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Propositions 

1. Chromosome mapping by fluorescence in situ hybridisation (FISH) is the most 
informative genome mapping approach, compared to genetic linkage and molecu
lar mapping. 

2. FISH to pachytene chromosomes is more effective in plants than in animals. 

3. Tomato telomeres show a heterogeneous molecular organisation of unique repeat 
families at each individual chromosome end, implying that their unique distribu
tion and repeat lengths are indispensable for important chromosome functions and 
behaviour. 

4. Chromosome organisation in tomato and Arabidopsis differs mainly with respect 
to the size and positions of their heterochromatin regions. 

5. Genes located near the border of heterochromatin and euchromatin are likely to be 
affected in expression and silencing because of their position. 

6. In estimating the molecular size of a repeat domain Fibre-FISH generates more 
precise data than pulsed field gel electrophoresis. 

7. The limitation of detection sensitivity of standard FISH has been broken through 
by using FISH in combination with rolling circle amplification that can detect tar
get sequences as small as 20-30 bp and discriminate even a single point mutation. 

8. Compared with the Dutch scientific society, the American scientists show stronger 
competitions, but fewer co-operations. 

9. An old Chinese proverb says: "When you hear something, you will forget it. When 
you see something, you will remember it. But not until you do something, will you 
understand it." I believe this particularly applies to understanding a concept after 
doing biological experiments. 

10. 

Confucius said: "Do not be concerned about others not appreciating you. Be con
cerned about your not appreciating others." Although this verse came from the 
most famous Chinese philosopher about 2500 years ago, I think it is still true for a 
gentlemen today. 

These propositions are a part of the thesis, "Tomato Genome Mapping By 
Fluorescence in situ Hybridisation" by Xiao-bo Zhong, Wageningen, 
Wednesday 13 May 1998. 
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Chapter 1 

GENERAL INTRODUCTION: 
TOMATO GENOME MAPPING 

BY FLUORESCENCE IN SITU HYBRIDISATION 
(FISH) 



General introduction 

Introduction 

The genome is usually defined as the unique complement of hereditary material in the 

nucleus of an organism and represents the DNA content of a haploid set of chromosomes. 

In addition, each plant contains numerous minuscule extranuclear genomes found in 

mitochondria and chloroplasts. In this thesis, we will only refer to the nuclear genome. The 

nuclear genome is made up of extremely long DNA molecules, one for each chromosome, 

that have defined sequences along their length known as genes. Genome mapping involves 

localising DNA sequences or genes to their positions on the chromosomes. 

The past decade has seen a major advance in genome mapping largely due to the 

development and application of molecular biological and genetical techniques, many of 

which are now in routine practice. Mapping is now being carried out on the whole range of 

genomes from the most simple, to ones that are extremely complex. Eukaryotic genome 

analysis (Miklos and Rubin, 1996) has mainly concentrated on several model organisms. 

Yeast has been the first eukaryotic genome to be sequenced completely (Oliver et al., 1992; 

Dujon et al., 1994; Johnston et al., 1994; review by Dujon, 1996; also see the supplement to 

Nature 387 No. 6632: The yeast genome directory). "Human genome projects", underway 

in several countries, have attracted widespread public awareness (Guyer and Collins, 1995; 

Savill, 1997). In higher plants, prime model species for dicots and monocots are 

Arabidopsis thaliana and rice, respectively. Tomato (Lycopersicon esculentum) is another 

representative model species for genome mapping in higher plants thanks to the following 

features: (1) It is a diploid species with 12 pairs of chromosomes, naturally self-pollinating, 

and large quantities of seed that make it amenable to genetic analysis. Moreover, the plant 

structure allows detection of a vast array of hereditary alterations. (2) The 12 chromosomes 

are highly differentiated and identifiable at the meiotic prophase stages, rendering it a good 

species for cytological and cytogenetic studies. (3) It has a relatively small genome (950 

Mb) that is open to manipulation by molecular biological and genetical tools. (4) Cells are 

readily cultured and whole plants can be regenerated and transformed by Agrobacterium-

based vectors, thereby lending themselves to genetic engineering. (5) It is also an important 

economic crop worldwide that is used extensively for both basic and applied research. 

Such advantages have made tomato one of the favourite model species for plant 

genome mapping over the past century by classical genetics, cytogenetics, molecular 

genetics and molecular biology. This chapter reviews the progress that has been made in 

tomato genome mapping and discusses the development of the new technique of 

fluorescence in situ hybridisation (FISH) in this context. 
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Classical genetic mapping of tomato genome 

From Mendel's early experiments on pea in 1865 until the demonstration that DNA 

was the hereditary molecule (Avery et al., 1944), genome analysis was carried out by 

means of classical transmission genetics. Mendel introduced the concept of phenotypic 

characters being determined by independent segregating elements of heredity. Tomato was 

one of the many organisms investigated by classical genetics. In 1905 Halsted et al. 

published their data on the genetic analysis of five distinctive morphological traits. 

However, Morgan's (1910) genetic linkage analysis in Drosophila was the real beginning 

of genome mapping by genetic analysis which showed the relative positions of genes, 

corresponding to the different phenotypic characters, on the map. The first linkage studies 

in tomato were made by Jones (1917) who demonstrated co-segregation of dwarfness (d) 

and elongate fruit shape (o) genes due to linkage. Linkage analysis is based on the concept, 

that certain genes co-segregate due to their being localised on the same chromosomes. 

Genes borne on homologous chromosomes belong to the same linkage group. Linkage of 

genes can be broken when homologous linkage structures exchange corresponding parts by 

crossing over during meiosis. The crossover leads to recombination of genes in the same 

linkage group. The frequencies of recombination are used as the basis for gene ordering. A 

1% chance of genetic recombination between two genes is defined, in genetic distance, as 1 

centimorgan (cM). Depending on the genome size of the organism, 1 cM represents on 

average a 139 kb sequence in Arabidopsis, 750 kb in tomato, and 1108 kb in human. The 

relative distances allow the unequivocal localisation of genes in particular linkage groups. 

In the 1950s the use of natural and radiation-induced tomato mutants led to a number of 

genes being systematically mapped on a linkage map (Butler, 1952). The morphological 

map of the tomato genome was further extended by Rick (1975) to 190 loci and additional 

loci are still being added. 

Cytological and cytogenetic analysis of the tomato genome 

Cytology, which is the study of the microscopic appearance of cells, nuclei and 

chromosomes, became feasible when it was demonstrated that the DNA specific dye 

pararosanilines-Schiff s reagent visualised chromosomes in fixed tissue (Feulgen and 

Rossenbeck, 1924). Prior to 1940, it was thought that as the somatic and meiotic metaphase 

chromosomes of tomato were very small and it was almost impossible to identify individual 

chromosomes under the light microscope, it would be a difficult species to use for 

cytological studies. However, Brown (1949) and Barton (1950) revealed that the tomato 

genome was packaged into 2n=2x=24 acrocentric to metacentric chromosomes and that the 
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greatly extended chromosomes at the meiotic pachytene stage displayed good 

morphological differentiation into euchromatic (poorly stained) and heterochromatic 

(densely stained) regions upon staining, with each arm terminating in a detectable telomere. 

Barton (1950) was the first to identify each of the 12 bivalents at the pachytene stage. 

Ramanna and Prakken (1967) further observed the structural differentiation and 

homologies between the pachytene and somatic metaphase chromosomes and identified the 

12 pachytene bivalents and the 12 pairs of somatic metaphase chromosomes. Like 

chromosomes of other members of the Solanaceae, those of tomato have pericentric 

heterochromatin. On average, the pachytene chromosomes are 15 times less spiralised than 

metaphase chromosomes. However, the heterochromatin parts at this stage are extended 

only by a factor of 4 to 5 compared to metaphase stage, while the euchromatin parts do so 

by a factor of 30 (Ramanna and Prakken, 1967). By analysing Feulgen-stained pachytene 

chromosomes using densitometry and image analysis, Peterson et al., (1996) investigated 

the amount of DNA in euchromatin and heterochromatin. The results suggested that 77% of 

the tomato genome is located in heterochromatin and 23% in euchromatin. 

Cytogenetics focuses on the correlation of transmission genetics and chromosome 

number, morphology and behaviour during mitosis and meiosis. Cytogenetic mapping is a 

means to determine the locus of a specific gene with respect to the cytological landmarks of 

a chromosome. Such a locus may be detected on a specific chromosome arm or a small 

segment of such an arm. One of the most effective cytogenetic mapping techniques is 

deletion mapping, but requires the availability of cytological techniques to identify 

individual chromosomes, and an ability to generate sufficient deletion stocks, both 

requirements being met in tomato. The use of 74 radiation-induced deletions in tomato 

chromosomes, made it possible to assign the loci of 35 genes to 18 of the 24 arms, by 

identification of the deletion positions on the pachytene chromosomes (Khush and Rick, 

1968). These findings established a cytogenetic map showing the centromere positions, 

orientation of linkage groups and markers on each chromosomal arm. Once molecular 

cloning techniques became available, deletion mapping could be used to assign DNA 

markers to specific chromosome regions, as shown for wheat (Werner et al., 1992) and 

tomato (Liharska et al., 1997). 

Discrepancies between genetical maps and cytogenetical maps can be explained by 

non random distribution of crossover events along the chromosomes. Such a distribution 

can also be investigated microscopically by determining the frequency and distribution of 

recombination nodules (RNs) on the tomato synaptonemal complexes (SCs). Tomato 

demonstrates its superiority in exhibiting well defined RNs. A high-resolution physical 

recombination map for tomato chromosomes shows the non-random distribution of RNs 

along SCs (Sherman and Stack, 1995). There are no RNs at the distal 2% segments of SCs, 

in kinetochores, or in the nucleolus organiser at the short arm of chromosome 2. The RNs 
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are more common per unit length of SC in euchromatin compared to SC in 

heterochromatin. Such findings greatly improve our understanding of why genetic distances 

are not proportionally related to physical distances along chromosomes. 

Although cytological and cytogenetical analysis expanded our knowledge of the 

tomato genome, it is only since the development of molecular biological techniques that a 

much clearer picture has emerged. 

Molecular analysis of the tomato genome 

Since it was demonstrated that DNA acted as the hereditary material (Avery et al., 

1944), molecular biological techniques have been developed quickly leading to a better 

understanding of its structure. Firstly, the size of the unreplicated haploid nuclear genome 

(known as the C-value) can be estimated by various means, including micro-densitometry 

of Feulgen-stained nuclei, DNA reassociation kinetics, nuclear volume measurements, and 

flow cytometry, or can be derived from sampling genomic clone libraries. These diverse 

methods provide only slightly different values for the same species. The C-value of the 

tomato genome was estimated to be 1.1 pg/lC or 950 Mb/lC by densitometry of Feulgen-

stained nuclei (Anderson et al., 1985). There is a large variation in size (up to 1500-fold) 

among plant species and tomato is a species with a rather small genome, only 7-8 times 

larger than the smallest plant genome known (Arabidopsis thaliana), twice that of rice, one-

sixteenth of wheat, and 1/130 of lily which belongs to the species with largest plant genome 

size (Bennett and Smith, 1991). 

Complex genomes of higher plants are characterised by numerous types of repetitive 

DNA sequences. With the use of DNA-reassociation kinetic studies (reviewed by Flavell, 

1980), plant genomes were demonstrated to be composed of highly or moderately repeated 

(rapidly reannealing) and low- or single-copy (slowly reannealing) DNA sequences. Plants 

with a large genome are found to possess a much higher proportion of repeated DNA 

sequences than those with a smaller genome size (Flavell, 1980). 

The first broad sketch of how the tomato genome is organised at the DNA sequence 

level was given by analysing 50 randomly selected genomic clones (Zamir and Tanksley, 

1988). A large proportion of clones (78%) behaved as single copy under high stringency 

washing condition in Southern analysis, showing that the small tomato genome contains 

only a low proportion of repeated sequences. A number of different classes of repetitive 

DNA sequences in tomato have been identified by various methods. The first identified 

highly repetitive DNA sequence in tomato was a 452-bp Hindlll repeat THG2 which is a 

member of a large, complex repeat dispersed throughout the genome (Zabel et al., 1985). 

Several other major repeat classes in the tomato genome were further identified and 
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characterised with respect to copy number and chromosome location (Ganal et al., 1988). 

A family of tandemly repeated sequences consists of the genes coding for the 45S 

ribosomal RNA. The 9.1 kb repeat unit in tomato was estimated to occur in approximately 

2300 copies on a single locus at the end of the short arm of chromosome 2 in the nucleolar 

organiser region (NOR). The 5S ribosomal RNA gene cluster (450-600 kb in the tomato 

genome) has tandem repeat sequences with about 1000 copies of the unit and is located in 

the pericentromeric region of the short arm of chromosome 1 close to the centromere 

(Lapitan et al., 1991; Xu and Earle, 1996a). Another family of highly tandemly repeated 

sequences with a unit length of 162 bp is TGR1, which has approximately 77,000 copies. 

This repeat is clustered at or near the telomeres of most chromosomes and also at interstitial 

sites of a few chromosomes. A dispersed repeat family, TGR2, was found on nearly all the 

chromosomes except chromosome 2 with an average of 133 kb between elements. The total 

copy number of this repeat is approximately 4200. Another repeat (TGR3) showed 

clustering at or near the centromeres in nine chromosomes and was present along the whole 

of the other three chromosomes, except for the distal regions. This repeat had a copy 

number of approximately 2100. TGR1 and TGR2 do not cross-hybridise to the closely 

related potato genome, demonstrating that these repeated sequences are evolving at a rate 

higher than most genomic sequences. TGR3 hybridises to all Lycopersicon species and 

some Solanum species (Ganal et al., 1988). 

The macrostructure of the tomato telomeres was also investigated by molecular 

methods (Ganal et al., 1991). The chromosome ends carry a simple telomeric repeat (TR), 

with a 7-basepair unit of TT(T/A)AGGG which is almost identical to the TTTAGGG motiv 

of the Arabidopsis TR sequence. TGR1 was further characterised as a subtelomeric repeat 

that is localised at 20 out of 24 tomato telomeres. Along with spacers, TR and TGR1 

represent the macrostructure of the tomato telomeres and account for approximately 2% of 

the total tomato genome. 

The development of molecular cloning techniques, has enabled the establishment of 

specific molecular markers at defined places along each chromosome. These molecular 

markers can be used to determine the position of a particular gene of interest. The RFLP 

technique, referred to as restriction fragment length polymorphism (Botstein et al., 1980), 

has resulted in an explosion of genetic mapping in plants. This technique uses cDNA or 

other cloned DNA elements as probes to detect differences between individuals, at the 

DNA level, resulting from nucleotide substitution or sequence rearrangements (insertion or 

excision). A high density RFLP map of the tomato genome was established with more than 

1000 markers spanning a total of over 1276 centimorgan map lengths distributed along the 

12 chromosomes (Tanksley et al., 1992). In addition to the RFLP technique, a wide range 

of other techniques for detecting DNA markers has been developed, including randomly 

amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism 
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(AFLP). Such marker techniques have also been used to complement the RFLP map so as 

to provide an even higher density map in some specific regions of interest (van Wordragen 

et al., 1996; Bonnema et al, 1997). Marker-assisted breeding and map-based cloning of 

interesting genes, requires the availability of an accurate genetic linkage map showing the 

position of the trait of interest relative to molecular markers. In tomato, integration of 

molecular maps with classical genetic maps has been carried out for the top part of 

chromosome 1 (Balint-Kurti et al., 1995), chromosome 3 (Van de Biezen et al., 1994) and 

chromosome 6 (Weide et ah, 1993; Van Wordragen et al., 1996). 

The average relationship between genetic and physical distance in tomato is equal to 

750 kb per cM (Tanksley et al, 1992; Pillen et al, 1996). However, the actual ratio of 

genetic and physical distance varies considerably depending on the chromosomal region 

under investigation. Particular regions have been estimated to show as little as 43 kb per 

cM near the 1-2 locus which is located in the euchromatin, distant from the centromere of 

chromosome 11 (Segal et al., 1992), to as much as over 5 Mb per cM around the 7m-2a 

region which is located close to the centromere of chromosome 9 (Ganal et al., 1989). 

Different components of DNA do not participate equally in recombination, in particular the 

repetitive DNA elements, which account for much of the difference in genome size 

between different taxa. 

Such distortion of the linkage genetic map in comparison to the physical size of the 

region leads to difficulty in isolating any particular gene. Therefore, an essential step to 

move from a linked marker towards a particular gene is to first create a physical map of the 

chromosomal target region. A relatively new approach which provides the means to 

correlate molecular maps to chromosomes is fluorescence in situ hybridisation (FISH). This 

technique is routinely applied to determine the locations of DNA elements on specific 

chromosome regions. Not only is this technique useful for correlating particular 

chromosomes to genetic linkage groups, but it is also the most appropriate tool for studying 

the distribution of repetitive DNA elements across the genome. 

Genome mapping by fluorescence in situ hybridisation (FISH) 

Development of the FISH technique 

The in situ hybridisation (ISH) technique was initially developed to detect RNA or 

DNA distribution in cytological preparations by using isotopic labelled RNA or DNA 

probes (Gall and Pardue, 1969; John et al, 1969; Buongiorno-Nardelli and Amaldi, 1969). 

With the development of molecular cloning techniques in the early 1980s, this technique 

was used to detect sequences, as small as 1 kb, in chromosomes at the metaphase stage 
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(Harper et al., 1981; Rabin et al, 1984). However, in spite of this sensitivity, the technique 

is disadvantageous by hazards associated with radioactive labelling, a long exposure time of 

several weeks or months, the need for extensive statistical analysis and the limited 

resolution by emitted isotopic signals captured by the emulsion layer. These drawbacks 

have been overcome by the substitution of radioactive procedures by non-isotopic in situ 

hybridisation (Rudkin and Stollar 1977; Langer et al, 1981; Langer-Safer et al., 1982; 

Manuelidis et al., 1982; Landegent et al., 1985). One of the most widely used procedures 

for labelling nucleic acids non-isotopically involves the incorporation of nucleotides 

modified with biotin (Langer et al, 1981; Brigati et al, 1983; Rayburn and Gill, 1985) or 

digoxigenin (Kessler et al, 1990) into probes using nick translation or random primer 

methods. The labelled probes were initially detected via high-density coloured precipitates 

generated by enzymatic reporter molecules, commonly horseradish peroxidase or alkaline 

phosphatase conjugated avidin or anti-digoxigenin antibodies (Josephs et al, 1984; 

Manuelides, 1985). Fluorescence in situ hybridisation (FISH) became the vogue following 

the discovery that a biotinylated probe could be detected via fluorescent reagents and 

visualised under a fluorescence microscope (Pinkel et al, 1986). The FISH technique is 

nowadays preferred over enzymatic assays because of its better spatial resolution and the 

greater potential for simultaneous multi-probe analysis. 

The number of probes which can be detected simultaneously is basically determined 

by the fluorochromes that can be distinguished spectrally. Using a blue fluorescent AMCA, 

a green fluorescent FTTC and a red fluorescent TRITC, three DNA sequences can be 

simultaneously visualised by FISH in three different colours (Nederlof et al, 1989). It is 

possible, however, to increase the number of detectable targets by the combination of 

different DNA labelling and detection systems with computing image processing technique. 

The availability of fluorescence microscopy with digital image analysis (Arndt-Jovin et al, 

1985), in combination with a digital imaging system for pseudo-colouring and merging 

images and probe labelling with two or more different fluorochromes has thus increased the 

number of target sequences to seven, using only three fluorochromes (Ried et al, 1992; 

Wiegant et al, 1993b). Each fluorochrome signal was firstly captured in a black-white 

image and the respective images were combined and pseudo-coloured using specific image 

analysis software. Probes can also be discriminated by a combination of colours in different 

ratios (Nederlof et al, 1992). Different ratios of two fluorochromes could clearly 

distinguish between three different probes (Nederlof et al, 1992). Labelling with different 

combinations and ratios of only three fluorochromes, enabled a whole set of all 24 different 

human chromosomes to be simultaneously detected in discrete colours by using a pool of 

human chromosome painting probes (Speicher et al, 1996). 

The great improvement in sensitivity and resolution of the FISH techniques in the last 

decade, has led to it being a powerful tool used to analyse the organisation of complex 
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genomes. A specific application of FISH is known as genome painting or genomic in situ 

hybridisation (GISH) with the use of total genomic DNA as probe in distinguishing parental 

chromosomes in sexual and somatic hybrids. Chromosomes from genetically very close 

species, such as those from barley and Hordeum bulbosum (Anamthawat-Jonsson et al., 

1993), and potato and tomato (Jacobsen et al., 1995), can be identified in their interspecies 

or intergeneric hybrids by labelling total genomic DNA from one species and blocking with 

the DNA of other species. The GISH technique has proven its usefulness in traditional 

genome analysis to establish intergenomic homologous chromosome pairing (King et al., 

1994). Whereas in allopolyploid species, using genomic DNA from putatively ancestral 

species, GISH can provide important information about the genome evolution and 

divergence of allopolyploid species (Bennett et al., 1993), it is also a very useful tool to 

detect intergenomic translocations (Kenton et al., 1993; Jellen et al., 1994). Once a 

chromosome specific library is available which may be obtained from a large-scale flow-

sorted fraction of metaphase chromosomes or by micro-dissection of chromosomes (or 

chromosome segments) and subsequent amplification of their DNA by PCR, FISH using 

such a chromosome specific library as probe, offers a tool for comparative analysis of 

chromosome homologies among closely related karyotypes. FISH with human chromosome 

specific DNA libraries revealed the sequence homologies in human and Macaca fuscata 

chromosomes (Wienberg et al., 1992) and provided evidence for genomic rearrangements 

among humans, great apes and gibbons (Jauch et al., 1992). 

Another major successful application of the FISH technique is the physical mapping 

of repetitive and single-copy DNA sequences in the karyotypes of many species. A large 

number of repetitive DNA sequences from animal and plant species have thus been 

localised on specific chromosome regions by FISH (see review of Joos et al., 1994; Jiang 

and Gill, 1994). This information significantly improves our knowledge of the molecular 

structure of chromosomes. Some tandemly repeated DNA sequences are mainly localised in 

the heterochromatin knobs at the telomere regions (Vershinin et al., 1995; Zhong et al., 

1996a), whereas other repetitive DNA sequences are dispersed along the chromosomes, 

although restricted to heterochromatin regions. A number of centromere-specific repeated 

sequences were identified since they were mapped to the centromere regions by FISH 

(Haaf and Ward, 1994b; Fransz et al., in press). 

Physical mapping by FISH 

The aforementioned properties of FISH showed that this tool is particular suitable for 

the direct construction of a chromosome (physical) map. Initially, the FISH technique was 

applied to metaphase chromosomes to assign clones to specific chromosome regions and to 

order clones along chromosomes (Lawrence et al., 1988). More precise physical mapping 

10 
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was obtained by applying FISH to stretched free chromatin (Heng et al., 1992), extended 

genomic DNA fibres from interphase nuclei of humans (Wiegant et al., 1992; Parra and 

Windle, 1993) and plants (Fransz et al., 1996a), and stretched individual DNA molecules 

from isolated clones (Weier et al., 1995). Two major factors have to be considered when 

FISH is used to construct a physical map. Firstly, what size target sequence can be detected 

by the probes., i.e. what is the sensitivity of the technique? Secondly, what is the mapping 

resolution of the technique, i.e. what distance between two probes can be resolved along the 

DNA molecules on different targets? Use of FISH on different hybridisation targets with 

DNA showing a varying degree of condensation, has resulted in a wide range of mapping 

resolutions from several megabases to only a few hundred basepairs and different 

sensitivities for target sizes from several kilobases to less than a hundred basepairs. 

