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Abstracts

Title:

An integrative algorithimic approach towards knowledge discovery by bioinformatics
Short Summary:

In this thesis we describe different approaches aiding in the utilization of the
exponentially growing amount of information available in the life sciences. Briefly, we
address two issues in molecular biology, on sequence analysis, and on text mining, The
former issue addresses the problem how to determine remote sequence homology
especially when the sequence similarity is vety low. For this a visualisation tool is
introduced that combines sequence alignment, domain prediction and phylogeny. The
second topic on text mining centres on the question how to unambiguously formulate
queties for efficient information retrieval It tackles the problem of gene nomenclature —
one In two gene symbols being ambiguous - by introducing a new text-clustering- and
taxonomy-based disambiguation methodology.

Titel: (Title in Dutch)

Kennisextractie (“knowledge discovery”) in de moleculaire biologie met behulp van
bicinformatica technieken

Samenvatting: (Short summary in Dutch)

In dit proefschrift worden verschillende benaderingen beschreven om de exponentieel
groeiende data stroom in de levenswetenschappen te exploiteren. T'wee velden uit de
moleculaire biologie worden aangesproken, de sequentie analyse en tekst analyse,

Het eerste onderwerp richt zich op het probleem van de verwantschap van eiwitten,
vooral wanneer de onderlinge overeenkomsten erg gering zijn. Hiervoor is cen
visualisatie programma ontwikkeld dat sequentie alignment, eiwit domein voorspelling en
fylogenie combineert.

Het tweede hoofdonderwerp van dit proefschrift, text mining, spreekt het probleem aan
hoe een zoekvraag in de literatuur zo efficiént en eenduidig mogelijk geformuleerd kan
worden. Hierbij wordt in het bijzonder het probleem van de gen-symbool ambiguiteit
geadresseerd: 50% van de gen-symbolen is niet eenduidig, en kan dus meer dan een gen
of eiwit familie aanwijzen. De nieuw ontwikkelde methode kan doot gebruik te maken
van tekst clustering en taxonomische informatie dit probleem in vrijwel alle gevallen
eenduidig oplossen.
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1.1 Definition of biocinformatics

Bioinformatics, often referred to as computational biology, involves the use of vatious
fields including mathetnatics, statistics, computer science, attificial intelligence, chemistry
and biochemistry to solve biological problems, tmost commonly at the molecular level.
Major bicinformatics research interests comprise diverse domains such as sequence
alignment, gene finding, genome assembly, protein structure prediction, protein-protein
interaction, phylogeny, text mining and many more. Whereas computational biology is
focussed on forming a hypothesis based on a given data set, bioinformatics is more
concerned with gaining information from such data. In other words, bioinformatics
refers mote to the creation and advancement of algorithms, computational and statistical
techniques and theoty to solve formal and practical problems deduced from the
management and analysis of biclogical data. Meanwhile, computational biology refers to
a hypothesis-driven investigation of a specific biological problem using computers as
tools. The latter is carried out with experimental or simulated data, with the ptitnary goal
of discovery and the advancement of biological knowledge.

1.2 Why using bioinformatics?

Nowadays genome-wide techniques such as micro array analysis, Serial Analysis of Gene
Expression (SAGE), Massively Parallel Signatute Sequencing (MPSS), linkage analysis,
yeast two-hybrid, mass spectrometry and association studies are used extensively in the
search for genes that are causative in diseases or responsible for a phenotype in general,
and these techniques often identify many hundreds of candidate genes. Such high-
throughput experimental technologies have given rise to the “omics” fields in current life
sciences that are characterized by the transition from local to global scale studies, as well
as generating complete genomic sequences of unprecedented numbet and size.

In view of such massive generation of information new approaches are required to aid in
the organization and exploitation of these data sets in order to live up to the expectations
that the “omics” fields may rise.

1.3 Computational technique and machine learning in bioinformatics

The exponential growth of biological data raises two main problems: on one hand the
efficient storage and management, on the other hand the extraction of useful
information from these data. The latter requires the development of tools and metheds
to transform these heterogeneous data into biologically meaningful facts and testable
models.

The ultimate goal is to undetstand and predict normal function of organisms and to
proceed from thete to the understanding of abnormalities such as diseases. Given the
wealth of data, the interpretation can not be done manually. It requites advanced
computational tools, mimicking sorae aspects of the manual interpretation process and
thus computer science becomes an indispensable asset in assisting the automation of data
analysis in biology.

Machine learning (ML) is a field of research where computational methods learn to
answer complicated problems based on sets of provided data. Machine learning
algorithms are data-driven and are ideally suited for areas with an extensive generation of
datz but little theoretical background, such as is often the case in the field of molecular
biology. The methods often do not need to be separately modified for each problem;
rather they are general-purpose. Classifying samples, pattern recognition, clustering,
modeliing, and visualization are typical applicatons of machine leaming. Machine
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learning can be largely defined as either supetvised or deductive methods that attempt to
obtain a “cotrect response” given by a teacher, unsupervised or inductive methods that
attempt to achieve the statistical goal “tesponse unknown”, and reinforcement learning
where one is rewarded based on how well one did, but is not told what the cortrect
response was. Machine learning uses computer programs to optimize a performance
ctitetion by managing example data or past experiences. In other words, machine
learning is concerned with the design and development of algotithms and techniques that
allow computers to "learn". The ultimate goal here is to extract useful information from
a body of data by building good probabilistic models and automating the process as
much as possible. As stated above, in general there ate two types of learning: inductive
and deductive. Inductive machine learning methods exiract rules and pattemns out of
massive data sets whereas deductive machine leatning methods apply the kind of
reasoning where drawing a conclusion is necessitated by previously known premises.
Thete are several sub-disciplines of the life sciences where machine learning is applied
for knowledge extraction from data. Examples of ML in bioinformatics include Support
Vector Machines (SVM), Nearest Neighbour Algorithms (NNA) and Hidden Markov
Models (HMM) to name a few. Suppott vector machines map input vectors to a higher
dimensional space where a maximal separating hyperplane is constructed. Two parallel
hypetplanes are constructed on each side of the hyperplane that separates the data. The
sepatating hyperplane is the hyperplane that maximizes the distance between the two
paratlel hypetplanes. An assumption is made that the larger the margin or distance
between these parallel hyperplanes the better the generalisation etror of the classifier will
be. In NNA an object is classified by a majority vote of its neighbours, with the object
being assigned to the class most common amongst its & nearest neighbours. Hence NNA
is a method for classifying objects based on closest training example in feature space.
Features are the individual measurable heuristic properties of the phenomena being
observed. A FIMM on the other hand is a sratistical model in which the system being
modelled is assumed to be a Markov process with unknown parameters, and the
challenge is to determine the hidden parameters from the cobsetrvable parameters. The
extracted model parameters can be further used for pattern recognition application.

1.4 Bioinformatics in various biological fields

Cutrent genomics deals with an exponential sequence data production that
encompasses for example linkage analysis, sequence assembly, gene annotation, and
single nucleotide polymorphism (SNP).

Bioinformatics, using genome sequences, can aid in their analysis, such as gene finding or
RNA gene finding, alternative splicing, coding-region identification and splice site
prediction as well as the prediction of gene function and RNA secondatry structure.
Computational techniques can further assist amongst others in motif detection of
transcription binding sites, promoter binding sites and operons.

Examples of structure and function prediction by machine leaming include the Hidden
Markov Model (HMM), multlayer perceptrons and decision trees. A perceptron is a
binary classifier that maps its input (binary vector) to an output single binary value. A
decision tree is a predictive model that uses graph decisions to map obsetvation about an
item to conclusion about its target value. Decision trees are also known as classification
trees (discrete outcome) and regression trees (continuous outcome).

In the proteomics domain, the main application of machine learning can be found in
protein function and structure prediction, protein location prediction, protein-protein
interaction and protein annotation as well as sequence alignment (Altschul, Madden et al.
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1997; Notredame, Higgins et al. 2000; Edgar 2004; Ma, G et al. 2007) (simulated
annealing, genetic algorithm).

Bioinformatics also finds its application in the management of complex microarray
experimental data sets, which has lead to the application of techniques such as Self
Otpganising Map (SOM) and Bayesian network. Microatray assay’s complexity owes to
the fact that data have to be pre-processed, ie. modified, prior to their analysis by
toachine leaming algorithms in seatch for expression pattern identification and genetic
network identification. Traditional clustering techniques based on hierarchical, self-
organising maps (Tamayo and et al. 1988) have been used to detive putative functional
clusters of genes from expression profile data (Sherlock 2001) . Applying the guilt-by-
association principle, expression profile clustering also can be used for inferring the
biological functions of new genes. If an uncharacterised gene is clustered with a group of
genes known to patticipate in a specific biological process, then it is hypothesized that
the uncharacterised gene also participates in this process.

However, genes sharing similar expression profiles do not always share a common
function. Spellman and colleagues (Spellman and et al. 1988) reported that clustering by
expression profile grouped genes into a single cluster even though they are involved in
distinet cellular functions. The reverse can also hold true, ie. not all genes comprised in
the same function group necessatily exhibit a common expression. For example, the
members of 2 signalling pathway often play antagonistic roles, resulting in anticorrelated
expression levels in microarray expetiments. Therefore the gene expression clustering
approach should not be used as the sole analysis tool, but rather should be coupled with
other data mining techniques. The latter can provide necessaty biological knowledge in
intelligent expression profile analysis.

Another domain of biology where machine leaming proves valuable is systems biology:.
The objective of systems biology is to model intracellular life processes, cell, organ, and
organism up to whole ecosystems. Bioinformatics uses computational techniques to
model these biological netwotks such as metabolic pathways, genetic and signal
transduction networks.

The field of eveolution attempts to elucidate and understand the changes of inherited
traits in a population from generation to generation. An important technique in this field
is the generation of phylogenetic trees as the schematic representation of organism’s
evolution. These trees are cutrently based on the comparison of different genomes
{molecular evolution), a comparison that is made based on multiple sequence alignment
where computational techniques are extremely valable for their optimization (Baldi P
and S. 2001).

A consequence of the use of computational techniques in the aforementioned biological
fields is a dramatic increase in available publications. This in turn represents a new soutce
of valuable information where text mining techniques are required to keep at pace with
the information load. Text mining sees its benefits in for instance functional annotation,
cellular location predicdon and protein-protein interaction analysis and extraction
(Krallinger, Erhardt et al. 2003). [t aims to automatically distil information, extract facts,
discover implicit links and generate hypothesis relevant to the uset’s needs (Spasic,
Ananiadou et al. 2005). Researchers in life sciences usually design expetiments based on
prior knowledge embedded in the literature to generate hypotheses that can be
experimentally validated or rejected in the laboratory. The available information in
literature is however in one of the most challenging formats for lasge-scale exploitation,
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ie. natural language text. In order to purposefully exploit this wealth of information in
scientific publications several tools have been developed to extract and mine data in the
literature (Smalheiser and Swanson 1998; Tanabe, Scherf et al. 1999; Liu, Jenssen et al
2004; Tu, Tang et al. 20084; Zhou, Wen et al. 2004; Alako, Veldhoven et al. 2005).

These developments clearly show the importance of text mining in building on existing
knowledge and linking various biological fields to provide a sound basis of directed and
concerted actons in current life sciences. Therefore the next section will introduce text

mining in more detail as the main scope of this thesis.
1.5 Biclogical terminology and ontology

In otder to share the vast amount of biological and biomedical knowledge effectively,
textual evidence needs to be linked to ontologies as the main repositories of formally
represented knowledge. These ontological repositories ate created by otganizing sets of
terns in order to define their relationships to each other, thus formalizing knowledge
and making it more accessible. In view of this the next logical step is to transform
biclogy into a machine-readable depiction of life as we know it.

Therefore ontologies are crucial for text mining because it provides semantic
interpretation of texts and also constrains the possible interpretation of biological entities
(terms). Consequently, text mining can be classified as ontology-based ot ontology-
driven. This means that text mining is used to enrich the ontology and ontology is used
to help text mining, Thus: does text mining needs ontology or does ontology needs text
mining? The fact is that there is a perpetual circle in which text mining and ontology
benefit from each other.

Besides the well-structured ontologies other, less well-organized term collection systems
exist including taxonomies, controlled vocabulary, thesauti and dicionaties. Differences
among the latter are subtle and are generally collectively referred to as terminologies. In
the following we will give some examples on current often-used terminologies and
ontologies.

Curators at the Natonal Library of Medicine (NLM) review each article enteting
MEDLINE, then select terms from the Medline Subject Heading (MeSH) hierarchy that
best capture the aim of the article, thereby summarizing it using a controlled vocabulary.
The MeSH terminology displays certain coverage of how proteins function in cellular
systems, but is by far not exhaustive,

The Gene Ontology (GO) (2006) more accurately captures what happens at the cellular
and molecular level. Just as MeSH tertns are assigned to individual scientific articles to
describe their content, GO terms are assigned to proteins to Hlustrate what they do, ie.
their molecular function (MF); where they do it, i.e. their cellular component (CC), and
to what end, i.e. their biological processes (BP).

MeSH and GO have heen merged with other terminologies in the Unified Medical
Language System (UMLS) (Bodenreider 2004) . Besides MeSH and GO, other cutrent
terminologies and ontologies are summarised in table 1.
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Ontology/ Terminology | Definition Annotation

SNOMED The Systematized Nomenclaure of Medicine | clinical phenomena
(Bodenreider 2004)

OMIM The Online Mendelian Inhetitance in Man {Hamosh, | genede disorders
Scott et al. 2005)

NCBI taxonomy The National Center for Biotechnology Information | species
Taxonomy (Wheeler, Barretr et al. 2006)

MIPS FunCat The Munich Information Centre for Protein Sequence | proteins
Fuactional Catalogue (Ruepp, Doudieu et al. 2006)

UwDA The University of Washington Digital Anatomist [ parameters related to
{Bodenreider 2004) anatomy

COGs The Cluster of Orthologous Groups of Protein | orthologous protein
(Tatusov, Fedorova et al. 2003 groups

IUBMB The International Union of Biochemistry and | enzymes
Molecular Biology Enzyme Commission

NCI The National Cancer Institute thesaurus {Bodenreider | oncological
2004) phenomena

Table 1: Ontologies and terminologies used by Bioinformatics

These ontologies and terminologies can help to reliably identify protein names, diseases,
biological entities, phenotypes and genotypes in literature with a wide range of
applications, such as microarray analysis, biomarker discovery and database curation.
Computationally accessible annotation systems such as GO enable one to ask, for
instance, if physical interaction significantly correlates with molecular function,
subcellular localization, or biological processes, thereby laying the groundwork for better
algorithms to add predicted annotation to uncharacterized proteins. Text mining tools
have statted by relying on ontology and terminology, and the latter promises
improvement in term of precision and recall (Doms and Schroeder 2005).

1.6 Gene nomenclature standardization chaos

Despite this wealth of information-rich systems, there are a number of fundamental
difficulties when performing text mining. A researcher who is starting to work on a gene
or protein (here we use genes and proteins interchangeably) so far unknown to him
should consider several databases for obtaining the most relevant information.
Particularly he or she should use all available gene names when doing literature search.
Terms such as gene or proteins names, drug, chemical compound, and other biological
entities are biological objects of primary importance for understanding biochemical
processes and therefore are the backbone of scientific comrnunication as they are used to
identify domain concepts. Successful term identification is therefore the key to getting
access to the stored literature information, But what are those biological terms, how are
they created, and to what standard do they comply?

The main barriers to successful term identification are extensive lexical variation, which
prevents some terms of being recognized in free text, term synonymy and term
homonymy, the latter creating uncertainties with respect to the term’s exact identity.
Furthermore the biological field is mined with constantly changing and expanding
terminology and even more importantly the often-encountered lack of stringent naming
convention.

Each gene or protein typically has several names and abbreviations which consequently
can lead to so-called term ambiguity. For instance ‘Cdc28’ is also known as ‘cyclin-
dependent kinase 17 or ‘Cdk1’ and, to complicate matters even more, some terms
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associated with ‘Cdc28 are common English words {e.g. ‘hairy root’), biological terms
{for example ‘SDS%) or even names of other genes, such as ‘Cdc2’ that refers to two
completely unrelated genes in budding and fission yeast. Another example is the symbol
PSA with a multitade of very different associated long terms: Prostate Specific Antigen,
Puromycin-Sensitive Aminopeptidase, Psotiatric Arthritis, Pig Serum Albumin, or one of
the more than 100 other meanings of PSA that can be found in the literature (Weeber,
Schijvenaars et al, 2003).

It was shown that the highest degree of ambiguity with common English words exists
for fly (Drosophils). This is due to the frequent phenotypic descriptions that are used as
gene names and abbreviations thereof. For example in FlyBase (a database for Drosophila
molecular genetics), “WE” is the abbreviation for a gene named “Warbes eye”. This
illustrates that the long form as well as the short form of the gene name are perfect
English terms. The gene nomenclature guideline for FlyBase is relatively unrestricted
{Tuason, Chen et al. 2004), stating that “gene names must be concise, should allude to
the genes function, muotant phenotype or other relevant characteristic, and gene name
must be unique and not have been previously used for a Drusgphéla gene, moreover gene
names should be inoffensive”. This is a rathet loose guideline, as no format is proposed
for the symbols, and no restrictions about ambiguity with English words or other terms
are made. The guideline additionally favours the use of descriptive name, which might be
useful for an immediate functional classification of genes by a researcher when reading
scientific atticles, but cleatly results in significant disadvantages for literature search and
automatic text processing. Moreover, these non-stdngent nomenclature favours
ambiguity with English words. Examples of ambiguous gene names in fruit fly are: “cheap
date’, mutants that are especially sensitive to alcohol; interestingly another name for this
gene is “ammnesia’”’ as the mutant also shows poor memory; “fwify’, mutants that are not
interested in females; “ewt c/d’, with falling temperature the mutants loose their
coordination and eventually paralyze; “sanak”, mutant flies that are practically sterile; “van
gagh”, switling wing hair patterns in the mutants resemble the brush strokes in van
Gogh's paintings; “cown”, the clown flies' eyes have a characteristic white and red
appearance; “fechnical fnockou?’, the gene is involved in protein transport; “swiss cheesé”,
mutant flies' brains have swiss-cheese-like holes.

In contrast to the above, the nomenclature guidelines for the mouse genome database
(MGD) and the rat genome database (RGD) explicitly state that “genes that are
recognizable otthologs of already-named human genes should be given the same name
and symbol as the human gene”. The Human genome otganization (HUGO) also states
“that homologous genes in different vertebrate species should where possible have the
same gene nomenclature” and that “the agreement between human and mouse gene
nomenclature for many homologous genes should be continued and extended to other
species where possible”. Generally, the nomenclature of, human, mouse, and rat genes
are coordinated with each other by the cotresponding committees. This enforces a
mapping between orthologs by cross-teferences, co-assignment of nomenclatures to
otthologs genes and thus an increasing unification of the individual nomenclatures.

