source of gene 
nomenclature for analysis and text mining purposes. (20) 

Input and output description 
The GI interface uses as the minimum input the gene name symbol or acronym. The 
interface uses AJAX) technologies that help to auto-complete input data such as gene 
symbol or species name. Figure 1 displays the GI interface. 

TUsamkjjMtion ojfuiUd flfefract 
stanhw from ame symbols 

EOJEJMHl 
Enter gene symbol 

!V_ Function prediction 

Enter species name ^_ All symbol* ^ Only Ambiguous symbols 

f Submit ̂  ' Reset^ 

©2007 Laboratory crfBiotnfonnatico.WUR 

Versoo *.0; Last Mofrf-ed 06 Marcn. 2Q07 Dy Franks AlaKo 

•-vM 

4v. 

Figure 1: Genellluminator web interface 

It uses aiSee, a graphic layout software tool (www.aisee.com) and CLUTO 
(http://glaros.dtc.umn.edu/gkhome/views/cluto) to enhance the visualization of 
Genellluminator's gene symbol analysis. GI exploits aiSee's force-directed layout to 
display the gene symbol and its synonyms in a network manner to the most descriptive 
terms of its biological function and different taxonomic level of the respective species. 
The nodes of the generated graph represent the gene symbol, its synonyms and 
associated biological terms, and the taxonomy. 

http://www.aisee.com
http://glaros.dtc.umn.edu/gkhome/views/cluto
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Different shapes and colors are applied to provide a comprehensive overview to analyze 
this graph. All nodes are interactive and by clicking on the node a set of related PubMed 
abstracts will be displayed for user's assessment. The graph is illustrated as a publication 
quality scalable vector graphic (SVG) in Figure 2-ay where the network of gene symbols 
and their synonym associations to descriptive biological terms are shown. Furthermore, 
the clustering toolkit CLUTO {Figure 2-5) provides clustering of descriptive features of 
the ambiguous symbol under investigation, which represents a complementary aspect to 
the graph layout of aiSee. 
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Figure 2a-b, Geneilluminator output: (a) Taxonomy-based disambiguation of ALK1. (b) phenotypic 
(textual) data clustering of ALK1 annotation across different species showing three distinct biological 
functions. 

In the case that a gene symbol cannot be found for any user-specified species, GI will 
assign the meaning of the gene symbol to the species based on their latest common 
ancestor in the taxonomy. The latter assignment is realized with a Naive Bayes 
classification algorithm that bases it assumption on the following: most assignments of 
annotation for molecular function rely, at least partially, on the assumption that genes 
with similar sequences also display similar biological functions. 
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This implies, that sequences are evolutionary related to a certain extent, the relationship 
denoting a common latest ancestor prior to the speciation event. Thus, species of a 
certain taxonomic rank most probably have the same biological function for a specific 
gene. Hence annotators copy information from orthologous sequences or more closely 
related species. We use this assumption in our approach to relate the gene symbol to a 
before unknown species. 
To illustrate our approach, we selected the gene symbol ALK1, which has entries in 
UniProtKB for human, fungi and bacteria domains. Figure 2-b shows the existence of 
two distinct groups in fungi, described respectively as cytochrome P450 and permease-
peptidase related, whereas in bacteria ALK1 refers to DNA repair enzyme. Furthermore 
a comparison of ALK1 synonyms and taxonomic association to its multiple senses 
{Ggvre 2-c, 2-d, 2-e) shows that unlike synonyms, the taxonomic units are unambiguous 
per biological function. For instance, species of the rank Ascomycota show unambiguously 
the function cytochrome monoxygenase related. All species of the taxonomic rank 
Aspergillus unambiguously have the function protease peptidase related, and last but not 
least Bacillus cereus, Homo sapiens and Sacchanmyces cerevisiae unambiguously have the 
function kinase receptor related. This clearly exemplifies the issue of intra-species and 
inter-specie gene nomenclature ambiguity encountered in text mining of current 
knowledge databases. 

ALK1 - GENE ILLUMINATOR ANALYSIS 
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Figure 2c-d-e: Genellluminator output; (2-c), species distribution for the ALK1 biological function: 
Cytochrome monooxygenase related, (2-d) species distribution for the ALK1 biological function: 
proteinase peptidase related (2-e) species distribution for the ALK1 biological function: kinase receptor 
related. 