Use of FISH with cosmid probes of average molecular size of 30 kb enabled 

construction of a chromosomal map of metaphase chromosomes (Lichter et al., 1990). The 

relative positions of different probes along the chromosomal axis were determined by 

measuring the fractional length (FL) value which indicates the distance from the 

hybridisation signal to a fixed reference point compared to the total length of the 

chromosome. Using cosmid clones, specific hybridisation signals existing on both 

chromatids of the two homologues in more than 80% of the metaphase complements have 

been reported (Lichter et al., 1990). Smaller probe sizes ranging from a few kb to less than 

1 kb, could be detected on human metaphase chromosomes although only 20-50% of the 

metaphase were informative (Richard et al., 1994; Heppell-Parton et al., 1994). However, 

detection of a small, single copy sequence on metaphase chromosomes is more difficult in 

plants than in human, because of the relatively highly condensed chromosome structure and 

the presence of a cell wall that might hamper target DNA accessibility. Although small 

single-copy probes of a few kb sequences were detected on petunia metaphase 

chromosomes (Fransz et al., 1996b; Hoopen et al., 1996), FISH on plant metaphase 

chromosomes is still mainly applied to detect highly repetitive sequences or large single 

copy targets using probes like yeast artificial chromosomes (YAC), or bacterial artificial 

chromosomes (BAC) (Jiang et al., 1995). Use of FISH can only give a limited mapping 

resolution with metaphase chromosomes. Only when two target sequences are separated by 

a distance of more than 1-2 Mb can the hybridisation signals from two probes be spatially 

resolved (Lichter et al, 1990). 

To improve the spatial resolution of gene mapping and accessibility of chromosomal 

DNA targets to probes, a more decondensed chromosome preparation should be considered 

to replace the highly condensed metaphase chromosomes in plants, especially for species 

with a small genome sizes such as Arabidopsis, rice and tomato. Pachytene chromosomes, 

which are much less condensed than metaphase chromosomes, are better material for the 

development of a physical map by FISH (Shen et al., 1987; Albini and Schwarzacher, 

11 
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1992; Fransz et al., in press). Tomato chromosomes at the pachytene stage are, on average, 

15 times longer than at the metaphase stage and should give a higher resolution physical 

map and have a higher sensitivity for smaller probes. 

To further improve the mapping resolution for closely linked clones, FISH has been 

used on preparations of free chromatin (Heng et al., 1992) and extended genomic DNA 

fibres from interphase nuclei (Wiegant et al., 1992; Parra and Windle 1993; Fransz et al., 

1996). Free chromatin is released from interphase nuclei by using different chemical agents 

and a simple alkaline lysis procedure. Using such samples, FISH of several, closely linked 

single copy probes spanning a DNA size of up to several millions of base pairs 

demonstrates that the resolution of this technique is about 10 kb (Heng et al., 1992). Yet, 

the free chromatin still retains its DNA-protein complex structure. A stronger lysis 

procedure releases free DNA from the interphase nuclei to form a DNA halo-loop or long 

extended-fibrilar structure. The technique involves the release of DNA fibres from lysed 

nuclei, followed by stretching them across the surface of a microscope slide to have a 

stretching degree between 3.0-3.5 kb/pm. Such highly extended DNA targets allow fine 

mapping of YACs, BACs, cosmids, lambda clones and plasmids, covering DNA stretches 

ranging from a few kilobases to a million base pairs at an accuracy of less than few 

kilobases and a detection sensitivity of a few hundred basepairs (Wiegant et al., 1992; Parra 

and Windle, 1993; Haaf and Ward, 1994a and 1994b; Fransz et al, 1996a). 

Fibre-FTSH was initially developed for human cells (Wiegant et al., 1992; Parra and 

Windle, 1993) and further successfully adapted to plant species (Fransz et al., 1996a). In 

the last 5 years it has become a powerful technique (Haaf and Ward 1994a and 1994b; 

Florjin et al., 1995; Nikali et al., 1997). Fibre-FISH has now also been applied to individual 

DNA molecules rather than DNA fibres from nuclei (Weier et al., 1995). The target DNA 

molecules in a solution of YACs, BACs, cosmids and lambda clones can be linearised and 

uniformly stretched on a flat glass surface coated with a monolayer of silane molecules by a 

procedure called "molecular combing" (Bensimon et al., 1994). The DNA molecules 

prepared in this manner are remarkably linearised and homogeneously stretched at 2.3 

kb/jim. By applying FISH directly to the stretched DNA molecules, fast mapping of X DNA 

restriction fragments was feasible along the linearized 48.5 kb long phage A. DNA 

molecules with ~1 kb precision (Weier et al., 1995). This technique also enables precise 

localisation and ordering of clones, resolves overlaps and distances, and provides a detailed 

picture of the integrity and colinearity of probes on individual YAC molecules as 

hybridisation targets (Weier et al., 1995; Rosenberg et al., 1995). Similarly, a recently 

developed procedure called "dynamic molecular combing" (Michalet et al., 1997) permits 

the whole yeast or human genomic DNA to be stretched rapidly into irreversibly fixed, 

parallel running DNA fibres. This approach yields a high density of fibres with most DNA 

fragments longer than several 100 kb. By using FISH to such combed DNA molecules 
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direct mapping of probes to their respective position along the fibres is possible. With 

advantages, such as a high density of fibres, fast scanning and recording of signals, rapid 

measurements of numerous signals, this technique allows reliable distance measurements 

by statistical analysis without reference to any other method or internal control. 

Before the application of the FISH technique to physical mapping, there was a gap 

between established genetic maps, cytogenetic maps and sequence-ready clones. Genetic 

maps only show the relative position of morphological and molecular markers along 

chromosomes on the basis of recombination frequency. Cytogenetic maps show 

chromosomal banding patterns and the relative positions of specific genes. Conventional 

means of physical mapping, such as contig ordering of large insert clones of YACs and 

BACs, and restriction mapping of redundant sets of smaller clones, can only give 

information of sequence distances in basepairs for isolated clones in a certain area. By 

bridging the gap between genetic maps, cytogenetic maps and physical maps, FISH 

techniques, especially Fibre-FISH, have either hastened these physical mapping steps or 

resolved the position of sequence-ready clones on specific chromosomal regions. By 

applying simple FISH of about one thousand YAC clones to metaphase chromosome 

preparations, the cytogenetic, genetic, and physical maps of about one-third of the human 

genome were integrated to show the relationship of genetic linkage distances to their 

physical locations (Bray-Ward et al., 1996). 

In the preceding sections, physical mapping by FISH of various DNA targets having 

different degrees of condensation has been discussed. It seems clear that a combination of 

FISH techniques, using targets of different density, from highly condensed metaphase 

chromosomes to completely free DNA molecules, provides an important supplementary 

tool to the more usual molecular methods employed for physical fine mapping. 

FISH mapping in tomato genome analysis 

Despite FISH having been widely applied, especially in human molecular 

cytogenetics, so far there have been no general applications of FISH to tomato genome 

analysis, even though tomato is a good model species for classical and molecular genetics. 

The first in situ hybridisation work in tomato involved the localisation of a biotin-labelled, 

dispersed repeat sequence THG2 to pachytene chromosomes (Zabel et al., 1985). Four 

classes of repetitive sequences from the tomato genome were further mapped using a 

metaphase chromosome preparation by in situ hybridisation (Ganal et al., 1988). The 

somatic chromosome karyotype of tomato was characterised on the basis of in situ 

hybridisation of the TGR1 satellite repeat (Lapitan et al, 1989). Organisation of the 

telomeres and the 5S ribosomal RNA genes was studied by in situ hybridisation (Ganal et 

al., 1991; Lapitan et al., 1991). All this work was carried out by labelling the probes with 
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biotin and detecting the hybridisation signals with coloured immuno-chemical precipitates. 

Genomic in situ hybridisation techniques have been used to investigate tomato chromosome 

behaviour in somatic hybrids between tomato and potato (Wolters et al., 1994; Jacobsen et 

al., 1995). The FISH technique has also been applied to localise 45S, 5S ribosomal genes 

and YAC sequences to metaphase and pachytene chromosomes (Xu and Earle, 1994, 1996a 

and 1996b; Fuchs et al., 1996) and to analyse the molecular organisation of 45S and 5S 

ribosomal genes on extended DNA fibres (Fransz et al., 1996a). In this thesis, we describe 

the FISH techniques on both pachytene chromosomes and extended DNA fibres and 

discuss their applications to the analysis of the tomato genome structure and physical 

mapping of interesting genes to specific chromosome regions. 

Scope of this thesis 

This general introduction has reviewed the progress in tomato genome mapping 

using classical genetics, cytogenetics, and molecular genetics, emphasizing the great poten

tial of FISH techniques. 

Chapter 2 describes how to make preparations of mitotic metaphase chromosomes 

and pachytene chromosomes for FISH. To demonstrate the techniques, three classes of 

repetitive DNA sequences of 45S rDNA, TGR1 and THG2 are studied in single and 

multicolour FISH. 

Chapter 3 describes two detailed FISH protocols for high-resolution physical mapping 

of DNA sequences in the tomato genome. The first technique involves FISH of pachytene 

chromosomes prepared from pollen mother cells and proves to be an excellent method for 

assigning DNA sequences to specific chromosome regions at a resolution of a few 100 kb. 

The second protocol presents a FISH technique to extended DNA fibres prepared from 

interphase nuclei with an even higher resolution of a few kilobases. This technique permits 

direct ordering of different clones and the study of molecular organisation of repetitive 

DNA sequences. 

By using FISH with pachytene chromosomes and extended DNA fibres in 

combination with pulsed field gel electrophoresis, the molecular and chromosomal 

organisation of individual telomere domains are described in chapter 4. The two major 

repetitive sequences of the telomeric repeat (TR) and the subtelomeric repeat TGR1 are 

analysed by FISH in detail. 

Chapter 5 describes a novel strategy for physical mapping of the TR/TGR1 

organisation on chromosome 6 by employing a monosomic addition line in a tetraploid 

potato background selected from BC2 plants of a somatic hybrid between tomato and 

potato. FISH to extended DNA fibres and PFGE elucidated the molecular sizes of the 
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TR/TGR1 domain on the short arm and the interstitial TGR1 site on the long arm of that 

chromosome. Additionally, a dynamic feature of the TG and TGR1 sequences was 

discovered in the monosomic addition and its parental BC1 and the somatic hybrid, 

showing the recombinant nature of the alien chromosomes. 

Chapter 6 describes the physical mapping by FISH to pachytene chromosomes and 

extended DNA fibres of two bacterial artificial chromosome clones spanning the nematode 

resistance gene Mi, to the border of the heterochromatin and euchromatin on the short arm 

of tomato chromosome 6. 

In chapter 7, the current achievements of tomato genome mapping by FISH are 

discussed with respect to: (i) the mapping resolution and detection sensitivity of FISH 

techniques; (ii) dissection of the tomato genome by FISH; and (iii) a future perspective to 

construct a full bar-code map of each tomato chromosome. 
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FISH to metaphase and pachytene chromosomes 

Abstract 

Fluorescence in situ hybridisation (FISH) is an increasingly powerful tool with a 
variety of applications in both basic and applied research. With excellent genetic, 
cytogenetic and molecular maps available, the tomato genome provides a good model 
to benefit from the full potential of FISH. Tomato chromosomes at mitotic metaphase 
are small and not particularly suitable for high resolution FISH. In contrast, 
chromosomes at meiotic pachytene are about 15 times longer, and easier to identify by 
their differences in chromosome arm lengths and chromomere pattern. We have 
developed a technique for preparing chromosomal spreads of young pollen mother 
cells at mid-prophase I which is suitable for FISH. In a first series of experiments, the 
hybridisation patterns of three classes of repetitive DNA sequences were studied in 
single and multicolour FISH. 

Keywords: tomato, pachytene, metaphase, fluorescence in situ hybridisation, FISH, 

repetitive sequences 

Introduction 

With the advent of the fluorescence in situ hybridisation (FISH) technique, 

cytogenetics has become instrumental in analysing the molecular organisation of eukaryote 

chromosomes (for review see Heslop-Harrison 1991; Joos et al, 1994). In animal and 

human systems, multicolour FISH has thus been applied to construct cytogenetic maps 

showing the positions and order of molecular probes along the chromosomes, including 

cosmids (Lichter et al, 1990; Inazawa et al., 1994), YACs (yeast artificial chromosomes) 

(Marrone et al, 1994; Selleri et al., 1992; Moir et al., 1994) and small, single-copy probes 

(Heppell-Parton et al., 1994; Muleris et al, 1994). As for plants, FISH has seen so far 

different types of applications (for review see Jiang and Gill 1994), ranging from the 

detection of alien chromosomes or segments in cereals (Schwarzacher et al, 1992a; Mukai 

et al, 1993) and the detection of parental chromosomes in (a) symmetric somatic hybrids 

(Parokonny et al, 1992; Schwarzacher et al, 1992b; Wolters et al, 1994; Jacobsen et al, 

1994), to the mapping of repetitive and low copy DNA sequences in various species (Leitch 

et al, 1991; Maluszynska and Heslop-Harrison 1991; Albini and Schwarzacher 1992; Xu 

and Earle 1994). 

Tomato, with its excellent cytogenetic, genetic and molecular maps (Khush and Rick 

1968; Tanksley et al, 1992), provides a good model for applications of FISH. In focusing 

our attention to chromosome 6, we have recently succeeded in integrating the molecular 
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and classical linkage data into a combined map (Weide et al., 1993; Van Wordragen et al., 

1994). With the final goal of developing a cytogenetically based physical map of 

chromosome 6 that further combines the order of loci from the molecular/genetic linkage 

map with cytological markers, we have started a molecular cytogenetic analysis of the 

tomato genome using FISH. As tomato chromosomes at mitotic metaphase are too 

condensed (2-4.5 \ira) for high resolution physical mapping, such a map should be 

constructed using chromosomes at pachytene stage exploring their distinct morphology and 

highly differentiated pattern of euchromatin and heterochromatin (Ramanna and Prakken 

1967). In this report, we present a technique for preparing chromosome spreads of young 

pollen mother cells at mid-prophase I which is particularly suitable for applications in 

FISH. As an example, the mapping of three classes of repetitive DNA sequences is 

described. 

Materials and methods 

Lycopersicon esculentum cv Cherry was used in all experiments. The following DNA clones were 

selected for probe labelling: (1) rDNA: an 0.7 kb petunia genomic DNA fragment derived from the 5' end of 

the 25S rRNA gene (Van Blokland et al., 1994); (2) TGR1: a 162 bp telomere-associated satellite repeat 

(Ganal et al, 1988), localised on most of the distal chromosome ends (Lapitan et al., 1989); (3) THG2: a 452 

bp repeat member of a large, complex dispersed repeat (Zabel et al., 1985). 

Young anthers about 3-4 mm long were selected for meiotic chromosome preparations. The stage of 

development was determined routinely in an acetocarmine squash preparation using a single anther from a 

flower bud. If at prophase I, the remaining anthers were fixed directly in acetic acid - ethanol (1:3) for 15-30 

minutes, rinsed in deionised water and then incubated at 37°C for 2-3 hours in a mixture of pectolytic 

enzymes containing 0.3 % cytohelicase (Sepracor, France), 0.3 % cellulase "Onozuka" RS (Yakult Honsha 

Co., Ltd, Tokyo, Japan) and 0.3 % pectolyase Y-23 (Sigma P3026) in 10 mM citrate buffer, pH 4.5. After 

two washes in deionised water, the anthers were carefully transferred onto grease-free slides, and the pollen 

mother cells were dissected out of the anthers into a 1 \i\ droplet of water using fine-mounted needles, 

thereby taking care to remove supporting tissue as much as possible. Then 5 ul of 60 % acetic acid was 

added and the pollen mother cells were left for 1-2 minutes until the cytoplasm became sufficiently clear. A 

rim of freshly prepared, ice-cold (0°C) fixative was put onto the slide around the droplet containing the 

meiotic cells. Shortly after the fixative got mixed with the cell suspension, the cells were spread on the slide 

by adding some more drops of fixative on top of the material. Immediately after this treatment, the slide was 

briefly immersed in absolute ethanol, and then left to dry. The slides could be used directly for the in situ 

hybridisation or were stored at -20°C for up to several months. 

Slides with mitotic metaphase complements were obtained from root tip meristems. The root tips from 

2-4 week old plants were pre-treated in the spindle inhibitor 8-hydroxyquinoline (2 mM) for 2.5 hours at 

17°C and fixed in acetic acid-ethanol (1:3) fixative for at least 15 minutes. Further treatments were as 
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described for the meiotic cells, though the enzymatic incubation was limited to 1 - 2 hours in a mixture 

containing only 0.1% of the three enzymes. 

Probe DNA (1 ug) was labelled with either biotin-16-dUTP or digoxigenin-11-dUTP by random 

primer or nick translation labelling using the protocols of the manufacturer (Boehringer Mannheim, FRG). 

The in situ hybridisation protocol was carried out according to Wiegant et al., (1991) with some 

modifications. The slides were pre-treated with 100 ug/ml DNase-free RNase A in 2 x SSC (0.3 M sodium 

chloride, 0.03 M sodium citrate, pH 7.0) at 37°C for 1 hour and then washed 3 times for 5 minutes in 2 x 

SSC. Then, the slides were incubated in 5 ug/ml (20 units/ml) pepsin in 0.01 M HC1 for 7-10 minutes at 

37°C, washed 3 times in 2 x SSC for 5 minutes, treated in 1% (w/v) alkaline formaldehyde (in borate buffer, 

pH 8.6) for 10 minutes at room temperature, washed 3 times in 2 x SSC for 5 minutes, dehydrated in a 

graded ethanol series (70, 90 and 100%), and finally air dried. The hybridisation mixture (20 p.1 per slide, 

containing 50% formamide, 2xSSC, 10% sodium dextran sulphate, 50 mM phosphate buffer pH 7.0, 1-2 

ng/ul probe DNA and 50-100 ng/ul salmon sperm DNA) was added onto the pretreated chromosome 

preparations and heated to 80°C for 2 minutes to denature the probe DNA and the chromosomal DNA. In 

situ hybridisation was allowed to proceed at 37°C overnight, followed by post hybridisation washes for 3 x 

10 minutes in 50% formamide, 2 x SSC pH 7.0 at 42°C, 10 minutes in 2 x SSC at room temperature, 3 x 1 0 

minutes in 0.1 x SSC at 56°C and 10 minutes in 2 x SSC at room temperature. 

Detection and amplification was according to the manufacturers protocols (Boehringer Mannheim). 

Digoxigenin-labelled probes were detected with anti-digoxigenin-fluorescein and amplified with rabbit-anti-

sheep-fluorescein (F135, Nordic). Biotin-labelled probes were detected with Avidin Texas Red and amplified 

with biotin-conjugated goat-anti-avidin and avidin Texas Red. Chromosomes were counterstained with DAPI 

(5 ug/ml in Mcllvaine buffer, pH 7) or propidium iodide (5 ug/ml in water). The slides were mounted in 

Vectashield (Vecta Laboratories) antifade mounting. The hybridisation signals were studied in a Zeiss 

Axioplan microscope equipped with Plan Neofluar optics and epi-fluorescence illumination using the filter 

sets 01, 09 and 14 for DAPL FITC and TRTTC, respectively. Photographs were taken on 400 ISO colour 

negative film. The images obtained from simultaneous hybridisation with two different probes were captured 

with a high sensitive CCD camera (Extended Isis, Photonic Science Ltd., UK) or scanned from negatives, 

merged and pseudocoloured using appropriate image processing software. 

Results 

Successful localisation of DNA sequences on chromosome spreads requires 

preparations of high quality. This is even more true for meiotic cells where remnants of 

thick callose walls and cytoplasm generate higher levels of background and reduced 

hybridisation signals. Therefore, our initial experiments were primarily focused on 

improving the technique for combining optimal spreading of well differentiated 

chromosomes with limited cell damage and clear background. Crucial improvements were 

found in: 
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(i) limiting the fixation time of the anthers to only 15 to 30 minutes; 

(ii) prolonging the digestion with highly purified pectolytic enzymes to achieve complete 

breakdown of the callose walls without any risk of affecting the chromatin integrity; 

(hi) controlled spreading of the cells using ice-cold acetic acid-ethanol fixative. Unlike the 

traditional squashing method, cell spreading protocols in tomato generally caused less 

chromosome loss and damage and resulted in an increase in the number of properly spread 

and complete meiotic prophase nuclei that were virtually free of cytoplasm; 

(iv) briefly washing the slides in absolute ethanol immediately after cell spreading to 

further clear up the background. 

Tomato chromosomes at pachytene are approximately 15 times longer than at mitotic 

metaphase (Ramanna and Prakken, 1967) and exhibit a well differentiated pattern of eu-

and heterochromatin, which, along with chromosome length and centromere position, 

permits the identification of all 12 pairs. Upon DAPI or propidium iodide counterstaining, 

this pattern is largely retained, showing prominent fluorescing blocks at the pericentromeric 

regions and the telomeres, along with faint fluorescence at the euchromatic parts and the 

centromeres (see Fig. 1 A, IB and IE). The satellite of chromosome 2, which is quite large 

in the tomato cultivar used, showed a brighter fluorescence, likely reflecting the presence of 

AT-rich highly repetitive DNA sequences (see arrows in Fig. IB and IE). 

Figure 1. Fluorescence in situ hybridisation patterns of three repetitive sequences on metaphase and 

pachytene chromosomes of tomato, Lycopersicon esculentum cv VFNT Cherry. A. FISH of rDNA on 

pachytene chromosomes. The rDNA probe was labelled with digoxigenin and detected with anti-digoxigenin-

FITC. B. FISH of TGR1 on pachytene chromosomes. The TGR1 probe was labelled with digoxigenin and 

detected with anti-digoxigenin-FtTC. The arrow indicates the large heterochromatin satellite region at the 

short arm of chromosome 2. C. Simultaneous FISH of rDNA and TGR1 on metaphase chromosomes. The 

rDNA probe was labelled with digoxigenin and detected with anti-digoxigenin-FITC (green) and the TGR1 

probe was labelled with biotin and detected with Avidin Texas Red (red). The three colour image has been 

obtained by merging and pseudocolouring the FTTC, Texas Red and DAPI images using appropriate image 

processing software. The arrows indicate the chromosomes without the TGR1 signals at the ends of the long 

arms. The chromosomes in A. B. C. were counterstained with DAPL D. E. and F. G. FISH of THG2 on 

metaphase and pachytene chromosomes, respectively. The THG2 probe was labelled with biotin and detected 

with avidin Texas Red. The chromosomes were counterstained with DAPL The arrow in G indicates the large 

heterochromatin satellite region at short arm of chromosome 2. Bar equal to 5 um in A. C. D. E. F. and G. 

and 2.5 um in B. 

28 



29 



FISH to metaphase and pachytene chromosomes 

To establish optimal conditions for FISH, pachytene chromosome preparations were 

subjected to hybridisation with some control probes of known chromosome location. 