However, even these more stringent databases are not as free of ambiguity as one would
wish. Gene names that show ambiguity with the general English language in humans
include: “Aip” and “hop”, whose gene products help other proteins to fold cotrectly, and
“fack-1", janus kinase, which contains two phosphate-transferring domains. Thus, it got
its name from the Roman two-faced gatekeeper of heaven Janus. The abbreviation
“JAK” is also said to stand for "just another kinase" as there are so overwhelmingly
many kinases in the body that makes it difficult to remember all of them. A “sfigger” is a
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transposable element in the human genome, i.e. it can jump to another location in the
genome; “hedgebog’, 2 gene first found in fruit fly and named because of the resemblance
of its mutant larvae with a hedgehog. One of the human hedgehog genes was named
“somts bedgehog” according to the Sega computer game character; “pokemor’”’, (POK
Erythroid Myeloid Ontogenic Factor) is an oncogene, that once mutated can cause
cancer. In fact, it appears to be a master switch for cancer. The primary name
recommended by OMIM (The Online Mendelian Inheritance in Man database) was
“Zinc Finger and BTB domain-containing protein 77,

In plant science databases the Maize Genome Database (GDB) standardizes
nomenclature and symbols as follows: “the name and symbols that have been used for
maize gene should be retained. The name and symbols of 2 gene should be represented
with lower-case, italic character. Genes must be given 3 letter symbols. Newly detected
maize genes that have been previously identified in other plant species should be named
where appropriate with reference to the list of genetic names compiled by the
commission on plant gene nomenclature, Symbols may describe a mutant phenotype or
some aspect of gene structure or function”.

But also here ambiguity of plant genes with English words has been reported, leading to
distinctly bizarre cases such as in model plant Arabidopsis (genus of the family Brassicacear):
“superman’” and “clark ken?’ mutants have extra stamens (male genitalia) in their flowers;
the “knprorits” mutation suppresses the function of “superman’’ “wereno)f’, were plants
have exceptionally hairy roots, and “amskererkizn” in which the programmed death of
three out of the four female meiotic products is prevented in this mutant (dr. Kevorkian
was the infamous American physician helping people to commit suicide).

This ambiguity is in part due to the guidelines of genes and protein nomenclature for the
corresponding model organism as shown before. It is evident that a descriptive and free
nomenclature as it is used for Drosgphils makes automated identification of gene names
very difficult, while a stringent nomenclature as it is used for yeast allows an easier
identification of gene names.

Another problem that occurs is the tendency for error propagation with names based
upon sequence similarity alone. For example, a gene named YFG2 is based upon
sequence similarity to YFG1; gene YF(33 is then named based on similarity to YFG2 and
YFG4 is named based upon similarity to YFG3. In fact, YFG3 and YF(G4 may be quite
distantly related to YFG1 so that in this case the relationship inferred by its name is
misleading,

1.7 Terminology: principal link between the literature and ontology

The principal link between text and ontology is a terminology, which aims to map
concepts to terms, but term variation and ambiguity make the integration of information
available in text and ontology difficult. Term variation originates from the ability of a
natural language to express a single concept in a2 number of ways as we have seen from
the aforementoned examples. Tetm ambiguity occurs when the same tetm is used to
refer to muldple concepts and is inherent to the biological and biomedical field as the
evolution of species gave rise to many homologues and analogues.

Furthermore, biomedical and biological terms often appear in abbreviated forms.
Although several methods have been develop to capture the different acronyms formed
in the literature (Rimer and O'Connell 1998; Frantzi, S. Ananiadou et al 2000;
Rindflesch, Tanabe et al. 2000; Yoshida, Fukuda et al. 2000; Chang, Schutze et al. 2002;
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Yu, Hatzivassiloglou et al. 2002; Yu, Hripesak et al. 2002; Hisamitsu and J. Tsujii 2003;
Schwartz and Hearst 2003; Adar 2004), there is still a need to assist the biologist in
choosing the right term (acronym) that unambiguously pertain to a concept of interest
(biological function).

Applications such as manual literature search, antomated text-mining, name entity
identification, gene or protein annotation, and linking of knowledge from different
information soutce all require the knowledge of all used names referring to a given gene
or protein (Fundel and Zimmer 2006). It is thus desirable to encourage researchers to use
well-formed and approved gene and protein names that comply with strict nomenclature
rules, easing literature search and automatic text processing.

An example of such an attempt is the UniProt consortium which is concerned with
integrating information in the UniProt Knowledge Base. This consortium aims to
provide a central, stable, comprehensive, fully classified, and richly and accurately
annotated protein sequence database with extensive cross-references to other data
sources. The expectation of the UniProt project is that the SwissProt/UniProt and
Entrez genes will increasingly share their nomenclature and that the mapping between
databases will be increasingly complete and unambiguous. This will facilitate the
generation of gene name dictionaries for text mining application.

Nevertheless, this will not remove the difficulty entirely, since there are still huge
numbers of published documents around containing “legacy” and add-hoc terms that
need to be integrated and analysed. Therefore it is paramount to develop systems that
can tesolve ambiguity ptoblemns in a general way and itrespectively of the organism under
consideration. This will be the scope of chaprers 4 and 5.

1.8 Text mining techniques

Text mining directed towards knowledge discovery comprises vatious steps or
techniques, e.g, Entity Recognition (ER), Information Retrieval (IR}, Information
Extraction (IE) and Data Mining (DM). It is more strictly defined as the “discovery by
computer of new, previously unknown information, by automatically extracting
mformation from different written resources”. Therefore, IE does not qualify as a text-
tining tool itself, as it can only extract what has already been published and thus rather
forms the basis for text mining in the same way that ER forms the basis for IE.

1.8.1 ER: Entity Recognition

The objective of entity tecognition (ER) is to find the biological entities that are
mentioned within a text, in particular the names of genes and proteins. At first glance ER
might seem neither challenging nor particularly useful, but in fact it is probably the most
challenging task in biomedical text mining and 2 pretequisite for both IE and IR. Basic
approaches to find named entities include rule-based techniques using finite-state
transducers (Roche E. and Schabes Y. 1997; Cunningham H., Maynard D. et al. 2000)
and statistical taggers that use Support Vector Machines (SVMs) (Li Y., Bontcheva K. et
al. 2005) or Hidden Markov Models (HMMs) (Manning C.D. and Schutze 1999). Once
detected, biomedical and biological terms need to be normalized (refer all tesn variants
to a single desctiptor) and grounded (link through identifier to entry in database e.g.
UniProt). This illustrates how term variation and ambiguity can hamper the recognition
of biclogical and biomedical entities, not only in the nomenclature using long terms but
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also for theit respective short forms. ER can also be usefully applied on its own in cross-
linking literature that is related to certain genmes as it is used in the Information
Hypezlinked Over Protein system {HOP) (Hoffmann and Valencia 2005).

A particularly common term variation type in biology is the representation by acronyms.
In MEDLINE abstracts, 64,242 new acronyms were introduces in 2004, with an
estimated total of 800,000 (Chang and Schutze 2006). Acronym recognition aims to
extract pairs of short forms (acronyms) and their associated long form (expanded). State-
of-the-art acronym recognition can be categorized in heuristics scoring rules (Schwartz
and Hearst 2003; Adar 2004), machine learning (Pakhomov 2002) and statistical methods
(Okazaki and Ananiadou 2006).

1.8.2 IR: Information Retrieval

Information retrieval (IR) is the activity of finding documents that answer an
information need with the aid of indexes. One of the best-known and used IR systerns in
the wider public is probably Google. Howevet, one of the drawbacks of such system is
that the user is faced with reading many documents in order to discover the facts
reported in them. There is a multitude of systems based on IR techniques and applied to
databases of biological and biomedical literature with reasonable high precision including
Textpresso (Muller, Kenny et al 2004), iHOP (Hoffmann and Valencia 2003},
GoPubMed (Doms and Schroeder 2005), EBIMed (Rebholz-Schubhmann, Kirsch et al.
2007), PubMatrix (Becker, Hosack et al. 2003), PubFinder {Goetz and von der Lieth
2005) , MedScan, LitMiner, Chilibot, Ttanstniner and BioRAT.

The best-known biotnedical IR system, PubMed is an #d hoc system that uses two
established IR methodologies, the Boolean model and the vector model. The Boolean
model enables the user to retreve all documents containing certain combinations of
terms by using a logical operation, for example “Alkl AND damage response”. In
contrast, the vector model represents each document by a term vector, in which each
term is assigned a value according to a frequency-based weighting scheme. These
document vectors can subsequently be compared to a query vector that specifies the
relative importance of each query term. Alternatively they can be compared to each other
to calculate document similarity, which is used in PubMed by the “related articles”
function. However, it is crucial not to restrict IR to exact matching of quety terms,
because terrn ambiguity and vatiation phenomena may cause irrelevant information to be
retrieved (“low precision”) and relevant information to be missed or overlooked (“low
recall”). {van Driel et al, Eur ] Hum Genet 2006)

1.8.3 IE: Information extraction

In contrast to IR, information extracton (IE) strives to extract information from texts
without requiring the end user of the information to read the endre text. IE depends on
named entity recognition (NER) as the main step in accessing textually described
domain-specific information. IE can be used to suppott a fact-retrieval service or as a
step towards text mining based on conceptually annotated text. Furthermore, IE can be
ontology-based, ie. map a term occurring in a text to a concept in ontology, typically in
the absence of any explicit link between term and concept. This is a passive ontology use.
On the other hand, [E can be also ontology-driven, which means that it makes active use
of ontology in processing in otder to strongly guide and constrain analysis.

Two main examples for apptoaches that extract relationships from biological texts are
co-occutrence methods and natural language processing (NLP). Co-occurring terms in a
discourse assumes a mutual relationship. NLP strive to keep the semantic of the
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relationship of terms under investigation in a discourse. Co-occurrences methods tend to
give a better recall but a weaker precision as compared to NLP methods, and thus are
well suited as part of exploratoty tools because of their ability to identify relationship of
almost any type (Jensen, Saric et al. 2006). Borrowing terminology from logic, precision
may be viewed as the “degree of soundness” and recall as the “degree of completeness”,
Text mining using natural language processing (NLP) not only uses sentence structure,
but employs part of speech (POS) and phrase recognition to identify certain relationship
among entities in a sentence (Hunter and Cohen 2006) . However, due to the inherent
complexities of retrieving a sound meaning from a group of sentences that use complex
grammat, NLP methods in text mining are often unreliable in identifying a relationship
between multiple sentences {Ding, Berleant et al. 2002; Daraselia, Yuryev et al. 2004),
also known as anaphotic relationship. An anaphoric relationship is exemplified by the
following two sentences: “The dog was sick. It had to be put down”. Moreover,
complex sentences that contain multiple relationships give rise to additional, erroneous
relationships.

Furthermare, co-occurrence is unable to extract direct and indirect relationships, for
instance whether or not a compound X directly phosphorylates a compound Y, whereas
NLP combines the analysis of syntax and semantics and can therefore — in principle -
tackle the issue of direct and indirect relationships.

1.9 Text mining legacy (literature-based discovery and hypothesis generation)

The following section will focus on the challenges of terminology and terminological
processing and novel techniques for information extraction in text mining. Text mining
can be used for a multitude of purposes, for instance to interpret gene expression
clustering or to model complex biological pathways based on published literature
(Blaschke, Oliveros et al. 2001; Glenisson, Coessens et al. 2004).

Mote importantly, text mining also serves the putpose of hypothesis generation and
biological discovery. For example, one set of literature has shown that dietary fish oils
lead to certain vascular changes, and a separate set of literature has reported that such
vascular changes would benefit patients with Raynaud’s syndrome. Raynaud’s syndrome
is a condition that affects blood flow to the extremities such as fingers, toes, nose and
ears, when exposed to temperature changes or stress. In a similar fashion text mining
was also applied to infer that migraines may be caused by magnesium deficiency and that
the connection between arginine intake and blood level of somatomedins may be critical
in the treatment of thyrnic deficiencies.

Besides finding relationships between diseases and potential therapeutic interventions in
the literature, enriching protein-protein interactions and extracting scientific abstracts
pertaining to a topic of interest, text mining has been successfully applied to much more.
Text mining can aid in finding new trends in different research field as shown in the
example of Rebholz-Schuhmann and colleagues (Rebholz-Schuhmann, Cameron et al.
2007). Upon systematic analysis of the scientific literature from medical informatics and
bioinformatics research they concluded that emerging topics, equally important to
bioinformatics and medical informatics in recent years are: microarray experimentation,
ontologies, open source, text mining, and support vector machines. Emerging topics that
evolved only in bioinformatics were systems biology, protein interaction netwotks and
statistical methods for microarray analysis, whereas emerging topic in medical
informatics were grid technology and tissue microarrays. Thus both fields share a
common technological development that tends to be initiated by new developments in
biotechnology and computer science. Another example for predicting new research
aspects that are about to become popular is the research of future “hot” proteins that
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can become commercially attractive targets for the development of antibodies and
inhibitors.

Furthermore TM can be used to search for correlated events as exemplified by the
Amazon’s, Ebay’s and other e-businesses” function “Customers who bought this item
also bought ...”. This can be similarly applied in life sciences to discover fundamental
properties of regulatory networks and uncovered relationships between biological entities
for example. Text mining has even been shown to enhance microarray gene expression
analysis by incorporating biological information mined from the literature into standard
distance metric-based clustering algorithms to construct more accurate gene relation
networks than the standard clusteting algotithms alone (I aropka, Scheel et al. 2004).
Text mining as a tool proved even more valuable when combined with other data types.
Integration of literature-based protein netwotks and studies of linkage mapping
identified candidate genes for Alzheimer diseases within a genomic region on the basis of
their interactions with genes that are already known to cause the disease (Krauthammer,
Kaufmann et al. 2004).

As such text mining in life sciences should be assessed according to its contribution to
biology-driven problems to maintain the momentum gained over the past decades. After
this illustration of text mining’s assets, we come to the important question of how to
select for the best text mining tools. The effectiveness of text mining tools is usually
reported using certain metrics that will be explained in the subsequent section.

1.10 Text mining evaluation

Fot classification problems, bioinformaticians usually measure the performance of a
model in terms of ertor rate: the percentage of incotrectly classified instances in the data
set. Usually a model is build in order to classify new data and thus the performance of a
model on “unseen” data is of interest. The training set (seen data) is used to build the
model, ie. to determine its parameters, and the test set (unseen data) to measure its
petformance, ie. holding the parameters constant. Sometimes a validation set is required
to tune the model, for example for pruning a decision tree. However, the validation set
cannot be used for testing, as it does not qualify as unseen data.

Training data, test data and validation data have to be representative samples of the data
that the model will be applied to. If a lot of data ate available, two independent samples
are selected, one used for training and one for testing. The more training data are
available, the higher the quality of the model and the more test data, the more accurate
the error estimate.

Major drawbacks in obtaining big datz sets are their expense and time consumption,
therefore a limited data set is usually selected and a holdout procedure is applied. In
other words, a random split is done of the data to generate a test set and a training data.
Typically 1/3 and 1/10 are held out for testing. However, the split into training and test
data risks to be non-representative, ie. a certain class is not represented in the training
set and thus the model will not learn to classify it. In such condition a stratified holdout
is applied, i.e. the data is sampled in such a way that each class is represented in both sets.
Unfortunately this procedure does not work well on smaller data sets, which require a
maximisation of data utilization.

One solution to the latter is a £-fold crossvalidation that divides the data randomly into £
subsets of equal size. The model is trained on k-1 subsets and one subset is used for
testing, This process is repeated £ times (folds) so that all subsets ate used exactly once
for testing. Finally the average petformance is computed on the £ test sets. K-fold
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crossvalidation effectively uses all the data for both training and testing. Typically £=70
is used. Another vatiant of £fold crossvalidation is the leave-one-out crossvalidation.
Leave-one-out crossvalidation is simply &-fold crossvalidation with £& set to », the
number of instances in the data set. This means that the set consists only of a single
instance, which will be classified either correctly or incorrectly. This technique thus
maximises the use of data, ie. the training is done on #-1 instances. In contrast, leave-
one-out is not suitable for large data sets because of the high computational cost of the
required large number of training runs.

The reported performance of a classified data set can be summatized in a confusion
matrix or contingency table as shown in Table 2. Assuming a two-way classification, four
classification outcomes are possible such as displayed in our example contingency table.
Here True Positives (TP) are class members correctly classified as class members; True
Negatives {TN} are class non-members classified as non-members; False Positives {FP)
are class non-members incorrectly classified as class members, and False Negatives (FN)
are class members classified as class non-members.

‘Tabte 2: Confusion matrix ot contingency table

Category set Expert Judgment
C:{c‘,,...,c“m} Vs o
Classifier YES TP:iTP, - fFPJ
judgement m o
- NO FN=2FM 7N=ﬁ;rw,

Measures that are commonly used in information retrieval, classifications tasks and text
mining are precision and recall. Precision measures the number of class members
classified correctly over the total number of instances classified as class members. The
recall reports the number of class members classified correctly over the total number of
class members. Precision and recall can be combined into the F-measure, which is simply
the harmonic mean of precision and recall. The F-measure is used if both precision and
recall are equally important.

Independently of the way the performance of the model is measured, the performance
measure is always carried out in unseen data sets, ie. test set, but never on seen data, Le.
the training set. Performance on the training set only tells us that the model learned what
it was supposed to learn, hence is not a good indicator of the performance on the unseen
data.

As defined here, precision and recall are to be understood as subjective probabilities,
which mean they measure the expectation of the user that the system will behave
correctly when classifying an unseen document under a given category.

Two different methods may be adopted for obtaining estimates of precision and recall:

-Microaveraging: precision and recall are obtained by summing over all individual
decisions, therefore sunming over category-specific contingency table to generate the
“global” contingency table.

I C
P DIP P i TF,
Precision= PrFP & = » Recall = TPLFN & =l

3 (TP + FP) FEN S ap e FN)

1=1 =1

, and
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2 *(Precision * Recall)

Precision + Recall

F — measure =

-Macroaveraging: Precision and recall are evaluated first “locally” for each category and
then “globally” by averaging over the results of the different categories.

C| .
i precision, i recall,

Precision=+2L | Recall==L and
C  reent Cl

F - measure = 2* (Precision *Recall)
Precision + Recall

These two methods may give quite different results, especially if the vadous categoties
show a very different generality. For example, the ability of a classifier to behave well
also on categories with low generality (category with few positive training instances) will
be emphasized by macroaveraging and much less by microaveraging.