Genellluminator: disambiguation ofPubMed abstracts 

Using the Naive Bayes taxonomy-based disambiguation {Figure 2-d) shows that for the 
species Aspergillus flavus and the gene symbol ALK1 the function "proteinase 22.3%, 
elastolytic 5.6%, peptidase 5.6%" is assigned with a 100 % confidence based on the fact 
that all Aspergillus spp. already exhibited that function (latest common ancestor). The 
percentage ascribed to each functional biological term of a category, e.g. 22.3% 
proteinase, explains that the cluster is made up of "proteinase, elastolytic, peptidase, 
secreted protein, alkaline" to the extent of the given percentage. Currently predefined 
queries are generated from a list of synonyms as shown in Bgure 2-a, 2-c, 2-d, 2-e. A 
click on the cluster label 'Cytochrome monooxygenase cluster' retrieved a total of 157 
abstract listed in PubMed with the majority of them referring or being related to fungi. 

Design overview 

Genellluminator is implemented in Perl as a web-based service, running on an apache 
2.0 webserver using a Linux platform (SuSE Linux Enterprise Server 9 with MySQL 5.0). 
GPs interface {Figure J) is a wrapper on several independent applications that uses a 
Naive bayes algorithm for categorizing previously unseen instances of ambiguous gene 
symbols of a given species and subsequently plotting a graph of gene symbols, their 
synonyms and associated biological functions. The web interface preserves platform 
independency across multiple operating systems and allows the user to interact with the 
different GI programs without prior knowledge of computer programming skills. Figure 
3 summarizes a global overview of the GI workflow. 
The GI web interface was tested on Windows XP, Mac OS X and several types of Linux 
OS browsers with good results. However, some problems where noticed with the 
interactive usage of the scalar vector graphics (SVG) due less or no support of some 
browsers with this graphic display; currently some browsers still require an Adobe SVG 
plug-in, downloadable from the Adobe site 
(http://www.adobe.com/svg/viewer/install/main.html). The latest versions of the 
Mozilla Firefox browser (version 2.0 and above) and Safari have already a native (built-
in) SVG support and it is reasonable to expect that more browsers will soon follow. 

In addition to the web interface, four BioMOBY (21) web services were developed, 
providing remote programmatic access to GI: 

• GeneIlluminator_GetGraph 
• GeneIlluminator_GetClusters 
• GeneIlluminator_AssignSpeciesToCluster 
• GeneIlluminator_GetPubMedQuery 

These web services allow users to incorporate GI in workflows for automated 
disambiguation of gene symbols. 

http://www.adobe.com/svg/viewer/install/main.html
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All services require a gene symbol as minimum input, but 
GeneIlluminator_AssignSpeciesToCluster and GeneIlluminator_GetPubMedQuery 
{figure 4 illustrate its Taverna workflow) require a species name in addition. The first 
two services provide an overview of all synonyms and homonyms for a gene symbol 
together with clusters of taxonomic clades showing the gene symbol pertaining to a 
certain function. 
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GeneIUuminator_GetGraph provides this overview as an image in SVG format, whereas 
GeneIlluminator_GetClusters (figure 5 illustrates its Taverna workflow) provides the 
same information in a textual format (raw BioMOBY XML). 
GeneIlluminator_AssignSpeciesToCluster also provides the textual information as 
GeneIlluminator_GetClusters, but furthermore adds a Naive Bayes probability indicating 
the likelihood of a gene symbol belonging to a certain cluster given the input species. 
Finally, GeneIlluminator_GetPubMedQuery implements a Boolean query to search 
PubMed for a given gene symbol and species, unambiguously retrieving documents that 
describe the gene of interest. It is noteworthy that GeneIlluminator_GetPubMedQuery 
provides the query terms solely and does not perform the actual query. The latter is 
accomplished by GoPubMed (22), a different web service software. 
Documentation, example workflows and example inputs for the workflow builder 
Tavema (23) are available in the online material. 

Workflow Inputs 

TL -..'."ii 

Workflow Outputs 

Clusters 

Figure 5: GeneIlluminator_GetClusters web service. If a gene symbol is ambiguous this service provides 
GI_Clusters describing which different genes sharing the same symbol exist in different parts of the tree of 
life Provides also gene symbol aliases associated to the input gene symbol 
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FUTURE PLAN 

We plan in the near future to allow the user to select terms of categories and symbols to 
be used in her/his query formulation. This will gear up the search to the specific user 
needs. Furthermore we plan to provide a suitable interactive summary report of the 
different abstracts retrieved as well as association maps in suitable graphical format of all 
abstracts pertaining to each of the functional aspects of a gene symbol. Moreover we 
believe it to be beneficial to implement an ensemble of classifiers or use consensus from 
multiple classifiers to assign a function to an ambiguous gene symbol for a given species. 