Hybridisation with digoxigenin labelled rDNA, followed by detection with anti-

digoxigenin-FTTC, revealed a strong and specific green fluorescent signal at the large distal 

block of the satellite chromosome of chromosome 2 (Fig. 1 A). The second probe tested was 

the telomere-associated satellite sequence TGR1, a 162 bp repeat shown to be located on 

40 out of the 48 chromosome ends and on some interstitial sites of mitotic metaphase 

chromosomes (Ganal etal. 1988, Lapitan etal.. 1989). Simultaneous hybridisation of biotin 

labelled TGR1 and digoxigenin labelled rDNA probes on metaphase chromosomes showed 

bright red fluorescent signals of TGR1 at 40 of the 48 chromosomal ends (Fig. 1C). No 

TGR1 signals were detected on chromosome 2 (identified by carrying the green signals of 

the rDNA probe), whereas two pairs of chromosomes only exhibited signals at their 

respective short arms (see arrows in Fig. 1C). FISH of digoxigenin labelled TGR1 on 

pachytene chromosomes (Fig. IB) revealed 20 out of 24 pachytene bivalent ends with green 

TGR1 signals. There was a striking difference in size of the TGR1 signals, suggesting a 

considerable variation in sequence length of this satellite repeat among the chromosomes. 

The pachytene bivalents not only showed a distribution of distal TGR1 signals comparable 

to that of the metaphase chromosomes (Fig. 1C), but they also revealed small TGR1 spots 

at some interstitial sites. 

The 452 bp Hind HI repeat THG2 is a cloned member of a large, complex dispersed 

repeat family specific for the tomato genome (Zabel et al., 1985, Wolters et al, 1991). Its 

distribution pattern was studied in preparations containing spread nuclei from both pollen 

mother cells at pachytene (Fig. IF and 1G) and their accompanying endopolyploid tapetal 

cells (Fig. ID and IE) using biotin labelled THG2 probe. Hybridisation on the highly 

condensed metaphase chromosomes indicated that this repetitive sequence occurs on all 

chromosomes, but that the number of copies differs considerably among the individual 

chromosomes. Here again, hybridisation on pachytene chromosomes showed superior 

resolution. Signals were mainly confined to the proximal heterochromatin regions (Fig. IF). 

Discussion 

Our focus was primarily on screening current chromosome techniques for their ability 

to yield high numbers of meiotic nuclei from dissected anthers and to spread their 

chromosomes without notable loss and damage. We have improved the cell spreading and 

subsequent treatments in such a way that the characteristic differentiation of euchromatin 

and heterochromatin segments of pachytene bivalents, as described for carmine or Feulgen 

stained squash preparations, was fully retained in the DAPI or propidium iodide stained 

chromosomes. Such differentiation is indispensable for the identification of all twelve 
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bivalents and, thus, for assigning molecular markers and repetitive sequences by FISH to 

specific regions of the cytogenetic map. 

The physical resolution of chromosomes at pachytene stage is, on average, 15 times 

higher than at metaphase stage, but differs significantly between euchromatic and 

heterochromatin parts of the chromosomes. Ramanna and Prakken (1967) made a 

comparison of the mean lengths of these chromatin segments between pachytene 

chromosomes and the corresponding metaphase chromosomes and found that proximal 

heterochromatic segments were reduced in length by a factor of 4-5, whereas the 

euchromatic parts might differ by a factor of 25-30. This implies that such differential 

contraction should be taken into account when deducing physical distances between 

markers on the chromosomal DNA. In addition, the more condensed chromatin segments 

might also be less accessible to probes in FISH experiments. 

FISH conditions for both metaphase and pachytene spreads have been established 

using three different types of repetitive DNA sequences, two of which with known 

chromosomal location, ribosomal DNA and the telomere-associated repeat TGR1. (Ganal et 

al., 1988; Lapitan et al., 1989). In all cases studied, FISH on pachytene spreads was clearly 

superior in providing signals at a much higher resolution. As for the dispersed repeat probe 

THG2, for example, FISH on pachytene spreads showed a highly defined dispersion pattern 

with signals mainly confined to the heterochromatin regions and large stretches of 

chromosomes devoid of any signal. In contrast, virtually no differentiation in signal 

distribution was obtained in employing metaphase spreads, indicating that any future high 

resolution mapping in tomato should be conducted with chromosomes at meiotic pachytene 

stage. 

As is already common practice in animal and human cytogenetics, FISH offers the 

possibility to simultaneously visualise multiple targets in a single specimen. In tomato, 

multicolour FISH would be a powerful tool in constructing integrated chromosome maps. In 

this regard, the simultaneous detection of two classes of repeats as described in the present 

paper, provides a first step towards this goal. 
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Abstract 

This paper describes two protocols for high resolution physical mapping of DNA 
sequences in tomato using fluorescence in situ hybridisation (FISH). The first 
technique involves FISH to spread chromosomes from pollen mother cells at 
pachytene and proves to be an excellent method for assigning DNA sequences to 
chromosome regions at a resolution of up to a few hundred kilobases. An even higher 
resolution was obtained for extended DNA fibres, prepared from interphase nuclei 
and used as hybridising component. This technique permits strong enhancement of 
physical map resolution to values of a few kilobases. The power of both methods 
simultaneously applied to the same material was demonstrated with the combination 
of the telomeric repeat and the tomato specific telomere-associated repeat TGR1 as 
example. 

Key words: Fluorescence in situ hybridisation, FISH, pachytene chromosomes, extended 

DNA fibres, tomato. 

Abbreviations: DAPI, Diamidino-phenyl-indole; EDTA, ethylene diamine tetraacetate; 

FISH, fluorescence in situ hybridisation; FITC, Fluorescein isothiocyanate; SDS, sodium 

dodecyl sulphate; SSC, standard saline citrate; TGR, tomato genomic repeat. 

Introduction 

Multi-colour fluorescence in situ hybridisation (FISH) has been developed as one of 

the major cytogenetic tools for constructing accurate physical maps of single copy markers 

and repetitive sequences along chromosomes (reviewed by Jiang and Gill, 1994; Joos et al., 

1994). Its resolution for human mitotic metaphase chromosomes, usually in the range of 1 

to 3 Mb (Lawrence et al., 1990; Lichter et al., 1990), is limited by the high degree of 

chromatin condensation. Similar results with FISH mapping to metaphase chromosomes of 

plants, especially in the case of species with relatively small genomes, such as Arabidopsis, 

rice, tomato and sorghum, stimulated the development of protocols for enhanced resolution 

FISH to interphase and prophase chromosomes or decondensed chromatin. 

Nuclei at different mitotic and meiotic stages, including meiotic prophase I, have 

been compared for their suitability for high resolution mapping. Especially good results 

have been obtained with chromosomes of pollen mother cells at late pachytene, containing 

well-spread bivalents generally ten to fifteen times longer than their metaphase 

counterparts, exhibiting clearly differentiated patterns of light euchromatin and dark 
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heterochromatin blocks, and thin, weakly stained centromeres. As one of the best 

cytogenetic model plant species, tomato shows a distinct pachytene karyotype with 

chromomere patterns unique for each chromosome. This provides cytological maps with a 

differentiation level close to that of mammalian G-banding, allowing identification of all 

twelve chromosome pairs in the complement (Ramanna and Prakken, 1967) and providing 

an outstanding diagnostic tool for high resolution FISH mapping in this species (Zhong et 

al., 1996). 

Improvements in resolution have been achieved with FISH to mammalian interphase 

nuclei (Lawrence et al., 1990; Trask et al., 1991) and free chromatin or extended DNA 

fibres (Heng et al, 1992; Haaf and Ward, 1994; Wiegant et al, 1992; Parra and Windle 

1993; Heiskanen et al., 1994; Florijn, et al., 1995). Hybridisation of probes to extended 

DNA fibres allows the delineation and ordering of contiguous sequences at a resolution of 

a few kilobases (kb) or less (Parra and Windle, 1993; Florijn, et al., 1995). Recendy, this 

powerful technique has been applied in higher plants in order to visualise and map cosmid, 

lambda and plasmid clones on extended DNA fibres from Arabidopsis thaliana and tomato 

(Fransz et al, 1996). 

In this report we present the comprehensive FISH protocols for both pachytene 

chromosomes and extended DNA fibres of Lycopersicon esculentum. Probes of the 

telomeric repeat [TTTAGGG] from Arabidopsis thaliana and the tomato specific telomere-

associated repeat TGR1 serve as an example in two-colour FISH experiments for demon

strating the enhancement of mapping resolution of both techniques. 

Materials and Methods 

Plant material 

Lycopersicon esculentum cv VFNT Cherry was used for this study. 

Solutions required 

Carnoys fluid: 3: 1 ethanol: acetic acid 

Pectolytic enzyme mixture: 0.3% cellulase "Onozuka" RS (Yakult Honsha Co., Ltd, Tokyo, Japan), 

0.3% pectolyase Y23 (Sigma P3026), 0.3% cytohelicase (Sepracor, France) in 30 mM citrate 

buffer pH 4.5 

Nuclei isolation buffer: 10 mM Tris-HCl pH 9.5, 10 mM EDTA, 100 mM KC1, 0.5 M sucrose, 4.0 

mM spermidine, 1.0 mM spermine, 0.1% mercapto-ethanol 

PBS buffer: 10 mM sodium phosphate, pH 7.0, 140 mM NaCl 

STE nuclei lysis buffer: 0.5% SDS, 5 mM EDTA, and 100 mM Tris-HCl pH 7.0 
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Hybridisation mixture: 20 Jul per slide, containing 50% (v/v) formamide, 2 x SSC, 10% (w/v) sodium 

dextran sulphate, 50 mM phosphate buffer pH 7.0, 1-2 ng/|il labelled probe DNA, and 50-100 

ng/^l salmon sperm DNA 

2 x SSC: 0.3 M sodium chloride, 0.03 M sodium citrate, pH 7.0 

4M buffer: 5% non-fat dry milk in 4 x SSC 

4T buffer: 4 x SSC, 0.05% Tween 20 

TNT buffer: 0.1 M Tris-HCl pH 7.5, 0.15 M NaCl, 0.05% Tween 20 

TNB buffer: 0.1 M Tris-HCl pH 7.5, 0.15 M NaCl, 0.5% blocking reagent supplied by Boehringer 

Mannheim 

Avidin-Texas red: Boehringer Mannheim 

Goat-anti-avidin-biotin: Boehringer Mannheim 

Sheep-anti-dig-FlTC: Boehringer Mannheim 

Rabbit-anti-sheep-FITC: Boehringer Mannheim 

DAPI: 2 |ig/ml in Vectachield antifade 

Pachytene chromosomes 

Preparations of pachytene chromosomes were made from young anthers containing pollen mother 

cells at meiolic prophase I. 

• Collect flower buds with appropriate length1 . 

• Remove one anther from a flower bud using a dissecting microscope, squash in 1% acetocarmine (in 

45% acetic acid) and check its stage of development using a phase contrast microscope. 

• Transfer the remaining anthers in that flower bud to Carnoy's fluid and fix for 20 minutes at room 

temperature. 

• Wash three times in deionised water. 

• For cell wall digestion, incubate the anthers in 1 ml of pectolytic enzyme mixture at 37°C for 2 hours. 

• Wash carefully in deionised water and store the vulnerable anthers on ice until use. 

• Transfer a single anther to a clean, grease-free slide. Add 1 jol of water and squeeze out its pollen sacs 

out of the anther with fine needles. Remove as much of the anther tissue as possible. 

• Add 5 |il of 60% (v/v) acetic acid to the cell suspension, mix with a needle, and keep it for one minute 

to clear up cytoplasm. 

• Gently put about 1 ml of freshly prepared ice-cold ethanol-acetic acid (3:1) on the microscopic slide, in 

a circle around the suspension. While extending across the glass surface the fixative will precipitate the 

cells and stick them to the glass surface. Add few more drops to the cells just before complete 

evaporation. 

• Immerse the wet slide briefly in 96% ethanol, then air-dry thoroughly. 

• Check the preparations under the phase contrast microscope and select the best of them for the in situ 

hybridisation experiments. 

• The slides can be stored at -20 °C for months. 
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Extended DNA fibres 

We used nuclei from young leaves for making the preparations of extended DNA fibres. 

• Collect 2 grams of fresh tomato leaves. 

• Freeze the leaves in liquid nitrogen immediately. 

• Grind to a fine powder in liquid nitrogen with a precooled mortar and pestle. 

• Transfer the powder to a 50 ml centrifuge tube with a precooled spoon. 

• Add 20 ml of ice-cold nuclei isolation buffer and mix gendy for 5 minutes. 

• Filter the homogenate sequentially through one layer each of 170, 125, 50, and 20 nm nylon mesh 

filters. Keep on ice all the time. 

• Add 1 ml of nuclei isolation buffer containing 10% (v/v) Triton X-100 to the filtrate. 

• Centrifuge at 2000 x g for 10 minutes at 4 °C. 

• Resuspend the pellets in 200 \il of nuclei isolation buffer to obtain a final concentration of about 5 x 

10 nuclei/ml. 

• Check quality and concentration of the nuclei suspension by staining a 1 ul sample with DAPI under 

the fluorescence microscope2. 

• Nuclei stored in glycerol should be washed in PBS buffer by spinning down at 3000 rpm for 5 min in an 

Eppendorf centrifuge and resuspending in PBS. 

• Put 1 pJ of nuclei at one end of a clean slide, gendy spread the suspension with a pipette tip in a short 

stroke parallel to the short rim of the microscopic slide and let air-dry for a few minutes. 

• Add 10 ul of STE lysis buffer to the nuclei and incubate for 4 minutes. 

• Gendy tilt the slide with the drop at the upper end to about 45°, carefully moving the drop of buffer 

across the glass surface, thereby pulling out stretched fibres of DNA into a long stream. Allow the drop 

to stream toward the other end of the slide and air-dry. 

• Fix the DNA fibres with Carnoy's fluid for 2 minutes, air dry and bake the slide at 60 °C for 30 

minutes. 

• The preparations can direcdy be used for standard fluorescence in situ hybridisation without pre-

treatment with RNase, pepsin and formaldehyde. 

Probe labelling 

Clone pAtT4 (Richards and Ausubel, 1988) containing the telomeric repeat (TTTAGGG) of 

Arabidopsis thaliana was used as probe to detect the tomato telomeric repeat. The tomato specific repeat, 

TGR1, containing a 162 bp motive (Ganal et al., 1988), was used as probe for the telomere-associated repeat. 

pAtT4 was labelled with biotin-16-dUTP (Boehringer) and TGR1 with digoxigenin-11-dUTP (Boehringer) 

by either standard nick translation or random primer labelling according to the instruction of the 

manufacturer. 
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Fluorescence in situ hybridisation 

Pre-treatment of preparation with RNase, pepsin and formaldehyde 

The steps below are only required for pachytene chromosomes. 

Incubate preparations in 2 x SSC for 5 minutes. 

Add 100 nl of 100 |J.g/ml RNase A in 2 x SSC on each slide, cover with a 24 x 50 mm coverslip, and 

incubate at 37 °C for 1 hour. 

Wash the slides in 2 x SSC three times for 5 minutes. 

Incubate the slides in 0.01 M HC1 for 2 minutes. 

Add 100 jol of 5 Hg/ml (20 units/ml) pepsin in 0.01 M HC1 on each slide, cover with a coverslip, and 

incubate at 37 °C for 7 tolO minutes. 

Wash the slides in water for 2 minutes and in 2 x SSC two times for 5 minutes. 

Incubate the slides in 1% formaldehyde in PBS buffer pH 7.0 for 10 minutes. 

Wash the slides three times in 2 x SSC for 5 minutes. 

Dehydrate the slides in 70%, 90% and 100% ethanol for 3 minutes each, and let air-dry. 

In situ hybridisation and post washes 

Prepare the hybridisation mixture (20 |il per slide)3. 

Use 20 jil of the hybridisation mixture per slide, and cover it with a 24 x 32 mm coverslip. 

Denature chromosome and probe DNAs at 80°C for 2 minutes. 

Place the slides in a pre-warmed humid chamber and incubate at 37°C for 12-18 hours. 

Prewarm freshly prepared 50% (v/v) formamide / 2 x SSC pH 7.0 to 42°C, and wash the slides in this 

solution three times for 5 minutes. 

Wash the slides briefly in 2 x SSC at room temperature. 

Rinse the slides in 0.1 x SSC at 56-60°C three times for 5 minutes4. 

Wash the slides in 2 x SSC for 5 minutes. 

Detection and amplification 

Wash the slides in 4T buffer for 5 minutes. 

Add 100 |il of 4M buffer to each slide, cover with a 24 x 50 mm coverslip, and incubate at 37°C for 30 

minutes. 

Wash the slides briefly in 4T. 

Add 100 nl of 2 |ig/ml Avidin-Texas Red in 4M buffer to each slide, cover with a coverslip, and 

incubate at 37°C for 60 minutes. 

Wash the slides in 4T buffer for 5 minutes. 

Wash the slides two times in TNT buffer for 5 minutes. 

Add 100 nl of 10 Hg/ml goat-anti-avidin-biotin and 10 (ig/ml sheep-anti-dig-FlTC in TNB buffer to 

each slide, cover with a coverslip, and incubate at 37°C for 60 minutes. 
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• Wash the slides in TNT buffer three times for 5 minutes. 

• Add 100 ul of 2 ug/ml Avidin-Texas Red and 10 ug/ml rabbit-anti-sheep-FTTC in TNB buffer to each 

slide, cover with a coverslip, and incubate at 37°C for 60 minutes. 

• Wash the slides in TNT buffer three times for 5 minutes. 

• Dehydrate the slides in 70%, 90%, and 100% (v/v) ethanol. 

• Counterstain with 10 |jl of 5 fig/ml DAPI in Vectashield anufade to each slide, cover with a 24 x 50 

mm coverslip. 

• Study the results under a fluorescence microscope with the filter sets for DAPI, FTTC and Texas red, 

respectively. 

• Make photographs on a 400 ISO colour negative film. 

Notes 

1) For the VFNT cherry cultivar, a 3- to 4-mm flower bud corresponds to the pachytene stage. 

2) The nuclei can be stored at -20°C for months after mixing with an equal volume of glycerol. 

3) In applying FISH to extended DNA fibres, add 10-100 pg/ul probe DNA. 

4) The only stringent washing. 

Results and Discussion 

The protocol for the preparation of pachytene chromosomes was optimised for better 

spreading of pachytene chromosomes and to minimise background of the pollen mother cell 

cytoplasm. As revealed by DAPI staining, the distinct differentiated pattern of eu- and 

heterochromatin was retained, showing prominent fluorescent blocks in the proximal 

heterochromatin regions and most of the telomeres, and faint fluorescence in both 

euchromatic parts and the centromeres (Fig. la). This fluorescence pattern was found to 

correspond precisely with that of classical aceto carmine staining (Ramanna and Prakken, 

1967). The distinct morphology thus permitted identification of all twelve chromosomes 

following the criteria for the tomato pachytene karyotype of Ramanna and Prakken (1967). 

To evaluate the resolution of FISH to pachytene chromosomes, two adjacent 

repetitive DNA sequences located at the tomato telomere region were studied in a double 

labelling hybridisation experiment. Former studies on the macrostructure of the tomato 

telomere (Ganal et al., 1991) revealed that the tomato telomeres are composed of two 

repetitive families, i.e. the common telomeric repeat and a telomere-associated repeat 

(TGR1). The telomeric repeat in tomato has a 7-base-pair unit, TT(T/A)AGGG, which 

easily cross-hybridises to the telomeric repeat of Arabidopsis thaliana (TTTAGGG) (Ganal 

et al, 1991). The telomere-associated repeat TGR1 is a tomato-specific tandem repeat with 

a 162 bp motive, located on 20 out of the 24 telomeres, and physically adjacent or close to 
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the telomeric repeat (Ganal et ah, 1988; Schweizer et al., 1988; Ganal et al, 1991). A 

biotin labelled telomeric repeat probe (pAtT4) from Arabidopsis thaliana and a digoxigenin 

labelled telomere-associated repeat probe (TGR1) from tomato were used for simultaneous 

FISH to pachytene chromosomes (Fig. la). After detection and amplification, hybridisation 

signals of the pAtT4 and TGR1 probes appeared as red and green fluorescent spots, 

respectively. The pAtT4 probe hybridised to all 24 telomeres, whereas the TGR1 signals 

could be detected in only 20 of them. These 20 telomeres with a combination of pAtT4 and 

TGR1 signals could be classified into three groups according to their hybridisation patterns: 

(1) the green signals completely separated from the red signals; 

(2) the green signals partly overlapping the red signals and therefore showing a 

pattern of contiguous green-yellow-red spots; 

(3) the green signals entirely overlapping the red signals giving rise to uniformly 

fluorescing yellow spots. 

Previous molecular analysis of these telomeres using restriction enzyme digestion, 

pulsed field gel electrophoresis, and Southern blot analysis (Lapitan et al., 1989; Ganal et 

al., 1991) have demonstrated that the different TGR1 fragments and the telomeric repeat 

are physically separated by spacers varying from a few kilobase to several hundreds of 

kilobases. Based on the three FISH patterns mentioned above, the first group of two 

telomeres exhibiting completely separated red and green signals will represent chromosome 

ends with relative long spacers between the telomere and TGR1 regions, while the third 

group of four telomeres with completely yellow signals has short spacers or no spacer at all. 

Chromosomes at pachytene are, on the average, fifteen times longer than at mitotic 

metaphase, their contraction rate still differing significantly between euchromatic and 

heterochromatic areas. Ramanna and Prakken (1967), who compared mean proximal and 

distal segments values for all chromosomes, found that the distal euchromatic areas differ 

by a factor of 25-30, whereas heterochromatic segments around the centromeres were 

reduced only by a factor of 4-5. This implies that differential contraction rates should be 

taken into account for deducing physical distances between markers in both 

heterochromatin and euchromatin as well as when comparing with corresponding physical 

distances in mitotic chromosomes, and that physical resolution in euchromatic regions is 

correspondingly higher than in heterochromatic parts. In addition, very compact parts of the 

chromosomes, especially in constitutive heterochromatic (C band positive) bands might be 

less accessible for probes in a FISH experiment. Irrespective of these limitations, the most 

important advantage of the tomato pachytene chromosomes is the karyotype, based on 

chromosome specific chromomere patterns, differences in centromere position and relative 

length, which permit unequivocal assignment of cytogenetic markers including repetitive 

and unique DNA sequences to the tomato chromosomes. Examples of identified 

chromosomes are given in the pachytene complement of figure la 
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Unsurpassed resolution in mapping was obtained with FISH to extended DNA fibre. 

Its characteristic image shows hybridisation signals of fluorescent tracks containing many 

minor beads rather than the single spots as in pachytene or metaphase chromosomes. Figure 

lb shows an example of the FISH of the telomeric repeat and the telomere-associated 

repeat TGR1 to the extended DNA fibres of two similar chromosome ends. The length of 

the red fluorescent tracks representing the telomeric repeat was measured at 7.6 mm. Based 

on a stretching degree of 3.27 kb/mm (Fransz et al, 1996), its corresponding molecular size 

was estimated at 25 kb, which fits well in the range for length estimates based on molecular 

data (Ganal et al., 1991). Similar data were obtained for establishing lengths of the spacers 

and the TGR1 repeats (unpublished results). 

Despite its mapping resolution of approx. 1 kb and the detection of target DNA sites 

smaller then 700 bp (Fransz et al., 1996), FISH to extended fibres does not allow large 

scale localisation of sequences on the native chromosomes due to the relative short 

uninterrupted fluorescent traces without any diagnostic chromosomal characteristic like 

centromeres or C-bands. This limitation, however, is met by similar observations at the 

pachytene chromosomes. The simultaneous use of both FISH techniques are strongly 

complementary and gives the opportunity to map sequences on well differentiated 

chromosomes at a resolution hitherto restricted to molecular biological analyses and will 

therefore supplement existing tools for molecular cytogenetic analysis of genome 

organisation, physical mapping and positional cloning in higher plants. 