Similarly the kappa coefficient statistics (Cohen 1960; Catletta 1996) can be derived
from the above contingency table. Kappa statistics tests the null hypothesis that there is
no more agreement than might occur by chance given a random guessing. Kappa ranges
from 0 for chance agteement to 1 for full agreement. However, with the kappa statistics,
the agreement between different annotators (inter-annotator agreement) is measured
which contrasts to the case of precision and recall mentioned above where the agreement
is between an annotator ot expert and a computet ot machine. Thus, the inter-annotator
agreement allows conclusion about the stability of annotation, while the agreement for
each annotator with himself (intra-annotator agreement) indicates the reproducibility of
the annotation (Gut and P. Bayer 2004).

1.11 Outlook on this thesis

As can be taken from the information given in the above sections of the introduction,
text mining is 4 gaining importance in the life sciences and thus the main scope of this
thesis. Addressing the entire set of problems bioinformatics faces in this genotmic era is
vittually impossible in the frame of just one PhD thesis. Thetefore we will address a
subset of these tasks here in order to improve our understanding of biological
phenomena. We will adopt an integrative algorithmic approach to navigate from
sequence analysis to understanding unstructured texts, i.e. scientific literature.

In this introduction {Chaprer 3} we attempted to highlight various aspects - without a
claim of exhaustiveness - of the main benefits of Bioinformatics in easing our
understanding of some biological phenommena at the moleculat level as well as some
challenges Bicinformatician addresses. Chaprer 2 adopts an integrative approach to
concatenate protein sequence domain prediction from different prediction methods to
support relatedness of proteins undet investigation.

Chapter 3 endeavours to mine Medline based on term co-occurrence and faces the issue
of gene nomenclature ambiguity, wheteas Chapter 4 addresses the gene nomenclature
ambiguity in all species and proposes an approach of efficient resolution of the
ambiguity. Chapter 5 provides an application of the methodology described in Chaprer
4, namely an effective and unambiguous query formulation for literature retrieval. Finally
this thesis concludes with Chaprer 6 summarising the main findings and the
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contribution of this work to scientific research, as well as some ptopositions for future
ditections of this work.
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Abstract

Phylogenetic analysis and examinaton of protein domains allow accurate genome
annotation and are invaluable to study proteins and protein complex evolution.
However, two sequences can be homologous without sharing statistically significant
amino acid or nucleotide identity, presenting a challenging bicinformatics problem.

We present TreeDomViewer, a visualization tool available as a web-based interface that
combines phylogenetic tree description, multiple sequence alignment and InterProScan
data of sequences and generates a phylogenetic tree projecting the corresponding protein
domain information onto the multiple sequence alignment. Thereby it makes use of
existing domain prediction tools such as IntetProScan. TreeDomViewer adopts an
evolutionary perspective on how domain structure of two or more sequences can be
alipned and compared, to subsequently infet the function of an unknown hotolog. This
provides insight into the function assignment of, in terms of amino acid substitution very
divergent but yet closely related family members. Our tool produces an interactive scalar
vector graphic (SVG) image that provides orthological telationship and domain content
of proteins of interest at one plance. Alternatively PDF, JPEG or PNG formatted output
can also be provided.

These features make TreeDomViewet a valuable addition to the annotation pipeline of
unknown gene or gene product. TreeDomViewer is available at

http:/ /www.bioinformatics.nl/tools/treedom/.
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Introduction

The past years have seen the rapid sequencing of genomes from many different
organisms. Sequencing itself is no longer the bottleneck in genomic studies; the
botteneck is reliable annotation of new genes. Information from widely studied model
species included in comparative anmotation genomics has greatly aided in these
annotation efforts and proofed to be a powetful tool. Quoting Constantinesco et al. (1):
“comparative genomic studies have been invaluable to the annotation efforts in additdon
to theit contribution to the understanding of protein evolution”. Sometimes homologous
gene products have strong sequence similarities so that the inference of homology is
straightforward. However, accumulation of multiple substitutions in the course of
divergent evolution can make homologous sequences as dissimilar as any two proteins
chosen randomly from a database (2).

Several bicinformatics approaches have been developed to identify remote homology in
the absence of pairwise simnilarity, one of the popular ones being protein fold recognition
(FR) (3). Btiefly, FR detects homology based on a combination of evolutionary criteria
and structural considerations. FR diffets from traditional sequence homology database
searches insofar as the databases to be searched by FR contain only proteins with
experimentally determined structure rather than all protein sequences. Hence the
availability of a related structure in the Protein Data Bank is an essential but not
sufficient prerequisite for the success of FR-based identificaton of homologs (4).
However, homology is defined on the basis of evolution rather than function.
Homologues can fulfil different functions and shate only very general similarities; even
orthologs may fulfil non-identical roles states (5).

Moreover, homology is not necessarily 2 one-to-one relationship, because a single gene in
one genome may cortespond to a whole family of patalogs in another genome, which
may be functionally diverse, Hence there is a pitfall of over-prediction (ie. too specific
functional assignment) to be avoided when annotating unknown protein or gene
function by homology, using either simple or sophisticated existing bioinformatics tools
.

Currently thete is a multitude of tools available for the visualization of information
contained within 2 protein sequence such as signal peptides (6), transmembrane domains
(7,8) and functional domains such as InterProScan (9). The latter currently comprises
fifteen domain prediction methods.

However, until now there is no tool available combining in one view protein sequence
analysis with orthological information, thereby essentially combining proteomics
infotrmation with phylogenomics (see e.g. (10}} independent of the available 3D structure
in databases.

In this paper we present a more convenient way of identifying putative family members
based on their evolutionary history and supported by their conserved structural domains,
as the evolution of the later, unlike amino sequence substitutions, occurs at a slower rate
throughout evolution.

This phylogenetic visualization tool allows a rapid ‘fitst pass’ quality screening of search
tesults from InterProScan and others (e.g. the EMBOSS package (11)). One of its
strengths is the forthright generation of a publicaton-quality graphic output
TreeDomViewer is available as a Perl-based web interface that accepts a multiple
sequence file in any common format as input and produces a phylogenetic tree with the
corresponding protein domain information projected onto the multiple sequence
alignment next to it. Although a powerful tool by itself, TreeDomViewer is obviously
dependent on the quality of the analysis tools and multiple alignments.
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Implementation and Design
Data preparation and processing

The minimal input required by TreeDomViewer is a set of aligned or unaligned
sequences. In case where the input file is a sequence file solely, ClustalW (12) is used to
align the sequences and a tree description is calculated subsequently using ClustalWs
built-in neighbor-jeining option (13).

By default TreeDomViewer combines the output from several programs, ie. a multiple
alignment (in any common sequence format, such as FASTA or Clustal), a phylogenetic
tree {in standard Newick or PHYLIP format (14)) and domain predictions (in
InterProScan’s “raw” format).

The ability to upload precalculated files makes the tool extremnely flexible, as the user may
want to edit manually his/her multiple sequence alignment or other input files, or select
another program for alignment of phylogeny construction than the ones provided by
TreeDomViewer.

There are two possibilities to run TreeDomViewer, either interactive, where the user
uploads the sequence and/or (alignment, tree description file and the InterProScan
analysis file), or in batch mode: the user uploads cither the sequence or multiple
alignment file but not the InterProScan file. He/she will receive links to the result via
email upon job completion and get the option of saving input files as this will save time
for future runs of the same data set. The tool is sufficiently sophisticated to decide
which prediction method is the most time consuming one and if selected it may
autornatically switch to batch mode.

The tool combines maltiple domains on the same picture and it is necessary to have
them sorted by domain length in order to have the largest domain drawn first. This
provides a quick overview of multiple predictions on the same region.

One feature of major impottance in TreeDomViewer is the alignment of structural
domains, This allows for quick checking of the alignment quality, easy inference of
homology even when the sequence residue similarity 15 very low, and support of the
phylogeny based on functional characteristics evidences.

The rate-liriting step in TreeDomViewer is the computation of the structural domains
using IntecProScan. By running these calculations in parallel on 10 nodes of a small
Linux cluster, tutn-around times are still acceptable. For example, the analysis of 60
protein sequences of 1000 amino residues each is performed in less than 3 minutes.

Design overview

TreeDomViewer is implemented in Petl as a web based service running on an Apache
2.0 web server on a Linux platform (SuSE linux Enterprise Server 9). The core
application consists of three main programs: Sreiree, Treedom and Clustaly. The first two
programs are full command line tools written in-house in C and Perl respectively and can
be used as plug-in for other applications. A web interface was built on top of these
programs via a Perl CGI script (figure 1).
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TreeDoimViewer
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Figure 1: TreeDomViewer web-based interface. Altetnative means of gencrating the input file are
provided on the top-right panel.

This preserves platform independence across multiple operating systems and allows the
user to interact with the different TreeDoml 7ewer programs without computer
programming or (shell) scripting skills. A global ovetview of TreeDomViewer workflow
is presented in figure 2. Full explanation of the tool’s mode of action is available as an
online or downloadable (PDF) manual at the web-interface.
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Step 1: Tnput genetation

V——via
E___<,>

Step 3: Interacdve web interface misriace via

Figure 2: Flowchart of TreeDomViewer illustrating sequence of application implemented. Software tools
used are in bold. Three types of data input are processed and domain information is coordinated with the
alignment and phylogenetic tree information to produce an interactive SVG output.

The software was developed on a Linux (SuSE 8.2 and SuSE linux Enterprise Server 9)
platform and most of its modules were written from scratch to prevent dependency
issues when migrating to newer versions of Linux OS or Perl.

The TreeDomViewer web interface was tested on Windows XP, Mac OS X and several
flavors of Linux OS browsers with good results. Some JavaScript event handling
problems for interacting with the SVG output were encountered on Mac OS X and
Linux OS. This can be attributed to the web browsers used (konqueror, Mozilla, Opera),
as at the moment no browser suppotts SVG to its full extend. Cutrently most browsets
still require a SVG piug-in, downloadable from the Adobe site. However, the latest
version of Mozilla Firefox browser (vetsion 1.5) has already native (built-in) SVG
support and it is to be expected that more browser will soon follow.
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Most browsers handle SVG pictutres quite well when standard shapes such as rectangles
ot lines were instructed to be drawn on the screen. In this matter TreeDomViewer takes
it one step further by giving life to these shapes through JavaScript. As all browsers
support and display JPEG (Joint Photographic Experts Group) and PNG (Portable
Network Graphic), TreeDomViewer uses batik-rasteriger to provide them as an alternative
output format besides PDF format, thereby circumventing the SVG plug-in flaw as
noted above.

Batib-rasterizer  is  part of the open source Apache Batik toolkit 1.6
(http:/ /xmlapache.org/badk/).

Most of SVG output features such as mouse-over events are retained except zoom-in
and zoom-out. As we aimed at integrating as much information as possible within a
single picture, domain predictions are linked to their source database where more
information can be retrieved.

Output description

By default TreeDomViewet provides SVG output of the tree and domain information.
The uset’s web browser needs to be SVG-enabled in otder to view the output
Conveniently, the viewer first checks the web browser to clarify whether it is SVG-
enabled or not, and fetches the Adobe SVG plug-in
(http:/ /www.adobe.com/svg/viewer/install/) and prompts for its installation if needed.
The uset can change parameters for the tree plotting such as tree format, set to
phenogram as default, and many more features as shown in figure 1. Links to individual
protein analysis tools ate also provided. It is noteworthy that TreeDomViewer does not
execute protein analysis on its own, but instead provides an interface to InterProScan
and other programs as shown in the prediction method section of its interface.

There are several interactive features such as zoom-in and zoom-out, mouse-over access
for information on each dotmain, references to techniques used to produce the domain,
and on-the-fly switching on and switching off of domain prediction through the left
control panel {figure 3 as well as an accompanying legend of the graphic).

Alternative formats such as PDF, JPG and PNG are also provided. Although
TreeDomViewer was designed for protein analysis, nucleotide sequences can be handled
as well. Moreover, TreeDomViewer is able to generate the output of any domain
prediction tool, making it the visualization tool of choice at any level of functional or
phylogenetic study. Tools such as Adobe Ilustrator can be used to manipulate domain
colors of TreeDomViewer SVG file.

In otrder to illustrate our approach we analyzed a subset of the lipocalin family members.
Lipocalins are a superfamily of proteins that carry hydrophobic prosthetic gtoups.
Lipocalins share a very low sequence similarity, hence it can be expected to be a
cumbersome affair to infer homology with the conventional sequence similarity o
identity techniques. To further our illustration a subset of the lipocalins was selected
manually in accordance with those reported by Ganfornina et al. (15). We chose this
family to illustrate the features of TreeDomViewer because of their strong divergent
protein sequence, denoting a rapid rate of molecular evolution, Moreover, the
evolutionaty history of the lipocalins is rich in gene duplication events, which increases
the difficulty of obtaining an understanding of orthologous relationships. As denoted by
red features in figure 3, there are three conserved sequence motifs called structurally
conserved regions (SCRs) that have been proposed by Flower et al. (16) s a prerequisite
for a protein to be considered as a lipocalin.



http://xml.apache.org/batik/
http://www.adobe.com/svg/viewer/instaE/
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Although our tool places no restricdon on the number of sequences to be used in the
analysis, the uset’s web browser and hardware could be a limiting factor to visualize large
SVG output files. TreeDomViewer was used to visualize a set of 530 Receptor-Like
Proteins (RLP) obtained from the atabidopsis genome-wide survey of RLPs without any
problem on a standard PC or Mac (data not shown).
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Figure 3: This fipure illustrates the default SVG ourput of 37 lipocalin family members from different
Insert shows TreeDomViewer domain legend (which appears as a separate pop-up).

Future plans

We intend to broaden the scope of TreeDomViewer by incorporating secondary
structure prediction in the visualization as well as presenting (offeting) TreeDomViewer
as a BioMOBY (Wilkinson et al (17)) web-service to the scientific community.
Furthermore we plan to improve TreeDomViewer performance by expanding the
distributed netwotk of cluster mitrots.
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Conclusion

TreeDomViewer is a biological web-based tool combining in one picture protein
information on phylogenetic and structural information. As such it provides information
about the relatedness of proteins and protein famnilies, and thus adds support for
inferring function of gene products, in particular when sequence identity is low.
TreeDomViewer therefore helps in any phylogenetic analysis resolving both the
relationship among different group members and the relationship between groups, based
solely on the aligned domain structure of each participant.
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Abstract

Background: High throughput microarray analyses result in many differentially
expressed genes that are potentially responsible for the biological process of interest. In
otder to identify biological similaritics between genes, publications from MEDLINE
were identified in which pairs of gene names and combinations of gene name with
specific keywords were co-mentioned.

Results: MEDLINE search strings for 15,621 known genes and 3,731 keywords were
generated and validated. PubMed IDs were retrieved from MEDLINE and relative
probability of co-occurrences of all gene-gene and gene-keyword pairs determined. To
assess gene clustering according to literature co-publication, 150 genes consisting of 8
sets with known connections (same pathway, same protein complex, or same cellular
localizaton, etc.) were run through the program. Receiver opetator charactetistics (ROC)
analyses showed that most gene sets were clustered much better than expected by
random chance. To test grouping of genes from real microarray data, 221 differentially
expressed genes from a microarray expetiment were analyzed with CoPub Mapper,
which resulted in several relevant clusters of genes with biological process and disease
keywords. In addition, all genes versus keywords were hierarchical clustered to reveal a
complete grouping of published genes based on co-occurrence.

Conclusions: The CoPub Mapper program allows for quick and versatile querying of
co-published genes and keywords and can be successfully used to cluster predefined
groups of genes and microarray data.
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Background

High throughput mictoatray analysis has made it possible to analyze the mRNA
expression of most if not all human genes simultaneously [1;2]. The data generated from
these analyses are overwhelming since hundreds of interesting differentially expressed
genes can be identified in a single assay. Knowledge on expression levels of genes in
different systems is useful, but does not directly answer biologically relevant questions,
such as: What is the gene function? Where is the gene located within the genome? Where
is the protein located within the cell? Most important is the answer to the question
whether genes identified in microarray experiments have something in commeon, such as,
are muitiple genes part of a single biological pathway ot proteins part of a protein
complex? The public database, which contains much of the relevant information to
answer these questions, is MEDLINE. Therefore, mining the MEDLINE database for
all information on a set of genes of interest to extract and evaluate their co-occurrences
with biological keywords and oather genes, could reveal biologically relevant pathways [3-
6.

The most widely used methodology to identify genes and proteins in text is by thesaurus-
based concept extraction. Using a predefined gene name list, text phrases are compared
to the thesaurus for matching. Complications for gene name thesaurd are variations in full
name spelling, use of abbreviations (gene symbols), the large number of synonyms
(different name but same gene) and homonyms (same name but meaning different genes
or unrelated concepts) [7;8). Particularly homonyms in the form of abbreviations and
acronyms create a serious problem of false positive assignment of a gene to a particular
concept [9-13]. A cotnplementary approach for gene/protein identification is “named
entity recognition” in which a program learns to recognize concepts from text [14-16).
Due to the enormous synonym and homonym problems, named entity recognition
encounters difficulties in achieving high performance gene name identification. A next
step in text mining is linking of different concepts (such as gene names and keywords)
that are identified. In the simplest method, co-occurrence of two concepts within the
document can be used as an indication of linkage. Extensions of co-occurrence can
include (i) the number of times a concept is found, (i) how close concepts are to one
another, such as, within 2 single sentence, and (iii) not just two, but the weighed
combination of all concepts within a document. More sophisticated fact extraction
methods can also retrdeve information on the type of relationship between two concepts.
Natural language processing (NLP) grammatically patses whole sentences to identify
vetbs and other connecting phrases that describe the correlaton between concepts
[3;:4;6;17]. A third step in text mining takes linked concepts and groups them according
to their co-occurrence and relationships. Again, this can be performed by simple
clustering of the co-occutrence of pairs of concepts as well as complex multi-
dimensional classification using weighed concept combinations [18;19]. This type of
clustering of, for example, differentially expressed genes from a microatray expetiment,
can disclose, summarize, and visualize published knowledge, but can also be utilized for
novel information discovery [5;20]. Although progress is being made in higher order
literature  processing, text mining applications in the field of genomics are mainly
thesaurus and co-occutrence based. Such programs and methods to identfy potential
functional correlations between genes have been desctibed [21-33]. Each of these
applications has its unique advantages and Iimitations, showing the broad range of needs
for text mining as well as the numerous extraction, linking, and discovery methods
feasible.
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We set out to create a well annotated and curated open source gene list including full
names, symbols and aliases and a regular expression-based search method to identify
genes in text databases such as MEDLINE. In addition to the gene thesautus, specific
keyword lists were generated for co-occutrence analyses. For each concept, PubMed
identifiers (IDs) from MEDLINE documents containing the concept were extracted, all
gene-gene and gene-keyword co-occurrence pairs identified and stored in a database for
fast co-occurrence retrieval This database can be mined using single or batches of
concepts to retrdeve co-occurrences that form the input in clustering programs to group
genes and keywords according to their similarity in co-publications. The program,
database and all thesanri are freely available and can be adapted to include updates, new
thesauri, and search methods.