CONCLUSION 

Genellluminator is a disambiguating text-mining tool that is able to display the multiple 
aspects, i.e. biological functions, of an ambiguous gene symbol. GI uses the latest 
common ancestor of a species assuming the same biological function for an ambiguous 
gene symbol, to infer the function in those species where the function is irretrievable or 
ambiguously retrievable through direct database query. Given a document, GI searches 
and retrieves all categories under which it should be filed (known as a document-pivoted 
categorization). Alternatively, given a specific category, GI searches and retrieves all the 
documents that should be filed under this specific category (category-pivoted 
categorization). 
Genellluminator can be easily accessed through its web interface or its programmatic 
interfaces (web services) and represents a user-friendly tool for up-to-date text mining in 
life sciences. 
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Summary: 

In the past years an extensive generation of information has taken place, in particular 
•with the advent of the "omics", i.e. genomics, proteomics, transcriptomics, 
metabolomics and other members of the "omics" field, who use molecular techniques. 
The "omics" field in current life sciences is characterized by the transition from local to 
global scale studies, as well as the generation of complete genomic sequences of 
unprecedented number and size which are currendy stored and classified in specific data 
bases, e.g. UniProtKB. Another consequence of the rise of available data is their 
processing in scientific literature, which means that the number of publications increased 
exponentially alongside the development of the field. 
In view of such extensive generation of information new automated approaches are 
required to aid in the organization and exploitation of these data sets in order to live up 
to the expectations of the "omics" rise. This requires advanced computational tools, 
mimicking some aspects of the manual interpretation process and thus computer science 
becomes an indispensable asset in assisting the automation of data analysis in biology. 
Therefore we have developed an integrative algorithmic approach towards unambiguous 
knowledge discovery in bioinformatics that is presented in this thesis. 

We first introduce the field of Bioinformatics and computational biology in Chapter 1. 
The step from local experimental approaches to global approaches successfully generates 
an overwhelming set of data and experimental results, thus advancing biology from 
technology and technique based research to information driven research. Consequently, 
computer techniques applicable to the biological fields are required to automate the 
organisation, management, and normalisation of such data sets and thus to assist 
scientists with the interpretation of results. Several biological fields where machine 
learning techniques find their application are introduced and a brief background to the 
respective evaluation techniques in machine learning are provided. 
In general this chapter provides an overview on the main questions of bioinformatics 
and computational biology: definition of the field, importance of application, technical 
background of data generation, storage and organization as well as text mining and an 
oudook to the development of approaches in the subsequent chapters. 

In Chapter 2 we show that the traditional methods of inferring and supporting 
homology based on sequence similarity and identity might fail in the case of low 
sequence similarity. In order to solve the problem of low sequence similarity we 
developed TreeDomViewer (TDV), a biological web-based visualization tool that 
combines sequence alignment and InterProScan analysis of sequences and generates a 
phylogenetic tree projecting the predicted protein domains onto the multiple sequence 
alignment. 
To illustrate the power of TreeDomViewer we used the lipocalins, a superfamily of 
proteins that carry hydrophobic prosthetic groups. Lipocalins have a strong divergent 
protein sequence, denoting a fast rate of molecular evolution. Moreover, the evolutionary %?*§§ 
history of the lipocalins is rich in gene duplication events, which increases the difficulty •;•&%(. 
of obtaining an understanding of orthologous relationships. The results obtained with 
TreeDomViewer clearly show the relationships between the lipocalin subfamilies, where 
the alignment of the distinct domains underpin the phylogeny, and vice versa. It 
illustrates that TreeDomViewer helps in any phylogenetic analysis resolving both the 
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relationship among different group members and the relationship between groups, based 
solely on the aligned domain structure of each participant.. 

Reliable and robust interpretation of experimental data has been shown when those 
experimental data were integrated with other data source, namely the knowledge 
embedded in the literature. Therefore data integration is the key motto in this genomic 
era. Chapter 3 uses this approach in the analysis of microarray data by introducing the 
tool CoPub Mapper for mining the literature based on term (gene names, disease, drug, 
chemical compound) co-occurrence. CoPub Mapper was developed using literature 
integration for the purpose of interpreting a set of differentially expressed genes 
generated from microarrays. These gene expression sets were selected from a 
comparison between ovaries of healthy women and women suffering from Polycystic 
Ovary Syndrome (PCOS) in an investigation of the causes of female infertility. CoPub 
mapper allows for a quick and versatile querying of co-published genes and keywords 
and was successfully used to cluster predefined groups of genes with their respective 
biological process, disease keyword and microarray data. 