Figure 1. Two-colour fluorescence in situ hybridisation of the tomato telomeric repeat (red) and the 

telomere-associated repeat TGR1 (green) to pachytene chromosomes and extended DNA fibres. The 

telomeric repeat probe pAtT4 was labelled with biotin-16-dUTP, and detected with Avidin-Texas red. The 

telomere-associated repeat probe TGR1 was labelled with digoxigenin-11-dUTP, and detected with sheep-

anti-DIG conjugated FTTC. a. FISH to the pachytene chromosomes. NOR indicates the position of the 

Nuclear Organiser Region of the satellite chromosome, whereas h and e refer to examples of heterochromatic 

and euchromatic regions, respectively. The arrows with number point to the position of centromeres of their 

corresponding chromosomes, b . FISH to the extended DNA fibres of two similar chromosome ends. 
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Abstract 

The molecular and cytological organisation of the telomeric repeat (TR) and the 
subtelomeric repeat (TGR1) of tomato were investigated by fluorescence in situ 

hybridisation (FISH) techniques. Hybridisation signals on extended DNA fibres, 
visualised as linear fluorescent arrays representing individual telomeres, 
unequivocally demonstrated the molecular co-linear arrangement of both repeats. 
The majority of the telomeres consists of a TR and a TGR1 region separated by a 
spacer. Microscopic measurements of the TR and TGR1 signals revealed high 
variation in length of both repeats, with maximum sizes of 223 and 1330 kb, 
respectively. A total of 27 different combinations of TR and TGR1 was detected, 
suggesting that all chromosome ends have their own unique telomere organisation. 
The fluorescent tracks on the extended DNA fibres were subdivided into four classes: 
(i) TR - spacer - TGR1; (ii) TR - TGR1; (iii) only TR; (iv) only TGR1. FISH to 
pachytene chromosomes enabled some of the TR/TGR1 groups to be assigned to 
specific chromosome ends and to interstitial regions. These signals also provided 
evidence for a reversed order of the TR and TGR1 sites at the native chromosome 
ends, suggesting a backfolding telomere structure with the TGR1 repeats occupying 
the most terminal position of the chromosomes. The FISH signals on diakinesis 
chromosomes revealed that distal euchromatin areas and flanking telomeric 
heterochromatin remain highly decondensed around the chiasmata in the 
euchromatic chromosome areas. The rationale for the occurrence and distribution of 
the TR and TGR1 repeats on the tomato chromosomes are discussed. 

Introduction 

Telomeres have long been regarded as rather static elements of eukaryote chromo

somes. Over the past decade, however, a vast body of evidence has accumulated showing 

that telomeres are actually highly dynamic chromosomal structures associated with key 

aspects of chromosomal functions and behaviour. Not only do they permit stable replication 

of chromosome termini (Blackburn, 1994), but they also prevent chromosome 

disintegration and participate in regulating cell division and cellular senescence (Wright 

and Shay, 1992). Furthermore, through their association with the nuclear envelope in 

meiotic prophase I, telomeres are likely to play a critical role in defining nuclear 

organisation and meiotic pairing (Dernburg et al, 1995). 

The telomere structure is composed of a complex of telomere-specific DNA sequen

ces and various proteins (Zakian, 1995). In most species, these sequences involve a 
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telomeric repeat (TR) consisting of a highly conserved tandem repeat array of a 6 to 8 base 

pairs (bp) motif at the extreme end of the chromosomes (Biessmann and Mason, 1994). The 

telomeric repeat is often associated with other tandemly repeated sequences of higher 

complexity, referred to as the subtelomeric repeats (Ashikawa et al, 1994; Brandes et al, 

1995; Ganal et al, 1991; Kilian and Kleinhofs, 1992; Kolchinsky and Gresshoff, 1994; 

Roder et al, 1993; Vershinin et al, 1995; Wu and Tanksley 1993). These repeats are often 

species-specific and vary in length and degree of repetitiveness (Biessmann and Mason, 

1994). 

In tomato, the TR consists of an array of the tandemly repeated oligonucleotide 

TT(T/A)AGGG sequence that varies in length at different chromosomal ends (Ganal et al, 

1991). This repeat is separated by a spacer region of a few hundred kilobases (kb) from a 

162 bp satellite repeat, the subtelomeric repeat TGR1 that is found at 20 out of the 24 

telomeres (Lapitan et al, 1989; Schweizer et al, 1988). Together, TR and TGR1 sequences 

account for approximately 2% of the tomato genome (Ganal et al, 1991). 

In plants, the molecular organisation and size estimates of telomere DNA sequences 

have been mostly established by means of pulsed field gel electrophoresis (PFGE) (Brandes 

et al, 1995; Ganal et al, 1991; Roder et al, 1993; Vershinin et al, 1995; Wu and Tanksley 

1993). As to tomato, this technique also permitted the genetic mapping of four telomeres to 

specific chromosomal arms, exploiting distinct length polymorphisms at the telomeric 

TGR1 loci and their linkage to the most distal RFLP markers from the saturated RFLP 

linkage map (Ganal et al, 1992). However, there are limitations in analysing the molecular 

organisation of telomeres by PFGE. Firstly, molecular sizes are usually overestimated due 

to the positions of restriction sites for rare-cutting enzymes close to but not at the proximal 

border of the repeats. Secondly, PFGE provides size estimates of repeat domains 

representing average figures for the entire genomic DNA, but is not suited for assigning 

specific repeats to individual chromosomes and for analysing length heterogeneity at 

individual chromosomal loci. 

The aforementioned limitations can be overcome by the combined application of 

fluorescence in situ hybridisation (FISH) to both extended DNA fibres and chromosomes. 

On the one hand, fibre FISH provides an effective tool to study the molecular organisation 

of individual telomere repeats enabling their direct physical mapping on individual DNA 

strands. This technique has been shown to be suitable for spanning several hundreds of 

kilobases at a resolution to the extent of at least a few kilobases (Fransz et al, 1996; Parra 

and Windle, 1993; Wiegant et al, 1992). On the other hand, FISH to pachytene 

chromosomes provides supplementary information on the mapping of repeat domains to 

specific chromosomal regions (Xu and Earle, 1996a and b; Zhong et al, 1996a). 

Here we address the question of how individual TR-TGR1 domains are organised at 

individual chromosome ends in terms of length heterogeneity, spacer distribution, sequence 
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composition and compactness. By applying FISH to extended DNA fibres we were able to 

visualise the different types of TR-TGR1 organisation among individual chromosome ends. 

Similarly, FISH to pachytene and diakinesis chromosomes revealed new aspects of the 

telomeric domains at higher order chromatin organisation. 

Results 

Molecular organisation of the TR and TGR1 repeats as revealed by PFGE and FISH 
on extended DNA fibres 

In order to examine the long range organisation of the telomere repeat (TR) and the 

subtelomeric repeat TGR1, at first PFGE was applied. To this end, genomic DNA was cut 

with Bglll or EcoRV, restriction enzymes that are both known to leave the two repeats 

unimpaired (Ganal et ah, 1991). The resulting restriction fragments were resolved by PFGE 

under conditions that allow resolution up to 2000 kb, blotted and hybridised to TR and 

TGR1 probes (Fig. 1). TR-containing fragments were found to range in size between 50 

and 2000 kb with the bulk appearing in the 50 - 250 kb size range. In both the Bglll and 

EcoRV digests, some discrete bands of c. 700 kb, 880 kb and 1900 kb were apparent. 

TGR1 fragments ranged in size from 100 to 2000 kb. The bulk of fragments, with 

sizes between 300 - 800 kb, was clearly larger than the TR-containing fragments. Again, 

some discrete large-sized fragments were observed, some of which co-migrated with the 

TR fragments, indicating co-linearity and the absence of a Bglll or EcoRV site within the 

telomere domain. 

In an attempt to dissect the molecular organisation of the TR and TGR1 repeats at 

individual DNA molecules, extended genomic DNA fibres (Fransz et al, 1996) were 

subjected to dual-label FISH using the biotinylated pAtT4 clone containing the TR of 

Arabidopsis thaliana and digoxigenin-labelled TGR1 from tomato as probes. Thus, a 

fluorescent pattern of parallel running linear tracks of red and green spots was obtained, 

representing individual chromosomal regions consisting of TR and TGR1 sequences, 

respectively (Fig. 2a). All signals showed continuous dotted tracks, suggesting that both 

repeat units were tandemly reiterated without interruption by other sequences, though the 

presence of intervening sequences spanning a few kilobases cannot be excluded. The 

orientation of TR and TGR1 relative to the position of the residual nuclei (arrows at the 

bottom of Fig. 2a) clearly showed the order of the repeats, the telomere repeat was distal to 

the subtelomeric TGR1. Most of the patterns consisted of red and green signals separated 

by a non-fluorescent spacer. Occasionally red or green signals were observed that lacked 

any association with the other repeat. 
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Figure 1. Southern blot analysis of tomato telomeres. High molecular weight DNA was digested with Bgin 
and EcoRV, separated by PFGE, blotted and hybridised with the telomeric repeat TR and the subtelomeric 
repeat TGR1. 
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To determine the microscopic lengths of the TR-TGR1 regions, we selected 80 

clearly distinguishable, individual patterns (Fig. 2b-e) and measured both the length of the 

green and red fluorescing tracks and the non-fluorescent spacer. For conversion of the 

microscopic length (um) into a molecular size (kb), a stretching degree of 3.27 kb urn' was 

applied, a value that has been derived from similar FISH experiments with known DNA 

sequences on tomato and Arabidopsis extended DNA fibres (Fransz et al, 1996). 

In order to classify the FISH patterns into groups that might correspond to individual 

chromosomal sites, we sorted them according to decreasing lengths of spacer, telomere and 

TGR1 (Table 1). The order of sorting keys is based on the fact that the spacer image is not 

affected by fibre breakage, while the images of the short telomere and especially the long 

TGR1 arrays are. The patterns were grouped on the basis of length similarity of the TR-

spacer-TGRl combination. To reduce misinterpretation of the signals, at least two of the 

three regions should have a minimum and maximum value that deviate less than five 

percent of the average. Should there be any doubt as to the assignment of fluorescent 

signals to certain groups, the length of the non-fluorescent spacer gave conclusive evidence. 

The classification resulted in 26 groups, each consisting of two or more fibres with 

identical or nearly identical fluorescence patterns, and five groups containing single fibres 

with a unique pattern. Four of these (numbers 11, 24, 25 and 26 in Table 1) were most 

probably individual examples of broken fibres with incomplete TR and TGR1 signals, and 

could be assigned to any of the 26 groups with more than one fibre. However, the one with 

the longest TGR1 signal and the largest spacer (number 31 in Table 1) was probably the 

only representative of this independent group, giving a total of 27 groups. These were 

further subdivided into 4 classes based on the presence of the telomere signal, the TGR1 

signal and the spacer: class I, a TR array associated with a TGR1 array via a non-

fluorescent spacer (Fig. 2b); class n, a TR array directly associated with TGR1 (Fig. 2c); 

class m, a TR array, without TGR1 (Fig. 2d); class IV, a TGR1 array, without TR (Fig. 2e). 

The 27 groups most probably correspond to the 24 telomeric ends plus three 

interstitial TGR1 sites (class IV). Although conclusive evidence is lacking, such a direct 

relationship is reinforced by the fact that the number of groups with only a TGR1 signal 

(class IV) matches the number of interstitial TGR1 sites, while the number of groups 

without a TGR1 signal (class HI) corresponds to the number of chromosomal ends lacking 

TGR1 (see below). 
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Figure 2. Two-colour FISH of the tomato telomeric repeat (red) and the subtelomeric repeat TGR1 (green) 
to extended DNA fibres. 2a. An overview of long hybridisation signals in a large area of the microscopic 
slide (200 x 10 000 um^ ) composed of 13 partially overlapping photographs. The arrows indicate the 
position of the residual nuclei. 2b. Class I: TR in association with the TGR1 repeat, but separated by a 
spacer (arrows). 2c. Class II: TR directly flanking to TGR1 without a spacer. 2d. Class ni: TR free of any 
TGR1 sequence. 2e. class IV: TGR1 free of any TR at interstitial sites. 2f. A diagram of different TR-TGR1 
combinations from 80 individual fibre signals. Similar signals are grouped to be considered from identical or 
homologous chromosomal regions. Bar = 20 um. 

Table 1. Overview of the average molecular sizes in kb of the TR, TGR1 and the spacer regions from 
80 individual FISH patterns, sorted in sequence of decreasing length for spacer, TR and TGR1. 

pattern 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

n 

3 
4 
4 
3 
3 
4 
2 
2 
3 
2 
1 
3 
4 
4 
2 
2 
2 
6 
3 
2 
2 
2 
2 
1 
1 
1 
3 
4 
2 
2 
1 

TR 

average 

0 
0 
0 

25.0 
44.7 
67.0 
121.0 
15.5 
26.7 
38.0 
67.0 
74.3 
93.3 
117.0 
160.0 
77.0 
46.0 
85.2 
125.3 
216.0 
101.0 
107.0 
157.0 
101 
98 
56 

100.0 
115.0 
49.0 
108.5 
134.0 

min-max 
value 
0-0 
0-0 
0-0 

23-26 
39-49 
59-72 

118-124 
13-18 
26-27 
36-40 

-
72-76 
90-98 

111-121 
160-160 
72-82 
46-46 
82-92 

121-130 
209-223 
101-101 
107-107 
157-157 

-
-
-

98-101 
111-121 
49-49 

101-116 

-

spacer 

average 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

13.0 
17.0 
20.5 
17.3 
17.0 
22.0 
22.0 
24.5 
31 
36 
40 

43.3 
49.3 
73.0 
75.5 
98.0 

min-max 
value 
0-0 
0-0 
0-0 
0-0 
0-0 
0-0 
0-0 
0-0 
0-0 
0-0 
-

0-0 
0-0 
0-0 
0-0 

13-13 
16-18 
16-23 
16-18 
16-18 
22-22 
22-22 
22-27 

-
-
-

40-46 
45-54 
71-75 
75-76 

-

TGR1 

average 

88.3 
157.0 
634.3 

0 
0 
0 
0 

404.5 
217.7 
402.5 
457.0 
143.7 
736.5 
513.8 
363.0 
395.5 
233.5 
493.0 
523.3 
307.0 
197.0 
319.5 
730.0 
180 
529 
611 

853.7 
600.8 
934.0 
492.0 
1330.0 

min-max 
value 
85-95 

137-170 
585-703 

0-0 
0-0 
0-0 
0-0 

402-407 
210-224 
402-403 

-
143-144 
716-761 
495-543 
360-366 
389-402 
228-239 
474-502 
497-537 
301-313 
184-210 
317-322 
721-739 

-
-
-

850-860 
592-609 
887-981 
487-497 

-

group*) 

IV-a 

rv-b 
rv-c 
m-a 
m-b 
m-c 
ffl-d 
n-c 
n-b 
n-d 
-

n-a 
n-g 
n-f 
n-e 
I-d 
I-a 
I-f 

I-g 
I-e 
I-b 
I-c 
i-j 
-
-
-

I-k 
I-i 
1-1 
I-h 
I-m 

n, number of observations 
*) The group number corresponds to the classification shown in Figure 2f. 
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The length of the regions containing the telomeric repeat varied from 13 to 223 kb 

with an average of 88.6 kb. The TGR1 tracks spanned 85 - 1330 kb with an average of 

465.8 kb, while the length of the spacer ranged from 13 to 98 kb, with an average of 34.3 

kb. Regression analyses for all combinations of TR, spacer and TRG1 lengths revealed a 

significant correlation only for the lengths of the spacer and TGR1 (r = 0.69, P < 0.01), 

whereas all other combinations of TR, spacer and TGR1 proved to be not or weakly 

correlated. 

The telomere lengths for the class EC chromosome arms (1L, 2S, 2L and 7L, see 

below) ranged from 23 to 124 kb, with an average of 59.9 kb, but they could not be 

assigned to individual chromosomes. Class IV most likely represents interstitial TGR1 sites 

that are distributed among three distinct groups with molecular sizes of 85 - 95 kb, 137 -

170 kb and 585 - 703 kb, respectively. 

Position and organisation of the TR and TGR1 on pachytene and diakinesis 

chromosomes 

We next probed the TR and TGR1 repeats on pachytene and diakinesis chromosomes 

in order to localise their position on each individual chromosome arm and to study their 

cytological organisation on chromosomes with different condensation patterns. Pachytene 

chromosomes were chosen for this type of analysis as they are relatively easy to identify 

(see Fig. 3) (Ramanna and Prakken, 1967; Zhong et al., 1996b) and superior to metaphase 

chromosomes (Ganal et al, 1991; Lapitan et al, 1989) in subchromosomal mapping. The 

red fluorescent TR signals were detected at all 24 chromosome ends, while TGR1 (green) 

hybridised to 20 ends. The three long arms 1L, 2L, 7L and one short arm 2S, which 

harbours the nuclear organizer region (NOR), were devoid of any terminal TGR1 signal, an 

observation that corresponds with the class HI groups (see above) representing the TR 

signals on DNA fibres that are not associated with TGR1. 

Figure 3. Two-colour FISH of the tomato telomeric repeat (red) and the subtelomeric repeat TGR1 (green) to 
pachytene chromosomes. The numbers with S and L indicate short and long arms, respectively, of 
corresponding chromosomes. The arrows point to the positions of centromeres. The arrow heads indicate the 
interstitial sites of TGR1. Bar = 5 um. 

Figure 4. Two-colour FISH of the tomato telomeric repeat (red) and the subtelomeric repeat TGR1 (green) to 
diakinesis chromosomes. 4a. A complete cell with 12 bivalents. 4b. Two bivalents with distal chiasmata 
showing hybridisation signals on highly decondensed chromatin. 4c. Two bivalents with interstitial 
chiasmata showing the signals on decondensed chromatin. 4d. Two bivalents showing signals in condensed 
telomeric chromatin of the arms lacking chiasmata. Note the decondensed chromatin in the subtelomeric 
region of the opposite arm (arrow). Bar = 5 Jim. 
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In addition to the telomere-linked signals, three interstitial TGR1 signals were detec

ted in the middle of the chromosome arms 6L, 8L and 9L, respectively. Again the 

pachytene data were in accordance with the fibre FISH data showing the three groups of 

class IV. By using a monosomic addition of tomato chromosome 6 in a potato background, 

we could assign the 157 kb TGR1 signal of group IVb to the interstitial site of 6L (Zhong et 

al, manuscript in preparation). From the FISH results, an ideogram was constructed (Fig. 

5) showing the chromosomal localisation of the TR and TGR1 for each chromosome. 

All TGR1 and TR signals, distal as well as interstitial, co-localised with 

heterochromatic chromomeres, suggesting that the repeats occur in highly condensed areas 

of chromatin. The occurrence of a red-yellow-green pattern indicates that the resolution of 

the condensed telomeric region in pachytene is lower than the distance between the distal 

telomere end and the proximal TGR1 end, which can be as large as 200 kb. Surprisingly, 

most of the telomeric TGR1 signals were, unlike their location on fibres, observed at the 

very ends of the pachytene chromosomes, distal from the TR signals (Fig. 3), indicating a 

reversed order of TR and TGR1. 

Shortly after pachytene, the chromatin undergoes dramatic conformational changes. 

While the homologues start disjoining, chromosomes rapidly de-condense forming a fine 

network of thin threads. During this transient diffuse diplotene stage, individual 

chromosomes are temporarily indiscernible, with their heterochromatin regions appearing 

as clustered indistinct structures (Cawood and Jones, 1980). Shortly later, just before 

entering diakinesis, chromosomes start a second process of condensation, initially at the 

centromere heterochromatic regions only. The homologous distal euchromatin segments, 

however, which remain associated through their chiasmata until anaphase I, retain their 

decondensed status throughout diakinesis. 

DAPI staining revealed bright fluorescence of the centromeric heterochromatin areas 

of the diakinesis bivalents, which was in contrast to the distal regions around the putative 

positions of the chiasmata showing weak or no DAPI staining at all. However, the TR and 

TGR1 signals were clearly resolved, visualising the decondensed state of these regions with 

striking variation in intensity and pattern among the bivalents (Fig. 4a-d). We distinguished 

three different patterns: (i) highly decondensed chromatin with long, non-overlapping 

stretches of TR and TGR1 signals (Fig. 4b); (ii) decondensed chromatin with separate, 

single spots of TR and TGR1 (Fig. 4c); and (iii) highly condensed chromatin with partly 

overlapping TR and TGR1 signals (Fig. 4d). 

Each pattern could be explained on the basis of differences in chiasma position of the 

euchromatin arm regions. In the first case we assume a distal chiasma, very close to the 

telomeres. The entire distal region, including the telomeric heterochromatin, will remain 

despiralised, resulting in non-overlapping extended TR and TGR1 signals. The second type 

will occur in those cases where chiasmata occur in the interstitial regions. As a result the 
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distal euchromatin and telomeric blocks will be relatively condensed and, hence, keep the 

TR and TGR1 closer together as solid, partly overlapping structures. In the third type, 

which occurs in the unbound arms of rod bivalents, euchromatin becomes highly 

condensed, showing compact telomere regions with small overlapping TR/TGR1 signals 

(Table 2). 

Table 2. The relationship of chromatin condensation in the telomere regions and the positions of 
cmasmata in diakinesis bivalents 

Position of 
chiasmata in a 

chromosome arm 
distal 

interstitial 
no chiasma 

(n) 

(98) 
(53) 
(41) 

Percentage of chromosome arms with distal chromatin 
condensation 

highly decondensed 
57.1 
15.1 

decondensed 
40.8 
66.0 
22.0 

condensed 
2.0 
18.9 
78.0 

Discussion 

Molecular organisation and pachytene mapping of the telomeric repeats 

In this paper we present detailed maps of the telomeric and subtelomeric repeat arrays 

of all tomato chromosome arms, exploiting the extended DNA fibre technique as primary 

tool. The expected organisation of telomeres containing domains for the telomeric repeat, 

spacer and subtelomeric repeat has now been visualised directly under the fluorescence 

microscope as distinct combinations of bicolour fluorescent arrays, in specific cases 

separated by a short non-fluorescent spacer region. Previously, we have shown that the 

extended DNA fibres of tomato and A. thaliana hybridised to various types of probes, 

including repeats (5S rDNA), cosmids, A.-clones and plasmids, and provide accurate 

molecular maps of various chromosomal regions that are in accordance with maps 

established by conventional molecular techniques (Fransz et al, 1996; Fransz et al, 1998; 

Zhong et al, 1996b). Unlike PFGE mapping, however, the fibre FISH technique has the 

advantage in providing information regarding the organisation of repeat domains on 

individual DNA molecules. Similar to the length measurements of the 5S rDNA repeat 
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Figure 5. Ideogram of the telomeric repeat and TGR1 sequences on pachytene chromosomes composed on 
the basis of the FISH results. 

array in tomato (Fransz et al; 1996; Lapitan et al, 1991), size estimates of the tomato TR 

determined by PFGE and fibre FISH were in accordance with the bulk of the TR domains, 

ranging in size between 50 and 250 kb and between 13 and 233 kb, respectively. Likewise, 

no major differences were found regarding the size distribution of the TR-TGR1 domains 

as determined by the respective techniques. 