Implementation

Human gene thesaurus

A human gene thesaurus was compiled from the Affymetrix HG_U95 / HG_U133 and
HUGO gene annotations (HG_U95 / HG_U133 annotation files from 2002) [34] [8]
{Table 1).

Number of Total
Number terms with numberof

Thesaurus Daca Source ofterms MEDLINE MEDLINE
hits citations
G Affymerix HG_U95-133 15,621 10,700 932,448

ene HUGO ; , 5,932,
Mole cular Function Gene Ontology 962 851 6,616,546
Cellular Component Gene Ontology 218 196 1,890,561
Biological Process Gene Ontology 767 621 3,455,950
Diseases Karolinska Institute 1475 1444 6,099,280
Tissues National Library of 309 307 9,083,831

Medicine

Table 1: CoPub Mapper gene and keyword database information. Gene names, symbols and aliases were
tettieved from Affymetrix HG_U95 / HG_U133 [54] and the HUGO databases [55]. The keyword
thesauti include the three Gene Ontology subsections [41], diseases [56] and dssues/organs [57].

In total, 15,621 annotated genes were included of which most gene descriptions consist
of one or more full names, the gene symbol, and their aliases. The typical HUGO and
Affymetrix full gene name descriptions contain commas, semicolons and often
alternative names in parenthesis, which makes this description an inadequate direct
search term. Full names were processed by replacing the commas and semicolons with
the Boolean “AND” operator (Figure 1).
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Grene name Crene Svinbaols Gene Aliases
Comma, semicolon Comma, semicolon
replacerment by Boolean replacement by Booivan
“AND” “OR”
ltems in parenthesis {rems in parenthesis English Dictionary Exclusion
deleted to separate ficld and removal 2-lerter Abbr,
L Semi-automytic curation ‘ ‘ Semi-automate  curation ‘ ‘ Semi-automaric curation l

| Processed Gene Name i ‘ Additional Gene Name ‘ | Processed Symbols I Processed Aliases l

Figure 1: Flow diagram of the processing and curation of the gene names, symbols and aliases. Gene
names, symbols and aliases were tetrieved from Affymetrix HG_U95 / HG_U133 and the HUGO
databases.

All terms included in parentheses were deleted from “gene-level name” and placed in a
separate field named “gene-level addidonal description™. Both fields were semi-
automnatically curated to remove common words (such as protein, family, hypothetical,
functional, human, tissue, yeast, etc), misspellings, and insert Boolean “OR” in case
synonyms are desctibed. From gene symbols and aliases fields, commas and semicolons
separators were replaced by the Boolean “OR” operator. T'wo-letter symbois and aliases
were removed from the thesaurus and all other abbreviations were compared to an
English dictionaty [35] to remove common English words (such as “AND”, “CELL”,
etc.). The Microsoft Lxcel spreadsheet program was used for generating and curating
gene thesaurus files and, as described by Zeeberg et al [36], conversion problems were
encountered and when identified, manually corrected.

Semi-automatic stemming was performed on “gene-level name” and “gene-level
additional description” fields by removing numbers, letters, and phrases like “alpha™,
“member”, “type”, “class”, etc. This resulted in a stem-level gene name description.
Although the current version of CoPub Mapper does not take this stem-level into
account, these fields are part of the gene thesaurus and freely available.

Keyword thesauri

In total, five different keyword thesauri were compiled including the Gene Ontology
“biological process”, “cellular component”, and “molecular function”, as well as
“diseases” and “tissues” (Table 1). In the disease thesaurus, commas were replaced with
the Boolean “OR” opetator. All keyword databases were manually curated to remove
terms too specific or too common.

MEDLINE concept extraction and curation
The full MEDLINE bascline XML files {(untl January 2004) wete obtained from the
National Library of Medicine [37], extracted to small text files containing title, abstract
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and substances using BioPerl API. The title, substance and abstract fields from
MEDLINE tecords from 1966 to January 2004 were searched for the presence of
different case-insensitive gene and keyword concepts using Perl compatible regular
expressions (PCRE). For the gene-level name desctiptions the characters “][-)(5” and
space were allowed preceding and following the gene-level name description and also an
optional “s” was permitted to follow the name. Any space in the gene-level name
description was allowed to be a space or a dash, The same regular expressions were
applied to the gene name stem-level descriptions, except that, the description could also
be followed by any single lettet or a number between 0 and 99. Gene sytnbols and aliases
could be preceded and followed by the characters “][.-)(,;;” and space. After the first two
chatactets, the presence of a dash was allowed in between the characters of the symbols
and aliases (to take, fot example, both “bel2” and “bel-2” into account). The concepts of
the keywortd files could be preceded and followed by the chatractets “|[.-)(,” and space.
In addition, “s” and “’s” were allowed to follow the disease concept. As for the gene-
level name descriptions, a dash was allowed to be present between the words of a
keyword concept. Per annotated gene or keyword, the PubMed IDs of MEDLINE
records in which the concept was identified wete stored in a2 MySQL database.

In order to identify potential problem concepts, 50 genes and 50 keywords with the
highest number of PubMed IDs were manually inspected and curated if appropriate. In
addition, a random selection of genes and all keywords that gave less than 2 MEDLINE
hits were examined and this evaluation was used to optimise the thesauri and regular
expressions search strategy described above.

To address the homonym issue, a cotrection was made for possible discrepancies
between a parenthesised gene symbol and its expected name. All abbreviations in
parenthesis in MEDLINE abstracts were tetrieved in combination with 4 preceding
words. In total, 1,105,669 MEDLINE recotds wete identified where the abbreviation
matched a gene symbol or alias. For all these records, 4 words preceding the abbreviation
were compated to the gene-level name description of that particular gene. If none of the
words resembled partly the gene name, the PubMed ID was removed from that
particular gene’s PubMed ID list. Using this method, 603,580 records were deleted from
the gene hit database resolving part of the gene-unrelated concept homonym problems.
Manual inspection of 173 random records revealed that, extrapolated, 79 % of the
603,580 records was cotrectly removed, while 7 % of the 502,089 non-temoved recotds
should have been deleted.

In our examination of genes with the highest number of PubMed IDs and our first
CoPub Mapper analyses, we noticed a distinct contamination of records identifying gene
symbols and aliases by abbreviation used for cell lines (such as PC3 which is an alias for
3 genes as well as a prostate cancer cell line}. Since full names of cell line abbreviations
are rarely put in wiiting, the homonym correction did not eliminate these discrepancies.
A list of cell line names was retrieved [38] and gene symbols and aliases that fitted a cell
line name were further processed. From 106 genes that included one of the cell line
homonym names, all MEDLINE records were deleted in which the cell line name was
mentioned without the presence of the stem-level gene name. In total, 100,213 PubMed
IDs were eliminated. A manual inspection of 78 randomly chosen recotds showed that
87 % were correctly removed.

Database set-up and CoPub Mapper program

A file was generated that contains a unique query 1D} and the probeset IDs, UniGene
{(combination of Aug 2002 and Oct 2003 builds} and RefSeq identifiers for each of the
individual 15,621 entries in the gene thesaurus (alias_affygene). In addition, a file with the
gene name, symbol and aliases and unique query ID was created (query_affygene).
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The tetrieved PubMed IDs from each field {gene names, symbols and aliases) of the
15,621 unique gene thesaurus query ID's were non-redundantly combined into a MySQL
database (lit_affygene) and a separate data-file (litstat_affygene) in which the number of
PubMed IDs per query was counted. Furthermore, the PubMed IDs from the keyword
thesauri were per concept stored (query_&eyword, lit-keyword and litstat_&eyword). Per gene-
gene pair and gene-keyword pair, overlaps in PubMed IDs were identified and separately
stored in the database (pair_keyword_affygene). From these paired files, a pairstat file was
generated containing the number of PubMed IDs of each concept, the number of
overlapping PubMed IDs between the two concepts and a relative score. The relative
score is based on the mutual information measure and was calculated as

S =P/Py*Py

in which P, is the numbet of hits for concept A divided by the total number of PubMed
1Ds, Pyis the number of hits for concept B divided by the total number of PubMed IDs,
and P, is the number of co-occurrences between concepts A and B divided by the total
number of PubMed 1Ds. The relative score is produced as a logl0 conversion and in the
batch search option in a 1-100 scaled log1Q convetsion:

R ="log$§
and the scaled log transformed relative score:
R’=1+ 99 * (R -~ Rmin) / ( Rrnax — Remin )

where Rmin and Rmax are the lowest and highest R values in each pairstat file,
respectively.

The CoPub program was generated in Python and runs as a web-based application (CGI
script), The text output of a batch search can be saved and imported into a clustering
program such as Cluster [39] and SpotFire (Spotfire, Goteborg, Sweden). The HTML
output of “number of hits”, “relative score”, and batch search results are hyperlinked to
the MEDLINE database at the European Bioinformatics Institute [40] for direct
manuscript retrieval.

Petformance ev: i i i ting characteristic

In order to investigate whether the CoPub Mapper output could group genes according
to theit MEDLINE co-occutrence profile, 8 different groups of genes were defined
based on common gene ontology (GO) terms [41], the BRCA1 BioCarta pathway [42],
or a microarray experiment (Table 2).

In the UniGEM V microarray experiment, the gene expression profile of prostate stroma
cells was compated to prostate epithelial cells [43]. A set of 28 annotated genes, higher
expressed in epithelial cells as compared to stromal cells (more than 2-fold) was
tandomly selected.

The 150 genes from the eight selected gene groups are pooled into one set. The selected
genes were entered into CoPub Mapper to generate the co-occutrence matrix of relative
scores of genes versus genes and genes versus the 5 different keyword thesauri. Relative
scores were only generated in case more than 2 co-publications occurred per concept-
concept pair. The genes versus genes mattix was hierarchical clustered and visualised
using Cluster and TreeView [39] (Figure 2).



file:///itstat_key

An integrative algorithmic approach towards knowledge discovery by bioinformatics

Test groups #Genes Source
smooth muscle contraction 12 GO {Biological Process)
acetyltransferase 18 GO {(Molecular Funcdon)
nuclear pore 15 GO (Cellular Component)
nucleosome 17 GO (Cellular Component)
ubiquitin 24 GO (Molecular Functon)
hypoxia 26 GO (Biological Process)
BRCA1 11 BioCatta
Epithelial-s pecific genes 27 UniGEM V microarray:

sttoma vs epithelial cells

Table 2: CoPub Mapper test groups. Eight groups of genes with a common function, process, cellular
location, or microarray expression profile, were defined from gene ontology (GO), BioCarta, or 2
microatray experiment. The genes used for CoPub Mapper analysis were tandomnly selected from larger
sets of genes part of the 8 different groups.

Pigure 2: Clustered view of gene co-occurrences among a collection of 8 groups of selected genes. Of the
150 genes, the relative scores of co-accuttences were calculated and clustered using hierarchical clustering.
A co-occurrence was only taken into account when at least two articles mention the gene-gene pair. Using
this criterion, 45 genes did not co-publish with any of the other 149 genes. To which group (Table 2} a
gene belongs to is indicated in the right part of the figure. Image contrast in TreeView was set at 50. Scaled
(1-100) relative scores are represented in a red spectrum with bright red being the highest score. A relative
score of zero or no scote are in black,
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For a systematic evaluadon of performance we applied Receiver Operating
Characteristics (ROC) graphs and the area under the ROC cutve (AUC) as an outcome
measure. To use this method all genes from the 8 subgroups are pooled into one set. To
calculate an AUC for every gene we used the following procedure. A gene from the
pooled set is selected as a seed. The seed is paired with all other genes in the set and non-
centered Pearson correlation coefficients are caleulated based on theitr co-occurrence
profiles. The co-occurtence profile is one row of the co-occurrence matrix under
investigation. The genes are ordered by their cotrelation coefficients, with the highest
value at the first rank. To generate a ROC curve, the obtained ranking of the genes is
viewed as the cutcome of a classifier. For a seed, genes from the same subgroup are
called positives and all other genes are called negatives. ROC curves are two-dimensional
graphs in which the true-positive (TP) rate is plotted against the false-positive (FF) rate.
The TP rate is defined as correctly classified positives divided by zll positives. The FP
tate is defined as incorrectly classified negatives divided by all negatives. While running
down the list, for every rank the true and false positive rate are calculated, by taking all
encountered genes to be classified as positive and all not yet encountered genes as
negative. The AUC of the ROC curve is calculated. The procedure is repeated until an
AUC has been calculated for every gene in the pooled set. An average AUC is calculated
per subgroup. The AUC measure varies between 0 and 1. Random ordering gives an
AUC of 0.5 and an AUC of 1 represents petfect ordering, i.c. all positives are at the top
of the list with no negatives in between, indicating perfect co-occurrence clustering of
the genes in the subgroup [44].

Results

Validation of CoPub Mapper co-occurrence profiling

To validate the usefulness of the CoPub Mapper output, we evaluated how well genes
with known relations could be grouped according to their MEDLINE co-occutrence
profile. As shown in Figure 2, partial clustering of the initial 8 groups occurred upon
their gene-gene co-occutrence profile evaluation. To quantfy this grouping, ROC
(receiver operating charactetistics) curves were generated and the AUCs {Area Under
Cutve) for each gene calculated. In Figure 3, the median AUCs + SD of the genes pet
group are depicted. Most of the 8 groups and in particular the BRCAl-associated genes
clustered well together in the gene-keyword comparisons (median AUC of 0.93 £ 0.07).
The ubiquitin-associated genes performed worst (median AUC of 0.6 + 0.11). With
respect to the thesaurus selection, the overall clustering of the 8 groups using the “genes
versus genes self” comparison, petformed best with an average AUC of 0.76 = 0.13. The
“genes versus diseases” and “genes versus tissues” comparisons were for many of the 8
groups not resulting in clustering higher than expected by random chance. In other
words, from co-publication analysis of genes with disease or tissue keywords, the
commonality between the genes, as defined by the 8 groups, could rarely be traced

(Figure 3).
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Pigure 3: Receiver operating characterdstics {ROC) of the 8 selected groups of genes to quantify their
coherence upon clustering of literature co-occurrences. Co-occurrences of the 150 genes were determined
with the genes themselves, or the 5 different keyword thesauri. A co-occurrence was only taken into
account when at least two articles mention the gene-gene or gene-keyword pair. The co-occurrence
mattixes wete Pearson cotrelation clustered and the distances berween genes determined. For each gene, it
was determined whether the next closest clustered gene was a group member. Genes from the same group
were scored as true positive and any other gene as false positive to generate a ROC curve, For each gene,
the area under the ROC curve (AUC) was determined and the median of all the group members per group
+ SD depicted. Scaling is from an AUC of 0.3 to 1. An AUC of 0.5, representing a random ordering is
highlighted with a thick line.




CoPub Mapper: mining MEDILINE based on search term co-publication

As shown in Table 2, six groups of genes were selected based on gene ontology
keywords, using two from each of the annotation trees (biological process, molecular
function, and cellular component). As expected and without exception, the AUC of the 6
groups of genes was higher using their corresponding GO-derived thesaurus compared
to using the other two GO-detived thesaur. For example, the molecular function
annotated group of “acetyltransferases” was clustered best using the “genes versus
molecular function” co-publication comparison (AUC of (.81 as compared to 0.65 using
the biological process thesaurus and 0.59 using the cellular component thesaurus). This
shows that the selection of keywords for co-occutrence analysis is an important
determinant in optimal text-based grouping of genes.

Microarray analysis using CoPul et

In order toa validate the CoPub Mapper program with real microarray data, a set of
differentially expressed genes was selected from a comparison between ovaries of healthy
women and women suffering from Poly Cystic Ovary Syndrome (PCOS) [45]. PCOS is
characterized by 2 combination of chronic anovulation, hyperandrogenism and cysts in
ovaries and is the most common cause of anovulatory infertility. Also hyperinsulinetnia
and obesity can be observed in many PCOS patients [46;47].

A set of 230 dysregulated DNA fragments representing 189 genes were used as input for
CoPub Mapper (see Table 1 in [45]}. Gene-keyword pairs were obtained from biological
processes and diseases. Relative scores were only generated in case 3 or more co-
publications occutred per gene-keyword pair. From these 189 genes, 104 were annotated
and had at least 3 co-publications with one of the keywords. Resulting matrices were
exported as text files and opened and merged in Spotfire, Hierarchical clustering was
used to group genes and keywords, Figure 4 shows that subsets of genes form clusters
with subsets of biological processes and diseases. Zooming in on these clusters confirms
the relation of certain genes with e.g. PCOS, diabetes, obesity, gametogenesis, immune
response. Characterization of all clusters revealed known and unknown relations of these
PCOS dysregulated genes with biological processes and diseases.

Single Gene-Keyword extraction
The CoPub Mapper includes an option to query the database for all genes and keywords

co-published with a single gene of interest. In addition, a keyword of interest can be
selected and all genes with 2 or more co-occurrences can be extracted. As examples, the
top ten genes (Table 3) and top ten diseases (Table 4) co-published with the androgen
receptor are shown.

An assessment of the 2 lists identified the puromycin-sensitive aminopeptidase gene
(NPEPPS) as an example of a homonym (Table 3, fourth gene). The PSA alias of
NPEPPS is mainly used to specify prostate specific antigen. The prostate specific antigen
gene (KLK3) is regulated by the androgen receptor and correctly found many times to be
co-published with the androgen receptor (Table 3, second gene). Due to the homonym
curation described in the Systems and Methods section, the number of co-occurrences of
the androgen receptor with NPEPPS (246) is lower than with KLK3 (414). Before
homonym curation, NPEPPS and KLK3 had 634 and 635 co-publications with the
androgen receptor, respectively. The top ten list of diseases co-published with the
androgen receptor (Table 4) is a near perfect reflection of the known diseases associated
with androgen receptor activity and aberrations.
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Pigure 4: Hierarchical clustering of literature co-occurrences of 104 genes (tows) versus 761 biological
processes and diseases {columns). A co-occurrence was only taken into account when at least three articles
menton the gene-keyword pair. Hierarchical clustering of CoPub Mapper results using genes differentially
expressed in PCOS avaries. From 221 regulated genes 104 genes contain a gene name, symbol or alias and
produce a gene-keyword pair with biological processes or diseases. 104 modulated genes returned 761
keywords denoting biological processes or diseases. Hierarchical clustering was performed using Spotfire
using the Complete Linkage method and Correlation as Similarity Measure. Several subclusters were
identified shown here with blue boxes; between parentheses the number of genes in a cluster. A: PCOS,
Obesity, Insulin Resistance (4); B & D: Gametogenesis (58:8); C: Cell adhesion, Angiogenesis (19); E & H:
Immune response, Inflammation {14811} F: Cancer, Cell growth, Differentdation (32); G: Inflammatory
diseases (6).
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Gene

Gene Name Gene Alias Pmid Hirs
Symbols
progestetone rece plot PGR NR3C3 503
kallikrein 3, prostate specific antigen KLK3 PSA 414
nuclear receptor sub‘fnn?l.ly 3, geoup C, NRICH GCR, GRL 389
member 1; glucocorticoid receptor
aminopeptidase puromycin s gnsitive NPEPPS MP100, PSA 246
sex hormone-binding globulin SHBG ABP 179
gonadomopin-teleasing hormone 1, GNRH, GRH, -
leutinizing-relezsing hormone GNRH! LHRH, LNRH 15
prolactin PRL 131
insulin INS 125
epidermal growth factor, beta- . .
urogas trone EGF URG 123
tumor prowin p53 TP33 P33 94

Table 3: CoPub Mapper single gene pair output. Output of the “Single Gene Pair Mapper” in which the
top ten genes co-published with the androgen receptor are listed according to number of co-publications

(Pmid hits).
Keywords MNumber of hits Relai?vgelgcore
Androgen-Insensitvity Syndrome 229 3.07
Keonedy Disease 21 2.56
Muscular Arophy S pinal 133 2,12
Prosmre Cancer 932 1.93
Gynecomastia 59 1.88
Hypospadia 31 1.7¢
Sex Chromosome Abermatons 2 1.78
Hirs utis m 76 1.78
Robinow Syndrome 2 1.71
X-Linked Myotubular Myopathy 2 1.65

Table 4: CoPub Mapper single gene biclogical concept output. Gutput of the “Single Gene Biological
Tetm Mapper” in which the top ten diseases co-published with the androgen receptor are listed according
to their relevance scote.