However, currently a directed literature information search or literature mining faces the 
problem of ambiguity. Ambiguity is inherent in natural language and its importance is 
evident given the fact that each publication uses natural language as the main vehicle of 
information distribution. Therefore we focussed on the ambiguity encountered in gene 
nomenclature, in particular on their use of abbreviation or acronyms of gene names 
(gene symbols). 
The objective of Chapter 4 is firstly to quantify the ambiguity problem in the universal 
protein knowledge base (UniProtKB) and secondly to propose a disambiguation 
approach based on species taxonomy. Given that sequences are evolutionary related to a 
certain extent, their relationship denoting a common latest ancestor prior to the 
speciation event, we hypothesize that gene symbols of taxonomically closely related 
species are more likely to be pointing to the same biological function for a specific gene. 
The latter hypothesis bases its foundation on the fact that biologists and annotators often 
copy names and functions from related species. Currently most assignments of a 
molecular function during annotation rely, at least partially, on this assumption. Using 
this key assumption we developed an algorithm that unambiguously assigns biological 
function to a given gene symbol and its alternative names, based on the latest common 
ancestor (LCA) of the given species name. The tool efficiently and unambiguously 
enriches query terms for searching the literature, starting solely with a gene symbol. 

Chapter 5 introduces Genellluminator (GI), an application that implements the 
disambiguation methodology introduced in Chapter 4. The calculated sets of 
unambiguous synonyms and their biological entities are implemented in a Boolean or 
vector model to effectively retrieve abstracts from the PubMed database with the aid of 
GoPubMed, an ontology-based PubMed search engine. Given a document, GI searches 
all categories under which the document in question could be filed; this method is 
known as document-pivoted categorization. Alternatively, given a specific category, GI 
searches all documents that should be filed under this category (category-pivoted 
categorization). Therefore, Genellluminator can be used to effectively disambiguate 
abstracts in the Medline database. 

In conclusion 
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In the scope of this thesis we aimed to develop different approaches aiding in the 
utilization of the exponentially growing amount of information available in current life 
sciences. The main contributions and developments of this work thesis are: 

1. TreeDomViewer, a visualization tool for phylogeny and protein domain 
structure, available at http://www.bioinformatics.nl/tools/treedom/ 

2. CoPub Mapper, a text mining tool based on term co-occurrence, available at 
http://services.nbic.nl/cgi-bin/copub/CoPub.pl 

3. A taxonomy-based gene symbol disambiguation algorithm finding its application 
in literature retrieval for gene function prediction and in efficient document 
categorisation 

4. Genellluminator, a tool for information retrieval and disambiguation of PubMed 
abstracts, available at: http: / /www.bioinformatics.nl/tools/gi/ 

1 

http://www.bioinformatics.nl/tools/treedom/
http://services.nbic.nl/cgi-bin/copub/CoPub.pl
http://www.bioinformatics.nl/tools/gi/
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Samenvatting 

In de afgelopen jaren is er een massieve hoeveelheid informatie geproduceerd, met name 
met de opkomst van het "omics" onderzoeksveld, zoals genomics, proteomics, 
ttanscriptomics en metabolomics. 
Het "omics" veld wordt gekarakteriseerd door een schaalvergroting in zowel breedte als 
diepte waardoor tot nu toe ongekende hoeveelheden data in databanken opgeslagen 
worden. Dit heeft weer tot gevolg dat het aantal wetenschappelijke publicaties 
exponentieel toeneemt met de ontwikkeling van het veld. 
Om de organisatie en exploitatie van deze data het hoofd te kunnen bieden zijn nieuwe 
geautomatiseerde procedures onontbeerlijk. In dit proefschrift worden een aantal 
integratieve algoritmes gepresenteerd die behulpzaam zijn bij de eenduidige 
fcennisvergaring in de bioinformatica. 

In hoofdstuk 1 wordt het veld van de bioinformatica en computationele biologie 
ge'introduceerd. De schaalvergroting in de experimentele biologie leidt tot 
overweldigende hoeveelheden data en resultaten. Bijgevolg zijn informatica technieken 
noodzakelijk om het beheer, ontsluiten en analyseren van deze data mogelijk te maken, 
en de wetenschapper te ondersteunen in de interpretatie van de resultaten. 
Dit hoofdstuk poogt een overzicht te geven van een aantal belangrijke vraagstukken in 
de bioinformatica, met name op het gebied van de "machine learning" en text mining, en 
de daarbij behorende technieken en evaluatie methodes. 