As to the TR repeats, our length measurements put the tomato telomeric domains in 

the upper size range found for other plant telomeric repeats, which vary from 3.5 kb in 

Arabidopsis (Richards et al, 1992) to 30 kb in rice (Wu and Tanksley, 1993). As our FISH 

experiments with the telomeric repeat hybridised to extended genomic DNA fibres from 

Petunia, maize, potato, rice and Arabidopsis confirm the corresponding published length 

measurements based on PFGE (unpublished data), the relative large TR arrays found for 

tomato are unlikely to be an artifact. It may thus be argued that the length estimate of the 

tomato TR domain (30 - 60 kb), as determined by combined Batfl/Haelll digestion (Ganal 

et al, 1991) is an underestimation, probably due to cryptic Haelll sites present within the 

long array. 
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Twenty three different groups for the subtelomeric and interstitial TGR1 repeat, 

varying from 85 to 1330 kb, were found. This number is slightly less than the 30 groups in 

Lapitan's PFGE analysis with Bg///-digested tomato DNA showing fragments ranging from 

25 to 1000 kb (Lapitan et al, 1989). The same argument as discussed above (presence of 

cryptic restriction sites) for the TR discrepancy may again account for the inconsistency 

with respect to the minimum TGR1 size, though it cannot be excluded that small TGR1 

fragments (c. 25 kb) that were considered as background in the DNA fibre preparations 

remained undetected in the pachytene complements. 

The occurrence of a specific TR and a specific TGR1, in combination or alone, and 

with or without the non-fluorescent spacer revealed 31 TR - TGR1 groups, encompassing 

the 24 chromosomal ends and the three interstitial TGR1 sites. The number of TR - (spacer 

-) TGR1 combinations amounted to 24 (class I and II), slightly more than the 20 

chromosome ends with both repeats as observed in pachytene complements. It is plausible 

that a few of the TR - TGR1 combinations became slightly longer or shorter at their borders 

due to some technical artefacts, and so were erroneously classified as different groups. 

Even with these technical artefacts that may cause some fibre length variation, our data 

strongly suggest that most, if not all, chromosome ends have their own unique telomere 

organisation with dissimilar lengths for TR, spacer and TGR1. 

Although their function is not clear, it is speculated that the TGR1 domains and the 

spacer sequence might play a role as buffering blocks separating chromosome ends from 

unique sequences. Alternatively, subtelomeric repeats have been suggested to mediate 

chromosome fusion and fission in vertebrates (Meyne et al, 1990). Subtelomeric tandem 

repeat sequences have been cloned from onion (Bames et al., 1985), rice (Wu et al, 1991) 

and barley (Brandes et al, 1995), while three non-homologous, tandemly repeated DNA 

families were present in subtelomeric regions of rye (Vershinin et al, 1995). In addition, 

telomere associated sequences (TAS) have been detected in barley (Kilian and Kleinhofs, 

1992), maize (Burr et al, 1992) and soybean (Kolchinsky and Gresshoff, 1994). It seems 

fair to speculate that the telomere-associated repeats comprise a complex mixture of 

repetitive sequences composed of a number of different repeats, specially for species with 

large genome sizes. The surprising result that the spacer has a minimum value of 13 kb and 

that its length increases proportionally with TGR1 lengths suggests that the spacer contains 

repeat elements and that spacer and TGR1 are co-evolving and in some way functionally 

related. 
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Non-telomeric sites for TR and TGR1 

FISH with the Arabidopsis TR probe to pachytene chromosomes revealed clear 

signals on all tomato telomeres, but none on interstitial or centromere sites. TR repeat 

sequences at interstitial locations have been reported in many vertebrate (Meyne et al, 

1990) and plant species (Alfenito and Birchler 1993; Richards et al, 1991) and are 

considered as remnants of chromosome rearrangements that occurred during genome 

evolution. In addition, Presting et al. (1996) have detected many telomere homologous 

sequences near the centromeres in tomato chromosomes. Such interstitial TR repeat sites 

are speculated to be the result of centromere-telomere recombination and ancient 

chromosome fusion or arm inversions (Presting et al., 1996). Comparison of the tomato 

genome with those of closely related taxa provided evidence for five arm inversions from 

potato (Tanksley et al, 1992), and 15 inversions and translocations from pepper (Tanksley 

et al., 1988; Prince et al., 1993). This indicates that the tomato genome has undergone 

many chromosome rearrangements, giving rise to interstitial TR sites near centromeres. The 

absence of FISH signals from TR sequences near centromeres may reflect either a number 

of TR units too small to be detected by FISH or a change in the TR sequence originating 

from the telomere. Sequence analysis of some interstitial TR fragments indeed revealed a 

degenerate or interspersed pattern of TR units (Presting et al., 1996). 

The occurrence of TGR1 seems to be more dynamic in terms of karyotype evolution 

and its distribution pattern is probably different from that of the telomere repeats. Rather 

than assuming chromosomal rearrangements, as might be true for TR, we postulate that 

telomere distribution is largely determined by the spatial relationship of chromosomes in 

the interphase or prophase nuclei. During these stages chromosomes retain their anaphase 

arrangement, showing centromeres and telomeres facing opposite poles, also known as the 

Rabl orientation. This situation brings centromeres and telomeres in proximity, enabling 

DNA sequences to jump from a chromosome to a non-homologue. Evidence has been 

reported in the mouse (Garagna et al. 1993) of the distribution of similar satellite repeats 

over non-homologous chromosomes by a jumping mechanism during the formation of the 

bouquet polarisation at prophase I of meiotic cells. The attractiveness of this assumption is 

that it also explains the occurrence of equidistantly located interstitial TGR1 sites as being 

copied from short arm sites, including the 3S, 4S, 8S, 9S and 10S arms. This phenomenon, 

referred to as 'equilocal' distribution (Heitz, 1932), has been described for many species 

with conspicuous heterochromatic knobs or C-bands (e.g. Greilhuber and Loidl, 1983). The 

distribution assumes a mechanistic model, in which the repeats are distributed to other 

chromosomal loci nearby in the spatially ordered nucleus (Bennett, 1982). 

The number of interstitial TGR1 sites detected in our study (6L, 8L and 9L) is lower 

than the six sites observed by Lapitan et al. (1989) in primary tomato trisomies. This 
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difference presumably reflects polymorphism differentiating the two genotypes. In addition, 

in assuming that all interstitial TGR1 sites co-localise with the diagnostic chromomere in 

carmine-squashed pachytene chromosomes of the tomato cultivars Moneymaker, Glory-m 

and Artresist (Ramanna and Prakken, 1967), the chromosome arms 3L, 4L, 7L and 12L are 

likely to contain similar TGR1 sites. 

Higher order organisation of the chromosome ends 

During meiosis and mitosis, chromosomes pass through a process of extensive 

chromatin condensation, which reaches a maximum rate during the metaphase stage. Using 

telomere-specific probes, FISH studies have provided valuable information regarding the 

higher order organisation of the chromosomal ends. It has been reported that the TR in 

mouse pachytene cells is exclusively associated with the two ends of each autosomal 

synaptonemal complex (SC), the axial core structure to which chromatin loops are attached 

(Moens and Pearlman, 1990a). Furthermore, by applying FISH to pachytene cells and 

extended DNA fibres of the mouse, Heng et al. (1996) showed that different chromatin 

packaging mechanisms exist for interstitial vs. terminal chromosomal regions, independent 

of the DNA sequences. As the TRs in tomato are mapped at the extreme chromosome ends, 

distal from the TGR1 repeats, we would expect a similar order in condensed pachytene 

chromosomes. The observed order, however, appeared to be reversed, suggesting a crosier

like foldback structure of the telomere region. Similar observations of subterminal TR 

signals have been reported in pachytene chromosomes of mouse (Moens and Pearlman, 

1990b) and metaphase chromosomes of human (Moyzis et al., 1988), grasshopper (Suja 

and Rufas, 1994), pea and field bean (Rawlins et al, 1991) and several other dicots (Cox et 

al., 1993). 

It has been suggested, that the chromatin loops of the subtelomeric region encompass 

the telomeric end (Moens and Pearlman, 1990a; Suja and Rufas, 1994). However, if the 

TGR1 chromatin loops would spread around and past the telomeric end, only a green and a 

yellow signal would be expected as a result of TGR1 overlapping the entire TR, which was 

not the case. Based on these resolvable TR and TGR1 signals, green-yellow-red, a 

backfolding structure of the telomeres would involve the entire TR region, the spacer and at 

least part of the TGR1 region, which could span up to 1000 kb. Although the Carnoy 

fixation of the pachytene cells generates a more compact appearance of chromosomes, 

thereby affecting the spreading of the chromatin loops, it does not affect the order of the 

signals. 

The subterminal position of the telomeric end is suggested to be related with 

protection of the telomeres from exonucleolytic degradation, fusion and recombination. The 
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reversed order implies that in condensed pachytene chromosomes the subtelomeric repeat 

region is the extreme end, suggesting that they might play a role not only in telomere 

protection, but also in the attachment of interphase and prophase chromosomes to the 

nuclear membrane. This may shed a new light on the as yet unknown function of 

subtelomeric satellite repeats. 

FISH to diakinesis chromosomes revealed the majority of chiasmata to be located at 

distal euchromatin segments of the chromosome. Without the FISH technique the distal 

chiasmata would not have been observed due to the fact that the region flanking the distal 

chiasma is highly decondensed and, hence, not visible with DAPI staining alone. This may 

explain why distal chiasmata have remained so far refractory to detection, although their 

occurrence can be predicted on the basis of late recombination nodule distributions that 

occur in tomato along all euchromatin segments and not in proximal heterochromatin or 

very distal ends (Sherman and Stack, 1995), the latter propably being the regions containing 

the TR - TGR1. The highly decondensed structure, which covers hundreds of kilobases up 

to more than 1 Mb, supports previous data on decondensed chromatin surrounding 

chiasmata. It is generally accepted that the idea of terminalisation of chiasmata is not valid. 

Hence, the distal chiasmata represent cross-overs close to or within the telomeric region. 

The latter might explain the hypervariability at the telomeric ends, as found in the TR-

TGR1 domain of tomato (Broun et al, 1992) and other species, which is supposed to be the 

result of either mutation or unequal cross-over. 

The data presented in this paper clearly demonstrate that FISH techniques are a very 

valuable tool, not only to map DNA repeats to chromosomes, but also to elucidate the 

molecular and chromosomal organisation of tandemly repeated DNA sequences of the 

telomeric domain. 

Experimental procedures 

Plant Material and chromosome preparation 

Lycopersicon esculentum cv VFNT Cherry (2n = 24) was used in all experiments. Chromosome 

spreads at pachytene and diakinesis were prepared from young anthers containing pollen mother cells at 

meiotic prophase I, as described previously (Zhong et al., 1996b). Preparations of extended DNA fibres were 

made from young leaf material according to the protocols of Fransz et al. (1996, 1997) and Zhong et al. 

(1996b). 

DNA probes 

The clone pAtT4 (Richards and Ausubel, 1988) containing the telomeric repeat TTTAGGG of A. 

thaliana was used as a probe to detect the tomato TR sequence. A clone containing a 162 bp repeat motif of 
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tomato satellite repeat TGR1 (Schweizer et al., 1988) was used as a probe for the tomato subtelomeric repeat 

sequence. pAtT4 and TGR1 were labelled with biotin-16-dUTP (Boehringer) and digoxigenin-11-dUTP 

(Boehringer), respectively, using either standard nick translation or random primer labelling according to the 

instruction of the manufacturer. 

Pulsed field gel electrophoresis (PFGE) 

High molecular weight (> 2 Mb) genomic tomato DNA was isolated from young leaves according to 

Van Daelen and Zabel (1994) and digested with Bglll or EcoRV (Ganal et al., 1991). Restriction fragments 

in the range 50 - 2000 kb were resolved on a CHEF gel (electrophoresis conditions: 60 sec pulses for 16 

hours followed by 90 sec pulses for 7 h at 6 V cm"1) . Southern blotting and hybridisation were performed as 

described elsewhere (Van Daelen and Zabel, 1994) using a[32P]dATP-labelled probes. 

Fluorescence in situ hybridisation 

Multi-colour FISH of the telomeric repeat and the subtelomeric repeat were performed according to 

the protocols described by Zhong et al. (1996b). The hybridisation signals were visualised under a Zeiss 

fluorescence microscope with separate excitation filter sets for DAPI, FTTC and Texas red. The three-colour 

images were photographed by triple exposure on 400 ISO colour films. Selected negatives were scanned at a 

resolution of 1000 d.p.i. and their images were optimised for best contrast and brightness using the image 

processing software Photoshop (Adobe Inc.). 
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Abstract 

The molecular organisation of the telomeric repeat TR and the subtelomeric re
peat TGR1 of tomato chromosome 6 was studied in a potato background. Genomic in 

situ hybridisation revealed the presence of a single tomato chromosome among 48 po
tato chromosomes in a monosomic addition, derived from a somatic hybrid after two 
backcrosses. RFLP analysis using fourteen molecular markers, spanning the whole 
linkage map of tomato chromosome 6, revealed full integrity of the alien chromosome. 
However, supplementary GISH and FISH studies on somatic and pachytene comple
ments showed that the distal end of the long arm, beyond the most distal RFLP mark
ers, was replaced by a piece of potato chromatin as a result of translocation or ho-
moeologous recombination in the somatic hybrid or BC1 plant. Fibre FISH analysis 
confirmed the existence of only two tracks of TGR1 signals in the monosomic addi
tion, i.e. one in combination with a contiguous TR track, representing the distal end of 
the short arm, and a second TGR1 signal, without TR, that is likely to represent the 
long arm interstitial TGR1 site. Fibre FISH also allowed size estimates of the tandem 
repeats of the TR/TGR1 and TGR1 patterns and the data were compared with mo
lecular data from Southern analysis of high molecular weight DNA separated by 
PFGE. This resulted in an integrated molecular-FISH map of these repeats. Further 
analysis of the somatic hybrid and the BC1 plants revealed a drastic reduction in size 
of subtelomeric TGR1 repeats on tomato chromosomes. The process of DNA repeat 
changes in hybrid plants is discussed. 

Keywords: FISH, extended DNA fibres, tomato, monosomic addition, telomeric repeat, 

subtelomeric repeat, PFGE, Southern analysis 

Introduction 

Due to their abundance in eukaryotic genomes, repetitive DNA families were among 

the first sequences to be isolated, cloned and analysed (reviews in Flavel 1980, 1986; Dean 

and Schmidt, 1995). Since then an increasing number of studies have considerably contrib

uted to our understanding of their organisation, evolutionary relationships and chromoso

mal localisation. Thus, it has become apparent, that repetitive sequences, although substan

tially non-coding, either in tandem or dispersed organisation, play a role in nuclear house 

holding functions, including chromosome movement during cell divisions, meiotic pairing, 

recombination, and gene regulation. 
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The highly conserved 45S and 5S rDNA families, and the telomeric repeat comprise a 

major group of tandem repeats. A second group includes a hypervariable and heterogene

ous group of satellite repeats which are unique for one or a few related species and gener

ally occur in long arrays of millions of copies. The latter group is merely confined to sub-

telomeric and pericentromeric regions and to C-band heterochromatin segments, as shown 

for wheat (Gerlach et al, 1980), rye (Vershinin et al, 1995); Arabidopsis (Martinez-

Zapater et al, 1986), tomato (Ganal et al, 1988) and Beta (Schmidt and Heslop-Harrison, 

1993). Due to their species specificity, tandem repeats provide in most cases reliable land

marks for identifying parental chromosomes in interspecific and intergeneric hybrids. 

Therefore, they can be used as supplementary tools for analysing chromosome transmission 

and karyotype organisation in breeding programmes involving interspecific hybridisations 

and in taxonomic studies of putative allopolyploids. 

However, little is known about size and organisation of individual repeat arrays on 

chromosomes and their position relative to low- and single copy sequences. Although mo

lecular marker techniques have been applied to localise repeats on physical and genetic 

linkage maps (Ganal et al, 1992), their abundant occurrence in the genome and high copy 

number has, in general, been a major obstacle in defining the precise position relative to 

unique sequences that serve as reference points on the genetic linkage maps. 

The advent of Pulse Field Gel Electrophoresis (PFGE) systems, like contour-clamped 

heterogeneous electric field (CHEF) gels (Chu et al., 1986) has made the separation of 

large DNA fragments possible and the technique is now routinely used for characterisation 

of YAC and BAC clones (e.g. Hwang et al, 1991; Bonnema et al, 1996; Woo et al, 1994; 

Wang et al, 1995) and for estimating the size of both tandem and interspersed repeats in 

higher plants (Ganal et al, 1991; Wu and Tanksley 1993; Salentijn et al, 1994). In par

ticular the combination of PFGE with fluorescence in situ hybridisation (FISH) has gained 

importance in establishing size and distribution of specific repeat families as shown for rye 

(Vershinin et al, 1995), tomato (Ganal et al, 1991) and barley (Roder et al., 1993; Brandes 

et al, 1995). Nevertheless, a few obstacles still remain: (i) the molecular size estimation by 

PFGE is dependent on the position of the restriction sites; (ii) the determination of numbers 

and molecular sizes of the tandem repeats by FISH on the highly condensed chromosomes 

is quite inaccurate; (Hi) no specific information is obtained on size and copy number of 

tandem or dispersed repeats at specific sites on the chromosomes, should the repeat occur 

at various positions on different chromosomes. 

Recent advances in the fluorescence in situ hybridisation technology allow improved 

detection and resolution of repetitive and single copy DNA sequences in chromosome 

preparations. Multicolour FISH of different probes hybridised to pachytene chromosomes 

has further added to the detection of DNA targets smaller than 1 kb and made a resolution 

of 0.1 - 1.2 Mbp feasible (Zhong et al, 1996). Simultaneous hybridisations to stretched 
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DNA fibres from chemically disrupted interphase nuclei have further enhanced resolution 

limits and contiguous signals, only 1 kb apart, were resolved in the fluorescence micro

scope (Wiegant et al, 1992; Parra and Windle 1993; Fransz et al., 1996). 

In tomato three major satellite repeats have been detected: (i) TGR1, which occurs in 

the subtelomeric regions of most chromosome arms as well as on interstitial chromomeres 

of a few long arms and in some proximal regions, and varies in size from 25 to 1000 kb 

(Ganal et al, 1988; Lapitan et al, 1989); (ii) TGR2 (c. 4200 copies per genome) that is 

scattered over the chromosomes except for chromosome 2 (Ganal et al, 1988), and (Hi) 

TGR3 (c. 2100 copies per genome) that is found in the centromeric regions and at intersti

tial sites of a few chromosomes, and at dispersed sites along most of the chromosome arms 

(Ganal et al, 1988). All these molecular analyses involved rough estimates of the repeats 

and did not provide specific molecular data on particular repeat sites. 

In a recent paper that combined high resolution FISH to pachytene chromosomes and 

extended DNA fibres of tomato, we presented accurate data on size and distribution of the 

subtelomeric repeat TGR1 and the telomeric repeat (TR). We could discern 27 different 

combinations of these repeats corresponding to 24 unique chromosome ends and three in

terstitial sites. The fluorescent tracks on the extended DNA fibres were subdivided into four 

classes, viz. TR-spacer-TGRl, TR-TGR1, only TR and only TGR1. For each of these 

classes we described 13, 7, 4 and 3 groups of fluorescent tracks, respectively, which were 

assumed to represent unique sites on the tomato chromosomes. As extended DNA fibres 

loose their position on native chromosomes, it was not possible to allocate most of the 

tracks on the chromosome (cytogenetic) map. 

Two strategies are feasible for mapping tandem repeat arrays on a chromosome map. 

Firstly, by allocating repeat arrays relative to single copy sequences with known positions 

on the genetic and chromosome map in a series of multicolour FISH experiments. This ap

proach is extremely laborious and time consuming and requires a large genomic library of 

YACs, BACs or cosmids. Secondly, by limiting the number of expected repeat sites to 

plants containing a single alien chromosome or chromosome segment added to a diploid or 

tetraploid complement of a related species. These so called monosomic additions and their 

derived disomies with recombinant chromosomes have been produced upon backcrossing 

of an interspecific or intergeneric hybrid with one of its parental species for a variety of 

crop species, including Beta procumbens in sugar beet (Van Geyt et al, 1988), B. webbi-

ana in sugar beet (Reamon-Ramos and Wricke, 1992), Oryza australiensis in rice (Multani 

et al, 1994), Brassica albaglabra in B. campestris (Chen et al, 1992, 1994), Nicotiana 

sylvestris in N. plumbaginifolia (Suen et ah, 1997), B. oleracea in B. campestris (McGrafth 

et al, 1990), rye in wheat (Wang et al, 1996), oat in maize (Ananiev et al, 1997), potato 

in Lycopersicon peruvianum (Ramulu et al., 1996) and tomato in potato (Carriga-Caldere et 

al. 1998). 
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This report presents the analysis of an integrated molecular and cytogenetic analysis of 

the TR and TGR1 repeats on the alien chromosome of a monosomic chromosome addition. 

This plant isolated from a second backcross of an allohexaploid somatic tomato (+) potato 

hybrid was found to possess tomato chromosome 6 in a tetraploid potato background (Gar-

riga-Caldere et al, 1998). We analysed the data using multicolour FISH to mitotic cell 

complements, pachytene chromosomes and extended DNA fibres of the monosomic addi

tion and its crossing parents, and compared the results with Southern analyses of compara

ble PFGE data. It is shown that the tomato chromosome in this monosomic addition plant 

contains only two sites of TGR1, one at the distal end of the short arm and one interstitial 

site in the long arm, allowing precise measurements of their repeat lengths. Some unex

pected results in the PFGE study suggesting decrease of molecular size and copy numbers 

for the two repeats in the somatic hybrid and the BC1 are discussed. 

Materials and methods 

Plant materials 

The allohexaploid somatic hybrid #3117 of Solarium tuberosum (+) Lycopersicon esculentum with 

2n=6x=72 was backcrossed with tetraploid potato as described elsewhere (Jacobsen et al. 1995; Garriga-

Caldere 1997, 1998). The first BC1 plant (#6701) recovered via embryo rescuing was found to contain nine 

tomato chromosomes in addition to four complements of potato. Supplementary analyses by Southern hy

bridisation with chromosome specific RFLP markers and genomic in situ hybridisation of nuclei at diakinesis 

revealed two sets of the tomato chromosomes 1, 3 and 6, plus single copies of the chromosome 8, 9 and 10. In 

the second backcross family we selected one plant (#6731-14) with 49 chromosomes. Genomic painting and 

RFLP analysis demonstrated that the extra chromosome in this aneuploid was tomato chromosome 6. The 

schematic representation of the crossing scheme is given in Figure 1. All plants were maintained as in vitro 

cultures and were grown up in the greenhouse for collecting root tips and leaf material. 

Probe DNAs 

Total genomic DNA of the tomato parent C31, potato parent 1017, the somatic hybrid, and the BC1 and 

BC2 plants were isolated from young leaf material according to Klein-Lankborst et al., 1991) and sonicated 

to 1-12 kb fragments for probe labelling and blotting in genomic in situ hybridisation. We selected fourteen 

different RFLP probes (GP164, TG297, TG232, TG153, TG240, H1A12, TG253, TG162, TG275, TG99, 

TG215, TG314, TG193 and TG221), known to be polymorphic with respect to the potato genome and to 

cover the entire molecular genetic map (van Wordragen et al., 1996) including most distal markers for both 

chromosome arms (Table 1, Fig. 2). Clone pAtT4 (Richards and Ausubel, 1988) containing the telomeric 

repeat from Arabidopsis thaliana was used as a probe to detect the telomeric repeat in tomato. The tomato 
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specific satellite repeats TGR1 and TGR2 (Schweizer et al., 1988; Ganal et al., 1988) were used to detect 

tomato chromosomes in the intergeneric hybrid and backcross plants. 