In Table 5, the top ten genes are listed that are most often co-published with the
keyword “prostate cancer”. Again, the incotrect identification of NPEPPS in 4507
MEDLINE entries is due to the PSA homonym.

Geme X Gene p Aliase Number log 14
e name Symbels cne ARSEE o fhirs Relative Score

kallikrein 3, profawe s peeific antigen KILK3 PSA 6625 2.55
aminopeptidase puremycin seasitve  NPEPPS MP 100, PS A 4507 2,57
andmgen recepruc, DHTR,NRICA 932 153
dihydmrsms e one rece pror

acid phosphase,prosrare ACPP 546 222
gonadowogin-iclcasing hommone _ GNRH,GRHLH

Lk utinizing-tclea sing hurmone UNRHI RHINRH 522 124
Mot promin p33 TP33 P53 431 0.96
B-cell CilAvmphoma 2 BCLZ 346 117
insukin [i-3 318 0.05
epdermal growth fBctorbet - LG URG 251 32

usopasirone
CAP20, CDKNI,
CIP1, MDA,
P, S,
WARL

cyclin-dependent kinase nhibiwre 1A CDKNIA

Table 5: CoPub Mapper single gene biological concept output. Output of the “Single Gene Biological
Term Mapper” in which the top ten genes co-published with the prostate cancer disease-keyword are listed
according to number of co-publications.
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eta-analysis: all genes versus keywords

In order to provide a summary of all gene-keyword co-occurrences, CoPub Mapping was
performed using all 15,621 annotated genes as input in the different gene-keyword
thesauri co-occurtence comparisons. Relative scores were only computed if in at least
two articles a co-occutrence was observed. Elimination of single gene-keyword co-
publications was carried out to eradicate non-reproduced findings and to make the large
matrices manageable. A second selection was made to eliminate genes which included
only low relative scores. Many genes have multiple co-publications with vety common
keywotds such as “cancer” (disease thesaurus), “cytoplasm” (cellular component
thesaurus), etc.. If not functionally relevant, these co-occurrences have typically a low
relevance scotre. Genes with only low relevance scotes wete eliminated by removing
those genes that did not have 1 or morte scaled relevance scores of more than a threshold
(between 39 and 52) in which 20 % of genes were eliminated. The hierarchical clustered
genes-diseases co-publication matrix is displayed in Figure 5.

5626 genes (rows) versus 1275 diseases (columns) were grouped according to their co-
publication profiles. The enlarged section shows the amount of detail present in the
matrix (Figure 5B). The vertical lines in the matrix are caused by co-publication of almost
all genes with very common disease keywords such as “cancer”, “ncoplasm”, and
“carcinoma”. Horizontal lines are genes co-published with many diseases, such as
“insulin”, “interleukio 67, and “keratin 3A”, If low relevance scores are masked by hiding
values below 30 in TreeView or SpotFire, these streaks become less prominent.
Clustering and visualisation of only highly significant co-occurrences will result in
discrete groups of genes and keywords as shown in Figure 6.

Stringent selection criteria were implemented including: (i) each gene had to be co-
published with at least two different keywords with a relevance score of more than 50,
and (i) a co-occutrence must have been described in at least 3 publications per gene-
keyword combination. From the 10,203 genes co-occurring with cellular component
keywords, 1135 genes were tetrieved using the stringent selection critetia mentioned
above. As expected, these genes were clustered according to well-known cellular
components of which some examples are depicted (Figure 6).
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Keywords Numbert of hits | logl0(Relativ Score)
Androgen-Insensitivity Syndrome 229 3.07
Kennedy&d8:Disease 21 2.56
Muscular Atrophy&&Spimal 133 2.12
Prostate Cancer 932 1.93
Gynecomastia 59 1.88
Hypospadia 81 1.79
Sex Chromosome Abermrations 2 1.78
Hirsutism 76 1.78
Robinow Syndrome 2 1.71
X-Linked Myotubular Myopathy 2 1.65
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Figure 5: Hierarchical clustering of literatute co-oecurtences of 3626 genes (rows) versus 1275 diseases
(columns). A co-occurrence was only taken into account when at least two articles mention the gene-
disease pair. Each gene had to have at least once a high {1-100 scaled) relevance score of >46. A: Overview
of all 5626 genes and 1275 diseases. B: Enlargement of a small subsection of genes showing the amount of

detail present in the CoPub Mapper analysis.
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Figute 6: Hierarchical clustering of literatuse co-occurrences of 1135 genes {rows) versus 177 cellular
components (columns). A co-occurrence was only taken into account when at least three articles mention
the gene-celiular component pair. Each gene had to have at least twice a high (1-100 scaled) relevance
score of >50. Relative scotes of less then 50 were masked in the TreeView program. Some of the eellular
component concepts responsible for clustering of genes are indicated.
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Discussion

With the implementation of high-throughput technologies in many fields of research,
problems have shified from data gathering to data comprehension. Linking data from
different sources, such as microartay expression data to biomedical text corpora, can
assist in the disclosure, summary, and visualisation of knowledge. This is particularly
valuable when from high throughput data, only a few items can be selected for further
detailed low-throughput examination. Co-occutrence analysis of concepts using the
MEDLINE literature database, is an effective tool to extract and categorize published
knowledge. CoPub Mapper output was successfully used to cluster predefined groups of
genes and resulted in a commonsensical clustering of PCOS microarray data. In addition,
CoPub Mapper uncovered relationships between genes using single concept searches and
provided an overall gene-keyword clustered summary of the literature. One obvious
limitation of gene-driven text mining is the incomplete study and publication of all
human genes. Qut of approximately 30,000 human genes, we included 15,621 annotated
genes of which 10,700 were mentioned at least once and 9,769 at least twice in
MEDLINE. The use of human gene names, symbols and aliases does not necessarily
mean a human-specific literatute search. Many gene names and symbols are shared by
other species as well.

The main advantages of CoPub Mappetr above most other co-publication programs, are
its modularity of keyword databases and the pre-calculated co-occurrences. Based on the
results from the predefined groups of genes, the choice of keyword database made a
substantial difference in clustering efficiency as determined by AUC calculations.
Utdlisation of a single joint thesaurus could counteract clusteting due to inclusion of
irrelevant non-discriminating keywords. Another illustration that keyword selection is an
important issue is the prevalence of common keywords such as “cancer” (disease),
“membrane” (cellular component), “metabolism” (biological process), “receptor”
{molecular function), and “blood” (tissue). These keywords are co-published with nearly
any gene of interest and were identified using CoPub Mapper. Although the relative
score is generally low, these co-occurrences will influence the clustering process. Manual
removal or stringent selection criteria before clustering can largely eliminate this potential
bias. Addition of new keyword thesanri such as species, technologies, drugs, toxicology,
pathology, etc. is feasible. Pre-calculation of co-publication of all possible gene-gene and
gene-keyword pairs and storage in the pairstat data file, makes querying the database
extremely efficient. Although the data are present, CoPub Mapper is not programmed
for co-occurrence querying of more than 2 concepts. We are cutrently integrating CoPub
Mapper into the Sequence Retrieval System (SRS) for multi-concept intetrogation and
direct linkage to other databases (such as microarray data, Gene Ontology, OMIM,
SwissProt, LocusLink, UniGene, Ensembl, etc.) [48].

Comparing the gene expression profiles of normal versus PCOS ovaties has identified a
latge number of genes representing networks and pathways that are deregulated in
PCOS. However, the gene names and symbols hardly ever point to specific signal
transduction pathwrays. The relation of genes with their function, localization and context
has been described in literature. Here we show that within the list of differentially
expressed genes some are linked to PCOS, obesity, diabetes and gametogenesis, This is
without surprise and easily explained [46;47]. Other genes are linked to cell proliferation,
differentiation and cancer. Most of them were downregulated which correlates with the
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observed atrest in growth and differentation of follicles. Other clusters with no obvious
link to PCOS may shed new light on the genes and pathways involved in the disease.

One of the major challenges associated with compiled heterogeneous text records such
as MEDLINF, is cotrect gene recognition and assignment. The lack of consistent gene
naming has resulted in a flood of synonyms and homonyms [7]. Although the synonym
issue can be resolved by accumulating all different gene names and symbols, the
correction for homonyms is still a daunting task. In order to include different spelling
forms and the word context, we performed the text searches case insensitive and with
predefined rules of regular expression.

The homonym problem consists of (i) different genes with identical gene name, symbol,
or alias, and (if), more frequently, a gene name, symbol or alias used for other terms than
genes [9]. In the curated CoPub Mapper gene thesautus, 1,286 of the 15,621 annotated
genes (8.2 %) share a symbol ot alias. In order to limit both aspects of the homonym
problem, we (i) eliminated 2 letter symbols and aliases, (i) deleted all symbols and aliases
ptesent in the English dictionary, (jil) manually curated terms with exceptionally high
number of hits, (tv) corrected for cell line names, and (v) deleted records in which the
pteceding  description of parenthesised symbols ot aliases did not match the
corresponding gene name. This last method has been used before to make an inventory
of the homonym problem and provide strategies for correction, such as the one used
here [9-13]. Although these measures effectively reduced the homonym problem, one
will regularly encounter incorrect recotd assignment and invalid co-occurrence quotation
using CoPub Mapper. Additional optimisation of the gene thesaurus might further
reduce this problem to some extent, but other correction approaches should be
considered. One of the most promising strategies to achieve disambiguation is based on
the preferential co-occurrence of other concepts [9;10]. For example, concepts generally
co-published with PSA meaning Poultry Science Association, will be very different from
concepts co-published with PSA representing prostate specific antigen. Based on these
preferential co-occutring concepts, one can assign the correct meaning to an ambiguous
terin.

Besides disclosure, summary, and visualization of known facts using co-publication, one
could also discover novel linkages among genes and between genes and other concepts.
One possibility to identify unpublished, but plausible links, is to screen for black squares
surrounded by red ones in a clustered co-occurrence heat map as shown in Figure 5. The
fact that a particular gene-disease combination was not found in MEDLINE (black
square), but clustered together with other co-published gene-disease pairs (red squates),
could indicate an unpublished association. This approach shows analogies with the
Swanson discovery framework in which concept A is known to relate to B and B is
associated with C [49;50). Combining all data, the deduction that A relates to C can be
hypothesised and tested [49;51-53].

Conclusions

CoPub Mapper is a program that identifies and rates co-published genes and keywords
starting from a single concept search or batch-wise from a set of genes. Its modularity
and pre-calculated co-occurrences allow for quick and versatile querying. The regular-
expression search strategy and homonym correction makes the keyword database
comprehensive and less contaminated with false positive classifications. CoPub Mapper
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can be used to summarize, evaluate and categotrise annotated genes from microarray
analyses based on co-occurrences with biological keywords and other published genes.

Availability and requirements
The CoPub Mapper progtam is available for free wuwse at this URL:
http:/ /www.bioasp.nl/ or hetp:/ /www.erasmusme.nl/gatcplatform/
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Abstract

Background

One of the challenges text-mining is facing is the gene nomenclature ambiguity.
A gene symbol can have multiple alternative names (synonyms) and/or multiple different
functional assignments (homonyms) related to its biological function, its physiological
location, or even as the result of researchers’ conflicts of intetest. Moreovet, this lack of a
controlled vocabulary in gene nomenclature is complicated even more by common
problems such as alternative spellings and literal spelling mistakes. This ambiguity makes
text mining, information retrieval, information extraction and data tnining in the
biological field a difficult task.

Results

We have developed a disambiguation methodology that relies on the hypothesis
that if we can categotize ambiguous gene symbols correctly in terms of their biological
function(s), then the taxonomic relationship of genes’ species in each category can be
used to tag that category. Unlike previous species-specific approaches, our
disambiguation approach is able to cover the entire taxonomic spectrumn from viruses,
prokaryotes and archaea to eukaryotes. We use the NCBI taxonomy database to resolve
all ambiguous gene symbols in the UniProt Knowledgebase (UniProtKB) with an overall
94 % precision and 82 % recall.

Conclusion

Our algorithm uses a naive Bayes classifier to solve problems such as: “Given an
ambiguous gene symbol and a species name what is its most likely functonal
assignment?” or "What biological terms and gene symbol synonyms can be used in a
Boolean query to efficiently and unambiguously search the literature for documents
pertaining to a gene of interest?”
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Background

Moleculat biology is undoubtedly one of the more recent scientific fields thac has moved
from technology and technique-based research to information driven research (1). This is
emphasized by the wealth of information and data from sequencing projects and
exponential publications about genes and groups of genes. Swanson’s work on finding
implicit relaions between facts in publications promoted a greater intetest in using
literature as a knowledge base for hypothesis generation (2-6). Since then several
informatics tools for literature mining have been developed for extracting information
based on term co-occurrence such as CoPub Mapper and many more (7-11}. In order to
retrieve sound facts and obtain knowledge it is crucial to pose effective and propet
questions. Howevet, at present mining the literature is complicated by the presence of
ambiguity that is inherent to natural language in a publication’s abstract or full paper.
Naturally, this leads to the question: How effective are currently developed text mining
tools?

The success of the Critical Assessment of Protein Structure Prediction (CASP) (12),
Critical Assessment of Prediction of Interaction (CAPRI) (13), Critical Assessment of
Micro-artay Data Analysis (CAMDA) (14) and the Genome Annotation Assessment
Project (GASP) (15) initiated various evaluation projects of text mining in the biological
field. These are in order of their initiation: Knowledge discovery and Data mining
(KDD), Text Retrieval Conference (TREC), Critical Assessment of Information
Extraction in Biology (BioCreAtlvE), and Natural Language Processing for Biology
{BioNLP). TREC focuses on document retrieval and classification tasks for genomics
{(16,17), whetreas BioNLP tags the biological name in Medline abstracts and BioCreAtlvE
focuses on gene mention identification and normalization and functional annotation of
genes using GO (18-22).

One of the drawbacks of these evaluation approaches is their variation in performance,
for example in BioCreAtIvE's “gene or protein mention” and “normalized gene list”
task, a variation was found between organisms with top F-scores higher than 0.90 for
yeast and (.80 for both fly and mouse. Detailed analysis revealed that the difference
between organisms could be explained at the gene nomenclature level due to extensive
ambiguity in gene names, ovetlap of gene names with English term, complex multiword
gene names, and difficulty in associating ambiguous names with the correct gene
identifier (21,22). Additionally, a substantial ambiguity in gene nomenclature has been
shown within and actoss eukaryote species, with English termns and with medical terms
23).

So far, efforts have mainly addressed the quantification of ambiguity restricted to specific
organisms. To our knowledge the problem of ambiguity quantification to date has been
addressed mainly in 21 model organisms with various solutions proposed to reduce name
ambiguity (23). The main solutions have been thesaurus-based (24), using classifiers
(25,26) and context based-coupled classifiers disambiguation (27-30). Schuemie and co-
workers (31) give an overview of the wotd sense disambiguation in the biomedical
dornain.

Ambiguity and the disambiguation process are highly complex, patticularly if we consider
the entire taxonomic spectrum, as is the case in this paper. For example, the gene symbol
CAT2 is thought to be ambiguous in rats (a category of permeases and a category of ion
transfer), but also denotes a gene in fungi (yeast, baker’s yeast), plants (tomato, potato,
radish) and bacterda (Halobacterinm salinarinm, Salintbacter ruber). The functions of gene
CAT2 can be generalized as permeases and catalases in bacteria and plants, respectively
as can be taken from Figure I-a,b generated with TreeDomViewer (32).
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TreeDomViewer displays the structural domains shared by the different sequences

annotated as CAT2.
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Another example of an ambiguous gene symbol used for illustration in this research is
ALK, which refers to a gene found in fungi and bactetia. Figure I-c,d, shows the
existence of two distinct groups in fungi, described respectively as cytochrome P450 and
permease-peptidase related, whereas in bacterda ALK refers to a helix-hairpin-helix
superfamily-based excision DNA repair protein. These two examples illustrate the
ambiguity within species (intra-species) as well as between species (intet-species).
Furthermore, CAT2 also displays the problem of synonymy with CAT, CAT1, ROP and
SU2, encompassing species from a broad taxonomic spectrum, namely archaea, bacteria,
fungi, metazoa and plants (Figure 2-5). Some of these synonyms share the same
biclogical category, that is, function, as is the case with CAT and CATZ, whereas SU2
only shares one out of two CAT2 categories. This shows that the ambiguity problem
becomes highly complex if we do consider gene symbols and their synonyms alike. This
observed gene symbol ambiguity might be explained amongst others by variation on
symbol’s spelling and researchers’ conflict of interest (33-35), occurrence of multiple
nares for the same genes (synonyms) and gene symbols referring to different biological
function (homology).

The ambiguity issue that is addressed in this paper will focus on gene symbol homonymy
and gene symbol synonymy. Additionally we intend to extend the definition of gene
ambiguity beyond non-uniqueness in a database, stop words, general English words or
non-biological terms to a gene having multiple concepts (biological functions).

First we will quantify the ambiguity problem and subsequently assign the biological
meaning or function to each gene symbol (discrimination task). Once plausible senses are
obtained for each gene symbol, we will assign the proper function to a symbol given a
species using the disambiguation task. Therefore, our approach should be viewed as
species taxonomy-pivoted gene function categorization.