In hoofdstuk 2 laten we zien dat de traditionele methodes voor het afleiden en 
ondersteunen van homologie gebaseerd op sequentie overeenkomst mogelijk faalt 
wanneer de sequentie overeenkomst erg laag is. Om dit probleem op te lossen 
ontwikkelden we TreeDomViewer (TDV), een web-gebaseerd visualisatie hulpmiddel dat 
sequentie alignment combineert met InterProScan eiwit domein analyse en 
fylogenetische analyse, waarbij de voorspelde domeinen op de multiple alignment 
geprojecteerd worden. 
Om de kracht van TDV te illustreren werden de lipocalins gebruikt, een eiwit 
superfamilie die kleine hydrofobe moleculen zoals retinol kunnen binden. Lipocalins 
hebben een sterk gedivergeerde eiwit volgorde, wat wijst op een snelle moleculaire 
evolutie. Bovendien hebben er veel gen duplicaties plaatsgevonden, waardoor het 
berkrijgen van een begrip van de ortologe relaties bemoeilijkt wordt. De resultaten die 
met TDV verkregen worden tonen duidelijk de relaties tussen de verschillende lipocaline 
subfamilies, waarbij de alignment van de verschillende domeinen de fylogenie 
ondersteunt en vise versa. Het laat zien dat TDV behulpzaam is bij fylogenetische analyses 
voor het oplossen van de relaties tussen verschillende groepsleden als wel tussen groepen ?^ —'-
onderling, daarbij slechts gebruik makend van de ge-aligneerde domeinstructuur van elk -^ii.f -
van de eiwitten. %\ ",..'• 

* > • : ' 

Data integratie is de benadering die in hoofdstuk 3 gebruikt wordt voor de analyse van & • - ^ 
microarray data. CoPub Mapper is een programma om de literatuur te doorzoeken ;-". ,•£< 
gebaseerd op het gekoppeld voorkomen van termen (gen namen, ziektes, $**£$* 
geneesmiddelen, chemische stoffen). Het programma is ontwikkeld met als doel het 
interpreteren van sets van differentieel tot expressie gebrachte genen van microarrays. 
Deze sets waren afkomstig een vergelijking tussen ovaria van gezonde vrouwen en 
vrouwen die aan Polycystic Ovary Syndrome (POS) leden, in een onderzoek naar de 
oorzaken van onvruchtbaarheid. CoPub Mapper maakt het mogelijk om snel en flexibel 
te zoeken naar ge-co-publiceerde genen en trefwoorden, en was succesvol in het 
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clusteren van groepen genen met hun bijbehorende biologische processen, ziekte termen 
en microarray gegevens. 

Een van de problemen bij het "minen" van de literatuur is de ambiguiteit van termen 
zoals gen namen, en in dit geval in het bijzonder de ambiguiteit van de afkortingen of 
acroniemen van gen namen. 
Het doel van hoofdstuk 4 is allereerst om de omvang van het ambiguiteitsprobleem te 
kwantificeren in de UniProt eiwit databank, en vervolgens een disambiguatie strategic te 
introduceren, gebaseerd op taxonomie. De hypothese is dat naarmate species 
taxonomisch meer verwant zijn, er een grotere kans is dat gen symbolen naar dezelfde 
biologische functie voor een specifiek gen verwijzen. Dit is gebaseerd op de aanname dat 
biologen en annotatoren vaak namen en nineties kopieren van gerelateerde soorten. 
Gebruikmakend van deze hypothese hebben we een algoritme ontwikkeld dat eenduidig 
een biologische functie kan toewijzen aan een (ambigu) gen symbool en zijn alternatieve 
namen, gebaseerd op de taxonomische relaties van de soort naam. De implementatie van 
het algoritme kan egbruikt worden om eenduidig en met hoge efficientie de lietratuur te 
doorzoeken, uitgaande van een gen symbool. 

Tenslotte introduced* hoofdstuk 5 Genellluminator (GI), een applicatie die de 
disambiguatie methode van hoofdstuk 4 implementeert. De voorberekende sets van 
eenduidige synoniemen en hun biologische entiteiten zijn ge'implementeerd in een 
logisch (Boolean) of een vector model om PubMed abstracts met behulp van 
GoPubMed (een PubMed zoekmachine) op te halen. Gegeven een document doorzoekt 
GI alle categorieen onder welke dit document ondergebracht zou kunnen worden 
("document-pivoted categorization"). Wordt een specifieke categorie opgegeven, dan 
doorzoekt GI alle documenten die onder deze categorie opgeslagen zouden worden 
("category-pivoted categorization"). Hierdoor kan Genellluminator gebruikt worden om 
de abstracts uit de Medline database effectie te disambigueren. 

..«K. 
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