Tomato C31 (+) Potato 1017 
(2n=2x=24) n (2n=2x=24) 

Protoplast fusion 

Somatic hybrid #3117 x tetraploid potato 
(4x potato + 2x tomato) 

embryo rescue 

BC1 (#6701) x tetraploid potato 
(2n = 4x+9 = 57) 

BC2 (#6731-14) 
(2n = 4x+l = 49) 
Monosomic addition 
With tomato chr. 6 

Fig. 1. Breeding programme for the production of a monosomic addition of tomato chromosomes in a tetra
ploid potato background. Full details were given elsewhere (Jacobsen et al. 1995). 

RFLP analysis 

Probes were labelled with a[32P]ATP using the random hexamer method of Feinberg and Vogelstein 

1983). The procedures for restriction digestion, electrophoresis, Southern blotting and hybridisation were 

performed according to Klein-Lankhorst et al. (1991). 

Pulse Field Gel Electrophoresis (PFGE) 

High molecular weight DNAs of at least 2 Mb were isolated from young leaves according to Van 

Daelen and Zabel (1994) and digested with BgUI and EcoRV, that are known to cut outside the repeats (Ganal 

et al., 1991). Separation of large DNA fragments in the range from 50 - 2000 kb was performed on a CHEF 

system (Van Daelen and Zabel, 1994) using a pulsed time of 60 seconds for 16 hours followed by 90 seconds 

for 7 hours at a voltage of 6.0 V/cm. Southern blotting and hybridisation were carried out as was described for 

the RFLP analysis. 
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Table 1. Molecular sizes of the diagnostic RFLP bands in the somatic hybrid, the BC1 and BC2 plants 

RFLP 

markers 

GP164 

TG25 

TG99 

TGI 62 

TG193 

TG215 

TG221 

TG232 

TG253 

TG297 

TG314 

TG352 

TG444 

TG548 

Restriction 

enzyme 

HaelU 

EcoRI 

EcoRI 

Dral 

BstNI 

Dral 

BstNI 

BstNI 

BstNI 

Haem 

EcoRI 

EcoRI 

Dral 

EcoRI 

ID bands 

in tomato C31 

2.0 kb 

9.3 kb 

6.0 kb 

1.9 kb 

4.0 kb 

1.6 kb 

10.3 kb 

5.5 kb 

6.0 kb 

6.9 kb 

12 kb 

9.3 kb 

2.6 kb 

5.4 kb 

ID bands 

in potato 1071 

0.5 kb 

2.4 kb 

2.5 kb 

2.7 kb 

2.4 kb 

1.0 kb 

5.4 kb 

2.2 kb 

3.6 kb 

5.4 kb 

5.3 kb 

2.4 kb 

5.3 kb 

4.8 kb 

Note: The ID band in the table indicates the specific band sizes for the tomato and potato parents. In case of 

more than one specific bands present, one band has been selected for listing. 

Chromosome preparations and Fluorescence in situ hybridisation 

Mitotic chromosome preparations were prepared from fast growing root tip meristems and in vitro cell 

cultures. Meiotic chromosome spreads at meiotic prophase were obtained from young anthers as described in 

a previous paper (Zhong et ah, 1996a). Extended DNA fibres were made from chemically disrupted inter

phase nuclei from young leaves according to the protocols of Fransz et al. (1996) and Zhong et ah (1996b). 

Genomic tomato DNA was labelled with FTTC-dUTP following a standard protocol for random primed 

labelling (Boebringer, Mannheim). Genomic in situ hybridisation with total genomic tomato DNA as probe 

hybridised to chromosomes of the somatic hybrid and backcross products was performed according to Jacob-

sen et al. (1995). The clone pAtT4, TGR1 and TGR2 were labelled with biotin-16-dUTP (Boehringer) or di-

goxigenin-11-dUTP (Boehringer) either by standard nick translation or by random primer labelling according 

to the instructions of the manufacturer. Multi-colour FISH of pAtT4 and TGR1 or TGR2 to metaphase chro

mosomes and extended DNA fibres was carried out according to Zhong et al. (1996b). Microphotographs 

were taken under a Zeiss Axioplan photomicroscope equipped with an epi-fluorescence system and filters for 

DAPI, FITC and Texas-Red fluorochromes. Selected images on 400 ISO negative colour film were scanned 

at 500 dpi and digitally processed for optimal brightness and contrast. 
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Results 

The long arm of the alien tomato chromosome 6 lacks distal tomato sequences 

Our first goal was to study the integrity of the alien chromosome in the monosomic 

addition by means of RFLP and chromosomal markers for tomato chromosome 6. In figure 

2 a schematic representation of the linkage map of tomato chromosome 6 is given showing 

the position of the fourteen RFLP markers used for this study (see van Wordragen et al., 

1996). The genetic map distance from the most distal markers for both arms, GP164 and 

TG221 (Fig. 2), amounts to 102 cM (Tanksley etal., 1992). Genomic DNA of tomato C31, 

potato 1017, somatic hybrids #3117, BC1 #6701 and BC2 #6731-14 were digested with an 

appropriate restriction enzyme (EcoRI, BstNl, HaeJE or Dral) and, after separation by 

electrophoresis, the DNA fragments were blotted and hybridised with probes of the se

lected markers. The markers that gave polymorphic bands for the tomato and potato par

ents, allowed us to establish their presence in the somatic hybrid, and BC1 and BC2 plants. 

All tomato chromosome 6 bands appeared in the BC2 plant (see Table 1 and examples of 

Southern hybridisations for GP164, TG253, and TG221 in Fig. 2). The RFLP analysis thus 

revealed full integrity of the region between the markers of GP164 and TG221 of the alien 

tomato chromosome. 

In a subsequent series of experiments, we focused on the FISH map of the alien 

chromosome to include the distal repeat families. Firstly, a GISH experiment to mitotic 

metaphase complements using FTTC-dUTP labelled tomato genomic DNA as probe con

firmed the presence of a single tomato chromosome in the BC2 plant (Fig. 3a). However, a 

closer examination at higher magnification made clear that there were no FTTC signals at 

the distal part of the long arm of this chromosome (see arrow in Fig. 3c). A similar GISH 

experiment to other preparations containing spread pollen mother cells at pachytene re

vealed a short stretch of propidium iodide (PI) fluorescing chromatin at the distal end of 

this chromosome (see arrow in Fig. 3d). At this stage, the length of short and long arms of 

this chromosome amounted to 8.3 urn and 28 Jim, respectively. De PI region measured 2 

urn which equals 7 % of the long arm. It was assumed that the distal part of the tomato 

chromosome arm 6L was replaced by a potato chromosome fragment. Additional evidence 

came from a two-colour FISH with probes for the telomeric repeat (TR) from Arabidopsis 

thaliana and the tomato specific subtelomeric repeat TGR1 hybridised to mitotic meta

phase chromosomes. Yellow fluorescing spots appeared at the distal end of the short arm 

representing the overlapping (red) TR and (green) TGR1 signals and a pair of smaller green 

fluorescing spots located in the middle of the long arm of the alien chromosome (figs. 3e 

and 3f). There was no TGR1 signal on the distal end of the long arm as expected for the 

native tomato chromosome 6 (Zhong et al., 1998). 
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GP164-

TG297-

TG232-

TG352-

TG25 -

TG444-
TG253-

TG162-

TG548-
TG99 -

TG215-
TG314 
TG193 
TG221-

-pds 
-GP164 
-OPAL20 
JH5G4, TG297 
10PAF5 
-TOM25A 
-GP79 
- cf2, cfS 
JMi, LC379, 
1REX1.0PA13 
JH6A2c2,OPA8, 
10PC8,OPF2 

-yv, H4H10 
- Apsl, TG231 
-GP202 
-TG232 
-H2D1 
-TG352 
-TG153 
-TG25 
-ms33 
-adh2 
-ndw 
-H9A11 
-m2,H2Cl,H4C10 
-TG240 
-GP89.H1A12 
-TG444 
-TG253 
-TG552 
-TG435 
-TG383 
•TG162,TG579,B14#6 
-4 
• sp 

-TG275 

-TG279.TG578 
-TG548 
-TG477.TG99 
-TG539 
-TG581 
-TG215 
-TG314, TG193 

GP164 

TG221 

-glb-l-
-TG115 

—TG482 
—TG221 

4.4 kb — 

2.3 kb 
2.0 kb 

0.6 kb 

23 kb 
9.4 kb 

6.5 kb-

2.0 kb 

0.5 kb 

TG253 4.4kb — 

2.3 kb-
2.0 kb-

23 kb 
9.4 kb 
6.5 kb-

4.4 kb-

2.3 kb-
2.0 kb-

RR P n^ tt8r l ty { f ^ ^ i ? c h r o m o s o m e 6 w the monosomic addition plant #6731-14 analysed bv 
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Molecular organisation of the TR and TGR1 repeats at the short arm of the alien to

mato chromosome 

The results of the aforementioned experiments demonstrated the presence of only two 

sites of TGR1 on the alien tomato chromosome 6 in the monosomic addition: a larger one 

at the short arm co-localised with TR and a smaller one in the middle of the long arm. The 

molecular sizes of the two TGR1 sites were estimated by applying FISH directly to ex

tended DNA fibres obtained from leaf nuclei of the monosomic addition plant. Upon hy

bridisation with a biotinylated TR probe (red colour) and a digoxigenin-labelled TGR1 

probe (green colour), three classes of fluorescent patterns were observed (Fig. 4a and 4b). 

(1) Red fluorescent tracks without a flanking green signal representing the TR sequences 

from all potato chromosome ends. The signals vary in size from 2 to 18 |i.m, which corre

spond to 7 to 60 kb, respectively, on the basis of a stretching degree of 3.27 kb/um (Fransz 

et al., 1996); (2) Red fluorescing TR tracks directly flanked by a long green TGR1 signal 

(Fig. 4a and 4b) representing the contiguous TR-TGR1 sequences at the short arm of the 

tomato chromosome 6. The lengths of the signals spanned 5 ± 1 (i.m for the TR repeat and 

125 ± 10 |J.m for the TGR1 repeat, respectively (Fig. 4c); (3) Green fluorescent tracks fig

ures not connected to any red signals (Fig. 4d). The signals in this class amounted to 50 

± 3 n,m (Fig. 4e) and are likely to represent the hybridisation signal of the interstitial site 

in the long arm. Converting the fluorescent track lengths into molecular sizes gives 16 ± 3 

kb for the distal short arm TR, 408 ± 33 kb for the distal short arm TGR1 and 163 ± 10 kb 

for the interstitial long arm TGR1 site, respectively (Fig. 4c). 

Further analysis of molecular sizes was carried by pulsed field gel electrophoresis 

(PFGE). High molecular weight DNAs from the tomato and potato parents, the somatic hy

brid, the BC1 and the BC2 plants were digested with the restriction enzymes of BglQ and 

EcoRV, which were known to cut outside the TR and TGR1 repeats (Ganal et al., 1991). 

The DNA fragments were separated by PFGE, blotted and hybridised with a probe con

taining the TR repeat of Arabidopsis thaliana (Fig. 5a). In the potato parent, the majority of 

TR containing fragments are smaller than 150 kb for both BglQ and EcoRV digests. The 

tomato parent revealed a smear ranging from 50 to 250 kb. In addition, we detected some 

discrete bands between 600 and 800 kb in both the BglQ and EcoRV digests, and two bands 

of approximately 880 kb and 1900 kb in the BglQ digest. The majority of the TR in the so

matic hybrid, and the BC1 and BC2 plants were similar in size to that of the potato parent, 

but some tomato TR bands with larger sizes were also apparent in those plants. The number 

of the tomato TR bands gradually decreased through backcrossing, finally resulting in only 

one extra BglQ band at 560 kb and one extra EcoRV band at 470 kb in the monosomic 

(BC2) plant. This band is assumed to be derived from the tomato chromosome 6, because it 

was not found in the potato parent. 
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Figure 3. Cytogenetic analysis of the integrity of the alien tomato chromosome in the potato background by 
GISH and FISH. 3a. GISH to the metaphase complements of the monosomic addition using tomato genomic 
DNA as probe. The chromosome with green fluorescent FITC signals is the alien tomato chromosome. 3b 
and 3c. A close examination of the alien chromosome in DAPI counterstain and FITC signals, respectively. 
The arrow in 3c indicates absence of the FITC signals at the distal part of the long arm. 3d. GISH to pachy
tene chromosomes of the monosomic addition. The arrow head points to the position of the centromere. The 
arrow indicates the region with 2 urn (7% of the long arm) chromatin length without FITC signals. 3e and 3f. 
FISH of TR (red) and TGR1 (green) to the alien tomato chromosome. The overlapping TR and TGR1 signals 
appeared at the distal end of the short arm and a pair of smaller TGR1 signals located in the middle of the 
long arm. No TGR1 signals were detected at the distal end of the long arm where a pair of the TR signals was 
located. 

Figure 4. Molecular organisation of the TR and TGR1 repeat families in the alien tomato chromosome ana
lysed by Fibre-FISH. 4a and 4b. Fibre-FISH signals of TR (red) and TGR1 (green). (I) a red fluorescent TR 
track without a flanking green TGR1 signal. (II) a short red fluorescent TR track directly flanked by a long 
green TGR1 signal. (IH) a green fluorescent TGR1 track not connected to any red TR signals. 4 c and 4e. A 
number of the Fibre-FISH signals from class n and HI was arranged, respectively. The molecular sizes of the 
TR and TGR1 domains were estimated by the lengths of the FISH signals x the stretching degree of 3.27 
kb/um found previously (Fransz et al., 1996). 4d. and 4f. An almost identical Fibre-FISH signal of TR and 
TGR1, and a TGR1 only, respectively, from original tomato preparations. 

Figure 6. Dynamics of the TGR1 domains in the somatic hybrid, and the BC1 and BC2 plants revealed by 
FISH to metaphase complements. 6a. the somatic hybrid. 6b. BC1. 6c. BC2, the monosomic addition. The 
tomato chromosomes are identified in red colour by the probe of TGR2 which is tomato specific satellite re
peat. The arrow heads point to the distal ends of the chromosomes without TGR1 signals. The chromosomes 
in BC1 and BC2 are identified by chromosome morphology and TGR1 karyotype. 

When the same blot was hybridised with the TGR1 probe (Fig. 5b) only tomato DNA 

showed signals, thus confirming the specificity of TGR1 for the tomato genome. The ma

jority of the TGR1 fragments in the tomato parent were in the 300 - 800 kb range. Again, 

some discrete, large sized fragments were observed, some of which co-migrated with the 

TR fragments, indicating that the two repeat families are collinear without BgtR or EcoRV 

sites between the TR and TGR1 repeats. As to the TR signals, the number of the TGR1 

bands were smaller in the somatic hybrid, the BC1 and the BC2, in particular there were 

fewer bands of large sized DNA fragments. In the BC2 plant, only one BgM fragment with 

a molecular size of 560 kb was detected with the TGR1 probe identical in size to the TR 

BgM fragment in the same plant. This indicates that both the TR and TGR1 probes hybrid

ised to a BgM fragment of 560 kb, implying that a BgM restriction site is present at 560 kb 

from the physical end of the short arm of the alien tomato chromosome. A darker band of 

450 kb and a lighter band of 580 kb were also found in the EcoRV digest of the BC2 plant. 

The former EcoRV band corresponds in size with the TR signal, suggesting that a 

EcoRV site is located at 450 kb from the physical end. The 500 kb EcoRV band probably 

reflects the interstitial TGR1 site on the long arm. Differences in band intensity of the two 

EcoRV fragments imply that the darker 450 kb band contains a TGR1 sequence with larger 

molecular size. This result corresponds well to the length estimates derived from our Fibre-

FISH experiment as described in the previous section showing that TGR1 at the telomere of 

the short arm has a molecular size of 408 kb, while the TGR1 site at the interstitial site on 

the long arm equals 163 kb. 

82 



83 



FISH to tomato-potato monosomic additions 

Figure 5. Pulsed field gel electrophoresis analysis. High molecular weight DNA from the potato 1017 and 
tomato C31 parents, somatic hybrid SH 3117, BC1 6701 and BC2 6731-14 were digested with Bgin (1) and 
EcoRV (2). The fragments were separated on a CHEF gel under conditions that allow resolution of fragments 
in a range up to 2 Mb. The fragments were blotted and subsequently hybridised with a probe containing the 
telomeric repeat from Arabidopsis thaliana (a) and a probe containing the TGR1 repeat (b). 

Fate of the TR and TGR1 repeats in the somatic hybrid, the BC1 and the BC2 plants 

Unexpectedly, a dramatic loss of TGR1 and tomato specific TR bands was observed in 

the somatic hybrid (Fig. 5a and 5b), which was previously shown to contain a full comple

ment of tomato chromosomes by GISH and RFLP analysis (Jacobsen et al., 1995). If there 

is no change of DNA sequences in the tomato chromosomes of the somatic hybrid during 

the cell fusion procedure, hybridisation patterns of TR and TGR1 identical to the tomato 

parent are to be expected for the somatic hybrid. However, the size of the bulk TR bands 

was found to drop from 50-250 kb down to 10-150 kb, while a number of high molecular 

weight bands with sizes more than 700 kb were absent in the somatic hybrid. Similarly, the 

number of the hybridisation bands of the TGR1 probe was dramatically reduced and the 

large fragments were not detected in the somatic hybrid. These results suggest that either 

chromosome fragments with large TR-TGR1 sequences are eliminated or the TR-TGR1 

sequences are dramatically reduced in size. 

In order to gain cytogenetic evidence that could support the findings by PFGE, a two-

colour FISH with probes of digoxigenin labelled TGR1 and biotin-labelled TGR2 was per

formed on metaphase complements from the somatic hybrid, the BC1 and BC2 plants (Fig. 

6a, 6b and 6c). The TGR2 probe (red colour signals) known to paint large parts of most 

tomato chromosomes (Ganal et al., 1988) was used to distinguish the parental chromo

somes. FISH revealed in the somatic hybrid 22 chromosomes containing the TGR2 probe, 

with 34 telomeric TGR1 sites in stead of the expected 40, based on nine pairs of chromo-
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somes carrying TGR1 at both end and two pairs at one ends in original tomato chromo

somes (Zhong et al., 1998). At least ten chromosomes in the somatic hybrid appeared to 

have the TGR1 signals at only one end (see arrows in Fig. 6a), indicating that, indeed, 6 

telomeric TGR1 sites were lost in this plants. Also in the BC1 plant (Fig. 6b), only 13 te-

lomeric TGR1 signals were detected rather than the 16 sites expected (two at short arm of a 

pair of chromosome 1, eight at both arms of a pair of chromosome 3 and 6, six at both arms 

of a single chromosome 8, 9 and 10). Based on the TGR1 signals and the karyotype of to

mato chromosomes, three TGR1 sites which were lost in the BC1 plant were at the telo

meric sites of the long arm of a chromosome 6, 9 and 10. The results can easily explain 

why a TGR1 telomeric site was not present at the long arm of the tomato chromosome 6 in 

the BC2 plant (Fig. 6c). 

Discussion 

The combination of genomic in situ hybridisation and FISH with TGR1 as probe has 

clearly demonstrated the existence of a small potato segment in the alien chromosome of 

the monosomic addition plant #6731-14. Exchanges between tomato and potato chromo

somes are no exception and have been mentioned for several intergeneric and interspecific 

hybrids since the introduction of genome painting. Translocation chromosomes were re

peatedly described in the tomato (+) potato hybrids (Jacobsen et al., 1995) and are likely 

the result of an exchange between tomato and potato chromosomes via breakage and fusion 

events during or shortly after protoplast fusion. A second explanation for a compound 

chromosome comes from meiotic studies of pairing configurations at pachytene and multi

valent associations at metaphase I, demonstrating the formation of recombinant chromo

somes through homoeologous recombination between tomato and potato chromosomes (de 

Jong et al., 1993; de Jong et al, 1995; Garriga-Caldere etal, 1997,1998). As the nature of 

the tomato chromosomes 6 in the somatic hybrid and the BC1 plant is still to be ascer

tained, no conclusive explanation for the origin of the potato segment in the tomato chro

mosome of the monosomic addition can be given. 

GISH in the monosomic addition unveiled in the recombinant chromosome at pachy

tene a distal, 2 \im short potato segment, spanning 7% of its long arm. This segment appar

ently exceeds the boundary of the chromosome region covered by the 14 RFLP markers of 

the linkage map for that chromosome. It follows that the site of this breakpoint was posi

tioned anywhere between the proximal border of TGR1 and the most distal RFLP marker 

(TG221). With the disappearance of the distal TGR1 site on the long arm, only two loci of 

this tomato satellite repeat remained for high resolution FISH analysis, i.e., the distal TGR1 

on its short arm (together with the TR) and a smaller, interstitial site on the long arm. Both 
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domains were shown to co-localise with chromomeres as observed at pachytene (Ramanna 

and Prakken 1967). 

Our measurements of fluorescent tracks on extended DNA fibre revealed for the short 

arm TR an average length of 5.1 ± 1 ujn, and that for its contiguous TGR1 of 125 ± 10 Jim, 

values that, on the basis of a stretching degree of 3.27 kb/u.m (Fransz et ah, 1996), corre

spond to 16 ± 3 kb and 408 ± 33 kb, respectively. The interstitial site amounts to 50 ± 3 

H-m, which equals 163 ± 10 kb. If we compare these values to the original bulk data for all 

extended DNA fibres from whole tomato nuclei as demonstrated in a previous report 

(Zhong et ah, 1998), the conclusions seems justified that the group IIC in that study, with 

average sizes for TR of 15.3 kb and for TGR1 of 404.5 kb represents the short arm 

TR/TGR1 of chromosome 6. Likewise, the interstitial TGR1 on the long arm should corre

spond to group IVb in that overview for all tomato TR/TGR1 combinations. 

The results of the analysis of large fragment patterns as resolved by PFGE were in line 

with the size estimates of the TR and TGR1 repeats as far as the monosomic addition plant 

is concerned. The Bg/n fragments for both repeats in this BC2 plant were about 560 kb, 

indicating one restriction site at a 135 kb (= 560 - 425) distance from the proximal TGR1 

border and no restriction site at all between both repeats. The EcoRV fragments were even 

smaller measuring 470 kb, indicating the closest restriction site on a distance of c. 45 kb 

from the TGR1 border. The minor bands of 580 and 600 kb may be interpreted as the result 

from flanking restriction sites on either site the interstitial long arm TGR1 segment. The 

molecular organisation of both repeat regions on tomato chromosome 6 with putative posi

tions of the BglH and EcoRV restriction sites is schematically depicted in figure 7. 

a) 

b) 

TR16kb TGR1408kb EcoRV Bglll 

"I I t ~ 
16 425 470 560 kb 

EcoRV TGR1163kb EcoRV 
mm m m w aw as nt m • • ^ ^ ^ ^ • • ^ ^ H I ^ B B m m m t m m t m m i v a i t t 

580 kb 

Figure 7. Schematic drawing of the molecular organisation of the TR and TGR1 sequences in the tomato 
chromosome 6 on basis of the data from Fibre-FISH and PFGE. a) Molecular organisation of the TR/TGR1 at 
the telomere region of the short arm. b) Molecular organisation of the TGR1 at the interstitial site of the long 
arm. 