Taxonotny may refer to relationship schemes other than hierarchies such as network
structure as well as being a simple organizaton of objects into groups, of even an
alphabetical list. In this paper we use taxonomy in the sense of an expert evolutionary
classification of organisms.

Our approach is based on the fact that most assigniments of annotation for molecular
function tely, at least partially, on the assumption that genes with similar sequences also
display sitnilar biological functions. This implies that sequences are evolutionary related
to a certain extent, the relationship denoting a common latest ancestor prior to the
speciation event. Thus species of a certain taxonomic rank have the same biological
function for a specific gene.

Provided that we can discriminate properly between gene symbols in terms of their
function, then the latest common species ancestor of a gene symbol within a category
can be used to tag that category. For example, if the gene symbol ALK] has shown 3
distinct biological functions during the discrimination process, we assume that each
group is monophyletic i.e. of one race, if not transformed to monophyletic, and the latest
common ancestor {LCA) of each group is used to assign a function to that category in
the disambiguation process.

In the following sections we will present the results and evaluation of the different
subtasks namely gene symbol’s sense discriminaton and gene symbol’s sense
disambiguation used in our methodology.
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a) Taxonomic-based disambiguation of ALK1. Species having aspergillus
as the latest common ancestor have the same biological function as shown
the graph.
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b} Taxonomic-based disambiguation of CAT2. Species having magnoliophyta
as the latest common ancestor have the same biological function as shown
the graph. )

Figure 2 — Taxonomic based disambiguation of two gene symbols ALK 1(a) and CAT2(h).
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Results Evaluation and Discussion

Gene symbol’s sense discrimination and quantification of ambiguity

Gene symbol senses discrimination is the task of finding the potential biological function
related to a gene symbol. Each sense is further labeled with an unambiguous meaning,
This stage can also be used to automatically assist in the construction of ontologies that
is currently done manually, Throughout this work, we address gene symbol or short form
rather than its long form (expanded). Occurrence of the gene name in more than one
UniProtKB entry was the starting point for our ambiguity quantification, but often these
symbols converged to the same biological function. Thus, out initial data set comprised
243,366 gene symbols occurting more than once in UniProtKB and was minimized to
10, 865 ambiguous symbols, addressing more than one actual biological function. After
obtaining the plausible biological function related to each ambiguous gene symbol during
the discrimination stage (see Materials and Methods), we examined the gene symbol’s
senses distribution. As shown in Figure J-a,b we identified 57% of the total 243,366
putative ambiguous gene symbols as displaying the same biological function, 40% with 2
distinct biological functions, 3% with 3 and the remaining genes with 4 to 8 biological
functions, We further investigated the distribution of the 10,865 symbols showing more
than one biological function among SwissProt taxonomic classes to gain an overview of
the classes with more confusing names. Our main finding was that 21% occutred in
bacteria, 21% in human and 18% in rodents as shown in Figure I-c.
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Figure 3 — Quantification of ambiguous gene symbols in UniProtKB.
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However, this figure also showed an overlap in gene symbols between taxonomic classes,
which will be illustrated further on. This ovetlap could be among others assigned to
ambiguity introduced via homology inference between model species and organisms of
interest.

Subsequently we sought to quantify gene symbols shared by different taxonomic classes
using Venn Master {36) to analyze the 10,865 ambiguous gene symbols. Figure 4
summarizes our findings: mammals, plaats, vertebrates, rodents, fungi and humans share
49 gene symbols whereas mammals, bacteria, plants vertebrates, rodents and fungi share
only 11 gene symbols. Furthermore, bacteria, plants and human share 99 gene symbols.

(rociant) - 3538

ssmmal , plant , rodent , human} : 167

.'I.'/

2) distribution across main SwissProt taxonomic classes i.e.

(plent, vestebrate , rodent , fungi , human , Inverscbrate} : 32

{rodent , human) : 3146
(rsammal , codent , human) : 1316

rodent, human, archaen, plant, vertebrate {others) invertebrates (others), mammal, fungi, bacteria, viruses.

Manmpsal
Figure 4- Ambiguous gene symbols (senses >
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Inaccuracy in gene nomenclature by scientists, conflict of interest or pure coincidence of
gene symbols having multiple alternative names, may account for our observations.
Having observed the interspecies gene nomenclature ambiguity lead us to the question in
which taxonomic class is the ambiguity more prevalent? To addtess this question, we
quantified the ambiguity within the main SwissProt taxonomic classes and found that
ambiguous gene symbols accounted for 362 out of 1,432 in archaea (25.28%), in bacteria
3915 out of 16,303 (24.01%} and in fungi 2,227 out of its 9610 (23.17%) gene symbol
entries.(Figure 3-d). Our findings can be attributed to the fact that archaeal, bacterial
and fungal taxonomic classes have more species and gene symbol entties than any other
class in the UniProtKB. Entries for human showed the least ambiguous gene symbols,
namely 3,824 out of its 30,090 (12.71%) gene symbols; this can be attributed to the
international effort in improving and standardizing human genes. Taken together, these
results strongly show the extent and spread of gene nomenclature ambiguity within
species and between species.

Hereafter we evaluated our methodology at the discrimination and the disambiguation
task level, respectively, to determine its suitability at detecting ambiguous gene symbols,
In order to address this question, we evaluated the correlation between the phenotype
{textual informaton) and genotype (sequence information). We randomly selected 100
ambiguous gene symbols out of the 10,865 available. For each randomly selected symbol
we extracted the cottesponding ptotein sequence from the UniProtKB., We used
TreeDomViewer for displaying the phylogeny with structural domain information
suppotting each clade and CLUTOQ to cluster textual (phenotype) information extracted
from UniProtKB, related to the same gene symbol (Figure 1. Then we manually
compared the two generated figures; in 86 % of the cases the phenotype analysis
correlated well with the genotype analysis (see additional files). For 10% of the cases
the respective domain could not be predicted for the sequence, therefore making it
difficult to support the members of each clade based on their structural domain(s). In 4%
of the cases we predicted more groups than actually was the case. A closer look at the
feature space revealed that some gene symbol entries were solely described by the gene
symbols itself without any other supplementaty information. Moreover, some symbols
were sparsely annotated and/or with very generic terms such as “hypothetical protein™.
Such general descriptive terms were excluded from the analysis (see Materials and
Methods). The correction of the above accounted for a total of 90% correlation
between the phenotype and the genotype compatison.

Gene symbol’s sense disambiguation

In order to address the experimental analysis of our method, we opted for the leave-one-
out cross validation given the sparse data at hand. Again we randomly selected 100 gene
symbols from the ambiguous set. For each gene symbol, we trained the Naive Bayes
classifier on n-1 instances (see additional files). These instances were the latest
common ancestor {LCA) of the species within a biological function class and the
corresponding biological function. We then iterated the classification in such a way that
all species instances were used as a testing set and the average performance was reported
as the microaveraging and macroaveraging metric of our classifier. With microaveraging
we achieved 93.52 % precision, 82.12 % recall and 85.57 % F-measure on average and
with macroaveraging metric we reported 82.81% precision, 85.97 % recall and 82.81% B-
measure. An excerpt of the performance metrics on 20 ambiguous genes symbols out of
the 100 randomly selected from the total 10, 865 ambiguous gene symbols is reported in
Table 1 and Figure 5.
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symbols wmicro_P mecre_R micro_F1 micro_E oA macro_P mago_R macro_F1 macro_E macre_#
pnd 1 1 1 o 1 1 1 1 1] 1
- "] 1 1 1 q 1 1 1 1 a 1
Pyl 1 1 1 [ 1 1 1 1 q 1
"t 1 1 1 [ 1 1 1 3 7 1
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ot 1 0.6 0.7335 0.4 o6 0.6 0.6 0.6 04 0.6
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nam2 1 1 1 3 1 1 1 ] 1
) 1 0.6667 0.778 0.6667 0.6667 0.6667 0.6567 0.3233 0.8667
mitdl 1 073 0.8335 075 0.75 Q.73 Q.75 0.28 0.75
g3 1 0.8 0.8668 0.8 .8 0.8 0.2 0.2 0.8
¥81 1 1 1 1 1 1 1 o 1
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o 1 0.75 0.8335 Q.75 0.75 0.75 A.75 0.25 0.75
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awd 1 0.8333 0.889 0.8333 0.8333 08333 08333 0.1887 0.8333
pelb 1 1 1 1 1 1 1 [ 1
nasl 1 1 1 1 1 1 1 [ 1
pind 1 0.8333 0.389 ¢.8332 0.4331 08333 08333 0.1667 0.8333
sl 1 G875 0.8167 0.9375 09375 09375 0.8375 0.5625 0.9375
o 1 0.6656 0.7668 [X: 2] 0.84 084 084 .16 0.84
Ini1 1 1 1 1 1 1 1 [ 1
adka I3 0.875 4.9167 0.875 0.875 0.875 0.87% 0.125 0.875
nat? 1 1 1 1 1 1 1 [ 1
wipt 1 1 1 1 1 1 1 3 1
af 1 0.75 0.8335 0.25 0.75 [ 075 [ 0.25 0.75
reg2 1 1 1 1 1 1 1 [ 1
pedz 1 1 1 [} 1 1 1 1 [ 1
sapi158 1 1 1 1 1 1 1 1
mana 1 0.75 0.8315 0.25 .75 075 075 a?s 0.25 0.75
el 1 1 1 1 1 1 1 Q 1
pais 1 0.7 0.8002 0.3 0.7 0.7 0.7 0.7 o.3 o7
anu23 1 1 1 o 1 1 1 1 o 1
oyl 1 0.5429 0.7621 0.3571 0.6429 06429 0.642% 0.6429 0.31571 0.5429
muql 1 1 1 o 1 1 1 L] 1
hcxl 1 1 o 1 1 1 1 [1] 1
oms 1 1 1 a 1 1 1 1 0 1
oapl 0.9 0.55 0.5669 0.4 0.6 0.5 0.65 0.6 0.4 0.6
ropl 0.9 0.85 0.8667 0.1 0.9 09 0.95 0.9 a1 0.9
b1 0.8333 0.8333 0.6333 0.1687 0.8333 0.8333 0.9167 0.4333 0.1667 0.8323
a2 08332 0.5832 0.5668 0.4167 0.5833 0.5833 0.6667 0.5833 0.4167 0.5833
[ ] 0.6 e.5 0.5668 G4 0.6 0.6 0.7 0.6 0.4 0.6
ompl 0.6 o7 0.5002 0.4 0.6 06 0.7 0.6 0.4 <X
apm2 0.8 o7 0.7334 ez 0.8 08 0.8668 0.8 2.2 0.8
sipl 0.8 .6 0.6668 0.4 0.6 056 0.7 0.6 0.4 0.6
nrl 0. o7 0.2334 0.3 0.7 0.7 0.3 a.7 2.3 0.7
o 473 0.4532 0.5417 0.4158 0.5433 0.5833 0.6667 0.5633 0.4168 0.5833
oxE .73 0.375 0.5003 0.62% 0.373 0.375 0.5 .375 0.625 0.37%
pal 0.7142 0.5714 0.5191 0.4236 0.5714 0.5714 0.7143 0.5714 0.4285 0.5714
cama 0.6667 0.6667 0.8567 0.3333 0.6667 0.6667 0.8333 0.6667 0.3332 0.5667
ol 0.6567 0.6667 0.8667 0.3333 4.6667 0.6667 0.8333 0.6667 0.3332 0.5867
drel 0.6567 06667 0.5667 0.2333 0.66867 0.6667 0.8333 0.6567 0.3332 0.6667
eohl 0.6867 0.5 0.5557 0.5 0.5 0.5 .6667 0.5 oS .5
"weld 0.6567 0.5 0.5957 0.5 o5 0.5 06667 0.5 0.5 0.5
yis 0.6567 0333 0.4447 0.58667 4.3333 0.3333 0.5 0.3233 0.6567 0.3333
0.6667 0.5 0.5857 0.5 0.5 0.5 0.6667 ] 0.5 s
-l 0.6667 0.5 0.5557 0.5 0.5 0.5 06667 0.5 0.5 0.5
oyl 0.6657 0.6667 0.6667 0.3333 0.6867 0.6667 08333 0.6567 0.3332 0.6667
edg 1 0.6567 G.778 D.3333 0.6657 0.6667 {0.6667 0.5567 03131 0.6667
sl 1 H 1 ] 1 1 1 1
poa1 1 1 1 [ 1 1 1 1 Q 1
paxt 1 0.6 0.7336 0.4 0.6 0.6 0.6 0.6 04 0.6
-2 1 1 1 1 1 1 L] 1
[ -] 1 0.7 0.8335 0.25 0.75 0.75 .35 0.75 Q.25 .75
[ 1 0.875 09167 0.125 0.875 0.875 0.875 0.875 0.125 -B75
me3 1 1 1 ] 1 1 1 1 ] 1
opl3 1 1 1 ] 1 1 1 1 ] 1
pup2 1 1 1 1 1 2 1
nir2 1 0.3777? 0.8331 0.2222 07777 2.7777 0.7 0.7777 0.2223 02777
nrl 1 1 1 ] 1 1 1 1 Q 1
] 1 1 1 ] 1 1 1 1 L] 1
odcs 1 1 1 o 1 1 1 1 [ 1
natd 1 1 1 o 1 1 1 1 [ 1
a9 1 0.8 0.8668 0.2 0.8 o.a 08 a8 0.2 0.8
agaa 1 0.5 0.567 a.5 a.5 0.5 0.5 0.3 035 0.5

Table 1: Performance metric on 100 ambiguous gene symbols randomly selected.
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‘The significant difference between microaveraging and mactoaveraging could be
attributed to the fact that the different categories show a very different generality Le. the
percentage of species and / or LCA (positive training) that belong to that category.

Thus the ability of the classifier to behave well also on categories with low generality will
be emphasized by macroaveraging and much less so by tnicroaveraging,
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Figure 5 — Micro (a) and Macro (h) averaging performance metric of Genellluminator via Leave-one-out
crossvalidation on the 100 randomly selected gene symbols and corresponding species.
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The association of clustering and taxonomy-based tagging

Throughout our methadology we have combined clustering and species taxonomic
tagging. Clustering and taxonomic tagging are similar when new annotations are
introduced in the UniProtKB databases, i.e. they have to be run again. The quality of the
clustering technique depends heavily on the feature space, while species taxonomy
tagging relies on the existence of a taxonomic description and entry of a given species in
the NCBI taxonomy database.

The above analysis shows that a prior selection of a comprehensive database such as
UniProtKB and the NCBI taxonomic database coupled to a post-retrieval clustering
followed by taxonomic rank tagging offers quality, maintenance, flexibility and
petfottnance benefits. This is an important advantage over thesaurus-based, rule-based
disambiguration and previous gene symbol sense disambiguation approaches.

Future work

We plan to develop a web interface to navigate and resolve the ambiguity through other
classifier besides the current Naive Bayes. An area under curve (AUC) would be a sound
statistical measure to select for the evaluation of classifier quality. The latter interface
should also help recovering literature and other information pertaining to a gene of
interest, for example disambiguating PubMed abstracts.

Conclusions

We present a disambiguation algorithm that integrates clustering, discriminating, tagging,
mapping and categotization algorithms. The methodology relies on the assumption that
once function is propetly categorized for an ambiguous gene name, we can vniquely tag
all members of each category to a tazonomic rank, and thus map the taxonomic or
specics level to one of the concepts, ie. the gene name function. This approach
disambiguates gene names in a wide taxonomic spectrum, namely vituses, prokaryotes,
archaea and eukaryotes, and resolves ambiguity within species as well as between species.
The generated data can be used to train a Naive Bayes classifier which can propetly
categorize new gene symbols given the fact that the latter is ambiguous or not and that
the species is known.

This methodology attempts to answer questions such as “Which gene do you address?”
in an association study or text-mining tool. It also highlights the multiple aspects
{biological function) of a gene symbol. Our algorithm relies on the taxonomy (LCA —last
common ancestor) as a substitute for the biological function of a gene symbol if in a
context the species is known and the function is problematic. Moreovet, for database
curators this tool provides a good overview of the extent of ambiguity in their repository,
as well as an efficient way to resolve the ambiguity.

Materials and Methods

Data collection

Data were extracted from the UniProtKB (Universal Protein Knowledge based) database
release 12.1 (37), which is a central hub for the collection of functional information on
protein, with accurate, consistent and tich information and an accepted biological
ontology, taxonomic classification and cross-referenced information. Figure 6 “step 17
highlights the data collection stage. UniProtKB is made up of SwissProt (manually
curated set) and TrTEMBL (automatically generated).
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In order to investigate which name vadant (primary name, alternative name) yielded
greater ambiguity, we investigated the ambiguity level considering only the primary gene
name in the UniProtiKB. This explored the extent of the problem if scientists only
referred to primary nomenclature in their research. A Petl module referred to as
“neverExpand” implemented this scenario. We further measured the ambiguity extent
considering the primary name and its UniProtKB alternative name(s), provided the latter
was not a primary name eclsewhere, This approach sought to highlight which of the
nomenclature categories were mostly used and which might aggravate the ambiguity
level; the “CondExpand” Petl module handled this case. Finally, the module
“alwaysExpand” assumed that primaty name and alternative names are likely to
contribute to ambiguity. This analysis resulted in 10,865 ambiguous symbals out of
243,366 UniProtKB gene symbols occutring more than once, which was 4.5 % of the
total set. Figure 3 illustrates the extent of gene ambiguity in UniProtKB when using the
above-mentioned approaches. The rationale in our investigation so far was to optimally
quantify the ambiguity and as such, “AlwaysExpand’ was adopted for our study.

Data curation:

Feature stemnming

For biological terms stemming can be considered done at two levels, namely the suffixes
and the prefixes. Taking the prefix case, deacetylation stemmed to acetylation conveys a
complete opposite meaning, To further illustrate this, we consider the following
processes ot actions: maturation, differentiation, and inhibition. Yet once maturation is
stemmed to mature (fully developed), the biological meaning is changed. Furthermore,
enzymes are suffixed with —ase (e.g. peptidase), and stemming carried out on disease
(which of course is not an enzyme) results in “dise”, which is neither a biological term
not an English tetm, but a French derivate of the verb “dire” {to say). Hence, using
stemming in vector feature construction in this biological context might lead to a serious
semantic etror and afier judging the risk stemming brought into play, we discarded it.