Rather surprising were the results of the Southern analysis of restriction digested high 

molecular weight DNA fragments of the parental species, their somatic hybrid and the 

BC1. There was a conspicuous difference for the TR profiles between tomato and potato, 

with generally far higher repeat sizes for the former species. In addition, only the tomato 
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lane showed TGR1 bands confirming the species specificity of this repeat. Zhong et al 

(1998) calculated on the basis of extended DNA fibres signals, that the TR repeat in tomato 

varied from 15.5 to 216 kb, and that of TGR1 from 88 to 1330 kb. Remarkable were the 

differences in TR and TGR1 lengths in the somatic hybrid compared with the tomato par

ent, showing a band shift and/or complete loss had occurred for both repeats. The new hy

bridisation fragments that appear in the BC1 carrying six different tomato chromosomes 

suggest that the process modifying repeat lengths still proceeds in the BC1 generation. We 

assume that merging the genomes of tomato and potato protoplasts in a somatic hybrid 

triggers in some way large scale genome instability leading to a diminishing of at least two 

repeat families. The observation that FISH preparations with mitotic metaphase comple

ments of the somatic hybrid reveals 34 TGR1 sites rather than the expected 40 further 

strengthen our assumption on loss and reduction of tandem repeats. 

Comparable genomic changes in newly synthesised polyploid hybrids of Brassica were 

reported by Song et al. (1995), showing loss and/or gain of restriction fragments and ap

pearance of novel fragments in F2 to F5 individuals. A very similar phenomenon was de

scribed for newly synthesised amphiploids with the genomic constitution of hexaploid 

wheat, revealing rapid, non-random elimination of specific, low-copy, probably non-coding 

sequences (Feldman et al, 1997). An other example of genome changes at the molecular 

level was shown for rDNA tandem repeats in Gossipium hybrids (Wendel et al., 1995). 

Such sudden modifications of possibly specific sequences were considered to be brought 

about by DNA methylation, whether or not resulting from ploidy changes (Scheid et al, 

1996). 

The important question as to whether the TR and TGR1 repeats in the tomato chromo

some 6 remain unaffected during the somatic hybridisation and back-crossings remains still 

to be answered. It is not clear yet whether the TR and TGR1 repeat lengths in the alien 

chromosome of the monosomic addition do actually correspond to the sites of the native 

tomato chromosome 6. The Southern analysis of high molecular weight DNAs suggests 

that especially the larger tomato TR/TGR1 repeats get lost in some way during the forma

tion of the intergeneric hybrid, leaving the relatively small TR/TGR1 repeats in this chro

mosome unaffected. Consequently, one may speculate that the short arm distal TR/TGR1 

combination, evidently one with the shortest TRs and an average TGR1 repeat size, has 

more chance to survive the general loss of repeats in the hybridisation process. 
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Abstract 

Fluorescence in situ hybridisation (FISH) was used to construct a physical map 
of two BAC clones, BAC1 and BAC3, spanning the nematode resistance gene Mi in 
tomato and to assign the BAC clones to chromosomal locations. The BAC clones were 
selected from a BAC library constructed from a tomato YAC clone, YAC1256, which 
carries the Mi gene. The molecular sizes of the inserts of the BAC clones as 
determined by pulsed field gel electrophoresis, were 57 kb and 50 kb, respectively. A 
physical map showing the relative position of the two BACs was constructed by Fibre-
FISH of digoxigenin labelled BAC1 and biotin labelled BAC3 to tomato genomic 
extended DNA fibres from young leaf nuclei. The green fluorescent signals of BAC1 
were directly flanked by red signals of BAC3 with a overlap region of 12 kb. The two 
overlapping BAC clones were concluded to cover a 95 kb genomic region around the 
Mi gene. The BAC clones were further mapped to the euchromatic region close to the 
border of heterochromatin at the short arm of chromosome 6 by two-colour FISH to 
pachytene chromosome preparations. The results show that FISH is a fast tool for 
direct physical mapping and chromosome localisation of DNA markers related to 
interesting genes. 

Key words: Fluorescence in situ hybridisation, FISH, Fibre-FISH, pachytene chromo

somes, bacterial artificial chromosome, BAC, Nematode resistance gene, Mi, tomato 

Introduction 

Root-knot nematodes (Meloidogyne spp) cause very serious damage to many crops 

throughout the world. Conceivably, molecular cloning and tailoring of plant genes 

conferring resistance against nematodes have been a major challenge to molecular 

biologists and breeders from both a fundamental and applied perspective (see review of 

Williamson and Hussey 1996; Liharska and Williamson, 1997). Recently, the molecular 

cloning of a tomato nematode resistance gene (Mi) has been accomplished in a combined 

effort of three laboratories (Kaloshian et al., in press; Vos et al., to be published). Thus, 

more than 50 years after the identification of host-encoded nematode resistance, the stage 

has been set for an in-depth analysis of the nematode-tomato interaction and the subsequent 

application of the cloned resistance gene in practical breeding. 

In the early 1940s, a high level of resistance to root-knot nematodes was found to 

occur in L. peruvianum, a wild relative of the cultivated tomato L. esculentum (Bailey, 

1941). This resistance was successfully introgressed into L. esculentum with the help of an 
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embryo culture (Smith, 1944) and further accommodated to commercial lines by repeated 

backcrossing (Frazier and Dennett, 1949; Gilbert and McGuire, 1956). The introgressed 

trait was referred to as Mi from the first letters of the nematode species M. incognita 

(Gilbert and McGuire, 1956). Remarkably, Mi was also found effective against two other 

major nematode species, M. javanica and M. arenaria (Barham and Winstead, 1957). 

Genetic studies revealed that the resistance governed by Mi was dominant and 

segregated as a single major locus (Gilbert and McGuire, 1956), that was mapped on 

chromosome 6 in tight linkage (~1 cM) to the leaf colour marker yv (yellow virescent) 

(Gilbert, 1958) and the acid phosphatase-11 (Aps-l') locus (Rick and Fobes, 1974). This 

linkage relationship has been extensively exploited for indirect selection of nematode-

resistance in tomato breeding programs. Based on deletion mapping (Khush and Rick, 

1968), yv could be assigned to the pericentromeric heterochromatin region of the long arm 

of chromosome 6 with a genetic distance of about 7 cM from another leaf morphology 

marker tl (thiamineless) on the short arm. Because of its very tight linkage to the yv locus, 

Mi has always been marked on the long arm near yv in original versions of the classical 

genetic maps of tomato chromosome 6 (Khush and Rick, 1968; Tanksley et al., 1992, 

Weide et al., 1993). However, on the basis of physical data from deletion mapping 

experiments using molecular markers tightly linked to Mi (van Wordragen et al., 1994), 

preliminary evidence was presented showing Mi to be located on the short arm rather than 

on the long arm. This has been further substantiated recently by means of a detailed 

molecular mapping of numerous irradiation-induced deletions, that involved both the Mi 

gene and the morphological marker tl (Liharska et al., 1997). These studies have thus 

provided a precise location of Mi on the integrated molecular/classical linkage map (see 

also van Wordragen et al., 1996). 

In this chapter, we have completed the map integration by establishing the 

chromosomal, cytogenetic map position of Mi as revealed by FISH to pachytene 

chromosomes using two BAC clones as probes derived from the Mi region. It is shown that 

Mi is indeed located on the short arm of chromosome 6 at the telomere proximal border of 

pericentromeric heterochromatin and euchromatin. 

Materials and methods 

Tomato BAC clones 

A BAC library was constructed by Williamson et al. (unpublished) from YAC1265 which spans the 

Mi gene (Kaloshian et al., in press; Vos et al., unpublished). Two BAC clones, BAC1 and BAC3 were 

selected from the BAC library for physical mapping and chromosomal localisation by FISH. The BAC DNAs 

were isolated by an alkaline lysate method (Woo et al., 1994) and further purified by a GlassMAX DNA 

isolation reagent system (life Technologies). The tomato DNA inserts were released from the BAC clones by 
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NotI digestion and their molecular sizes were estimated by pulsed field gel electrophoresis for 20 hours at an 

initial pulsed time of 1 second and a final pulsed time of 10 seconds at voltage of 6.0 V/cm. 

Probe labelling 

The purified BAC1 and BAC3 DNAs were labelled with digoxigenin-11-dUTP and biotin-16-dUTP, 

respectively, by standard nick translation according to instruction of the manufacturer (Boehringer 

Mannheim, Germany). 

Plant materials and microscopy preparation 

Lycopersicon esculentum cv VFNT cherry, which carries an introgressed region of L. peruvianum at 

chromosome 6 containing the nematode resistance gene Mi (Ho et at., 1992; Liharska et al, 1997), was used 

for FISH mapping. Pachytene chromosome preparations were made from young anthers according to the 

protocol of Zhong et al., (1996a). Preparations of extended genomic DNA fibres were made from young leaf 

material (Fransz et al, 1996; Zhong et al, 1996b). 

FISH 

Two-colour FISH of B AC clones to pachytene chromosomes and extended DNA fibres was performed 

according to the protocol of Zhong et al. (1996b). Digoxigenin-labelled BAC1 probe was detected by anti-

digoxigenin-FITC showing green fluorescent hybridisation signals, while the biotin-labelled BAC3 probe was 

detected by avidin-Texas Red showing red fluorescence. Chromosomes were counterstained with DAPL 

FISH results were photographed on 400 ASA colour negative films using a Zeiss fluorescence microscope 

equipped with epifluorescence illumination and filter 25 with separated excitation filters for observation of 

DAPI, FTTC and Texas Red. Two or three colour FISH signals were simultaneously recorded on one 

photograph by double or triple exposure. The pictures were converted to digital images by scanning the 

negative films. The images shown in the figures were contrast enhanced using commercial image processing 

software. Thirty images of the BAC signals on extended DNA fibres without overlap with other DNA fibres 

were selected for analysis of physical mapping data. Ten of the fluorescence profiles (in Fig. 2b) were aligned 

based on positions of overlapping parts. 

Results 

Molecular characterisation of BAC1 and BAC3 

Restriction mapping analysis of BAC1 and BAC3 had already shown (Williamson et 

al., unpublished) that both clones are partially overlapping and are located near the 

centromere proximal end of YAC 1256, which spans most of the 650 kb introgressed L. 
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Figure 1. Pulsed field gel electrophoresis pattern of undigested and Notl digested BAC1 and BAC3. 

peruviannum chromosomal segment carrying Mi in cultivar Motelle (Vos et al., to be 

published; see also Kaloshian et al., in press). 

The sizes of the Notl inserts of BAC1 and BAC3 were determined by PFGE and 

found to be 57 kb and 50 kb, respectively (Fig. 1). In order to establish the extent of 

overlap, the BAC's were subjected to FISH to extended genomic DNA fibres. Previous 

studies have shown that Fibre-FISH provides a convenient and powerful alternative to 

restriction mapping for such an analysis (Fransz et al., 1996). Hybridisation signals of 

digoxigenin-dUTP labelled BAC1 and biotin-dUTP labelled BAC3 were detected using 

anti-digoxigenin-FITC and avidin-Texas Red, respectively, and appeared as green and red 

fluorescent tracks. A microscopic photograph in an area of 100 x 80 mm containing three 

Fibre-FISH signals is shown in Fig. 2a. On average, two to three Fibre-FISH signals were 

found per field of view using a 63 x microscope objective. The green fluorescent signal of 

BAC1 was directly flanked by the red signals of BAC3 with a small yellow region in 

between, indicating the partial overlap of the two BACs. 
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Thirty representative hybridisation signal on fibres that did not overlap with other 

fibres were selected for further analysis and recorded on photographs. Measurements on the 

green and red fluorescent tracks resulted in a length of 17.7 ±1.8 Jim for BAC1 and 15.5 ± 

1.2 Jim for BAC3, with 3.7 ± 0.9 Jim for the overlapping regions (Table 1, Fig. 2b). Taking 

into account the stretching degree 3.27 kb/jim of the extended DNA fibres found previously 

(Fransz et al., 1996), the molecular sizes of BAC1, BAC3 and the overlap were calculated 

to be 57.9 kb, 50.7 kb and 12.1 kb, respectively, which are similar to the physical sizes of 

the respective BACs as determined by PFGE (Fig. 1). Accordingly, the two partially 

overlapping BAC clones were estimated to cover a 95 kb (57 + 50 - 12 = 95 kb) genomic 

region around the Mi gene (see schematic physical map in Fig. 2c). 

Table 1. Fibre-FTSH signal lengths and molecular sizes of the two BACs 

BAC 

BAC1 

BAC3 

Overlap 

Number of 

molecules 

30 

30 

30 

Length of the signals 

(urn) 

17.7 + 1.8 

15.5 ±1.2 

3.7 ± 0.9 

Molecular size 

measured by FISH (kb) 

57.9 ±5.9 

50.7 ± 3.9 

12.1 ± 2.9 

Molecular size 

measured by PFGE (kb) 

57 

50 

The signal lengths of BAC1, BAC3 and overlap were measured from their Fibre-FISH fluorescent 
hybridisation signals. The molecular sizes of the BACs and the overlap were derived from the lengths of the 
signals x the stretching degree of 3.27 kb/jim found previously (Fransz et al., 1996). Only very slight 
difference of the molecular sizes was found between the measurements by FISH to extended fibres and 
PFGE. 

FISH mapping of BAC1 and BAC3 on pachytene chromosomes 

To precisely localise the two BAC clones on the cytogenetic map of chromosome 6, a 

two-colour FISH experiment was performed on pachytene chromosome preparations using 

digoxigenin-dUTP labelled BAC1 and biotin-dUTP labelled BAC3, respectively. After 

washing at high stringency (0.1 x SSC at 60°C), the BACs were found to be co-localised at 

the short arm of a chromosome that, on the basis of its morphology, was identified as 

chromosome 6. Hybridisation signals appeared in the euchromatic region very near the 

border with the pericentric heterochromatin (see Fig 3a, 3b and 3c) at a fractional length of 

the short arm of 0.4 (a fraction from the FISH signal to telomere over the total chromosome 

arm length). At late pachytene stage, this chromosome 6 has a length of 36.9 Jim (Fig. 3c) 

with 2.3 Jim and 23.6 Jim corresponding to the euchromatin, and 4.3 Jim and 6.7 Jim to the 

heterochromatin at the short and long arm, respectively. 
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Figure 2. Physical mapping of BAC1 and BAC3 by Fibre-FISH. The green and red fluorescent tracks 
represent hybridisation signals of BAC1 and BAC3, respectively. Short stretches of yellow fluorescence 
indicated co-localisation of green and red signals and are interpreted as overlapping region of the two BACs. 
a. a microscopy picture with an area of 100 x 80 mm2, b. ten hybridisation signals manually aligned based on 
position of overlap parts, c. schematic representation of the physical map of the two BACs. bar =10 mm 

Figure 3. Localisation of the BAC1 and BAC3 related to the Mi gene by FISH to pachytene chromosomes, a 
and b. a pachytene complement with FISH signals at the short arm of chromosome 6. The green and red 
signals, representing BAC1 and BAC3, respectively, co-localised to the same position, c. a single pachytene 
chromosome 6 carrying hybridisation signals at the euchromatic region close to border of heterochromatic 
regions at the short arm. The chromosome length is 36.9 um. bar = 10 |jm. The arrows indicate the positions 
of hybridisation signals. The arrow heads and triangle point to the positions of centromere and telomere, 
respectively. 

Discussion 

In this paper we have provided direct physical evidence showing that the root-knot 

nematode resistance gene Mi is indeed located on the short arm of chromosome 6, as 

already indicated by molecular mapping (see Fig. 4B, Liharska et al., 1997; also see van 

Wordragen et al., 1994 and 1996), and not on the long arm as has long been anticipated on 

the basis of its very tight genetic linkage to the loci Aps-1 and yv (see classical genetic map 

in Fig. 4A, Weide et al., 1993). 

With a genetic distance of only 1.1 cM between Mi and Aps-1 lyv, the actual position 

of Mi, at least 30 Mb away from these loci (see below) at the other side of the centromere 

near the telomere proximal border to the pericentromeric heterochromatin and euchromatin, 

is remarkable, even taking into account the pericentromeric location. Centromeric regions 

and their surrounding heterochromatin are notorious for their suppressive effect on meiotic 

recombination (Roberts, 1965; Lambie and Roeder, 1986) and are often associated with 

clustering of genetically, unresolvable markers on the molecular genetic linkage map 

(Tanksley ef a/., 1992). 

The uneven distribution of recombination events along the chromosomal arms of 

tomato has recently been visualised in a cytogenetic analysis in which the frequency and 

distribution of recombination nodules (RNs) was measured in synaptonemal complexes 

(SCs; Sherman and Stack, 1995). As RNs are associated with sites of crossing over, the 

appearance of RNs directly reflects the distribution of recombination events at different 

chromosomal regions. Thus, a high resolution RN map of the tomato genome has been 

constructed (Sherman and Stack, 1995). As shown in Fig. 4C, among the 400 SCs analysed, 

virtually no RNs were found in the heterochromatic region of the short arm and only a few 

RNs in the heterochromatin of the long arm. Accordingly, a 1 cM genetic distance between 

loci in the RN-free heterochromatin should correspond to a large physical distance. 
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An indication as to how far Mi is actually away from Aps-l/yv can be gained from 

recent estimates of the DNA content of hetero- and euchromatin regions (also see Chapter 

7). In considering a DNA content of approximately 950 Mb for tomato haploid genome 

(Arumuganathan and Earle, 1991) packaged into 12 chromosomes spanning a total length 

of 483 urn at late pachytene stage (Ramanna and Prakken, 1967), the compactness of the 

tomato chromosomes is on average 2 Mb/urn. As approximately 77% of the genomic DNA 

is located in heterochromatin and the remainder in euchromatin (Peterson et al., 1996), 

accounting for 116 urn and 367 fim of the chromatin lengths (Ramanna and Prakken, 1967), 

respectively, the DNA compactness in heterochromatin corresponds to 6.3 Mb/|xm and in 

euchromatin to 0.6 Mb/urn. Taking the microscopic length measurements for chromosome 

6 (Fig. 3C) into consideration, the heterochromatin at the short arm accounts for at least 27 

Mb of DNA, with Mi being located at the junction with euchromatin (Fig. 4D). 

Accordingly, the genetic distance of 1 cM between Mi and Aps-l/yv corresponds to a 

physical distance of at least 30 Mb, a base pair-to-cM relationship more than 40 fold higher 

than the average value of 750 kb/cM of the tomato genome (Tanksley et al., 1992). 

Clearly, FISH mapping of specific tomato sequences to meiotic pachytene 

chromosomes adds an extra dimension to the molecular genetic linkage maps of tomato and 

should be regarded crucial before embarking on the positional cloning of a target gene 

merely on the basis of its very tight linkage to molecular markers. 

A fortunate circumstance emerging from the present FISH mapping data is that 

molecular access has been gained to a chromosomal region that otherwise would have 

remained difficult to identifying molecularly, the transition of heterochromatin into 

euchromatin. Conceivably, sequence analysis of the telomere and centromere proximal 

regions around Mi may provide important information on typical structural sequence 

elements defining euchromatin and heterochromatin in that chromosome. 
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Figure 4. a. A classical genetic linkage map of tomato chromosome 6 showing genetic distances between 
classical markers (Weide et al., 1993). b. A molecular map established by deletion mapping showing 
molecular marker order in the region around the centromere of tomato chromosome 6 (Liharska et al., 1997). 
c. A recombination nodule map of tomato chromosome 6 showing the distribution of RN along the 
chromosome (Sherman and Stack, 199S). A thick line represents euchromatin and a thin line represents 
heterochromatin. The distance between each horizontal thin line equals one map unit measured from the 
centromere, d. A ideogram of the pachytene chromosome in Fig. 3c showing the lengths and DNA contents 
in the euchromatin and heterochromatin in both short arm and long arm. The Mi gene is placed on the border 
of the euchromatin and heterochromatin in the chromosome. 
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General Discussion 

Over the last century, tomato has been one of the most favourite species for plant ge

nome mapping. The crop provides numerous morphological traits, has excellent chromo

some morphology and now also displays a detailed genetic map comprising over a thousand 

molecular markers. However, studies on the integration of the genetic map with the chro

mosomal maps was initially hampered by limited accuracy of cytogenetic mapping tools 

such as deletion mapping and fluorescence in situ hybridisation (FISH). In the 1980s and 

early 1990s, genome mapping by FISH was mainly carried out on polytene chromosomes of 

Drosophila species (Rudkin and Stollar, 1977) or on species with large mitotic metaphase 

chromosomes, such as human and wheat, whether or not in combination with chromosome 

banding techniques. Along with small sized mitotic chromosomes found in Arabidopsis 

thaliana, the other model plant species for molecular genetics, those of tomato have for 

some time been regarded as unsuitable for FISH studies. However, during the period of this 

thesis, several technical advancements in FISH technology have been established in both 

our research group and that of other laboratories. 

Highly repetitive DNA families occupying large segments in the chromosomes can be 

roughly mapped on mitotic metaphase chromosomes (Chapter 2, Xu and Earle, 1994; 

Zhong et al., 1996a). Using the highly decondensed pachytene chromosomes as hybridisa

tion targets, the different classes of repetitive sequences can more precisely be assigned to 

specific chromosome regions including centromeres, telomeres, heterochromatin and 

euchromatin (Chapter 2, 3 and 4; Zhong et al, 1996a, 1996b and 1998; Xu and Earle, 

1996a and 1996b). Application of FISH to pachytene chromosomes also allows the map

ping of single copy DNA clones containing interesting genes to specific chromosomal loca

tions and integration of the molecular genetic map into a chromosomal map (Chapter 6). 

Studies of DNA sequence organisation at the molecular level can be directly per

formed by FISH to stretched individual DNA fibres, as shown for the molecular arrange

ment of the repeated unit of 18S and 25S ribosomal sequences along DNA molecules 

(Fransz et al., 1996) and the positional relationship of two telomere specific repeats in indi

vidual telomere domains in the tomato genome (Chapter 4 and 5; Zhong et al., 1998). Fi-

bre-FISH also enables rapid construction of a physical map showing the relative position of 

isolated DNA clones in relation to orientation, overlaps and gaps in a single experiment 

(Chapter 6). These powerful FISH techniques together with conventional molecular bio

logical techniques will result in high resolution physical maps of regions containing unique 

and repetitive DNA sequences. 
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The sensitivity and resolution of FISH mapping in tomato genome 

In applying FISH to tomato, irrespective of the kind of DNA target studied, two major 

factors, detection sensitivity and mapping resolution, are crucial in determining the map

ping effectiveness and accuracy, respectively. The detection sensitivity of FISH techniques 

is defined as the smallest DNA sequence on target which is detectable beyond doubt (Wie-

gant, 1994a). The consensus among cytogeneticists is that when at least 10-20% of ob

served targets display unequivocal hybridisation signals on identical positions of the two 

sister chromatids of a chromosome or on the homologous positions of the parental chromo

somes, the FISH results are considered as beyond question. Many factors can influence the 

detection sensitivity, including the methods used for making microscopic preparations, la

belling and hybridising probes to targets, detecting signals by immuno-fluorescent reagents, 

as well as the physical properties of the fluorescence microscope. If the whole procedure is 

carried out under optimal conditions, FISH sensitivity remains dependent mainly on the de

gree of DNA condensation as less condensed DNA structures are supposed to allow higher 

accessibility of the targets. Such a parameter thus reflects the DNA content per unit length 

of the hybridisation targets. 

Under the conventional fluorescence microscope, the sensitivity of standard FISH to 

human metaphase chromosomes is in a range of cosmid-sized targets of about 30 kb (Lich-

ter et al, 1990; Wiegant et al., 1991 and 1993), although smaller sizes of 1 to 3 kb can be 

detected with a cooled, integrating slow-scan CCD camera (Wiegant et al., 1993). Experi

mental evidence shows that application of FISH to tomato pachytene chromosomes can 

detect at least single copy sequences as small as 50 kb, as shown for the mapping of a BAC 

clone at the junction region of euchromatin and heterochromatin in the short arm of chro

mosome 6 (Chapter 6). There are large differences in DNA condensation between the het

erochromatin and euchromatin regions at the pachytene stage, and obviously these regions 

have different detection sensitivities. 