Stop list generation and biological term selection

The appropriate content identifiers were extracted from UniProtKB. We focused on
three limited annotation fields that were likely to be highly enriched. These were the
UniProtKb description field (DE), the comment field (CC) and Cross-reference fields
{DR). In the next section we will explain our strategy for selecting gene symbol’s content
as well as the terms to be discarded from the whole set, the so-called stop word list,

Most automatic indexing efforts start with the observation that the frequency of
occurrence of individual word types (that is, of distinct words) in natural language texts
{biological text) has something to do with the importance of these words for the putpose
of contents representation. It has been observed that words occur in natural language
unevenly. Consequently, classes of words are distinguishable by their frequency of
occurrence. In fact, it is known that when distinct words in a text body are arranged in a
decteasing order of their frequency of occurrence, the constant rank-frequency law of
Zipf can characterize the occurrence characteristics of the vocabulary,

Jrequency x rank ~= constant,

ie. the frequency of a given word multiplied by the rank order of that word will be
approximately equal to the frequency of another word multiplied by its rank (38). The
law has been explained by citing a general “prnciple of least effort”, which makes it
easier for a speaker or writer to repeat certain words instead of coining new and different
words, with the exception for those used in poetry which of course is not applicable in
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our case. The least effort principle also accounts for the fact that the most frequent
words and those with the lowest rank tend to be short function words such as “the, and,
of, but” etc. which are easy to coin and whose cost of usage is small.

Using the Zipf law of expression as a starting point, we derived word significance factors
based on frequency characteristics of individual words in gene symbols biological
description text. We followed this apptoach to quantify a potential stop list: by observing
mote closely the term frequency we decided on which suitable high and low threshold
value to remove all words with a collection frequency above and below this threshold.
However, low and high-frequency terms might produce losses in precision and recall
Another problem is the necessity to choose appropriate thresholds in order to distinguish
the useful medium-frequency term from the remainder. Therefore the rest of the list was
manually checked to discard meaningful term from generic and non-function terms (see
additional files, Iist stop words).

Gene symbol’s sense discrimination

Data clustering (Vector space representation of gene symbols).

Figure 6 “step 2” highlights the sense discrimination stage. As the current text mining
technologies ate not able to “read” and “understand™ a text like human beings due to its
unstructured natute, text mining transformed texts into a vector space model, to which
existing data mining or machine learning algorithms can easily be applied. In a vector
space model, a text is represented as a vector by means of representative keywords called
index terms.

A useful index term must fulfill a dual function: it must be related to the information
content of the gene symbol, so as to tender the item retrievable when it is wanted (recally;
a good index term also distinguishes the gene symbols to which it is assigned from the
remainder to prevent the indiscriminate retrieval of all items, whether wanted or not
(precision). Thus, a term such as protein, gene, RNA, DNA is not very indicative of the
potential hiological function but rather of a certain class of biological molecules. This
suggests the use of relative frequency measures to identify terms occurring with
substantial frequencies in some individual gene symbols of a collection, but with a
relatively low overall collection frequency. Such terms may then help in retrieving the
items to which they are assigned, while also distinguishing them from the remainder in
the collection.

The index terms describing a gene symbol were those from UniProtKB description field
(DE), Cross-reference fields (DR) and comment fields (CC), devoid of those present in
the Stop list generated previously. Therefore, for the purpose of further clustering a gene
symbol's cotpus (all document) was constructed. A document is made up of a species
and gene symbol desctiption index terms pait.

The aim of document clustering is defined as follows: Given 2 set of n documents called
Dy, Dy is clustered into a user-defined number of & document cluster Dy, Dy,,... Dy, (e
{Dyy, Dy, ... Dy} = D) s0 that the documents in a document cluster are similar to one
another while documents from different clusters are dissimilar. One innovation in out
pipeline was to predict the optimal number of clusters given a dataset without user
intervention as the unsupervised task of document clustering is a very subjective task
One important question that might arise from the latter is how can we predict the
optimal number of clustet given a data set?

Gordon and colleagues (39) gave a good overview on many methods that have been
proposed for estimating the optimum number of clusters given a dataset. These methods
could be classified as global or local. The former evaluate some measures over the entire
dataset and optimize it as a function of the pumber of clusters. The local method
considers individual pairs of clusters and tests whether they should be merged,
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Robert Tibshirami and colleagues (40) applied six different methods for estimating the
number of clusters. Their stimulation studies suggested that the Gap statistics estimate is
a good algorithm to identify well-separated clusters. Given that biological terms co-
occurrence in the description of the biological function of a gene can be cleatly
separated, we believe this method as well suited for clustering and thus discriminating
bioclogical function of ambiguous gene symbols efficienty.

‘The Gap statistic relied on the following: If one tries to cluster a dataset (i.e, numerous
observations described in tetms of a feature space) into # groups or clusters and if we
plot the graph of within cluster dissimilarity {etror) or similarity along an Y-axis and the
number of clusters along an X-axis, then this graph generally takes a form of an elbow or
knee depending upon the measure on the Y-axis. The Gap statistic seeks to locate this
elbow or knee because the x-value of this elbow represents the optimal number of
clusters for the data set. In Figure 7 "Gap stadgstic curve of ALKI” (see additional
files) the Gap curve of ALKY shows many local taxima and these in itself can be
informative and suggesting the very subjective native of document clusteting,

In our methodology we integrated and used a suite of clustering algorithm, namely
CLUTO for clustering(41) .

Clusteting approaches can be categorized as hierarchical, partitional (42) and hybsid.
Next we will give a brief overview on clustering techniques and the choice of those used
throughout our methodology.

Hieratchical agglomerative clustering algorithims successively merge the most similar
objects based on pair-wise distances between the objects until 2 termination condition
holds (ctiterion function). Critetion function is a term that refers to different metrics that
clustering algorithm use to try to optimize the quality of a clustering solution. An
advantage of hierarchical agglomerative algorithm is that they generate a document
hierarchy that users can search up and down for specific topics of interest. However, due
to their cubic time complexity, they are limited for a very large number of documents.
Partitional clustering algorithm, most widely used, first randomly select the & centroid
and then divide the object into k disjoint groups through iteratively relocating objects
based on the similarity between the centroids and the object. Hence, partidonal
techniques display a linear time complexity. One major drawback of partitional algorithm
is that clustering results are heavily sensitive to the initial centroid because the centroids
are randomly selected.

Hybrid clustering algorithen is a partitional method that produces hierarchical clusteting
solutions using repeated bisections. The intention is to take advantage of the global view
of the partiional algorithm but also to reduce the instability induced by the inital
random k centroid. An example of hybrid clusteting algotithm is the repeated bisection.
Criterion functions are classified into internal, external and hybrid type. The internal type
takes an intra-cluster {within) view of the clustering process, thus only captures how the
gene symbol’s context-vector in any given cluster is related to each other.

& 1
n=3n(% Ycos(d,d) "

r=l " d.des,
Where I is the internal maximization function, », represents the size of each £ cluster
{(gene symbol biological functions), cs(d,4) is the similarity measure between context-
vector d;and 4,
The external criterion functions take an inter-cluster (between) view and try to find gene
symbol’s biological function clusters which are as different or dissimilar from each other
as possible.

@

%
El= Zn, cos(C, .C)

r=l
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Where El is the external minimization ctitetion function, minimizing the similarity
(c0s{C,,C)) between the centroid of each cluster (C) and the centroid of the entire set (C)
weighted by the size of each cluster (7)

The hybrid criterion function strives to propose clusteting solutions which maximize
intra-cluster similarity and simultanecusly minimize the inter-cluster similarity.

_ {I(m) 3)
El(m)

The Hybrid criterion function H{ is proportional to a maximization function and
inversely proportional to a minimization function and therefore itself is a maximization
function.

Zhao and Karypsis (43) reported that a strenpth of repeated bisection over
agglomerative algorithm is its aptitude for excluding merging errors in the early stage that
are usually the cause of poor performance in the agglomerative method. Furthermore,
Pundare and Pederson (44) conjectuted that when sparse data are available (specifically in
this study as the corpus for each symbol pror to analysis were very sparse), repeated
bisection can improve the clustering process. Qwing to the advantage hybrid criterion
function and hybtid clusteting procedure offets we used them in our entire methodology.

H1

Cluster labeling

Once the context-vector was separated into clusters by CLUTO repeated bisection as
clustering procedure and hybrid critetion function, CLUTO generated a set of
desctiptive and disctiminating featutes based on 2 set threshold of most characteristic
features that were unique to each cluster. These were the top N (10 in our case) grams
{words) ranked on their frequency or theit statistical scores. The idea here was to assign
automatically the most significant words summarizing a cluster without having to
examine the clusters content. We would like to emphasize that these summaries were
simple word lists without any grammatical syntax.

Furthetmore, to each cluster we assigned the latest common ancestor of species within
that clusters using tools from the BioPerl toolkit (45). Taxonomic entries were from the
NCBI taxonomic database, which is cross-linked from UniProtKB entries.

Data Storage and querying

All data generated throughout our pipeline is loaded and stored in a MySQL database for
further querying., Sample table headers that show the link between gene symbols, cluster
ID and latest common ancestor LCA is shown in rable 2. This data are paramnount in the
subsequent step of our disambiguation because they are used to train a classifier for
future classification of an ambiguous gene symbol.
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Gen e symb ol Kingdom Tax rank Func tion/ #species # of cluster/ cluster size (species)
ALK1 Bacteria Bacillus cereus 2;1 33
ALK1 Fungj Ascom yoota 14 34
ALK1 Fungi Aspergillus 0;3 33
ALK1 Fungi Sac charo my ces cerevisiae 2;1 3;3
ALKl Merzoa Homo sapiens 2;1 33
CAT2 Archaea Hal obacreriaceae 12 17
CAT2 Bact cria Bacreria 13 2:17
CAT2 Fungj Ascom yeom 1,5 2,17
CAT2 Fungi Pexizo mycotina 02 21
CAT2 Metazoa Mayetiola_d estructor 0;1 221
CAT? Metazoa Rartus_no rvegicus 11 217
CAT2 Viridiplan tae Magno liophyta 0;18 221
CAT2 Viridiplan tae Popu lus_deltoides 1;1 217

Table 2: Data set used for training the classifier in the case of ALK1 and CAT2. Columns 1-3 ace self-
descriptive. Column 4 conrains 2 digits, the first represents the cluster identifier, the second the number of
species in that cluster having the taxonomic rank in column 3. Column 5 summarizes the number of
clusters for a specific symbol followed by the total clustet size.

Gene symbol’s sense disambiguation

Figute 6 “step 3 highlights this stage

Word Sense Disambiguation (WSD) may be seen as a text categorization (TC) task (46),
which is the task of assigning a Boolean value to each pair (d,,¢,)e DxC, where Disa

domain of the document and C ={¢,,...,¢y} 2 set of predefined categories. In our case,

once we have viewed the gene symbol occurrence context as a document and gene
function as a category, this is a single-label TC, and one in which document-pivoted TC
is usually the right choice. We should view TC in our approach as taxonomy-pivoted
gene function categorization.

WSD are usually coupled to machine learning (ML) techniques. In ML terminology the
classification problem is an activity of supervised learning, since the leamning process is
“supervised” by the knowledge of the categoties and the training instances that belong to
them. Amongst various existing machine learning techniques such as Support vector
machine (SYM}), we have chosen the probabilistic classifier Naive Bayes classifier because
of its simple and yet robust implementation. ‘The Naive Bayes classifier assumes that any
two cootdinates of the document vector are, when viewed as random variables,
statistically independent of each other. The naive character of the classifier is due to the
fact that the latter assumption is quite obviously not verified in practice. This
probabilistic classifier is mathematically defined as follow:

_Ple)Pd,e)

Ple,1d)=—"> @

In the above formula the event space is that of a specific ambiguous gene symbol
P(d))is the probability that a randomly selected LCA (latest common ancestor)

encompasscs species representing vector d . And P(c,) the probability that a randomly
picked species belongs to category ¢, therefore has functione, .
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In order to evaluate the approach analytically and to prove that cur system was correct
and complete, we needed a formal specification of the problem the systern was trying to
solve. Due to its inherent subjective character it is difficult to formalize the notion of text
categonization. Therefore our evaluation was conducted expetimentally rather than
analytically.

Our expetimental evaluation measured the ability of the system to take the right
classification decision (effectiveness) through precision and recall. The precision () is
defined as the probability that, if a random gene symbol-species pair (4) is classified
under biological function (¢}, this decision is correct. Mathematically as:

TP @

P=rp Fp

Where TP= number of true positive decision, FP= numbet of false positive decision.
The recall (#) is defined as the probability that, if a random gene symbols- species pair (d)
ought to be classified under biological function (), this decision is taken. Mathematically
as:
,e P an
TP+ FN

Where TP= numnber of true positive decision, FN= number of false negative decision.
Therefore, precision may be regarded as the “degree of soundness” and recall as the
“degree of completeness”,
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Abstract

An important consequence of the accumulation of vast amounts of genomic data is that
the ambiguity of gene nomenclature leads to confusion in annotation. We present here
Genellluminator, a tool that can highlight the multiple biological functions assigned to a
gene within or across species exhibiting an ambiguous name or gene symbol
Additionally our tool can annotate a gene symbol of a given species based on prior
knowledge of its closest taxonomic relative, This is an asset for annotation pipelines as
well as document-pivoted and categoty-pivoted text categorization where gene symbols
or gene name abbreviations are ambiguous. Genellluminator also proposes unambiguous
gene symbol synonyms to the initial abbreviation of interest for a biological function.
The suggested sets of unambiguous synonyms and biological entities of the category are
used in a Boolean ot vector model to effectvely retrieve PubMed abstracts through
GoPubMed, thus actively disambiguating PubMed abstracts. Genellluminator is freely
available for academic use at: www.bicinformatics.nl/tools/gi/. For automated querying
via custom software, four BioMOBY web services are available for remote programmatic
access at:
https:/ /www.bioinformatics.nl/phenolink/home/BIF_services/Genellluminator_servic
es.html,
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INTRODUCTION

A consequence of the recent application of computational techniques in the life sciences
is a vast increase in available data and publications. Naturally this provides a new and
important source of valuable information, which however is presented in a challenging
format, ie. natural language text. In order to meet this challenge in large-scale
exploitation, new text mining techniques ate required. Several tools have been already
developed to help researchers to extract and mine data in scientific literature, such as (1-
6). However, barrers to successful selection and identification of gene names and
biological terms are: the extensive lexical variation preventing terms to be recognized in a
free text, the gene name synonymy and the gene name homonymy. The latter creates
uncertainties regarding the exact identity of a term. Furthermore, the biological field is
mined with a constantly changing terminology and constant additions to this
terminology. A related problem is the lack of a stringent nomenclature in the majority of
gene and protein databases. For example, the guidelines for FlyBase, dealing with the
genome of Drosophila, is largely unrestricted (7). FlyBase favours a rather descriptive
nomenclature, which makes an automated identification of gene names very difficult. In
contrast, termn conventions for yeasts are more sttingent, thus allowing for easier gene
name identification.

To this problem of rather technical ambiguity adds also the often encountered conflict of
interest between researchers, as scientists might rather share their toothbrush than the
same gene name (8).

Applications such as manual literature search, automated text-mining, named entity
recognition, gene or protein annotation, and linking of knowledge from different
information sources require the knowledge of all names referring to a given gene or
protein unambiguously {9). In this context it is important to realize that biomedical and
biological tetms often appear in abbreviated forms, so-called actonyms. Although several
methods have been developed to capture the different acronyms in the literature (10-19),
they are not sufficient in selecting the proper acronym that unambiguously pertains to
the concept of interest, e.g. the biological function. That means that to date current text
mining tools cannot guide users toward the effective term selection to achieve a
meaningful query.

This paper addresses the ambiguity at the gene nomenclature abbteviation or acronym
level. How does one efficiently and unambiguously tap the huge knowledge base of
literature in such a way as to assist scientist to make sense of the vast amount of high-
throughput data generated in experiments? Good interpretation is key to generate new
hypotheses for further experimentation and validation.

Here we present Genellluminator (GI), a tool that addresses vatious aspects of text
mining. It addresses and displays the multiple aspects of the biological functions of
ambiguous gene symbols, These multiple aspects can be used independently to partition
PubMed abstracts based on a similarity profile between abstracts and different concepts
of an ambiguous gene symbols. The tool can also be used as a gene symbol ambiguity
checker for information contained in UniProtKB. It categotizes ambiguous gene
symbols, their synonyms and species with respect to the distinct biological concept of the
primary symbols used for the scarches. Furthermore there is an option to check the
quality of the categorization as well as the provision of the featute space used for the
categotization task. And finally, Genellluminator can be seen as an interactive curation
tool, which supports the curator of databases and can eventually learn from him. Besides
this it represents a functional annotation approach that combines data from linguistic
and bioinformatics sources. In the subsequent section we will introduce the methodology
of Genellluminator.
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MATERIALS AND METHODS
Implementation and design

Data preparation and processing

Genellluminator interrogates a MySQL repository of ambiguous gene symbols taken
from a quantitative survey of ambiguous acronyms in UniProtKB. Our database was
consttucted with a methodology {manuscript submitted for publicadon) based on the
UniProt Knowledgebase, release 12.2. Briefly, the UniProt consortium is concerned with
the integration of protein information in the UniProtKB, providing a central, stable,
comprehensive, richly classified and accurately annotated protein sequence database with
extensive cross-teferences to other data sources. The expectation of the UniProt project
is that the SwissProt/UniPtot and Entrez gene databases will increasingly share
nomenclature with the advantage that the mapping between databases will be
increasingly complete and unambiguous, This will aid in facilitating the generation of
gene name dictionaries which in turn will represent a comprehensive source of gene
nomenclature for analysis and text mining purposes. (20)

Input and output description

The GI interface uses as the minithum input the gene name symbol or acronym. The
mterface uses AJAX) technologies that help to auto-complete input data such as gene
symbol or species name. Figure 1 displays the G interface.
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Figure 1: Genellluminator web interface

It uses aiSee, a graphic layout software tool (www.aisee.com) and CLUTO
(http:/ /glaros.dtc.umn.edu/gkhome/views/cluto) to enhance the visualization of
Genellluminatot’s gene symbol analysis. GI exploits aiSee’s force-directed layout to
display the gene symbol and its synonyms in a network manner to the most descriptive
tettns of its biological function and different taxonomic level of the respective species.
The nodes of the generated graph represent the gene symbol, its synonyms and
associated biological tetms, and the taxonomy.
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Different shapes and colors are applied to provide a comprehensive overview to analyze
this graph. All nodes are interactdve and by clicking on the node a set of related PubMed
abstracts will be displayed for user’s assessment. The graph is illustrated as a publication
quality scalable vector graphic (SVG) in Figure 2-a, where the network of gene symbols
and their synonym associations to descriptive biological terms are shown. Furthermore,
the clustering toolkit CLUTO (Figure 2-8) provides clusteting of descriptive features of
the ambiguous symbol under investigation, which represents a complementary aspect to
the graph layout of aiSee.
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Figure 2a-by Geneilluminator output: (3) Taxonomy-based disambiguation of ALK1. (b} phenotypic
(textual) data clusteting of ALK1 annotation across different species showing three distinct biological
functions.