When FISH was applied to extended DNA fibres from tomato nuclei, a plasmid clone 

containing a 700-bp sequence from the region of the 25S ribosomal gene appeared as single 

fluorescent dots (Fransz et al., 1996), implying that Fibre-FISH can detect target sequences 

as small as seven hundred basepairs (bp). A novel FISH technology, known as molecular 

combing technique (Bensimon et al., 1994), was recently developed for stretching cloned 

DNA molecules. We adapted this method in our laboratory to spread DNA fibres from 

YAC, BAC and phage-A. clones (unpublished data). 

In summary, with the decrease of DNA condensation on various targets, the detection 

sensitivity of the FISH techniques in tomato increases from several hundreds of kbp on 

metaphase chromosomes, down to tens of kbp on pachytene chromosome and several hun

dreds of bp on extended DNA fibres and stretched DNA clones (see Table 1). 
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Chapter 7 

Similar to the detection sensitivity, mapping resolution is also determined by the de

gree of DNA condensation on the targets at a given FISH condition. By definition, this pa

rameter is defined as the smallest physical distance between two different target sequences 

that can be spatially resolved by the microscope used in FISH studies (Wiegant et al., 

1994a). At a maximum spatial resolution of a conventional fluorescence microscope of 0.2 

(am, a series of human molecular cytogenetical experiments established the mapping reso

lution by FISH on various hybridisation targets. A distance of 1-3 Mbp could be resolved 

on metaphase chromosomes (Lichter et al., 1990). When mechanical force was used to 

stretch metaphase chromosomes to 5~20 times their natural lengths, a separation of 200 kb 

could be determined on these chromosomes (Haaf and Ward, 1994). A higher resolution of 

50-100 kbp was reported on less condensed chromatin in interphase nuclei (Trask et al., 

1989). With fibre-FlSH, the mapping resolution amounts to about 1 kb (Wiegant et al., 

1992; Parra and Windle, 1993; Haaf and Ward, 1994), which closely correspond to the 

theoretical resolution of 2.94 kb/um in the Watson-Crick DNA double helix model. 

So far, no systematic survey as to the level of attainable FISH resolution in tomato 

has been conducted. However, a theoretical estimate (see Table 1) can be made on the basis 

of literature data about DNA condensation of tomato chromosomes. After establishing the 

DNA contents in different chromatin regions (Peterson et al., 1996) and their related chro

matin lengths (Ramanna and Prakken, 1967), the DNA condensation has been calculated 

for heterochromatin and euchromatin regions of both metaphase and pachytene chromo

somes. In comparison to a slight difference of DNA condensation of 28 Mb/um and 24 

Mb/^m between heterochromatin and euchromatin on metaphase chromosomes, a dramatic 

variation of the DNA condensation of 6.3 Mb/(i.m in heterochromatin and 0.6 Mb/ftm in 

euchromatin is found for pachytene chromosomes. At a resolution of 0.2 um of a fluores

cence microscope, the mapping resolution ranges from 4-5 Mb for mitotic metaphase 

chromosomes, whereas such values for heterochromatin and euchromatin in pachytene 

chromosomes varies from 1.2 Mb to 120 kb (Table 1). 

Dissection of the tomato genome by FISH 

As the levels of detection, sensitivity and mapping resolution increased using FISH 

techniques for various hybridisation targets, they created potential for a detailed analysis of 

chromosomal structure and genome organisation. Initially, this was applied in particular to 

the analysis of repeated sequences. 
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Ribosomal genes 

The ribosomal gene cluster was among the first regions of the tomato genome to be 

studied by high resolution FISH mapping strategies. Upon isolation and molecular charac

terisation of the 45S and 5S ribosomal genes (Kiss et al, 1988; Lapitan et al., 1991), the 5S 

rDNA genes could be localised to the heterochromatic knob in the centromere region of 

chromosome 1 using FISH to pachytene chromosomes (Xu and Earle, 1996a). The major 

45S rDNA site was located in the Nuclear Organiser Region (NOR) and flanking satellite 

and short arm regions of chromosome 2 (Chapter 2, Xu and Earle, 1996b). Minor sites of 

the 45 S rDNA repeat classes were found in heterochromatin knobs of several chromosomes 

in some tomato cultivars (Xu and Earle 1996b). 

Our studies with fibre-FISH revealed a direct microscopical view of the molecular 

organisation of the rDNAs. Using a probe containing the 5S rDNA sequences, a consistent 

pattern of continuous fluorescent strings of about 200 (im was found which corresponds to 

a molecular size of about 660 kb (Fransz et al. 1996), thus confirming the previous finding 

of the 5S rDNA sequence size in the tomato genome (Lapitan et al, 1991). The tandemly 

repeated organisation of the 45S rDNA sequences was demonstrated in similar fibre-FISH 

experiments and showed a consistent pattern of alternating fluorescent signals with differ

ent probes for the 18S and 25S sequences (Fransz et al, 1996). 

Telomere repeats 

A second region dissected in detail is described in Chapter 4 (also see Zhong et al, 

1998) and involves the organisation of individual telomere domains of the different tomato 

chromosomes. The two repeats of the distal chromosome regions, viz. the telomeric repeat 

TR and the subtelomeric repeat TGR1, were for the first time studied by fibre-FISH. Four 

different classes of the relationship between these two repeats, comprising 27 different 

TR/TGR1 combinations, have been resolved at the DNA level. Their chromosomal distri

bution was further analysed by FISH to pachytene chromosomes, revealing specific infor

mation of these repeats for each individual telomere domain. The results further show how 

the chromatin loops containing the distal DNA repeats are folded at their chromosome 

ends. 

To investigate the telomere organisation on chromosome 6, a monosomic addition 

containing tomato chromosome 6 in a tetraploid potato background was used as study mate

rial. Through the compound nature of the alien chromosome, with a small potato segment 

attached to the long arm of the tomato chromosome, only two sites of the TGR1 repeat re

main detectable: one at the distal end of the short arm and the other on the interstitial chro-

momere of the long arm. The origin of the short potato chromatin at the distal end of the 

long arm is unknown: it can originate from either homoeologous recombination in the mei-

otic prophase I of the somatic hybrid or its BC1, or from a translocation with any of the 
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potato chromosome. Again, the combination of FISH to pachytene chromosomes and ex

tended DNA fibres and molecular size estimates by Pulse Field Gel Electrophoresis dis

played a very detailed molecular organisation of TR and TGR1 (Chapter 5). The results 

present a typical example of how individual domains of repetitive DNA sequences in spe

cific chromosomal regions can be analysed by a combination of FISH on various targets 

with standard molecular techniques and using the benefits of a monosomic addition. 

Other repeat families 

Although a functional centromere DNA sequence is still not available for use as a 

probe in FISH mapping, the first step towards the isolation of tomato centromeric se

quences has been accomplished by mapping the centromeres of chromosomes 6, 7 and 9 

(Van Wordragen et al., 1994 and 1996; Frary et al., 1996; Liharska et al., 1997). Further

more, radiation-induced deletion mapping (Weide et al., submitted) enabled the isolation of 

pericentromeric sequences of tomato chromosome 6 (CEN6). Remarkably, some of the se

quences showed homology to the human centromeric satellite HI sequences and to the 

CENP-B binding box from mammalian satellites, suggesting that these sequences may be 

part of the components of tomato functional centromeres or pericentromeric heterochroma-

tin. Once DNA sequences of core elements of tomato centromeric and pericentromeric se

quences are isolated, molecular and chromosomal organisation of the tomato centromeres 

can be analysed in detail by FISH to pachytene chromosomes and extended DNA fibres. 

In addition to the ribosomal genes, telomeres and centromeres, another important 

feature of chromosomes is the structure and organisation of heterochromatin and euchro-

matin. By definition, euchromatin becomes decondensed at the metabolically active stages 

of cell division, viz., telophase, interphase and prophase, whereas heterochromatin remains 

condensed throughout the whole cell division cycle (Heitz, 1929). Hence, heterochromatin 

and euchromatin cannot be discerned at metaphase, whereas at pachytene and mitotic pro

phase chromosomes exhibit highly morphological differences between darkly stained het

erochromatin and faintly stained euchromatin. This differentiation pattern is most con

spicuous in tomato and can directly be seen in unstained preparations under the phase con

trast microscope, or under bright field illumination upon staining with aceto carmine, 

Giemsa and other classical staining methods. A special class of heterochromatin, the so-

called constitutive heterochromatin (Brown, 1966) can be revealed with the BSG- or C-

banding technique. As to tomato, small specific C-band areas occur in the proximal hetero

chromatin regions, and the distal knobs of the chromosomes 1-6, and 8, 9 and 11 (L.P. Pi-

jnacker and M.S. Ramanna, pers. commun.). 

Incubation of chromosomes with DAPI or other fluorescent dyes exhibits hetero-

chromatic areas as prominent fluorescent blocks, while euchromatin shows only faint fluo

rescence. Once pachytene chromosomes became suitable for FISH (Zhong et al., 1996a and 
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1996b; Xu and Earle, 1996a and 1996b), it was possibility to distinguish the characteristics 

of DNA composition and chromosomal organisation between heterochromatin and euchro-

matin. For example, FISH to pachytene chromosomes showed that THG2, a member of the 

HinclIII repeat complex, is a heterochromatin specific dispersed repeat (Zhong et al., 

1996a). 

Table 2. Estimation of DNA content in heterochromatin and euchromatin of pachytene chromosomes 

in tomato and Arabidopsis thaliana 

Species 

Genome size 

Average DNA content of a chromosome 

Average chromosome length 

Average heterochromatin length 

Average euchromatin length 

DNA condensation in heterochromatin 

DNA condensation in euchromatin 

DNA content in heterochromatin'. 

DNA content in euchromatin' 

Tomato 

950 Mb" 

950/12 = 79 Mb 

483 b/12 = 40 Urn 

115.7 b/12 = 9.6 um 

367.6 b/12 = 30.6 um 

60.8/9.6 = 6.3 Mb/um 

18.1/30.6 = 0.6 Mb/um 

79 x 77% c = 60.8 Mb 

79x23%°= 18.1 Mb 

Arabidopsis 

110 Mb 

110/5 = 22 Mb 

331 d/5 = 66 um 

23.4 d/5 = 4.7 um 

307.8 d/5 = 61.6 um 

0.7' Mb/um 

0.3" Mb/um 

4.7 x 0.7 = 3.3 Mb 

61.6x0.3 = 18.4 Mb 
a. haploid tomato genome size (Arumuganathan and Earle, 1991) 
b. total length of pachytene complements, heterochromatin and euchromatin in the tomato genome (Ra-

manna and Prakken, 1967) 
c. fraction of DNA content in heterochromatin and euchromatin (Peterson et al., 1996) 
d. total length of pachytene complements, heterochromatin and euchromatin in the Arabidopsis genome 

(Fransz et al, 1998) 
e. DNA condensation in heterochromatin and euchromatin deduced on basis of FISH mapping of a YAC 

contig of 2.7 Mb in the regions of the short arm of chromosome 4 in Arabidopsis (Fransz et al., 1997). 
f. DNA contents per chromosome 

Recently, methods for preparing pachytene chromosomes have become available in 

Arabidopsis thaliana (Ross et al., 1996). Combined with FISH using chromosome specific 

probes, a detailed pachytene karyotype of A. thaliana was presented, showing the lengths of 

chromosome arms, satellites, heterochromatin, euchromatin, and chromomeres for each 

chromosome (Fransz etal., 1998). A comparison of the pachytene karyotype of Arabidopsis 

and tomato (see Table 2), elucidated several interesting relations. (1) The total cell com

plement measures 331 (xm and 483 um for Arabidopsis and tomato, respectively, length 

values that are disproportional to their respective genome sizes, amounting 110 Mb for 

Arabidopsis and 950 Mb for tomato. It follows that overall DNA condensation in tomato 

chromosomes is much higher than that in Arabidopsis. (2) In tomato, DNA in heterochro

matin is ten fold more condensed compared to that in euchromatin, while in Arabidopsis 

they differ only by a factor of seven. (3) The major difference in DNA content per chromo

some is due to the relative contribution of heterochromatin per chromosome, which is 60.8 
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Mbp in tomato and 3.3 Mb in Arabidopsis. These findings support a general conclusion that 

DNA abundance in plant genomes should mainly be attributed to repetitive DNA sequences 

located in the heterochromatin regions (Dean and Schmidt, 1995). FISH techniques have 

thus demonstrated to be an invaluable tool for molecular analysis of DNA organisation at 

the chromosomal level with respect to heterochromatin and euchromatin. 

A full bar-code map for each tomato chromosome: a future perspective 

After the tomato genome has been subdivided into minute, subchromosomal regions, 

each with their own domains of single copy sequences or repeat DNA families, integration 

of each part will give an overall picture of the chromosomal organisation at the molecular 

level. These so called "bar-code" maps which are already described for human chromo

somes (Lengauer et al, 1993; Florijn et al, 1995; Miiller et al. 1997) will directly display 

the positions of major repetitive DNA sequences (including the telomeric repeat, subtelo-

meric repeats, centromeric repeats, satellite repeats, micro- and mini-satellite repeats, 

(retro-)transposons, and so forth) and their relation to its molecular, chromosomal and re

combination maps. Information will be obtained, not only on the distribution of each repeat 

element on the chromosomes, but also about the molecular size and sequence organisation 

of individual domains. A detailed overview of the order of repeat sequences will be given 

in the map from one telomere, via its adjacent distal euchromatin, proximal heterochroma

tin, centromere, to the other telomere. Genes will then be precisely mapped on specific 

chromosomal regions and it seems possible to correlate gene organisation and repetitive 

DNA regions with chromatin structure. To build up such "bar-code" maps of chromosomes, 

FISH techniques on various DNA targets are indispensable tools. Monosomic addition of 

tomato chromosomes in a potato background are most useful towards this goal, especially to 

facilitate mapping of dispersed repeat families on individual chromosomes. In the near fu

ture, such a comprehensive chromosomal map will help us to better understanding the to

mato genome organisation at the molecular level. 
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Samenvatting 

De afgelopen jaren is het onderzoek naar de moleculaire en genetische organisatie 

van plantenchromosomen in een enorme stroomversnelling geraakt. Waren zo'n tien jaar 

geleden de chromosomale posities van slechts een aantal genen op chromosomen bekend, 

tegenwoordig zijn van een groot aantal gewassen zeer gedetailleerde koppelingskaarten be-

schikbaar. Dergelijke kaarten geven de relatieve posities van honderden tot duizenden co-

derende en niet-coderende DNA sequenties met hun onderlinge genetische afstand aan. 

Naast deze genetische kaarten bestaan ook moleculaire kaarten waarin de fysische posities 

van alle genen en niet-coderende sequenties met hun precieze DNA-code staan weergeven. 

Van de zandraket (Arabidopsis thaliana), het paradepaardje onder de planten voor mole-

culair biologen en genetici is inmiddels de volledige basenvolgorde van een van de vijf 

chromosomen bekend. 

Hoewel deze informatie over de organisatie van het genoom reeds tot een aantal 

nieuwe inzichten heeft geleid en dagelijks een stimulans vormt voor verder onderzoek aan 

plantengenen, ontbreekt er nog een element aan het totaalbeeld van een plantenchromo-

soom, namelijk de integratie van de "lineaire" informatie van de fysische en genetische 

koppelingskaart met de cytologische kaart, d.w.z. met een kaart die de hogere orde organi

satie van het chromosoom laat zien. Een soort drie-dimensionale chromosoomatlas dus, 

waarin de informatie over posities van DNA sequenties staan aangegeven ten opzichte van 

chromosoomuiteinde en centromeer, en andere chromosoommarkers, zoals de sterk gecon-

denseerde chromomeren en heterochromatische gebieden, die gekenmerkt worden door on

der meer grote aantallen repetitieve sequenties en moeilijker toegankehjk zijn voor gen-

transcriptie. Belangrijke vragen dienen zich aan: welke genen en niet-coderende sequenties 

bevinden zich dan in het heterochromatine en welke in het euchromatine? En hoe liggen de 

genen verspreid ten opzichte van niet-coderende gebieden? En hoe is deze informatie 

ruimtelijk georganiseerd in de kern? 

Een eerste stap op weg naar deze integratie kan gezet worden met een techniek die 

het mogelijk maakt om direct de ligging van DNA sequenties op het chromosoom onder het 

microscoop zichtbaar maken. Deze techniek, fluorescentie in situ hybridisatie (FISH), 

wordt reeds enige tijd met succes toegepast bij dierlijke en humane organismen, maar staat 

bij het plantenonderzoek nog in de kinderschoenen. In dit proefschrift wordt een aanzet ge-

geven tot de toepassing van deze techniek in het genoomonderzoek van de tomaat (Lyco-

persicon esculentum). De FISH-techniek wordt toegepast op zowel mitotische chromoso

men van worteltopmeristeem-preparaten als meiotische profase chromosomen (pachyteen-

chromosomen), afkomstig uit gespreide kernen van pollenmoedercellen afkomstig uit an-
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theren. De FISH op pachyteenchromosomen blijkt een belangrijke verbetering in detectie, 

en resolutie van naast elkaar gelegen fluorescentiesignalen. Bovendien hebben pachyteen-

kemen als voordeel dat alle chromosomen kunnen worden gei'dentificeerd op basis van spe-

cifieke heterochromatinepatronen. Naast deze pachyteen-FISH tehniek wordt nog een ande-

re speciale techniek beschreven, de DNA-fibre FISH, waarmee als het ware via een ver-

grootglas een stafkaart van een bepaald chromosoomgebied met moleculaire detaillering 

zichtbaar wordt gemaakt. 

Hoofdstuk 1 allereerst behandelt een overzicht van de voortgang die geboekt is in het 

genoomonderzoek van tomaat, zowel moleculair-genetisch als cytologisch. Dit onderzoek 

heeft een gezonde voedingsbodem gelegd waarop het FISH-onderzoek kon voortbouwen. 

De ontwikkeling van de FISH techniek wordt beschreven en de mogelijkheden geschetst 

die deze techniek biedt om dieper inzicht te krijgen in de organisatie van genetisch materi-

aal. 

Hoofdstuk 2 beschrijft de ontwikkeling van een aantal protocollen voor de bereiding 

van chromosoompreparaten uit mitotisch en meiotisch celmateriaal ten behoeve van FISH-

onderzoek in tomaat. Toepassing van deze techniek wordt toegelicht aan de hand van de 

kartering van een aantal verschillende repetitieve DNA elementen. 

In hoofdstuk 3 worden vervolgens "stap-voor-stap" recepten beschreven voor de be

reiding van chromosoompreparaten en "extended DNA-fibres" ten behoeve van de fysische 

kartering van DNA sequenties. Aangetoond wordt dat met deze FISH technieken gelijktij-

dig de posities van meerdere DNA elementen (telomeer repeat TR en subtelomeer repeat 

TGR1) zichtbaar gemaakt kunnen worden. 

Hoofdstuk 4 gaat in detail in op de moleculaire en chromosomale organisatie van in-

dividuele DNA repeat domeinen, waarin al dan niet TR en TGR1 in voorkomen. Aange

toond wordt dat ieder van de twaalf tomaatchromosomen een eigen, specifieke organisatie 

van deze repeats kent. Zo worden bij de uiteinden van sommige chromosomen TR- en 

TGRl-tandem repeats gescheiden door een "spacer", terwijl op andere chromosomen deze 

repeats direct aan elkaar gekoppeld zijn. Bovendien komen er ook chromosoomuiteinden 

voor met alleen een TR domein en hebben drie chromosomen halverwege hun lange arm 

een TGRl-domein, zonder TR. Nauwkeurige analyse van de FISH signalen op de uiteinden 

van pachyteenchromosomen toont aan dat de TR repeat, die zich op het DNA molecuul aan 

het uiterste einde bevindt, naar binnen gevouwen ligt, waardoor de subterminaal gelegen 

TGR sequenties het uiteinde van het chromosoom afdekt. 

In hoofdstuk 5 wordt beschreven hoe de moleculaire organisatie van repeterende 

DNA sequenties op een bepaald chromosom van tomaat zeer effectief bestudeerd kan wor

den door gebruik te maken van een aardappel (+) tomaathybride die naast zijn normale set 

van 48 aardappelchromosomen een extra chromosoom van tomaat bevat. Dit soort zoge-

122 



naamde monosome addities zijn ontwikkeld door de vakgroep Plantenveredeling en vormen 

uniek materiaal voor het beantwoorden van specifieke vragen uit het genoom-onderzoek. In 

dit proefschrift is gebruik gemaakt van een monosome additie die het tomatenchromosoom 

6 bevat. Multicolour FISH analyses van het soortvreemde chromosoom bracht aan het licht 

dat het uiteinde van de lange arm een kort stuk aardappelchromosoom had gekregen, dat 

door breuk of meiotische recombinatie met de aardappelhomoeoloog was ontstaan. Met be-

hulp van zowel standaard moleculaire technieken (pulsed field gel electroforesis) en FISH 

op pachyteenchromosomen en extended DNA fibres kon de chromosoom 6-specifieke mo

leculaire en cytogenetische organisatie van de TR en TGR1 repeats vastgesteld worden. 

Bovendien kon worden aangetoond dat in de somatische aardappel (+) tomaathybride en 

daarvan afgeleide terugkruisingsplanten grote delen van de TR en TGR1 repeats verloren 

zijn gegaan. 

Hoofdstuk 6 geeft een goed voorbeeld hoe de combinatie van FISH aan pachyteen en 

extended DNA fibres een krachtige nieuwe technologie is geworden in de genoomanalyse 

van tomaat. Het laat zien hoe de FISH techniek geschikt is voor het bepalen van de chro-

mosomale posities van coderende sequenties. Hiertoe is als voorbeeld de positie van het 

resistentiegen tegen het wortelknobbelaaltje (Mi) van tomaat in kaart gebracht, daarbij ge

bruik makend van BAC klonen van dit gen. Het Mi gen bleek gelegen te zijn in het grens-

gebied van heterochromatine en euchromatine, halverwege de korte arm. De positie van Mi 

is verrassend gezien de enorme fysieke afstand tot het Asp-1 gen op de lange arm waar het 

genetisch zeer nauw (± 1 cM) aan gekoppeld is. Berekeningen laten zien dat de fysieke af

stand overeenkomt met een genetische afstand van minstens 30 Mb. Dat betekent een 

bp/cM relatie die 40x hoger is dan de gemiddelde verhouding (750 kb/cM) tussen deze 

twee afstanden voor het genoom van tomaat. 

Hoofdstuk 7, tenslotte, bediscussieert de potentiele mogelijkheden die de verschillen-

de FISH technieken bieden voor het genoomonderzoek van tomaat en andere planten. Er 

wordt daarbij onder meer aandacht besteed aan de gevoeligheidswinst en het hogere oplos-

send vermogen van deze technieken en een toekomstbeeld geschetst en waarin een volledi-

ge "streepjescode" voor elk individueel chromosoom van tomaat ontwikkeld wordt. Een 

dergelijke streepjescode toont de onderlinge ligging van de verschillende typen DNA se

quenties langs het chromosoom zoals zich die onder de microscoop manifesteren. 

(uit het Chinees vertaald door Pirn Zabel en Hans de Jong) 
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