In the case that a gene symbol cannot be found for any user-specified species, GI will
assign the meaning of the gene symbol to the species based on their latest common
ancestor in the taxonomy. The latter assignment is realized with a Naive Bayes
classification algorithm that bases it assumption on the following: most assignments of
annotation for molecular function rely, at least partially, on the assumption that genes
with similar sequences also display similar biological functions.
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This implies, that sequences are evolutionary related to a certain extent, the relationship
denoting a2 common latest ancestor prior to the speciation event. Thus, species of a
certain taxonotnic rank most probably have the same biological function for a specific
gene. Hence annotators copy informaton from orthologous sequences or more closely
related species. We use this assumption in our approach to relate the gene symbol to a
before unknown species.

To illustrate our approach, we selected the gene symbol ALKI, which has entries in
UniProtKB for human, fungi and bacteria domains. Figure 2-b shows the existence of
two distinct groups in fungi, described respectively as cytochrome P450 and permease-
peptidase telated, whereas in bacteria ALK tefers to DNA repair enzyme. Furthermore
a comparison of ALK] synonyms and taxonomic association to its multiple senses
{(figure 2-c, 2-d, 2-¢) shows that unlike synonyms, the taxonornic units are unambiguous
pet biological function. For instance, species of the rank Asomycots show unambignously
the function cytochrome monoxygenase related. All specics of the taxonmomic rank
Apergélius unambiguously have the function protease peptidase related, and last but not
least Bacllus cerens, Homo sapiens and Saccharomycer cerevisize unambiguously have the
function kinase receptor related. This clearly exemplifies the issue of intra-species and
inter-specie gene nomenclature ambiguity encountered in text mining of current
knowledge databases.
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Pigure 2c-d-e: Genellluminator outpug (2-c), species distribution for the ALK biclogical function:
Cytochrome monooxygenase telated, (2-d) species distribution for the ALK1 biological function:
proteinase peptidase refated (2-¢) species disttibution for the ALK1 biological function: kinase receptor
related.




Genellluminator: disambiguation of PubMed abstracis

Using the Naive Bayes taxonomy-based disambiguation {Figure 2-a) shows that for the
species Aspergilius flavus and the gene symbol ALK] the function “proteinase 22.3%,
elastolytic 5.6%, peptidase 5.6%" is assigned with a 100 % confidence based on the fact
that all 4spergilius spp. already exhibited that function (latest common ancestot). The
percentage asctibed to each functional biological term of a categoty, eg 22.3%
proteinase, explains that the cluster is made up of “proteinase, elastolytic, peptidase,
secreted protein, alkaline” to the extent of the given percentage. Currenty predefined
queties are generated from a list of synonyms as shown in figure 2-a, 2.c, 2-d, 2-e. A
click on the cluster label ‘Cytochrome monooxygenase cluster’ rettieved a total of 157
abstract listed in PubMed with the majority of them referring or being related to fungi.

Design overview

Genellluminator is implemented in Petl as a web-based service, running on an apache
2.0 webserver using 2 Linux platform (SuSE Linux Enterprise Server 9 with MySQL 5.0).
GT’s interface (Figure 1) is a wrapper on several independent applications that uses a
Naive bayes algorithm for categorizing previously unseen instances of ambiguous gene
symbols of a given species and subsequently plotting a graph of gene symbols, their
synonyms and associated biological functions. The web interface preserves platform
independency across multiple operating systems and allows the user to interact with the
different GI programs without prior knowledge of computer programming skifls. Figure
F suminarizes a global overview of the GI workflow.

The GI web interface was tested on Windows XP, Mac OS X and several types of Linux
OS browsers with good results. However, some problems where noticed with the
interactive usage of the scalar vector graphics (SVG) due less or no support of some
browsers with this graphic display; currently some browsers still require an Adobe SVG
plug-in, downloadable from the Adobe site
(http:/ /www.adobe.com/svg/viewet/install/main html). The latest versions of the
Mozilla Firefox browser (vetsion 2.0 and above) and Safari have already a native (built-
in) SVG support and it is reasonable to expect that more browsets will soon follow,

In addition to the web interface, four BioMOBY (21) web services were developed,
providing remote programmatic access to Gl:

¢  Genellluminator_ GetGraph

¢ Genellluminator_GetClusters

»  Genellluminator_AssignSpeciesToCluster

¢  Genellluminator_GetPubMedQuery

These web services allow users to incorporate GI in workflows for automated
disambiguation of gene symbols.


http://www.adobe.com/svg/viewer/install/main.html
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Figure 3: Genellluminator flow chart.
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Genellluminator _GetGraph provides this overview as an image in SVG format, whereas
Genellluminator_GetClusters (figure 5 illustrates its Taverna workflow) provides the
same information in a  textual format (raw  BioMOBY  XML).
Genellluminator_AssignSpeciesToCluster also provides the textual information as
Genellluminator_GetClusters, but furthermore adds a Naive Bayes probability indicating
the likelihood of a gene symbol belonging to a certain cluster given the input species.
Finally, Genellluminator_GetPubMedQuery immplements a Boolean quety to search
PubMed for a given gene symbol and species, unambiguously retrieving documents that
describe the gene of interest. [t is noteworthy that Genellluminator_GetPubMedQuery
provides the query terms solely and does not perform the actual query. The latter is
accomplished by GoPubMed (22), a different web service software.

Documentation, example wortkflows and example inputs for the wotkflow builder
Taverna (23) are available in the online material.

Workflow Inputs

Workflow Outputs

Figute 5: Genellluminator_GetClusters web service. If a gene symbol is ambiguous this service provides
GI_Clusters describing which different genes sharing the same symbol exist in different parts of the tree of
life Provides also gene symbol aliases associated to the input gene symbol
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FUTURE PLAN

We plan in the near future to allow the user to select terms of categories and symbols to
be used in her/his query formulation. This will gear up the search to the specific user
needs. Furthermore we plan to provide a suitable interactive summary report of the
different abstracts retrieved as well as association maps in suitable graphical format of all
abstracts pertaining to each of the functional aspects of a gene symbol. Moreover we
believe it to be beneficial to implement an ensemble of classifiers or use consensus from
multiple classifiets to assign a function to an ambiguous gene symbol for a given species.

CONCLUSION

Genellluminator is a disambiguating text-mining tool that is able to display the multiple
aspects, ie. biological functions, of an ambiguous gene symbol GI uses the latest
common ancestor of a species assuming the same biological function for an ambiguous
gene symbol, to infer the function in those species where the function is itretrievable ot
ambiguously retrievable through direct database query. Given a document, GI1 searches
and retrieves all categories under which it should be filed (known as a document-pivoted
categorization). Alternatively, given a specific category, GI searches and retrieves all the
documents that should be filed under this specific categoty (category-pivoted
categotization).

Genellluminator can be easily accessed through its web interface or its programmatic
interfaces (web services) and represents a user-friendly tool for up-to-date text mining in
life sciences.
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Summary:

In the past veats an extensive generation of information has taken place, in particular
with the advent of the “omics”, ie. genotnics, proteomics, transcriptomics,
metabolomics and other members of the “omics™ field, who use molecular techniques.
The “omics” field in current life sciences is characterized by the transidon from local to
global scale studies, as well as the generation of complete genomic sequences of
unprecedented number and size which are currently stored and classified in specific data
bases, e.g. UniProtKB. Another consequence of the rise of available data is their
processing in scientific literature, which means that the number of publications increased
exponentially alongside the development of the field.

In view of such extensive generation of information new automated approaches are
required to aid in the organization and exploitation of these data sets in order to live up
to the expectations of the “omics” rise. This requires advanced computational tools,
mimicking some aspects of the manual interpretation process and thus computer science
becomes an indispensable asset in assisting the automation of data analysis in biology.
Therefore we have developed an integrative algorithmic approach towards unambiguous
knowledge discovety in bioinformatics that is presented in this thesis.

We first introduce the field of Bivinformatics and computational biology in Chapter 1
The step from local experimental approaches to global approaches successfully generates
an overwhelming set of data and expetimental results, thus advancing biology from
technology and technique based research to information driven research. Consequently,
computer techniques applicable to the biological fields are required to automate the
organisation, management, and normalisation of such data sets and thus to assist
scientists with the interpretation of results. Several biological fields where machine
learning techniques find their application are introduced and a brief background to the
respective evaluation techniques in machine learning are provided.

In general this chapter provides an overview on the main questions of bicinformatics
and computational biology: definition of the field, importance of application, technical
background of data generation, storage and organization as well as text mining and an
outlook to the development of approaches in the subsequent chapters.

In Chapter 2 we show that the traditional methods of inferring and supporting
homology based on sequence similarity and identity might fail in the case of low
sequence simnilarity. In order to solve the problem of low sequence similarity we
developed TreeDomViewer (TDV), a biological web-based visualization tool that
combines sequence alignment and InterProScan analysis of sequences and generates a
phylogenetic tree projecting the predicted protein domains onto the multiple sequence
alignment.

To illustrate the power of TreeDdomViewer we used the lipocalins, a superfamily of
proteins that carry hydrophobic prosthetic groups. Lipocalins bave a strong diverpgent
protein sequence, denoting a fast rate of molecular evolution. Moreover, the evolutionary
history of the lipocalins is tich in gene duplication events, which increases the difficulty
of obtaining an understanding of otthologous relationships. The results obtained with
TreeDomViewer clearly show the relationships between the lipocalin subfamilies, where
the alignment of the distinct domains underpin the phylogeny, and vice versa. It
illustrates that TreeDomViewer helps in any phylogenetic analysis resolving both the




Summary

relationship among different group members and the relationship between groups, based
solely on the aligned domain structure of each participant..

Reliable and robust interpretation of experimental data has been shown when those
experimental data were integrated with other data source, namely the knowledge
embedded in the literatute. Therefore data integration is the key motto in this genomic
era. Chapter 3 uses this approach in the analysis of microarray data by introducing the
tool CoPub Mapper for mining the literature based on term (gene names, disease, drug,
chemical compound} co-occurrence, CoPub Mapper was developed using literature
integration for the purpose of interpreting a set of differentially expressed genes
generated from microarrays. These gene expression sets were selected from a
comparison between ovaries of healthy women and women suffering from Palycystic
Orvary Syndrome (PCOS) in an investigation of the causes of female infertility. CoPub
mapper allows for a quick and versatile querying of co-published genes and keywords
and was successfully used to cluster predefined groups of genes with their respective
biological process, disease keyword and microarray data.

However, cutrently a directed literature information search or literature mining faces the
problem of ambiguity. Ambiguity is inherent in natural language and its itnportance is
evident given the fact that each publication uses natural language as the main vehicle of
information distribution. Therefore we focussed on the ambiguity encountered in gene
nomenclature, in patticular on their use of abbreviation or actonyms of gene names
{gene symbols),

The objective of Chaprer 41is firstly to quantify the ambiguity problem in the universal
protein knowledge base (UniProtKB) and secondly to propose a disambiguation
approach based on species taxonomy. Given that sequences are evolutionary telated to a
certain extent, their relationship denoting a common latest ancestor prior to the
speciation event, we hypothesize that gene symbols of taxonomically closely related
species are more likely to be pointing to the same biological function for a specific gene.
The latter hypothesis hases its foundation on the fact that biologists and annotators often
copy names and functions from related species. Currently most assignments of a
molecular function during annotation rely, at least partally, on this assumption. Using
this key assumption we developed an algotithm that unambiguously assigns biclogical
function to a given gene symbol and its alternative names, based on the latest common
ancestor (LLCA) of the given species name. The tool efficienty and unambiguously
entiches query terms for searching the literature, starting solely with a gene symbol.

Chapter 5 introduces Genellluminator (GI), an application that inplements the
disambiguation methodology introduced in Chapter 4 ‘The calculated sets of
unambiguous synonyms and their biological entities are implemented in a Boolean or
vector model to effectively retrieve abstracts from the PubMed database with the aid of
GoPubMed, an ontology-based PubMed search engine. Given a document, GI searches
all categories under which the document in question could be filed; this method is
known as document-pivoted categorization. Alternatively, given a specific category, GI
searches all documents that should be filed under this category (category-pivoted
categorization). Therefore, Genellluminator can be used to effectively disambiguate
abstracts in the Medline database.

In conclusion
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In the scope of this thesis we aimed to develop different approaches aiding in the
utilization of the exponentially growing amount of information available in current life
sciences. The main contributions and developments of this work thesis are:

1.

2

TreeDomViewer, a visualization tool for phylogeny and protein domain
structure, available at http:/ /www.bioinfortnatics.ni/ cools/treedom/

CoPub Mapper, a text mining tool based on tettn co-occutrence, available at
http:/ /setvices.nbic.nl/cgi-bin/copub/CoPub.pl

A taxonomy-based gene symbol disambiguation algorithm finding its application
in literature retrieval for gene function prediction and in efficient document
categorisation

Genellluminatot, a tool for information retrieval and disambiguation of PubMed

abstracts, available at: http://www.bicinformadcs.nl/tools/gi/



http://www.bioinformatics.nl/tools/treedom/
http://services.nbic.nl/cgi-bin/copub/CoPub.pl
http://www.bioinformatics.nl/tools/gi/

Summary
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Samenvatting

In de afgelopen jaren is er een massieve hoeveelheid informatie geproduceerd, met name
met de opkomst van het “omics” onderzoeksveld, zoals genomics, proteomics,
transcriptornics en metabolomics.

Het “omics™ veld wordt gekarakteriseerd door een schaalvergroting in zowel breedte als
diepte waardoor tot nu toe ongckende hoeveelheden data in databanken opgeslagen
worden. Dit heeft weer tot gevolg dat het aantal wetenschappelijke publicaties
exponentieel toeneemt met de ontwikkeling van het veld.

Om de organisatie en exploitatie van deze data het hoofd te kunnen bieden zijn nieuwe
geautomatiseerde procedures onontbeerlijk. In dit proefschrift worden een aantal
integratieve  algoritmes gepresenieerd die  behulpzaam zijn bij de eenduidige
kennisvergaring in de bioinformatica.

In hoofdstuk 1 wordt het veld van de bicinformatica en computationele hiologie
geintroduceerd. De  schaalvergroting in  de experimentele biologie leidt tot
overweldigende hoeveelheden data en resultaten. Bijgevolg zijn informatica technieken
noodzakelijk om het beheer, ontsluiten en analyseren van deze data mogelijk te maken,
en de wetenschapper te ondersteunen in de interpretatie van de resultaten.

Dit hoofdstuk poogt een ovetzicht te geven van een aantal belangrijke vraagstukken in
de bioinformatica, met name op het gebied van de “machine leaming” en text mining, en
de daarbij behorende technieken en evaluatie methodes.

In hoofdstuk 2 laten we zien dat de traditionele methodes voor het afleiden en
ondersteunen van homologie gebaseerd op sequentic overeenkomst mogelijk faalt
wanneer de sequentie overeenkomst erg laag is. Om dit probleem op te lossen
ontwikkelden we TreeDomViewer (TDV), cen web-gebaseerd visualisatie hulpmiddel dat
sequentie alighment combineert met InterProScan eiwit domein analyse en
fylogenetische analyse, waarbij de voorspelde domeinen op de multiple alignment
geprojecteerd worden.

Om de kracht van TDV te illustreren wetden de lipocalins gebruikt, een eiwit
superfamilie die kleine hydrofobe moleculen zoals retinol kunnen binden. Lipocalins
hebben een sterk gedivergeerde eiwit volgorde, wat wijst op een snelle moleculaire
evolutie. Bovendien hebben er veel gen duplicaties plaatsgevonden, waardoor het
berksijgen van een begrip van de ortologe relaties bemoeilijkt wordt. De resultaten die
met TDV verkregen wotden tonen duidelijk de relaties tussen de verschillende lipocaline
subfamilies, waatbij de alignment van de vetschillende domeinen de fylogenie
ondersteunt en gése versa. Het laat zien dat TDV behulpzaam is bij fylogenetische analyses
voor het oplossen van de relaties tussen verschillende groepsleden als wel tussen groepen
ondetling, daatbij slechts gebruik makend van de ge-aligneerde domeinstructuur van elk
van de eiwitten.

Data integratie is de benadering die in hoofdstuk 3 gebruikt wordt voor de analyse van
microarray data. CoPub Mapper is een programma om de literatuur te doorzoeken
gebaseerd op het gekoppeld voortkomen van termen (gen namen, ziektes,
gencesmiddelen, chemische stoffen). Het programma is ontwikkeld met als doel het
interpreteren van sets van differenticel tot expressie gebrachte genen van microarrays.
Deze sets waten afkomstig een vergelijking tussen ovaria van gezonde vrouwen en
vrouwen die aan Polycystic Ovary Syndrome (POS) leden, in een onderzoek naar de
oorzaken van onvruchtbaarheid. CoPub Mapper maakt het mogelijk om snel en flexibel
te zoeken naar ge.co-publiceerde genen en trefwootden, en was succesvol in het
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clusteren van groepen genen met hun bijbehotende biologische processen, ziekte termen
en microatray gegevens.

Een van de problemen bij het “minen” van de literatuur is de ambiguiteit van termen
zoals gen namen, en in dit geval in het bjjzonder de ambiguiteit van de afkortingen of
acroniemen van gen namen.

Het doel van hoofdstuk 4 is allereerst om de omvang van het ambiguiteitsprobleem te
kwantificeren in de UniProt eiwit databank, en vervolgens cen disambiguatie strategie te
introduceren, gebascerd op taxonomie. De hypothese is dat naarmate species
taxonomisch meer verwant zijn, er een grotere kans is dat gen symbolen naar dezelfde
biologische functie voor een specifiek gen verwijzen. Dit is gebaseerd op de aanname dat
biclogen en annotatoren vaak namen en functes kopiéren van gerelateerde scorten.
Gebruikmakend van deze hypothese hebben we een algoritme ontwikkeld dat eenduidig
een biologische functie kan toewijzen aan een (ambigu} gen symbool en zijn alternatieve
namen, gebaseerd op de taxonomische relaties van de soort naam, De implementatie van
het algoritme kan egbruikt worden om eenduidig en et hoge efficiéntie de lietratuur te
doorzocken, vitgaande van een gen symbaool,

Tenslotte introduceert hoofdstuk 5 Genellluminator (GI), een applicatie die de
disambiguatie methode van hoofdstuk 4 implementeert. De voorberekende sets van
eenduidige synoniemen en hun biologische entiteiten zijn geimplementeerd in een
logisch (Boolean) of een vector model om PubMed abstracts met behulp van
GoPubMed {een PubMed zoekmachine) op te halen. Gegeven een document dootzoekt
Gl alle categoricén onder welke dit document ondetpebracht zou kunnen worden
{“document-pivoted categorization”). Wordt een specificke categorie opgegeven, dan
doorzoekt GI alle documenten die onder deze categorie opgeslagen zouden worden
(“category-pivoted categotization”). Hierdoot kan Genellluminator gebruikt worden om
de abstracts uit de Medline database effectie te disambigueten.
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